prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import base64 import io import pandas as pd from dash import html def check_non_default_index(df): if not ((type(df.index) == pd.RangeIndex) and (df.index.name is None)): return True else: return False def numeric_cols_in_df(df): numeric_cols = ~ df.apply(lambda s:
pd.to_numeric(s, errors='coerce')
pandas.to_numeric
import copy import numpy as np import pandas as pd import pytest from jointly import ShakeMissingException, SyncPairTimeshift from jointly.helpers import ( calculate_magnitude, normalize, verify_segments, get_segment_data, infer_freq, get_max_ref_frequency, get_stretch_factor, stretch_signals, get_equidistant_signals, ) from jointly.types import SynchronizationPair from tests.parquet_reader import get_parquet_test_data def test_calculate_magnitude(): df = pd.DataFrame({"x": [1, 2, 3], "y": [-1.5, 2, 0], "z": [-1.5, 25, 1234]}) magnitude = calculate_magnitude(df, ["x", "y", "z"], "testname") correct = pd.DataFrame( {"testname": [2.345207879911715, 25.15949125081825, 1234.0036466720833]} ) assert magnitude.equals(correct), "Should have correct magnitude results" df["Magnitude"] = magnitude # noinspection PyUnresolvedReferences assert df["Magnitude"].equals( magnitude["testname"] ), "Should be possible to set+rename result to old dataframe" def test_normalize(): assert np.array_equal(normalize([1, 2, 3]), [-1, 0, 1]), "should be normalized" assert np.array_equal(normalize([-1, 0, 1]), [-1, 0, 1]), "should be normalized" with pytest.raises(ValueError): normalize([]) with pytest.raises(ValueError): normalize([1]) with pytest.raises(ZeroDivisionError): normalize([0, 0]) def test_get_equidistant_signals(): test_data = get_parquet_test_data("faros-internal.parquet", 667) result = get_equidistant_signals(test_data, frequency=1_000) for col in result.columns: assert infer_freq(result[col]) == 1000, f"{col} should have 1000 Hz" result = get_equidistant_signals(test_data, frequency=500) for col in result.columns: assert infer_freq(result[col]) == 500, f"{col} should have 500 Hz" result = get_equidistant_signals(test_data, frequency=1) for col in result.columns: assert infer_freq(result[col]) == 1, f"{col} should have 1 Hz" def test_get_max_ref_frequency(): test_data = get_parquet_test_data("faros-internal.parquet", 667) assert get_max_ref_frequency(test_data) == 500, "max(all) should be 500 Hz" assert ( get_max_ref_frequency(test_data[["ACCELERATION_X", "ACCELERATION_Y"]]) == 100 ), "max(acc) should be 100 Hz" assert ( get_max_ref_frequency(test_data["ACCELERATION_Y"].to_frame()) == 100 ), "max(acc) should be 100 Hz" with pytest.raises(ValueError): get_max_ref_frequency(test_data["ACCELERATION_X"]) with pytest.raises(ValueError): get_max_ref_frequency(pd.DataFrame()) def test_infer_freq(): test_data = get_parquet_test_data("faros-internal.parquet", 667) assert infer_freq(test_data["ECG"]) == 500, "ECG should be 500 Hz" assert infer_freq(test_data["ACCELERATION_X"]) == 100, "Acc. should be 100 Hz" assert infer_freq(test_data["ACCELERATION_Y"]) == 100, "Acc. should be 100 Hz" assert infer_freq(test_data["ACCELERATION_Z"]) == 100, "Acc. should be 100 Hz" def test_stretch_signals(): test_idx = pd.date_range(start="1/1/2018", periods=8) test_data = [42] * 8 test_df =
pd.DataFrame(test_data, test_idx)
pandas.DataFrame
import numpy as np import numpy.testing as npt import pandas as pd import pandas.testing as pdt import pytest from plateau.utils.pandas import ( aggregate_to_lists, concat_dataframes, drop_sorted_duplicates_keep_last, is_dataframe_sorted, mask_sorted_duplicates_keep_last, merge_dataframes_robust, sort_dataframe, ) class TestConcatDataframes: @pytest.fixture(params=[True, False]) def dummy_default(self, request): if request.param: return pd.DataFrame(data={"a": [-2, -3], "b": 1.0}, columns=["a", "b"]) else: return None @pytest.fixture(params=[True, False]) def maybe_iter(self, request): if request.param: return iter else: return list def test_many(self, dummy_default, maybe_iter): dfs = [ pd.DataFrame( data={"a": [0, 1], "b": 1.0}, columns=["a", "b"], index=[10, 11] ), pd.DataFrame( data={"a": [2, 3], "b": 2.0}, columns=["a", "b"], index=[10, 11] ), pd.DataFrame(data={"a": [4, 5], "b": 3.0}, columns=["a", "b"]), ] expected = pd.DataFrame( {"a": [0, 1, 2, 3, 4, 5], "b": [1.0, 1.0, 2.0, 2.0, 3.0, 3.0]}, columns=["a", "b"], ) actual = concat_dataframes(maybe_iter(dfs), dummy_default) pdt.assert_frame_equal(actual, expected) def test_single(self, dummy_default, maybe_iter): df = pd.DataFrame( data={"a": [0, 1], "b": 1.0}, columns=["a", "b"], index=[10, 11] ) actual = concat_dataframes(maybe_iter([df.copy()]), dummy_default) pdt.assert_frame_equal(actual, df) def test_default(self, maybe_iter): df = pd.DataFrame( data={"a": [0, 1], "b": 1.0}, columns=["a", "b"], index=[10, 11] ) actual = concat_dataframes(maybe_iter([]), df) pdt.assert_frame_equal(actual, df) def test_fail_no_default(self, maybe_iter): with pytest.raises(ValueError) as exc: concat_dataframes(maybe_iter([]), None) assert str(exc.value) == "Cannot concatenate 0 dataframes." @pytest.mark.parametrize( "dfs", [ [pd.DataFrame({"a": [0, 1]})], [pd.DataFrame({"a": [0, 1]}), pd.DataFrame({"a": [2, 3]})], ], ) def test_whipe_list(self, dfs): concat_dataframes(dfs) assert dfs == [] @pytest.mark.parametrize( "dfs,expected", [ ( # dfs [pd.DataFrame(index=range(3))], # expected pd.DataFrame(index=range(3)), ), ( # dfs [pd.DataFrame(index=range(3)), pd.DataFrame(index=range(2))], # expected pd.DataFrame(index=range(5)), ), ], ) def test_no_columns(self, dfs, expected): actual = concat_dataframes(dfs) pdt.assert_frame_equal(actual, expected) def test_fail_different_colsets(self, maybe_iter): dfs = [pd.DataFrame({"a": [1]}), pd.DataFrame({"a": [1], "b": [2]})] with pytest.raises( ValueError, match="Not all DataFrames have the same set of columns!" ): concat_dataframes(maybe_iter(dfs)) @pytest.mark.parametrize( "df,columns", [ ( # df pd.DataFrame({"a": [1, 2, 3], "b": [1, 2, 3]}), # columns ["a"], ), ( # df pd.DataFrame({"a": [3, 2, 1], "b": [1, 2, 3]}), # columns ["a"], ), ( # df pd.DataFrame({"a": [3, 2, 1, 3, 2, 1], "b": [2, 2, 2, 1, 1, 1]}), # columns ["a", "b"], ), ( # df pd.DataFrame({"a": [3, 2, 1], "b": [1, 2, 3]}, index=[1000, 2000, 3000]), # columns ["a"], ), ( # df pd.DataFrame({"a": [3.0, 2.0, 1.0], "b": [1, 2, 3]}), # columns ["a"], ), ( # df pd.DataFrame({"a": ["3", "2", "1"], "b": [1, 2, 3]}), # columns ["a"], ), ( # df pd.DataFrame({"a": [True, False], "b": [1, 2]}), # columns ["a"], ), ( # df pd.DataFrame( { "a": [ pd.Timestamp("2018-01-03"), pd.Timestamp("2018-01-02"), pd.Timestamp("2018-01-01"), ], "b": [1, 2, 3], } ), # columns ["a"], ), ( # df pd.DataFrame( {"a": pd.Series(["3", "2", "1"]).astype("category"), "b": [1, 2, 3]} ), # columns ["a"], ), ], ) def test_sort_dataframe(df, columns): expected = df.sort_values(columns).reset_index(drop=True) actual = sort_dataframe(df, columns) pdt.assert_frame_equal(actual, expected) @pytest.mark.parametrize( "df,columns,expected_mask", [ ( # df pd.DataFrame({"a": [1, 2, 3]}), # columns ["a"], # expected_mask np.array([False, False, False]), ), ( # df pd.DataFrame({"a": [1, 1, 3]}), # columns ["a"], # expected_mask np.array([True, False, False]), ), ( # df pd.DataFrame({"a": [1, 1, 3], "b": [1, 2, 3]}), # columns ["a"], # expected_mask np.array([True, False, False]), ), ( # df pd.DataFrame({"a": [1, 1, 3], "b": [1, 2, 3]}), # columns ["a", "b"], # expected_mask np.array([False, False, False]), ), ( # df pd.DataFrame({"a": [1, 1, 3], "b": [1, 1, 3]}), # columns ["a", "b"], # expected_mask np.array([True, False, False]), ), ( # df pd.DataFrame({"a": [1]}), # columns ["a"], # expected_mask np.array([False]), ), ( # df pd.DataFrame({"a": []}), # columns ["a"], # expected_mask np.array([], dtype=bool), ), ( # df pd.DataFrame( { "a": [1, 1, 3], "b": [1.0, 1.0, 3.0], "c": ["a", "a", "b"], "d": [True, True, False], "e": [ pd.Timestamp("2018"), pd.Timestamp("2018"), pd.Timestamp("2019"), ], "f": pd.Series(["a", "a", "b"]).astype("category"), } ), # columns ["a", "b", "c", "d", "e", "f"], # expected_mask np.array([True, False, False]), ), ( # df pd.DataFrame({"a": [1, 2, 3, 4, 4, 5, 6, 6]}), # columns ["a"], # expected_mask np.array([False, False, False, True, False, False, True, False]), ), ( # df pd.DataFrame({"a": [2, 2, 3]}), # columns [], # expected_mask np.array([False, False, False]), ), ( # df pd.DataFrame({"a": [1, 1, 3]}, index=[1000, 2000, 1]), # columns ["a"], # expected_mask np.array([True, False, False]), ), ], ) def test_sorted_duplicates_keep_last(df, columns, expected_mask): actual_mask = mask_sorted_duplicates_keep_last(df, columns) assert actual_mask.dtype == bool npt.assert_array_equal(actual_mask, expected_mask) actual_df = drop_sorted_duplicates_keep_last(df, columns) expected_df = df[~expected_mask] pdt.assert_frame_equal(actual_df, expected_df) if columns: # pandas crashes for empty column lists pd_mask = df.duplicated(subset=columns, keep="last").values pd_df = df.drop_duplicates(subset=columns, keep="last") npt.assert_array_equal(pd_mask, expected_mask) pdt.assert_frame_equal(pd_df, expected_df) @pytest.mark.parametrize( "df_input,by", [ ( # df_input pd.DataFrame({"x": [0], "y": [0], "v": ["a"]}), # by ["x", "y"], ), ( # df_input pd.DataFrame({"x": [0, 0], "y": [0, 0], "v": ["a", "b"]}), # by ["x", "y"], ), ( # df_input pd.DataFrame({"x": [0, 0], "y": [0, 0], "v": ["a", "a"]}), # by ["x", "y"], ), ( # df_input pd.DataFrame( { "x": [1, 0, 0, 1, 1], "y": [1, 0, 0, 0, 1], "v": ["a", "b", "c", "d", "e"], } ), # by ["x", "y"], ), ( # df_input pd.DataFrame({"x": [], "y": [], "v": []}), # by ["x", "y"], ), ( # df_input pd.DataFrame({"x": [0, 0], "y": [0, 0], "v": ["a", "a"]}), # by [], ), ], ) def test_aggregate_to_lists(df_input, by): data_col = "v" # pandas is broken for empty DFs if df_input.empty: df_expected = df_input else: if by: df_expected = df_input.groupby(by=by, as_index=False)[data_col].agg( lambda series: list(series.values) ) else: df_expected = pd.DataFrame( {data_col: pd.Series([list(df_input[data_col].values)])} ) df_actual = aggregate_to_lists(df_input, by, data_col) pdt.assert_frame_equal(df_actual, df_expected) def test_is_dataframe_sorted_no_cols(): df = pd.DataFrame({}) with pytest.raises(ValueError, match="`columns` must contain at least 1 column"): is_dataframe_sorted(df, []) @pytest.mark.parametrize( "df,columns", [ ( # df pd.DataFrame({"x": []}), # columns ["x"], ), ( # df pd.DataFrame({"x": [], "y": [], "z": []}), # columns ["x", "y", "z"], ), ( # df pd.DataFrame({"x": [0, 1, 10]}), # columns ["x"], ), ( # df pd.DataFrame({"x": [0, 1, 10], "y": [20, 21, 210]}), # columns ["x", "y"], ), ( # df pd.DataFrame({"x": [0, 1, 1], "y": [10, 0, 1]}), # columns ["x", "y"], ), ( # df pd.DataFrame({"x": [0, 1], "y": [1, 0]}), # columns ["x"], ), ( # df pd.DataFrame( { "x": [0, 0, 0, 0, 1, 1, 1, 1], "y": [0, 0, 1, 1, 0, 0, 1, 1], "z": [0, 1, 0, 1, 0, 1, 0, 1], } ), # columns ["x", "y", "z"], ), ( # df pd.DataFrame({"x": [0, 0], "y": [0, 0], "z": [0, 0]}), # columns ["x", "y", "z"], ), ( # df pd.DataFrame({"x": pd.Series(["1", "2"]).astype("category")}), # columns ["x"], ), ], ) def test_assert_df_sorted_ok(df, columns): assert is_dataframe_sorted(df, columns) @pytest.mark.parametrize( "df,columns", [ ( # df pd.DataFrame({"x": [1, 0]}), # columns ["x"], ), ( # df pd.DataFrame({"x": [0, 1, 1], "y": [0, 1, 0]}), # columns ["x", "y"], ), ( # df pd.DataFrame({"x": [0, 0], "y": [0, 0], "z": [1, 0]}), # columns ["x", "y", "z"], ), ( # df pd.DataFrame({"x": [0, 0], "y": [1, 0], "z": [0, 0]}), # columns ["x", "y", "z"], ), ( # df pd.DataFrame({"x": [1, 0], "y": [0, 0], "z": [0, 0]}), # columns ["x", "y", "z"], ), ( # df pd.DataFrame({"x": pd.Series(["2", "1"]).astype("category")}), # columns ["x"], ), ], ) def test_assert_df_sorted_no(df, columns): assert not is_dataframe_sorted(df, columns) @pytest.mark.parametrize( "df1,df2,how,expected", [ ( # df1 pd.DataFrame({"i": [0, 1], "x": [0, 1], "v1": [11, 12]}), # df2 pd.DataFrame({"x": [0, 1], "v2": [21, 22]}), # how "inner", # expected pd.DataFrame({"i": [0, 1], "x": [0, 1], "v1": [11, 12], "v2": [21, 22]}), ), ( # df1 pd.DataFrame({"i": [0, 1], "x": [0, 1], "v1": [11, 12]}), # df2 pd.DataFrame({"x": [0, 1], "v2": [21, 22]}), # how "left", # expected pd.DataFrame({"i": [0, 1], "x": [0, 1], "v1": [11, 12], "v2": [21, 22]}), ), ( # df1 pd.DataFrame({"i": [0, 1], "x": [0, 1], "v1": [11, 12]}), # df2 pd.DataFrame({"x": [0], "v2": [21]}), # how "inner", # expected pd.DataFrame({"i": [0], "x": [0], "v1": [11], "v2": [21]}), ), ( # df1 pd.DataFrame({"i": [0, 1], "x": [0, 1], "v1": [11, 12]}), # df2 pd.DataFrame({"x": [0], "v2": [21]}), # how "left", # expected pd.DataFrame( {"i": [0, 1], "x": [0, 1], "v1": [11, 12], "v2": [21, np.nan]} ), ), ( # df1 pd.DataFrame({"i": [0, 1], "v1": [11, 12]}), # df2 pd.DataFrame({"v2": [21, 22]}), # how "inner", # expected pd.DataFrame( {"i": [0, 0, 1, 1], "v1": [11, 11, 12, 12], "v2": [21, 22, 21, 22]} ), ), ( # df1 pd.DataFrame({"i": [0, 1], "v1": [11, 12]}), # df2 pd.DataFrame({"v2": [21, 22]}), # how "left", # expected pd.DataFrame( {"i": [0, 0, 1, 1], "v1": [11, 11, 12, 12], "v2": [21, 22, 21, 22]} ), ), ( # df1 pd.DataFrame({"i": [0, 1], "v1": [11, 12]}), # df2 pd.DataFrame({"v2": pd.Series([], dtype=int)}), # how "inner", # expected pd.DataFrame( { "i": pd.Series([], dtype=int), "v1": pd.Series([], dtype=int), "v2": pd.Series([], dtype=int), } ), ), ( # df1 pd.DataFrame({"i": [0, 1], "v1": [11, 12]}), # df2 pd.DataFrame({"v2": pd.Series([], dtype=int)}), # how "left", # expected
pd.DataFrame({"i": [0, 1], "v1": [11, 12], "v2": [np.nan, np.nan]})
pandas.DataFrame
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from collections import OrderedDict from datetime import datetime import numpy as np import pytest from pandas.compat import lrange from pandas import DataFrame, MultiIndex, Series, date_range, notna import pandas.core.panel as panelm from pandas.core.panel import Panel import pandas.util.testing as tm from pandas.util.testing import ( assert_almost_equal, assert_frame_equal, assert_series_equal, makeCustomDataframe as mkdf, makeMixedDataFrame) from pandas.tseries.offsets import MonthEnd @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class PanelTests(object): panel = None def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) pytest.raises(TypeError, hash, c_empty) pytest.raises(TypeError, hash, c) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class SafeForSparse(object): # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).iloc[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with pytest.raises(NotImplementedError): getattr(p, op)(d, axis=0) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class CheckIndexing(object): def test_delitem_and_pop(self): values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] tm.assert_frame_equal(panelc[1], panel[1]) tm.assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] tm.assert_frame_equal(panelc[0], panel[0]) tm.assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] tm.assert_frame_equal(panelc[1], panel[1]) tm.assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # bad shape p = Panel(np.random.randn(4, 3, 2)) msg = (r"shape of value must be \(3, 2\), " r"shape of given object was \(4, 2\)") with pytest.raises(ValueError, match=msg): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notna(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notna(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_getitem_fancy_slice(self): pass def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.loc[:, 22, [111, 333]] = b assert_frame_equal(a.loc[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort_values() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.loc[0, :, 0] = b assert_series_equal(df.loc[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.loc[:, 0, 0] = b assert_series_equal(df.loc[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.loc[0, 0, :] = b assert_series_equal(df.loc[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]}) assert_frame_equal(result, expected) @pytest.mark.filterwarnings("ignore:\\nPanel:FutureWarning") class TestPanel(PanelTests, CheckIndexing, SafeForSparse): def test_constructor_cast(self): # can't cast data = [[['foo', 'bar', 'baz']]] pytest.raises(ValueError, Panel, data, dtype=float) def test_constructor_empty_panel(self): empty = Panel() assert len(empty.items) == 0 assert len(empty.major_axis) == 0 assert len(empty.minor_axis) == 0 def test_constructor_observe_dtype(self): # GH #411 panel = Panel(items=lrange(3), major_axis=lrange(3), minor_axis=
lrange(3)
pandas.compat.lrange
import pytest import collections from pathlib import Path import pandas as pd from mbf_genomics import DelayedDataFrame from mbf_genomics.annotator import Constant, Annotator import pypipegraph as ppg from pypipegraph.testing import run_pipegraph, force_load from pandas.testing import assert_frame_equal from mbf_genomics.util import find_annos_from_column class LenAnno(Annotator): def __init__(self, name): self.columns = [name] def calc(self, df): return pd.DataFrame( {self.columns[0]: ["%s%i" % (self.columns[0], len(df))] * len(df)} ) @pytest.mark.usefixtures("no_pipegraph") @pytest.mark.usefixtures("clear_annotators") class Test_DelayedDataFrameDirect: def test_create(self): test_df = pd.DataFrame({"A": [1, 2]}) def load(): return test_df a = DelayedDataFrame("shu", load) assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" def test_create_from_df(self): test_df = pd.DataFrame({"A": [1, 2]}) a = DelayedDataFrame("shu", test_df) assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" def test_write(self): test_df = pd.DataFrame({"A": [1, 2]}) def load(): return test_df a = DelayedDataFrame("shu", load, result_dir="sha") assert Path("sha").exists() assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" fn = a.write()[1] assert "/sha" in str(fn.parent.absolute()) assert fn.exists() assert_frame_equal(pd.read_csv(fn, sep="\t"), test_df) def test_write_excel(self): test_df = pd.DataFrame({"A": [1, 2]}) def load(): return test_df a = DelayedDataFrame("shu", load, result_dir="sha") assert Path("sha").exists() assert_frame_equal(a.df, test_df) assert a.non_annotator_columns == "A" fn = a.write("sha.xls")[1] assert fn.exists() assert_frame_equal(pd.read_excel(fn), test_df) def test_write_excel2(self): data = {} for i in range(0, 257): c = "A%i" % i d = [1, 1] data[c] = d test_df = pd.DataFrame(data) def load(): return test_df a = DelayedDataFrame("shu", load, result_dir="sha") fn = a.write("sha.xls")[1] assert fn.exists() assert_frame_equal(pd.read_excel(fn), test_df) def test_write_mangle(self): test_df = pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) def load(): return test_df a = DelayedDataFrame("shu", load) assert_frame_equal(a.df, test_df) assert (a.non_annotator_columns == ["A", "B"]).all() def mangle(df): df = df.drop("A", axis=1) df = df[df.B == "c"] return df fn = a.write("test.csv", mangle)[1] assert fn.exists() assert_frame_equal(pd.read_csv(fn, sep="\t"), mangle(test_df)) def test_magic(self): test_df = pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) a = DelayedDataFrame("shu", lambda: test_df) assert hash(a) assert a.name in str(a) assert a.name in repr(a) def test_annotator(self): a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) a += Constant("column", "value") a.annotate() assert "column" in a.df.columns assert (a.df["column"] == "value").all() def test_add_non_anno(self): a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) with pytest.raises(TypeError): a += 5 def test_annotator_wrong_columns(self): class WrongConstant(Annotator): def __init__(self, column_name, value): self.columns = [column_name] self.value = value def calc(self, df): return pd.DataFrame({"shu": self.value}, index=df.index) a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) with pytest.raises(ValueError): a += WrongConstant("column", "value") def test_annotator_minimum_columns(self): a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) assert "Direct" in str(a.load_strategy) class MissingCalc(Annotator): column_names = ["shu"] with pytest.raises(AttributeError): a += MissingCalc() class EmptyColumnNames(Annotator): columns = [] def calc(self, df): return pd.DataFrame({}) with pytest.raises(IndexError): a += EmptyColumnNames() class EmptyColumnNamesButCacheName(Annotator): cache_name = "shu" columns = [] def calc(self, df): return pd.DataFrame({}) with pytest.raises(IndexError): a += EmptyColumnNamesButCacheName() class MissingColumnNames(Annotator): def calc(self, df): pass with pytest.raises(AttributeError): a += MissingColumnNames() class NonListColumns(Annotator): columns = "shu" def calc(self, df): pass with pytest.raises(ValueError): a += NonListColumns() def test_DynamicColumNames(self): a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) class Dynamic(Annotator): @property def columns(self): return ["a"] def calc(self, df): return pd.DataFrame({"a": ["x", "y"]}) a += Dynamic() a.annotate() assert_frame_equal( a.df, pd.DataFrame({"A": [1, 2], "B": ["c", "d"], "a": ["x", "y"]}) ) def test_annos_added_only_once(self): count = [0] class CountingConstant(Annotator): def __init__(self, column_name, value): count[0] += 1 self.columns = [column_name] self.value = value def calc(self, df): return pd.DataFrame({self.columns[0]: self.value}, index=df.index) a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) c = CountingConstant("hello", "c") a += c a.annotate() assert "hello" in a.df.columns assert count[0] == 1 a += c # this get's ignored def test_annos_same_column_different_anno(self): count = [0] class CountingConstant(Annotator): def __init__(self, column_name, value): count[0] += 1 self.columns = [column_name] self.value = value def calc(self, df): return pd.DataFrame({self.columns[0]: self.value}, index=df.index) a = DelayedDataFrame( "shu", lambda: pd.DataFrame({"A": [1, 2], "B": ["c", "d"]}) ) c = CountingConstant("hello", "c") a += c a.annotate() assert "hello" in a.df.columns assert count[0] == 1 c = CountingConstant("hello2", "c") a += c a.annotate() assert "hello2" in a.df.columns assert count[0] == 2 d = CountingConstant("hello2", "d") assert c is not d with pytest.raises(ValueError): a += d def test_annos_same_column_different_anno2(self): class A(Annotator): cache_name = "hello" columns = ["aa"] def calc(self, df): return pd.DataFrame({self.columns[0]: "a"}, index=df.index) class B(Annotator): cache_name = "hello2" columns = ["aa"] def calc(self, df): return
pd.DataFrame({self.columns[0]: "a"}, index=df.index)
pandas.DataFrame
import requests import pandas as pd import time # Program collects all the information about photos in ajapaik API to the dataframe and puts it in csv file. #gives roughly % how much of collecting is done #takes "pageNR" on what iteration are we def progress(pageNR): pr = round(pageNR / 16822 * 100, 4) return "\r" + "Collecting data: " + str(pr) + " %" url ="https://opendata.ajapaik.ee/photos/?fbclid=IwAR3Zf_f2bM07WRrJuGijOQNoJmJawYV70hKgdUVAJPkWy5_rtNjKwwVdvpE&page=1" list_of_pic_dictionaries = [] start_time = time.time() pageNR = 1 while url is not None: response = requests.get(url) #in case something goes wrong if response.status_code != 200: print("Something went wrong, couldn't get the url content!") print("Page number: " + str(pageNR)) print(url) break nextURl = response.json()["next"] pictures = response.json()["results"] #Iter over all the pictures on that page. for i in range(len(pictures)): pic = response.json()["results"][i] list_of_pic_dictionaries.append(pic) #if there are rephotos, add those too for re in pic["rephotos"]: list_of_pic_dictionaries.append(re) url = nextURl print(progress(pageNR), end="") pageNR += 1 df =
pd.DataFrame(list_of_pic_dictionaries)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed May 9 02:35:02 2018 @author: elvex """ """Boite à outils de manipulation des base de données de tweets. """ #import json import pandas as pd import txt_analysis as TA from math import log10 from glob import glob from os.path import abspath from re import split from math import pi from numpy import cos, sin import datetime def json2pd(adr): """ Convertit un json de tweets en base de donnée panda. Entrée : l'adresse du json Sortie : la base de donnée panda """ with open(adr, 'r') as f: r = f.read() bdd = pd.read_json(r, orient = 'records', lines = True) bdd = bdd['user'].apply(pd.Series).join(bdd.drop('user', 1), how = "left", lsuffix="_profile", rsuffix="_tweet") return bdd def filterBYlanguage(bdd, lan = 'fr'): bdd = bdd[(bdd.lang_tweet == lan)] return bdd def keepNdropPD_txt(bdd): bdd = bdd.loc[:, ["id_profile", "text"]] return bdd def aggregate_bddFiltered(bdd): grp = bdd.groupby("id_profile") bdd = grp.agg(["count", lambda x: "\n".join(x)]) bdd.columns = bdd.columns.droplevel(0) bdd = bdd.rename(columns={ bdd.columns[0]: "counting", bdd.columns[1]: "text"}) return bdd def json2bdd_agreg(json): return aggregate_bddFiltered(keepNdropPD_txt(filterBYlanguage(json2pd(json)))) #bdd = aggregate_bddFiltered(keepNdropPD_txt(filterBYlanguage(json2pd(file)))) def concat_bdd_aggreg(bdd1, bdd2): bdd21 = bdd1.counting.add(bdd2.counting, fill_value=0) bdd22 = bdd1.text.add(bdd2.text, fill_value="") bdd2 = pd.concat([bdd21, bdd22], axis=1) return bdd2 def concat_dir(dirname): path = abspath(dirname) lst = glob(path+"/*.json") bdd = json2bdd_agreg(lst[0]) for i in range(1, len(lst)): try: bdd2 = json2bdd_agreg(lst[i]) bdd = concat_bdd_aggreg(bdd, bdd2) except ValueError as e: print("Erreur '{}' sur l'étape {}".format(e, i)) continue return bdd def drop_profile(bdd, n = 2): return bdd.loc[bdd["counting"] >= n, "text"] def bdd2bow(bdd): """ Transforme un Data Frame panda de tweet en base donnée bag of words, chaque collonne correspondant à un mot spécifique et chaque ligne à un utilisateur, avec comme contenu de la cellule le nombre d'occurence du mot dans le tweet. Entrée : le dataframe panda Sortie : le dataframe bag of word """ T = bdd["text"] if isinstance(bdd, pd.core.frame.DataFrame) else bdd T = T.map(TA.formate_txt) T = T.map(TA.bow) bow = pd.DataFrame.from_dict(T.tolist()) bow = bow.fillna(0) return bow def filter_bow(bow, mini = 1): """ Permet de filtrer un dataframe bag of words en stipulant un nombre minimum de tweets dans lequels les mots doivent apparaître. Entrée : bow : pandas dataframe bag of words mini : entier stipulant le minimum Sortie : bow_f : le dataframe bag of words filtré """ test = (((bow > 0).sum()) >= mini).values bow_f = bow.iloc[:, test] return bow_f def tf_idf(bow, lst = [], fonction = "idfi"): """ À partir d'un dataframe bag of words, applique une métrique de tf idf pour pondérer le score des mots. Entrée : bow : dataframe bag of words lst : liste de mots à garder dans le dataframe, si nul, tous les mots son gardés fonction : fonction de pondération : idfn => pas de pondération idfi => prend en compte le nombre de tweets et la fréquence d'utilisation des mots idfl => comme idfi mais en se laissant une sécurité sur le log10(0) idfs => comme idfi mais en se laissant une autre sécurité sur le log10(0) idff => prend simplement en compte la fréquence d'utilisation des mots idfp => prend en compte le nombre de tweets et la fréquence d'utilisation des mots """ dico = {"idfi" : idfi, "idfn" : idfn, "idfl" : idfl, "idfp" : idfp, "idff" : idff, "idfs" : idfs} D, df = len(bow), (bow > 0).sum() f_poids = dico.get(fonction, "idfi") idf = bow * f_poids(D, df) if len(lst) > 0: idf = intersection(bow, lst) return idf def intersection(bdd, lst): """Renvoie les colonnes d'une bdd pandas qui correspondent aux mots entrés. Entrées : bdd : panda dataframe lst : liste de mots Sortie : nouvelle dataframe pandas """ s = set(map(str.lower, lst)) s = s.intersection(set(bdd.columns.values.tolist())) return bdd.loc[:, list(s)] def idfi(D, df): return (D/df).apply(log10) def idfn(D, df): return 1 def idfl(D, df): return (D/df + 1).apply(log10) def idff(D, df): return 1/df def idfp(D, df): return ((D - df) / df).apply(log10) def idfs (D, df): return (((D + 1) / df).apply(log10)) ** 2 def df2np(df): """Convertit un dataframe panda en matrice, renvoie cette matrice et le vecteur d'indice. Entrée : df, panda dataframe Sortie : idx : numpy array des indices de la dataframe mtx : numpy array des valeurs de la dataframe """ mtx = df.values idx = df.index.values return (idx, mtx) def dateBDD(bdd): dico_month = {1 : 31, 2 : 28, 3 : 31, 4 : 30, 5 : 31, 6 : 30, 7 : 31, 8 : 31, 9 : 30, 10 : 31, 11 : 30, 12 : 30} bdd = bdd.loc[:, ['id_tweet', 'created_at_tweet']].set_index('id_tweet') bdd.created_at_tweet = bdd.created_at_tweet.apply(lambda x: list(map(int, split('[: -]', str(x))))) bdd["hour"] = bdd.created_at_tweet.apply(lambda lst: (lst[-3] + lst[-2] / 60 + lst[-1] / (60**2)) * (pi/12)) bdd["hour_X"] = bdd.hour.apply(cos) bdd["hour_Y"] = bdd.hour.apply(sin) bdd["day_X"] = bdd.created_at_tweet.apply(lambda x: cos(x[2] * pi / 6)) bdd["day_Y"] = bdd.created_at_tweet.apply(lambda x: sin(x[2] * pi / 6)) bdd["dayweek"] = bdd.created_at_tweet.apply(lambda x: datetime.date(x[0], x[1], x[2]).weekday()) bdd["dayweek_X"] = bdd.dayweek.apply(lambda x: cos(x * 2 * pi / 7)) bdd["dayweek_Y"] = bdd.dayweek.apply(lambda x: sin(x * 2 * pi / 7)) bdd["month_X"] = bdd.created_at_tweet.apply(lambda x: cos(x[1] * pi / dico_month[x[2]])) bdd["month_Y"] = bdd.created_at_tweet.apply(lambda x: sin(x[1] * pi / dico_month[x[2]])) bdd["year"] = bdd.created_at_tweet.apply(lambda x: x[0]) bdd.drop(labels = ["created_at_tweet", "hour", "dayweek"], axis = 1, inplace = True) return bdd def json2dateBDD(json): return dateBDD(filterBYlanguage(json2pd(json))) def date_dir(dirname): path = abspath(dirname) lst = glob(path+"/*.json") bdd = json2dateBDD(lst[0]) for i in range(1, len(lst)): try: bdd2 = json2dateBDD(lst[i]) bdd = pd.concat([bdd, bdd2], axis=0) except ValueError as e: print("Erreur '{}' sur l'étape {}".format(e, i)) continue return bdd def print_means_words(km, col, lim = 10): means = km.means D =
pd.DataFrame(means, columns=col)
pandas.DataFrame
# -*- coding:UTF-8 import pandas as pd import numpy as np from collections import defaultdict from gensim.corpora import Dictionary from gensim.models import LdaMulticore from sklearn.metrics.pairwise import cosine_distances, euclidean_distances import json RANDOM_SEED = 42 NUM_TOPICS = 300 def ngram_features(test_data): def split_string_as_list_by_ngram(input_string,ngram_value): input_string="".join([string for string in input_string if string.strip()]) length = len(input_string) result_string=[] for i in range(length): if i + ngram_value < length + 1: result_string.append(input_string[i:i+ngram_value]) return result_string def compute_blue_ngram(x1_list,x2_list): """ compute blue score use ngram information. x1_list as predict sentence,x2_list as target sentence :param x1_list: :param x2_list: :return: """ count_dict={} count_dict_clip={} #1. count for each token at predict sentence side. for token in x1_list: if token not in count_dict: count_dict[token]=1 else: count_dict[token]=count_dict[token]+1 count=np.sum([value for key,value in count_dict.items()]) #2.count for tokens existing in predict sentence for target sentence side. for token in x2_list: if token in count_dict: if token not in count_dict_clip: count_dict_clip[token]=1 else: count_dict_clip[token]=count_dict_clip[token]+1 #3. clip value to ceiling value for that token count_dict_clip={key:(value if value<=count_dict[key] else count_dict[key]) for key,value in count_dict_clip.items()} count_clip=np.sum([value for key,value in count_dict_clip.items()]) result=float(count_clip)/(float(count)+0.00000001) return result def cal_ngram(csv_data, ngram_value): ngram_lt1 = [] ngram_lt2 = [] for i in range(csv_data.shape[0]): x1_list = csv_data.iloc[i, 1].split(' ') x2_list = csv_data.iloc[i, 2].split(' ') res1 = compute_blue_ngram(split_string_as_list_by_ngram(x1_list, ngram_value), split_string_as_list_by_ngram(x2_list,ngram_value)) res2 = compute_blue_ngram(split_string_as_list_by_ngram(x2_list, ngram_value), split_string_as_list_by_ngram(x1_list,ngram_value)) ngram_lt1.append(res1) ngram_lt2.append(res2) return ngram_lt1,ngram_lt2 fea_dict = {} for ngram in range(1, 9): ngram_lt1,ngram_lt2 = cal_ngram(test_data, ngram) fea_dict['ngram1'+str(ngram)] = ngram_lt1 fea_dict['ngram2'+str(ngram)] = ngram_lt2 save_data = pd.DataFrame(fea_dict) return save_data.values def lda_features(test_data): train_data = pd.read_csv('data/aux/train_char_indexvec.csv') documents = list(train_data.iloc[:, 1]) documents.extend(list(train_data.iloc[:, 2])) documents = [item.split(' ') for item in documents] dictionary = Dictionary(documents) corpus = [dictionary.doc2bow(document) for document in documents] model = LdaMulticore( corpus, num_topics=NUM_TOPICS, id2word=dictionary, random_state=RANDOM_SEED, ) def compute_topic_distances(pair): q1_bow = dictionary.doc2bow(pair[0]) q2_bow = dictionary.doc2bow(pair[1]) q1_topic_vec = np.array(model.get_document_topics(q1_bow, minimum_probability=0))[:, 1].reshape(1, -1) q2_topic_vec = np.array(model.get_document_topics(q2_bow, minimum_probability=0))[:, 1].reshape(1, -1) return [ cosine_distances(q1_topic_vec, q2_topic_vec)[0][0], euclidean_distances(q1_topic_vec, q2_topic_vec)[0][0], ] cosine_lt = [] euclidean_lt = [] for i in range(test_data.shape[0]): cosine_val, euclidean_val = compute_topic_distances((test_data.iloc[i, 1].split(' '), test_data.iloc[i, 2].split(' '))) cosine_lt.append(cosine_val) euclidean_lt.append(euclidean_val) lda_feas = pd.DataFrame({'cosine_distances':cosine_lt, 'euclidean_distances':euclidean_lt}) lda_feas = lda_feas.values return lda_feas def occur_features(test_data): df_all_pairs = test_data.copy() columns = list(df_all_pairs.columns.values) columns[:3] = ['id', 'question1', 'question2'] df_all_pairs.columns = columns df_unique_texts = pd.read_csv('data/test/occur_uniq_texts.csv') with open('data/test/occur_counts.json') as f: q_counts = json.load(f) question_ids =
pd.Series(df_unique_texts.index.values, index=df_unique_texts['question'].values)
pandas.Series
"""Analysis of sentence similarity model event primitive prediction.""" from argparse import ArgumentParser, Namespace from dataclasses import dataclass import json from pathlib import Path from typing import Any, Iterable, List, Mapping, Sequence, cast import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sn from sklearn.metrics import confusion_matrix from pycurator.flask_backend.event_prediction import init_embeddings, init_ss_model, request_top_n @dataclass class SchemaAnalysisObj: """Store information about the schema for easy write out to CSV. Attributes: text: Text corresponding to the event step. true_event_primitive: Event primitive assigned to this event step by annotator. pred_event_primitives: Event primitives predicted by the sentence similarity model, listed in order of most likely -> least likely. """ text: str true_event_primitive: str pred_event_primitives: Sequence[str] def __iter__(self) -> Iterable[str]: """Represent the obj as an iterable.""" return iter([self.text, self.true_event_primitive, *self.pred_event_primitives]) def main(args: Namespace) -> None: """Read in schemas, score for accuracy and MRR, write out results, and plot (optional). Arguments: args: Arguments read in from the command line. """ schema_path = args.input schemas = read_in_schemas(schema_path) ss_model = init_ss_model() definition_emb, template_emb = init_embeddings(ss_model) annotated_schemas = [] for schema in schemas: for step in schema["steps"]: description = step["name"].replace(",", ";").replace("-", " ") top_5: List[str] = [] for pred in request_top_n( description, n=5, ss_model=ss_model, definition_embeddings=definition_emb, template_embeddings=template_emb, ): pred_type = cast(str, pred["type"]) top_5.append(pred_type) s = SchemaAnalysisObj( description, ".".join(step["@type"].split("/")[-1].split(".")[:2]), top_5, ) annotated_schemas.append(s) path_to_schema_events = Path("all_schema_events.csv") # Checkpoint in case we want to do anything else with this information schemas_df = write_out_scores(annotated_schemas, path_to_schema_events) output_path = args.output analyze_results(output_path, schemas_df) if args.plot: plot(schemas_df) def plot(results: pd.DataFrame) -> None: """Create confusion matrix from results of the analysis. Arguments: results: Results from events and predictions. """ labels = results.true_primitive.unique().tolist() cm = confusion_matrix( results.true_primitive.tolist(), results.rec_primitive_1.tolist(), labels=labels, normalize="true", ) plt.figure(figsize=(15, 15)) sn.heatmap(cm, cmap="YlGnBu", xticklabels=labels, yticklabels=labels) plt.savefig("confusion_matrix.pdf", bbox_inches="tight", dpi=500) def write_out_scores( annotated_schemas: Sequence[SchemaAnalysisObj], path_to_schema_events: Path ) -> pd.DataFrame: """Write out results from predicting event types for each step. Arguments: annotated_schemas: List of SchemaAnalysisObj's containing all the important information from the schemas and predictions over event types. path_to_schema_events: Path to the schema events file. Returns: DataFrame containing matching event text, true event primitive, and top five recommended primitives. """ df = pd.DataFrame.from_records( annotated_schemas, columns=[ "event_text", "true_primitive", "rec_primitive_1", "rec_primitive_2", "rec_primitive_3", "rec_primitive_4", "rec_primitive_5", ], ) df.to_csv(path_to_schema_events) return df def mean_reciprocal_rank(rs: Sequence[Sequence[int]]) -> np.float64: """Calculate MRR (from https://gist.github.com/bwhite/3726239). Arguments: rs: Matches for each event primitive type. Returns: Calculated MRR. """ rs_gen = (np.asarray(r).nonzero()[0] for r in rs) return cast(np.float64, np.mean([1.0 / (r[0] + 1) if r.size else 0.0 for r in rs_gen])) def analyze_results(output_path: Path, results: pd.DataFrame) -> None: """Analyze results of the event primitive prediction over schemas. Specifically, calculate how many matches there are between the true event primitive and predictive event primitives. Then get the mean reciprocal rank, and the accuracy for predictions at the first prediction, top three predictions, and top five predictions. Arguments: output_path: Path to the output file. results: Pandas DataFrame containing event text, true primitive, predicted primitives. """ temp_df =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sun Feb 28 15:24:03 2021 @author: suriy """ from numba import jit # Fitting the nan values with the average def avgfit(l): na = pd.isna(l) arr = [] for i in range(len(l)): if na[i] == False: arr.append(l[i]) avg = sum(arr)/len(arr) fit_arr = [] for i in range(len(l)): if na[i] == False: fit_arr.append(l[i]) elif na[i] == True: fit_arr.append(avg) return(fit_arr) #@jit(nopython=True) # Weighted Mean Absolute Percentage Error def mean_absolute_percentage_error(y_true, y_pred): y_true, y_pred = list(y_true), list(y_pred) l = len(y_true) num = 0 den = 0 for i in range(l): num = num + (abs(y_pred[i] - y_true[i])) den = den + y_true[i] return abs(num/den) * 100 # Importing the Libraries import joblib import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import explained_variance_score from sklearn.metrics import confusion_matrix, accuracy_score from sklearn.utils import class_weight from sklearn.ensemble import RandomForestClassifier from sklearn.ensemble import RandomForestRegressor import warnings warnings.simplefilter(action='ignore') # Importing the Dataset dataset = pd.read_csv('antenna.csv') #X X = dataset.loc[:, dataset.columns != 'vswr'] X = X.loc[:, X.columns != 'gain'] X = X.loc[:, X.columns != 'bandwidth'] Xi = X.iloc[:, :-3] Xi = pd.DataFrame(Xi) #y bw = avgfit(list(dataset['bandwidth'])) dataset['bandwidth'] = bw for i in range(len(bw)): if bw[i] < 100: bw[i] = 'Class 1' elif bw[i] >= 100 and bw[i] < 115: bw[i] = 'Class 2' elif bw[i] >= 115 and bw[i] < 120: bw[i] = 'Class 3' elif bw[i] >= 120 and bw[i] < 121: bw[i] = 'Class 4' elif bw[i] >= 121 and bw[i] < 122: bw[i] = 'Class 5' elif bw[i] >= 122 : bw[i] = 'Class 6' gain =avgfit(list(dataset['gain'])) dataset['gain'] = gain for i in range(len(gain)): if gain[i] < 1.3: gain[i] = 'Class 1' elif gain[i] >= 1.3 and gain[i] < 1.5: gain[i] = 'Class 2' elif gain[i] >= 1.5 and gain[i] < 2.4: gain[i] = 'Class 3' elif gain[i] >= 2.4 and gain[i] < 2.7: gain[i] = 'Class 4' elif gain[i] >= 2.7 and gain[i] < 2.9: gain[i] = 'Class 5' elif gain[i] >= 2.9 and gain[i] < 3.5: gain[i] = 'Class 6' vswr =avgfit(list(dataset['vswr'])) dataset['vswr'] = vswr for i in range(len(vswr)): if vswr[i] >= 1 and vswr[i] < 1.16: vswr[i] = 'Class 1' elif vswr[i] >= 1.16 and vswr[i] < 1.32: vswr[i] = 'Class 2' elif vswr[i] >= 1.32 and vswr[i] < 1.5: vswr[i] = 'Class 3' elif vswr[i] >= 1.5 and vswr[i] < 2: vswr[i] = 'Class 4' elif vswr[i] >= 2 and vswr[i] < 4: vswr[i] = 'Class 5' elif vswr[i] >= 4: vswr[i] = 'Class 6' y1 =
pd.DataFrame(bw)
pandas.DataFrame
# Import modules import pandas as pd import networkx as nx import matplotlib.pyplot as plt # read book 1 book1 =
pd.read_csv('datasets/book1.csv')
pandas.read_csv
import pandas as pd import numpy as np import matplotlib.pyplot as plt INPUT_DIR = "~/data/query-result/" OUTPUT_DIR = "~/data/summary-stats/" RES_LIST = ['cpu', 'mem', 'net_send', 'net_receive', 'disk_read', 'disk_write'] METRIC_LIST = ['_util_per_instance_95p', '_util_per_instance_max', '_util_per_pool', '_util_per_pod'] COST_MAP = {'action-classify': 0.248, 'action-gke': 1.22, 'db': 0.663, 'db-preempt': 0.663, 'druid-preempt': 0.663, 'druid-ssd-preempt': 0.704, 'mixed': 0.248, 'mixed-preempt': 0.248, 'nginx': 0.266, 'ping-gke': 0.69} PERCENTILES = [.5, .95, .99] END_TIME = 1514995200917 #END_TIME = 1515028900917 class StatsAggregator(object): def __init__(self, metric_name): self.metric_name = metric_name def get_csv_list(self, res_list, data_dir): csv_list = {} for res in res_list: csv_file = data_dir + res + self.metric_name + ".csv" csv_list[res] = csv_file print("Constructed list of csv filess:", csv_list) return csv_list def process_csv(self, res, csvfile, outfile): df = pd.read_csv(csvfile, sep=',') summary_df = pd.DataFrame() for nodepool in df['node_pool'].unique(): stats_pool = df.loc[(df['node_pool'] == nodepool) & (df['time'] <= END_TIME)] summary_df[nodepool] = stats_pool.value.describe(PERCENTILES) print("Summarizing %d data points for resource %s, node pool %s" %(len(stats_pool), res, nodepool)) fig_name = res + self.metric_name + "_" + nodepool stats_pool.loc[:, 'time'] = pd.to_datetime(stats_pool['time'], unit='ms') stats_pool.plot(x='time', y='value', title=fig_name) plt.ylabel('Percent (%)') plt.legend().set_visible(False) plt.savefig(fig_name+".png") print("\nWriting summary stats of %s resource for all node pools to %s\n" %(res, outfile)) summary_df.to_csv(outfile) plt.close('all') def compute_waste_res(self, res, csv_util, csv_num, outfile): df_util = pd.read_csv(csv_util, sep=',') df_num = pd.read_csv(csv_num, sep=',') waste_list = [] for nodepool in df_util['node_pool'].unique(): util_pool = df_util.loc[(df_util['node_pool'] == nodepool) & (df_util['time'] <= END_TIME)][['time', 'value']] num_pool = df_num.loc[(df_num['node_pool'] == nodepool) & (df_num['time'] <= END_TIME)][['time', 'value']] num_avg = num_pool.value.mean() print("Average provisioned instances for nodepool %s: %.1f" %(nodepool, num_avg)) util_pool['time'] = (util_pool['time'] / 1000).astype('int64') num_pool['time'] = (num_pool['time'] / 1000).astype('int64') df_joined = util_pool.set_index('time').join(num_pool.set_index('time'), how='inner', lsuffix='_util', rsuffix='_num') waste_num = ( (1 - df_joined.value_util/100) * df_joined.value_num ).mean() waste_cost = waste_num * COST_MAP[nodepool] waste_list.append({'node pool': nodepool, 'live instances': num_avg, 'unused instances': waste_num, 'wasted cost': waste_cost}) print("Average hourly cost wasted for %s resource in nodepool %s: %.2f" %(res, nodepool, waste_cost)) waste_df = pd.DataFrame(waste_list) waste_df.to_csv(outfile) def compute_waste_mixed(self, res_list, csv_list, csv_num, outfile): if len(res_list) > 2: print("Cannot combine more than two resources!") return df_util1 = pd.read_csv(csv_list[res_list[0]], sep=',') df_util2 =
pd.read_csv(csv_list[res_list[1]], sep=',')
pandas.read_csv
# Stats Imports import importlib import platform import random from statistics import stdev import GPUtil import pandas as pd # Data Brokers import psutil as psutil import yfinance as yf # Utils from datetime import timedelta, datetime from typing import List import os from os import listdir from os.path import isfile, join # Custom Utils import settings from util.langUtil import strtotimedelta, timedeltatosigstr, normify_name, yahoolimitperiod_leftover, \ get_size_bytes, try_int, craft_instrument_filename, strtoyahootimestr, get_yahoo_intervals # DataFrame def retrieve_str(s: str, interval: str, period: str, write: bool = False, progress: bool = False, name=""): return retrieve(s, datetime.now() - strtotimedelta(period), datetime.now(), interval, write, progress, name) def retrieve( s: str, start: datetime, end: datetime, interval: str, write: bool = False, progress: bool = False, name=""): period = end - start if not name: name = craft_instrument_filename(s, interval, timedeltatosigstr(period)) # F'{s}-{interval}-{timedeltatosigstr(period)}' print(F'Retrieving {name}, write: {write}') if interval not in get_yahoo_intervals(): print(F'Note, interval of {interval} not accepted in yfinance api. Closest alternative will be used.') interval = strtoyahootimestr(interval) # Loop through smaller time periods if period is too big for given interval (denied by yfinance) loop_period, n_loop, leftover = yahoolimitperiod_leftover(period, interval) if strtotimedelta(interval) < timedelta(days=1) and period > timedelta(days=730): print('Note: Data past 730 days will likely fail to download.') df_array = [] # Retrieve data slowly... 'Failed download' will be printed by yfinance upon failure for i in range(n_loop + 1): if i == n_loop: _loop_period = leftover else: _loop_period = loop_period if _loop_period > timedelta(minutes=1): df = yf.download(s, start=start, end=start + _loop_period, interval=interval, progress=progress) df_array.append(df) # Next starting date start += _loop_period final = pd.concat(df_array) success = True if len(final.index) <= 1: success = False if write and success: write_df(final, name) return final, success def retrieve_ds(ds_name: str, write: bool = False, progress: bool = False): df = load_dataset(ds_name) if df is None: print("Failed to open dataset. Cancelling retrieval.") return False for index, row in df.iterrows(): name = craft_instrument_filename(row['symbol'], row['interval'], row['period']) df, suc = retrieve_str(row['symbol'], row['interval'], row['period'], write, progress, name) if not suc: remove_from_dataset(ds_name, row['symbol'], row['interval'], row['period']) return True # Read/Write from local def write_df(df, name: str): folder = F'static/data' if not name.endswith('.csv'): name += '.csv' os.makedirs(folder, exist_ok=True) df.to_csv(F'{folder}/{name}') print(F'Creating {folder}/{name}') def load_df(name: str): folder = F'static/data' if not name.endswith('.csv'): name += '.csv' path = F'{folder}/{name}' if not file_exists(path): print(F'{path} datafile not found') return pd.DataFrame() df = pd.read_csv(path, index_col=0) print(F'Reading {path}') return df def load_df_sig(sym: str, inv: str, per: str): path = F'{settings.DATA_FOLDER}/' name = craft_instrument_filename(sym, inv, per) # Get list of files that end with .csv df_list = [f for f in listdir(path) if isfile(join(path, f)) and f.endswith('.csv')] for df in df_list: if df == name: return df return None def load_df_list(): path = F'{settings.DATA_FOLDER}/' # Get list of files that end with .csv df_list = [f for f in listdir(path) if isfile(join(path, f)) and f.endswith('.csv')] return df_list def load_ds_df_list(ds_name: str): dsf = load_dataset(ds_name) df_list = [] # Get list of dsf's dfs for i, row in dsf.iterrows(): # Find file df = load_df_sig(row['symbol'], row['interval'], row['period']) if df: df_list.append(df) pass return df_list def remove_all_df(): path = F'static/data/' df_list = load_df_list() for df in df_list: os.remove(F'{path}{df}') def remove_df(df): path = settings.DATA_FOLDER df_list = load_df_list() for _df in df_list: if df == _df: os.remove(F'{path}/{df}') break def remove_ds_df(ds_name: str): path = settings.DATA_FOLDER df_list = load_ds_df_list(ds_name) for _df in df_list: os.remove(F'{path}/{_df}') break def get_random_df(ds_name: str): folder = settings.DATASETDEF_FOLDER if not ds_name.endswith('.csv'): ds_name += '.csv' # Get random row from dataset dsf = pd.read_csv(F'{folder}/{ds_name}', index_col=0) r = random.randint(0, len(dsf)) row = dsf.iloc[r] d_name = F'{craft_instrument_filename(row["symbol"], row["interval"], row["period"])}' return d_name # DataSet def load_dataset(ds_name: str) -> pd.DataFrame: folder = settings.DATASETDEF_FOLDER if not ds_name.endswith('.csv'): ds_name += '.csv' full_path = F'{folder}/{ds_name}' # If file doesn't exist if not file_exists(full_path): print(F'Failed to find file at {full_path}!') return None dsf = pd.read_csv(full_path, index_col=0) print(F'Reading {full_path}') return dsf def load_dataset_list(): """Load list of dataset files in datasetdef.""" path = settings.DATASETDEF_FOLDER # Get list of files that end with .csv df_list = [f for f in listdir(path) if isfile(join(path, f)) and f.endswith('.csv')] df_list.sort() return df_list def save_dataset(ds_name, dsf): folder = settings.DATASETDEF_FOLDER if not ds_name.endswith('.csv'): ds_name += '.csv' # save new dsf into ds_name dsf.to_csv(F'{folder}/{ds_name}') print(F'Saving into {folder}/{ds_name}') def write_dataset(ds_name, dsf): folder = settings.DATASETDEF_FOLDER os.makedirs(folder, exist_ok=True) if not ds_name.endswith('.csv'): ds_name = F'{ds_name}.csv' dsf.to_csv(F'{folder}/{ds_name}') print(F'Creating dataset {folder}/{ds_name}') def write_new_dataset(ds_name, dsf): """This function writes the dataset but also notes it as a change""" write_dataset(ds_name, dsf) add_as_dataset_change(ds_name) print(F'Overwriting dataset {ds_name}.csv') def write_new_empty_dataset(ds_name): """Same as above but dataset is empty""" ds_name = normify_name(ds_name) data = { 'symbol': [], 'interval': [], 'period': [], } dsf = pd.DataFrame(data) write_dataset(ds_name, dsf) add_as_dataset_change(ds_name) print(F'Creating new dataset {ds_name}.csv') def remove_from_dataset(ds_name: str, symbol: str, interval: str, period: str): dsf = load_dataset(ds_name) dsf = dsf.drop(dsf[(dsf.symbol == symbol) & (dsf.interval == interval) & (dsf.period == period)].index) print(F"Removing {symbol}-{interval}-{period} from {ds_name}") dsf = dsf.reset_index(drop=True) write_dataset(ds_name, dsf) def remove_dataset(ds_name: str): folder = settings.DATASETDEF_FOLDER print(F'Removing {ds_name} completely.') if not ds_name.endswith('.csv'): ds_name += '.csv' full_path = F'{folder}/{ds_name}' if not os.path.exists(full_path): return False if 'windows' in full_path.lower(): return False os.remove(full_path) return True def number_of_datafiles(ds_name_list): total_len = 0 for ds_name in ds_name_list: dsf = load_dataset(ds_name) total_len += len(dsf.index) return total_len # Dataset Files def load_dataset_data_list(ds_name: str) -> List[str]: folder = 'static/data/' ds_df = load_df(ds_name) d_list = [] for index, row in ds_df.iterrows(): # Form d_name (SYM_INT_PER) d_name = F'{row["symbol"]}__{row["interval"]}__{row["period"]}' d_list.append(d_name) return d_list def load_dataset_data(d_list: List[str]) -> List[pd.DataFrame]: all_data = [] for d_name in d_list: all_data.append(load_dataset(d_name)) return all_data # Dataset-Changes def get_dataset_changes() -> pd.DataFrame: """index, name""" path = settings.DATASET_CHANGES_PATH dsc = pd.read_csv(path, index_col=0) return dsc def update_all_dataset_changes(): # Downloading dsc = get_dataset_changes() print(F'Updating all datasets...') for index, row in dsc.iterrows(dsc): retrieve_ds(row['name']) clear_dataset_changes() def update_specific_dataset_change(ds_name): # Downloading print(F'Updating dataset {ds_name}') # Removing specific dataset change flag dsc = get_dataset_changes() for index, row in iter(dsc): if row['name'] == ds_name: dsc.drop([ds_name]) # Download data retrieve_ds(ds_name) remove_dataset_change(ds_name) def add_as_dataset_change(ds_name: str): '''Changes to any instrument signature contained within the dataset or addition/subtraction of instruments count as a dataset change.''' path = settings.DATASET_CHANGES_PATH dsc = pd.read_csv(F'{os.getcwd()}/{path}', index_col=0) if not ds_name.endswith('.csv'): ds_name = F'{ds_name}.csv' print("---------------") if ds_name in list(dsc['name']): print(F'Overwriting dataset {ds_name} - Abort, already most updated') else: _new = pd.DataFrame([[ds_name]], columns=['name'], index=[len(dsc.index)]) dsc = dsc.append(_new) print(F'Overwriting dataset {ds_name}') write_dataset_change(dsc) def write_dataset_change(dsc_df: pd.DataFrame): path = settings.DATASET_CHANGES_PATH print(F'Noting changes in datasetchanges.txt') dsc_df.to_csv(path) def replace_dataset_change(ds_name: str, new_name: str): dsc = get_dataset_changes() _exists = False for i, row in dsc.iterrows(): if row['name'].lower() == ds_name.lower(): _exists = True if _exists: remove_dataset_change(ds_name) add_as_dataset_change(new_name) def remove_dataset_change(ds_name: str): dsc = get_dataset_changes() dsc.drop(dsc[dsc.name == ds_name].index) set_dataset_changes(dsc) def clear_dataset_changes(): path = settings.DATASET_CHANGES_PATH df = pd.DataFrame(columns=['name']) df.to_csv(path) def set_dataset_changes(dsc: pd.DataFrame): path = settings.DATASET_CHANGES_PATH dsc.to_csv(path) def rename_dataset(ds_name: str, new_name: str): # Get df dsf = load_dataset(ds_name) # Create new file write_dataset(new_name, dsf) # destroy old file remove_dataset(ds_name) # If file in dataset_changes, remove and update if removed (otherwise, ignore) replace_dataset_change(ds_name, new_name) # List of instruments def load_speed_suggestions(): return settings.SUGGESTIONS['simulation']['speed'] def load_contract_size_suggestions(): return settings.SUGGESTIONS['contract_size'] def load_flat_commission_suggestions(): return settings.SUGGESTIONS['flat_commission'] def load_capital_suggestions(): return settings.SUGGESTIONS['capital'] def load_lag_suggestions(): return settings.SUGGESTIONS['lag'] def load_leverage_suggestions(): return settings.SUGGESTIONS['leverage'] def load_optim_depth_suggestions(): return settings.SUGGESTIONS['optim_depth'] def load_optim_width_suggestions(): return settings.SUGGESTIONS['optim_width'] def load_setting(name: str): return settings.SUGGESTIONS[name] def load_instrument_type_suggestions(): return settings.SUGGESTIONS['instrument_type'] def load_symbol_suggestions() -> pd.DataFrame: common_symbols = F'static/common/common_symbols.txt' ss_df = pd.read_csv(common_symbols, index_col=0) return ss_df['symbol'] def write_symbol_suggestions(ss_df: pd.DataFrame): common_symbols = F'static/common/common_symbols.txt' ss_df.to_csv(common_symbols) def add_symbol_suggestion(ss_add): ss_df = load_symbol_suggestions() ss_df = ss_df.append(ss_add) write_symbol_suggestions(ss_df) def load_interval_suggestions(): common_intervals = F'static/common/common_intervals.txt' is_df = pd.read_csv(common_intervals, index_col=0) return is_df['interval'] def write_interval_suggestions(is_df: pd.DataFrame): common_intervals = F'static/common/common_intervals.txt' is_df.to_csv(common_intervals) def add_interval_suggestion(): is_df = load_interval_suggestions() write_interval_suggestions(is_df) def load_period_suggestions(): common_periods = F'static/common/common_periods.txt' ps_df = pd.read_csv(common_periods, index_col=0) return ps_df['period'] def write_period_suggestions(ps_df: pd.DataFrame): common_periods = F'static/common/common_periods.txt' ps_df.to_csv(common_periods) def add_period_suggestions(ps2: pd.DataFrame): ps_df = load_interval_suggestions() ps_df = ps_df.append(ps2) write_period_suggestions(ps_df) # Simulation def load_sim_speed_suggestions(): return settings.SUGGESTIONS['sim_speed'] # Check def is_valid_dataset(): return True def is_valid_df(): return True # Data Transformation Util def table_to_dataframe(data): return pd.DataFrame(data) def dataframe_to_table(df): table = [] return table # Trade Advisors/Robots def load_trade_advisor_list(): path = F'robot' # Get list of files that end with .py robot_list = [os.path.splitext(f)[0] for f in listdir(path) if isfile(join(path, f)) and f.endswith('.py') and '__init__' not in f] return robot_list # Algos def load_algo_list(): path = F'algo' # Get list of files that end with .py robot_list = [os.path.splitext(f)[0] for f in listdir(path) if isfile(join(path, f)) and f.endswith('.py') and '__init__' not in f] return robot_list # IVar def ivar_to_list(idf: pd.DataFrame): ivar = [] for col in idf: if not col == 'ivar_name': ivar.append(idf.loc[:, col]) return ivar def load_ivar(ta_name: str, ivar_name: str): idf = load_ivar_df(ta_name) return idf[idf.index == ivar_name] def load_ivar_vars(ta_name: str, ivar_name: str): keys = load_ivar(ta_name, ivar_name).keys() for key in keys: if key in ['name', 'fitness', 'type']: keys.remove(key) return load_ivar(ta_name, ivar_name).keys() def load_ivar_as_dict(ta_name: str, ivar_name: str): idf = load_ivar(ta_name, ivar_name) ivar_dict = {} for col in idf.columns: ivar_dict.update({ col: { 'default': idf[col][0], } }) ivar_dict.update({ 'name': { 'default': idf.index[-1] } }) return ivar_dict def load_ivar_df(ta_name: str, meta=False) -> pd.DataFrame: """Load iVar entry point""" folder = F'{settings.ROBOT_FOLDER}{settings.IVAR_SUB_FOLDER}' ivar_file = F'{ta_name}_ivar' path = F'{folder}/{ivar_file}.csv' if not file_exists(path): generate_ivar(ta_name) idf = pd.read_csv(path, index_col='name') # Strip meta attributes if not meta: if 'type' in idf.columns: idf.drop('type', inplace=True, axis=1) if 'fitness' in idf.columns: idf.drop('fitness', inplace=True, axis=1) return idf def load_ivar_as_list(ta_name: str, ivar_name: str): """Robot takes in input as a List.""" idf = load_ivar(ta_name, ivar_name) ivars = [] for col in idf.columns: ivars.append(idf[col][0]) return ivars def load_ivar_list(ta_name: str): """Returns IVar names only""" idf = load_ivar_df(ta_name) return list(idf.index) def load_ivar_file_list(): path = F'robot/ivar' # Get list of files that end with .csv ivar_file_list = [f for f in listdir(path) if isfile(join(path, f)) and f.endswith('.csv')] return ivar_file_list def generate_ivar(ta_name: str): folder = F'{settings.ROBOT_FOLDER}{settings.IVAR_SUB_FOLDER}' ivar_file = F'{ta_name}_ivar' path = F'{folder}/{ivar_file}.csv' # args_str = eval(F'{ta_name}.{ta_name}.ARGS_STR') # args = eval(F'{ta_name}.{ta_name}.ARGS_DEFAULT') module = importlib.import_module(F'robot.{ta_name}') globals().update( {n: getattr(module, n) for n in module.__all__} if hasattr(module, '__all__') else {k: v for (k, v) in module.__dict__.items() if not k.startswith('_') }) args_dict = eval(F'{ta_name}.ARGS_DICT') data = { # meta 'name': ['*Default'], 'fitness': [-1], 'type': ['default'], } # for i in range(len(args_str)): # data.update({args_str[i]: args[i]}) for key in args_dict.keys(): data.update({ key: [args_dict[key]['default']] }) df = pd.DataFrame.from_dict(data) df.to_csv(path, index=False) def generate_algo_ivar(algo_name: str): folder = F'{settings.ALGO_FOLDER}{settings.IVAR_SUB_FOLDER}' ivar_file = F'{algo_name}_ivar' path = F'{folder}/{ivar_file}.csv' # todo pass def ivar_to_arr(idf: pd.DataFrame): columns = idf.columns arr = [] for i in range(len(idf.index)): # rows _arr = [] for u in range(len(columns)): _arr.append(idf[columns[u + 1]][i]) arr.append(_arr) return arr def insert_ivar(ta_name: str, ivar): ivar_list = [] if 'ivar' not in ivar: # If not in dict form ivar_list.append({ 'ivar': ivar }) else: ivar_list.append(ivar) insert_ivars(ta_name, ivar_list) def insert_ivars(ta_name: str, ivar_list): path = get_ivar_path(ta_name) # Load stored ivars idf = load_ivar_df(ta_name) cols = list(idf.columns) if 'name' not in cols: # Name is used as index cols.append('name') # Sanity check if len(ivar_list[-1]['ivar'].keys()) != len(cols) - 1: # len of ivar keys != len of ivar meta - name (fitness and type excluded automatically) print(F'Insert ivars not compatible. Forcing insert: {ivar_list}') one_true = False for col in cols: for key in ivar_list[-1]['ivar'].keys(): if col == key: one_true = True break if one_true: break if not one_true: print(F'Not a single ivar column is similar. Cancelling process.') return # Add ivars for ivar_dict in ivar_list: data = {} # Flatten ivar dict structure ivar = ivar_dict['ivar'] for key in ivar: if key not in cols: continue # Ignore if not inside. if key == 'name': # Add name as index ivar_dict['name'] = ivar['name'] continue data.update({ key: [ivar[key]['default']], }) # Create indexer name = ["none"] if 'name' in ivar_dict: name = [ivar_dict['name']] # Fill in meta attributes data.update({ 'type': ['unknown'], 'fitness': [0], }) if 'fitness' in ivar_dict: data.update({ 'fitness': [ivar_dict['fitness']], }) if 'type' in ivar_dict: data.update({ 'type': [ivar_dict['type']], }) n_idf = pd.DataFrame(data, index=name) idf = idf.append(n_idf) # pd.concat(idf, n_idf) idf.index.name = 'name' idf.to_csv(path) def insert_ivar_df(ta_name: str, ivar_df): path = get_ivar_path(ta_name) # Load stored ivars idf = load_ivar_df(ta_name) idf.append(ivar_df) idf.index.name = 'name' idf.to_csv(path) def delete_ivar(ta_name: str, ivar_name: str): path = get_ivar_path(ta_name) # Load stored ivars idf = load_ivar_df(ta_name) if idf[idf.index == ivar_name].__len__(): print(F'Deleted {ivar_name} from {ta_name} IVars') else: print(F'Failed to delete {ivar_name} from {ta_name} IVars') # Drop row idf = idf.drop(labels=ivar_name, axis=0) idf.index.name = 'name' idf.to_csv(path) def get_ivar_path(ta_name): folder = F'robot/ivar' ivar_file = F'{ta_name}_ivar' path = F'{folder}/{ivar_file}.csv' return path def get_test_steps(ds_name: str): """Get number of dataset(s)""" dsf = load_dataset(ds_name) return len(dsf) def result_dict_to_dataset(result_dict): data = {} for key in result_dict: data.update({ key: [result_dict[key]] }) return
pd.DataFrame(data, index=False)
pandas.DataFrame
import pandas as pd import matplotlib.pyplot as plt import numpy as np #-------------read csv--------------------- df_2010_2011 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2010_2011.csv") df_2012_2013 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2012_2013.csv") df_2014_2015 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2014_2015.csv") df_2016_2017 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2016_2017.csv") df_2018_2019 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2018_2019.csv") df_2010_2011['prcab'].fillna(0) df_2012_2013['prcab'].fillna(0) df_2014_2015['prcab'].fillna(0) df_2016_2017['prcab'].fillna(0) df_2018_2019['prcab'].fillna(0) print(df_2018_2019['prcab']) mask = df_2010_2011['surgyear'] != 2010 df_2011 = df_2010_2011[mask] df_2010 = df_2010_2011[~mask] mask2 = df_2012_2013['surgyear'] != 2012 df_2013 = df_2012_2013[mask2] df_2012 = df_2012_2013[~mask2] mask3 = df_2014_2015['surgyear'] != 2014 df_2015 = df_2014_2015[mask3] df_2014 = df_2014_2015[~mask3] mask4 = df_2016_2017['surgyear'] != 2016 df_2017 = df_2016_2017[mask4] df_2016 = df_2016_2017[~mask4] mask5 = df_2018_2019['surgyear'] != 2018 df_2019 = df_2018_2019[mask5] df_2018 = df_2018_2019[~mask5] avg_siteid = pd.DataFrame() avg_surgid = pd.DataFrame() # #tmpHilla=df_2018_2019.columns # tmpHilla=pd.DataFrame(df_2018_2019.columns.values.tolist()) # tmpHilla.to_csv("/tmp/pycharm_project_355/columns.csv") # my_list = df_2010_2011.columns.values.tolist() # print (my_list) # print() # my_list = df_2012_2013.columns.values.tolist() # print (my_list) # print() # my_list = df_2014_2015.columns.values.tolist() # print (my_list) # print() # my_list = df_2016_2017.columns.values.tolist() # print (my_list) # print() # my_list = df_2018_2019.columns.values.tolist() # print (my_list) # print() #-------------------merge all csv-------------------------- # dfMerge1 = pd.merge(df_2010_2011, df_2012_2013, on='surgorder') # dfMerge2 = pd.merge(dfMerge1, df_2014_2015, on='surgorder') # dfMerge = pd.merge(dfMerge2, df_2016_2017, on='surgorder') #dfMerge = pd.merge(df_2010_2011, df_2012_2013, on='SiteID') #count distinc #table.groupby('YEARMONTH').CLIENTCODE.nunique() def groupby_siteid(): df_2010 = df_2010_2011.groupby('siteid')['surgyear'].apply(lambda x: (x== 2010 ).sum()).reset_index(name='2010') df_2011 = df_2010_2011.groupby('siteid')['surgyear'].apply(lambda x: (x== 2011 ).sum()).reset_index(name='2011') df_2012 = df_2012_2013.groupby('siteid')['surgyear'].apply(lambda x: (x== 2012 ).sum()).reset_index(name='2012') df_2013 = df_2012_2013.groupby('siteid')['surgyear'].apply(lambda x: (x== 2013 ).sum()).reset_index(name='2013') df_2014 = df_2014_2015.groupby('siteid')['surgyear'].apply(lambda x: (x== 2014 ).sum()).reset_index(name='2014') df_2015 = df_2014_2015.groupby('siteid')['surgyear'].apply(lambda x: (x== 2015 ).sum()).reset_index(name='2015') df_2016 = df_2016_2017.groupby('siteid')['surgyear'].apply(lambda x: (x== 2016 ).sum()).reset_index(name='2016') df_2017 = df_2016_2017.groupby('siteid')['surgyear'].apply(lambda x: (x== 2017 ).sum()).reset_index(name='2017') df_2018 = df_2018_2019.groupby('siteid')['surgyear'].apply(lambda x: (x== 2018 ).sum()).reset_index(name='2018') df_2019 = df_2018_2019.groupby('siteid')['surgyear'].apply(lambda x: (x== 2019 ).sum()).reset_index(name='2019') df1 =pd.merge(df_2010, df_2011, on='siteid') df2 =pd.merge(df1, df_2012, on='siteid') df3 =pd.merge(df2, df_2013, on='siteid') df4 =pd.merge(df3, df_2014, on='siteid') df5 =pd.merge(df4, df_2015, on='siteid') df6 =pd.merge(df5, df_2016, on='siteid') df7 =pd.merge(df6, df_2017, on='siteid') df8 =pd.merge(df7, df_2018, on='siteid') df_sum_all_Years =pd.merge(df8, df_2019, on='siteid') cols = df_sum_all_Years.columns.difference(['siteid']) df_sum_all_Years['Distinct_years'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['siteid','Distinct_years']) df_sum_all_Years['Year_sum'] =df_sum_all_Years.loc[:,cols_sum].sum(axis=1) df_sum_all_Years['Year_avg'] = df_sum_all_Years['Year_sum']/df_sum_all_Years['Distinct_years'] df_sum_all_Years.to_csv("total op sum all years siteid.csv") print("details on site id dist:") print ("num of all sites: ", len(df_sum_all_Years)) less_8 =df_sum_all_Years[df_sum_all_Years['Distinct_years'] !=10] less_8.to_csv("total op less 10 years siteid.csv") print("num of sites with less years: ", len(less_8)) x = np.array(less_8['Distinct_years']) print(np.unique(x)) avg_siteid['siteid'] = df_sum_all_Years['siteid'] avg_siteid['total_year_avg'] = df_sum_all_Years['Year_avg'] def groupby_surgid(): df_2010 = df_2010_2011.groupby('surgid')['surgyear'].apply(lambda x: (x== 2010 ).sum()).reset_index(name='2010') df_2011 = df_2010_2011.groupby('surgid')['surgyear'].apply(lambda x: (x== 2011 ).sum()).reset_index(name='2011') df_2012 = df_2012_2013.groupby('surgid')['surgyear'].apply(lambda x: (x== 2012 ).sum()).reset_index(name='2012') df_2013 = df_2012_2013.groupby('surgid')['surgyear'].apply(lambda x: (x== 2013 ).sum()).reset_index(name='2013') df_2014 = df_2014_2015.groupby('surgid')['surgyear'].apply(lambda x: (x== 2014 ).sum()).reset_index(name='2014') df_2015 = df_2014_2015.groupby('surgid')['surgyear'].apply(lambda x: (x== 2015 ).sum()).reset_index(name='2015') df_2016 = df_2016_2017.groupby('surgid')['surgyear'].apply(lambda x: (x== 2016 ).sum()).reset_index(name='2016') df_2017 = df_2016_2017.groupby('surgid')['surgyear'].apply(lambda x: (x== 2017 ).sum()).reset_index(name='2017') df_2018 = df_2018_2019.groupby('surgid')['surgyear'].apply(lambda x: (x== 2018 ).sum()).reset_index(name='2018') df_2019 = df_2018_2019.groupby('surgid')['surgyear'].apply(lambda x: (x== 2019 ).sum()).reset_index(name='2019') df1 =pd.merge(df_2010, df_2011, on='surgid') df2 =pd.merge(df1, df_2012, on='surgid') df3 =pd.merge(df2, df_2013, on='surgid') df4 =pd.merge(df3, df_2014, on='surgid') df5 =pd.merge(df4, df_2015, on='surgid') df6 =pd.merge(df5, df_2016, on='surgid') df7 =pd.merge(df6, df_2017, on='surgid') df8 =pd.merge(df7, df_2018, on='surgid') df_sum_all_Years =pd.merge(df8, df_2019, on='surgid') cols = df_sum_all_Years.columns.difference(['surgid']) df_sum_all_Years['Distinct_years'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['surgid','Distinct_years']) df_sum_all_Years['Year_sum'] =df_sum_all_Years.loc[:,cols_sum].sum(axis=1) df_sum_all_Years['Year_avg'] = df_sum_all_Years['Year_sum']/df_sum_all_Years['Distinct_years'] df_sum_all_Years.to_csv("sum all years surgid.csv") print() print("details of surgid dist:") print("num of all surgid: ", len(df_sum_all_Years)) less_8 =df_sum_all_Years[df_sum_all_Years['Distinct_years'] !=10] less_8.to_csv("less 10 years surgid.csv") print("num of doctors with less years: ", len(less_8)) x = np.array(less_8['Distinct_years']) print(np.unique(x)) avg_surgid['surgid'] = df_sum_all_Years['surgid'] avg_surgid['total_year_avg'] = df_sum_all_Years['Year_avg'] def groupby_hospid(): df_2010 = df_2010_2011.groupby('hospid')['surgyear'].apply(lambda x: (x== 2010 ).sum()).reset_index(name='2010') df_2011 = df_2010_2011.groupby('hospid')['surgyear'].apply(lambda x: (x== 2011 ).sum()).reset_index(name='2011') df_2012 = df_2012_2013.groupby('hospid')['surgyear'].apply(lambda x: (x== 2012 ).sum()).reset_index(name='2012') df_2013 = df_2012_2013.groupby('hospid')['surgyear'].apply(lambda x: (x== 2013 ).sum()).reset_index(name='2013') df_2014 = df_2014_2015.groupby('hospid')['surgyear'].apply(lambda x: (x== 2014 ).sum()).reset_index(name='2014') df_2015 = df_2014_2015.groupby('hospid')['surgyear'].apply(lambda x: (x== 2015 ).sum()).reset_index(name='2015') df_2016 = df_2016_2017.groupby('hospid')['surgyear'].apply(lambda x: (x== 2016 ).sum()).reset_index(name='2016') df_2017 = df_2016_2017.groupby('hospid')['surgyear'].apply(lambda x: (x== 2017 ).sum()).reset_index(name='2017') df_2018 = df_2018_2019.groupby('hospid')['surgyear'].apply(lambda x: (x== 2018 ).sum()).reset_index(name='2018') df_2019 = df_2018_2019.groupby('hospid')['surgyear'].apply(lambda x: (x== 2019 ).sum()).reset_index(name='2019') df1 =pd.merge(df_2010, df_2011, on='hospid') df2 =pd.merge(df1, df_2012, on='hospid') df3 =pd.merge(df2, df_2013, on='hospid') df4 =pd.merge(df3, df_2014, on='hospid') df5 =pd.merge(df4, df_2015, on='hospid') df6 =pd.merge(df5, df_2016, on='hospid') df7 =pd.merge(df6, df_2017, on='hospid') df8 =pd.merge(df7, df_2018, on='hospid') df_sum_all_Years =pd.merge(df8, df_2019, on='hospid') cols = df_sum_all_Years.columns.difference(['hospid']) df_sum_all_Years['Distinct_years'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['hospid','Distinct_years']) df_sum_all_Years['Year_sum'] =df_sum_all_Years.loc[:,cols_sum].sum(axis=1) df_sum_all_Years['Year_avg'] = df_sum_all_Years['Year_sum']/df_sum_all_Years['Distinct_years'] df_sum_all_Years.to_csv("sum all years hospid.csv") print(df_sum_all_Years) print ("num of all sites: ", len(df_sum_all_Years)) less_8 =df_sum_all_Years[df_sum_all_Years['Distinct_years'] !=10] less_8.to_csv("less 10 years hospid.csv") print("num of hospital with less years: ", len(less_8)) x = np.array(less_8['Distinct_years']) print(np.unique(x)) return df_sum_all_Years def draw_hist(data,num_of_bins,title,x_title,y_title,color): plt.hist(data, bins=num_of_bins, color=color,ec="black") plt.title(title) plt.xlabel(x_title) plt.ylabel(y_title) plt.show() def group_by_count(group_by_value,name): df_2010_2011_gb = df_2010_2011.groupby(group_by_value)[group_by_value].count().reset_index(name=name) df_2012_2013_gb = df_2012_2013.groupby(group_by_value)[group_by_value].count().reset_index(name=name) df_2014_2015_gb = df_2014_2015.groupby(group_by_value)[group_by_value].count().reset_index(name=name) df_2016_2017_gb = df_2016_2017.groupby(group_by_value)[group_by_value].count().reset_index(name=name) df_2018_2019_gb = df_2018_2019.groupby(group_by_value)[group_by_value].count().reset_index(name=name) df_merge_1=pd.merge(df_2010_2011_gb,df_2012_2013_gb, on=group_by_value) df_merge_2=pd.merge(df_merge_1,df_2014_2015_gb, on=group_by_value) df_merge_3=pd.merge(df_merge_2,df_2016_2017_gb, on=group_by_value) df_merge_4=pd.merge(df_merge_3,df_2018_2019_gb, on=group_by_value) cols = df_merge_4.columns.difference([group_by_value]) df_merge_4[name] = df_merge_4.loc[:,cols].sum(axis=1) df_new=pd.DataFrame() df_new[group_by_value] = df_merge_4[group_by_value] df_new[name] = df_merge_4[name] return df_new def groupby_siteid_prcab(): df2010 = df_2010.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2010_reop') df2011 = df_2011.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2011_reop') df2012 = df_2012.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2012_reop') df2013 = df_2013.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2013_reop') df2014 = df_2014.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2014_reop') df2015 = df_2015.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2015_reop') df2016 = df_2016.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2016_reop') df2017 = df_2017.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2017_reop') df2018 = df_2018.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2018_reop') df2019 = df_2019.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2019_reop') df1 = pd.merge(df2010, df2011, on='siteid') df2 = pd.merge(df1, df2012, on='siteid') df3 = pd.merge(df2, df2013, on='siteid') df4 = pd.merge(df3, df2014, on='siteid') df5 = pd.merge(df4, df2015, on='siteid') df6 = pd.merge(df5, df2016, on='siteid') df7 = pd.merge(df6, df2017, on='siteid') df8 = pd.merge(df7, df2018, on='siteid') df_sum_all_Years = pd.merge(df8, df2019, on='siteid') cols = df_sum_all_Years.columns.difference(['siteid']) df_sum_all_Years['Distinct_years_reop'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['siteid', 'Distinct_years_reop']) df_sum_all_Years['Year_sum_reop'] = df_sum_all_Years.loc[:, cols_sum].sum(axis=1) df_sum_all_Years['Year_avg_reop'] = df_sum_all_Years['Year_sum_reop'] / df_sum_all_Years['Distinct_years_reop'] df_sum_all_Years.to_csv("sum all years siteid reop.csv") less_8 = df_sum_all_Years[df_sum_all_Years['Distinct_years_reop'] != 10] less_8.to_csv("less 10 years reop siteid.csv") print("num of sites with less years: ", len(less_8)) x = np.array(less_8['Distinct_years_reop']) print(np.unique(x)) df_10 = df_2010.groupby('siteid')['prcab'].apply(lambda x:((x==2) | (x==0)).sum()).reset_index(name='2010_Firstop') df_11 = df_2011.groupby('siteid')['prcab'].apply(lambda x:((x==2) | (x==0)).sum()).reset_index(name='2011_Firstop') df_12 = df_2012.groupby('siteid')['prcab'].apply(lambda x:((x==2) | (x==0)).sum()).reset_index(name='2012_Firstop') df_13 = df_2013.groupby('siteid')['prcab'].apply(lambda x:((x==2) | (x==0)).sum()).reset_index(name='2013_Firstop') df_14 = df_2014.groupby('siteid')['prcab'].apply(lambda x:((x==2) | (x==0)).sum()).reset_index(name='2014_Firstop') df_15 = df_2015.groupby('siteid')['prcab'].apply(lambda x:((x==2) | (x==0)).sum()).reset_index(name='2015_Firstop') df_16 = df_2016.groupby('siteid')['prcab'].apply(lambda x:((x==2) | (x==0)).sum()).reset_index(name='2016_Firstop') df_17 = df_2017.groupby('siteid')['prcab'].apply(lambda x:((x==2) | (x==0)).sum()).reset_index(name='2017_Firstop') df_18 = df_2018.groupby('siteid')['prcab'].apply(lambda x:((x==2) | (x==0)).sum()).reset_index(name='2018_Firstop') df_19 = df_2019.groupby('siteid')['prcab'].apply(lambda x:((x==2) | (x==0)).sum()).reset_index(name='2019_Firstop') d1 = pd.merge(df_10, df_11, on='siteid') d2 = pd.merge(d1, df_12, on='siteid') d3 = pd.merge(d2, df_13, on='siteid') d4 = pd.merge(d3, df_14, on='siteid') d5 = pd.merge(d4, df_15, on='siteid') d6 = pd.merge(d5, df_16, on='siteid') d7 = pd.merge(d6, df_17, on='siteid') d8 = pd.merge(d7, df_18, on='siteid') df_sum_all_Years_total = pd.merge(d8, df_19, on='siteid') cols = df_sum_all_Years_total.columns.difference(['siteid']) df_sum_all_Years_total['Distinct_years'] = df_sum_all_Years_total[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years_total.columns.difference(['siteid', 'Distinct_years']) df_sum_all_Years_total['Year_sum'] = df_sum_all_Years_total.loc[:, cols_sum].sum(axis=1) df_sum_all_Years_total['Year_avg'] = df_sum_all_Years_total['Year_sum'] / df_sum_all_Years_total['Distinct_years'] df_sum_all_Years_total.to_csv("First op sum all years siteid.csv") # df_sum_all_Years.to_csv("sum all years siteid.csv") # print(df_sum_all_Years) # print("num of all sites: ", len(df_sum_all_Years)) # less = df_sum_all_Years_total[df_sum_all_Years_total['Distinct_years'] != 10] less.to_csv("First op less 10 years siteid.csv") print("First op num of sites with less years: ", len(less)) x = np.array(less['Distinct_years']) print(np.unique(x)) temp_first =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score ## CSV読み込み train = pd.read_csv("titanic/train.csv") test = pd.read_csv("titanic/test.csv") ### セル表示 # train ## 全体 # train.head(10) ## 先頭から10行目 # train.describe() ## 統計量 # train.info() ## 要約情報 # train['Age'].isnull().values.sum() ## nullの件数 ### ヒストグラム # plt.hist(train['Age'].dropna(), bins=20) ### 欠損値補完 (NULL -> AVG) mean = np.mean(train['Age']) train['Age'] = train['Age'].fillna(mean) ### 定量化 (男 -> 1, 女 -> 2) train['Sex'] = train['Sex'].str.replace('female', '2') train['Sex'] = train['Sex'].str.replace('male', '1') ### データセットの作成 (説明変数 -> X, 目的変数 -> Y) X = pd.DataFrame({'Pclass':train['Pclass'], 'Sex':train['Sex'], 'Age':train['Age']}) y =
pd.DataFrame({'Survived':train['Survived']})
pandas.DataFrame
from numpy import NaN import pandas as pd import csv from datetime import datetime medals_file_name = 'Medals.xlsx' file_output = 'Medalhas.csv' paises_file_name = 'Paises.csv' header = ['id','rank', 'pais_id', 'ouro', 'prata', 'bronze', 'total', 'rank_total', 'data']; class MedalBuilder: def build(self, input_file_path, output_file_path): paises_df = pd.read_csv(output_file_path+paises_file_name) data =
pd.read_excel(input_file_path+medals_file_name)
pandas.read_excel
import json from sklearn.feature_extraction.text import TfidfVectorizer import pandas as pd from sklearn.metrics.pairwise import cosine_similarity class Model: def __init__(self, jsonData): self.user_text = jsonData['desc'] self.user_language_input = jsonData['pl'] self.user_input = self.user_text + " " + self.user_language_input def combined_features(self, row): return row['Repository Name']+" "+row['Language']+" "+row['Tags']+row['Description'] def createData(self): data = pd.read_csv("https://query.data.world/s/zxtxz5ro2skvafkuaycnh74g5ppp2g") data = data.drop(["Last Update Date", "Number of Stars"], axis=1) data["Tags"] = data["Tags"].replace(',', ' ', regex=True) data["Description"] = data["Description"].replace(',', ' ', regex=True) data = data.fillna(" ") data["combined_features"] = data.apply(self.combined_features, axis=1) self.data = data self.user_series = pd.Series([self.user_input]) self.data_with_User = data["combined_features"].append( self.user_series, ignore_index=True) def createModel(self): cv = TfidfVectorizer() count_matrix = cv.fit_transform(self.data_with_User.values.astype('U')) self.cosine_sim = cosine_similarity(count_matrix) self.data["index"] = pd.DataFrame([i for i in range(980)]) self.user_repo_index = 980 def flatten(self, t): return [item for sublist in t for item in sublist] def get_title_from_index(self, index): if len(self.data[self.data["index"] == index]["index"]) != 0: return self.data[self.data["index"] == index]["index"].values.tolist() def find_similar_repos(self, user_repo_index): similar = list(enumerate(self.cosine_sim[user_repo_index])) sorted_similar = sorted(similar, key=lambda x: x[1], reverse=True) test_list = [] for i in range(len(sorted_similar)): test_list.append(self.get_title_from_index(sorted_similar[i][0])) res = [] for val in test_list: if val is not None: res.append(val) res = self.flatten(res) return res[:15] def recommend(self): self.find_similar_repos(self.user_repo_index) df = pd.DataFrame(columns=["Username", "Repository Name", "Description", "Language", "Tags", "Url"]) for i in self.find_similar_repos(self.user_repo_index): df =
pd.DataFrame(df)
pandas.DataFrame
# coding: utf-8 import pandas as pd def acl_bib2csv(file_bib): with open(file_bib, 'r', encoding="utf-8") as f: bib_list = f.read().strip().split("@") papers = [] for bib in bib_list: if bib.startswith("inproceedings"): kvs = bib.split("\n") paper = dict() for kv in kvs: res = kv.split('=') if len(res) == 2: k, v = res paper[k.strip()] = v.strip(" \",") papers.append(paper) df =
pd.DataFrame(papers)
pandas.DataFrame
import datetime import pprint from typing import Optional, List, Tuple, Set, Dict import numpy as np import pandas as pd from overrides import overrides from sklearn.impute import SimpleImputer from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer from python import DOCUMENT_ID, PUBLISH_DATE, SUBTOPIC, TOPIC_ID, MENTION_TYPE, TIME_OF_THE_DAY, TIME_DATE from python.handwritten_baseline import TIMEX_NORMALIZED_PARSED, TIME, TIMEX_NORMALIZED from python.handwritten_baseline.pipeline.data.base import Dataset from python.handwritten_baseline.pipeline.model.feature_extr import TIME_EXTR, fix_all_nan_columns from python.handwritten_baseline.pipeline.model.feature_extr.base_mixin import FeatureExtractorMixin from python.handwritten_baseline.pipeline.model.feature_extr.time_and_space import \ look_up_document_level_event_component, look_up_event_component_by_sentence, \ look_up_event_component_by_srl, look_up_event_component_from_closest_preceding_sentence class TimeFeatureExtractorPipelineCreator: """ The temporal distance feature consists of two pipeline stages: extracting features in the transform() method of `TemporalDistanceFeature` followed by imputation of missing values. """ @classmethod def from_params(cls, config: Dict): extractor = TemporalDistanceFeature.from_params(config) fix_nan_columns = FunctionTransformer(fix_all_nan_columns) # Our feature extraction returns NaNs in case one of two mentions in a pair has no temporal information, so we # need to fill those NaNs. 0 and -1 would be misleading for the classifier, therefore use the median feature # value. imputer = SimpleImputer(missing_values=np.nan, strategy="median") return make_pipeline(extractor, fix_nan_columns, imputer) class TemporalDistanceFeature(FeatureExtractorMixin): """ Computes temporal distance (hour, day, ...) between temporal expressions of a mention pair. Two variants for finding temporal expressions exist: (1) document-level, where we pick the first temporal expression in a document and (2) mention-level, where we use SRL to find the temporal expression attached to the mention action, or fall back to the first temporal expression in the same sentence or fall back to the closest temporal expression from a previous sentence. """ def __init__(self, use_cache: bool, features_to_select: Optional[List[str]]): super(TemporalDistanceFeature, self).__init__(TIME_EXTR, use_cache, features_to_select) @staticmethod def compute_temporal_distance_features(a_date: Optional[datetime.datetime], b_date: Optional[datetime.datetime]): """ Compute temporal distance between two datetimes per day, month, etc. :param a_date: :param b_date: :return: list of distances """ if a_date is None or b_date is None or pd.isna(a_date) or
pd.isna(b_date)
pandas.isna
import pandas as pd import pickle from tqdm import tqdm import json import reverse_geocoder as rg import networkx as nx import matplotlib.pyplot as plt import seaborn as sns import numpy as np # from OllivierRicci import ricciCurvature from RIPEprobes import haversine from GraphRicciCurvature.OllivierRicci import OllivierRicci from os import listdir,walk from os.path import join, isfile continent = pd.read_csv('/Users/geode/PycharmProjects/RIPE/Internet_of_Space_and_Time/datasets/country_continent.csv') continent = continent.fillna('None') c = 299792458 # in m.s**-1 list_of_aws = list(range(6460,6474)) list_of_aws.append(6394) dico_aws = {'6474':'Ashburn','6473':'San Francisco','6472':'Columbus','6471':'London','6470':'Singapore','6469':'Stockholm', '6468':'Seoul','6467':'Tokyo','6466':'Mumbai','6465':'Dublin','6464':'Paris','6463':'Frankfurt am Main','6462':'Montreal', '6461':'Sao Paulo','6460':'Sydney','6394':'Portland'} def symmetrize(data): mat = data.values newmat = np.ndarray indexes = data.index columns = data.columns X, Y = mat.shape symDict = {} for key1 in columns: symDict[key1] = {} for key2 in columns: symDict[key1][key2] = np.nan for i in range(X): for j in range(Y): if np.isnan(mat[i, j]): if not np.isnan(symDict[columns[j]][indexes[i]]): symDict[indexes[i]][columns[j]] = symDict[columns[j]][indexes[i]] else: if np.isnan(symDict[columns[j]][indexes[i]]): symDict[indexes[i]][columns[j]] = mat[i, j] symDict[columns[j]][indexes[i]] = mat[i, j] else: symDict[indexes[i]][columns[j]] = min(mat[i, j], symDict[columns[j]][indexes[i]]) symDict[columns[j]][indexes[i]] = symDict[indexes[i]][columns[j]] symData = pd.DataFrame(symDict) return symData def reverseGeocode(coordinates): result = rg.search(coordinates) cont = continent[continent.iso2==result[0]['cc']]['continent code'].values[0] if len(cont)<2: print('cont') cont = 'NA' return (result[0]['admin1'],result[0]['cc'],cont) def reverse_countries(cc_code,AWS=False): probes = {d['id']: d for d in json.load(open('../probes_dataset/20210906.json'))['objects']} df = pd.DataFrame(probes).transpose() print(df.columns) print(df['status'][df.index==6025]) print(df) # df = df[df['status']==1] if not(AWS): df = df[df['country_code']==cc_code][['latitude', 'longitude', 'id']] else: df = df[df['id'].isin(list_of_aws)][['latitude','longitude','id']] df_data = pd.read_csv('/Users/geode/Documents/Datasets/Trivia/ISO-3166-Countries-with-Regional-Codes-master/all/all.csv') print(df.head()) cities = {} countries = {} continents = {} sub_contin = {} for (coord) in tqdm(df.values): rev = reverseGeocode(tuple(coord[0:2])) cities[str(coord[2])] = rev[0] countries[str(coord[2])] = rev[1] continents[str(coord[2])] = rev[2] sub_contin[str(coord[2])] = df_data['sub-region'][df_data['alpha-2'] == countries[str(coord[2])]].values[0] return (cities, countries, continents, sub_contin) def graph_inference(df,list_of_ids,outcome,type='all'): G = nx.Graph() df = symmetrize(df) G.add_nodes_from(list(df.index)) print(len(set(df.index)&set(df.columns))) # nx.set_node_attributes(G, list_of_ids[0], 'city') # nx.set_node_attributes(G,list_of_ids[1],'country') # nx.set_node_attributes(G,list_of_ids[2],'continents') nx.set_node_attributes(G,dico_aws,'city') print(df.shape,df.head()) ran = range(20,500,10) for m in ran: print(m) for t in G.nodes(): for s in G.nodes(): if t!=s : if df[s][t] < m: G.add_edge(s,t) elif df[t][s] < m: G.add_edge(s,t) print(nx.info(G)) print([len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)]) ori = OllivierRicci(G) ori.compute_ricci_curvature() G = ori.G nx.write_graphml(G,outcome+str(m)+'.graphml') def anchoring_space_AWS(): mypath ='../graph/AWS/' fileList = [f for f in listdir(mypath) if isfile(join(mypath, f))] probes = {d['id']: d for d in json.load(open('../probes_dataset/20210906.json'))['objects']} df = pd.DataFrame(probes).transpose() if isfile(mypath+'/cityDict.p'): cityDict = pickle.load( open(mypath+'/cityDict.p' , "rb" ) ) else: cityDict={} print(cityDict) for file in fileList: print(file) if file == '.DS_Store': continue if file.split('.')[1]=='graphml': print(file) G=nx.read_graphml(mypath+'/'+file) G = nx.relabel_nodes(G, nx.get_node_attributes(G,'id_node')) ricci = nx.get_edge_attributes(G,'curvature') actual_ricci = {} if '6201' in G.nodes(): G.remove_node('6201') if '6231' in G.nodes(): G.remove_node('6231') for node in G.nodes(data=True): print(node) if node[0] == '6422': node[1]['city'] = 'Florida' elif int(node[0]) in df['id']: latitude = df[df['id']==int(node[0])]['latitude'].values[0] longitude = df[df['id']==int(node[0])]['longitude'].values[0] G.nodes[node[0]]['lat']=latitude G.nodes[node[0]]['long']=longitude nx.write_graphml(G,mypath+'/'+file) def anchoring_space(cc_code): mypath ='../Internet_of_Space_and_Time/data_country/2019-07-01/graph/'+cc_code+'/' fileList = [f for f in listdir(mypath) if isfile(join(mypath, f))] probes = {d['id']: d for d in json.load(open('../probes_dataset/20210906.json'))['objects']} df = pd.DataFrame(probes).transpose() if isfile(mypath+'/cityDict.p'): cityDict = pickle.load( open(mypath+'/cityDict.p' , "rb" ) ) else: cityDict={} print(cityDict) for file in fileList: print(file) if file == '.DS_Store': continue if file.split('.')[1]=='graphml': print(file) G=nx.read_graphml(mypath+'/'+file) G = nx.relabel_nodes(G, nx.get_node_attributes(G,'id_node')) ricci = nx.get_edge_attributes(G,'curvature') actual_ricci = {} if '6201' in G.nodes(): G.remove_node('6201') if '6231' in G.nodes(): G.remove_node('6231') for node in G.nodes(data=True): print(node) if node[0] == '6422': node[1]['city'] = 'Florida' elif int(node[0]) in df['id']: latitude = df[df['id']==int(node[0])]['latitude'].values[0] longitude = df[df['id']==int(node[0])]['longitude'].values[0] G.nodes[node[0]]['lat']=latitude G.nodes[node[0]]['long']=longitude nx.write_graphml(G,mypath+'/'+file) def boxplot_AWS(MONTH,YEAR): plt.rc('font', family='serif') u_1 = [] u_2 = [] size = {} # values = range(2,50,2) values = range(10, 300, 10) for (i, m) in enumerate(values): ricci_curv = [] try: G= nx.read_graphml('../graph/AWS/graph'+YEAR+'-'+MONTH+'-'+str(m)+'.graphml') except: u_2.append(i) u_1.extend([0,0]) continue val_max = 0 # ricci_curving = nx.get_edge_attributes(G,'curvature') ricci_curving = nx.get_edge_attributes(G, 'ricciCurvature') ricci_curv = ricci_curving.values() ricci_curving = sorted(ricci_curving.items(), key=lambda x: x[1])[0:10] city = nx.get_node_attributes(G, 'cities') print(m, city) new_val = {} for t in ricci_curving: try: v = city[t[0][0]] n = city[t[0][1]] new_val[(v, t[0][0], n, t[0][1])] = t[1] except: continue size[m] = len(sorted(nx.connected_components(G), key=len, reverse=True)) u_1.extend(ricci_curv) u_2.extend([m] * len(ricci_curv)) print(u_2) # print(cloud) df = pd.DataFrame(u_1, columns=['Ricci Curvature']) df['Threshold'] = pd.Series(u_2) f = plt.figure(figsize=(12, 10)) ax = f.add_subplot() size = pd.DataFrame(pd.Series(size), columns=['# of connected components']) from sklearn import preprocessing print(size) size = size.apply(lambda x: ((3 * x / float(max(size['# of connected components']))) - 2)) # print(size) size = size[size.index.isin(list(set(df['Threshold'].values)))] # # fig = plt.figure(figsize=(12,10)) # size.plot(c='g',marker='v',ax=ax) # ax.yaxis.tick_right() plt.ylabel('Ricci Curvature', fontsize=25) bplot = sns.boxplot(y='Ricci Curvature', x='Threshold', data=df, width=0.3, color='grey', whis=[3, 97], ax=ax) # # plt.xlabel('Thresholding', fontsize=20) plt.xticks(fontsize=12) plt.yticks(fontsize=20) plt.xlabel('Threshold', fontsize=25) # plt.ylim([-2,1.1]) # plt.show() plt.savefig('../Internet_of_Space_and_Time/cloud_internet/aws_history/boxplot' +MONTH+'-'+YEAR+'.pdf') def boxplot(cc_code): u_1 = [] u_2 = [] size = {} values = range(1,30,1) for (i, m) in enumerate(values): G = nx.read_graphml('../Internet_of_Space_and_Time/data_country/2019-07-01/graph/'+cc_code+'/graph'+cc_code+str(m)+'.graphml') ricci_curving = nx.get_edge_attributes(G, 'ricciCurvature') ricci_curv = ricci_curving.values() ricci_curving = sorted(ricci_curving.items(), key=lambda x: x[1])[0:10] city = nx.get_node_attributes(G, 'city') print(m, city) new_val = {} for t in ricci_curving: try: v = city[t[0][0]] n = city[t[0][1]] new_val[(v, t[0][0], n, t[0][1])] = t[1] except: continue size[m] = len(sorted(nx.connected_components(G), key=len, reverse=True)) u_1.extend(ricci_curv) u_2.extend([m] * len(ricci_curv)) print(u_2) df = pd.DataFrame(u_1, columns=['Ricci Curvature']) df['Threshold'] = pd.Series(u_2) f = plt.figure(figsize=(12, 10)) ax = f.add_subplot() size = pd.DataFrame(
pd.Series(size)
pandas.Series
from hls4ml.model.hls_model import HLSModel from hls4ml.model.hls_layers import IntegerPrecisionType, FixedPrecisionType import matplotlib.pyplot as plt import numpy as np import pandas import seaborn as sb from hls4ml.model.hls_model import HLSModel try: from tensorflow import keras import qkeras __tf_profiling_enabled__ = True except ImportError: __tf_profiling_enabled__ = False try: import torch __torch_profiling_enabled__ = True except ImportError: __torch_profiling_enabled__ = False def array_to_summary(x, fmt='boxplot'): if fmt == 'boxplot': y = {'med' : np.median(x), 'q1' : np.percentile(x, 25), 'q3' : np.percentile(x, 75), 'whislo' : min(x), 'whishi' : max(x) } elif fmt == 'histogram': # Power of 2 bins covering data range high = np.ceil(np.log2(max(x))) + 1 low = np.floor(np.log2(min(x))) - 1 bits = np.arange(low, high, 1) bins = 2 ** bits h, b = np.histogram(x, bins=bins) h = h * 1. / float(sum(h)) # normalize y = {'h' : h, 'b' : np.log2(b)} return y def boxplot(data, fmt='longform'): if fmt == 'longform': f = plt.figure() #figsize=(3, 3)) hue = 'layer' if 'layer' in data.keys() else None vp = sb.boxplot(x='x', y='weight', hue=hue, data=data[data['x'] > 0], showfliers=False) vp.set_yticklabels(vp.get_yticklabels(), rotation=45, ha='right') if hue is not None: vp.get_legend().remove() vp.set_xscale('log', base=2) return f elif fmt == 'summary': from matplotlib.patches import Rectangle medianprops = dict(linestyle='-', color='k') f, ax = plt.subplots(1, 1) data.reverse() colors = sb.color_palette("Blues", len(data)) bp = ax.bxp(data, showfliers=False, vert=False, medianprops=medianprops) # add colored boxes for line, color in zip(bp['boxes'], colors): x = line.get_xdata() xl, xh = min(x), max(x) y = line.get_ydata() yl, yh = min(y), max(y) rect = Rectangle((xl, yl), (xh-xl), (yh-yl), fill=True, color=color) ax.add_patch(rect) ax.set_yticklabels([d['weight'] for d in data]) ax.set_xscale('log', base=2) plt.xlabel('x') return f else: return None def histogram(data, fmt='longform'): f = plt.figure() from matplotlib.ticker import MaxNLocator n = len(data) if fmt == 'summary' else len(data['weight'].unique()) colors = sb.color_palette("husl", n) if fmt == 'longform': for i, weight in enumerate(data['weight'].unique()): y = array_to_summary(data[data['weight'] == weight]['x'], fmt='histogram') plt.bar(y['b'][:-1], y['h'], width=1, fill=False, label=weight, edgecolor=colors[i]) elif fmt == 'summary': for i, weight in enumerate(data): plt.bar(weight['b'][:-1], weight['h'], width=1, fill=False, label=weight['weight'], edgecolor=colors[i]) plt.gca().xaxis.set_major_locator(MaxNLocator(integer=True)) plt.xlabel('log2(x)') plt.ylabel('frequency') plt.legend() return f plots = {'boxplot' : boxplot, 'histogram' : histogram} def types_boxplot(data, fmt='longform'): from matplotlib.patches import PathPatch from matplotlib.patches import Rectangle ax = plt.gca() f = plt.gcf() # Scale the data data['low'] = 2.**data['low'] data['high'] = 2.**data['high'] # Plot the custom precisions ticks = np.array([tick.get_text() for tick in plt.yticks()[1]]) # Get the coordinates of the boxes to place the markers if fmt == 'longform': # seaborn adjusts the box positions slightly in groups boxes = [c.get_extents().inverse_transformed(ax.transData) for c in ax.get_children() if isinstance(c, PathPatch)] ys = [(box.y0 + box.y1) / 2 for box in boxes] ys = [(y, y) for y in ys] elif fmt == 'summary': ys = [(y, y) for y in plt.yticks()[0]] for irow, row in data[data['layer'] != 'model'].iterrows(): if row['layer'] in ticks: iy = np.argwhere(ticks == row['layer'])[0][0] # Determine which layer in the plot rectangle = Rectangle((row['low'], ys[iy][0]-0.4), row['high']-row['low'], 0.8, fill=True, color='grey', alpha=0.2) ax.add_patch(rectangle) def types_histogram(data, fmt='longform'): ax = plt.gca() layers = np.array(ax.get_legend_handles_labels()[1]) colors = sb.color_palette("husl", len(layers)) ylim = ax.get_ylim() for irow, row in data[data['layer'] != 'model'].iterrows(): if row['layer'] in layers: col = colors[np.argwhere(layers == row['layer'])[0][0]] plt.plot((row['low'], row['low']), ylim, '--', color=col) plt.plot((row['high'], row['high']), ylim, '--', color=col) types_plots = {'boxplot' : types_boxplot, 'histogram' : types_histogram} def ap_fixed_WIF(dtype): from hls4ml.templates.vivado_template import VivadoBackend dtype = VivadoBackend.convert_precision_string(None, dtype) W, I, F = dtype.width, dtype.integer, dtype.fractional return W, I, F def types_hlsmodel(model): suffix = ['w', 'b'] data = {'layer' : [], 'low' : [], 'high' : []} # Plot the default precision default_precision = model.config.model_precision['default'] # assumes ap_fixed W, I, F = ap_fixed_WIF(default_precision) data['layer'].append('model') data['low'].append(-F) data['high'].append(I-1) for layer in model.get_layers(): for iw, weight in enumerate(layer.get_weights()): wname = '{}/{}'.format(layer.name, suffix[iw]) T = weight.type if T.name != 'model': W, I, F = ap_fixed_WIF(T.precision) data['layer'].append(wname) data['low'].append(-F) data['high'].append(I-1) data = pandas.DataFrame(data) return data def activation_types_hlsmodel(model): data = {'layer' : [], 'low' : [], 'high' : []} # Get the default precision default_precision = model.config.model_precision['default'] W, I, F = ap_fixed_WIF(default_precision) data['layer'].append('model') data['low'].append(-F) data['high'].append(I-1) for layer in model.get_layers(): T = layer.get_output_variable().type.precision W, I, F = ap_fixed_WIF(T) data['layer'].append(layer.name) data['low'].append(-F) data['high'].append(I-1) data = pandas.DataFrame(data) return data def weights_hlsmodel(model, fmt='longform', plot='boxplot'): suffix = ['w', 'b'] if fmt == 'longform': data = {'x' : [], 'layer' : [], 'weight' : []} elif fmt == 'summary': data = [] for layer in model.get_layers(): name = layer.name for iw, weight in enumerate(layer.get_weights()): l = '{}/{}'.format(name, suffix[iw]) w = weight.data.flatten() w = abs(w[w != 0]) n = len(w) if n == 0: break if fmt == 'longform': data['x'].extend(w.tolist()) data['layer'].extend([name for i in range(len(w))]) data['weight'].extend([l for i in range(len(w))]) elif fmt == 'summary': data.append(array_to_summary(w, fmt=plot)) data[-1]['layer'] = name data[-1]['weight'] = l if fmt == 'longform': data = pandas.DataFrame(data) return data def weights_keras(model, fmt='longform', plot='boxplot'): suffix = ['w', 'b'] if fmt == 'longform': data = {'x' : [], 'layer' : [], 'weight' : []} elif fmt == 'summary': data = [] for layer in model.layers: name = layer.name weights = layer.get_weights() for i, w in enumerate(weights): l = '{}/{}'.format(name, suffix[i]) w = w.flatten() w = abs(w[w != 0]) n = len(w) if n == 0: break if fmt == 'longform': data['x'].extend(w.tolist()) data['layer'].extend([name for j in range(n)]) data['weight'].extend([l for j in range(n)]) elif fmt == 'summary': data.append(array_to_summary(w, fmt=plot)) data[-1]['layer'] = name data[-1]['weight'] = l if fmt == 'longform': data = pandas.DataFrame(data) return data def activations_keras(model, X, fmt='longform', plot='boxplot'): # test layer by layer on data if fmt == 'longform': # return long form pandas dataframe for # seaborn boxplot data = {'x' : [], 'weight' : []} elif fmt == 'summary': # return summary statistics for matplotlib.axes.Axes.bxp # or histogram bin edges and heights data = [] for layer in model.layers: print(" {}".format(layer.name)) if not isinstance(layer, keras.layers.InputLayer): y = _get_output(layer, X, model.input).flatten() y = abs(y[y != 0]) if fmt == 'longform': data['x'].extend(y.tolist()) data['weight'].extend([layer.name for i in range(len(y))]) elif fmt == 'summary': data.append(array_to_summary(y, fmt=plot)) data[-1]['weight'] = layer.name if fmt == 'longform': data = pandas.DataFrame(data) return data def weights_torch(model, fmt='longform', plot='boxplot'): suffix = ['w', 'b'] if fmt == 'longform': data = {'x': [], 'layer': [], 'weight': []} elif fmt == 'summary': data = [] for layer in model.children(): if isinstance(layer, torch.nn.Linear): name = layer.__class__.__name__ weights = list(layer.parameters()) for i, w in enumerate(weights): l = '{}/{}'.format(name, suffix[i]) w = weights[i].detach().numpy() w = w.flatten() w = abs(w[w != 0]) n = len(w) if n == 0: break if fmt == 'longform': data['x'].extend(w.tolist()) data['layer'].extend([name for _ in range(n)]) data['weight'].extend([l for _ in range(n)]) elif fmt == 'summary': data.append(array_to_summary(w, fmt=plot)) data[-1]['layer'] = name data[-1]['weight'] = l if fmt == 'longform': data = pandas.DataFrame(data) return data def activations_torch(model, X, fmt='longform', plot='boxplot'): X = torch.Tensor(X) if fmt == 'longform': data = {'x': [], 'weight': []} elif fmt == 'summary': data = [] partial_model = torch.nn.Sequential layers = [] for layer in model.children(): lname = layer.__class__.__name__ layers.append(layer) pm = partial_model(*layers) print(" {}".format(lname)) y = pm(X).flatten().detach().numpy() y = abs(y[y != 0]) if fmt == 'longform': data['x'].extend(y.tolist()) data['weight'].extend([lname for _ in range(len(y))]) elif fmt == 'summary': data.append(array_to_summary(y, fmt=plot)) data[-1]['weight'] = lname if fmt == 'longform': data =
pandas.DataFrame(data)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Mar 7 12:28:24 2018 @author: admin """ import pandas as pd import numpy as np import pymysql import statsmodels.api as sm from datetime import datetime config = { 'host': 'magiquant.mysql.rds.aliyuncs.com', 'port': 3306, 'user':'haoamc', 'passwd':'<PASSWORD>', 'db': 'quant' } def get_month_tradedate(begin,end): try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT calendar_date FROM trade_calendar WHERE is_month_end = 1 \ AND calendar_date >= '%s' AND calendar_date <= '%s';"%(begin,end) cursor.execute(query) data = pd.DataFrame(list(cursor.fetchall())) return data finally: if conn: conn.close() def get_weekly_tradedate(begin,end): try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT calendar_date FROM trade_calendar WHERE is_week_end = 1 \ AND calendar_date >= '%s' AND calendar_date <= '%s';"%(begin,end) cursor.execute(query) data = pd.DataFrame(list(cursor.fetchall())) return data finally: if conn: conn.close() def get_tradedate(begin,end): try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT calendar_date FROM trade_calendar WHERE is_trade_day = 1 \ AND calendar_date >= '%s' AND calendar_date <= '%s';"%(begin,end) cursor.execute(query) data = pd.DataFrame(list(cursor.fetchall())) return data finally: if conn: conn.close() def get_barra_factor_from_sql(date): try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT * FROM barra_style_factors_stand WHERE trade_date = '%s';"%(date) cursor.execute(query) data = pd.DataFrame(list(cursor.fetchall())) data.columns = ['date','secID','Beta','Momentum','Size','EY','RV','Growth',\ 'BP','Leverage','Liquidity'] del data['date'] data = data.set_index('secID') return data finally: if conn: conn.close() def get_ret(date): try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT stock_id,PctChg FROM stock_market_data WHERE trade_date = '%s';"%(date) cursor.execute(query) data = pd.DataFrame(list(cursor.fetchall())) data.columns = ['secID','ret'] data = data.set_index('secID') return data finally: if conn: conn.close() def get_cap(date): try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT stock_id,TotalValue FROM stock_alpha_factors WHERE trade_date = '%s';"%(date) cursor.execute(query) data = pd.DataFrame(list(cursor.fetchall())) data.columns = ['secID','cap'] data = data.set_index('secID') return data finally: if conn: conn.close() def get_index_composition(date,index_name): try: conn = pymysql.connect(**config) cursor = conn.cursor() query = "SELECT stock_id,weight FROM index_constitution WHERE \ trade_date = '%s' AND index_id = '%s';"%(date,index_name) cursor.execute(query) data = pd.DataFrame(list(cursor.fetchall())) data.columns = ['secID','weight'] data = data.set_index('secID') return data finally: if conn: conn.close() def get_factor_ret(date,date_lag): """ compute the style factor ret """ ret = get_ret(date_lag) cap = get_cap(date) style_factor = get_barra_factor_from_sql(date) data_all =
pd.concat([ret,cap,style_factor],axis = 1,join = 'inner')
pandas.concat
import pytz from datetime import datetime, timedelta import numpy as np import pandas as pd import os import settings import time import random """ Convert dates to default format and timezone """ def convert_datetime_with_timezone(date, time_zone = settings.DEFAULT_TIME_ZONE, format_date=settings.DEFAULT_FORMAT): date = datetime.strptime(date, format_date) timezone = pytz.timezone(time_zone).localize(date) return timezone """ Convert dates to default format and timezone """ def convert_datetime(date, format_date=settings.DEFAULT_FORMAT): date = datetime.strptime(date, format_date) return date def get_dataframe(symbol, start, end, type='T', frame=1, sep=';', format_date=settings.DEFAULT_FORMAT, backperiods=20, serie=None): assert symbol in settings.SYMBOL_LIST, 'The symbol name is not registered in settings file.' assert isinstance(symbol, str) assert isinstance(start, str) assert isinstance(end, str) assert type in settings.FREQUENCY_LIST, "The frequence selected is unknown." assert isinstance(frame, int) assert isinstance(sep, str) assert backperiods > 0, "El parametro backperiods no puede ser igual o menor que cero" path = r"{}/{}/{}/{}.csv".format(settings.DATA_DIRECTORY, symbol, "{}{}".format(frame,settings.FREQUENCY_LIST[type]), 'last') if type == 'T' or type == 'Min' or type == 'H': path = r"{}/{}/{}/{}.csv".format(settings.DATA_DIRECTORY, symbol, "1Min", 'last') elif type == 'M' or type == 'W' or type == 'D': path = r"{}/{}/{}/{}.csv".format(settings.DATA_DIRECTORY, symbol, "1D", 'last') elif type == 'tick': pass #data = pd.read_csv(path, sep=sep, usecols=['open', 'high', 'low', 'close'], parse_dates=['dateTime']) data =
pd.read_csv(path, sep=sep, usecols=['dateTime', 'open', 'high', 'low', 'close', 'volume'])
pandas.read_csv
from pathlib import Path import sys project_dir = Path("__file__").resolve().parents[1] from sklearn.preprocessing import MinMaxScaler from temporal_granularity.src.metrics.metrics import Metrics from temporal_granularity.src.models.manipulations.approximations import ApproximateData import logging import pandas as pd import matplotlib.pyplot as plt import seaborn as sns logger = logging.getLogger(__name__) if __name__ == "__main__": log_fmt = '%(asctime)s - %(name)s - %(levelname)s - %(message)s' logging.basicConfig(level=logging.DEBUG, format=log_fmt) logger.info("Starting") # onshore_data = pd.read_csv( # '/Users/b1017579/Documents/PhD/Projects/14-temporal-granularity/temporal_granularity/data/processed/resources/onshore_processed.csv') # load_data = pd.read_csv( # "/Users/b1017579/Documents/PhD/Projects/14-temporal-granularity/temporal_granularity/data/processed/demand/load_processed_normalised.csv") # pv_data = pd.read_csv( # "/Users/b1017579/Documents/PhD/Projects/14-temporal-granularity/temporal_granularity/data/processed/resources/pv_processed.csv") onshore_data = pd.read_csv( '{}/temporal_granularity/data/processed/resources/onshore_processed.csv'.format(project_dir)) load_data = pd.read_csv( "{}/temporal_granularity/data/processed/demand/load_processed_normalised.csv".format(project_dir)) # offshore_data = pd.read_csv( # '{}/temporal_granularity/data/processed/resources/offshore_processed.csv'.format(project_dir)) pv_data = pd.read_csv( '{}/temporal_granularity/data/processed/resources/pv_processed.csv'.format(project_dir)) data = [pv_data, onshore_data, load_data] results = [] for i in range(100): logger.info("Running iteration {}".format(i)) for method in ['centroids', 'medoids']: logger.info("Approximating using {} method".format(method)) # for num_days in [4]: for num_days in [4, 8, 12, 24, 48, 61]: logger.info("Calculating using {} days".format(num_days)) original_ldcs = [] approximated_ldcs = [] original_rdcs = [] approximated_rdcs = [] original_ldcs.clear() approximated_ldcs.clear() original_rdcs.clear() approximated_rdcs.clear() for dat in data: approximator = ApproximateData(dat, num_days) original_ldc = approximator.get_load_duration_curve( year="2014") original_ldcs.append(original_ldc) medoids_approximation = approximator.get_approximated_ldc( method) approximated_ldcs.append(medoids_approximation) original_rdc = approximator.get_ramp_duration_curve( year="2014") original_rdcs.append(original_rdc) approximated_rdc = approximator.get_approximated_rdc( method) approximated_rdcs.append(approximated_rdc) rdc_metrics_calculator = Metrics( original_rdcs[0], approximated_rdcs[0], original_rdcs[1], approximated_rdcs[1], original_rdcs[2], approximated_rdcs[2], "rdc") mean_rdc_errors = rdc_metrics_calculator.get_mean_error_metrics() mean_rdc_errors['num_days'] = num_days mean_rdc_errors['method'] = method results.append(mean_rdc_errors) ldc_metrics_calculator = Metrics( original_ldcs[0], approximated_ldcs[0], original_ldcs[1], approximated_ldcs[1], original_ldcs[2], approximated_ldcs[2], "dc") mean_ldc_errors = ldc_metrics_calculator.get_mean_error_metrics() mean_ldc_errors['num_days'] = num_days mean_ldc_errors['method'] = method results.append(mean_ldc_errors) results_dataframe =
pd.concat(results)
pandas.concat
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df =
tm.makeDataFrame()
pandas.util.testing.makeDataFrame
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import datetime as dt import time import os import imageio from tqdm import tqdm import sys import statsmodels.api as sm from scipy.stats import shapiro from environment import StaticEnvironment def date_to_index(date_string, start_date): return (dt.datetime.strptime(date_string, '%Y-%m-%d') - start_date).days def index_to_date(index, start_date): return(start_date + dt.timedelta(index)).strftime('%Y-%m-%d') def portfolio(w :np.array, r: np.array, mean_model, cov_model, satisfaction_model, annualize = False): ''' :param w: n x 1 portfolio weights :param r: t x n portfolio returns :param mean_model: function for modelling the expected value of the portfolio :param cov_model: function for modelling the covariance matrix :param satisfaction: satisfaction function :return: ''' mu_hat = mean_model(r) sig_hat = cov_model(r) if annualize: mu_hat *= 252 sig_hat *= 252 r_p = np.sum(mu_hat * w) sig_p = np.sqrt(np.dot(w.T, np.dot(sig_hat, w))) #satisfaction measure satis = satisfaction_model(r_p, sig_p) return np.array([r_p, sig_p, satis]) def test_static_agent(env, agent, optimization_problem, fitting_period, rebalancing_period, factors=None, **kwargs): returns = [] actions = [] counter = 0 tic = time.perf_counter() # factor indexing if optimization_problem == 'sr_factor': factor_env = StaticEnvironment(factors.loc[env.prices.index[0]:], **kwargs) for trade in range(fitting_period, len(env.prices), rebalancing_period): # print(trade, counter*rebalancing_period) s_t = env.get_state(trade, counter * rebalancing_period) # print(s_t.shape) if optimization_problem == 'sr_factor': s_t_factor = env.get_state(trade, counter * rebalancing_period) a_t = agent.act(s_t, optimization_problem, factors=s_t_factor) else: a_t = agent.act(s_t, optimization_problem, **kwargs) actions.append(a_t) s_t_trade = s_t.iloc[-rebalancing_period:, :] #transaction costs if len(actions) > 1: a_delta = actions[len(actions) - 1] - actions[len(actions) - 2] r_t = np.dot(s_t_trade, a_t) - np.dot(s_t_trade * env.transaction_cost, a_delta) else: r_t = np.dot(s_t_trade, a_t) returns.append(r_t) counter += 1 returns = np.vstack(returns).flatten() toc = time.perf_counter() print(f"Tested {optimization_problem} in {toc - tic:0.4f} seconds") return returns def load_data_long(db_path): db_long_prices = pd.read_csv(db_path + '00_db_long__PX_LAST.csv', index_col=0, parse_dates=True) db_long_prices = db_long_prices.loc['2015':] db_long_RL = db_long_prices.loc[:, ~db_long_prices.iloc[0].isna()].fillna(method='ffill') return db_long_RL def plot_training_result(rl_history, benchmark_history, n_, actions_to_plot, column_names): rl_result = np.array(rl_history).cumsum() benchmark_result = np.array(benchmark_history).cumsum() fig = plt.figure(figsize=(12,6)) top = plt.subplot2grid((4, 4), (0, 0), rowspan=2, colspan=4) bottom = plt.subplot2grid((4, 4), (2, 0), rowspan=2, colspan=4) #returns top.plot(rl_result, color='black', ls = '-') top.plot(benchmark_result, color = 'grey', ls = '--') #weights for a in actions_to_plot: plt.bar(np.arange(n_), a, color = 'goldenrod', alpha = 0.25) plt.xticks(np.arange(n_), column_names, rotation = 'vertical') plt_show() def plot_histograms(ew, subset): sns.set_palette('bright') fig, ax = plt.subplots(figsize=(20, 15)) for i, column in enumerate(subset.columns, 1): plt.subplot(3, 3, i) to_plot = pd.concat([ew, subset[column]], axis=1) sns.histplot(to_plot, kde=True, multiple='stack', alpha=0.5) plt.xlim(-.13,.13) def create_weights_gif(weights, model_name, saving_path, **plot_kwargs): ''' @param weights: array of weights @param model_name: name of the model, string @param saving_path: path to save, string @param plot_kwargs: list of kwargs to unpack for plot @return: None ''' tic = time.perf_counter() n_frames = 5 x = weights.columns.to_list() # obtain lists of weights for each day y_lists = [] for _, row in weights.iterrows(): rw = row.to_list() y_lists.append(rw) # iterate over each row filenames = [] y_cache = [] with tqdm(total=round(len(y_lists) / 20, 0), file=sys.stdout) as pbar: for index in np.arange(0, len(y_lists) - 1, step=20): y = y_lists[index] y1 = y_lists[index + 1] # distance to next pos y_path = np.array(y1) - np.array(y) # obtain image for each frame for i in np.arange(0, n_frames + 1): y_temp = (y + (y_path / n_frames) * i) y_cache.append(y_temp) # plot fig, ax = plt.subplots(figsize=(10, 8)) plt.barh(x, y_temp, color='goldenrod', **plot_kwargs) # cache and plot dissipating weights if len(y_cache) > 0: for idx, cache in enumerate(y_cache): plt.barh(x, cache, color='goldenrod', alpha=0.4 - 0.05 * idx) plt.xlim(0, 0.07) # if cache is full first in last out if len(y_cache) == 8: y_cache.pop(0) # build a filename filename = os.path.join(saving_path, f'gif/frame_{index}_{i}.png') filenames.append(filename) ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.set_title(f'{model_name} test trading day: #{index}') ax.set_xlabel('weight') # last frame needs to stay longer if (i == n_frames): for i in range(2): filenames.append(filename) # save images plt.savefig(filename, dpi=96) plt.close() pbar.update(1) print('Charts saved \n') print('Creating gif\n') # create the gif with imageio.get_writer(os.path.join(saving_path, f'{model_name}_weights.gif'), mode='I') as writer: for filename in filenames: image = imageio.imread(filename) writer.append_data(image) toc = time.perf_counter() print(f'Gif produced in {(toc - tic) / 60 :0.4f} minutes') # print('Removing Images\n') # # Remove files # for filename in set(filenames): # os.remove(filename) print('DONE') def normality_test(ew, subset): fig, axes = plt.subplots(nrows=2, ncols=3, figsize=(20, 12)) ax = axes.flatten() subset = pd.concat([ew, subset], axis=1) subset = subset.iloc[1:, ] for i, column in enumerate(subset.columns): _, p_value = shapiro(subset[column]) sm.qqplot(subset[column], line='q', ax=ax[i]) ax[i].set_title(column + ': Shapiro-Wilk p-value:' + str(round(p_value, 4))) def plt_show(): '''Text-blocking version of plt.show() Use this instead of plt.show()''' plt.draw() plt.pause(0.001) input("Press enter to continue...") plt.close() # convert List of weights to DataFrame weights = pd.DataFrame(weightsRebal, index=r.iloc[estimation_window:].index, columns=r.columns) returns = (weights * r).sum(axis="columns", min_count=1) # mincount is to generate NAs if all inputs are NAs return returns def read_ohlcv(db_name, db_path): c = pd.read_csv(db_path + db_name + '__PX_LAST.csv', parse_dates=True, index_col=0) c = c.loc[:, ~c.iloc[0].isna()] #drop names that were not traded c = c.loc[:, ~c.iloc[-1].isna()] ticks = c.columns o = pd.read_csv(db_path + db_name + '__PX_OPEN.csv', parse_dates=True, index_col=0).reindex(ticks, axis = 1) h =
pd.read_csv(db_path + db_name + '__PX_HIGH.csv', parse_dates=True, index_col=0)
pandas.read_csv
import copy from datetime import datetime import warnings import numpy as np from numpy.random import randn import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, DatetimeIndex, Index, Series, isna, notna import pandas._testing as tm from pandas.core.window.common import _flex_binary_moment from pandas.tests.window.common import ( Base, check_pairwise_moment, moments_consistency_cov_data, moments_consistency_is_constant, moments_consistency_mock_mean, moments_consistency_series_data, moments_consistency_std_data, moments_consistency_var_data, moments_consistency_var_debiasing_factors, ) import pandas.tseries.offsets as offsets @pytest.mark.filterwarnings("ignore:can't resolve package:ImportWarning") class TestMoments(Base): def setup_method(self, method): self._create_data() def test_centered_axis_validation(self): # ok Series(np.ones(10)).rolling(window=3, center=True, axis=0).mean() # bad axis with pytest.raises(ValueError): Series(np.ones(10)).rolling(window=3, center=True, axis=1).mean() # ok ok DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=0).mean() DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=1).mean() # bad axis with pytest.raises(ValueError): (DataFrame(np.ones((10, 10))).rolling(window=3, center=True, axis=2).mean()) def test_rolling_sum(self, raw): self._check_moment_func( np.nansum, name="sum", zero_min_periods_equal=False, raw=raw ) def test_rolling_count(self, raw): counter = lambda x: np.isfinite(x).astype(float).sum() self._check_moment_func( counter, name="count", has_min_periods=False, fill_value=0, raw=raw ) def test_rolling_mean(self, raw): self._check_moment_func(np.mean, name="mean", raw=raw) @td.skip_if_no_scipy def test_cmov_mean(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window(self): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) result = Series(vals).rolling(5, win_type="boxcar", center=True).mean() expected = Series( [ np.nan, np.nan, 9.962, 11.27, 11.564, 12.516, 12.818, 12.952, np.nan, np.nan, ] ) tm.assert_series_equal(expected, result) @td.skip_if_no_scipy def test_cmov_window_corner(self): # GH 8238 # all nan vals = pd.Series([np.nan] * 10) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert np.isnan(result).all() # empty vals = pd.Series([], dtype=object) result = vals.rolling(5, center=True, win_type="boxcar").mean() assert len(result) == 0 # shorter than window vals = pd.Series(np.random.randn(5)) result = vals.rolling(10, win_type="boxcar").mean() assert np.isnan(result).all() assert len(result) == 5 @td.skip_if_no_scipy @pytest.mark.parametrize( "f,xp", [ ( "mean", [ [np.nan, np.nan], [np.nan, np.nan], [9.252, 9.392], [8.644, 9.906], [8.87, 10.208], [6.81, 8.588], [7.792, 8.644], [9.05, 7.824], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "std", [ [np.nan, np.nan], [np.nan, np.nan], [3.789706, 4.068313], [3.429232, 3.237411], [3.589269, 3.220810], [3.405195, 2.380655], [3.281839, 2.369869], [3.676846, 1.801799], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "var", [ [np.nan, np.nan], [np.nan, np.nan], [14.36187, 16.55117], [11.75963, 10.48083], [12.88285, 10.37362], [11.59535, 5.66752], [10.77047, 5.61628], [13.51920, 3.24648], [np.nan, np.nan], [np.nan, np.nan], ], ), ( "sum", [ [np.nan, np.nan], [np.nan, np.nan], [46.26, 46.96], [43.22, 49.53], [44.35, 51.04], [34.05, 42.94], [38.96, 43.22], [45.25, 39.12], [np.nan, np.nan], [np.nan, np.nan], ], ), ], ) def test_cmov_window_frame(self, f, xp): # Gh 8238 df = DataFrame( np.array( [ [12.18, 3.64], [10.18, 9.16], [13.24, 14.61], [4.51, 8.11], [6.15, 11.44], [9.14, 6.21], [11.31, 10.67], [2.94, 6.51], [9.42, 8.39], [12.44, 7.34], ] ) ) xp = DataFrame(np.array(xp)) roll = df.rolling(5, win_type="boxcar", center=True) rs = getattr(roll, f)() tm.assert_frame_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_na_min_periods(self): # min_periods vals = Series(np.random.randn(10)) vals[4] = np.nan vals[8] = np.nan xp = vals.rolling(5, min_periods=4, center=True).mean() rs = vals.rolling(5, win_type="boxcar", min_periods=4, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular(self, win_types): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) xps = { "hamming": [ np.nan, np.nan, 8.71384, 9.56348, 12.38009, 14.03687, 13.8567, 11.81473, np.nan, np.nan, ], "triang": [ np.nan, np.nan, 9.28667, 10.34667, 12.00556, 13.33889, 13.38, 12.33667, np.nan, np.nan, ], "barthann": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], "bohman": [ np.nan, np.nan, 7.61599, 9.1764, 12.83559, 14.17267, 14.65923, 11.10401, np.nan, np.nan, ], "blackmanharris": [ np.nan, np.nan, 6.97691, 9.16438, 13.05052, 14.02156, 15.10512, 10.74574, np.nan, np.nan, ], "nuttall": [ np.nan, np.nan, 7.04618, 9.16786, 13.02671, 14.03559, 15.05657, 10.78514, np.nan, np.nan, ], "blackman": [ np.nan, np.nan, 7.73345, 9.17869, 12.79607, 14.20036, 14.57726, 11.16988, np.nan, np.nan, ], "bartlett": [ np.nan, np.nan, 8.4425, 9.1925, 12.5575, 14.3675, 14.0825, 11.5675, np.nan, np.nan, ], } xp = Series(xps[win_types]) rs = Series(vals).rolling(5, win_type=win_types, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular_linear_range(self, win_types): # GH 8238 vals = np.array(range(10), dtype=np.float) xp = vals.copy() xp[:2] = np.nan xp[-2:] = np.nan xp = Series(xp) rs = Series(vals).rolling(5, win_type=win_types, center=True).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_regular_missing_data(self, win_types): # GH 8238 vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, np.nan, 10.63, 14.48] ) xps = { "bartlett": [ np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925, 12.5575, 14.3675, 15.61667, 13.655, ], "blackman": [ np.nan, np.nan, 9.04582, 11.41536, 7.73345, 9.17869, 12.79607, 14.20036, 15.8706, 13.655, ], "barthann": [ np.nan, np.nan, 9.70333, 10.5225, 8.4425, 9.1925, 12.5575, 14.3675, 15.61667, 13.655, ], "bohman": [ np.nan, np.nan, 8.9444, 11.56327, 7.61599, 9.1764, 12.83559, 14.17267, 15.90976, 13.655, ], "hamming": [ np.nan, np.nan, 9.59321, 10.29694, 8.71384, 9.56348, 12.38009, 14.20565, 15.24694, 13.69758, ], "nuttall": [ np.nan, np.nan, 8.47693, 12.2821, 7.04618, 9.16786, 13.02671, 14.03673, 16.08759, 13.65553, ], "triang": [ np.nan, np.nan, 9.33167, 9.76125, 9.28667, 10.34667, 12.00556, 13.82125, 14.49429, 13.765, ], "blackmanharris": [ np.nan, np.nan, 8.42526, 12.36824, 6.97691, 9.16438, 13.05052, 14.02175, 16.1098, 13.65509, ], } xp = Series(xps[win_types]) rs = Series(vals).rolling(5, win_type=win_types, min_periods=3).mean() tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_special(self, win_types_special): # GH 8238 kwds = { "kaiser": {"beta": 1.0}, "gaussian": {"std": 1.0}, "general_gaussian": {"power": 2.0, "width": 2.0}, "exponential": {"tau": 10}, } vals = np.array( [6.95, 15.21, 4.72, 9.12, 13.81, 13.49, 16.68, 9.48, 10.63, 14.48] ) xps = { "gaussian": [ np.nan, np.nan, 8.97297, 9.76077, 12.24763, 13.89053, 13.65671, 12.01002, np.nan, np.nan, ], "general_gaussian": [ np.nan, np.nan, 9.85011, 10.71589, 11.73161, 13.08516, 12.95111, 12.74577, np.nan, np.nan, ], "kaiser": [ np.nan, np.nan, 9.86851, 11.02969, 11.65161, 12.75129, 12.90702, 12.83757, np.nan, np.nan, ], "exponential": [ np.nan, np.nan, 9.83364, 11.10472, 11.64551, 12.66138, 12.92379, 12.83770, np.nan, np.nan, ], } xp = Series(xps[win_types_special]) rs = ( Series(vals) .rolling(5, win_type=win_types_special, center=True) .mean(**kwds[win_types_special]) ) tm.assert_series_equal(xp, rs) @td.skip_if_no_scipy def test_cmov_window_special_linear_range(self, win_types_special): # GH 8238 kwds = { "kaiser": {"beta": 1.0}, "gaussian": {"std": 1.0}, "general_gaussian": {"power": 2.0, "width": 2.0}, "slepian": {"width": 0.5}, "exponential": {"tau": 10}, } vals = np.array(range(10), dtype=np.float) xp = vals.copy() xp[:2] = np.nan xp[-2:] = np.nan xp = Series(xp) rs = ( Series(vals) .rolling(5, win_type=win_types_special, center=True) .mean(**kwds[win_types_special]) ) tm.assert_series_equal(xp, rs) def test_rolling_median(self, raw): self._check_moment_func(np.median, name="median", raw=raw) def test_rolling_min(self, raw): self._check_moment_func(np.min, name="min", raw=raw) a = pd.Series([1, 2, 3, 4, 5]) result = a.rolling(window=100, min_periods=1).min() expected = pd.Series(np.ones(len(a))) tm.assert_series_equal(result, expected) with pytest.raises(ValueError): pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).min() def test_rolling_max(self, raw): self._check_moment_func(np.max, name="max", raw=raw) a = pd.Series([1, 2, 3, 4, 5], dtype=np.float64) b = a.rolling(window=100, min_periods=1).max() tm.assert_almost_equal(a, b) with pytest.raises(ValueError): pd.Series([1, 2, 3]).rolling(window=3, min_periods=5).max() @pytest.mark.parametrize("q", [0.0, 0.1, 0.5, 0.9, 1.0]) def test_rolling_quantile(self, q, raw): def scoreatpercentile(a, per): values = np.sort(a, axis=0) idx = int(per / 1.0 * (values.shape[0] - 1)) if idx == values.shape[0] - 1: retval = values[-1] else: qlow = float(idx) / float(values.shape[0] - 1) qhig = float(idx + 1) / float(values.shape[0] - 1) vlow = values[idx] vhig = values[idx + 1] retval = vlow + (vhig - vlow) * (per - qlow) / (qhig - qlow) return retval def quantile_func(x): return scoreatpercentile(x, q) self._check_moment_func(quantile_func, name="quantile", quantile=q, raw=raw) def test_rolling_quantile_np_percentile(self): # #9413: Tests that rolling window's quantile default behavior # is analogous to Numpy's percentile row = 10 col = 5 idx = pd.date_range("20100101", periods=row, freq="B") df = DataFrame(np.random.rand(row * col).reshape((row, -1)), index=idx) df_quantile = df.quantile([0.25, 0.5, 0.75], axis=0) np_percentile = np.percentile(df, [25, 50, 75], axis=0) tm.assert_almost_equal(df_quantile.values, np.array(np_percentile)) @pytest.mark.parametrize("quantile", [0.0, 0.1, 0.45, 0.5, 1]) @pytest.mark.parametrize( "interpolation", ["linear", "lower", "higher", "nearest", "midpoint"] ) @pytest.mark.parametrize( "data", [ [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0], [8.0, 1.0, 3.0, 4.0, 5.0, 2.0, 6.0, 7.0], [0.0, np.nan, 0.2, np.nan, 0.4], [np.nan, np.nan, np.nan, np.nan], [np.nan, 0.1, np.nan, 0.3, 0.4, 0.5], [0.5], [np.nan, 0.7, 0.6], ], ) def test_rolling_quantile_interpolation_options( self, quantile, interpolation, data ): # Tests that rolling window's quantile behavior is analogous to # Series' quantile for each interpolation option s = Series(data) q1 = s.quantile(quantile, interpolation) q2 = s.expanding(min_periods=1).quantile(quantile, interpolation).iloc[-1] if np.isnan(q1): assert np.isnan(q2) else: assert q1 == q2 def test_invalid_quantile_value(self): data = np.arange(5) s = Series(data) msg = "Interpolation 'invalid' is not supported" with pytest.raises(ValueError, match=msg): s.rolling(len(data), min_periods=1).quantile(0.5, interpolation="invalid") def test_rolling_quantile_param(self): ser = Series([0.0, 0.1, 0.5, 0.9, 1.0]) with pytest.raises(ValueError): ser.rolling(3).quantile(-0.1) with pytest.raises(ValueError): ser.rolling(3).quantile(10.0) with pytest.raises(TypeError): ser.rolling(3).quantile("foo") def test_rolling_apply(self, raw): # suppress warnings about empty slices, as we are deliberately testing # with a 0-length Series def f(x): with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning, ) return x[np.isfinite(x)].mean() self._check_moment_func(np.mean, name="apply", func=f, raw=raw) def test_rolling_std(self, raw): self._check_moment_func(lambda x: np.std(x, ddof=1), name="std", raw=raw) self._check_moment_func( lambda x: np.std(x, ddof=0), name="std", ddof=0, raw=raw ) def test_rolling_std_1obs(self): vals = pd.Series([1.0, 2.0, 3.0, 4.0, 5.0]) result = vals.rolling(1, min_periods=1).std() expected = pd.Series([np.nan] * 5) tm.assert_series_equal(result, expected) result = vals.rolling(1, min_periods=1).std(ddof=0) expected = pd.Series([0.0] * 5) tm.assert_series_equal(result, expected) result = pd.Series([np.nan, np.nan, 3, 4, 5]).rolling(3, min_periods=2).std() assert np.isnan(result[2]) def test_rolling_std_neg_sqrt(self): # unit test from Bottleneck # Test move_nanstd for neg sqrt. a = pd.Series( [ 0.0011448196318903589, 0.00028718669878572767, 0.00028718669878572767, 0.00028718669878572767, 0.00028718669878572767, ] ) b = a.rolling(window=3).std() assert np.isfinite(b[2:]).all() b = a.ewm(span=3).std() assert np.isfinite(b[2:]).all() def test_rolling_var(self, raw): self._check_moment_func(lambda x: np.var(x, ddof=1), name="var", raw=raw) self._check_moment_func( lambda x: np.var(x, ddof=0), name="var", ddof=0, raw=raw ) @td.skip_if_no_scipy def test_rolling_skew(self, raw): from scipy.stats import skew self._check_moment_func(lambda x: skew(x, bias=False), name="skew", raw=raw) @td.skip_if_no_scipy def test_rolling_kurt(self, raw): from scipy.stats import kurtosis self._check_moment_func(lambda x: kurtosis(x, bias=False), name="kurt", raw=raw) def _check_moment_func( self, static_comp, name, raw, has_min_periods=True, has_center=True, has_time_rule=True, fill_value=None, zero_min_periods_equal=True, **kwargs, ): # inject raw if name == "apply": kwargs = copy.copy(kwargs) kwargs["raw"] = raw def get_result(obj, window, min_periods=None, center=False): r = obj.rolling(window=window, min_periods=min_periods, center=center) return getattr(r, name)(**kwargs) series_result = get_result(self.series, window=50) assert isinstance(series_result, Series) tm.assert_almost_equal(series_result.iloc[-1], static_comp(self.series[-50:])) frame_result = get_result(self.frame, window=50) assert isinstance(frame_result, DataFrame) tm.assert_series_equal( frame_result.iloc[-1, :], self.frame.iloc[-50:, :].apply(static_comp, axis=0, raw=raw), check_names=False, ) # check time_rule works if has_time_rule: win = 25 minp = 10 series = self.series[::2].resample("B").mean() frame = self.frame[::2].resample("B").mean() if has_min_periods: series_result = get_result(series, window=win, min_periods=minp) frame_result = get_result(frame, window=win, min_periods=minp) else: series_result = get_result(series, window=win, min_periods=0) frame_result = get_result(frame, window=win, min_periods=0) last_date = series_result.index[-1] prev_date = last_date - 24 * offsets.BDay() trunc_series = self.series[::2].truncate(prev_date, last_date) trunc_frame = self.frame[::2].truncate(prev_date, last_date) tm.assert_almost_equal(series_result[-1], static_comp(trunc_series)) tm.assert_series_equal( frame_result.xs(last_date), trunc_frame.apply(static_comp, raw=raw), check_names=False, ) # excluding NaNs correctly obj = Series(randn(50)) obj[:10] = np.NaN obj[-10:] = np.NaN if has_min_periods: result = get_result(obj, 50, min_periods=30) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # min_periods is working correctly result = get_result(obj, 20, min_periods=15) assert isna(result.iloc[23]) assert not isna(result.iloc[24]) assert not isna(result.iloc[-6]) assert isna(result.iloc[-5]) obj2 = Series(randn(20)) result = get_result(obj2, 10, min_periods=5) assert isna(result.iloc[3]) assert notna(result.iloc[4]) if zero_min_periods_equal: # min_periods=0 may be equivalent to min_periods=1 result0 = get_result(obj, 20, min_periods=0) result1 = get_result(obj, 20, min_periods=1) tm.assert_almost_equal(result0, result1) else: result = get_result(obj, 50) tm.assert_almost_equal(result.iloc[-1], static_comp(obj[10:-10])) # window larger than series length (#7297) if has_min_periods: for minp in (0, len(self.series) - 1, len(self.series)): result = get_result(self.series, len(self.series) + 1, min_periods=minp) expected = get_result(self.series, len(self.series), min_periods=minp) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) else: result = get_result(self.series, len(self.series) + 1, min_periods=0) expected = get_result(self.series, len(self.series), min_periods=0) nan_mask = isna(result) tm.assert_series_equal(nan_mask, isna(expected)) nan_mask = ~nan_mask tm.assert_almost_equal(result[nan_mask], expected[nan_mask]) # check center=True if has_center: if has_min_periods: result = get_result(obj, 20, min_periods=15, center=True) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=15 )[9:].reset_index(drop=True) else: result = get_result(obj, 20, min_periods=0, center=True) print(result) expected = get_result( pd.concat([obj, Series([np.NaN] * 9)]), 20, min_periods=0 )[9:].reset_index(drop=True) tm.assert_series_equal(result, expected) # shifter index s = [f"x{x:d}" for x in range(12)] if has_min_periods: minp = 10 series_xp = ( get_result( self.series.reindex(list(self.series.index) + s), window=25, min_periods=minp, ) .shift(-12) .reindex(self.series.index) ) frame_xp = ( get_result( self.frame.reindex(list(self.frame.index) + s), window=25, min_periods=minp, ) .shift(-12) .reindex(self.frame.index) ) series_rs = get_result( self.series, window=25, min_periods=minp, center=True ) frame_rs = get_result( self.frame, window=25, min_periods=minp, center=True ) else: series_xp = ( get_result( self.series.reindex(list(self.series.index) + s), window=25, min_periods=0, ) .shift(-12) .reindex(self.series.index) ) frame_xp = ( get_result( self.frame.reindex(list(self.frame.index) + s), window=25, min_periods=0, ) .shift(-12) .reindex(self.frame.index) ) series_rs = get_result( self.series, window=25, min_periods=0, center=True ) frame_rs = get_result(self.frame, window=25, min_periods=0, center=True) if fill_value is not None: series_xp = series_xp.fillna(fill_value) frame_xp = frame_xp.fillna(fill_value) tm.assert_series_equal(series_xp, series_rs) tm.assert_frame_equal(frame_xp, frame_rs) def _rolling_consistency_cases(): for window in [1, 2, 3, 10, 20]: for min_periods in {0, 1, 2, 3, 4, window}: if min_periods and (min_periods > window): continue for center in [False, True]: yield window, min_periods, center class TestRollingMomentsConsistency(Base): def setup_method(self, method): self._create_data() # binary moments def test_rolling_cov(self): A = self.series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).cov(B) tm.assert_almost_equal(result[-1], np.cov(A[-50:], B[-50:])[0, 1]) def test_rolling_corr(self): A = self.series B = A + randn(len(A)) result = A.rolling(window=50, min_periods=25).corr(B) tm.assert_almost_equal(result[-1], np.corrcoef(A[-50:], B[-50:])[0, 1]) # test for correct bias correction a = tm.makeTimeSeries() b = tm.makeTimeSeries() a[:5] = np.nan b[:10] = np.nan result = a.rolling(window=len(a), min_periods=1).corr(b) tm.assert_almost_equal(result[-1], a.corr(b)) @pytest.mark.parametrize("func", ["cov", "corr"]) def test_rolling_pairwise_cov_corr(self, func): check_pairwise_moment(self.frame, "rolling", func, window=10, min_periods=5) @pytest.mark.parametrize("method", ["corr", "cov"]) def test_flex_binary_frame(self, method): series = self.frame[1] res = getattr(series.rolling(window=10), method)(self.frame) res2 = getattr(self.frame.rolling(window=10), method)(series) exp = self.frame.apply(lambda x: getattr(series.rolling(window=10), method)(x)) tm.assert_frame_equal(res, exp) tm.assert_frame_equal(res2, exp) frame2 = self.frame.copy() frame2.values[:] = np.random.randn(*frame2.shape) res3 = getattr(self.frame.rolling(window=10), method)(frame2) exp = DataFrame( { k: getattr(self.frame[k].rolling(window=10), method)(frame2[k]) for k in self.frame } ) tm.assert_frame_equal(res3, exp) @pytest.mark.slow @pytest.mark.parametrize( "window,min_periods,center", list(_rolling_consistency_cases()) ) def test_rolling_apply_consistency( consistency_data, base_functions, no_nan_functions, window, min_periods, center ): x, is_constant, no_nans = consistency_data with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning, ) # test consistency between rolling_xyz() and either (a) # rolling_apply of Series.xyz(), or (b) rolling_apply of # np.nanxyz() functions = base_functions # GH 8269 if no_nans: functions = no_nan_functions + base_functions for (f, require_min_periods, name) in functions: rolling_f = getattr( x.rolling(window=window, center=center, min_periods=min_periods), name, ) if ( require_min_periods and (min_periods is not None) and (min_periods < require_min_periods) ): continue if name == "count": rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) else: if name in ["cov", "corr"]: rolling_f_result = rolling_f(pairwise=False) else: rolling_f_result = rolling_f() rolling_apply_f_result = x.rolling( window=window, min_periods=min_periods, center=center ).apply(func=f, raw=True) # GH 9422 if name in ["sum", "prod"]: tm.assert_equal(rolling_f_result, rolling_apply_f_result) @pytest.mark.parametrize("window", range(7)) def test_rolling_corr_with_zero_variance(window): # GH 18430 s = pd.Series(np.zeros(20)) other = pd.Series(np.arange(20)) assert s.rolling(window=window).corr(other=other).isna().all() def test_flex_binary_moment(): # GH3155 # don't blow the stack msg = "arguments to moment function must be of type np.ndarray/Series/DataFrame" with pytest.raises(TypeError, match=msg): _flex_binary_moment(5, 6, None) def test_corr_sanity(): # GH 3155 df = DataFrame( np.array( [ [0.87024726, 0.18505595], [0.64355431, 0.3091617], [0.92372966, 0.50552513], [0.00203756, 0.04520709], [0.84780328, 0.33394331], [0.78369152, 0.63919667], ] ) ) res = df[0].rolling(5, center=True).corr(df[1]) assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) # and some fuzzing for _ in range(10): df = DataFrame(np.random.rand(30, 2)) res = df[0].rolling(5, center=True).corr(df[1]) try: assert all(np.abs(np.nan_to_num(x)) <= 1 for x in res) except AssertionError: print(res) def test_rolling_cov_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2) expected = Series([None, None, 2.0]) tm.assert_series_equal(result, expected) s2a = Series([1, None, 3], index=[0, 1, 2]) result = s1.rolling(window=3, min_periods=2).cov(s2a) tm.assert_series_equal(result, expected) def test_rolling_corr_diff_length(): # GH 7512 s1 = Series([1, 2, 3], index=[0, 1, 2]) s2 = Series([1, 3], index=[0, 2]) result = s1.rolling(window=3, min_periods=2).corr(s2) expected =
Series([None, None, 1.0])
pandas.Series
from sklearn.preprocessing import MultiLabelBinarizer import pandas as pd import numpy as np import copy features = [ 'StoreID', 'Date', 'IsOpen', 'IsHoliday', 'HasPromotions', 'NumberOfSales', 'StoreType_Hyper Market','StoreType_Shopping Center', 'StoreType_Standard Market', 'StoreType_Super Market', 'NearestCompetitor', 'WeekDay_0', 'WeekDay_1', 'WeekDay_2','WeekDay_3', 'WeekDay_4', 'WeekDay_5', 'WeekDay_6', 'Region_0', 'Region_1', 'Region_2', 'Region_3', 'Region_4', 'Region_5', 'Region_6','Region_7', 'Region_8', 'Region_9', 'Region_10', 'Month_1', 'Month_2','Month_3', 'Month_4', 'Month_5', 'Month_6', 'Month_7', 'Month_8','Month_9', 'Month_10', 'Month_11', 'Month_12', 'AssortmentType_General','AssortmentType_With Fish Department', 'AssortmentType_With Non-Food Department' ] class TrainPreprocessingReg(): def __init__(self, data, to_date): self.data = copy.deepcopy(data) fields = ["StoreType", "WeekDay", "Region", "Month", "AssortmentType"] self.data["Date"] = pd.to_datetime(self.data['Date'], format='%d/%m/%Y') self.add_date_columns(date_column_name="Date", month=True, day_of_week=True) self.one_hot_encode(fields=fields) self.data = self.data[features] self.data = self.data[self.data["Date"] < to_date] self.data = self.data[self.data["IsOpen"] == 1] self.X = np.array(self.data.drop(["StoreID", "IsOpen", "Date", "NumberOfSales"], inplace=False, axis = 1)) self.y = np.array(self.data["NumberOfSales"]) def get_X_y(self): return self.X, self.y def one_hot_encode(self, fields): self.data = pd.get_dummies(self.data, columns=fields) def split_attribute_list(self, column, attributes, fillna): mlb = MultiLabelBinarizer(classes=attributes) if fillna is not None: self.data[column] = self.data[column].fillna(fillna, inplace=False) self.data[column] = self.data[column].apply(lambda x: x.split('-')) new_columns_values = mlb.fit_transform(self.data[column].values.tolist()) self.data[attributes] = pd.DataFrame(new_columns_values, index=self.data.index) def add_date_columns(self, date_column_name, year=False, month=False, day_n=False, day_of_week=False): if year: self.data["Year"] = self.data[date_column_name].dt.year if month: self.data["Month"] = self.data[date_column_name].dt.month if day_n: self.data["Day"] = self.data[date_column_name].dt.day if day_of_week : self.data["WeekDay"] = self.data[date_column_name].dt.dayofweek class TestPreprocessingReg(): def __init__(self, data, from_date): self.data = copy.deepcopy(data) fields = ["StoreType", "WeekDay", "Region", "Month", "AssortmentType"] self.data["Date"] = pd.to_datetime(self.data['Date'], format='%d/%m/%Y') self.add_date_columns(date_column_name="Date", month=True, day_of_week=True) self.one_hot_encode(fields=fields) self.data = self.data[features] self.data = self.data[self.data["Date"] >= from_date] self.dates = sorted(list(self.data["Date"].value_counts().index)) self.X = self.data.drop(["IsOpen", "NumberOfSales"], inplace=False, axis = 1) self.y = self.data[["StoreID", "Date", "NumberOfSales"]] def one_hot_encode(self, fields): self.data = pd.get_dummies(self.data, columns=fields) def add_date_columns(self, date_column_name, year=False, month=False, day_n=False, day_of_week=False): if year: self.data["Year"] = self.data[date_column_name].dt.year if month: self.data["Month"] = self.data[date_column_name].dt.month if day_n: self.data["Day"] = self.data[date_column_name].dt.day if day_of_week : self.data["WeekDay"] = self.data[date_column_name].dt.dayofweek def split_attribute_list(self, column, attributes, fillna): mlb = MultiLabelBinarizer(classes=attributes) if fillna is not None: self.data[column] = self.data[column].fillna(fillna, inplace=False) self.data[column] = self.data[column].apply(lambda x: x.split('-')) new_columns_values = mlb.fit_transform(self.data[column].values.tolist()) self.data[attributes] =
pd.DataFrame(new_columns_values, index=self.data.index)
pandas.DataFrame
#!/usr/bin/python3 # Data adapter for the THYME dataset import ast import os import pandas from lxml import etree from .data_adapter import DataAdapter from data_tools import data_util class DataAdapterThyme(DataAdapter): def load_data(self, filename, drop_unlabeled=True): print('DataAdapterThyme.load_data', filename) df =
pandas.DataFrame(columns=self.column_names)
pandas.DataFrame
import os import random import math import numpy as np import pandas as pd import itertools from functools import lru_cache ########################## ## Compliance functions ## ########################## def delayed_ramp_fun(Nc_old, Nc_new, t, tau_days, l, t_start): """ t : timestamp current date tau : int number of days before measures start having an effect l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * (t-t_start-tau_days)/pd.Timedelta('1D') def ramp_fun(Nc_old, Nc_new, t, t_start, l): """ t : timestamp current date l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * (t-t_start)/pd.Timedelta('1D') ############################### ## Mobility update functions ## ############################### def load_all_mobility_data(agg, dtype='fractional', beyond_borders=False): """ Function that fetches all available mobility data and adds it to a DataFrame with dates as indices and numpy matrices as values. Make sure to regularly update the mobility data with the notebook notebooks/preprocessing/Quick-update_mobility-matrices.ipynb to get the data for the most recent days. Also returns the average mobility over all available data, which might NOT always be desirable as a back-up mobility. Input ----- agg : str Denotes the spatial aggregation at hand. Either 'prov', 'arr' or 'mun' dtype : str Choose the type of mobility data to return. Either 'fractional' (default), staytime (all available hours for region g spent in h), or visits (all unique visits from region g to h) beyond_borders : boolean If true, also include mobility abroad and mobility from foreigners Returns ------- all_mobility_data : pd.DataFrame DataFrame with datetime objects as indices ('DATE') and np.arrays ('place') as value column average_mobility_data : np.array average mobility matrix over all available dates """ ### Validate input ### if agg not in ['mun', 'arr', 'prov']: raise ValueError( "spatial stratification '{0}' is not legitimate. Possible spatial " "stratifications are 'mun', 'arr', or 'prov'".format(agg) ) if dtype not in ['fractional', 'staytime', 'visits']: raise ValueError( "data type '{0}' is not legitimate. Possible mobility matrix " "data types are 'fractional', 'staytime', or 'visits'".format(dtype) ) ### Load all available data ### # Define absolute location of this file abs_dir = os.path.dirname(__file__) # Define data location for this particular aggregation level data_location = f'../../../data/interim/mobility/{agg}/{dtype}' # Iterate over all available interim mobility data all_available_dates=[] all_available_places=[] directory=os.path.join(abs_dir, f'{data_location}') for csv in os.listdir(directory): # take YYYYMMDD information from processed CSVs. NOTE: this supposes a particular data name format! datum = csv[-12:-4] # Create list of datetime objects all_available_dates.append(pd.to_datetime(datum, format="%Y%m%d")) # Load the CSV as a np.array if beyond_borders: place = pd.read_csv(f'{directory}/{csv}', index_col='mllp_postalcode').values else: place = pd.read_csv(f'{directory}/{csv}', index_col='mllp_postalcode').drop(index='Foreigner', columns='ABROAD').values if dtype=='fractional': # make sure the rows sum up to 1 nicely again after dropping a row and a column place = place / place.sum(axis=1) # Create list of places all_available_places.append(place) # Create new empty dataframe with available dates. Load mobility later df = pd.DataFrame({'DATE' : all_available_dates, 'place' : all_available_places}).set_index('DATE') all_mobility_data = df.copy() # Take average of all available mobility data average_mobility_data = df['place'].values.mean() return all_mobility_data, average_mobility_data class make_mobility_update_function(): """ Output the time-dependent mobility function with the data loaded in cache Input ----- proximus_mobility_data : DataFrame Pandas DataFrame with dates as indices and matrices as values. Output of mobility.get_proximus_mobility_data. proximus_mobility_data_avg : np.array Average mobility matrix over all matrices """ def __init__(self, proximus_mobility_data, proximus_mobility_data_avg): self.proximus_mobility_data = proximus_mobility_data self.proximus_mobility_data_avg = proximus_mobility_data_avg @lru_cache() # Define mobility_update_func def __call__(self, t, default_mobility=None): """ time-dependent function which has a mobility matrix of type dtype for every date. Note: only works with datetime input (no integer time steps). This Input ----- t : timestamp current date as datetime object states : str formal necessity param : str formal necessity default_mobility : np.array or None If None (default), returns average mobility over all available dates. Else, return user-defined mobility Returns ------- place : np.array square matrix with mobility of type dtype (fractional, staytime or visits), dimension depending on agg """ t = pd.Timestamp(t.date()) try: # if there is data available for this date (if the key exists) place = self.proximus_mobility_data['place'][t] except: if default_mobility: # If there is no data available and a user-defined input is given place = self.default_mobility else: # No data and no user input: fall back on average mobility place = self.proximus_mobility_data_avg return place def mobility_wrapper_func(self, t, states, param, default_mobility=None): t = pd.Timestamp(t.date()) if t <= pd.Timestamp('2020-03-17'): place = self.__call__(t, default_mobility=default_mobility) return np.eye(place.shape[0]) else: return self.__call__(t, default_mobility=default_mobility) ################### ## VOC functions ## ################### class make_VOC_function(): """ Class that returns a time-dependant parameter function for COVID-19 SEIRD model parameter alpha (variant fraction). Current implementation includes the alpha - delta strains. If the class is initialized without arguments, a logistic model fitted to prelevance data of the alpha-gamma variant is used. The class can also be initialized with the alpha-gamma prelavence data provided by Prof. <NAME>. A logistic model fitted to prelevance data of the delta variant is always used. Input ----- *df_abc: pd.dataFrame (optional) Alpha, Beta, Gamma prelevance dataset by <NAME>, obtained using: `from covid19model.data import VOC` `df_abc = VOC.get_abc_data()` `VOC_function = make_VOC_function(df_abc)` Output ------ __class__ : function Default variant function """ def __init__(self, *df_abc): self.df_abc = df_abc self.data_given = False if self.df_abc != (): self.df_abc = df_abc[0] # First entry in list of optional arguments (dataframe) self.data_given = True @lru_cache() def VOC_abc_data(self,t): return self.df_abc.iloc[self.df_abc.index.get_loc(t, method='nearest')]['baselinesurv_f_501Y.V1_501Y.V2_501Y.V3'] @lru_cache() def VOC_abc_logistic(self,t): # Parameters obtained by fitting logistic model to weekly prevalence data t_sig = pd.Timestamp('2021-02-14') k = 0.07 # Function to return the fraction of the delta-variant return 1/(1+np.exp(-k*(t-t_sig)/pd.Timedelta(days=1))) @lru_cache() def VOC_delta_logistic(self,t): # Parameters obtained by fitting logistic model to weekly prevalence data t_sig = pd.Timestamp('2021-06-25') k = 0.11 # Function to return the fraction of the delta-variant return 1/(1+np.exp(-k*(t-t_sig)/pd.Timedelta(days=1))) # Default VOC function includes British and Indian variants def __call__(self, t, states, param): # Convert time to timestamp t = pd.Timestamp(t.date()) # Introduction Indian variant t1 = pd.Timestamp('2021-05-01') # Construct alpha if t <= t1: if self.data_given: return np.array([1-self.VOC_abc_data(t), self.VOC_abc_data(t), 0]) else: return np.array([1-self.VOC_abc_logistic(t), self.VOC_abc_logistic(t), 0]) else: return np.array([0, 1-self.VOC_delta_logistic(t), self.VOC_delta_logistic(t)]) ########################### ## Vaccination functions ## ########################### from covid19model.data.model_parameters import construct_initN class make_vaccination_function(): """ Class that returns a two-fold time-dependent parameter function for the vaccination strategy by default. First, first dose data by sciensano are used. In the future, a hypothetical scheme is used. If spatial data is given, the output consists of vaccination data per NIS code. Input ----- df : pd.dataFrame *either* Sciensano public dataset, obtained using: `from covid19model.data import sciensano` `df = sciensano.get_sciensano_COVID19_data(update=False)` *or* public spatial vaccination data, obtained using: `from covid19model.data import sciensano` `df = sciensano.get_public_spatial_vaccination_data(update=False,agg='arr')` spatial : Boolean True if df is spatially explicit. None by default. Output ------ __class__ : function Default vaccination function """ def __init__(self, df, age_classes=pd.IntervalIndex.from_tuples([(0,12),(12,18),(18,25),(25,35),(35,45),(45,55),(55,65),(65,75),(75,85),(85,120)], closed='left')): age_stratification_size = len(age_classes) # Assign inputs to object self.df = df self.age_agg = age_stratification_size # Check if spatial data is provided self.spatial = None if 'NIS' in self.df.index.names: self.spatial = True self.space_agg = len(self.df.index.get_level_values('NIS').unique().values) # infer aggregation (prov, arr or mun) if self.space_agg == 11: self.agg = 'prov' elif self.space_agg == 43: self.agg = 'arr' elif self.space_agg == 581: self.agg = 'mun' else: raise Exception(f"Space is {G}-fold stratified. This is not recognized as being stratification at Belgian province, arrondissement, or municipality level.") # Check if dose data is provided self.doses = None if 'dose' in self.df.index.names: self.doses = True self.dose_agg = len(self.df.index.get_level_values('dose').unique().values) # Define start- and enddate self.df_start = pd.Timestamp(self.df.index.get_level_values('date').min()) self.df_end = pd.Timestamp(self.df.index.get_level_values('date').max()) # Perform age conversion # Define dataframe with desired format iterables=[] for index_name in self.df.index.names: if index_name != 'age': iterables += [self.df.index.get_level_values(index_name).unique()] else: iterables += [age_classes] index = pd.MultiIndex.from_product(iterables, names=self.df.index.names) self.new_df = pd.Series(index=index) # Four possibilities exist: can this be sped up? if self.spatial: if self.doses: # Shorten? for date in self.df.index.get_level_values('date').unique(): for NIS in self.df.index.get_level_values('NIS').unique(): for dose in self.df.index.get_level_values('dose').unique(): data = self.df.loc[(date, NIS, slice(None), dose)] self.new_df.loc[(date, NIS, slice(None), dose)] = self.convert_age_stratified_vaccination_data(data, age_classes, self.agg, NIS).values else: for date in self.df.index.get_level_values('date').unique(): for NIS in self.df.index.get_level_values('NIS').unique(): data = self.df.loc[(date,NIS)] self.new_df.loc[(date, NIS)] = self.convert_age_stratified_vaccination_data(data, age_classes, self.agg, NIS).values else: if self.doses: for date in self.df.index.get_level_values('date').unique(): for dose in self.df.index.get_level_values('dose').unique(): data = self.df.loc[(date, slice(None), dose)] self.new_df.loc[(date, slice(None), dose)] = self.convert_age_stratified_vaccination_data(data, age_classes).values else: for date in self.df.index.get_level_values('date').unique(): data = self.df.loc[(date)] self.new_df.loc[(date)] = self.convert_age_stratified_vaccination_data(data, age_classes).values self.df = self.new_df def convert_age_stratified_vaccination_data(self, data, age_classes, agg=None, NIS=None): """ A function to convert the sciensano vaccination data to the desired model age groups Parameters ---------- data: pd.Series A series of age-stratified vaccination incidences. Index must be of type pd.Intervalindex. age_classes : pd.IntervalIndex Desired age groups of the vaccination dataframe. agg: str Spatial aggregation: prov, arr or mun NIS : str NIS code of consired spatial element Returns ------- out: pd.Series Converted data. """ # Pre-allocate new series out = pd.Series(index = age_classes, dtype=float) # Extract demographics if agg: data_n_individuals = construct_initN(data.index.get_level_values('age'), agg).loc[NIS,:].values demographics = construct_initN(None, agg).loc[NIS,:].values else: data_n_individuals = construct_initN(data.index.get_level_values('age'), agg).values demographics = construct_initN(None, agg).values # Loop over desired intervals for idx,interval in enumerate(age_classes): result = [] for age in range(interval.left, interval.right): try: result.append(demographics[age]/data_n_individuals[data.index.get_level_values('age').contains(age)]*data.iloc[np.where(data.index.get_level_values('age').contains(age))[0][0]]) except: result.append(0) out.iloc[idx] = sum(result) return out @lru_cache() def get_data(self,t): if self.spatial: if self.doses: try: # Only includes doses A, B and C (so not boosters!) for now data = np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) data[:,:,:-1] = np.array(self.df.loc[t,:,:,:].values).reshape( (self.space_agg, self.age_agg, self.dose_agg) ) return data except: return np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) else: try: return np.array(self.df.loc[t,:,:].values).reshape( (self.space_agg, self.age_agg) ) except: return np.zeros([self.space_agg, self.age_agg]) else: if self.doses: try: return np.array(self.df.loc[t,:,:].values).reshape( (self.age_agg, self.dose_agg) ) except: return np.zeros([self.age_agg, self.dose_agg]) else: try: return np.array(self.df.loc[t,:].values) except: return np.zeros(self.age_agg) def unidose_2021_vaccination_campaign(self, states, initN, daily_doses, delay_immunity, vacc_order, stop_idx, refusal): # Compute the number of vaccine eligible individuals VE = states['S'] + states['R'] # Initialize N_vacc N_vacc = np.zeros(self.age_agg) # Start vaccination loop idx = 0 while daily_doses > 0: if idx == stop_idx: daily_doses = 0 #End vaccination campaign at age 20 elif VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]] > daily_doses: N_vacc[vacc_order[idx]] = daily_doses daily_doses = 0 else: N_vacc[vacc_order[idx]] = VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]] daily_doses = daily_doses - (VE[vacc_order[idx]] - initN[vacc_order[idx]]*refusal[vacc_order[idx]]) idx = idx + 1 return N_vacc def booster_campaign(self, states, daily_doses, vacc_order, stop_idx, refusal): # Compute the number of booster eligible individuals VE = states['S'][:,2] + states['E'][:,2] + states['I'][:,2] + states['A'][:,2] + states['R'][:,2] \ + states['S'][:,3] + states['E'][:,3] + states['I'][:,3] + states['A'][:,3] + states['R'][:,3] # Initialize N_vacc N_vacc = np.zeros([self.age_agg,self.dose_agg]) # Booster vaccination strategy without refusal idx = 0 while daily_doses > 0: if idx == stop_idx: daily_doses= 0 #End vaccination campaign at age 20 elif VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]] > daily_doses: N_vacc[vacc_order[idx],3] = daily_doses daily_doses= 0 else: N_vacc[vacc_order[idx],3] = VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]] daily_doses = daily_doses - (VE[vacc_order[idx]] - self.fully_vaccinated_0[vacc_order[idx]]*refusal[vacc_order[idx]]) idx = idx + 1 return N_vacc # Default vaccination strategy = Sciensano data + hypothetical scheme after end of data collection for unidose model only (for now) def __call__(self, t, states, param, initN, daily_doses=60000, delay_immunity = 21, vacc_order = [8,7,6,5,4,3,2,1,0], stop_idx=9, refusal = [0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3,0.3]): """ time-dependent function for the Belgian vaccination strategy First, all available first-dose data from Sciensano are used. Then, the user can specify a custom vaccination strategy of "daily_first_dose" first doses per day, administered in the order specified by the vector "vacc_order" with a refusal propensity of "refusal" in every age group. This vaccination strategy does not distinguish between vaccination doses, individuals are transferred to the vaccination circuit after some time delay after the first dose. For use with the model `COVID19_SEIRD` and `COVID19_SEIRD_spatial_vacc` in `~src/models/models.py` Parameters ---------- t : int Simulation time states: dict Dictionary containing values of model states param : dict Model parameter dictionary initN : list or np.array Demographics according to the epidemiological model age bins daily_first_dose : int Number of doses administered per day. Default is 30000 doses/day. delay_immunity : int Time delay between first dose vaccination and start of immunity. Default is 21 days. vacc_order : array Vector containing vaccination prioritization preference. Default is old to young. Must be equal in length to the number of age bins in the model. stop_idx : float Index of age group at which the vaccination campaign is halted. An index of 9 corresponds to vaccinating all age groups, an index of 8 corresponds to not vaccinating the age group corresponding with vacc_order[idx]. refusal: array Vector containing the fraction of individuals refusing a vaccine per age group. Default is 30% in every age group. Must be equal in length to the number of age bins in the model. Return ------ N_vacc : np.array Number of individuals to be vaccinated at simulation time "t" per age, or per [patch,age] """ # Convert time to suitable format t = pd.Timestamp(t.date()) # Convert delay to a timedelta delay = pd.Timedelta(str(int(delay_immunity))+'D') # Compute vaccinated individuals after spring-summer 2021 vaccination campaign check_time = pd.Timestamp('2021-10-01') # Only for non-spatial multi-vaccindation dose model if not self.spatial: if self.doses: if t == check_time: self.fully_vaccinated_0 = states['S'][:,2] + states['E'][:,2] + states['I'][:,2] + states['A'][:,2] + states['R'][:,2] + \ states['S'][:,3] + states['E'][:,3] + states['I'][:,3] + states['A'][:,3] + states['R'][:,3] # Use data if t <= self.df_end + delay: return self.get_data(t-delay) # Projection into the future else: if self.spatial: if self.doses: # No projection implemented return np.zeros([self.space_agg, self.age_agg, self.dose_agg+1]) else: # No projection implemented return np.zeros([self.space_agg,self.age_agg]) else: if self.doses: return self.booster_campaign(states, daily_doses, vacc_order, stop_idx, refusal) else: return self.unidose_2021_vaccination_campaign(states, initN, daily_doses, delay_immunity, vacc_order, stop_idx, refusal) ################################### ## Google social policy function ## ################################### class make_contact_matrix_function(): """ Class that returns contact matrix based on 4 prevention parameters by default, but has other policies defined as well. Input ----- Nc_all : dictionnary contact matrices for home, schools, work, transport, leisure and others df_google : dataframe google mobility data Output ------ __class__ : default function Default output function, based on contact_matrix_4prev """ def __init__(self, df_google, Nc_all): self.df_google = df_google.astype(float) self.Nc_all = Nc_all # Compute start and endtimes of dataframe self.df_google_start = df_google.index.get_level_values('date')[0] self.df_google_end = df_google.index.get_level_values('date')[-1] # Check if provincial data is provided self.provincial = None if 'NIS' in self.df_google.index.names: self.provincial = True self.space_agg = len(self.df_google.index.get_level_values('NIS').unique().values) @lru_cache() # once the function is run for a set of parameters, it doesn't need to compile again def __call__(self, t, prev_home=1, prev_schools=1, prev_work=1, prev_rest = 1, school=None, work=None, transport=None, leisure=None, others=None, home=None): """ t : timestamp current date prev_... : float [0,1] prevention parameter to estimate school, work, transport, leisure, others : float [0,1] level of opening of these sectors if None, it is calculated from google mobility data only school cannot be None! """ if school is None: raise ValueError( "Please indicate to which extend schools are open") places_var = [work, transport, leisure, others] places_names = ['work', 'transport', 'leisure', 'others'] GCMR_names = ['work', 'transport', 'retail_recreation', 'grocery'] if self.provincial: if t < pd.Timestamp('2020-03-17'): return np.ones(self.space_agg)[:,np.newaxis,np.newaxis]*self.Nc_all['total'] elif pd.Timestamp('2020-03-17') <= t <= self.df_google_end: # Extract row at timestep t row = -self.df_google.loc[(t, slice(None)),:]/100 else: # Extract last 14 days and take the mean row = -self.df_google.loc[(self.df_google_end - pd.Timedelta(days=14)): self.df_google_end, slice(None)].mean(level='NIS')/100 # Sort NIS codes from low to high row.sort_index(level='NIS', ascending=True,inplace=True) # Extract values values_dict={} for idx,place in enumerate(places_var): if place is None: place = 1 - row[GCMR_names[idx]].values else: try: test=len(place) except: place = place*np.ones(self.space_agg) values_dict.update({places_names[idx]: place}) # Schools: try: test=len(school) except: school = school*np.ones(self.space_agg) # Construct contact matrix CM = (prev_home*np.ones(self.space_agg)[:, np.newaxis,np.newaxis]*self.Nc_all['home'] + (prev_schools*school)[:, np.newaxis,np.newaxis]*self.Nc_all['schools'] + (prev_work*values_dict['work'])[:,np.newaxis,np.newaxis]*self.Nc_all['work'] + (prev_rest*values_dict['transport'])[:,np.newaxis,np.newaxis]*self.Nc_all['transport'] + (prev_rest*values_dict['leisure'])[:,np.newaxis,np.newaxis]*self.Nc_all['leisure'] + (prev_rest*values_dict['others'])[:,np.newaxis,np.newaxis]*self.Nc_all['others']) else: if t < pd.Timestamp('2020-03-17'): return self.Nc_all['total'] elif pd.Timestamp('2020-03-17') <= t <= self.df_google_end: # Extract row at timestep t row = -self.df_google.loc[t]/100 else: # Extract last 14 days and take the mean row = -self.df_google[-14:-1].mean()/100 # Extract values values_dict={} for idx,place in enumerate(places_var): if place is None: place = 1 - row[GCMR_names[idx]] values_dict.update({places_names[idx]: place}) # Construct contact matrix CM = (prev_home*self.Nc_all['home'] + prev_schools*school*self.Nc_all['schools'] + prev_work*values_dict['work']*self.Nc_all['work'] + prev_rest*values_dict['transport']*self.Nc_all['transport'] + prev_rest*values_dict['leisure']*self.Nc_all['leisure'] + prev_rest*values_dict['others']*self.Nc_all['others']) return CM def all_contact(self): return self.Nc_all['total'] def all_contact_no_schools(self): return self.Nc_all['total'] - self.Nc_all['schools'] def ramp_fun(self, Nc_old, Nc_new, t, t_start, l): """ t : timestamp current simulation time t_start : timestamp start of policy change l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * float( (t-t_start)/pd.Timedelta('1D') ) def delayed_ramp_fun(self, Nc_old, Nc_new, t, tau_days, l, t_start): """ t : timestamp current simulation time t_start : timestamp start of policy change tau : int number of days before measures start having an effect l : int number of additional days after the time delay until full compliance is reached """ return Nc_old + (Nc_new-Nc_old)/l * float( (t-t_start-tau_days)/pd.Timedelta('1D') ) #################### ## National model ## #################### def policies_all(self, t, states, param, l1, l2, prev_schools, prev_work, prev_rest_lockdown, prev_rest_relaxation, prev_home): ''' Function that returns the time-dependant social contact matrix Nc for all COVID waves. Input ----- t : Timestamp simulation time states : xarray model states param : dict model parameter dictionary l1 : float Compliance parameter for social policies during first lockdown 2020 COVID-19 wave l2 : float Compliance parameter for social policies during second lockdown 2020 COVID-19 wave prev_{location} : float Effectivity of contacts at {location} Returns ------- CM : np.array (9x9) Effective contact matrix (output of __call__ function) ''' t = pd.Timestamp(t.date()) # Convert compliance l to dates l1_days = pd.Timedelta(l1, unit='D') l2_days = pd.Timedelta(l2, unit='D') # Define key dates of first wave t1 = pd.Timestamp('2020-03-15') # start of lockdown t2 = pd.Timestamp('2020-05-15') # gradual re-opening of schools (assume 50% of nominal scenario) t3 = pd.Timestamp('2020-07-01') # start of summer holidays t4 = pd.Timestamp('2020-08-03') # Summer lockdown in Antwerp t5 = pd.Timestamp('2020-08-24') # End of summer lockdown in Antwerp t6 = pd.Timestamp('2020-09-01') # end of summer holidays t7 = pd.Timestamp('2020-09-21') # Opening universities # Define key dates of second wave t8 = pd.Timestamp('2020-10-19') # lockdown (1) t9 = pd.Timestamp('2020-11-02') # lockdown (2) t10 =
pd.Timestamp('2020-11-16')
pandas.Timestamp
''' sim table parser ''' import re import time import numpy as np import pandas as pd from .plot import SimPlot months = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC'] month_sort_dict = {'JAN': '01_JAN', 'FEB': '02_FEB', 'MAR': '03_MAR', 'APR': '04_APR', 'MAY': '05_MAY', 'JUN': '06_JUN', 'JUL': '07_JUL', 'AUG': '08_AUG', 'SEP': '09_SEP', 'OCT': '10_OCT', 'NOV': '11_NOV', 'DEC': '12_DEC'} def try_numeric(df): def lambda_numeric(x): try: return pd.to_numeric(x, errors='raise') except: return x df = df.apply(lambda x: lambda_numeric(x)) return df def str_to_new_col(df, col, text, newcol): '''finds textstr in col of df, puts it into newcol''' if type(text) == str: df[newcol] = df[col].apply( lambda x: str(x) if text in str(x) else np.nan) elif type(text) == list: df[newcol] = df[col].apply( lambda x: str(x) if str(x) in text else np.nan) return df def filter_numerics(df, col, inverse=False): def try_numeric_filt(string): try: return float(string) except: return (string) df[col] = df[col].apply(lambda x: try_numeric_filt(x)) if not inverse: df = df[pd.to_numeric(df[col], errors='coerce').notnull()] elif inverse: df = df[~pd.to_numeric(df[col], errors='coerce').notnull()] return df def shiftcol(df, col, steps): '''shifts column by number of steps''' df[col] = df[col].shift(steps) return df def inlist(df, col, filtlist, inverse=False): '''FILTERS OUT ROWS WHERE ROW OF COL IN DF IS NOT A MONTH''' if inverse: df = df[df[col].isin(filtlist)] elif not inverse: df = df[~df[col].isin(filtlist)] return df def add_normalization(df, numerator, denominator, replacecolstr, newcolstr, replacefrom='numerator', factor=1, ): # todo: handle inf and nans '''takes df and list or string of numerators/denominators (one has to be a single value), adds new columns to dataframe based on replacecolstr, newcolstr''' if replacefrom == 'numerator': newcolstr = df[numerator].name.replace(replacecolstr, newcolstr) elif replacefrom == 'denominator': newcolstr = df[denominator].name.replace(replacecolstr, newcolstr) df[newcolstr] = (df[numerator].astype(float) / df[denominator].astype(float)) * factor # df[newcolstr] = df[newcolstr].apply(lambda x: x.replace(np.inf,0)) return df class RptHandler: '''container for customized report dataframes, can pass on various metadata into it (zone/volume, etc) and transformation methods''' def __init__(self, path): self.path = path self.plot = SimPlot(self) # exposes 'plot.py' for Sim files def _sim_to_text_dict(self): '''parses sim file, returns dictionary of tables and sub tables''' with open(self.path) as f: fstr = f.read() fstr = fstr + '\f' rpt_text = re.findall(r'(REPORT.*?\f)', fstr, re.DOTALL) # handle tables rptdict = {} for r in rpt_text: report = re.findall("REPORT-.*WEATHER", r)[0] report = report.replace( "REPORT- ", "").replace("WEATHER", "").strip() # handle special parse cases if "DESIGN DAY" in report: top = re.split(r'\s{2,}', report)[0] + ' (DESIGN DAY)' try: bottom = re.split(r'\s{2,}', report)[1] if bottom == "": bottom = 'None' except: bottom = 'None' elif "LS-J Daylight Illuminance Frequency" in report: top = "LS-J Daylight Illuminance Frequency" bottom = report.replace((top + " "), "") elif "LS-M Daylight Illuminance Ref Pnt 1" in report: top = "LS-M Daylight Illuminance Ref Pnt 1" bottom = report.replace((top + " "), "") elif "SS-P Heating Performance Summary of" in report: top = "SS-P Heating Performance Summary of" bottom = report.replace((top + " "), "") elif "SS-P Cooling Performance Summary of" in report: top = "SS-P Cooling Performance Summary of" bottom = report.replace((top + " "), "") elif "SS-Q Heat Pump Cooling Summary for" in report: top = "SS-Q Heat Pump Cooling Summary for" bottom = report.replace((top + " "), "") elif "SS-Q Heat Pump Heating Summary for" in report: top = "SS-Q Heat Pump Heating Summary for" bottom = report.replace((top + " "), "") else: top = re.split(r'\s{2,}', report)[0] try: bottom = re.split(r'\s{2,}', report)[1] if bottom == "": bottom = 'None' except: bottom = 'None' # rptdata = r.split("\n")[3:] # changed on 2020-01-30 for lv-d rptdata = r.split("\n")[2:] # populate dictionaries if top not in rptdict: rptdict[top] = {bottom: rptdata} else: if bottom in rptdict[top]: rptdict[top][bottom] = rptdict[top][bottom] + rptdata else: rptdict[top].update({bottom: rptdata}) return rptdict self.txtdict = _sim_to_text_dict(self) def _make_dirty_rpt_list(self, report): ''' takes either full report or simplified, without hyphen: LV-C Details of Space is accessible via LV-C, LVC, lfc, or LV-C Details of Space returns dirty list ''' rptlist = [key for key in self.txtdict.keys()] for rpt in rptlist: find = report.replace("-", "").upper() rpt_fmt = rpt.replace("-", "").upper() pattern = "^" + find + ".*" match = re.search(pattern, rpt_fmt) if match: return self.txtdict[rpt] def _make_dirty_rpt_df(self, rptname, colpat, colnames=None, fullname=None): ''' takes rpt list and returns df with column pattern and column length. rpt_ref used in case name of report generated is different from sim name. ex: 'unmet' is taken from 'beps'report; 'rpt' = unmet, rpt_ref = 'beps' ''' txtlist = self._make_dirty_rpt_list(rptname) poslist = [i for i, letter in enumerate(colpat) if letter == '%'] dflist = [] for key, value in txtlist.items(): # collist = [] this_row = [] for row in value: this_row = [] for num in range(len(poslist)): try: this_row_col = row[poslist[num] :poslist[num + 1]].strip() this_row.append(this_row_col) except: pass this_row = [x if len(x) > 0 else np.nan for x in this_row] collist.append(this_row) if colnames is not None: df =
pd.DataFrame(collist, columns=colnames)
pandas.DataFrame
""" Compute the aggregate effects for each individual neuron. Save the effects as $model_neuron_effects.csv. Usage: python compute_and_save_neuron_agg_effect.py $result_file_path $model_name """ import os import sys import pandas as pd def analyze_effect_results(results_df, effect, word, alt, savefig=None): # calculate odds. if alt == "man": odds_base = ( results_df["candidate1_base_prob"] / results_df["candidate2_base_prob"] ) odds_intervention = ( results_df["candidate1_prob"] / results_df["candidate2_prob"] ) else: odds_base = ( results_df["candidate2_base_prob"] / results_df["candidate1_base_prob"] ) odds_intervention = ( results_df["candidate2_prob"] / results_df["candidate1_prob"] ) odds_ratio = odds_intervention / odds_base results_df["odds_ratio"] = odds_ratio if word == "all": # average over words results_df = results_df.groupby(["layer", "neuron"], as_index=False).mean() else: # choose one word results_df = results_df[results_df["word"] == word] results_df = results_df.pivot("neuron", "layer", "odds_ratio") def get_all_effects(fname, direction="woman"): """ Give fname from a direct effect file """ # Step 1: Load results for current folder and gender print(fname) indirect_result_df = pd.read_csv(fname) analyze_effect_results( results_df=indirect_result_df, effect="indirect", word="all", alt=direction ) fname = fname.replace("_indirect_", "_direct_") direct_result_df =
pd.read_csv(fname)
pandas.read_csv
import builtins from io import StringIO from itertools import product from string import ascii_lowercase import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna) import pandas.core.nanops as nanops from pandas.util import testing as tm @pytest.mark.parametrize("agg_func", ['any', 'all']) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("vals", [ ['foo', 'bar', 'baz'], ['foo', '', ''], ['', '', ''], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1., 2., 3.], [1., 0., 0.], [0., 0., 0.], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan] ]) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({'key': ['a'] * 3 + ['b'] * 3, 'val': vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == 'any': exp = False exp_df = DataFrame([exp] * 2, columns=['val'], index=Index( ['a', 'b'], name='key')) result = getattr(df.groupby('key'), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({'nn': [11, 11, 22, 22], 'ii': [1, 2, 3, 4], 'ss': 4 * ['mama']}) result = aa.groupby('nn').max() assert 'ss' in result result = aa.groupby('nn').max(numeric_only=False) assert 'ss' in result result = aa.groupby('nn').min() assert 'ss' in result result = aa.groupby('nn').min(numeric_only=False) assert 'ss' in result def test_intercept_builtin_sum(): s = Series([1., 2., np.nan, 3.]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize('keys', [ "jim", # Single key ["jim", "joe"] # Multi-key ]) def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = ("invalid frame shape: {} " "(expected ({}, 3))".format(result.shape, ngroups)) assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal(result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname))) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( {'group': [1, 1, 2], 'int': [1, 2, 3], 'float': [4., 5., 6.], 'string': list('abc'), 'category_string': pd.Series(list('abc')).astype('category'), 'category_int': [7, 8, 9], 'datetime': pd.date_range('20130101', periods=3), 'datetimetz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'timedelta': pd.timedelta_range('1 s', periods=3, freq='s')}, columns=['group', 'int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) expected_columns_numeric = Index(['int', 'float', 'category_int']) # mean / median expected = pd.DataFrame( {'category_int': [7.5, 9], 'float': [4.5, 6.], 'timedelta': [pd.Timedelta('1.5s'), pd.Timedelta('3s')], 'int': [1.5, 3], 'datetime': [pd.Timestamp('2013-01-01 12:00:00'), pd.Timestamp('2013-01-03 00:00:00')], 'datetimetz': [ pd.Timestamp('2013-01-01 12:00:00', tz='US/Eastern'), pd.Timestamp('2013-01-03 00:00:00', tz='US/Eastern')]}, index=Index([1, 2], name='group'), columns=['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['mean', 'median']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index(['int', 'float', 'string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['min', 'max']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['first', 'last']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_int', 'timedelta']) for attr in ['sum']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'category_int']) for attr in ['prod', 'cumprod']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) # like min, max, but don't include strings expected_columns = Index(['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['cummin', 'cummax']: f = getattr(df.groupby('group'), attr) result = f() # GH 15561: numeric_only=False set by default like min/max tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False)
tm.assert_index_equal(result.columns, expected_columns)
pandas.util.testing.assert_index_equal
def Moder_merger(params : dict): def Solo_M1mHpC4H11N(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + mz - 72.081324 mz_Cl = 34.968853 + mz - 72.081324 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl]) def Solo_M1mHpHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + mz - 44.997654 mz_Cl = 34.968853 + mz - 44.997654 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl]) def Solo_M1m2HpNapHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + mz - 66.979600 mz_Cl = 34.968853 + mz - 66.979600 mz_m2HpNa = 20.97412 + mz - 66.979600 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa]) def Solo_M1m2HpNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + mz - 66.979600 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H]) def Solo_M1m2HpK(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + mz - 36.948058 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H]) def Solo_M2mHpC4H11N(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 72.081324)/2 mz_Cl = 34.968853 + (mz - 72.081324)/2 mz_m2HpNa = 20.97412 + (mz - 72.081324)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa]) def Solo_M2mHpHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 44.997654)/2 mz_Cl = 34.968853 + (mz - 44.997654)/2 mz_m2HpNa = 20.97412 + (mz - 44.997654)/2 mz_mHpHCOOH = 44.997654 + (mz - 44.997654)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_mHpHCOOH = peaks.between(mz_mHpHCOOH - prec_mass_error, mz_mHpHCOOH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_mHpHCOOH]) def Solo_M2mH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz + 1.007825)/2 mz_Cl = 34.968853 + (mz + 1.007825)/2 mz_m2HpNa = 20.97412 + (mz + 1.007825)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa]) def Solo_M2pCl(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 34.968853)/2 mz_Cl = 34.968853 + (mz - 34.968853)/2 mz_m2HpNa = 20.97412 + (mz - 34.968853)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa]) def Solo_M2m2HpNapHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 66.979600)/2 mz_Cl = 34.968853 + (mz - 66.979600)/2 mz_m2HpNa = 20.97412 + (mz - 66.979600)/2 mz_m2HpNapHCOOH = 66.9796 + (mz - 66.979600)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH]) def Solo_M2m2HpNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 20.97412)/2 mz_Cl = 34.968853 + (mz - 20.97412)/2 mz_m2HpNa = 20.97412 + (mz - 20.97412)/2 mz_m2HpNapHCOOH = 66.9796 + (mz - 20.97412)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH]) def Solo_M2m2HpK(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 36.948058)/2 mz_Cl = 34.968853 + (mz - 36.948058)/2 mz_m2HpNa = 20.97412 + (mz - 36.948058)/2 mz_m2HpNapHCOOH = 66.9796 + (mz - 36.948058)/2 mz_m2HpK = 36.948058 + (mz - 36.948058)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK]) def Solo_M3mH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz + 1.007825)/3 mz_Cl = 34.968853 + (mz + 1.007825)/3 mz_m2HpNa = 20.97412 + (mz + 1.007825)/3 mz_m2HpNapHCOOH = 66.9796 + (mz + 1.007825)/3 mz_m2HpK = 36.948058 + (mz + 1.007825)/3 mz_M2mH = -1.007825 + (mz + 1.007825)*(2/3) mz_M2pCl = 34.968853 + (mz + 1.007825)*(2/3) mz_M2m2HpNa = 20.97412 + (mz + 1.007825)*(2/3) mz_M2m2HpNapHCOOH = 66.9796 + (mz + 1.007825)*(2/3) mz_M2m2HpK = 36.948058 + (mz + 1.007825)*(2/3) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK]) def Solo_M3pCl(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 34.968853)/3 mz_Cl = 34.968853 + (mz - 34.968853)/3 mz_m2HpNa = 20.97412 + (mz - 34.968853)/3 mz_m2HpNapHCOOH = 66.9796 + (mz - 34.968853)/3 mz_m2HpK = 36.948058 + (mz - 34.968853)/3 mz_M2mH = -1.007825 + (mz - 34.968853)*(2/3) mz_M2pCl = 34.968853 + (mz - 34.968853)*(2/3) mz_M2m2HpNa = 20.97412 + (mz - 34.968853)*(2/3) mz_M2m2HpNapHCOOH = 66.9796 + (mz - 34.968853)*(2/3) mz_M2m2HpK = 36.948058 + (mz - 34.968853)*(2/3) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK]) def Solo_M3m2HpNapHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 66.979600)/3 mz_Cl = 34.968853 + (mz - 66.979600)/3 mz_m2HpNa = 20.97412 + (mz - 66.979600)/3 mz_m2HpNapHCOOH = 66.9796 + (mz - 66.979600)/3 mz_m2HpK = 36.948058 + (mz - 66.979600)/3 mz_M2mH = -1.007825 + (mz - 66.979600)*(2/3) mz_M2pCl = 34.968853 + (mz - 66.979600)*(2/3) mz_M2m2HpNa = 20.97412 + (mz - 66.979600)*(2/3) mz_M2m2HpNapHCOOH = 66.9796 + (mz - 66.979600)*(2/3) mz_M2m2HpK = 36.948058 + (mz - 66.979600)*(2/3) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK]) def Solo_M3m2HpNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 20.97412)/3 mz_Cl = 34.968853 + (mz - 20.97412)/3 mz_m2HpNa = 20.97412 + (mz - 20.97412)/3 mz_m2HpNapHCOOH = 66.9796 + (mz - 20.97412)/3 mz_m2HpK = 36.948058 + (mz - 20.97412)/3 mz_M2mH = -1.007825 + (mz - 20.97412)*(2/3) mz_M2pCl = 34.968853 + (mz - 20.97412)*(2/3) mz_M2m2HpNa = 20.97412 + (mz - 20.97412)*(2/3) mz_M2m2HpNapHCOOH = 66.9796 + (mz - 20.97412)*(2/3) mz_M2m2HpK = 36.948058 + (mz - 20.97412)*(2/3) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK]) def Solo_M4mH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz + 1.007825)/4 mz_Cl = 34.968853 + (mz + 1.007825)/4 mz_m2HpNa = 20.97412 + (mz + 1.007825)/4 mz_m2HpNapHCOOH = 66.9796 + (mz + 1.007825)/4 mz_m2HpK = 36.948058 + (mz + 1.007825)/4 mz_M2mH = -1.007825 + (mz + 1.007825)/2 mz_M2pCl = 34.968853 + (mz + 1.007825)/2 mz_M2m2HpNa = 20.97412 + (mz + 1.007825)/2 mz_M2m2HpNapHCOOH = 66.9796 + (mz + 1.007825)/2 mz_M2m2HpK = 36.948058 + (mz + 1.007825)/2 mz_M3mH = -1.007825 + (mz + 1.007825)*(3/4) mz_M3pCl = 34.968853 + (mz + 1.007825)*(3/4) mz_M3m2HpNa = 20.97412 + (mz + 1.007825)*(3/4) mz_M3m2HpNapHCOOH = 66.9796 + (mz + 1.007825)*(3/4) mz_M3m2HpK = 36.948058 + (mz + 1.007825)*(3/4) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M3mH = peaks.between(mz_M3mH - prec_mass_error, mz_M3mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3pCl = peaks.between(mz_M3pCl - prec_mass_error, mz_M3pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNa = peaks.between(mz_M3m2HpNa - prec_mass_error, mz_M3m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNapHCOOH = peaks.between(mz_M3m2HpNapHCOOH - prec_mass_error, mz_M3m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpK = peaks.between(mz_M3m2HpK - prec_mass_error, mz_M3m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK, valid_M3mH, valid_M3pCl, valid_M3m2HpNa, valid_M3m2HpNapHCOOH, valid_M3m2HpK]) def Solo_M4pCl(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 34.968853)/4 mz_Cl = 34.968853 + (mz - 34.968853)/4 mz_m2HpNa = 20.97412 + (mz - 34.968853)/4 mz_m2HpNapHCOOH = 66.9796 + (mz - 34.968853)/4 mz_m2HpK = 36.948058 + (mz - 34.968853)/4 mz_M2mH = -1.007825 + (mz - 34.968853)/2 mz_M2pCl = 34.968853 + (mz - 34.968853)/2 mz_M2m2HpNa = 20.97412 + (mz - 34.968853)/2 mz_M2m2HpNapHCOOH = 66.9796 + (mz - 34.968853)/2 mz_M2m2HpK = 36.948058 + (mz - 34.968853)/2 mz_M3mH = -1.007825 + (mz - 34.968853)*(3/4) mz_M3pCl = 34.968853 + (mz - 34.968853)*(3/4) mz_M3m2HpNa = 20.97412 + (mz - 34.968853)*(3/4) mz_M3m2HpNapHCOOH = 66.9796 + (mz - 34.968853)*(3/4) mz_M3m2HpK = 36.948058 + (mz - 34.968853)*(3/4) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M3mH = peaks.between(mz_M3mH - prec_mass_error, mz_M3mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3pCl = peaks.between(mz_M3pCl - prec_mass_error, mz_M3pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNa = peaks.between(mz_M3m2HpNa - prec_mass_error, mz_M3m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNapHCOOH = peaks.between(mz_M3m2HpNapHCOOH - prec_mass_error, mz_M3m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpK = peaks.between(mz_M3m2HpK - prec_mass_error, mz_M3m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK, valid_M3mH, valid_M3pCl, valid_M3m2HpNa, valid_M3m2HpNapHCOOH, valid_M3m2HpK]) def Solo_M4m2HpNapHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 66.979600)/4 mz_Cl = 34.968853 + (mz - 66.979600)/4 mz_m2HpNa = 20.97412 + (mz - 66.979600)/4 mz_m2HpNapHCOOH = 66.9796 + (mz - 66.979600)/4 mz_m2HpK = 36.948058 + (mz - 66.979600)/4 mz_M2mH = -1.007825 + (mz - 66.979600)/2 mz_M2pCl = 34.968853 + (mz - 66.979600)/2 mz_M2m2HpNa = 20.97412 + (mz - 66.979600)/2 mz_M2m2HpNapHCOOH = 66.9796 + (mz - 66.979600)/2 mz_M2m2HpK = 36.948058 + (mz - 66.979600)/2 mz_M3mH = -1.007825 + (mz - 66.979600)*(3/4) mz_M3pCl = 34.968853 + (mz - 66.979600)*(3/4) mz_M3m2HpNa = 20.97412 + (mz - 66.979600)*(3/4) mz_M3m2HpNapHCOOH = 66.9796 + (mz - 66.979600)*(3/4) mz_M3m2HpK = 36.948058 + (mz - 66.979600)*(3/4) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M3mH = peaks.between(mz_M3mH - prec_mass_error, mz_M3mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3pCl = peaks.between(mz_M3pCl - prec_mass_error, mz_M3pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNa = peaks.between(mz_M3m2HpNa - prec_mass_error, mz_M3m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNapHCOOH = peaks.between(mz_M3m2HpNapHCOOH - prec_mass_error, mz_M3m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpK = peaks.between(mz_M3m2HpK - prec_mass_error, mz_M3m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK, valid_M3mH, valid_M3pCl, valid_M3m2HpNa, valid_M3m2HpNapHCOOH, valid_M3m2HpK]) def Solo_M4m2HpNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = -1.007825 + (mz - 20.97412)/4 mz_Cl = 34.968853 + (mz - 20.97412)/4 mz_m2HpNa = 20.97412 + (mz - 20.97412)/4 mz_m2HpNapHCOOH = 66.9796 + (mz - 20.97412)/4 mz_m2HpK = 36.948058 + (mz - 20.97412)/4 mz_M2mH = -1.007825 + (mz - 20.97412)/2 mz_M2pCl = 34.968853 + (mz - 20.97412)/2 mz_M2m2HpNa = 20.97412 + (mz - 20.97412)/2 mz_M2m2HpNapHCOOH = 66.9796 + (mz - 20.97412)/2 mz_M2m2HpK = 36.948058 + (mz - 20.97412)/2 mz_M3mH = -1.007825 + (mz - 20.97412)*(3/4) mz_M3pCl = 34.968853 + (mz - 20.97412)*(3/4) mz_M3m2HpNa = 20.97412 + (mz - 20.97412)*(3/4) mz_M3m2HpNapHCOOH = 66.9796 + (mz - 20.97412)*(3/4) mz_M3m2HpK = 36.948058 + (mz - 20.97412)*(3/4) valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Cl = peaks.between(mz_Cl - prec_mass_error, mz_Cl + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNa = peaks.between(mz_m2HpNa - prec_mass_error, mz_m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpNapHCOOH = peaks.between(mz_m2HpNapHCOOH - prec_mass_error, mz_m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_m2HpK = peaks.between(mz_m2HpK - prec_mass_error, mz_m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M2mH = peaks.between(mz_M2mH - prec_mass_error, mz_M2mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2pCl = peaks.between(mz_M2pCl - prec_mass_error, mz_M2pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNa = peaks.between(mz_M2m2HpNa - prec_mass_error, mz_M2m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpNapHCOOH = peaks.between(mz_M2m2HpNapHCOOH - prec_mass_error, mz_M2m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M2m2HpK = peaks.between(mz_M2m2HpK - prec_mass_error, mz_M2m2HpK + prec_mass_error, inclusive = "both").sum() > 0 valid_M3mH = peaks.between(mz_M3mH - prec_mass_error, mz_M3mH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3pCl = peaks.between(mz_M3pCl - prec_mass_error, mz_M3pCl + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNa = peaks.between(mz_M3m2HpNa - prec_mass_error, mz_M3m2HpNa + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpNapHCOOH = peaks.between(mz_M3m2HpNapHCOOH - prec_mass_error, mz_M3m2HpNapHCOOH + prec_mass_error, inclusive = "both").sum() > 0 valid_M3m2HpK = peaks.between(mz_M3m2HpK - prec_mass_error, mz_M3m2HpK + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Cl, valid_m2HpNa, valid_m2HpNapHCOOH, valid_m2HpK, valid_M2mH, valid_M2pCl, valid_M2m2HpNa, valid_M2m2HpNapHCOOH, valid_M2m2HpK, valid_M3mH, valid_M3pCl, valid_M3m2HpNa, valid_M3m2HpNapHCOOH, valid_M3m2HpK]) def Solo_M2pH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 1.007825)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H]) def Solo_M2pHpCH3CN(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 42.034374)/2 mz_Na = 22.98977 + (mz - 42.034374)/2 mz_K = 38.963708 + (mz - 42.034374)/2 mz_HpCH3CN = 42.034374 + (mz - 42.034374)/2 mz_HpCH3OH = 33.034040 + (mz - 42.034374)/2 mz_NapCH3CN = 64.016319 + (mz - 42.034374)/2 mz_NapCH3OH = 55.015985 + (mz - 42.034374)/2 mz_KpCH3CN = 79.990257 + (mz - 42.034374)/2 mz_KpCH3OH = 70.989923 + (mz - 42.034374)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_K = peaks.between(mz_K - prec_mass_error, mz_K + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3CN = peaks.between(mz_HpCH3CN - prec_mass_error, mz_HpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3CN = peaks.between(mz_KpCH3CN - prec_mass_error, mz_KpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3OH = peaks.between(mz_KpCH3OH - prec_mass_error, mz_KpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_K, valid_HpCH3CN, valid_HpCH3OH, valid_NapCH3CN, valid_NapCH3OH, valid_KpCH3CN, valid_KpCH3OH]) def Solo_M2pHpCH3OH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 33.034040)/2 mz_Na = 22.98977 + (mz - 33.034040)/2 mz_K = 38.963708 + (mz - 33.034040)/2 mz_HpCH3CN = 42.034374 + (mz - 33.034040)/2 mz_HpCH3OH = 33.034040 + (mz - 33.034040)/2 mz_NapCH3CN = 64.016319 + (mz - 33.034040)/2 mz_NapCH3OH = 55.015985 + (mz - 33.034040)/2 mz_KpCH3CN = 79.990257 + (mz - 33.034040)/2 mz_KpCH3OH = 70.989923 + (mz - 33.034040)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_K = peaks.between(mz_K - prec_mass_error, mz_K + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3CN = peaks.between(mz_HpCH3CN - prec_mass_error, mz_HpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3CN = peaks.between(mz_KpCH3CN - prec_mass_error, mz_KpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3OH = peaks.between(mz_KpCH3OH - prec_mass_error, mz_KpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_K, valid_HpCH3CN, valid_HpCH3OH, valid_NapCH3CN, valid_NapCH3OH, valid_KpCH3CN, valid_KpCH3OH]) def Solo_M2pHpHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 47.013304)/2 mz_Na = 22.98977 + (mz - 47.013304)/2 mz_K = 38.963708 + (mz - 47.013304)/2 mz_HpCH3CN = 42.034374 + (mz - 47.0133042)/2 mz_HpCH3OH = 33.034040 + (mz - 47.013304)/2 mz_NapCH3CN = 64.016319 + (mz - 47.013304)/2 mz_NapCH3OH = 55.015985 + (mz - 47.013304)/2 mz_KpCH3CN = 79.990257 + (mz - 47.013304)/2 mz_KpCH3OH = 70.989923 + (mz - 47.013304)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_K = peaks.between(mz_K - prec_mass_error, mz_K + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3CN = peaks.between(mz_HpCH3CN - prec_mass_error, mz_HpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3CN = peaks.between(mz_KpCH3CN - prec_mass_error, mz_KpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3OH = peaks.between(mz_KpCH3OH - prec_mass_error, mz_KpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_K, valid_HpCH3CN, valid_HpCH3OH, valid_NapCH3CN, valid_NapCH3OH, valid_KpCH3CN, valid_KpCH3OH]) def Solo_M2pNH4(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 18.034374)/2 mz_NH4 = 18.034374 + (mz - 18.034374)/2 mz_Na = 22.98977 + (mz - 18.034374)/2 mz_K = 38.963708 + (mz - 18.034374)/2 mz_HpCH3CN = 42.034374 + (mz - 18.034374)/2 mz_HpCH3OH = 33.034040 + (mz - 18.034374)/2 mz_NapCH3CN = 64.016319 + (mz - 18.034374)/2 mz_NapCH3OH = 55.015985 + (mz - 18.034374)/2 mz_KpCH3CN = 79.990257 + (mz - 18.034374)/2 mz_KpCH3OH = 70.989923 + (mz - 18.034374)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_NH4 = peaks.between(mz_NH4 - prec_mass_error, mz_NH4 + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_K = peaks.between(mz_K - prec_mass_error, mz_K + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3CN = peaks.between(mz_HpCH3CN - prec_mass_error, mz_HpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3CN = peaks.between(mz_KpCH3CN - prec_mass_error, mz_KpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_KpCH3OH = peaks.between(mz_KpCH3OH - prec_mass_error, mz_KpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_NH4, valid_Na, valid_K, valid_HpCH3CN, valid_HpCH3OH, valid_NapCH3CN, valid_NapCH3OH, valid_KpCH3CN, valid_KpCH3OH]) def Solo_M2pNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 22.98977)/2 mz_Na = 22.98977 + (mz - 22.98977)/2 mz_NapCH3CN = 64.016319 + (mz - 22.98977)/2 mz_NapCH3OH = 55.015985 + (mz - 22.98977)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_NapCH3CN, valid_NapCH3OH]) def Solo_M2pNapCH3OH(ion_idx, mgf_file) : mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 55.015985)/2 mz_Na = 22.98977 + (mz - 55.015985)/2 mz_NapCH3CN = 64.016319 + (mz - 55.015985)/2 mz_NapCH3OH = 55.015985 + (mz - 55.015985)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_NapCH3CN, valid_NapCH3OH]) def Solo_M2pNapCH3CN(ion_idx, mgf_file) : mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 64.016319)/2 mz_Na = 22.98977 + (mz - 64.016319)/2 mz_NapCH3CN = 64.016319 + (mz - 64.016319)/2 mz_NapCH3OH = 55.015985 + (mz - 64.016319)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3CN = peaks.between(mz_NapCH3CN - prec_mass_error, mz_NapCH3CN + prec_mass_error, inclusive = "both").sum() > 0 valid_NapCH3OH = peaks.between(mz_NapCH3OH - prec_mass_error, mz_NapCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_NapCH3CN, valid_NapCH3OH]) def Solo_M2pK(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + (mz - 38.963708)/2 mz_Na = 22.98977 + (mz - 38.963708)/2 mz_K = 38.963708 + (mz - 38.963708)/2 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_K = peaks.between(mz_K - prec_mass_error, mz_K + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_K]) def Solo_M1pHpCH3CN(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 42.034374 mz_Na = 22.98977 + mz - 42.034374 mz_HpCH3OH = 33.034040 + mz - 42.034374 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_HpCH3OH]) def Solo_M1pHpCH3OH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 33.034040 mz_Na = 22.98977 + mz - 33.034040 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na]) def Solo_M1pHpHCOOH(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks = pd.Series(mgf_file[ion_idx].peaks.mz) mz_H = 1.007825 + mz - 47.013304 mz_Na = 22.98977 + mz - 47.013304 mz_HpCH3OH = 33.034040 + mz - 47.013304 mz_HpCH3CN = 42.034374 + mz - 47.013304 valid_H = peaks.between(mz_H - prec_mass_error, mz_H + prec_mass_error, inclusive = "both").sum() > 0 valid_Na = peaks.between(mz_Na - prec_mass_error, mz_Na + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3OH = peaks.between(mz_HpCH3OH - prec_mass_error, mz_HpCH3OH + prec_mass_error, inclusive = "both").sum() > 0 valid_HpCH3CN = peaks.between(mz_HpCH3CN - prec_mass_error, mz_HpCH3CN + prec_mass_error, inclusive = "both").sum() > 0 return sum([valid_H, valid_Na, valid_HpCH3OH, valid_HpCH3CN]) def Solo_M1pNa(ion_idx, mgf_file): mz = mgf_file[ion_idx].get('pepmass')[0] peaks =
pd.Series(mgf_file[ion_idx].peaks.mz)
pandas.Series
# -*- coding:utf-8 -*- """ 股票技术指标接口 Created on 2018/07/26 @author: Wangzili @group : ** @contact: <EMAIL> 所有指标中参数df为通过get_k_data获取的股票数据 """ import pandas as pd import numpy as np import itertools def ma(df, n=10): """ 移动平均线 Moving Average MA(N)=(第1日收盘价+第2日收盘价—+……+第N日收盘价)/N """ pv = pd.DataFrame() pv['date'] = df['date'] pv['v'] = df.close.rolling(n).mean() return pv def _ma(series, n): """ 移动平均 """ return series.rolling(n).mean() def md(df, n=10): """ 移动标准差 STD=S(CLOSE,N)=[∑(CLOSE-MA(CLOSE,N))^2/N]^0.5 """ _md = pd.DataFrame() _md['date'] = df.date _md["md"] = df.close.rolling(n).std(ddof=0) return _md def _md(series, n): """ 标准差MD """ return series.rolling(n).std(ddof=0) # 有时候会用ddof=1 def ema(df, n=12): """ 指数平均数指标 Exponential Moving Average 今日EMA(N)=2/(N+1)×今日收盘价+(N-1)/(N+1)×昨日EMA(N) EMA(X,N)=[2×X+(N-1)×EMA(ref(X),N]/(N+1) """ _ema = pd.DataFrame() _ema['date'] = df['date'] _ema['ema'] = df.close.ewm(ignore_na=False, span=n, min_periods=0, adjust=False).mean() return _ema def _ema(series, n): """ 指数平均数 """ return series.ewm(ignore_na=False, span=n, min_periods=0, adjust=False).mean() def macd(df, n=12, m=26, k=9): """ 平滑异同移动平均线(Moving Average Convergence Divergence) 今日EMA(N)=2/(N+1)×今日收盘价+(N-1)/(N+1)×昨日EMA(N) DIFF= EMA(N1)- EMA(N2) DEA(DIF,M)= 2/(M+1)×DIF +[1-2/(M+1)]×DEA(REF(DIF,1),M) MACD(BAR)=2×(DIF-DEA) return: osc: MACD bar / OSC 差值柱形图 DIFF - DEM diff: 差离值 dea: 讯号线 """ _macd = pd.DataFrame() _macd['date'] = df['date'] _macd['diff'] = _ema(df.close, n) - _ema(df.close, m) _macd['dea'] = _ema(_macd['diff'], k) _macd['macd'] = _macd['diff'] - _macd['dea'] return _macd def kdj(df, n=9): """ 随机指标KDJ N日RSV=(第N日收盘价-N日内最低价)/(N日内最高价-N日内最低价)×100% 当日K值=2/3前1日K值+1/3×当日RSV=SMA(RSV,M1) 当日D值=2/3前1日D值+1/3×当日K= SMA(K,M2) 当日J值=3 ×当日K值-2×当日D值 """ _kdj = pd.DataFrame() _kdj['date'] = df['date'] rsv = (df.close - df.low.rolling(n).min()) / (df.high.rolling(n).max() - df.low.rolling(n).min()) * 100 _kdj['k'] = sma(rsv, 3) _kdj['d'] = sma(_kdj.k, 3) _kdj['j'] = 3 * _kdj.k - 2 * _kdj.d return _kdj def rsi(df, n=6): """ 相对强弱指标(Relative Strength Index,简称RSI LC= REF(CLOSE,1) RSI=SMA(MAX(CLOSE-LC,0),N,1)/SMA(ABS(CLOSE-LC),N1,1)×100 SMA(C,N,M)=M/N×今日收盘价+(N-M)/N×昨日SMA(N) """ # pd.set_option('display.max_rows', 1000) _rsi = pd.DataFrame() _rsi['date'] = df['date'] px = df.close - df.close.shift(1) px[px < 0] = 0 _rsi['rsi'] = sma(px, n) / sma((df['close'] - df['close'].shift(1)).abs(), n) * 100 # def tmax(x): # if x < 0: # x = 0 # return x # _rsi['rsi'] = sma((df['close'] - df['close'].shift(1)).apply(tmax), n) / sma((df['close'] - df['close'].shift(1)).abs(), n) * 100 return _rsi def vrsi(df, n=6): """ 量相对强弱指标 VRSI=SMA(最大值(成交量-REF(成交量,1),0),N,1)/SMA(ABS((成交量-REF(成交量,1),N,1)×100% """ _vrsi = pd.DataFrame() _vrsi['date'] = df['date'] px = df['volume'] - df['volume'].shift(1) px[px < 0] = 0 _vrsi['vrsi'] = sma(px, n) / sma((df['volume'] - df['volume'].shift(1)).abs(), n) * 100 return _vrsi def boll(df, n=26, k=2): """ 布林线指标BOLL boll(26,2) MID=MA(N) 标准差MD=根号[∑(CLOSE-MA(CLOSE,N))^2/N] UPPER=MID+k×MD LOWER=MID-k×MD """ _boll = pd.DataFrame() _boll['date'] = df.date _boll['mid'] = _ma(df.close, n) _mdd = _md(df.close, n) _boll['up'] = _boll.mid + k * _mdd _boll['low'] = _boll.mid - k * _mdd return _boll def bbiboll(df, n=10, k=3): """ BBI多空布林线 bbiboll(10,3) BBI={MA(3)+ MA(6)+ MA(12)+ MA(24)}/4 标准差MD=根号[∑(BBI-MA(BBI,N))^2/N] UPR= BBI+k×MD DWN= BBI-k×MD """ # pd.set_option('display.max_rows', 1000) _bbiboll = pd.DataFrame() _bbiboll['date'] = df.date _bbiboll['bbi'] = (_ma(df.close, 3) + _ma(df.close, 6) + _ma(df.close, 12) + _ma(df.close, 24)) / 4 _bbiboll['md'] = _md(_bbiboll.bbi, n) _bbiboll['upr'] = _bbiboll.bbi + k * _bbiboll.md _bbiboll['dwn'] = _bbiboll.bbi - k * _bbiboll.md return _bbiboll def wr(df, n=14): """ 威廉指标 w&r WR=[最高值(最高价,N)-收盘价]/[最高值(最高价,N)-最低值(最低价,N)]×100% """ _wr = pd.DataFrame() _wr['date'] = df['date'] higest = df.high.rolling(n).max() _wr['wr'] = (higest - df.close) / (higest - df.low.rolling(n).min()) * 100 return _wr def bias(df, n=12): """ 乖离率 bias bias=[(当日收盘价-12日平均价)/12日平均价]×100% """ _bias = pd.DataFrame() _bias['date'] = df.date _mav = df.close.rolling(n).mean() _bias['bias'] = (np.true_divide((df.close - _mav), _mav)) * 100 # _bias["bias"] = np.vectorize(lambda x: round(Decimal(x), 4))(BIAS) return _bias def asi(df, n=5): """ 振动升降指标(累计震动升降因子) ASI # 同花顺给出的公式不完整就不贴出来了 """ _asi = pd.DataFrame() _asi['date'] = df.date _m = pd.DataFrame() _m['a'] = (df.high - df.close.shift()).abs() _m['b'] = (df.low - df.close.shift()).abs() _m['c'] = (df.high - df.low.shift()).abs() _m['d'] = (df.close.shift() - df.open.shift()).abs() _m['r'] = _m.apply(lambda x: x.a + 0.5 * x.b + 0.25 * x.d if max(x.a, x.b, x.c) == x.a else ( x.b + 0.5 * x.a + 0.25 * x.d if max(x.a, x.b, x.c) == x.b else x.c + 0.25 * x.d ), axis=1) _m['x'] = df.close - df.close.shift() + 0.5 * (df.close - df.open) + df.close.shift() - df.open.shift() _m['k'] = np.maximum(_m.a, _m.b) _asi['si'] = 16 * (_m.x / _m.r) * _m.k _asi["asi"] = _ma(_asi.si, n) return _asi def vr_rate(df, n=26): """ 成交量变异率 vr or vr_rate VR=(AVS+1/2CVS)/(BVS+1/2CVS)×100 其中: AVS:表示N日内股价上涨成交量之和 BVS:表示N日内股价下跌成交量之和 CVS:表示N日内股价不涨不跌成交量之和 """ _vr = pd.DataFrame() _vr['date'] = df['date'] _m = pd.DataFrame() _m['volume'] = df.volume _m['cs'] = df.close - df.close.shift(1) _m['avs'] = _m.apply(lambda x: x.volume if x.cs > 0 else 0, axis=1) _m['bvs'] = _m.apply(lambda x: x.volume if x.cs < 0 else 0, axis=1) _m['cvs'] = _m.apply(lambda x: x.volume if x.cs == 0 else 0, axis=1) _vr["vr"] = (_m.avs.rolling(n).sum() + 1 / 2 * _m.cvs.rolling(n).sum() ) / (_m.bvs.rolling(n).sum() + 1 / 2 * _m.cvs.rolling(n).sum()) * 100 return _vr def vr(df, n=5): """ 开市后平均每分钟的成交量与过去5个交易日平均每分钟成交量之比 量比:=V/REF(MA(V,5),1); 涨幅:=(C-REF(C,1))/REF(C,1)*100; 1)量比大于1.8,涨幅小于2%,现价涨幅在0—2%之间,在盘中选股的 选股:量比>1.8 AND 涨幅>0 AND 涨幅<2; """ _vr = pd.DataFrame() _vr['date'] = df.date _vr['vr'] = df.volume / _ma(df.volume, n).shift(1) _vr['rr'] = (df.close - df.close.shift(1)) / df.close.shift(1) * 100 return _vr def arbr(df, n=26): """ 人气意愿指标 arbr(26) N日AR=N日内(H-O)之和除以N日内(O-L)之和 其中,H为当日最高价,L为当日最低价,O为当日开盘价,N为设定的时间参数,一般原始参数日设定为26日 N日BR=N日内(H-CY)之和除以N日内(CY-L)之和 其中,H为当日最高价,L为当日最低价,CY为前一交易日的收盘价,N为设定的时间参数,一般原始参数日设定为26日。 """ _arbr = pd.DataFrame() _arbr['date'] = df.date _arbr['ar'] = (df.high - df.open).rolling(n).sum() / (df.open - df.low).rolling(n).sum() * 100 _arbr['br'] = (df.high - df.close.shift(1)).rolling(n).sum() / (df.close.shift() - df.low).rolling(n).sum() * 100 return _arbr def dpo(df, n=20, m=6): """ 区间震荡线指标 dpo(20,6) DPO=CLOSE-MA(CLOSE, N/2+1) MADPO=MA(DPO,M) """ _dpo = pd.DataFrame() _dpo['date'] = df['date'] _dpo['dpo'] = df.close - _ma(df.close, int(n / 2 + 1)) _dpo['dopma'] = _ma(_dpo.dpo, m) return _dpo def trix(df, n=12, m=20): """ 三重指数平滑平均 TRIX(12) TR= EMA(EMA(EMA(CLOSE,N),N),N),即进行三次平滑处理 TRIX=(TR-昨日TR)/ 昨日TR×100 TRMA=MA(TRIX,M) """ _trix = pd.DataFrame() _trix['date'] = df.date tr = _ema(_ema(_ema(df.close, n), n), n) _trix['trix'] = (tr - tr.shift()) / tr.shift() * 100 _trix['trma'] = _ma(_trix.trix, m) return _trix def bbi(df): """ 多空指数 BBI(3,6,12,24) BBI=(3日均价+6日均价+12日均价+24日均价)/4 """ _bbi = pd.DataFrame() _bbi['date'] = df['date'] _bbi['bbi'] = (_ma(df.close, 3) + _ma(df.close, 6) + _ma(df.close, 12) + _ma(df.close, 24)) / 4 return _bbi def mtm(df, n=6, m=5): """ 动力指标 MTM(6,5) MTM(N日)=C-REF(C,N)式中,C=当日的收盘价,REF(C,N)=N日前的收盘价;N日是只计算交易日期,剔除掉节假日。 MTMMA(MTM,N1)= MA(MTM,N1) N表示间隔天数,N1表示天数 """ _mtm = pd.DataFrame() _mtm['date'] = df.date _mtm['mtm'] = df.close - df.close.shift(n) _mtm['mtmma'] = _ma(_mtm.mtm, m) return _mtm def obv(df): """ 能量潮 On Balance Volume 多空比率净额= [(收盘价-最低价)-(最高价-收盘价)] ÷( 最高价-最低价)×V # 同花顺貌似用的下面公式 主公式:当日OBV=前一日OBV+今日成交量 1.基期OBV值为0,即该股上市的第一天,OBV值为0 2.若当日收盘价>上日收盘价,则当日OBV=前一日OBV+今日成交量 3.若当日收盘价<上日收盘价,则当日OBV=前一日OBV-今日成交量 4.若当日收盘价=上日收盘价,则当日OBV=前一日OBV """ _obv = pd.DataFrame() _obv["date"] = df['date'] # tmp = np.true_divide(((df.close - df.low) - (df.high - df.close)), (df.high - df.low)) # _obv['obvv'] = tmp * df.volume # _obv["obv"] = _obv.obvv.expanding(1).sum() / 100 _m =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python # coding: utf8 # # Copyright (c) 2020 Centre National d'Etudes Spatiales (CNES). # # This file is part of CARS # (see https://github.com/CNES/cars). # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ This module is responsible for the transition between triangulation and rasterization steps """ # Standard imports import logging from collections import namedtuple from typing import List, Tuple, Union # Third party imports import numpy as np import pandas import xarray as xr from scipy.spatial import cKDTree # pylint: disable=no-name-in-module # CARS imports from cars.core import constants as cst from cars.core import projection def create_combined_cloud( # noqa: C901 cloud_list: List[xr.Dataset], dsm_epsg: int, color_list: List[xr.Dataset] = None, resolution: float = None, xstart: float = None, ystart: float = None, xsize: int = None, ysize: int = None, on_ground_margin: int = 0, epipolar_border_margin: int = 0, radius: float = 1, with_coords: bool = False, ) -> Tuple[pandas.DataFrame, int]: """ Combine a list of clouds (and their colors) into a pandas dataframe structured with the following labels: * if no colors in input and no mask data present in cloud_list datasets: >>> labels=[cst.POINTS_CLOUD_VALID_DATA, cst.X, cst.Y, cst.Z] The combined cloud has x, y, z columns along with 'valid data' one. The valid data is a mask set to True if the data are not on the epipolar image margin (epipolar_border_margin), otherwise it is set to False. * if no colors in input and mask data present in cloud_list datasets: >>> labels=[cst.POINTS_CLOUD_VALID_DATA, >>> cst.X, cst.Y, cst.Z, cst.POINTS_CLOUD_MSK] The mask values are added to the dataframe. * if colors are set in input and mask data are present in the cloud_list datasets: >>> labels=[cst.POINTS_CLOUD_VALID_DATA, >>> cst.X, cst.Y, cst.Z, cst.POINTS_CLOUD_MSK, >>> cst.POINTS_CLOUD_CLR_KEY_ROOT+"0", >>> cst.POINTS_CLOUD_CLR_KEY_ROOT+"1", >>> cst.POINTS_CLOUD_CLR_KEY_ROOT+"2"] Color channels information are added to the dataframe. * if colors in input, mask data present in the cloud_list datasets and the with_coords option is activated: >>> labels=[cst.POINTS_CLOUD_VALID_DATA, >>> cst.X, cst.Y, cst.Z, cst.POINTS_CLOUD_MSK, >>> cst.POINTS_CLOUD_CLR_KEY_ROOT+"0", >>> cst.POINTS_CLOUD_CLR_KEY_ROOT+"1", >>> cst.POINTS_CLOUD_CLR_KEY_ROOT+"2" >>> cst.POINTS_CLOUD_COORD_EPI_GEOM_I, >>> cst.POINTS_CLOUD_COORD_EPI_GEOM_J, >>> cst.POINTS_CLOUD_IDX_IM_EPI] The pixel position of the xyz point in the original epipolar image (coord_epi_geom_i, coord_epi_geom_j) are added to the dataframe along with the index of its original cloud in the cloud_list input. :raise Exception: if a color_list is set but does not have the same length as the cloud list :param cloud_list: list of cloud points to rasterize :param dsm_epsg: epsg code for the CRS of the final output raster :param color_list: Additional list of images with bands to rasterize (same size as cloud_list), or None :param resolution: Resolution of rasterized cells, in cloud CRS units (if None, the whole clouds are combined) :param xstart: xstart of the rasterization grid (if None, the whole clouds are combined) :param ystart: ystart of the rasterization grid (if None, the whole clouds are combined) :param xsize: xsize of the rasterization grid (if None, the whole clouds are combined) :param ysize: ysize of the rasterization grid (if None, the whole clouds are combined) :param on_ground_margin: Margin added to the rasterization grid (default value: 0) :param epipolar_border_margin: Margin used to invalidate cells too close to epipolar border. (default value: 0) :param radius: Radius for hole filling (if None, the whole clouds are combined). :param with_coords: Option enabling the adding to the combined cloud of information of each point to retrieve their positions in the original epipolar images :return: Tuple formed with the combined clouds and color in a single pandas dataframe and the epsg code """ worker_logger = logging.getLogger("distributed.worker") # check input data consistency if color_list is not None and len(cloud_list) != len(color_list): raise Exception("There shall be as many cloud elements as color ones") epsg = None for cloud_list_item in cloud_list: if epsg is None: epsg = int(cloud_list_item.attrs[cst.EPSG]) elif int(cloud_list_item.attrs[cst.EPSG]) != epsg: worker_logger.error( "All points clouds do not have the same epsg code" ) # compute margin/roi and final number of data to add to the combined cloud roi = ( resolution is not None and xstart is not None and ystart is not None and xsize is not None and ysize is not None ) if roi: total_margin = (on_ground_margin + radius + 1) * resolution xend = xstart + (xsize + 1) * resolution yend = ystart - (ysize + 1) * resolution nb_data = [cst.POINTS_CLOUD_VALID_DATA, cst.X, cst.Y, cst.Z] # check if the input mask values are present in the dataset nb_data_msk = 0 for cloud_list_item in cloud_list: ds_values_list = [key for key, _ in cloud_list_item.items()] if cst.POINTS_CLOUD_MSK in ds_values_list: nb_data.append(cst.POINTS_CLOUD_MSK) nb_data_msk = 1 break if color_list is not None: clr_im = color_list[0].im.values nb_band_clr = clr_im.shape[0] list_clr = [ "{}{}".format(cst.POINTS_CLOUD_CLR_KEY_ROOT, i) for i in range(nb_band_clr) ] nb_data.extend(list_clr) else: nb_band_clr = 0 if with_coords: nb_data.extend( [ cst.POINTS_CLOUD_COORD_EPI_GEOM_I, cst.POINTS_CLOUD_COORD_EPI_GEOM_J, cst.POINTS_CLOUD_IDX_IM_EPI, ] ) # iterate trough input clouds cloud = np.zeros((0, len(nb_data)), dtype=np.float64) nb_points = 0 for cloud_list_idx, cloud_list_item in enumerate(cloud_list): full_x = cloud_list_item[cst.X].values full_y = cloud_list_item[cst.Y].values full_z = cloud_list_item[cst.Z].values # get mask of points inside the roi (plus margins) if roi: # if the points clouds are not in the same referential as the roi, # it is converted using the dsm_epsg if epsg != dsm_epsg: ( full_x, full_y, ) = projection.get_converted_xy_np_arrays_from_dataset( cloud_list_item, dsm_epsg ) msk_xstart = np.where(full_x > xstart - total_margin, True, False) msk_xend = np.where(full_x < xend + total_margin, True, False) msk_yend = np.where(full_y > yend - total_margin, True, False) msk_ystart = np.where(full_y < ystart + total_margin, True, False) terrain_tile_data_msk = np.logical_and( msk_xstart, np.logical_and(msk_xend, np.logical_and(msk_ystart, msk_yend)), ) terrain_tile_data_msk_pos = terrain_tile_data_msk.astype( np.int8 ).nonzero() # if the points clouds are not in the same referential as the roi, # retrieve the initial values if epsg != dsm_epsg: full_x = cloud_list_item[cst.X].values full_y = cloud_list_item[cst.Y].values # if no point is found, continue if terrain_tile_data_msk_pos[0].shape[0] == 0: continue # get useful data bounding box bbox = [ np.min(terrain_tile_data_msk_pos[0]), np.min(terrain_tile_data_msk_pos[1]), np.max(terrain_tile_data_msk_pos[0]), np.max(terrain_tile_data_msk_pos[1]), ] else: bbox = [0, 0, full_y.shape[0] - 1, full_y.shape[1] - 1] # add (x, y, z) information to the current cloud c_x = full_x[bbox[0] : bbox[2] + 1, bbox[1] : bbox[3] + 1] c_y = full_y[bbox[0] : bbox[2] + 1, bbox[1] : bbox[3] + 1] c_z = full_z[bbox[0] : bbox[2] + 1, bbox[1] : bbox[3] + 1] c_cloud = np.zeros( (len(nb_data), (bbox[2] - bbox[0] + 1) * (bbox[3] - bbox[1] + 1)) ) c_cloud[1, :] = np.ravel(c_x) c_cloud[2, :] = np.ravel(c_y) c_cloud[3, :] = np.ravel(c_z) ds_values_list = [key for key, _ in cloud_list_item.items()] if cst.POINTS_CLOUD_MSK in ds_values_list: c_msk = cloud_list_item[cst.POINTS_CLOUD_MSK].values[ bbox[0] : bbox[2] + 1, bbox[1] : bbox[3] + 1 ] c_cloud[4, :] = np.ravel(c_msk) # add data valid mask # (points that are not in the border of the epipolar image) if epipolar_border_margin == 0: epipolar_margin_mask = np.full( ( cloud_list_item[cst.X].values.shape[0], cloud_list_item[cst.X].values.shape[1], ), True, ) else: epipolar_margin_mask = np.full( ( cloud_list_item[cst.X].values.shape[0], cloud_list_item[cst.X].values.shape[1], ), False, ) epipolar_margin_mask[ epipolar_border_margin:-epipolar_border_margin, epipolar_border_margin:-epipolar_border_margin, ] = True c_epipolar_margin_mask = epipolar_margin_mask[ bbox[0] : bbox[2] + 1, bbox[1] : bbox[3] + 1 ] c_cloud[0, :] = np.ravel(c_epipolar_margin_mask) # add the color information to the current cloud if color_list is not None: c_color = color_list[cloud_list_idx].im.values[ :, bbox[0] : bbox[2] + 1, bbox[1] : bbox[3] + 1 ] for band in range(nb_band_clr): c_cloud[4 + nb_data_msk + band, :] = np.ravel( c_color[band, :, :] ) # add the original image coordinates information to the current cloud if with_coords: coords_line = np.linspace(bbox[0], bbox[2], bbox[2] - bbox[0] + 1) coords_col = np.linspace(bbox[1], bbox[3], bbox[3] - bbox[1] + 1) coords_col, coords_line = np.meshgrid(coords_col, coords_line) c_cloud[4 + nb_data_msk + nb_band_clr, :] = np.ravel(coords_line) c_cloud[4 + nb_data_msk + nb_band_clr + 1, :] = np.ravel(coords_col) c_cloud[4 + nb_data_msk + nb_band_clr + 2, :] = cloud_list_idx # remove masked data (pandora + out of the terrain tile points) c_terrain_tile_data_msk = ( cloud_list_item[cst.POINTS_CLOUD_CORR_MSK].values[ bbox[0] : bbox[2] + 1, bbox[1] : bbox[3] + 1 ] == 255 ) if roi: c_terrain_tile_data_msk = np.logical_and( c_terrain_tile_data_msk, terrain_tile_data_msk[ bbox[0] : bbox[2] + 1, bbox[1] : bbox[3] + 1 ], ) c_terrain_tile_data_msk = np.ravel(c_terrain_tile_data_msk) c_terrain_tile_data_msk_pos = np.nonzero(~c_terrain_tile_data_msk) nb_points += c_cloud.shape[1] c_cloud = np.delete( c_cloud.transpose(), c_terrain_tile_data_msk_pos[0], 0 ) # add current cloud to the combined one cloud = np.concatenate([cloud, c_cloud], axis=0) worker_logger.debug("Received {} points to rasterize".format(nb_points)) worker_logger.debug( "Keeping {}/{} points " "inside rasterization grid".format(cloud.shape[0], nb_points) ) pd_cloud =
pandas.DataFrame(cloud, columns=nb_data)
pandas.DataFrame
""" MIT License Copyright (c) 2019 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pandas as pd import numpy as np import sys, os, site, zipfile, math, time, json, io import googlemaps, urllib, shapely, shutil, requests import xml.etree.ElementTree as ET from glob import glob from urllib.error import HTTPError from urllib.request import URLError from http.client import IncompleteRead from zipfile import BadZipFile from tqdm import tqdm, trange from warnings import warn ########################### ### IMPORT PROJECT PATH ### import pvvm.settings revmpath = pvvm.settings.revmpath datapath = pvvm.settings.datapath apikeys = pvvm.settings.apikeys nsrdbparams = pvvm.settings.nsrdbparams ##################### ### Imports from pvvm import pvvm.toolbox import pvvm.io ####################### ### DICTS AND LISTS ### ####################### isos = ['CAISO', 'ERCOT', 'MISO', 'PJM', 'NYISO', 'ISONE'] resolutionlmps = { ('CAISO', 'da'): 60, ('CAISO', 'rt'): 5, ('ERCOT', 'da'): 60, ('ERCOT', 'rt'): 5, ('MISO', 'da'): 60, ('MISO', 'rt'): 60, ('PJM', 'da'): 60, ('PJM', 'rt'): 60, ('NYISO', 'da'): 60, ('NYISO', 'rt'): 5, ('ISONE', 'da'): 60, ('ISONE', 'rt'): 60, } ################ ### DOWNLOAD ### ################ ############### ### General use def constructpayload(**kwargs): out = [] for kwarg in kwargs: out.append('{}={}'.format(kwarg, kwargs[kwarg])) stringout = '&'.join(out) return stringout def constructquery(urlstart, **kwargs): out = '{}{}'.format(urlstart, constructpayload(**kwargs)) return out def stampify(date, interval=pd.Timedelta('1H')): datetime = pd.Timestamp(date) if interval == pd.Timedelta('1H'): dateout = '{}{:02}{:02}T{:02}'.format( datetime.year, datetime.month, datetime.day, datetime.hour) elif interval == pd.Timedelta('1D'): dateout = '{}{:02}{:02}'.format( datetime.year, datetime.month, datetime.day) return dateout def download_file_series(urlstart, urlend, fileseries, filepath, overwrite=False, sleeptime=60, numattempts=200, seriesname=True): """ Example ------- You want to download a list of files at urls = [ 'http://www.test.com/foo001.csv', 'http://www.test.com/foo002.csv']. Then: urlstart = 'http://www.test.com/foo' urlend = '.csv' fileseries = ['001', '002'] If you want the files to be named 'foo001.csv', use seriesname=False If you want the files to be named '001.csv', use seriesname=True """ filepath = pvvm.toolbox.pathify(filepath, make=True) ### Make lists of urls, files to download, and filenames urls = [(urlstart + file + urlend) for file in fileseries] todownload = [os.path.basename(url) for url in urls] if seriesname == True: filenames = [os.path.basename(file) + urlend for file in fileseries] else: filenames = todownload ### Get the list of downloaded files downloaded = [os.path.basename(file) for file in glob(filepath + '*')] ### Remake the list if overwrite == False if overwrite == False: filestodownload = [] urlstodownload = [] fileseriesnames = [] for i in range(len(filenames)): if filenames[i] not in downloaded: filestodownload.append(todownload[i]) urlstodownload.append(urls[i]) fileseriesnames.append(filenames[i]) elif overwrite == True: filestodownload = todownload urlstodownload = urls fileseriesnames = filenames ### Download the files for i in trange(len(urlstodownload)): ### Attempt the download attempts = 0 while attempts < numattempts: try: urllib.request.urlretrieve( urlstodownload[i], filepath + fileseriesnames[i]) break except (HTTPError, IncompleteRead, EOFError) as err: print(urlstodownload[i]) print(filestodownload[i]) print('Rebuffed on attempt # {} at {} by "{}".' 'Will retry in {} seconds.'.format( attempts, pvvm.toolbox.nowtime(), err, sleeptime)) attempts += 1 time.sleep(sleeptime) ########################### ### Geographic manipulation def rowlatlon2x(row): latrad = row['latitude'] * math.pi / 180 lonrad = row['longitude'] * math.pi / 180 x = math.cos(latrad) * math.cos(lonrad) return x def rowlatlon2y(row): latrad = row['latitude'] * math.pi / 180 lonrad = row['longitude'] * math.pi / 180 y = math.cos(latrad) * math.sin(lonrad) return y def rowlatlon2z(row): latrad = row['latitude'] * math.pi / 180 z = math.sin(latrad) return z ############ ### ISO LMPs """ Note: These scripts worked as of early 2018, but MISO, PJM, and NYISO have since changed their websites, and CAISO has removed data prior to 20150303. Scripts are included here for documentary purposes and as a resource for future data collection, but are unlikely to work given ISO website changes. """ def download_caiso_lmp_allnodes(market, start, filepathout, product='LMP', numattempts=200, waittime=10): urlstart = 'http://oasis.caiso.com/oasisapi/GroupZip?' columnsout = [ 'INTERVALSTARTTIME_GMT', 'NODE', 'MW', 'OPR_DT', 'OPR_HR', 'OPR_INTERVAL'] if market in ['RTM', 'HASP', 'RTPD']: interval = pd.Timedelta('1H') elif market in ['DAM', 'RUC']: interval = pd.Timedelta('1D') starttimestamp = pd.Timestamp(start) endtimestamp = starttimestamp + interval startdatetime = '{}{:02}{:02}T{:02}:00-0000'.format( starttimestamp.year, starttimestamp.month, starttimestamp.day, starttimestamp.hour) enddatetime = '{}{:02}{:02}T{:02}:00-0000'.format( endtimestamp.year, endtimestamp.month, endtimestamp.day, endtimestamp.hour) if interval == pd.Timedelta('1D'): fileout = '{}{:02}{:02}.gz'.format( starttimestamp.year, starttimestamp.month, starttimestamp.day) elif interval == pd.Timedelta('1H'): fileout = '{}{:02}{:02}T{:02}.gz'.format( starttimestamp.year, starttimestamp.month, starttimestamp.day, starttimestamp.hour) url = constructquery( urlstart, groupid='{}_LMP_GRP'.format(market), startdatetime=startdatetime, enddatetime=enddatetime, version=1, resultformat=6) attempts = 0 while attempts < numattempts: try: # if product.lower() in ['mcc', 'mce', 'mcl']: # if (market.upper() in ['DAM', 'RUC']) and (starttimestamp.year >= 2016): # if market.upper() in ['DAM', 'RUC']: if ((product.lower() in ['mcc', 'mce', 'mcl']) or ((market == 'DAM') and product.lower() == 'lmp')): zip_file = zipfile.ZipFile(io.BytesIO( urllib.request.urlopen(url).read())) for csv_file in zip_file.infolist(): if csv_file.filename.endswith( '{}_v1.csv'.format(product.upper())): df = pd.read_csv(zip_file.open(csv_file.filename)) else: df = pd.read_csv(url, compression='zip') dfout = df[df['LMP_TYPE'] == product.upper()][columnsout] dfout.to_csv( '{}{}'.format(filepathout, fileout), columns=columnsout, index=False, compression='gzip') return dfout except ( URLError, IncompleteRead, pd.errors.ParserError, BadZipFile, KeyError, HTTPError, UnboundLocalError) as error: print( 'Error for {} on attempt {}/{}: {}'.format( start, attempts, numattempts, error), # end='\r', ) attempts += 1 time.sleep(waittime) if attempts >= numattempts: raise URLError('{}{}'.format(filepathout, fileout)) def download_lmps(year, iso, market, overwrite=False, sleeptime=60, product='LMP', submarket=None, numattempts=200, subset=None, waittime=10, filepath=None): """ Inputs ------ subset: None or slice() Notes ----- * ERCOT LMPs more than 30 days old must be requested from ERCOT. Requests can be filed at http://www.ercot.com/about/contact/inforequest. Files should be placed in the folder revmpath + 'ERCOT/in/lmp/{}/{}/'.format(market, year) where year is the year of the timestamp within the files. Note that the date in the filename for day-ahead LMPs is the date before the timestamps within the file: for example, file ('cdr.00012328.0000000000000000.20151231.125905514.DAMHRLMPNP4183_csv') contains timestamps for 20160101, and should be placed in the 2016 folder. """ ### Normalize inputs iso = iso.upper() market = market.lower() year = int(year) assert market in ['da', 'rt'] assert iso in ['CAISO', 'MISO', 'PJM', 'NYISO', 'ISONE'] ### Set file structure if filepath is None: filepath = revmpath+'{}/in/lmp/{}/'.format(iso, market) if not os.path.exists(filepath): os.makedirs(filepath) ### Adjust inputs for different isos urlstart = { 'ISONE': { 'da': 'https://www.iso-ne.com/static-transform/csv/histRpts/da-lmp/WW_DALMP_ISO_', 'rt': 'https://www.iso-ne.com/static-transform/csv/histRpts/rt-lmp/lmp_rt_final_'}, 'MISO': { # 'da': 'https://old.misoenergy.org/Library/Repository/Market%20Reports/', # 'rt': 'https://old.misoenergy.org/Library/Repository/Market%20Reports/', 'da': 'https://docs.misoenergy.org/marketreports/', 'rt': 'https://docs.misoenergy.org/marketreports/', }, 'PJM': { 'da': 'http://www.pjm.com/pub/account/lmpda/', 'rt': 'http://www.pjm.com/pub/account/lmp/'}, 'NYISO': { 'da': 'http://mis.nyiso.com/public/csv/damlbmp/', 'rt': 'http://mis.nyiso.com/public/csv/realtime/'}, } urlend = { 'ISONE': {'da': '.csv', 'rt': '.csv'}, 'MISO': {'da': '_da_lmp.csv', 'rt': '_rt_lmp_final.csv'}, 'PJM': {'da': '-da.zip', 'rt': '.zip'}, 'NYISO': {'da': 'damlbmp_gen_csv.zip', 'rt': 'realtime_gen_csv.zip'}, } files = { 'ISONE': pvvm.toolbox.makedays(year), 'MISO': pvvm.toolbox.makedays(year), 'PJM': pvvm.toolbox.makedays(year), 'NYISO': ['{}{:02}01'.format(year, month) for month in range(1,13)] } ### Download files if iso == 'ISONE': download_file_series( urlstart=urlstart[iso][market], urlend=urlend[iso][market], fileseries=files[iso], filepath=filepath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) elif iso == 'MISO': urls = [(urlstart[iso][market] + file + '_da_expost_lmp.csv') if (int(file) >= 20150301) and (market == 'da') else (urlstart[iso][market] + file + urlend[iso][market]) for file in files[iso]] download_file_series( urlstart='', urlend='', fileseries=urls, filepath=filepath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) elif iso == 'PJM': da_updated = { '20151201': '-da_updated.zip', '20150930': '-da_updated.zip', '20140617': '-da_updated.zip', '20150616': '-da_updated.zip', '20150615': '-da_updated.zip', '20150614': '-da_updated.zip', '20140613': '-da_updated.zip', '20150603': '-da_updated.zip', '20150602': '-da_updated.zip', '20150601': '-da_updated.zip', '20150409': '-da_updated.zip', '20140327': '-da_updated.zip', '20111012': '-da_update.zip', '20111011': '-da_update.zip', } rt_updated = { '20170116': '_updated.zip', '20170115': '_updated.zip', '20170114': '_updated.zip', '20170113': '_updated.zip', '20160923': '_updated.zip', '20160417': '_updated.zip', '20160416': '_updated.zip', '20160415': '_updated.zip', '20151110': '_updated.zip', '20150929': '_updated.zip', '20150901': '_updated.zip', '20150831': '_updated.zip', '20150601': '_updated.zip', '20150504': '_updated.zip', '20150427': '_updated.zip', '20150407': '_updated.zip', '20150310': '_updated.zip', '20150309': '_updated.zip', '20150201': '_updated.zip', '20150131': '_updated.zip', '20150130': '_updated.zip', '20141112': '_updated.zip', '20141023': '_updated.zip', '20141013': '_updated.zip', '20140805': '_updated.zip', '20140710': '_updated.zip', '20140507': '_updated.zip', '20140128': '_updated.zip', '20131125': '_updated.zip', '20131120': '_updated.zip', '20130424': '_updated.zip', '20130307': '_updated.zip', '20121109': '_updated.zip', '20121023': '_updated.zip', '20121004': '_updated.zip', '20121003': '_updated2.zip', '20121001': '_updated.zip', '20110914': '_updated.zip', '20110829': '_updated.zip', '20110617': '_updated.zip', '20110306': '_updated.zip', '20110305': '_updated.zip', '20110304': '_updated.zip', '20101005': '_updated.zip', '20100526': '_updated.zip', '20100201': '_updated.zip', '20100129': '_updated.zip', '20100125': '_updated.zip', '20080904': '_updated.zip', '20080413': '_updated.zip', '20080305': '_updated.zip', '20080215': '_updated.zip', '20080214': '_updated.zip', '20071002': '_updated.zip', '20070822': '_updated.zip', } if market == 'da': # print("Download 'updated' files from http://www.pjm.com/markets-and-operations/" # "energy/day-ahead/lmpda.aspx and replace the files of the corresponding date" # "downloaded here") # ### Files switch from .zip to .csv on 20171109 for day-ahead # urls = [(urlstart[iso][market] + file + '-da.csv') # if int(file) >= 20171109 # else (urlstart[iso][market] + file + '-da.zip') # for file in files[iso]] # ^ Out of date; files have been reposted as zips (20180621) urls = [(urlstart[iso][market] + file + da_updated[file]) if file in da_updated.keys() else (urlstart[iso][market] + file + '-da.zip') for file in files[iso]] elif market == 'rt': # print("Download 'updated' files from http://www.pjm.com/markets-and-operations/" # "energy/real-time/lmpda.aspx and replace the files of the corresponding date" # "downloaded here") # ### Files switch from .zip to .csv on 20171212 for real-time # urls = [(urlstart[iso][market] + file + '.csv') # if int(file) >= 20171212 # else (urlstart[iso][market] + file + '.zip') # for file in files[iso]] # ^ Out of date; files have been reposted as zips (20180621) urls = [(urlstart[iso][market] + file + rt_updated[file]) if file in rt_updated.keys() else (urlstart[iso][market] + file + '.zip') for file in files[iso]] download_file_series( urlstart='', urlend='', fileseries=urls, filepath=filepath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) elif iso == 'NYISO': ### NYISO files are zipped by month; put them in a separate folder zippath = '{}/in/lmp/{}-zip/'.format(iso, market) if not os.path.exists(zippath): os.makedirs(zippath) download_file_series( urlstart=urlstart[iso][market], urlend=urlend[iso][market], fileseries=files[iso], filepath=zippath, overwrite=overwrite, sleeptime=sleeptime, numattempts=numattempts) ### Unzip files zips = [(zippath + file + urlend[iso][market]) for file in files[iso]] for i in trange(len(zips)): zip_ref = zipfile.ZipFile(zips[i], 'r') zip_ref.extractall(filepath) zip_ref.close() elif iso == 'CAISO': if (submarket == None) and (market == 'rt'): submarket = 'RTM' elif (submarket == None) and (market == 'da'): submarket = 'DAM' if submarket in ['RTM', 'HASP', 'RTPD']: interval = pd.Timedelta('1H') elif submarket in ['DAM', 'RUC']: interval = pd.Timedelta('1D') ### Set output filepath filepath = '{}/in/{}/{}/'.format(iso, product.lower(), market) if (((market == 'da') and (submarket != 'DAM')) or ((market == 'rt') and (submarket != 'RTM'))): filepath = '{}/in/{}/{}/{}/'.format( iso, product.lower(), market, submarket) if not os.path.exists(filepath): os.makedirs(filepath) queries = pd.date_range( start=pd.Timestamp('{}-01-01T00:00'.format(year)), end=(pd.Timestamp('{}-01-01T00:00'.format(year+1)) - interval), freq=interval) ### Initialize error container and subset if necessary errors = [] if subset == None: subset = slice(None) # already_downloaded = glob('{}{}*'.format(filepath, year)) for query in tqdm(queries[subset]): # if '{}{}.gz'.format(filepath, stampify(query)) not in already_downloaded: if interval == pd.Timedelta('1D'): fileout = stampify(query)[:-3] elif interval == pd.Timedelta('1H'): fileout = stampify(query) if not os.path.exists('{}{}.gz'.format(filepath, fileout)): # if overwrite == False: # if os.path.exists('{}{}.gz'.format(filepath, stampify(query))): # break try: download_caiso_lmp_allnodes( market=submarket, start=str(query), filepathout=filepath, product=product, numattempts=numattempts, waittime=waittime) except (URLError, IncompleteRead, pd.errors.ParserError, BadZipFile, HTTPError) as error: errors.append(error) print(error) if len(errors) > 0: pd.Series(errors).to_csv( '{}__Errors__{}.csv'.format(filepath, time.strftime('%Y%m%dT%H%M%S')), index=False) ################ ### NODALIZE ### def nodalize(year, market, iso, filepathin=None, filepathout=None, nodesfile=None, product='LMP', submarket=None, fillmissinghour=True): """ """ ### Set defaults if necessary if iso.upper() == 'CAISO': if filepathin == None: filepathin = revmpath+'{}/in/{}/{}'.format( iso, product.lower(), market) if (((market == 'da') and (submarket != 'DAM')) or ((market == 'rt') and (submarket != 'RTM'))): filepathin = revmpath+'{}/in/{}/{}/{}/'.format( iso, product.lower(), market, submarket) if filepathout == None: filepathout = revmpath+'{}/io/{}-nodal/{}/'.format( iso, product.lower(), market) if (market == 'rt') and (submarket == 'RTM'): filepathout = revmpath+'{}/io/{}-nodal/{}-month/'.format( iso, product.lower(), market) if (((market == 'da') and (submarket != 'DAM')) or ((market == 'rt') and (submarket != 'RTM'))): filepathout = revmpath+'{}/io/{}-nodal/{}/{}/'.format( iso, product.lower(), market, submarket) if (submarket == None) and (market == 'rt'): submarket = 'RTM' elif (submarket == None) and (market == 'da'): submarket = 'DAM' elif iso.upper() == 'ERCOT': if (filepathin == None) and (market == 'da'): filepathin = revmpath+'{}/in/lmp/{}/{}/'.format(iso, market, year) elif (filepathout == None) and (market == 'rt'): filepathout = revmpath+'{}/io/lmp-nodal/{}-month/'.format(iso, market) elif filepathout == None: filepathout = revmpath+'{}/io/lmp-nodal/{}/'.format(iso, market) else: if filepathin == None: filepathin = revmpath+'{}/in/lmp/{}/'.format(iso, market) if filepathout == None: filepathout = revmpath+'{}/io/lmp-nodal/{}/'.format(iso, market) ### Make output folders if necessary if not os.path.exists(filepathout): os.makedirs(filepathout, exist_ok=True) if not os.path.exists(revmpath+'{}/io/missingnodes/'.format(iso.upper())): os.makedirs(revmpath+'{}/io/missingnodes/'.format(iso.upper()), exist_ok=True) if not os.path.exists(revmpath+'{}/io/datatimes/'.format(iso.upper())): os.makedirs(revmpath+'{}/io/datatimes/'.format(iso.upper()), exist_ok=True) if not os.path.exists(revmpath+'{}/io/fulltimenodes/year/'.format(iso.upper())): os.makedirs(revmpath+'{}/io/datatimes/'.format(iso.upper()), exist_ok=True) if not os.path.exists(revmpath+'{}/io/fulltimenodes/day/{}/'.format(iso.upper(), market)): os.makedirs(revmpath+'{}/io/fulltimenodes/day/{}/'.format(iso.upper(), market), exist_ok=True) print(filepathout) ### Shared components nodesfiles = { 'CAISO': revmpath+'CAISO/io/caiso-node-latlon.csv', 'ERCOT': revmpath+'ERCOT/io/ercot-node-latlon.csv', #'MISO': revmpath+'MISO/in/miso-node-map.csv', 'MISO': revmpath+'MISO/io/miso-node-latlon.csv', # 'PJM': revmpath+'PJM/io/pjm-pnode-latlon-uniquepoints.csv', 'PJM': revmpath+'PJM/io/pjm-node-latlon.csv', 'NYISO': revmpath+'NYISO/io/nyiso-node-latlon.csv', 'ISONE': revmpath+'ISONE/io/isone-node-latlon.csv' } if nodesfile is None: nodesfile = nodesfiles[iso] resolution = { 'CAISO': {'da': 60, 'rt': 5}, 'ERCOT': {'da': 60, 'rt': 5}, 'MISO': {'da': 60, 'rt': 60}, 'PJM': {'da': 60, 'rt': 60}, 'NYISO': {'da': 60, 'rt': 5}, 'ISONE': {'da': 60, 'rt': 60}, } ### Get file list and iso/market info # files = glob('{}{}*'.format(filepathin, year)) files = sorted(glob('{}{}*'.format(filepathin, year))) print('head(files):') for file in files[:3]: print(file) print('tail(files):') for file in files[-3:]: print(file) timezone = pvvm.toolbox.tz_iso[iso] res = resolution[iso][market] ### Make the inputs easier to work with iso = iso.upper() hours = pvvm.toolbox.yearhours(year) dates = pvvm.toolbox.makedays(year) ### DO: figure out how to generalize this # if len(files) != len(dates): # print('len(files) = {}'.format(len(files))) # print('len(dates) = {}'.format(len(dates))) # raise Exception("files and dates don't match") if iso == 'ISONE': ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['Node'], skiprows=1) ### Load daily files colnames = ['intime', 'node', 'lmp'] dfdict = {} for i in trange(len(files)): dfday = pd.read_csv( files[i], skiprows=6, usecols=[2,4,6], names=colnames, dtype={'intime':str, 'node':'category', 'lmp':float}) dfday.drop(dfday.index[-1], inplace=True) dfday.loc[:,'intime'] = dates[i] + 'H' + dfday.loc[:,'intime'] dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index dfall = pd.concat(dfdict) ### Make new index oldtime = list(dfall.intime.unique()) newtime = list(pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year))) for i in range(len(newtime)): newtime[i] = str(newtime[i]) indexconvert = dict(zip(oldtime, newtime)) dfall.loc[:,'intime'] = dfall.loc[:,'intime'].apply( lambda x: indexconvert[x]) dfall.loc[:,'intime'] = pd.to_datetime(dfall['intime']) fullindex = pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year)) fullindex = fullindex.tz_localize(timezone) fullindex = pd.DataFrame(index=fullindex) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] for j in trange(len(nodesin)): try: df = dfall[dfall['node'] == nodesin[j]][['intime','lmp']].copy() df.index = df['intime'].values del df['intime'] df.index = df.index.tz_localize(timezone) df = df.merge(fullindex, how='right', left_index=True, right_index=True) numhours = hours - len(df[df['lmp'].isnull()]) datalength.append([nodesin[j], numhours]) df.to_csv('{}{}-{}.gz'.format(filepathout, nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif iso == 'MISO': ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['Node']) ### Pick columns from input file usecols = [0, 2, 3, 4, 5, 6, 7, 8, 9, 10,11,12,13,14, 15,16,17,18,19,20,21,22,23,24,25,26] ### Load daily files dfdict = {} for i in trange(len(files)): colnames = ['Node', 'Value'] for j in range(24): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=5, header=None, usecols=usecols, dtype={0: 'category'}, names=colnames) dfday = dfin.loc[dfin['Value'] == 'LMP'].T.copy() dfday.columns = dfday.iloc[0,:] dfday = dfday.drop(dfday.index[[0,1]]) dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index dfall = pd.concat(dfdict) dfall.index = dfall.index.droplevel(0) dfall.index = pd.date_range(dates[0], periods=hours, freq='H') dfall.index = dfall.index.tz_localize(timezone) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] for j in trange(len(nodesin)): try: df = pd.DataFrame(dfall.loc[:,nodesin[j]]) numhours = hours - len(df[df[nodesin[j]].isnull()]) datalength.append([nodesin[j], numhours]) df.to_csv('{}{}-{}.gz'.format(filepathout, nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif iso == 'PJM': ### Set skiprows (different headers for 'da' and 'rt' markets) skiprows = {'da': 8, 'rt': 18} ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True) ### Pick columns from input file usecols = [1, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76] usecols_dst_springforward = [1, 7, 10, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76] usecols_dst_fallback = [1, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49, 52, 55, 58, 61, 64, 67, 70, 73, 76, 79] ### Load daily files dfdict = {} for i in trange(len(files)): colnames = ['PnodeID'] if dates[i] not in [pvvm.toolbox.dst_springforward[year], pvvm.toolbox.dst_fallback[year]]: for j in range(24): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=skiprows[market], header=None, usecols=usecols, dtype={1: 'category'}, names=colnames) elif dates[i] == pvvm.toolbox.dst_springforward[year]: for j in range(23): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=skiprows[market], header=None, usecols=usecols_dst_springforward, dtype={1: 'category'}, names=colnames) elif dates[i] == pvvm.toolbox.dst_fallback[year]: for j in range(25): colnames.append(dates[i] + 'H{:02d}'.format(j)) dfin = pd.read_csv( files[i], skiprows=skiprows[market], header=None, usecols=usecols_dst_fallback, dtype={1: 'category'}, names=colnames) dfday = dfin.T.copy() dfday.columns = dfday.iloc[0,:] dfday = dfday.drop(dfday.index[[0]]) del dfday[np.nan] dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index dfall = pd.concat(dfdict) dfall.index = dfall.index.droplevel(0) dfall.index = pd.date_range(dates[0], periods=hours, freq='H') dfall.index = dfall.index.tz_localize(timezone) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] for j in trange(len(nodesin)): try: df = pd.DataFrame(dfall.loc[:,nodesin[j].astype(str)]) numhours = hours - len(df[df[nodesin[j].astype(str)].isnull()]) datalength.append([nodesin[j], numhours]) df.to_csv(filepathout + '{}-{}.gz'.format(nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif iso == 'NYISO': ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['node'], skiprows=1) if market == 'da': dates = pvvm.toolbox.makedays(year) if len(files) != len(dates): print('len(files) = {}'.format(len(files))) print('len(dates) = {}'.format(len(dates))) raise Exception("files and dates don't match") ### Make daylight savings mangler def dstfallback(dataframe): fallback = pvvm.toolbox.dst_fallback[year] backfall = '{}/{}/{}'.format(fallback[4:6], fallback[6:], fallback[:4]) fallbackhalf = int(len(dataframe[dataframe['intime'] == backfall + ' 01:00'])/2) if str(dataframe[dataframe['intime'] == backfall + ' 01:00'].iloc[0,1]) != \ str(dataframe[dataframe['intime'] == backfall + ' 01:00'].iloc[fallbackhalf,1]): raise Exception("DST fallback ptid's don't match.") mask = dataframe['intime'] == backfall + ' 01:00' mask.iloc[fallbackhalf:2*fallbackhalf] = False dataframe.loc[mask, 'intime'] = backfall + ' 01:00 DST' print("DST fallback conversion worked!") return dataframe ### Make datetime converter def makeindexconvert(files, dates): """ """ dicttimes = {} for i in trange(len(files)): df = pd.read_csv(files[i], usecols = [0,2,3], skiprows=1, names=['intime', 'node', 'lmp'], dtype={'ptid': 'category', 'lmp': float}) if dates[i] == pvvm.toolbox.dst_fallback[year]: # print(df.head()) df = dstfallback(df) dicttimes[dates[i]] = df dftimes = pd.concat(dicttimes, copy=False) oldtime = list(dftimes.intime.unique()) print('len(oldtime) = {}'.format(len(oldtime))) newtime = list(pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year))) print('len(newtime) = {}'.format(len(newtime))) for i in range(len(newtime)): newtime[i] = str(newtime[i]) indexconvert = dict(zip(oldtime, newtime)) return indexconvert indexconvert = makeindexconvert(files, dates) ### Load daily files dfdict = {} for i in trange(len(files)): dfday = pd.read_csv(files[i], usecols = [0,2,3], skiprows=1, names=['intime', 'node', 'lmp'], dtype={'ptid': 'category', 'lmp': float}) if dates[i] == pvvm.toolbox.dst_fallback[year]: dfday = dstfallback(dfday) dfday.loc[:,'intime'] = dfday.loc[:,'intime'].apply(lambda x: indexconvert[x]) dfday.loc[:,'intime'] = pd.to_datetime(dfday['intime']) dfdict[dates[i]] = dfday ### Concat into one dataframe with localized datetime index ### copy=False is experimental dfall = pd.concat(dfdict, copy=False) ### Change node type to 'category'. SUPER important. >10x speedup. dfall['node'] = dfall['node'].astype('category') ### Make new index fullindex = pd.date_range(dates[0], freq='H', periods=pvvm.toolbox.yearhours(year)) fullindex = fullindex.tz_localize(timezone) fullindex = pd.DataFrame(index=fullindex) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] fulldaynodes = {} for j in trange(len(nodesin)): # for j in trange(20): node = str(nodesin[j]) try: df = dfall[dfall['node'] == nodesin[j]][['intime','lmp']].copy() df.index = df['intime'].values del df['intime'] df.index = df.index.tz_localize(timezone) df = df.merge(fullindex, how='right', left_index=True, right_index=True) ## Record datapoints numhours = hours - len(df[df['lmp'].isnull()]) datalength.append([nodesin[j], numhours]) ## Determine full-data days dfcount = df.groupby([df.index.month, df.index.day]).count() for date in dates: month = int(date[4:6]) day = int(date[6:]) count = dfcount.loc[month].loc[day][0] if count == 24: nodes = fulldaynodes.get(date, []) nodes.append(node) fulldaynodes[date] = nodes ## Write nodalized file df.to_csv('{}{}-{}.gz'.format(filepathout, nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(nodesin[j]) continue elif market == 'rt': datesprev = pvvm.toolbox.makedays(year - 1) datesthis = pvvm.toolbox.makedays(year) dates = [datesprev[-1]] + datesthis filesprev = sorted(glob('{}{}*'.format(filepathin, (year - 1)))) filesthis = sorted(glob('{}{}*'.format(filepathin, year))) files = [filesprev[-1]] + filesthis if len(files) != len(dates): print('len(files) = {}'.format(len(files))) print('len(dates) = {}'.format(len(dates))) for date in dates: if date not in [file[88:96] for file in files]: print(date) raise Exception("files and dates don't match") ### Make nice index niceindex_hourstart = pd.date_range( start='{}-01-01 00:00'.format(year), periods = hours * 12, freq = '5T', tz=pvvm.toolbox.tz_iso[iso]) niceindex = pd.DataFrame(index=niceindex_hourstart) ### Load daily files dfdict = {} for i in trange(len(files)): df = pd.read_csv( files[i], usecols=[0,2,3], skiprows=1, names=['intime', 'node', 'lmp'], dtype={'intime': 'category', 'node': 'category', 'lmp': float}, parse_dates=['intime'], infer_datetime_format=True) dfdict[dates[i]] = df ### Concat into one dataframe with localized datetime index dfall = pd.concat(dfdict, copy=False) ### Change node type to 'category'. SUPER important. >10x speedup. dfall['node'] = dfall['node'].astype('category') ### Check number of nodes. Good for error checking. numnodes = len(dfall['node'].unique()) print("len(dfall['node']): {}".format(numnodes)) ### Reset index dfall.index = dfall['intime'].values dfall.index = dfall.index.tz_localize(pvvm.toolbox.tz_iso[iso]) ### Fix DST dststart = dfall.index.get_loc(pvvm.toolbox.dst_springforward[year] + ' 01:55') print('len(dststart) = {}'.format(len(dststart))) print('num nodes = {}'.format(numnodes)) if len(dststart) > numnodes: raise Exception('len(dststart) > numnodes') dststart = dststart[-1] + 1 if year == 2012: dstend = dfall.index.get_loc(pvvm.toolbox.dst_fallback[year] + ' 01:59:34') else: dstend = dfall.index.get_loc(pvvm.toolbox.dst_fallback[year] + ' 01:55') print('len(dstend) = {}'.format(len(dstend))) if year == 2012: if len(dstend) > numnodes: raise Exception('len(dststart) > numnodes') dstend = dstend[-1] else: if len(dstend) % 2 != 0: raise Exception('len(dstend) % 2 != 0') if len(dstend) / 2 > numnodes: raise Exception('len(dstend) / 2 > numnodes') if ((dstend[int(len(dstend)/2) + 0] - dstend[int(len(dstend)/2) - 1] - 1) / 11 != (len(dstend) / 2)): print((dstend[int(len(dstend)/2) + 0] - dstend[int(len(dstend)/2) - 1] - 1) / 11) print(len(dstend) / 2) raise Exception('node added or lost during DST fallback') dstend = dstend[int(len(dstend)/2) - 1] dfall.iloc[dststart:(dstend + 1),0] = ( dfall.iloc[dststart:(dstend + 1),0] + pd.Timedelta(-1, unit='h')) ### Reset index dfall.index = dfall['intime'].values dfall.index = dfall.index.tz_localize(pvvm.toolbox.tz_iso[iso]) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] fulldaynodes = {} for j in trange(len(nodesin)): node = str(nodesin[j]) try: dfin = dfall[dfall['node'] == node].copy() ## Add missing timestamps df = dfin.merge( niceindex, how='outer', left_index=True, right_index=True) ## Fill gaps, using off-5T values df = df['lmp'].interpolate(method='time', limit=11) ## Remove off-5T values dfout = pd.DataFrame(df).merge( niceindex, how='right', left_index=True, right_index=True) ## Fill missing hour if desired if fillmissinghour: dfout = dfout.interpolate('linear', limit=12) ## Record datapoints numpoints = dfout.notnull().sum().values[0] datalength.append([nodesin[j], numpoints]) ## Determine full-data days dfcount = dfout.groupby([dfout.index.month, dfout.index.day]).count() for date in dates[1:]: month = int(date[4:6]) day = int(date[6:]) count = dfcount.loc[month].loc[day][0] if count == 288: nodes = fulldaynodes.get(date, []) nodes.append(node) fulldaynodes[date] = nodes ## Write nodalized file dfout.to_csv( '{}{}-{}.gz'.format( filepathout, nodesin[j], year), compression='gzip', header=False) except KeyError: missingnodes.append(node) continue elif iso == 'CAISO': if market == 'da': ### Input housekeeping filesin = sorted(glob('{}{}*'.format(filepathin, year))) datesin = pvvm.toolbox.makedays(year) if len(filesin) != len(datesin): print('filepathin = {}'.format(filepathin)) print('len(filesin) = {}'.format(len(filesin))) print('len(datesin) = {}'.format(len(datesin))) raise Exception("files and dates don't match") ### Load file containing nodes with geographic information nodesin = pd.read_csv(nodesfile, usecols=[0], squeeze=True, names=['Node'], skiprows=1) ### Make nice hourly index hourlyindex = pd.date_range( start='{}-01-01 00:00'.format(year), end='{}-12-31 23:00'.format(year), freq = '1H', tz=pvvm.toolbox.tz_iso[iso]) hourlyindex = pd.DataFrame(index=hourlyindex) ### Make nice daily index dailyindex = pd.date_range( start='{}-01-01'.format(year), end='{}-12-31'.format(year), freq='1D') ### Load daily files dfdict = {} for i in trange(len(filesin)): if ((product == 'lmp') and (market == 'da')): df = pd.read_csv( filesin[i], usecols=[1,2,3], skiprows=1, names=['node', 'intime', product], dtype={'intime':'category', 'node':'category', product:float}, # index_col='intime', parse_dates=['intime'], infer_datetime_format=True ) # df.intime = df.intime.map( # lambda x: pd.to_datetime('{}{}{} {}:00'.format(x[:4], x[5:7], x[9:11], x[12:14]))) else: df = pd.read_csv( filesin[i], usecols=[0,1,2], skiprows=1, names=['intime', 'node', product], dtype={'intime':'category', 'node':'category', product:float}, parse_dates=['intime'], infer_datetime_format=True ) dfdict[datesin[i]] = df ### Concat into one dataframe dfall = pd.concat(dfdict, copy=False) # dfall.reset_index(level=0, drop=True, inplace=True) ### Categorize nodes (accelerates lookup) dfall['node'] = dfall['node'].astype('category') ### Check number of nodes. Good for error checking. numnodes = len(dfall['node'].unique()) print("numnodes = {}".format(numnodes)) ### Reset index and set to local timezone dfall.index = dfall['intime'].values dfall.index = ( dfall.index .tz_localize('UTC') .tz_convert(pvvm.toolbox.tz_iso[iso])) ### Determine missing nodes and data coverage, and save as one-node files missingnodes = [] datalength = [] fulldaynodes = {} for j in trange(len(nodesin)): node = str(nodesin[j]) try: dfin = dfall[dfall['node'] == node].copy() ## Add missing timestamps df = dfin.merge( hourlyindex, how='right', left_index=True, right_index=True) df = pd.DataFrame(df[product]) ## Record datapoints numpoints = df.notnull().sum().values[0] datalength.append([nodesin[j], numpoints]) ## Determine full-data days dfcount = df.groupby([df.index.month, df.index.day]).count() for date in dailyindex: month = date.month day = date.day count = dfcount.loc[month].loc[day][0] if count == 24: nodes = fulldaynodes.get(date.strftime('%Y%m%d'), []) nodes.append(node) fulldaynodes[date.strftime('%Y%m%d')] = nodes ## Write nodalized file ## ONLY if it contains data if df.notnull().sum()[0] > 0: df.to_csv( '{}{}-{}.gz'.format( filepathout, node, year), compression='gzip', header=False) else: missingnodes.append(node) except KeyError: missingnodes.append(node) elif market == 'rt': ### Make convenience variables months = list(range(1,13)) ### Load file containing nodes with geographic information nodesin = list(pd.read_csv( nodesfile, usecols=[0], squeeze=True )) ### Loop over months for month in months: datetimesin = pd.date_range( start='{}{:02}01T{:02}:00'.format(year, month, abs(pvvm.toolbox.timezone_iso[iso])), periods = pvvm.toolbox.monthhours(year, month), freq = 'H') files = ['{}{}.gz'.format(filepathin, d.strftime('%Y%m%dT%H')) for d in datetimesin] ### Make nice MONTHLY index niceindex = pd.date_range( start='{}-{:02}-01 00:00'.format(year, month), periods = (pvvm.toolbox.monthhours(year, month) * 60 / res), freq = '5T', tz=pvvm.toolbox.tz_iso[iso]) niceindex =
pd.DataFrame(index=niceindex)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Apr 30 20:44:07 2021 @author: romainloirs @content: """ def get_first_zi_to_visit(pt_depart,cluster_depart,matrice_adj,list_zone_id,road_id,route_data,package_data,stop_data): from ML_first_stop import get_ML_dataset_prediction import pickle import pandas as pd from sklearn.preprocessing import StandardScaler #création du dataset dataset, dic_zi= get_ML_dataset_prediction(pt_depart,road_id,route_data,package_data,stop_data) list_zi=list(dataset["zi_name"]) to_del = ['Road_id', 'zi_name',"distane_barycentre","distane_barycentre_ind","Km_depot_to_first_zi_ind","Km_depot_to_first_zi"] dataset = dataset.drop(to_del, axis = 1) # appliquer le modèle de ML model_path = "data/model_build_outputs/" scaler = pickle.load(open(model_path + "scaler_first_stop.sav", 'rb')) model = pickle.load(open(model_path + "model_first_stop.sav", 'rb')) dataset = scaler.transform(dataset) prediction = model.predict_proba(dataset) # Trouver la première zi à l'aide des prédictions. prediction_1 = list(prediction[:,1]) max_value = max(prediction_1) index_max = prediction_1.index(max_value) first_zi= dic_zi[list_zi[index_max]] if first_zi in list_zone_id: return first_zi else: print("la zi n'est pas dans la liste") return first_zi # obtenir un sous problème compatible avec le programme de RO dans lequel # les clusters sont traités comme des stops # paramétre: la matrice d'adjacence des stops, la list des clusters, le cluster de départ # et toutes les times windows associés aux stops # return: la matrice d'adjacence des clusters, le numéro du cluster de départ, # les times windows du nouveau problème def get_matrice_cluster_as_sommet(matrice_adj,list_cluster,cluster_depart,all_time_windows): import numpy as np from time_windows import get_time_windows_stop from time_windows import max_list_time_windows from time_windows import min_list_time_windows n_cluster=len(list_cluster) matrice_cluster=np.zeros((n_cluster,n_cluster)) n_cluster_depart=0 time_windows=[] #pour chaque cluster for i in range(n_cluster): #trouver le numéro du cluster de départ if list_cluster[i]==cluster_depart: n_cluster_depart=i # déterminer la nouvelle time_windows associé au cluster time_windows_stop_cluster=get_time_windows_stop(list_cluster[i],all_time_windows) min_time_windows=min_list_time_windows(time_windows_stop_cluster) max_time_windows=max_list_time_windows(time_windows_stop_cluster) if min_time_windows==max_time_windows: time_windows.append(None) else: time_windows.append((min_time_windows,max_time_windows)) #compléter la ligne de la matrice d'adjacence for j in range(n_cluster): if i!=j: matrice_extraite=matrice_adj.loc[list_cluster[i],list_cluster[j]].to_numpy() distance=matrice_extraite.mean() matrice_cluster[i][j]= distance return matrice_cluster,n_cluster_depart,time_windows # si un pt est trop éloigné des autres, on le rapproche tout en conservant # les proportions pour le problème de RO def modif_matrice_cluster(matrice_cluster): import numpy as np vmax=np.nanmax(matrice_cluster) ligne_max1=np.where(matrice_cluster == vmax)[0][0] ligne_max2=np.where(matrice_cluster == vmax)[1][0] vmin_1_1=sorted(matrice_cluster[ligne_max1,:].tolist())[1] vmin_1_2=sorted(matrice_cluster[:,ligne_max1].tolist())[1] vmin_2_1=sorted(matrice_cluster[ligne_max2,:].tolist())[1] vmin_2_2=sorted(matrice_cluster[:,ligne_max2].tolist())[1] ligne_max=0 my_min=0 if vmin_1_1>vmin_2_1: ligne_max=ligne_max1 if vmin_1_1>vmin_1_2: my_min=vmin_1_2 else: my_min=vmin_1_1 else: ligne_max=ligne_max2 if vmin_2_1>vmin_2_2: my_min=vmin_2_2 else: my_min=vmin_2_1 matrice_cluster[ligne_max,:]=matrice_cluster[ligne_max,:]-my_min matrice_cluster[:,ligne_max]=matrice_cluster[:,ligne_max]-my_min matrice_cluster[ligne_max,ligne_max]=0 # trouver une route desservant tout les clusters def ordonne_cluster(matrice_adj,list_cluster, cluster_depart,all_time_windows,seuil=15): import pandas as pd import numpy as np from math import ceil from clustering import same_size_clusters from RO_main import RO_main_cycle from RO_main import sequence_zone_id from RO_main import sequence_zone_id_2 from RO_main import sequence_zone_id_3 from RO_main import sequence_zone_id_cycle from clustering import find_pt_arrive_depart from clustering import cluster_bis #transformer le problème en un problème pouvant etre résolu par la RO matrice_zone_id,n_cluster_depart,time_windows= get_matrice_cluster_as_sommet(matrice_adj,list_cluster,cluster_depart,all_time_windows) modif_matrice_cluster(matrice_zone_id) n_cluster=matrice_zone_id.shape[0] # si il y a trop de cluster pour le problème de RO if n_cluster>seuil: #créer des clusters de zone_id pd_zone_id=pd.DataFrame(matrice_zone_id) cluster_zone_id=cluster_bis(pd_zone_id,seuil) #trouver une route qui relie les cluster de zone_ID matrice_cluster,n_cluster_depart_2,time_windows_2 =get_matrice_cluster_as_sommet(pd_zone_id,cluster_zone_id,n_cluster_depart,time_windows) seq_cluster=sequence_zone_id_cycle(cluster_zone_id,matrice_cluster,n_cluster_depart,time_windows_2) #trouver à l'intérieur des cluster de zone_id, une route qui relie le zone_id seq_zone_id=[] pt_depart_current=n_cluster_depart for zi in seq_cluster: pt_arrive_current,pt_depart_next= find_pt_arrive_depart(pt_depart_current,zi,seq_cluster, pd.DataFrame(matrice_zone_id)) if len(zi)==1: seq_zone_id+=zi else: list_extraction=np.array([ True if i in zi else False for i in range(n_cluster)],dtype=bool) aux=matrice_zone_id[list_extraction,:] matrice_zi=aux[:,list_extraction] time_windows_zi=[None]*len(zi) seq,opt,time= sequence_zone_id_3(zi,pd.DataFrame(matrice_zi),pt_depart_current,pt_arrive_current,time_windows_zi) seq_zone_id+= seq pt_depart_current=pt_depart_next return [list_cluster[i] for i in seq_zone_id] #si le nombre de cluster est raisonnable else: res=RO_main_cycle(matrice_zone_id,n_cluster_depart,time_windows) res2=res[0] return [list_cluster[i] for i in res2 ] # obtenir un sous problème compatible avec le programme de RO dans lequel # les clusters sont traités comme des stops # paramétre: la matrice d'adjacence des stops, la list des clusters, le cluster de départ # et toutes les times windows associés aux stops # return: la matrice d'adjacence des clusters, le numéro du cluster de départ, # les times windows du nouveau problème def get_matrice_cluster_as_sommet_2(matrice_adj,list_cluster,cluster_depart,cluster_arrive,all_time_windows): import numpy as np from time_windows import get_time_windows_stop from time_windows import max_list_time_windows from time_windows import min_list_time_windows n_cluster=len(list_cluster) matrice_cluster=np.zeros((n_cluster,n_cluster)) n_cluster_depart=0 n_cluster_arrive=0 time_windows=[] #pour chaque cluster for i in range(n_cluster): #trouver le numéro du cluster de départ if list_cluster[i]==cluster_depart: n_cluster_depart=i if list_cluster[i]==cluster_arrive: n_cluster_arrive=i # déterminer la nouvelle time_windows associé au cluster time_windows_stop_cluster=get_time_windows_stop(list_cluster[i],all_time_windows) min_time_windows=min_list_time_windows(time_windows_stop_cluster) max_time_windows=max_list_time_windows(time_windows_stop_cluster) if min_time_windows==max_time_windows: time_windows.append(None) else: time_windows.append((min_time_windows,max_time_windows)) #compléter la ligne de la matrice d'adjacence for j in range(n_cluster): if i!=j: matrice_extraite=matrice_adj.loc[list_cluster[i],list_cluster[j]].to_numpy() distance=matrice_extraite.mean() matrice_cluster[i][j]= distance return matrice_cluster,n_cluster_depart,n_cluster_arrive,time_windows # trouver une route desservant tout les clusters def ordonne_cluster_2(matrice_adj,list_cluster, cluster_depart,first_zi_to_visit,all_time_windows,seuil=15): import pandas as pd import numpy as np from math import ceil from clustering import same_size_clusters from RO_main import RO_main_cycle from RO_main import sequence_zone_id from RO_main import sequence_zone_id_2 from RO_main import sequence_zone_id_3 from RO_main import sequence_zone_id_cycle from clustering import find_pt_arrive_depart from clustering import cluster_bis from clustering import cluster_ter #transformer le problème en un problème pouvant etre résolu par la RO matrice_zone_id,n_cluster_depart,n_cluster_arrive,time_windows= get_matrice_cluster_as_sommet_2(matrice_adj,list_cluster,first_zi_to_visit,cluster_depart,all_time_windows) modif_matrice_cluster(matrice_zone_id) n_cluster=matrice_zone_id.shape[0] # si il y a trop de cluster pour le problème de RO if n_cluster>seuil: #créer des clusters de zone_id pd_zone_id=pd.DataFrame(matrice_zone_id) cluster_zone_id=cluster_ter(pd_zone_id,n_cluster_depart,n_cluster_arrive,seuil=15) #cluster_zone_id=cluster_bis(pd_zone_id,seuil) #trouver une route qui relie les cluster de zone_ID #matrice_cluster,n_cluster_depart_2,time_windows_2 =get_matrice_cluster_as_sommet(pd_zone_id,cluster_zone_id,n_cluster_depart,time_windows) matrice_zone_id_2,n_cluster_depart_2,n_cluster_arrive_2,time_windows_2= get_matrice_cluster_as_sommet_2(pd_zone_id,cluster_zone_id,n_cluster_depart,n_cluster_arrive,time_windows) n_cluster_depart_2=0 n_cluster_arrive_2=0 for i in range(len(cluster_zone_id)): if n_cluster_depart in cluster_zone_id[i]: n_cluster_depart_2=i if n_cluster_arrive in cluster_zone_id[i]: n_cluster_arrive_2=i seq_cluster=sequence_zone_id_3(cluster_zone_id,pd.DataFrame(matrice_zone_id_2),cluster_zone_id[n_cluster_depart_2],cluster_zone_id[n_cluster_arrive_2],time_windows_2)[0] #print(seq_cluster) #trouver à l'intérieur des cluster de zone_id, une route qui relie le zone_id seq_zone_id=[] pt_depart_current=cluster_zone_id[n_cluster_depart_2] for zi in seq_cluster: pt_arrive_current,pt_depart_next= find_pt_arrive_depart(pt_depart_current,zi,seq_cluster, pd.DataFrame(matrice_zone_id)) if len(zi)==1: seq_zone_id+=zi else: list_extraction=np.array([ True if i in zi else False for i in range(n_cluster)],dtype=bool) aux=matrice_zone_id[list_extraction,:] matrice_zi=aux[:,list_extraction] time_windows_zi=[None]*len(zi) seq,opt,time= sequence_zone_id_3(zi,pd.DataFrame(matrice_zi),pt_depart_current,pt_arrive_current,time_windows_zi) seq_zone_id+= seq pt_depart_current=pt_depart_next cluster_depart = seq_zone_id.pop() seq_zone_id.insert(0,cluster_depart) return [list_cluster[i] for i in seq_zone_id] #si le nombre de cluster est raisonnable else: time_windows_zi=[None]*10000000 res=sequence_zone_id_3(list(range(n_cluster)),
pd.DataFrame(matrice_zone_id)
pandas.DataFrame
""" Conducts cross-validated NMF to determine the number of factors to use and regularization constant (alpha) to use, using the bi-cross-validation procedure outlined in Owen and Perry. This particular version considers an input list of seeds rather than generating them. """ import argparse import feather import itertools import joblib import logging import numpy as np import pandas as pd import tqdm from collections import namedtuple from sklearn.decomposition import NMF from sklearn.model_selection import KFold def get_arguments(): """Obtains command-line arguments.""" parser = argparse.ArgumentParser() parser.add_argument( '--input', type=argparse.FileType('rU'), required=True, metavar='INPUT', help='read input data from CSV file %(metavar)s') parser.add_argument( '--seedlist', type=argparse.FileType('rU'), required=True, metavar='INPUT', help='read input seeds from text file %(metavar)s') parser.add_argument( '--output', required=True, metavar='OUTPUT', help='write Q2 values to Feather file %(metavar)s') parser.add_argument( '--init', choices=('random', 'nndsvd', 'nndsvda', 'nndsvdar'), default='nndsvd', metavar='INIT', help='use method %(metavar)s to initialize values (default: ' '%(default)s)') parser.add_argument( '--l1-ratio', type=float, default=0., metavar='L1-RATIO', help='use %(metavar)s as the regularization mixing parameter (use 0 ' 'to specify an L2 penalty, 1 to specify an L1 penalty, or a value in ' '(0, 1) to specify a combination; default: %(default)s)') parser.add_argument( '--k', type=int, nargs='+', metavar='K', help='calculate Q2 for given ranks %(metavar)ss') parser.add_argument( '--alpha', type=float, nargs='+', metavar='ALPHA', help='calculate Q2 for given regularization constants %(metavar)s') parser.add_argument( '--alpha-base', type=float, metavar='ALPHA-BASE', default=2.) parser.add_argument( '--alpha-exp-start', type=int, metavar='ALPHA-EXP-START', default=-10) parser.add_argument( '--alpha-exp-end', type=int, metavar='ALPHA-EXP-END', default=10) parser.add_argument( '--folds', type=int, default=3, metavar='FOLDS', help='run bi-cross-validation with %(metavar)s folds (default: ' '%(default)s)') parser.add_argument( '--cores', type=int, metavar='CORES', default=-1, help='use %(metavar)s cores for the analysis') parser.add_argument( '--log', metavar='LOG', help='write logging information to %(metavar)s') return parser.parse_args() def configure_logging(log=None): """ Configures logging. :param str log """ if log: logging.basicConfig( level=logging.DEBUG, filename=log, filemode='w', format='%(asctime)s %(levelname)-8s %(message)s') console = logging.StreamHandler() console.setLevel(logging.INFO) console.setFormatter(logging.Formatter('%(message)s')) logging.getLogger().addHandler(console) else: logging.basicConfig(level=logging.INFO, format='%(message)s') def load_data(handle): """ Loads data from the given handle. :param io.file handle :rtype: pd.DataFrame """ logging.info('Loading data') result = pd.read_csv(handle, index_col=0) logging.info('Loaded a table with shape {}'.format(result.shape)) return result def load_seedlist(handle): """ Loads seeds from the given handle. :param io.file handle :rtype: List[int] """ logging.info('Loading seeds') stripped_data = (l.strip() for l in handle) filtered_data = (l for l in handle if l) seeds = [int(x) for x in filtered_data] logging.info('Loaded {} seeds'.format(len(seeds))) return seeds def get_k(data, k, folds): """ Determines the values of k to use. :param pd.DataFrame data :param List[int] k :param int folds :rtype: List[int] """ result = k if k is not None else np.arange( np.floor(min(data.shape) * (1 - 1 / folds)) - 1, dtype=int) + 1 logging.info('Setting k = {}'.format(', '.join(str(i) for i in result))) return list(result) def get_alpha_range(base, start, end): """ Obtains a range of regularization constants for the given base and start and end exponents inclusive. :param float base :param int start :param int end :rtype: List[float] """ result = list(base**np.arange(start, end + 1)) logging.info('Setting alpha values to test to {}'.format(result)) return result class InvalidFoldError(Exception): """ An exception that is raised when the number of folds is not supported by the data. """ def __init__(self): super().__init__('number of folds is not supported by the data') def validate_k(data, k): """ Validates that the number of folds is valid. :param pd.DataFrame data :param int k :raises InvalidFoldError: if the number of folds is not supported by the data """ if k > min(data.shape): raise InvalidFoldError() Parameters = namedtuple('Parameters', [ 'seed', 'k', 'alpha', 'fold', 'observation_train_ix', 'observation_test_ix', 'measurement_train_ix', 'measurement_test_ix' ]) def _get_parameter_tuples(seed, k, alpha, folds, df): """ Obtains a parameter tuple for the given seed, number of factors, regularization constant, and number of folds. In order, the parameters yielded are as follows as a named tuple: - Seed (i.e., iteration) - Number of factors - Alpha - Fold number - Observation training set indices - Observation test set indices - Measurement training set indices - Measurement test set indices :param int seed: the seed to use :param int k: the number of factors to test :param float alpha: the value of alpha to test :param int folds: the number of folds to split the data into :param pd.DataFrame df: the data to split :rtype: generator """ np.random.seed(seed) fold_generator = KFold(n_splits=folds, shuffle=True) sample_folds = fold_generator.split(data) feature_folds = fold_generator.split(data.T) for f, ix in enumerate(zip(sample_folds, feature_folds)): observation_ix, measurement_ix = ix yield Parameters(seed, k, alpha, f + 1, observation_ix[0], observation_ix[1], measurement_ix[0], measurement_ix[1]) def _get_parameter_generator(seeds, k, alpha, folds, df): """ Produces a generator that yields parameters for a single iteration. In order, the parameters yielded are as follows as a named tuple: - Seed (i.e., iteration) - Number of factors - Alpha - Fold number - Observation training set indices - Observation test set indices - Measurement training set indices - Measurement test set indices :param List[int] seeds :param List[int] k: the numbers of factors to test :param List[float] alpha: the values of alpha to test :param int folds: the number of folds to split the data into :param pd.DataFrame df: the data to split :rtype: generator """ return itertools.chain(*(_get_parameter_tuples(s, k_, a, folds, df) for s in seeds for k_ in k for a in alpha)) def _make_q2_result(seed, k, alpha, fold, q2): """ Produces a result with the given values. :param int seed :param int k :param float alpha :param int fold :param float q2 """ return pd.DataFrame({ 'seed': [seed], 'k': [k], 'alpha': [alpha], 'fold': [fold], 'q2': [q2] }) def _cross_validate(df, init, l1_ratio, parameters): """ Conducts cross-validation for the given data and parameters, returning a result containing a value of Q2. :param pd.DataFrame df :param str init :param float l1_ratio :param Parameters parameters :rtype: pd.DataFrame """ # Split the data. test_data = data.iloc[parameters.observation_test_ix, parameters.measurement_test_ix] # If the test data is all zeros, this will fail. denominator = (test_data**2).sum().sum() if denominator == 0.: return _make_q2_result(parameters.seed, parameters.k, parameters.alpha, parameters.fold, np.nan) train_data = data.iloc[parameters.observation_train_ix, parameters.measurement_train_ix] bottomleft_data = data.iloc[parameters.observation_test_ix, parameters.measurement_train_ix] topright_data = data.iloc[parameters.observation_train_ix, parameters.measurement_test_ix] # Set the seed. np.random.seed(parameters.seed) # Run NMF. nmf = NMF(n_components=parameters.k, alpha=parameters.alpha, tol=1e-6, max_iter=200, init=init, l1_ratio=l1_ratio) coefficients = nmf.fit_transform(train_data) test_reconstructions = bottomleft_data.values.dot( np.linalg.pinv(nmf.components_)).dot(np.linalg.pinv(coefficients)).dot( topright_data.values) q2 = 1 - ((test_data - test_reconstructions)**2).sum().sum() / ( test_data**2).sum().sum() return _make_q2_result(parameters.seed, parameters.k, parameters.alpha, parameters.fold, q2) def cross_validate(data, folds, k, alpha, init, l1_ratio, cores, seeds): """ Conducts cross-validation. :param pd.DataFrame data :param int folds :param List[int] k :param List[float] alpha :param str init :param float l1_ratio :param int cores :param List[int] seeds :rtype: pd.DataFrame """ logging.info('Conducting cross-validation') # Obtain an iterator to better distribute jobs across all cores and better # measure progress. parameter_generator = _get_parameter_generator(seeds, k, alpha, folds, data) # Calculate the number of jobs to perform. n_jobs = len(seeds) * len(k) * len(alpha) * folds progress = tqdm.tqdm(parameter_generator, total=n_jobs, mininterval=1.) multiprocess = cores != 1 or (cores == -1 and joblib.cpu_count() == 1) logging.info('Multiprocessing: {}'.format(multiprocess)) result = joblib.Parallel(n_jobs=cores)( joblib.delayed(_cross_validate)(data, init, l1_ratio, p) for p in progress) if multiprocess else (_cross_validate(data, init, l1_ratio, p) for p in progress) logging.info('Concatenating results') return
pd.concat(result)
pandas.concat
import shapely.geometry as sg import numpy as np import pandas as pd from geopandas.array import from_shapely from hypothesis import given, example, strategies as st from spatialpandas import GeoSeries from spatialpandas.geometry import PointArray, Point, MultiPoint, Line, MultiLine, \ Polygon, MultiPolygon from tests.geometry.strategies import st_point_array, st_multipoint_array, hyp_settings, \ st_line_array, st_polygon_array, st_multipolygon_array @given(st_point_array(), st_point_array(min_size=1, max_size=1)) @hyp_settings def test_points_intersects_point(gp_points, gp_point): # Get scalar Point sg_point = gp_point[0] if len(gp_points) > 0: # Add gp_point to gp_points so we know something will intersect gp_points = pd.concat([pd.Series(gp_points), pd.Series(gp_point)]).array # Compute expected intersection expected = gp_points.intersects(sg_point) # Create spatialpandas PointArray point = Point.from_shapely(sg_point) points = PointArray.from_geopandas(gp_points) points_series = GeoSeries(points, index=np.arange(10, 10 + len(points))) # Test Point.intersects result = np.array([ point_el.intersects(point) for point_el in points ]) np.testing.assert_equal(result, expected) # Test PointArray.intersect result = points.intersects(point) np.testing.assert_equal(result, expected) # Test PointArray.intersects with inds inds = np.flipud(np.arange(0, len(points))) result = points.intersects(point, inds) np.testing.assert_equal(result, np.flipud(expected)) # Test GeoSeries.intersects pd.testing.assert_series_equal( points_series.intersects(point), pd.Series(expected, index=points_series.index) ) @given( st_point_array(min_size=6), st.integers(min_value=0, max_value=5), st_point_array(min_size=1, max_size=1) ) @hyp_settings def test_points_intersects_point_offset(gp_points, offset, gp_point): # Get scalar Point sg_point = gp_point[0] if len(gp_points) > 0: # Add gp_point to gp_points so we know something will intersect gp_points = pd.concat([pd.Series(gp_points), pd.Series(gp_point)]).array # Compute expected intersection expected = gp_points.intersects(sg_point)[offset:] # Create spatialpandas PointArray point = Point.from_shapely(sg_point) points = PointArray.from_geopandas(gp_points)[offset:] # Test PointArray.intersect result = points.intersects(point) np.testing.assert_equal(result, expected) # Test PointArray.intersects with inds inds = np.flipud(np.arange(0, len(points))) result = points.intersects(point, inds) np.testing.assert_equal(result, np.flipud(expected)) @given(st_point_array(), st_multipoint_array(min_size=1, max_size=1)) @hyp_settings def test_points_intersects_multipoint(gp_points, gp_multipoint): # Get scalar Point sg_multipoint = gp_multipoint[0] if len(gp_points) > 0: # Add gp_point to gp_multipoints so we know something will intersect gp_points = from_shapely(list(gp_points) + [gp_multipoint[0][-1]]) # Compute expected intersection expected = gp_points.intersects(sg_multipoint) # Create spatialpandas PointArray multipoint = MultiPoint.from_shapely(sg_multipoint) points = PointArray.from_geopandas(gp_points) points_series = GeoSeries(points, index=np.arange(10, 10 + len(points))) # Test Point.intersects result = np.array([ point_el.intersects(multipoint) for point_el in points ]) np.testing.assert_equal(result, expected) # Test PointArray.intersect result = points.intersects(multipoint) np.testing.assert_equal(result, expected) # Test PointArray.intersects with inds inds = np.flipud(np.arange(0, len(points))) result = points.intersects(multipoint, inds) np.testing.assert_equal(result, np.flipud(expected)) # Test GeoSeries.intersects pd.testing.assert_series_equal( points_series.intersects(multipoint), pd.Series(expected, index=points_series.index) ) @given(st_point_array(), st_line_array(min_size=1, max_size=1)) @example( from_shapely([ sg.Point([0.25, 0.25]), # on line sg.Point([1, 1]), # on vertex sg.Point([1.01, 1.01]) # on ray, just past vertex ]), from_shapely([sg.LineString([(0, 0), (1, 1), (2, 0)])]), ) @hyp_settings def test_points_intersects_line(gp_points, gp_line): # Get scalar Line sg_line = gp_line[0] # Compute expected intersection expected = gp_points.intersects(sg_line) # Create spatialpandas objects line = Line.from_shapely(sg_line) points = PointArray.from_geopandas(gp_points) points_series = GeoSeries(points, index=np.arange(10, 10 + len(points))) # Test Point.intersects result = np.array([ point_el.intersects(line) for point_el in points ]) np.testing.assert_equal(result, expected) # Test PointArray.intersect result = points.intersects(line) np.testing.assert_equal(result, expected) # Test PointArray.intersects with inds inds = np.flipud(np.arange(0, len(points))) result = points.intersects(line, inds) np.testing.assert_equal(result, np.flipud(expected)) # Test GeoSeries.intersects pd.testing.assert_series_equal( points_series.intersects(line), pd.Series(expected, index=points_series.index) ) @given(st_point_array(), st_line_array(min_size=1, max_size=1)) @example( from_shapely([ sg.Point([0.25, 0.25]), # on line sg.Point([1, 1]), # on vertex sg.Point([1.01, 1.01]) # on ray, just past vertex ]), from_shapely([sg.MultiLineString([ [(1, 0.5), (2, 0)], [(0, 0), (1, 1)], ])]) ) @hyp_settings def test_points_intersects_multiline(gp_points, gp_multiline): # Get scalar MultiLine sg_multiline = gp_multiline[0] # Compute expected intersection expected = gp_points.intersects(sg_multiline) # Create spatialpandas objects multiline = MultiLine.from_shapely(sg_multiline) points = PointArray.from_geopandas(gp_points) points_series = GeoSeries(points, index=np.arange(10, 10 + len(points))) # Test Point.intersects result = np.array([ point_el.intersects(multiline) for point_el in points ]) np.testing.assert_equal(result, expected) # Test PointArray.intersect result = points.intersects(multiline) np.testing.assert_equal(result, expected) # Test PointArray.intersects with inds inds = np.flipud(np.arange(0, len(points))) result = points.intersects(multiline, inds) np.testing.assert_equal(result, np.flipud(expected)) # Test GeoSeries.intersects pd.testing.assert_series_equal( points_series.intersects(multiline),
pd.Series(expected, index=points_series.index)
pandas.Series
import glob import math import os import sys import warnings from decimal import Decimal import numpy as np import pandas as pd import pytest from packaging.version import parse as parse_version import dask import dask.dataframe as dd import dask.multiprocessing from dask.blockwise import Blockwise, optimize_blockwise from dask.dataframe._compat import PANDAS_GT_110, PANDAS_GT_121, PANDAS_GT_130 from dask.dataframe.io.parquet.utils import _parse_pandas_metadata from dask.dataframe.optimize import optimize_dataframe_getitem from dask.dataframe.utils import assert_eq from dask.layers import DataFrameIOLayer from dask.utils import natural_sort_key from dask.utils_test import hlg_layer try: import fastparquet except ImportError: fastparquet = False fastparquet_version = parse_version("0") else: fastparquet_version = parse_version(fastparquet.__version__) try: import pyarrow as pa except ImportError: pa = False pa_version = parse_version("0") else: pa_version = parse_version(pa.__version__) try: import pyarrow.parquet as pq except ImportError: pq = False SKIP_FASTPARQUET = not fastparquet FASTPARQUET_MARK = pytest.mark.skipif(SKIP_FASTPARQUET, reason="fastparquet not found") if sys.platform == "win32" and pa and pa_version == parse_version("2.0.0"): SKIP_PYARROW = True SKIP_PYARROW_REASON = ( "skipping pyarrow 2.0.0 on windows: " "https://github.com/dask/dask/issues/6093" "|https://github.com/dask/dask/issues/6754" ) else: SKIP_PYARROW = not pq SKIP_PYARROW_REASON = "pyarrow not found" PYARROW_MARK = pytest.mark.skipif(SKIP_PYARROW, reason=SKIP_PYARROW_REASON) # "Legacy" and "Dataset"-specific MARK definitions SKIP_PYARROW_LE = SKIP_PYARROW SKIP_PYARROW_LE_REASON = "pyarrow not found" SKIP_PYARROW_DS = SKIP_PYARROW SKIP_PYARROW_DS_REASON = "pyarrow not found" if not SKIP_PYARROW_LE: # NOTE: We should use PYARROW_LE_MARK to skip # pyarrow-legacy tests once pyarrow officially # removes ParquetDataset support in the future. PYARROW_LE_MARK = pytest.mark.filterwarnings( "ignore::DeprecationWarning", "ignore::FutureWarning", ) else: PYARROW_LE_MARK = pytest.mark.skipif(SKIP_PYARROW_LE, reason=SKIP_PYARROW_LE_REASON) PYARROW_DS_MARK = pytest.mark.skipif(SKIP_PYARROW_DS, reason=SKIP_PYARROW_DS_REASON) ANY_ENGINE_MARK = pytest.mark.skipif( SKIP_FASTPARQUET and SKIP_PYARROW, reason="No parquet engine (fastparquet or pyarrow) found", ) nrows = 40 npartitions = 15 df = pd.DataFrame( { "x": [i * 7 % 5 for i in range(nrows)], # Not sorted "y": [i * 2.5 for i in range(nrows)], # Sorted }, index=pd.Index([10 * i for i in range(nrows)], name="myindex"), ) ddf = dd.from_pandas(df, npartitions=npartitions) @pytest.fixture( params=[ pytest.param("fastparquet", marks=FASTPARQUET_MARK), pytest.param("pyarrow-legacy", marks=PYARROW_LE_MARK), pytest.param("pyarrow-dataset", marks=PYARROW_DS_MARK), ] ) def engine(request): return request.param def write_read_engines(**kwargs): """Product of both engines for write/read: To add custom marks, pass keyword of the form: `mark_writer_reader=reason`, or `mark_engine=reason` to apply to all parameters with that engine.""" backends = {"pyarrow-dataset", "pyarrow-legacy", "fastparquet"} # Skip if uninstalled skip_marks = { "fastparquet": FASTPARQUET_MARK, "pyarrow-legacy": PYARROW_LE_MARK, "pyarrow-dataset": PYARROW_DS_MARK, } marks = {(w, r): [skip_marks[w], skip_marks[r]] for w in backends for r in backends} # Custom marks for kw, val in kwargs.items(): kind, rest = kw.split("_", 1) key = tuple(rest.split("_")) if kind not in ("xfail", "skip") or len(key) > 2 or set(key) - backends: raise ValueError("unknown keyword %r" % kw) val = getattr(pytest.mark, kind)(reason=val) if len(key) == 2: marks[key].append(val) else: for k in marks: if key in k: marks[k].append(val) return pytest.mark.parametrize( ("write_engine", "read_engine"), [pytest.param(*k, marks=tuple(v)) for (k, v) in sorted(marks.items())], ) pyarrow_fastparquet_msg = "pyarrow schema and pandas metadata may disagree" write_read_engines_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, } ) if ( fastparquet and fastparquet_version < parse_version("0.5") and PANDAS_GT_110 and not PANDAS_GT_121 ): # a regression in pandas 1.1.x / 1.2.0 caused a failure in writing partitioned # categorical columns when using fastparquet 0.4.x, but this was (accidentally) # fixed in fastparquet 0.5.0 fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines( **{ "xfail_pyarrow-dataset_fastparquet": pyarrow_fastparquet_msg, "xfail_pyarrow-legacy_fastparquet": pyarrow_fastparquet_msg, "xfail_fastparquet_fastparquet": fp_pandas_msg, "xfail_fastparquet_pyarrow-dataset": fp_pandas_msg, "xfail_fastparquet_pyarrow-legacy": fp_pandas_msg, } ) else: fp_pandas_msg = "pandas with fastparquet engine does not preserve index" fp_pandas_xfail = write_read_engines() @PYARROW_MARK def test_pyarrow_getengine(): from dask.dataframe.io.parquet.arrow import ArrowDatasetEngine from dask.dataframe.io.parquet.core import get_engine # Check that the default engine for "pyarrow"/"arrow" # is the `pyarrow.dataset`-based engine assert get_engine("pyarrow") == ArrowDatasetEngine assert get_engine("arrow") == ArrowDatasetEngine if SKIP_PYARROW_LE: with pytest.warns(FutureWarning): get_engine("pyarrow-legacy") @write_read_engines() def test_local(tmpdir, write_engine, read_engine): tmp = str(tmpdir) data = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df = dd.from_pandas(data, chunksize=500) df.to_parquet(tmp, write_index=False, engine=write_engine) files = os.listdir(tmp) assert "_common_metadata" in files assert "_metadata" in files assert "part.0.parquet" in files df2 = dd.read_parquet(tmp, index=False, engine=read_engine) assert len(df2.divisions) > 1 out = df2.compute(scheduler="sync").reset_index() for column in df.columns: assert (data[column] == out[column]).all() @pytest.mark.parametrize("index", [False, True]) @write_read_engines_xfail def test_empty(tmpdir, write_engine, read_engine, index): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]})[:0] if index: df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, write_index=index, engine=write_engine) read_df = dd.read_parquet(fn, engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_simple(tmpdir, write_engine, read_engine): fn = str(tmpdir) if write_engine != "fastparquet": df = pd.DataFrame({"a": [b"a", b"b", b"b"], "b": [4, 5, 6]}) else: df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, engine=write_engine) read_df = dd.read_parquet(fn, index=["a"], engine=read_engine) assert_eq(ddf, read_df) @write_read_engines() def test_delayed_no_metadata(tmpdir, write_engine, read_engine): fn = str(tmpdir) df = pd.DataFrame({"a": ["a", "b", "b"], "b": [4, 5, 6]}) df.set_index("a", inplace=True, drop=True) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet( fn, engine=write_engine, compute=False, write_metadata_file=False ).compute() files = os.listdir(fn) assert "_metadata" not in files # Fastparquet doesn't currently handle a directory without "_metadata" read_df = dd.read_parquet( os.path.join(fn, "*.parquet"), index=["a"], engine=read_engine, gather_statistics=True, ) assert_eq(ddf, read_df) @write_read_engines() def test_read_glob(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, engine=write_engine) if os.path.exists(os.path.join(tmp_path, "_metadata")): os.unlink(os.path.join(tmp_path, "_metadata")) files = os.listdir(tmp_path) assert "_metadata" not in files ddf2 = dd.read_parquet( os.path.join(tmp_path, "*.parquet"), engine=read_engine, index="myindex", # Must specify index without _metadata gather_statistics=True, ) assert_eq(ddf, ddf2) @write_read_engines() def test_gather_statistics_false(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) ddf.to_parquet(tmp_path, write_index=False, engine=write_engine) ddf2 = dd.read_parquet( tmp_path, engine=read_engine, index=False, gather_statistics=False, ) assert_eq(ddf, ddf2, check_index=False, check_divisions=False) @write_read_engines() def test_read_list(tmpdir, write_engine, read_engine): if write_engine == read_engine == "fastparquet" and os.name == "nt": # fastparquet or dask is not normalizing filepaths correctly on # windows. pytest.skip("filepath bug.") tmpdir = str(tmpdir) ddf.to_parquet(tmpdir, engine=write_engine) files = sorted( ( os.path.join(tmpdir, f) for f in os.listdir(tmpdir) if not f.endswith("_metadata") ), key=natural_sort_key, ) ddf2 = dd.read_parquet( files, engine=read_engine, index="myindex", gather_statistics=True ) assert_eq(ddf, ddf2) @write_read_engines() def test_columns_auto_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) # XFAIL, auto index selection no longer supported (for simplicity) # ### Empty columns ### # With divisions if supported assert_eq(dd.read_parquet(fn, columns=[], engine=read_engine), ddf[[]]) # No divisions assert_eq( dd.read_parquet(fn, columns=[], engine=read_engine, gather_statistics=False), ddf[[]].clear_divisions(), check_divisions=True, ) # ### Single column, auto select index ### # With divisions if supported assert_eq(dd.read_parquet(fn, columns=["x"], engine=read_engine), ddf[["x"]]) # No divisions assert_eq( dd.read_parquet(fn, columns=["x"], engine=read_engine, gather_statistics=False), ddf[["x"]].clear_divisions(), check_divisions=True, ) @write_read_engines() def test_columns_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) # With Index # ---------- # ### Empty columns, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, columns=[], engine=read_engine, index="myindex"), ddf[[]] ) # No divisions assert_eq( dd.read_parquet( fn, columns=[], engine=read_engine, index="myindex", gather_statistics=False ), ddf[[]].clear_divisions(), check_divisions=True, ) # ### Single column, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, index="myindex", columns=["x"], engine=read_engine), ddf[["x"]], ) # No divisions assert_eq( dd.read_parquet( fn, index="myindex", columns=["x"], engine=read_engine, gather_statistics=False, ), ddf[["x"]].clear_divisions(), check_divisions=True, ) # ### Two columns, specify index ### # With divisions if supported assert_eq( dd.read_parquet(fn, index="myindex", columns=["x", "y"], engine=read_engine), ddf, ) # No divisions assert_eq( dd.read_parquet( fn, index="myindex", columns=["x", "y"], engine=read_engine, gather_statistics=False, ), ddf.clear_divisions(), check_divisions=True, ) def test_nonsense_column(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) with pytest.raises((ValueError, KeyError)): dd.read_parquet(fn, columns=["nonesense"], engine=engine) with pytest.raises((Exception, KeyError)): dd.read_parquet(fn, columns=["nonesense"] + list(ddf.columns), engine=engine) @write_read_engines() def test_columns_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine) ddf2 = ddf.reset_index() # No Index # -------- # All columns, none as index assert_eq( dd.read_parquet(fn, index=False, engine=read_engine, gather_statistics=True), ddf2, check_index=False, check_divisions=True, ) # Two columns, none as index assert_eq( dd.read_parquet( fn, index=False, columns=["x", "y"], engine=read_engine, gather_statistics=True, ), ddf2[["x", "y"]], check_index=False, check_divisions=True, ) # One column and one index, all as columns assert_eq( dd.read_parquet( fn, index=False, columns=["myindex", "x"], engine=read_engine, gather_statistics=True, ), ddf2[["myindex", "x"]], check_index=False, check_divisions=True, ) @write_read_engines() def test_gather_statistics_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=write_engine, write_index=False) df = dd.read_parquet(fn, engine=read_engine, index=False) assert df.index.name is None assert not df.known_divisions def test_columns_index_with_multi_index(tmpdir, engine): fn = os.path.join(str(tmpdir), "test.parquet") index = pd.MultiIndex.from_arrays( [np.arange(10), np.arange(10) + 1], names=["x0", "x1"] ) df = pd.DataFrame(np.random.randn(10, 2), columns=["a", "b"], index=index) df2 = df.reset_index(drop=False) if engine == "fastparquet": fastparquet.write(fn, df.reset_index(), write_index=False) else: pq.write_table(pa.Table.from_pandas(df.reset_index(), preserve_index=False), fn) ddf = dd.read_parquet(fn, engine=engine, index=index.names) assert_eq(ddf, df) d = dd.read_parquet(fn, columns="a", engine=engine, index=index.names) assert_eq(d, df["a"]) d = dd.read_parquet(fn, index=["a", "b"], columns=["x0", "x1"], engine=engine) assert_eq(d, df2.set_index(["a", "b"])[["x0", "x1"]]) # Just index d = dd.read_parquet(fn, index=False, engine=engine) assert_eq(d, df2) d = dd.read_parquet(fn, columns=["b"], index=["a"], engine=engine) assert_eq(d, df2.set_index("a")[["b"]]) d = dd.read_parquet(fn, columns=["a", "b"], index=["x0"], engine=engine) assert_eq(d, df2.set_index("x0")[["a", "b"]]) # Just columns d = dd.read_parquet(fn, columns=["x0", "a"], index=["x1"], engine=engine) assert_eq(d, df2.set_index("x1")[["x0", "a"]]) # Both index and columns d = dd.read_parquet(fn, index=False, columns=["x0", "b"], engine=engine) assert_eq(d, df2[["x0", "b"]]) for index in ["x1", "b"]: d = dd.read_parquet(fn, index=index, columns=["x0", "a"], engine=engine) assert_eq(d, df2.set_index(index)[["x0", "a"]]) # Columns and index intersect for index in ["a", "x0"]: with pytest.raises(ValueError): d = dd.read_parquet(fn, index=index, columns=["x0", "a"], engine=engine) # Series output for ind, col, sol_df in [ ("x1", "x0", df2.set_index("x1")), (False, "b", df2), (False, "x0", df2[["x0"]]), ("a", "x0", df2.set_index("a")[["x0"]]), ("a", "b", df2.set_index("a")), ]: d = dd.read_parquet(fn, index=ind, columns=col, engine=engine) assert_eq(d, sol_df[col]) @write_read_engines() def test_no_index(tmpdir, write_engine, read_engine): fn = str(tmpdir) df = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6]}) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(fn, engine=write_engine) ddf2 = dd.read_parquet(fn, engine=read_engine) assert_eq(df, ddf2, check_index=False) def test_read_series(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, columns=["x"], index="myindex", engine=engine) assert_eq(ddf[["x"]], ddf2) ddf2 = dd.read_parquet(fn, columns="x", index="myindex", engine=engine) assert_eq(ddf.x, ddf2) def test_names(tmpdir, engine): fn = str(tmpdir) ddf.to_parquet(fn, engine=engine) def read(fn, **kwargs): return dd.read_parquet(fn, engine=engine, **kwargs) assert set(read(fn).dask) == set(read(fn).dask) assert set(read(fn).dask) != set(read(fn, columns=["x"]).dask) assert set(read(fn, columns=("x",)).dask) == set(read(fn, columns=["x"]).dask) @write_read_engines() def test_roundtrip_from_pandas(tmpdir, write_engine, read_engine): fn = str(tmpdir.join("test.parquet")) dfp = df.copy() dfp.index.name = "index" dfp.to_parquet( fn, engine="pyarrow" if write_engine.startswith("pyarrow") else "fastparquet" ) ddf = dd.read_parquet(fn, index="index", engine=read_engine) assert_eq(dfp, ddf) @write_read_engines() def test_categorical(tmpdir, write_engine, read_engine): tmp = str(tmpdir) df = pd.DataFrame({"x": ["a", "b", "c"] * 100}, dtype="category") ddf = dd.from_pandas(df, npartitions=3) dd.to_parquet(ddf, tmp, engine=write_engine) ddf2 = dd.read_parquet(tmp, categories="x", engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] ddf2 = dd.read_parquet(tmp, categories=["x"], engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] # autocat if read_engine == "fastparquet": ddf2 = dd.read_parquet(tmp, engine=read_engine) assert ddf2.compute().x.cat.categories.tolist() == ["a", "b", "c"] ddf2.loc[:1000].compute() assert assert_eq(df, ddf2) # dereference cats ddf2 = dd.read_parquet(tmp, categories=[], engine=read_engine) ddf2.loc[:1000].compute() assert (df.x == ddf2.x.compute()).all() def test_append(tmpdir, engine): """Test that appended parquet equal to the original one.""" tmp = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df.index.name = "index" half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp, engine=engine) ddf2.to_parquet(tmp, append=True, engine=engine) ddf3 = dd.read_parquet(tmp, engine=engine) assert_eq(df, ddf3) def test_append_create(tmpdir, engine): """Test that appended parquet equal to the original one.""" tmp_path = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) df.index.name = "index" half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp_path, append=True, engine=engine) ddf2.to_parquet(tmp_path, append=True, engine=engine) ddf3 = dd.read_parquet(tmp_path, engine=engine) assert_eq(df, ddf3) def test_append_with_partition(tmpdir, engine): tmp = str(tmpdir) df0 = pd.DataFrame( { "lat": np.arange(0, 10, dtype="int64"), "lon": np.arange(10, 20, dtype="int64"), "value": np.arange(100, 110, dtype="int64"), } ) df0.index.name = "index" df1 = pd.DataFrame( { "lat": np.arange(10, 20, dtype="int64"), "lon": np.arange(10, 20, dtype="int64"), "value": np.arange(120, 130, dtype="int64"), } ) df1.index.name = "index" # Check that nullable dtypes work # (see: https://github.com/dask/dask/issues/8373) df0["lat"] = df0["lat"].astype("Int64") df1["lat"].iloc[0] = np.nan df1["lat"] = df1["lat"].astype("Int64") dd_df0 = dd.from_pandas(df0, npartitions=1) dd_df1 = dd.from_pandas(df1, npartitions=1) dd.to_parquet(dd_df0, tmp, partition_on=["lon"], engine=engine) dd.to_parquet( dd_df1, tmp, partition_on=["lon"], append=True, ignore_divisions=True, engine=engine, ) out = dd.read_parquet( tmp, engine=engine, index="index", gather_statistics=True ).compute() # convert categorical to plain int just to pass assert out["lon"] = out.lon.astype("int64") # sort required since partitioning breaks index order assert_eq( out.sort_values("value"), pd.concat([df0, df1])[out.columns], check_index=False ) def test_partition_on_cats(tmpdir, engine): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b"], engine=engine) df = dd.read_parquet(tmp, engine=engine) assert set(df.b.cat.categories) == {"x", "y", "z"} @PYARROW_MARK @pytest.mark.parametrize("meta", [False, True]) @pytest.mark.parametrize("stats", [False, True]) def test_partition_on_cats_pyarrow(tmpdir, stats, meta): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b"], engine="pyarrow", write_metadata_file=meta) df = dd.read_parquet(tmp, engine="pyarrow", gather_statistics=stats) assert set(df.b.cat.categories) == {"x", "y", "z"} def test_partition_on_cats_2(tmpdir, engine): tmp = str(tmpdir) d = pd.DataFrame( { "a": np.random.rand(50), "b": np.random.choice(["x", "y", "z"], size=50), "c": np.random.choice(["x", "y", "z"], size=50), } ) d = dd.from_pandas(d, 2) d.to_parquet(tmp, partition_on=["b", "c"], engine=engine) df = dd.read_parquet(tmp, engine=engine) assert set(df.b.cat.categories) == {"x", "y", "z"} assert set(df.c.cat.categories) == {"x", "y", "z"} df = dd.read_parquet(tmp, columns=["a", "c"], engine=engine) assert set(df.c.cat.categories) == {"x", "y", "z"} assert "b" not in df.columns assert_eq(df, df.compute()) df = dd.read_parquet(tmp, index="c", engine=engine) assert set(df.index.categories) == {"x", "y", "z"} assert "c" not in df.columns # series df = dd.read_parquet(tmp, columns="b", engine=engine) assert set(df.cat.categories) == {"x", "y", "z"} def test_append_wo_index(tmpdir, engine): """Test append with write_index=False.""" tmp = str(tmpdir.join("tmp1.parquet")) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half:], chunksize=100) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, write_index=False, append=True, engine=engine) assert "Appended columns" in str(excinfo.value) tmp = str(tmpdir.join("tmp2.parquet")) ddf1.to_parquet(tmp, write_index=False, engine=engine) ddf2.to_parquet(tmp, write_index=False, append=True, engine=engine) ddf3 = dd.read_parquet(tmp, index="f", engine=engine) assert_eq(df.set_index("f"), ddf3) def test_append_overlapping_divisions(tmpdir, engine): """Test raising of error when divisions overlapping.""" tmp = str(tmpdir) df = pd.DataFrame( { "i32": np.arange(1000, dtype=np.int32), "i64": np.arange(1000, dtype=np.int64), "f": np.arange(1000, dtype=np.float64), "bhello": np.random.choice(["hello", "yo", "people"], size=1000).astype( "O" ), } ) half = len(df) // 2 ddf1 = dd.from_pandas(df.iloc[:half], chunksize=100) ddf2 = dd.from_pandas(df.iloc[half - 10 :], chunksize=100) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, engine=engine, append=True) assert "Appended divisions" in str(excinfo.value) ddf2.to_parquet(tmp, engine=engine, append=True, ignore_divisions=True) def test_append_different_columns(tmpdir, engine): """Test raising of error when non equal columns.""" tmp = str(tmpdir) df1 = pd.DataFrame({"i32": np.arange(100, dtype=np.int32)}) df2 = pd.DataFrame({"i64": np.arange(100, dtype=np.int64)}) df3 = pd.DataFrame({"i32": np.arange(100, dtype=np.int64)}) ddf1 = dd.from_pandas(df1, chunksize=2) ddf2 = dd.from_pandas(df2, chunksize=2) ddf3 = dd.from_pandas(df3, chunksize=2) ddf1.to_parquet(tmp, engine=engine) with pytest.raises(ValueError) as excinfo: ddf2.to_parquet(tmp, engine=engine, append=True) assert "Appended columns" in str(excinfo.value) with pytest.raises(ValueError) as excinfo: ddf3.to_parquet(tmp, engine=engine, append=True) assert "Appended dtypes" in str(excinfo.value) def test_append_dict_column(tmpdir, engine): # See: https://github.com/dask/dask/issues/7492 if engine == "fastparquet": pytest.xfail("Fastparquet engine is missing dict-column support") elif pa_version < parse_version("1.0.1"): pytest.skip("PyArrow 1.0.1+ required for dict-column support.") tmp = str(tmpdir) dts = pd.date_range("2020-01-01", "2021-01-01") df = pd.DataFrame( {"value": [{"x": x} for x in range(len(dts))]}, index=dts, ) ddf1 = dd.from_pandas(df, npartitions=1) # Write ddf1 to tmp, and then append it again ddf1.to_parquet(tmp, append=True, engine=engine) ddf1.to_parquet(tmp, append=True, engine=engine, ignore_divisions=True) # Read back all data (ddf1 + ddf1) ddf2 = dd.read_parquet(tmp, engine=engine) # Check computed result expect = pd.concat([df, df]) result = ddf2.compute() assert_eq(expect, result) @write_read_engines_xfail def test_ordering(tmpdir, write_engine, read_engine): tmp = str(tmpdir) df = pd.DataFrame( {"a": [1, 2, 3], "b": [10, 20, 30], "c": [100, 200, 300]}, index=pd.Index([-1, -2, -3], name="myindex"), columns=["c", "a", "b"], ) ddf = dd.from_pandas(df, npartitions=2) dd.to_parquet(ddf, tmp, engine=write_engine) if read_engine == "fastparquet": pf = fastparquet.ParquetFile(tmp) assert pf.columns == ["myindex", "c", "a", "b"] ddf2 = dd.read_parquet(tmp, index="myindex", engine=read_engine) assert_eq(ddf, ddf2, check_divisions=False) def test_read_parquet_custom_columns(tmpdir, engine): tmp = str(tmpdir) data = pd.DataFrame( {"i32": np.arange(1000, dtype=np.int32), "f": np.arange(1000, dtype=np.float64)} ) df = dd.from_pandas(data, chunksize=50) df.to_parquet(tmp, engine=engine) df2 = dd.read_parquet(tmp, columns=["i32", "f"], engine=engine) assert_eq(df[["i32", "f"]], df2, check_index=False) fns = glob.glob(os.path.join(tmp, "*.parquet")) df2 = dd.read_parquet(fns, columns=["i32"], engine=engine).compute() df2.sort_values("i32", inplace=True) assert_eq(df[["i32"]], df2, check_index=False, check_divisions=False) df3 = dd.read_parquet(tmp, columns=["f", "i32"], engine=engine) assert_eq(df[["f", "i32"]], df3, check_index=False) @pytest.mark.parametrize( "df,write_kwargs,read_kwargs", [ (pd.DataFrame({"x": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": ["c", "a", "b"]}), {}, {}), (pd.DataFrame({"x": ["cc", "a", "bbb"]}), {}, {}), (pd.DataFrame({"x": [b"a", b"b", b"c"]}), {"object_encoding": "bytes"}, {}), ( pd.DataFrame({"x": pd.Categorical(["a", "b", "a"])}), {}, {"categories": ["x"]}, ), (pd.DataFrame({"x": pd.Categorical([1, 2, 1])}), {}, {"categories": ["x"]}), (pd.DataFrame({"x": list(map(pd.Timestamp, [3000, 2000, 1000]))}), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("M8[ns]"), {}, {}), pytest.param( pd.DataFrame({"x": [3, 2, 1]}).astype("M8[ns]"), {}, {}, ), (pd.DataFrame({"x": [3, 2, 1]}).astype("M8[us]"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("M8[ms]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns, UTC]"), {}, {}), (pd.DataFrame({"x": [3000, 2000, 1000]}).astype("datetime64[ns, CET]"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("uint16"), {}, {}), (pd.DataFrame({"x": [3, 2, 1]}).astype("float32"), {}, {}), (pd.DataFrame({"x": [3, 1, 2]}, index=[3, 2, 1]), {}, {}), (pd.DataFrame({"x": [3, 1, 5]}, index=pd.Index([1, 2, 3], name="foo")), {}, {}), (pd.DataFrame({"x": [1, 2, 3], "y": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": [1, 2, 3], "y": [3, 2, 1]}, columns=["y", "x"]), {}, {}), (pd.DataFrame({"0": [3, 2, 1]}), {}, {}), (pd.DataFrame({"x": [3, 2, None]}), {}, {}), (pd.DataFrame({"-": [3.0, 2.0, None]}), {}, {}), (pd.DataFrame({".": [3.0, 2.0, None]}), {}, {}), (pd.DataFrame({" ": [3.0, 2.0, None]}), {}, {}), ], ) def test_roundtrip(tmpdir, df, write_kwargs, read_kwargs, engine): if "x" in df and df.x.dtype == "M8[ns]" and "arrow" in engine: pytest.xfail(reason="Parquet pyarrow v1 doesn't support nanosecond precision") if ( "x" in df and df.x.dtype == "M8[ns]" and engine == "fastparquet" and fastparquet_version <= parse_version("0.6.3") ): pytest.xfail(reason="fastparquet doesn't support nanosecond precision yet") if ( PANDAS_GT_130 and read_kwargs.get("categories", None) and engine == "fastparquet" and fastparquet_version <= parse_version("0.6.3") ): pytest.xfail("https://github.com/dask/fastparquet/issues/577") tmp = str(tmpdir) if df.index.name is None: df.index.name = "index" ddf = dd.from_pandas(df, npartitions=2) oe = write_kwargs.pop("object_encoding", None) if oe and engine == "fastparquet": dd.to_parquet(ddf, tmp, engine=engine, object_encoding=oe, **write_kwargs) else: dd.to_parquet(ddf, tmp, engine=engine, **write_kwargs) ddf2 = dd.read_parquet(tmp, index=df.index.name, engine=engine, **read_kwargs) if str(ddf2.dtypes.get("x")) == "UInt16" and engine == "fastparquet": # fastparquet choooses to use masked type to be able to get true repr of # 16-bit int assert_eq(ddf.astype("UInt16"), ddf2) else: assert_eq(ddf, ddf2) def test_categories(tmpdir, engine): fn = str(tmpdir) df = pd.DataFrame({"x": [1, 2, 3, 4, 5], "y": list("caaab")}) ddf = dd.from_pandas(df, npartitions=2) ddf["y"] = ddf.y.astype("category") ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, categories=["y"], engine=engine) # Shouldn't need to specify categories explicitly ddf3 = dd.read_parquet(fn, engine=engine) assert_eq(ddf3, ddf2) with pytest.raises(NotImplementedError): ddf2.y.cat.categories assert set(ddf2.y.compute().cat.categories) == {"a", "b", "c"} cats_set = ddf2.map_partitions(lambda x: x.y.cat.categories.sort_values()).compute() assert cats_set.tolist() == ["a", "c", "a", "b"] if engine == "fastparquet": assert_eq(ddf.y, ddf2.y, check_names=False) with pytest.raises(TypeError): # attempt to load as category that which is not so encoded ddf2 = dd.read_parquet(fn, categories=["x"], engine=engine).compute() with pytest.raises((ValueError, FutureWarning)): # attempt to load as category unknown column ddf2 = dd.read_parquet(fn, categories=["foo"], engine=engine) def test_categories_unnamed_index(tmpdir, engine): # Check that we can handle an unnamed categorical index # https://github.com/dask/dask/issues/6885 tmpdir = str(tmpdir) df = pd.DataFrame( data={"A": [1, 2, 3], "B": ["a", "a", "b"]}, index=["x", "y", "y"] ) ddf = dd.from_pandas(df, npartitions=1) ddf = ddf.categorize(columns=["B"]) ddf.to_parquet(tmpdir, engine=engine) ddf2 = dd.read_parquet(tmpdir, engine=engine) assert_eq(ddf.index, ddf2.index, check_divisions=False) def test_empty_partition(tmpdir, engine): fn = str(tmpdir) df = pd.DataFrame({"a": range(10), "b": range(10)}) ddf = dd.from_pandas(df, npartitions=5) ddf2 = ddf[ddf.a <= 5] ddf2.to_parquet(fn, engine=engine) ddf3 = dd.read_parquet(fn, engine=engine) assert ddf3.npartitions < 5 sol = ddf2.compute() assert_eq(sol, ddf3, check_names=False, check_index=False) def test_timestamp_index(tmpdir, engine): fn = str(tmpdir) df = dd._compat.makeTimeDataFrame() df.index.name = "foo" ddf = dd.from_pandas(df, npartitions=5) ddf.to_parquet(fn, engine=engine) ddf2 = dd.read_parquet(fn, engine=engine) assert_eq(ddf, ddf2) @FASTPARQUET_MARK @PYARROW_MARK def test_to_parquet_default_writes_nulls(tmpdir): fn = str(tmpdir.join("test.parquet")) df = pd.DataFrame({"c1": [1.0, np.nan, 2, np.nan, 3]}) ddf = dd.from_pandas(df, npartitions=1) ddf.to_parquet(fn) table = pq.read_table(fn) assert table[1].null_count == 2 @PYARROW_LE_MARK def test_to_parquet_pyarrow_w_inconsistent_schema_by_partition_fails_by_default(tmpdir): df = pd.DataFrame( {"partition_column": [0, 0, 1, 1], "strings": ["a", "b", None, None]} ) ddf = dd.from_pandas(df, npartitions=2) # In order to allow pyarrow to write an inconsistent schema, # we need to avoid writing the _metadata file (will fail >0.17.1) # and need to avoid schema inference (i.e. use `schema=None`) ddf.to_parquet( str(tmpdir), engine="pyarrow", partition_on=["partition_column"], write_metadata_file=False, schema=None, ) # Test that schema is not validated by default # (shouldn't raise error with legacy dataset) dd.read_parquet( str(tmpdir), engine="pyarrow-legacy", gather_statistics=False, ).compute() # Test that read fails when validate_schema=True # Note: This fails differently for pyarrow.dataset api with pytest.raises(ValueError) as e_info: dd.read_parquet( str(tmpdir), engine="pyarrow-legacy", gather_statistics=False, dataset={"validate_schema": True}, ).compute() assert e_info.message.contains("ValueError: Schema in partition") assert e_info.message.contains("was different") @PYARROW_MARK def test_to_parquet_pyarrow_w_inconsistent_schema_by_partition_succeeds_w_manual_schema( tmpdir, ): # Data types to test: strings, arrays, ints, timezone aware timestamps in_arrays = [[0, 1, 2], [3, 4], np.nan, np.nan] out_arrays = [[0, 1, 2], [3, 4], None, None] in_strings = ["a", "b", np.nan, np.nan] out_strings = ["a", "b", None, None] tstamp = pd.Timestamp(1513393355, unit="s") in_tstamps = [tstamp, tstamp, pd.NaT, pd.NaT] out_tstamps = [ # Timestamps come out in numpy.datetime64 format tstamp.to_datetime64(), tstamp.to_datetime64(), np.datetime64("NaT"), np.datetime64("NaT"), ] timezone = "US/Eastern" tz_tstamp = pd.Timestamp(1513393355, unit="s", tz=timezone) in_tz_tstamps = [tz_tstamp, tz_tstamp, pd.NaT, pd.NaT] out_tz_tstamps = [ # Timezones do not make it through a write-read cycle. tz_tstamp.tz_convert(None).to_datetime64(), tz_tstamp.tz_convert(None).to_datetime64(), np.datetime64("NaT"), np.datetime64("NaT"), ] df = pd.DataFrame( { "partition_column": [0, 0, 1, 1], "arrays": in_arrays, "strings": in_strings, "tstamps": in_tstamps, "tz_tstamps": in_tz_tstamps, } ) ddf = dd.from_pandas(df, npartitions=2) schema = pa.schema( [ ("arrays", pa.list_(pa.int64())), ("strings", pa.string()), ("tstamps", pa.timestamp("ns")), ("tz_tstamps", pa.timestamp("ns", timezone)), ("partition_column", pa.int64()), ] ) ddf.to_parquet( str(tmpdir), engine="pyarrow", partition_on="partition_column", schema=schema ) ddf_after_write = ( dd.read_parquet(str(tmpdir), engine="pyarrow", gather_statistics=False) .compute() .reset_index(drop=True) ) # Check array support arrays_after_write = ddf_after_write.arrays.values for i in range(len(df)): assert np.array_equal(arrays_after_write[i], out_arrays[i]), type(out_arrays[i]) # Check datetime support tstamps_after_write = ddf_after_write.tstamps.values for i in range(len(df)): # Need to test NaT separately if np.isnat(tstamps_after_write[i]): assert np.isnat(out_tstamps[i]) else: assert tstamps_after_write[i] == out_tstamps[i] # Check timezone aware datetime support tz_tstamps_after_write = ddf_after_write.tz_tstamps.values for i in range(len(df)): # Need to test NaT separately if np.isnat(tz_tstamps_after_write[i]): assert np.isnat(out_tz_tstamps[i]) else: assert tz_tstamps_after_write[i] == out_tz_tstamps[i] # Check string support assert np.array_equal(ddf_after_write.strings.values, out_strings) # Check partition column assert np.array_equal(ddf_after_write.partition_column, df.partition_column) @PYARROW_MARK @pytest.mark.parametrize("index", [False, True]) @pytest.mark.parametrize("schema", ["infer", "complex"]) def test_pyarrow_schema_inference(tmpdir, index, engine, schema): if schema == "complex": schema = {"index": pa.string(), "amount": pa.int64()} tmpdir = str(tmpdir) df = pd.DataFrame( { "index": ["1", "2", "3", "2", "3", "1", "4"], "date": pd.to_datetime( [ "2017-01-01", "2017-01-01", "2017-01-01", "2017-01-02", "2017-01-02", "2017-01-06", "2017-01-09", ] ), "amount": [100, 200, 300, 400, 500, 600, 700], }, index=range(7, 14), ) if index: df = dd.from_pandas(df, npartitions=2).set_index("index") else: df = dd.from_pandas(df, npartitions=2) df.to_parquet(tmpdir, engine="pyarrow", schema=schema) df_out = dd.read_parquet(tmpdir, engine=engine) df_out.compute() if index and engine == "fastparquet": # Fastparquet fails to detect int64 from _metadata df_out["amount"] = df_out["amount"].astype("int64") # Fastparquet not handling divisions for # pyarrow-written dataset with string index assert_eq(df, df_out, check_divisions=False) else: assert_eq(df, df_out) def test_partition_on(tmpdir, engine): tmpdir = str(tmpdir) df = pd.DataFrame( { "a1": np.random.choice(["A", "B", "C"], size=100), "a2": np.random.choice(["X", "Y", "Z"], size=100), "b": np.random.random(size=100), "c": np.random.randint(1, 5, size=100), "d": np.arange(0, 100), } ) d = dd.from_pandas(df, npartitions=2) d.to_parquet(tmpdir, partition_on=["a1", "a2"], engine=engine) # Note #1: Cross-engine functionality is missing # Note #2: The index is not preserved in pyarrow when partition_on is used out = dd.read_parquet( tmpdir, engine=engine, index=False, gather_statistics=False ).compute() for val in df.a1.unique(): assert set(df.d[df.a1 == val]) == set(out.d[out.a1 == val]) # Now specify the columns and allow auto-index detection out = dd.read_parquet(tmpdir, engine=engine, columns=["d", "a2"]).compute() for val in df.a2.unique(): assert set(df.d[df.a2 == val]) == set(out.d[out.a2 == val]) def test_partition_on_duplicates(tmpdir, engine): # https://github.com/dask/dask/issues/6445 tmpdir = str(tmpdir) df = pd.DataFrame( { "a1": np.random.choice(["A", "B", "C"], size=100), "a2": np.random.choice(["X", "Y", "Z"], size=100), "data": np.random.random(size=100), } ) d = dd.from_pandas(df, npartitions=2) for _ in range(2): d.to_parquet(tmpdir, partition_on=["a1", "a2"], engine=engine) out = dd.read_parquet(tmpdir, engine=engine).compute() assert len(df) == len(out) for root, dirs, files in os.walk(tmpdir): for file in files: assert file in ( "part.0.parquet", "part.1.parquet", "_common_metadata", "_metadata", ) @PYARROW_MARK @pytest.mark.parametrize("partition_on", ["aa", ["aa"]]) def test_partition_on_string(tmpdir, partition_on): tmpdir = str(tmpdir) with dask.config.set(scheduler="single-threaded"): tmpdir = str(tmpdir) df = pd.DataFrame( { "aa": np.random.choice(["A", "B", "C"], size=100), "bb": np.random.random(size=100), "cc": np.random.randint(1, 5, size=100), } ) d = dd.from_pandas(df, npartitions=2) d.to_parquet( tmpdir, partition_on=partition_on, write_index=False, engine="pyarrow" ) out = dd.read_parquet( tmpdir, index=False, gather_statistics=False, engine="pyarrow" ) out = out.compute() for val in df.aa.unique(): assert set(df.bb[df.aa == val]) == set(out.bb[out.aa == val]) @write_read_engines() def test_filters_categorical(tmpdir, write_engine, read_engine): tmpdir = str(tmpdir) cats = ["2018-01-01", "2018-01-02", "2018-01-03", "2018-01-04"] dftest = pd.DataFrame( { "dummy": [1, 1, 1, 1], "DatePart": pd.Categorical(cats, categories=cats, ordered=True), } ) ddftest = dd.from_pandas(dftest, npartitions=4).set_index("dummy") ddftest.to_parquet(tmpdir, partition_on="DatePart", engine=write_engine) ddftest_read = dd.read_parquet( tmpdir, index="dummy", engine=read_engine, filters=[(("DatePart", "<=", "2018-01-02"))], ) assert len(ddftest_read) == 2 @write_read_engines() def test_filters(tmpdir, write_engine, read_engine): tmp_path = str(tmpdir) df = pd.DataFrame({"x": range(10), "y": list("aabbccddee")}) ddf = dd.from_pandas(df, npartitions=5) assert ddf.npartitions == 5 ddf.to_parquet(tmp_path, engine=write_engine) a = dd.read_parquet(tmp_path, engine=read_engine, filters=[("x", ">", 4)]) assert a.npartitions == 3 assert (a.x > 3).all().compute() b = dd.read_parquet(tmp_path, engine=read_engine, filters=[("y", "==", "c")]) assert b.npartitions == 1 assert (b.y == "c").all().compute() c = dd.read_parquet( tmp_path, engine=read_engine, filters=[("y", "==", "c"), ("x", ">", 6)] ) assert c.npartitions <= 1 assert not len(c) assert_eq(c, c) d = dd.read_parquet( tmp_path, engine=read_engine, filters=[ # Select two overlapping ranges [("x", ">", 1), ("x", "<", 6)], [("x", ">", 3), ("x", "<", 8)], ], ) assert d.npartitions == 3 assert ((d.x > 1) & (d.x < 8)).all().compute() e = dd.read_parquet(tmp_path, engine=read_engine, filters=[("x", "in", (0, 9))]) assert e.npartitions == 2 assert ((e.x < 2) | (e.x > 7)).all().compute() f = dd.read_parquet(tmp_path, engine=read_engine, filters=[("y", "=", "c")]) assert f.npartitions == 1 assert len(f) assert (f.y == "c").all().compute() @write_read_engines() def test_filters_v0(tmpdir, write_engine, read_engine): if write_engine == "fastparquet" or read_engine == "fastparquet": pytest.importorskip("fastparquet", minversion="0.3.1") # Recent versions of pyarrow support full row-wise filtering # (fastparquet and older pyarrow versions do not) pyarrow_row_filtering = read_engine == "pyarrow-dataset" fn = str(tmpdir) df = pd.DataFrame({"at": ["ab", "aa", "ba", "da", "bb"]}) ddf = dd.from_pandas(df, npartitions=1) # Ok with 1 partition and filters ddf.repartition(npartitions=1, force=True).to_parquet( fn, write_index=False, engine=write_engine ) ddf2 = dd.read_parquet( fn, index=False, engine=read_engine, filters=[("at", "==", "aa")] ).compute() ddf3 = dd.read_parquet( fn, index=False, engine=read_engine, filters=[("at", "=", "aa")] ).compute() if pyarrow_row_filtering: assert_eq(ddf2, ddf[ddf["at"] == "aa"], check_index=False) assert_eq(ddf3, ddf[ddf["at"] == "aa"], check_index=False) else: assert_eq(ddf2, ddf) assert_eq(ddf3, ddf) # with >1 partition and no filters ddf.repartition(npartitions=2, force=True).to_parquet(fn, engine=write_engine) ddf2 = dd.read_parquet(fn, engine=read_engine).compute() assert_eq(ddf2, ddf) # with >1 partition and filters using base fastparquet if read_engine == "fastparquet": ddf.repartition(npartitions=2, force=True).to_parquet(fn, engine=write_engine) df2 = fastparquet.ParquetFile(fn).to_pandas(filters=[("at", "==", "aa")]) df3 = fastparquet.ParquetFile(fn).to_pandas(filters=[("at", "=", "aa")]) assert len(df2) > 0 assert len(df3) > 0 # with >1 partition and filters ddf.repartition(npartitions=2, force=True).to_parquet(fn, engine=write_engine) ddf2 = dd.read_parquet( fn, engine=read_engine, filters=[("at", "==", "aa")] ).compute() ddf3 = dd.read_parquet( fn, engine=read_engine, filters=[("at", "=", "aa")] ).compute() assert len(ddf2) > 0 assert len(ddf3) > 0 assert_eq(ddf2, ddf3) def test_filtering_pyarrow_dataset(tmpdir, engine): pytest.importorskip("pyarrow", minversion="1.0.0") fn = str(tmpdir) df = pd.DataFrame({"aa": range(100), "bb": ["cat", "dog"] * 50}) ddf = dd.from_pandas(df, npartitions=10) ddf.to_parquet(fn, write_index=False, engine=engine) # Filtered read aa_lim = 40 bb_val = "dog" filters = [[("aa", "<", aa_lim), ("bb", "==", bb_val)]] ddf2 = dd.read_parquet(fn, index=False, engine="pyarrow-dataset", filters=filters) # Check that partitions are filetered for "aa" filter nonempty = 0 for part in ddf[ddf["aa"] < aa_lim].partitions: nonempty += int(len(part.compute()) > 0) assert ddf2.npartitions == nonempty # Check that rows are filtered for "aa" and "bb" filters df = df[df["aa"] < aa_lim] df = df[df["bb"] == bb_val] assert_eq(df, ddf2.compute(), check_index=False) def test_fiters_file_list(tmpdir, engine): df = pd.DataFrame({"x": range(10), "y": list("aabbccddee")}) ddf = dd.from_pandas(df, npartitions=5) ddf.to_parquet(str(tmpdir), engine=engine) fils = str(tmpdir.join("*.parquet")) ddf_out = dd.read_parquet( fils, gather_statistics=True, engine=engine, filters=[("x", ">", 3)] ) assert ddf_out.npartitions == 3 assert_eq(df[df["x"] > 3], ddf_out.compute(), check_index=False) # Check that first parition gets filtered for single-path input ddf2 = dd.read_parquet( str(tmpdir.join("part.0.parquet")), gather_statistics=True, engine=engine, filters=[("x", ">", 3)], ) assert len(ddf2) == 0 def test_pyarrow_filter_divisions(tmpdir): pytest.importorskip("pyarrow") # Write simple dataset with an index that will only # have a sorted index if certain row-groups are filtered out. # In this case, we filter "a" <= 3 to get a sorted # index. Otherwise, "a" is NOT monotonically increasing. df = pd.DataFrame({"a": [0, 1, 10, 12, 2, 3, 8, 9], "b": range(8)}).set_index("a") df.iloc[:4].to_parquet( str(tmpdir.join("file.0.parquet")), engine="pyarrow", row_group_size=2 ) df.iloc[4:].to_parquet( str(tmpdir.join("file.1.parquet")), engine="pyarrow", row_group_size=2 ) # Only works for ArrowDatasetEngine. # Legacy code will not apply filters on individual row-groups # when `split_row_groups=False`. ddf = dd.read_parquet( str(tmpdir), engine="pyarrow-dataset", split_row_groups=False, gather_statistics=True, filters=[("a", "<=", 3)], ) assert ddf.divisions == (0, 2, 3) ddf = dd.read_parquet( str(tmpdir), engine="pyarrow-dataset", split_row_groups=True, gather_statistics=True, filters=[("a", "<=", 3)], ) assert ddf.divisions == (0, 2, 3) def test_divisions_read_with_filters(tmpdir): pytest.importorskip("fastparquet", minversion="0.3.1") tmpdir = str(tmpdir) # generate dataframe size = 100 categoricals = [] for value in ["a", "b", "c", "d"]: categoricals += [value] * int(size / 4) df = pd.DataFrame( { "a": categoricals, "b": np.random.random(size=size), "c": np.random.randint(1, 5, size=size), } ) d = dd.from_pandas(df, npartitions=4) # save it d.to_parquet(tmpdir, write_index=True, partition_on=["a"], engine="fastparquet") # read it out = dd.read_parquet(tmpdir, engine="fastparquet", filters=[("a", "==", "b")]) # test it expected_divisions = (25, 49) assert out.divisions == expected_divisions def test_divisions_are_known_read_with_filters(tmpdir): pytest.importorskip("fastparquet", minversion="0.3.1") tmpdir = str(tmpdir) # generate dataframe df = pd.DataFrame( { "unique": [0, 0, 1, 1, 2, 2, 3, 3], "id": ["id1", "id2", "id1", "id2", "id1", "id2", "id1", "id2"], }, index=[0, 0, 1, 1, 2, 2, 3, 3], ) d = dd.from_pandas(df, npartitions=2) # save it d.to_parquet(tmpdir, partition_on=["id"], engine="fastparquet") # read it out = dd.read_parquet(tmpdir, engine="fastparquet", filters=[("id", "==", "id1")]) # test it assert out.known_divisions expected_divisions = (0, 2, 3) assert out.divisions == expected_divisions @FASTPARQUET_MARK @pytest.mark.xfail(reason="No longer accept ParquetFile objects") def test_read_from_fastparquet_parquetfile(tmpdir): fn = str(tmpdir) df = pd.DataFrame( { "a": np.random.choice(["A", "B", "C"], size=100), "b": np.random.random(size=100), "c": np.random.randint(1, 5, size=100), } ) d = dd.from_pandas(df, npartitions=2) d.to_parquet(fn, partition_on=["a"], engine="fastparquet") pq_f = fastparquet.ParquetFile(fn) # OK with no filters out = dd.read_parquet(pq_f).compute() for val in df.a.unique(): assert set(df.b[df.a == val]) == set(out.b[out.a == val]) # OK with filters out = dd.read_parquet(pq_f, filters=[("a", "==", "B")]).compute() assert set(df.b[df.a == "B"]) == set(out.b) # Engine should not be set to 'pyarrow' with pytest.raises(AssertionError): out = dd.read_parquet(pq_f, engine="pyarrow") @pytest.mark.parametrize("scheduler", ["threads", "processes"]) def test_to_parquet_lazy(tmpdir, scheduler, engine): tmpdir = str(tmpdir) df = pd.DataFrame({"a": [1, 2, 3, 4], "b": [1.0, 2.0, 3.0, 4.0]}) df.index.name = "index" ddf = dd.from_pandas(df, npartitions=2) value = ddf.to_parquet(tmpdir, compute=False, engine=engine) assert hasattr(value, "dask") value.compute(scheduler=scheduler) assert os.path.exists(tmpdir) ddf2 = dd.read_parquet(tmpdir, engine=engine) assert_eq(ddf, ddf2) @FASTPARQUET_MARK def test_timestamp96(tmpdir): fn = str(tmpdir) df = pd.DataFrame({"a": [pd.to_datetime("now", utc=True)]}) ddf = dd.from_pandas(df, 1) ddf.to_parquet(fn, write_index=False, times="int96") pf = fastparquet.ParquetFile(fn) assert pf._schema[1].type == fastparquet.parquet_thrift.Type.INT96 out = dd.read_parquet(fn, index=False).compute() assert_eq(out, df) @FASTPARQUET_MARK def test_drill_scheme(tmpdir): fn = str(tmpdir) N = 5 df1 = pd.DataFrame({c: np.random.random(N) for i, c in enumerate(["a", "b", "c"])}) df2 = pd.DataFrame({c: np.random.random(N) for i, c in enumerate(["a", "b", "c"])}) files = [] for d in ["test_data1", "test_data2"]: dn = os.path.join(fn, d) if not os.path.exists(dn): os.mkdir(dn) files.append(os.path.join(dn, "data1.parq")) fastparquet.write(files[0], df1) fastparquet.write(files[1], df2) df = dd.read_parquet(files) assert "dir0" in df.columns out = df.compute() assert "dir0" in out assert (np.unique(out.dir0) == ["test_data1", "test_data2"]).all() def test_parquet_select_cats(tmpdir, engine): fn = str(tmpdir) df = pd.DataFrame( { "categories": pd.Series( np.random.choice(["a", "b", "c", "d", "e", "f"], size=100), dtype="category", ), "ints": pd.Series(list(range(0, 100)), dtype="int"), "floats": pd.Series(list(range(0, 100)), dtype="float"), } ) ddf = dd.from_pandas(df, 1) ddf.to_parquet(fn, engine=engine) rddf = dd.read_parquet(fn, columns=["ints"], engine=engine) assert list(rddf.columns) == ["ints"] rddf = dd.read_parquet(fn, engine=engine) assert list(rddf.columns) == list(df) def test_columns_name(tmpdir, engine): if engine == "fastparquet" and fastparquet_version <= parse_version("0.3.1"): pytest.skip("Fastparquet does not write column_indexes up to 0.3.1") tmp_path = str(tmpdir) df = pd.DataFrame({"A": [1, 2]}, index=pd.Index(["a", "b"], name="idx")) df.columns.name = "cols" ddf = dd.from_pandas(df, 2) ddf.to_parquet(tmp_path, engine=engine) result = dd.read_parquet(tmp_path, engine=engine, index=["idx"]) assert_eq(result, df) def check_compression(engine, filename, compression): if engine == "fastparquet": pf = fastparquet.ParquetFile(filename) md = pf.fmd.row_groups[0].columns[0].meta_data if compression is None: assert md.total_compressed_size == md.total_uncompressed_size else: assert md.total_compressed_size != md.total_uncompressed_size else: metadata = pa.parquet.ParquetDataset(filename).metadata names = metadata.schema.names for i in range(metadata.num_row_groups): row_group = metadata.row_group(i) for j in range(len(names)): column = row_group.column(j) if compression is None: assert ( column.total_compressed_size == column.total_uncompressed_size ) else: compress_expect = compression if compression == "default": compress_expect = "snappy" assert compress_expect.lower() == column.compression.lower() assert ( column.total_compressed_size != column.total_uncompressed_size ) @pytest.mark.parametrize("compression,", ["default", None, "gzip", "snappy"]) def test_writing_parquet_with_compression(tmpdir, compression, engine): fn = str(tmpdir) if compression in ["snappy", "default"]: pytest.importorskip("snappy") df = pd.DataFrame({"x": ["a", "b", "c"] * 10, "y": [1, 2, 3] * 10}) df.index.name = "index" ddf = dd.from_pandas(df, npartitions=3) ddf.to_parquet(fn, compression=compression, engine=engine) out = dd.read_parquet(fn, engine=engine) assert_eq(out, ddf) check_compression(engine, fn, compression) @pytest.mark.parametrize("compression,", ["default", None, "gzip", "snappy"]) def test_writing_parquet_with_partition_on_and_compression(tmpdir, compression, engine): fn = str(tmpdir) if compression in ["snappy", "default"]: pytest.importorskip("snappy") df = pd.DataFrame({"x": ["a", "b", "c"] * 10, "y": [1, 2, 3] * 10}) df.index.name = "index" ddf = dd.from_pandas(df, npartitions=3) ddf.to_parquet(fn, compression=compression, engine=engine, partition_on=["x"]) check_compression(engine, fn, compression) @pytest.fixture( params=[ # fastparquet 0.1.3 { "columns": [ { "metadata": None, "name": "idx", "numpy_type": "int64", "pandas_type": "int64", }, { "metadata": None, "name": "A", "numpy_type": "int64", "pandas_type": "int64", }, ], "index_columns": ["idx"], "pandas_version": "0.21.0", }, # pyarrow 0.7.1 { "columns": [ { "metadata": None, "name": "A", "numpy_type": "int64", "pandas_type": "int64", }, { "metadata": None, "name": "idx", "numpy_type": "int64", "pandas_type": "int64", }, ], "index_columns": ["idx"], "pandas_version": "0.21.0", }, # pyarrow 0.8.0 { "column_indexes": [ { "field_name": None, "metadata": {"encoding": "UTF-8"}, "name": None, "numpy_type": "object", "pandas_type": "unicode", } ], "columns": [ { "field_name": "A", "metadata": None, "name": "A", "numpy_type": "int64", "pandas_type": "int64", }, { "field_name": "__index_level_0__", "metadata": None, "name": "idx", "numpy_type": "int64", "pandas_type": "int64", }, ], "index_columns": ["__index_level_0__"], "pandas_version": "0.21.0", }, # TODO: fastparquet update ] ) def pandas_metadata(request): return request.param def test_parse_pandas_metadata(pandas_metadata): index_names, column_names, mapping, column_index_names = _parse_pandas_metadata( pandas_metadata ) assert index_names == ["idx"] assert column_names == ["A"] assert column_index_names == [None] # for new pyarrow if pandas_metadata["index_columns"] == ["__index_level_0__"]: assert mapping == {"__index_level_0__": "idx", "A": "A"} else: assert mapping == {"idx": "idx", "A": "A"} assert isinstance(mapping, dict) def test_parse_pandas_metadata_null_index(): # pyarrow 0.7.1 None for index e_index_names = [None] e_column_names = ["x"] e_mapping = {"__index_level_0__": None, "x": "x"} e_column_index_names = [None] md = { "columns": [ { "metadata": None, "name": "x", "numpy_type": "int64", "pandas_type": "int64", }, { "metadata": None, "name": "__index_level_0__", "numpy_type": "int64", "pandas_type": "int64", }, ], "index_columns": ["__index_level_0__"], "pandas_version": "0.21.0", } index_names, column_names, mapping, column_index_names = _parse_pandas_metadata(md) assert index_names == e_index_names assert column_names == e_column_names assert mapping == e_mapping assert column_index_names == e_column_index_names # pyarrow 0.8.0 None for index md = { "column_indexes": [ { "field_name": None, "metadata": {"encoding": "UTF-8"}, "name": None, "numpy_type": "object", "pandas_type": "unicode", } ], "columns": [ { "field_name": "x", "metadata": None, "name": "x", "numpy_type": "int64", "pandas_type": "int64", }, { "field_name": "__index_level_0__", "metadata": None, "name": None, "numpy_type": "int64", "pandas_type": "int64", }, ], "index_columns": ["__index_level_0__"], "pandas_version": "0.21.0", } index_names, column_names, mapping, column_index_names = _parse_pandas_metadata(md) assert index_names == e_index_names assert column_names == e_column_names assert mapping == e_mapping assert column_index_names == e_column_index_names @PYARROW_MARK def test_read_no_metadata(tmpdir, engine): # use pyarrow.parquet to create a parquet file without # pandas metadata tmp = str(tmpdir) + "table.parq" table = pa.Table.from_arrays( [pa.array([1, 2, 3]), pa.array([3, 4, 5])], names=["A", "B"] ) pq.write_table(table, tmp) result = dd.read_parquet(tmp, engine=engine) expected = pd.DataFrame({"A": [1, 2, 3], "B": [3, 4, 5]}) assert_eq(result, expected) def test_parse_pandas_metadata_duplicate_index_columns(): md = { "column_indexes": [ { "field_name": None, "metadata": {"encoding": "UTF-8"}, "name": None, "numpy_type": "object", "pandas_type": "unicode", } ], "columns": [ { "field_name": "A", "metadata": None, "name": "A", "numpy_type": "int64", "pandas_type": "int64", }, { "field_name": "__index_level_0__", "metadata": None, "name": "A", "numpy_type": "object", "pandas_type": "unicode", }, ], "index_columns": ["__index_level_0__"], "pandas_version": "0.21.0", } ( index_names, column_names, storage_name_mapping, column_index_names, ) = _parse_pandas_metadata(md) assert index_names == ["A"] assert column_names == ["A"] assert storage_name_mapping == {"__index_level_0__": "A", "A": "A"} assert column_index_names == [None] def test_parse_pandas_metadata_column_with_index_name(): md = { "column_indexes": [ { "field_name": None, "metadata": {"encoding": "UTF-8"}, "name": None, "numpy_type": "object", "pandas_type": "unicode", } ], "columns": [ { "field_name": "A", "metadata": None, "name": "A", "numpy_type": "int64", "pandas_type": "int64", }, { "field_name": "__index_level_0__", "metadata": None, "name": "A", "numpy_type": "object", "pandas_type": "unicode", }, ], "index_columns": ["__index_level_0__"], "pandas_version": "0.21.0", } ( index_names, column_names, storage_name_mapping, column_index_names, ) = _parse_pandas_metadata(md) assert index_names == ["A"] assert column_names == ["A"] assert storage_name_mapping == {"__index_level_0__": "A", "A": "A"} assert column_index_names == [None] def test_writing_parquet_with_kwargs(tmpdir, engine): fn = str(tmpdir) path1 = os.path.join(fn, "normal") path2 = os.path.join(fn, "partitioned") pytest.importorskip("snappy") df = pd.DataFrame( { "a": np.random.choice(["A", "B", "C"], size=100), "b": np.random.random(size=100), "c": np.random.randint(1, 5, size=100), } ) df.index.name = "index" ddf = dd.from_pandas(df, npartitions=3) engine_kwargs = { "pyarrow-dataset": { "compression": "snappy", "coerce_timestamps": None, "use_dictionary": True, }, "fastparquet": {"compression": "snappy", "times": "int64", "fixed_text": None}, } engine_kwargs["pyarrow-legacy"] = engine_kwargs["pyarrow-dataset"] ddf.to_parquet(path1, engine=engine, **engine_kwargs[engine]) out = dd.read_parquet(path1, engine=engine) assert_eq(out, ddf, check_index=(engine != "fastparquet")) # Avoid race condition in pyarrow 0.8.0 on writing partitioned datasets with dask.config.set(scheduler="sync"): ddf.to_parquet( path2, engine=engine, partition_on=["a"], **engine_kwargs[engine] ) out = dd.read_parquet(path2, engine=engine).compute() for val in df.a.unique(): assert set(df.b[df.a == val]) == set(out.b[out.a == val]) def test_writing_parquet_with_unknown_kwargs(tmpdir, engine): fn = str(tmpdir) with pytest.raises(TypeError): ddf.to_parquet(fn, engine=engine, unknown_key="unknown_value") @ANY_ENGINE_MARK def test_to_parquet_with_get(tmpdir): from dask.multiprocessing import get as mp_get tmpdir = str(tmpdir) flag = [False] def my_get(*args, **kwargs): flag[0] = True return mp_get(*args, **kwargs) df = pd.DataFrame({"x": ["a", "b", "c", "d"], "y": [1, 2, 3, 4]}) ddf = dd.from_pandas(df, npartitions=2) ddf.to_parquet(tmpdir, compute_kwargs={"scheduler": my_get}) assert flag[0] result = dd.read_parquet(os.path.join(tmpdir, "*")) assert_eq(result, df, check_index=False) def test_select_partitioned_column(tmpdir, engine): pytest.importorskip("snappy") fn = str(tmpdir) size = 20 d = { "signal1": np.random.normal(0, 0.3, size=size).cumsum() + 50, "fake_categorical1": np.random.choice(["A", "B", "C"], size=size), "fake_categorical2": np.random.choice(["D", "E", "F"], size=size), } df = dd.from_pandas(
pd.DataFrame(d)
pandas.DataFrame
import itertools import pandas as pd import matplotlib.pyplot as plt import numpy as np datasets = [ 'BPI11/f1/', 'BPI11/f2/', 'BPI11/f3/', 'BPI11/f4/', 'BPI15/f1/', 'BPI15/f2/', 'BPI15/f3/', 'Drift1/f1/', 'Drift2/f1/' ] split_sizes = [ '0-40_80-100', '0-60_80-100', '0-80_80-100', '40-60_80-100', '60-80_80-100', '40-55_80-100', '0-55_80-100' ] splits = { 'BPI11/f1/': { '0-40_80-100': 138, '0-80_80-100': 139, '40-80_80-100': 140, }, 'BPI11/f2/': { '0-40_80-100': 141, '0-80_80-100': 142, '40-80_80-100': 143, }, 'BPI11/f3/': { '0-40_80-100': 144, '0-80_80-100': 145, '40-80_80-100': 146, }, 'BPI11/f4/': { '0-40_80-100': 147, '0-80_80-100': 148, '40-80_80-100': 149, }, 'BPI15/f1/': { '0-40_80-100': 150, '0-80_80-100': 151, '40-80_80-100': 152, }, 'BPI15/f2/': { '0-40_80-100': 153, '0-80_80-100': 154, '40-80_80-100': 155, }, 'BPI15/f3/': { '0-40_80-100': 156, '0-80_80-100': 157, '40-80_80-100': 158, }, 'Drift1/f1/': { '0-40_80-100': 159, '0-80_80-100': 160, '40-80_80-100': 161, '40-60_80-100': 1111, '0-60_80-100': 1111, '40-55_80-100': 1111, '0-55_80-100': 1111 }, 'Drift2/f1/': { '0-40_80-100': 162, '0-80_80-100': 163, '40-80_80-100': 164, '40-60_80-100': 1111, '0-60_80-100': 1111, '40-55_80-100': 1111, '0-55_80-100': 1111 } } # } # splits = { # 'BPI11/f1/': { # '0-40_80-100': 101, # '0-80_80-100': 102, # '40-80_80-100': 103, # }, # 'BPI11/f2/': { # '0-40_80-100': 104, # '0-80_80-100': 105, # '40-80_80-100': 106, # }, # 'BPI11/f3/': { # '0-40_80-100': 107, # '0-80_80-100': 108, # '40-80_80-100': 109, # }, # 'BPI11/f4/': { # '0-40_80-100': 110, # '0-80_80-100': 111, # '40-80_80-100': 112, # }, # 'BPI15/f1/': { # '0-40_80-100': 113, # '0-80_80-100': 114, # '40-80_80-100': 115, # }, # 'BPI15/f2/': { # '0-40_80-100': 116, # '0-80_80-100': 117, # '40-80_80-100': 118, # }, # 'BPI15/f3/': { # '0-40_80-100': 119, # '0-80_80-100': 120, # '40-80_80-100': 121, # }, # 'Drift1/f1/': { # '0-40_80-100': 122, # '0-80_80-100': 123, # '40-80_80-100': 124, # # '40-60_80-100': 1111, # '0-60_80-100': 1111, # '40-55_80-100': 1111, # '0-55_80-100': 1111 # }, # 'Drift2/f1/': { # '0-40_80-100': 125, # '0-80_80-100': 126, # '40-80_80-100': 127, # # '40-60_80-100': 1111, # '0-60_80-100': 1111, # '40-55_80-100': 1111, # '0-55_80-100': 1111 # } # } # splits = { # 'BPI11/f1/': { # '0-40_80-100': 55, # '0-80_80-100': 56, # '40-80_80-100': 73, # }, # 'BPI11/f2/': { # '0-40_80-100': 57, # '0-80_80-100': 58, # '40-80_80-100': 74, # }, # 'BPI11/f3/': { # '0-40_80-100': 59, # '0-80_80-100': 60, # '40-80_80-100': 75, # }, # 'BPI11/f4/': { # '0-40_80-100': 61, # '0-80_80-100': 62, # '40-80_80-100': 76, # }, # 'BPI15/f1/': { # '0-40_80-100': 63, # '0-80_80-100': 64, # '40-80_80-100': 77, # }, # 'BPI15/f2/': { # '0-40_80-100': 65, # '0-80_80-100': 66, # '40-80_80-100': 78, # }, # 'BPI15/f3/': { # '0-40_80-100': 67, # '0-80_80-100': 68, # '40-80_80-100': 79, # }, # 'Drift1/f1/': { # '0-40_80-100': 69, # '0-80_80-100': 70, # '40-80_80-100': 80, # # '40-60_80-100': 1111, # '0-60_80-100': 1111, # '40-55_80-100': 1111, # '0-55_80-100': 1111 # }, # 'Drift2/f1/': { # '0-40_80-100': 90,#71, # '0-80_80-100': 91,#72, # '40-80_80-100': 92,#81, # # '40-60_80-100': 1111, # '0-60_80-100': 1111, # '40-55_80-100': 1111, # '0-55_80-100': 1111 # } # } def get_row_metrics(table): curr_row = table['evaluation_f1_score'] f1_score_mean, f1_score_std, f1_score_max = curr_row.mean(), curr_row.std(), curr_row.max() curr_row = table['evaluation_accuracy'] accuracy_mean, accuracy_std, accuracy_max = curr_row.mean(), curr_row.std(), curr_row.max() curr_row = table['evaluation_precision'] precision_mean, precision_std, precision_max = curr_row.mean(), curr_row.std(), curr_row.max() curr_row = table['evaluation_recall'] recall_mean, recall_std, recall_max = curr_row.mean(), curr_row.std(), curr_row.max() curr_row = table['evaluation_auc'] auc_mean, auc_std, auc_max = curr_row.mean(), curr_row.std(), curr_row.max() curr_row = pd.to_timedelta(table['evaluation_elapsed_time']) elapsed_time_mean, elapsed_time_std, elapsed_time_max, elapsed_time_min = curr_row.mean(), curr_row.std(), curr_row.max(), curr_row.min() return f1_score_mean, f1_score_std, f1_score_max, \ accuracy_mean, accuracy_std, accuracy_max, \ precision_mean, precision_std, precision_max, \ recall_mean, recall_std, recall_max, \ auc_mean, auc_std, auc_max, \ elapsed_time_mean, elapsed_time_std, elapsed_time_max, elapsed_time_min def quantitative_scores(experiments_df_path='../DUMP_INCREMENTAL_hyper_last_train.csv', where_save='quantitative_scores.csv'):
pd.set_option("display.precision", 4)
pandas.set_option
from selenium import webdriver from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.keys import Keys import requests import time from datetime import datetime import pandas as pd from urllib import parse from config import ENV_VARIABLE from os.path import getsize fold_path = "./crawler_data/" page_Max = 100 def stripID(url, wantStrip): loc = url.find(wantStrip) length = len(wantStrip) return url[loc+length:] def Kklee(): shop_id = 13 name = 'kklee' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.kklee.co/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=24" # # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='col-xs-12 ProductList-list']/a[%i]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//a[%i]/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[3]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//a[%i]/div[@class='Product-info']/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Wishbykorea(): shop_id = 14 name = 'wishbykorea' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if(close == 1): chrome.quit() break url = "https://www.wishbykorea.com/collection-727&pgno=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) print(url) except: break time.sleep(1) i = 1 while(i < 17): try: title = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/div/div/label" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/a[@href]" % (i,)).get_attribute('href') page_id = page_link.replace("https://www.wishbykorea.com/collection-view-", "").replace("&ca=727", "") find_href = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/a/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip('")') except: i += 1 if(i == 17): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/div[@class='collection_item_info']/div[2]/label" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='collection_item'][%i]/div[@class='collection_item_info']/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 17): p += 1 continue if(sale_price == "0"): i += 1 if(i == 17): p += 1 continue i += 1 if(i == 17): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Aspeed(): shop_id = 15 name = 'aspeed' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if(close == 1): chrome.quit() break url = "https://www.aspeed.co/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=72" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 73): try: title = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 73): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[2]/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 73): p += 1 continue i += 1 if(i == 73): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Openlady(): shop_id = 17 name = 'openlady' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.openlady.tw/item.html?&id=157172&page=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 17): try: title = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_text']/p[@class='item_name']/a[@class='mymy_item_link']" % (i,)).text page_link = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_text']/p[@class='item_name']/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("&id=", "") except: close += 1 break try: pic_link = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_img']/a[@class='mymy_item_link']/img[@src]" % (i,)).get_attribute("src") except: i += 1 if(i == 17): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_text']/p[@class='item_amount']/span[2]" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_text']/p[@class='item_amount']/span[1]" % (i,)).text ori_price = ori_price.strip('NT$ ') except: try: sale_price = chrome.find_element_by_xpath( "//li[@class='item_block item_block_y'][%i]/div[@class='item_text']/p[@class='item_amount']/span[1]" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = "" except: i += 1 if(i == 17): p += 1 continue i += 1 if(i == 17): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Azoom(): shop_id = 20 name = 'azoom' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if(close == 1): chrome.quit() break url = "https://www.aroom1988.com/categories/view-all?page=" + \ str(p) + "&sort_by=&order_by=&limit=24" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 24): try: title = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.strip("/products/") find_href = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip('")') except: i += 1 if(i == 24): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-item'][%i]/product-item/a/div[2]/div/div/div" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 24): p += 1 continue i += 1 if(i == 24): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Roxy(): shop_id = 21 name = 'roxy' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.roxytaiwan.com.tw/new-collection?p=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 65): try: title = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]/div[@class='product-thumb-info']/p[@class='product-title']/a" % (i,)).text page_link = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]/div[@class='product-thumb-info']/p[@class='product-title']/a[@href]" % (i,)).get_attribute('href') page_id = stripID(page_link, "default=") except: close += 1 break try: pic_link = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]/div[@class='product-img']/a[@class='img-link']/picture[@class='main-picture']/img[@data-src]" % (i,)).get_attribute("data-src") except: i += 1 if(i == 65): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]//span[@class='special-price']//span[@class='price-dollars']" % (i,)).text sale_price = sale_price.replace('TWD', "") ori_price = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]//span[@class='old-price']//span[@class='price-dollars']" % (i,)).text ori_price = ori_price.replace('TWD', "") except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-container product-thumb'][%i]//span[@class='price-dollars']" % (i,)).text sale_price = sale_price.replace('TWD', "") ori_price = "" except: i += 1 if(i == 65): p += 1 continue i += 1 if(i == 65): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Shaxi(): shop_id = 22 name = 'shaxi' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.shaxi.tw/products?page=" + str(p) try: chrome.get(url) except: break i = 1 while(i < 49): try: title = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 49): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 49): p += 1 continue i += 1 if(i == 49): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Cici(): shop_id = 23 name = 'cici' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.cici2.tw/products?page=" + str(p) try: chrome.get(url) except: break i = 1 while(i < 49): try: title = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 49): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 49): p += 1 continue i += 1 if(i == 49): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Amesoeur(): shop_id = 25 name = 'amesour' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.amesoeur.co/categories/%E5%85%A8%E9%83%A8%E5%95%86%E5%93%81?page=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[2]/ul/li[%i]/a[@href]" % (i,)).get_attribute('href') page_id = chrome.find_element_by_xpath( "//div[2]/ul/li[%i]/a[@href]" % (i,)).get_attribute('product-id') find_href = chrome.find_element_by_xpath( "//li[%i]/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[3]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Singular(): shop_id = 27 name = 'singular' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break i = 1 offset = (p-1) * 50 url = "https://www.singular-official.com/products?limit=50&offset=" + \ str(offset) + "&price=0%2C10000&sort=createdAt-desc" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) while(i < 51): try: title = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>1ca3'][%i]/div[2]" % (i,)).text except: close += 1 # print(i, "title") break try: page_link = chrome.find_element_by_xpath( "//div[@class='rmq-3ab81ca3'][%i]//a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/product/") pic_link = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>1ca3'][%i]//img" % (i,)).get_attribute('src') sale_price = chrome.find_element_by_xpath( "//div[@class='rmq-3ab81ca3'][%i]/div[3]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>3'][%i]/div[3]/div[1]/span/s" % (i,)).text ori_price = ori_price.strip('NT$ ') ori_price = ori_price.split() ori_price = ori_price[0] except: i += 1 if(i == 51): p += 1 continue i += 1 if(i == 51): p += 1 chrome.find_element_by_tag_name('body').send_keys(Keys.PAGE_DOWN) time.sleep(1) df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Folie(): shop_id = 28 name = 'folie' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.folief.com/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=24" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Corban(): shop_id = 29 name = 'corban' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break i = 1 offset = (p-1) * 50 url = "https://www.corban.com.tw/products?limit=50&offset=" + \ str(offset) + "&price=0%2C10000&sort=createdAt-desc&tags=ALL%20ITEMS" try: chrome.get(url) except: break while(i < 51): try: title = chrome.find_element_by_xpath( "//div[@class='rmq-3ab81ca3'][%i]/div[2]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='rmq-3ab81ca3'][%i]//a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/product/") pic_link = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>'][%i]//img" % (i,)).get_attribute('src') sale_price = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>3'][%i]/div[3]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = chrome.find_element_by_xpath( "//div[@class='rm<PASSWORD>3'][%i]/div[3]/div[1]/span/s" % (i,)).text ori_price = ori_price.strip('NT$ ') except: i += 1 if(i == 51): p += 1 continue i += 1 if(i == 51): p += 1 chrome.find_element_by_tag_name('body').send_keys(Keys.PAGE_DOWN) time.sleep(1) df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Gmorning(): shop_id = 30 name = 'gmorning' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.gmorning.co/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=24" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def July(): shop_id = 31 name = 'july' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.july2017.co/products?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Per(): shop_id = 32 name = 'per' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.perdot.com.tw/categories/all?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Cereal(): shop_id = 33 name = 'cereal' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.cerealoutfit.com/new/page/" + str(p) + "/" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) try: chrome.find_element_by_xpath( "//button[@class='mfp-close']").click() except: pass i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//div[@data-loop='%i']/h3/a" % (i,)).text if(title == ""): i += 1 if(i == 25): p += 1 continue except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@data-loop='%i']/div[1]/a[@href]" % (i,)).get_attribute('href') page_id = chrome.find_element_by_xpath( "//div[@data-loop='%i']" % (i,)).get_attribute('126-id') pic_link = chrome.find_element_by_xpath( "//div[@data-loop='%i']/div[1]/a/img" % (i,)).get_attribute('src') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@data-loop='%i']//ins//bdi" % (i,)).text sale_price = sale_price.rstrip(' NT$') ori_price = chrome.find_element_by_xpath( "//div[@data-loop='%i']//del//bdi" % (i,)).text ori_price = ori_price.rstrip(' NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[@data-loop='%i']/div[2]//span[@class='woocommerce-Price-amount amount']" % (i,)).text sale_price = sale_price.rstrip(' NT$') ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Jcjc(): shop_id = 35 name = 'jcjc' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.jcjc-dailywear.com/collections/in-stock?limit=24&page=" + \ str(p) + "&sort=featured" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/a/p[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/a[1][@href]" % (i,)).get_attribute('href') pic_link = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/span/a/img" % (i,)).get_attribute('src') page_id = pic_link[pic_link.find("i/")+2:pic_link.find(".j")] except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/a/p[2]/span" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/a/p[2]/s/span" % (i,)).text ori_price = ori_price.strip('NT$ ') except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='grid-uniform grid-link__container']/div[%i]/div/a/p[2]/span" % (i,)).text sale_price = sale_price.strip('NT$ ') ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Ccshop(): shop_id = 36 name = 'ccshop' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.ccjshop.com/products?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[2]/ul/li[%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Iris(): shop_id = 37 name = 'iris' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.irisgarden.com.tw/products?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[@class='boxify-item product-item ng-isolate-scope'][%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Nook(): shop_id = 39 name = 'nook' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.nooknook.me/products?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Greenpea(): shop_id = 40 name = 'greenpea' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.greenpea-tw.com/products?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[2]/ul/li[%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//li[%i]/a/div[1]/div" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 25): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[3]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/a/div[2]/div/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 25): p += 1 i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Queen(): shop_id = 42 name = 'queen' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.queenshop.com.tw/zh-TW/QueenShop/ProductList?item1=01&item2=all&Page=" + \ str(p) + "&View=4" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break i = 1 while(i < 17): try: title = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/a/p" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/a[@href]" % (i,)).get_attribute('href') page_id = stripID(page_link, "SaleID=") pic_link = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/a/img[1]" % (i,)).get_attribute('data-src') except: i += 1 if(i == 17): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/p[2]/span[2]" % (i,)).text sale_price = sale_price.strip('NT. ') ori_price = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/p[2]/span[1]" % (i,)).text ori_price = ori_price.strip('NT. ') except: try: sale_price = chrome.find_element_by_xpath( "//ul[@class='items-list list-array-4']/li[%i]/p[2]/span[1]" % (i,)).text sale_price = sale_price.strip('NT. ') ori_price = "" except: i += 1 if(i == 17): p += 1 continue i += 1 if(i == 17): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Cozyfee(): shop_id = 48 name = 'cozyfee' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.cozyfee.com/product.php?page=" + \ str(p) + "&cid=55#prod_list" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 41): try: title = chrome.find_element_by_xpath( "//li[%i]/div[2]/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/div[2]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.lstrip("action=detail&pid=") pic_link = chrome.find_element_by_xpath( "//li[%i]/div[1]/a/img[1]" % (i,)).get_attribute('data-original') sale_price = chrome.find_element_by_xpath( "//li[%i]/div[3]/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: i += 1 if(i == 41): p += 1 continue i += 1 if(i == 41): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Reishop(): shop_id = 49 name = 'reishop' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.reishop.com.tw/pdlist2.asp?item1=all&item2=&item3=&keyword=&ob=A&pagex=&pageno=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 31): try: title = chrome.find_element_by_xpath( "//figcaption[%i]/a/span[2]/span[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//figcaption[%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.lstrip("yano=YA") page_id = page_id.replace("&color=", "") pic_link = chrome.find_element_by_xpath( "//figcaption[%i]/a/span/img[1]" % (i,)).get_attribute('src') sale_price = chrome.find_element_by_xpath( "//figcaption[%i]/a/span[2]/span[2]/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: i += 1 if(i == 31): p += 1 continue i += 1 if(i == 31): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Yourz(): shop_id = 50 name = 'yourz' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.yourz.com.tw/product/category/34/1/" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 13): try: title = chrome.find_element_by_xpath( "//div[@class='pro_list'][%i]/div/table/tbody/tr/td/div/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='pro_list'][%i]/div/table/tbody/tr/td/div/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/product/detail/") pic_link = chrome.find_element_by_xpath( "//div[@class='pro_list'][%i]/div/a/img" % (i,)).get_attribute('src') sale_price = chrome.find_element_by_xpath( "//div[@class='pro_list'][%i]/div[4]/p/font" % (i,)).text sale_price = sale_price.replace('VIP價:NT$ ', '') sale_price = sale_price.rstrip('元') ori_price = chrome.find_element_by_xpath( "//div[@class='pro_list'][%i]/div[4]/p/br" % (i,)).text ori_price = ori_price.replace('NT$ ', '') ori_price = ori_price.rstrip('元') except: i += 1 if(i == 13): p += 1 continue i += 1 if(i == 13): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Seoulmate(): shop_id = 54 name = 'seoulmate' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.seoulmate.com.tw/catalog.php?m=115&s=249&t=0&sort=&page=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 33): try: title = chrome.find_element_by_xpath( "//li[%i]/p[1]/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//ul/li[%i]/p[1]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("m=115&s=249&t=0&id=", "") pic_link = chrome.find_element_by_xpath( "//ul/li[%i]/a/img[1]" % (i,)).get_attribute('src') if(pic_link == ""): i += 1 if(i == 33): p += 1 continue except: i += 1 if(i == 33): p += 1 continue try: ori_price = chrome.find_element_by_xpath( "//ul/li[%i]/p[3]/del" % (i,)).text ori_price = ori_price.strip('NT.') sale_price = chrome.find_element_by_xpath( "//ul/li[%i]/p[3]" % (i,)).text sale_price = sale_price.strip('NT.') sale_price = sale_price.strip('NT.') locate = sale_price.find("NT.") sale_price = sale_price[locate+3:len(sale_price)] except: try: sale_price = chrome.find_element_by_xpath( "//ul/li[%i]/p[3]" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: i += 1 if(i == 33): p += 1 continue i += 1 if(i == 33): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Sweesa(): shop_id = 55 name = 'sweesa' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.sweesa.com/Shop/itemList.aspx?&m=20&o=5&sa=1&smfp=" + \ str(p) try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 45): try: title = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[2]/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[2]/a" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("mNo1=", "") page_id = page_id.replace("&m=20", "") pic_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]//a/img[@src]" % (i,)).get_attribute("src") sale_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[4]/span" % (i,)).text sale_price = sale_price.strip('TWD.') ori_price = "" except: i += 1 if(i == 45): p += 1 continue i += 1 if(i == 45): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Pazzo(): shop_id = 56 name = 'pazzo' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.pazzo.com.tw/recent?P=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 41): try: title = chrome.find_element_by_xpath( "//li[%i]/div[2]/p/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/div[2]/p/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.lstrip("c=") pic_link = chrome.find_element_by_xpath( "//li[@class='item'][%i]/div[@class='item__images']/a/picture/img[@class='img-fluid']" % (i,)).get_attribute('src') except: i += 1 if(i == 41): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/div[2]/p[2]/span[2]" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = chrome.find_element_by_xpath( "//li[%i]/div[2]/p[2]/span[1]" % (i,)).text ori_price = ori_price.strip('NT.') except: sale_price = chrome.find_element_by_xpath( "//li[%i]/div[2]/p[2]/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" i += 1 if(i == 41): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Meierq(): shop_id = 57 name = 'meierq' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 page = 0 prefix_urls = [ "https://www.meierq.com/zh-tw/category/bottomclothing?P=", "https://www.meierq.com/zh-tw/category/jewelry?P=", "https://www.meierq.com/zh-tw/category/outerclothing?P=", "https://www.meierq.com/zh-tw/category/accessories?P=", ] for prefix in prefix_urls: page += 1 for i in range(1, page_Max): url = f"{prefix}{i}" try: print(url) chrome.get(url) chrome.find_element_by_xpath("//div[@class='items__image']") except: print("find_element_by_xpath_break", page) if(page == 4): chrome.quit() print("break") break break i = 1 while(i < 41): try: title = chrome.find_element_by_xpath( "//li[%i]/div/p/a" % (i,)).text except: break try: page_link = chrome.find_element_by_xpath( "//li[%i]/div/p/a[@href]" % (i,)).get_attribute('href') page_id = stripID(page_link, "n/") page_id = page_id[:page_id.find("?c")] pic_link = chrome.find_element_by_xpath( "//li[%i]/div/img" % (i,)).get_attribute('src') try: sale_price = chrome.find_element_by_xpath( "//li[%i]/div/p/span[2]" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = chrome.find_element_by_xpath( "//li[%i]/div/p/span" % (i,)).text ori_price = ori_price.strip('NT.') except: sale_price = chrome.find_element_by_xpath( "//li[%i]/div/p/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: i += 1 if(i == 41): p += 1 continue i += 1 if(i == 41): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Harper(): shop_id = 58 name = 'harper' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 while True: url = "https://www.harper.com.tw/Shop/itemList.aspx?&m=13&smfp=" + \ str(p) if(p > 20): chrome.quit() break try: chrome.get(url) except: chrome.quit() break i = 1 while(i < 80): try: title = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[2]/a" % (i,)).text except: p += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[2]/a" % (i,)).get_attribute('href') page_id = stripID(page_link, "cno=") page_id = page_id.replace("&m=13", "") pic_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]//a/img[@src]" % (i,)).get_attribute("src") sale_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[4]/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: i += 1 if(i == 79): p += 1 continue i += 1 if(i == 79): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Lurehsu(): shop_id = 59 name = 'lurehsu' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.lurehsu.com/zh-TW/lure/productList?item1=00&item2=16&page=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break i = 1 while(i < 28): try: title = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a/div[2]/p" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.lstrip("SaleID=") page_id = page_id[:page_id.find("&Color")] pic_link = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a/div/img" % (i,)).get_attribute('src') except: i += 1 if(i == 28): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a/div[2]/div/p/span[2]" % (i,)).text sale_price = sale_price.strip('NTD.') ori_price = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a/div[2]/div/p/span[1]" % (i,)).text ori_price = ori_price.strip('NTD.') except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='grid-item'][%i]/a/div[2]/div/p" % (i,)).text sale_price = sale_price.strip('NTD.') ori_price = "" except: i += 1 if(i == 28): p += 1 continue i += 1 if(i == 28): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Pufii(): shop_id = 61 name = 'pufii' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.pufii.com.tw/Shop/itemList.aspx?&m=6&smfp=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 37): try: title = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[3]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[1]/a" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("mNo1=P", "") page_id = page_id.replace("&m=6", "") pic_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]//a/img[@src]" % (i,)).get_attribute("src") try: sale_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[@class='pricediv']/span[2]" % (i,)).text sale_price = sale_price.strip('活動價NT') ori_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[@class='pricediv']/span[1]" % (i,)).text ori_price = ori_price.strip('NT') except: sale_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[@class='pricediv']/span[1]" % (i,)).text sale_price = sale_price.strip('NT') ori_price = "" except: i += 1 if(i == 37): p += 1 continue i += 1 if(i == 37): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Mouggan(): shop_id = 62 name = 'mouggan' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.mouggan.com/zh-tw/category/ALL-ITEM?P=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break try: chrome.find_element_by_xpath( "//a[@class='close p-0']/i[@class='icon-popup-close']").click() except: pass i = 1 while(i < 19): try: title = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[2]/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[2]/a[@href]" % (i,)).get_attribute('href') page_id = stripID(page_link, "c=") pic_link = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[1]/div/a/img" % (i,)).get_attribute('src') except: i += 1 if(i == 19): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[2]/div[1]/span[2]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[2]/div[1]/span[1]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[2]/div[%i]/div[2]/div[1]/span[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 19): p += 1 continue i += 1 if(i == 19): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Mercci(): shop_id = 64 name = 'mercci' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.mercci22.com/zh-tw/tag/HOTTEST?P=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) # chrome.find_element_by_xpath("//a[@class='close p-0']/i[@class='icon-popup-close']").click() i = 1 while(i < 41): try: title = chrome.find_element_by_xpath( "//li[%i]/div[@class='items__info']/div[@class='pdname']/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//li[%i]/div[@class='items__info']/div[@class='pdname']/a[@href]" % (i,)).get_attribute('href') page_id = stripID(page_link, "c=") pic_link = chrome.find_element_by_xpath( "//li[%i]/a[@class='items__image js-loaded']/img" % (i,)).get_attribute('src') except: i += 1 if(i == 41): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[%i]/div[@class='items__info']/div[@class='price']" % (i,)).text sale_price = sale_price.strip('NT.') k = sale_price.find("NT.") sale_price = sale_price[k+3:len(sale_price)] ori_price = chrome.find_element_by_xpath( "//li[%i]/div[@class='items__info']/div[@class='price']/span" % (i,)).text ori_price = ori_price.strip('NT.') except: try: sale_price = chrome.find_element_by_xpath( "//li[%i]/div[@class='items__info']/p[@class='price']/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: i += 1 if(i == 41): p += 1 continue i += 1 if(i == 41): p += 1 if(sale_price == ""): continue df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Sivir(): shop_id = 65 name = 'sivir' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.sivir.com.tw/collections/new-all-%E6%89%80%E6%9C%89?page=" + \ str(p) try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//div[@class='product col-lg-3 col-sm-4 col-6'][%i]/div[2]/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='product col-lg-3 col-sm-4 col-6'][%i]/div[2]/a[@href]" % (i,)).get_attribute('href') page_id = chrome.find_element_by_xpath( "//div[@class='product col-lg-3 col-sm-4 col-6'][%i]/div[2]/a[@data-id]" % (i,)).get_attribute('data-id') pic_link = chrome.find_element_by_xpath( "//div[@class='product col-lg-3 col-sm-4 col-6'][%i]/div[1]/a/img" % (i,)).get_attribute('data-src') pic_link = f"https:{pic_link}" sale_price = chrome.find_element_by_xpath( "//div[@class='product col-lg-3 col-sm-4 col-6'][%i]/div[4]/span" % (i,)).text sale_price = sale_price.replace('NT$', '') ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Nana(): shop_id = 66 name = 'nana' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.2nana.tw/product.php?page=" + \ str(p) + "&cid=1#prod_list" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 75): try: title = chrome.find_element_by_xpath( "//div[@class='col-xs-6 col-sm-4 col-md-3'][%i]/div/div[2]/div[1]/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='col-xs-6 col-sm-4 col-md-3'][%i]/div/div[1]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.lstrip("action=detail&pid=") pic_link = chrome.find_element_by_xpath( "//div[@class='col-xs-6 col-sm-4 col-md-3'][%i]/div/div[1]/a/img" % (i,)).get_attribute('data-original') sale_price = chrome.find_element_by_xpath( "//div[@class='col-xs-6 col-sm-4 col-md-3'][%i]/div/div[2]/div[2]/span" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = chrome.find_element_by_xpath( "//div[@class='col-xs-6 col-sm-4 col-md-3'][%i]/div/div[2]/div[2]/del" % (i,)).text ori_price = ori_price.strip('NT.') except: i += 1 if(i == 75): p += 1 continue i += 1 if(i == 75): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Aachic(): shop_id = 70 name = 'aachic' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.aachic.com/categories/all-%E6%89%80%E6%9C%89%E5%95%86%E5%93%81?page=" + \ str(p) + "&sort_by=&order_by=&limit=24" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//a[%i]/div[2]/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='col-xs-12 ProductList-list']/a[%i][@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//a[%i]/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') sale_price = chrome.find_element_by_xpath( "//a[%i]/div[2]/div[2]" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = chrome.find_element_by_xpath( "//a[%i]/div[2]/div[3]" % (i,)).text ori_price = ori_price.strip('NT$') except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Lovso(): shop_id = 71 name = 'lovso' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.lovso.com.tw/Shop/itemList.aspx?m=8&o=0&sa=0&smfp=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 37): try: title = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[2]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[1]/center/a" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("mNo1=", "") page_id = page_id.replace("&m=8", "") pic_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]//a/img[@src]" % (i,)).get_attribute("src") sale_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[4]" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[3]" % (i,)).text ori_price = ori_price.strip('NT.') except: i += 1 if(i == 37): p += 1 continue i += 1 if(i == 37): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Bowwow(): shop_id = 72 name = 'bowwow' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.bowwowkorea.com/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=48" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 49): try: title = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') sale_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div" % (i,)).text sale_price = sale_price.strip('NT$') sale_price = sale_price.split() sale_price = sale_price[0] ori_price = "" except: i += 1 if(i == 49): p += 1 continue i += 1 if(i == 49): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Suitangtang(): shop_id = 74 name = 'suitangtang' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) i = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.suitangtang.com/Catalog/WOMAN" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) chrome.find_element_by_tag_name('body').send_keys(Keys.END) time.sleep(1) while(True): try: title = chrome.find_element_by_xpath( "//div[@class='product-list'][%i]/div[@class='name']" % (i,)).text k = title.find("NT$") title = title[0:k-1] except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='product-list'][%i]/a[@href]" % (i,)).get_attribute('href') page_id = stripID(page_link, "/Product/") page_id = page_id[:page_id.find("?c=")] pic_link = chrome.find_element_by_xpath( "//div[@class='product-list'][%i]/a/img" % (i,)).get_attribute('data-original') except: i += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-list'][%i]/div[2]/span" % (i,)).text sale_price = sale_price.strip('NT$') k = sale_price.find("NT$") sale_price = sale_price[k+3:len(sale_price)] ori_price = chrome.find_element_by_xpath( "//div[@class='product-list'][%i]/div[2]/span/span" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='product-list'][%i]/div[2]/span" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 continue i += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Chochobee(): shop_id = 78 name = 'chochobee' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.chochobee.com/catalog.php?m=40&s=0&t=0&sort=&page=" + \ str(p) try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//section/ul/li[%i]/span[2]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//section/ul/li[%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("m=40&s=0&t=0&id=", "") pic_link = chrome.find_element_by_xpath( "//section/ul/li[%i]/a/div/img" % (i,)).get_attribute('src') sale_price = chrome.find_element_by_xpath( "//section/ul/li[%i]/span[3]" % (i,)).text sale_price = sale_price.strip('NT.$') ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Asobi(): shop_id = 80 name = 'asobi' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.asobi.com.tw/Shop/itemList.aspx?undefined&smfp=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 34): try: title = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[2]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[1]/a" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("mNo1=", "") page_id = page_id.replace("&&m=1&o=5&sa=1", "") pic_link = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]//a/img[@src]" % (i,)).get_attribute("src") sale_price = chrome.find_element_by_xpath( "//div[@class='itemListDiv'][%i]/div[3]/div/span" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 34): p += 1 continue i += 1 if(i == 34): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Kiyumi(): shop_id = 81 name = 'kiyumi' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 flag = 0 while True: if (flag == 1): chrome.quit() break url = "https://www.kiyumishop.com/catalog.php?m=73&s=0&t=0&sort=&page=" + \ str(p) try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//section/ul/li[%i]/span[2]" % (i,)).text except: flag += 1 break try: page_link = chrome.find_element_by_xpath( "//section/ul/li[%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("m=73&s=0&t=0&id=", "") pic_link = chrome.find_element_by_xpath( "//section/ul/li[%i]/a/div/img" % (i,)).get_attribute('src') sale_price = chrome.find_element_by_xpath( "//section/ul/li[%i]/span[3]" % (i,)).text sale_price = sale_price.strip('NT.$') ori_price = "" except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Genquo(): shop_id = 82 name = 'genquo' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 flag = 0 while True: if (flag == 1): chrome.quit() break url = "https://www.genquo.com/zh-tw/category/women?P=" + str(p) print("處理頁面:", url) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break i = 1 while(i < 37): try: title = chrome.find_element_by_xpath( "//li[@class='item'][%i]/div/p/a" % (i,)).text except: flag += 1 break try: page_link = chrome.find_element_by_xpath( "//li[@class='item'][%i]/div/p/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path + '?' + make_id.query page_id = page_id.lstrip("/zh-tw/market/n/") page_id = page_id[:page_id.find("?c=")] pic_link = chrome.find_element_by_xpath( "//li[@class='item'][%i]/div/a/img" % (i,)).get_attribute('src') except: i += 1 if(i == 37): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//li[@class='item'][%i]/div/p/span[1]" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = "" except: try: sale_price = chrome.find_element_by_xpath( "//li[@class='item'][%i]/div/p/span[2]" % (i,)).text sale_price = sale_price.strip('NT.') ori_price = chrome.find_element_by_xpath( "//li[@class='item'][%i]/div/p/span[1]" % (i,)).text ori_price = ori_price.strip('NT.') except: i += 1 if(i == 37): p += 1 continue i += 1 if(i == 37): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Oolala(): shop_id = 86 name = 'oolala' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 flag = 0 while True: if (flag == 1): chrome.quit() break url = "https://www.styleoolala.com/products?page=" + \ str(p) + "&sort_by=&order_by=&limit=48" print("處理頁面:", url) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 49): try: title = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[2]/div/div[1]" % (i,)).text except: flag += 1 print(p, i) break try: page_link = chrome.find_element_by_xpath( "//div[%i]/product-item/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/products/") find_href = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div[1]/div[1]" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.lstrip('url("').rstrip(')"') except: i += 1 if(i == 49): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[%i]/product-item/a/div/div/div[2]/div[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 49): p += 1 continue i += 1 if(i == 49): p += 1 if(sale_price == ""): continue df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Pattis(): shop_id = 87 name = 'pattis' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.i-pattis.com/catalog.php?m=1&s=21&t=0&sort=&page=" + \ str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 25): try: title = chrome.find_element_by_xpath( "//section[@class='cataList']/ul/li[%i]/span[2]" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//section[@class='cataList']/ul/li[%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.replace("m=1&s=21&t=0&id=", "") pic_link = chrome.find_element_by_xpath( "//li[%i]/a/img" % (i,)).get_attribute('src') sale_price = chrome.find_element_by_xpath( "//ul/li[%i]/span[3]" % (i,)).text sale_price = sale_price.strip('NT.$') ori_price = chrome.find_element_by_xpath( "//ul/li[%i]/del" % (i,)).text ori_price = ori_price.strip('NT.$') except: i += 1 if(i == 25): p += 1 continue i += 1 if(i == 25): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Scheminggg(): shop_id = 90 name = 'scheminggg' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.scheminggg.com/productlist?page=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) i = 1 while(i < 37): try: title = chrome.find_element_by_xpath( "//div[@class='columns']/div[%i]/a/p" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@class='columns']/div[%i]/a[1][@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.query page_id = page_id.lstrip("/products?saleid=") page_id = page_id.rstrip("&colorid=") pic_link = chrome.find_element_by_xpath( "//div[@class='columns']/div[%i]/a/img" % (i,)).get_attribute('src') if (pic_link == ""): i += 1 if(i == 37): p += 1 continue except: i += 1 if(i == 37): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@class='columns']/div[%i]/p[2]" % (i,)).text sale_price = sale_price.strip('NT. ') ori_price = chrome.find_element_by_xpath( "//div[@class='columns']/div[%i]/p[1]" % (i,)).text ori_price = ori_price.strip('NT. ') except: try: sale_price = chrome.find_element_by_xpath( "//div[@class='columns']/div[%i]/p[1]" % (i,)).text sale_price = sale_price.strip('NT. ') ori_price = "" except: i += 1 if(i == 37): p += 1 continue i += 1 if(i == 37): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Laconic(): shop_id = 94 name = 'laconic' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) i = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://laconic.waca.ec/product/all" # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break time.sleep(1) while(True): try: title = chrome.find_element_by_xpath( "//li[@class=' item_block js_is_photo_style '][%i]//h4" % (i,)).text except: close += 1 # print(i, "title") break try: page_link = chrome.find_element_by_xpath( "//li[@class=' item_block js_is_photo_style '][%i]/a[@href]" % (i,)).get_attribute('href') make_id = parse.urlsplit(page_link) page_id = make_id.path page_id = page_id.lstrip("/product/detail/") find_href = chrome.find_element_by_xpath( "//li[@class=' item_block js_is_photo_style '][%i]//a/span" % (i,)) bg_url = find_href.value_of_css_property('background-image') pic_link = bg_url.replace('url("', '') pic_link = pic_link.replace('")', '') sale_price = chrome.find_element_by_xpath( "//li[@class=' item_block js_is_photo_style '][%i]//li/span" % (i,)).text sale_price = sale_price.strip('$') ori_price = "" except: i += 1 if(i % 10 == 1): chrome.find_element_by_tag_name('body').send_keys(Keys.END) time.sleep(1) continue i += 1 if(i % 10 == 1): chrome.find_element_by_tag_name('body').send_keys(Keys.END) time.sleep(1) df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Pixelcake(): shop_id = 96 name = 'pixelcake' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll = pd.DataFrame() # 存放所有資料 close = 0 while True: if (close == 1): chrome.quit() break url = "https://www.pixelcake.com.tw/zh-tw/category/ALL?P=" + str(p) # 如果頁面超過(找不到),直接印出completed然後break跳出迴圈 try: chrome.get(url) except: break try: chrome.find_element_by_xpath( "//button[@class='aiq-2-w6Qa']").click() chrome.find_element_by_xpath( "//i[@class='icon-popup-close']").click() except: pass time.sleep(1) i = 1 while(i < 17): try: title = chrome.find_element_by_xpath( "//div[@id='category-item-wrap']//div[%i]/div[2]/a" % (i,)).text except: close += 1 break try: page_link = chrome.find_element_by_xpath( "//div[@id='category-item-wrap']/div[1]/div[%i]/div[1]/a[@href]" % (i,)).get_attribute('href') page_id = chrome.find_element_by_xpath( "//div[@id='category-item-wrap']/div[1]/div[%i]/div[2]//div[@class='like-counter ']" % (i,)).get_attribute('data-custommarketid') pic_link = chrome.find_element_by_xpath( "//div[%i]/div[1]/a/picture/img" % (i,)).get_attribute('src') except: i += 1 if(i == 17): p += 1 continue try: sale_price = chrome.find_element_by_xpath( "//div[@id='category-item-wrap']//div[%i]/div[2]/div[1]/span[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = chrome.find_element_by_xpath( "//div[%i]/div[5]/div[2]/div[1]/span[2]" % (i,)).text ori_price = ori_price.strip('NT$') except: try: sale_price = chrome.find_element_by_xpath( "//div[@id='category-item-wrap']//div[%i]/div[2]/div[1]/span[1]" % (i,)).text sale_price = sale_price.strip('NT$') ori_price = "" except: i += 1 if(i == 17): p += 1 continue i += 1 if(i == 17): p += 1 df = pd.DataFrame( { "title": [title], "page_link": [page_link], "page_id": [page_id], "pic_link": [pic_link], "ori_price": [ori_price], "sale_price": [sale_price] }) dfAll = pd.concat([dfAll, df]) dfAll = dfAll.reset_index(drop=True) save(shop_id, name, dfAll) upload(shop_id, name) def Miyuki(): shop_id = 97 name = 'miyuki' options = Options() # 啟動無頭模式 options.add_argument('--headless') # 規避google bug options.add_argument('--disable-gpu') options.add_argument('--ignore-certificate-errors') options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument("--remote-debugging-port=5566") chrome = webdriver.Chrome( executable_path='./chromedriver', chrome_options=options) p = 1 df = pd.DataFrame() # 暫存當頁資料,換頁時即整併到dfAll dfAll =
pd.DataFrame()
pandas.DataFrame
import geopandas as gpd import pandas as pd from shapely.geometry import Polygon,Point import math import numpy as np def rect_grids(bounds,accuracy = 500): ''' Generate the rectangular grids in the bounds Parameters ------- bounds : List Create the bounds, [lon1, lat1, lon2, lat2](WGS84), where lon1 , lat1 are the lower-left coordinates, lon2 , lat2 are the upper-right coordinates accuracy : number Grid size (meter) Returns ------- grid : GeoDataFrame Grids’ GeoDataFrame, LONCOL and LATCOL are the index of grids, HBLON and HBLAT are the center of the grids params : List Gridding parameters (lonStart,latStart,deltaLon,deltaLat), lonStart and latStart are the lower-left coordinates, deltaLon, deltaLat are the length and width of a single grid ''' lon1,lat1,lon2,lat2 = bounds if (lon1>lon2)|(lat1>lat2)|(abs(lat1)>90)|(abs(lon1)>180)|(abs(lat2)>90)|(abs(lon2)>180): raise Exception('Bounds error. The input bounds should be in the order of [lon1,lat1,lon2,lat2]. (lon1,lat1) is the lower left corner and (lon2,lat2) is the upper right corner.') latStart = min(lat1, lat2); lonStart = min(lon1, lon2); deltaLon = accuracy * 360 / (2 * math.pi * 6371004 * math.cos((lat1 + lat2) * math.pi / 360)); deltaLat = accuracy * 360 / (2 * math.pi * 6371004); data = gpd.GeoDataFrame() LONCOL_list = [] LATCOL_list = [] geometry_list = [] HBLON_list = [] HBLAT_list = [] lonsnum = int((lon2-lon1)/deltaLon)+1 latsnum = int((lat2-lat1)/deltaLat)+1 for i in range(lonsnum): for j in range(latsnum): HBLON = i*deltaLon + lonStart HBLAT = j*deltaLat + latStart HBLON_1 = (i+1)*deltaLon + lonStart HBLAT_1 = (j+1)*deltaLat + latStart grid_ij = Polygon([ (HBLON-deltaLon/2,HBLAT-deltaLat/2), (HBLON_1-deltaLon/2,HBLAT-deltaLat/2), (HBLON_1-deltaLon/2,HBLAT_1-deltaLat/2), (HBLON-deltaLon/2,HBLAT_1-deltaLat/2)]) LONCOL_list.append(i) LATCOL_list.append(j) HBLON_list.append(HBLON) HBLAT_list.append(HBLAT) geometry_list.append(grid_ij) data['LONCOL'] = LONCOL_list data['LATCOL'] = LATCOL_list data['HBLON'] = HBLON_list data['HBLAT'] = HBLAT_list data['geometry'] = geometry_list params = (lonStart,latStart,deltaLon,deltaLat) return data,params def grid_params(bounds,accuracy = 500): ''' Generate gridding params Parameters ------- bounds : List Bounds of the study area, [lon1, lat1, lon2, lat2](WGS84), where lon1 , lat1 are the lower-left coordinates, lon2 , lat2 are the upper-right coordinates accuracy : number Grid size (meter) Returns ------- params : List Gridding parameters (lonStart,latStart,deltaLon,deltaLat), lonStart and latStart are the lower-left coordinates, deltaLon, deltaLat are the length and width of a single grid Examples ------- >>> import transbigdata as tbd >>> bounds = [113.6,22.4,114.8,22.9] >>> tbd.grid_params(bounds,accuracy = 500) (113.6, 22.4, 0.004872390756896538, 0.004496605206422906) ''' lon1,lat1,lon2,lat2 = bounds if (lon1>lon2)|(lat1>lat2)|(abs(lat1)>90)|(abs(lon1)>180)|(abs(lat2)>90)|(abs(lon2)>180): raise Exception('Bounds error. The input bounds should be in the order of [lon1,lat1,lon2,lat2]. (lon1,lat1) is the lower left corner and (lon2,lat2) is the upper right corner.') latStart = min(lat1, lat2); lonStart = min(lon1, lon2); deltaLon = accuracy * 360 / (2 * math.pi * 6371004 * math.cos((lat1 + lat2) * math.pi / 360)); deltaLat = accuracy * 360 / (2 * math.pi * 6371004); return (lonStart,latStart,deltaLon,deltaLat) def GPS_to_grids(lon,lat,params): ''' Match the GPS data to the grids. The input is the columns of longitude, latitude, and the grids parameter. The output is the grid ID. Parameters ------- lon : Series The column of longitude lat : Series The column of latitude params : List Gridding parameters (lonStart,latStart,deltaLon,deltaLat), lonStart and latStart are the lower-left coordinates, deltaLon, deltaLat are the length and width of a single grid Returns ------- LONCOL : Series The index of the grid longitude. The two columns LONCOL and LATCOL together can specify a grid. LATCOL : Series The index of the grid latitude. The two columns LONCOL and LATCOL together can specify a grid. ''' (lonStart,latStart,deltaLon,deltaLat) = params import numpy as np loncol = np.floor(((lon - (lonStart - deltaLon / 2))/deltaLon)).astype('int') latcol = np.floor(((lat - (latStart - deltaLat / 2))/deltaLat)).astype('int') return loncol,latcol def grids_centre(loncol,latcol,params): ''' The center location of the grid. The input is the grid ID and parameters, the output is the grid center location. Parameters ------- LONCOL : Series The index of the grid longitude. The two columns LONCOL and LATCOL together can specify a grid. LATCOL : Series The index of the grid latitude. The two columns LONCOL and LATCOL together can specify a grid. params : List Gridding parameters (lonStart,latStart,deltaLon,deltaLat), lonStart and latStart are the lower-left coordinates, deltaLon, deltaLat are the length and width of a single grid Returns ------- HBLON : Series The longitude of the grid center HBLAT : Series The latitude of the grid center ''' (lonStart,latStart,deltaLon,deltaLat) = params hblon = loncol*deltaLon + lonStart hblat = latcol*deltaLat + latStart return hblon,hblat def gridid_to_polygon(loncol,latcol,params): ''' Generate the geometry column based on the grid ID. The input is the grid ID, the output is the geometry. Parameters ------- LONCOL : Series The index of the grid longitude. The two columns LONCOL and LATCOL together can specify a grid. LATCOL : Series The index of the grid latitude. The two columns LONCOL and LATCOL together can specify a grid. params : List Gridding parameters (lonStart,latStart,deltaLon,deltaLat), lonStart and latStart are the lower-left coordinates, deltaLon, deltaLat are the length and width of a single grid Returns ------- geometry : Series The column of grid geographic polygon ''' (lonStart,latStart,deltaLon,deltaLat) = params HBLON = loncol*deltaLon + lonStart HBLAT = latcol*deltaLat + latStart HBLON_1 = (loncol+1)*deltaLon + lonStart HBLAT_1 = (latcol+1)*deltaLat + latStart df = pd.DataFrame() df['HBLON'] = HBLON df['HBLAT'] = HBLAT df['HBLON_1'] = HBLON_1 df['HBLAT_1'] = HBLAT_1 return df.apply(lambda r:Polygon([ (r['HBLON']-deltaLon/2,r['HBLAT']-deltaLat/2), (r['HBLON_1']-deltaLon/2,r['HBLAT']-deltaLat/2), (r['HBLON_1']-deltaLon/2,r['HBLAT_1']-deltaLat/2), (r['HBLON']-deltaLon/2,r['HBLAT_1']-deltaLat/2)]),axis = 1) def hexagon_grids(bounds,accuracy = 500): ''' Generate hexagonal grids in the bounds Parameters ------- bounds : List Create the bounds, [lon1, lat1, lon2, lat2](WGS84), where lon1 , lat1 are the lower-left coordinates, lon2 , lat2 are the upper-right coordinates accuracy : number Side length of hexagon (m) Returns ------- hexagon : GeoDataFrame hexagon grid’s geographic polygon ''' lon1,lat1,lon2,lat2 = bounds if (lon1>lon2)|(lat1>lat2)|(abs(lat1)>90)|(abs(lon1)>180)|(abs(lat2)>90)|(abs(lon2)>180): raise Exception('Bounds error. The input bounds should be in the order of [lon1,lat1,lon2,lat2]. (lon1,lat1) is the lower left corner and (lon2,lat2) is the upper right corner.') latStart = min(lat1, lat2); lonStart = min(lon1, lon2); latEnd = max(lat1, lat2); lonEnd = max(lon1, lon2); origin = gpd.GeoDataFrame([Point(lonStart,latStart),Point(lonEnd,latEnd)],columns = ['geometry']) origin.crs = {'init':'epsg:4326'} origin = origin.to_crs(epsg = 3857) x_o = origin['geometry'].iloc[0].x y_o = origin['geometry'].iloc[0].y x_d = origin['geometry'].iloc[1].x y_d = origin['geometry'].iloc[1].y lonsnum = (x_d-x_o)/accuracy latsnum = (y_d-y_o)/accuracy #1 xs = np.arange(0,lonsnum,3) ys = np.arange(0,latsnum,2*(3/4)**0.5) xs = pd.DataFrame(xs,columns = ['x']) xs['tmp'] = 1 ys = pd.DataFrame(ys,columns = ['y']) ys['tmp'] = 1 df1 = pd.merge(xs,ys) #2 xs = np.arange(1.5,lonsnum,3) ys = np.arange((3/4)**0.5,latsnum,2*(3/4)**0.5) xs = pd.DataFrame(xs,columns = ['x']) xs['tmp'] = 1 ys = pd.DataFrame(ys,columns = ['y']) ys['tmp'] = 1 df2 = pd.merge(xs,ys) df = pd.concat([df1,df2]) df['x'],df['y'] = x_o+df['x']*accuracy,y_o+df['y']*accuracy def get_hexagon(x,y,accuracy): return Polygon([(x-accuracy,y), (x-accuracy/2,y+accuracy*(3/4)**0.5), (x+accuracy/2,y+accuracy*(3/4)**0.5), (x+accuracy,y), (x+accuracy/2,y-accuracy*(3/4)**0.5), (x-accuracy/2,y-accuracy*(3/4)**0.5), (x-accuracy,y) ]) df['geometry'] = df.apply(lambda r:get_hexagon(r['x'],r['y'],accuracy),axis = 1) df = gpd.GeoDataFrame(df) df.crs = {'init':'epsg:3857'} df = df.to_crs(epsg = 4326) df = df[['geometry']] df['ID'] = range(len(df)) return df def gridid_sjoin_shape(data,shape,params,col = ['LONCOL','LATCOL']): ''' Input the two columns of grid ID, the geographic polygon and gridding paramters. The output is the grid. Parameters ------- data : DataFrame Data, with two columns of grid ID shape : GeoDataFrame Geographic polygon params : List Gridding parameters (lonStart,latStart,deltaLon,deltaLat), lonStart and latStart are the lower-left coordinates, deltaLon, deltaLat are the length and width of a single grid col : List Column names [LONCOL,LATCOL] Returns ------- data1 : DataFrame Data gridding and mapping to the corresponding geographic polygon ''' LONCOL,LATCOL = col data1 = data.copy() data1 = gpd.GeoDataFrame(data1) data1['geometry'] = gridid_to_polygon(data1[LONCOL],data1[LATCOL],params) data1 = gpd.sjoin(data1,shape) return data1 def grid_params_gini(data,col = ['lon','lat'],accuracy = 500,gini = 'max',gap = 10,sample = 10000): ''' Obtain the best griding param Parameters ---------- data : DataFrame data col : List Column names [lon,lat] accuracy : number Size of the grids gini : number min,max,or median gap : number the step of the algorithm sample : number sample rate Returns ---------- params : List calculated params ''' trajdata = data.copy() if len(trajdata)>sample: trajdata = trajdata.sample(sample) lon,lat = col lon1 = trajdata[lon].mean() lat1 = trajdata[lat].mean() bounds = [lon1,lat1,lon1,lat1] params = grid_params(bounds,accuracy = accuracy) lonstart,latstart,deltalon,deltalat = params x = np.linspace(lonstart,lonstart+deltalon,gap) y = np.linspace(latstart,latstart+deltalat,gap) xx,yy = np.meshgrid(x,y) tmp1 = pd.DataFrame() xx=xx.reshape(1,-1) yy=yy.reshape(1,-1) tmp1['lon'] = xx[0] tmp1['lat'] = yy[0] r = tmp1.iloc[0] def GiniIndex(p): cum = np.cumsum(sorted(np.append(p, 0))) sum = cum[-1] x = np.array(range(len(cum))) / len(p) y = cum / sum B = np.trapz(y, x=x) A = 0.5 - B G = A / (A + B) return G def getgini(r): lon1,lat1 = r['lon'], r['lat'] params_tmp=[lon1,lat1,deltalon,deltalat] tmp =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Oct 26 17:00:35 2018 @author: a002028 """ import os import pandas as pd from ctdpy.core.data_handlers import DataFrameHandler from ctdpy.core.data_handlers import SeriesHandler from ctdpy.core.writers.txt_writer import TxtWriter from ctdpy.core import utils class StandardCTDWriter(SeriesHandler, DataFrameHandler): """Writer to write CTD data to the standrad SMHI CTD format.""" def __init__(self, settings): """Initialize and store the settings object.""" super().__init__(settings) self._file_name = None self.collection_folder = True # self.setup_standard_format() self.writer = self._get_writer_settings() self.txt_writer = TxtWriter() self._sensorinfo_boolean = False self.std_format = False self.meta_translation = { 'Förklaring': 'delivery_note', 'Metadata': 'metadata', 'Sensorinfo': 'sensorinfo', 'Information': 'information', } def write(self, datasets, keep_original_file_names=False, collection_folder=True, **kwargs): """Conduct the writing process. Call methods in order to strucure data according to standard and then writes to standard output format Args: datasets: All loaded datasets [pd.DataFrame(s), pd.Series] keep_original_file_names (bool): False or True collection_folder (bool): """ self.collection_folder = collection_folder self._check_dataset_format(datasets) if self.std_format: self._redirect_to_data_update(datasets) else: meta = self.get_metadata_sets(datasets) # dict data = self.get_datasets(datasets) # list self.setup_metadata_information(meta) for dataset in data: for fid, item in dataset.items(): self.sensorinfo_boolean = item['metadata'].get('INSTRUMENT_SERIE') # @sensorinfo_boolean.setter instrument_metadata = self._get_instrument_metadata(item.get('raw_format'), separator=self.writer['separator_metadata'], data_identifier=item.get('identifier_data')) metadata = self.extract_metadata(fid, separator=self.writer['separator_metadata']) metadata_df = self.extract_metadata_dataframe(fid) self.reset_index(metadata_df) self._update_visit_info(metadata_df) data_df = self._get_data_columns(item['data'], metadata_df) data_series = self._get_data_serie(data_df, separator=self.writer['separator_data']) data_series = self._append_information(self.template_format, self.delimiters['meta'], self.delimiters['data'], metadata, self.sensorinfo[item['metadata'].get('INSTRUMENT_SERIE')], self.information, instrument_metadata, pd.Series(item['metadata'].get('COMNTS')), data_series) self._write(fid, data_series, keep_original_file_names=keep_original_file_names) self._write_delivery_note() self._write_metadata() self._write_sensorinfo() self._write_information() def _write_delivery_note(self): """Write delivery information to text file.""" serie = pd.Series(self.writer['standard_delivery_note_header']) info = [] for key in serie: info.append(self.delivery_note.get(self.writer['mapper_delivery_note'].get(key), '')) info = pd.Series(info) serie = serie.str.cat( info, join=None, sep=self.writer['separator_delivery_note'], ) self._write('delivery_note', serie) def _write_metadata(self): """Write metadata information to text file.""" save_path = self._get_save_path('metadata') self.txt_writer.write_with_pandas(data=self.df_metadata, header=True, save_path=save_path) def _write_sensorinfo(self): """Write sensor information to text file.""" save_path = self._get_save_path('sensorinfo') self.txt_writer.write_with_pandas(data=self.df_sensorinfo, header=True, save_path=save_path) def _write_information(self): """Write "other" information to text file.""" exclude_str = self.writer['prefix_info'] + self.writer['separator_metadata'] self._write('information', self.information.str.replace(exclude_str, '')) def _write(self, fid, data_series, **kwargs): """Write CTD-cast text file according to standard format to file.""" save_path = self._get_save_path(fid, **kwargs) self.txt_writer.write_with_numpy(data=data_series, save_path=save_path) def _add_new_information_to_metadata(self): """Add information to metadata (originally loaded from excel-template (delivery))""" prefix = self.writer.get('filename') suffix = self.writer.get('extension_filename') new_column = self.df_metadata[['SDATE', 'SHIPC', 'SERNO']].apply( lambda x: prefix + '_'.join(x) + suffix, axis=1, ) new_column = new_column.str.replace('-', '') if 'FILE_NAME_DATABASE' in self.df_metadata: self.df_metadata['FILE_NAME_DATABASE'] = new_column else: self.df_metadata.insert(self.df_metadata.columns.get_loc('FILE_NAME') + 1, 'FILE_NAME_DATABASE', new_column) def _adjust_data_formats(self): """Adjust foramts.""" self.file_name = self.df_metadata['FILE_NAME'] # property.setter, returns upper case filenames self.df_metadata['SDATE'] = self.df_metadata['SDATE'].str.replace(' 00:00:00', '') self.df_metadata['STIME'] = self.df_metadata['STIME'].apply(lambda x: x[:5]) self.df_metadata['SERNO'] = self.df_metadata['SERNO'].apply(lambda x: x.zfill(4)) def _append_information(self, *args): """Append and return information as pd.Serie.""" out_serie = pd.Series([]) out_serie = out_serie.append([serie for serie in args if serie.any()]) return out_serie def setup_metadata_information(self, meta): """Set up standard metadata formats that later is writable. Args: meta: Contains pd.DataFrame(s) of metadata delivered to datahost in excel spreadsheets [Metadata, Sensorinfo, Information] """ # TODO should be able to handle multiple metadatasets? (.xlsx delivery files) self.delimiters = self._get_delimiters() self.df_metadata = self._get_reduced_dataframe(meta.get('metadata')) self.delivery_note = self._get_delivery_note(meta.get('delivery_note')) self.template_format = self._get_template_format() self.df_sensorinfo = self._get_reduced_dataframe(meta.get('sensorinfo')) self.sensorinfo = self._get_sensorinfo_serie(separator=self.writer['separator_metadata']) self.information = self._get_information_serie(meta.get('information', pd.DataFrame(columns=[''])), separator=self.writer['separator_metadata']) self._adjust_data_formats() self._add_new_information_to_metadata() def _get_template_format(self): """Get standard format of template output.""" # TODO adjust reader, get format from tamplate ('Förklaring').. ö.. return pd.Series([''.join([self.writer['prefix_format'], '=', self.delivery_note['DTYPE']])]) def _get_delimiters(self): """Return delimiters of data and meta.""" # FIXME Redo and delete hardcoded parts.. Get better solution than '\ t'.replace(' ','') # for tabb-sign self.writer['separator_data']])} return {'meta': pd.Series([''.join([self.writer['prefix_metadata_delimiter'], '=', self.writer['separator_metadata']])]), 'data': pd.Series([''.join([self.writer['prefix_data_delimiter'], '=', '\ t'.replace(' ', '')])])} # noqa: W605 def _get_delivery_note(self, delivery_info): """Return dictionary with information taken from the delivery_note.""" info = {} if delivery_info.columns[0] == 0: if delivery_info[0][0].startswith('MYEAR'): for key, value in delivery_info[0].str.split(':'): info.setdefault(key.strip(), value.strip()) else: xy_index = self._get_index(delivery_info, check_values=['MYEAR', 'DTYPE']) for key, value in zip(delivery_info.iloc[xy_index[0][0]:, xy_index[1][0]], delivery_info.iloc[xy_index[0][0]:, xy_index[1][0] + 2]): if not pd.isnull(key): info[key] = value else: break # Check for info in self.df_metadata for key in ['MYEAR', 'ORDERER', 'PROJ']: if key not in info: info[key] = ','.join(self.df_metadata[key].unique()) return info @staticmethod def _get_index(df, check_values=None): """Return numpy.array containing indices. Args: df (pd.DataFrame): data check_values (list): Checklist in order of importance Returns: (array([15], dtype=int64), array([0], dtype=int64)) """ for value in check_values: if any(df == value): return utils.get_index_where_df_equals_x(df, value) return None def extract_metadata(self, filename, separator=None): """Return pandas.Serie with metadata according to template standards. Takes columns from dataframe and merges with dataframe values together with a seperator. Example of one pd.Serie value: '//METADATA;SDATE;2020-08-25' Args: filename (str): filename of raw data separator (str): separator to separate row values """ meta = self.extract_metadata_dataframe(filename) self.reset_index(meta) meta = meta.iloc[0].to_list() serie = pd.Series(self.df_metadata.columns) serie = serie.str.cat(meta, sep=separator) serie = serie.radd(self.writer['prefix_metadata'] + separator) return serie def extract_metadata_dataframe(self, filename): """Return one row from self.df_metadata (pd.DataFrame).""" boolean = self.get_index(self.file_name, filename.upper(), equals=True, as_boolean=True) return self.df_metadata.loc[boolean, :] @staticmethod def _get_reduced_dataframe(df): """Exclude empty column "Tabellhuvud:".""" if 'Tabellhuvud:' in df: df.pop('Tabellhuvud:') return df def _get_sensorinfo_serie(self, separator=None): """Get dictionary with sensorinfo. Args: separator (str): separator to separate row values """ out_info = {} for inst_serno in self.df_sensorinfo['INSTRUMENT_SERIE'].unique(): out_info[inst_serno] = [
pd.Series(self.df_sensorinfo.columns)
pandas.Series
# Licensed to Elasticsearch B.V. under one or more contributor # license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright # ownership. Elasticsearch B.V. licenses this file to you under # the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. import re import warnings from enum import Enum from typing import Any, Callable, Dict, List, Optional, Tuple, Union, cast import numpy as np # type: ignore import pandas as pd # type: ignore from elasticsearch import Elasticsearch # Default number of rows displayed (different to pandas where ALL could be displayed) DEFAULT_NUM_ROWS_DISPLAYED = 60 DEFAULT_CHUNK_SIZE = 10000 DEFAULT_CSV_BATCH_OUTPUT_SIZE = 10000 DEFAULT_PROGRESS_REPORTING_NUM_ROWS = 10000 DEFAULT_ES_MAX_RESULT_WINDOW = 10000 # index.max_result_window DEFAULT_PAGINATION_SIZE = 5000 # for composite aggregations PANDAS_VERSION: Tuple[int, ...] = tuple( int(part) for part in pd.__version__.split(".") if part.isdigit() )[:2] with warnings.catch_warnings(): warnings.simplefilter("ignore") EMPTY_SERIES_DTYPE = pd.Series().dtype def build_pd_series( data: Dict[str, Any], dtype: Optional[np.dtype] = None, **kwargs: Any ) -> pd.Series: """Builds a pd.Series while squelching the warning for unspecified dtype on empty series """ dtype = dtype or (EMPTY_SERIES_DTYPE if not data else dtype) if dtype is not None: kwargs["dtype"] = dtype return pd.Series(data, **kwargs) def docstring_parameter(*sub: Any) -> Callable[[Any], Any]: def dec(obj: Any) -> Any: obj.__doc__ = obj.__doc__.format(*sub) return obj return dec class SortOrder(Enum): ASC = 0 DESC = 1 @staticmethod def reverse(order: "SortOrder") -> "SortOrder": if order == SortOrder.ASC: return SortOrder.DESC return SortOrder.ASC @staticmethod def to_string(order: "SortOrder") -> str: if order == SortOrder.ASC: return "asc" return "desc" @staticmethod def from_string(order: str) -> "SortOrder": if order == "asc": return SortOrder.ASC return SortOrder.DESC def elasticsearch_date_to_pandas_date( value: Union[int, str], date_format: Optional[str] ) -> pd.Timestamp: """ Given a specific Elasticsearch format for a date datatype, returns the 'partial' `to_datetime` function to parse a given value in that format **Date Formats: https://www.elastic.co/guide/en/elasticsearch/reference/current/mapping-date-format.html#built-in-date-formats Parameters ---------- value: Union[int, str] The date value. date_format: str The Elasticsearch date format (ex. 'epoch_millis', 'epoch_second', etc.) Returns ------- datetime: pd.Timestamp From https://www.elastic.co/guide/en/elasticsearch/reference/current/date.html Date formats can be customised, but if no format is specified then it uses the default: "strict_date_optional_time||epoch_millis" Therefore if no format is specified we assume either strict_date_optional_time or epoch_millis. """ if date_format is None or isinstance(value, (int, float)): try: return pd.to_datetime( value, unit="s" if date_format == "epoch_second" else "ms" ) except ValueError: return pd.to_datetime(value) elif date_format == "epoch_millis": return pd.to_datetime(value, unit="ms") elif date_format == "epoch_second": return pd.to_datetime(value, unit="s") elif date_format == "strict_date_optional_time": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f%z", exact=False) elif date_format == "basic_date": return pd.to_datetime(value, format="%Y%m%d") elif date_format == "basic_date_time": return pd.to_datetime(value, format="%Y%m%dT%H%M%S.%f", exact=False) elif date_format == "basic_date_time_no_millis": return pd.to_datetime(value, format="%Y%m%dT%H%M%S%z") elif date_format == "basic_ordinal_date": return pd.to_datetime(value, format="%Y%j") elif date_format == "basic_ordinal_date_time": return pd.to_datetime(value, format="%Y%jT%H%M%S.%f%z", exact=False) elif date_format == "basic_ordinal_date_time_no_millis": return pd.to_datetime(value, format="%Y%jT%H%M%S%z") elif date_format == "basic_time": return pd.to_datetime(value, format="%H%M%S.%f%z", exact=False) elif date_format == "basic_time_no_millis": return pd.to_datetime(value, format="%H%M%S%z") elif date_format == "basic_t_time": return pd.to_datetime(value, format="T%H%M%S.%f%z", exact=False) elif date_format == "basic_t_time_no_millis": return pd.to_datetime(value, format="T%H%M%S%z") elif date_format == "basic_week_date": return pd.to_datetime(value, format="%GW%V%u") elif date_format == "basic_week_date_time": return pd.to_datetime(value, format="%GW%V%uT%H%M%S.%f%z", exact=False) elif date_format == "basic_week_date_time_no_millis": return pd.to_datetime(value, format="%GW%V%uT%H%M%S%z") elif date_format == "strict_date": return pd.to_datetime(value, format="%Y-%m-%d") elif date_format == "date": return pd.to_datetime(value, format="%Y-%m-%d") elif date_format == "strict_date_hour": return pd.to_datetime(value, format="%Y-%m-%dT%H") elif date_format == "date_hour": return pd.to_datetime(value, format="%Y-%m-%dT%H") elif date_format == "strict_date_hour_minute": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M") elif date_format == "date_hour_minute": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M") elif date_format == "strict_date_hour_minute_second": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S") elif date_format == "date_hour_minute_second": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S") elif date_format == "strict_date_hour_minute_second_fraction": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "date_hour_minute_second_fraction": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "strict_date_hour_minute_second_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "date_hour_minute_second_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f", exact=False) elif date_format == "strict_date_time": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f%z", exact=False) elif date_format == "date_time": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S.%f%z", exact=False) elif date_format == "strict_date_time_no_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S%z") elif date_format == "date_time_no_millis": return pd.to_datetime(value, format="%Y-%m-%dT%H:%M:%S%z") elif date_format == "strict_hour": return pd.to_datetime(value, format="%H") elif date_format == "hour": return pd.to_datetime(value, format="%H") elif date_format == "strict_hour_minute": return pd.to_datetime(value, format="%H:%M") elif date_format == "hour_minute": return pd.to_datetime(value, format="%H:%M") elif date_format == "strict_hour_minute_second": return pd.to_datetime(value, format="%H:%M:%S") elif date_format == "hour_minute_second": return pd.to_datetime(value, format="%H:%M:%S") elif date_format == "strict_hour_minute_second_fraction": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "hour_minute_second_fraction": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "strict_hour_minute_second_millis": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "hour_minute_second_millis": return pd.to_datetime(value, format="%H:%M:%S.%f", exact=False) elif date_format == "strict_ordinal_date": return pd.to_datetime(value, format="%Y-%j") elif date_format == "ordinal_date": return pd.to_datetime(value, format="%Y-%j") elif date_format == "strict_ordinal_date_time": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S.%f%z", exact=False) elif date_format == "ordinal_date_time": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S.%f%z", exact=False) elif date_format == "strict_ordinal_date_time_no_millis": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S%z") elif date_format == "ordinal_date_time_no_millis": return pd.to_datetime(value, format="%Y-%jT%H:%M:%S%z") elif date_format == "strict_time": return pd.to_datetime(value, format="%H:%M:%S.%f%z", exact=False) elif date_format == "time": return pd.to_datetime(value, format="%H:%M:%S.%f%z", exact=False) elif date_format == "strict_time_no_millis": return pd.to_datetime(value, format="%H:%M:%S%z") elif date_format == "time_no_millis": return pd.to_datetime(value, format="%H:%M:%S%z") elif date_format == "strict_t_time": return pd.to_datetime(value, format="T%H:%M:%S.%f%z", exact=False) elif date_format == "t_time": return pd.to_datetime(value, format="T%H:%M:%S.%f%z", exact=False) elif date_format == "strict_t_time_no_millis": return pd.to_datetime(value, format="T%H:%M:%S%z") elif date_format == "t_time_no_millis": return pd.to_datetime(value, format="T%H:%M:%S%z") elif date_format == "strict_week_date": return pd.to_datetime(value, format="%G-W%V-%u") elif date_format == "week_date": return pd.to_datetime(value, format="%G-W%V-%u") elif date_format == "strict_week_date_time": return pd.to_datetime(value, format="%G-W%V-%uT%H:%M:%S.%f%z", exact=False) elif date_format == "week_date_time": return pd.to_datetime(value, format="%G-W%V-%uT%H:%M:%S.%f%z", exact=False) elif date_format == "strict_week_date_time_no_millis": return pd.to_datetime(value, format="%G-W%V-%uT%H:%M:%S%z") elif date_format == "week_date_time_no_millis": return pd.to_datetime(value, format="%G-W%V-%uT%H:%M:%S%z") elif date_format == "strict_weekyear" or date_format == "weekyear": # TODO investigate if there is a way of converting this raise NotImplementedError( "strict_weekyear is not implemented due to support in pandas" ) return pd.to_datetime(value, format="%G") # Not supported in pandas # ValueError: ISO year directive '%G' must be used with the ISO week directive '%V' # and a weekday directive '%A', '%a', '%w', or '%u'. elif date_format == "strict_weekyear_week" or date_format == "weekyear_week": # TODO investigate if there is a way of converting this raise NotImplementedError( "strict_weekyear_week is not implemented due to support in pandas" ) return pd.to_datetime(value, format="%G-W%V") # Not supported in pandas # ValueError: ISO year directive '%G' must be used with the ISO week directive '%V' # and a weekday directive '%A', '%a', '%w', or '%u'. elif date_format == "strict_weekyear_week_day": return pd.to_datetime(value, format="%G-W%V-%u") elif date_format == "weekyear_week_day": return pd.to_datetime(value, format="%G-W%V-%u") elif date_format == "strict_year": return pd.to_datetime(value, format="%Y") elif date_format == "year": return pd.to_datetime(value, format="%Y") elif date_format == "strict_year_month": return pd.to_datetime(value, format="%Y-%m") elif date_format == "year_month": return
pd.to_datetime(value, format="%Y-%m")
pandas.to_datetime
import numpy as np import pandas as pd from pandas import read_csv import matplotlib.pyplot as plt #%matplotlib inline #%% attrib = read_csv('attributes.csv', delim_whitespace = True) data = read_csv('communities.data', names = attrib['attributes']) print(data.shape) #%% data.head() #%% ''' Remove non-predictive features state: US state (by number) - not counted as predictive above, but if considered, should be considered nominal (nominal) county: numeric code for county - not predictive, and many missing values (numeric) community: numeric code for community - not predictive and many missing values (numeric) communityname: community name - not predictive - for information only (string) fold: fold number for non-random 10 fold cross validation, potentially useful for debugging, paired tests - not predictive (numeric) ''' data = data.drop(columns=['state','county', 'community','communityname', 'fold'], axis=1) #%% data.head() #%% ''' Remove column with NA Some of the features contained many missing values as some surveys were not conducted in some communities, so they were removed from the data: 'OtherPerCap', 'LemasSwornFT', 'LemasSwFTPerPop', 'LemasSwFTFieldOps', 'LemasSwFTFieldPerPop', 'LemasTotalReq', 'LemasTotReqPerPop', 'PolicReqPerOffic', 'PolicPerPop', 'RacialMatchCommPol', 'PctPolicWhite', 'PctPolicBlack', 'PctPolicHisp', 'PctPolicAsian', 'PctPolicMinor', 'OfficAssgnDrugUnits', 'NumKindsDrugsSeiz', 'PolicAveOTWorked', 'PolicCars', 'PolicOperBudg', 'LemasPctPolicOnPatr', 'LemasGangUnitDeploy', 'PolicBudgPerPop' ''' from pandas import DataFrame data = data.replace('?', np.nan) feat_miss = data.columns[data.isnull().any()] print(feat_miss) data = data.drop(columns=list(feat_miss), axis=1) #%% print(data.shape) data.head() #%% data.describe() #%% # ViolentCrimesPerPop: total number of violent crimes per 100K popuation (numeric - decimal) # GOAL attribute (to be predicted) data.hist(column = ['ViolentCrimesPerPop'], bins = 30, color = 'red', alpha = 0.8) plt.show() #%% # TODO Correlations import seaborn as sns corrmat = data.corr() fig = plt.figure(figsize = (16, 12)) sns.heatmap(corrmat, vmax = 0.8) plt.show() #%% corrT = data.corr(method = 'pearson').round(4) corrT = corrT.sort_values(by=['ViolentCrimesPerPop']) corrT_VCPP = corrT['ViolentCrimesPerPop'] #%% ''' Remove Multicollinearity set VIF = 5, R^2 = 0.8 to remove attributes ''' '''Dimensionality Reduction - Principal Component Analysis (PCA) The dataset contain many variables highly correlated. Multicolinearity will increase the model variance. Dimensionality reduction utilizing PCA can provide an optimal set of orthogonal features. Let's adopt the criterion in which we select those principal components responsible to explain more than a unit variance ("eigenvalue one criterion"). ''' X_DF = data.iloc[:, 0:99] # data.to_csv("data_removed.csv") # Detecting Multicollinearity using VIF from statsmodels.stats.outliers_influence import variance_inflation_factor def calc_vif(X_DF): # X_DF = pd.DataFrame(X) # Calculating VIF vif = pd.DataFrame() vif["variables"] = X_DF.columns vif["VIF"] = [variance_inflation_factor(X_DF.values, i) for i in range(X_DF.shape[1])] return(vif) VIF = calc_vif(X_DF) #%% data_to_dump = VIF.where(VIF['VIF'] > 30) data_to_dump = data_to_dump.dropna(how='any') columns_to_dump = list(data_to_dump.iloc[:, 0]) X_DF = data.drop(columns=columns_to_dump, axis=1) #%% # VIF_2 = calc_vif(X_DF) ''' Now we have two racePct*** remain, consider corrT_VCPP['racePctAsian'] = 0.0376, corrT_VCPP['racePctHisp'] = 0.2931, which means racePctAsian is not very related to ViolentCrimesPerPop, so to simplify the model, we only keep racePctWhite as our sensitive variable. ''' X_DF = X_DF.drop(columns=['racePctAsian', 'racePctHisp'], axis=1) print("Removed columns(", len(columns_to_dump) + 2, "):\n", (columns_to_dump + ['racePctAsian', 'racePctHisp'])) #%% from sklearn.model_selection import train_test_split X = X_DF.values y = data.iloc[:, 99].values seed = 0 # Train test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.3, random_state = seed) print(X.shape) print(y.shape) #%% from sklearn.preprocessing import StandardScaler # Standardize features by removing the mean and scaling to unit variance sc = StandardScaler() X_train = sc.fit_transform(X_train) X_test = sc.transform(X_test) #%% # Perform PCA # from sklearn.decomposition import PCA # # c = 14 # pca = PCA(n_components = c) # X_train = pca.fit_transform(X_train) # X_test = pca.transform(X_test) # # print("Amount of variance: %s" % pca.explained_variance_) # print("Sum of the variance: %s" % sum(pca.explained_variance_).round(2)) # # print("Percentage of variance: %s" % pca.explained_variance_ratio_) # print("Sum of the percentage of variance: %s" % sum(pca.explained_variance_ratio_).round(2)) # # # plt.scatter(np.arange(1,(c+1)),pca.explained_variance_, c = 'red') # plt.plot((0,15), (1,1), color = 'black', linestyle = 'dashed') # plt.xlabel('PC') # plt.ylabel('Amount of variance explained') # plt.show() # print(X_train.shape) #%% pd.DataFrame(X_train).to_csv('X_train.csv') pd.DataFrame(X_test).to_csv('X_test.csv') pd.DataFrame(y_train).to_csv('y_train.csv')
pd.DataFrame(y_test)
pandas.DataFrame
import numpy as np import pandas as pd from sklearn.decomposition import PCA from scipy import stats as st def uniques(data, max_length=0, max_shown=10, ascending=False): """ Ranks the unique values in a dataframe's columns Args: dataframe: Pandas dataframe/series to be analysed max_length: maximum display length of unique values (0 = no limit) max_shown: maximum number of unique values shown (0 = no limit) ascending: show values from least to most common, or vice versa Returns: A table that decribes for each column in the dataframe: * The total number of values * The type of the values * The number of unique values, exluding NaN entries * The unique non-NaN values, ordered by count * The number of NaN entries (if any) and their count """ dataframe = pd.DataFrame(data) cols = list(dataframe) min_shown = 0 # Determine the maximum number of unique values that will be shown # Then create the dataframe for col_name in cols: min_shown = np.maximum( min_shown, len(dataframe[col_name].value_counts(dropna=True))) if max_shown is 0 or max_shown is False: max_shown = min_shown else: max_shown = np.minimum(min_shown, max_shown) idx_arr = list(range(1, max_shown + 1)) row_index = ['type', 'count', 'unique', 'NaN'] + idx_arr df = pd.DataFrame(index=row_index, columns=cols) # Fill the dataframe for col_name in cols: col = dataframe[col_name] count = col.value_counts(dropna=True) vals = count.index.tolist() if ascending: count = count[::-1] vals = vals[::-1] nans = col.isnull().sum() length = len(col) number_values_shown = np.minimum(max_shown, len(vals)) df.at['type', col_name] = col.dtype df.at['count', col_name] = len(col) df.at['unique', col_name] = len(vals) for i in list(range(number_values_shown)): val = str(vals[i]) val_count = count.iloc[i] / length if max_length > 0 and len(val) > max_length: val = val[:max_length] + u'\u2026' df.at[i + 1, col_name] = ('{}<br>{}<br>{:.1%}'.format( val, count.iloc[i], val_count)) if nans > 0: df.at['NaN', col_name] = ('{}<br>{:.1%}'.format( nans, nans / length)) else: df.at['NaN', col_name] = "" return df.fillna('').style.set_properties( **{'word-wrap': 'break-word', 'line-height': '125%'}) def outliers(sr, threshold=5, robust=False, verbose=True): """ Finds the outliers in a Pandas series and returns a list with their indices. Args: sr: Pandas series threshold: maximum deviation to be tolerated robust: use median absolute deviation instead of standard deviation verbose: print the number of columns dropped Returns: A list with the indices of the outliers """ method = 'MAD/MeanAd' if robust else 'SD' x = sr try: if robust: x = (x - x.median()).abs() # Absolute distances from the mean mad = x.median() # Median distance from the mean if mad == 0: x /= 1.486 * x.mean() else: x /= 1.253314 * mad else: x = (x - x.mean()).abs() / x.std() except: print('Found no outliers in {}'.format(sr)) mask = x > threshold if verbose: print('Found {:,} outliers ({} > {}) in {}'.format( len(x[mask]), method, threshold, sr.name)) return sr[mask].index def polytrans(x, y, order=2): """ Fits values in Pandas series x to the values in series y using an nth-order polynomial. Args: x: Pandas series to be fitted y: Pandas series against which x will be fitted order: the maximum order polynomial used in the fitting Returns: The transformed Pandas series x """ def transform_x(x, coef): result = .0 for c in range(len(coef)): result += coef[c] * x**(len(coef) - c - 1) return result data =
pd.concat([x, y], axis=1)
pandas.concat
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn.feature_selection import RFECV from sklearn.model_selection import StratifiedKFold from sklearn.svm import SVC col_names = [ "duration", "protocol_type", "service", "flag", "src_bytes", "dst_bytes", "land", "wrong_fragment", "urgent", "hot", "num_failed_logins", "logged_in", "num_compromised", "root_shell", "su_attempted", "num_root", "num_file_creations", "num_shells", "num_access_files", "num_outbound_cmds", "is_host_login", "is_guest_login", "count", "srv_count", "serror_rate", "srv_serror_rate", "rerror_rate", "srv_rerror_rate", "same_srv_rate", "diff_srv_rate", "srv_diff_host_rate", "dst_host_count", "dst_host_srv_count", "dst_host_same_srv_rate", "dst_host_diff_srv_rate", "dst_host_same_src_port_rate", "dst_host_srv_diff_host_rate", "dst_host_serror_rate", "dst_host_srv_serror_rate", "dst_host_rerror_rate", "dst_host_srv_rerror_rate", "label"] protocol_type_list = ['tcp', 'udp', 'icmp'] service_list = ['aol', 'auth', 'bgp', 'courier', 'csnet_ns', 'ctf', 'daytime', 'discard', 'domain', 'domain_u', 'echo', 'eco_i', 'ecr_i', 'efs', 'exec', 'finger', 'ftp', 'ftp_data', 'gopher', 'harvest', 'hostnames','http', 'http_2784', 'http_443', 'http_8001', 'imap4', 'IRC', 'iso_tsap', 'klogin', 'kshell', 'ldap', 'link', 'login', 'mtp', 'name', 'netbios_dgm', 'netbios_ns', 'netbios_ssn', 'netstat', 'nnsp', 'nntp', 'ntp_u', 'other', 'pm_dump', 'pop_2', 'pop_3', 'printer', 'private', 'red_i', 'remote_job', 'rje', 'shell', 'smtp', 'sql_net', 'ssh', 'sunrpc', 'supdup', 'systat', 'telnet', 'tftp_u', 'tim_i', 'time', 'urh_i', 'urp_i', 'uucp', 'uucp_path', 'vmnet', 'whois', 'X11', 'Z39_50'] flag_list = ['OTH', 'REJ', 'RSTO', 'RSTOS0', 'RSTR', 'S0', 'S1', 'S2', 'S3', 'SF', 'SH'] label_list = ['normal.', 'buffer_overflow.', 'loadmodule.', 'perl.', 'neptune.', 'smurf.', 'guess_passwd.', 'pod.', 'teardrop.', 'portsweep.', 'ipsweep.', 'land.', 'ftp_write.', 'back.', 'imap.', 'satan.', 'phf.', 'nmap.', 'multihop.', 'warezmaster.', 'warezclient.', 'spy.', 'rootkit.'] # 获取文件路径 def get_file_path(data_loc_path, file_name, file_type): return '{}/{}.{}'.format(data_loc_path, file_name, file_type) # 将读入的数据存取为csv文件 def read_file_to_csv(data_loc_path, from_file_name, to_file_name): from_path = data_loc_path + '/{}'.format(from_file_name) to_path = data_loc_path + '/{}'.format(to_file_name) print("# 开始读取文件") data = pd.read_csv(from_path, header=None, names=col_names) print(data[:2]) print("# 成功读取文件,开始转换为CSV") data.to_csv(to_path, columns=None, index=False) print("# 转换完成") # 查找字符串在数组中的下标 def find_index(string, array): for i in range(len(array)): if string == array[i]: return i # 数据标准化计算 def compute_regression_value(val, std, mean): if std == 0 or mean == 0: return 0 return (val - mean) / std # 数据归一化计算 def compute_normalization_value(val, min_val, max_val): if min_val == max_val or val == min_val: return 0 return (val - min_val) / (max_val - min_val) # 数据处理 def process_data(file_path): # 读取数据 data_frame = pd.read_csv(file_path) data_num = data_frame.shape[0] # 将dataFrame转换为list print("# 准备开始数据无量纲化") data_list = data_frame.values.tolist() ''' 1.数据无量纲化: 将数据类型统一以便后续操作 ''' print("# 准备完成, 开始数据无量纲化") # 遍历数组将字符改为数值 for idx in range(len(data_list)): row = data_list[idx] # 将数据中字符转化为数字 row[1] = find_index(row[1], protocol_type_list) row[2] = find_index(row[2], service_list) row[3] = find_index(row[3], flag_list) row[41] = find_index(row[41], label_list) print("## 已完成{}%".format((idx / data_num) * 100)) print("# 数据无量纲化完成, 正在处理数据...") # 转化为DataFrame data_frame = pd.DataFrame(data_list, columns=col_names) print("# 数据处理完成") print(data_list[:3]) ''' 2.数据标准化 x' = [x-mean(x)] / std(x) ** 此处理需要将最后一列排除 ** ''' print("# 准备开始数据标准化") # 计算每一列的标准差 std = data_frame.std(axis='rows').tolist() # 计算每一列的均值 mean = data_frame.mean(axis='rows').tolist() # 将dataFrame转换为list data_list = data_frame.values.tolist() print("# 准备完成, 开始数据标准化") # 遍历数组并计算 for idx in range(len(data_list)): row = data_list[idx] for col_idx in range(len(row)-1): row[col_idx] = abs(compute_regression_value(row[col_idx], std[col_idx], mean[col_idx])) print("## 已完成{}%".format((idx / data_num) * 100)) print("# 数据标准化完成, 正在处理数据...") data_frame =
pd.DataFrame(data_list, columns=col_names)
pandas.DataFrame
__author__ = "<NAME>" __date__ = "Nov 11, 2019" from threading import Thread from pathlib import Path from numpy import string_, array, NaN, empty from pandas import DataFrame import json from corems.encapsulation.constant import Atoms from corems.encapsulation.constant import Labels from corems.encapsulation.output import parameter_to_dict from corems.mass_spectrum.factory.MassSpectrumClasses import MassSpecfromFreq class HighResMassSpecExport(Thread): def __init__(self, out_file_path, mass_spectrum, output_type='excel'): ''' output_type:str 'excel', 'csv', 'hdf5' or 'pandas' ''' Thread.__init__(self) self.output_file = Path(out_file_path) # 'excel', 'csv' or 'pandas' self.output_type = output_type self.mass_spectrum = mass_spectrum # collect all assigned atoms and order them accordingly to the Atoms.atoms_order list self.atoms_order_list = self.get_all_used_atoms_in_order(self.mass_spectrum) self._init_columns() def _init_columns(self): # column labels in order self.columns_label = ['Index', 'm/z', 'Calibrated m/z', 'Calculated m/z', 'Peak Height', 'Peak Area', 'Resolving Power', 'S/N', 'Ion Charge', 'm/z Error (ppm)', 'm/z Error Score', 'Isotopologue Similarity', 'Confidence Score', 'DBE', 'H/C', 'O/C', 'Heteroatom Class', 'Ion Type', 'Is Isotopologue', 'Mono Isotopic Index', 'Molecular Formula' ] @property def output_type(self): return self._output_type @output_type.setter def output_type(self, output_type): output_types = ['excel', 'csv', 'pandas', 'hdf5'] if output_type in output_types: self._output_type = output_type else: raise TypeError( 'Supported types are "excel", "csv" or "pandas", %s entered' % output_type) def save(self): '''wrapper to run in a separated thread''' if self.output_type == 'excel': self.to_excel() elif self.output_type == 'csv': self.to_csv() elif self.output_type == 'pandas': self.to_pandas() elif self.output_type == 'hdf5': self.to_hdf() else: raise ValueError( "Unkown output type: %s; it can be 'excel', 'csv' or 'pandas'" % self.output_type) def run(self): ''' run is called when the Tread start call exportMS.start() ''' self.save() def get_pandas_df(self): columns = self.columns_label + self.get_all_used_atoms_in_order(self.mass_spectrum) dict_data_list = self.get_list_dict_data(self.mass_spectrum) df = DataFrame(dict_data_list, columns=columns) df.name = self.output_file return df def write_settings(self, output_path, mass_spectrum): import json dict_setting = parameter_to_dict.get_dict_data_ms(mass_spectrum) dict_setting['MassSpecAttrs'] = self.get_mass_spec_attrs(mass_spectrum) dict_setting['analyzer'] = mass_spectrum.analyzer dict_setting['instrument_label'] = mass_spectrum.instrument_label dict_setting['sample_name'] = mass_spectrum.sample_name with open(output_path.with_suffix('.json'), 'w', encoding='utf8', ) as outfile: output = json.dumps(dict_setting, sort_keys=True, indent=4, separators=(',', ': ')) outfile.write(output) def to_pandas(self, write_metadata=True): columns = self.columns_label + self.get_all_used_atoms_in_order(self.mass_spectrum) dict_data_list = self.get_list_dict_data(self.mass_spectrum) df =
DataFrame(dict_data_list, columns=columns)
pandas.DataFrame
#!/usr/bin/env bin # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import pandas as pd from pandas import DataFrame from sklearn import preprocessing from scipy.signal import savgol_filter from copy import deepcopy import pywt ''' 参考博客 https://blog.csdn.net/Joseph__Lagrange/article/details/95302398 https://blog.csdn.net/Joseph__Lagrange/article/details/95302953 ''' class Pretreatment: def PlotSpectrum(self, spec, title='原始光谱', x=0, m=5): """ :param spec: shape (n_samples, n_features) :return: plt """ if isinstance(spec, pd.DataFrame): spec = spec.values spec = spec[:, :(spec.shape[1]-1)] plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签 plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号 wl = np.linspace(x, x+(spec.shape[1]-1)*m,spec.shape[1]) with plt.style.context(('ggplot')): fonts = 6 plt.figure(figsize=(5.2, 3.1), dpi=200) plt.plot(wl, spec.T) plt.xlabel('Wavelength (nm)', fontsize=fonts) plt.ylabel('reabsorbance', fontsize=fonts) plt.title(title, fontsize=fonts) return plt def mean_centralization(self, sdata): """ 均值中心化 """ sdata = deepcopy(sdata) temp1 = np.mean(sdata, axis=0) temp2 = np.tile(temp1, sdata.shape[0]).reshape( (sdata.shape[0], sdata.shape[1])) return sdata - temp2 def standardlize(self, sdata): """ 标准化 """ sdata = deepcopy(sdata) if isinstance(sdata, pd.DataFrame): sdata = sdata.values sdata = preprocessing.scale(sdata) return sdata def msc(self, sdata): sdata = deepcopy(sdata) if isinstance(sdata, pd.DataFrame): sdata = sdata.values n = sdata.shape[0] # 样本数量 k = np.zeros(sdata.shape[0]) b = np.zeros(sdata.shape[0]) M = np.array(np.mean(sdata, axis=0)) from sklearn.linear_model import LinearRegression for i in range(n): y = sdata[i, :] y = y.reshape(-1, 1) M = M.reshape(-1, 1) model = LinearRegression() model.fit(M, y) k[i] = model.coef_ b[i] = model.intercept_ spec_msc = np.zeros_like(sdata) for i in range(n): bb = np.repeat(b[i], sdata.shape[1]) kk = np.repeat(k[i], sdata.shape[1]) temp = (sdata[i, :] - bb) / kk spec_msc[i, :] = temp return spec_msc # def msc(self, data_x): # # absorbances = data_x.columns.values # from sklearn.linear_model import LinearRegression # ## 计算平均光谱做为标准光谱 # mean = np.mean(data_x,axis = 0) # # n,p = data_x.shape # msc_x = np.ones((n,p)) # # for i in range(n): # y = data_x.values[i,:] # lin = LinearRegression() # lin.fit(mean.reshape(-1,1),y.reshape(-1,1)) # k = lin.coef_ # b = lin.intercept_ # msc_x[i,:] = (y - b) / k # # msc_x = DataFrame(msc_x, columns=absorbances) # return msc_x def D1(self, sdata): """ 一阶差分 """ sdata = deepcopy(sdata) if isinstance(sdata, pd.DataFrame): sdata = sdata.values temp1 = pd.DataFrame(sdata) temp2 = temp1.diff(axis=1) temp3 = temp2.values return np.delete(temp3, 0, axis=1) def D2(self, sdata): """ 二阶差分 """ sdata = deepcopy(sdata) if isinstance(sdata, pd.DataFrame): sdata = sdata.values temp2 = (
pd.DataFrame(sdata)
pandas.DataFrame
from botbuilder.dialogs import ( ComponentDialog, WaterfallDialog, WaterfallStepContext, DialogTurnResult, ) from botbuilder.dialogs.prompts import TextPrompt, PromptOptions, ChoicePrompt, ConfirmPrompt from botbuilder.core import MessageFactory, TurnContext, CardFactory, UserState from botbuilder.schema import InputHints, CardAction, ActionTypes, SuggestedActions import orderApp import pandas as pd class ViewOrderDialog(ComponentDialog): def __init__(self, dialog_id: str = None): super(ViewOrderDialog, self).__init__(dialog_id or ViewOrderDialog.__name__) self.add_dialog(TextPrompt(TextPrompt.__name__)) self.add_dialog(ChoicePrompt(ChoicePrompt.__name__)) self.add_dialog(ConfirmPrompt(ConfirmPrompt.__name__)) self.add_dialog( WaterfallDialog( WaterfallDialog.__name__, [self.view_step,] ) ) self.initial_dialog_id = WaterfallDialog.__name__ async def view_step(self, step_context: WaterfallStepContext) -> DialogTurnResult: user_details = step_context.options user_id = user_details.user_id df =
pd.DataFrame()
pandas.DataFrame
import re from unittest.mock import Mock, call, patch import numpy as np import pandas as pd import pytest from rdt.transformers.categorical import ( CategoricalFuzzyTransformer, CategoricalTransformer, LabelEncodingTransformer, OneHotEncodingTransformer) RE_SSN = re.compile(r'\d\d\d-\d\d-\d\d\d\d') class TestCategoricalTransformer: def test___setstate__(self): """Test the ``__set_state__`` method. Validate that the ``__dict__`` attribute is correctly udpdated when Setup: - create an instance of a ``CategoricalTransformer``. Side effect: - it updates the ``__dict__`` attribute of the object. """ # Setup transformer = CategoricalTransformer() # Run transformer.__setstate__({ 'intervals': { None: 'abc' } }) # Assert assert transformer.__dict__['intervals'][np.nan] == 'abc' def test___init__(self): """Passed arguments must be stored as attributes.""" # Run transformer = CategoricalTransformer( fuzzy='fuzzy_value', clip='clip_value', ) # Asserts assert transformer.fuzzy == 'fuzzy_value' assert transformer.clip == 'clip_value' def test_is_transform_deterministic(self): """Test the ``is_transform_deterministic`` method. Validate that this method returs the opposite boolean value of the ``fuzzy`` parameter. Setup: - initialize a ``CategoricalTransformer`` with ``fuzzy = True``. Output: - the boolean value which is the opposite of ``fuzzy``. """ # Setup transformer = CategoricalTransformer(fuzzy=True) # Run output = transformer.is_transform_deterministic() # Assert assert output is False def test_is_composition_identity(self): """Test the ``is_composition_identity`` method. Since ``COMPOSITION_IS_IDENTITY`` is True, just validates that the method returns the opposite boolean value of the ``fuzzy`` parameter. Setup: - initialize a ``CategoricalTransformer`` with ``fuzzy = True``. Output: - the boolean value which is the opposite of ``fuzzy``. """ # Setup transformer = CategoricalTransformer(fuzzy=True) # Run output = transformer.is_composition_identity() # Assert assert output is False def test__get_intervals(self): """Test the ``_get_intervals`` method. Validate that the intervals for each categorical value are correct. Input: - a pandas series containing categorical values. Output: - a tuple, where the first element describes the intervals for each categorical value (start, end). """ # Run data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) result = CategoricalTransformer._get_intervals(data) # Asserts expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), 'bar': ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } expected_means = pd.Series({ 'foo': 0.25, 'bar': 0.6666666666666666, 'tar': 0.9166666666666666 }) expected_starts = pd.DataFrame({ 'category': ['foo', 'bar', 'tar'], 'start': [0, 0.5, 0.8333333333333333] }).set_index('start') assert result[0] == expected_intervals pd.testing.assert_series_equal(result[1], expected_means) pd.testing.assert_frame_equal(result[2], expected_starts) def test__get_intervals_nans(self): """Test the ``_get_intervals`` method when data contains nan's. Validate that the intervals for each categorical value are correct, when passed data containing nan values. Input: - a pandas series cotaining nan values and categorical values. Output: - a tuple, where the first element describes the intervals for each categorical value (start, end). """ # Setup data = pd.Series(['foo', np.nan, None, 'foo', 'foo', 'tar']) # Run result = CategoricalTransformer._get_intervals(data) # Assert expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), np.nan: ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } expected_means = pd.Series({ 'foo': 0.25, np.nan: 0.6666666666666666, 'tar': 0.9166666666666666 }) expected_starts = pd.DataFrame({ 'category': ['foo', np.nan, 'tar'], 'start': [0, 0.5, 0.8333333333333333] }).set_index('start') assert result[0] == expected_intervals pd.testing.assert_series_equal(result[1], expected_means) pd.testing.assert_frame_equal(result[2], expected_starts) def test__fit_intervals(self): # Setup transformer = CategoricalTransformer() # Run data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) transformer._fit(data) # Asserts expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), 'bar': ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } expected_means = pd.Series({ 'foo': 0.25, 'bar': 0.6666666666666666, 'tar': 0.9166666666666666 }) expected_starts = pd.DataFrame({ 'category': ['foo', 'bar', 'tar'], 'start': [0, 0.5, 0.8333333333333333] }).set_index('start') assert transformer.intervals == expected_intervals pd.testing.assert_series_equal(transformer.means, expected_means) pd.testing.assert_frame_equal(transformer.starts, expected_starts) def test__get_value_no_fuzzy(self): # Setup transformer = CategoricalTransformer(fuzzy=False) transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), np.nan: (0.5, 1.0, 0.75, 0.5 / 6), } # Run result_foo = transformer._get_value('foo') result_nan = transformer._get_value(np.nan) # Asserts assert result_foo == 0.25 assert result_nan == 0.75 @patch('rdt.transformers.categorical.norm') def test__get_value_fuzzy(self, norm_mock): # setup norm_mock.rvs.return_value = 0.2745 transformer = CategoricalTransformer(fuzzy=True) transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), } # Run result = transformer._get_value('foo') # Asserts assert result == 0.2745 def test__normalize_no_clip(self): """Test normalize data""" # Setup transformer = CategoricalTransformer(clip=False) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.57, 0.1234, 0.5, 0.69], dtype=float) pd.testing.assert_series_equal(result, expect) def test__normalize_clip(self): """Test normalize data with clip=True""" # Setup transformer = CategoricalTransformer(clip=True) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.0, 0.1234, 1.0, 0.0], dtype=float) pd.testing.assert_series_equal(result, expect) def test__reverse_transform_array(self): """Test reverse_transform a numpy.array""" # Setup data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) rt_data = np.array([-0.6, 0.5, 0.6, 0.2, 0.1, -0.2]) transformer = CategoricalTransformer() # Run transformer._fit(data) result = transformer._reverse_transform(rt_data) # Asserts expected_intervals = { 'foo': ( 0, 0.5, 0.25, 0.5 / 6 ), 'bar': ( 0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555 ), 'tar': ( 0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776 ) } assert transformer.intervals == expected_intervals expect = pd.Series(data) pd.testing.assert_series_equal(result, expect) def test__transform_by_category_called(self): """Test that the `_transform_by_category` method is called. When the number of rows is greater than the number of categories, expect that the `_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 5 rows. Output: - the output of `_transform_by_category`. Side effects: - `_transform_by_category` will be called once. """ # Setup data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer._transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_category.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_category.return_value def test__transform_by_category(self): """Test the `_transform_by_category` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 5 rows. Ouptut: - the transformed data. """ # Setup data = pd.Series([1, 3, 3, 2, 1]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Asserts expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() def test__transform_by_category_nans(self): """Test the ``_transform_by_category`` method with data containing nans. Validate that the data is transformed correctly when it contains nan's. Setup: - the categorical transformer is instantiated, and the appropriate ``intervals`` attribute is set. Input: - a pandas series containing nan's. Output: - a numpy array containing the transformed data. """ # Setup data = pd.Series([np.nan, 3, 3, 2, np.nan]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), np.nan: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Asserts expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() @patch('rdt.transformers.categorical.norm') def test__transform_by_category_fuzzy_true(self, norm_mock): """Test the ``_transform_by_category`` method when ``fuzzy`` is True. Validate that the data is transformed correctly when ``fuzzy`` is True. Setup: - the categorical transformer is instantiated with ``fuzzy`` as True, and the appropriate ``intervals`` attribute is set. - the ``intervals`` attribute is set to a a dictionary of intervals corresponding to the elements of the passed data. - set the ``side_effect`` of the ``rvs_mock`` to the appropriate function. Input: - a pandas series. Output: - a numpy array containing the transformed data. Side effect: - ``rvs_mock`` should be called four times, one for each element of the intervals dictionary. """ # Setup def rvs_mock_func(loc, scale, **kwargs): return loc norm_mock.rvs.side_effect = rvs_mock_func data = pd.Series([1, 3, 3, 2, 1]) transformer = CategoricalTransformer(fuzzy=True) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Assert expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() norm_mock.rvs.assert_has_calls([ call(0.125, 0.041666666666666664, size=0), call(0.375, 0.041666666666666664, size=2), call(0.625, 0.041666666666666664, size=1), call(0.875, 0.041666666666666664, size=2), ]) def test__transform_by_row_called(self): """Test that the `_transform_by_row` method is called. When the number of rows is less than or equal to the number of categories, expect that the `_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 4 rows Output: - the output of `_transform_by_row` Side effects: - `_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer._transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_row.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_row.return_value def test__transform_by_row(self): """Test the `_transform_by_row` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 4 rows Ouptut: - the transformed data """ # Setup data = pd.Series([1, 2, 3, 4]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_row(data) # Asserts expected = np.array([0.875, 0.625, 0.375, 0.125]) assert (transformed == expected).all() @patch('psutil.virtual_memory') def test__reverse_transform_by_matrix_called(self, psutil_mock): """Test that the `_reverse_transform_by_matrix` method is called. When there is enough virtual memory, expect that the `_reverse_transform_by_matrix` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_matrix` Side effects: - `_reverse_transform_by_matrix` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer._reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_matrix.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_matrix.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_matrix(self, psutil_mock): """Test the _reverse_transform_by_matrix method with numerical data Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories and means. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data = pd.Series([1, 2, 3, 4]) transformed = pd.Series([0.875, 0.625, 0.375, 0.125]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = transformer._reverse_transform_by_matrix(transformed) # Assert pd.testing.assert_series_equal(data, reverse) @patch('psutil.virtual_memory') def test__reverse_transform_by_category_called(self, psutil_mock): """Test that the `_reverse_transform_by_category` method is called. When there is not enough virtual memory and the number of rows is greater than the number of categories, expect that the `_reverse_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 5 rows Output: - the output of `_reverse_transform_by_category` Side effects: - `_reverse_transform_by_category` will be called once """ # Setup transform_data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = transform_data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer._reverse_transform( categorical_transformer_mock, transform_data) # Asserts categorical_transformer_mock._reverse_transform_by_category.assert_called_once_with( transform_data) assert reverse == categorical_transformer_mock._reverse_transform_by_category.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_category(self, psutil_mock): """Test the _reverse_transform_by_category method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 5 rows Ouptut: - the original data """ data = pd.Series([1, 3, 3, 2, 1]) transformed = pd.Series([0.875, 0.375, 0.375, 0.625, 0.875]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory reverse = transformer._reverse_transform_by_category(transformed) pd.testing.assert_series_equal(data, reverse) def test__get_category_from_start(self): """Test the ``_get_category_from_start`` method. Setup: - instantiate a ``CategoricalTransformer``, and set the attribute ``starts`` to a pandas dataframe with ``set_index`` as ``'start'``. Input: - an integer, an index from data. Output: - a category from the data. """ # Setup transformer = CategoricalTransformer() transformer.starts = pd.DataFrame({ 'start': [0.0, 0.5, 0.7], 'category': ['a', 'b', 'c'] }).set_index('start') # Run category = transformer._get_category_from_start(2) # Assert assert category == 'c' @patch('psutil.virtual_memory') def test__reverse_transform_by_row_called(self, psutil_mock): """Test that the `_reverse_transform_by_row` method is called. When there is not enough virtual memory and the number of rows is less than or equal to the number of categories, expect that the `_reverse_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_row` Side effects: - `_reverse_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock.starts = pd.DataFrame( [0., 0.25, 0.5, 0.75], index=[4, 3, 2, 1], columns=['category']) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer._reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_row.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_row.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_row(self, psutil_mock): """Test the _reverse_transform_by_row method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means, starts, and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data = pd.Series([1, 2, 3, 4]) transformed = pd.Series([0.875, 0.625, 0.375, 0.125]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.starts = pd.DataFrame( [4, 3, 2, 1], index=[0., 0.25, 0.5, 0.75], columns=['category']) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = transformer._reverse_transform(transformed) # Assert pd.testing.assert_series_equal(data, reverse) class TestOneHotEncodingTransformer: def test___init__(self): """Test the ``__init__`` method. Validate that the passed arguments are stored as attributes. Input: - a string passed to the ``error_on_unknown`` parameter. Side effect: - the ``error_on_unknown`` attribute is set to the passed string. """ # Run transformer = OneHotEncodingTransformer(error_on_unknown='error_value') # Asserts assert transformer.error_on_unknown == 'error_value' def test__prepare_data_empty_lists(self): # Setup ohet = OneHotEncodingTransformer() data = [[], [], []] # Assert with pytest.raises(ValueError, match='Unexpected format.'): ohet._prepare_data(data) def test__prepare_data_nested_lists(self): # Setup ohet = OneHotEncodingTransformer() data = [[[]]] # Assert with pytest.raises(ValueError, match='Unexpected format.'): ohet._prepare_data(data) def test__prepare_data_list_of_lists(self): # Setup ohet = OneHotEncodingTransformer() # Run data = [['a'], ['b'], ['c']] out = ohet._prepare_data(data) # Assert expected = np.array(['a', 'b', 'c']) np.testing.assert_array_equal(out, expected) def test__prepare_data_pandas_series(self): # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', 'c']) out = ohet._prepare_data(data) # Assert expected = pd.Series(['a', 'b', 'c']) np.testing.assert_array_equal(out, expected) def test_get_output_types(self): """Test the ``get_output_types`` method. Validate that the ``_add_prefix`` method is properly applied to the ``output_types`` dictionary. For this class, the ``output_types`` dictionary is described as: { 'value1': 'float', 'value2': 'float', ... } The number of items in the dictionary is defined by the ``dummies`` attribute. Setup: - initialize a ``OneHotEncodingTransformer`` and set: - the ``dummies`` attribute to a list. - the ``column_prefix`` attribute to a string. Output: - the ``output_types`` dictionary, but with ``self.column_prefix`` added to the beginning of the keys of the ``output_types`` dictionary. """ # Setup transformer = OneHotEncodingTransformer() transformer.column_prefix = 'abc' transformer.dummies = [1, 2] # Run output = transformer.get_output_types() # Assert expected = { 'abc.value0': 'float', 'abc.value1': 'float' } assert output == expected def test__fit_dummies_no_nans(self): """Test the ``_fit`` method without nans. Check that ``self.dummies`` does not contain nans. Input: - Series with values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 2, 'c']) ohet._fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a', 2, 'c']) def test__fit_dummies_nans(self): """Test the ``_fit`` method without nans. Check that ``self.dummies`` contain ``np.nan``. Input: - Series with values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 2, 'c', None]) ohet._fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a', 2, 'c', np.nan]) def test__fit_no_nans(self): """Test the ``_fit`` method without nans. Check that the settings of the transformer are properly set based on the input. Encoding should be activated Input: - Series with values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', 'c']) ohet._fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a', 'b', 'c']) np.testing.assert_array_equal(ohet._uniques, ['a', 'b', 'c']) assert ohet._dummy_encoded assert not ohet._dummy_na def test__fit_no_nans_numeric(self): """Test the ``_fit`` method without nans. Check that the settings of the transformer are properly set based on the input. Encoding should be deactivated Input: - Series with values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series([1, 2, 3]) ohet._fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, [1, 2, 3]) np.testing.assert_array_equal(ohet._uniques, [1, 2, 3]) assert not ohet._dummy_encoded assert not ohet._dummy_na def test__fit_nans(self): """Test the ``_fit`` method with nans. Check that the settings of the transformer are properly set based on the input. Encoding and NA should be activated. Input: - Series with containing nan values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'b', None]) ohet._fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a', 'b', np.nan]) np.testing.assert_array_equal(ohet._uniques, ['a', 'b']) assert ohet._dummy_encoded assert ohet._dummy_na def test__fit_nans_numeric(self): """Test the ``_fit`` method with nans. Check that the settings of the transformer are properly set based on the input. Encoding should be deactivated and NA activated. Input: - Series with containing nan values """ # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series([1, 2, np.nan]) ohet._fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, [1, 2, np.nan]) np.testing.assert_array_equal(ohet._uniques, [1, 2]) assert not ohet._dummy_encoded assert ohet._dummy_na def test__fit_single(self): # Setup ohet = OneHotEncodingTransformer() # Run data = pd.Series(['a', 'a', 'a']) ohet._fit(data) # Assert np.testing.assert_array_equal(ohet.dummies, ['a']) def test__transform_no_nan(self): """Test the ``_transform`` method without nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation. Input: - Series with values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet._uniques = ['a', 'b', 'c'] ohet._num_dummies = 3 # Run out = ohet._transform_helper(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test__transform_no_nan_categorical(self): """Test the ``_transform`` method without nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch. Input: - Series with categorical values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet._uniques = ['a', 'b', 'c'] ohet._indexer = [0, 1, 2] ohet._num_dummies = 3 ohet._dummy_encoded = True # Run out = ohet._transform_helper(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test__transform_nans_encoded(self): """Test the ``_transform`` method with nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation. Null values should be represented by the same encoding. Input: - Series with values containing nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series([np.nan, None, 'a', 'b']) ohet._uniques = ['a', 'b'] ohet._dummy_na = True ohet._num_dummies = 2 # Run out = ohet._transform_helper(data) # Assert expected = np.array([ [0, 0, 1], [0, 0, 1], [1, 0, 0], [0, 1, 0] ]) np.testing.assert_array_equal(out, expected) def test__transform_nans_categorical(self): """Test the ``_transform`` method with nans. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch. Null values should be represented by the same encoding. Input: - Series with categorical values containing nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series([np.nan, None, 'a', 'b']) ohet._uniques = ['a', 'b'] ohet._indexer = [0, 1] ohet._dummy_na = True ohet._num_dummies = 2 ohet._dummy_encoded = True # Run out = ohet._transform_helper(data) # Assert expected = np.array([ [0, 0, 1], [0, 0, 1], [1, 0, 0], [0, 1, 0] ]) np.testing.assert_array_equal(out, expected) def test__transform_single_column(self): """Test the ``_transform`` with one category. The values passed to ``_transform`` should be returned in a one-hot encoding representation where it should be a single column. Input: - Series with a single category Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet._uniques = ['a'] ohet._num_dummies = 1 # Run out = ohet._transform_helper(data) # Assert expected = np.array([ [1], [1], [1] ]) np.testing.assert_array_equal(out, expected) def test__transform_single_categorical(self): """Test the ``_transform`` with one category. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch where it should be a single column. Input: - Series with a single category Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet._uniques = ['a'] ohet._indexer = [0] ohet._num_dummies = 1 ohet._dummy_encoded = True # Run out = ohet._transform_helper(data) # Assert expected = np.array([ [1], [1], [1] ]) np.testing.assert_array_equal(out, expected) def test__transform_zeros(self): """Test the ``_transform`` with unknown category. The values passed to ``_transform`` should be returned in a one-hot encoding representation where it should be a column of zeros. Input: - Series with unknown values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() pd.Series(['a']) ohet._uniques = ['a'] ohet._num_dummies = 1 # Run out = ohet._transform_helper(pd.Series(['b', 'b', 'b'])) # Assert expected = np.array([ [0], [0], [0] ]) np.testing.assert_array_equal(out, expected) def test__transform_zeros_categorical(self): """Test the ``_transform`` with unknown category. The values passed to ``_transform`` should be returned in a one-hot encoding representation using the categorical branch where it should be a column of zeros. Input: - Series with categorical and unknown values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() pd.Series(['a']) ohet._uniques = ['a'] ohet._indexer = [0] ohet._num_dummies = 1 ohet.dummy_encoded = True # Run out = ohet._transform_helper(pd.Series(['b', 'b', 'b'])) # Assert expected = np.array([ [0], [0], [0] ]) np.testing.assert_array_equal(out, expected) def test__transform_unknown_nan(self): """Test the ``_transform`` with unknown and nans. This is an edge case for ``_transform`` where unknowns should be zeros and nans should be the last entry in the column. Input: - Series with unknown and nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() pd.Series(['a']) ohet._uniques = ['a'] ohet._dummy_na = True ohet._num_dummies = 1 # Run out = ohet._transform_helper(pd.Series(['b', 'b', np.nan])) # Assert expected = np.array([ [0, 0], [0, 0], [0, 1] ]) np.testing.assert_array_equal(out, expected) def test__transform_no_nans(self): """Test the ``transform`` without nans. In this test ``transform`` should return an identity matrix representing each item in the input. Input: - Series with categorical values Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet._fit(data) # Run out = ohet._transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test__transform_nans(self): """Test the ``transform`` with nans. In this test ``transform`` should return an identity matrix representing each item in the input as well as nans. Input: - Series with categorical values and nans Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', None]) ohet._fit(data) # Run out = ohet._transform(data) # Assert expected = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) np.testing.assert_array_equal(out, expected) def test__transform_single_column_filled_with_ones(self): """Test the ``transform`` on a single category. In this test ``transform`` should return a column filled with ones. Input: - Series with a single categorical value Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet._fit(data) # Run out = ohet._transform(data) # Assert expected = np.array([ [1], [1], [1] ]) np.testing.assert_array_equal(out, expected) def test__transform_unknown(self): """Test the ``transform`` with unknown data. In this test ``transform`` should raise an error due to the attempt of transforming data with previously unseen categories. Input: - Series with unknown categorical values """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a']) ohet._fit(data) # Assert with np.testing.assert_raises(ValueError): ohet._transform(['b']) def test__transform_numeric(self): """Test the ``transform`` on numeric input. In this test ``transform`` should return a matrix representing each item in the input as one-hot encodings. Input: - Series with numeric input Output: - one-hot encoding of the input """ # Setup ohet = OneHotEncodingTransformer() data = pd.Series([1, 2]) ohet._fit(data) expected = np.array([ [1, 0], [0, 1], ]) # Run out = ohet._transform(data) # Assert assert not ohet._dummy_encoded np.testing.assert_array_equal(out, expected) def test__reverse_transform_no_nans(self): # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', 'c']) ohet._fit(data) # Run transformed = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) out = ohet._reverse_transform(transformed) # Assert expected = pd.Series(['a', 'b', 'c']) pd.testing.assert_series_equal(out, expected) def test__reverse_transform_nans(self): # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'b', None]) ohet._fit(data) # Run transformed = np.array([ [1, 0, 0], [0, 1, 0], [0, 0, 1] ]) out = ohet._reverse_transform(transformed) # Assert expected = pd.Series(['a', 'b', None]) pd.testing.assert_series_equal(out, expected) def test__reverse_transform_single(self): # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet._fit(data) # Run transformed = np.array([ [1], [1], [1] ]) out = ohet._reverse_transform(transformed) # Assert expected = pd.Series(['a', 'a', 'a']) pd.testing.assert_series_equal(out, expected) def test__reverse_transform_1d(self): # Setup ohet = OneHotEncodingTransformer() data = pd.Series(['a', 'a', 'a']) ohet._fit(data) # Run transformed = pd.Series([1, 1, 1]) out = ohet._reverse_transform(transformed) # Assert expected =
pd.Series(['a', 'a', 'a'])
pandas.Series
import pandas as pd; data = { '수학': [90, 80, 70], '영어': [91, 81, 71], '과학': [92, 82, 72], '국어': [93, 83, 73], }; df = pd.DataFrame(data, index=['A', 'B', 'C']); class P001: def series01(self): list_data = ['202007',3.14,'ABC',100, True]; sr =
pd.Series(list_data)
pandas.Series
#----------------------------------------------------------------------------- # Copyright (c) 2017 - 2020, <NAME>, and CV_CONSA_Tools Contributors. # All rights reserved. # # The full license is in the file LICENSE.txt, distributed with this software. #----------------------------------------------------------------------------- import pandas as pd import numpy as np import matplotlib.pyplot as plt import cv2 import time import argparse import glob from datetime import datetime ############################################################################################################################################# # USAGE: python3 ./tavideo2frames.py -if ./path/to/my/video/folder -of ./data/images/output -fr "CSV" -sr 0.25 ############################################################################################################################################# ######################## # MAIN FUNCTIONS ######################## def doVideo2Frames(video_path, output_folder, sample_rate, save_results, show_output, format_results): # Starting point print("Starting to sample video: " + video_path) # For saving results in HDF5 or CSV dateTime = datetime.now() timestampStr = dateTime.strftime("%d-%b-%Y_(%H:%M:%S.%f)") if format_results == "HDF5": store_hdf5 = pd.HDFStore(output_folder + '/ta_video2frames_' + timestampStr + '.h5') # Record data video. Containers for saving the information. df = pd.DataFrame() frames_names = [] time_stamps = [] ###################### # Reading input data # ###################### video = video_path.split('/') video_name = video[-1].split('.') # Video Reader cap = cv2.VideoCapture(video_path) hasFrame, frame = cap.read() if not hasFrame: exit(-1) # General info from videos main_height, main_width, channels_main = frame.shape recording_fps = cap.get(cv2.CAP_PROP_FPS) # Same than video input, but it can be changed. total_number_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT) # Same than video input, but it can be changed. # General Variables frame_count = 1 # We start from 1 because the frame 0 was used for getting the resolution and other meta-info. sampling_distance = int(recording_fps / sample_rate) # Visual settings if show_output: cv2.namedWindow("Video Output " + str(video_name[0]), cv2.WINDOW_NORMAL) ######################### # MAIN LOOP # ######################### print(" >> INFO:") print(" - Processing video: " + str(video_name[0])) print(" - Number of frames in the video: " + str(total_number_frames)) print(" - Sampling 1 frame each " + str(sampling_distance) + " frames.") number_sample_frame = 0 while (1): hasFrame, frame = cap.read() if not hasFrame: break output_frame = frame.copy() # Frame for drawing results if frame_count % sampling_distance == 0: if number_sample_frame < 10: name_frame = video_name[0] + "_00" + str(number_sample_frame) elif number_sample_frame > 0 and number_sample_frame < 100: name_frame = video_name[0] + "_0" + str(number_sample_frame) else: name_frame = video_name[0] + "_" + str(number_sample_frame) cv2.imwrite(output_folder + "/" + name_frame + ".jpg", output_frame) frames_names.append(name_frame + ".jpg") time_stamps.append(frame_count / recording_fps) number_sample_frame += 1 if show_output: cv2.imshow("Video Output " + str(video_name[0]), output_frame) print(" -> Sampled frame number " + str(frame_count) + " of video " + str(video_name[0])) frame_count += 1 k = cv2.waitKey(1) if k == 27: break cv2.destroyAllWindows() # Save Dataframe results. if save_results: print(" >> Saving " + str(len(frames_names)) + " frames of the videos in the input folder...") df["Frame name"] = frames_names df["Timestamp (seconds)"] = time_stamps if format_results == "HDF5": store_hdf5.append(df) elif format_results == "CSV": df.to_csv(output_folder + '/ta_video2frames_' + timestampStr + '.csv', index=False, header=True) def doVideoFolder2Frames(videos, output_folder, sample_rate, save_results, show_output, format_results): # For saving results in HDF5 or CSV dateTime = datetime.now() timestampStr = dateTime.strftime("%d-%b-%Y_(%H:%M:%S.%f)") if format_results == "HDF5": store_hdf5 = pd.HDFStore(output_folder + '/ta_videos2frames_' + timestampStr + '.h5') video_number = 1 videos_n = len(videos) # Record data video. Containers for saving the information. df =
pd.DataFrame()
pandas.DataFrame
import pandas pibs = pandas.read_csv('pibs_ibge.csv', sep=',', encoding='utf-8') tse =
pandas.read_csv('codigos_tse.csv', sep=',', encoding='utf-8')
pandas.read_csv
# -*- coding: utf-8 -*- """ @created: 01/29/21 @modified: 01/29/21 @author: <NAME> CentraleSupelec MICS laboratory 9 rue <NAME>, Gif-Sur-Yvette, 91190 France Defines internal classes user-level functions for building and plotting double heatmaps. """ import copy from dataclasses import dataclass, field import numpy as np import pandas as pd import os from typing import Dict, List, Tuple, Union from tqdm import tqdm import sys import seaborn as sns import matplotlib.pyplot as plt import matplotlib.cm as cm import statsmodels.sandbox.stats.multicomp as mp from scipy.stats import fisher_exact # type aliases DataFrame = pd.core.frame.DataFrame Vector = Union[List[float], np.ndarray, pd.core.series.Series] Table = Union[List[List[float]], np.ndarray, pd.core.frame.DataFrame] def _cont_table(A: Vector, B: Vector) -> Table: """ Compute 2 x 2 contignecy table from A and B binary vectors. Parameters ---------- A: array-like A vector of binary entries B: array-like A vector of binary entries Returns ------- tab: array-like A 2x2 contigency table. """ tab = np.zeros((2, 2)) A_anti = np.where(A==1, 0, 1) B_anti = np.where(B==1, 0, 1) tab[0,0] = np.sum(A*B) tab[0,1] = np.sum(A*B_anti) tab[1,0] = np.sum(A_anti*B) tab[1,1] = np.sum(A_anti*B_anti) return tab def _odds_ratio(tab: Table) -> float: """ Computes the odds ratio of a contigency table ------------------- a b c d ------------------- as (a/b)/(c/d) or ad/bc Parameters ---------- tab: array-like The table. Returns ------- _odds_ratio: float """ if tab[0,1] == 0 or tab[1,0] == 0: _odds_ratio = tab[0,0] * tab[1,1] / max(tab[1,0], tab[0,1], 1) else: _odds_ratio = tab[0,0] * tab[1,1] / (tab[1,0] * tab[0,1]) return _odds_ratio class _DoubleHeatmapBuild(object): def __init__(self, pair_count="cooccurrence", pair_ratio="odds", pair_test="fisher_exact"): """ Parameters ---------- pair_count: str, default="cooccurrence" Either a string or a callable taking as input two iterables of the same size (lists or arrays) and that returns a float. For each pair of variables, this will be plotted in one half of the heatmap. pair_ratio: str, default="odds" Either a string, a dataframe or a callable taking as input two iterables of the same size (lists or arrays) and that returns a float. For each pair of variables, this will be plotted in one half of the heatmap. pair_test: str, default="fisher_exact" Either a string None or a callable taking as input two iterables of the same size (lists or arrays) and that returns a p-value. Pairs that have a significant test will have a star above their cell. """ self.pair_count = pair_count self.pair_ratio = pair_ratio self.pair_test = pair_test def _pair_count(self, A, B): if isinstance(self.pair_ratio, str) and self.pair_count == "cooccurrence": assert set(A).issubset(set([0,1])) assert set(B).issubset(set([0,1])) return sum((A==1) & (B==1)) elif isinstance(self.pair_count, Callable): return self.pair_count(A,B) else: raise ValueError("Invalid value for parameter 'pair_count'. Specify a Callable or one of 'cooccurrence'") def _pair_ratio(self, A, B): if isinstance(self.pair_ratio, str) and self.pair_ratio == "odds": c_tab = _cont_table(A, B) ratio = _odds_ratio(c_tab) return ratio elif isinstance(self.pair_ratio, Callable): return self.pair_ratio(A,B) else: raise ValueError("Invalid value for parameter 'pair_ratio'. Specify a Callable or one of 'cooccurrence'") def _pair_test(self, A, B): if self.pair_test is None: return None if type(self.pair_test) == str and self.pair_test == "fisher_exact": c_tab = _cont_table(A, B) _, pval = fisher_exact(c_tab) return pval else: return self.pair_test(A,B) def _build_half_matrix(self, df, pair, use_diagonal=True): """ Builds a half matrix of size (n_var, n_var) from a matrix of size (n_obs, n_var). Parameters ---------- df: array-like, (n_obs, n_var) It defines the values used to build the half matrix pair: A callable function taking as input two iterables of the same size (lists or arrays) and that returns a float. For each pair of variables, the float will be fill the half-matrix. Returns ------- half_df: Half-filled matrix """ vars = df.columns.tolist() n_vars = len(vars) m_half = [] if use_diagonal: for i in tqdm(range(n_vars)): l_half = [np.nan for _ in range(n_vars)] for j in range(0, i + 1): l_half[j] = pair(df[vars[i]], df[vars[j]]) m_half.append(l_half) else: m_half.append([np.nan for _ in range(n_vars)]) for i in tqdm(range(1, n_vars)): l_half = [np.nan for _ in range(n_vars)] for j in range(0, i): l_half[j] = pair(df[vars[i]], df[vars[j]]) m_half.append(l_half) df_half = pd.DataFrame(m_half, vars) df_half.columns = df.columns return df_half def build_half_matrices(self, df_values, df_active=None): """ Builds one, two or three half-matrices from a matrix of activation and a matrix of values of size (n_obs, n_var). Each half-matrix is a square matrix of size (n_var, n_var). Parameters ---------- df_values: array-like, (n_obs, n_var) It defines the values used to build the half matrices of ratios and tests in observations x variables format. df_active: array-like, (n_obs, n_var) default=None If None, df_active=df_values. It defines the binary activation indicator of variables in sample used to build the half matrix of counts in observations x variables format. Returns ------- dfs: dict of dataframe Dict containing the half-matrices of "count", "ratio" and "test" """ if df_active is None: df_active = df_values if self.pair_count is None: df_count = None else: df_count = self._build_half_matrix(df_active, self._pair_count) if self.pair_ratio is None: df_ratio = None else: df_ratio = self._build_half_matrix(df_values, self._pair_ratio, use_diagonal=False) if self.pair_test is None: df_test = None else: df_test = self._build_half_matrix(df_values, self._pair_test, use_diagonal=False) return {"count": df_count, "ratio": df_ratio, "test": df_test} def build_double_heatmap(df_values, df_active=None, pair_count="cooccurrence", pair_ratio="odds", pair_test="fisher_exact"): """ Builds one, two or three half-matrices from a matrix of activation and a matrix of values of size (n_obs, n_var). Each half-matrix is a square matrix of size (n_var, n_var). Parameters ---------- pair_count: str, default="cooccurrence" Either a string or a callable taking as input two iterables of the same size (lists or arrays) and that returns a float. For each pair of variables, this will be plotted in one half of the heatmap. pair_ratio: str, default="odds" Either a string, a dataframe or a callable taking as input two iterables of the same size (lists or arrays) and that returns a float. For each pair of variables, this will be plotted in one half of the heatmap. pair_test: str, default="fisher_exact" Either a string None or a callable taking as input two iterables of the same size (lists or arrays) and that returns a p-value. Pairs that have a significant test will have a star above their cell. Parameters ---------- df_values: array-like, (n_obs, n_var) It defines the values used to build the half matrices of ratios and tests in observations x variables format. df_active: array-like, (n_obs, n_var) default=None If None, df_active=df_values. It defines the binary activation indicator of variables in sample used to build the half matrix of counts in observations x variables format. Returns ------- dfs: dict of dataframe Dict containing the half-matrices of "count", "ratio" and "test" """ builder = _DoubleHeatmapBuild(pair_count, pair_ratio, pair_test) return builder.build_half_matrices(df_values, df_active) def default_field(obj): return field(default_factory=lambda: obj) @dataclass class DoubleHeatmapConfig: figure: Dict[str, Union[str,tuple]] = default_field({ "figsize": (8,8), "dpi": 300, "n_grid": 10, }) heatmap: Dict[str, Union[int, str, bool, float]] = default_field({ "orientation" : "antidiagonal", "xticklabels" : True, "yticklabels" : True, "ticks_labelsize" : 8, "xticks_labelrotation" : 90, "yticks_labelrotation" : 0, "linecolor" : "white", "linewidths" : 0.5, "square" : True, }) legend: Dict[str, Union[int, float, str]] = default_field({ 'edgecolor': 'k', 'fancybox': False, 'facecolor': 'w', 'fontsize': 10, 'framealpha': 1, 'frameon': False, 'handle_length': 1, 'handle_height': 1.125, 'title_fontsize': 12, }) count: Dict[str, Union[int, float, str, bool]] = default_field({ 'boundaries' : [1,5,10,15,20,50,200,500], 'auto_boundaries' : {"n": 7, "decimals": 0, "middle": None, "regular": True}, 'cmap' : sns.color_palette("Blues", n_colors=7, as_cmap=True), 'cbar_fraction' : 0.25, 'cbar_aspect' : None, 'cbar_reverse' : True, 'cbar_xy' : (0, 0.5), 'cbar_title' : "Counts", 'cbar_title_fontsize' : 12, 'cbar_title_pad' : 6, 'cbar_ticks_rotation' : 0, 'cbar_ticks_length' : 5, 'cbar_ticks_labelsize': 8, 'cbar_ticks_pad' : 4, }) ratio: Dict[str, Union[int, float, str]] = default_field({ 'boundaries' : [0.001, 0.01, 0.1, 1, 10, 100, 1000], 'auto_boundaries' : {"n": 7, "decimals": 0, "middle": None, "regular": True}, 'cmap' : sns.diverging_palette(50, 200, s=90, l=50, sep=1, as_cmap=True), 'cbar_fraction' : 0.25, 'cbar_aspect' : None, 'cbar_reverse' : False, 'cbar_xy' : (0.5, 0.1), 'cbar_title' : "Ratios", 'cbar_title_pad' : 6, 'cbar_title_fontsize' : 12, 'cbar_ticks_rotation' : 0, 'cbar_ticks_length' : 5, 'cbar_ticks_labelsize': 8, 'cbar_ticks_pad' : 4, }) test: Dict[str, Union[int, float, str]] = default_field({ 'pval_level': 0.05, 'fwer_level': 0.05, 'fdr_level': 0.1, 'fwer_size': 10, 'fwer_marker': '*', 'fwer_color': 'black', 'fdr_size': 1, 'fdr_marker': 's', 'fdr_color': 'black', }) class _DoubleHeatmapPlot(object): def __init__(self, df_count: DataFrame, df_ratio: DataFrame, df_test: DataFrame, config: DoubleHeatmapConfig): """ Plots double heatmap. Parameters ---------- df_count: pandas.core.frame.DataFrame Pandas half-filled dataframe of counts. df_ratio: pandas.core.frame.DataFrame Pandas half-filled dataframe of ratios. df_test: pandas.core.frame.DataFrame Pandas half-filled dataframe of p-values. config: DoubleHeatmapConfig Graphical parameters. """ self.df_count = df_count.copy() self.df_ratio = df_ratio.copy() self.df_test = df_test.copy() self.n_var = self.df_count.shape[0] self.config = config self._check_config(config) self._automatic_config() def _check_config(self, config): for cmap in [self.config.ratio["cmap"], self.config.count["cmap"]]: if not isinstance(config.ratio["cmap"], cm.colors.LinearSegmentedColormap): raise ValueError("""Please specify color maps of that are instances of LinearSegmentedColormap as produced by the sns.color_palette with cmap=True function for instance""") if self.config.heatmap["orientation"] not in ["diagonal", "antidiagonal"]: raise ValueError("%s is invalid for heatmap orientation. Choose 'diagonal' or 'antidiagonal'" % self.config.heatmap["orientation"] == "antidiagonal") def _automatic_boundaries(self, df, use_diagonal=True, n=9, middle=None, decimals=1): if use_diagonal: vals = np.array([self.df_ratio.iloc[i,j] for i in range(self.n_var) for j in range(i)]) else: vals = np.array([self.df_ratio.iloc[i,j] for i in range(1,self.n_var) for j in range(i-1)]) min_val = np.round(min(vals), decimals=decimals) max_val = np.round(max(vals), decimals=decimals) if middle is not None: below_middle = pd.qcut(vals[vals < middle], q=(n-1)//2).categories.mid.values below_middle = np.round(below_middle, decimals=decimals) above_middle =
pd.qcut(vals[vals > middle], q=(n-1)//2)
pandas.qcut
''' Tests for bipartitepandas DATE: March 2021 ''' import pytest import numpy as np import pandas as pd import bipartitepandas as bpd import pickle ################################### ##### Tests for BipartiteBase ##### ################################### def test_refactor_1(): # 2 movers between firms 0 and 1, and 1 stayer at firm 2. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 0 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 2}) # Firm 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_refactor_2(): # 2 movers between firms 0 and 1, and 1 stayer at firm 2. Time has jumps. worker_data = [] # Firm 0 -> 1 # Time 1 -> 3 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 3}) # Firm 1 -> 0 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 2}) # Firm 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_refactor_3(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 2 assert movers.iloc[2]['j1'] == 2 assert movers.iloc[2]['j2'] == 1 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 2 def test_refactor_4(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. worker_data = [] # Firm 0 -> 1 -> 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 3}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_5(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 1 -> 0 # Time 1 -> 2 -> 4 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 4}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_6(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 2 -> 3 -> 5 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 2}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 3}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 5}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_7(): # 1 mover between firms 0 and 1, and 2 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 3 -> 4 -> 6 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 3}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 4}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 6}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 2 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_8(): # 2 movers between firms 0 and 1, and 1 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 3 -> 4 -> 6 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 3}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 4}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 6}) # Firm 0 -> 1 worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 0 assert movers.iloc[2]['j2'] == 1 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_9(): # 2 movers between firms 0 and 1, and 1 between firms 1 and 2. Time has jumps. worker_data = [] # Firm 0 -> 0 -> 1 -> 0 # Time 1 -> 3 -> 4 -> 6 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 3}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 4}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 6}) # Firm 1 -> 0 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 0, 'y': 1., 't': 2}) # Firm 2 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 1, 'y': 2., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 0 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j1'] == 1 assert movers.iloc[2]['j2'] == 0 assert movers.iloc[2]['y1'] == 1 assert movers.iloc[2]['y2'] == 1 assert movers.iloc[3]['i'] == 2 assert movers.iloc[3]['j1'] == 2 assert movers.iloc[3]['j2'] == 1 assert movers.iloc[3]['y1'] == 1 assert movers.iloc[3]['y2'] == 2 def test_refactor_10(): # 1 mover between firms 0 and 1, 1 between firms 1 and 2, and 1 stayer at firm 2. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_refactor_11(): # 1 mover between firms 0 and 1 and 2 and 3, 1 between firms 1 and 2, and 1 stayer at firm 2. # Check going to event study and back to long, for data where movers have extended periods where they stay at the same firm worker_data = [] # Firm 0 -> 1 -> 2 -> 3 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) worker_data.append({'i': 0, 'j': 2, 'y': 0.5, 't': 3}) worker_data.append({'i': 0, 'j': 2, 'y': 0.5, 't': 4}) worker_data.append({'i': 0, 'j': 2, 'y': 0.75, 't': 5}) worker_data.append({'i': 0, 'j': 3, 'y': 1.5, 't': 6}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Firm 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df).clean_data().get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 0 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 0.5 assert stayers.iloc[0]['y2'] == 0.5 assert stayers.iloc[0]['t1'] == 4 assert stayers.iloc[0]['t2'] == 4 assert stayers.iloc[1]['i'] == 2 assert stayers.iloc[1]['j1'] == 2 assert stayers.iloc[1]['j2'] == 2 assert stayers.iloc[1]['y1'] == 1. assert stayers.iloc[1]['y2'] == 1. assert stayers.iloc[1]['t1'] == 1 assert stayers.iloc[1]['t2'] == 1 assert stayers.iloc[2]['i'] == 2 assert stayers.iloc[2]['j1'] == 2 assert stayers.iloc[2]['j2'] == 2 assert stayers.iloc[2]['y1'] == 1. assert stayers.iloc[2]['y2'] == 1. assert stayers.iloc[2]['t1'] == 2 assert stayers.iloc[2]['t2'] == 2 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2. assert movers.iloc[0]['y2'] == 1. assert movers.iloc[0]['t1'] == 1 assert movers.iloc[0]['t2'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1. assert movers.iloc[1]['y2'] == 0.5 assert movers.iloc[1]['t1'] == 2 assert movers.iloc[1]['t2'] == 3 assert movers.iloc[2]['i'] == 0 assert movers.iloc[2]['j1'] == 2 assert movers.iloc[2]['j2'] == 3 assert movers.iloc[2]['y1'] == 0.75 assert movers.iloc[2]['y2'] == 1.5 assert movers.iloc[2]['t1'] == 5 assert movers.iloc[2]['t2'] == 6 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j1'] == 1 assert movers.iloc[3]['j2'] == 2 assert movers.iloc[3]['y1'] == 1. assert movers.iloc[3]['y2'] == 1. assert movers.iloc[3]['t1'] == 1 assert movers.iloc[3]['t2'] == 2 bdf = bdf.get_long() for row in range(len(bdf)): df_row = df.iloc[row] bdf_row = bdf.iloc[row] for col in ['i', 'j', 'y', 't']: assert df_row[col] == bdf_row[col] def test_refactor_12(): # Check going to event study and back to long df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() assert len(bdf) == len(bdf.get_es().get_long()) def test_contiguous_fids_11(): # Check contiguous_ids() with firm ids. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 3 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 3, 'y': 1., 't': 2}) # Firm 3 -> 3 worker_data.append({'i': 2, 'j': 3, 'y': 1., 't': 1}) worker_data.append({'i': 2, 'j': 3, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_contiguous_wids_12(): # Check contiguous_ids() with worker ids. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Worker 3 # Firm 2 -> 2 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_contiguous_cids_13(): # Check contiguous_ids() with cluster ids. worker_data = [] # Firm 0 -> 1 # Cluster 1 -> 2 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1, 'g': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2, 'g': 2}) # Firm 1 -> 2 # Cluster 2 -> 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1, 'g': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2, 'g': 1}) # Firm 2 -> 2 # Cluster 1 -> 1 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1, 'g': 1}) worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 2, 'g': 1}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert stayers.iloc[0]['g1'] == 0 assert stayers.iloc[0]['g2'] == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[0]['g1'] == 0 assert movers.iloc[0]['g2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[1]['g1'] == 1 assert movers.iloc[1]['g2'] == 0 def test_contiguous_cids_14(): # Check contiguous_ids() with cluster ids. worker_data = [] # Firm 0 -> 1 # Cluster 2 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1, 'g': 2}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2, 'g': 1}) # Firm 1 -> 2 # Cluster 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1, 'g': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2, 'g': 2}) # Firm 2 -> 2 # Cluster 2 -> 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1, 'g': 2}) worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 2, 'g': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df, include_id_reference_dict=True) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es().original_ids() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[0]['original_g1'] == 2 assert movers.iloc[0]['original_g2'] == 1 assert movers.iloc[0]['g1'] == 0 assert movers.iloc[0]['g2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 assert movers.iloc[1]['original_g1'] == 1 assert movers.iloc[1]['original_g2'] == 2 assert movers.iloc[1]['g1'] == 1 assert movers.iloc[1]['g2'] == 0 assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert stayers.iloc[0]['original_g1'] == 2 assert stayers.iloc[0]['original_g2'] == 2 assert stayers.iloc[0]['g1'] == 0 assert stayers.iloc[0]['g2'] == 0 def test_col_dict_15(): # Check that col_dict works properly. worker_data = [] # Firm 0 -> 1 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Worker 3 # Firm 2 -> 2 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]).rename({'j': 'firm', 'i': 'worker'}, axis=1) bdf = bpd.BipartiteLong(data=df, col_dict={'j': 'firm', 'i': 'worker'}) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j1'] == 2 assert stayers.iloc[0]['j2'] == 2 assert stayers.iloc[0]['y1'] == 1 assert stayers.iloc[0]['y2'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[1]['i'] == 1 assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['y2'] == 1 def test_worker_year_unique_16_1(): # Workers with multiple jobs in the same year, keep the highest paying, with long format. Testing 'max', 'sum', and 'mean' options, where options should not have an effect. worker_data = [] # Firm 0 -> 1 # Time 1 -> 2 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 -> 3 # Time 1 -> 2 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 1, 'j': 3, 'y': 0.5, 't': 2}) # Worker 3 # Firm 2 -> 1 -> 2 # Time 1 -> 1 -> 2 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 1, 'y': 1.5, 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) for how in ['max', 'sum', 'mean']: bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data(bpd.clean_params({'i_t_how': how})) stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['y'] == 1 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['j'] == 1 assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_worker_year_unique_16_2(): # Workers with multiple jobs in the same year, keep the highest paying, with long format. Testing 'max', 'sum' and 'mean' options, where options should have an effect. worker_data = [] # Firm 0 -> 1 # Time 1 -> 2 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Firm 1 -> 2 -> 2 -> 3 # Time 1 -> 2 -> 2 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1.5, 't': 2}) worker_data.append({'i': 1, 'j': 3, 'y': 0.5, 't': 2}) # Worker 3 # Firm 2 -> 1 -> 2 # Time 1 -> 1 -> 2 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 1, 'y': 1.5, 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) for how in ['max', 'sum', 'mean']: bdf = bpd.BipartiteLong(data=df.copy()) bdf = bdf.clean_data(bpd.clean_params({'i_t_how': how})) stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 if how == 'max': assert movers.iloc[3]['y'] == 1.5 elif how == 'sum': assert movers.iloc[3]['y'] == 2.5 elif how == 'mean': assert movers.iloc[3]['y'] == 1.25 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['j'] == 1 assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_worker_year_unique_16_3(): # Workers with multiple jobs in the same year, keep the highest paying, with collapsed long format. Testing 'max', 'sum', and 'mean' options, where options should have an effect. Using collapsed long data. worker_data = [] # Firm 0 -> 1 # Time 1 -> 2 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't1': 1, 't2': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't1': 2, 't2': 2}) # Firm 1 -> 2 -> 2 -> 3 # Time 1 -> 2 -> 2 -> 2 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't1': 1, 't2': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't1': 2, 't2': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1.5, 't1': 2, 't2': 2}) worker_data.append({'i': 1, 'j': 3, 'y': 0.5, 't1': 2, 't2': 2}) # Worker 3 # Firm 2 -> 1 # Time 1 -> 1 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't1': 1, 't2': 2}) worker_data.append({'i': 3, 'j': 1, 'y': 1.5, 't1': 1, 't2': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) for how in ['max', 'sum', 'mean']: bdf = bpd.BipartiteLongCollapsed(data=df) bdf = bdf.clean_data(bpd.clean_params({'i_t_how': how})) stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j'] == 1 assert stayers.iloc[0]['y'] == 1.5 assert stayers.iloc[0]['t1'] == 1 assert stayers.iloc[0]['t2'] == 2 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t1'] == 1 assert movers.iloc[0]['t2'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t1'] == 2 assert movers.iloc[1]['t2'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t1'] == 1 assert movers.iloc[2]['t2'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 if how == 'max': assert movers.iloc[3]['y'] == 1.5 elif how == 'sum': assert movers.iloc[3]['y'] == 2.5 elif how == 'mean': assert movers.iloc[3]['y'] == 1.25 assert movers.iloc[3]['t1'] == 2 assert movers.iloc[3]['t2'] == 2 def test_worker_year_unique_16_4(): # Workers with multiple jobs in the same year, keep the highest paying, with event study format. Testing 'max', 'sum', and 'mean' options, where options should have an effect. NOTE: because of how data converts from event study to long (it only shifts period 2 (e.g. j2, y2) for the last row, as it assumes observations zigzag), it will only correct duplicates for period 1 worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j1': 0, 'j2': 1, 'y1': 2., 'y2': 1., 't1': 1, 't2': 2}) # Worker 1 worker_data.append({'i': 1, 'j1': 1, 'j2': 2, 'y1': 0.5, 'y2': 1.5, 't1': 1, 't2': 2}) worker_data.append({'i': 1, 'j1': 1, 'j2': 2, 'y1': 0.75, 'y2': 1., 't1': 1, 't2': 2}) worker_data.append({'i': 1, 'j1': 2, 'j2': 1, 'y1': 1., 'y2': 2., 't1': 1, 't2': 2}) # Worker 3 worker_data.append({'i': 3, 'j1': 2, 'j2': 2, 't1': 1, 't2': 1, 'y1': 1., 'y2': 1.}) worker_data.append({'i': 3, 'j1': 2, 'j2': 2, 'y1': 1., 'y2': 1., 't1': 2, 't2': 2}) worker_data.append({'i': 3, 'j1': 1, 'j2': 1, 'y1': 1.5, 'y2': 1.5, 't1': 1, 't2': 1}) worker_data.append({'i': 3, 'j1': 1, 'j2': 1, 'y1': 1.5, 'y2': 1.5, 't1': 2, 't2': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) for how in ['max', 'sum', 'mean']: bdf = bpd.BipartiteEventStudy(data=df.copy(), include_id_reference_dict=True) bdf = bdf.clean_data(bpd.clean_params({'i_t_how': how})).original_ids() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['original_i'] == 3 assert stayers.iloc[0]['j1'] == 1 assert stayers.iloc[0]['j2'] == 1 assert stayers.iloc[0]['y1'] == 1.5 assert stayers.iloc[0]['y2'] == 1.5 assert stayers.iloc[0]['t1'] == 1 assert stayers.iloc[0]['t2'] == 1 assert stayers.iloc[1]['i'] == 2 assert stayers.iloc[1]['original_i'] == 3 assert stayers.iloc[1]['j1'] == 1 assert stayers.iloc[1]['j2'] == 1 assert stayers.iloc[1]['y1'] == 1.5 assert stayers.iloc[1]['y2'] == 1.5 assert stayers.iloc[1]['t1'] == 2 assert stayers.iloc[1]['t2'] == 2 assert movers.iloc[0]['original_i'] == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j1'] == 0 assert movers.iloc[0]['j2'] == 1 assert movers.iloc[0]['y1'] == 2 assert movers.iloc[0]['y2'] == 1 assert movers.iloc[0]['t1'] == 1 assert movers.iloc[0]['t2'] == 2 assert movers.iloc[1]['original_i'] == 1 assert movers.iloc[1]['i'] == 1 if how == 'max': assert movers.iloc[1]['j1'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['j2'] == 1 assert movers.iloc[1]['y2'] == 2 elif how == 'sum': assert movers.iloc[1]['j1'] == 1 assert movers.iloc[1]['y1'] == 1.25 assert movers.iloc[1]['j2'] == 2 assert movers.iloc[1]['y2'] == 2.5 elif how == 'mean': assert movers.iloc[1]['j1'] == 2 assert movers.iloc[1]['y1'] == 1 assert movers.iloc[1]['j2'] == 1 assert movers.iloc[1]['y2'] == 2 assert movers.iloc[1]['t1'] == 1 assert movers.iloc[1]['t2'] == 2 def test_string_ids_17(): # String worker and firm ids. worker_data = [] # Worker 'a' worker_data.append({'i': 'a', 'j': 'a', 'y': 2., 't': 1}) worker_data.append({'i': 'a', 'j': 'b', 'y': 1., 't': 2}) # Worker 'b' worker_data.append({'i': 'b', 'j': 'b', 'y': 1., 't': 1}) worker_data.append({'i': 'b', 'j': 'c', 'y': 1., 't': 2}) worker_data.append({'i': 'b', 'j': 'd', 'y': 0.5, 't': 2}) # Worker 'd' worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 1}) worker_data.append({'i': 'd', 'j': 'b', 'y': 1.5, 't': 1}) worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['y'] == 1 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['j'] == 1 assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_general_methods_18(): # Test some general methods, like n_workers/n_firms/n_clusters, included_cols(), drop(), and rename(). worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1, 'g': 2}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2, 'g': 1}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1, 'g': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2, 'g': 2}) # Worker 2 worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 1, 'g': 2}) worker_data.append({'i': 2, 'j': 2, 'y': 1., 't': 2, 'g': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() bdf = bdf.get_collapsed_long() bdf = bdf.get_es() assert bdf.n_workers() == 3 assert bdf.n_firms() == 3 assert bdf.n_clusters() == 2 correct_cols = True all_cols = bdf._included_cols() for col in ['i', 'j', 'y', 't', 'g']: if col not in all_cols: correct_cols = False break assert correct_cols bdf.drop('g1', axis=1, inplace=True) assert 'g1' in bdf.columns and 'g2' in bdf.columns bdf.drop('g', axis=1, inplace=True) assert 'g1' not in bdf.columns and 'g2' not in bdf.columns bdf.rename({'i': 'w'}) assert 'i' in bdf.columns bdf['g1'] = 1 bdf['g2'] = 1 bdf.col_dict['g1'] = 'g1' bdf.col_dict['g2'] = 'g2' assert 'g1' in bdf.columns and 'g2' in bdf.columns bdf.rename({'g': 'r'}) assert 'g1' not in bdf.columns and 'g2' not in bdf.columns def test_save_19(): # Make sure changing attributes in a saved version does not overwrite values in the original. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 1, 'j': 3, 'y': 0.5, 't': 2}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 1, 'y': 1.5, 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) # Long bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data().drop('m', axis=1, inplace=True) bdf2 = bdf.copy() bdf2 = bdf2.gen_m(copy=False) assert 'm' in bdf2._included_cols() and 'm' not in bdf._included_cols() # Event study bdf = bdf.gen_m(copy=False).get_es() bdf = bdf.clean_data().drop('m', axis=1, inplace=True) bdf2 = bdf.copy() bdf2 = bdf2.gen_m(copy=False) assert 'm' in bdf2._included_cols() and 'm' not in bdf._included_cols() # Collapsed long bdf = bdf.gen_m(copy=False).get_long().get_collapsed_long() bdf = bdf.clean_data().drop('m', axis=1, inplace=True) bdf2 = bdf.copy() bdf2 = bdf2.gen_m(copy=False) assert 'm' in bdf2._included_cols() and 'm' not in bdf._included_cols() # Collapsed event study bdf = bdf.gen_m(copy=False).get_es() bdf = bdf.clean_data().drop('m', axis=1, inplace=True) bdf2 = bdf.copy() bdf2 = bdf2.gen_m(copy=False) assert 'm' in bdf2._included_cols() and 'm' not in bdf._included_cols() def test_id_reference_dict_20(): # String worker and firm ids, link with id_reference_dict. worker_data = [] # Worker 'a' worker_data.append({'i': 'a', 'j': 'a', 'y': 2., 't': 1}) worker_data.append({'i': 'a', 'j': 'b', 'y': 1., 't': 2}) # Worker 'b' worker_data.append({'i': 'b', 'j': 'b', 'y': 1., 't': 1}) worker_data.append({'i': 'b', 'j': 'c', 'y': 1., 't': 2}) worker_data.append({'i': 'b', 'j': 'd', 'y': 0.5, 't': 2}) # Worker 'd' worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 1}) worker_data.append({'i': 'd', 'j': 'b', 'y': 1.5, 't': 1}) worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df, include_id_reference_dict=True) bdf = bdf.clean_data() id_reference_dict = bdf.id_reference_dict merge_df = bdf.merge(id_reference_dict['i'], how='left', left_on='i', right_on='adjusted_ids_1').rename({'original_ids': 'original_i'}) merge_df = merge_df.merge(id_reference_dict['j'], how='left', left_on='j', right_on='adjusted_ids_1').rename({'original_ids': 'original_j'}) stayers = merge_df[merge_df['m'] == 0] movers = merge_df[merge_df['m'] == 1] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['original_i'] == 'a' assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['original_j'] == 'a' assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['original_i'] == 'a' assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['original_j'] == 'b' assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['original_i'] == 'b' assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['original_j'] == 'b' assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['original_i'] == 'b' assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['original_j'] == 'c' assert movers.iloc[3]['y'] == 1 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['original_i'] == 'd' assert movers.iloc[4]['j'] == 1 assert movers.iloc[4]['original_j'] == 'b' assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['original_i'] == 'd' assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['original_j'] == 'c' assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_id_reference_dict_22(): # String worker and firm ids, link with id_reference_dict. Testing original_ids() method. worker_data = [] # Worker 'a' worker_data.append({'i': 'a', 'j': 'a', 'y': 2., 't': 1}) worker_data.append({'i': 'a', 'j': 'b', 'y': 1., 't': 2}) # Worker 'b' worker_data.append({'i': 'b', 'j': 'b', 'y': 1., 't': 1}) worker_data.append({'i': 'b', 'j': 'c', 'y': 1., 't': 2}) worker_data.append({'i': 'b', 'j': 'd', 'y': 0.5, 't': 2}) # Worker 'd' worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 1}) worker_data.append({'i': 'd', 'j': 'b', 'y': 1.5, 't': 1}) worker_data.append({'i': 'd', 'j': 'c', 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df, include_id_reference_dict=True) bdf = bdf.clean_data() merge_df = bdf.original_ids() stayers = merge_df[merge_df['m'] == 0] movers = merge_df[merge_df['m'] == 1] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['original_i'] == 'a' assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['original_j'] == 'a' assert movers.iloc[0]['y'] == 2 assert movers.iloc[0]['t'] == 1 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['original_i'] == 'a' assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['original_j'] == 'b' assert movers.iloc[1]['y'] == 1 assert movers.iloc[1]['t'] == 2 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['original_i'] == 'b' assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['original_j'] == 'b' assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['original_i'] == 'b' assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['original_j'] == 'c' assert movers.iloc[3]['y'] == 1 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['original_i'] == 'd' assert movers.iloc[4]['j'] == 1 assert movers.iloc[4]['original_j'] == 'b' assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['original_i'] == 'd' assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['original_j'] == 'c' assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_id_reference_dict_23(): # String worker and firm ids, link with id_reference_dict. Testing original_ids() method where there are multiple steps of references. worker_data = [] # Worker 'a' # Firm a -> b -> c turns into 0 -> 1 -> 2 turns into 0 -> 1 worker_data.append({'i': 'a', 'j': 'a', 'y': 2., 't': 1}) worker_data.append({'i': 'a', 'j': 'b', 'y': 1., 't': 2}) worker_data.append({'i': 'a', 'j': 'c', 'y': 1.5, 't': 3}) # Worker 'b' # Firm b -> d turns into 1 -> 3 turns into 0 -> 2 worker_data.append({'i': 'b', 'j': 'b', 'y': 1., 't': 1}) worker_data.append({'i': 'b', 'j': 'd', 'y': 1., 't': 2}) worker_data.append({'i': 'b', 'j': 'c', 'y': 0.5, 't': 2}) # Worker 'd' # Firm b -> d turns into 1 -> 3 turns into 0 -> 2 worker_data.append({'i': 'd', 'j': 'd', 'y': 1., 't': 1}) worker_data.append({'i': 'd', 'j': 'b', 'y': 1.5, 't': 1}) worker_data.append({'i': 'd', 'j': 'd', 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df, include_id_reference_dict=True) bdf = bdf.clean_data() bdf = bdf[bdf['j'] > 0] bdf = bdf.clean_data(bpd.clean_params({'connectedness': None})) merge_df = bdf.original_ids() stayers = merge_df[merge_df['m'] == 0] movers = merge_df[merge_df['m'] > 0] assert len(stayers) == 0 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['original_i'] == 'a' assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['original_j'] == 'b' assert movers.iloc[0]['y'] == 1 assert movers.iloc[0]['t'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['original_i'] == 'a' assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['original_j'] == 'c' assert movers.iloc[1]['y'] == 1.5 assert movers.iloc[1]['t'] == 3 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['original_i'] == 'b' assert movers.iloc[2]['j'] == 0 assert movers.iloc[2]['original_j'] == 'b' assert movers.iloc[2]['y'] == 1 assert movers.iloc[2]['t'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['original_i'] == 'b' assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['original_j'] == 'd' assert movers.iloc[3]['y'] == 1 assert movers.iloc[3]['t'] == 2 assert movers.iloc[4]['i'] == 2 assert movers.iloc[4]['original_i'] == 'd' assert movers.iloc[4]['j'] == 0 assert movers.iloc[4]['original_j'] == 'b' assert movers.iloc[4]['y'] == 1.5 assert movers.iloc[4]['t'] == 1 assert movers.iloc[5]['i'] == 2 assert movers.iloc[5]['original_i'] == 'd' assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['original_j'] == 'd' assert movers.iloc[5]['y'] == 1 assert movers.iloc[5]['t'] == 2 def test_fill_time_24_1(): # Test .fill_time() method for long format, with no data to fill in. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() new_df = bdf.fill_periods() stayers = new_df[new_df['m'] == 0] movers = new_df[new_df['m'] == 1] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j'] == 2 assert stayers.iloc[0]['y'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['y'] == 1 def test_fill_time_24_2(): # Test .fill_time() method for long format, with 1 row of data to fill in. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 # Time 1 -> 3 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 3}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() new_df = bdf.fill_periods() stayers = new_df[new_df.groupby('i')['m'].transform('max') == 0] movers = new_df[new_df.groupby('i')['m'].transform('max') == 1] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j'] == 2 assert stayers.iloc[0]['y'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == - 1 assert np.isnan(movers.iloc[3]['y']) assert np.isnan(movers.iloc[3]['m']) assert movers.iloc[4]['i'] == 1 assert movers.iloc[4]['j'] == 2 assert movers.iloc[4]['y'] == 1 def test_fill_time_24_3(): # Test .fill_time() method for long format, with 2 rows of data to fill in. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 # Time 1 -> 4 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 4}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() new_df = bdf.fill_periods() stayers = new_df[new_df.groupby('i')['m'].transform('max') == 0] movers = new_df[new_df.groupby('i')['m'].transform('max') == 1] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j'] == 2 assert stayers.iloc[0]['y'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == - 1 assert np.isnan(movers.iloc[3]['y']) assert np.isnan(movers.iloc[3]['m']) assert movers.iloc[4]['i'] == 1 assert movers.iloc[4]['j'] == - 1 assert np.isnan(movers.iloc[4]['y']) assert np.isnan(movers.iloc[4]['m']) assert movers.iloc[5]['i'] == 1 assert movers.iloc[5]['j'] == 2 assert movers.iloc[5]['y'] == 1 def test_uncollapse_25(): # Convert from collapsed long to long format. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't1': 1, 't2': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't1': 2, 't2': 2}) # Worker 1 # Time 1 -> 3 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't1': 1, 't2': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't1': 2, 't2': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 1.5, 't1': 2, 't2': 2}) worker_data.append({'i': 1, 'j': 3, 'y': 0.5, 't1': 2, 't2': 2}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't1': 1, 't2': 2}) worker_data.append({'i': 3, 'j': 1, 'y': 1.5, 't1': 1, 't2': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLongCollapsed(data=df).uncollapse() assert bdf.iloc[0]['i'] == 0 assert bdf.iloc[0]['j'] == 0 assert bdf.iloc[0]['y'] == 2 assert bdf.iloc[0]['t'] == 1 assert bdf.iloc[1]['i'] == 0 assert bdf.iloc[1]['j'] == 1 assert bdf.iloc[1]['y'] == 1 assert bdf.iloc[1]['t'] == 2 assert bdf.iloc[2]['i'] == 1 assert bdf.iloc[2]['j'] == 1 assert bdf.iloc[2]['y'] == 1 assert bdf.iloc[2]['t'] == 1 assert bdf.iloc[3]['i'] == 1 assert bdf.iloc[3]['j'] == 1 assert bdf.iloc[3]['y'] == 1 assert bdf.iloc[3]['t'] == 2 assert bdf.iloc[4]['i'] == 1 assert bdf.iloc[4]['j'] == 2 assert bdf.iloc[4]['y'] == 1 assert bdf.iloc[4]['t'] == 2 assert bdf.iloc[5]['i'] == 1 assert bdf.iloc[5]['j'] == 2 assert bdf.iloc[5]['y'] == 1.5 assert bdf.iloc[5]['t'] == 2 assert bdf.iloc[6]['i'] == 1 assert bdf.iloc[6]['j'] == 3 assert bdf.iloc[6]['y'] == 0.5 assert bdf.iloc[6]['t'] == 2 assert bdf.iloc[7]['i'] == 3 assert bdf.iloc[7]['j'] == 2 assert bdf.iloc[7]['y'] == 1 assert bdf.iloc[7]['t'] == 1 assert bdf.iloc[8]['i'] == 3 assert bdf.iloc[8]['j'] == 2 assert bdf.iloc[8]['y'] == 1 assert bdf.iloc[8]['t'] == 2 assert bdf.iloc[9]['i'] == 3 assert bdf.iloc[9]['j'] == 1 assert bdf.iloc[9]['y'] == 1.5 assert bdf.iloc[9]['t'] == 1 assert bdf.iloc[10]['i'] == 3 assert bdf.iloc[10]['j'] == 1 assert bdf.iloc[10]['y'] == 1.5 assert bdf.iloc[10]['t'] == 2 def test_keep_ids_26(): # Keep only given ids. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() all_fids = bdf['j'].unique() ids_to_keep = all_fids[: len(all_fids) // 2] bdf_keep = bdf.get_es().keep_ids('j', ids_to_keep).get_long() assert set(bdf_keep['j']) == set(ids_to_keep) # Make sure long and es give same results bdf_keep2 = bdf.keep_ids('j', ids_to_keep) assert len(bdf_keep) == len(bdf_keep2) def test_drop_ids_27(): # Drop given ids. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() all_fids = bdf['j'].unique() ids_to_drop = all_fids[: len(all_fids) // 2] bdf_keep = bdf.get_es().drop_ids('j', ids_to_drop).get_long() assert set(bdf_keep['j']) == set(all_fids).difference(set(ids_to_drop)) # Make sure long and es give same results bdf_keep2 = bdf.drop_ids('j', ids_to_drop) assert len(bdf_keep) == len(bdf_keep2) def test_min_obs_firms_28_1(): # List only firms that meet a minimum threshold of observations. # Using long/event study. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 250 # First, manually estimate the valid set of firms frame = bdf.copy() n_moves = frame.groupby('j')['i'].size() valid_firms = sorted(n_moves[n_moves >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_obs_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_obs_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] def test_min_obs_firms_28_2(): # List only firms that meet a minimum threshold of observations. # Using long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long() threshold = 60 # First, manually estimate the valid set of firms frame = bdf.copy() n_moves = frame.groupby('j')['i'].size() valid_firms = sorted(n_moves[n_moves >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_obs_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_obs_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] def test_min_obs_frame_29_1(): # Keep only firms that meet a minimum threshold of observations. # Using long/event study. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 250 # First, manually estimate the new frame frame = bdf.copy() n_moves = frame.groupby('j')['i'].size() valid_firms = sorted(n_moves[n_moves >= threshold].index) new_frame = frame.keep_ids('j', valid_firms) new_frame.reset_index(drop=True, inplace=True) # Next, estimate the new frame using the built-in function new_frame2 = bdf.min_obs_frame(threshold) new_frame3 = bdf.get_es().min_obs_frame(threshold).get_long() assert (0 < len(new_frame) < len(bdf)) assert len(new_frame) == len(new_frame2) == len(new_frame3) for i in range(100): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] for i in range(len(new_frame) - 100, len(new_frame)): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] def test_min_obs_frame_29_2(): # Keep only firms that meet a minimum threshold of observations. # Using long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long() threshold = 60 # First, manually estimate the new frame frame = bdf.copy() n_moves = frame.groupby('j')['i'].size() valid_firms = sorted(n_moves[n_moves >= threshold].index) new_frame = frame.keep_ids('j', valid_firms) # Next, estimate the new frame using the built-in function new_frame2 = bdf.min_obs_frame(threshold) new_frame3 = bdf.get_es().min_obs_frame(threshold).get_long() assert (0 < len(new_frame) < len(bdf)) assert len(new_frame) == len(new_frame2) == len(new_frame3) for i in range(100): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] for i in range(len(new_frame) - 100, len(new_frame)): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] def test_min_workers_firms_30(): # List only firms that meet a minimum threshold of workers. # Using long/event study/long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 40 # First, manually estimate the valid set of firms frame = bdf.copy() # Count workers n_workers = frame.groupby('j')['i'].nunique() valid_firms = sorted(n_workers[n_workers >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_workers_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_workers_firms(threshold)) valid_firms4 = sorted(bdf.get_collapsed_long().min_workers_firms(threshold)) valid_firms5 = sorted(bdf.get_collapsed_long().get_es().min_workers_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) == len(valid_firms4) == len(valid_firms5) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] == valid_firms4[i] == valid_firms5[i] def test_min_workers_frame_31(): # Keep only firms that meet a minimum threshold of workers. # Using long/event study/long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 60 # First, manually estimate the new frame frame = bdf.copy() # Count workers n_workers = frame.groupby('j')['i'].nunique() valid_firms = n_workers[n_workers >= threshold].index new_frame = frame.keep_ids('j', valid_firms).get_collapsed_long() # Next, estimate the new frame using the built-in function new_frame2 = bdf.min_workers_frame(threshold).get_collapsed_long() new_frame3 = bdf.get_es().min_workers_frame(threshold).get_long().get_collapsed_long() new_frame4 = bdf.get_collapsed_long().min_workers_frame(threshold) new_frame5 = bdf.get_collapsed_long().get_es().min_workers_frame(threshold).get_long() assert (0 < len(new_frame) < len(bdf)) assert len(new_frame) == len(new_frame2) == len(new_frame3) == len(new_frame4) == len(new_frame5) for i in range(100): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] for i in range(len(new_frame) - 100, len(new_frame)): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] def test_min_moves_firms_32_1(): # List only firms that meet a minimum threshold of moves. # Using long/event study. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 20 # First, manually estimate the valid set of firms frame = bdf.copy() frame.loc[frame.loc[:, 'm'] == 2, 'm'] = 1 n_moves = frame.groupby('j')['m'].sum() valid_firms = sorted(n_moves[n_moves >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_moves_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_moves_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] def test_min_moves_firms_32_2(): # List only firms that meet a minimum threshold of moves. # Using long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data().get_collapsed_long() threshold = 20 # First, manually estimate the valid set of firms frame = bdf.copy() frame.loc[frame.loc[:, 'm'] == 2, 'm'] = 1 n_moves = frame.groupby('j')['m'].sum() valid_firms = sorted(n_moves[n_moves >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_moves_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_moves_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] def test_min_moves_frame_33(): # Keep only firms that meet a minimum threshold of moves. # Using long/event study/long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 12 # First, manually estimate the valid set of firms frame = bdf.copy() frame.loc[frame.loc[:, 'm'] == 2, 'm'] = 1 n_moves = frame.groupby('j')['m'].sum() valid_firms = sorted(n_moves[n_moves >= threshold].index) new_frame = frame.keep_ids('j', valid_firms) # Iterate until set of firms stays the same between loops loop = True n_loops = 0 while loop: n_loops += 1 prev_frame = new_frame prev_frame.loc[prev_frame.loc[:, 'm'] == 2, 'm'] = 1 # Keep firms with sufficiently many moves n_moves = prev_frame.groupby('j')['m'].sum() valid_firms = sorted(n_moves[n_moves >= threshold].index) new_frame = prev_frame.keep_ids('j', valid_firms) loop = (len(new_frame) != len(prev_frame)) new_frame = new_frame.get_collapsed_long() # Next, estimate the new frame using the built-in function new_frame2 = bdf.min_moves_frame(threshold).get_collapsed_long() new_frame3 = bdf.get_es().min_moves_frame(threshold).get_long().get_collapsed_long() new_frame4 = bdf.get_collapsed_long().min_moves_frame(threshold) new_frame5 = bdf.get_collapsed_long().get_es().min_moves_frame(threshold).get_long() assert n_loops > 1 assert (0 < len(new_frame) < len(bdf)) assert len(new_frame) == len(new_frame2) == len(new_frame3) == len(new_frame4) == len(new_frame5) for i in range(100): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] for i in range(len(new_frame) - 100, len(new_frame)): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] def test_min_movers_firms_34(): # List only firms that meet a minimum threshold of movers. # Using long/event study/long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 20 # First, manually estimate the valid set of firms frame = bdf.copy() # Keep movers frame = frame[frame['m'] > 0] n_movers = frame.groupby('j')['i'].nunique() valid_firms = sorted(n_movers[n_movers >= threshold].index) # Next, estimate the set of valid firms using the built-in function valid_firms2 = sorted(bdf.min_movers_firms(threshold)) valid_firms3 = sorted(bdf.get_es().min_movers_firms(threshold)) valid_firms4 = sorted(bdf.get_collapsed_long().min_movers_firms(threshold)) valid_firms5 = sorted(bdf.get_collapsed_long().get_es().min_movers_firms(threshold)) assert (0 < len(valid_firms) < df['j'].nunique()) assert len(valid_firms) == len(valid_firms2) == len(valid_firms3) == len(valid_firms4) == len(valid_firms5) for i in range(len(valid_firms)): assert valid_firms[i] == valid_firms2[i] == valid_firms3[i] == valid_firms4[i] == valid_firms5[i] def test_min_movers_frame_35(): # Keep only firms that meet a minimum threshold of movers. # Using long/event study/long collapsed/event study collapsed. df = bpd.SimBipartite(bpd.sim_params({'p_move': 0.05, 'rng': np.random.default_rng(1234)})).sim_network() bdf = bpd.BipartiteLong(df).clean_data() threshold = 12 # First, manually estimate the new frame frame = bdf.copy() # Keep movers frame_movers = frame[frame['m'] > 0] n_movers = frame_movers.groupby('j')['i'].nunique() valid_firms = n_movers[n_movers >= threshold].index new_frame = frame.keep_ids('j', valid_firms) # Iterate until set of firms stays the same between loops loop = True n_loops = 0 while loop: n_loops += 1 prev_frame = new_frame # Keep movers prev_frame_movers = prev_frame[prev_frame['m'] > 0] n_movers = prev_frame_movers.groupby('j')['i'].nunique() valid_firms = n_movers[n_movers >= threshold].index new_frame = prev_frame.keep_ids('j', valid_firms) loop = (len(new_frame) != len(prev_frame)) new_frame = new_frame.get_collapsed_long() # Next, estimate the new frame using the built-in function new_frame2 = bdf.min_movers_frame(threshold).get_collapsed_long() new_frame3 = bdf.get_es().min_movers_frame(threshold).get_long().get_collapsed_long() new_frame4 = bdf.get_collapsed_long().min_movers_frame(threshold) new_frame5 = bdf.get_collapsed_long().get_es().min_movers_frame(threshold).get_long() assert n_loops > 1 assert (0 < len(new_frame) < len(bdf)) assert len(new_frame) == len(new_frame2) == len(new_frame3) == len(new_frame4) == len(new_frame5) for i in range(100): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] for i in range(len(new_frame) - 100, len(new_frame)): # range(len(new_frame)): # It takes too long to go through all rows for col in ['i', 'j', 'y', 't1', 't2']: # Skip 'm' since we didn't recompute it assert new_frame.iloc[i][col] == new_frame2.iloc[i][col] == new_frame3.iloc[i][col] == new_frame4.iloc[i][col] == new_frame5.iloc[i][col] ################################### ##### Tests for BipartiteLong ##### ################################### def test_long_get_es_extended_1(): # Test get_es_extended() by making sure it is generating the event study correctly for periods_pre=2 and periods_post=1 worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 3}) worker_data.append({'i': 0, 'j': 0, 'y': 1., 't': 4}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 1, 'j': 2, 'y': 2., 't': 3}) worker_data.append({'i': 1, 'j': 5, 'y': 1., 't': 3}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) worker_data.append({'i': 3, 'j': 3, 'y': 1.5, 't': 3}) # Worker 4 worker_data.append({'i': 4, 'j': 0, 'y': 1., 't': 1}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) df['g'] = df['j'] # Fill in g column as j bdf = bpd.BipartiteLong(df) bdf = bdf.clean_data() es_extended = bdf.get_es_extended(periods_pre=2, periods_post=1, include=['j', 'y'], transition_col='g') assert es_extended.iloc[0]['i'] == 0 assert es_extended.iloc[0]['j_l2'] == 1 assert es_extended.iloc[0]['j_l1'] == 1 assert es_extended.iloc[0]['j_f1'] == 0 assert es_extended.iloc[0]['y_l2'] == 1 assert es_extended.iloc[0]['y_l1'] == 1 assert es_extended.iloc[0]['y_f1'] == 1 assert es_extended.iloc[0]['t'] == 4 assert es_extended.iloc[1]['i'] == 2 assert es_extended.iloc[1]['j_l2'] == 2 assert es_extended.iloc[1]['j_l1'] == 2 assert es_extended.iloc[1]['j_f1'] == 3 assert es_extended.iloc[1]['y_l2'] == 1 assert es_extended.iloc[1]['y_l1'] == 1 assert es_extended.iloc[1]['y_f1'] == 1.5 assert es_extended.iloc[1]['t'] == 3 def test_long_get_es_extended_2(): # Test get_es_extended() by making sure workers move firms at the fulcrum of the event study sim_data = bpd.SimBipartite().sim_network() bdf = bpd.BipartiteLong(sim_data) bdf = bdf.clean_data() es_extended = bdf.get_es_extended(periods_pre=3, periods_post=2, include=['j', 'y']) assert np.sum(es_extended['j_l1'] == es_extended['j_f1']) == 0 def test_long_get_es_extended_3_1(): # Test get_es_extended() by making sure workers move firms at the fulcrum of the event study and stable_pre works sim_data = bpd.SimBipartite().sim_network() bdf = bpd.BipartiteLong(sim_data) bdf = bdf.clean_data() es_extended = bdf.get_es_extended(periods_pre=2, periods_post=3, stable_pre='j', include=['j', 'y']) assert np.sum(es_extended['j_l2'] != es_extended['j_l1']) == 0 assert np.sum(es_extended['j_l1'] == es_extended['j_f1']) == 0 def test_long_get_es_extended_3_2(): # Test get_es_extended() by making sure workers move firms at the fulcrum of the event study and stable_post works sim_data = bpd.SimBipartite().sim_network() bdf = bpd.BipartiteLong(sim_data) bdf = bdf.clean_data() es_extended = bdf.get_es_extended(periods_pre=3, periods_post=2, stable_post='j', include=['j', 'y']) assert np.sum(es_extended['j_l1'] == es_extended['j_f1']) == 0 assert np.sum(es_extended['j_f1'] != es_extended['j_f2']) == 0 def test_long_get_es_extended_3_3(): # Test get_es_extended() by making sure workers move firms at the fulcrum of the event study and stable_post and stable_pre work together sim_data = bpd.SimBipartite().sim_network() bdf = bpd.BipartiteLong(sim_data) bdf = bdf.clean_data() es_extended = bdf.get_es_extended(periods_pre=3, periods_post=2, stable_pre='j', stable_post='j', include=['j', 'y']) assert len(es_extended) > 0 # Make sure something is left assert np.sum(es_extended['j_l3'] != es_extended['j_l2']) == 0 assert np.sum(es_extended['j_l2'] != es_extended['j_l1']) == 0 assert np.sum(es_extended['j_l1'] == es_extended['j_f1']) == 0 assert np.sum(es_extended['j_f1'] != es_extended['j_f2']) == 0 # Only uncomment for manual testing - this produces a graph which pauses the testing # def test_long_plot_es_extended_4(): # # Test plot_es_extended() by making sure it doesn't crash # sim_data = bpd.SimBipartite().sim_network() # bdf = bpd.BipartiteLong(sim_data).clean_data().cluster(grouping=bpd.grouping.kmeans(n_clusters=2)) # bdf.plot_es_extended() # assert True # Just making sure it doesn't crash ############################################ ##### Tests for BipartiteLongCollapsed ##### ############################################ def test_long_collapsed_1(): # Test constructor for BipartiteLongCollapsed. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 2}) df = pd.concat([pd.DataFrame(worker, index=[i]) for i, worker in enumerate(worker_data)]) bdf = bpd.BipartiteLong(data=df) bdf = bdf.clean_data() df = pd.DataFrame(bdf.get_collapsed_long()).rename({'y': 'y'}, axis=1) bdf = bpd.BipartiteLongCollapsed(df, col_dict={'y': 'y'}) bdf = bdf.clean_data() stayers = bdf[bdf['m'] == 0] movers = bdf[bdf['m'] > 0] assert stayers.iloc[0]['i'] == 2 assert stayers.iloc[0]['j'] == 2 assert stayers.iloc[0]['y'] == 1 assert movers.iloc[0]['i'] == 0 assert movers.iloc[0]['j'] == 0 assert movers.iloc[0]['y'] == 2 assert movers.iloc[1]['i'] == 0 assert movers.iloc[1]['j'] == 1 assert movers.iloc[1]['y'] == 1 assert movers.iloc[2]['i'] == 1 assert movers.iloc[2]['j'] == 1 assert movers.iloc[2]['y'] == 1 assert movers.iloc[3]['i'] == 1 assert movers.iloc[3]['j'] == 2 assert movers.iloc[3]['y'] == 1 ######################################### ##### Tests for BipartiteEventStudy ##### ######################################### def test_event_study_1(): # Test constructor for BipartiteEventStudy. worker_data = [] # Worker 0 worker_data.append({'i': 0, 'j': 0, 'y': 2., 't': 1}) worker_data.append({'i': 0, 'j': 1, 'y': 1., 't': 2}) # Worker 1 worker_data.append({'i': 1, 'j': 1, 'y': 1., 't': 1}) worker_data.append({'i': 1, 'j': 2, 'y': 1., 't': 2}) # Worker 3 worker_data.append({'i': 3, 'j': 2, 'y': 1., 't': 1}) worker_data.append({'i': 3, 'j': 2, 'y': 2., 't': 2}) df = pd.concat([
pd.DataFrame(worker, index=[i])
pandas.DataFrame
import pandas as pd import numpy as np import seaborn as sns import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt out_dir = '../../plots/time-series/' in_dir_bases = ['re-simulations','re-simulations-nonsocial','re-processed'] non_social_dir = 're-simulations-nonsocial' games = ['2015-01-30-20-58-46-738_5_3-1en01_490778852021.csv', '2015-01-30-12-1-4-89_5_2-1en01_578523323172.csv', '2015-01-30-14-13-5-238_5_0-1en01_850912750000.csv', '2015-01-30-19-13-16-753_5_1-1en01_254379808437.csv', '2015-01-29-20-50-9-4_5_2-1en01_619311067974.csv', '2015-01-30-20-58-46-738_5_3-1en01_490778852021.csv'] quantities = ['Score','Uncertainty'] copies = ['copying','copying_exploiting'] results = [] for in_dir_base in in_dir_bases: in_dir = '../../' + in_dir_base + '/' for copying in copies: for game in games: df = pd.read_csv(in_dir + game) players = list(set(df['pid'])) for player in range(len(players)): pid = players[player] sub = df.loc[df['pid'] == pid].copy() if len(sub) == 0: continue results += [[in_dir_base, copying, game, game+'-'+str(pid), np.mean(sub[copying])]] df = pd.DataFrame(results) df.columns = ['in_dir','copying','game','pid','amount'] diffs = [] # TODO: switch this to per PID for game in set(df['game']): for copying in copies: sub = df.loc[(df['game'] == game)&(df['copying'] == copying)&(df['in_dir'] == non_social_dir)].copy() nonsocial_amount = np.mean(sub['amount']) for in_dir in in_dir_bases: if in_dir == non_social_dir: continue sub = df.loc[(df['game'] == game)&(df['copying'] == copying)&(df['in_dir'] == in_dir)].copy() norm_amount = np.mean(sub['amount']) - nonsocial_amount diffs += [[in_dir, copying, norm_amount]] df =
pd.DataFrame(diffs)
pandas.DataFrame
""" Routes and views for the flask application. """ import os from datetime import datetime from flask import render_template, request from werkzeug import secure_filename from terror_ai import app import numpy as np import pandas as pd from terror_ai.decision_tree_ml import decision_main from terror_ai.logistic_regression_ml import logi_main # Get the real output from the predicted label def get_real_output(pred_label, filepath, flag): temp_df = pd.DataFrame.from_csv(filepath, header=0) temp_df = temp_df.reset_index() val1 = "NA" val2 = "NA" if flag == 1: for i, row in temp_df.iterrows(): if row["targtype1_txt_code"] == pred_label[0]: val1 = row["targtype1_txt"] return val1 if flag == 2: for i, row in temp_df.iterrows(): if row["attacktype1_txt_code"] == pred_label[0]: val2 = row["attacktype1_txt"] return val2 @app.route('/') @app.route('/home') def home(): """Renders the home page.""" return render_template( 'index.html' ) @app.route("/form") def form(): return render_template( "form.html" ) @app.route("/uploader", methods=["GET", "POST"]) def uploader(): month_val=int(request.form["monthnumber"]) casualty_val=int(request.form["ncasualty"]) country_val=int(request.form["countryname"]) region_val=int(request.form["regionname"]) target_val=int(request.form["targetname"]) file1 = "/mnt/d/COLLEGE/DONE/terror_ai/terror_ai/static/data/target_type.csv" file2 = "/mnt/d/COLLEGE/DONE/terror_ai/terror_ai/static/data/attack_type.csv" if int(request.form["algo"]) == 1: algorithm_to_use = "Decision Tree" df1 = pd.DataFrame.from_csv("/mnt/d/COLLEGE/DONE/terror_ai/terror_ai/static/data/final_train1.csv", header=0) # form a test vector test_df1 = pd.DataFrame([month_val, casualty_val, country_val, region_val, target_val]) test_df1 = test_df1.transpose() # train and predict using model1 pred_label1, accuracy_value1 = decision_main(df1, test_df1) #pred_label1, accuracy_value1 = decision_main(train1X, train1y, test_df1) out1 = get_real_output(pred_label1, file1, 1) df2 = pd.DataFrame.from_csv("/mnt/d/COLLEGE/DONE/terror_ai/terror_ai/static/data/final_train2.csv", header=0) # form a test vector test_df2 = pd.DataFrame([month_val, casualty_val, country_val, region_val, target_val, pred_label1]) test_df2 = test_df2.transpose() # train and predict using model1 pred_label2, accuracy_value2 = decision_main(df2, test_df2) out2 = get_real_output(pred_label2, file2, 2) else: algorithm_to_use = "Logistic Regression" df1 = pd.DataFrame.from_csv("/mnt/d/COLLEGE/DONE/terror_ai/terror_ai/static/data/final_train1.csv", header=0) # form a test vector test_df1 = pd.DataFrame([month_val, casualty_val, country_val, region_val, target_val]) test_df1 = test_df1.transpose() # train and predict using model1 pred_label1, accuracy_value1 = logi_main(df1, test_df1) out1 = get_real_output(pred_label1, file1, 1) df2 =
pd.DataFrame.from_csv("/mnt/d/COLLEGE/DONE/terror_ai/terror_ai/static/data/final_train2.csv", header=0)
pandas.DataFrame.from_csv
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # pyre-unsafe """ CUSUM stands for cumulative sum, it is a changepoint detection algorithm. In the Kats implementation, it has two main components: 1. Locate the change point: The algorithm iteratively estimates the means before and after the change point and finds the change point maximizing/minimizing the cusum value until the change point has converged. The starting point for the change point is at the middle. 2. Hypothesis testing: Conducting log likelihood ratio test where the null hypothesis has no change point with one mean and the alternative hypothesis has a change point with two means. And here are a few things worth mentioning: * We assume there is only one increase/decrease change point; * We use Gaussian distribution as the underlying model to calculate the cusum value and conduct the hypothesis test; Typical usage example: >>> # Univariate CUSUM >>> timeseries = TimeSeriesData(...) >>> detector = CusumDetector(timeseries) >>> #Run detector >>> changepoints = detector.detector() >>> # Plot the results >>> detector.plot(changepoints) The usage is the same for multivariate CUSUM except that the time series needs to be multivariate and that the plotting functions are not yet supported for this use case. """ import logging from typing import Any, Dict, List, Optional, Sequence, Tuple, Union import matplotlib.pyplot as plt import numpy as np import pandas as pd from kats.consts import ( TimeSeriesChangePoint, TimeSeriesData, ) from kats.detectors.detector import Detector from scipy.stats import chi2 # @manual pd.options.plotting.matplotlib.register_converters = True # Constants CUSUM_DEFAULT_ARGS = { "threshold": 0.01, "max_iter": 10, "delta_std_ratio": 1.0, "min_abs_change": 0, "start_point": None, "change_directions": None, "interest_window": None, "magnitude_quantile": None, "magnitude_ratio": 1.3, "magnitude_comparable_day": 0.5, "return_all_changepoints": False, "remove_seasonality": False, } def _get_arg(name: str, **kwargs) -> Any: return kwargs.get(name, CUSUM_DEFAULT_ARGS[name]) class CUSUMChangePoint(TimeSeriesChangePoint): """CUSUM change point. This is a changepoint detected by CUSUMDetector. Attributes: start_time: Start time of the change. end_time: End time of the change. confidence: The confidence of the change point. direction: a str stand for the changepoint change direction 'increase' or 'decrease'. cp_index: an int for changepoint index. mu0: a float indicates the mean before changepoint. mu1: a float indicates the mean after changepoint. delta: mu1 - mu0. llr: log likelihood ratio. llr_int: log likelihood ratio in the interest window. regression_detected: a bool indicates if regression detected. stable_changepoint: a bool indicates if we have a stable changepoint when locating the changepoint. p_value: p_value of the changepoint. p_value_int: p_value of the changepoint in the interest window. """ def __init__( self, start_time: pd.Timestamp, end_time: pd.Timestamp, confidence: float, direction: str, cp_index: int, mu0: Union[float, np.ndarray], mu1: Union[float, np.ndarray], delta: Union[float, np.ndarray], llr_int: float, llr: float, regression_detected: bool, stable_changepoint: bool, p_value: float, p_value_int: float, ) -> None: super().__init__(start_time, end_time, confidence) self._direction = direction self._cp_index = cp_index self._mu0 = mu0 self._mu1 = mu1 self._delta = delta self._llr_int = llr_int self._llr = llr self._regression_detected = regression_detected self._stable_changepoint = stable_changepoint self._p_value = p_value self._p_value_int = p_value_int @property def direction(self) -> str: return self._direction @property def cp_index(self) -> int: return self._cp_index @property def mu0(self) -> Union[float, np.ndarray]: return self._mu0 @property def mu1(self) -> Union[float, np.ndarray]: return self._mu1 @property def delta(self) -> Union[float, np.ndarray]: return self._delta @property def llr(self) -> float: return self._llr @property def llr_int(self) -> float: return self._llr_int @property def regression_detected(self) -> bool: return self._regression_detected @property def stable_changepoint(self) -> bool: return self._stable_changepoint @property def p_value(self) -> float: return self._p_value @property def p_value_int(self) -> float: return self._p_value_int def __repr__(self) -> str: return ( f"CUSUMChangePoint(start_time: {self._start_time}, end_time: " f"{self._end_time}, confidence: {self._confidence}, direction: " f"{self._direction}, index: {self._cp_index}, delta: {self._delta}, " f"regression_detected: {self._regression_detected}, " f"stable_changepoint: {self._stable_changepoint}, mu0: {self._mu0}, " f"mu1: {self._mu1}, llr: {self._llr}, llr_int: {self._llr_int}, " f"p_value: {self._p_value}, p_value_int: {self._p_value_int})" ) class CUSUMDetector(Detector): interest_window: Optional[Tuple[int, int]] = None magnitude_quantile: Optional[float] = None magnitude_ratio: Optional[float] = None changes_meta: Optional[Dict[str, Dict[str, Any]]] = None def __init__( self, data: TimeSeriesData, is_multivariate: bool = False, is_vectorized: bool = False, ) -> None: """Univariate CUSUM detector for level shifts Use cusum to detect changes, the algorithm is based on likelihood ratio cusum. See https://www.fs.isy.liu.se/Edu/Courses/TSFS06/PDFs/Basseville.pdf for details. This detector is used to detect mean changes in Normal Distribution. Args: data: :class:`kats.consts.TimeSeriesData`; The input time series data. is_multivariate: Optional; bool; should be False unless running MultiCUSUMDetector, """ super(CUSUMDetector, self).__init__(data=data) if not self.data.is_univariate() and not is_multivariate and not is_vectorized: msg = ( "CUSUMDetector only supports univariate time series, but got " f"{type(self.data.value)}. For multivariate time series, use " "MultiCUSUMDetector or VectorizedCUSUMDetector" ) logging.error(msg) raise ValueError(msg) def _get_change_point( self, ts: np.ndarray, max_iter: int, start_point: int, change_direction: str ) -> Dict[str, Any]: """ Find change point in the timeseries. """ interest_window = self.interest_window # locate the change point using cusum method if change_direction == "increase": changepoint_func = np.argmin logging.debug("Detecting increase changepoint.") else: assert change_direction == "decrease" changepoint_func = np.argmax logging.debug("Detecting decrease changepoint.") n = 0 # use the middle point as initial change point to estimate mu0 and mu1 if interest_window is not None: ts_int = ts[interest_window[0] : interest_window[1]] else: ts_int = ts if start_point is None: cusum_ts = np.cumsum(ts_int - np.mean(ts_int)) changepoint = min(changepoint_func(cusum_ts), len(ts_int) - 2) else: changepoint = start_point mu0 = mu1 = None # iterate until the changepoint converage while n < max_iter: n += 1 mu0 = np.mean(ts_int[: (changepoint + 1)]) mu1 = np.mean(ts_int[(changepoint + 1) :]) mean = (mu0 + mu1) / 2 # here is where cusum is happening cusum_ts = np.cumsum(ts_int - mean) next_changepoint = max(1, min(changepoint_func(cusum_ts), len(ts_int) - 2)) if next_changepoint == changepoint: break changepoint = next_changepoint if n == max_iter: logging.info("Max iteration reached and no stable changepoint found.") stable_changepoint = False else: stable_changepoint = True # llr in interest window if interest_window is None: llr_int = np.inf pval_int = np.NaN delta_int = None else: llr_int = self._get_llr( ts_int, {"mu0": mu0, "mu1": mu1, "changepoint": changepoint}, ) pval_int = 1 - chi2.cdf(llr_int, 2) delta_int = mu1 - mu0 changepoint += interest_window[0] # full time changepoint and mean mu0 = np.mean(ts[: (changepoint + 1)]) mu1 = np.mean(ts[(changepoint + 1) :]) return { "changepoint": changepoint, "mu0": mu0, "mu1": mu1, "changetime": self.data.time[changepoint], "stable_changepoint": stable_changepoint, "delta": mu1 - mu0, "llr_int": llr_int, "p_value_int": pval_int, "delta_int": delta_int, } def _get_llr(self, ts: np.ndarray, change_meta: Dict[str, Any]): """ Calculate the log likelihood ratio """ mu0: float = change_meta["mu0"] mu1: float = change_meta["mu1"] changepoint: int = change_meta["changepoint"] scale = np.sqrt( ( np.sum((ts[: (changepoint + 1)] - mu0) ** 2) + np.sum((ts[(changepoint + 1) :] - mu1) ** 2) ) / (len(ts) - 2) ) mu_tilde, sigma_tilde = np.mean(ts), np.std(ts) if scale == 0: scale = sigma_tilde * 0.01 llr = -2 * ( self._log_llr(ts[: (changepoint + 1)], mu_tilde, sigma_tilde, mu0, scale) + self._log_llr(ts[(changepoint + 1) :], mu_tilde, sigma_tilde, mu1, scale) ) return llr def _log_llr( self, x: np.ndarray, mu0: float, sigma0: float, mu1: float, sigma1: float ) -> float: """Helper function to calculate log likelihood ratio. This function calculate the log likelihood ratio of two Gaussian distribution log(l(0)/l(1)). Args: x: the data value. mu0: mean of model 0. sigma0: std of model 0. mu1: mean of model 1. sigma1: std of model 1. Returns: the value of log likelihood ratio. """ return np.sum( np.log(sigma1 / sigma0) + 0.5 * (((x - mu1) / sigma1) ** 2 - ((x - mu0) / sigma0) ** 2) ) def _magnitude_compare(self, ts: np.ndarray) -> float: """ Compare daily magnitude to avoid daily seasonality false positives. """ time = self.data.time interest_window = self.interest_window magnitude_ratio = self.magnitude_ratio if interest_window is None: raise ValueError("detect must be called first") assert magnitude_ratio is not None # get number of days in historical window days = (time.max() - time.min()).days # get interest window magnitude mag_int = self._get_time_series_magnitude( ts[interest_window[0] : interest_window[1]] ) comparable_mag = 0 for i in range(days): start_time = time[interest_window[0]] -
pd.Timedelta(f"{i}D")
pandas.Timedelta
# coding: utf-8 # Seismic data is a neat thing. You can imagine it like an ultra-sound of the subsurface. However, in an ultra-sound, we use much smaller wavelengths to image our body. Seismic data usually has wavelengths around 1m to 100m. That has some physical implications, but for now, we don't have to deal with that. It's just something to keep in mind while thinking about resolution. # # Imaging salt has been a huge topic in the seismic industry, basically since they imaged salt the first time. The Society of Exploration geophysicist alone has over 10,000 publications with the [keyword salt](https://library.seg.org/action/doSearch?AllField=salt). Salt bodies are important for the hydrocarbon industry, as they usually form nice oil traps. So there's a clear motivation to delineate salt bodies in the subsurface. If you would like to do a deep dive, you can see [this publication](https://www.iongeo.com/content/documents/Resource%20Center/Articles/INT_Imaging_Salt_tutorial_141101.pdf) # # Seismic data interpreters are used to interpreting on 2D or 3D images that have been heavily processed. The standard work of [seismic data analysis](https://wiki.seg.org/wiki/Seismic_Data_Analysis) is open access. # You'll find sections on Salt in there as well (https://wiki.seg.org/wiki/Salt-flank_reflections and https://wiki.seg.org/wiki/Salt_flanks). The seismic itself is pretty "old" in the publication, and you're dealing with data that is less noisy here, which is nice. # # [![Seismic Data with salt CC-BY-SA Yilmaz](https://wiki.seg.org/images/1/14/Ch05_fig0-1.png)](https://wiki.seg.org/wiki/Salt-flank_reflections#/media/File:Ch05_fig0-1.png) # Caption: Figure 5.0-1 Conflicting dips associated with salt flanks: (a) CMP stack without dip-moveout correction; (b) time migration of the stack in (a); (c) the stack with dip-moveout correction; (d) time migration of the stack in (c). CC-BY-SA Yilmaz. # # Interpretation on seismic images has long used texture attributes, to identify better and highlight areas of interest. These can be seen like feature maps on the texture of the seismic. For salt, you will notice that the texture in the salt masks is rather chaotic, where the surrounding seismic is more "striped". You can think of Earth as layered. Sand gets deposited on top of existing sand. In comes salt, which is behaving very much, unlike other rocks. There is an entire research branch dedicated to salt tectonics, that is the movement of salt in the subsurface. To give you the gist, these salt diapirs form from salt layers somewhere else that were under much pressure. These started to flow (behave ductile) and find a way into other layers above. I have written a bit about salt on [my blog](http://the-geophysicist.com/the-showroom-data-for-my-thesis). # # One common seismic attribute is called "chaos" or "seismic disorder". So if you talk to cynic geophysicists, you'll hear "that deep learning better outperform the Chaos attribute". A good starting point is [this publication](http://www.chopraseismic.com/wp-content/uploads/2016/08/Chopra_Marfurt_TLE_Aug2016-LowRes.pdf). # # Recently, geoscience has started to adopt deep learning, and it has seen a clear boom, particularly in imaging salt. Code for automatic seismic interpretation can be found here: # # + https://github.com/waldeland/CNN-for-ASI # + https://github.com/bolgebrygg/MalenoV # + https://github.com/crild/facies_net # # You will notice that these solutions load a specific SEG-Y file, which luckily we don't have to bother with. TGS provided some nice PNG files instead. However, you can glean some information from them how to approach seismic data. If you find you need some geophysical helpers, you can [import Bruges](https://github.com/agile-geoscience/bruges) # # Let's dive in for now. # # In[ ]: import os import sys import random import warnings import pandas as pd import numpy as np import matplotlib.pyplot as plt get_ipython().magic(u'matplotlib inline') import cv2 from tqdm import tqdm_notebook, tnrange from itertools import chain from skimage.io import imread, imshow, concatenate_images from skimage.transform import resize from skimage.morphology import label from keras.models import Model, load_model from keras.layers import Input from keras.layers.core import Lambda from keras.layers.convolutional import Conv2D, Conv2DTranspose from keras.layers.pooling import MaxPooling2D from keras.layers.merge import concatenate from keras.callbacks import EarlyStopping, ModelCheckpoint from keras import backend as K import tensorflow as tf from keras.preprocessing.image import ImageDataGenerator, array_to_img, img_to_array, load_img # In[ ]: # Set some parameters im_width = 128 im_height = 128 im_chan = 1 path_train = '../input/train/' path_test = '../input/test/' # # Data Exploration # Let's look at some data. We can see that TGS chose to use very varied data by inspecting. That is great and adresses a problem in deep learning geoscience at the moment. We build models on one type of seismic and have no idea whether it generalizes. # In[ ]: ids= ['1f1cc6b3a4','5b7c160d0d','6c40978ddf','7dfdf6eeb8','7e5a6e5013'] plt.figure(figsize=(20,10)) for j, img_name in enumerate(ids): q = j+1 img = load_img('../input/train/images/' + img_name + '.png') img_mask = load_img('../input/train/masks/' + img_name + '.png') plt.subplot(1,2*(1+len(ids)),q*2-1) plt.imshow(img) plt.subplot(1,2*(1+len(ids)),q*2) plt.imshow(img_mask) plt.show() # We have many examples without salt, as you can see by the masks that are entirely dark. That's great, an algorithm we build will then know that patches exist entirely without salt. Talk about biasing your data. # # We can draw heavily on other work, instead of regurgitating the geophysics work that has been done before. I mentioned that seismic is kind of like ultrasound. So I had a look at https://www.kaggle.com/keegil/keras-u-net-starter-lb-0-277 # # Let's throw a Unet at our data. I am blatanly stealing from Ketil at this point. All credit goes to him and his nice code. # First we'll need to get our data into a shape that works for U-Nets. That means, it should be a power of 2. Let's do it quick and dirty for now, but eventually, consider aliasing and all that fun. # In[ ]: train_ids = next(os.walk(path_train+"images"))[2] test_ids = next(os.walk(path_test+"images"))[2] # In[ ]: # Get and resize train images and masks X_train = np.zeros((len(train_ids), im_height, im_width, im_chan), dtype=np.uint8) Y_train = np.zeros((len(train_ids), im_height, im_width, 1), dtype=np.bool) print('Getting and resizing train images and masks ... ') sys.stdout.flush() for n, id_ in tqdm_notebook(enumerate(train_ids), total=len(train_ids)): path = path_train img = load_img(path + '/images/' + id_) x = img_to_array(img)[:,:,1] x = resize(x, (128, 128, 1), mode='constant', preserve_range=True) X_train[n] = x mask = img_to_array(load_img(path + '/masks/' + id_))[:,:,1] Y_train[n] = resize(mask, (128, 128, 1), mode='constant', preserve_range=True) print('Done!') # In[ ]: # Check if training data looks all right ix = random.randint(0, len(train_ids)) plt.imshow(np.dstack((X_train[ix],X_train[ix],X_train[ix]))) plt.show() tmp = np.squeeze(Y_train[ix]).astype(np.float32) plt.imshow(np.dstack((tmp,tmp,tmp))) plt.show() # # Train Model # Our task, just like the segmentation task for nuclei, is evaluated on the mean IoU metric. This one isn't in keras, but obviously, we're stealing this one too from Ketil. # In[ ]: # Define IoU metric def mean_iou(y_true, y_pred): prec = [] for t in np.arange(0.5, 1.0, 0.05): y_pred_ = tf.to_int32(y_pred > t) score, up_opt = tf.metrics.mean_iou(y_true, y_pred_, 2) K.get_session().run(tf.local_variables_initializer()) with tf.control_dependencies([up_opt]): score = tf.identity(score) prec.append(score) return K.mean(K.stack(prec), axis=0) # This is the fun part. Building the sequential Model. The U-Net is basically looking like an Auto-Encoder with shortcuts. # # We're also sprinkling in some earlystopping to prevent overfitting. If you're running this on kaggle, this is the point, you want to have GPU support. # In[ ]: # Build U-Net model inputs = Input((im_height, im_width, im_chan)) s = Lambda(lambda x: x / 255) (inputs) c1 = Conv2D(8, (3, 3), activation='relu', padding='same') (s) c1 = Conv2D(8, (3, 3), activation='relu', padding='same') (c1) p1 = MaxPooling2D((2, 2)) (c1) c2 = Conv2D(16, (3, 3), activation='relu', padding='same') (p1) c2 = Conv2D(16, (3, 3), activation='relu', padding='same') (c2) p2 = MaxPooling2D((2, 2)) (c2) c3 = Conv2D(32, (3, 3), activation='relu', padding='same') (p2) c3 = Conv2D(32, (3, 3), activation='relu', padding='same') (c3) p3 = MaxPooling2D((2, 2)) (c3) c4 = Conv2D(64, (3, 3), activation='relu', padding='same') (p3) c4 = Conv2D(64, (3, 3), activation='relu', padding='same') (c4) p4 = MaxPooling2D(pool_size=(2, 2)) (c4) c5 = Conv2D(128, (3, 3), activation='relu', padding='same') (p4) c5 = Conv2D(128, (3, 3), activation='relu', padding='same') (c5) u6 = Conv2DTranspose(64, (2, 2), strides=(2, 2), padding='same') (c5) u6 = concatenate([u6, c4]) c6 = Conv2D(64, (3, 3), activation='relu', padding='same') (u6) c6 = Conv2D(64, (3, 3), activation='relu', padding='same') (c6) u7 = Conv2DTranspose(32, (2, 2), strides=(2, 2), padding='same') (c6) u7 = concatenate([u7, c3]) c7 = Conv2D(32, (3, 3), activation='relu', padding='same') (u7) c7 = Conv2D(32, (3, 3), activation='relu', padding='same') (c7) u8 = Conv2DTranspose(16, (2, 2), strides=(2, 2), padding='same') (c7) u8 = concatenate([u8, c2]) c8 = Conv2D(16, (3, 3), activation='relu', padding='same') (u8) c8 = Conv2D(16, (3, 3), activation='relu', padding='same') (c8) u9 = Conv2DTranspose(8, (2, 2), strides=(2, 2), padding='same') (c8) u9 = concatenate([u9, c1], axis=3) c9 = Conv2D(8, (3, 3), activation='relu', padding='same') (u9) c9 = Conv2D(8, (3, 3), activation='relu', padding='same') (c9) outputs = Conv2D(1, (1, 1), activation='sigmoid') (c9) model = Model(inputs=[inputs], outputs=[outputs]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=[mean_iou]) model.summary() # In[ ]: earlystopper = EarlyStopping(patience=5, verbose=1) checkpointer = ModelCheckpoint('model-tgs-salt-1.h5', verbose=1, save_best_only=True) results = model.fit(X_train, Y_train, validation_split=0.1, batch_size=8, epochs=30, callbacks=[earlystopper, checkpointer]) # # Test Data # First we'll get the test data. This takes a while, it's 18000 samples. # In[ ]: # Get and resize test images X_test = np.zeros((len(test_ids), im_height, im_width, im_chan), dtype=np.uint8) sizes_test = [] print('Getting and resizing test images ... ') sys.stdout.flush() for n, id_ in tqdm_notebook(enumerate(test_ids), total=len(test_ids)): path = path_test img = load_img(path + '/images/' + id_) x = img_to_array(img)[:,:,1] sizes_test.append([x.shape[0], x.shape[1]]) x = resize(x, (128, 128, 1), mode='constant', preserve_range=True) X_test[n] = x print('Done!') # In[ ]: # Predict on train, val and test model = load_model('model-tgs-salt-1.h5', custom_objects={'mean_iou': mean_iou}) preds_train = model.predict(X_train[:int(X_train.shape[0]*0.9)], verbose=1) preds_val = model.predict(X_train[int(X_train.shape[0]*0.9):], verbose=1) preds_test = model.predict(X_test, verbose=1) # Threshold predictions preds_train_t = (preds_train > 0.5).astype(np.uint8) preds_val_t = (preds_val > 0.5).astype(np.uint8) preds_test_t = (preds_test > 0.5).astype(np.uint8) # In[ ]: # Create list of upsampled test masks preds_test_upsampled = [] for i in tnrange(len(preds_test)): preds_test_upsampled.append(resize(np.squeeze(preds_test[i]), (sizes_test[i][0], sizes_test[i][1]), mode='constant', preserve_range=True)) # In[ ]: preds_test_upsampled[0].shape # We'll look at it again, just to be sure. # In[ ]: # Perform a sanity check on some random training samples ix = random.randint(0, len(preds_train_t)) plt.imshow(np.dstack((X_train[ix],X_train[ix],X_train[ix]))) plt.show() tmp = np.squeeze(Y_train[ix]).astype(np.float32) plt.imshow(np.dstack((tmp,tmp,tmp))) plt.show() tmp = np.squeeze(preds_train_t[ix]).astype(np.float32) plt.imshow(np.dstack((tmp,tmp,tmp))) plt.show() # # Prepare Submission # We need to prepare the submission. A nice CSV with predictions. All of this is one to one from Ketil and does not differ from any of the other segmentation tasks. Check them out to improve on this. # In[ ]: def RLenc(img, order='F', format=True): """ img is binary mask image, shape (r,c) order is down-then-right, i.e. Fortran format determines if the order needs to be preformatted (according to submission rules) or not returns run length as an array or string (if format is True) """ bytes = img.reshape(img.shape[0] * img.shape[1], order=order) runs = [] ## list of run lengths r = 0 ## the current run length pos = 1 ## count starts from 1 per WK for c in bytes: if (c == 0): if r != 0: runs.append((pos, r)) pos += r r = 0 pos += 1 else: r += 1 # if last run is unsaved (i.e. data ends with 1) if r != 0: runs.append((pos, r)) pos += r r = 0 if format: z = '' for rr in runs: z += '{} {} '.format(rr[0], rr[1]) return z[:-1] else: return runs pred_dict = {fn[:-4]:RLenc(np.round(preds_test_upsampled[i])) for i,fn in tqdm_notebook(enumerate(test_ids))} # In[ ]: sub =
pd.DataFrame.from_dict(pred_dict,orient='index')
pandas.DataFrame.from_dict
"""Analysis. This script executes the models that find arbitrage opportunities. Currently two arbitrage models are being used: 1.Triangular Arbitrage. 2.Bellman Ford Optimization. """ import sqlite3 import pandas as pd import numpy as np import datetime as dt import logging import logging.config from pathlib import Path import yaml import os from bellmanford import ( bellman_ford_exec, print_profit_opportunity_for_path_store_db, load_exchange_graph, draw_graph_to_png, ) # Logging path = Path(os.getcwd()) Path("log").mkdir(parents=True, exist_ok=True) log_config = Path(path, "log_config.yaml") timestamp = "{:%Y_%m_%d_%H_%M_%S}".format(dt.datetime.now()) with open(log_config, "r") as log_file: config_dict = yaml.safe_load(log_file.read()) # Append date stamp to the file name log_filename = config_dict["handlers"]["file"]["filename"] base, extension = os.path.splitext(log_filename) base2 = "_" + os.path.splitext(os.path.basename(__file__))[0] + "_" log_filename = "{}{}{}{}".format(base, base2, timestamp, extension) config_dict["handlers"]["file"]["filename"] = log_filename logging.config.dictConfig(config_dict) logger = logging.getLogger(__name__) # pandas controls on how much data to see pd.set_option("display.max_rows", None)
pd.set_option("display.max_columns", None)
pandas.set_option
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert inference.is_list_like(result) @pytest.mark.parametrize('obj', [ 'abc', [], [1], (1,), ['a'], 'a', {'a'}, [1, 2, 3], Series([1]), DataFrame({"A": [1]}), ([1, 2] for _ in range(5)), ]) def test_is_nested_list_like_fails(obj): assert not inference.is_nested_list_like(obj) @pytest.mark.parametrize( "ll", [{}, {'A': 1}, Series([1])]) def test_is_dict_like_passes(ll): assert inference.is_dict_like(ll) @pytest.mark.parametrize( "ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])]) def test_is_dict_like_fails(ll): assert not inference.is_dict_like(ll) @pytest.mark.parametrize("has_keys", [True, False]) @pytest.mark.parametrize("has_getitem", [True, False]) @pytest.mark.parametrize("has_contains", [True, False]) def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains): class DictLike(object): def __init__(self, d): self.d = d if has_keys: def keys(self): return self.d.keys() if has_getitem: def __getitem__(self, key): return self.d.__getitem__(key) if has_contains: def __contains__(self, key): return self.d.__contains__(key) d = DictLike({1: 2}) result = inference.is_dict_like(d) expected = has_keys and has_getitem and has_contains assert result is expected def test_is_file_like(mock): class MockFile(object): pass is_file = inference.is_file_like data = StringIO("data") assert is_file(data) # No read / write attributes # No iterator attributes m = MockFile() assert not is_file(m) MockFile.write = lambda self: 0 # Write attribute but not an iterator m = MockFile() assert not is_file(m) # gh-16530: Valid iterator just means we have the # __iter__ attribute for our purposes. MockFile.__iter__ = lambda self: self # Valid write-only file m = MockFile() assert is_file(m) del MockFile.write MockFile.read = lambda self: 0 # Valid read-only file m = MockFile() assert is_file(m) # Iterator but no read / write attributes data = [1, 2, 3] assert not is_file(data) assert not is_file(mock.Mock()) @pytest.mark.parametrize( "ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)]) def test_is_names_tuple_passes(ll): assert inference.is_named_tuple(ll) @pytest.mark.parametrize( "ll", [(1, 2, 3), 'a', Series({'pi': 3.14})]) def test_is_names_tuple_fails(ll): assert not inference.is_named_tuple(ll) def test_is_hashable(): # all new-style classes are hashable by default class HashableClass(object): pass class UnhashableClass1(object): __hash__ = None class UnhashableClass2(object): def __hash__(self): raise TypeError("Not hashable") hashable = (1, 3.14, np.float64(3.14), 'a', tuple(), (1, ), HashableClass(), ) not_hashable = ([], UnhashableClass1(), ) abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), ) for i in hashable: assert inference.is_hashable(i) for i in not_hashable: assert not inference.is_hashable(i) for i in abc_hashable_not_really_hashable: assert not inference.is_hashable(i) # numpy.array is no longer collections.Hashable as of # https://github.com/numpy/numpy/pull/5326, just test # is_hashable() assert not inference.is_hashable(np.array([])) # old-style classes in Python 2 don't appear hashable to # collections.Hashable but also seem to support hash() by default if PY2: class OldStyleClass(): pass c = OldStyleClass() assert not isinstance(c, compat.Hashable) assert inference.is_hashable(c) hash(c) # this will not raise @pytest.mark.parametrize( "ll", [re.compile('ad')]) def test_is_re_passes(ll): assert inference.is_re(ll) @pytest.mark.parametrize( "ll", ['x', 2, 3, object()]) def test_is_re_fails(ll): assert not inference.is_re(ll) @pytest.mark.parametrize( "ll", [r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')]) def test_is_recompilable_passes(ll): assert inference.is_re_compilable(ll) @pytest.mark.parametrize( "ll", [1, [], object()]) def test_is_recompilable_fails(ll): assert not inference.is_re_compilable(ll) class TestInference(object): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') assert lib.infer_dtype(arr) == compare # object array of bytes arr = arr.astype(object) assert lib.infer_dtype(arr) == compare # object array of bytes with missing values assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare def test_isinf_scalar(self): # GH 11352 assert libmissing.isposinf_scalar(float('inf')) assert libmissing.isposinf_scalar(np.inf) assert not libmissing.isposinf_scalar(-np.inf) assert not libmissing.isposinf_scalar(1) assert not libmissing.isposinf_scalar('a') assert libmissing.isneginf_scalar(float('-inf')) assert libmissing.isneginf_scalar(-np.inf) assert not libmissing.isneginf_scalar(np.inf) assert not libmissing.isneginf_scalar(1) assert not libmissing.isneginf_scalar('a') def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = {'', 'NULL', 'nan'} pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with pytest.raises(ValueError, match=msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self, coerce): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = {-999, -999.0} out = lib.maybe_convert_numeric(data, nan_values, coerce) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) assert result.dtype == np.float64 def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) assert np.all(np.isnan(result)) def test_convert_non_hashable(self): # GH13324 # make sure that we are handing non-hashables arr = np.array([[10.0, 2], 1.0, 'apple']) result = lib.maybe_convert_numeric(arr, set(), False, True) tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan])) def test_convert_numeric_uint64(self): arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([str(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_numeric(arr, set()), exp) @pytest.mark.parametrize("arr", [ np.array([2**63, np.nan], dtype=object), np.array([str(2**63), np.nan], dtype=object), np.array([np.nan, 2**63], dtype=object), np.array([np.nan, str(2**63)], dtype=object)]) def test_convert_numeric_uint64_nan(self, coerce, arr): expected = arr.astype(float) if coerce else arr.copy() result = lib.maybe_convert_numeric(arr, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) def test_convert_numeric_uint64_nan_values(self, coerce): arr = np.array([2**63, 2**63 + 1], dtype=object) na_values = {2**63} expected = (np.array([np.nan, 2**63 + 1], dtype=float) if coerce else arr.copy()) result = lib.maybe_convert_numeric(arr, na_values, coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("case", [ np.array([2**63, -1], dtype=object), np.array([str(2**63), -1], dtype=object), np.array([str(2**63), str(-1)], dtype=object), np.array([-1, 2**63], dtype=object), np.array([-1, str(2**63)], dtype=object), np.array([str(-1), str(2**63)], dtype=object)]) def test_convert_numeric_int64_uint64(self, case, coerce): expected = case.astype(float) if coerce else case.copy() result = lib.maybe_convert_numeric(case, set(), coerce_numeric=coerce) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("value", [-2**63 - 1, 2**64]) def test_convert_int_overflow(self, value): # see gh-18584 arr = np.array([value], dtype=object) result = lib.maybe_convert_objects(arr) tm.assert_numpy_array_equal(arr, result) def test_maybe_convert_objects_uint64(self): # see gh-4471 arr = np.array([2**63], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) # NumPy bug: can't compare uint64 to int64, as that # results in both casting to float64, so we should # make sure that this function is robust against it arr = np.array([np.uint64(2**63)], dtype=object) exp = np.array([2**63], dtype=np.uint64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2, -1], dtype=object) exp = np.array([2, -1], dtype=np.int64) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) arr = np.array([2**63, -1], dtype=object) exp = np.array([2**63, -1], dtype=object) tm.assert_numpy_array_equal(lib.maybe_convert_objects(arr), exp) def test_mixed_dtypes_remain_object_array(self): # GH14956 array = np.array([datetime(2015, 1, 1, tzinfo=pytz.utc), 1], dtype=object) result = lib.maybe_convert_objects(array, convert_datetime=1) tm.assert_numpy_array_equal(result, array) class TestTypeInference(object): # Dummy class used for testing with Python objects class Dummy(): pass def test_inferred_dtype_fixture(self, any_skipna_inferred_dtype): # see pandas/conftest.py inferred_dtype, values = any_skipna_inferred_dtype # make sure the inferred dtype of the fixture is as requested assert inferred_dtype == lib.infer_dtype(values, skipna=True) def test_length_zero(self): result = lib.infer_dtype(np.array([], dtype='i4')) assert result == 'integer' result = lib.infer_dtype([]) assert result == 'empty' # GH 18004 arr = np.array([np.array([], dtype=object), np.array([], dtype=object)]) result = lib.infer_dtype(arr) assert result == 'empty' def test_integers(self): arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'integer' arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='i4') result = lib.infer_dtype(arr) assert result == 'integer' def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr) assert result == 'boolean' arr = np.array([True, np.nan, False], dtype='O') result = lib.infer_dtype(arr, skipna=True) assert result == 'boolean' def test_floats(self): arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) assert result == 'mixed-integer' arr = np.array([1, 2, 3, 4, 5], dtype='f4') result = lib.infer_dtype(arr) assert result == 'floating' arr = np.array([1, 2, 3, 4, 5], dtype='f8') result = lib.infer_dtype(arr) assert result == 'floating' def test_decimals(self): # GH15690 arr = np.array([Decimal(1), Decimal(2), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([1.0, 2.0, Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'mixed' arr = np.array([Decimal(1), Decimal('NaN'), Decimal(3)]) result = lib.infer_dtype(arr) assert result == 'decimal' arr = np.array([Decimal(1), np.nan, Decimal(3)], dtype='O') result = lib.infer_dtype(arr) assert result == 'decimal' def test_string(self): pass def test_unicode(self): arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr) assert result == 'mixed' arr = [u'a', np.nan, u'c'] result = lib.infer_dtype(arr, skipna=True) expected = 'unicode' if PY2 else 'string' assert result == expected @pytest.mark.parametrize('dtype, missing, skipna, expected', [ (float, np.nan, False, 'floating'), (float, np.nan, True, 'floating'), (object, np.nan, False, 'floating'), (object, np.nan, True, 'empty'), (object, None, False, 'mixed'), (object, None, True, 'empty') ]) @pytest.mark.parametrize('box', [pd.Series, np.array]) def test_object_empty(self, box, missing, dtype, skipna, expected): # GH 23421 arr = box([missing, missing], dtype=dtype) result = lib.infer_dtype(arr, skipna=skipna) assert result == expected def test_datetime(self): dates = [datetime(2012, 1, x) for x in range(1, 20)] index = Index(dates) assert index.inferred_type == 'datetime64' def test_infer_dtype_datetime(self): arr = np.array([Timestamp('2011-01-01'), Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.datetime64('2011-01-01'), np.datetime64('2011-01-01')], dtype=object) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([datetime(2011, 1, 1), datetime(2012, 2, 1)]) assert lib.infer_dtype(arr) == 'datetime' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1)]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, pd.Timestamp('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([n, np.datetime64('2011-01-02'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([n, datetime(2011, 1, 1), n]) assert lib.infer_dtype(arr) == 'datetime' # different type of nat arr = np.array([np.timedelta64('nat'), np.datetime64('2011-01-02')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.datetime64('2011-01-02'), np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' # mixed datetime arr = np.array([datetime(2011, 1, 1), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'datetime' # should be datetime? arr = np.array([np.datetime64('2011-01-01'), pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Timestamp('2011-01-02'), np.datetime64('2011-01-01')]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1]) assert lib.infer_dtype(arr) == 'mixed-integer' arr = np.array([np.nan, pd.Timestamp('2011-01-02'), 1.1]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.nan, '2011-01-01', pd.Timestamp('2011-01-02')]) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_timedelta(self): arr = np.array([pd.Timedelta('1 days'), pd.Timedelta('2 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([np.timedelta64(1, 'D'), np.timedelta64(2, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([timedelta(1), timedelta(2)]) assert lib.infer_dtype(arr) == 'timedelta' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, Timedelta('1 days')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D')]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1)]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, pd.Timedelta('1 days'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, np.timedelta64(1, 'D'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([n, timedelta(1), n]) assert lib.infer_dtype(arr) == 'timedelta' # different type of nat arr = np.array([np.datetime64('nat'), np.timedelta64(1, 'D')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64(1, 'D'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_infer_dtype_period(self): # GH 13664 arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([pd.Period('2011-01', freq='D'), pd.Period('2011-02', freq='M')]) assert lib.infer_dtype(arr) == 'period' # starts with nan for n in [pd.NaT, np.nan]: arr = np.array([n, pd.Period('2011-01', freq='D')]) assert lib.infer_dtype(arr) == 'period' arr = np.array([n, pd.Period('2011-01', freq='D'), n]) assert lib.infer_dtype(arr) == 'period' # different type of nat arr = np.array([np.datetime64('nat'), pd.Period('2011-01', freq='M')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([pd.Period('2011-01', freq='M'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' @pytest.mark.parametrize( "data", [ [datetime(2017, 6, 12, 19, 30), datetime(2017, 3, 11, 1, 15)], [Timestamp("20170612"), Timestamp("20170311")], [Timestamp("20170612", tz='US/Eastern'), Timestamp("20170311", tz='US/Eastern')], [date(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')], [np.datetime64("2017-06-12"), np.datetime64("2017-03-11")], [np.datetime64("2017-06-12"), datetime(2017, 3, 11, 1, 15)] ] ) def test_infer_datetimelike_array_datetime(self, data): assert lib.infer_datetimelike_array(data) == "datetime" @pytest.mark.parametrize( "data", [ [timedelta(2017, 6, 12), timedelta(2017, 3, 11)], [timedelta(2017, 6, 12), date(2017, 3, 11)], [np.timedelta64(2017, "D"), np.timedelta64(6, "s")], [np.timedelta64(2017, "D"), timedelta(2017, 3, 11)] ] ) def test_infer_datetimelike_array_timedelta(self, data): assert lib.infer_datetimelike_array(data) == "timedelta" def test_infer_datetimelike_array_date(self): arr = [date(2017, 6, 12), date(2017, 3, 11)] assert lib.infer_datetimelike_array(arr) == "date" @pytest.mark.parametrize( "data", [ ["2017-06-12", "2017-03-11"], [20170612, 20170311], [20170612.5, 20170311.8], [Dummy(), Dummy()], [Timestamp("20170612"), Timestamp("20170311", tz='US/Eastern')], [Timestamp("20170612"), 20170311], [timedelta(2017, 6, 12), Timestamp("20170311", tz='US/Eastern')] ] ) def test_infer_datetimelike_array_mixed(self, data): assert lib.infer_datetimelike_array(data) == "mixed" @pytest.mark.parametrize( "first, expected", [ [[None], "mixed"], [[np.nan], "mixed"], [[pd.NaT], "nat"], [[datetime(2017, 6, 12, 19, 30), pd.NaT], "datetime"], [[np.datetime64("2017-06-12"), pd.NaT], "datetime"], [[date(2017, 6, 12), pd.NaT], "date"], [[timedelta(2017, 6, 12), pd.NaT], "timedelta"], [[np.timedelta64(2017, "D"), pd.NaT], "timedelta"] ] ) @pytest.mark.parametrize("second", [None, np.nan]) def test_infer_datetimelike_array_nan_nat_like(self, first, second, expected): first.append(second) assert lib.infer_datetimelike_array(first) == expected def test_infer_dtype_all_nan_nat_like(self): arr = np.array([np.nan, np.nan]) assert lib.infer_dtype(arr) == 'floating' # nan and None mix are result in mixed arr = np.array([np.nan, np.nan, None]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([None, np.nan, np.nan]) assert lib.infer_dtype(arr) == 'mixed' # pd.NaT arr = np.array([pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([np.nan, pd.NaT, np.nan]) assert lib.infer_dtype(arr) == 'datetime' arr = np.array([None, pd.NaT, None]) assert lib.infer_dtype(arr) == 'datetime' # np.datetime64(nat) arr = np.array([np.datetime64('nat')]) assert lib.infer_dtype(arr) == 'datetime64' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([pd.NaT, n, np.datetime64('nat'), n]) assert lib.infer_dtype(arr) == 'datetime64' arr = np.array([np.timedelta64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'timedelta' for n in [np.nan, pd.NaT, None]: arr = np.array([n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' arr = np.array([pd.NaT, n, np.timedelta64('nat'), n]) assert lib.infer_dtype(arr) == 'timedelta' # datetime / timedelta mixed arr = np.array([pd.NaT, np.datetime64('nat'), np.timedelta64('nat'), np.nan]) assert lib.infer_dtype(arr) == 'mixed' arr = np.array([np.timedelta64('nat'), np.datetime64('nat')], dtype=object) assert lib.infer_dtype(arr) == 'mixed' def test_is_datetimelike_array_all_nan_nat_like(self): arr = np.array([np.nan, pd.NaT, np.datetime64('nat')]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT, np.datetime64('nat'), np.timedelta64('nat')]) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, pd.NaT]) assert lib.is_datetime_array(arr) assert lib.is_datetime64_array(arr) assert lib.is_timedelta_or_timedelta64_array(arr) arr = np.array([np.nan, np.nan], dtype=object) assert not lib.is_datetime_array(arr) assert not lib.is_datetime64_array(arr) assert not lib.is_timedelta_or_timedelta64_array(arr) assert lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='US/Eastern')], dtype=object)) assert not lib.is_datetime_with_singletz_array( np.array([pd.Timestamp('20130101', tz='US/Eastern'), pd.Timestamp('20130102', tz='CET')], dtype=object)) @pytest.mark.parametrize( "func", [ 'is_datetime_array', 'is_datetime64_array', 'is_bool_array', 'is_timedelta_or_timedelta64_array', 'is_date_array', 'is_time_array', 'is_interval_array', 'is_period_array']) def test_other_dtypes_for_array(self, func): func = getattr(lib, func) arr = np.array(['foo', 'bar']) assert not func(arr) arr = np.array([1, 2]) assert not func(arr) def test_date(self): dates = [date(2012, 1, day) for day in range(1, 20)] index = Index(dates) assert index.inferred_type == 'date' dates = [date(2012, 1, day) for day in range(1, 20)] + [np.nan] result = lib.infer_dtype(dates) assert result == 'mixed' result =
lib.infer_dtype(dates, skipna=True)
pandas._libs.lib.infer_dtype
# -*- coding: utf-8 -*- """ Created on Mon Apr 23 12:34:01 2018 @author: <NAME> """ import pandas as pd import numpy as np from scipy import sparse from aikit.enums import DataTypes def get_type(data): """Retrieve the type of a data Parameters ---------- data : pd.DataFrame,np.array, ... the thing we want the type Returns ------- one data_type or None Example ------- >>> df = pd.DataFrame({"a":np.arange(10)}) >>> dfs = pd.SparseDataFrame({"a":[0,0,0,1,1]}) >>> assert get_type(df) == DataTypes.DataFrame >>> assert get_type(df["a"]) == DataTypes.Serie >>> assert get_type(df.values ) == DataTypes.NumpyArray >>> assert get_type(sparse.coo_matrix(df.values)) == DataTypes.SparseArray >>> assert get_type(dfs) == DataTypes.SparseDataFrame """ type_of_data = type(data) if type_of_data == pd.DataFrame: return DataTypes.DataFrame elif type_of_data == pd.Series: return DataTypes.Serie elif type_of_data == np.ndarray: return DataTypes.NumpyArray elif type_of_data == pd.SparseDataFrame: return DataTypes.SparseDataFrame elif sparse.issparse(data): return DataTypes.SparseArray else: return None def convert_to_dataframe(xx, mapped_type=None): """ convert something to a DataFrame """ if mapped_type is None: mapped_type = get_type(xx) if mapped_type is None: return pd.DataFrame(xx) # try to create a DataFrame no matter what if mapped_type == DataTypes.DataFrame: return xx elif mapped_type == DataTypes.Serie: return pd.DataFrame(xx, index=xx.index) elif mapped_type == DataTypes.NumpyArray: return pd.DataFrame(xx) elif mapped_type == DataTypes.SparseDataFrame: return xx.to_dense() elif mapped_type == DataTypes.SparseArray: return pd.DataFrame(xx.todense()) else: raise TypeError("I don't know that type : %s" % type(xx)) def convert_to_array(xx, mapped_type=None): """ convert something to a Numpy Array """ if mapped_type is None: mapped_type = get_type(xx) if mapped_type is None: return convert_to_array(convert_to_dataframe(xx)) if mapped_type == DataTypes.DataFrame: return xx.values elif mapped_type == DataTypes.Serie: return xx.values.reshape((xx.shape[0], 1)) elif mapped_type == DataTypes.NumpyArray: if xx.ndim == 1: return xx.reshape((xx.shape[0], 1)) else: return xx elif mapped_type == DataTypes.SparseArray: return np.array(xx.todense()) # np.array to prevent type 'matrix' elif mapped_type == DataTypes.SparseDataFrame: return xx.to_dense().values else: raise TypeError("I don't know how to convert that %s" % type(xx)) def convert_to_sparsearray(xx, mapped_type=None): """ convert something to a Sparse Array """ if mapped_type is None: mapped_type = get_type(xx) if mapped_type is None: return convert_to_sparsearray(convert_to_dataframe(xx)) if mapped_type == DataTypes.DataFrame: return sparse.csr_matrix(xx.values) elif mapped_type == DataTypes.Serie: sparse.csr_matrix(xx.values[:, np.newaxis]) # np.newaxis to make sure I have 2 dimensio elif mapped_type == DataTypes.NumpyArray: if xx.ndim == 1: return sparse.csr_matrix(xx.reshape((xx.shape[0], 1))) else: return sparse.csr_matrix(xx) elif mapped_type == DataTypes.SparseArray: return xx elif mapped_type == DataTypes.SparseDataFrame: return xx.to_coo() # maybe convert to csr ? else: raise TypeError("I don't know how to convert that %s" % type(xx)) def convert_to_sparsedataframe(xx, mapped_type=None): """ convert something to a Sparse DataFrame """ if mapped_type is None: mapped_type = get_type(xx) if mapped_type is None: return convert_to_sparsedataframe(convert_to_dataframe(xx)) if mapped_type == DataTypes.DataFrame: return pd.SparseDataFrame(xx, default_fill_value=0) elif mapped_type == DataTypes.Serie: return pd.SparseDataFrame(pd.DataFrame(xx), default_fill_value=0) elif mapped_type == DataTypes.NumpyArray: if xx.ndim == 1: return pd.SparseDataFrame(xx.reshape((xx.shape[0], 1)), default_fill_value=0) else: return pd.SparseDataFrame(xx, default_fill_value=0) elif mapped_type == DataTypes.SparseArray: return
pd.SparseDataFrame(xx, default_fill_value=0)
pandas.SparseDataFrame
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Oct 7 11:17:50 2018 @author: nmei plot cross experiment generalization """ import os import pandas as pd import numpy as np import seaborn as sns sns.set_style('whitegrid') sns.set_context('poster') import matplotlib.pyplot as plt working_dir = '../results/cross_experiment_generalization' df = pd.read_csv(os.path.join(working_dir,'cross experiment generalization.csv')) df_full = pd.read_csv(os.path.join(working_dir,'cross experiment generalization (folds).csv')) df_corrected = pd.read_csv(os.path.join(working_dir,'cross experimnet validation post test.csv')) df_plot = df.copy() resample = [] n = 500 for (model_name,experiment_name),df_sub in df_plot.groupby(['model','test']): df_sub temp_ = [] for window, df_sub_sub in df_sub.groupby(['window']): temp = pd.concat([df_sub_sub]*n,ignore_index=True) np.random.seed(12345) scores = np.random.normal(loc = df_sub_sub['score_mean'].values[0], scale = df_sub_sub['score_std'].values[0], size = n) temp['scores'] = scores temp_.append(temp) resample.append(pd.concat(temp_)) resample =
pd.concat(resample)
pandas.concat
import pandas as pd import numpy as np import gc import os # read data col_dict = {'mjd': np.float64, 'flux': np.float32, 'flux_err': np.float32, 'object_id': np.int32, 'passband': np.int8, 'detected': np.int8} train_meta = pd.read_csv(os.path.join('data', 'training_set_metadata.csv')) train = pd.read_csv(os.path.join('data', 'training_set.csv'), dtype=col_dict) def calc_aggs(all_data, exact): # Normalise the flux, following the Bayesian approach here: # https://www.statlect.com/fundamentals-of-statistics/normal-distribution-Bayesian-estimation # Similar idea (but not the same) as the normalisation done in the Starter Kit # https://www.kaggle.com/michaelapers/the-plasticc-astronomy-starter-kit?scriptVersionId=6040398 prior_mean = all_data.groupby(['object_id', 'passband'])['flux'].transform('mean') prior_std = all_data.groupby(['object_id', 'passband'])['flux'].transform('std') prior_std.loc[prior_std.isnull()] = all_data.loc[prior_std.isnull(), 'flux_err'] obs_std = all_data['flux_err'] # since the above kernel tells us that the flux error is the 68% confidence interval all_data['bayes_flux'] = (all_data['flux'] / obs_std**2 + prior_mean / prior_std**2) \ / (1 / obs_std**2 + 1 / prior_std**2) all_data.loc[all_data['bayes_flux'].notnull(), 'flux'] \ = all_data.loc[all_data['bayes_flux'].notnull(), 'bayes_flux'] # Estimate the flux at source, using the fact that light is proportional # to inverse square of distance from source. # This is hinted at here: https://www.kaggle.com/c/PLAsTiCC-2018/discussion/70725#417195 redshift = all_meta.set_index('object_id')[['hostgal_specz', 'hostgal_photoz']] if exact: redshift['redshift'] = redshift['hostgal_specz'] redshift.loc[redshift['redshift'].isnull(), 'redshift'] \ = redshift.loc[redshift['redshift'].isnull(), 'hostgal_photoz'] else: redshift['redshift'] = redshift['hostgal_photoz'] all_data = pd.merge(all_data, redshift, 'left', 'object_id') nonzero_redshift = all_data['redshift'] > 0 all_data.loc[nonzero_redshift, 'flux'] = all_data.loc[nonzero_redshift, 'flux'] \ * all_data.loc[nonzero_redshift, 'redshift']**2 # aggregate features band_aggs = all_data.groupby(['object_id', 'passband'])['flux'].agg(['mean', 'std', 'max', 'min']).unstack(-1) band_aggs.columns = [x + '_' + str(y) for x in band_aggs.columns.levels[0] for y in band_aggs.columns.levels[1]] all_data.sort_values(['object_id', 'passband', 'flux'], inplace=True) # this way of calculating quantiles is faster than using the pandas quantile builtin on the groupby object all_data['group_count'] = all_data.groupby(['object_id', 'passband']).cumcount() all_data['group_size'] = all_data.groupby(['object_id', 'passband'])['flux'].transform('size') q_list = [0.25, 0.75] for q in q_list: all_data['q_' + str(q)] = all_data.loc[ (all_data['group_size'] * q).astype(int) == all_data['group_count'], 'flux'] quantiles = all_data.groupby(['object_id', 'passband'])[['q_' + str(q) for q in q_list]].max().unstack(-1) quantiles.columns = [str(x) + '_' + str(y) + '_quantile' for x in quantiles.columns.levels[0] for y in quantiles.columns.levels[1]] # max detected flux max_detected = all_data.loc[all_data['detected'] == 1].groupby('object_id')['flux'].max().to_frame('max_detected') def most_extreme(df_in, k, positive=True, suffix='', include_max=True, include_dur=True, include_interval=False): # find the "most extreme" time for each object, and for each band, retrieve the k data points on either side # k points before df = df_in.copy() df['object_passband_mean'] = df.groupby(['object_id', 'passband'])['flux'].transform('median') if positive: df['dist_from_mean'] = (df['flux'] - df['object_passband_mean']) else: df['dist_from_mean'] = -(df['flux'] - df['object_passband_mean']) max_time = df.loc[df['detected'] == 1].groupby('object_id')['dist_from_mean'].idxmax().to_frame( 'max_ind') max_time['mjd_max' + suffix] = df.loc[max_time['max_ind'].values, 'mjd'].values df = pd.merge(df, max_time[['mjd_max' + suffix]], 'left', left_on=['object_id'], right_index=True) df['time_after_mjd_max'] = df['mjd'] - df['mjd_max' + suffix] df['time_before_mjd_max'] = -df['time_after_mjd_max'] # first k after event df.sort_values(['object_id', 'passband', 'time_after_mjd_max'], inplace=True) df['row_num_after'] = df.loc[df['time_after_mjd_max'] >= 0].groupby( ['object_id', 'passband']).cumcount() first_k_after = df.loc[(df['row_num_after'] < k) & (df['time_after_mjd_max'] <= 50), ['object_id', 'passband', 'flux', 'row_num_after']] first_k_after.set_index(['object_id', 'passband', 'row_num_after'], inplace=True) first_k_after = first_k_after.unstack(level=-1).unstack(level=-1) first_k_after.columns = [str(x) + '_' + str(y) + '_after' for x in first_k_after.columns.levels[1] for y in first_k_after.columns.levels[2]] extreme_data = first_k_after time_bands = [[-50, -20], [-20, -10], [-10, 0], [0, 10], [10, 20], [20, 50], [50, 100], [100, 200], [200, 500]] if include_interval: interval_arr = [] for start, end in time_bands: band_data = df.loc[(start <= df['time_after_mjd_max']) & (df['time_after_mjd_max'] <= end)] interval_agg = band_data.groupby(['object_id', 'passband'])['flux'].mean().unstack(-1) interval_agg.columns = ['{}_start_{}_end_{}'.format(c, start, end) for c in interval_agg.columns] interval_arr.append(interval_agg) interval_data = pd.concat(interval_arr, axis=1) extreme_data = pd.concat([extreme_data, interval_data], axis=1) if include_dur: # detection duration in each passband after event duration_after = df.loc[(df['time_after_mjd_max'] >= 0) & (df['detected'] == 0)] \ .groupby(['object_id', 'passband'])['time_after_mjd_max'].first().unstack(-1) duration_after.columns = ['dur_after_' + str(c) for c in range(6)] extreme_data = pd.concat([extreme_data, duration_after], axis=1) # last k before event df.sort_values(['object_id', 'passband', 'time_before_mjd_max'], inplace=True) df['row_num_before'] = df.loc[df['time_before_mjd_max'] >= 0].groupby( ['object_id', 'passband']).cumcount() first_k_before = df.loc[(df['row_num_before'] < k) & (df['time_after_mjd_max'] <= 50), ['object_id', 'passband', 'flux', 'row_num_before']] first_k_before.set_index(['object_id', 'passband', 'row_num_before'], inplace=True) first_k_before = first_k_before.unstack(level=-1).unstack(level=-1) first_k_before.columns = [str(x) + '_' + str(y) + '_before' for x in first_k_before.columns.levels[1] for y in first_k_before.columns.levels[2]] extreme_data = pd.concat([extreme_data, first_k_before], axis=1) if include_dur: # detection duration in each passband before event duration_before = df.loc[(df['time_before_mjd_max'] >= 0) & (df['detected'] == 0)] \ .groupby(['object_id', 'passband'])['time_before_mjd_max'].first().unstack(-1) duration_before.columns = ['dur_before_' + str(c) for c in range(6)] extreme_data = pd.concat([extreme_data, duration_before], axis=1) if include_max: # passband with maximum detected flux for each object max_pb = df.loc[max_time['max_ind'].values].groupby('object_id')['passband'].max().to_frame( 'max_passband') # time of max in each passband, relative to extreme max band_max_ind = df.groupby(['object_id', 'passband'])['flux'].idxmax() band_mjd_max = df.loc[band_max_ind.values].groupby(['object_id', 'passband'])['mjd'].max().unstack(-1) cols = ['max_time_' + str(i) for i in range(6)] band_mjd_max.columns = cols band_mjd_max = pd.merge(band_mjd_max, max_time, 'left', 'object_id') for c in cols: band_mjd_max[c] -= band_mjd_max['mjd_max' + suffix] band_mjd_max.drop(['mjd_max' + suffix, 'max_ind'], axis=1, inplace=True) extreme_data = pd.concat([extreme_data, max_pb, band_mjd_max], axis=1) extreme_data.columns = [c + suffix for c in extreme_data.columns] return extreme_data extreme_max = most_extreme(all_data, 1, positive=True, suffix='', include_max=True, include_dur=True, include_interval=True) extreme_min = most_extreme(all_data, 1, positive=False, suffix='_min', include_max=False, include_dur=True) # add the feature mentioned here, attempts to identify periodicity: # https://www.kaggle.com/c/PLAsTiCC-2018/discussion/69696#410538 time_between_detections = all_data.loc[all_data['detected'] == 1].groupby('object_id')['mjd'].agg(['max', 'min']) time_between_detections['det_period'] = time_between_detections['max'] - time_between_detections['min'] # same feature but grouped by passband time_between_detections_pb \ = all_data.loc[all_data['detected'] == 1].groupby(['object_id', 'passband'])['mjd'].agg(['max', 'min']) time_between_detections_pb['det_period'] = time_between_detections_pb['max'] - time_between_detections_pb['min'] time_between_detections_pb = time_between_detections_pb['det_period'].unstack(-1) time_between_detections_pb.columns = ['det_period_pb_' + str(i) for i in range(6)] # similar feature based on high values all_data['threshold'] = all_data.groupby(['object_id'])['flux'].transform('max') * 0.75 all_data['high'] = ((all_data['flux'] >= all_data['threshold']) & (all_data['detected'] == 1)).astype(int) time_between_highs = all_data.loc[all_data['high'] == 1].groupby('object_id')['mjd'].agg(['max', 'min']) time_between_highs['det_period_high'] = time_between_highs['max'] - time_between_highs['min'] # aggregate values of the features during the detection period all_data = pd.merge(all_data, time_between_detections, 'left', 'object_id') det_data = all_data.loc[(all_data['mjd'] >= all_data['min']) & (all_data['mjd'] <= all_data['max'])] det_aggs = det_data.groupby(['object_id', 'passband'])['flux'].agg(['min', 'max', 'std', 'median']) det_aggs['prop_detected'] = det_data.groupby(['object_id', 'passband'])['detected'].mean() det_aggs = det_aggs.unstack(-1) det_aggs.columns = [x + '_' + str(y) + '_det_period' for x in det_aggs.columns.levels[0] for y in det_aggs.columns.levels[1]] # time distribution of detections in each band detection_time_dist \ = all_data.loc[all_data['detected'] == 1].groupby(['object_id', 'passband'])['mjd'].std().unstack(-1) detection_time_dist.columns = ['time_dist_' + str(i) for i in range(6)] detection_time_dist_all \ = all_data.loc[all_data['detected'] == 1].groupby(['object_id'])['mjd'].std().to_frame('time_dist') # scale data and recalculate band aggs all_data['abs_flux'] = all_data['flux'].abs() all_data['flux'] = (all_data['flux']) / all_data.groupby('object_id')['abs_flux'].transform('max') band_aggs_s = all_data.groupby(['object_id', 'passband'])['flux'].agg(['mean', 'std', 'max', 'min']).unstack(-1) band_aggs_s.columns = [x + '_' + str(y) + '_scaled' for x in band_aggs_s.columns.levels[0] for y in band_aggs_s.columns.levels[1]] all_data.sort_values(['object_id', 'passband', 'flux'], inplace=True) for q in q_list: all_data['q_' + str(q)] = all_data.loc[ (all_data['group_size'] * q).astype(int) == all_data['group_count'], 'flux'] quantiles_s = all_data.groupby(['object_id', 'passband'])[['q_' + str(q) for q in q_list]].max().unstack(-1) quantiles_s.columns = [str(x) + '_' + str(y) + '_quantile_s' for x in quantiles_s.columns.levels[0] for y in quantiles_s.columns.levels[1]] extreme_max_s = most_extreme(all_data, 1, positive=True, suffix='_s', include_max=False, include_dur=False, include_interval=True) extreme_min_s = most_extreme(all_data, 1, positive=False, suffix='_min_s', include_max=False, include_dur=False) new_data = pd.concat([band_aggs, quantiles, band_aggs_s, max_detected, time_between_detections[['det_period']], time_between_detections_pb, extreme_max, extreme_min, extreme_max_s, extreme_min_s, time_between_highs[['det_period_high']], quantiles_s, detection_time_dist, detection_time_dist_all, det_aggs], axis=1) return new_data # get the metadata test_meta = pd.read_csv(os.path.join('data', 'test_set_metadata.csv')) all_meta =
pd.concat([train_meta, test_meta], axis=0, ignore_index=True, sort=True)
pandas.concat
""" How do citation counts differ across datasets, when a paper appears in more than one dataset? And how many citation counts are zero, by dataset? Our motivation is understanding how dataset choice (or aggregation choice) might affect results. """ from itertools import permutations from pathlib import Path import numpy as np import pandas as pd from analysis import write_latest from bq import read_sql from settings import PROJECT_ID, DATASET CITATION_EXPORT_PATH = Path(__file__).parent / 'citation_counts.pkl.gz' PREDICTION_EXPORT_PATH = Path(__file__).parent / 'predictions.pkl.gz' DATASET_ABBR = ['mag', 'ds', 'wos'] def summarize_zero_citation_counts() -> None: df = pd.read_gbq(read_sql('../analysis/zero_citation_counts_by_dataset.sql'), project_id=PROJECT_ID) df['Pct'] = df.groupby('dataset', as_index=False).apply(lambda x: x['count'] / x['count'].sum()).reset_index( drop=True) df = df.pivot_table(index='has_zero_citations', columns='dataset') write_latest(df, 'analysis/zero_citation_counts_by_dataset.csv', index=True) def summarize_citation_count_differences() -> None: if CITATION_EXPORT_PATH.exists(): df = pd.read_pickle(CITATION_EXPORT_PATH, compression='gzip') else: df = pd.read_gbq(read_sql('../analysis/citation_count_export.sql'), project_id=PROJECT_ID) df.to_pickle(CITATION_EXPORT_PATH, compression='gzip') # Join in SciBERT predictions if PREDICTION_EXPORT_PATH.exists(): hits = pd.read_pickle(PREDICTION_EXPORT_PATH, compression='gzip') else: hits = pd.read_gbq(f'select cset_id from {DATASET}.comparison where arxiv_scibert_hit is true', project_id=PROJECT_ID) hits.to_pickle(PREDICTION_EXPORT_PATH, compression='gzip') hits['scibert_hit'] = True assert not hits['cset_id'].duplicated().any() assert not df['cset_id'].duplicated().any() df = pd.merge(df, hits, on='cset_id', how='left') df['scibert_hit'] = df['scibert_hit'].fillna(False) for a, b in permutations(DATASET_ABBR, 2): df[f'{a}_{b}_diff'] = df[f'{a}_times_cited'] - df[f'{b}_times_cited'] df[f'{a}_{b}_diff_pct'] = df[f'{a}_{b}_diff'] / df[f'{b}_times_cited'] percentiles = calculate_percentiles(df) write_latest(percentiles, 'analysis/citation_count_pct_diff_quantiles.csv', index=True) zero_diff_counts = count_zeroes(df) write_latest(zero_diff_counts, 'analysis/citation_zero_diff_counts.csv', index=True) ai_percentiles = calculate_percentiles(df.query('scibert_hit == True')) write_latest(ai_percentiles, 'analysis/ai_citation_count_pct_diff_quantiles.csv', index=True) ai_zero_diff_counts = count_zeroes(df.query('scibert_hit == True')) write_latest(ai_zero_diff_counts, 'analysis/ai_citation_zero_diff_counts.csv', index=True) ai_percent_greater = calculate_percent_greater(df.query('scibert_hit == True')) write_latest(ai_percent_greater, 'analysis/ai_citation_percent_greater_counts.csv', index=False) def iter_diff_pct_cols(): for a, b in permutations(DATASET_ABBR, 2): yield f'{a}_{b}_diff_pct' def calculate_percent_greater(df): pct_greater = {} for k in ['mag_ds_diff', 'mag_wos_diff', 'ds_wos_diff']: # Drop null differences to restrict to papers for which we observe citation counts in both datasets is_positive = df[k].dropna() > 0 counts = is_positive.value_counts() pct_greater[k] = \ pd.DataFrame({'count_greater': counts, 'pct': counts / counts.sum(), 'total': counts.sum()}).loc[True] pct_greater =
pd.concat(pct_greater)
pandas.concat
# set similarity join from six import iteritems import pandas as pd import pyprind from py_stringsimjoin.filter.position_filter import PositionFilter from py_stringsimjoin.index.position_index import PositionIndex from py_stringsimjoin.utils.generic_helper import convert_dataframe_to_array, \ find_output_attribute_indices, get_output_header_from_tables, \ get_output_row_from_tables, COMP_OP_MAP from py_stringsimjoin.utils.simfunctions import get_sim_function from py_stringsimjoin.utils.token_ordering import \ gen_token_ordering_for_tables, order_using_token_ordering def set_sim_join(ltable, rtable, l_columns, r_columns, l_key_attr, r_key_attr, l_join_attr, r_join_attr, tokenizer, sim_measure_type, threshold, comp_op, allow_empty, l_out_attrs, r_out_attrs, l_out_prefix, r_out_prefix, out_sim_score, show_progress): """Perform set similarity join for a split of ltable and rtable""" # find column indices of key attr, join attr and output attrs in ltable l_key_attr_index = l_columns.index(l_key_attr) l_join_attr_index = l_columns.index(l_join_attr) l_out_attrs_indices = find_output_attribute_indices(l_columns, l_out_attrs) # find column indices of key attr, join attr and output attrs in rtable r_key_attr_index = r_columns.index(r_key_attr) r_join_attr_index = r_columns.index(r_join_attr) r_out_attrs_indices = find_output_attribute_indices(r_columns, r_out_attrs) # generate token ordering using tokens in l_join_attr # and r_join_attr token_ordering = gen_token_ordering_for_tables( [ltable, rtable], [l_join_attr_index, r_join_attr_index], tokenizer, sim_measure_type) # Build position index on l_join_attr position_index = PositionIndex(ltable, l_join_attr_index, tokenizer, sim_measure_type, threshold, token_ordering) # While building the index, we cache the tokens and the empty records. # We cache the tokens so that we need not tokenize each string in # l_join_attr multiple times when we need to compute the similarity measure. # Further we cache the empty record ids to handle the allow_empty flag. cached_data = position_index.build(allow_empty, cache_tokens=True) l_empty_records = cached_data['empty_records'] cached_l_tokens = cached_data['cached_tokens'] pos_filter = PositionFilter(tokenizer, sim_measure_type, threshold) sim_fn = get_sim_function(sim_measure_type) comp_fn = COMP_OP_MAP[comp_op] output_rows = [] has_output_attributes = (l_out_attrs is not None or r_out_attrs is not None) if show_progress: prog_bar = pyprind.ProgBar(len(rtable)) for r_row in rtable: r_string = r_row[r_join_attr_index] # order the tokens using the token ordering. r_ordered_tokens = order_using_token_ordering( tokenizer.tokenize(r_string), token_ordering) # If allow_empty flag is set and the current rtable record has empty set # of tokens in the join attribute, then generate output pairs joining # the current rtable record with those records in ltable with empty set # of tokens in the join attribute. These ltable record ids are cached in # l_empty_records list which was constructed when building the position # index. if allow_empty and len(r_ordered_tokens) == 0: for l_id in l_empty_records: if has_output_attributes: output_row = get_output_row_from_tables( ltable[l_id], r_row, l_key_attr_index, r_key_attr_index, l_out_attrs_indices, r_out_attrs_indices) else: output_row = [ltable[l_id][l_key_attr_index], r_row[r_key_attr_index]] if out_sim_score: output_row.append(1.0) output_rows.append(output_row) continue # obtain candidates by applying position filter. candidate_overlap = pos_filter.find_candidates(r_ordered_tokens, position_index) for cand, overlap in iteritems(candidate_overlap): if overlap > 0: l_ordered_tokens = cached_l_tokens[cand] # compute the actual similarity score sim_score = round(sim_fn(l_ordered_tokens, r_ordered_tokens), 4) if comp_fn(sim_score, threshold): if has_output_attributes: output_row = get_output_row_from_tables( ltable[cand], r_row, l_key_attr_index, r_key_attr_index, l_out_attrs_indices, r_out_attrs_indices) else: output_row = [ltable[cand][l_key_attr_index], r_row[r_key_attr_index]] # if out_sim_score flag is set, append the similarity score # to the output record. if out_sim_score: output_row.append(sim_score) output_rows.append(output_row) if show_progress: prog_bar.update() output_header = get_output_header_from_tables( l_key_attr, r_key_attr, l_out_attrs, r_out_attrs, l_out_prefix, r_out_prefix) if out_sim_score: output_header.append("_sim_score") # generate a dataframe from the list of output rows output_table =
pd.DataFrame(output_rows, columns=output_header)
pandas.DataFrame
import numpy as np import pytest from pandas import ( DataFrame, Index, Series, ) import pandas._testing as tm import pandas.core.common as com class TestSample: @pytest.fixture(params=[Series, DataFrame]) def obj(self, request): klass = request.param if klass is Series: arr = np.random.randn(10) else: arr = np.random.randn(10, 10) return klass(arr, dtype=None) @pytest.mark.parametrize("test", list(range(10))) def test_sample(self, test, obj): # Fixes issue: 2419 # Check behavior of random_state argument # Check for stability when receives seed or random state -- run 10 # times. seed = np.random.randint(0, 100) tm.assert_equal( obj.sample(n=4, random_state=seed), obj.sample(n=4, random_state=seed) ) tm.assert_equal( obj.sample(frac=0.7, random_state=seed), obj.sample(frac=0.7, random_state=seed), ) tm.assert_equal( obj.sample(n=4, random_state=np.random.RandomState(test)), obj.sample(n=4, random_state=np.random.RandomState(test)), ) tm.assert_equal( obj.sample(frac=0.7, random_state=np.random.RandomState(test)), obj.sample(frac=0.7, random_state=np.random.RandomState(test)), ) tm.assert_equal( obj.sample(frac=2, replace=True, random_state=np.random.RandomState(test)), obj.sample(frac=2, replace=True, random_state=np.random.RandomState(test)), ) os1, os2 = [], [] for _ in range(2): np.random.seed(test) os1.append(obj.sample(n=4)) os2.append(obj.sample(frac=0.7)) tm.assert_equal(*os1) tm.assert_equal(*os2) def test_sample_lengths(self, obj): # Check lengths are right assert len(obj.sample(n=4) == 4) assert len(obj.sample(frac=0.34) == 3) assert len(obj.sample(frac=0.36) == 4) def test_sample_invalid_random_state(self, obj): # Check for error when random_state argument invalid. msg = ( "random_state must be an integer, array-like, a BitGenerator, Generator, " "a numpy RandomState, or None" ) with pytest.raises(ValueError, match=msg): obj.sample(random_state="a_string") def test_sample_wont_accept_n_and_frac(self, obj): # Giving both frac and N throws error msg = "Please enter a value for `frac` OR `n`, not both" with pytest.raises(ValueError, match=msg): obj.sample(n=3, frac=0.3) def test_sample_requires_positive_n_frac(self, obj): with pytest.raises( ValueError, match="A negative number of rows requested. Please provide `n` >= 0", ): obj.sample(n=-3) with pytest.raises( ValueError, match="A negative number of rows requested. Please provide `frac` >= 0", ): obj.sample(frac=-0.3) def test_sample_requires_integer_n(self, obj): # Make sure float values of `n` give error with pytest.raises(ValueError, match="Only integers accepted as `n` values"): obj.sample(n=3.2) def test_sample_invalid_weight_lengths(self, obj): # Weight length must be right msg = "Weights and axis to be sampled must be of same length" with pytest.raises(ValueError, match=msg): obj.sample(n=3, weights=[0, 1]) with pytest.raises(ValueError, match=msg): bad_weights = [0.5] * 11 obj.sample(n=3, weights=bad_weights) with pytest.raises(ValueError, match="Fewer non-zero entries in p than size"): bad_weight_series = Series([0, 0, 0.2]) obj.sample(n=4, weights=bad_weight_series) def test_sample_negative_weights(self, obj): # Check won't accept negative weights bad_weights = [-0.1] * 10 msg = "weight vector many not include negative values" with pytest.raises(ValueError, match=msg): obj.sample(n=3, weights=bad_weights) def test_sample_inf_weights(self, obj): # Check inf and -inf throw errors: weights_with_inf = [0.1] * 10 weights_with_inf[0] = np.inf msg = "weight vector may not include `inf` values" with pytest.raises(ValueError, match=msg): obj.sample(n=3, weights=weights_with_inf) weights_with_ninf = [0.1] * 10 weights_with_ninf[0] = -np.inf with pytest.raises(ValueError, match=msg): obj.sample(n=3, weights=weights_with_ninf) def test_sample_zero_weights(self, obj): # All zeros raises errors zero_weights = [0] * 10 with pytest.raises(ValueError, match="Invalid weights: weights sum to zero"): obj.sample(n=3, weights=zero_weights) def test_sample_missing_weights(self, obj): # All missing weights nan_weights = [np.nan] * 10 with pytest.raises(ValueError, match="Invalid weights: weights sum to zero"): obj.sample(n=3, weights=nan_weights) def test_sample_none_weights(self, obj): # Check None are also replaced by zeros. weights_with_None = [None] * 10 weights_with_None[5] = 0.5 tm.assert_equal( obj.sample(n=1, axis=0, weights=weights_with_None), obj.iloc[5:6] ) @pytest.mark.parametrize( "func_str,arg", [ ("np.array", [2, 3, 1, 0]), ("np.random.MT19937", 3), ("np.random.PCG64", 11), ], ) def test_sample_random_state(self, func_str, arg, frame_or_series): # GH#32503 obj = DataFrame({"col1": range(10, 20), "col2": range(20, 30)}) if frame_or_series is Series: obj = obj["col1"] result = obj.sample(n=3, random_state=eval(func_str)(arg)) expected = obj.sample(n=3, random_state=com.random_state(eval(func_str)(arg))) tm.assert_equal(result, expected) def test_sample_generator(self, frame_or_series): # GH#38100 obj = frame_or_series(np.arange(100)) rng = np.random.default_rng() # Consecutive calls should advance the seed result1 = obj.sample(n=50, random_state=rng) result2 = obj.sample(n=50, random_state=rng) assert not (result1.index.values == result2.index.values).all() # Matching generator initialization must give same result # Consecutive calls should advance the seed result1 = obj.sample(n=50, random_state=np.random.default_rng(11)) result2 = obj.sample(n=50, random_state=np.random.default_rng(11)) tm.assert_equal(result1, result2) def test_sample_upsampling_without_replacement(self, frame_or_series): # GH#27451 obj = DataFrame({"A": list("abc")}) if frame_or_series is Series: obj = obj["A"] msg = ( "Replace has to be set to `True` when " "upsampling the population `frac` > 1." ) with pytest.raises(ValueError, match=msg): obj.sample(frac=2, replace=False) class TestSampleDataFrame: # Tests which are relevant only for DataFrame, so these are # as fully parametrized as they can get. def test_sample(self): # GH#2419 # additional specific object based tests # A few dataframe test with degenerate weights. easy_weight_list = [0] * 10 easy_weight_list[5] = 1 df = DataFrame( { "col1": range(10, 20), "col2": range(20, 30), "colString": ["a"] * 10, "easyweights": easy_weight_list, } ) sample1 = df.sample(n=1, weights="easyweights") tm.assert_frame_equal(sample1, df.iloc[5:6]) # Ensure proper error if string given as weight for Series or # DataFrame with axis = 1. ser = Series(range(10)) msg = "Strings cannot be passed as weights when sampling from a Series." with pytest.raises(ValueError, match=msg): ser.sample(n=3, weights="weight_column") msg = ( "Strings can only be passed to weights when sampling from rows on a " "DataFrame" ) with pytest.raises(ValueError, match=msg): df.sample(n=1, weights="weight_column", axis=1) # Check weighting key error with pytest.raises( KeyError, match="'String passed to weights not a valid column'" ): df.sample(n=3, weights="not_a_real_column_name") # Check that re-normalizes weights that don't sum to one. weights_less_than_1 = [0] * 10 weights_less_than_1[0] = 0.5 tm.assert_frame_equal(df.sample(n=1, weights=weights_less_than_1), df.iloc[:1]) ### # Test axis argument ### # Test axis argument df = DataFrame({"col1": range(10), "col2": ["a"] * 10}) second_column_weight = [0, 1] tm.assert_frame_equal( df.sample(n=1, axis=1, weights=second_column_weight), df[["col2"]] ) # Different axis arg types tm.assert_frame_equal( df.sample(n=1, axis="columns", weights=second_column_weight), df[["col2"]] ) weight = [0] * 10 weight[5] = 0.5 tm.assert_frame_equal(df.sample(n=1, axis="rows", weights=weight), df.iloc[5:6]) tm.assert_frame_equal( df.sample(n=1, axis="index", weights=weight), df.iloc[5:6] ) # Check out of range axis values msg = "No axis named 2 for object type DataFrame" with pytest.raises(ValueError, match=msg): df.sample(n=1, axis=2) msg = "No axis named not_a_name for object type DataFrame" with pytest.raises(ValueError, match=msg): df.sample(n=1, axis="not_a_name") ser = Series(range(10)) with pytest.raises(ValueError, match="No axis named 1 for object type Series"): ser.sample(n=1, axis=1) # Test weight length compared to correct axis msg = "Weights and axis to be sampled must be of same length" with pytest.raises(ValueError, match=msg): df.sample(n=1, axis=1, weights=[0.5] * 10) def test_sample_axis1(self): # Check weights with axis = 1 easy_weight_list = [0] * 3 easy_weight_list[2] = 1 df = DataFrame( {"col1": range(10, 20), "col2": range(20, 30), "colString": ["a"] * 10} ) sample1 = df.sample(n=1, axis=1, weights=easy_weight_list) tm.assert_frame_equal(sample1, df[["colString"]]) # Test default axes tm.assert_frame_equal( df.sample(n=3, random_state=42), df.sample(n=3, axis=0, random_state=42) ) def test_sample_aligns_weights_with_frame(self): # Test that function aligns weights with frame df = DataFrame({"col1": [5, 6, 7], "col2": ["a", "b", "c"]}, index=[9, 5, 3]) ser =
Series([1, 0, 0], index=[3, 5, 9])
pandas.Series
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from numpy import mean, var, median from scipy import stats from collections import Counter def find_gene_index(gene_list,gene): j = [i for i,x in enumerate(gene_list) if x == gene] return j def find_patients_index(patients, p): j = [i for i,x in enumerate(patients) if x == p] return j[0] filename = "log_modified_LAML_TPM.csv" filename2 = "patients.txt" filename3 = "FAB.txt" filename4 = "sex.txt" filename5 = "age.txt" filename6 = "BM_blasts.txt" filename7 = "WBC.txt" #filename = "modified_raw_counts.csv" data = pd.read_csv(filename) patients = pd.read_csv(filename2) FAB = pd.read_csv(filename3) sex = pd.read_csv(filename4) age = pd.read_csv(filename5) blasts = pd.read_csv(filename6) WBC = pd.read_csv(filename7) gene = 'HOXA9' gene_list = data['Hybridization REF'] # find the index of HOXA9 in the data i_HOXA9 = find_gene_index(gene_list, gene) HOXA9_exp = data.iloc[i_HOXA9,2:] peak1_indexes = [i+2 for i,x in enumerate(HOXA9_exp.values[0]) if x <= 1 and x >= 0.005] # +1 due to the first gene columns we removed +1 due to index shift peak2_indexes = [i+2 for i,x in enumerate(HOXA9_exp.values[0]) if x <= 5.5 and x >= 4] peak1_patients = data.iloc[:,peak1_indexes] peak2_patients = data.iloc[:,peak2_indexes] print(len(peak1_indexes)) print(len(peak2_indexes)) peak1_patients.index = gene_list peak2_patients.index = gene_list # only keep the patient number low_patients_names = [item.split('-')[2] for item in peak1_patients.columns] high_patients_names = [item.split('-')[2] for item in peak2_patients.columns] index_cohort1 =[find_patients_index(patients['patients'],int(item)) for item in low_patients_names] index_cohort2 =[find_patients_index(patients['patients'],int(item)) for item in high_patients_names] sex_list_cohort1 = sex['sex'][index_cohort1].values.tolist() sex_list_cohort2 = sex['sex'][index_cohort2].values.tolist() age_list_cohort1 = age['age'][index_cohort1].values.tolist() age_list_cohort2 = age['age'][index_cohort2].values.tolist() FAB_list_cohort1 = FAB['FAB'][index_cohort1].values.tolist() FAB_list_cohort2 = FAB['FAB'][index_cohort2].values.tolist() #age_class_low = ['old' if x > median(age_list_cohort1) else 'young' for x in age_list_cohort1] #age_class_high = ['old' if x > median(age_list_cohort2) else 'young' for x in age_list_cohort2] print("Age\n") print(stats.shapiro(age_list_cohort1)) # normal distribution (p>0.05) print(stats.shapiro(age_list_cohort2)) # NOT print(stats.levene(age_list_cohort1,age_list_cohort2)) # SAME VARIANCE print(stats.ttest_ind(age_list_cohort1,age_list_cohort2)) # CANT APPLY T TEST # multiply pvalue by 2 to have two sided test print(stats.mannwhitneyu(age_list_cohort1,age_list_cohort2)) # significant WBC_list_cohort1 = WBC['WBC'][index_cohort1].values.tolist() WBC_list_cohort2 = WBC['WBC'][index_cohort2].values.tolist() print("WBC\n") print(stats.shapiro(WBC_list_cohort1)) # NOT print(stats.shapiro(WBC_list_cohort2)) # NOT print(stats.levene(WBC_list_cohort1,WBC_list_cohort2)) # NOT SAME VARIANCE print(stats.ttest_ind(WBC_list_cohort1,WBC_list_cohort2)) # CANT APPLY T TEST print(stats.mannwhitneyu(WBC_list_cohort1,WBC_list_cohort2)) # significant blasts_list_cohort1 = blasts['blasts'][index_cohort1].values.tolist() blasts_list_cohort2 = blasts['blasts'][index_cohort2].values.tolist() print("blasts") print(stats.shapiro(blasts_list_cohort1)) # maybe print(stats.shapiro(blasts_list_cohort2)) # NOT print(stats.levene(blasts_list_cohort1,blasts_list_cohort2)) # SAME VARIANCE print(stats.ttest_ind(blasts_list_cohort1,blasts_list_cohort2)) # CANT APPLY T TEST print(stats.mannwhitneyu(blasts_list_cohort1,blasts_list_cohort2)) # pvalue x 2 = 0.05 - significant? d_low = {'age': age_list_cohort1, 'FAB': FAB_list_cohort1, 'blast': blasts_list_cohort1, 'WBC': WBC_list_cohort1, 'HOXA9': ['Low']*len(age_list_cohort1)} low = pd.DataFrame(data=d_low) d_high = {'age': age_list_cohort2, 'FAB': FAB_list_cohort2, 'blast': blasts_list_cohort2, 'WBC': WBC_list_cohort2, 'HOXA9': ['High']*len(age_list_cohort2)} high =
pd.DataFrame(data=d_high)
pandas.DataFrame
import unittest import pandas as pd import numpy as np import datetime import pytz from variable_explorer_helpers import describe_pd_dataframe class TestDataframeDescribe(unittest.TestCase): def test_dataframe(self): df = pd.DataFrame(data={'col1': [1, 2], 'col2': [3, 4]}) result = describe_pd_dataframe(df) self.assertEqual(result['row_count'], 2) self.assertEqual(result['column_count'], 2) self.assertEqual(len(result['rows_top']), 2) self.assertEqual(result['rows_bottom'], None) self.assertEqual(result['columns'][0]['name'], 'col1') def test_dataframe_sort(self): df =
pd.DataFrame(data={'col1': [3, 1, 2]})
pandas.DataFrame
# %% from selenium import webdriver from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import pandas as pd import sys from allensdk.api.queries.image_download_api import ImageDownloadApi from allensdk.config.manifest import Manifest import logging import os from tqdm import tqdm # %% def get_gene_by_id(results_df, ExperimentID): gene_name = results_df["Gene Symbol"][ results_df["ExperimentID"] == ExperimentID ].iloc[0] print( "You are requesting for downloading brain lices of " + gene_name + " (" + ExperimentID + ")", file=sys.stderr, flush=True, ) print( 'The downloaded brain lices will be placed in the dir "' + gene_name + '".', file=sys.stderr, flush=True, ) return gene_name # %% def search_by_keywords(keywords, outfile): # create a browser driver = webdriver.Chrome() # create a result DataFrame to store results result = pd.DataFrame() # the index of necessary columns in the table column_index = [1, 2, 3, 6] for ii, keyword in enumerate(keywords): url = "https://mouse.brain-map.org/search/show?search_term=" + keyword driver.get(url) # make sure the page is correcly loaded using explict wait try: element = WebDriverWait(driver, 10).until( EC.presence_of_element_located((By.CLASS_NAME, "slick-column-name")) ) except: print( "An exception occurred: an element could not be found.\nThe Internet speed may be too slow." ) driver.quit() exit() # get header at the first loop # if ii == 0: # use selenium to find the header elements = driver.find_elements_by_class_name("slick-column-name") header = [] for element in elements: header.append(element.text) if len(header) == 8: header = [header[i] for i in column_index] else: raise Exception("Something went wrong when accessing the header.") # user selenium to find the search results in the cells of the table elements = driver.find_elements_by_tag_name("div[row]") rows = [] for element in elements: if element.text: rows.append([element.text.split("\n")[i - 1] for i in column_index]) # If the search result is present, make it a dataframe if rows: table =
pd.DataFrame(rows, columns=header)
pandas.DataFrame
# Copyright 2013-2021 The Salish Sea MEOPAR contributors # and The University of British Columbia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """A collection of Python functions to produce model residual calculations and visualizations. """ import datetime import io import arrow import matplotlib.dates as mdates import matplotlib.pyplot as plt import netCDF4 as nc import numpy as np import pandas as pd import pytz import requests from dateutil import tz from salishsea_tools import geo_tools, stormtools, tidetools, nc_tools from nowcast import analyze from nowcast.figures import shared # Module constants paths = { "nowcast": "/results/SalishSea/nowcast/", "forecast": "/results/SalishSea/forecast/", "forecast2": "/results/SalishSea/forecast2/", "tides": "/data/nsoontie/MEOPAR/tools/SalishSeaNowcast/tidal_predictions/", } colours = { "nowcast": "DodgerBlue", "forecast": "ForestGreen", "forecast2": "MediumVioletRed", "observed": "Indigo", "predicted": "ForestGreen", "model": "blue", "residual": "DimGray", } SITES = { # Constant with station information: mean sea level, latitude, # longitude, station number, historical extreme ssh, etc. # Extreme ssh from DFO website # Mean sea level from CHS tidal constiuents. # VENUS coordinates from the VENUS website. Depth is in meters. "Nanaimo": {"lat": 49.16, "lon": -123.93, "msl": 3.08, "extreme_ssh": 5.47}, "Halibut Bank": {"lat": 49.34, "lon": -123.72}, "Dungeness": {"lat": 48.15, "lon": -123.117}, "La Perouse Bank": {"lat": 48.83, "lon": -126.0}, "<NAME>": { "lat": 49.33, "lon": -123.25, "msl": 3.09, "stn_no": 7795, "extreme_ssh": 5.61, }, "Victoria": { "lat": 48.41, "lon": -123.36, "msl": 1.8810, "stn_no": 7120, "extreme_ssh": 3.76, }, "<NAME>": { "lat": 50.04, "lon": -125.24, "msl": 2.916, "stn_no": 8074, "extreme_ssh": 5.35, }, "<NAME>": {"lat": 48.4, "lon": -124.6, "stn_no": 9443090}, "<NAME>": {"lat": 48.55, "lon": -123.016667, "stn_no": 9449880}, "<NAME>": { "lat": 48.866667, "lon": -122.766667, "stn_no": 9449424, "msl": 3.543, "extreme_ssh": 5.846, }, "SandHeads": {"lat": 49.10, "lon": -123.30}, "Tofino": {"lat": 49.15, "lon": -125.91, "stn_no": 8615}, "Bamfield": {"lat": 48.84, "lon": -125.14, "stn_no": 8545}, "VENUS": { "East": {"lat": 49.0419, "lon": -123.3176, "depth": 170}, "Central": {"lat": 49.0401, "lon": -123.4261, "depth": 300}, }, } # Module functions def plot_residual_forcing(ax, runs_list, t_orig): """Plots the observed water level residual at Neah Bay against forced residuals from existing ssh*.txt files for Neah Bay. Function may produce none, any, or all (nowcast, forecast, forecast 2) forced residuals depending on availability for specified date (runs_list). :arg ax: The axis where the residuals are plotted. :type ax: axis object :arg runs_list: Runs that are verified as complete. :type runs_list: list :arg t_orig: Date being considered. :type t_orig: datetime object """ # truncation times sdt = t_orig.replace(tzinfo=tz.tzutc()) edt = sdt + datetime.timedelta(days=1) # retrieve observations, tides and residual tides = shared.get_tides("Neah Bay", path=paths["tides"]) res_obs, obs = obs_residual_ssh_NOAA("Neah Bay", tides, sdt, sdt) # truncate and plot res_obs_trun, time_trun = analyze.truncate_data( np.array(res_obs), np.array(obs.time), sdt, edt ) ax.plot(time_trun, res_obs_trun, colours["observed"], label="observed", lw=2.5) # plot forcing for each simulation for mode in runs_list: filename_NB, run_date = analyze.create_path(mode, t_orig, "ssh*.txt") if filename_NB: dates, surge, fflag = NeahBay_forcing_anom( filename_NB, run_date, paths["tides"] ) surge_t, dates_t = analyze.truncate_data( np.array(surge), np.array(dates), sdt, edt ) ax.plot(dates_t, surge_t, label=mode, lw=2.5, color=colours[mode]) ax.set_title( "Comparison of observed and forced sea surface" " height residuals at Neah Bay:" "{t_forcing:%d-%b-%Y}".format(t_forcing=t_orig) ) def plot_residual_model(axs, names, runs_list, grid_B, t_orig): """Plots the observed sea surface height residual against the sea surface height model residual (calculate_residual) at specified stations. Function may produce none, any, or all (nowcast, forecast, forecast 2) model residuals depending on availability for specified date (runs_list). :arg ax: The axis where the residuals are plotted. :type ax: list of axes :arg names: Names of station. :type names: list of names :arg runs_list: Runs that have been verified as complete. :type runs_list: list :arg grid_B: Bathymetry dataset for the Salish Sea NEMO model. :type grid_B: :class:`netCDF4.Dataset` :arg t_orig: Date being considered. :type t_orig: datetime object """ bathy, X, Y = tidetools.get_bathy_data(grid_B) t_orig_obs = t_orig + datetime.timedelta(days=-1) t_final_obs = t_orig + datetime.timedelta(days=1) # truncation times sdt = t_orig.replace(tzinfo=tz.tzutc()) edt = sdt + datetime.timedelta(days=1) for ax, name in zip(axs, names): # Identify model grid point lat = SITES[name]["lat"] lon = SITES[name]["lon"] j, i = geo_tools.find_closest_model_point(lon, lat, X, Y, land_mask=bathy.mask) # Observed residuals and wlevs and tides ttide = shared.get_tides(name, path=paths["tides"]) res_obs, wlev_meas = obs_residual_ssh(name, ttide, t_orig_obs, t_final_obs) # truncate and plot res_obs_trun, time_obs_trun = analyze.truncate_data( np.array(res_obs), np.array(wlev_meas.time), sdt, edt ) ax.plot( time_obs_trun, res_obs_trun, c=colours["observed"], lw=2.5, label="observed" ) for mode in runs_list: filename, run_date = analyze.create_path( mode, t_orig, "SalishSea_1h_*_grid_T.nc" ) grid_T = nc.Dataset(filename) res_mod, t_model, ssh_corr, ssh_mod = model_residual_ssh( grid_T, j, i, ttide ) # truncate and plot res_mod_trun, t_mod_trun = analyze.truncate_data(res_mod, t_model, sdt, edt) ax.plot(t_mod_trun, res_mod_trun, label=mode, c=colours[mode], lw=2.5) ax.set_title( "Comparison of modelled sea surface height residuals at" " {station}: {t:%d-%b-%Y}".format(station=name, t=t_orig) ) def get_error_model(names, runs_list, grid_B, t_orig): """Sets up the calculation for the model residual error. :arg names: Names of station. :type names: list of strings :arg runs_list: Runs that have been verified as complete. :type runs_list: list :arg grid_B: Bathymetry dataset for the Salish Sea NEMO model. :type grid_B: :class:`netCDF4.Dataset` :arg t_orig: Date being considered. :type t_orig: datetime object :returns: error_mod_dict, t_mod_dict, t_orig_dict """ bathy, X, Y = tidetools.get_bathy_data(grid_B) t_orig_obs = t_orig + datetime.timedelta(days=-1) t_final_obs = t_orig + datetime.timedelta(days=1) # truncation times sdt = t_orig.replace(tzinfo=tz.tzutc()) edt = sdt + datetime.timedelta(days=1) error_mod_dict = {} t_mod_dict = {} for name in names: error_mod_dict[name] = {} t_mod_dict[name] = {} # Look up model grid lat = SITES[name]["lat"] lon = SITES[name]["lon"] j, i = geo_tools.find_closest_model_point(lon, lat, X, Y, land_mask=bathy.mask) # Observed residuals and wlevs and tides ttide = shared.get_tides(name, path=paths["tides"]) res_obs, wlev_meas = obs_residual_ssh(name, ttide, t_orig_obs, t_final_obs) res_obs_trun, time_obs_trun = analyze.truncate_data( np.array(res_obs), np.array(wlev_meas.time), sdt, edt ) for mode in runs_list: filename, run_date = analyze.create_path( mode, t_orig, "SalishSea_1h_*_grid_T.nc" ) grid_T = nc.Dataset(filename) res_mod, t_model, ssh_corr, ssh_mod = model_residual_ssh( grid_T, j, i, ttide ) # Truncate res_mod_trun, t_mod_trun = analyze.truncate_data(res_mod, t_model, sdt, edt) # Error error_mod = analyze.calculate_error( res_mod_trun, t_mod_trun, res_obs_trun, time_obs_trun ) error_mod_dict[name][mode] = error_mod t_mod_dict[name][mode] = t_mod_trun return error_mod_dict, t_mod_dict def get_error_forcing(runs_list, t_orig): """Sets up the calculation for the forcing residual error. :arg runs_list: Runs that have been verified as complete. :type runs_list: list :arg t_orig: Date being considered. :type t_orig: datetime object :returns: error_frc_dict, t_frc_dict """ # truncation times sdt = t_orig.replace(tzinfo=tz.tzutc()) edt = sdt + datetime.timedelta(days=1) # retrieve observed residual tides = shared.get_tides("Neah Bay", path=paths["tides"]) res_obs, obs = obs_residual_ssh_NOAA("Neah Bay", tides, sdt, sdt) res_obs_trun, time_trun = analyze.truncate_data( np.array(res_obs), np.array(obs.time), sdt, edt ) # calculate forcing error error_frc_dict = {} t_frc_dict = {} for mode in runs_list: filename_NB, run_date = analyze.create_path(mode, t_orig, "ssh*.txt") if filename_NB: dates, surge, fflag = NeahBay_forcing_anom( filename_NB, run_date, paths["tides"] ) surge_t, dates_t = analyze.truncate_data( np.array(surge), np.array(dates), sdt, edt ) error_frc = analyze.calculate_error( surge_t, dates_t, res_obs_trun, obs.time ) error_frc_dict[mode] = error_frc t_frc_dict[mode] = dates_t return error_frc_dict, t_frc_dict def plot_error_model(axs, names, runs_list, grid_B, t_orig): """Plots the model residual error. :arg axs: The axis where the residual errors are plotted. :type axs: list of axes :arg names: Names of station. :type names: list of strings :arg runs_list: Runs that have been verified as complete. :type runs_list: list of strings :arg grid_B: Bathymetry dataset for the Salish Sea NEMO model. :type grid_B: :class:`netCDF4.Dataset` :arg t_orig: Date being considered. :type t_orig: datetime object """ error_mod_dict, t_mod_dict = get_error_model(names, runs_list, grid_B, t_orig) for ax, name in zip(axs, names): ax.set_title( "Comparison of modelled residual errors at {station}:" " {t:%d-%b-%Y}".format(station=name, t=t_orig) ) for mode in runs_list: ax.plot( t_mod_dict[name][mode], error_mod_dict[name][mode], label=mode, c=colours[mode], lw=2.5, ) def plot_error_forcing(ax, runs_list, t_orig): """Plots the forcing residual error. :arg ax: The axis where the residual errors are plotted. :type ax: axis object :arg runs_list: Runs that have been verified as complete. :type runs_list: list :arg t_orig: Date being considered. :type t_orig: datetime object """ error_frc_dict, t_frc_dict = get_error_forcing(runs_list, t_orig) for mode in runs_list: ax.plot( t_frc_dict[mode], error_frc_dict[mode], label=mode, c=colours[mode], lw=2.5 ) ax.set_title( "Comparison of observed and forced residual errors at " "Neah Bay: {t_forcing:%d-%b-%Y}".format(t_forcing=t_orig) ) def plot_residual_error_all(subject, grid_B, t_orig, figsize=(20, 16)): """Sets up and combines the plots produced by plot_residual_forcing and plot_residual_model or plot_error_forcing and plot_error_model. This function specifies the stations for which the nested functions apply. Figure formatting except x-axis limits and titles are included. :arg subject: Subject of figure, either 'residual' or 'error'. :type subject: string :arg grid_B: Bathymetry dataset for the Salish Sea NEMO model. :type grid_B: :class:`netCDF4.Dataset` :arg t_orig: Date being considered. :type t_orig: datetime object :arg figsize: Figure size (width, height) in inches. :type figsize: 2-tuple :returns: fig """ # set up axis limits - based on full 24 hour period 0000 to 2400 sax = t_orig eax = t_orig + datetime.timedelta(days=1) runs_list = analyze.verified_runs(t_orig) fig, axes = plt.subplots(4, 1, figsize=figsize) axs_mod = [axes[1], axes[2], axes[3]] names = ["<NAME>", "Victoria", "<NAME>"] if subject == "residual": plot_residual_forcing(axes[0], runs_list, t_orig) plot_residual_model(axs_mod, names, runs_list, grid_B, t_orig) elif subject == "error": plot_error_forcing(axes[0], runs_list, t_orig) plot_error_model(axs_mod, names, runs_list, grid_B, t_orig) for ax in axes: ax.set_ylim([-0.4, 0.4]) ax.set_xlabel("[hrs UTC]") ax.set_ylabel("[m]") hfmt = mdates.DateFormatter("%m/%d %H:%M") ax.xaxis.set_major_formatter(hfmt) ax.legend(loc=2, ncol=4) ax.grid() ax.set_xlim([sax, eax]) return fig def combine_errors(name, mode, dates, grid_B): """Combine model and forcing errors for a simulaion mode over several days. returns time series of both model and forcing error and daily means. Treats each simulation over 24 hours. :arg name: name of station for model calculation :type name: string, example 'Point Atkinson', 'Victoria' :arg mode: simulation mode: nowcast, forecast, or forecast2 :type mode: string :arg dates: list of dates to combine :type dates: list of datetime objects :arg grid_B: Bathymetry dataset for the Salish Sea NEMO model. :type grid_B: :class:`netCDF4.Dataset :returns: force, model, time, daily_time. model and force are dictionaries with keys 'error' and 'daily'. Each key corresponds to array of error time series and daily means. time is an array of times correspinding to error caclulations daily_time is an array of timea corresponding to daily means """ model = {"error": np.array([]), "daily": np.array([])} force = {"error": np.array([]), "daily": np.array([])} time = np.array([]) daily_time = np.array([]) for t_sim in dates: # check if the run happened if mode in analyze.verified_runs(t_sim): # retrieve forcing and model error e_frc_tmp, t_frc_tmp = get_error_forcing([mode], t_sim) e_mod_tmp, t_mod_tmp = get_error_model([name], [mode], grid_B, t_sim) e_frc_tmp = shared.interp_to_model_time( t_mod_tmp[name][mode], e_frc_tmp[mode], t_frc_tmp[mode] ) # append to larger array force["error"] = np.append(force["error"], e_frc_tmp) model["error"] = np.append(model["error"], e_mod_tmp[name][mode]) time = np.append(time, t_mod_tmp[name][mode]) # append daily mean error force["daily"] = np.append(force["daily"], np.nanmean(e_frc_tmp)) model["daily"] = np.append( model["daily"], np.nanmean(e_mod_tmp[name][mode]) ) daily_time = np.append(daily_time, t_sim + datetime.timedelta(hours=12)) else: print("{} simulation for {} did not occur".format(mode, t_sim)) return force, model, time, daily_time def compare_errors(name, mode, start, end, grid_B, figsize=(20, 12)): """compares the model and forcing error at a station between dates start and end for a simulation mode.""" # array of dates for iteration numdays = (end - start).days dates = [start + datetime.timedelta(days=num) for num in range(0, numdays + 1)] dates.sort() # intiialize figure and arrays fig, axs = plt.subplots(3, 1, figsize=figsize) force, model, time, daily_time = combine_errors(name, mode, dates, grid_B) ttide = shared.get_tides(name, path=paths["tides"]) # Plotting time series ax = axs[0] ax.plot(time, force["error"], "b", label="Forcing error", lw=2) ax.plot(time, model["error"], "g", lw=2, label="Model error") ax.set_title("Comparison of {mode} error at" " {name}".format(mode=mode, name=name)) ax.set_ylim([-0.4, 0.4]) hfmt = mdates.DateFormatter("%m/%d %H:%M") # Plotting daily mean ax = axs[1] ax.plot(daily_time, force["daily"], "b", label="Forcing daily mean error", lw=2) ax.plot( [time[0], time[-1]], [np.nanmean(force["error"]), np.nanmean(force["error"])], "--b", label="Mean forcing error", lw=2, ) ax.plot(daily_time, model["daily"], "g", lw=2, label="Model daily mean error") ax.plot( [time[0], time[-1]], [np.nanmean(model["error"]), np.nanmean(model["error"])], "--g", label="Mean model error", lw=2, ) ax.set_title( "Comparison of {mode} daily mean error at" " {name}".format(mode=mode, name=name) ) ax.set_ylim([-0.4, 0.4]) # Plot tides ax = axs[2] ax.plot(ttide.time, ttide.pred_all, "k", lw=2, label="tides") ax.set_title("Tidal predictions") ax.set_ylim([-3, 3]) # format axes hfmt = mdates.DateFormatter("%m/%d %H:%M") for ax in axs: ax.xaxis.set_major_formatter(hfmt) ax.legend(loc=2, ncol=4) ax.grid() ax.set_xlim([start, end + datetime.timedelta(days=1)]) ax.set_ylabel("[m]") return fig def model_residual_ssh(grid_T, j, i, tides): """Calcuates the model residual at coordinate j, i. :arg grid_T: hourly model results file :type grid_T: netCDF file :arg j: model y-index :type j: integer 0<=j<898 :arg i: model i-index :type i: integer 0<=i<398 :arg tides: tidal predictions at grid point :type tides: pandas DataFrame :returns: res_mod, t_model, ssh_corr, ssh_mod The model residual, model times, model corrected ssh, and unmodified model ssh""" ssh_mod = grid_T.variables["sossheig"][:, j, i] t_s, t_f, t_model = get_model_time_variables(grid_T) ssh_corr = shared.correct_model_ssh(ssh_mod, t_model, tides) res_mod = compute_residual(ssh_corr, t_model, tides) return res_mod, t_model, ssh_corr, ssh_mod def obs_residual_ssh(name, tides, sdt, edt): """Calculates the observed residual at Point Atkinson, Campbell River, or Victoria. :arg name: Name of station. :type name: string :arg sdt: The beginning of the date range of interest. :type sdt: datetime object :arg edt: The end of the date range of interest. :type edt: datetime object :returns: residual (calculated residual), obs (observed water levels), tides (predicted tides)""" msl = SITES[name]["msl"] obs = load_archived_observations( name, sdt.strftime("%d-%b-%Y"), edt.strftime("%d-%b-%Y") ) residual = compute_residual(obs.wlev - msl, obs.time, tides) return residual, obs def obs_residual_ssh_NOAA(name, tides, sdt, edt, product="hourly_height"): """Calculates the residual of the observed water levels with respect to the predicted tides at a specific NOAA station and for a date range. :arg name: Name of station. :type name: string :arg sdt: The beginning of the date range of interest. :type sdt: datetime object :arg edt: The end of the date range of interest. :type edt: datetime object :arg product: defines frequency of observed water levels 'hourly_height' for hourly or 'water_levels' for 6 min :type product: string :returns: residual (calculated residual), obs (observed water levels), tides (predicted tides) """ sites = SITES start_date = sdt.strftime("%d-%b-%Y") end_date = edt.strftime("%d-%b-%Y") obs = get_NOAA_wlevels(sites[name]["stn_no"], start_date, end_date, product=product) # Prepare to find residual residual = compute_residual(obs.wlev, obs.time, tides) return residual, obs def plot_wlev_residual_NOAA(t_orig, elements, figsize=(20, 6)): """Plots the water level residual as calculated by the function calculate_wlev_residual_NOAA and has the option to also plot the observed water levels and predicted tides over the course of one day. :arg t_orig: The beginning of the date range of interest. :type t_orig: datetime object :arg elements: Elements included in figure. 'residual' for residual only and 'all' for residual, observed water level, and predicted tides. :type elements: string :arg figsize: Figure size (width, height) in inches. :type figsize: 2-tuple :returns: fig """ tides = shared.get_tides("Neah Bay", path=paths["tides"]) residual, obs = obs_residual_ssh_NOAA("Neah Bay", tides, t_orig, t_orig) # Figure fig, ax = plt.subplots(1, 1, figsize=figsize) # Plot ax.plot( obs.time, residual, colours["residual"], label="Observed Residual", linewidth=2.5, ) if elements == "all": ax.plot( obs.time, obs.wlev, colours["observed"], label="Observed Water Level", lw=2.5, ) ax.plot( tides.time, tides.pred[tides.time == obs.time], colours["predicted"], label="Tidal Predictions", linewidth=2.5, ) if elements == "residual": pass ax.set_title( "Residual of the observed water levels at" " Neah Bay: {t:%d-%b-%Y}".format(t=t_orig) ) ax.set_ylim([-3.0, 3.0]) ax.set_xlabel("[hrs]") hfmt = mdates.DateFormatter("%m/%d %H:%M") ax.xaxis.set_major_formatter(hfmt) ax.legend(loc=2, ncol=3) ax.grid() return fig def NeahBay_forcing_anom(textfile, run_date, tide_file, archive=False, fromtar=False): """Calculate the Neah Bay forcing anomaly for the data stored in textfile. :arg textfile: the textfile containing forecast/observations :type textfile: string :arg run_date: date of the simulation :type run_date: datetime object :arg tide_file: path and name for the tide file :type tide_file: string :returns: dates, surge, forecast_flag The dates, surges and a flag specifying if each point was a forecast """ if fromtar: data = pd.read_csv(textfile, parse_dates=[0], index_col=0).rename( columns={" OB": "obs", " TWL": "fcst"} ) data["Date"] = pd.to_datetime(data.index) # clean up 00:00 obs datesat00 = data.resample("1d").nearest().index.array data["offset"] = data.obs - data[" TIDE"] data.loc[data.Date.isin(datesat00), "obs"] = ( data[(data.Date.shift(1).isin(datesat00))].offset.values + data[data.Date.isin(datesat00)][" TIDE"].values ) data.loc[data.obs > 9000, "obs"] = 9999 data = data.resample("1h").nearest() data["Date"] = pd.to_datetime(data.index, utc=True) dates = data.Date.array else: data = _load_surge_data(textfile, archive) if archive: data.Date =
pd.to_datetime(data["Date"] + " " + data["Time"], utc=True)
pandas.to_datetime
import logging from abc import ABC, abstractmethod import numpy as np import pandas as pd from hdrbp._util import ( basic_repr, basic_str, compute_correlation, compute_diversification_ratio, compute_drawdowns, compute_gini, compute_prices, compute_risk_contributions, compute_turnover, compute_variance, count_dates_per_year, count_years, ) logger = logging.getLogger(__name__) @basic_str @basic_repr class MetricCalculator(ABC): @property def name(self): return repr(self) @abstractmethod def calculate(self, result: pd.DataFrame) -> float: pass class GeometricMeanReturn(MetricCalculator): def __init__(self, annualized: bool = False) -> None: self._annualized = annualized def calculate(self, result: pd.DataFrame) -> float: logger.debug(f"{self}: Calculating metric") result = _filter_valid_returns(result) returns = result["return"].values log_returns = np.log1p(returns) mean_log_return = np.mean(log_returns) if self._annualized: dates = pd.to_datetime(result["date"].values) dates_per_year = count_dates_per_year(dates) mean_log_return = dates_per_year * mean_log_return geometric_mean_return = np.expm1(mean_log_return) return geometric_mean_return class MeanReturn(MetricCalculator): def __init__(self, annualized: bool = False) -> None: self._annualized = annualized def calculate(self, result: pd.DataFrame) -> float: logger.debug(f"{self}: Calculating metric") result = _filter_valid_returns(result) returns = result["return"].values mean_return = np.mean(returns) if self._annualized: dates =
pd.to_datetime(result["date"].values)
pandas.to_datetime
# Cleaning/merging deposits and withdrawals import pandas as pd from datetime import datetime for file in ['withdrawals', 'deposits']: df = pd.read_csv('../data/' + file + '.csv') df.dropna(inplace=True) # Re-order dataframe from oldest to newest df = df[::-1] # Convert to datetime df['Date'] = [datetime.strptime(day, '%Y-%m-%d %H:%M:%S') for day in df['Date']] if file == 'withdrawals': df['Type'] = 'WITHDRAWAL' else: df['Type'] = 'DEPOSIT' df.to_csv('../data/' + file + '.csv', index=False) d = pd.read_csv('../data/deposits.csv') w =
pd.read_csv('../data/withdrawals.csv')
pandas.read_csv
import optuna import pandas as pd import numpy as np from scipy.stats import rankdata import pandas_ta as pta from finta import TA as fta import talib as tta import re import warnings import pareto warnings.filterwarnings("ignore") from timeit import default_timer as timer def col_name(function, study_best_params): """ Create consistent column names given string function and params :param function: Function represented as string :param study_best_params: Params for function :return: """ # Optuna string of indicator function_name = function.split("(")[0].replace(".", "_") # Optuna string of parameters params = re.sub('[^0-9a-zA-Z_:,]', '', str(study_best_params)).replace(",", "_").replace(":", "_") # Concatenate name and params to define col = f"{function_name}_{params}" return col def _weighted_pearson(y, y_pred, w=None, pearson=True): """Calculate the weighted Pearson correlation coefficient.""" if pearson: if w is None: w = np.ones(len(y)) # idx = ~np.logical_or(np.isnan(y_pred), np.isnan(y)) # Drop NAs w/boolean mask # y = np.compress(idx, np.array(y)) # y_pred = np.compress(idx, np.array(y_pred)) # w = np.compress(idx, w) with np.errstate(divide='ignore', invalid='ignore'): y_pred_demean = y_pred - np.average(y_pred, weights=w) y_demean = y - np.average(y, weights=w) corr = ((np.sum(w * y_pred_demean * y_demean) / np.sum(w)) / np.sqrt((np.sum(w * y_pred_demean ** 2) * np.sum(w * y_demean ** 2)) / (np.sum(w) ** 2))) if np.isfinite(corr): return np.abs(corr) return 0. def _weighted_spearman(y, y_pred, w=None): """Calculate the weighted Spearman correlation coefficient.""" # idx = ~np.logical_or(np.isnan(y_pred), np.isnan(y)) # Drop NAs w/boolean mask # y = np.compress(idx, np.array(y)) # y_pred = np.compress(idx, np.array(y_pred)) # w = np.compress(idx, w) y_pred_ranked = np.apply_along_axis(rankdata, 0, y_pred) y_ranked = np.apply_along_axis(rankdata, 0, y) return _weighted_pearson(y_pred_ranked, y_ranked, w, pearson=False) def _trial(self, trial, X): """ Calculate indicator using best fitted trial over X :param self: Optuna study :param trial: Optuna trial :param X: dataset :return: """ # Evaluate TA defined as optuna trial string res = eval(self.function) # If return is tuple, convert to DF if isinstance(res, tuple): res =
pd.DataFrame(res)
pandas.DataFrame
import matplotlib.image as mpimg import matplotlib.style as style import matplotlib.pyplot as plt from matplotlib import rcParams from simtk.openmm.app import * from simtk.openmm import * from simtk.unit import * from sys import stdout import seaborn as sns from math import exp import pandas as pd import mdtraj as md import pickle as pk import numpy as np import statistics import itertools import fileinput import fnmatch import shutil import random import math import os import re def fix_cap_remove_ace(pdb_file): """ Removes the H atoms of the capped ACE residue. """ remove_words = [ "H1 ACE", "H2 ACE", "H3 ACE", "H31 ACE", "H32 ACE", "H33 ACE", ] with open(pdb_file) as oldfile, open("intermediate.pdb", "w") as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) command = "rm -rf " + pdb_file os.system(command) command = "mv intermediate.pdb " + pdb_file os.system(command) def fix_cap_replace_ace(pdb_file): """ Replaces the alpha carbon atom of the capped ACE residue with a standard name. """ fin = open(pdb_file, "rt") data = fin.read() data = data.replace("CA ACE", "CH3 ACE") data = data.replace("C ACE", "CH3 ACE") fin.close() fin = open(pdb_file, "wt") fin.write(data) fin.close() def fix_cap_remove_nme(pdb_file): """ Removes the H atoms of the capped NME residue. """ remove_words = [ "H1 NME", "H2 NME", "H3 NME", "H31 NME", "H32 NME", "H33 NME", ] with open(pdb_file) as oldfile, open("intermediate.pdb", "w") as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) command = "rm -rf " + pdb_file os.system(command) command = "mv intermediate.pdb " + pdb_file os.system(command) def fix_cap_replace_nme(pdb_file): """ Replaces the alpha carbon atom of the capped NME residue with a standard name. """ fin = open(pdb_file, "rt") data = fin.read() data = data.replace("CA NME", "CH3 NME") data = data.replace("C NME", "CH3 NME") fin.close() fin = open(pdb_file, "wt") fin.write(data) fin.close() def prepare_alanine_dipeptide(): """ Prepares the alanine dipeptide system for Gaussian Accelerated Molecular Dynamics (GaMD) simulations. Downloads the pdb structure from https://markovmodel.github.io/mdshare/ALA2/ and parameterizes it using General Amber Force Field (GAFF). """ os.system( "curl -O http://ftp.imp.fu-berlin.de/pub/cmb-data/alanine-dipeptide-nowater.pdb" ) os.system( "rm -rf system_inputs" ) # Removes any existing directory named system_inputs os.system("mkdir system_inputs") # Creates a directory named system_inputs cwd = os.getcwd() target_dir = cwd + "/" + "system_inputs" os.system("pdb4amber -i alanine-dipeptide-nowater.pdb -o intermediate.pdb") # Delete HH31, HH32 and HH33 from the ACE residue (tleap adds them later) remove_words = ["HH31 ACE", "HH32 ACE", "HH33 ACE"] with open("intermediate.pdb") as oldfile, open( "system.pdb", "w" ) as newfile: for line in oldfile: if not any(word in line for word in remove_words): newfile.write(line) os.system("rm -rf intermediate*") # save the tleap script to file with open("input_TIP3P.leap", "w") as f: f.write( """ source leaprc.protein.ff14SB source leaprc.water.tip3p set default FlexibleWater on set default PBRadii mbondi2 pdb = loadpdb system.pdb solvateBox pdb TIP3PBOX 15 saveamberparm pdb system_TIP3P.prmtop system_TIP3P.inpcrd saveamberparm pdb system_TIP3P.parm7 system_TIP3P.rst7 savepdb pdb system_TIP3P.pdb quit """ ) os.system("tleap -f input_TIP3P.leap") os.system("rm -rf leap.log") shutil.copy( cwd + "/" + "system_TIP3P.inpcrd", target_dir + "/" + "system_TIP3P.inpcrd", ) shutil.copy( cwd + "/" + "system_TIP3P.parm7", target_dir + "/" + "system_TIP3P.parm7", ) shutil.copy( cwd + "/" + "system_TIP3P.pdb", target_dir + "/" + "system_TIP3P.pdb" ) shutil.copy( cwd + "/" + "system_TIP3P.prmtop", target_dir + "/" + "system_TIP3P.prmtop", ) shutil.copy( cwd + "/" + "system_TIP3P.rst7", target_dir + "/" + "system_TIP3P.rst7" ) shutil.copy(cwd + "/" + "system.pdb", target_dir + "/" + "system.pdb") shutil.copy( cwd + "/" + "alanine-dipeptide-nowater.pdb", target_dir + "/" + "alanine-dipeptide-nowater.pdb", ) shutil.copy( cwd + "/" + "input_TIP3P.leap", target_dir + "/" + "input_TIP3P.leap" ) os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.parm7") os.system("rm -rf system_TIP3P.pdb") os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.rst7") os.system("rm -rf system_TIP3P.prmtop") os.system("rm -rf system.pdb") os.system("rm -rf input_TIP3P.leap") os.system("rm -rf alanine-dipeptide-nowater.pdb") def create_vectors(x): """ Extracts peridic box information from the given line. """ x = str(x) x = x.replace("Vec3", "") x = re.findall("\d*\.?\d+", x) for i in range(0, len(x)): x[i] = float(x[i]) x = tuple(x) n = int(len(x) / 3) x = [x[i * n : (i + 1) * n] for i in range((len(x) + n - 1) // n)] return x def simulated_annealing( parm="system_TIP3P.prmtop", rst="system_TIP3P.inpcrd", annealing_output_pdb="system_annealing_output.pdb", annealing_steps=100000, pdb_freq=100000, starting_temp=0, target_temp=300, temp_incr=3, ): """ Performs simulated annealing of the system from 0K to 300 K (default) using OpenMM MD engine and saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file rst: str System's coordinate file annealing_output_pdb: str System's output trajectory file annealing_steps: int Aneealing steps at each temperatrure jump pdb_freq: int Trajectory to be saved after every pdb_freq steps starting_temp: int Initial temperature of Simulated Annealing target_temp: int Final temperature of Simulated Annealing temp_incr: int Temmperature increase for every step """ prmtop = AmberPrmtopFile(parm) inpcrd = AmberInpcrdFile(rst) annealing_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) annealing_integrator = LangevinIntegrator( 0 * kelvin, 1 / picosecond, 2 * femtoseconds ) total_steps = ((target_temp / temp_incr) + 1) * annealing_steps annealing_temp_range = int((target_temp / temp_incr) + 1) annealing_platform = Platform.getPlatformByName("CUDA") annealing_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} annealing_simulation = Simulation( prmtop.topology, annealing_system, annealing_integrator, annealing_platform, annealing_properties, ) annealing_simulation.context.setPositions(inpcrd.positions) if inpcrd.boxVectors is not None: annealing_simulation.context.setPeriodicBoxVectors(*inpcrd.boxVectors) annealing_simulation.minimizeEnergy() annealing_simulation.reporters.append( PDBReporter(annealing_output_pdb, pdb_freq) ) simulated_annealing_last_frame = ( annealing_output_pdb[:-4] + "_last_frame.pdb" ) annealing_simulation.reporters.append( PDBReporter(simulated_annealing_last_frame, total_steps) ) annealing_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=total_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) temp = starting_temp while temp <= target_temp: annealing_integrator.setTemperature(temp * kelvin) if temp == starting_temp: annealing_simulation.step(annealing_steps) annealing_simulation.saveState("annealing.state") else: annealing_simulation.loadState("annealing.state") annealing_simulation.step(annealing_steps) temp += temp_incr state = annealing_simulation.context.getState() print(state.getPeriodicBoxVectors()) annealing_simulation_box_vectors = state.getPeriodicBoxVectors() print(annealing_simulation_box_vectors) with open("annealing_simulation_box_vectors.pkl", "wb") as f: pk.dump(annealing_simulation_box_vectors, f) print("Finshed NVT Simulated Annealing Simulation") def npt_equilibration( parm="system_TIP3P.prmtop", npt_output_pdb="system_npt_output.pdb", pdb_freq=500000, npt_steps=5000000, target_temp=300, npt_pdb="system_annealing_output_last_frame.pdb", ): """ Performs NPT equilibration MD of the system using OpenMM MD engine and saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file npt_output_pdb: str System's output trajectory file pdb_freq: int Trajectory to be saved after every pdb_freq steps npt_steps: int NPT simulation steps target_temp: int Temperature for MD simulation npt_pdb: str Last frame of the simulation """ npt_init_pdb = PDBFile(npt_pdb) prmtop = AmberPrmtopFile(parm) npt_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) barostat = MonteCarloBarostat(25.0 * bar, target_temp * kelvin, 25) npt_system.addForce(barostat) npt_integrator = LangevinIntegrator( target_temp * kelvin, 1 / picosecond, 2 * femtoseconds ) npt_platform = Platform.getPlatformByName("CUDA") npt_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} npt_simulation = Simulation( prmtop.topology, npt_system, npt_integrator, npt_platform, npt_properties, ) npt_simulation.context.setPositions(npt_init_pdb.positions) npt_simulation.context.setVelocitiesToTemperature(target_temp * kelvin) with open("annealing_simulation_box_vectors.pkl", "rb") as f: annealing_simulation_box_vectors = pk.load(f) annealing_simulation_box_vectors = create_vectors( annealing_simulation_box_vectors ) npt_simulation.context.setPeriodicBoxVectors( annealing_simulation_box_vectors[0], annealing_simulation_box_vectors[1], annealing_simulation_box_vectors[2], ) npt_last_frame = npt_output_pdb[:-4] + "_last_frame.pdb" npt_simulation.reporters.append(PDBReporter(npt_output_pdb, pdb_freq)) npt_simulation.reporters.append(PDBReporter(npt_last_frame, npt_steps)) npt_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=npt_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) npt_simulation.minimizeEnergy() npt_simulation.step(npt_steps) npt_simulation.saveState("npt_simulation.state") state = npt_simulation.context.getState() print(state.getPeriodicBoxVectors()) npt_simulation_box_vectors = state.getPeriodicBoxVectors() print(npt_simulation_box_vectors) with open("npt_simulation_box_vectors.pkl", "wb") as f: pk.dump(npt_simulation_box_vectors, f) print("Finished NPT Simulation") def nvt_equilibration( parm="system_TIP3P.prmtop", nvt_output_pdb="system_nvt_output.pdb", pdb_freq=500000, nvt_steps=5000000, target_temp=300, nvt_pdb="system_npt_output_last_frame.pdb", ): """ Performs NVT equilibration MD of the system using OpenMM MD engine saves the last frame of the simulation to be accessed by the next simulation. Parameters ---------- parm: str System's topology file nvt_output_pdb: str System's output trajectory file pdb_freq: int Trajectory to be saved after every pdb_freq steps nvt_steps: int NVT simulation steps target_temp: int Temperature for MD simulation nvt_pdb: str Last frame of the simulation """ nvt_init_pdb = PDBFile(nvt_pdb) prmtop = AmberPrmtopFile(parm) nvt_system = prmtop.createSystem( nonbondedMethod=PME, nonbondedCutoff=1 * nanometer, constraints=HBonds ) nvt_integrator = LangevinIntegrator( target_temp * kelvin, 1 / picosecond, 2 * femtoseconds ) nvt_platform = Platform.getPlatformByName("CUDA") nvt_properties = {"CudaDeviceIndex": "0", "CudaPrecision": "mixed"} nvt_simulation = Simulation( prmtop.topology, nvt_system, nvt_integrator, nvt_platform, nvt_properties, ) nvt_simulation.context.setPositions(nvt_init_pdb.positions) nvt_simulation.context.setVelocitiesToTemperature(target_temp * kelvin) with open("npt_simulation_box_vectors.pkl", "rb") as f: npt_simulation_box_vectors = pk.load(f) npt_simulation_box_vectors = create_vectors(npt_simulation_box_vectors) nvt_simulation.context.setPeriodicBoxVectors( npt_simulation_box_vectors[0], npt_simulation_box_vectors[1], npt_simulation_box_vectors[2], ) nvt_last_frame = nvt_output_pdb[:-4] + "_last_frame.pdb" nvt_simulation.reporters.append(PDBReporter(nvt_output_pdb, pdb_freq)) nvt_simulation.reporters.append(PDBReporter(nvt_last_frame, nvt_steps)) nvt_simulation.reporters.append( StateDataReporter( stdout, pdb_freq, step=True, time=True, potentialEnergy=True, totalSteps=nvt_steps, temperature=True, progress=True, remainingTime=True, speed=True, separator="\t", ) ) nvt_simulation.minimizeEnergy() nvt_simulation.step(nvt_steps) nvt_simulation.saveState("nvt_simulation.state") state = nvt_simulation.context.getState() print(state.getPeriodicBoxVectors()) nvt_simulation_box_vectors = state.getPeriodicBoxVectors() print(nvt_simulation_box_vectors) with open("nvt_simulation_box_vectors.pkl", "wb") as f: pk.dump(nvt_simulation_box_vectors, f) print("Finished NVT Simulation") def run_equilibration(): """ Runs systematic simulated annealing followed by NPT and NVT equilibration MD simulation. """ cwd = os.getcwd() target_dir = cwd + "/" + "equilibration" os.system("rm -rf equilibration") os.system("mkdir equilibration") shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.inpcrd", target_dir + "/" + "system_TIP3P.inpcrd", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.parm7", target_dir + "/" + "system_TIP3P.parm7", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.pdb", target_dir + "/" + "system_TIP3P.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.prmtop", target_dir + "/" + "system_TIP3P.prmtop", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system_TIP3P.rst7", target_dir + "/" + "system_TIP3P.rst7", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "system.pdb", target_dir + "/" + "system.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "alanine-dipeptide-nowater.pdb", target_dir + "/" + "alanine-dipeptide-nowater.pdb", ) shutil.copy( cwd + "/" + "system_inputs" + "/" + "input_TIP3P.leap", target_dir + "/" + "input_TIP3P.leap", ) os.chdir(target_dir) simulated_annealing() npt_equilibration() nvt_equilibration() os.system("rm -rf system_TIP3P.inpcrd") os.system("rm -rf system_TIP3P.parm7") os.system("rm -rf system_TIP3P.pdb") os.system("rm -rf system_TIP3P.rst7") os.system("rm -rf system_TIP3P.prmtop") os.system("rm -rf system.pdb") os.system("rm -rf alanine-dipeptide-nowater.pdb") os.system("rm -rf input_TIP3P.leap") os.chdir(cwd) def create_starting_structures(): """ Prepares starting structures for Amber GaMD simulations. All input files required to run Amber GaMD simulations are placed in the starting_structures directory. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" os.system("rm -rf starting_structures") os.system("mkdir starting_structures") shutil.copy( cwd + "/" + "equilibration" + "/" + "system_nvt_output_last_frame.pdb", target_dir + "/" + "system_nvt_output_last_frame.pdb", ) os.chdir(target_dir) fix_cap_remove_nme("system_nvt_output_last_frame.pdb") fix_cap_replace_nme("system_nvt_output_last_frame.pdb") # Save the tleap script to file with open("final_input_TIP3P.leap", "w") as f: f.write( """ source leaprc.protein.ff14SB source leaprc.water.tip3p set default FlexibleWater on set default PBRadii mbondi2 pdb = loadpdb system_nvt_output_last_frame.pdb saveamberparm pdb system_final.prmtop system_final.inpcrd saveamberparm pdb system_final.parm7 system_final.rst7 savepdb pdb system_final.pdb quit """ ) os.system("tleap -f final_input_TIP3P.leap") os.system("rm -rf leap.log") os.system("rm -rf system_nvt_output_last_frame.pdb") os.chdir(cwd) def add_vec_inpcrd(): """ Adds box dimensions captured from the last saved frame of the NVT simulations to the inpcrd file. Only to be used when the box dimensions are not present in the inpcrd file. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" shutil.copy( cwd + "/" + "equilibration" + "/" + "nvt_simulation_box_vectors.pkl", target_dir + "/" + "nvt_simulation_box_vectors.pkl", ) os.chdir(target_dir) with open("nvt_simulation_box_vectors.pkl", "rb") as f: nvt_simulation_box_vectors = pk.load(f) nvt_simulation_box_vectors = create_vectors(nvt_simulation_box_vectors) vectors = ( (nvt_simulation_box_vectors[0][0]) * 10, (nvt_simulation_box_vectors[1][1]) * 10, (nvt_simulation_box_vectors[2][2]) * 10, ) vectors = ( round(vectors[0], 7), round(vectors[1], 7), round(vectors[2], 7), ) last_line = ( " " + str(vectors[0]) + " " + str(vectors[1]) + " " + str(vectors[2]) + " 90.0000000" + " 90.0000000" + " 90.0000000" ) with open("system_final.inpcrd", "a+") as f: f.write(last_line) os.system("rm -rf nvt_simulation_box_vectors.pkl") os.chdir(cwd) def add_vec_prmtop(): """ Adds box dimensions captured from the last saved frame of the NVT simulations to the prmtop file. Only to be used when the box dimensions are not present in the prmtop file. """ cwd = os.getcwd() target_dir = cwd + "/" + "starting_structures" shutil.copy( cwd + "/" + "equilibration" + "/" + "nvt_simulation_box_vectors.pkl", target_dir + "/" + "nvt_simulation_box_vectors.pkl", ) os.chdir(target_dir) with open("nvt_simulation_box_vectors.pkl", "rb") as f: nvt_simulation_box_vectors = pk.load(f) nvt_simulation_box_vectors = create_vectors(nvt_simulation_box_vectors) vectors = ( nvt_simulation_box_vectors[0][0], nvt_simulation_box_vectors[1][1], nvt_simulation_box_vectors[2][2], ) vectors = round(vectors[0], 7), round(vectors[1], 7), round(vectors[2], 7) oldbeta = "9.00000000E+01" x = str(vectors[0]) + str(0) + "E+" + "01" y = str(vectors[1]) + str(0) + "E+" + "01" z = str(vectors[2]) + str(0) + "E+" + "01" line1 = "%FLAG BOX_DIMENSIONS" line2 = "%FORMAT(5E16.8)" line3 = " " + oldbeta + " " + x + " " + y + " " + z with open("system_final.prmtop") as i, open( "system_intermediate_final.prmtop", "w" ) as f: for line in i: if line.startswith("%FLAG RADIUS_SET"): line = line1 + "\n" + line2 + "\n" + line3 + "\n" + line f.write(line) os.system("rm -rf system_final.prmtop") os.system("mv system_intermediate_final.prmtop system_final.prmtop") os.system("rm -rf nvt_simulation_box_vectors.pkl") os.chdir(cwd) def create_filetree( nst_lim=26000000, ntw_x=1000, nt_cmd=1000000, n_teb=1000000, n_tave=50000, ntcmd_prep=200000, nteb_prep=200000, ): """ Creates a directory named gamd_simulations. Inside this directory, there are subdirectories for dihedral, dual and total potential-boosted GaMD with upper and lower threshold boosts separately. Parameters ---------- nst_lim: int Total simulation time including preparatory simulation. For example, if nst_lim = 26000000, then, we may have 2 ns of preparatory simulation i.e. 1000000 preparation steps and 50 ns of GaMD simulation i.e. 25000000 simulation steps ntw_x: int Saving coordinates of the simulation every ntw_x timesteps. For example, 2 ps implies 1000 timesteps nt_cmd: int Number of initial MD simulation step, 2 ns of preparatory simulation requires 1000000 preparation timesteps n_teb: int Number of biasing MD simulation steps n_tave: int Number of simulation steps used to calculate the average and standard deviation of potential energies ntcmd_prep: int Number of preparation conventional molecular dynamics steps.This is used for system equilibration and potential energies are not collected for statistics nteb_prep: int Number of preparation biasing molecular dynamics simulation steps. This is used for system equilibration """ cwd = os.getcwd() os.system("rm -rf gamd_simulations") os.system("mkdir gamd_simulations") os.chdir(cwd + "/" + "gamd_simulations") source_dir = cwd + "/" + "starting_structures" target_dir = cwd + "/" + "gamd_simulations" dir_list = [ "dihedral_threshold_lower", "dihedral_threshold_upper", "dual_threshold_lower", "dual_threshold_upper", "total_threshold_lower", "total_threshold_upper", ] for i in range(len(dir_list)): os.mkdir(dir_list[i]) os.chdir(target_dir + "/" + dir_list[i]) shutil.copy( source_dir + "/" + "system_final.inpcrd", target_dir + "/" + dir_list[i] + "/" + "system_final.inpcrd", ) shutil.copy( source_dir + "/" + "system_final.prmtop", target_dir + "/" + dir_list[i] + "/" + "system_final.prmtop", ) if "lower" in dir_list[i]: i_E = 1 if "upper" in dir_list[i]: i_E = 2 if "total" in dir_list[i]: i_gamd = 1 if "dihedral" in dir_list[i]: i_gamd = 2 if "dual" in dir_list[i]: i_gamd = 3 with open("md.in", "w") as f: f.write("&cntrl" + "\n") f.write(" imin = 0, irest = 0, ntx = 1," + "\n") f.write(" nstlim = " + str(nst_lim) + ", dt = 0.002," + "\n") f.write(" ntc = 2, ntf = 2, tol = 0.000001," + "\n") f.write(" iwrap = 1, ntb = 1, cut = 8.0," + "\n") f.write(" ntt = 3, temp0 = 300.0, gamma_ln = 1.0, " + "\n") f.write( " ntpr = 500, ntwx = " + str(ntw_x) + ", ntwr = 500," + "\n" ) f.write(" ntxo = 2, ioutfm = 1, ig = -1, ntwprt = 0," + "\n") f.write( " igamd = " + str(i_gamd) + ", iE = " + str(i_E) + ", irest_gamd = 0," + "\n" ) f.write( " ntcmd = " + str(nt_cmd) + ", nteb = " + str(n_teb) + ", ntave = " + str(n_tave) + "," + "\n" ) f.write( " ntcmdprep = " + str(ntcmd_prep) + ", ntebprep = " + str(nteb_prep) + "," + "\n" ) f.write(" sigma0D = 6.0, sigma0P = 6.0" + " \n") f.write("&end" + "\n") os.chdir(target_dir) os.chdir(cwd) def run_simulations(): """ Runs GaMD simulations for each of the dihedral, dual and total potential boosts for both thresholds i.e. upper and lower potential thresholds. (Remember to check md.in files for further details and flag information). """ cwd = os.getcwd() os.chdir(cwd + "/" + "gamd_simulations") os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dihedral_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dihedral_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dual_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "dual_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "total_threshold_lower") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations" + "/" + "total_threshold_upper") os.system( "pmemd.cuda -O -i md.in -o system_final.out -p system_final.prmtop -c system_final.inpcrd -r system_final.rst -x system_final.nc" ) os.chdir(cwd + "/" + "gamd_simulations") os.chdir(cwd) def create_data_files( jump=10, traj="system_final.nc", topology="system_final.prmtop", T=300, ): """ Extracts data from GaMD log files and saves them as weights.dat, Psi.dat and Phi_Psi.dat. gamd.log file contains data excluding the initial equilibration MD simulation steps but trajectory output file has all the trajectories including the initial equilibration MD steps. This part has ben taken care to make the data consistent. Parameters ---------- jump: int Every nth frame to be considered for reweighting traj: str System's trajectory file topology: str System's topology file T: int MD simulation temperature """ # To make data consistent with gamd.log and .nc file factor = 0.001987 * T with open("md.in") as f: lines = f.readlines() for i in lines: if "nstlim =" in i: nstlim_line = i if "ntcmd =" in i: ntcmd_line = i if "ntwx =" in i: ntwx_line = i x = re.findall(r"\b\d+\b", ntcmd_line) ntcmd = int(x[0]) x = re.findall(r"\b\d+\b", nstlim_line) nstlim = int(x[0]) x = re.findall(r"\b\d+\b", ntwx_line) ntwx = int(x[1]) # From the .nc trajectory files, we will not consider ntcmd trajectories leave_frames = int(ntcmd / ntwx) no_frames = int(nstlim / ntwx) # Recheck conditions file = open("gamd.log", "r") number_of_lines = 0 for line in file: line = line.strip("\n") number_of_lines += 1 file.close() f = open("gamd.log") fourth_line = f.readlines()[3] if str(ntcmd) in fourth_line: datapoints = number_of_lines - 4 if not str(ntcmd) in fourth_line: datapoints = number_of_lines - 3 print(datapoints == int((nstlim - ntcmd) / ntwx)) # Creating Psi.dat and Phi_Psi.dat traj = md.load(traj, top=topology) traj = traj[leave_frames:no_frames:jump] phi = md.compute_phi(traj) phi = phi[1] # 0:indices, 1:phi angles phi = np.array([math.degrees(i) for i in phi]) # radians to degrees psi = md.compute_psi(traj) psi = psi[1] # 0:indices, 1:psi angles psi = np.array([math.degrees(i) for i in psi]) # radians to degrees df_psi = pd.DataFrame(phi, columns=["Psi"]) df_psi = df_psi.tail(int(datapoints)) df_psi.to_csv("Psi.dat", sep="\t", index=False, header=False) df_phi = pd.DataFrame(psi, columns=["Phi"]) df_phi = df_phi.tail(int(datapoints)) df_phi_psi = pd.concat([df_phi, df_psi], axis=1) df_phi_psi.to_csv("Phi_Psi.dat", sep="\t", index=False, header=False) # Creating weights.dat with open("gamd.log") as f: lines = f.readlines() column_names = lines[2] column_names = column_names.replace("#", "") column_names = column_names.replace("\n", "") column_names = column_names.replace(" ", "") column_names = column_names.split(",") list_words = ["#"] with open("gamd.log") as oldfile, open("data.log", "w") as newfile: for line in oldfile: if not any(word in line for word in list_words): newfile.write(line) df = pd.read_csv("data.log", delim_whitespace=True, header=None) df.columns = column_names df["dV(kcal/mol)"] = ( df["Boost-Energy-Potential"] + df["Boost-Energy-Dihedral"] ) df["dV(kbT)"] = df["dV(kcal/mol)"] / factor df_ = df[["dV(kbT)", "total_nstep", "dV(kcal/mol)"]] df_ = df_[::jump] df_.to_csv("weights.dat", sep="\t", index=False, header=False) os.system("rm -rf data.log") print(df_phi_psi.shape) print(df_phi.shape) print(df_.shape) def create_bins(lower_bound, width, upper_bound): """ Creates bin if given the lower and upper bound with the wirdth information. """ bins = [] for low in range(lower_bound, upper_bound, width): bins.append([low, low + width]) return bins def find_bin(value, bins): """ Finds which value belongs to which bin. """ for i in range(0, len(bins)): if bins[i][0] <= value < bins[i][1]: return i return -1 def reweight_1d( binspace=10, n_structures=4, Xdim=[-180, 180], T=300.0, min_prob=0.000001 ): """ Reweights boosted potential energies in one-dimension based on Maclaurin series expansion to one, two and three degrees. Parameters ---------- binspace: int Spacing between the bins n_structures: int Number of structures per bin chosen for Weighted Ensemble (WE) simulations Xdim: list Range of dihedral angles T: float MD simulation temperature min_prob: float minimum probability threshold """ beta = 1.0 / (0.001987 * float(T)) df_Psi = pd.read_csv("Psi.dat", delim_whitespace=True, header=None) df_Psi.columns = ["Psi"] df_weight = pd.read_csv("weights.dat", delim_whitespace=True, header=None) df_weight.columns = ["dV_kBT", "timestep", "dVkcalmol"] sum_total = df_Psi.shape[0] binsX = np.arange(float(Xdim[0]), (float(Xdim[1]) + binspace), binspace) hist, hist_edges = np.histogram(df_Psi[["Psi"]], bins=binsX, weights=None) pstarA = [i / sum_total for i in list(hist)] bins = create_bins( lower_bound=int(Xdim[0]), width=binspace, upper_bound=int(Xdim[1]) ) data = df_Psi["Psi"].values.tolist() binned_weights = [] for value in data: bin_index = find_bin(value, bins) binned_weights.append(bin_index) df_index = pd.DataFrame(binned_weights) df_index.columns = ["index"] df = pd.concat([df_index, df_Psi, df_weight], axis=1) dV_c1 = [] dV_c2 = [] dV_c3 = [] dV = [] for i in range(len(bins)): df_i = df.loc[(df["index"] == i)] dV_list = df_i["dVkcalmol"].values.tolist() if len(dV_list) >= 10: dV_c1.append(statistics.mean(dV_list)) dV_c2.append( statistics.mean([i ** 2 for i in dV_list]) - (statistics.mean(dV_list)) ** 2 ) dV_c3.append( statistics.mean([i ** 3 for i in dV_list]) - 3 * (statistics.mean([i ** 2 for i in dV_list])) * (statistics.mean(dV_list)) + 2 * (statistics.mean(dV_list)) ** 3 ) if len(dV_list) < 10: dV_c1.append(0) dV_c2.append(0) dV_c3.append(0) dV.append(dV_list) c1 = [i * beta for i in dV_c1] c2 = [i * ((beta ** 2) / 2) for i in dV_c2] c3 = [i * ((beta ** 3) / 6) for i in dV_c3] c1 = c1 c12 = [a + b for a, b in zip(c1, c2)] c123 = [a + b for a, b in zip(c12, c3)] for i in range(len(c1)): if c1[i] >= 700: c1[i] = 700 for i in range(len(c12)): if c12[i] >= 700: c12[i] = 700 for i in range(len(c123)): if c123[i] >= 700: c123[i] = 700 ensemble_average_c1 = [exp(i) for i in c1] ensemble_average_c12 = [exp(i) for i in c12] ensemble_average_c123 = [exp(i) for i in c123] numerator_c1 = [a * b for a, b in zip(pstarA, ensemble_average_c1)] numerator_c12 = [a * b for a, b in zip(pstarA, ensemble_average_c12)] numerator_c123 = [a * b for a, b in zip(pstarA, ensemble_average_c123)] #### c1 denominatorc1 = [] for i in range(len(bins)): product_c1 = pstarA[i] * ensemble_average_c1[i] denominatorc1.append(product_c1) denominator_c1 = sum(denominatorc1) pA_c1 = [i / denominator_c1 for i in numerator_c1] #### c12 denominatorc12 = [] for i in range(len(bins)): product_c12 = pstarA[i] * ensemble_average_c12[i] denominatorc12.append(product_c12) denominator_c12 = sum(denominatorc12) pA_c12 = [i / denominator_c12 for i in numerator_c12] #### c123 denominatorc123 = [] for i in range(len(bins)): product_c123 = pstarA[i] * ensemble_average_c123[i] denominatorc123.append(product_c123) denominator_c123 = sum(denominatorc123) pA_c123 = [i / denominator_c123 for i in numerator_c123] data_c1 = list(zip(bins, pA_c1)) data_c12 = list(zip(bins, pA_c12)) data_c123 = list(zip(bins, pA_c123)) df_c1 = pd.DataFrame(data_c1, columns=["bins", "pA_c1"]) df_c12 = pd.DataFrame(data_c12, columns=["bins", "pA_c12"]) df_c123 = pd.DataFrame(data_c123, columns=["bins", "pA_c123"]) ####c1 df_c1.to_csv("c1_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c1_1d.txt", "r") as f1, open("pA_c1_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_1d.txt") ####c12 df_c12.to_csv("c12_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c12_1d.txt", "r") as f1, open("pA_c12_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_1d.txt") ####c123 df_c123.to_csv("c123_1d.txt", header=True, index=None, sep=" ", mode="w") with open("c123_1d.txt", "r") as f1, open("pA_c123_1d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_1d.txt") ####c1_arranged df_c1_arranged = df_c1.sort_values(by="pA_c1", ascending=False) df_c1_arranged = df_c1_arranged[df_c1_arranged.pA_c1 > min_prob] df_c1_arranged.to_csv( "c1_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_arranged_1d.txt", "r") as f1, open( "pA_c1_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_arranged_1d.txt") ####c12_arranged df_c12_arranged = df_c12.sort_values(by="pA_c12", ascending=False) df_c12_arranged = df_c12_arranged[df_c12_arranged.pA_c12 > min_prob] df_c12_arranged.to_csv( "c12_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_arranged_1d.txt", "r") as f1, open( "pA_c12_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_arranged_1d.txt") ####c123_arranged df_c123_arranged = df_c123.sort_values(by="pA_c123", ascending=False) df_c123_arranged = df_c123_arranged[df_c123_arranged.pA_c123 > min_prob] df_c123_arranged.to_csv( "c123_arranged_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_arranged_1d.txt", "r") as f1, open( "pA_c123_arranged_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_arranged_1d.txt") ####c1_arranged df_c1_arranged["index"] = df_c1_arranged.index index_list_c1 = df_c1_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c1 = [] index_indces_c1 = [] for i in index_list_c1: df_index_list_c1 = df_frame_index.loc[df_frame_index["index"] == i] frame_c1 = df_index_list_c1["frame_index"].tolist() frame_indices_c1.append(frame_c1) index_c1 = [i] * len(frame_c1) index_indces_c1.append(index_c1) frame_indices_c1 = [item for elem in frame_indices_c1 for item in elem] index_indces_c1 = [item for elem in index_indces_c1 for item in elem] df_c1_frame = pd.DataFrame(frame_indices_c1, columns=["frame_index"]) df_c1_index = pd.DataFrame(index_indces_c1, columns=["index"]) df_c1_frame_index = pd.concat([df_c1_frame, df_c1_index], axis=1) df_c1_frame_index = df_c1_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c1_frame_index.to_csv( "c1_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_frame_index_1d.txt", "r") as f1, open( "c1_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_frame_index_1d.txt") ####c12_arranged df_c12_arranged["index"] = df_c12_arranged.index index_list_c12 = df_c12_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c12 = [] index_indces_c12 = [] for i in index_list_c12: df_index_list_c12 = df_frame_index.loc[df_frame_index["index"] == i] frame_c12 = df_index_list_c12["frame_index"].tolist() frame_indices_c12.append(frame_c12) index_c12 = [i] * len(frame_c12) index_indces_c12.append(index_c12) frame_indices_c12 = [item for elem in frame_indices_c12 for item in elem] index_indces_c12 = [item for elem in index_indces_c12 for item in elem] df_c12_frame = pd.DataFrame(frame_indices_c12, columns=["frame_index"]) df_c12_index = pd.DataFrame(index_indces_c12, columns=["index"]) df_c12_frame_index = pd.concat([df_c12_frame, df_c12_index], axis=1) df_c12_frame_index = df_c12_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c12_frame_index.to_csv( "c12_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_frame_index_1d.txt", "r") as f1, open( "c12_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_frame_index_1d.txt") ####c123_arranged df_c123_arranged["index"] = df_c123_arranged.index index_list_c123 = df_c123_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c123 = [] index_indces_c123 = [] for i in index_list_c123: df_index_list_c123 = df_frame_index.loc[df_frame_index["index"] == i] frame_c123 = df_index_list_c123["frame_index"].tolist() frame_indices_c123.append(frame_c123) index_c123 = [i] * len(frame_c123) index_indces_c123.append(index_c123) frame_indices_c123 = [item for elem in frame_indices_c123 for item in elem] index_indces_c123 = [item for elem in index_indces_c123 for item in elem] df_c123_frame = pd.DataFrame(frame_indices_c123, columns=["frame_index"]) df_c123_index = pd.DataFrame(index_indces_c123, columns=["index"]) df_c123_frame_index = pd.concat([df_c123_frame, df_c123_index], axis=1) df_c123_frame_index = df_c123_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c123_frame_index.to_csv( "c123_frame_index_1d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_frame_index_1d.txt", "r") as f1, open( "c123_frame_1d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_frame_index_1d.txt") ####c1 indices_c1_1d = df_c1_frame_index["index"].unique() frames_c1 = [] for i in indices_c1_1d: x = df_c1_frame_index.loc[df_c1_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c1.append(z) frames_c1_1d = [item for elem in frames_c1 for item in elem] with open("frames_c1_1d.pickle", "wb") as f: pk.dump(frames_c1_1d, f) with open("indices_c1_1d.pickle", "wb") as f: pk.dump(indices_c1_1d, f) ####c12 indices_c12_1d = df_c12_frame_index["index"].unique() frames_c12 = [] for i in indices_c12_1d: x = df_c12_frame_index.loc[df_c12_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c12.append(z) frames_c12_1d = [item for elem in frames_c12 for item in elem] with open("frames_c12_1d.pickle", "wb") as f: pk.dump(frames_c12_1d, f) with open("indices_c12_1d.pickle", "wb") as f: pk.dump(indices_c12_1d, f) ####c123 indices_c123_1d = df_c123_frame_index["index"].unique() frames_c123 = [] for i in indices_c123_1d: x = df_c123_frame_index.loc[df_c123_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c123.append(z) frames_c123_1d = [item for elem in frames_c123 for item in elem] with open("frames_c123_1d.pickle", "wb") as f: pk.dump(frames_c123_1d, f) with open("indices_c123_1d.pickle", "wb") as f: pk.dump(indices_c123_1d, f) ##saving probabilities for each selected frame ####c1 prob_c1_1d_list = [] for i in indices_c1_1d: prob_c1_1d_list.append(df_c1["pA_c1"][i]) prob_c1_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c1_1d_list ) ) prob_c1_1d_list = [x / n_structures for x in prob_c1_1d_list] with open("prob_c1_1d_list.pickle", "wb") as f: pk.dump(prob_c1_1d_list, f) ####c12 prob_c12_1d_list = [] for i in indices_c12_1d: prob_c12_1d_list.append(df_c12["pA_c12"][i]) prob_c12_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c12_1d_list ) ) prob_c12_1d_list = [x / n_structures for x in prob_c12_1d_list] with open("prob_c12_1d_list.pickle", "wb") as f: pk.dump(prob_c12_1d_list, f) ####c123 prob_c123_1d_list = [] for i in indices_c123_1d: prob_c123_1d_list.append(df_c123["pA_c123"][i]) prob_c123_1d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c123_1d_list ) ) prob_c123_1d_list = [x / n_structures for x in prob_c123_1d_list] with open("prob_c123_1d_list.pickle", "wb") as f: pk.dump(prob_c123_1d_list, f) ref_df_1d = pd.DataFrame(bins, columns=["dim0", "dim1"]) ref_df_1d["bins"] = ref_df_1d.agg( lambda x: f"[{x['dim0']} , {x['dim1']}]", axis=1 ) ref_df_1d = ref_df_1d[["bins"]] index_ref_1d = [] for i in range(len(bins)): index_ref_1d.append(i) index_ref_df_1d = pd.DataFrame(index_ref_1d, columns=["index"]) df_ref_1d = pd.concat([ref_df_1d, index_ref_df_1d], axis=1) df_ref_1d.to_csv("ref_1d.txt", header=True, index=None, sep=" ", mode="w") df.to_csv("df_1d.csv", index=False) os.system("rm -rf __pycache__") print("Successfully Completed Reweighing") def reweight_2d( binspace=10, n_structures=4, Xdim=[-180, 180], Ydim=[-180, 180], T=300.0, min_prob=0.000001, ): """ Reweights boosted potential energies in two-dimensions based on Maclaurin series expansion to one, two and three degrees. Parameters ---------- binspace: int Spacing between the bins n_structures: int Number of structures per bin chosen for Weighted Ensemble (WE) simulations Xdim: list Range of dihedral angles (1st dimension) Ydim: list Range of dihedral angles (2nd dimension) T: float MD simulation temperature min_prob: float minimum probability threshold """ beta = 1.0 / (0.001987 * float(T)) df_Phi_Psi = pd.read_csv("Phi_Psi.dat", delim_whitespace=True, header=None) df_Phi_Psi.columns = ["Phi", "Psi"] df_weight = pd.read_csv("weights.dat", delim_whitespace=True, header=None) df_weight.columns = ["dV_kBT", "timestep", "dVkcalmol"] sum_total = df_Phi_Psi.shape[0] binsX = np.arange(float(Xdim[0]), (float(Xdim[1]) + binspace), binspace) binsY = np.arange(float(Ydim[0]), (float(Ydim[1]) + binspace), binspace) hist2D, hist_edgesX, hist_edgesY = np.histogram2d( df_Phi_Psi["Phi"].values.tolist(), df_Phi_Psi["Psi"].values.tolist(), bins=(binsX, binsY), weights=None, ) pstarA_2D = [i / sum_total for i in list(hist2D)] bins_tuple_X = create_bins( lower_bound=int(Xdim[0]), width=binspace, upper_bound=int(Xdim[1]) ) bins_tuple_Y = create_bins( lower_bound=int(Ydim[0]), width=binspace, upper_bound=int(Ydim[1]) ) bins = [] for i in range(len(bins_tuple_X)): for j in range(len(bins_tuple_Y)): bins.append([bins_tuple_X[i], bins_tuple_Y[j]]) pstarA = [item for elem in pstarA_2D for item in elem] hist = [item for elem in hist2D for item in elem] hist = [int(i) for i in hist] data_X = df_Phi_Psi["Phi"].values.tolist() binned_weights_X = [] for value in data_X: bin_index_X = find_bin(value, bins_tuple_X) binned_weights_X.append(bin_index_X) data_Y = df_Phi_Psi["Psi"].values.tolist() binned_weights_Y = [] for value in data_Y: bin_index_Y = find_bin(value, bins_tuple_Y) binned_weights_Y.append(bin_index_Y) binned_weights_2D = [] for i in range(len(binned_weights_X)): binned_weights_2D.append([binned_weights_X[i], binned_weights_Y[i]]) binned_weights = [] for i in range(len(binned_weights_2D)): binned_weights.append( (binned_weights_2D[i][0] * len(bins_tuple_Y)) + (binned_weights_2D[i][1] + 1) ) df_index = pd.DataFrame(binned_weights) df_index.columns = ["index"] df_index["index"] = df_index["index"] - 1 df = pd.concat([df_index, df_Phi_Psi, df_weight], axis=1) dV_c1 = [] dV_c2 = [] dV_c3 = [] dV = [] for i in range(len(bins)): df_i = df.loc[(df["index"] == i)] dV_list = df_i["dVkcalmol"].values.tolist() if len(dV_list) >= 10: dV_c1.append(statistics.mean(dV_list)) dV_c2.append( statistics.mean([i ** 2 for i in dV_list]) - (statistics.mean(dV_list)) ** 2 ) dV_c3.append( statistics.mean([i ** 3 for i in dV_list]) - 3 * (statistics.mean([i ** 2 for i in dV_list])) * (statistics.mean(dV_list)) + 2 * (statistics.mean(dV_list)) ** 3 ) if len(dV_list) < 10: dV_c1.append(0) dV_c2.append(0) dV_c3.append(0) dV.append(dV_list) c1 = [i * beta for i in dV_c1] c2 = [i * ((beta ** 2) / 2) for i in dV_c2] c3 = [i * ((beta ** 3) / 6) for i in dV_c3] c1 = c1 c12 = [a + b for a, b in zip(c1, c2)] c123 = [a + b for a, b in zip(c12, c3)] for i in range(len(c1)): if c1[i] >= 700: c1[i] = 700 for i in range(len(c12)): if c12[i] >= 700: c12[i] = 700 for i in range(len(c123)): if c123[i] >= 700: c123[i] = 700 ensemble_average_c1 = [exp(i) for i in c1] ensemble_average_c12 = [exp(i) for i in c12] ensemble_average_c123 = [exp(i) for i in c123] numerator_c1 = [a * b for a, b in zip(pstarA, ensemble_average_c1)] numerator_c12 = [a * b for a, b in zip(pstarA, ensemble_average_c12)] numerator_c123 = [a * b for a, b in zip(pstarA, ensemble_average_c123)] #### c1 denominatorc1 = [] for i in range(len(bins)): product_c1 = pstarA[i] * ensemble_average_c1[i] denominatorc1.append(product_c1) denominator_c1 = sum(denominatorc1) pA_c1 = [i / denominator_c1 for i in numerator_c1] #### c12 denominatorc12 = [] for i in range(len(bins)): product_c12 = pstarA[i] * ensemble_average_c12[i] denominatorc12.append(product_c12) denominator_c12 = sum(denominatorc12) pA_c12 = [i / denominator_c12 for i in numerator_c12] #### c123 denominatorc123 = [] for i in range(len(bins)): product_c123 = pstarA[i] * ensemble_average_c123[i] denominatorc123.append(product_c123) denominator_c123 = sum(denominatorc123) pA_c123 = [i / denominator_c123 for i in numerator_c123] data_c1 = list(zip(bins, pA_c1)) data_c12 = list(zip(bins, pA_c12)) data_c123 = list(zip(bins, pA_c123)) df_c1 = pd.DataFrame(data_c1, columns=["bins", "pA_c1"]) df_c12 = pd.DataFrame(data_c12, columns=["bins", "pA_c12"]) df_c123 = pd.DataFrame(data_c123, columns=["bins", "pA_c123"]) df_c1.to_csv("c1_2d.txt", header=True, index=None, sep=" ", mode="w") with open("c1_2d.txt", "r") as f1, open("pA_c1_2d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_2d.txt") ####c12 df_c12.to_csv("c12_2d.txt", header=True, index=None, sep=" ", mode="w") with open("c12_2d.txt", "r") as f1, open("pA_c12_2d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_2d.txt") ####c123 df_c123.to_csv("c123_2d.txt", header=True, index=None, sep=" ", mode="w") with open("c123_2d.txt", "r") as f1, open("pA_c123_2d.txt", "w") as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_2d.txt") ####c1_arranged df_c1_arranged = df_c1.sort_values(by="pA_c1", ascending=False) df_c1_arranged = df_c1_arranged[df_c1_arranged.pA_c1 > min_prob] df_c1_arranged.to_csv( "c1_arranged_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_arranged_2d.txt", "r") as f1, open( "pA_c1_arranged_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_arranged_2d.txt") ####c12_arranged df_c12_arranged = df_c12.sort_values(by="pA_c12", ascending=False) df_c12_arranged = df_c12_arranged[df_c12_arranged.pA_c12 > min_prob] df_c12_arranged.to_csv( "c12_arranged_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_arranged_2d.txt", "r") as f1, open( "pA_c12_arranged_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_arranged_2d.txt") ####c123_arranged df_c123_arranged = df_c123.sort_values(by="pA_c123", ascending=False) df_c123_arranged = df_c123_arranged[df_c123_arranged.pA_c123 > min_prob] df_c123_arranged.to_csv( "c123_arranged_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_arranged_2d.txt", "r") as f1, open( "pA_c123_arranged_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_arranged_2d.txt") ####c1_arranged df_c1_arranged["index"] = df_c1_arranged.index index_list_c1 = df_c1_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c1 = [] index_indces_c1 = [] for i in index_list_c1: df_index_list_c1 = df_frame_index.loc[df_frame_index["index"] == i] frame_c1 = df_index_list_c1["frame_index"].tolist() frame_indices_c1.append(frame_c1) index_c1 = [i] * len(frame_c1) index_indces_c1.append(index_c1) frame_indices_c1 = [item for elem in frame_indices_c1 for item in elem] index_indces_c1 = [item for elem in index_indces_c1 for item in elem] df_c1_frame = pd.DataFrame(frame_indices_c1, columns=["frame_index"]) df_c1_index = pd.DataFrame(index_indces_c1, columns=["index"]) df_c1_frame_index = pd.concat([df_c1_frame, df_c1_index], axis=1) df_c1_frame_index = df_c1_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c1_frame_index.to_csv( "c1_frame_index_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c1_frame_index_2d.txt", "r") as f1, open( "c1_frame_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c1_frame_index_2d.txt") ####c12_arranged df_c12_arranged["index"] = df_c12_arranged.index index_list_c12 = df_c12_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c12 = [] index_indces_c12 = [] for i in index_list_c12: df_index_list_c12 = df_frame_index.loc[df_frame_index["index"] == i] frame_c12 = df_index_list_c12["frame_index"].tolist() frame_indices_c12.append(frame_c12) index_c12 = [i] * len(frame_c12) index_indces_c12.append(index_c12) frame_indices_c12 = [item for elem in frame_indices_c12 for item in elem] index_indces_c12 = [item for elem in index_indces_c12 for item in elem] df_c12_frame = pd.DataFrame(frame_indices_c12, columns=["frame_index"]) df_c12_index = pd.DataFrame(index_indces_c12, columns=["index"]) df_c12_frame_index = pd.concat([df_c12_frame, df_c12_index], axis=1) df_c12_frame_index = df_c12_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c12_frame_index.to_csv( "c12_frame_index_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c12_frame_index_2d.txt", "r") as f1, open( "c12_frame_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c12_frame_index_2d.txt") ####c123_arranged df_c123_arranged["index"] = df_c123_arranged.index df_c123_arranged["index"] = df_c123_arranged.index index_list_c123 = df_c123_arranged["index"].tolist() df["frame_index"] = df.index df_frame_index = df[["frame_index", "index"]] frame_indices_c123 = [] index_indces_c123 = [] for i in index_list_c123: df_index_list_c123 = df_frame_index.loc[df_frame_index["index"] == i] frame_c123 = df_index_list_c123["frame_index"].tolist() frame_indices_c123.append(frame_c123) index_c123 = [i] * len(frame_c123) index_indces_c123.append(index_c123) frame_indices_c123 = [item for elem in frame_indices_c123 for item in elem] index_indces_c123 = [item for elem in index_indces_c123 for item in elem] df_c123_frame = pd.DataFrame(frame_indices_c123, columns=["frame_index"]) df_c123_index = pd.DataFrame(index_indces_c123, columns=["index"]) df_c123_frame_index = pd.concat([df_c123_frame, df_c123_index], axis=1) df_c123_frame_index = df_c123_frame_index.groupby("index").filter( lambda x: len(x) >= 10 ) df_c123_frame_index.to_csv( "c123_frame_index_2d.txt", header=True, index=None, sep=" ", mode="w" ) with open("c123_frame_index_2d.txt", "r") as f1, open( "c123_frame_2d.txt", "w" ) as f2: for line in f1: f2.write(line.replace('"', "").replace("'", "")) os.system("rm -rf c123_frame_index_2d.txt") ####c1 indices_c1_2d = df_c1_frame_index["index"].unique() frames_c1 = [] for i in indices_c1_2d: x = df_c1_frame_index.loc[df_c1_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c1.append(z) frames_c1_2d = [item for elem in frames_c1 for item in elem] with open("frames_c1_2d.pickle", "wb") as f: pk.dump(frames_c1_2d, f) with open("indices_c1_2d.pickle", "wb") as f: pk.dump(indices_c1_2d, f) ####c12 indices_c12_2d = df_c12_frame_index["index"].unique() frames_c12 = [] for i in indices_c12_2d: x = df_c12_frame_index.loc[df_c12_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c12.append(z) frames_c12_2d = [item for elem in frames_c12 for item in elem] with open("frames_c12_2d.pickle", "wb") as f: pk.dump(frames_c12_2d, f) with open("indices_c12_2d.pickle", "wb") as f: pk.dump(indices_c12_2d, f) ####c123 indices_c123_2d = df_c123_frame_index["index"].unique() frames_c123 = [] for i in indices_c123_2d: x = df_c123_frame_index.loc[df_c123_frame_index["index"] == i] y = x["frame_index"].values.tolist() z = random.sample(y, n_structures) frames_c123.append(z) frames_c123_2d = [item for elem in frames_c123 for item in elem] with open("frames_c123_2d.pickle", "wb") as f: pk.dump(frames_c123_2d, f) with open("indices_c123_2d.pickle", "wb") as f: pk.dump(indices_c123_2d, f) ##saving probabilities for each selected frame ####c1 prob_c1_2d_list = [] for i in indices_c1_2d: prob_c1_2d_list.append(df_c1["pA_c1"][i]) prob_c1_2d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c1_2d_list ) ) prob_c1_2d_list = [x / n_structures for x in prob_c1_2d_list] with open("prob_c1_2d_list.pickle", "wb") as f: pk.dump(prob_c1_2d_list, f) ####c12 prob_c12_2d_list = [] for i in indices_c12_2d: prob_c12_2d_list.append(df_c12["pA_c12"][i]) prob_c12_2d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c12_2d_list ) ) prob_c12_2d_list = [x / n_structures for x in prob_c12_2d_list] with open("prob_c12_2d_list.pickle", "wb") as f: pk.dump(prob_c12_2d_list, f) ####c123 prob_c123_2d_list = [] for i in indices_c123_2d: prob_c123_2d_list.append(df_c123["pA_c123"][i]) prob_c123_2d_list = list( itertools.chain.from_iterable( itertools.repeat(x, n_structures) for x in prob_c123_2d_list ) ) prob_c123_2d_list = [x / n_structures for x in prob_c123_2d_list] with open("prob_c123_2d_list.pickle", "wb") as f: pk.dump(prob_c123_2d_list, f) ref_df_2d = pd.DataFrame(bins, columns=["binsX", "binsY"]) ref_df_2d["XY"] = ref_df_2d.agg( lambda x: f"{x['binsX']} , {x['binsX']}", axis=1 ) ref_df_2d = ref_df_2d[["XY"]] index_ref_2d = [] for i in range(len(bins_tuple_X) * len(bins_tuple_Y)): index_ref_2d.append(i) index_ref_df_2d = pd.DataFrame(index_ref_2d, columns=["index"]) df_ref_2d = pd.concat([ref_df_2d, index_ref_df_2d], axis=1) df_ref_2d.to_csv("ref_2d.txt", header=True, index=None, sep=" ", mode="w") df.to_csv("df_2d.csv", index=False) os.system("rm -rf __pycache__") print("Successfully Completed Reweighing") def save_frames(): """ Creates a directory named we_structures. Inside this directory, there are six subdirectories (three for one-dimension reweighing and other three for two-dimensional reweighted frames). All frames for one, two and three-degree Maclaurin series expanded reweighted frames are present in their respective folders. """ cwd = os.getcwd() os.system("rm -rf we_structures") os.system("mkdir we_structures") os.chdir(cwd + "/" + "we_structures") os.system("mkdir 1d_c1") os.system("mkdir 1d_c12") os.system("mkdir 1d_c123") os.system("mkdir 2d_c1") os.system("mkdir 2d_c12") os.system("mkdir 2d_c123") os.chdir(cwd) df1 = pd.read_csv("df_1d.csv") index = df1["index"].tolist() frame = df1["frame_index"].tolist() index_frame = dict(zip(frame, index)) df2 = pd.read_csv("ref_1d.txt", sep=" ", delimiter=None, header="infer") index_ = df2["index"].tolist() bins = df2["bins"].tolist() index_bins = dict(zip(index_, bins)) #### 1d with open("frames_c1_1d.pickle", "rb") as input_file: frames_c1_1d = pk.load(input_file) for i in frames_c1_1d: j = index_frame[i] frame_index = frames_c1_1d.index(i) k = index_bins[j] k = k.strip("[]") k = k.replace(" , ", "_") # traj = pt.load("system_final.nc", top="system_final.prmtop", frame_indices=[i]) traj = md.load_frame( "system_final.nc", top="system_final.prmtop", index=i ) frame_pdb = str(frame_index) + "_" + k + "_1d_c1_" + str(i) + ".pdb" # pt.save(frame_pdb, traj, overwrite=True) traj.save_pdb(frame_pdb, force_overwrite=True) target_dir = cwd + "/" + "we_structures" + "/" + "1d_c1" shutil.move(cwd + "/" + frame_pdb, target_dir + "/" + frame_pdb) with open("frames_c12_1d.pickle", "rb") as input_file: frames_c12_1d = pk.load(input_file) for i in frames_c12_1d: j = index_frame[i] frame_index = frames_c12_1d.index(i) k = index_bins[j] k = k.strip("[]") k = k.replace(" , ", "_") # traj = pt.load("system_final.nc", top="system_final.prmtop", frame_indices=[i]) traj = md.load_frame( "system_final.nc", top="system_final.prmtop", index=i ) frame_pdb = str(frame_index) + "_" + k + "_1d_c12_" + str(i) + ".pdb" # pt.save(frame_pdb, traj, overwrite=True) traj.save_pdb(frame_pdb, force_overwrite=True) target_dir = cwd + "/" + "we_structures" + "/" + "1d_c12" shutil.move(cwd + "/" + frame_pdb, target_dir + "/" + frame_pdb) with open("frames_c123_1d.pickle", "rb") as input_file: frames_c123_1d = pk.load(input_file) for i in frames_c123_1d: j = index_frame[i] frame_index = frames_c123_1d.index(i) k = index_bins[j] k = k.strip("[]") k = k.replace(" , ", "_") # traj = pt.load("system_final.nc", top="system_final.prmtop", frame_indices=[i]) traj = md.load_frame( "system_final.nc", top="system_final.prmtop", index=i ) frame_pdb = str(frame_index) + "_" + k + "_1d_c123_" + str(i) + ".pdb" # pt.save(frame_pdb, traj, overwrite=True) traj.save_pdb(frame_pdb, force_overwrite=True) target_dir = cwd + "/" + "we_structures" + "/" + "1d_c123" shutil.move(cwd + "/" + frame_pdb, target_dir + "/" + frame_pdb) df1 = pd.read_csv("df_2d.csv") index = df1["index"].tolist() frame = df1["frame_index"].tolist() index_frame = dict(zip(frame, index)) df2 = pd.read_csv("ref_2d.txt", sep=" ", delimiter=None, header="infer") index_ = df2["index"].tolist() bins = df2["XY"].tolist() index_bins = dict(zip(index_, bins)) #### 2d with open("frames_c1_2d.pickle", "rb") as input_file: frames_c1_2d = pk.load(input_file) for i in frames_c1_2d: j = index_frame[i] frame_index = frames_c1_2d.index(i) k = index_bins[j] k = k.strip("[]") k = k.replace("] , [", "_") k = k.replace(", ", "_") # traj = pt.load("system_final.nc", top="system_final.prmtop", frame_indices=[i]) traj = md.load_frame( "system_final.nc", top="system_final.prmtop", index=i ) frame_pdb = str(frame_index) + "_" + k + "_2d_c1_" + str(i) + ".pdb" # pt.save(frame_pdb, traj, overwrite=True) traj.save_pdb(frame_pdb, force_overwrite=True) target_dir = cwd + "/" + "we_structures" + "/" + "2d_c1" shutil.move(cwd + "/" + frame_pdb, target_dir + "/" + frame_pdb) with open("frames_c12_2d.pickle", "rb") as input_file: frames_c12_2d = pk.load(input_file) for i in frames_c12_2d: j = index_frame[i] frame_index = frames_c12_2d.index(i) k = index_bins[j] k = k.strip("[]") k = k.replace("] , [", "_") k = k.replace(", ", "_") # traj = pt.load("system_final.nc", top="system_final.prmtop", frame_indices=[i]) traj = md.load_frame( "system_final.nc", top="system_final.prmtop", index=i ) frame_pdb = str(frame_index) + "_" + k + "_2d_c12_" + str(i) + ".pdb" # pt.save(frame_pdb, traj, overwrite=True) traj.save_pdb(frame_pdb, force_overwrite=True) target_dir = cwd + "/" + "we_structures" + "/" + "2d_c12" shutil.move(cwd + "/" + frame_pdb, target_dir + "/" + frame_pdb) with open("frames_c123_2d.pickle", "rb") as input_file: frames_c123_2d = pk.load(input_file) for i in frames_c123_2d: j = index_frame[i] frame_index = frames_c123_2d.index(i) k = index_bins[j] k = k.strip("[]") k = k.replace("] , [", "_") k = k.replace(", ", "_") # traj = pt.load("system_final.nc", top="system_final.prmtop", frame_indices=[i]) traj = md.load_frame( "system_final.nc", top="system_final.prmtop", index=i ) frame_pdb = str(frame_index) + "_" + k + "_2d_c123_" + str(i) + ".pdb" # pt.save(frame_pdb, traj, overwrite=True) traj.save_pdb(frame_pdb, force_overwrite=True) target_dir = cwd + "/" + "we_structures" + "/" + "2d_c123" shutil.move(cwd + "/" + frame_pdb, target_dir + "/" + frame_pdb) def save_we_inputs(): """ Writes an input file in each of the simulation folder. Input file contains one column each for the name of the PDB file and its respective probability. """ cwd = os.getcwd() target_dir = cwd + "/" + "we_structures" dir_list = ["1d_c1", "1d_c12", "1d_c123", "2d_c1", "2d_c12", "2d_c123"] for i in dir_list: os.chdir(target_dir + "/" + i) pdbs = os.listdir(".") pickle_file = "pdb_" + i + ".pickle" with open(pickle_file, "wb") as f: pk.dump(pdbs, f) shutil.move( target_dir + "/" + i + "/" + pickle_file, cwd + "/" + pickle_file ) os.chdir(cwd) # c1_1d with open("prob_c1_1d_list.pickle", "rb") as input_file: prob_c1_1d_list = pk.load(input_file) prob_c1_1d_list = [i / min(prob_c1_1d_list) for i in prob_c1_1d_list] prob_c1_1d_list = [i / sum(prob_c1_1d_list) for i in prob_c1_1d_list] with open("pdb_1d_c1.pickle", "rb") as input_file: pdb_1d_c1 = pk.load(input_file) pdb_1d_c1_index = [] for i in range(len(pdb_1d_c1)): pdb_1d_c1_index.append(int(re.findall(r"\d+", pdb_1d_c1[i])[0])) df = pd.DataFrame( list(zip(pdb_1d_c1, prob_c1_1d_list, pdb_1d_c1_index)), columns=["pdb_name", "probability", "pdb_index"], ) df = df.sort_values(by=["pdb_index"]) df = df[["probability", "pdb_name"]] index_row = [] for i in range(df.shape[0]): index_row.append(i) df_index = pd.DataFrame(index_row, columns=["index_"]) df_merged = pd.concat([df_index, df], axis=1) df_merged.to_csv( "we_input_c1_1d.txt", header=False, index=None, sep=" ", mode="w" ) # c12_1d with open("prob_c12_1d_list.pickle", "rb") as input_file: prob_c12_1d_list = pk.load(input_file) prob_c12_1d_list = [i / min(prob_c12_1d_list) for i in prob_c12_1d_list] prob_c12_1d_list = [i / sum(prob_c12_1d_list) for i in prob_c12_1d_list] with open("pdb_1d_c12.pickle", "rb") as input_file: pdb_1d_c12 = pk.load(input_file) pdb_1d_c12_index = [] for i in range(len(pdb_1d_c12)): pdb_1d_c12_index.append(int(re.findall(r"\d+", pdb_1d_c12[i])[0])) df = pd.DataFrame( list(zip(pdb_1d_c12, prob_c12_1d_list, pdb_1d_c12_index)), columns=["pdb_name", "probability", "pdb_index"], ) df = df.sort_values(by=["pdb_index"]) df = df[["probability", "pdb_name"]] index_row = [] for i in range(df.shape[0]): index_row.append(i) df_index = pd.DataFrame(index_row, columns=["index_"]) df_merged =
pd.concat([df_index, df], axis=1)
pandas.concat
# RCS14_entrainment_naive.py # Generate timeseries analysis and power estimate # Author: maria.olaru@ """ Created on Mon May 3 18:22:44 2021 @author: mariaolaru """ import numpy as np import os import scipy.signal as signal import pandas as pd import math from preproc.preprocess_funcs import convert_unix2dt from fooof import FOOOF def name_file(mscs, gp): out_plot_dir = gp + '/' + 'tables/' if not os.path.isdir(out_plot_dir): os.mkdir(out_plot_dir) subj_id = mscs['subj_id'].iloc[0] session_id = str(int(mscs['session_id'].iloc[0])) out_name = subj_id + '_' + session_id out_fp = out_plot_dir + out_name return out_fp def qc_msc(mscs): num_fs = len(mscs['ch1_sr'].unique()) num_sesh = len(mscs['session_id'].unique()) num_amps = len(mscs['amplitude_ma'].unique()) mscs_qc = mscs.iloc[:, 5:len(mscs.columns)-3].drop(['stim_contact_an'], axis = 1) if ('timestamp' in mscs_qc.columns): mscs_qc = mscs_qc.drop(['timestamp'], axis = 1) mscs_qc_avg = mscs_qc.mean() if (num_fs > 1): raise Exception("Timestamp range cannot have multiple sampling rates") if (num_sesh > 1): raise Exception("Timestamp range cannot have multiple session ids... code still inp") if (num_amps > 1): raise Exception("Timestamp range cannot have multiple stim amplitudes... code still inp") if ((round((mscs_qc_avg - mscs_qc), 3)!=0).all().any()): raise Exception("A setting was not held constant in current session... code still inp") return def subset_msc(msc, ts_range): mscs_start = msc[(msc['timestamp_unix'] <= ts_range[0])].tail(1) mscs_end = msc[(msc['timestamp_unix'] >= ts_range[0]) & (msc['timestamp_unix'] <= ts_range[1])] if mscs_start.equals(mscs_end): return mscs_start else: mscs = pd.concat([mscs_start, mscs_end]) return mscs def subset_md(md, mscs, fs, ts_range, ts_int = None): """ Parameters ---------- md : meta data output from preprocess_data() ts_range: vector of UNIX timestamps with min and max values Returns ------- a subset of the meta data with modified timestamps """ print("Subsetting the meta data") ts_min = md['timestamp_unix'].iloc[md['timestamp_unix'].sub(ts_range[0]).abs().idxmin()] ts_max = md['timestamp_unix'].iloc[md['timestamp_unix'].sub(ts_range[1]).abs().idxmin()] md_i_min = md[md['timestamp_unix'] == ts_min].index[0] md_i_max = md[md['timestamp_unix'] == ts_max].index[0] mds = md.iloc[md_i_min:md_i_max, :] if (ts_int != None): i_int = mscs[mscs['timestamp'] == ts_int].index[0] amp1 = mscs['amplitude_ma'].iloc[i_int-1] amp2 = mscs['amplitude_ma'].iloc[i_int] mds = mds.assign(amp=np.where(mds['timestamp_unix'] < ts_int, amp1, amp2)) mds = md.loc[md_i_min:md_i_max, :] mds = mds.reset_index(drop=True) ts_dt = convert_unix2dt(mds['timestamp_unix']) mds.insert(1, 'timestamp', ts_dt) tt = len(mds)/fs/60 return [mds, tt] def convert_psd_montage(df, sr): """ Parameters ---------- df : linked dataframe Returns ------- df_psd : dataframe, power spectra using Welch's in long-form """ print('Creating PSDs for sr' + str(sr)) cols = df['sense_contacts'].unique() labels = np.array(df['label'].unique()) df_collection = {} for label in labels: df_collection[label] = pd.DataFrame(columns = ['f_0']) for i in range(len(cols)): dfs = df[(df['label'] == label) & (df['sr'] == sr) & (df['sense_contacts'] == cols[i])] df_curr = convert_psd(dfs['voltage'], sr, cols[i]) df_collection[label] = df_collection[label].merge(df_curr, how = 'outer') return df_collection def convert_psd(voltage, fs, col_header): f_0, Pxx_den = signal.welch(voltage, fs, average = 'median', window = 'hann', nperseg=fs) psd_ind = pd.DataFrame(np.array([f_0, Pxx_den]).T, columns=['f_0', col_header]) return psd_ind def convert_psd_wide(df, sr): #df is a linked df stim_freqs = np.sort(df['stim_freq'].unique()) sense_contacts = df['sense_contacts'].unique() df_collection = {} for stim_freq in stim_freqs: df_collection[stim_freq] = {} dfs = df[df['stim_freq'] == stim_freq] stim_amps = np.sort(dfs['stim_amp'].unique()) for stim_amp in stim_amps: df_collection[stim_freq][stim_amp] = pd.DataFrame(columns = ['f_0']) for i in range(len(stim_amps)): dfss = dfs[dfs['stim_amp'] == stim_amp] for j in range(len(sense_contacts)): dfsss = dfss[dfss['sense_contacts'] == sense_contacts[j]] df_psd_ind = convert_psd(dfsss['voltage'], sr, sense_contacts[j]) df_collection[stim_freq][stim_amp] = df_collection[stim_freq][stim_amp].merge(df_psd_ind, how = 'outer') return df_collection def convert_psd_long_old(df, gp, contacts, time_duration, time_overlap, sr, spec): """ Parameters ---------- df : timedomain data (not linked) spec: type of psd (period, aperiodic, gross) Returns ------- df_psd : dataframe, power spectra using Welch's in long-form #Assumes sense contacts don't change """ out_name = os.path.basename(gp) df_psd = pd.DataFrame() #initialize metadata table of settings information nperseg = time_duration * sr overlapseg = time_overlap * sr channels = df.columns[1:5] for i in range(len(channels)): ch = channels[i] df_ch = df.loc[:,ch] df_ch.name = contacts[i] indx_start = int(0) indx_stop = int(nperseg) num_spectra = math.floor((len(df_ch)-nperseg)/(nperseg - overlapseg)) # ts_sec = df['timestamp'].round(-3)/1000 # ts_wholemin = ts_sec.iloc[np.where(ts_sec % 60 == 0)[0]] for j in range(num_spectra): ts_start = int(df.iloc[indx_start, 0]) ts_stop = int(df.iloc[indx_stop, 0]) ts_sec = round(ts_stop, -3)/1000 if (ts_sec % 60 != 0): indx_start = int(indx_start + (nperseg - overlapseg)) indx_stop = int(indx_stop + (nperseg - overlapseg)) continue ts_diff = ts_stop - ts_start if (ts_diff > (time_duration*1000)*1.1): indx_start = int(indx_start + (nperseg - overlapseg)) indx_stop = int(indx_stop + (nperseg - overlapseg)) continue else: print("ch: " + contacts[i] + " (" + str(j) + "/" + str(num_spectra) + ")") voltage = df_ch[indx_start:indx_stop] nan_indx = np.where(np.isnan(voltage) == True)[0] if (len(nan_indx) > 0): if (len(nan_indx) > 0.1*len(voltage)): continue else: voltage = voltage.drop(voltage.index[nan_indx]) #print(indx_start) #print(indx_stop) #print(ts_tail) df_psd_ind = convert_psd(voltage, sr, 'spectra') if (spec == 'aperiodic'): spectrum = df_psd_ind[df_psd_ind.columns[len(df_psd_ind.columns)-1]] freq_range = [4, 100] fooof_psd = flatten_psd(df_psd_ind['f_0'], spectrum, freq_range) df_psd_ind = fooof_psd.loc[:, ['f_0', 'fooof_peak_rm']] if (spec == 'periodic'): spectrum = df_psd_ind[df_psd_ind.columns[len(df_psd_ind.columns)-1]] freq_range = [4, 100] fooof_psd = flatten_psd(df_psd_ind['f_0'], spectrum, freq_range) df_psd_ind = fooof_psd.loc[:, ['f_0', 'fooof_flat']] df_psd_ind['contacts'] = df_ch.name df_psd_ind['timestamp'] = int(ts_sec*1000) df_psd =
pd.concat([df_psd, df_psd_ind])
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import print_function from datetime import timedelta, date import pandas as pd import numpy as np import warnings import requests import sqlalchemy import airports def configure_engine(): DB_TYPE = 'mysql' DB_DRIV = 'pymysql' DB_USER = 'DBUSER' DB_PASS = 'PASSWORD' DB_HOST = 'IP' DB_NAME = 'DBNAME' SQLALCHEMY_DATABASE_URI = '%s+%s://%s:%s@%s/%s' % (DB_TYPE, DB_DRIV, DB_USER, DB_PASS, DB_HOST, DB_NAME) return SQLALCHEMY_DATABASE_URI def create_table(): POOL_SIZE = 50 metadata = sqlalchemy.MetaData() TABLENAME = 'weather' ENGINE = sqlalchemy.create_engine( configure_engine(), pool_size=POOL_SIZE, max_overflow=0) t = sqlalchemy.Table(TABLENAME, metadata, sqlalchemy.Column('id', sqlalchemy.Integer, primary_key=True, autoincrement=True), sqlalchemy.Column('DateTime', sqlalchemy.DATETIME), sqlalchemy.Column('Airport-code', sqlalchemy.VARCHAR(10)), sqlalchemy.Column('Temperature', sqlalchemy.DECIMAL(3,1)), sqlalchemy.Column('Dew-Point', sqlalchemy.DECIMAL(3,1)), sqlalchemy.Column('Humidity', sqlalchemy.VARCHAR(10)), sqlalchemy.Column('Pressure-hPa', sqlalchemy.INTEGER), sqlalchemy.Column('Visibility-km', sqlalchemy.DECIMAL(3,1)), sqlalchemy.Column('Wind-Dir', sqlalchemy.VARCHAR(10)), sqlalchemy.Column('Conditions', sqlalchemy.TEXT), sqlalchemy.Column('Wind-Speed-kmh', sqlalchemy.DECIMAL(3,1)), sqlalchemy.Column('Wind-Speed-ms', sqlalchemy.DECIMAL(3,1)) ) t.create(ENGINE) def read_text(link): page = requests.get(link) return page.text def get_data_between_texts(raw_text, text1, text2, include_texts=True): index1 = raw_text.find(text1) index2 = raw_text.find(text2) if(include_texts): filtered = raw_text[index1:index2+len(text2)] else: filtered = raw_text[index1+len(text1):index2] return filtered def get_weather_table(url): full_html = read_text(url) table_header = '<table cellspacing="0" cellpadding="0" id="obsTable" class="obs-table responsive">' table_footer = '<div class="obs-table-footer">' table = get_data_between_texts(full_html, table_header, table_footer) return pd.read_html(table, header=0)[0] def generate_weather_information(airport_code, year, month, day): LINK = 'https://www.wunderground.com/history/airport/%s/%s/%s/%s/DailyHistory.html' % (airport_code, year, month, day) try: df = get_weather_table(LINK) except: return pd.DataFrame() #Drop columns that not appair for all airports. if unicode('Heat Index',"utf-8") in df.columns: df = df.drop('Heat Index', 1) if unicode('Windchill',"utf-8") in df.columns: df = df.drop('Windchill', 1) df = df.drop('Gust Speed', 1) df = df.drop('Events', 1) df = df.replace(np.nan, 'NA', regex=True) df = df[df['Precip'] == 'NA'] df = df[df['Humidity'] != 'N/A%'] df = df.drop('Precip', 1) df['Temp.'] = df['Temp.'].map(lambda x: x.rstrip(unicode(' °C',"utf-8")).replace('- ','0.0').replace(u'\xa0', u'')) df['Dew Point'] = df['Dew Point'].map(lambda x: x.rstrip(unicode(' °C',"utf-8")).replace('- ','0.0').replace(u'\xa0', u'')) df['Wind Speed'] = df['Wind Speed'].map(lambda x: x.replace('Calm','0.0 km/h / 0.0 m/s').replace('-','0.0 km/h / 0.0 m/s').replace(u'\xa0', u'')) df['Wind-Speed-kmh'] = df['Wind Speed'].map(lambda x: x.split(' / ')[0].rstrip(unicode(' km/h',"utf-8")).replace(u'\xa0', u'')) df['Wind-Speed-ms'] = df['Wind Speed'].map(lambda x: x.split(' / ')[1].rstrip(unicode(' m/s',"utf-8")).replace(u'\xa0', u'')) df = df.drop('Wind Speed', 1) df['Pressure'] = df['Pressure'].map(lambda x: x.rstrip(unicode(' hPa',"utf-8")).replace('-','0.0').replace(u'\xa0', u'')) df['Visibility'] = df['Visibility'].map(lambda x: x.rstrip(unicode(' km',"utf-8")).replace('-','0.0').replace(u'\xa0', u'')) #Adjust the first column name to just Time df.rename(columns={ df.columns[0]: 'Time' }, inplace=True) measure_date = '%s-%s-%s ' % (year, month, day) df['Time'] =
pd.to_datetime(measure_date + df['Time'])
pandas.to_datetime
import numpy as np import pandas as pd from sklearn import preprocessing import types def csv_loader(path, csv_header, manual_encoder, sep=',', col_names=None, drop_first_line=False, drop_last_line=False, missing_handle=dict()): # Arguments: # path: path to csv file; # used in function pandas.read_csv # csv_header: 0 if the first row is the columns names; None if no header # used in function pandas.read_csv # manual_encode: a dictionary of dictionaries (can be empty); # column_name->(original_value->encoded_value); # labels must be encoded manually # sep: separators of csv # used in function pandas.read_csv # col_names: optional, names of columns in data files # used in function pandas.read_csv # drop_first_line: optional, binary, if ==True, drop the first row of the data file # drop_last_line: optional, if ==True, drop the last row of the data file # missing_handle: dictionary, specify the scheme to handle a CONTINUOUS missing value; # applied BEFORE the manual encoder; # column_name -> (missing symbol, handle scheme) # handle_scheme could be 'mean' to take the mean values # # Functionality: # load a given csv file and encode its values; # set the column names accordingly; # solve the missing values; # drop the last line of the file (might NaNs) if drop_last_line=True. # # Returns: # df: the loaded dataframe. engine = 'c' if len(sep) > 1: engine = 'python' df = pd.read_csv(path, sep=sep, header=csv_header, names=col_names, engine=engine) if drop_first_line: df.drop(df.head(1).index, inplace=True) if drop_last_line: df.drop(df.tail(1).index, inplace=True) # handle missing values: for col in missing_handle.keys(): symbol, scheme = missing_handle[col] if scheme == 'mean': df[col][df[col] == symbol] = df[col][df[col] != symbol].astype(float).mean() # Manual encoding for col in manual_encoder.keys(): if col not in df.columns: print(col, "cannot be found in the data file:", path) raise NameError("header is not in the data file: " + path) if isinstance(manual_encoder[col], types.FunctionType): df[col] = df[col].apply(manual_encoder[col]) elif isinstance(manual_encoder[col], dict): df[col] = df[col].map(manual_encoder[col]) else: raise TypeError return df def feature_label_split(df, label_col, label_map=None): # Arguments: # df: DataFrame, containing features and labels. # label_col: the column to be used as label; can be index if no name # label_map: original_value->encoded_value; could either be a function or a dictionary # # Functionality: # split the input DataFrame of the form (X, y) into X, y; # then have y encoded if needed. # # Returns: # X: features. # y: labels. if label_col not in df.columns: raise NameError("label cannot be found in the dataframe") y = df[label_col] X = df.drop(label_col, axis=1) if label_map is not None: if isinstance(label_map, types.FunctionType): y = y.apply(label_map) elif isinstance(label_map, dict): y = y.map(label_map) return X, y def train_test_split(X, y, train_size, test_size=None, shuffle=True, seed=None): # Arguments: # X: pandas DataFrame, features matrix # y: labels # train_size: size of training data # test_size: optional; if None, then calculate based on train_size. # shuffle: binary; if shuffle == True, then shuffle the X and y before slicing # seed: random seed for shuffling; has no effect if shuffle is disabled # # Functionality: # split a dataset into feature matrix and labels # # Returns: # train_X # train_y # test_X # test_y if shuffle: if seed is not None: np.random.seed(seed) random_perm = np.random.permutation(X.index) X = X.reindex(random_perm) y = y.reindex(random_perm) if test_size is None: return (X.iloc[:train_size], y.iloc[:train_size], X.iloc[train_size:], y.iloc[train_size:]) assert (train_size + test_size <= X.shape[0]) return (X.iloc[:train_size], y.iloc[:train_size], X.iloc[-test_size:], y.iloc[-test_size:]) def feature_engineering_cat(train_X, test_X, cat_col): # Arguments: # train_X: training feature matrix # test_X: testing feature matrix # cat_col: the list of columns with categorical values # # Functionality: # one hot encode all categorical values; # # Returns: # train_X: the engineered training feature matrix # test_X: the engineered testing feature matrix train_test = train_X.append(test_X, ignore_index=True) train_size = train_X.shape[0] # one-hot encode categorical values for i in np.intersect1d(cat_col, train_test.columns.values): temp =
pd.get_dummies(train_test[i])
pandas.get_dummies
# Gist example of IB wrapper from here: https://gist.github.com/robcarver17/f50aeebc2ecd084f818706d9f05c1eb4 # # Download API from http://interactivebrokers.github.io/# # (must be at least version 9.73) # # Install python API code /IBJts/source/pythonclient $ python3 setup.py install # # Note: The test cases, and the documentation refer to a python package called IBApi, # but the actual package is called ibapi. Go figure. # # Get the latest version of the gateway: # https://www.interactivebrokers.com/en/?f=%2Fen%2Fcontrol%2Fsystemstandalone-ibGateway.php%3Fos%3Dunix # (for unix: windows and mac users please find your own version) # # Run the gateway # # user: edemo # pwd: <PASSWORD> # # duration units and bar sizes: # https://interactivebrokers.github.io/tws-api/historical_bars.html#hd_duration # limitations: # https://interactivebrokers.github.io/tws-api/historical_limitations.html import os import time import pprint import queue import datetime import traceback from pytz import timezone from pathlib import Path import pandas as pd import numpy as np from tqdm import tqdm import seaborn as sns import matplotlib.pyplot as plt from ibapi.wrapper import EWrapper from ibapi.client import EClient from ibapi.contract import Contract as IBcontract from threading import Thread DEFAULT_HISTORIC_DATA_ID = 50 DEFAULT_GET_CONTRACT_ID = 43 DEFAULT_GET_NP_ID = 42 DEFAULT_GET_EARLIEST_ID = 1 DEFAULT_HISTORIC_NEWS_ID = 1001 ## marker for when queue is finished FINISHED = object() STARTED = object() TIME_OUT = object() class finishableQueue(object): def __init__(self, queue_to_finish): self._queue = queue_to_finish self.status = STARTED def get(self, timeout): """ Returns a list of queue elements once timeout is finished, or a FINISHED flag is received in the queue :param timeout: how long to wait before giving up :return: list of queue elements """ contents_of_queue = [] finished = False while not finished: try: current_element = self._queue.get(timeout=timeout) if current_element is FINISHED: finished = True self.status = FINISHED else: contents_of_queue.append(current_element) ## keep going and try and get more data except queue.Empty: ## If we hit a time out it's most probable we're not getting a finished element any time soon ## give up and return what we have finished = True self.status = TIME_OUT return contents_of_queue def timed_out(self): return self.status is TIME_OUT class TestWrapper(EWrapper): """ The wrapper deals with the action coming back from the IB gateway or TWS instance We override methods in EWrapper that will get called when this action happens, like currentTime Extra methods are added as we need to store the results in this object """ def __init__(self): self._my_contract_details = {} self._my_historic_data_dict = {} self._my_earliest_timestamp_dict = {} self._my_np_dict = {} self._my_hn_dict = {} self._my_na_dict = {} self._my_errors = queue.Queue() ## error handling code def init_error(self): error_queue = queue.Queue() self._my_errors = error_queue def get_error(self, timeout=5): if self.is_error(): try: return self._my_errors.get(timeout=timeout) except queue.Empty: return None return None def is_error(self): an_error_if=not self._my_errors.empty() return an_error_if def error(self, id, errorCode, errorString): ## Overriden method errormsg = "IB error id %d errorcode %d string %s" % (id, errorCode, errorString) self._my_errors.put(errormsg) ## get contract details code def init_contractdetails(self, reqId): self._my_contract_details[reqId] = queue.Queue() return self._my_contract_details[reqId] def contractDetails(self, reqId, contractDetails): ## overridden method if reqId not in self._my_contract_details.keys(): self.init_contractdetails(reqId) self._my_contract_details[reqId].put(contractDetails) def contractDetailsEnd(self, reqId): ## overriden method if reqId not in self._my_contract_details.keys(): self.init_contractdetails(reqId) self._my_contract_details[reqId].put(FINISHED) def init_historicprices(self, tickerid): self._my_historic_data_dict[tickerid] = queue.Queue() return self._my_historic_data_dict[tickerid] def init_earliest_timestamp(self, tickerid): self._my_earliest_timestamp_dict[tickerid] = queue.Queue() return self._my_earliest_timestamp_dict[tickerid] def init_np(self, tickerid): self._my_np_dict[tickerid] = queue.Queue() return self._my_np_dict[tickerid] def init_hn(self, requestId): self._my_hn_dict[requestId] = queue.Queue() return self._my_hn_dict[requestId] def init_na(self, requestId): self._my_na_dict[requestId] = queue.Queue() return self._my_na_dict[requestId] def historicalData(self, tickerid, bar): ## Overriden method ## Note I'm choosing to ignore barCount, WAP and hasGaps but you could use them if you like # pprint.pprint(bar.__dict__) bardata = (bar.date, bar.open, bar.high, bar.low, bar.close, bar.volume) historic_data_dict = self._my_historic_data_dict ## Add on to the current data if tickerid not in historic_data_dict.keys(): self.init_historicprices(tickerid) historic_data_dict[tickerid].put(bardata) def headTimestamp(self, tickerid, headTimestamp:str): ## overridden method if tickerid not in self._my_earliest_timestamp_dict.keys(): self.init_earliest_timestamp(tickerid) self._my_earliest_timestamp_dict[tickerid].put(headTimestamp) self._my_earliest_timestamp_dict[tickerid].put(FINISHED) def newsProviders(self, newsProviders): ## overridden method tickerid = DEFAULT_GET_NP_ID if tickerid not in self._my_np_dict.keys(): self.init_np(tickerid) self._my_np_dict[tickerid].put(newsProviders) self._my_np_dict[tickerid].put(FINISHED) def historicalDataEnd(self, tickerid, start:str, end:str): ## overriden method if tickerid not in self._my_historic_data_dict.keys(): self.init_historicprices(tickerid) self._my_historic_data_dict[tickerid].put(FINISHED) def historicalNews(self, requestId, time, providerCode, articleId, headline): newsdata = (time, providerCode, articleId, headline) newsdict = self._my_hn_dict if requestId not in newsdict.keys(): self.init_hn(requestId) newsdict[requestId].put(newsdata) def historicalNewsEnd(self, requestId, hasMore): if requestId not in self._my_hn_dict.keys(): self.init_hn(requestId) if hasMore: print('more results available') self._my_hn_dict[requestId].put(FINISHED) def newsArticle(self, requestId, articleType, articleText): if requestId not in self._my_na_dict.keys(): self.init_na(requestId) self._my_na_dict[requestId].put((articleType, articleText)) self._my_na_dict[requestId].put(FINISHED) class TestClient(EClient): """ The client method We don't override native methods, but instead call them from our own wrappers """ def __init__(self, wrapper): ## Set up with a wrapper inside EClient.__init__(self, wrapper) def resolve_ib_contract(self, ibcontract, reqId=DEFAULT_GET_CONTRACT_ID): """ From a partially formed contract, returns a fully fledged version :returns fully resolved IB contract """ ## Make a place to store the data we're going to return contract_details_queue = finishableQueue(self.init_contractdetails(reqId)) print("Getting full contract details from the server... ") self.reqContractDetails(reqId, ibcontract) ## Run until we get a valid contract(s) or get bored waiting MAX_WAIT_SECONDS = 3 new_contract_details = contract_details_queue.get(timeout = MAX_WAIT_SECONDS) while self.wrapper.is_error(): print(self.get_error()) if contract_details_queue.timed_out(): print("Exceeded maximum wait for wrapper to confirm finished - seems to be normal behaviour") if len(new_contract_details)==0: print("Failed to get additional contract details: returning unresolved contract") return ibcontract, new_contract_details if len(new_contract_details)>1: print("got multiple contracts; using first one") new_contract_details = new_contract_details[0] resolved_ibcontract = new_contract_details.contract return resolved_ibcontract, new_contract_details def get_IB_historical_data(self, ibcontract, whatToShow="ADJUSTED_LAST", durationStr="1 Y", barSizeSetting="1 day", tickerid=DEFAULT_HISTORIC_DATA_ID, latest_date=None): """ Returns historical prices for a contract, up to latest_date if latest_date is none, uses todays date latest_date should be of form %Y%m%d %H:%M:%S %Z ibcontract is a Contract :returns list of prices in 4 tuples: Open high low close volume """ # set latest_date to today and now if it is None if latest_date is None: latest_date = get_latest_date_local() ## Make a place to store the data we're going to return historic_data_queue = finishableQueue(self.init_historicprices(tickerid)) # Request some historical data. Native method in EClient self.reqHistoricalData( tickerid, # tickerId, ibcontract, # contract, latest_date, # endDateTime, durationStr, # durationStr, barSizeSetting, # barSizeSetting, whatToShow=whatToShow, useRTH=1, formatDate=1, keepUpToDate=False, # <<==== added for api 9.73.2 chartOptions=[] ## chartOptions not used ) ## Wait until we get a completed data, an error, or get bored waiting MAX_WAIT_SECONDS = 5 while True: print("Getting historical data from the server... could take %d seconds to complete " % MAX_WAIT_SECONDS) historic_data = historic_data_queue.get(timeout=MAX_WAIT_SECONDS) er = '' while self.wrapper.is_error(): er = self.get_error() print(er) if 'Not connected' in er: print('sleeping 30s to wait for reconnection; suggest restarting TWS') time.sleep(30) if "HMDS query returned no data" in er: print(historic_data) print(historic_data is None) if historic_data_queue.timed_out() and er is None: print("Exceeded maximum wait for wrapper to confirm finished - seems to be normal behaviour") # only keep trying if not connected if not 'Not connected' in er: break # TODO: this is cancelling query early maybe? self.cancelHistoricalData(tickerid) # convert to pandas dataframe # date, open, high, low, close, vol # already adjusted for splits if len(historic_data) != 0: df = pd.DataFrame.from_records(data=historic_data, index='datetime', columns=['datetime', 'open', 'high', 'low', 'close', 'volume']) df.index = pd.to_datetime(df.index) if whatToShow not in ['TRADES', 'ADJUSTED_LAST']: # volume only available for trades df.drop('volume', axis=1, inplace=True) return df else: return historic_data def getEarliestTimestamp(self, contract, whatToShow='ADJUSTED_LAST', useRTH=1, formatDate=1, tickerid=DEFAULT_GET_EARLIEST_ID): # parameters: https://interactivebrokers.github.io/tws-api/classIBApi_1_1EClient.html#a059b5072d1e8e8e96394e53366eb81f3 ## Make a place to store the data we're going to return ## Wait until we get a completed data, an error, or get bored waiting MAX_WAIT_SECONDS = 2 tries = 0 while True: tries += 1 earliest_timestamp_queue = finishableQueue(self.init_earliest_timestamp(tickerid)) self.reqHeadTimeStamp(tickerid, contract, whatToShow, useRTH, formatDate) print("Getting earliest timestamp from the server... could take %d seconds to complete " % MAX_WAIT_SECONDS) earliest = earliest_timestamp_queue.get(timeout=MAX_WAIT_SECONDS) while self.wrapper.is_error(): er = self.get_error() print(er) if 'No head time stamp' in er: return None break if earliest_timestamp_queue.timed_out(): print("Exceeded maximum wait for wrapper to confirm finished - seems to be normal behaviour") self.cancelHeadTimeStamp(tickerid) if len(earliest) != 0 or tries == 20: return None break return earliest[0] # first element in list def getNewsProviders(self): """ available news providers by default are [140007057343600: BRFG, Briefing.com General Market Columns, 140007057342704: BRFUPDN, Briefing.com Analyst Actions, 140007057343544: DJNL, Dow Jones Newsletters] """ ## Make a place to store the data we're going to return tickerid = DEFAULT_GET_NP_ID np_queue = finishableQueue(self.init_np(tickerid)) # Request news providers. Native method in EClient self.reqNewsProviders() ## Wait until we get a completed data, an error, or get bored waiting MAX_WAIT_SECONDS = 2 print("Getting list of news providers from the server... could take %d seconds to complete " % MAX_WAIT_SECONDS) nps = np_queue.get(timeout=MAX_WAIT_SECONDS) while self.wrapper.is_error(): print(self.get_error()) if np_queue.timed_out(): print("Exceeded maximum wait for wrapper to confirm finished - seems to be normal behaviour") return nps[0] # list within a list def getHistoricalNews(self, reqId, conId, providerCodes, startDateTime, endDateTime, totalResults): hn_queue = finishableQueue(self.init_hn(reqId)) self.reqHistoricalNews(reqId, conId, providerCodes, startDateTime, endDateTime, totalResults, historicalNewsOptions=[]) ## Wait until we get a completed data, an error, or get bored waiting MAX_WAIT_SECONDS = 15 print("Getting historical news from the server... could take %d seconds to complete " % MAX_WAIT_SECONDS) hn = hn_queue.get(timeout=MAX_WAIT_SECONDS) while self.wrapper.is_error(): print(self.get_error()) if hn_queue.timed_out(): print("Exceeded maximum wait for wrapper to confirm finished - seems to be normal behaviour") return hn def getNewsArticle(self, reqId, providerCode, articleId): na_queue = finishableQueue(self.init_na(reqId)) self.reqNewsArticle(reqId, providerCode, articleId, []) ## Wait until we get a completed data, an error, or get bored waiting MAX_WAIT_SECONDS = 5 print("Getting historical news from the server... could take %d seconds to complete " % MAX_WAIT_SECONDS) na = na_queue.get(timeout=MAX_WAIT_SECONDS) while self.wrapper.is_error(): print(self.get_error()) if na_queue.timed_out(): print("Exceeded maximum wait for wrapper to confirm finished - seems to be normal behaviour") return na class TestApp(TestWrapper, TestClient): def __init__(self, ipaddress, portid, clientid): TestWrapper.__init__(self) TestClient.__init__(self, wrapper=self) self.connect(ipaddress, portid, clientid) thread = Thread(target = self.run) thread.start() setattr(self, "_thread", thread) self.init_error() def get_hist_data_date_range(self, ibcontract, whatToShow='TRADES', barSizeSetting='3 mins', start_date=None, end_date=None, tickerid=DEFAULT_HISTORIC_DATA_ID): """ gets historic data for date range if start_date is None, then first finds earliest date available, and gets all data to there if end_date is None, will get data to latest possible time start_date and end_date should be strings in format YYYYMMDD useful options for whatToShow for stocks can be: ADJUSTED_LAST (adj for splits and dividends) TRADES (only adjusted for splits) BID ASK OPTION_IMPLIED_VOLATILITY HISTORICAL_VOLATILITY """ # convert start_date string to datetime date object for comparisons start_date_datetime_date = pd.to_datetime('1800-01-01').date() # early date so it doesn't match df.index.date below (if not updating data) if start_date is not None: # go one day past start date just to make sure we have all data start_date_datetime_date = (pd.to_datetime(start_date) - pd.Timedelta('1D')).date() smallbars = ['1 secs', '5 secs', '10 secs', '15 secs', '30 secs', '1 min'] max_step_sizes = {'1 secs': '1800 S', # 30 mins '5 secs': '3600 S', # 1 hour '10 secs': '14400 S', # 4 hours '15 secs': '14400 S', # 4 hours '30 secs': '28800 S', # 8 hours '1 min': '1 D', '2 mins': '2 D', '3 mins': '1 W', '5 mins': '1 W', '10 mins': '1 W', '15 mins': '1 W', '20 mins': '1 W', '30 mins': '1 M', '1 hour': '1 M', '2 hours': '1 M', '3 hours': '1 M', '4 hours': '1 M', '8 hours': '1 M', '1 day': '1 Y', '1 week': '1 Y', '1 month': '1 Y'} # TODO: check if earliest timestamp is nothing or before/after end_date earliest_timestamp = self.getEarliestTimestamp(ibcontract, whatToShow=whatToShow, tickerid=tickerid) if earliest_timestamp is not None: earliest_datestamp = earliest_timestamp[:8] # if timeout, will return empty list df = [] if end_date is None: latest_date = None else: # TODO: need to adopt this to other than mountain time latest_date = end_date + ' ' + get_close_hour_local() + ':00:00' # list is returned if there is an error or something? tries = 0 while type(df) is list: tries += 1 df = self.get_IB_historical_data(ibcontract, whatToShow=whatToShow, durationStr=max_step_sizes[barSizeSetting], barSizeSetting=barSizeSetting, tickerid=tickerid, latest_date=latest_date) if tries == 10: print('tried to get historic data 10x and failed, retutrning None') return None earliest_date = df.index[0] full_df = df self.df = full_df df_dates = df.index.date # keep going until the same result is returned twice...not perfectly efficient but oh well previous_earliest_date = None i = 0 start_time = time.time() is_list = 0 while previous_earliest_date != earliest_date: i += 1 print(i) print(previous_earliest_date) print(earliest_date) # TODO: if "HMDS query returned no data" in error lots of times, maybe finish it df = self.get_IB_historical_data(ibcontract, whatToShow=whatToShow, durationStr=max_step_sizes[barSizeSetting], barSizeSetting=barSizeSetting, tickerid=tickerid, latest_date=earliest_date.strftime('%Y%m%d %H:%M:%S')) if type(df) is list: is_list += 1 # we've probably hit the earliest time we can get if earliest_timestamp is not None: if is_list >= 3 and earliest_date.date().strftime('%Y%m%d') == earliest_datestamp: print("hit earliest timestamp") break if is_list >= 10: print('hit 10 lists in a row') break df_dates = None continue else: is_list = 0 previous_earliest_date = earliest_date earliest_date = df.index[0] full_df = pd.concat([df, full_df]) self.df = full_df df_dates = df.index.date if df_dates.min() <= start_date_datetime_date: print('start_date_datetime in dates, ending') break # no more than 6 requests every 2s for bars under 30s # https://interactivebrokers.github.io/tws-api/historical_limitations.html # TODO: take care of 60 requests per 10 mins if barSizeSetting in smallbars and i >= 6: time_left = 2 - (time.time() - start_time()) i = 0 time.sleep(time_left) return full_df def get_stock_contract(self, ticker='SNAP', reqId=DEFAULT_HISTORIC_DATA_ID): """ gets resolved IB contract for stocks assumes ISLAND exchange for now (NASDAQ and maybe others?) """ # available sec types: https://interactivebrokers.github.io/tws-api/classIBApi_1_1Contract.html#a4f83111c0ea37a19fe1dae98e3b67456 ibcontract = IBcontract() ibcontract.secType = 'STK' # get todays date, format as YYYYMMDD -- need to check this is correct # today = datetime.datetime.today().strftime('%Y%m%d') # ibcontract.lastTradeDateOrContractMonth = '20180711'#today ibcontract.symbol = ticker ibcontract.exchange = 'ISLAND' resolved_ibcontract, contract_details = self.resolve_ib_contract(ibcontract=ibcontract, reqId=reqId) return resolved_ibcontract, contract_details def get_otc_contract(self, ticker='SNAP', reqId=DEFAULT_HISTORIC_DATA_ID): """ gets resolved IB contract for stocks assumes ISLAND exchange for now (NASDAQ and maybe others?) """ # available sec types: https://interactivebrokers.github.io/tws-api/classIBApi_1_1Contract.html#a4f83111c0ea37a19fe1dae98e3b67456 ibcontract = IBcontract() ibcontract.secType = 'STK' # get todays date, format as YYYYMMDD -- need to check this is correct # today = datetime.datetime.today().strftime('%Y%m%d') # ibcontract.lastTradeDateOrContractMonth = '20180711'#today ibcontract.symbol = ticker ibcontract.exchange = 'ARCAEDGE' resolved_ibcontract, contract_details = self.resolve_ib_contract(ibcontract=ibcontract, reqId=reqId) return resolved_ibcontract, contract_details def get_forex_contract(self, main_currency='USD', second_currency='JPY', reqId=DEFAULT_HISTORIC_DATA_ID): """ gets resolved IB contract for stocks assumes ISLAND exchange for now (NASDAQ and maybe others?) """ # available sec types: https://interactivebrokers.github.io/tws-api/classIBApi_1_1Contract.html#a4f83111c0ea37a19fe1dae98e3b67456 ibcontract = IBcontract() ibcontract.symbol = 'EUR'#second_currency ibcontract.secType = "CASH" ibcontract.currency = 'GBP'#main_currency ibcontract.exchange = "IDEALPRO" resolved_ibcontract, contract_details = self.resolve_ib_contract(ibcontract=ibcontract, reqId=reqId) return resolved_ibcontract, contract_details def download_all_history_stock(self, ticker='SNAP', barSizeSetting='3 mins', reqId=DEFAULT_HISTORIC_DATA_ID, what='TRADES', exchange='ISLAND'): """ downloads all historical data for a stock including TRADES or ADJUSTED_LAST BID ASK OPTION_IMPLIED_VOLATILITY if data already exists, updates and appends to it 'what' parameter can be 'ADJUSTED_LAST' or 'TRADES'. ADJUSTED_LAST is the dividend-adjusted prices; trades is only split-adjusted """ if exchange == 'ISLAND': # NASDAQ / regular stocks contract, contract_details = self.get_stock_contract(ticker=ticker, reqId=reqId) elif exchange == 'ARCAEDGE': # OTC / PINK contract, contract_details = self.get_otc_contract(ticker=ticker, reqId=reqId) if what == 'TRADES': folder = '/home/nate/Dropbox/data/ib_full_adj/data/' elif what == 'ADJUSTED_LAST': folder = '/home/nate/Dropbox/data/ib_split_adj_only/data/' trades_start_date = None bids_start_date = None asks_start_date = None opt_vol_start_date = None tr_mode = 'w' bid_mode = 'w' ask_mode = 'w' opt_vol_mode = 'w' bss = barSizeSetting.replace(' ', '_') trades_filename = folder + ticker + '_trades_' + bss + '.h5' bid_filename = folder + ticker + '_bid_' + bss + '.h5' ask_filename = folder + ticker + '_ask_' + bss + '.h5' opt_vol_filename = folder + ticker + '_opt_vol_' + bss + '.h5' # TODO: provide option for which files to download; # check each file individually and update individually if os.path.exists(trades_filename): print('trades file exists, going to append...') cur_trades = pd.read_hdf(trades_filename) latest_trades_datetime = cur_trades.index[-1] trades_start_date = latest_trades_datetime.strftime('%Y%m%d') tr_mode = 'r+' print('latest trades date is', trades_start_date) if os.path.exists(bid_filename): print('bids file exists, going to append') cur_bids = pd.read_hdf(bid_filename) latest_bids_datetime = cur_bids.index[-1] bids_start_date = latest_bids_datetime.strftime('%Y%m%d') bid_mode='r+' if os.path.exists(ask_filename): print('asks filename exists, going to append') cur_asks = pd.read_hdf(ask_filename) latest_asks_datetime = cur_asks.index[-1] asks_start_date = latest_asks_datetime.strftime('%Y%m%d') ask_mode='r+' if os.path.exists(opt_vol_filename): print('opt_vol file exists, gonna append') cur_opt_vol = pd.read_hdf(opt_vol_filename) latest_opt_vol_datetime = cur_opt_vol.index[-1] opt_vol_start_date = latest_opt_vol_datetime.strftime('%Y%m%d') opt_vol_mode = 'r+' # append to existing files, should throw error if they don't exist end_date = None#'20170401' # smaller amount of data for prototyping/testing print('\n\n\ngetting trades...\n\n\n') trades = self.get_hist_data_date_range(contract, barSizeSetting=barSizeSetting, whatToShow=what, end_date=end_date, start_date=trades_start_date, tickerid=reqId) if trades is not None: # write or append data # TODO: function for cleaning up data and remove duplicates, sort data # TODO: only append things after the latest datetime, and do it for trades, bid, etc separately # if appending, get next index after latest existing datetime tr_append = False # need to set option in to_hdf bid_append = False ask_append = False opt_vol_append = False if tr_mode == 'r+': next_trades_idx = trades.loc[latest_trades_datetime:] if next_trades_idx.shape[0] <= 1 or cur_trades.iloc[-1].equals(trades.iloc[-1]): print('already have all the data I think for trades') # return else: next_trades_idx = next_trades_idx.index[1] trades = trades.loc[next_trades_idx:] tr_append=True trades.to_hdf(trades_filename, key='data', format='table', complevel=9, complib='blosc:lz4', mode=tr_mode, append=tr_append) else: trades.to_hdf(trades_filename, key='data', format='table', complevel=9, complib='blosc:lz4', mode=tr_mode, append=tr_append) print('\n\n\ngetting bids...\n\n\n') bid = self.get_hist_data_date_range(contract, barSizeSetting=barSizeSetting, whatToShow='BID', end_date=end_date, start_date=bids_start_date, tickerid=reqId) if bid is not None: if bid_mode == 'r+': next_bids_idx = bid.loc[latest_bids_datetime:] if next_bids_idx.shape[0] <= 1 or cur_bids.iloc[-1].equals(bid.iloc[-1]): print('already have all bids data I think') else: next_bids_idx = next_bids_idx.index[1] bid = bid.loc[next_bids_idx:] bid_append=True bid.to_hdf(bid_filename, key='data', format='table', complevel=9, complib='blosc:lz4', mode=bid_mode, append=bid_append) else: bid.to_hdf(bid_filename, key='data', format='table', complevel=9, complib='blosc:lz4', mode=bid_mode, append=bid_append) print('\n\n\ngetting asks...\n\n\n') ask = self.get_hist_data_date_range(contract, barSizeSetting=barSizeSetting, whatToShow='ASK', end_date=end_date, start_date=asks_start_date, tickerid=reqId) if ask is not None: if ask_mode == 'r+': next_asks_idx = ask.loc[latest_asks_datetime:] if next_asks_idx.shape[0] <= 1 or cur_asks.iloc[-1].equals(ask.iloc[-1]): print('already have all asks data I think') else: next_asks_idx = next_asks_idx.index[1] ask = ask.loc[next_asks_idx:] ask_append = True ask.to_hdf(ask_filename, key='data', format='table', complevel=9, complib='blosc:lz4', mode=ask_mode, append=ask_append) else: ask.to_hdf(ask_filename, key='data', format='table', complevel=9, complib='blosc:lz4', mode=ask_mode, append=ask_append) print('\n\n\ngetting opt_vol...\n\n\n') opt_vol = self.get_hist_data_date_range(contract, barSizeSetting=barSizeSetting, whatToShow='OPTION_IMPLIED_VOLATILITY', end_date=end_date, start_date=opt_vol_start_date, tickerid=reqId) if opt_vol is not None: if opt_vol_mode == 'r+': # TODO: doesn't seem to be working properly for opt_vol, seems to append every time next_opt_vol_idx = opt_vol.loc[latest_opt_vol_datetime:] if next_opt_vol_idx.shape[0] <= 1 or cur_opt_vol.iloc[-1].equals(opt_vol.iloc[-1]): print('already have all opt_vol data I think') else: next_opt_vol_idx = next_opt_vol_idx.index[1] opt_vol = opt_vol.loc[next_opt_vol_idx:] opt_vol_append = True opt_vol.to_hdf(opt_vol_filename, key='data', format='table', complevel=9, complib='blosc:lz4', mode=opt_vol_mode, append=opt_vol_append) else: opt_vol.to_hdf(opt_vol_filename, key='data', format='table', complevel=9, complib='blosc:lz4', mode=opt_vol_mode, append=opt_vol_append) def get_earliest_dates(self, ticker): contract, contract_details = self.get_stock_contract(ticker=ticker) for t in ['ADJUSTED_LAST', 'BID', 'ASK', 'OPTION_IMPLIED_VOLATILITY']: earliest = self.getEarliestTimestamp(contract, tickerid=200) print(t) print(earliest) def get_datetime_from_date(date='2018-06-30'): """ not sure if I need this anymore... converts a date to a datetime (end-of-day) for historical data gathering date should be a string in format YYYYMMDD uses eastern timezone (EDT or EST) by default TODO: convert eastern to local timezone from machine """ tz='US/Eastern' tz_obj = timezone(tz) date = datetime.datetime.strptime(date, '%Y-%m-%d') date = date.replace(hour = 16, minute = 0, second = 0) date = tz_obj.localize(date) return date.strftime('%Y%m%d %H:%M:%S %Z') def get_latest_date_local(): """ gets the latest date with the machine's local timezone endDateTime and startDateTime "Uses TWS timezone specified at login." at least for tick-by-tick data """ machines_tz = datetime.datetime.now(datetime.timezone.utc).astimezone().tzname() latest_date = datetime.datetime.today() # doesn't work with machines tz in there latest_date = latest_date.strftime('%Y%m%d %H:%M:%S')# + machines_tz return latest_date def get_close_hour_local(): """ gets closing hour in local machine time (4 pm Eastern) """ eastern_tz = timezone('US/Eastern') eastern_close = datetime.datetime(year=2018, month=6, day=29, hour=16) eastern_close = eastern_tz.localize(eastern_close) return str(eastern_close.astimezone().hour) def get_home_dir(repo_name='scrape_ib'): cwd = str(Path(__file__).resolve()) cwd_list = cwd.split('/') repo_position = [i for i, s in enumerate(cwd_list) if s == repo_name] if len(repo_position) > 1: print("error! more than one intance of repo name in path") return None home_dir = '/'.join(cwd_list[:repo_position[0] + 1]) + '/' return home_dir def load_data(ticker='SNAP', barSizeSetting='3 mins', what='TRADES'): """ loads historical tick data """ if what == 'TRADES': folder = '/home/nate/Dropbox/data/ib_full_adj/data/' elif what == 'ADJUSTED_LAST': folder = '/home/nate/Dropbox/data/ib_split_adj_only/data/' bss = barSizeSetting.replace(' ', '_') trades = pd.read_hdf(folder + ticker + '_trades_' + bss + '.h5') # fill 0 volume with 1 trades.at[trades['volume'] == 0, 'volume'] = 1 bid = pd.read_hdf(folder + ticker + '_bid_' + bss + '.h5') ask = pd.read_hdf(folder + ticker + '_ask_' + bss + '.h5') opt_vol = pd.read_hdf(folder + ticker + '_opt_vol_' + bss + '.h5') # drop duplicates just in case...dupes throw off concat trades.drop_duplicates(inplace=True) bid.drop_duplicates(inplace=True) ask.drop_duplicates(inplace=True) opt_vol.drop_duplicates(inplace=True) # sometimes with dupes, index is no longer sorted trades.sort_index(inplace=True) bid.sort_index(inplace=True) ask.sort_index(inplace=True) opt_vol.sort_index(inplace=True) # TODO: find opt_vol and other files with problems # e.g. found BOX opt_vol file had some price data in it # look for outliers or matches within other DFs, then delete messed up DFs # rename columns so can join to one big dataframe bid.columns = ['bid_' + c for c in bid.columns] ask.columns = ['ask_' + c for c in ask.columns] opt_vol.columns = ['opt_vol_' + c for c in opt_vol.columns] # inner join should drop na's but just to be safe # opt_vol has missing values at the end of each day for some reason... # so cant do inner join or dropna full_df = pd.concat([trades, bid, ask, opt_vol], axis=1)#, join='inner').dropna() full_df.index = full_df.index.tz_localize('America/New_York') return full_df def make_feats_targs_individ_df(df, future_gap_idx_steps, future_span_idx_steps, feature_span, feature_span_idx_steps): """ """ targets = df['close'].pct_change(future_span_idx_steps).shift(-future_gap_idx_steps - future_span_idx_steps) pct_change_features = df.copy().pct_change(feature_span_idx_steps, axis=0) pct_change_features.columns = [c + '_' + str(feature_span) + '_min_pct_chg' for c in pct_change_features.columns] df['targets'] = targets # inner join should drop na's but just to be safe feats_targs = pd.concat([df, pct_change_features], axis=1, join='inner').dropna() feat_cols = [c for c in feats_targs.columns if c != 'targets'] return feats_targs[feat_cols], feats_targs['targets'] def make_features_targets(full_df, future_gap=0, future_span=15, feature_span=15, intraday=True): """ uses close price to make targets -- percent change over certain time in future features are percent change of other columns as well as raw values future_gap is number of minutes between current time and start of future pct_change future_span is number of minutes to calculate price percent change feature_span is number of minutes to calculate pct change of everything in df intraday is boolean; if True, will only get features/targs within each day and not extending over close/open times """ # copy full_df so we don't modify it full_df_copy = full_df.copy() # get number of minutes between timesteps -- won't work if not integer minutes minute_gap = (full_df_copy.index[1] - full_df_copy.index[0]).seconds // 60 future_gap_idx_steps = future_gap // minute_gap future_span_idx_steps = future_span // minute_gap feature_span_idx_steps = feature_span // minute_gap # TODO: use dask or multicore/multithread if intraday: # get dataframes for each day and make feats targs, then join days = [idx.date() for idx in full_df_copy.index] unique_days = np.unique(days) all_feats, all_targs = [], [] for d in tqdm(unique_days): df = full_df_copy[full_df_copy.index.date == d].copy() d_feats, d_targs = make_feats_targs_individ_df(df, future_gap_idx_steps=future_gap_idx_steps, future_span_idx_steps=future_span_idx_steps, feature_span=feature_span, feature_span_idx_steps=feature_span_idx_steps) all_feats.append(d_feats) all_targs.append(d_targs) return
pd.concat(all_feats)
pandas.concat
''' Tools for simple baseline/benchmark forecasts These methods might serve as the forecast themselves, but are more likely to be used as a baseline to evaluate if more complex models offer a sufficient increase in accuracy to justify their use. Naive1: Carry last value forward across forecast horizon (random walk) SNaive: Carry forward value from last seasonal period Average: np.sqrt(((h - 1) / self._period).astype(np.int)+1) Carry forward average of observations Drift: Carry forward last time period, but allow for upwards/downwards drift. EnsembleNaive: An unweighted average of all of the Naive forecasting methods. ''' import numpy as np import pandas as pd from scipy.stats import norm, t from abc import ABC, abstractmethod # Boolean, unsigned integer, signed integer, float, complex. _NUMERIC_KINDS = set('buifc') def is_numeric(array): """Determine whether the argument has a numeric datatype, when converted to a NumPy array. Booleans, unsigned integers, signed integers, floats and complex numbers are the kinds of numeric datatype. source: https://codereview.stackexchange.com/questions/128032/check-if-a-numpy-array-contains-numerical-data Parameters ---------- array : array-like The array to check. Returns ------- is_numeric : `bool` True if the array has a numeric datatype, False if not. """ return np.asarray(array).dtype.kind in _NUMERIC_KINDS class Forecast(ABC): ''' Abstract base class for all baseline forecast methods ''' def __init__(self): self._fitted = None self._t = None def _get_fitted(self): return self._fitted['pred'] def _get_resid(self): return self._fitted['resid'] @abstractmethod def fit(self, train): pass def fit_predict(self, train, horizon, return_predict_int=False, alpha=None): ''' Convenience method. Fit model and predict with one call. Parameters: --------- train: array-like, vector, series, or dataframe of the time series used for training. Values should be floats and not contain any np.nan or np.inf horizon: int, forecast horizon. return_predict_int: bool, optional (default=False) If True function will return a Tuple 0: point forecasts (mean) 1: matrix of intervals. alpha: None, or list of floats, optional (default=None) List of floats between 0 and 1. If return_predict_int == True this specifies the 100(1-alpha) prediction intervals to return. Returns: ------ np.array, vector of predictions. length=horizon ''' self.fit(train) return self.predict(horizon, return_predict_int=return_predict_int, alpha=alpha) def validate_training_data(self, train, min_length=1): ''' Checks the validity of training data for forecasting and raises exceptions if required. 1. check is instance of pd.Series, pd.DataFrame or np.ndarray 2. check len is > min_length Parameters: --------- min_length: int optional (default=0) minimum length of the time series. ''' if not isinstance(train, (pd.Series, pd.DataFrame, np.ndarray)): raise TypeError( 'Training data must be pd.Series, pd.DataFrame or np.ndarray') elif len(train) < min_length: raise ValueError('Training data is empty') elif not is_numeric(train): raise TypeError('Training data must be numeric') elif np.isnan(np.asarray(train)).any(): raise TypeError( 'Training data contains at least one NaN. ' + 'Data myst all be floats') elif np.isinf(np.asarray(train)).any(): raise TypeError( 'Training data contains at least one Infinite ' + 'value (np.Inf). Data myst all be floats') @abstractmethod def predict(self, horizon, return_predict_int=False, alpha=None): pass def _prediction_interval(self, horizon, alpha=None): ''' Prediction intervals for naive forecast 1 (NF1) lower = pred - z * std_h upper = pred + z * std_h where std_h = resid_std * sqrt(h) resid_std = standard deviation of in-sample residuals h = horizon See and credit: https://otexts.com/fpp2/prediction-intervals.html Pre-requisit: Must have called fit() Parameters: --------- horizon - int, forecast horizon levels - list, list of floats representing prediction limits e.g. [0.80, 0.90, 0.95] will calculate three sets ofprediction intervals giving limits for which will include the actual future value with probability 80, 90 and 95 percent, respectively (default = [0.8, 0.95]). Returns: -------- list np.array matricies that contain the lower and upper prediction limits for each prediction interval specified. ''' if alpha is None: alpha = [0.20, 0.05] zs = [self.interval_multiplier(1-a, self._t - 1) for a in alpha] pis = [] std_h = self._std_h(horizon) for z in zs: hw = z * std_h pis.append(np.array([self.predict(horizon) - hw, self.predict(horizon) + hw]).T) return pis def interval_multiplier(self, level, dof): ''' inverse of normal distribution can be overridden if needed. ''' x = norm.ppf((1 - level) / 2) return np.abs(x) @abstractmethod def _std_h(self, horizon): ''' Calculate the standard error of the residuals over a forecast horizon. This is method specific. ''' pass # breaks PEP8 to align with statsmodels naming fittedvalues = property(_get_fitted) resid = property(_get_resid) class Naive1(Forecast): ''' Naive forecast 1 or NF1: Carry the last value foreward across a forecast horizon For details and theory see [1] Attributes ---------- fittedvalues: pd.Series In-sample predictions of training data resid: pd.Series In-sample residuals Methods ------- fit(train) fit the model to training data predict(horizon, return_predict_int=False, alpha=None) Predict h-steps ahead fit_predict(train, horizons, return_predict_int=False, alpha=None) convenience method. combine fit() and predict() See Also -------- forecast_tools.baseline.SNaive forecast_tools.baseline.Drift forecast_tools.baseline.Average forecast_tools.baseline.EnsembleNaive References: ---------- [1]. https://otexts.com/fpp2/simple-methods.html Examples: -------- Basic fitting and prediction >>> y_train = np.arange(10) >>> model = Naive1() >>> model.fit(y_train) >>> model.predict(horizon=7) array([9., 9., 9., 9., 9., 9., 9.] fit_predict() convenience method >>> y_train = np.arange(10) >>> model = Naive1() >>> model.fit_predict(y_train, horizon=7) array([9., 9., 9., 9., 9., 9., 9.] 80 and 95% prediction intervals >>> y_train = np.arange(10) >>> model = Naive1() >>> model.fit(y_train) >>> y_pred, y_intervals = model.predict(horizon=2, return_pred_interval=True, alpha=[0.1, 0.05]) >>> y_pred array([9., 9.] >>> y_intervals[0] array([[ 7.71844843, 10.28155157], [ 7.1876124 , 10.8123876 ]]) >>> y_intervals[1] array([[ 7.35514637, 10.64485363], [ 6.67382569, 11.32617431]]) Fitted values (one step in-sample predictions) .fittedvalue returns a pandas.Series called pred >>> y_train = np.arange(5) >>> model = Naive1() >>> model.fit(y_train) >>> model.fittedvalues 0 NaN 1 0.0 2 1.0 3 2.0 4 3.0 Name: pred, dtype: float64 ''' def __init__(self): ''' Constructor method Parameters: ------- level - list, confidence levels for prediction intervals (e.g. [90, 95]) ''' self._fitted = None def __repr__(self): ''' String representation of object ''' return f'Naive1()' def __str__(self): ''' Print/str representation of object ''' return f'Naive1()' def fit(self, train): ''' Train the naive model Parameters: -------- train - array-like, vector, series, or dataframe of the time series used for training. Values should be floats and not contain any np.nan or np.inf ''' self.validate_training_data(train) _train = np.asarray(train) self._pred = _train[-1] self._fitted = pd.DataFrame(_train) if isinstance(train, (pd.DataFrame, pd.Series)): self._fitted.index = train.index self._t = len(_train) self._fitted.columns = ['actual'] self._fitted['pred'] = self._fitted['actual'].shift(periods=1) self._fitted['resid'] = self._fitted['actual'] - self._fitted['pred'] self._resid_std = np.sqrt(np.nanmean(np.square(self._fitted['resid']))) def predict(self, horizon, return_predict_int=False, alpha=None): ''' Forecast and optionally produce 100(1-alpha) prediction intervals. Prediction intervals for naive forecast 1 (NF1) lower = pred - z * std_h upper = pred + z * std_h where std_h = resid_std * sqrt(h) resid_std = standard deviation of in-sample residuals h = horizon See and credit: https://otexts.com/fpp2/prediction-intervals.html Pre-requisit: Must have called fit() Parameters: -------- horizon - int, forecast horizon. return_predict_int: bool, optional if True calculate 100(1-alpha) prediction intervals for the forecast. (default=False) alpha: list of floats, optional (default=None) controls set of prediction intervals returned and the width of each. Intervals are 100(1-alpha) in width. e.g. [0.2, 0.1] would return the 80% and 90% prediction intervals of the forecast distribution. default=None. When return_predict_int = True the default behaviour is to return 80 and 90% intervals. Returns: ------- if return_predict_int = False np.array, vector of predictions. length=horizon if return_predict_int = True then returns a tuple. 0. np.array, vector of predictions. length=horizon 1. list of numpy.array[lower_pi, upper_pi]. One for each prediction interval. ''' if self._fitted is None: raise UnboundLocalError('Must call fit() prior to predict()') if alpha is None: alpha = [0.2, 0.1] preds = np.full(shape=horizon, fill_value=self._pred, dtype=float) if return_predict_int: return preds, self._prediction_interval(horizon, alpha) else: return preds def _std_h(self, horizon): ''' Calculate the sample standard deviation. ''' indexes = np.sqrt(np.arange(1, horizon+1)) std = np.full(shape=horizon, fill_value=self._resid_std, dtype=np.float) std_h = std * indexes return std_h class SNaive(Forecast): ''' Seasonal Naive Forecast SNF Each forecast to be equal to the last observed value from the same season of the year (e.g., the same month of the previous year). SNF is useful for highly seasonal data. See [1] Attributes ---------- fittedvalues: pd.Series In-sample predictions of training data resid: pd.Series In-sample residuals Methods ------- fit(train) fit the model to training data predict(horizon, return_predict_int=False, alpha=None) Predict h-steps ahead fit_predict(train, horizons, return_predict_int=False, alpha=None) convenience method. combine fit() and predict() See Also -------- forecast_tools.baseline.Naive1 forecast_tools.baseline.Drift forecast_tools.baseline.Average forecast_tools.baseline.EnsembleNaive References: ----------- [1]. https://otexts.com/fpp2/simple-methods.html ''' def __init__(self, period): ''' Parameters: -------- period - int, the seasonal period of the daya e.g. weekly = 7, monthly = 12, daily = 24 ''' self._period = period self._fitted = None def __repr__(self): ''' String representation of object ''' return f'SNaive1(period={self._period})' def __str__(self): ''' Print/str representation of object ''' return f'SNaive1(period={self._period})' def fit(self, train): ''' Seasonal naive forecast - train the model Parameters: -------- train: array-like. vector, pd.DataFrame or pd.Series containing the time series used for training. Values should be floats and not contain any np.nan or np.inf ''' self.validate_training_data(train, min_length=self._period) # could refactor this to be more like Naive1's simpler implementation. if isinstance(train, (pd.Series)): self._f = np.asarray(train)[-self._period:] _train = train.to_numpy() self._fitted = pd.DataFrame(_train, index=train.index) elif isinstance(train, (pd.DataFrame)): self._f = train.to_numpy().T[0][-self._period:] _train = train.copy()[train.columns[0]].to_numpy() self._fitted = pd.DataFrame(_train, index=train.index) else: self._f = train[-self._period:] _train = train.copy() self._fitted = pd.DataFrame(_train) self._t = len(_train) self._fitted.columns = ['actual'] self._fitted['pred'] = self._fitted['actual'].shift(self._period) self._fitted['resid'] = self._fitted['actual'] - self._fitted['pred'] self._resid_std = np.sqrt(np.nanmean(np.square(self._fitted['resid']))) def predict(self, horizon, return_predict_int=False, alpha=None): ''' Predict time series over a horizon Parameters: -------- horizon - int, forecast horizon. return_predict_int: bool, optional if True calculate 100(1-alpha) prediction intervals for the forecast. (default=False) alpha: list of floats, optional (default=None) controls set of prediction intervals returned and the width of each. Intervals are 100(1-alpha) in width. e.g. [0.2, 0.1] would return the 80% and 90% prediction intervals of the forecast distribution. default=None. When return_predict_int = True the default behaviour is to return 80 and 90% intervals. Returns: -------- if return_predict_int = False np.array, vector of predictions. length=horizon if return_predict_int = True then returns a tuple. 0. np.array, vector of predictions. length=horizon 1. list of numpy.array[lower_pi, upper_pi]. One for each prediction interval. ''' if self._fitted is None: raise UnboundLocalError('Must call fit() prior to predict()') if alpha is None: alpha = [0.2, 0.1] preds = np.array([], dtype=float) for _ in range(0, int(horizon/self._period)): preds = np.concatenate([preds, self._f.copy()], axis=0) preds = np.concatenate([preds, self._f.copy()[:horizon % self._period]], axis=0) if return_predict_int: return preds, self._prediction_interval(horizon, alpha) else: return preds def _std_h(self, horizon): h = np.arange(1, horizon+1) # need to query if should be +1 or not. return self._resid_std * \ np.sqrt(((h - 1) / self._period).astype(np.int)+1) class Average(Forecast): ''' Average forecast. Forecast is set to the average of the historical data. See for discussion of the average as a forecat measure [1] Attributes ---------- fittedvalues: pd.Series In-sample predictions of training data resid: pd.Series In-sample residuals Methods ------- fit(train) fit the model to training data predict(horizon, return_predict_int=False, alpha=None) Predict h-steps ahead fit_predict(train, horizons, return_predict_int=False, alpha=None) convenience method. combine fit() and predict() See Also -------- forecast_tools.baseline.Naive1 forecast_tools.baseline.SNaive forecast_tools.baseline.Drift forecast_tools.baseline.EnsembleNaive References: ----------- [1.] Makridakis, Wheelwright and Hyndman. Forecasting (1998) ''' def __init__(self): self._pred = None self._fitted = None def __repr__(self): ''' String representation of object ''' return f'Average()' def __str__(self): ''' Print/str representation of object ''' return f'Average()' def _get_fitted(self): return self._fitted['pred'] def _get_resid(self): return self._fitted['resid'] def fit(self, train): ''' Train the model Parameters: -------- train: arraylike vector, pd.series, pd.DataFrame, Time series used for training. Values should be floats and not contain any np.nan or np.inf ''' self.validate_training_data(train) if isinstance(train, (pd.DataFrame)): _train = train.copy()[train.columns[0]].to_numpy() self._fitted = pd.DataFrame(_train, index=train.index) elif isinstance(train, (pd.Series)): _train = train.to_numpy() self._fitted =
pd.DataFrame(_train, index=train.index)
pandas.DataFrame
""" Plot the geospatial results by country. Written by <NAME>. February 2022 """ import os import sys import configparser import numpy as np import pandas as pd import geopandas as gpd import matplotlib.pyplot as plt import seaborn as sns import contextily as cx import geopy as gp CONFIG = configparser.ConfigParser() CONFIG.read(os.path.join(os.path.dirname(__file__), '..', 'scripts', 'script_config.ini')) BASE_PATH = CONFIG['file_locations']['base_path'] DATA_RAW = os.path.join(BASE_PATH, 'raw') DATA_PROCESSED = os.path.join(BASE_PATH, 'processed') RESULTS = os.path.join(BASE_PATH, '..', 'results') VIS = os.path.join(BASE_PATH, '..', 'vis', 'figures') REPORTS = os.path.join(BASE_PATH, '..', 'reports', 'images') def get_regional_shapes(): """ Load regional shapes. """ output = [] for item in os.listdir(DATA_INTERMEDIATE):#[:15]: if len(item) == 3: # we only want iso3 code named folders filename_gid2 = 'regions_2_{}.shp'.format(item) path_gid2 = os.path.join(DATA_INTERMEDIATE, item, 'regions', filename_gid2) filename_gid1 = 'regions_1_{}.shp'.format(item) path_gid1 = os.path.join(DATA_INTERMEDIATE, item, 'regions', filename_gid1) if os.path.exists(path_gid2): data = gpd.read_file(path_gid2) data['GID_id'] = data['GID_2'] data = data.to_dict('records') elif os.path.exists(path_gid1): data = gpd.read_file(path_gid1) data['GID_id'] = data['GID_1'] data = data.to_dict('records') else: print('No shapefiles for {}'.format(item)) continue for datum in data: output.append({ 'geometry': datum['geometry'], 'properties': { 'GID_id': datum['GID_id'], }, }) output = gpd.GeoDataFrame.from_features(output, crs='epsg:4326') return output def plot_regions_by_geotype(country, regions, path): """ Plot regions by geotype. """ filename = 'regional_data.csv' path_data = os.path.join(DATA_PROCESSED, iso3, filename) data = pd.read_csv(path_data) n = len(regions) data['population_km2'] = round(data['population_total'] / data['area_km2'], 2) data = data[['GID_id', 'population_km2']] GID_level = 'GID_{}'.format(country['lowest']) regions = regions[[GID_level, 'geometry']]#[:1000] regions = regions.copy() regions = regions.merge(data, left_on=GID_level, right_on='GID_id') regions.reset_index(drop=True, inplace=True) metric = 'population_km2' bins = [-1, 20, 43, 69, 109, 171, 257, 367, 541, 1104, 1e8] labels = [ '<20 $\mathregular{km^2}$', '20-43 $\mathregular{km^2}$', '43-69 $\mathregular{km^2}$', '69-109 $\mathregular{km^2}$', '109-171 $\mathregular{km^2}$', '171-257 $\mathregular{km^2}$', '257-367 $\mathregular{km^2}$', '367-541 $\mathregular{km^2}$', '541-1104 $\mathregular{km^2}$', '>1104 $\mathregular{km^2}$' ] regions['bin'] = pd.cut( regions[metric], bins=bins, labels=labels ) sns.set(font_scale=1, font="Times New Roman") fig, ax = plt.subplots(1, 1, figsize=country['figsize']) minx, miny, maxx, maxy = regions.total_bounds ax.set_xlim(minx-.5, maxx+.5) ax.set_ylim(miny-0.1, maxy+.1) regions.plot(column='bin', ax=ax, cmap='viridis_r', linewidth=0.2, alpha=0.8, legend=True, edgecolor='grey') handles, labels = ax.get_legend_handles_labels() fig.legend(handles[::-1], labels[::-1]) cx.add_basemap(ax, crs=regions.crs, source=cx.providers.CartoDB.Voyager) cx.add_basemap(ax, crs='epsg:4326') name = 'Population Density Deciles for Sub-National Regions (n={})'.format(n) fig.suptitle(name) fig.tight_layout() fig.savefig(path, dpi=600) plt.close(fig) def plot_cells_per_region(country, regions, path): """ Plot regions by geotype. """ iso3 = country['iso3'] name = country['country'] filename = '{}.csv'.format(iso3) folder = os.path.join(DATA_PROCESSED, iso3, 'sites') path_sites = os.path.join(folder, filename) sites = pd.read_csv(path_sites, encoding='latin-1') sites = gpd.GeoDataFrame( sites, geometry=gpd.points_from_xy( sites.lon, sites.lat ), crs='epsg:4326' ) fig, (ax1, ax2) = plt.subplots(2, 2, figsize=(12,12)) fig.subplots_adjust(hspace=.2, wspace=.2) minx, miny, maxx, maxy = regions.total_bounds buffer = 2 for ax in [ax1, ax2]: for dim in [0,1]: ax[dim].set_xlim(minx-buffer, maxx+buffer) ax[dim].set_ylim(miny-0.1, maxy+.1) fig.set_facecolor('gainsboro') gsm = sites.loc[sites['radio'] == 'GSM'] umts = sites.loc[sites['radio'] == 'UMTS'] lte = sites.loc[sites['radio'] == 'LTE'] nr = sites.loc[sites['radio'] == 'NR'] regions.plot(facecolor="none", edgecolor="grey", ax=ax1[0]) regions.plot(facecolor="none", edgecolor="grey", ax=ax1[1]) regions.plot(facecolor="none", edgecolor="grey", ax=ax2[0]) regions.plot(facecolor="none", edgecolor="grey", ax=ax2[1]) gsm.plot(color='red', markersize=1.5, ax=ax1[0]) umts.plot(color='blue', markersize=1.5, ax=ax1[1]) lte.plot(color='yellow', markersize=1.5, ax=ax2[0]) nr.plot(color='black', markersize=1.5, ax=ax2[1]) ax1[0].set_title('2G GSM Cells') ax1[1].set_title('3G UMTS Cells') ax2[0].set_title('4G LTE Cells') ax2[1].set_title('5G NR Cells') filename = 'core_edges_existing.shp' folder = os.path.join(DATA_PROCESSED, iso3, 'network_existing') path_fiber = os.path.join(folder, filename) if os.path.exists(path_fiber): fiber = gpd.read_file(path_fiber, crs='epsg:4326') fiber.plot(color='orange', lw=0.8, ax=ax1[0]) fiber.plot(color='orange', lw=0.8, ax=ax1[1]) fiber.plot(color='orange', lw=0.8, ax=ax2[0]) fiber.plot(color='orange', lw=0.8, ax=ax2[1]) fig.tight_layout() main_title = 'Mobile Cellular Infrastructure: {}'.format(name) plt.suptitle(main_title, fontsize=20, y=1.03) crs = 'epsg:4326' cx.add_basemap(ax1[0], crs=crs) cx.add_basemap(ax1[1], crs=crs) cx.add_basemap(ax2[0], crs=crs) cx.add_basemap(ax2[1], crs=crs) plt.savefig(path, pad_inches=0.4, bbox_inches='tight' ) plt.close() def plot_coverage_by_region(country, regions, path): """ Plot regions by geotype. """ iso3 = country['iso3'] name = country['country'] filename = 'baseline_coverage.csv' folder = os.path.join(DATA_PROCESSED, iso3) path_data = os.path.join(folder, filename) data = pd.read_csv(path_data, encoding='latin-1') data = data[['GID_id', 'technology', 'covered_pop_perc', 'uncovered_pop_perc']] data = format_data(data, regions) data = pd.DataFrame(data) regions = regions.merge(data, left_on='GID_2', right_on='GID_id') regions.reset_index(drop=True, inplace=True) bins = [-1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 1e8] labels = [ '<10%', '10-20%', '20-30%', '30-40%', '40-50%', '50-60%', '60-70%', '70-80%', '80-90%', '90-100%' ] regions['bin'] = pd.cut( regions['covered_pop_perc'], bins=bins, labels=labels )#.add_categories('missing') regions['bin'].fillna('<10%') regions.to_csv(os.path.join(VIS, 'test.csv')) fig, (ax1, ax2) = plt.subplots(2, 2, figsize=(12,12)) fig.subplots_adjust(hspace=.2, wspace=.2) minx, miny, maxx, maxy = regions.total_bounds buffer = 2 for ax in [ax1, ax2]: for dim in [0,1]: ax[dim].set_xlim(minx-buffer, maxx+buffer) ax[dim].set_ylim(miny-0.1, maxy+.1) fig.set_facecolor('gainsboro') gsm = regions.loc[regions['technology'] == 'GSM'] umts = regions.loc[regions['technology'] == 'UMTS'] lte = regions.loc[regions['technology'] == 'LTE'] nr = regions.loc[regions['technology'] == 'NR'] if len(nr) == 0: nr = lte.copy() nr['technology'] = 'NR' nr['bin'] = '<10%' gsm.plot(column='bin', cmap='viridis_r', linewidth=0.2, alpha=0.8, legend=True, edgecolor='grey', ax=ax1[0]) umts.plot(column='bin', cmap='viridis_r', linewidth=0.2, alpha=0.8, legend=True, edgecolor='grey', ax=ax1[1]) lte.plot(column='bin', cmap='viridis_r', linewidth=0.2, alpha=0.8, legend=True, edgecolor='grey', ax=ax2[0]) nr.plot(column='bin', cmap='viridis_r', linewidth=0.2, alpha=0.8, legend=True, edgecolor='grey', ax=ax2[1]) ax1[0].set_title('Covered by 2G GSM (%)') ax1[1].set_title('Covered by 3G UMTS (%)') ax2[0].set_title('Covered by 4G LTE (%)') ax2[1].set_title('Covered by 5G NR (%)') fig.tight_layout() main_title = 'Covered Population by Region: {}'.format(name) plt.suptitle(main_title, fontsize=20, y=1.01) crs = 'epsg:4326' cx.add_basemap(ax1[0], crs=crs) cx.add_basemap(ax1[1], crs=crs) cx.add_basemap(ax2[0], crs=crs) cx.add_basemap(ax2[1], crs=crs) plt.savefig(path, # pad_inches=0.4, bbox_inches='tight' ) plt.close() def plot_uncovered_pop_by_region(country, outline, path): """ Plot uncovered population by region. """ iso3 = country['iso3'] name = country['country'] fig, (ax1, ax2) = plt.subplots(2, 2, figsize=(12,12)) fig.subplots_adjust(hspace=.2, wspace=.2) minx, miny, maxx, maxy = outline.total_bounds buffer = 2 for ax in [ax1, ax2]: for dim in [0,1]: ax[dim].set_xlim(minx-buffer, maxx+buffer) ax[dim].set_ylim(miny-0.1, maxy+.1) fig.set_facecolor('gainsboro') outline.plot(facecolor="none", edgecolor="grey", ax=ax1[0]) outline.plot(facecolor="none", edgecolor="grey", ax=ax1[1]) outline.plot(facecolor="none", edgecolor="grey", ax=ax2[0]) outline.plot(facecolor="none", edgecolor="grey", ax=ax2[1]) folder = os.path.join(DATA_PROCESSED, iso3, 'coverage') path1 = os.path.join(folder, 'baseline_uncovered_GSM.shp') if os.path.exists(path1): gsm = gpd.read_file(path1, crs='epsg:3857') gsm = gsm.to_crs(4326) gsm.plot(color='red', linewidth=0.2, alpha=0.4, legend=True, edgecolor='grey', ax=ax1[0]) path2 = os.path.join(folder, 'baseline_uncovered_UMTS.shp') if os.path.exists(path2): umts = gpd.read_file(path2, crs='epsg:3857') umts = umts.to_crs(4326) umts.plot(color='blue', linewidth=0.2, alpha=0.4, legend=True, edgecolor='grey', ax=ax1[1]) path3 = os.path.join(folder, 'baseline_uncovered_LTE.shp') if os.path.exists(path3): lte = gpd.read_file(path3, crs='epsg:3857') lte = lte.to_crs(4326) lte.plot(color='yellow', linewidth=0.2, alpha=0.4, legend=True, edgecolor='grey', ax=ax2[0]) path4 = os.path.join(folder, 'baseline_uncovered_NR.shp') if os.path.exists(path4): nr = gpd.read_file(path4, crs='epsg:3857') nr = nr.to_crs(4326) nr.plot(color='black', linewidth=0.2, alpha=0.4, legend=True, edgecolor='grey', ax=ax2[1]) else: nr = gpd.read_file(os.path.join(folder, '..', 'national_outline.shp'), crs='epsg:4326') nr.plot(color='black', linewidth=0.2, alpha=0.4, legend=True, edgecolor='grey', ax=ax2[1]) ax1[0].set_title('2G GSM Uncovered') ax1[1].set_title('3G UMTS Uncovered') ax2[0].set_title('4G LTE Uncovered') ax2[1].set_title('5G NR Uncovered') fig.tight_layout() main_title = 'Uncovered Population: {}'.format(name) plt.suptitle(main_title, fontsize=20, y=1.01) crs = 'epsg:4326' cx.add_basemap(ax1[0], crs=crs) cx.add_basemap(ax1[1], crs=crs) cx.add_basemap(ax2[0], crs=crs) cx.add_basemap(ax2[1], crs=crs) plt.savefig(path, # pad_inches=0.4, bbox_inches='tight' ) plt.close() def format_data(data, regions): """ """ output = [] technologies = data['technology'].unique() regions = regions['GID_2'].unique() for region in regions: for technology in technologies: if ((data['GID_id'] == region) & (data['technology'] == technology)).any(): subset = data.loc[(data['GID_id'] == region) & (data['technology'] == technology)] covered_pop_perc = subset['covered_pop_perc'].values[0] uncovered_pop_perc = subset['uncovered_pop_perc'].values[0] else: covered_pop_perc = 0 uncovered_pop_perc = 100 output.append({ 'GID_id': region, 'technology': technology, 'covered_pop_perc': covered_pop_perc, 'uncovered_pop_perc': uncovered_pop_perc, }) return output def single_extreme_plot(country, regions, outline, path): """ Plot regions by geotype as points. """ iso3 = country['iso3'] name = country['country'] filename = 'sites_{}.csv'.format(iso3) path_data = os.path.join(RESULTS, filename) data =
pd.read_csv(path_data)
pandas.read_csv
import pandas as pd import re import requests df_states_timeline = pd.read_csv(r'/home/amritaparna/PycharmProjects/covid19/venv/states_timeline_data.csv') state_tup = tuple(df_states_timeline['State UT']) cols = ['date'] cols.extend([x.replace(" ", "") for x in list(df_states_timeline['State UT'])]) #print(cols) date_v = list(df_states_timeline.columns)[:-1] # print(date_v) df_timeline =
pd.DataFrame(None, None, cols)
pandas.DataFrame
from decimal import Decimal import numpy as np import pytest import pandas as pd import pandas._testing as tm class TestDataFrameUnaryOperators: # __pos__, __neg__, __inv__ @pytest.mark.parametrize( "df,expected", [ (pd.DataFrame({"a": [-1, 1]}), pd.DataFrame({"a": [1, -1]})), (pd.DataFrame({"a": [False, True]}), pd.DataFrame({"a": [True, False]})), ( pd.DataFrame({"a": pd.Series(pd.to_timedelta([-1, 1]))}), pd.DataFrame({"a": pd.Series(pd.to_timedelta([1, -1]))}), ), ], ) def test_neg_numeric(self, df, expected): tm.assert_frame_equal(-df, expected) tm.assert_series_equal(-df["a"], expected["a"]) @pytest.mark.parametrize( "df, expected", [ (np.array([1, 2], dtype=object), np.array([-1, -2], dtype=object)), ([Decimal("1.0"), Decimal("2.0")], [Decimal("-1.0"), Decimal("-2.0")]), ], ) def test_neg_object(self, df, expected): # GH#21380 df = pd.DataFrame({"a": df}) expected = pd.DataFrame({"a": expected}) tm.assert_frame_equal(-df, expected) tm.assert_series_equal(-df["a"], expected["a"]) @pytest.mark.parametrize( "df", [ pd.DataFrame({"a": ["a", "b"]}), pd.DataFrame({"a":
pd.to_datetime(["2017-01-22", "1970-01-01"])
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Thu Nov 19 15:27:23 2020 @author: saksh Main execution file for market_networks paper; Reccommended to use market_networks(phase_3).ipynb for a more thorough analysis Adjust the file path in import_csv according to position of file """ #init import pandas as pd import numpy as np np.random.seed(1337) #random state used throughout the notebook for reproducibility from math import log import matplotlib.pyplot as plt import matplotlib.ticker as ticker import matplotlib.cm as cm import seaborn as sns from datetime import datetime import networkx as nx import community as louvain from collections import Counter import random from preprocess_funcs import louvain_community, variation_of_information, pd_fill_diagonal plt.style.use('classic') #dataset import sp500 = pd.read_csv('/content/drive/My Drive/collab_files/^GSPC.csv', header = 0, index_col = 'Date') sp500.index = pd.to_datetime(sp500.index, format = '%d-%m-%y') sp500 = sp500[1:] #sp500 = sp500.resample('W').mean() #sp500.head() print(len(sp500)) #import nifty50 data nifty = pd.read_csv('/content/drive/My Drive/collab_files/^NSEI.csv', header = 0, index_col = 'Date') nifty.index = pd.to_datetime(nifty.index, format = '%d-%m-%y') nifty = nifty.reindex(index = sp500.index, method = 'bfill') nifty.fillna(method = 'bfill', inplace=True) #nifty = nifty.resample('W').mean() #nifty.head() print(len(nifty)) sing_sti =
pd.read_csv('/content/drive/My Drive/collab_files/^sti_d.csv', header = 0, index_col = 'Date')
pandas.read_csv
""" Datasets -------- A few popular time series datasets """ from pathlib import Path from typing import List import numpy as np import pandas as pd from darts import TimeSeries from darts.logging import get_logger, raise_if_not from .dataset_loaders import DatasetLoaderCSV, DatasetLoaderMetadata """ Overall usage of this package: from darts.datasets import AirPassengersDataset ts: TimeSeries = AirPassengersDataset.load() """ logger = get_logger(__name__) _DEFAULT_PATH = "https://raw.githubusercontent.com/unit8co/darts/master/datasets" class AirPassengersDataset(DatasetLoaderCSV): """ Monthly Air Passengers Dataset, from 1949 to 1960. """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "air_passengers.csv", uri=_DEFAULT_PATH + "/AirPassengers.csv", hash="167ffa96204a2b47339c21eea25baf32", header_time="Month", ) ) class AusBeerDataset(DatasetLoaderCSV): """ Total quarterly beer production in Australia (in megalitres) from 1956:Q1 to 2008:Q3 [1]_. References ---------- .. [1] https://rdrr.io/cran/fpp/man/ausbeer.html """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "ausbeer.csv", uri=_DEFAULT_PATH + "/ausbeer.csv", hash="1f4028a570a20939411cc04de7364bbd", header_time="date", format_time="%Y-%m-%d", ) ) class EnergyDataset(DatasetLoaderCSV): """ Hourly energy dataset coming from [1]_. Contains a time series with 28 hourly components between 2014-12-31 23:00:00 and 2018-12-31 22:00:00 References ---------- .. [1] https://www.kaggle.com/nicholasjhana/energy-consumption-generation-prices-and-weather """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "energy.csv", uri=_DEFAULT_PATH + "/energy_dataset.csv", hash="f564ef18e01574734a0fa20806d1c7ee", header_time="time", format_time="%Y-%m-%d %H:%M:%S", ) ) class GasRateCO2Dataset(DatasetLoaderCSV): """ Gas Rate CO2 dataset Two components, length 296 (integer time index) """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "gasrate_co2.csv", uri=_DEFAULT_PATH + "/gasrate_co2.csv", hash="77bf383715a9cf81459f81fe17baf3b0", header_time=None, format_time=None, ) ) class HeartRateDataset(DatasetLoaderCSV): """ The series contains 1800 evenly-spaced measurements of instantaneous heart rate from a single subject. The measurements (in units of beats per minute) occur at 0.5 second intervals, so that the length of each series is exactly 15 minutes. This is the series1 in [1]_. It uses an integer time index. References ---------- .. [1] http://ecg.mit.edu/time-series/ """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "heart_rate.csv", uri=_DEFAULT_PATH + "/heart_rate.csv", hash="3c4a108e1116867cf056dc5be2c95386", header_time=None, format_time=None, ) ) class IceCreamHeaterDataset(DatasetLoaderCSV): """ Monthly sales of heaters and ice cream between January 2004 and June 2020. """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "ice_cream_heater.csv", uri=_DEFAULT_PATH + "/ice_cream_heater.csv", hash="62031c7b5cdc9339fe7cf389173ef1c3", header_time="Month", format_time="%Y-%m", ) ) class MonthlyMilkDataset(DatasetLoaderCSV): """ Monthly production of milk (in pounds per cow) between January 1962 and December 1975 """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "monthly_milk.csv", uri=_DEFAULT_PATH + "/monthly-milk.csv", hash="4784443e696da45d7082e76a67687b93", header_time="Month", format_time="%Y-%m", ) ) class MonthlyMilkIncompleteDataset(DatasetLoaderCSV): """ Monthly production of milk (in pounds per cow) between January 1962 and December 1975. Has some missing values. """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "monthly_milk-incomplete.csv", uri=_DEFAULT_PATH + "/monthly-milk-incomplete.csv", hash="49b275c7e2f8f28a6a05224be1a049a4", header_time="Month", format_time="%Y-%m", freq="MS", ) ) class SunspotsDataset(DatasetLoaderCSV): """ Monthly Sunspot Numbers, 1749 - 1983 Monthly mean relative sunspot numbers from 1749 to 1983. Collected at Swiss Federal Observatory, Zurich until 1960, then Tokyo Astronomical Observatory. Source: [1]_ References ---------- .. [1] https://www.rdocumentation.org/packages/datasets/versions/3.6.1/topics/sunspots """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "sunspots.csv", uri=_DEFAULT_PATH + "/monthly-sunspots.csv", hash="4d27019c43d9c256d528f1bd6c5f40e0", header_time="Month", format_time="%Y-%m", ) ) class TaylorDataset(DatasetLoaderCSV): """ Half-hourly electricity demand in England and Wales from Monday 5 June 2000 to Sunday 27 August 2000. Discussed in Taylor (2003) [1]_, and kindly provided by <NAME> [2]_. Units: Megawatts (Uses an integer time index). References ---------- .. [1] <NAME>. (2003) Short-term electricity demand forecasting using double seasonal exponential smoothing. Journal of the Operational Research Society, 54, 799-805. .. [2] https://www.rdocumentation.org/packages/forecast/versions/8.13/topics/taylor """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "taylor.csv", uri=_DEFAULT_PATH + "/taylor.csv", hash="1ea355c90e8214cb177788a674801a22", header_time=None, format_time=None, ) ) class TemperatureDataset(DatasetLoaderCSV): """ Daily temperature in Melbourne between 1981 and 1990 """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "temperatures.csv", uri=_DEFAULT_PATH + "/temps.csv", hash="ce5b5e4929793ec8b6a54711110acebf", header_time="Date", format_time="%m/%d/%Y", freq="D", ) ) class USGasolineDataset(DatasetLoaderCSV): """ Weekly U.S. Product Supplied of Finished Motor Gasoline between 1991-02-08 and 2021-04-30 Obtained from [1]_. References ---------- .. [1] https://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=PET&s=wgfupus2&f=W """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "us_gasoline.csv", uri=_DEFAULT_PATH + "/us_gasoline.csv", hash="25d440337a06cbf83423e81d0337a1ce", header_time="Week", format_time="%m/%d/%Y", ) ) class WineDataset(DatasetLoaderCSV): """ Australian total wine sales by wine makers in bottles <= 1 litre. Monthly between Jan 1980 and Aug 1994. Source: [1]_ References ---------- .. [1] https://www.rdocumentation.org/packages/forecast/versions/8.1/topics/wineind """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "wine.csv", uri=_DEFAULT_PATH + "/wineind.csv", hash="b68971d7e709ad0b7e6300cab977e3cd", header_time="date", format_time="%Y-%m-%d", ) ) class WoolyDataset(DatasetLoaderCSV): """ Quarterly production of woollen yarn in Australia: tonnes. Mar 1965 -- Sep 1994. Source: [1]_ References ---------- .. [1] https://www.rdocumentation.org/packages/forecast/versions/8.1/topics/woolyrnq """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "wooly.csv", uri=_DEFAULT_PATH + "/woolyrnq.csv", hash="4be8b12314db94c8fd76f5c674454bf0", header_time="date", format_time="%Y-%m-%d", ) ) class ETTh1Dataset(DatasetLoaderCSV): """ The data of 1 Electricity Transformers at 1 stations, including load, oil temperature. The dataset ranges from 2016/07 to 2018/07 taken hourly. Source: [1][2]_ Field Descriptions: date: The recorded date HUFL: High UseFul Load HULL: High UseLess Load MUFL: Medium UseFul Load MULL: Medium UseLess Load LUFL: Low UseFul Load LULL: Low UseLess Load OT: Oil Temperature (Target) References ---------- .. [1] https://github.com/zhouhaoyi/ETDataset .. [2] https://arxiv.org/abs/2012.07436 """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "ETTh1.csv", uri=_DEFAULT_PATH + "/ETTh1.csv", hash="8381763947c85f4be6ac456c508460d6", header_time="date", format_time="%Y-%m-%d %H:%M:%S", ) ) class ETTh2Dataset(DatasetLoaderCSV): """ The data of 1 Electricity Transformers at 1 stations, including load, oil temperature. The dataset ranges from 2016/07 to 2018/07 taken hourly. Source: [1][2]_ Field Descriptions: date: The recorded date HUFL: High UseFul Load HULL: High UseLess Load MUFL: Medium UseFul Load MULL: Medium UseLess Load LUFL: Low UseFul Load LULL: Low UseLess Load OT: Oil Temperature (Target) References ---------- .. [1] https://github.com/zhouhaoyi/ETDataset .. [2] https://arxiv.org/abs/2012.07436 """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "ETTh2.csv", uri=_DEFAULT_PATH + "/ETTh2.csv", hash="51a229a3fc13579dd939364fefe9c7ab", header_time="date", format_time="%Y-%m-%d %H:%M:%S", ) ) class ETTm1Dataset(DatasetLoaderCSV): """ The data of 1 Electricity Transformers at 1 stations, including load, oil temperature. The dataset ranges from 2016/07 to 2018/07 recorded every 15 minutes. Source: [1][2]_ Field Descriptions: date: The recorded date HUFL: High UseFul Load HULL: High UseLess Load MUFL: Medium UseFul Load MULL: Medium UseLess Load LUFL: Low UseFul Load LULL: Low UseLess Load OT: Oil Temperature (Target) References ---------- .. [1] https://github.com/zhouhaoyi/ETDataset .. [2] https://arxiv.org/abs/2012.07436 """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "ETTm1.csv", uri=_DEFAULT_PATH + "/ETTm1.csv", hash="82d6bd89109c63d075d99c1077b33f38", header_time="date", format_time="%Y-%m-%d %H:%M:%S", ) ) class ETTm2Dataset(DatasetLoaderCSV): """ The data of 1 Electricity Transformers at 1 stations, including load, oil temperature. The dataset ranges from 2016/07 to 2018/07 recorded every 15 minutes. Source: [1][2]_ Field Descriptions: date: The recorded date HUFL: High UseFul Load HULL: High UseLess Load MUFL: Medium UseFul Load MULL: Medium UseLess Load LUFL: Low UseFul Load LULL: Low UseLess Load OT: Oil Temperature (Target) References ---------- .. [1] https://github.com/zhouhaoyi/ETDataset .. [2] https://arxiv.org/abs/2012.07436 """ def __init__(self): super().__init__( metadata=DatasetLoaderMetadata( "ETTm2.csv", uri=_DEFAULT_PATH + "/ETTm2.csv", hash="7687e47825335860bf58bccb31be0c56", header_time="date", format_time="%Y-%m-%d %H:%M:%S", ) ) class ElectricityDataset(DatasetLoaderCSV): """ Measurements of electric power consumption in one household with 15 minute sampling rate. 370 client's consumption are recorded in kW. Source: [1]_ Loading this dataset will provide a multivariate timeseries with 370 columns for each household. The following code can be used to convert the dataset to a list of univariate timeseries, one for each household. References ---------- .. [1] https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014 """ def __init__(self, multivariate: bool = True): """ Parameters ---------- multivariate: bool Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. Default is True. """ def pre_proces_fn(extracted_dir, dataset_path): with open(Path(extracted_dir, "LD2011_2014.txt")) as fin: with open(dataset_path, "wt", newline="\n") as fout: for line in fin: fout.write(line.replace(",", ".").replace(";", ",")) super().__init__( metadata=DatasetLoaderMetadata( "Electricity.csv", uri="https://archive.ics.uci.edu/ml/machine-learning-databases/00321/LD2011_2014.txt.zip", hash="acfe6783eea43905e510f537add940fd", header_time="Unnamed: 0", format_time="%Y-%m-%d %H:%M:%S", pre_process_zipped_csv_fn=pre_proces_fn, multivariate=multivariate, ) ) def _to_multi_series(self, series: pd.DataFrame) -> List[TimeSeries]: """ Load the electricity dataset as a list of univariate series, one for each household. """ ts_list = [] # list of timeseries for label in series: srs = series[label] # filter column down to the period of recording srs = srs.replace(0.0, np.nan) start_date = min(srs.fillna(method="ffill").dropna().index) end_date = max(srs.fillna(method="bfill").dropna().index) active_range = (srs.index >= start_date) & (srs.index <= end_date) srs = srs[active_range].fillna(0.0) # convert to timeseries tmp = pd.DataFrame({"power_usage": srs}) tmp["date"] = tmp.index ts = TimeSeries.from_dataframe(tmp, "date", ["power_usage"]) ts_list.append(ts) return ts_list class UberTLCDataset(DatasetLoaderCSV): """ 14.3 million Uber pickups from January to June 2015. The data is resampled to hourly or daily based sample_freq on using the locationID as the target. Source: [1]_ Loading this dataset will provide a multivariate timeseries with 262 columns for each locationID. The following code can be used to convert the dataset to a list of univariate timeseries, one for each locationID. References ---------- .. [1] https://github.com/fivethirtyeight/uber-tlc-foil-response """ def __init__(self, sample_freq: str = "hourly", multivariate: bool = True): """ Parameters ---------- sample_freq: str The sampling frequency of the data. Can be "hourly" or "daily". Default is "hourly". multivariate: bool Whether to return a single multivariate timeseries - if False returns a list of univariate TimeSeries. Default is True. """ valid_sample_freq = ["daily", "hourly"] raise_if_not( sample_freq in valid_sample_freq, f"sample_freq must be one of {valid_sample_freq}", logger, ) def pre_proces_fn(extracted_dir, dataset_path): df = pd.read_csv( Path(extracted_dir, "uber-raw-data-janjune-15.csv"), header=0, usecols=["Pickup_date", "locationID"], index_col=0, ) output_dict = {} freq_setting = "1H" if "hourly" in str(dataset_path) else "1D" time_series_of_locations = list(df.groupby(by="locationID")) for locationID, df in time_series_of_locations: df.sort_index() df.index =
pd.to_datetime(df.index)
pandas.to_datetime
from sklearn.preprocessing import MultiLabelBinarizer from sklearn.base import BaseEstimator, TransformerMixin import pandas as pd # This class is used to binarize a multi-label column # It can be understood as a multi-label one-hot encoder class MyBinarizer(BaseEstimator, TransformerMixin): def __init__(self): """ Set up the class """ print(">>>> Binarizer Initialized") self.mlb_list = [] def fit(self, X, y=None): """ Fit the binarizer on all the features in the dataframe """ print(">>>> Fit called") for column in list(X.columns): mlb = MultiLabelBinarizer() self.mlb_list.append((column, mlb.fit(X[column]), list(mlb.classes_))) # print(self.mlb_list) return self def transform(self, X, y=None): """ Return the transformed dataframe """ print(">>>> Transform called") X_ =
pd.DataFrame()
pandas.DataFrame
from pandas.util import hash_pandas_object import hashlib import pandas as pd import random random.seed(42) import numpy as np import psutil import time ROWS = 20000000 DATA = [random.random() for _ in range(ROWS)] def mem_use(): mem_profile = psutil.virtual_memory() print("Memory Usage = {} | percent = {}".format(mem_profile.used, mem_profile.percent)) def apply_assertion(df): assert hashlib.sha256(pd.util.hash_pandas_object(df, index=True).values).hexdigest() == '867567dc7d46f77af2bca9804ac366a5165d27612de100461b699bd23094ab90' ## CREATE AND LOAD ARRAYS IN MEMORY def using_numpy_arrays(): larray = [] for i in range(0,10): mem_use() larray.append(np.array(DATA)) #// 2.19 GB del larray time.sleep(5) ### USING HDF Storage def using_hdf_storage(): store = pd.HDFStore('store.h5') for i in range(0,10): mem_use() ## constant memory usage (start with store[f'v{i}'] = pd.DataFrame({f'v{i}':DATA}) df = pd.DataFrame() generat = ( store[f'v{i}'] for i in range(0,10)) df = pd.concat(generat,axis=1) mem_use() print(df.head()) time.sleep(5) using_hdf_storage() exit() import gc # USING GENERATOR def create_df_using_generator(): genera = ( pd.DataFramex for x in range(1,20000000)) mem_use() myDf =
pd.DataFrame()
pandas.DataFrame
""" Module to encompass various tools for the manipulation of feature-extracted MS data sets. """ import os import inspect import numpy import pandas import re import warnings import numbers from datetime import datetime, timedelta import logging import copy import networkx from .._toolboxPath import toolboxPath from ._dataset import Dataset from ..utilities import rsd from ..utilities._internal import _vcorrcoef from ..utilities.extractParams import extractParams from ..enumerations import VariableType, DatasetLevel, AssayRole, SampleType from ..utilities import removeTrailingColumnNumbering from ..utilities._filters import blankFilter from ..utilities.normalisation._normaliserABC import Normaliser from ..utilities.normalisation._nullNormaliser import NullNormaliser class MSDataset(Dataset): """ MSDataset(datapath, fileType='QI', sop='GenericMS', **kwargs) :py:class:`MSDataset` extends :py:class:`Dataset` to represent both peak-picked LC- or DI-MS datasets (discrete variables), and Continuum mode (spectral) DI-MS datasets. Objects can be initialised from a variety of common data formats, currently peak-picked data from Progenesis QI or XCMS, and targeted Biocrates datasets. * Progenesis QI QI import operates on csv files exported *via* the 'Export Compound Measurements' menu option in QI. Import requires the presence of both normalised and raw datasets, but will only import the raw meaturenents. * XCMS XCMS import operates on the csv files generated by XCMS with the peakTable() method. By default, the csv is expected to have 14 columns of feature parameters, with the intensity values for the first sample coming on the 15 column. However, the number of columns to skip is dataset dependent and can be set with the (e ``noFeatureParams=`` keyword argument. * Biocrates Operates on spreadsheets exported from Biocrates MetIDQ. By default loads data from the sheet named 'Data Export', this may be overridden with the ``sheetName=`` argument, If the number of sample metadata columns differes from the default, this can be overridden with the ``noSampleParams=`` argument. """ def __init__(self, datapath, fileType='xcms', sop='GenericMS', **kwargs): """ Basic initialisation. """ super().__init__(sop=sop, **kwargs) self.corrExclusions = None self._correlationToDilution = numpy.array(None) try: self.Attributes['artifactualFilter'] = (self.Attributes['artifactualFilter'] == 'True') except: pass self._tempArtifactualLinkageMatrix = pandas.DataFrame(None) self._artifactualLinkageMatrix = pandas.DataFrame(None) self.Attributes['Raw Data Path'] = None self.Attributes['Feature Names'] = 'Feature Name' self.filePath, fileName = os.path.split(datapath) self.fileName, fileExtension = os.path.splitext(fileName) self.name = self.fileName # Attributes to record which feature filtering procedures and parameters were used self.Attributes['featureFilters'] = {'rsdFilter': False, 'varianceRatioFilter': False, 'correlationToDilutionFilter': False, 'artifactualFilter': False, 'blankFilter': False} self.Attributes['filterParameters'] = {'rsdThreshold': None, 'corrMethod': None, 'corrThreshold': None, 'varianceRatio': None, 'blankThreshold': None, 'overlapThresholdArtifactual': None, 'corrThresholdArtifactual': None, 'deltaMzArtifactual': None} # Load the QI output file fileType = fileType.lower() if fileType == 'qi': self._loadQIDataset(datapath) self.Attributes['FeatureExtractionSoftware'] = 'Progenesis QI' self.VariableType = VariableType.Discrete elif fileType == 'csv': self._loadCSVImport(datapath, **kwargs) self.Attributes['FeatureExtractionSoftware'] = 'Unknown' if 'variableType' not in kwargs: self.VariableType = VariableType.Discrete else: self.VariableType = kwargs['variableType'] elif fileType == 'xcms': self._loadXCMSDataset(datapath, **kwargs) self.Attributes['FeatureExtractionSoftware'] = 'XCMS' self.VariableType = VariableType.Discrete elif fileType == 'biocrates': self._loadBiocratesDataset(datapath, **kwargs) self.Attributes['FeatureExtractionSoftware'] = 'Biocrates' self.VariableType = VariableType.Discrete elif fileType == 'metaboscape': self._loadMetaboscapeDataset(datapath, **kwargs) self.Attributes['FeatureExtractionSoftware'] = 'Metaboscape' self.VariableType = VariableType.Discrete elif fileType == 'csv export': (self.name, self.intensityData, self.featureMetadata, self.sampleMetadata) = self._initialiseFromCSV( datapath) if 'm/z' in self.featureMetadata.columns: self.featureMetadata['m/z'] = self.featureMetadata['m/z'].apply(pandas.to_numeric, errors='ignore') if 'Retention Time' in self.featureMetadata.columns: self.featureMetadata['Retention Time'] = self.featureMetadata['Retention Time'].apply(pandas.to_numeric, errors='ignore') self.VariableType = VariableType.Discrete elif fileType == 'empty': # Lets us build an empty object for testing &c pass else: raise NotImplementedError self.featureMetadata['Exclusion Details'] = None self.featureMetadata['User Excluded'] = False self.featureMetadata[['rsdFilter', 'varianceRatioFilter', 'correlationToDilutionFilter', 'blankFilter', 'artifactualFilter']] = pandas.DataFrame([[True, True, True, True, True]], index=self.featureMetadata.index) self.featureMetadata[['rsdSP', 'rsdSS/rsdSP', 'correlationToDilution', 'blankValue']] \ = pandas.DataFrame([[numpy.nan, numpy.nan, numpy.nan, numpy.nan]], index=self.featureMetadata.index) self.initialiseMasks() self.Attributes['Log'].append([datetime.now(), '%s instance inited, with %d samples, %d features, from \%s\'' % ( self.__class__.__name__, self.noSamples, self.noFeatures, datapath)]) # When making a deepcopy, all artifactual linkage are reset def __deepcopy__(self, memo): cls = self.__class__ result = cls.__new__(cls) memo[id(self)] = result for k, v in self.__dict__.items(): # Check for pandas dataframe, and use the if isinstance(v, pandas.DataFrame): setattr(result, k, v.copy()) else: setattr(result, k, copy.deepcopy(v, memo)) result._tempArtifactualLinkageMatrix =
pandas.DataFrame(None)
pandas.DataFrame
from __future__ import division from functools import wraps import pandas as pd import numpy as np import time import csv, sys import os.path import logging from .ted_functions import TedFunctions from .ted_aggregate_methods import TedAggregateMethods from base.uber_model import UberModel, ModelSharedInputs class TedSpeciesProperties(object): """ Listing of species properties that will eventually be read in from a SQL db """ def __init__(self): """Class representing Species properties""" super(TedSpeciesProperties, self).__init__() self.sci_name = pd.Series([], dtype='object') self.com_name = pd.Series([], dtype='object') self.taxa = pd.Series([], dtype='object') self.order = pd.Series([], dtype='object') self.usfws_id = pd.Series([], dtype='object') self.body_wgt = pd.Series([], dtype='object') self.diet_item = pd.Series([], dtype='object') self.h2o_cont = pd.Series([], dtype='float') def read_species_properties(self): # this is a temporary method to initiate the species/diet food items lists (this will be replaced with # a method to access a SQL database containing the properties #filename = './ted/tests/TEDSpeciesProperties.csv' filename = os.path.join(os.path.dirname(__file__),'tests/TEDSpeciesProperties.csv') try: with open(filename,'rt') as csvfile: # csv.DictReader uses first line in file for column headings by default dr = pd.read_csv(csvfile) # comma is default delimiter except csv.Error as e: sys.exit('file: %s, %s' (filename, e)) print(dr) self.sci_name = dr.ix[:,'Scientific Name'] self.com_name = dr.ix[:,'Common Name'] self.taxa = dr.ix[:,'Taxa'] self.order = dr.ix[:,'Order'] self.usfws_id = dr.ix[:,'USFWS Species ID (ENTITY_ID)'] self.body_wgt= dr.ix[:,'BW (g)'] self.diet_item = dr.ix[:,'Food item'] self.h2o_cont = dr.ix[:,'Water content of diet'] class TedInputs(ModelSharedInputs): """ Required inputs class for Ted. """ def __init__(self): """Class representing the inputs for Ted""" super(TedInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame self.chemical_name = pd.Series([], dtype="object", name="chemical_name") # application parameters for min/max application scenarios self.crop_min = pd.Series([], dtype="object", name="crop") self.app_method_min = pd.Series([], dtype="object", name="app_method_min") self.app_rate_min = pd.Series([], dtype="float", name="app_rate_min") self.num_apps_min = pd.Series([], dtype="int", name="num_apps_min") self.app_interval_min = pd.Series([], dtype="int", name="app_interval_min") self.droplet_spec_min = pd.Series([], dtype="object", name="droplet_spec_min") self.boom_hgt_min = pd.Series([], dtype="object", name="droplet_spec_min") self.pest_incorp_depth_min = pd.Series([], dtype="object", name="pest_incorp_depth") self.crop_max = pd.Series([], dtype="object", name="crop") self.app_method_max = pd.Series([], dtype="object", name="app_method_max") self.app_rate_max = pd.Series([], dtype="float", name="app_rate_max") self.num_apps_max = pd.Series([], dtype="int", name="num_app_maxs") self.app_interval_max = pd.Series([], dtype="int", name="app_interval_max") self.droplet_spec_max = pd.Series([], dtype="object", name="droplet_spec_max") self.boom_hgt_max = pd.Series([], dtype="object", name="droplet_spec_max") self.pest_incorp_depth_max = pd.Series([], dtype="object", name="pest_incorp_depth") # physical, chemical, and fate properties of pesticide self.foliar_diss_hlife = pd.Series([], dtype="float", name="foliar_diss_hlife") self.aerobic_soil_meta_hlife = pd.Series([], dtype="float", name="aerobic_soil_meta_hlife") self.frac_retained_mamm = pd.Series([], dtype="float", name="frac_retained_mamm") self.frac_retained_birds = pd.Series([], dtype="float", name="frac_retained_birds") self.log_kow = pd.Series([], dtype="float", name="log_kow") self.koc = pd.Series([], dtype="float", name="koc") self.solubility = pd.Series([], dtype="float", name="solubility") self.henry_law_const = pd.Series([], dtype="float", name="henry_law_const") # bio concentration factors (ug active ing/kg-ww) / (ug active ing/liter) self.aq_plant_algae_bcf_mean = pd.Series([], dtype="float", name="aq_plant_algae_bcf_mean") self.aq_plant_algae_bcf_upper = pd.Series([], dtype="float", name="aq_plant_algae_bcf_upper") self.inv_bcf_mean = pd.Series([], dtype="float", name="inv_bcf_mean") self.inv_bcf_upper = pd.Series([], dtype="float", name="inv_bcf_upper") self.fish_bcf_mean = pd.Series([], dtype="float", name="fish_bcf_mean") self.fish_bcf_upper = pd.Series([], dtype="float", name="fish_bcf_upper") # bounding water concentrations (ug active ing/liter) self.water_conc_1 = pd.Series([], dtype="float", name="water_conc_1") # lower bound self.water_conc_2 = pd.Series([], dtype="float", name="water_conc_2") # upper bound # health value inputs # naming convention (based on listing from OPP TED Excel spreadsheet 'inputs' worksheet): # dbt: dose based toxicity # cbt: concentration-based toxicity # arbt: application rate-based toxicity # 1inmill_mort: 1/million mortality (note initial character is numeral 1, not letter l) # 1inten_mort: 10% mortality (note initial character is numeral 1, not letter l) # others are self explanatory # dose based toxicity(dbt): mammals (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort") self.dbt_mamm_1inten_mort = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_low_ld50 = pd.Series([], dtype="float", name="dbt_mamm_low_ld50") self.dbt_mamm_rat_oral_ld50 = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_rat_derm_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50") self.dbt_mamm_rat_inhal_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50") self.dbt_mamm_sub_direct = pd.Series([], dtype="float", name="dbt_mamm_sub_direct") self.dbt_mamm_sub_indirect = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect") self.dbt_mamm_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort_wgt") self.dbt_mamm_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_low_ld50_wgt") self.dbt_mamm_rat_oral_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_rat_derm_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50_wgt") self.dbt_mamm_rat_inhal_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50_wgt") self.dbt_mamm_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_direct_wgt") self.dbt_mamm_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect_wgt") # dose based toxicity(dbt): birds (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_bird_1inmill_mort = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort") self.dbt_bird_1inten_mort = pd.Series([], dtype="float", name="dbt_bird_1inten_mort") self.dbt_bird_low_ld50 = pd.Series([], dtype="float", name="dbt_bird_low_ld50") self.dbt_bird_hc05 = pd.Series([], dtype="float", name="dbt_bird_hc05") self.dbt_bird_hc50 = pd.Series([], dtype="float", name="dbt_bird_hc50") self.dbt_bird_hc95 =
pd.Series([], dtype="float", name="dbt_bird_hc95")
pandas.Series
""" Tests for DatetimeIndex timezone-related methods """ from datetime import date, datetime, time, timedelta, tzinfo import dateutil from dateutil.tz import gettz, tzlocal import numpy as np import pytest import pytz from pandas._libs.tslibs import conversion, timezones import pandas.util._test_decorators as td import pandas as pd from pandas import ( DatetimeIndex, Index, Timestamp, bdate_range, date_range, isna, to_datetime, ) import pandas._testing as tm class FixedOffset(tzinfo): """Fixed offset in minutes east from UTC.""" def __init__(self, offset, name): self.__offset = timedelta(minutes=offset) self.__name = name def utcoffset(self, dt): return self.__offset def tzname(self, dt): return self.__name def dst(self, dt): return timedelta(0) fixed_off = FixedOffset(-420, "-07:00") fixed_off_no_name = FixedOffset(-330, None) class TestDatetimeIndexTimezones: # ------------------------------------------------------------- # DatetimeIndex.tz_convert def test_tz_convert_nat(self): # GH#5546 dates = [pd.NaT] idx = DatetimeIndex(dates) idx = idx.tz_localize("US/Pacific") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Eastern")) idx = idx.tz_convert("UTC") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="UTC")) dates = ["2010-12-01 00:00", "2010-12-02 00:00", pd.NaT] idx = DatetimeIndex(dates) idx = idx.tz_localize("US/Pacific") tm.assert_index_equal(idx, DatetimeIndex(dates, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") expected = ["2010-12-01 03:00", "2010-12-02 03:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) idx = idx + pd.offsets.Hour(5) expected = ["2010-12-01 08:00", "2010-12-02 08:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) idx = idx.tz_convert("US/Pacific") expected = ["2010-12-01 05:00", "2010-12-02 05:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Pacific")) idx = idx + np.timedelta64(3, "h") expected = ["2010-12-01 08:00", "2010-12-02 08:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Pacific")) idx = idx.tz_convert("US/Eastern") expected = ["2010-12-01 11:00", "2010-12-02 11:00", pd.NaT] tm.assert_index_equal(idx, DatetimeIndex(expected, tz="US/Eastern")) @pytest.mark.parametrize("prefix", ["", "dateutil/"]) def test_dti_tz_convert_compat_timestamp(self, prefix): strdates = ["1/1/2012", "3/1/2012", "4/1/2012"] idx = DatetimeIndex(strdates, tz=prefix + "US/Eastern") conv = idx[0].tz_convert(prefix + "US/Pacific") expected = idx.tz_convert(prefix + "US/Pacific")[0] assert conv == expected def test_dti_tz_convert_hour_overflow_dst(self): # Regression test for: # https://github.com/pandas-dev/pandas/issues/13306 # sorted case US/Eastern -> UTC ts = ["2008-05-12 09:50:00", "2008-12-12 09:50:35", "2009-05-12 09:50:32"] tt = DatetimeIndex(ts).tz_localize("US/Eastern") ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # sorted case UTC -> US/Eastern ts = ["2008-05-12 13:50:00", "2008-12-12 14:50:35", "2009-05-12 13:50:32"] tt = DatetimeIndex(ts).tz_localize("UTC") ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) # unsorted case US/Eastern -> UTC ts = ["2008-05-12 09:50:00", "2008-12-12 09:50:35", "2008-05-12 09:50:32"] tt = DatetimeIndex(ts).tz_localize("US/Eastern") ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # unsorted case UTC -> US/Eastern ts = ["2008-05-12 13:50:00", "2008-12-12 14:50:35", "2008-05-12 13:50:32"] tt = DatetimeIndex(ts).tz_localize("UTC") ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) @pytest.mark.parametrize("tz", ["US/Eastern", "dateutil/US/Eastern"]) def test_dti_tz_convert_hour_overflow_dst_timestamps(self, tz): # Regression test for GH#13306 # sorted case US/Eastern -> UTC ts = [ Timestamp("2008-05-12 09:50:00", tz=tz), Timestamp("2008-12-12 09:50:35", tz=tz), Timestamp("2009-05-12 09:50:32", tz=tz), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # sorted case UTC -> US/Eastern ts = [ Timestamp("2008-05-12 13:50:00", tz="UTC"), Timestamp("2008-12-12 14:50:35", tz="UTC"), Timestamp("2009-05-12 13:50:32", tz="UTC"), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) # unsorted case US/Eastern -> UTC ts = [ Timestamp("2008-05-12 09:50:00", tz=tz), Timestamp("2008-12-12 09:50:35", tz=tz), Timestamp("2008-05-12 09:50:32", tz=tz), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("UTC") expected = Index([13, 14, 13]) tm.assert_index_equal(ut.hour, expected) # unsorted case UTC -> US/Eastern ts = [ Timestamp("2008-05-12 13:50:00", tz="UTC"), Timestamp("2008-12-12 14:50:35", tz="UTC"), Timestamp("2008-05-12 13:50:32", tz="UTC"), ] tt = DatetimeIndex(ts) ut = tt.tz_convert("US/Eastern") expected = Index([9, 9, 9]) tm.assert_index_equal(ut.hour, expected) @pytest.mark.parametrize("freq, n", [("H", 1), ("T", 60), ("S", 3600)]) def test_dti_tz_convert_trans_pos_plus_1__bug(self, freq, n): # Regression test for tslib.tz_convert(vals, tz1, tz2). # See https://github.com/pandas-dev/pandas/issues/4496 for details. idx = date_range(datetime(2011, 3, 26, 23), datetime(2011, 3, 27, 1), freq=freq) idx = idx.tz_localize("UTC") idx = idx.tz_convert("Europe/Moscow") expected = np.repeat(np.array([3, 4, 5]), np.array([n, n, 1])) tm.assert_index_equal(idx.hour, Index(expected)) def test_dti_tz_convert_dst(self): for freq, n in [("H", 1), ("T", 60), ("S", 3600)]: # Start DST idx = date_range( "2014-03-08 23:00", "2014-03-09 09:00", freq=freq, tz="UTC" ) idx = idx.tz_convert("US/Eastern") expected = np.repeat( np.array([18, 19, 20, 21, 22, 23, 0, 1, 3, 4, 5]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) idx = date_range( "2014-03-08 18:00", "2014-03-09 05:00", freq=freq, tz="US/Eastern" ) idx = idx.tz_convert("UTC") expected = np.repeat( np.array([23, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour, Index(expected)) # End DST idx = date_range( "2014-11-01 23:00", "2014-11-02 09:00", freq=freq, tz="UTC" ) idx = idx.tz_convert("US/Eastern") expected = np.repeat( np.array([19, 20, 21, 22, 23, 0, 1, 1, 2, 3, 4]), np.array([n, n, n, n, n, n, n, n, n, n, 1]), ) tm.assert_index_equal(idx.hour,
Index(expected)
pandas.Index
""" Class Features Name: driver_data_io_destination Author(s): <NAME> (<EMAIL>) Date: '20200515' Version: '1.0.0' """ ###################################################################################### # Library import logging import os import numpy as np from copy import deepcopy import pandas as pd from lib_utils_hazard import read_file_hazard from lib_utils_io import read_obj, write_obj, save_file_json from lib_utils_system import fill_tags2string, make_folder from lib_utils_generic import get_dict_value, reduce_dict_2_lists from lib_utils_plot import save_file_tiff, save_file_png, read_file_tiff, save_file_info from lib_utils_ts import prepare_file_ts, save_file_ts from lib_utils_tr import cmp_tr_exp, cmp_tr_linear from lib_info_args import logger_name, time_format_algorithm # Logging log_stream = logging.getLogger(logger_name) # Debug import matplotlib.pylab as plt ###################################################################################### # ------------------------------------------------------------------------------------- # Class DriverScenario class DriverScenario: # ------------------------------------------------------------------------------------- # Initialize class def __init__(self, time_now, time_run, discharge_data_collection, geo_data_collection, src_dict, anc_dict, dst_dict, alg_ancillary=None, alg_template_tags=None, flag_telemac_data='telemac_data', flag_hazard_data='hazard_data', flag_scenario_data_info='scenario_data_info', flag_scenario_data_file='scenario_data_file', flag_scenario_data_map='scenario_data_map', flag_scenario_plot_info='scenario_info', flag_scenario_plot_tiff='scenario_tiff', flag_scenario_plot_png='scenario_png', flag_scenario_data_ts='scenario_time_series', flag_cleaning_anc_scenario_info=True, flag_cleaning_anc_scenario_file=True, flag_cleaning_anc_scenario_map=True, flag_cleaning_plot_scenario=True, flag_cleaning_data_scenario=True): self.time_now = time_now self.time_run = time_run self.discharge_data_collection = discharge_data_collection self.geo_data_collection = geo_data_collection self.flag_telemac_data = flag_telemac_data self.flag_hazard_data = flag_hazard_data self.flag_scenario_data_info = flag_scenario_data_info self.flag_scenario_data_file = flag_scenario_data_file self.flag_scenario_data_map = flag_scenario_data_map self.flag_scenario_plot_info = flag_scenario_plot_info self.flag_scenario_plot_tiff = flag_scenario_plot_tiff self.flag_scenario_plot_png = flag_scenario_plot_png self.flag_scenario_data_ts = flag_scenario_data_ts self.alg_ancillary = alg_ancillary self.tr_min = alg_ancillary['tr_min'] self.tr_max = alg_ancillary['tr_max'] self.tr_freq = alg_ancillary['tr_freq'] self.scenario_analysis = alg_ancillary['scenario_analysis'] self.scenario_type = alg_ancillary['scenario_type'] if 'scenario_tiling' in list(alg_ancillary.keys()): self.scenario_tiling = alg_ancillary['scenario_tiling'] else: self.scenario_tiling = 'rounded' self.alg_template_tags = alg_template_tags self.file_name_tag = 'file_name' self.folder_name_tag = 'folder_name' self.save_status_tag = 'save_status' self.group_dst_plot = 'plot' self.group_dst_data = 'data' self.domain_name_list = self.alg_ancillary['domain_name'] self.folder_name_telemac = src_dict[self.flag_telemac_data][self.folder_name_tag] self.file_name_telemac = src_dict[self.flag_telemac_data][self.file_name_tag] self.folder_name_hazard = src_dict[self.flag_hazard_data][self.folder_name_tag] self.file_name_hazard = src_dict[self.flag_hazard_data][self.file_name_tag] self.folder_name_scenario_anc_info = anc_dict[self.flag_scenario_data_info][self.folder_name_tag] self.file_name_scenario_anc_info = anc_dict[self.flag_scenario_data_info][self.file_name_tag] self.folder_name_scenario_anc_file = anc_dict[self.flag_scenario_data_file][self.folder_name_tag] self.file_name_scenario_anc_file = anc_dict[self.flag_scenario_data_file][self.file_name_tag] self.folder_name_scenario_anc_map = anc_dict[self.flag_scenario_data_map][self.folder_name_tag] self.file_name_scenario_anc_map = anc_dict[self.flag_scenario_data_map][self.file_name_tag] self.file_path_scenario_anc_info = self.define_file_scenario( self.time_now, self.folder_name_scenario_anc_info, self.file_name_scenario_anc_info, file_type='dictionary') self.file_path_scenario_anc_file = self.define_file_scenario( self.time_now, self.folder_name_scenario_anc_file, self.file_name_scenario_anc_file, file_type='dictionary') self.format_tr = '{:03d}' self.scenario_tr = self.define_tr_scenario(self.tr_min, self.tr_max, self.tr_freq) group_dst_plot = dst_dict[self.group_dst_plot] self.folder_name_scenario_plot_info = group_dst_plot[self.flag_scenario_plot_info][self.folder_name_tag] self.file_name_scenario_plot_info = group_dst_plot[self.flag_scenario_plot_info][self.file_name_tag] self.save_status_scenario_plot_info = group_dst_plot[self.flag_scenario_plot_info][self.save_status_tag] self.folder_name_scenario_plot_tiff = group_dst_plot[self.flag_scenario_plot_tiff][self.folder_name_tag] self.file_name_scenario_plot_tiff = group_dst_plot[self.flag_scenario_plot_tiff][self.file_name_tag] self.save_status_scenario_plot_tiff = group_dst_plot[self.flag_scenario_plot_tiff][self.save_status_tag] self.folder_name_scenario_plot_png = group_dst_plot[self.flag_scenario_plot_png][self.folder_name_tag] self.file_name_scenario_plot_png = group_dst_plot[self.flag_scenario_plot_png][self.file_name_tag] self.save_status_scenario_plot_png = group_dst_plot[self.flag_scenario_plot_png][self.save_status_tag] group_dst_data = dst_dict[self.group_dst_data] self.folder_name_scenario_data_ts = group_dst_data[self.flag_scenario_data_ts][self.folder_name_tag] self.file_name_scenario_data_ts = group_dst_data[self.flag_scenario_data_ts][self.file_name_tag] self.save_status_scenario_data_ts = group_dst_data[self.flag_scenario_data_ts][self.save_status_tag] self.flag_cleaning_anc_scenario_info = flag_cleaning_anc_scenario_info self.flag_cleaning_anc_scenario_file = flag_cleaning_anc_scenario_file self.flag_cleaning_anc_scenario_map = flag_cleaning_anc_scenario_map self.flag_cleaning_plot_scenario = flag_cleaning_plot_scenario self.flag_cleaning_data_scenario = flag_cleaning_data_scenario scenario_description_collection = {} for domain_name_step in self.domain_name_list: domain_description_list = get_dict_value(geo_data_collection[domain_name_step], 'description', []) scenario_description_collection[domain_name_step] = domain_description_list self.scenario_description_collection = scenario_description_collection self.domain_discharge_index_tag = 'discharge_idx' self.domain_grid_x_tag = 'grid_x_grid' self.domain_grid_y_tag = 'grid_y_grid' self.domain_sections_db_tag = 'domain_sections_db' self.domain_scenario_index_tag = 'scenario_idx' self.domain_scenario_index_right_tag = 'scenario_idx_right' self.domain_scenario_index_left_tag = 'scenario_idx_left' self.domain_scenario_weight_right_tag = 'scenario_weight_right' self.domain_scenario_weight_left_tag = 'scenario_weight_left' self.domain_scenario_discharge_tag = 'discharge_value' self.domain_scenario_type_tag = 'type_value' self.domain_scenario_time_tag = 'time' self.domain_scenario_n_tag = 'scenario_n' self.domain_scenario_attrs_tag = 'scenario_attrs' self.domain_scenario_index_cmp_tag = 'scenario_idx_cmp' self.domain_scenario_discharge_cmp_tag = 'discharge_value_cmp' self.domain_scenario_h_cmp_tag = 'h_value_cmp' self.domain_scenario_area_tag = "mappa_aree_new" self.domain_scenario_grid_x_tag = "new_x" self.domain_scenario_grid_y_tag = "new_y" self.domain_scenario_hazard_name = 'mappa_h' self.domain_scenario_hazard_format = np.float32 self.domain_scenario_hazard_scale_factor = 1 self.domain_scenario_hazard_units = 'm' self.domain_name_tag = 'domain_name' self.var_name_time = 'time' self.var_name_discharge = 'discharge' self.var_name_water_level = 'water_level' self.var_name_type = 'type' self.dframe_columns = [self.domain_scenario_index_cmp_tag, self.domain_scenario_discharge_cmp_tag, self.domain_scenario_h_cmp_tag] self.correction_discharge_factor = 1.16 # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to define hazard file def define_file_hazard(self, folder_name_raw, file_name_raw, domain_name, section_tr): template_tags = self.alg_template_tags template_values_step = {'domain_name': domain_name, 'tr': self.format_tr.format(section_tr)} folder_name_def = fill_tags2string(folder_name_raw, template_tags, template_values_step) file_name_def = fill_tags2string(file_name_raw, template_tags, template_values_step) path_name_def = os.path.join(folder_name_def, file_name_def) return path_name_def # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to define scenarios tr def define_tr_scenario(self, tr_min, tr_max, tr_freq=1): scenario_tr_raw = np.arange(tr_min, tr_max + 1, tr_freq).tolist() scenario_tr_def = [] for scenario_step in scenario_tr_raw: scenario_tmp = self.format_tr.format(scenario_step) scenario_tr_def.append(scenario_tmp) return scenario_tr_def # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to compute tr for evaluating scenario def compute_scenario_tr(self, section_discharge_idx, section_discharge_times, section_discharge_values, section_discharge_name, section_scenario_tr_min=1, section_scenario_tr_max=500): if not isinstance(section_discharge_values, list): section_discharge_values = [section_discharge_values] if not isinstance(section_discharge_times, list): section_discharge_times = [section_discharge_times] if section_discharge_idx > 0.0: section_scenario_trs = [] section_scenario_trs_right, section_scenario_trs_left = [], [] section_scenario_weights_right, section_scenario_weights_left = [], [] section_scenario_tr_check, section_scenario_tr_right_check, section_scenario_tr_left_check = [], [], [] for section_discharge_id, (section_discharge_time, section_discharge_value) in enumerate( zip(section_discharge_times, section_discharge_values)): if section_discharge_value >= 0.0: if section_discharge_value >= section_discharge_idx * self.correction_discharge_factor: section_scenario_tr_rounded, \ section_scenario_tr_right, section_scenario_tr_left, \ section_scenario_weight_right, section_scenario_weight_left = cmp_tr_exp( section_discharge_idx, section_discharge_value) else: section_scenario_tr_rounded, \ section_scenario_tr_right, section_scenario_tr_left, \ section_scenario_weight_right, section_scenario_weight_left = cmp_tr_linear( section_discharge_idx, section_discharge_value, section_discharge_factor=self.correction_discharge_factor) section_scenario_tr = int(section_scenario_tr_rounded) section_scenario_tr_right = int(section_scenario_tr_right) section_scenario_tr_left = int(section_scenario_tr_left) if section_scenario_tr < section_scenario_tr_min: section_scenario_tr = section_scenario_tr_min section_scenario_tr_check.append(section_discharge_time.strftime(time_format_algorithm)) elif section_scenario_tr > section_scenario_tr_max: log_stream.error(' ===> At time "' + section_discharge_time.strftime(time_format_algorithm) + '" find the "tr ' + str(section_scenario_tr) + '" greater then "tr_max ' + str(section_scenario_tr_max) + '"') raise NotImplementedError('Case not implemented yet') if section_scenario_tr_right < section_scenario_tr_min: section_scenario_tr_right_check.append(section_discharge_time.strftime(time_format_algorithm)) section_scenario_tr_right = section_scenario_tr_min section_scenario_tr_left = section_scenario_tr_min section_scenario_weight_right = 0.5 section_scenario_weight_left = 0.5 elif section_scenario_tr_left > section_scenario_tr_max: log_stream.error(' ===> At time "' + section_discharge_time.strftime(time_format_algorithm) + '" find the "tr_left ' + str(section_scenario_tr_left) + '" greater then "tr_max ' + str(section_scenario_tr_max) + '"') raise NotImplementedError('Case not implemented yet') else: section_scenario_tr = np.nan section_scenario_tr_right, section_scenario_tr_left = np.nan, np.nan section_scenario_weight_right, section_scenario_weight_left = np.nan, np.nan section_scenario_trs.append(section_scenario_tr) section_scenario_trs_right.append(section_scenario_tr_right) section_scenario_trs_left.append(section_scenario_tr_left) section_scenario_weights_right.append(section_scenario_weight_right) section_scenario_weights_left.append(section_scenario_weight_left) if section_scenario_tr_check: section_scenario_tr_str = ', '.join(section_scenario_tr_check) log_stream.warning(' ===> At times "' + section_scenario_tr_str + '" found the "tr" less then "tr_min ' + str(section_scenario_tr_min) + '"') log_stream.warning(' ===> Set the "tr" equal to "tr_min"') if section_scenario_tr_right_check: section_scenario_tr_str = ', '.join(section_scenario_tr_right_check) log_stream.warning(' ===> At times "' + section_scenario_tr_str + '" found the "tr_right" less then "tr_min ' + str(section_scenario_tr_min) + '"') log_stream.warning(' ===> Set the "tr_right" equal to "tr_min"') else: section_scenario_trs = [np.nan] * section_discharge_values.__len__() section_scenario_trs_right = [np.nan] * section_discharge_values.__len__() section_scenario_trs_left = [np.nan] * section_discharge_values.__len__() section_scenario_weights_right = [np.nan] * section_discharge_values.__len__() section_scenario_weights_left = [np.nan] * section_discharge_values.__len__() return section_scenario_trs, section_scenario_trs_right, section_scenario_trs_left, \ section_scenario_weights_right, section_scenario_weights_left # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to compute discharge for evaluating scenario @staticmethod def compute_scenario_discharge(dframe_discharge, dframe_type, analysis_freq=None): if analysis_freq == 'max_period': reference_value, time_value, occurrence_value, discharge_value, type_value = [], [], [], [], [] time_max_value = dframe_discharge.idxmax() time_max_idx = dframe_discharge.index.get_loc(time_max_value) reference_value.append(time_max_idx) time_value.append(time_max_value) discharge_value.append(dframe_discharge[time_max_idx]) type_value.append(dframe_type[time_max_idx]) occurrence_value.append(1) elif analysis_freq == 'all_period': reference_value, time_value, occurrence_value, discharge_value, type_value = [], [], [], [], [] for id_step, (time_step, discharge_step, type_step) in enumerate(zip( dframe_discharge.index, dframe_discharge.values, dframe_type.values)): if not np.isnan(discharge_step): reference_value.append(id_step) time_value.append(time_step) discharge_value.append(discharge_step) type_value.append(type_step) occurrence_value.append(1) else: log_stream.error(' ===> Frequency to compute discharge for evaluating scenario is not defined') raise NotImplemented('Method not implemented yet') return reference_value, time_value, discharge_value, type_value, occurrence_value # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to define hazard file def define_file_scenario(self, time_run, folder_name_raw, file_name_raw, domain_list=None, file_type='string', time_step=None): template_tags = self.alg_template_tags if time_step is None: time_step = time_run if domain_list is None: domain_list = self.domain_name_list if not isinstance(domain_list, list): domain_list = [domain_list] file_path_dict = {} for domain_name in domain_list: template_values_step = {'domain_name': domain_name, 'destination_sub_path_time_scenario_plot': time_run, 'destination_sub_path_time_scenario_data': time_run, 'ancillary_sub_path_time_scenario': time_run, 'destination_datetime_scenario_plot': time_step, 'destination_datetime_scenario_data': time_step, 'ancillary_datetime_scenario': time_step } folder_name_def = fill_tags2string(folder_name_raw, template_tags, template_values_step) file_name_def = fill_tags2string(file_name_raw, template_tags, template_values_step) path_name_def = os.path.join(folder_name_def, file_name_def) file_path_dict[domain_name] = path_name_def if file_type == 'string': _, file_path_list = reduce_dict_2_lists(file_path_dict) if file_path_list.__len__() == 1: file_path_obj = file_path_list[0] else: log_stream.error(' ===> File format is not supported') raise NotImplementedError('File multi-band not implemented yet') elif file_type == 'dictionary': file_path_obj = deepcopy(file_path_dict) else: log_stream.error(' ===> File type mode is not supported') raise NotImplementedError('File multi-band not implemented yet') return file_path_obj # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to dump scenario map def dump_scenario_map(self, scenario_map_collection, scenario_info_collection, scenario_dframe_collection): time_run = self.time_run time_now = self.time_now time_now_string = time_now.strftime(time_format_algorithm) geo_data_collection = self.geo_data_collection scenario_description_collection = self.scenario_description_collection log_stream.info(' ---> Dump scenario time-series, maps and info [' + time_run.strftime(time_format_algorithm) + '] ... ') for domain_name_step in self.domain_name_list: log_stream.info(' ----> Domain "' + domain_name_step + '" ... ') domain_geo_collection = geo_data_collection[domain_name_step] domain_info_collection = scenario_info_collection[domain_name_step] domain_map_collection = scenario_map_collection[domain_name_step] domain_dframe_collection = scenario_dframe_collection[domain_name_step] domain_description_collection = scenario_description_collection[domain_name_step] if not domain_map_collection: domain_map_collection = None if domain_map_collection is not None: log_stream.info(' -----> Time-Series section ... ') log_stream.info(' ------> Prepare file data ... ') file_path_scenario_data_ts = self.define_file_scenario( time_now, self.folder_name_scenario_data_ts, self.file_name_scenario_data_ts, domain_name_step, file_type='string', time_step=time_now) if self.flag_cleaning_data_scenario: if os.path.exists(file_path_scenario_data_ts): os.remove(file_path_scenario_data_ts) domain_ts_data = prepare_file_ts(domain_description_collection, domain_dframe_collection, domain_info_collection) log_stream.info(' ------> Prepare file data ... DONE') # Save information in ts file folder_name_scenario_data_ts, file_name_scenario_data_ts = os.path.split( file_path_scenario_data_ts) make_folder(folder_name_scenario_data_ts) log_stream.info(' ------> Save file ts ' + file_name_scenario_data_ts + ' ... ') if self.save_status_scenario_data_ts: if not os.path.exists(file_path_scenario_data_ts): save_file_ts(file_path_scenario_data_ts, domain_ts_data) log_stream.info(' -------> Save file ts ' + file_name_scenario_data_ts + ' ... DONE') else: log_stream.info(' ------> Save file ts ' + file_name_scenario_data_ts + ' ... PREVIOUSLY SAVED') else: log_stream.info(' ------> Save file ts ' + file_name_scenario_data_ts + ' ... SKIPPED. Save method is deactivated') log_stream.info(' ------> Save file ts ' + file_name_scenario_data_ts + ' ... DONE') log_stream.info(' -----> Time-Series section ... DONE') log_stream.info(' -----> Maps section ... ') for domain_map_time, domain_map_file_ancillary in sorted(domain_map_collection.items()): log_stream.info(' ------> Time step "' + domain_map_time.strftime(time_format_algorithm) + '" ... ') log_stream.info(' -------> Prepare file data ... ') if domain_map_file_ancillary.endswith('tiff') or \ domain_map_file_ancillary.endswith('tif'): domain_map_data = read_file_tiff(domain_map_file_ancillary) # DEBUG START # plt.figure() # plt.imshow(domain_map_data) # plt.colorbar() # plt.clim(0, 8) # plt.show() # DEBUG END elif domain_map_file_ancillary.endswith('workspace'): domain_map_data = read_obj(domain_map_file_ancillary) else: log_stream.error(' ===> Read selected method is not supported.') raise NotImplementedError('Case not implemented yet') file_path_scenario_plot_info = self.define_file_scenario( time_now, self.folder_name_scenario_plot_info, self.file_name_scenario_plot_info, domain_name_step, file_type='string', time_step=domain_map_time) file_path_scenario_plot_tiff = self.define_file_scenario( time_now, self.folder_name_scenario_plot_tiff, self.file_name_scenario_plot_tiff, domain_name_step, file_type='string', time_step=domain_map_time) file_path_scenario_plot_png = self.define_file_scenario( time_now, self.folder_name_scenario_plot_png, self.file_name_scenario_plot_png, domain_name_step, file_type='string', time_step=domain_map_time) if self.flag_cleaning_plot_scenario: if os.path.exists(file_path_scenario_plot_info): os.remove(file_path_scenario_plot_info) if os.path.exists(file_path_scenario_plot_tiff): os.remove(file_path_scenario_plot_tiff) if os.path.exists(file_path_scenario_plot_png): os.remove(file_path_scenario_plot_png) domain_geo_data = domain_geo_collection[self.domain_scenario_area_tag] domain_geo_x = domain_geo_collection[self.domain_scenario_grid_x_tag] domain_geo_y = domain_geo_collection[self.domain_scenario_grid_y_tag] time_step_string = domain_map_time.strftime(time_format_algorithm) section_info_collection = {} for domain_info_key, domain_info_fields in domain_info_collection.items(): if domain_info_fields is not None: if domain_info_key in domain_description_collection: if self.domain_scenario_attrs_tag in list(domain_info_fields.keys()): section_info_attrs = domain_info_fields[self.domain_scenario_attrs_tag] else: log_stream.warning(' ===> Section attributes for "' + domain_info_key + '" are undefined due to time-series discharge datasets.') section_info_attrs = {} domain_info_dframe = pd.DataFrame(domain_info_fields, index=domain_info_fields['time']) if not domain_info_dframe[domain_info_dframe.index.isin([domain_map_time])].empty: section_info_fields = domain_info_dframe[domain_info_dframe.index.isin([domain_map_time])].to_dict('r')[0] else: section_info_fields = {} log_stream.warning(' ===> Section information for "' + domain_info_key + '" are undefined due to time-series discharge datasets.') if isinstance(section_info_fields, dict) and isinstance(section_info_attrs, dict): section_info_fields = {**section_info_fields, **section_info_attrs} else: log_stream.warning(' ===> Section information and attributes for "' + domain_info_key + '" are undefined due to time-series discharge datasets.') section_info_fields = {} if section_info_fields is not None: for section_info_key, section_info_value in section_info_fields.items(): if isinstance(section_info_value, pd.Timestamp): section_tmp_value = section_info_value.strftime(time_format_algorithm) section_info_fields[section_info_key] = section_tmp_value elif isinstance(section_info_value, list): section_tmp_value = ','.join(str(elem) for elem in section_info_value) section_info_fields[section_info_key] = section_tmp_value elif isinstance(section_info_value, bool): section_tmp_value = str(section_info_value) section_info_fields[section_info_key] = section_tmp_value section_info_collection[domain_info_key] = section_info_fields section_info_collection['scenario_name'] = domain_name_step section_info_collection['scenario_time_now'] = time_now_string section_info_collection['scenario_time_step'] = time_step_string log_stream.info(' -------> Prepare file data ... DONE') # Save information in json file folder_name_scenario_plot_info, file_name_scenario_plot_info = os.path.split( file_path_scenario_plot_info) make_folder(folder_name_scenario_plot_info) log_stream.info(' -------> Save file json ' + file_name_scenario_plot_info + ' ... ') if self.save_status_scenario_plot_info: if not os.path.exists(file_path_scenario_plot_info): save_file_info(file_path_scenario_plot_info, section_info_collection) log_stream.info(' -------> Save file json ' + file_name_scenario_plot_info + ' ... DONE') else: log_stream.info(' -------> Save file json ' + file_name_scenario_plot_info + ' ... PREVIOUSLY SAVED') else: log_stream.info(' -------> Save file json ' + file_name_scenario_plot_info + ' ... SKIPPED. Save method is deactivated') # Save information in png file folder_name_scenario_plot_png, file_name_scenario_plot_png = os.path.split( file_path_scenario_plot_png) make_folder(folder_name_scenario_plot_png) log_stream.info(' -------> Save file png ' + file_name_scenario_plot_png + ' ... ') if self.save_status_scenario_plot_png: if not os.path.exists(file_path_scenario_plot_png): save_file_png(file_path_scenario_plot_png, domain_map_data, domain_geo_x, domain_geo_y, scenario_name=domain_name_step, scenario_time_now_string=time_now_string, scenario_time_step_string=time_step_string, fig_color_map_type=None, fig_dpi=150) log_stream.info(' -------> Save file png ' + file_name_scenario_plot_png + ' ... DONE') else: log_stream.info(' -------> Save file png ' + file_name_scenario_plot_png + ' ... PREVIOUSLY SAVED') else: log_stream.info(' -------> Save file png ' + file_name_scenario_plot_png + ' ... SKIPPED. Save method is deactivated') # Save information in tiff file folder_name_scenario_plot_tiff, file_name_scenario_plot_tiff = os.path.split( file_path_scenario_plot_tiff) make_folder(folder_name_scenario_plot_tiff) log_stream.info(' -------> Save file tiff ' + file_name_scenario_plot_tiff + ' ... ') if self.save_status_scenario_plot_tiff: if not os.path.exists(file_path_scenario_plot_tiff): save_file_tiff(file_path_scenario_plot_tiff, domain_map_data, domain_geo_x, domain_geo_y, file_epsg_code='EPSG:32632') log_stream.info(' -------> Save file tiff ' + file_name_scenario_plot_tiff + ' ... DONE') else: log_stream.info(' -------> Save file tiff ' + file_name_scenario_plot_tiff + ' ... PREVIOUSLY SAVED') else: log_stream.info(' -------> Save file tiff ' + file_name_scenario_plot_tiff + ' ... SKIPPED. Save method is deactivated') log_stream.info(' ------> Time step "' + domain_map_time.strftime(time_format_algorithm) + '" ... DONE') log_stream.info(' -----> Maps section ... DONE') log_stream.info(' ----> Domain "' + domain_name_step + '" ... DONE') else: log_stream.info(' ----> Domain "' + domain_name_step + '" ... SKIPPED. Datasets are empty') log_stream.info(' ---> Dump scenario time-series, maps and info [' + time_run.strftime(time_format_algorithm) + '] ... DONE') # ------------------------------------------------------------------------------------- # ------------------------------------------------------------------------------------- # Method to compute scenario map def compute_scenario_map(self, scenario_data_collection): time = self.time_run geo_data_collection = self.geo_data_collection file_path_scenario_anc_collections_file = self.file_path_scenario_anc_file log_stream.info(' ---> Compute scenario maps [' + time.strftime(time_format_algorithm) + '] ... ') scenario_map_collection = {} scenario_dframe_collection = {} for domain_name_step in self.domain_name_list: log_stream.info(' ----> Domain "' + domain_name_step + '" ... ') domain_geo_collection = geo_data_collection[domain_name_step] domain_scenario_data = scenario_data_collection[domain_name_step] domain_section_db = geo_data_collection[domain_name_step][self.domain_sections_db_tag] file_path_scenario_anc_domain_file = file_path_scenario_anc_collections_file[domain_name_step] if domain_scenario_data is not None: domain_scenario_merged_default = np.zeros( [domain_geo_collection[self.domain_scenario_area_tag].shape[0], domain_geo_collection[self.domain_scenario_area_tag].shape[1]]) domain_scenario_merged_default[:, :] = np.nan domain_geo_data = domain_geo_collection[self.domain_scenario_area_tag] domain_geo_x = domain_geo_collection[self.domain_scenario_grid_x_tag] domain_geo_y = domain_geo_collection[self.domain_scenario_grid_y_tag] if self.flag_cleaning_anc_scenario_info or self.flag_cleaning_anc_scenario_file or \ self.flag_cleaning_anc_scenario_map: file_path_scenario_tmp = [] if os.path.exists(file_path_scenario_anc_domain_file): file_path_scenario_obj = read_obj(file_path_scenario_anc_domain_file) file_path_scenario_tmp = list(file_path_scenario_obj['file_path'].values()) os.remove(file_path_scenario_anc_domain_file) for file_path_step in file_path_scenario_tmp: if os.path.exists(file_path_step): os.remove(file_path_step) if not os.path.exists(file_path_scenario_anc_domain_file): section_dframe_collections = {} file_path_scenarios_collections = {} for section_scenario_id, \ (section_scenario_key, section_scenario_data) in enumerate(domain_scenario_data.items()): # DEBUG # section_scenario_key = 'Entella_Carasco' # section_scenario_data = domain_scenario_data[section_scenario_key] log_stream.info(' -----> Section "' + section_scenario_key + '" ... ') section_db_data = None for domain_section_key, domain_section_fields in domain_section_db.items(): if domain_section_fields['description'] == section_scenario_key: section_db_data = domain_section_fields.copy() break if section_db_data is not None: section_db_n = section_db_data['n'] section_db_description = section_db_data['description'] section_db_name_outlet = section_db_data['name_point_outlet'] section_db_name_downstream = section_db_data['name_point_downstream'] section_db_name_upstream = section_db_data['name_point_upstream'] section_db_name_obs = section_db_data['name_point_obs'] section_db_idx_terrain = section_db_data['idx_data_terrain'] if 'idx_data_hydraulic' in list(section_db_data.keys()): section_db_idx_hydraulic = section_db_data['idx_data_hydraulic'] else: section_db_idx_hydraulic = None assert section_db_description == section_scenario_key if section_scenario_data is not None: section_scenario_discharges = section_scenario_data[self.domain_scenario_discharge_tag] section_scenario_trs_cmp = section_scenario_data[self.domain_scenario_index_tag] section_scenario_trs_right = section_scenario_data[self.domain_scenario_index_right_tag] section_scenario_trs_left = section_scenario_data[self.domain_scenario_index_left_tag] section_scenario_wgs_right = section_scenario_data[self.domain_scenario_weight_right_tag] section_scenario_wgs_left = section_scenario_data[self.domain_scenario_weight_left_tag] if self.scenario_analysis == 'max_period': section_scenario_times = [time] elif self.scenario_analysis == 'all_period': section_scenario_times = section_scenario_data[self.domain_scenario_time_tag] else: log_stream.error(' ===> Scenario frequency value "' + str(self.scenario_analysis) + '" is not allowed') log_stream.info(' -----> Section "' + section_scenario_key + '" ... FAILED') raise NotImplementedError('Case not implemented yet') section_scenario_time_list, section_scenario_discharge_list = [], [] section_scenario_tr_list, section_scenario_h_list = [], [] section_scenario_tr_list_right, section_scenario_tr_list_left = [], [] for id_scenario_time, section_scenario_time in enumerate(section_scenario_times): section_scenario_discharge = section_scenario_discharges[id_scenario_time] section_scenario_tr_cmp = section_scenario_trs_cmp[id_scenario_time] section_scenario_tr_right = section_scenario_trs_right[id_scenario_time] section_scenario_tr_left = section_scenario_trs_left[id_scenario_time] section_scenario_wg_right = section_scenario_wgs_right[id_scenario_time] section_scenario_wg_left = section_scenario_wgs_left[id_scenario_time] log_stream.info(' ------> Time step "' + section_scenario_time.strftime( time_format_algorithm) + '" ... ') file_path_scenario_anc_map = self.define_file_scenario( time, self.folder_name_scenario_anc_map, self.file_name_scenario_anc_map, domain_list=domain_name_step, file_type='string', time_step=section_scenario_time) ''' if self.scenario_analysis is None: if section_scenario_tr_cmp not in list(file_path_scenarios_collections.keys()): if self.flag_cleaning_ancillary: if os.path.exists(flag_cleaning_plot_scenario_maps): os.remove(file_path_scenario_ancillary) elif (section_scenario_id == 0) and (self.scenario_analysis == 'ALL'): if section_scenario_tr_cmp not in list(file_path_scenarios_collections.keys()): if self.flag_cleaning_ancillary: if os.path.exists(file_path_scenario_ancillary): os.remove(file_path_scenario_ancillary) ''' # Find tr value if np.isnan(section_scenario_tr_cmp): section_scenario_tr_other = get_dict_value( domain_scenario_data, self.domain_scenario_index_tag, []) section_scenario_tr_check = int(np.nanmax(section_scenario_tr_other)) section_scenario_tr_right_check = deepcopy(section_scenario_tr_check) section_scenario_tr_left_check = deepcopy(section_scenario_tr_check) section_scenario_wg_right_check, section_scenario_wg_left_check = 1.0, 1.0 log_stream.warning(' ===> Scenario tr is undefined for section "' + section_db_description + '". Check the datasets') else: section_scenario_tr_check = section_scenario_tr_cmp section_scenario_tr_right_check = section_scenario_tr_right section_scenario_tr_left_check = section_scenario_tr_left section_scenario_wg_right_check = section_scenario_wg_right section_scenario_wg_left_check = section_scenario_wg_left # Compare tr value with tr min if section_scenario_tr_check >= self.tr_min: section_area_idx = np.argwhere( domain_geo_collection[self.domain_scenario_area_tag] == section_db_n) section_scenario_tr_select = max(self.tr_min, min(self.tr_max, section_scenario_tr_check)) section_scenario_tr_right_select = max(self.tr_min, min(self.tr_max, section_scenario_tr_right_check)) section_scenario_tr_left_select = max(self.tr_min, min(self.tr_max, section_scenario_tr_left_check)) if section_scenario_tr_right_select > section_scenario_tr_left_select: log_stream.error(' ===> Left scenario must be greater then right scenario') raise RuntimeError('Check the evaluation of scenario boundaries') if self.scenario_tiling == 'rounded': file_path_hazard = self.define_file_hazard( self.folder_name_hazard, self.file_name_hazard, domain_name_step, section_scenario_tr_select) file_data_hazard = read_file_hazard( file_path_hazard, file_vars=[self.domain_scenario_hazard_name], file_format=[self.domain_scenario_hazard_format], file_scale_factor=[self.domain_scenario_hazard_scale_factor]) if file_data_hazard is not None: file_data_h = file_data_hazard[self.domain_scenario_hazard_name] else: log_stream.error(' ===> File hazard "' + file_path_hazard + '" is not available. Check your folder.') raise FileNotFoundError('File not found.') elif self.scenario_tiling == 'weighted': file_path_hazard_right = self.define_file_hazard( self.folder_name_hazard, self.file_name_hazard, domain_name_step, section_scenario_tr_right_select) file_path_hazard_left = self.define_file_hazard( self.folder_name_hazard, self.file_name_hazard, domain_name_step, section_scenario_tr_left_select) file_data_hazard_right = read_file_hazard( file_path_hazard_right, file_vars=[self.domain_scenario_hazard_name], file_format=[self.domain_scenario_hazard_format], file_scale_factor=[self.domain_scenario_hazard_scale_factor]) file_data_hazard_left = read_file_hazard( file_path_hazard_left, file_vars=[self.domain_scenario_hazard_name], file_format=[self.domain_scenario_hazard_format], file_scale_factor=[self.domain_scenario_hazard_scale_factor]) if file_data_hazard_right is not None: file_data_h_right = file_data_hazard_right[self.domain_scenario_hazard_name] else: log_stream.error(' ===> File hazard "' + file_data_hazard_right + '" is not available. Check your folder.') raise FileNotFoundError('File not found.') if file_data_hazard_left is not None: file_data_h_left = file_data_hazard_left[self.domain_scenario_hazard_name] else: log_stream.error(' ===> File hazard "' + file_data_hazard_right + '" is not available. Check your folder.') raise FileNotFoundError('File not found.') # DEBUG # test_left = file_data_h_left[section_db_idx_hydraulic[0], section_db_idx_hydraulic[1]] # test_right = file_data_h_right[section_db_idx_hydraulic[0], section_db_idx_hydraulic[1]] file_data_h = (file_data_h_right * section_scenario_wg_right_check + file_data_h_left * section_scenario_wg_left_check) file_data_h[file_data_h < 0.0] = 0.0 section_scenario_tr_select = ( section_scenario_tr_right_select * section_scenario_wg_right_check + section_scenario_tr_left_select * section_scenario_wg_left_check) else: log_stream.info(' ===> Scenario tiling method "' + self.scenario_tiling + '" is not supported') raise NotImplementedError('Case not implemented yet') idx_x = section_area_idx[:, 0] idx_y = section_area_idx[:, 1] if section_db_idx_hydraulic is not None: section_scenario_h_select = file_data_h[section_db_idx_hydraulic[0], section_db_idx_hydraulic[1]] else: section_scenario_h_select = np.nan if not os.path.exists(file_path_scenario_anc_map): domain_scenario_merged_filled = deepcopy(domain_scenario_merged_default) file_data_h_scenario = file_data_h[idx_x, idx_y] domain_scenario_merged_filled[idx_x, idx_y] = file_data_h_scenario domain_scenario_merged_filled[domain_scenario_merged_filled <= 0] = np.nan folder_name, file_name = os.path.split(file_path_scenario_anc_map) make_folder(folder_name) if file_path_scenario_anc_map.endswith('tiff') or \ file_path_scenario_anc_map.endswith('tif'): save_file_tiff(file_path_scenario_anc_map, domain_scenario_merged_filled, domain_geo_x, domain_geo_y, file_epsg_code='EPSG:32632') elif file_path_scenario_anc_map.endswith('workspace'): write_obj(file_path_scenario_anc_map, domain_scenario_merged_filled) else: log_stream.error(' ===> Save selected method is not supported.') raise NotImplementedError('Case not implemented yet') else: if file_path_scenario_anc_map.endswith('tiff') or \ file_path_scenario_anc_map.endswith('tif'): domain_scenario_merged_tmp = read_file_tiff(file_path_scenario_anc_map) elif file_path_scenario_anc_map.endswith('workspace'): domain_scenario_merged_tmp = read_obj(file_path_scenario_anc_map) else: log_stream.error(' ===> Read selected method is not supported.') raise NotImplementedError('Case not implemented yet') file_data_h_scenario = file_data_h[idx_x, idx_y] domain_scenario_merged_tmp[idx_x, idx_y] = file_data_h_scenario domain_scenario_merged_tmp[domain_scenario_merged_tmp <= 0] = np.nan if os.path.exists(file_path_scenario_anc_map): os.remove(file_path_scenario_anc_map) if file_path_scenario_anc_map.endswith('tiff') or \ file_path_scenario_anc_map.endswith('tif'): save_file_tiff(file_path_scenario_anc_map, domain_scenario_merged_tmp, domain_geo_x, domain_geo_y, file_epsg_code='EPSG:32632') elif file_path_scenario_anc_map.endswith('workspace'): write_obj(file_path_scenario_anc_map, domain_scenario_merged_tmp) else: log_stream.error(' ===> Save selected method is not supported.') raise NotImplementedError('Case not implemented yet') if section_scenario_time not in list(file_path_scenarios_collections.keys()): file_path_scenarios_collections[section_scenario_time] = file_path_scenario_anc_map log_stream.info(' ------> Time step "' + section_scenario_time.strftime(time_format_algorithm) + '" ... DONE') else: section_scenario_tr_select = np.nan section_scenario_h_select = np.nan section_scenario_tr_right_select = np.nan section_scenario_tr_left_select = np.nan log_stream.info( ' ------> Time step "' + section_scenario_time.strftime(time_format_algorithm) + '" ... SKIPPED. Scenarios threshold is less then minimum threshold') section_scenario_time_list.append(section_scenario_time) section_scenario_discharge_list.append(section_scenario_discharge) section_scenario_tr_list.append(section_scenario_tr_select) section_scenario_h_list.append(section_scenario_h_select) section_scenario_tr_list_right.append(section_scenario_tr_right_select) section_scenario_tr_list_left.append(section_scenario_tr_left_select) section_scenario_tmp = list(zip( section_scenario_time_list, section_scenario_tr_list, section_scenario_discharge_list, section_scenario_h_list)) # Store time-series of tr, q and h (for a selected point) dframe_data = {self.dframe_columns[0]: section_scenario_tr_list, self.dframe_columns[1]: section_scenario_discharge_list, self.dframe_columns[2]: section_scenario_h_list} dframe_index = section_scenario_time_list dframe_summary =
pd.DataFrame(index=dframe_index, data=dframe_data)
pandas.DataFrame
import os import sys from numpy.core.numeric import zeros_like import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn-poster') # I hate this too but it allows everything to use the same helper functions. sys.path.insert(0, 'model') from helper_functions import read_in_NNDSS from Reff_constants import * from params import alpha_start_date, delta_start_date, omicron_start_date, vaccination_start_date def read_in_posterior(date): """ read in samples from posterior from inference """ df = pd.read_hdf("results/soc_mob_posterior"+date+".h5", key='samples') return df def read_in_google(Aus_only=True, local=False, moving=False): """ Read in the Google data set """ if local: if type(local) == str: df = pd.read_csv(local, parse_dates=['date']) elif type(local) == bool: local = 'data/Global_Mobility_Report.csv' df = pd.read_csv(local, parse_dates=['date']) else: # Download straight from the web df = pd.read_csv('https://www.gstatic.com/covid19/mobility/Global_Mobility_Report.csv', parse_dates=['date']) # Make it save automatically. df.to_csv('data/Global_Mobility_Report.csv', index=False) if Aus_only: df = df.loc[df.country_region_code == 'AU'] # Change state column to state initials df['state'] = df.sub_region_1.map(lambda x: states_initials[x] if not pd.isna(x) else 'AUS') df = df.loc[df.sub_region_2.isna()] if moving: # generate moving average columns in reverse df = df.sort_values(by='date') mov_values = [] for val in value_vars: mov_values.append(val[:-29]+'_7days') df[mov_values[-1]] = df.groupby(['state'])[val].transform(lambda x: x[::-1].rolling(7, 1).mean()[::-1]) # minimumnumber of 1 # minimum of 7 days for std, forward fill the rest df[mov_values[-1]+'_std'] = df.groupby(['state'])[val].transform(lambda x: x[::-1].rolling(7, 7).std()[::-1]) # fill final values as std doesn't work with single value df[mov_values[-1]+'_std'] = df.groupby('state')[mov_values[-1]+'_std'].fillna(method='ffill') # show latest date print("Latest date in Google indices " + str(df.date.values[-1])) return df def predict_plot(samples, df, third_date_range=None, split=True, gamma=False, moving=True, grocery=True, delta=1.0, R=2.2, sigma=1, md_arg=None, ban='2020-03-16', single=False, var=None, rho=None, R_I=None, winter=False, prop=None, masks_prop=None, second_phase=False, third_phase=False, vaccination=None, third_states=None, prop_omicron_to_delta=None): """ Produce posterior predictive plots for all states """ from scipy.special import expit from params import third_start_date os.makedirs("results/third_wave_fit/", exist_ok=True) value_vars = ['retail_and_recreation_percent_change_from_baseline', 'grocery_and_pharmacy_percent_change_from_baseline', 'parks_percent_change_from_baseline', 'transit_stations_percent_change_from_baseline', 'workplaces_percent_change_from_baseline', 'residential_percent_change_from_baseline'] value_vars.remove('residential_percent_change_from_baseline') if not grocery: value_vars.remove('grocery_and_pharmacy_percent_change_from_baseline') if moving: value_vars = [val[:-29]+'_7days' for val in value_vars] if single: # Single state fig, ax = plt.subplots(figsize=(12, 9)) df_state = df post_values = samples[[ 'beta['+str(i)+']' for i in range(1, 1+len(value_vars))]].sample(df_state.shape[0]).values.T if split: # split model with parameters pre and post policy df1 = df_state.loc[df_state.date <= ban] df2 = df_state.loc[df_state.date > ban] X1 = df1[value_vars]/100 # N by K X2 = df2[value_vars]/100 # N by K times (Nsamples by K )^T = N by N logodds = X1 @ post_values if md is None: post_alphas = samples[['alpha['+str(i)+']' for i in range(1, 1+len(value_vars))]].sample(df_state.shape[0]).values.T logodds = np.append(logodds, X2 @ (post_values + post_alphas), axis=0) else: # take right size of md md = np.random.choice(md, size=df_state.shape[0]) # set initial pre ban values of md to 1 md[:logodds.shape[0]] = np.ones(size=logodds.shape[0]) # make logodds by appending post ban values logodds = np.append(logodds, X2 @ post_values, axis=0) else: X1 = df_state[value_vars]/100 # N by K times (Nsamples by K )^T = N by N logodds = X1 @ post_values if gamma: if type(md) == np.ndarray: mu_hat = 2 * expit(logodds) * policy * md else: mu_hat = 2 * expit(logodds) if type(delta) == np.ndarray: delta = np.random.choice(delta, size=df_state.shape[0]) R = np.random.choice(R, size=df_state.shape[0]) R_eff_hat = np.random.gamma(shape=R * mu_hat*delta, scale=1.0/delta) else: # Use normal distribution mu_hat = R * 2 * expit(logodds) if type(sigma) == pd.Series: sigma_i = sigma.sample(df_state.shape[0]).values else: sigma_i = sigma # N by N, where rows = datum, column = sample from posterior R_eff_hat = np.random.normal(mu_hat, sigma_i) df_hat = pd.DataFrame(R_eff_hat.T) # plot actual R_eff ax.plot(df_state.date, df_state['mean'], label='R_eff from Price et al') ax.fill_between(df_state.date, df_state['bottom'], df_state['top'], color='C0', alpha=0.3) ax.plot(df_state.date, df_hat.quantile(0.5, axis=0), label='R_eff_hat', color='C1') ax.fill_between(df_state.date, df_hat.quantile(0.25, axis=0), df_hat.quantile(0.75, axis=0), color='C1', alpha=0.3) ax.fill_between(df_state.date, df_hat.quantile(0.05, axis=0), df_hat.quantile(0.95, axis=0), color='C1', alpha=0.3) # grid line at R_eff =1 ax.set_yticks([1], minor=True,) ax.yaxis.grid(b=True, which='minor', linestyle='dashed', color='grey') ax.tick_params(axis='x', rotation=90) else: # all states fig, ax = plt.subplots(figsize=(15, 12), ncols=4, nrows=2, sharex=True, sharey=True) states = sorted(list(states_initials.keys())) if not third_phase: states.remove('Northern Territory') states.remove('Australian Capital Territory') # no R_eff modelled for these states, skip # counter for brho_v pos = 1 for i, state in enumerate(states): df_state = df.loc[df.sub_region_1 == state] if second_phase: df_state = df_state.loc[df_state.is_sec_wave == 1] elif third_phase: df_state = df_state.loc[df_state.is_third_wave == 1] if third_phase: masks_prop_sim = masks_prop[states_initials[state]].values[:df_state.shape[0]] samples_sim = samples.sample(1000) post_values = samples_sim[['bet['+str(i)+']' for i in range(1, 1+len(value_vars))]].values.T prop_sim = prop[states_initials[state]].values[:df_state.shape[0]] if split: # split model with parameters pre and post policy df1 = df_state.loc[df_state.date <= ban] df2 = df_state.loc[df_state.date > ban] X1 = df1[value_vars]/100 # N by K X2 = df2[value_vars]/100 # N by K times (Nsamples by K )^T = N by N logodds = X1 @ post_values if md_arg is None: post_alphas = samples_sim[['alpha['+str(i)+']' for i in range(1, 1+len(value_vars))]].values.T logodds = np.append(logodds, X2 @ (post_values + post_alphas), axis=0) md = 1 elif md_arg == 'power': theta_md = samples_sim.theta_md.values # 1 by samples shape # each row is a date, column a new sample theta_md = np.tile(theta_md, (df_state.shape[0], 1)) md = ((1+theta_md).T**(-1 * prop_sim)).T # set preban md values to 1 md[:logodds.shape[0]] = 1 if third_phase: theta_masks = samples_sim.theta_masks.values # 1 by samples shape # each row is a date, column a new sample theta_masks = np.tile(theta_masks, (df_state.shape[0], 1)) masks = ((1+theta_masks).T**(-1 * masks_prop_sim)).T # set preban mask values to 1 masks[:logodds.shape[0]] = 1 # make logodds by appending post ban values logodds = np.append(logodds, X2 @ post_values, axis=0) elif md_arg == 'logistic': theta_md = samples_sim.theta_md.values # 1 by samples shape # each row is a date, column a new sample theta_md = np.tile(theta_md, (df_state.shape[0], 1)) md = 2*expit(-1*theta_md * prop_sim) md[:logodds.shape[0]] = 1 # make logodds by appending post ban values logodds = np.append(logodds, X2 @ post_values, axis=0) else: # take right size of md to be N by N md = np.tile(samples_sim['md'].values,(df_state.shape[0], 1)) # set initial pre ban values of md to 1 md[:logodds.shape[0], :] = 1 # make logodds by appending post ban values logodds = np.append(logodds, X2 @ post_values, axis=0) # grab posterior sampled vaccination effects here and multiply by the daily efficacy if vaccination is not None and states_initials[state] in third_states: # transposing the vaccination sampled values so that it can be multiplied by the data # the str(i+1) is required because the state indexing starts at 0 # print(vaccination.loc[states_initials[state]]) idx = ( (vaccination.columns >= third_date_range[states_initials[state]][0]) & (vaccination.columns <= third_date_range[states_initials[state]][-1]) ) vacc_ts_data = vaccination.loc[states_initials[state]][idx] third_states_indices = {state: index+1 for (index, state) in enumerate(third_states)} third_days = {k: v.shape[0] for (k, v) in third_date_range.items()} third_days_cumulative = np.append([0], np.cumsum([v for v in third_days.values()])) vax_idx_ranges = {k: range(third_days_cumulative[i], third_days_cumulative[i+1]) for (i, k) in enumerate(third_days.keys())} third_days_tot = sum(v for v in third_days.values()) # get the sampled vaccination effect (this will be incomplete as it's only over the fitting period) sampled_vax_effects_all = samples_sim[["vacc_effect[" + str(j) + "]" for j in range(1, third_days_tot+1)]].T vacc_tmp = sampled_vax_effects_all.iloc[vax_idx_ranges[states_initials[state]],:] # now we layer in the posterior vaccine multiplier effect which ill be a (T,mob_samples) array if states_initials[state] in third_states: eta = samples_sim['eta[' + str(third_states_indices[states_initials[state]]) + ']'] r = samples_sim['eta[' + str(third_states_indices[states_initials[state]]) + ']'] else: eta = samples_sim['eta[1]'] r = samples_sim['r[1]'] # get before and after fitting and tile them vacc_ts_data_before = pd.concat( [vacc_ts_data.loc[vacc_ts_data.index < third_date_range[states_initials[state]][0]]] * eta.shape[0], axis=1 ) vacc_ts_data_after = pd.concat( [vacc_ts_data.loc[vacc_ts_data.index > third_date_range[states_initials[state]][-1]]] * eta.shape[0], axis=1 ) # rename columns for easy merging vacc_ts_data_before.columns = vacc_tmp.columns vacc_ts_data_after.columns = vacc_tmp.columns # merge in order vacc_ts = pd.concat( [vacc_ts_data_before, vacc_tmp, vacc_ts_data_after], axis=0, ignore_index=True ) # reset the index to be the dates for easier information handling vacc_ts.set_index(vacc_ts_data.index, inplace=True) vacc_ts = vacc_tmp third_states_indices = {state: index+1 for (index, state) in enumerate(third_states)} # From conversations with James and Nic we think the heterogeneity / assortativity was more prominent before late # August (hence the fixed date) # in order for this to be correctly applied in the plot, we need to get the start dates after the beginning of # the third wave data which we determine based off the third_date_range heterogeneity_delay_start_day = (pd.to_datetime('2021-08-20') - third_date_range[states_initials[state]][0]).days omicron_start_day = (pd.to_datetime(omicron_start_date) - third_date_range[states_initials[state]][0]).days omicron_start_day = 0 if omicron_start_day < 0 else omicron_start_day # this will hold the posterior VE, with adjustement factors vacc_post = np.zeros_like(vacc_ts) # loop ober days in third wave and apply the appropriate form (i.e. decay or not) # note that in here we apply the entire sample to the vaccination data to create a days by samples array # set the full vaccination data as the mean # vacc_sig = 0.001 # vacc_mu = vacc_sim # # calculate shape and scale # a_vacc = vacc_mu*(vacc_mu*(1-vacc_mu)/vacc_sig - 1) # b_vacc = (1-vacc_mu)*(vacc_mu*(1-vacc_mu)/vacc_sig - 1) # # sample a noisier version of the vax effect # vacc_sim_adj = np.random.beta(a_vacc, b_vacc) # create zero array to fill in with the full vaccine effect model vacc_post = np.zeros_like(vacc_ts) days_into_omicron = np.cumsum(np.append([0], [(v >=
pd.to_datetime(omicron_start_date)
pandas.to_datetime
""" Author: <NAME> """ import numpy as np import pandas as pd from datetime import datetime class TrackerFeeder(object): """ Feeder for the trackers of the FinanceHub database. """ def __init__(self, db_connect): """ Feeder construction :param db_connect: sql connection engine from sqlalchemy """ self.conn = db_connect.connection def fetch(self, fh_ticker): """ grabs trackers from the FH database :param fh_ticker: str or list with the tickers from the database trackers :return: pandas DataFrame with tickers on the columns """ assert type(fh_ticker) is str or type(fh_ticker) is list or type(fh_ticker) is dict, \ "'tickers' must be a string, list or dict" sql_query = 'SELECT time_stamp, fh_ticker, value FROM "trackers" WHERE ' if type(fh_ticker) is str: sql_query = sql_query + "fh_ticker IN ('" + fh_ticker + "')" elif type(fh_ticker) is list: sql_query = sql_query + "fh_ticker IN ('" + "', '".join(fh_ticker) + "')" elif type(fh_ticker) is dict: sql_query = sql_query + "fh_ticker IN ('" + "', '".join(list(fh_ticker.keys())) + "')" df = pd.read_sql(sql=sql_query, con=self.conn) df = df.pivot(index='time_stamp', columns='fh_ticker', values='value') if type(fh_ticker) is dict: df = df.rename(fh_ticker, axis=1) df.index = pd.to_datetime(df.index) df = df.dropna(how='all') df = df.sort_index() return df def fetch_metadata(self): """ Returns the full metadata table of the FH trackers, which is useful to do custom filters and look at what is in the database. :return: pandas Dataframe """ sql_query = 'SELECT * FROM "trackers_description"' df =
pd.read_sql(sql=sql_query, con=self.conn)
pandas.read_sql
from nbc_analysis.utils.config_utils import get_config from nbc_analysis.utils.debug_utils import retval from nbc_analysis.utils.file_utils import init_dir from pathlib import Path import pandas as pd import re from toolz import first from itertools import starmap from functools import partial def group_files_by_day(indir): def parse_name(file): return re.search(r"(?P<day>\d+)\.csv.gz", file).group('day'), file reader = map(str, indir.glob('*.csv.gz')) reader = map(parse_name, reader) df = pd.DataFrame.from_records(reader, columns=['day', 'agg_file'], index=['day']) df.sort_index(inplace=True) return df.groupby(level='day') def proc_day(day, df, outdir): print(f">> starting concat for day {day}") reader = map(pd.read_csv, df.agg_file) df =
pd.concat(reader)
pandas.concat
import collections import os import pickle import re from pathlib import Path from pprint import pprint from subprocess import CalledProcessError, check_output import function_parser import numpy as np import pandas as pd from function_parser.language_data import LANGUAGE_METADATA from function_parser.process import DataProcessor from function_parser.utils import get_sha, walk from git import Git, Repo from tqdm import tqdm from tree_sitter import Language import config np.random.seed(1997) LANG = "java" DataProcessor.PARSER.set_language( Language( os.path.join(function_parser.__path__[0], "tree-sitter-languages.so"), LANG ) ) FUNC_PROCESSOR = DataProcessor( language=LANG, language_parser=LANGUAGE_METADATA[LANG]["language_parser"] ) def get_definitions(repo_path, commit): """ Get the definitions of all methods in the project. Args: repo_path (str): Path to the project's repository. commit (str): Commit hash of the project's repository. Returns: df (pd.DataFrame): DataFrame containing the definitions of all methods in the project. """ g = Git(str(repo_path)) g.checkout(commit) indexes = [] files = repo_path.glob(f"**/*.{LANGUAGE_METADATA[LANG]['ext']}") sha = None for f in files: definitions = FUNC_PROCESSOR.get_function_definitions(str(f)) if definitions is None: continue nwo, path, functions = definitions indexes.extend( ( FUNC_PROCESSOR.extract_function_data(func, nwo, path, sha) for func in functions if len(func["function_tokens"]) > 1 ) ) def format_method_path_name(row): formatted_path = ( row["file_path"].split("main/java/")[-1].split(".")[0].replace("/", ".") ) method_name = row["code_tokens"][row["code_tokens"].index("(") - 1] formatted_path_method_name = ":".join([formatted_path, method_name]) return formatted_path_method_name df =
pd.DataFrame(indexes)
pandas.DataFrame
from my_answers import NeuralNetwork import unittest import numpy as np import pandas as pd import matplotlib.pyplot as plt data_path = 'Bike-Sharing-Dataset/hour.csv' rides = pd.read_csv(data_path) # rides.head(5) # rides[:24*10].plot(x='dteday', y='cnt') dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday'] for each in dummy_fields: dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False) rides =
pd.concat([rides, dummies], axis=1)
pandas.concat
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Sep 8 08:53:30 2019 @author: rhou """ import warnings warnings.filterwarnings("ignore") import os, sys import argparse import matplotlib matplotlib.use('agg') import pandas as pd import numpy as np try: import seaborn as sns except ImportError: sys.exit('\n\nError: seaborn module is missing, please install it before proceeding.') try: import igraph as ig except ImportError: sys.exit('\n\nError: igraph module is missing, please install it before proceeding.') try: import networkx as nx except ImportError: sys.exit('\n\nError: NetworkX module is missing, please install it before proceeding.') try: import pygraphviz as pgv except ImportError: sys.exit('\n\nError: PyGraphviz module is missing, please install it before proceeding.') #filter adjacency matrix def ChooseTopEdges(adjM, keepTopEdge): if keepTopEdge == 0: return adjM edgeDict = {'s':[],'t':[],'v':[]} for idx in adjM.index: for col in adjM.columns: edgeDict['s'].append(idx) edgeDict['t'].append(col) if adjM.loc[idx,col] <=0: edgeDict['v'].append((-1.0) * adjM.loc[idx,col]) else: edgeDict['v'].append(adjM.loc[idx,col]) edgeD = pd.DataFrame(edgeDict).sort_values(by=['v'], ascending=False) edgeD = edgeD.head(keepTopEdge) nadjM =
pd.DataFrame(0.0, index=adjM.index,columns=adjM.index)
pandas.DataFrame