prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
"""{{ cookiecutter.project }} PSII analysis.""" # %% Setup # Export .png to outdir from LemnaBase using LT-db_extractor.py from plantcv import plantcv as pcv import cppcpyutils as cppc import importlib import os import cv2 as cv2 import numpy as np import pandas as pd from matplotlib import pyplot as plt import warnings import importlib from skimage import filters from skimage import morphology from skimage import segmentation warnings.filterwarnings("ignore", module="matplotlib") warnings.filterwarnings("ignore", module='plotnine') # %% io directories indir = os.path.join('data', 'psII') # snapshotdir = indir outdir = os.path.join('output', 'psII') debugdir = os.path.join('debug', 'psII') maskdir = os.path.join(outdir, 'masks') fluordir = os.path.join(outdir, 'fluorescence') os.makedirs(outdir, exist_ok=True) os.makedirs(debugdir, exist_ok=True) os.makedirs(maskdir, exist_ok=True) outfile = os.path.join(outdir,'output_psII_level0.csv') # %% pixel pixel_resolution # mm (this is approx and should only be used for scalebar) cppc.pixelresolution = 0.3 # %% Import tif file information based on the filenames. If extract_frames=True it will save each frame form the multiframe TIF to a separate file in data/pimframes/ with a numeric suffix fdf = cppc.io.import_snapshots(indir, camera='psii') # %% Define the frames from the PSII measurements and merge this information with the filename information pimframes = pd.read_csv(os.path.join('data', 'pimframes_map.csv'), skipinitialspace=True) # this eliminate weird whitespace around any of the character fields fdf_dark = (pd.merge(fdf.reset_index(), pimframes, on=['frameid'], how='right')) # %% remove absorptivity measurements which are blank images # also remove Ft_FRon measurements. THere is no Far Red light. df = (fdf_dark.query( '~parameter.str.contains("Abs") and ~parameter.str.contains("FRon")', engine='python')) # %% remove the duplicate Fm and Fo frames where frame = Fmp and Fp from frameid 5,6 df = (df.query( '(parameter!="FvFm") or (parameter=="FvFm" and (frame=="Fo" or frame=="Fm") )' )) # %% Arrange dataframe of metadata so Fv/Fm comes first param_order = pimframes.parameter.unique() df['parameter'] = pd.Categorical(df.parameter, categories=param_order, ordered=True) # %% Check for existing output file and only analyze new files newheader = True defaultcols = df.columns.values.tolist() if os.path.exists(outfile): # reading existing results file existingdf = pd.read_csv(outfile) # format dates consistently and NOT in data format becuase pandas doesn't handle datetimes well in merges(!?)... existingdf.jobdate = pd.to_datetime(existingdf.jobdate).dt.strftime('%Y-%m-%d') df.loc[:,'jobdate'] = df.jobdate.dt.strftime('%Y-%m-%d') # set common index mergecols = ['plantbarcode','jobdate','frame','frameid','parameter'] df = df.set_index(mergecols) existingdf = existingdf.set_index(mergecols) # filter and sort df df = df[~df.index.isin(existingdf.index)].reset_index() df.jobdate =
pd.to_datetime(df.jobdate)
pandas.to_datetime
# -*- coding: utf-8 -*- """ This is a parameter search module. With this module, a certain firing pattern can be searched randomly with AN model, SAN model and X model. In order to lessen dependence of models on parameters, it's important to make various parameter sets (models) and then extract common features among them.\ In this script, parameter sets that recapitulate slow wave sleep (SWS) firing pattern can be searched with algorithms as described in Tatsuki et al., 2016 and Yoshida et al., 2018. """ __author__ = '<NAME>, <NAME>, <NAME>, \ <NAME>, <NAME>, <NAME>' __status__ = 'Published' __version__ = '1.0.0' __date__ = '15 May 2020' import os import sys """ LIMIT THE NUMBER OF THREADS! change local env variables BEFORE importing numpy """ os.environ["OMP_NUM_THREADS"] = "1" # 2nd likely os.environ["NUMEXPR_NUM_THREADS"] = "1" os.environ["MKL_NUM_THREADS"] = "1" # most likely from datetime import datetime from multiprocessing import Pool import numpy as np import pandas as pd from pathlib import Path import pickle from time import time from typing import Dict, List, Optional import warnings warnings.filterwarnings('ignore') import models import analysis class RandomParamSearch(): """ Random parameter search. Generate parameter sets randomly, and pick up those which recapitulate a cirtain firing pattern. Parameters ---------- model : str model in which parameter search is conducted pattern : str searched firing pattern ncore : int number of cores you are going to use time : int or str how long to run parameter search (hour), default 48 (2 days) channel_bool : list (bool) or None WHEN YOU USE X MODEL, YOU MUST DESIGNATE THIS LIST.\ Channel lists that X model contains. True means channels incorporated in the model and False means not. The order of the list is the same as other lists or dictionaries that contain channel information in AN model. Example: \ channel_bool = [ 1, # leak channel 0, # voltage-gated sodium channel 1, # HH-type delayed rectifier potassium channel 0, # fast A-type potassium channel 0, # slowly inactivating potassium channel 1, # voltage-gated calcium channel 1, # calcium-dependent potassium channel 1, # persistent sodium channel 0, # inwardly rectifier potassium channel 0, # AMPA receptor 0, # NMDA receptor 0, # GABA receptor 1, # calcium pump ]\ This is SAN model, default None model_name : str or None name of the X model, default None ion : bool whether you make equiribrium potential variable or not, default False concentration : dictionary or str or None dictionary of ion concentration, or 'sleep'/'awake' that designate typical ion concentrations, default None Attributes ---------- wave_check : object Keep attributes and helper functions needed for parameter search. pattern : str searched firing pattern time : int how long to run parameter search (hour) model_name : str model name model : object Simulation model object. See anmodel.models.py """ def __init__(self, model: str, pattern: str='SWS', ncore: int=1, hr: int=48, samp_freq: int=1000, samp_len: int=10, channel_bool: Optional[List[bool]]=None, model_name: Optional[str]=None, ion: bool=False, concentration: Optional[Dict]=None) -> None: self.wave_check = analysis.WaveCheck(samp_freq=samp_freq) self.pattern = pattern self.ncore = ncore self.hr = int(hr) self.samp_freq = samp_freq self.samp_len = samp_len if model == 'AN': self.model_name = 'AN' self.model = models.ANmodel(ion, concentration) if model == 'SAN': self.model_name = 'SAN' self.model = models.SANmodel(ion, concentration) if model == "X": if channel_bool is None: raise TypeError('Designate channel in argument of X model.') self.model_name = model_name self.model = models.Xmodel(channel_bool, ion, concentration) def singleprocess(self, args: List) -> None: """ Random parameter search using single core. Search parameter sets which recapitulate a cirtain firing pattern randomly, and save them every 1 hour. After self.time hours, this process terminates. Parameters ---------- args : list core : int n th core of designated number of cores now : datetime.datetime datetime.datetime.now() when simulation starts time_start : float time() when simulation starts rand_seed : int random seed for generating random parameters. 0 ~ 2**32-1. """ core, now, time_start, rand_seed = args date: str = f'{now.year}_{now.month}_{now.day}' p: Path = Path.cwd() res_p: Path = p / 'results' / f'{self.pattern}_params' / f'{date}_{self.model_name}' res_p.mkdir(parents=True, exist_ok=True) save_p: Path = res_p / f'{self.pattern}_{date}_{core}.pickle' param_df: pd.DataFrame =
pd.DataFrame([])
pandas.DataFrame
import numpy as np import pandas as pd from mpl_toolkits.axes_grid1 import make_axes_locatable import os import platform import matplotlib.pyplot as plt import matplotlib as mpl import matplotlib.ticker as mticker import matplotlib.gridspec as gridspec from tqdm import trange from matplotlib.ticker import ScalarFormatter import pidsim.parameter_span as pspan from scipy import interpolate import pnptransport.utils as utils import re import json base_path = r'G:\My Drive\Research\PVRD1\Manuscripts\Device_Simulations_draft\simulations\inputs_20201028' span_database = r'G:\My Drive\Research\PVRD1\Manuscripts\Device_Simulations_draft\simulations\inputs_20201028\one_factor_at_a_time_lower_20201028_h=1E-12.csv' parameter = 'h' output_folder = 'ofat_comparison_20201121' batch_analysis = 'batch_analysis_rfr_20201121' t_max_h = 96. parameter_units = { 'sigma_s': 'cm^{-2}', 'zeta': 's^{-1}', 'DSF': 'cm^2/s', 'E': 'V/cm', 'm': '', 'h': 'cm/s', 'recovery time': 's', 'recovery electric field': 'V/cm' } map_parameter_names = { 'sigma_s': 'S_0', 'zeta': 'k', 'DSF': r'D_{{\mathrm{{SF}}}}', 'E': 'E', 'm': 'm', 'h': 'h', } def slugify(value): """ Normalizes string, converts to lowercase, removes non-alpha characters, and converts spaces to hyphens. Parameters ---------- value: str The string Returns ------- str Normalized string """ value = re.sub('[^\w\s\-]', '', value).strip().lower() value = re.sub('[-\s]+', '-', value) return value if __name__ == '__main__': output_path = os.path.join(base_path, output_folder) if platform.system() == 'Windows': base_path = r'\\?\\' + base_path output_path = os.path.join(base_path, output_folder) if not os.path.exists(output_path): os.makedirs(output_path) span_df = pd.read_csv(span_database, index_col=0) ofat_df = pd.read_csv(os.path.join(base_path, 'ofat_db.csv'), index_col=None) # Get the row corresponding to the values to compare parameter_info = span_df.loc[parameter] parameter_span = pspan.string_list_to_float(parameter_info['span']) units = parameter_units[parameter] # Get the values of every parameter from the ofat_db file ofat_constant_parameters = ofat_df.iloc[0] time_s = float(ofat_constant_parameters['time (s)']) temp_c = float(ofat_constant_parameters['temp (C)']) bias = float(ofat_constant_parameters['bias (V)']) thickness_sin = float(ofat_constant_parameters['thickness sin (um)']) thickness_si = float(ofat_constant_parameters['thickness si (um)']) er = float(ofat_constant_parameters['er']) thickness_si = float(ofat_constant_parameters['thickness si (um)']) data_files = [] for p in parameter_span: converged = False if parameter == 'sigma_s': file_tag = pspan.create_filetag( time_s=time_s, temp_c=temp_c, sigma_s=p, zeta=span_df.loc['zeta']['base'], d_sf=span_df.loc['DSF']['base'], ef=span_df.loc['E']['base'], m=span_df.loc['m']['base'], h=span_df.loc['h']['base'], recovery_time=span_df.loc['recovery time']['base'], recovery_e_field=span_df.loc['recovery electric field']['base'] ) # Determine whether the simulation converged simulation_parameters = ofat_df[ofat_df['config file'] == file_tag + '.ini'].reset_index(drop=True) converged = bool(simulation_parameters['converged'][0]) if parameter == 'zeta': file_tag = pspan.create_filetag( time_s=time_s, temp_c=temp_c, sigma_s=span_df.loc['sigma_s']['base'], zeta=p, d_sf=span_df.loc['DSF']['base'], ef=span_df.loc['E']['base'], m=span_df.loc['m']['base'], h=span_df.loc['h']['base'], recovery_time=span_df.loc['recovery time']['base'], recovery_e_field=span_df.loc['recovery electric field']['base'] ) # Determine whether the simulation converged simulation_parameters = ofat_df[ofat_df['config file'] == file_tag + '.ini'].reset_index(drop=True) converged = bool(simulation_parameters['converged'][0]) if parameter == 'DSF': file_tag = pspan.create_filetag( time_s=time_s, temp_c=temp_c, sigma_s=span_df.loc['sigma_s']['base'], zeta=span_df.loc['zeta']['base'], d_sf=p, ef=span_df.loc['E']['base'], m=span_df.loc['m']['base'], h=span_df.loc['h']['base'], recovery_time=span_df.loc['recovery time']['base'], recovery_e_field=span_df.loc['recovery electric field']['base'] ) # Determine whether the simulation converged simulation_parameters = ofat_df[ofat_df['config file'] == file_tag + '.ini'].reset_index(drop=True) converged = bool(simulation_parameters['converged'][0]) if parameter == 'E': file_tag = pspan.create_filetag( time_s=time_s, temp_c=temp_c, sigma_s=span_df.loc['sigma_s']['base'], zeta=span_df.loc['zeta']['base'], d_sf=span_df.loc['DSF']['base'], ef=p, m=span_df.loc['m']['base'], h=span_df.loc['h']['base'], recovery_time=span_df.loc['recovery time']['base'], recovery_e_field=-p ) # Determine whether the simulation converged simulation_parameters = ofat_df[ofat_df['config file'] == file_tag + '.ini'].reset_index(drop=True) if len(simulation_parameters) > 0: converged = bool(simulation_parameters['converged'][0]) else: converged = False if parameter == 'm': file_tag = pspan.create_filetag( time_s=time_s, temp_c=temp_c, sigma_s=span_df.loc['sigma_s']['base'], zeta=span_df.loc['zeta']['base'], d_sf=span_df.loc['DSF']['base'], ef=span_df.loc['E']['base'], m=p, h=span_df.loc['h']['base'], recovery_time=span_df.loc['recovery time']['base'], recovery_e_field=span_df.loc['recovery electric field']['base'] ) # Determine whether the simulation converged simulation_parameters = ofat_df[ofat_df['config file'] == file_tag + '.ini'].reset_index(drop=True) converged = bool(simulation_parameters['converged'][0]) if parameter == 'h': file_tag = pspan.create_filetag( time_s=time_s, temp_c=temp_c, sigma_s=span_df.loc['sigma_s']['base'], zeta=span_df.loc['zeta']['base'], d_sf=span_df.loc['DSF']['base'], ef=span_df.loc['E']['base'], m=span_df.loc['m']['base'], h=p, recovery_time=span_df.loc['recovery time']['base'], recovery_e_field=span_df.loc['recovery electric field']['base'] ) # Determine whether the simulation converged simulation_parameters = ofat_df[ofat_df['config file'] == file_tag + '.ini'].reset_index(drop=True) converged = bool(simulation_parameters['converged'][0]) if converged: data_files.append({ 'parameter': parameter, 'value': p, 'pid_file': file_tag + '_simulated_pid.csv', 'units': parameter_units[parameter] }) # for f in data_files: # print(f) n_files = len(data_files) # c_map1 = mpl.cm.get_cmap('RdYlGn_r') c_map1 = mpl.cm.get_cmap('rainbow') if parameter == 'DSF': c_map1 = mpl.cm.get_cmap('rainbow_r') normalize = mpl.colors.Normalize(vmin=0, vmax=(n_files-1)) plot_colors = [c_map1(normalize(i)) for i in range(n_files)] t_max = t_max_h * 3600. failure_times = np.empty( n_files, dtype=np.dtype([ (r'{0} ({1})'.format(parameter, parameter_units[parameter]), 'd'), ('t 1000 (s)', 'd'), ('Rsh 96h (Ohm cm2)', 'd') ]) ) with open('plotstyle.json', 'r') as style_file: mpl.rcParams.update(json.load(style_file)['defaultPlotStyle']) # mpl.rcParams.update(defaultPlotStyle) xfmt = ScalarFormatter(useMathText=True) xfmt.set_powerlimits((-3, 3)) fig_p = plt.figure(1) fig_p.set_size_inches(4.75, 2.5, forward=True) # fig_p.subplots_adjust(hspace=0.0, wspace=0.0) # gs0_p = gridspec.GridSpec(ncols=1, nrows=1, figure=fig_p, width_ratios=[1]) # gs00_p = gridspec.GridSpecFromSubplotSpec(nrows=1, ncols=1, subplot_spec=gs0_p[0]) # ax1_p = fig_p.add_subplot(gs00_p[0, 0]) ax1_p = fig_p.add_subplot(1, 1, 1) fig_r = plt.figure(2) fig_r.set_size_inches(4.75, 2.5, forward=True) # fig_r.subplots_adjust(hspace=0.0, wspace=0.0) gs0_r = gridspec.GridSpec(ncols=1, nrows=1, figure=fig_r, width_ratios=[1]) gs00_r = gridspec.GridSpecFromSubplotSpec(nrows=1, ncols=1, subplot_spec=gs0_r[0]) ax1_r = fig_r.add_subplot(1, 1, 1) pbar = trange(n_files, desc='Analyzing file', leave=True) for i, file_info in enumerate(data_files): # Read the simulated data from the csv file csv_file = os.path.join(base_path, batch_analysis, file_info['pid_file']) pid_df = pd.read_csv(csv_file) # print('Analysing file \'{0}\':'.format(csv_file)) # print(pid_df.head()) time_s = pid_df['time (s)'].to_numpy(dtype=float) power = pid_df['Pmpp (mW/cm^2)'].to_numpy(dtype=float) rsh = pid_df['Rsh (Ohm cm^2)'].to_numpy(dtype=float) time_h = time_s / 3600. t_interp = np.linspace(np.amin(time_s), np.amax(time_s), num=1000) f_r_interp = interpolate.interp1d(time_s, rsh, kind='linear') rsh_interp = f_r_interp(t_interp) if rsh_interp.min() <= 1000: idx_1000 = (np.abs(rsh_interp - 1000)).argmin() failure_times[i] = (file_info['value'], t_interp[idx_1000].copy(), f_r_interp(96.*3600.)) else: failure_times[i] = (file_info['value'], np.inf, f_r_interp(96.*3600.)) sv_txt = r'${0}$ = ${1}$ $\mathregular{{{2}}}$'.format( map_parameter_names[file_info['parameter']], utils.latex_order_of_magnitude( file_info['value'], dollar=False ), file_info['units'] ) ax1_p.plot( time_h, power / power[0], color=plot_colors[i], ls='-', label=sv_txt, zorder=(i+1) ) ax1_r.plot( time_h, rsh, color=plot_colors[i], ls='-', label=sv_txt, zorder=(i+1) ) ptx = t_interp[idx_1000]/3600. ax1_r.scatter( ptx, 1000, marker='o', color='k', zorder=(1+n_files), lw=1, s=10 ) # ax1_r.plot( # [ptx, ptx], [0, 1000], # lw=1.5, ls='-', color=(0.95, 0.95, 0.95), zorder=0, # ) # print('1000 Ohms cm2 failure: ({0:.3f}) h'.format(t_interp[idx_1000]/3600.)) pbar.set_description('Analyzing parameter {0}: {1}'.format( parameter, file_info['value'], file_info['units'] )) pbar.update() pbar.refresh() ax1_p.set_ylabel('Normalized Power') ax1_r.set_ylabel(r'$R_{\mathrm{sh}}$ ($\Omega\cdot$ cm$^{2})$' ) ax1_r.set_title(r'${0}$'.format(map_parameter_names[parameter])) ax1_p.set_xlim(0, t_max_h) ax1_r.set_xlim(0, t_max_h) # ax1_p.set_ylim(top=1.1, bottom=0.2) ax1_p.set_xlabel('Time (hr)') ax1_r.set_xlabel('Time (hr)') # ax1.tick_params(labelbottom=True, top=False, right=True, which='both', labeltop=False) # ax2.tick_params(labelbottom=True, top=False, right=True, which='both') ax1_r.set_yscale('log') ax1_r.yaxis.set_major_locator(mpl.ticker.LogLocator(base=10.0, numticks=5)) ax1_r.yaxis.set_minor_locator(mpl.ticker.LogLocator(base=10.0, numticks=50, subs=np.arange(2, 10) * .1)) ax1_r.axhline(y=1000, lw=1.5, ls='--', color=(0.9, 0.9, 0.9), zorder=0) ax1_p.xaxis.set_major_formatter(xfmt) ax1_p.xaxis.set_major_locator(mticker.MaxNLocator(12, prune=None)) ax1_p.xaxis.set_minor_locator(mticker.AutoMinorLocator(2)) ax1_p.yaxis.set_major_formatter(xfmt) ax1_p.yaxis.set_major_locator(mticker.MaxNLocator(5, prune=None)) ax1_p.yaxis.set_minor_locator(mticker.AutoMinorLocator(2)) ax1_r.xaxis.set_major_formatter(xfmt) ax1_r.xaxis.set_major_locator(mticker.MaxNLocator(12, prune=None)) ax1_r.xaxis.set_minor_locator(mticker.AutoMinorLocator(2)) # leg1 = ax1_p.legend(bbox_to_anchor=(1.05, 1.), loc='upper left', borderaxespad=0., ncol=1, frameon=False) # leg2 = ax1_r.legend(bbox_to_anchor=(1.05, 1.), loc='upper left', borderaxespad=0., ncol=1, frameon=False) if parameter == 'DSF': leg_cols = 2 else: leg_cols = 1 leg1 = ax1_p.legend(loc='upper right', frameon=False, ncol=leg_cols, fontsize=8) leg2 = ax1_r.legend(loc='upper right', frameon=False, ncol=leg_cols, fontsize=8) fig_p.tight_layout() fig_r.tight_layout() plt.show() output_file_tag = 'ofat_parameter_{}'.format(slugify(value=parameter)) fig_p.savefig(os.path.join(output_path, output_file_tag + '_power.png'), dpi=600) fig_p.savefig(os.path.join(output_path, output_file_tag + '_power.svg'), dpi=600) fig_r.savefig(os.path.join(output_path, output_file_tag + '_rsh.png'), dpi=600) fig_r.savefig(os.path.join(output_path, output_file_tag + '_rsh.svg'), dpi=600) df_degradation =
pd.DataFrame(failure_times)
pandas.DataFrame
''' get a list of unique SNP/TAG/Gene ''' import pandas as pd from tqdm import tqdm df =
pd.read_csv('gwas_RS_IDs_tagged.csv', low_memory=False)
pandas.read_csv
import pandas as pd import numpy as np from datetime import date """ dataset split: (date_received) dateset3: 20160701~20160731 (113640),features3 from 20160315~20160630 (off_test) dateset2: 20160515~20160615 (258446),features2 from 20160201~20160514 dateset1: 20160414~20160514 (138303),features1 from 20160101~20160413 1.merchant related: sales_use_coupon. total_coupon transfer_rate = sales_use_coupon/total_coupon. merchant_avg_distance,merchant_min_distance,merchant_max_distance of those use coupon total_sales. coupon_rate = sales_use_coupon/total_sales. 2.coupon related: discount_rate. discount_man. discount_jian. is_man_jian day_of_week,day_of_month. (date_received) 3.user related: distance. user_avg_distance, user_min_distance,user_max_distance. buy_use_coupon. buy_total. coupon_received. buy_use_coupon/coupon_received. avg_diff_date_datereceived. min_diff_date_datereceived. max_diff_date_datereceived. count_merchant. 4.user_merchant: times_user_buy_merchant_before. 5. other feature: this_month_user_receive_all_coupon_count this_month_user_receive_same_coupon_count this_month_user_receive_same_coupon_lastone this_month_user_receive_same_coupon_firstone this_day_user_receive_all_coupon_count this_day_user_receive_same_coupon_count day_gap_before, day_gap_after (receive the same coupon) """ #1754884 record,1053282 with coupon_id,9738 coupon. date_received:20160101~20160615,date:20160101~20160630, 539438 users, 8415 merchants off_train = pd.read_csv('data/ccf_offline_stage1_train.csv',header=None) off_train.columns = ['user_id','merchant_id','coupon_id','discount_rate','distance','date_received','date'] #2050 coupon_id. date_received:20160701~20160731, 76309 users(76307 in trainset, 35965 in online_trainset), 1559 merchants(1558 in trainset) off_test = pd.read_csv('data/ccf_offline_stage1_test_revised.csv',header=None) off_test.columns = ['user_id','merchant_id','coupon_id','discount_rate','distance','date_received'] #11429826 record(872357 with coupon_id),762858 user(267448 in off_train) on_train = pd.read_csv('data/ccf_online_stage1_train.csv',header=None) on_train.columns = ['user_id','merchant_id','action','coupon_id','discount_rate','date_received','date'] dataset3 = off_test feature3 = off_train[((off_train.date>='20160315')&(off_train.date<='20160630'))|((off_train.date=='null')&(off_train.date_received>='20160315')&(off_train.date_received<='20160630'))] dataset2 = off_train[(off_train.date_received>='20160515')&(off_train.date_received<='20160615')] feature2 = off_train[(off_train.date>='20160201')&(off_train.date<='20160514')|((off_train.date=='null')&(off_train.date_received>='20160201')&(off_train.date_received<='20160514'))] dataset1 = off_train[(off_train.date_received>='20160414')&(off_train.date_received<='20160514')] feature1 = off_train[(off_train.date>='20160101')&(off_train.date<='20160413')|((off_train.date=='null')&(off_train.date_received>='20160101')&(off_train.date_received<='20160413'))] ############# other feature ##################3 """ 5. other feature: this_month_user_receive_all_coupon_count this_month_user_receive_same_coupon_count this_month_user_receive_same_coupon_lastone this_month_user_receive_same_coupon_firstone this_day_user_receive_all_coupon_count this_day_user_receive_same_coupon_count day_gap_before, day_gap_after (receive the same coupon) """ #for dataset3 t = dataset3[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset3[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset3[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset3[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset3[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset3[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset3[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset3[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature3 = pd.merge(t1,t,on='user_id') other_feature3 = pd.merge(other_feature3,t3,on=['user_id','coupon_id']) other_feature3 = pd.merge(other_feature3,t4,on=['user_id','date_received']) other_feature3 = pd.merge(other_feature3,t5,on=['user_id','coupon_id','date_received']) other_feature3 = pd.merge(other_feature3,t7,on=['user_id','coupon_id','date_received']) other_feature3.to_csv('data/other_feature3.csv',index=None) print(other_feature3.shape) #for dataset2 t = dataset2[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset2[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset2[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset2[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received.astype('int') t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received.astype('int') - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset2[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset2[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset2[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset2[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature2 = pd.merge(t1,t,on='user_id') other_feature2 = pd.merge(other_feature2,t3,on=['user_id','coupon_id']) other_feature2 = pd.merge(other_feature2,t4,on=['user_id','date_received']) other_feature2 = pd.merge(other_feature2,t5,on=['user_id','coupon_id','date_received']) other_feature2 = pd.merge(other_feature2,t7,on=['user_id','coupon_id','date_received']) other_feature2.to_csv('data/other_feature2.csv',index=None) print(other_feature2.shape) #for dataset1 t = dataset1[['user_id']] t['this_month_user_receive_all_coupon_count'] = 1 t = t.groupby('user_id').agg('sum').reset_index() t1 = dataset1[['user_id','coupon_id']] t1['this_month_user_receive_same_coupon_count'] = 1 t1 = t1.groupby(['user_id','coupon_id']).agg('sum').reset_index() t2 = dataset1[['user_id','coupon_id','date_received']] t2.date_received = t2.date_received.astype('str') t2 = t2.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t2['receive_number'] = t2.date_received.apply(lambda s:len(s.split(':'))) t2 = t2[t2.receive_number>1] t2['max_date_received'] = t2.date_received.apply(lambda s:max([int(d) for d in s.split(':')])) t2['min_date_received'] = t2.date_received.apply(lambda s:min([int(d) for d in s.split(':')])) t2 = t2[['user_id','coupon_id','max_date_received','min_date_received']] t3 = dataset1[['user_id','coupon_id','date_received']] t3 = pd.merge(t3,t2,on=['user_id','coupon_id'],how='left') t3['this_month_user_receive_same_coupon_lastone'] = t3.max_date_received - t3.date_received.astype('int') t3['this_month_user_receive_same_coupon_firstone'] = t3.date_received.astype('int') - t3.min_date_received def is_firstlastone(x): if x==0: return 1 elif x>0: return 0 else: return -1 #those only receive once t3.this_month_user_receive_same_coupon_lastone = t3.this_month_user_receive_same_coupon_lastone.apply(is_firstlastone) t3.this_month_user_receive_same_coupon_firstone = t3.this_month_user_receive_same_coupon_firstone.apply(is_firstlastone) t3 = t3[['user_id','coupon_id','date_received','this_month_user_receive_same_coupon_lastone','this_month_user_receive_same_coupon_firstone']] t4 = dataset1[['user_id','date_received']] t4['this_day_user_receive_all_coupon_count'] = 1 t4 = t4.groupby(['user_id','date_received']).agg('sum').reset_index() t5 = dataset1[['user_id','coupon_id','date_received']] t5['this_day_user_receive_same_coupon_count'] = 1 t5 = t5.groupby(['user_id','coupon_id','date_received']).agg('sum').reset_index() t6 = dataset1[['user_id','coupon_id','date_received']] t6.date_received = t6.date_received.astype('str') t6 = t6.groupby(['user_id','coupon_id'])['date_received'].agg(lambda x:':'.join(x)).reset_index() t6.rename(columns={'date_received':'dates'},inplace=True) def get_day_gap_before(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))-date(int(d[0:4]),int(d[4:6]),int(d[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) def get_day_gap_after(s): date_received,dates = s.split('-') dates = dates.split(':') gaps = [] for d in dates: this_gap = (date(int(d[0:4]),int(d[4:6]),int(d[6:8]))-date(int(date_received[0:4]),int(date_received[4:6]),int(date_received[6:8]))).days if this_gap>0: gaps.append(this_gap) if len(gaps)==0: return -1 else: return min(gaps) t7 = dataset1[['user_id','coupon_id','date_received']] t7 = pd.merge(t7,t6,on=['user_id','coupon_id'],how='left') t7['date_received_date'] = t7.date_received.astype('str') + '-' + t7.dates t7['day_gap_before'] = t7.date_received_date.apply(get_day_gap_before) t7['day_gap_after'] = t7.date_received_date.apply(get_day_gap_after) t7 = t7[['user_id','coupon_id','date_received','day_gap_before','day_gap_after']] other_feature1 = pd.merge(t1,t,on='user_id') other_feature1 = pd.merge(other_feature1,t3,on=['user_id','coupon_id']) other_feature1 = pd.merge(other_feature1,t4,on=['user_id','date_received']) other_feature1 = pd.merge(other_feature1,t5,on=['user_id','coupon_id','date_received']) other_feature1 = pd.merge(other_feature1,t7,on=['user_id','coupon_id','date_received']) other_feature1.to_csv('data/other_feature1.csv',index=None) print(other_feature1.shape) ############# coupon related feature ############# """ 2.coupon related: discount_rate. discount_man. discount_jian. is_man_jian day_of_week,day_of_month. (date_received) """ def calc_discount_rate(s): s =str(s) s = s.split(':') if len(s)==1: return float(s[0]) else: return 1.0-float(s[1])/float(s[0]) def get_discount_man(s): s =str(s) s = s.split(':') if len(s)==1: return 'null' else: return int(s[0]) def get_discount_jian(s): s =str(s) s = s.split(':') if len(s)==1: return 'null' else: return int(s[1]) def is_man_jian(s): s =str(s) s = s.split(':') if len(s)==1: return 0 else: return 1 #dataset3 dataset3['day_of_week'] = dataset3.date_received.astype('str').apply(lambda x:date(int(x[0:4]),int(x[4:6]),int(x[6:8])).weekday()+1) dataset3['day_of_month'] = dataset3.date_received.astype('str').apply(lambda x:int(x[6:8])) dataset3['days_distance'] = dataset3.date_received.astype('str').apply(lambda x:(date(int(x[0:4]),int(x[4:6]),int(x[6:8]))-date(2016,6,30)).days) dataset3['discount_man'] = dataset3.discount_rate.apply(get_discount_man) dataset3['discount_jian'] = dataset3.discount_rate.apply(get_discount_jian) dataset3['is_man_jian'] = dataset3.discount_rate.apply(is_man_jian) dataset3['discount_rate'] = dataset3.discount_rate.apply(calc_discount_rate) d = dataset3[['coupon_id']] d['coupon_count'] = 1 d = d.groupby('coupon_id').agg('sum').reset_index() dataset3 = pd.merge(dataset3,d,on='coupon_id',how='left') dataset3.to_csv('data/coupon3_feature.csv',index=None) #dataset2 dataset2['day_of_week'] = dataset2.date_received.astype('str').apply(lambda x:date(int(x[0:4]),int(x[4:6]),int(x[6:8])).weekday()+1) dataset2['day_of_month'] = dataset2.date_received.astype('str').apply(lambda x:int(x[6:8])) dataset2['days_distance'] = dataset2.date_received.astype('str').apply(lambda x:(date(int(x[0:4]),int(x[4:6]),int(x[6:8]))-date(2016,5,14)).days) dataset2['discount_man'] = dataset2.discount_rate.apply(get_discount_man) dataset2['discount_jian'] = dataset2.discount_rate.apply(get_discount_jian) dataset2['is_man_jian'] = dataset2.discount_rate.apply(is_man_jian) dataset2['discount_rate'] = dataset2.discount_rate.apply(calc_discount_rate) d = dataset2[['coupon_id']] d['coupon_count'] = 1 d = d.groupby('coupon_id').agg('sum').reset_index() dataset2 = pd.merge(dataset2,d,on='coupon_id',how='left') dataset2.to_csv('data/coupon2_feature.csv',index=None) #dataset1 dataset1['day_of_week'] = dataset1.date_received.astype('str').apply(lambda x:date(int(x[0:4]),int(x[4:6]),int(x[6:8])).weekday()+1) dataset1['day_of_month'] = dataset1.date_received.astype('str').apply(lambda x:int(x[6:8])) dataset1['days_distance'] = dataset1.date_received.astype('str').apply(lambda x:(date(int(x[0:4]),int(x[4:6]),int(x[6:8]))-date(2016,4,13)).days) dataset1['discount_man'] = dataset1.discount_rate.apply(get_discount_man) dataset1['discount_jian'] = dataset1.discount_rate.apply(get_discount_jian) dataset1['is_man_jian'] = dataset1.discount_rate.apply(is_man_jian) dataset1['discount_rate'] = dataset1.discount_rate.apply(calc_discount_rate) d = dataset1[['coupon_id']] d['coupon_count'] = 1 d = d.groupby('coupon_id').agg('sum').reset_index() dataset1 = pd.merge(dataset1,d,on='coupon_id',how='left') dataset1.to_csv('data/coupon1_feature.csv',index=None) ############# merchant related feature ############# """ 1.merchant related: total_sales. sales_use_coupon. total_coupon coupon_rate = sales_use_coupon/total_sales. transfer_rate = sales_use_coupon/total_coupon. merchant_avg_distance,merchant_min_distance,merchant_max_distance of those use coupon """ #for dataset3 merchant3 = feature3[['merchant_id','coupon_id','distance','date_received','date']] t = merchant3[['merchant_id']] t.drop_duplicates(inplace=True) t1 = merchant3[merchant3.date!='null'][['merchant_id']] t1['total_sales'] = 1 t1 = t1.groupby('merchant_id').agg('sum').reset_index() t2 = merchant3[(merchant3.date!='null')&(merchant3.coupon_id!='null')][['merchant_id']] t2['sales_use_coupon'] = 1 t2 = t2.groupby('merchant_id').agg('sum').reset_index() t3 = merchant3[merchant3.coupon_id!='null'][['merchant_id']] t3['total_coupon'] = 1 t3 = t3.groupby('merchant_id').agg('sum').reset_index() t4 = merchant3[(merchant3.date!='null')&(merchant3.coupon_id!='null')][['merchant_id','distance']] t4.replace('null',-1,inplace=True) t4.distance = t4.distance.astype('int') t4.replace(-1,np.nan,inplace=True) t5 = t4.groupby('merchant_id').agg('min').reset_index() t5.rename(columns={'distance':'merchant_min_distance'},inplace=True) t6 = t4.groupby('merchant_id').agg('max').reset_index() t6.rename(columns={'distance':'merchant_max_distance'},inplace=True) t7 = t4.groupby('merchant_id').agg('mean').reset_index() t7.rename(columns={'distance':'merchant_mean_distance'},inplace=True) t8 = t4.groupby('merchant_id').agg('median').reset_index() t8.rename(columns={'distance':'merchant_median_distance'},inplace=True) merchant3_feature = pd.merge(t,t1,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t2,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t3,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t5,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t6,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t7,on='merchant_id',how='left') merchant3_feature = pd.merge(merchant3_feature,t8,on='merchant_id',how='left') merchant3_feature.sales_use_coupon = merchant3_feature.sales_use_coupon.replace(np.nan,0) #fillna with 0 merchant3_feature['merchant_coupon_transfer_rate'] = merchant3_feature.sales_use_coupon.astype('float') / merchant3_feature.total_coupon merchant3_feature['coupon_rate'] = merchant3_feature.sales_use_coupon.astype('float') / merchant3_feature.total_sales merchant3_feature.total_coupon = merchant3_feature.total_coupon.replace(np.nan,0) #fillna with 0 merchant3_feature.to_csv('data/merchant3_feature.csv',index=None) #for dataset2 merchant2 = feature2[['merchant_id','coupon_id','distance','date_received','date']] t = merchant2[['merchant_id']] t.drop_duplicates(inplace=True) t1 = merchant2[merchant2.date!='null'][['merchant_id']] t1['total_sales'] = 1 t1 = t1.groupby('merchant_id').agg('sum').reset_index() t2 = merchant2[(merchant2.date!='null')&(merchant2.coupon_id!='null')][['merchant_id']] t2['sales_use_coupon'] = 1 t2 = t2.groupby('merchant_id').agg('sum').reset_index() t3 = merchant2[merchant2.coupon_id!='null'][['merchant_id']] t3['total_coupon'] = 1 t3 = t3.groupby('merchant_id').agg('sum').reset_index() t4 = merchant2[(merchant2.date!='null')&(merchant2.coupon_id!='null')][['merchant_id','distance']] t4.replace('null',-1,inplace=True) t4.distance = t4.distance.astype('int') t4.replace(-1,np.nan,inplace=True) t5 = t4.groupby('merchant_id').agg('min').reset_index() t5.rename(columns={'distance':'merchant_min_distance'},inplace=True) t6 = t4.groupby('merchant_id').agg('max').reset_index() t6.rename(columns={'distance':'merchant_max_distance'},inplace=True) t7 = t4.groupby('merchant_id').agg('mean').reset_index() t7.rename(columns={'distance':'merchant_mean_distance'},inplace=True) t8 = t4.groupby('merchant_id').agg('median').reset_index() t8.rename(columns={'distance':'merchant_median_distance'},inplace=True) merchant2_feature = pd.merge(t,t1,on='merchant_id',how='left') merchant2_feature = pd.merge(merchant2_feature,t2,on='merchant_id',how='left') merchant2_feature = pd.merge(merchant2_feature,t3,on='merchant_id',how='left') merchant2_feature = pd.merge(merchant2_feature,t5,on='merchant_id',how='left') merchant2_feature = pd.merge(merchant2_feature,t6,on='merchant_id',how='left') merchant2_feature = pd.merge(merchant2_feature,t7,on='merchant_id',how='left') merchant2_feature = pd.merge(merchant2_feature,t8,on='merchant_id',how='left') merchant2_feature.sales_use_coupon = merchant2_feature.sales_use_coupon.replace(np.nan,0) #fillna with 0 merchant2_feature['merchant_coupon_transfer_rate'] = merchant2_feature.sales_use_coupon.astype('float') / merchant2_feature.total_coupon merchant2_feature['coupon_rate'] = merchant2_feature.sales_use_coupon.astype('float') / merchant2_feature.total_sales merchant2_feature.total_coupon = merchant2_feature.total_coupon.replace(np.nan,0) #fillna with 0 merchant2_feature.to_csv('data/merchant2_feature.csv',index=None) #for dataset1 merchant1 = feature1[['merchant_id','coupon_id','distance','date_received','date']] t = merchant1[['merchant_id']] t.drop_duplicates(inplace=True) t1 = merchant1[merchant1.date!='null'][['merchant_id']] t1['total_sales'] = 1 t1 = t1.groupby('merchant_id').agg('sum').reset_index() t2 = merchant1[(merchant1.date!='null')&(merchant1.coupon_id!='null')][['merchant_id']] t2['sales_use_coupon'] = 1 t2 = t2.groupby('merchant_id').agg('sum').reset_index() t3 = merchant1[merchant1.coupon_id!='null'][['merchant_id']] t3['total_coupon'] = 1 t3 = t3.groupby('merchant_id').agg('sum').reset_index() t4 = merchant1[(merchant1.date!='null')&(merchant1.coupon_id!='null')][['merchant_id','distance']] t4.replace('null',-1,inplace=True) t4.distance = t4.distance.astype('int') t4.replace(-1,np.nan,inplace=True) t5 = t4.groupby('merchant_id').agg('min').reset_index() t5.rename(columns={'distance':'merchant_min_distance'},inplace=True) t6 = t4.groupby('merchant_id').agg('max').reset_index() t6.rename(columns={'distance':'merchant_max_distance'},inplace=True) t7 = t4.groupby('merchant_id').agg('mean').reset_index() t7.rename(columns={'distance':'merchant_mean_distance'},inplace=True) t8 = t4.groupby('merchant_id').agg('median').reset_index() t8.rename(columns={'distance':'merchant_median_distance'},inplace=True) merchant1_feature = pd.merge(t,t1,on='merchant_id',how='left') merchant1_feature = pd.merge(merchant1_feature,t2,on='merchant_id',how='left') merchant1_feature = pd.merge(merchant1_feature,t3,on='merchant_id',how='left') merchant1_feature = pd.merge(merchant1_feature,t5,on='merchant_id',how='left') merchant1_feature =
pd.merge(merchant1_feature,t6,on='merchant_id',how='left')
pandas.merge
""" Sixth version, make the code easier and more modifiable """ # Define the main programme from funcs import store_namespace from funcs import load_namespace from funcs import emulate_jmod import os import datetime import time import pandas as pd #from multiprocessing import Pool from mpcpy import units from mpcpy import variables from mpcpy import models_mod as models from Simulator_HP_mod3 import SimHandler if __name__ == "__main__": # Naming conventions for the simulation community = 'ResidentialCommunityUK_rad_2elements' sim_id = 'MinEne' model_id = 'R2CW_HP' bldg_list = load_namespace(os.path.join('path_to_models', 'teaser_bldgs_residentialUK_10bldgs_fallback')) folder = 'results' bldg_index_start = 0 bldg_index_end = 10 # Overall options date = '1/7/2017 ' start = date + '16:30:00' end = date + '19:00:00' meas_sampl = '300' horizon = 2*3600/float(meas_sampl) #time horizon for optimization in multiples of the sample mon = 'jan' DRstart = datetime.datetime.strptime(date + '17:30:00', '%m/%d/%Y %H:%M:%S') # hour to start DR - ramp down 30 mins before DRend = datetime.datetime.strptime(date + '18:30:00', '%m/%d/%Y %H:%M:%S') # hour to end DR - ramp 30 mins later DR_call_start = datetime.datetime.strptime(date + '17:00:00', '%m/%d/%Y %H:%M:%S') # Round of loop to implement the call DR_ramp_start = datetime.datetime.strptime(date + '17:30:00', '%m/%d/%Y %H:%M:%S') DR_ramp_end = datetime.datetime.strptime(date + '18:30:00', '%m/%d/%Y %H:%M:%S') # Round of loop to stop implementing the call flex_cost = 150 # Cost for flexibility compr_capacity=float(3000) ramp_modifier = float(2000/compr_capacity) # to further modify the load profile max_modifier = float(2000/compr_capacity) dyn_price = 1 stat_cost = 50 #set_change = 1 sim_range = pd.date_range(start, end, freq = meas_sampl+'S') opt_start_str = start opt_end = datetime.datetime.strptime(end, '%m/%d/%Y %H:%M:%S') + datetime.timedelta(seconds = horizon*int(meas_sampl)) opt_end_str = opt_end.strftime('%m/%d/%Y %H:%M:%S') init_start = sim_range[0] - datetime.timedelta(seconds = 0.5*3600) init_start_str = init_start.strftime('%m/%d/%Y %H:%M:%S') print(init_start_str) # Instantiate Simulator for aggregated optimisation SimAggr = SimHandler(sim_start = start, sim_end = end, meas_sampl = meas_sampl ) SimAggr.moinfo_mpc = (os.path.join(SimAggr.simu_path, 'AggrMPC_ResUK_10bldgs_heatpump_rad_fallback.mo'), 'AggrMPC_ResUK_10bldgs_heatpump_rad_fallback.Residential', {} ) SimAggr.building = 'AggrMPC_ResUK_10bldgs_heatpump_rad_fallback' SimAggr.target_variable = 'TotalHeatPower' # Not really used in this case ... SimAggr.fmupath_emu = os.path.join(SimAggr.simu_path, 'fmus', community, 'AggrMPC_ResUK_10bldgs_heatpump_rad_fallback_Residential.fmu') SimAggr.fmupath_mpc = os.path.join(SimAggr.simu_path, 'fmus', community, 'AggrMPC_ResUK_10bldgs_heatpump_rad_fallback_Residential.fmu') SimAggr.moinfo_emu = (os.path.join(SimAggr.simu_path, 'AggrMPC_ResUK_10bldgs_heatpump_rad_fallback.mo'), 'AggrMPC_ResUK_10bldgs_heatpump_rad_fallback.Residential', {} ) # Initialise aggregated model # Control bldg_control = load_namespace(os.path.join(SimAggr.simu_path, 'ibpsa_paper', '10bldgs_decentr_nodyn_jan', 'control_SemiDetached_2_R2CW_HP')) # Constraints bldg_constraints = load_namespace(os.path.join(SimAggr.simu_path, 'ibpsa_paper', '10bldgs_decentr_nodyn_jan', 'constraints_SemiDetached_2_R2CW_HP')) # Optimisation constraints variable map SimAggr.optcon_varmap = {} SimAggr.contr_varmap = {} SimAggr.addobj_varmap = {} SimAggr.slack_var = [] for bldg in bldg_list: model_name = bldg+'_'+model_id for key in bldg_control.data: SimAggr.contr_varmap[key+'_'+bldg] = (key+'_'+bldg, bldg_control.data[key].get_display_unit()) for key in bldg_constraints.data: for key1 in bldg_constraints.data[key]: if key1 != 'Slack_GTE' and key1 != 'Slack_LTE': SimAggr.optcon_varmap[model_name+'_'+key1] = (model_name+'.'+key, key1, bldg_constraints.data[key][key1].get_display_unit()) else: SimAggr.optcon_varmap[model_name+'_'+key1] = (model_name + '_TAir' + '_Slack', key1[-3:], units.degC) SimAggr.slack_var.append(model_name +'_TAir'+ '_Slack') SimAggr.addobj_varmap[model_name + '_TAir' + '_Slack'] = (model_name + '_TAir' + '_Slack', units.unit1) #exit() index = pd.date_range(init_start, opt_end_str, freq = meas_sampl+'S') SimAggr.constraint_csv = os.path.join(SimAggr.simu_path,'csvs','Constraints_AggrRes.csv') SimAggr.control_file = os.path.join(SimAggr.simu_path,'csvs','ControlSignal_AggrRes.csv') SimAggr.price_file = os.path.join(SimAggr.simu_path,'csvs','PriceSignal.csv') SimAggr.param_file = os.path.join(SimAggr.simu_path,'csvs','Parameters.csv') # Initialise exogenous data sources SimAggr.update_weather(init_start_str,opt_end_str) SimAggr.get_DRinfo(init_start_str,opt_end_str) SimAggr.get_control() SimAggr.get_params() SimAggr.get_other_input(init_start_str,opt_end_str) SimAggr.get_constraints(init_start_str,opt_end_str,upd_control = 1) # Empty old data SimAggr.parameters.data = {} SimAggr.control.data = {} SimAggr.constraints.data = {} SimAggr.meas_varmap_mpc = {} SimAggr.meas_vars_mpc = {} SimAggr.other_input.data = {} index = pd.date_range(init_start_str, opt_end_str, freq = meas_sampl+'S', tz=SimAggr.weather.tz_name) for bldg in bldg_list: #Parameters from system id bldg_params = load_namespace(os.path.join(SimAggr.simu_path, 'sysid', 'sysid_HPrad_2element_'+mon+'_600S','est_params_'+bldg+'_'+model_id)) bldg_other_input = load_namespace(os.path.join(SimAggr.simu_path, 'ibpsa_paper', 'decentr_enemin_'+mon, 'other_input_'+bldg+'_'+model_id)) bldg_constraints = load_namespace(os.path.join(SimAggr.simu_path, 'ibpsa_paper', 'decentr_enemin_'+mon, 'constraints_'+bldg+'_'+model_id)) model_name = bldg+'_'+model_id pheat_min = pd.Series(0,index=index) pheat_max = pd.Series(1,index=index) bldg_constraints.data['HPPower']= {'GTE': variables.Timeseries('HPPower_GTE', pheat_min, units.W, tz_name=SimAggr.weather.tz_name), 'LTE': variables.Timeseries('HPPower_LTE', pheat_max, units.W,tz_name=SimAggr.weather.tz_name)} #print(SimAggr.start_temp) for key in bldg_params: SimAggr.parameters.data[model_name+'.'+key] = {'Free': variables.Static('FreeOrNot', bldg_params[key]['Free'].data, units.boolean), 'Minimum': variables.Static('Min', bldg_params[key]['Minimum'].data, bldg_params[key]['Minimum'].get_display_unit()), 'Covariance': variables.Static('Covar', bldg_params[key]['Covariance'].data, bldg_params[key]['Covariance'].get_display_unit()), 'Value': variables.Static(model_name+'.'+key, bldg_params[key]['Value'].data, bldg_params[key]['Value'].get_display_unit()), 'Maximum': variables.Static('Max', bldg_params[key]['Maximum'].data, bldg_params[key]['Maximum'].get_display_unit()) } SimAggr.update_params(model_name+'.heatCapacitor.T.start',SimAggr.start_temp,unit=units.degC) SimAggr.update_params(model_name+'.heatCapacitor1.T.start',SimAggr.start_temp, unit=units.degC) if dyn_price == 0: bldg_control = load_namespace(os.path.join(SimAggr.simu_path, 'ibpsa_paper', '10bldgs_decentr_'+'nodyn_'+mon, 'control_'+bldg+'_'+model_id)) else: bldg_control = load_namespace(os.path.join(SimAggr.simu_path, 'ibpsa_paper', '10bldgs_decentr_'+'dyn_'+mon, 'control_'+bldg+'_'+model_id)) for key in bldg_control.data: SimAggr.control.data[key+'_'+bldg] = variables.Timeseries( name = key+'_'+bldg, timeseries = bldg_control.data[key].display_data(), # use the same initial guess as with decentralised display_unit = bldg_control.data[key].get_display_unit(), tz_name = SimAggr.weather.tz_name ) for key in bldg_constraints.data: if key == 'HPPower': SimAggr.constraints.data[key+'_'+bldg] = {} else: SimAggr.constraints.data[model_name+'.'+key] = {} for key1 in bldg_constraints.data[key]: if key == 'HPPower': SimAggr.constraints.data[key+'_'+bldg][key1] = variables.Timeseries( name = key+'_'+bldg+'_'+key1, timeseries = bldg_constraints.data[key][key1].display_data().loc[index], display_unit = bldg_constraints.data[key][key1].get_display_unit(), tz_name = SimAggr.weather.tz_name ) else: if key1 == 'Slack_GTE' or key1 == 'Slack_LTE': SimAggr.constraints.data[model_name+'.'+key][key1] = variables.Timeseries( name = model_name+'_'+key+'_'+key1, timeseries = bldg_constraints.data[key][key1].display_data().loc[index], display_unit = bldg_constraints.data[key][key1].get_display_unit(), tz_name = SimAggr.weather.tz_name ) else: SimAggr.constraints.data[model_name+'.'+key][key1] = variables.Timeseries( name = model_name+'_'+key+'_'+key1, timeseries = bldg_constraints.data[key][key1].display_data().loc[index], display_unit = bldg_constraints.data[key][key1].get_display_unit(), tz_name = SimAggr.weather.tz_name ) SimAggr.meas_varmap_mpc[model_name+'.'+'TAir'] = (model_name+'.'+'TAir', units.K) SimAggr.meas_vars_mpc[model_name+'.'+'TAir'] = {} SimAggr.meas_vars_mpc[model_name+'.'+'TAir']['Sample'] = variables.Static('sample_rate_TAir', int(meas_sampl), units.s) SimAggr.meas_varmap_emu = SimAggr.meas_varmap_mpc SimAggr.meas_vars_emu = SimAggr.meas_vars_mpc index = pd.date_range(init_start_str, opt_end_str, freq = meas_sampl+'S') SimAggr.price = load_namespace(os.path.join('prices','sim_price_'+mon)) if dyn_price == 0: index = pd.date_range(init_start_str, opt_end_str, freq = '1800S') price_signal = pd.Series(50,index=index) SimAggr.price.data = {"pi_e": variables.Timeseries('pi_e', price_signal,units.cents_kWh,tz_name=SimAggr.weather.tz_name) } store_namespace(os.path.join(folder, 'sim_price'), SimAggr.price) store_namespace(os.path.join(folder, 'params_'+SimAggr.building), SimAggr.parameters) store_namespace(os.path.join(folder, 'control_'+SimAggr.building), SimAggr.control) store_namespace(os.path.join(folder, 'constraints_'+SimAggr.building), SimAggr.constraints) SimAggr.init_models(use_ukf=0, use_fmu_emu=0, use_fmu_mpc=0) # Use for initialising models #SimAggr.init_refmodel(use_fmu=1) # Instantiate Simulator Emu_list = [] i = 0 for bldg in bldg_list[bldg_index_start:bldg_index_end]: i = i+1 print('Instantiating emulation models, loop: ' + str(i)) Sim = SimHandler(sim_start = start, sim_end = end, meas_sampl = meas_sampl ) Sim.moinfo_mpc = (os.path.join(Sim.simu_path, 'Tutorial_'+model_id+'.mo'), 'Tutorial_'+model_id+'.'+model_id, {} ) Sim.building = bldg+'_'+model_id Sim.fmupath_mpc = os.path.join(Sim.simu_path, 'fmus',community, 'Tutorial_'+model_id+'_'+model_id+'.fmu') Sim.fmupath_emu = os.path.join(Sim.simu_path, 'fmus', community, community+'_'+bldg+'_'+bldg+'_Models_'+bldg+'_House_mpc.fmu') Sim.fmupath_ref = os.path.join(Sim.simu_path, 'fmus', community, community+'_'+bldg+'_'+bldg+'_Models_'+bldg+'_House_PI.fmu') Sim.moinfo_emu = (os.path.join(Sim.mod_path, community, bldg,bldg+'_Models',bldg+'_House_mpc.mo'), community+'.'+bldg+'.'+bldg+'_Models.'+bldg+'_House_mpc', {} ) Sim.moinfo_emu_ref = (os.path.join(Sim.mod_path, community, bldg,bldg+'_Models',bldg+'_House_PI.mo'), community+'.'+bldg+'.'+bldg+'_Models.'+bldg+'_House_PI', {} ) # Initialise exogenous data sources if i == 1: Sim.weather = SimAggr.weather Sim.get_DRinfo(init_start_str,opt_end_str) Sim.flex_cost = SimAggr.flex_cost Sim.price = SimAggr.price Sim.rho = SimAggr.rho #Sim.addobj = SimAggr.addobj else: Sim.weather = Emu_list[i-2].weather Sim.flex_cost = Emu_list[i-2].flex_cost Sim.price = Emu_list[i-2].price Sim.rho = Emu_list[i-2].rho Sim.addobj = Emu_list[i-2].addobj #Sim.sim_start= '1/1/2017 00:00' Sim.get_control() #Sim.sim_start= start Sim.get_other_input(init_start_str,opt_end_str) Sim.get_constraints(init_start_str,opt_end_str,upd_control=1) Sim.param_file = os.path.join(Sim.simu_path,'csvs','Parameters_R2CW.csv') Sim.get_params() Sim.parameters.data = load_namespace(os.path.join(Sim.simu_path, 'sysid', 'sysid_HPrad_2element_'+mon+'_600S','est_params_'+Sim.building)) Sim.other_input = load_namespace(os.path.join(Sim.simu_path, 'ibpsa_paper', 'decentr_enemin_'+mon, 'other_input_'+Sim.building)) Sim.constraints = load_namespace(os.path.join(Sim.simu_path, 'ibpsa_paper', 'decentr_enemin_'+mon, 'constraints_'+Sim.building)) # Add to list of simulations Emu_list.append(Sim) # Start the hourly loop i = 0 emutemps = {} mpctemps = {} controlseq = {} power = {} opt_stats = {} refheat = [] reftemps = [] index = pd.date_range(start, opt_end_str, freq = meas_sampl+'S') flex_cost_signal = pd.Series(0,index=index) start_temps = [] for Sim in Emu_list: while True: try: # Initialise models Sim.init_models(use_ukf=1, use_fmu_mpc=1, use_fmu_emu=1) # Use for initialising emulate_jmod(Sim.emu, Sim.meas_vars_emu, Sim.meas_sampl, init_start_str, start) Sim.start_temp = Sim.emu.display_measurements('Measured').values[-1][-1]-273.15 print(Sim.emu.display_measurements('Measured')) out_temp=Sim.weather.display_data()['weaTDryBul'].resample(meas_sampl+'S').ffill()[start] start_temp = Sim.start_temp print(out_temp) print(Sim.start_temp) Sim.mpc.measurements = {} Sim.mpc.measurements['TAir'] = Sim.emu.measurements['TAir'] SimAggr.update_params(Sim.building+'.heatCapacitor.T.start',Sim.start_temp+273.15, units.K) SimAggr.update_params(Sim.building+'.heatCapacitor1.T.start',(7*Sim.start_temp+out_temp)/8+273.15, units.K) Sim.update_params('C1start', start_temp+273.15, units.K) Sim.update_params('C2start', (7*start_temp+out_temp)/8+273.15, units.K) break except: print('%%%%%%%%%%%%%%%%%% Failed, trying again! %%%%%%%%%%%%%%%%%%%%%%') continue print(sim_range) for simtime in sim_range: i = i + 1 print('%%%%%%%%% IN LOOP: ' + str(i) + ' %%%%%%%%%%%%%%%%%') if i == 1: simtime_str = 'continue' else: simtime_str = 'continue' opt_start_str = simtime.strftime('%m/%d/%Y %H:%M:%S') opt_end = simtime + datetime.timedelta(seconds = horizon*int(SimAggr.meas_sampl)) emu_end = simtime + datetime.timedelta(seconds = int(SimAggr.meas_sampl)) opt_end_str = opt_end.strftime('%m/%d/%Y %H:%M:%S') emu_end_str = emu_end.strftime('%m/%d/%Y %H:%M:%S') simtime_naive = simtime.replace(tzinfo=None) print('---- Simulation time: ' + str(simtime) + ' -------') print('---- Next time step: ' + str(emu_end) + ' -------') print('---- Optimisation horizon end: ' + str(opt_end) + ' -------') emutemps = {} mpctemps = {} controlseq = {} power = {} opt_stats = {} while True: try: # Optimise for next time step print("%%%%%% --- Optimising --- %%%%%%") SimAggr.opt_start = opt_start_str SimAggr.opt_end = opt_end_str if simtime.hour == DR_call_start.hour and simtime.minute == DR_call_start.minute: print('%%%%%%%%%%%%%%% DR event called - flexibility profile defined %%%%%%%%%%%%%%%%%%%%%') flex_cost_signal = pd.Series(0,index=index) j = 0 for bldg in bldg_list: if j == 0: load_profiles = pd.Series(SimAggr.opt_controlseq['HPPower_' + bldg].display_data().values, index = SimAggr.opt_controlseq['HPPower_' + bldg].display_data().index) else: load_profile = pd.Series(SimAggr.opt_controlseq['HPPower_' + bldg].display_data().values, index = SimAggr.opt_controlseq['HPPower_' + bldg].display_data().index) load_profiles =
pd.concat([load_profiles, load_profile], axis=1)
pandas.concat
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(
lrange(4)
pandas.compat.lrange
import pandas as pd import numpy as np class logistic: def __init__(self,x,y): self.data = x self.target = y self.theta = np.array([0,0,0,0]) self.cost = 0 self.thresh = 0.5 def hypo(self,theta,X): z = (np.matrix(theta)*np.matrix(X).T) print("hypo : ",1/1+np.exp(-z)) return 1/1+np.exp(-z) def gradient(self,m,alpha): n = 0 while n<=1500: n=n+1 self.theta = self.theta - (alpha/m)*(self.hypo(self.theta,self.data)-self.target)*np.matrix(self.data) print("Iteration :: ",n) print(self.theta) break print("Values of Theta :: ",self.theta) def predict(self,x): prediction = self.hypo(self.theta,x) print("The prediction probability is :: ",prediction) if __name__ == "__main__": iris_data = pd.read_csv('/home/proton/Desktop/My/Might/MachineLearning/Python Implementation/Dataset/Iris.csv') iris_data=iris_data[:100] df =
pd.DataFrame(iris_data)
pandas.DataFrame
import numpy as np import pandas as pd from sapextractor.algo.o2c import o2c_common from sapextractor.utils import constants from sapextractor.utils.change_tables import extract_change from sapextractor.utils.filters import case_filter from sapextractor.utils.graph_building import build_graph from sapextractor.algo.o2c import payment_part def extract_changes_vbfa(con, dataframe, mandt="800"): if len(dataframe) > 0: case_vbeln = dataframe[["case:concept:name", "VBELN"]].to_dict("records") else: case_vbeln = [] case_vbeln_dict = {} for x in case_vbeln: caseid = x["case:concept:name"] vbeln = x["VBELN"] if vbeln not in case_vbeln_dict: case_vbeln_dict[vbeln] = set() case_vbeln_dict[vbeln].add(caseid) ret = [] for tup in [("VERKBELEG", "VBAK"), ("VERKBELEG", "VBAP"), ("VERKBELEG", "VBUK"), ("LIEFERUNG", "LIKP"), ("LIEFERUNG", "LIPS"), ("LIEFERUNG", "VBUK")]: changes = extract_change.apply(con, objectclas=tup[0], tabname=tup[1], mandt=mandt) changes = {x: y for x, y in changes.items() if x in case_vbeln_dict} for x, y in changes.items(): y = y[[xx for xx in y.columns if xx.startswith("event_")]] cols = {x: x.split("event_")[-1] for x in y.columns} cols["event_timestamp"] = "time:timestamp" y = y.rename(columns=cols) y["VBELN"] = y["AWKEY"] y["concept:name"] = y["CHANGEDESC"] for cc in case_vbeln_dict[x]: z = y.copy() z["case:concept:name"] = cc ret.append(z) if ret: ret = pd.concat(ret) else: ret = pd.DataFrame() return ret def extract_bkpf_bsak(con, dataframe, gjahr="2020", mandt="800"): if len(dataframe) > 0: case_vbeln = dataframe[["case:concept:name", "VBELN"]].to_dict("records") else: case_vbeln = [] case_vbeln_dict = {} for x in case_vbeln: caseid = x["case:concept:name"] vbeln = x["VBELN"] if vbeln not in case_vbeln_dict: case_vbeln_dict[vbeln] = set() case_vbeln_dict[vbeln].add(caseid) dict_awkey, clearance_docs_dates, blart_vals = payment_part.apply(con, gjahr=gjahr, mandt=mandt) intersect = set(case_vbeln_dict.keys()).intersection(dict_awkey.keys()) ret = [] for k in intersect: for belnr in dict_awkey[k]: if belnr in clearance_docs_dates: for clearingdoc in clearance_docs_dates[belnr]: for cas in case_vbeln_dict[k]: ret.append( {"case:concept:name": cas, "concept:name": "Clearance (" + blart_vals[clearingdoc[2]] + ")", "AUGBL": clearingdoc[0], "time:timestamp": clearingdoc[1]}) ret = pd.DataFrame(ret) if len(ret) > 0: if "time:timestamp" in ret.columns: ret["time:timestamp"] = ret["time:timestamp"] + pd.Timedelta(np.timedelta64(86399, 's')) ret = ret.groupby(["case:concept:name", "AUGBL"]).first().reset_index() return ret def apply(con, ref_type="Order", keep_first=True, min_extr_date="2020-01-01 00:00:00", gjahr="2020", enable_changes=True, enable_payments=True, allowed_act_doc_types=None, allowed_act_changes=None, mandt="800"): dataframe = o2c_common.apply(con, keep_first=keep_first, min_extr_date=min_extr_date, mandt=mandt) dataframe = dataframe[[x for x in dataframe.columns if x.startswith("event_")]] cols = {x: x.split("event_")[-1] for x in dataframe.columns} cols["event_activity"] = "concept:name" cols["event_timestamp"] = "time:timestamp" dataframe = dataframe.rename(columns=cols) if len(dataframe) > 0: all_docs = set(dataframe[dataframe["VBTYP_N"] == ref_type]["VBELN"].unique()) ancest_succ = build_graph.get_ancestors_successors(dataframe, "VBELV", "VBELN", "VBTYP_V", "VBTYP_N", ref_type=ref_type, all_docs=all_docs) # ancest_succ = build_graph.get_conn_comp(dataframe, "VBELV", "VBELN", "VBTYP_V", "VBTYP_N", ref_type=ref_type) dataframe = dataframe.merge(ancest_succ, left_on="VBELN", right_on="node", suffixes=('', '_r'), how="right") dataframe = dataframe.reset_index() if keep_first: dataframe = dataframe.groupby(["case:concept:name", "VBELN"]).first().reset_index() if allowed_act_doc_types is not None: allowed_act_doc_types = set(allowed_act_doc_types) dataframe = dataframe[dataframe["concept:name"].isin(allowed_act_doc_types)] if enable_changes: changes = extract_changes_vbfa(con, dataframe, mandt=mandt) else: changes = pd.DataFrame() if enable_payments: payments = extract_bkpf_bsak(con, dataframe, gjahr=gjahr, mandt=mandt) else: payments = pd.DataFrame() if allowed_act_changes is not None: allowed_act_changes = set(allowed_act_changes) changes = changes[changes["concept:name"].isin(allowed_act_changes)] dataframe =
pd.concat([dataframe, changes, payments])
pandas.concat
import os import json import requests import thingspeak import datetime import pandas as pd from functools import reduce from itertools import tee def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) def get_block(start, end): params = { 'start': str(start), 'end': str(end), 'average': '60' } try: r = channel.get(params) except: raise print('error') data = [list(feed.values()) for feed in json.loads(r)['feeds']] block_df = pd.DataFrame(data, columns = cols) return block_df sensor_list = pd.read_csv('pa_sensor_list.csv') #sensor_list = sensor_list.drop(columns=['Unnamed: 0', 'DEVICE_LOCATIONTYPE']) #group the channel ID and key into pairs pairs = list(zip(sensor_list['THINGSPEAK_PRIMARY_ID'], sensor_list['THINGSPEAK_PRIMARY_ID_READ_KEY'])) #split data into 7.2 days, ~ 8000 data points @ 80 second resolution. 8000 is the Thingspeak limit dates = pd.date_range(start='1/1/2018', end='1/4/2019', freq='7.2D') def download_pa(): #TODO desperately needs to be async for cid, key in pairs: channel_id = cid read_key = key channel = thingspeak.Channel(id=channel_id,api_key=read_key) #prep columns for dataframe cols = json.loads(channel.get({'results': '1'}))['channel'] # get the json for channel columns cols = [(key, value) for key, value in cols.items() if key.startswith('field')] # extract only field values cols = [unit for field, unit in cols] cols = [col + f'_{channel_id}' for col in cols] cols.insert(0,'datetime') df = pd.DataFrame(columns = cols) for start, end in pairwise(dates): df = df.append(get_block(start,end)) # ['datetime', 'PM1.0 (ATM)_{channel_id}', 'PM2.5 (ATM)_{channel_id}', # 'PM10.0 (ATM)_248887', 'Mem_248887', # 'Unused_248887', 'PM2.5 (CF=1)_248887'] # # df = df.drop(columns = [f'Uptime_{channel_id}', # # f'RSSI_{channel_id}', # # f'Temperature_{channel_id}', # # f'Humidity_{channel_id}' # # ]) df.to_csv(f'data/purple_air/{channel_id}.csv') print(f'Channel: {channel_id} processed') def clean_pa(data, path): thingspeak_id = int(data[:6]) df = pd.read_csv(path + data) df = df.drop(df[df['datetime'].duplicated() == True].index) df = df.drop(df[df['datetime'] > '2018-12-31T23:00:00Z'].index) if df.shape[0] >= 6000: try: lat, lon = zip(*sensor_list[ sensor_list['THINGSPEAK_PRIMARY_ID'] == thingspeak_id][['lat', 'lon']].values) df['lat'] = lat[0] df['lon'] = lon[0] df['id'] = thingspeak_id except: print('lat / lon not found, skipping') return pd.DataFrame() #filter for only the columns we want df = df[df.columns[df.columns.str.startswith(( 'datetime','lat','lon','PM','id'))]] return df else: return pd.DataFrame() def pa_concat(path): files = os.listdir(path) cols = ['datetime', 'PM1.0 (ATM)', 'PM2.5 (ATM)', 'PM10.0 (ATM)', 'PM2.5 (CF=1)', 'lat', 'lon', 'id' ] df = pd.concat([ pd.read_csv(path+file, names = cols, skiprows=1, parse_dates=['datetime']) for file in files]) df['datetime'] =
pd.to_datetime(df['datetime'])
pandas.to_datetime
import pandas as pd import numpy as np import os import requests import logging import argparse import re import pathlib API_KEY = '<KEY>' MAX_VARS = 50 STATE_CODES = {'Alabama': ('AL', '01'), 'Alaska': ('AK', '02'), 'Arizona': ('AZ', '04'), 'Arkansas': ('AR', '05'), 'California': ('CA', '06'), 'Colorado': ('CO', '08'), 'Connecticut': ('CT', '09'), 'Delaware': ('DE', '10'), 'District of Columbia': ('DC', '11'), 'Florida': ('FL', '12'), 'Georgia': ('GA', '13'), 'Hawaii': ('HI', '15'), 'Idaho': ('ID', '16'), 'Illinois': ('IL', '17'), 'Indiana': ('IN', '18'), 'Iowa': ('IA', '19'), 'Kansas': ('KS', '20'), 'Kentucky': ('KY', '21'), 'Louisiana': ('LA', '22'), 'Maine': ('ME', '23'), 'Maryland': ('MD', '24'), 'Massachusetts': ('MA', '25'), 'Michigan': ('MI', '26'), 'Minnesota': ('MN', '27'), 'Mississippi': ('MS', '28'), 'Missouri': ('MO', '29'), 'Montana': ('MT', '30'), 'Nebraska': ('NE', '31'), 'Nevada': ('NV', '32'), 'New Hampshire': ('NH', '33'), 'New Jersey': ('NJ', '34'), 'New Mexico': ('NM', '35'), 'New York': ('NY', '36'), 'North Carolina': ('NC', '37'), 'North Dakota': ('ND', '38'), 'Ohio': ('OH', '39'), 'Oklahoma': ('OK', '40'), 'Oregon': ('OR', '41'), 'Pennsylvania': ('PA', '42'), 'Rhode Island': ('RI', '44'), 'South Carolina': ('SC', '45'), 'South Dakota': ('SD', '46'), 'Tennessee': ('TN', '47'), 'Texas': ('TX', '48'), 'Utah': ('UT', '49'), 'Vermont': ('VT', '50'), 'Virginia': ('VA', '51'), 'Washington': ('WA', '53'), 'West Virginia': ('WV', '54'), 'Wisconsin': ('WI', '55'), 'Wyoming': ('WY', '56')} def extract_vars(vars_file): """ extract vars to be downloaded from munging file :param vars_file: string path and filename to list of variables should have column header: variable_name if doing transformations, headers should be (tab delimited): variable_name, operator, argument1, argument2 :returns: list of sorted variable names """ # get vars/transform file do_transforms = False try: transforms =
pd.read_csv(vars_file, sep='\t')
pandas.read_csv
# https://colab.research.google.com/notebooks/mlcc/first_steps_with_tensor_flow.ipynb from __future__ import print_function import math import os from IPython import display from matplotlib import cm from matplotlib import gridspec from matplotlib import pyplot as plt import numpy as np import pandas as pd from sklearn import metrics import tensorflow as tf from tensorflow.python.data import Dataset from utils.input_fn import my_input_fn dirname = os.path.dirname(__file__) tf.logging.set_verbosity(tf.logging.ERROR) pd.options.display.max_rows = 10 pd.options.display.float_format = '{:.1f}'.format csv = os.path.join(dirname, '../datasets/california_housing_train.csv') california_housing_dataframe = pd.read_csv(csv, sep=",") # Randomizing the DataFrame california_housing_dataframe = california_housing_dataframe.reindex( np.random.permutation(california_housing_dataframe.index) ) california_housing_dataframe["median_house_value"] /= 1000.0 # print(california_housing_dataframe.describe()) # Define the input feature: total_rooms. my_feature = california_housing_dataframe[["total_rooms"]] # Configure a numeric feature column for total_rooms. feature_columns = [tf.feature_column.numeric_column("total_rooms")] # Define the label. targets = california_housing_dataframe["median_house_value"] # Use gradient descent as the optimizer for training the model. my_optimizer = tf.train.GradientDescentOptimizer(learning_rate=0.0000001) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) # Configure the linear regression model with our feature columns and optimizer. # Set a learning rate of 0.0000001 for Gradient Descent. linear_regressor = tf.estimator.LinearRegressor( feature_columns=feature_columns, optimizer=my_optimizer ) linear_regressor.train( input_fn = lambda:my_input_fn(my_feature, targets), steps=100 ) # Evaluating the model # Create an input function for predictions. # Note: Since we're making just one prediction for each example, we don't # need to repeat or shuffle the data here. prediction_input_fn = lambda: my_input_fn(my_feature, targets, num_epochs=1, shuffle=False) # Call predict() on the linear_regressor to make predictions. predictions = linear_regressor.predict(input_fn=prediction_input_fn) # Format predictions as a NumPy array, so we can calculate error metrics. predictions = np.array([item['predictions'][0] for item in predictions]) # Print Mean Squared Error and Root Mean Squared Error. mean_squared_error = metrics.mean_squared_error(predictions, targets) root_mean_squared_error = math.sqrt(mean_squared_error) print("Mean Squared Error (on training data): %0.3f" % mean_squared_error) print("Root Mean Squared Error (on training data): %0.3f" % root_mean_squared_error) min_house_value = california_housing_dataframe["median_house_value"].min() max_house_value = california_housing_dataframe["median_house_value"].max() min_max_difference = max_house_value - min_house_value print("Min. Median House Value: %0.3f" % min_house_value) print("Max. Median House Value: %0.3f" % max_house_value) print("Difference between Min. and Max.: %0.3f" % min_max_difference) print("Root Mean Squared Error: %0.3f" % root_mean_squared_error) # Reducing model error calibration_data = pd.DataFrame() calibration_data["predictions"] = pd.Series(predictions) calibration_data["targets"] =
pd.Series(targets)
pandas.Series
from flask import Flask, render_template, request, redirect, url_for, session import pandas as pd import pymysql import os import io #from werkzeug.utils import secure_filename from pulp import * import numpy as np import pymysql import pymysql.cursors from pandas.io import sql #from sqlalchemy import create_engine import pandas as pd import numpy as np #import io import statsmodels.formula.api as smf import statsmodels.api as sm import scipy.optimize as optimize import matplotlib.mlab as mlab import matplotlib.pyplot as plt #from flask import Flask, render_template, request, redirect, url_for, session, g from sklearn.linear_model import LogisticRegression from math import sin, cos, sqrt, atan2, radians from statsmodels.tsa.arima_model import ARIMA #from sqlalchemy import create_engine from collections import defaultdict from sklearn import linear_model import statsmodels.api as sm import scipy.stats as st import pandas as pd import numpy as np from pulp import * import pymysql import math app = Flask(__name__) app.secret_key = os.urandom(24) localaddress="D:\\home\\site\\wwwroot" localpath=localaddress os.chdir(localaddress) @app.route('/') def index(): return redirect(url_for('home')) @app.route('/home') def home(): return render_template('home.html') @app.route('/demandplanning') def demandplanning(): return render_template("Demand_Planning.html") @app.route("/elasticopt",methods = ['GET','POST']) def elasticopt(): if request.method== 'POST': start_date =request.form['from'] end_date=request.form['to'] prdct_name=request.form['typedf'] # connection = pymysql.connect(host='localhost', # user='user', # password='', # db='test', # charset='utf8mb4', # cursorclass=pymysql.cursors.DictCursor) # # x=connection.cursor() # x.execute("select * from `transcdata`") # connection.commit() # datass=pd.DataFrame(x.fetchall()) datass = pd.read_csv("C:\\Users\\1026819\\Downloads\\optimizdata.csv") # datas = datass[(datass['Week']>=start_date) & (datass['Week']<=end_date )] datas=datass df = datas[datas['Product'] == prdct_name] df=datass changeData=pd.concat([df['Product_Price'],df['Product_Qty']],axis=1) changep=[] changed=[] for i in range(0,len(changeData)-1): changep.append(changeData['Product_Price'].iloc[i]-changeData['Product_Price'].iloc[i+1]) changed.append(changeData['Product_Qty'].iloc[1]-changeData['Product_Qty'].iloc[i+1]) cpd=pd.concat([pd.DataFrame(changep),pd.DataFrame(changed)],axis=1) cpd.columns=['Product_Price','Product_Qty'] sortedpricedata=df.sort_values(['Product_Price'], ascending=[True]) spq=pd.concat([sortedpricedata['Product_Price'],sortedpricedata['Product_Qty']],axis=1).reset_index(drop=True) pint=[] dint=[] x = spq['Product_Price'] num_bins = 5 # n, pint, patches = plt.hist(x, num_bins, facecolor='blue', alpha=0.5) y = spq['Product_Qty'] num_bins = 5 # n, dint, patches = plt.hist(y, num_bins, facecolor='blue', alpha=0.5) arr= np.zeros(shape=(len(pint),len(dint))) count=0 for i in range(0, len(pint)): lbp=pint[i] if i==len(pint)-1: ubp=pint[i]+1 else: ubp=pint[i+1] for j in range(0, len(dint)): lbd=dint[j] if j==len(dint)-1: ubd=dint[j]+1 else: ubd=dint[j+1] print(lbd,ubd) for k in range(0, len(spq)): if (spq['Product_Price'].iloc[k]>=lbp\ and spq['Product_Price'].iloc[k]<ubp): if(spq['Product_Qty'].iloc[k]>=lbd\ and spq['Product_Qty'].iloc[k]<ubd): count+=1 arr[i][j]+=1 price_range=np.zeros(shape=(len(pint),2)) for j in range(0,len(pint)): lbp=pint[j] price_range[j][0]=lbp if j==len(pint)-1: ubp=pint[j]+1 price_range[j][1]=ubp else: ubp=pint[j+1] price_range[j][1]=ubp demand_range=np.zeros(shape=(len(dint),2)) for j in range(0,len(dint)): lbd=dint[j] demand_range[j][0]=lbd if j==len(dint)-1: ubd=dint[j]+1 demand_range[j][1]=ubd else: ubd=dint[j+1] demand_range[j][1]=ubd pr=pd.DataFrame(price_range) pr.columns=['Price','Demand'] dr=pd.DataFrame(demand_range) dr.columns=['Price','Demand'] priceranges=pr.Price.astype(str).str.cat(pr.Demand.astype(str), sep='-') demandranges=dr.Price.astype(str).str.cat(dr.Demand.astype(str), sep='-') price=pd.DataFrame(arr) price.columns=demandranges price.index=priceranges pp=price.reset_index() global data data=
pd.concat([df['Week'],df['Product_Qty'],df['Product_Price'],df['Comp_Prod_Price'],df['Promo1'],df['Promo2'],df['overallsale']],axis=1)
pandas.concat
"""Module containing implementations for various psychological questionnaires. Each function at least expects a dataframe containing the required columns in a specified order (see function documentations for specifics) to be passed to the ``data`` argument. If ``data`` is a dataframe that contains more than the required two columns, e.g., if the complete questionnaire dataframe is passed, the required columns can be sliced by specifying them in the ``columns`` parameter. Also, if the columns in the dataframe are not in the correct order, the order can be specified using the ``columns`` parameter. Some questionnaire functions also allow the possibility to only compute certain subscales. To do this, a dictionary with subscale names as keys and the corresponding column names (as list of str) or column indices (as list of ints) can be passed to the ``subscales`` parameter. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! """ from typing import Dict, Optional, Sequence, Union import numpy as np import pandas as pd from typing_extensions import Literal from biopsykit.questionnaires.utils import ( _compute_questionnaire_subscales, _invert_subscales, bin_scale, invert, to_idx, ) from biopsykit.utils._datatype_validation_helper import _assert_has_columns, _assert_num_columns, _assert_value_range from biopsykit.utils.exceptions import ValueRangeError from biopsykit.utils.time import time_to_datetime def psqi(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **Pittsburgh Sleep Quality Index (PSQI)**. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. ..warning:: The PSQI has a slightly different score name format than other questionnaires since it has several subquestions (denoted "a", "b", ..., "j") for question 5, as well as one free-text question. When using this function to compute the PSQI the make sure your column names adhere to the following naming convention for the function to work properly: * Questions 1 - 10 (except Question 5): suffix "01", "02", ..., "10" * Subquestions of Question 5: suffix "05a", "05b", ..., "05j" * Free-text subquestion of Question 5: suffix "05j_text" Returns ------- :class:`~pandas.DataFrame` PSQI score Raises ------ :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns do not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range """ score_name = "PSQI" score_range = [0, 3] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe data = data.loc[:, columns] # Bedtime Start: Question 1 bed_time_start = data.filter(regex="01").iloc[:, 0] bed_time_start = time_to_datetime(bed_time_start) # Bedtime End: Question 3 bed_time_end = data.filter(regex="03").iloc[:, 0] bed_time_end = time_to_datetime(bed_time_end) # Compute Hours in Bed (needed for habitual sleep efficiency) bed_time_diff = bed_time_end - bed_time_start hours_bed = ((bed_time_diff.view(np.int64) / 1e9) / 3600) % 24 # Sleep Duration: Question 4 sd = data.filter(regex="04").iloc[:, 0] # Sleep Latency: Question 2 sl = data.filter(regex="02").iloc[:, 0] # Bin scale: 0-15 = 0, 16-30 = 1, 31-60 = 2, >=61 = 3 bin_scale(sl, bins=[0, 15, 30, 60], last_max=True, inplace=True) data = data.drop(columns=data.filter(regex="0[1234]")) data = data.drop(columns=data.filter(regex="05j_text")) _assert_value_range(data, score_range) # Subjective Sleep Quality ssq = data.filter(regex="06").iloc[:, 0] # Sleep Disturbances: Use all questions from 5, except 05a and 05j_text sdist = data.filter(regex="05").iloc[:, :] # 05j_text does not need to be dropped since it was already excluded previously sdist = sdist.drop(columns=sdist.filter(regex="05a")).sum(axis=1) # Bin scale: 0 = 0, 1-9 = 1, 10-18 = 2, 19-27 = 3 sdist = bin_scale(sdist, bins=[-1, 0, 9, 18, 27]) # Use of Sleep Medication: Use question 7 sm = data.filter(regex="07").iloc[:, 0] # Daytime Dysfunction: Sum questions 8 and 9 dd = data.filter(regex="0[89]").sum(axis=1) # Bin scale: 0 = 0, 1-2 = 1, 3-4 = 2, 5-6 = 3 dd = bin_scale(dd, bins=[-1, 0, 2, 4], inplace=False, last_max=True) # Sleep Latency: Question 2 and 5a, sum them sl = sl + data.filter(regex="05a").iloc[:, 0] # Bin scale: 0 = 0, 1-2 = 1, 3-4 = 2, 5-6 = 3 sl = bin_scale(sl, bins=[-1, 0, 2, 4, 6]) # Habitual Sleep Efficiency hse = ((sd / hours_bed) * 100.0).round().astype(int) # Bin scale: >= 85% = 0, 75%-84% = 1, 65%-74% = 2, < 65% = 3 hse = invert(bin_scale(hse, bins=[0, 64, 74, 84], last_max=True), score_range=score_range) # Sleep Duration: Bin scale: > 7 = 0, 6-7 = 1, 5-6 = 2, < 5 = 3 sd = invert(bin_scale(sd, bins=[0, 4.9, 6, 7], last_max=True), score_range=score_range) psqi_data = { score_name + "_SubjectiveSleepQuality": ssq, score_name + "_SleepLatency": sl, score_name + "_SleepDuration": sd, score_name + "_HabitualSleepEfficiency": hse, score_name + "_SleepDisturbances": sdist, score_name + "_UseSleepMedication": sm, score_name + "_DaytimeDysfunction": dd, } data = pd.DataFrame(psqi_data, index=data.index) data[score_name + "_TotalIndex"] = data.sum(axis=1) return data def mves(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **Maastricht Vital Exhaustion Scale (MVES)**. The MVES uses 23 items to assess the concept of Vital Exhaustion (VE), which is characterized by feelings of excessive fatigue, lack of energy, irritability, and feelings of demoralization. Higher scores indicate greater vital exhaustion. .. note:: This implementation assumes a score range of [0, 2]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. Returns ------- :class:`~pandas.DataFrame` MVES score Raises ------ :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns do not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., & <NAME>. (1987). A questionnaire to assess premonitory symptoms of myocardial infarction. *International Journal of Cardiology*, 17(1), 15–24. https://doi.org/10.1016/0167-5273(87)90029-5 """ score_name = "MVES" score_range = [0, 2] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 23) _assert_value_range(data, score_range) # Reverse scores 9, 14 data = invert(data, cols=to_idx([9, 14]), score_range=score_range) return pd.DataFrame(data.sum(axis=1), columns=[score_name]) def tics_l( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[Union[str, int]]]] = None, ) -> pd.DataFrame: """Compute the **Trier Inventory for Chronic Stress (Long Version) (TICS_L)**. The TICS assesses frequency of various types of stressful experiences in the past 3 months. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``Work Overload``: [50, 38, 44, 54, 17, 4, 27, 1] * ``Social Overload``: [39, 28, 49, 19, 7, 57] * ``Excessive Demands at Work``: [55, 24, 20, 35, 47, 3] * ``Lack of Social Recognition``: [31, 18, 46, 2] * ``Work Discontent``: [21, 53, 10, 48, 41, 13, 37, 5] * ``Social Tension``: [26, 15, 45, 52, 6, 33] * ``Performance Pressure at Work``: [23, 43, 32, 22, 12, 14, 8, 40, 30] * ``Performance Pressure in Social Interactions``: [6, 15, 22] * ``Social Isolation``: [42, 51, 34, 56, 11, 29] * ``Worry Propensity``: [36, 25, 16, 9] .. note:: This implementation assumes a score range of [0, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` TICS_L score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns do not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range Examples -------- >>> from biopsykit.questionnaires import tics_s >>> # compute only a subset of subscales; questionnaire items additionally have custom indices >>> subscales = { >>> 'WorkOverload': [1, 2, 3], >>> 'SocialOverload': [4, 5, 6], >>> } >>> tics_s_result = tics_s(data, subscales=subscales) References ---------- <NAME>., <NAME>., & <NAME>. (2004). Trierer Inventar zum chronischen Stress: TICS. *Hogrefe*. """ score_name = "TICS_L" score_range = [0, 4] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 57) subscales = { "WorkOverload": [1, 4, 17, 27, 38, 44, 50, 54], # Arbeitsüberlastung "SocialOverload": [7, 19, 28, 39, 49, 57], # Soziale Überlastung "PressureToPerform": [8, 12, 14, 22, 23, 30, 32, 40, 43], # Erfolgsdruck "WorkDiscontent": [5, 10, 13, 21, 37, 41, 48, 53], # Unzufriedenheit mit der Arbeit "DemandsWork": [3, 20, 24, 35, 47, 55], # Überforderung bei der Arbeit "LackSocialRec": [2, 18, 31, 46], # Mangel an sozialer Anerkennung "SocialTension": [6, 15, 26, 33, 45, 52], # Soziale Spannungen "SocialIsolation": [11, 29, 34, 42, 51, 56], # Soziale Isolation "ChronicWorry": [9, 16, 25, 36], # Chronische Besorgnis } _assert_value_range(data, score_range) tics_data = _compute_questionnaire_subscales(data, score_name, subscales) if len(data.columns) == 57: # compute total score if all columns are present tics_data[score_name] = data.sum(axis=1) return pd.DataFrame(tics_data, index=data.index) def tics_s( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[Union[str, int]]]] = None, ) -> pd.DataFrame: """Compute the **Trier Inventory for Chronic Stress (Short Version) (TICS_S)**. The TICS assesses frequency of various types of stressful experiences in the past 3 months. It consists of the subscales (the name in the brackets indicate the name in the returned dataframe), with the item indices (count-by-one, i.e., the first question has the index 1!): * ``Work Overload``: [1, 3, 21] * ``Social Overload``: [11, 18, 28] * ``Excessive Demands at Work``: [12, 16, 27] * ``Lack of Social Recognition``: [2, 20, 23] * ``Work Discontent``: [8, 13, 24] * ``Social Tension``: [4, 9, 26] * ``Performance Pressure at Work``: [5, 14, 29] * ``Performance Pressure in Social Interactions``: [6, 15, 22] * ``Social Isolation``: [19, 25, 30] * ``Worry Propensity``: [7, 10, 17] .. note:: This implementation assumes a score range of [0, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` TICS_S score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns do not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range Examples -------- >>> from biopsykit.questionnaires import tics_s >>> # compute only a subset of subscales; questionnaire items additionally have custom indices >>> subscales = { >>> 'WorkOverload': [1, 2, 3], >>> 'SocialOverload': [4, 5, 6], >>> } >>> tics_s_result = tics_s(data, subscales=subscales) References ---------- <NAME>., <NAME>., & <NAME>. (2004). Trierer Inventar zum chronischen Stress: TICS. *Hogrefe*. """ score_name = "TICS_S" score_range = [0, 4] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 30) subscales = { "WorkOverload": [1, 3, 21], "SocialOverload": [11, 18, 28], "PressureToPerform": [5, 14, 29], "WorkDiscontent": [8, 13, 24], "DemandsWork": [12, 16, 27], "PressureSocial": [6, 15, 22], "LackSocialRec": [2, 20, 23], "SocialTension": [4, 9, 26], "SocialIsolation": [19, 25, 30], "ChronicWorry": [7, 10, 17], } _assert_value_range(data, score_range) tics_data = _compute_questionnaire_subscales(data, score_name, subscales) if len(data.columns) == 30: # compute total score if all columns are present tics_data[score_name] = data.sum(axis=1) return pd.DataFrame(tics_data, index=data.index) def pss( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[Union[str, int]]]] = None, ) -> pd.DataFrame: """Compute the **Perceived Stress Scale (PSS)**. The PSS is a widely used self-report questionnaire with adequate reliability and validity asking about how stressful a person has found his/her life during the previous month. The PSS consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * Perceived Helplessness (Hilflosigkeit - ``Helpness``): [1, 2, 3, 6, 9, 10] * Perceived Self-Efficacy (Selbstwirksamkeit - ``SelfEff``): [4, 5, 7, 8] .. note:: This implementation assumes a score range of [0, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` PSS score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns do not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., & <NAME>. (1983). A Global Measure of Perceived Stress. *Journal of Health and Social Behavior*, 24(4), 385. https://doi.org/10.2307/2136404 """ score_name = "PSS" score_range = [0, 4] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 10) subscales = {"Helpless": [1, 2, 3, 6, 9, 10], "SelfEff": [4, 5, 7, 8]} _assert_value_range(data, score_range) # Reverse scores 4, 5, 7, 8 data = invert(data, cols=to_idx([4, 5, 7, 8]), score_range=score_range) pss_data = _compute_questionnaire_subscales(data, score_name, subscales) pss_data["{}_Total".format(score_name)] = data.sum(axis=1) return pd.DataFrame(pss_data, index=data.index) def cesd(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **Center for Epidemiological Studies Depression Scale (CES-D)**. The CES-D asks about depressive symptoms experienced over the past week. Higher scores indicate greater depressive symptoms. .. note:: This implementation assumes a score range of [0, 3]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. Returns ------- :class:`~pandas.DataFrame` CES-D score Raises ------ :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns do not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>. (1977). The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Applied Psychological Measurement, 1(3), 385–401. https://doi.org/10.1177/014662167700100306 """ score_name = "CESD" score_range = [0, 3] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 20) _assert_value_range(data, score_range) # Reverse scores 4, 8, 12, 16 data = invert(data, cols=to_idx([4, 8, 12, 16]), score_range=score_range) return pd.DataFrame(data.sum(axis=1), columns=[score_name]) def ads_l(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **Allgemeine Depressionsskala - Langform (ADS-L)** (General Depression Scale – Long Version). The General Depression Scale (ADS) is a self-report instrument that can be used to assess the impairment caused by depressive symptoms within the last week. Emotional, motivational, cognitive, somatic as well as motor symptoms are assessed, motivational, cognitive, somatic, and motor/interactional complaints. .. note:: This implementation assumes a score range of [0, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. Returns ------- :class:`~pandas.DataFrame` ADS-L score Raises ------ :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns do not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., & <NAME>. (2001). Allgemeine Depressions-Skala (ADS). Normierung an Minderjährigen und Erweiterung zur Erfassung manischer Symptome (ADMS). Diagnostica. """ score_name = "ADS_L" score_range = [0, 3] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 20) _assert_value_range(data, score_range) # Reverse scores 4, 8, 12, 16 data = invert(data, cols=to_idx([4, 8, 12, 16]), score_range=score_range) return pd.DataFrame(data.sum(axis=1), columns=[score_name]) def ghq(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **General Health Questionnaire (GHQ)**. The GHQ-12 is a widely used tool for detecting psychological and mental health and as a screening tool for excluding psychological and psychiatric morbidity. Higher scores indicate *lower* health. A summed score above 4 is considered an indicator of psychological morbidity. .. note:: This implementation assumes a score range of [0, 3]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. Returns ------- :class:`~pandas.DataFrame` GHQ score Raises ------ :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>. (1972). The detection of psychiatric illness by questionnaire. *Maudsley monograph*, 21. """ score_name = "GHQ" score_range = [0, 3] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 12) _assert_value_range(data, score_range) # Reverse scores 1, 3, 4, 7, 8, 12 data = invert(data, cols=to_idx([1, 3, 4, 7, 8, 12]), score_range=score_range) return pd.DataFrame(data.sum(axis=1), columns=[score_name]) def hads( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[Union[str, int]]]] = None, ) -> pd.DataFrame: """Compute the **Hospital Anxiety and Depression Scale (HADS)**. The HADS is a brief and widely used instrument to measure psychological distress in patients and in the general population. It has two subscales: anxiety and depression. Higher scores indicate greater distress. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``Anxiety``: [1, 3, 5, 7, 9, 11, 13] * ``Depression``: [2, 4, 6, 8, 10, 12, 14] .. note:: This implementation assumes a score range of [0, 3]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` HADS score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns do not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., & <NAME>. (1983). The hospital anxiety and depression scale. *Acta psychiatrica scandinavica*, 67(6), 361-370. """ score_name = "HADS" score_range = [0, 3] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 14) subscales = { "Anxiety": [1, 3, 5, 7, 9, 11, 13], "Depression": [2, 4, 6, 8, 10, 12, 14], } _assert_value_range(data, score_range) # Reverse scores 2, 4, 6, 7, 12, 14 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales( data, subscales=subscales, idx_dict={"Anxiety": [3], "Depression": [0, 1, 2, 5, 6]}, score_range=score_range ) hads_data = _compute_questionnaire_subscales(data, score_name, subscales) if len(data.columns) == 14: # compute total score if all columns are present hads_data[score_name] = data.sum(axis=1) return pd.DataFrame(hads_data, index=data.index) def type_d( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Type D Personality Scale**. Type D personality is a personality trait characterized by negative affectivity (NA) and social inhibition (SI). Individuals who are high in both NA and SI have a *distressed* or Type D personality. It consists of the subscales, with the item indices (count-by-one, i.e., the first question has the index 1!): * ``Negative Affect``: [2, 4, 5, 7, 9, 12, 13] * ``Social Inhibition``: [1, 3, 6, 8, 10, 11, 14] .. note:: This implementation assumes a score range of [0, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` TypeD score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>. (2005). DS14: standard assessment of negative affectivity, social inhibition, and Type D personality. *Psychosomatic medicine*, 67(1), 89-97. """ score_name = "Type_D" score_range = [0, 4] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 14) subscales = { "NegativeAffect": [2, 4, 5, 7, 9, 12, 13], "SocialInhibition": [1, 3, 6, 8, 10, 11, 14], } _assert_value_range(data, score_range) # Reverse scores 1, 3 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales(data, subscales=subscales, idx_dict={"SocialInhibition": [0, 1]}, score_range=score_range) ds_data = _compute_questionnaire_subscales(data, score_name, subscales) if len(data.columns) == 14: # compute total score if all columns are present ds_data[score_name] = data.sum(axis=1) return pd.DataFrame(ds_data, index=data.index) def rse(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **Rosenberg Self-Esteem Inventory**. The RSE is the most frequently used measure of global self-esteem. Higher scores indicate greater self-esteem. .. note:: This implementation assumes a score range of [0, 3]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. Returns ------- :class:`~pandas.DataFrame` RSE score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>. (1965). Society and the Adolescent Self-Image. *Princeton University Press*, Princeton, NJ. """ score_name = "RSE" score_range = [0, 3] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 10) _assert_value_range(data, score_range) # Reverse scores 2, 5, 6, 8, 9 data = invert(data, cols=to_idx([2, 5, 6, 8, 9]), score_range=score_range) return pd.DataFrame(data.sum(axis=1), columns=[score_name]) def scs( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Self-Compassion Scale (SCS)**. The Self-Compassion Scale measures the tendency to be compassionate rather than critical toward the self in difficult times. It is typically assessed as a composite but can be broken down into subscales. Higher scores indicate greater self-compassion. It consists of the subscales, with the item indices (count-by-one, i.e., the first question has the index 1!): * ``SelfKindness``: [5, 12, 19, 23, 26] * ``SelfJudgment``: [1, 8, 11, 16, 21] * ``CommonHumanity``: [3, 7, 10, 15] * ``Isolation``: [4, 13, 18, 25] * ``Mindfulness``: [9, 14, 17, 22] * ``OverIdentified`` [2, 6, 20, 24] .. note:: This implementation assumes a score range of [1, 5]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` SCS score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>. (2003). The development and validation of a scale to measure self-compassion. *Self and identity*, 2(3), 223-250. https://www.academia.edu/2040459 """ score_name = "SCS" score_range = [1, 5] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 26) subscales = { "SelfKindness": [5, 12, 19, 23, 26], "SelfJudgment": [1, 8, 11, 16, 21], "CommonHumanity": [3, 7, 10, 15], "Isolation": [4, 13, 18, 25], "Mindfulness": [9, 14, 17, 22], "OverIdentified": [2, 6, 20, 24], } _assert_value_range(data, score_range) # Reverse scores 1, 2, 4, 6, 8, 11, 13, 16, 18, 20, 21, 24, 25 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales( data, subscales=subscales, idx_dict={"SelfJudgment": [0, 1, 2, 3, 4], "Isolation": [0, 1, 2, 3], "OverIdentified": [0, 1, 2, 3]}, score_range=score_range, ) # SCS is a mean, not a sum score! scs_data = _compute_questionnaire_subscales(data, score_name, subscales, agg_type="mean") if len(data.columns) == 26: # compute total score if all columns are present scs_data[score_name] = data.mean(axis=1) return pd.DataFrame(scs_data, index=data.index) def midi(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **Midlife Development Inventory (MIDI) Sense of Control Scale**. The Midlife Development Inventory (MIDI) sense of control scale assesses perceived control, that is, how much an individual perceives to be in control of his or her environment. Higher scores indicate greater sense of control. .. note:: This implementation assumes a score range of [1, 7]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. Returns ------- :class:`~pandas.DataFrame` MIDI score Raises ------ :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., & <NAME>. (1998). The sense of control as a moderator of social class differences in health and well-being. *Journal of personality and social psychology*, 74(3), 763. """ score_name = "MIDI" score_range = [1, 7] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 12) _assert_value_range(data, score_range) # Reverse scores 1, 2, 4, 5, 7, 9, 10, 11 data = invert(data, cols=to_idx([1, 2, 4, 5, 7, 9, 10, 11]), score_range=score_range) # MIDI is a mean, not a sum score! return pd.DataFrame(data.mean(axis=1), columns=[score_name]) def tsgs( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[Union[str, int]]]] = None, ) -> pd.DataFrame: """Compute the **Trait Shame and Guilt Scale**. The TSGS assesses the experience of shame, guilt, and pride over the past few months with three separate subscales. Shame and guilt are considered distinct emotions, with shame being a global negative feeling about the self, and guilt being a negative feeling about a specific event rather than the self. Higher scores on each subscale indicate higher shame, guilt, or pride. It consists of the subscales, with the item indices (count-by-one, i.e., the first question has the index 1!): * ``Shame``: [2, 5, 8, 11, 14] * ``Guilt``: [3, 6, 9, 12, 15] * ``Pride``: [1, 4, 7, 10, 13] .. note:: This implementation assumes a score range of [1, 5]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` TSGS score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., <NAME>., & <NAME>. (2008). The psychobiology of trait shame in young women: Extending the social self preservation theory. *Health Psychology*, 27(5), 523. """ score_name = "TSGS" score_range = [1, 5] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 15) subscales = { "Pride": [1, 4, 7, 10, 13], "Shame": [2, 5, 8, 11, 14], "Guilt": [3, 6, 9, 12, 15], } _assert_value_range(data, score_range) tsgs_data = _compute_questionnaire_subscales(data, score_name, subscales) return pd.DataFrame(tsgs_data, index=data.index) def rmidi( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[Union[str, int]]]] = None, ) -> pd.DataFrame: """Compute the **Revised Midlife Development Inventory (MIDI) Personality Scale**. The Midlife Development Inventory (MIDI) includes 6 personality trait scales: Neuroticism, Extraversion, Openness to Experience, Conscientiousness, Agreeableness, and Agency. Higher scores indicate higher endorsement of each personality trait. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``Neuroticism``: [3, 8, 13, 19] * ``Extraversion``: [1, 6, 11, 23, 27] * ``Openness``: [14, 17, 21, 22, 25, 28, 29] * ``Conscientiousness``: [4, 9, 16, 24, 31] * ``Agreeableness``: [2, 7, 12, 18, 26] * ``Agency``: [5, 10, 15, 20, 30] .. note:: This implementation assumes a score range of [1, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` RMIDI score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., & <NAME>. (2001). Planning for the future: a life management strategy for increasing control and life satisfaction in adulthood. *Psychology and aging*, 16(2), 206. """ score_name = "RMIDI" score_range = [1, 4] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 31) subscales = { "Neuroticism": [3, 8, 13, 19], "Extraversion": [1, 6, 11, 23, 27], "Openness": [14, 17, 21, 22, 25, 28, 29], "Conscientiousness": [4, 9, 16, 24, 31], "Agreeableness": [2, 7, 12, 18, 26], "Agency": [5, 10, 15, 20, 30], } _assert_value_range(data, score_range) # "most items need to be reverse scored before subscales are computed => reverse all" data = invert(data, score_range=score_range) # Re-reverse scores 19, 24 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales( data, subscales=subscales, idx_dict={"Neuroticism": [3], "Conscientiousness": [3]}, score_range=score_range ) # RMIDI is a mean, not a sum score! rmidi_data = _compute_questionnaire_subscales(data, score_name, subscales, agg_type="mean") return pd.DataFrame(rmidi_data, index=data.index) def lsq( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Sequence[str]] = None, ) -> pd.DataFrame: """Compute the **Life Stress Questionnaire**. The LSQ asks participants about stressful life events that they and their close relatives have experienced throughout their entire life, what age they were when the event occurred, and how much it impacted them. Higher scores indicate more stress. It consists of the subscales: * ``PartnerStress``: columns with suffix ``_Partner`` * ``ParentStress``: columns with suffix ``_Parent`` * ``ChildStress``: columns with suffix ``_Child`` .. note:: This implementation assumes a score range of [0, 1]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : list of str, optional List of subscales (``Partner``, ``Parent``, ``Child``) to compute or ``None`` to compute all subscales. Default: ``None`` Returns ------- :class:`~pandas.DataFrame` LSQ score Raises ------ :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., & <NAME>. (2001). Planning for the future: a life management strategy for increasing control and life satisfaction in adulthood. *Psychology and aging*, 16(2), 206. """ score_name = "LSQ" score_range = [0, 1] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 30) subscales = ["Partner", "Parent", "Child"] if isinstance(subscales, str): subscales = [subscales] _assert_value_range(data, score_range) lsq_data = {"{}_{}".format(score_name, subscale): data.filter(like=subscale).sum(axis=1) for subscale in subscales} return pd.DataFrame(lsq_data, index=data.index) def ctq( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Childhood Trauma Questionnaire (CTQ)**. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``PhysicalAbuse``: [9, 11, 12, 15, 17] * ``SexualAbuse``: [20, 21, 23, 24, 27] * ``EmotionalNeglect``: [5, 7, 13, 19, 28] * ``PhysicalNeglect``: [1, 2, 4, 6, 26] * ``EmotionalAbuse``: [3, 8, 14, 18, 25] Additionally, three items assess the validity of the responses (high scores on these items could be grounds for exclusion of a given participants’ responses): * ``Validity``: [10, 16, 22] .. note:: This implementation assumes a score range of [1, 5]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` CTQ score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., ... & <NAME>. (1994). Initial reliability and validity of a new retrospective measure of child abuse and neglect. *The American journal of psychiatry*. """ score_name = "CTQ" score_range = [1, 5] # create copy of data data = data.copy() if columns is not None: _assert_has_columns(data, [columns]) # if columns parameter is supplied: slice columns from dataframe data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 28) subscales = { "PhysicalAbuse": [9, 11, 12, 15, 17], "SexualAbuse": [20, 21, 23, 24, 27], "EmotionalNeglect": [5, 7, 13, 19, 28], "PhysicalNeglect": [1, 2, 4, 6, 26], "EmotionalAbuse": [3, 8, 14, 18, 25], "Validity": [10, 16, 22], } _assert_value_range(data, score_range) # reverse scores 2, 5, 7, 13, 19, 26, 28 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales( data, subscales=subscales, idx_dict={ "PhysicalNeglect": [1, 4], "EmotionalNeglect": [0, 1, 2, 3, 4], }, score_range=score_range, ) ctq_data = _compute_questionnaire_subscales(data, score_name, subscales) return pd.DataFrame(ctq_data, index=data.index) def peat(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **Pittsburgh Enjoyable Activities Test (PEAT)**. The PEAT is a self-report measure of engagement in leisure activities. It asks participants to report how often over the last month they have engaged in each of the activities. Higher scores indicate more time spent in leisure activities. .. note:: This implementation assumes a score range of [0, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. Returns ------- :class:`~pandas.DataFrame` PEAT score Raises ------ :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2009). Association of enjoyable leisure activities with psychological and physical well-being. *Psychosomatic medicine*, 71(7), 725. """ score_name = "PEAT" score_range = [0, 4] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 10) _assert_value_range(data, score_range) return pd.DataFrame(data.sum(axis=1), columns=[score_name]) def purpose_life(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **Purpose in Life** questionnaire. Purpose in life refers to the psychological tendency to derive meaning from life’s experiences and to possess a sense of intentionality and goal directedness that guides behavior. Higher scores indicate greater purpose in life. .. note:: This implementation assumes a score range of [0, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. Returns ------- :class:`~pandas.DataFrame` TICS score References ---------- <NAME>., <NAME>., <NAME>., & <NAME>. (2009). Purpose in life is associated with mortality among community-dwelling older persons. *Psychosomatic medicine*, 71(5), 574. """ score_name = "PurposeLife" score_range = [1, 5] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 10) _assert_value_range(data, score_range) # reverse scores 2, 3, 5, 6, 10 data = invert(data, cols=to_idx([2, 3, 5, 6, 10]), score_range=score_range) # Purpose in Life is a mean, not a sum score! return pd.DataFrame(data.mean(axis=1), columns=[score_name]) def trait_rumination(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **Trait Rumination**. Higher scores indicate greater rumination. .. note:: This implementation assumes a score range of [0, 1], where 0 = no rumination, 1 = rumination. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. Returns ------- :class:`~pandas.DataFrame` TraitRumination score References ---------- <NAME>., <NAME>., & <NAME>. (1993). Response styles and the duration of episodes of depressed mood. *Journal of abnormal psychology*, 102(1), 20. """ score_name = "TraitRumination" score_range = [0, 1] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 14) _assert_value_range(data, score_range) return pd.DataFrame(data.sum(axis=1), columns=[score_name]) def besaa( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[Union[int, str]]]] = None, ) -> pd.DataFrame: """Compute the **Body-Esteem Scale for Adolescents and Adults (BESAA)**. Body Esteem refers to self-evaluations of one’s body or appearance. The BESAA is based on the idea that feelings about one’s weight can be differentiated from feelings about one’s general appearance, and that one’s own opinions may be differentiated from the opinions attributed to others. Higher scores indicate higher body esteem. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``Appearance``: [1, 6, 9, 7, 11, 13, 15, 17, 21, 23] * ``Weight``: [3, 4, 8, 10, 16, 18, 19, 22] * ``Attribution``: [2, 5, 12, 14, 20] Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` BESAA score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., & <NAME>. (2001). Body-esteem scale for adolescents and adults. *Journal of personality assessment*, 76(1), 90-106. """ score_name = "BESAA" score_range = [0, 4] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 23) subscales = { "Appearance": [1, 6, 7, 9, 11, 13, 15, 17, 21, 23], "Weight": [3, 4, 8, 10, 16, 18, 19, 22], "Attribution": [2, 5, 12, 14, 20], } _assert_value_range(data, score_range) # reverse scores 4, 7, 9, 11, 13, 17, 18, 19, 21 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales( data, subscales=subscales, idx_dict={"Appearance": [2, 3, 4, 5, 7, 8], "Weight": [1, 5, 6]}, score_range=score_range, ) # BESAA is a mean, not a sum score! besaa_data = _compute_questionnaire_subscales(data, score_name, subscales, agg_type="mean") return pd.DataFrame(besaa_data, index=data.index) def fscrs( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Forms of Self-Criticizing/Attacking and Self-Reassuring Scale (FSCRS)**. Self-criticism describes the internal relationship with the self in which part of the self shames and puts down, while the other part of the self responds and submits to such attacks. Self-reassurance refers to the opposing idea that many individuals focus on positive aspects of self and defend against self-criticism. The FSCRS exemplifies some of the self-statements made by either those who are self-critical or by those who self-reassure. The scale measures these two traits on a continuum with self-criticism at one end and self-reassurance at the other. Higher scores on each subscale indicate higher self-criticizing ("Inadequate Self"), self-attacking ("Hated Self"), and self-reassuring "Reassuring Self", respectively. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``InadequateSelf``: [1, 2, 4, 6, 7, 14, 17, 18, 20] * ``HatedSelf``: [9, 10, 12, 15, 22] * ``ReassuringSelf``: [3, 5, 8, 11, 13, 16, 19, 21] .. note:: This implementation assumes a score range of [0, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` FSCRS score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2004). Criticizing and reassuring oneself: An exploration of forms, styles and reasons in female students. *British Journal of Clinical Psychology*, 43(1), 31-50. """ score_name = "FSCRS" score_range = [0, 4] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 22) subscales = { "InadequateSelf": [1, 2, 4, 6, 7, 14, 17, 18, 20], "HatedSelf": [9, 10, 12, 15, 22], "ReassuringSelf": [3, 5, 8, 11, 13, 16, 19, 21], } _assert_value_range(data, score_range) fscrs_data = _compute_questionnaire_subscales(data, score_name, subscales) return pd.DataFrame(fscrs_data, index=data.index) def pasa( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Primary Appraisal Secondary Appraisal Scale (PASA)**. The PASA assesses each of the four cognitive appraisal processes relevant for acute stress protocols, such as the TSST: primary stress appraisal (threat and challenge) and secondary stress appraisal (self-concept of own abilities and control expectancy). Higher scores indicate greater appraisals for each sub-type. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``Threat``: [1, 9, 5, 13] * ``Challenge``: [6, 10, 2, 14] * ``SelfConcept``: [7, 3, 11, 15] * ``ControlExp``: [4, 8, 12, 16] .. note:: This implementation assumes a score range of [1, 6]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` PASA score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., <NAME>., & <NAME>. (2005). Psychological determinants of the cortisol stress response: the role of anticipatory cognitive appraisal. *Psychoneuroendocrinology*, 30(6), 599-610. """ score_name = "PASA" score_range = [1, 6] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 16) subscales = { "Threat": [1, 5, 9, 13], "Challenge": [2, 6, 10, 14], "SelfConcept": [3, 7, 11, 15], "ControlExp": [4, 8, 12, 16], } _assert_value_range(data, score_range) # reverse scores 1, 6, 7, 9, 10 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales( data, subscales=subscales, idx_dict={"Threat": [0, 2], "Challenge": [1, 2], "SelfConcept": [1]}, score_range=score_range, ) pasa_data = _compute_questionnaire_subscales(data, score_name, subscales) if all(s in subscales for s in ["Threat", "Challenge"]): pasa_data[score_name + "_Primary"] = ( pasa_data[score_name + "_Threat"] + pasa_data[score_name + "_Challenge"] ) / 2 if all(s in subscales for s in ["SelfConcept", "ControlExp"]): pasa_data[score_name + "_Secondary"] = ( pasa_data[score_name + "_SelfConcept"] + pasa_data[score_name + "_ControlExp"] ) / 2 if all("{}_{}".format(score_name, s) in pasa_data for s in ["Primary", "Secondary"]): pasa_data[score_name + "_StressComposite"] = ( pasa_data[score_name + "_Primary"] - pasa_data[score_name + "_Secondary"] ) return pd.DataFrame(pasa_data, index=data.index) def ssgs( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **State Shame and Guilt Scale (SSGS)**. The SSGS assesses the experience of shame, guilt, and pride experienced during an acute stress protocol with three separate subscales. Shame and guilt are considered distinct emotions, with shame being a global negative feeling about the self, and guilt being a negative feeling about a specific event rather than the self. This scale is a modified version from the State Shame and Guilt scale by Marschall et al. (1994). Higher scores on each subscale indicate higher shame, guilt, or pride. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``Pride``: [1, 4, 7, 10, 13] * ``Shame``: [2, 5, 8, 11, 14] * ``Guilt``: [3, 6, 9, 12, 15] .. note:: This implementation assumes a score range of [1, 5]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` SSGS score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., <NAME>., & <NAME>. (2008). The psychobiology of trait shame in young women: Extending the social self preservation theory. *Health Psychology*, 27(5), 523. <NAME>., <NAME>., & <NAME>. (1994). The state shame and guilt scale. *Fairfax, VA: George Mason University*. """ score_name = "SSGS" score_range = [1, 5] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 15) subscales = { "Pride": [1, 4, 7, 10, 13], "Shame": [2, 5, 8, 11, 14], "Guilt": [3, 6, 9, 12, 15], } _assert_value_range(data, score_range) ssgs_data = _compute_questionnaire_subscales(data, score_name, subscales) return pd.DataFrame(ssgs_data, index=data.index) def panas( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, language: Optional[Literal["english", "german"]] = None, ) -> pd.DataFrame: """Compute the **Positive and Negative Affect Schedule (PANAS)**. The PANAS assesses *positive affect* (interested, excited, strong, enthusiastic, proud, alert, inspired, determined, attentive, and active) and *negative affect* (distressed, upset, guilty, scared, hostile, irritable, ashamed, nervous, jittery, and afraid). Higher scores on each subscale indicate greater positive or negative affect. .. note:: This implementation assumes a score range of [1, 5]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. language : "english" or "german", optional Language of the questionnaire used since index items differ between the german and the english version. Default: ``english`` Returns ------- :class:`~pandas.DataFrame` PANAS score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., & <NAME>. (1988). Development and validation of brief measures of positive and negative affect: the PANAS scales. *Journal of personality and social psychology*, 54(6), 1063. """ score_name = "PANAS" score_range = [1, 5] supported_versions = ["english", "german"] # create copy of data data = data.copy() if language is None: language = "english" if language not in supported_versions: raise ValueError("questionnaire_version must be one of {}, not {}.".format(supported_versions, language)) if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 20) _assert_value_range(data, score_range) if language == "german": # German Version has other item indices subscales = { "NegativeAffect": [2, 5, 7, 8, 9, 12, 14, 16, 19, 20], "PositiveAffect": [1, 3, 4, 6, 10, 11, 13, 15, 17, 18], } else: subscales = { "NegativeAffect": [2, 4, 6, 7, 8, 11, 13, 15, 18, 20], "PositiveAffect": [1, 3, 5, 9, 10, 12, 14, 16, 17, 19], } # PANAS is a mean, not a sum score! panas_data = _compute_questionnaire_subscales(data, score_name, subscales, agg_type="mean") data = _invert_subscales( data, subscales, {"NegativeAffect": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]}, score_range=score_range ) panas_data[score_name + "_Total"] = data.mean(axis=1) return pd.DataFrame(panas_data, index=data.index) def state_rumination(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **State Rumination** scale. Rumination is the tendency to dwell on negative thoughts and emotions. Higher scores indicate greater rumination. .. note:: This implementation assumes a score range of [0, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. Returns ------- :class:`~pandas.DataFrame` State Rumination score Raises ------ :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., & <NAME>. (1998). The relationship between emotional rumination and cortisol secretion under stress. *Personality and Individual Differences*, 24(4), 531-538. """ score_name = "StateRumination" score_range = [0, 4] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 27) _assert_value_range(data, score_range) # reverse scores 1, 6, 9, 12, 15, 17, 18, 20, 27 data = invert(data, cols=to_idx([1, 6, 9, 12, 15, 17, 18, 20, 27]), score_range=score_range) return pd.DataFrame(data.sum(axis=1), columns=[score_name], index=data.index) # HABIT DATASET def abi(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: """Compute the **Angstbewältigungsinventar (ABI)** (Anxiety Management Inventory). The ABI measures two key personality constructs in the area of stress or anxiety management: *Vigilance (VIG)* and *Cognitive Avoidance (KOV)*. *VIG* is defined as a class of coping strategies whose use aims to, to reduce uncertainty in threatening situations. In contrast, *KOV* refers to strategies aimed at shielding the organism from arousal-inducing stimuli. Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. Returns ------- :class:`~pandas.DataFrame` ABI score Raises ------ :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., <NAME>., Angstbewältigung, <NAME>., & VIG, V. (1999). Das Angstbewältigungs-Inventar (ABI). *Frankfurt am Main*. """ score_name = "ABI" score_range = [1, 2] if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] _assert_num_columns(data, 80) _assert_value_range(data, score_range) # split into 8 subitems, consisting of 10 questions each items = np.split(data, 8, axis=1) abi_raw = pd.concat(items, keys=[str(i) for i in range(1, len(items) + 1)], axis=1) idx_kov = { # ABI-P "2": [2, 3, 7, 8, 9], "4": [1, 4, 5, 8, 10], "6": [2, 3, 5, 6, 7], "8": [2, 4, 6, 8, 10], # ABI-E "1": [2, 3, 6, 8, 10], "3": [2, 4, 5, 7, 9], "5": [3, 4, 5, 9, 10], "7": [1, 5, 6, 7, 9], } idx_kov = {key: np.array(val) for key, val in idx_kov.items()} idx_vig = {key: np.setdiff1d(np.arange(1, 11), np.array(val), assume_unique=True) for key, val in idx_kov.items()} abi_kov, abi_vig = [ pd.concat( [abi_raw.loc[:, key].iloc[:, idx[key] - 1] for key in idx], axis=1, keys=idx_kov.keys(), ) for idx in [idx_kov, idx_vig] ] abi_data = { score_name + "_KOV_T": abi_kov.sum(axis=1), score_name + "_VIG_T": abi_vig.sum(axis=1), score_name + "_KOV_P": abi_kov.loc[:, ["2", "4", "6", "8"]].sum(axis=1), score_name + "_VIG_P": abi_vig.loc[:, ["2", "4", "6", "8"]].sum(axis=1), score_name + "_KOV_E": abi_kov.loc[:, ["1", "3", "5", "7"]].sum(axis=1), score_name + "_VIG_E": abi_vig.loc[:, ["1", "3", "5", "7"]].sum(axis=1), } return pd.DataFrame(abi_data, index=data.index) def stadi( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, stadi_type: Optional[Literal["state", "trait", "state_trait"]] = None, ) -> pd.DataFrame: """Compute the **State-Trait Anxiety-Depression Inventory (STADI)**. With the STADI, anxiety and depression can be recorded, both as state and as trait. Two self-report questionnaires with 20 items each are available for this purpose. The state part measures the degree of anxiety and depression currently experienced by a person, which varies depending on internal or external influences. It can be used in a variety of situations of different types. This includes not only the whole spectrum of highly heterogeneous stressful situations, but also situations of neutral or positive ("euthymic") character. The trait part is used to record trait expressions, i.e. the enduring tendency to experience anxiety and depression. The STADI can either be computed only for state, only for trait, or for state and trait. The state and trait scales both consist of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * Emotionality (Aufgeregtheit - affektive Komponente – ``AU``): [1, 5, 9, 13, 17] * Worry (Besorgnis - kognitive Komponente - ``BE``): [2, 6, 10, 14, 18] * Anhedonia (Euthymie - positive Stimmung - ``EU``): [3, 7, 11, 15, 19] * Dysthymia (Dysthymie - depressive Stimmung - ``DY``): [4, 8, 12, 16, 20] .. note:: This implementation assumes a score range of [1, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. note:: If both state and trait score are present it is assumed that all *state* items are first, followed by all *trait* items. If all subscales are present this adds up to 20 state items and 20 trait items. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. stadi_type : any of ``state``, ``trait``, or ``state_trait`` which type of STADI subscale should be computed. Default: ``state_trait`` Returns ------- :class:`~pandas.DataFrame` STADI score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints if invalid parameter was passed to ``stadi_type`` :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., <NAME>., <NAME>., & <NAME>. (2013). Das State-Trait-Angst-Depressions-Inventar: STADI; Manual. <NAME>., <NAME>., <NAME>., & <NAME>. (2018). Differentiating anxiety and depression: the state-trait anxiety-depression inventory. *Cognition and Emotion*, 32(7), 1409-1423. """ score_name = "STADI" score_range = [1, 4] if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] stadi_type = _get_stadi_type(stadi_type) if subscales is None: _assert_num_columns(data, 20 * len(stadi_type)) subscales = { "AU": [1, 5, 9, 13, 17], "BE": [2, 6, 10, 14, 18], "EU": [3, 7, 11, 15, 19], "DY": [4, 8, 12, 16, 20], } _assert_value_range(data, score_range) # split into n subitems (either "State", "Trait" or "State and Trait") items = np.split(data, len(stadi_type), axis=1) data = pd.concat(items, keys=stadi_type, axis=1) stadi_data = {} for st in stadi_type: stadi_data.update(_compute_questionnaire_subscales(data[st], "{}_{}".format(score_name, st), subscales)) if all("{}_{}_{}".format(score_name, st, subtype) in stadi_data for subtype in ["AU", "BE"]): stadi_data.update( { "{}_{}_Anxiety".format(score_name, st): stadi_data["{}_{}_AU".format(score_name, st)] + stadi_data["{}_{}_BE".format(score_name, st)] } ) if all("{}_{}_{}".format(score_name, st, subtype) in stadi_data for subtype in ["EU", "DY"]): stadi_data.update( { "{}_{}_Depression".format(score_name, st): stadi_data["{}_{}_EU".format(score_name, st)] + stadi_data["{}_{}_DY".format(score_name, st)] } ) if all("{}_{}_{}".format(score_name, st, subtype) in stadi_data for subtype in ["Anxiety", "Depression"]): stadi_data.update( { "{}_{}_Total".format(score_name, st): stadi_data["{}_{}_Anxiety".format(score_name, st)] + stadi_data["{}_{}_Depression".format(score_name, st)] } ) df_stadi = pd.DataFrame(stadi_data, index=data.index) return df_stadi def _get_stadi_type(stadi_type: str) -> Sequence[str]: if stadi_type is None: stadi_type = ["State", "Trait"] elif stadi_type == "state_trait": stadi_type = ["State", "Trait"] elif stadi_type == "state": stadi_type = ["State"] elif stadi_type == "trait": stadi_type = ["Trait"] else: raise ValueError( "Invalid 'stadi_type'! Must be one of 'state_trait', 'state', or 'trait', not {}.".format(stadi_type) ) return stadi_type def svf_120( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Stressverarbeitungsfragebogen - 120 item version (SVF120)**. The stress processing questionnaire enables the assessment of coping or processing measures in stressful situations. The SVF is not a singular test instrument, but rather an inventory of methods that relate to various aspects of stress processing and coping and from which individual procedures can be selected depending on the study objective/question. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * Trivialization/Minimalization (Bagatellisierung – ``Bag``): [10, 31, 50, 67, 88, 106] * De-Emphasis by Comparison with Others (Herunterspielen – ``Her``): [17, 38, 52, 77, 97, 113] * Rejection of Guilt (Schuldabwehr – ``Schab``): [5, 30, 43, 65, 104, 119] * Distraction/Deflection from a Situation (Ablenkung – ``Abl``): [1, 20, 45, 86, 101, 111] * Vicarious Satisfaction (Ersatzbefriedigung –``Ers``): [22, 36, 64, 74, 80, 103] * Search for Self-Affirmation (Selbstbestätigung – ``Sebest``): [34, 47, 59, 78, 95, 115] * Relaxation (Entspannung –``Entsp``): [12, 28, 58, 81, 99, 114] * Attempt to Control Situation (Situationskontrolle – ``Sitkon``): [11, 18, 39, 66, 91, 116] * Response Control (Reaktionskontrolle – ``Rekon``): [2, 26, 54, 68, 85, 109] * Positive Self-Instruction (Positive Selbstinstruktion – ``Posi``): [15, 37, 56, 71, 83, 96] * Need for Social Support (Soziales Unterstützungsbedürfnis – ``Sozube``): [3, 21, 42, 63, 84, 102] * Avoidance Tendencies (Vermeidung – ``Verm``): [8, 29, 48, 69, 98, 118] * Escapist Tendencies (Flucht – ``Flu``): [14, 24, 40, 62, 73, 120] * Social Isolation (Soziale Abkapselung – ``Soza``): [6, 27, 49, 76, 92, 107] * Mental Perseveration (Gedankliche Weiterbeschäftigung – ``Gedw``): [16, 23, 55, 72, 100, 110] * Resignation (Resignation – ``Res``): [4, 32, 46, 60, 89, 105] * Self-Pity (Selbstbemitleidung – ``Selmit``): [13, 41, 51, 79, 94, 117] * Self-Incrimination (Selbstbeschuldigung – ``Sesch``): [9, 25, 35, 57, 75, 87] * Aggression (Aggression – ``Agg``): [33, 44, 61, 82, 93, 112] * Medicine-Taking (Pharmakaeinnahme – ``Pha``): [7, 19, 53, 70, 90, 108] .. note:: This implementation assumes a score range of [1, 5]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` SFV120 score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range """ score_name = "SVF120" score_range = [1, 5] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 120) subscales = { "Bag": [10, 31, 50, 67, 88, 106], # Bagatellisierung "Her": [17, 38, 52, 77, 97, 113], # Herunterspielen "Schab": [5, 30, 43, 65, 104, 119], # Schuldabwehr "Abl": [1, 20, 45, 86, 101, 111], # Ablenkung "Ers": [22, 36, 64, 74, 80, 103], # Ersatzbefriedigung "Sebest": [34, 47, 59, 78, 95, 115], # Selbstbestätigung "Entsp": [12, 28, 58, 81, 99, 114], # Entspannung "Sitkon": [11, 18, 39, 66, 91, 116], # Situationskontrolle "Rekon": [2, 26, 54, 68, 85, 109], # Reaktionskontrolle "Posi": [15, 37, 56, 71, 83, 96], # Positive Selbstinstruktion "Sozube": [3, 21, 42, 63, 84, 102], # Soziales Unterstützungsbedürfnis "Verm": [8, 29, 48, 69, 98, 118], # Vermeidung "Flu": [14, 24, 40, 62, 73, 120], # Flucht "Soza": [6, 27, 49, 76, 92, 107], # Soziale Abkapselung "Gedw": [16, 23, 55, 72, 100, 110], # Gedankliche Weiterbeschäftigung "Res": [4, 32, 46, 60, 89, 105], # Resignation "Selmit": [13, 41, 51, 79, 94, 117], # Selbstbemitleidung "Sesch": [9, 25, 35, 57, 75, 87], # Selbstbeschuldigung "Agg": [33, 44, 61, 82, 93, 112], # Aggression "Pha": [7, 19, 53, 70, 90, 108], # Pharmakaeinnahme } _assert_value_range(data, score_range) svf_data = _compute_questionnaire_subscales(data, score_name, subscales) svf_data = pd.DataFrame(svf_data, index=data.index) meta_scales = { "Pos1": ("Bag", "Her", "Schab"), "Pos2": ("Abl", "Ers", "Sebest", "Entsp"), "Pos3": ("Sitkon", "Rekon", "Posi"), "PosGesamt": ( "Bag", "Her", "Schab", "Abl", "Ers", "Sebest", "Entsp", "Sitkon", "Rekon", "Posi", ), "NegGesamt": ("Flu", "Soza", "Gedw", "Res", "Selmit", "Sesch"), } for name, scale_items in meta_scales.items(): if all(scale in subscales for scale in scale_items): svf_data["{}_{}".format(score_name, name)] = svf_data[ ["{}_{}".format(score_name, s) for s in scale_items] ].mean(axis=1) return svf_data def svf_42( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Stressverarbeitungsfragebogen - 42 item version (SVF42)**. The stress processing questionnaire enables the assessment of coping or processing measures in stressful situations. The SVF is not a singular test instrument, but rather an inventory of methods that relate to various aspects of stress processing and coping and from which individual procedures can be selected depending on the study objective/question. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * Trivialization/Minimalization (Bagatellisierung – ``Bag``): [7, 22] * De-Emphasis by Comparison with Others (Herunterspielen – ``Her``): [11, 35] * Rejection of Guilt (Schuldabwehr – ``Schab``): [2, 34] * Distraction/Deflection from a Situation (Ablenkung – ``Abl``): [1, 32] * Vicarious Satisfaction (Ersatzbefriedigung –``Ers``): [12, 42] * Search for Self-Affirmation (Selbstbestätigung – ``Sebest``): [19, 37] * Relaxation (Entspannung –``Entsp``): [13, 26] * Attempt to Control Situation (Situationskontrolle – ``Sitkon``): [4, 23] * Response Control (Reaktionskontrolle – ``Rekon``): [17, 33] * Positive Self-Instruction (Positive Selbstinstruktion – ``Posi``): [9, 24] * Need for Social Support (Soziales Unterstützungsbedürfnis – ``Sozube``): [14, 27] * Avoidance Tendencies (Vermeidung – ``Verm``): [6, 30] * Escapist Tendencies (Flucht – ``Flu``): [16, 40] * Social Isolation (Soziale Abkapselung – ``Soza``): [20, 29] * Mental Perseveration (Gedankliche Weiterbeschäftigung – ``Gedw``): [10, 25] * Resignation (Resignation – ``Res``): [38, 15] * Self-Pity (Selbstbemitleidung – ``Selmit``): [18, 28] * Self-Incrimination (Selbstbeschuldigung – ``Sesch``): [8, 31] * Aggression (Aggression – ``Agg``): [21, 36] * Medicine-Taking (Pharmakaeinnahme – ``Pha``): [3, 39] .. note:: This implementation assumes a score range of [1, 5]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` SFV42 score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range """ score_name = "SVF42" score_range = [1, 5] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 42) subscales = { "Bag": [7, 22], # Bagatellisierung "Her": [11, 35], # Herunterspielen "Schab": [2, 34], # Schuldabwehr "Abl": [1, 32], # Ablenkung "Ers": [12, 42], # Ersatzbefriedigung "Sebest": [19, 37], # Selbstbestätigung "Entsp": [13, 26], # Entspannung "Sitkon": [4, 23], # Situationskontrolle "Rekon": [17, 33], # Reaktionskontrolle "Posi": [9, 24], # Positive Selbstinstruktion "Sozube": [14, 27], # Soziales Unterstützungsbedürfnis "Verm": [6, 30], # Vermeidung "Flu": [16, 40], # Flucht "Soza": [20, 29], # Soziale Abkapselung "Gedw": [10, 25], # Gedankliche Weiterbeschäftigung "Res": [15, 38], # Resignation "Hilf": [18, 28], # Hilflosigkeit "Selmit": [8, 31], # Selbstbemitleidung "Sesch": [21, 36], # Selbstbeschuldigung "Agg": [3, 39], # Aggression "Pha": [5, 41], # Pharmakaeinnahme } _assert_value_range(data, score_range) svf_data = _compute_questionnaire_subscales(data, score_name, subscales) svf_data = pd.DataFrame(svf_data, index=data.index) meta_scales = { "Denial": ["Verm", "Flu", "Soza"], "Distraction": ["Ers", "Entsp", "Sozube"], "Stressordevaluation": ["Bag", "Her", "Posi"], } for name, scale_items in meta_scales.items(): if all(scale in subscales.keys() for scale in scale_items): svf_data["{}_{}".format(score_name, name)] = svf_data[ ["{}_{}".format(score_name, s) for s in scale_items] ].mean(axis=1) return svf_data def brief_cope( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Brief-COPE (28 items) Questionnaire (Brief_COPE)**. The Brief-COPE is a 28 item self-report questionnaire designed to measure effective and ineffective ways to cope with a stressful life event. "Coping" is defined broadly as an effort used to minimize distress associated with negative life experiences. The scale is often used in health-care settings to ascertain how patients are responding to a serious diagnosis. It can be used to measure how someone is coping with a wide range of adversity, including cancer diagnosis, heart failure, injuries, assaults, natural disasters and financial stress. The scale can determine someone’s primary coping styles as either Approach Coping, or Avoidant Coping. Higher scores indicate better coping capabilities. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``SelfDistraction``: [1, 19] * ``ActiveCoping``: [2, 7] * ``Denial``: [3, 8] * ``SubstanceUse``: [4, 11] * ``EmotionalSupport``: [5, 15] * ``InstrumentalSupport``: [10, 23] * ``BehavioralDisengagement``: [6, 16] * ``Venting``: [9, 21] * ``PosReframing``: [12, 17] * ``Planning``: [14, 25] * ``Humor``: [18, 28] * ``Acceptance``: [20, 24] * ``Religion``: [22, 27] * ``SelfBlame``: [13, 26] .. note:: This implementation assumes a score range of [1, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` Brief_COPE score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>. (1997). You want to measure coping but your protocol’too long: Consider the brief cope. *International journal of behavioral medicine*, 4(1), 92-100. """ score_name = "Brief_COPE" score_range = [1, 4] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 28) subscales = { "SelfDistraction": [1, 19], # Ablenkung "ActiveCoping": [2, 7], # Aktive Bewältigung "Denial": [3, 8], # Verleugnung "SubstanceUse": [4, 11], # Alkohol/Drogen "EmotionalSupport": [5, 15], # Emotionale Unterstützung "InstrumentalSupport": [10, 23], # Instrumentelle Unterstützung "BehavioralDisengagement": [6, 16], # Verhaltensrückzug "Venting": [9, 21], # Ausleben von Emotionen "PosReframing": [12, 17], # Positive Umdeutung "Planning": [14, 25], # Planung "Humor": [18, 28], # Humor "Acceptance": [20, 24], # Akzeptanz "Religion": [22, 27], # Religion "SelfBlame": [13, 26], # Selbstbeschuldigung } _assert_value_range(data, score_range) cope_data = _compute_questionnaire_subscales(data, score_name, subscales) return pd.DataFrame(cope_data, index=data.index) def bfi_k( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Big Five Inventory (short version) (BFI-K)**. The BFI measures an individual on the Big Five Factors (dimensions) of personality (Goldberg, 1993). It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * Extraversion (``E``): [1, 6, 11, 16] * Agreeableness (``A``): [2, 7, 12, 17] * Conscientiousness (``C``): [3, 8, 13, 18] * Neuroticism (``N``): [4, 9, 14, 19] * Openness (``O``): [5, 10, 15, 20, 21] .. note:: This implementation assumes a score range of [1, 5]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` BFI_K score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., & <NAME>. (2005). Kurzversion des big five inventory (BFI-K). *Diagnostica*, 51(4), 195-206. """ score_name = "BFI_K" score_range = [1, 5] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 21) subscales = { "E": [1, 6, 11, 16], # Extraversion (Extraversion vs. Introversion) "A": [2, 7, 12, 17], # Verträglichkeit (Agreeableness vs. Antagonism) "C": [3, 8, 13, 18], # Gewissenhaftigkeit (Conscientiousness vs. lack of direction) "N": [4, 9, 14, 19], # Neurotizismus (Neuroticism vs. Emotional stability) "O": [5, 10, 15, 20, 21], # Offenheit für neue Erfahrungen (Openness vs. Closedness to experience) } _assert_value_range(data, score_range) # Reverse scores 1, 2, 8, 9, 11, 12, 17, 21 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales( data, subscales=subscales, idx_dict={"E": [0, 2], "A": [0, 2, 3], "C": [1], "N": [1], "O": [4]}, score_range=score_range, ) # BFI is a mean score, not a sum score! bfi_data = _compute_questionnaire_subscales(data, score_name, subscales, agg_type="mean") return pd.DataFrame(bfi_data, index=data.index) def rsq( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Response Styles Questionnaire (RSQ)**. The RSQ is a questionnaire that measures cognitive and behavioral coping styles in dealing with depressed or dysphoric mood and was developed based on <NAME>'s Response Styles Theory. The theory postulates that rumination about symptoms and negative aspects of self (rumination) prolongs or exacerbates depressed moods, whereas cognitive and behavioral distraction (distraction) shortens or attenuates them. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``SymptomRumination``: [2, 3, 4, 8, 11, 12, 13, 25] * ``SelfRumination``: [1, 19, 26, 28, 30, 31, 32] * ``Distraction``: [5, 6, 7, 9, 14, 16, 18, 20] .. note:: This implementation assumes a score range of [1, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` RSQ score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., & <NAME>. (1993). Response styles and the duration of episodes of depressed mood. *Journal of abnormal psychology*, 102(1), 20. """ score_name = "RSQ" score_range = [1, 4] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 32) subscales = { "SymptomRumination": [2, 3, 4, 8, 11, 12, 13, 25], # Symptombezogene Rumination "SelfRumination": [1, 10, 19, 26, 28, 30, 31, 32], # Selbstfokussierte Rumination "Distraction": [5, 6, 7, 9, 14, 16, 18, 20], # Distraktion } _assert_value_range(data, score_range) # RSQ is a mean score, not a sum score! rsq_data = _compute_questionnaire_subscales(data, score_name, subscales, agg_type="mean") rsq_data = pd.DataFrame(rsq_data, index=data.index) if all(s in subscales for s in ["SymptomRumination", "SelfRumination", "Distraction"]): # compute total score if all subscales are present # invert "Distraction" subscale and then add it to total score rsq_data["{}_{}".format(score_name, "Total")] = pd.concat( [ (score_range[1] - rsq_data["{}_{}".format(score_name, "Distraction")] + score_range[0]), rsq_data["{}_{}".format(score_name, "SymptomRumination")], rsq_data["{}_{}".format(score_name, "SelfRumination")], ], axis=1, ).mean(axis=1) return rsq_data def sss( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[Union[str, int]]]] = None, ) -> pd.DataFrame: """Compute the **Subjective Social Status (SSS)**. The MacArthur Scale of Subjective Social Status (MacArthur SSS Scale) is a single-item measure that assesses a person's perceived rank relative to others in their group. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * Socioeconomic Status Ladder (``SocioeconomicStatus``): [1] * Community Ladder (``Community``): [2] .. note:: This implementation assumes a score range of [0, 10]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` SSS score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range """ score_name = "SSS" score_range = [1, 10] if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 2) subscales = { "SocioeconomicStatus": [1], "Community": [2], } _assert_value_range(data, score_range) sss_data = _compute_questionnaire_subscales(data, score_name, subscales) return pd.DataFrame(sss_data, index=data.index) def fkk( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Fragebogen zur Kompetenz- und Kontrollüberzeugungen (FKK)** (Competence and Control Beliefs). The questionnaire on competence and control beliefs can be used to assess (1) the generalized self-concept of own abilities, (2) internality in generalized control beliefs, (3) socially conditioned externality, and (4) fatalistic externality in adolescents and adults. In addition to profile evaluations according to these four primary scales, evaluations according to secondary and tertiary scales are possible (generalized self-efficacy; generalized externality; internality versus externality in control beliefs). It consists of the primary subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * Self-concept of Own Abilities (Selbstkonzept eigener Fähigkeiten – ``SK``): [4, 8, 12, 24, 16, 20, 28, 32] * Internality (Internalität – ``I``): [1, 5, 6, 11, 23, 25, 27, 30] * Socially Induced Externality (Sozial bedingte Externalität – ``P``) (P = powerful others control orientation): [3, 10, 14, 17, 19, 22, 26, 29] * Fatalistic Externality (Fatalistische Externalität – ``C``) (C = chance control orientation): [2, 7, 9, 13, 15, 18, 21, 31] Further, the following secondary subscales can be computed: * Self-Efficacy / Generalized self-efficacy Beliefs (Selbstwirksamkeit / generalisierte Selbstwirksamkeitsüberzeugung – ``SKI``): ``SK`` + ``I`` * Generalized Externality in Control Beliefs (Generalisierte Externalität in Kontrollüberzeugungen – ``PC``): ``P`` + ``C`` Further, the following tertiary subscale can be computed: * Generalized Internality (Generalisierte Internalität) vs. Externality in control beliefs (Externalität in Kontrollüberzeugungen – ``SKI_PC``): ``SKI`` - ``PC`` .. note:: This implementation assumes a score range of [1, 6]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` FKK score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>. (1991). Fragebogen zu Kompetenz-und Kontrollüberzeugungen: (FKK). *Hogrefe, Verlag für Psychologie*. """ score_name = "FKK" score_range = [1, 6] if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 32) # Primärskalenwerte subscales = { "SK": [4, 8, 12, 16, 20, 24, 28, 32], "I": [1, 5, 6, 11, 23, 25, 27, 30], "P": [3, 10, 14, 17, 19, 22, 26, 29], "C": [2, 7, 9, 13, 15, 18, 21, 31], } _assert_value_range(data, score_range) # Reverse scores 4, 8, 12, 24 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales(data, subscales=subscales, idx_dict={"SK": [0, 1, 2, 5]}, score_range=score_range) fkk_data = _compute_questionnaire_subscales(data, score_name, subscales) fkk_data = pd.DataFrame(fkk_data, index=data.index) # Sekundärskalenwerte if all("{}_{}".format(score_name, s) in fkk_data.columns for s in ["SK", "I"]): fkk_data["{}_{}".format(score_name, "SKI")] = ( fkk_data["{}_{}".format(score_name, "SK")] + fkk_data["{}_{}".format(score_name, "I")] ) if all("{}_{}".format(score_name, s) in fkk_data.columns for s in ["P", "C"]): fkk_data["{}_{}".format(score_name, "PC")] = ( fkk_data["{}_{}".format(score_name, "P")] + fkk_data["{}_{}".format(score_name, "C")] ) # Tertiärskalenwerte if all("{}_{}".format(score_name, s) in fkk_data.columns for s in ["SKI", "PC"]): fkk_data["{}_{}".format(score_name, "SKI_PC")] = ( fkk_data["{}_{}".format(score_name, "SKI")] - fkk_data["{}_{}".format(score_name, "PC")] ) return fkk_data def bidr( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Balanced Inventory of Desirable Responding (BIDR)**. The BIDR is a 40-item instrument that is used to measure 2 constructs: * Self-deceptive positivity – described as the tendency to give self-reports that are believed but have a positivety bias * Impression management – deliberate self-presentation to an audience. The BIDR emphasizes exaggerated claims of positive cognitive attributes (overconfidence in one’s judgments and rationality). It is viewed as a measure of defense, i.e., people who score high on self-deceptive positivity tend to defend against negative self-evaluations and seek out inflated positive self-evaluations. .. note:: This implementation assumes a score range of [1, 7]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` BIDR score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>. (1988). Balanced inventory of desirable responding (BIDR). *Acceptance and Commitment Therapy. Measures Package*, 41, 79586-7. """ score_name = "BIDR" score_range = [1, 7] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 20) subscales = { "ST": list(range(1, 11)), # Selbsttäuschung "FT": list(range(11, 21)), # Fremdtäuschung } _assert_value_range(data, score_range) # invert items 2, 4, 5, 7, 9, 10, 11, 12, 14, 15, 17, 18, 20 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales( data, subscales=subscales, idx_dict={"ST": [1, 3, 4, 6, 8, 9], "FT": [0, 1, 3, 4, 6, 7, 9]}, score_range=score_range, ) bidr_data = _compute_questionnaire_subscales(data, score_name, subscales) return pd.DataFrame(bidr_data, index=data.index) def kkg( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Kontrollüberzeugungen zu Krankheit und Gesundheit Questionnaire (KKG)**. The KKG is a health attitude test and assesses the locus of control about disease and health. 3 health- or illness-related locus of control are evaluated: (1) internality: attitudes that health and illness are controllable by oneself, (2) social externality: attitudes that they are controllable by other outside persons, and (3) fatalistic externality: attitudes that they are not controllable (chance or fate dependence of one's health status). .. note:: This implementation assumes a score range of [1, 6]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` KKG score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., & <NAME>. (1989). *Kontrollüberzeugungen zu Krankheit und Gesundheit (KKG): Testverfahren und Testmanual*. Göttingen: Hogrefe. """ score_name = "KKG" score_range = [1, 6] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 21) subscales = { "I": [1, 5, 8, 16, 17, 18, 21], "P": [2, 4, 6, 10, 12, 14, 20], "C": [3, 7, 9, 11, 13, 15, 19], } _assert_value_range(data, score_range) kkg_data = _compute_questionnaire_subscales(data, score_name, subscales) return pd.DataFrame(kkg_data, index=data.index) def fee( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, language: Optional[Literal["german", "english"]] = None, ) -> pd.DataFrame: """Compute the **Fragebogen zum erinnerten elterlichen Erziehungsverhalten (FEE)**. The FEE allows for the recording of memories of the parenting behavior (separately for father and mother) with regard to the factor-analytically dimensions "rejection and punishment", "emotional warmth" and "control and overprotection", as well as "control and overprotection". It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``RejectionPunishment``: [1, 3, 6, 8, 16, 18, 20, 22] * ``EmotionalWarmth``: [2, 7, 9, 12, 14, 15, 17, 24] * ``ControlOverprotection``: [4, 5, 10, 11, 13, 19, 21, 23] .. note:: This implementation assumes a score range of [1, 4]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. note:: All columns corresponding to the parenting behavior of the *Father* are expected to have ``Father`` (or ``Vater`` if ``language`` is ``german``) included in the column names, all *Mother* columns are expected to have ``Mother`` (or ``Mutter`` if ``language`` is ``german``) included in the column names. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. language : "english" or "german", optional Language of the questionnaire used to extract ``Mother`` and ``Father`` columns. Default: ``english`` Returns ------- :class:`~pandas.DataFrame` TICS score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints or if ``language`` is not supported :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., & <NAME>. (1999). Rückblick auf die Eltern: Der Fragebogen zum erinnerten elterlichen Erziehungsverhalten (FEE). *Diagnostica*, 45(4), 194-204. """ score_name = "FEE" score_range = [1, 4] if language is None: language = "english" supported_versions = ["english", "german"] if language not in supported_versions: raise ValueError("questionnaire_version must be one of {}, not {}.".format(supported_versions, language)) if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if language == "german": mother = "Mutter" father = "Vater" else: mother = "Mother" father = "Father" df_mother = data.filter(like=mother).copy() df_father = data.filter(like=father).copy() if subscales is None: _assert_num_columns(df_father, 24) _assert_num_columns(df_mother, 24) subscales = { "RejectionPunishment": [1, 3, 6, 8, 16, 18, 20, 22], "EmotionalWarmth": [2, 7, 9, 12, 14, 15, 17, 24], "ControlOverprotection": [4, 5, 10, 11, 13, 19, 21, 23], } _assert_value_range(data, score_range) # FEE is a mean score, not a sum score! fee_mother = _compute_questionnaire_subscales(df_mother, score_name, subscales, agg_type="mean") fee_mother = {"{}_{}".format(key, mother): val for key, val in fee_mother.items()} fee_father = _compute_questionnaire_subscales(df_father, score_name, subscales, agg_type="mean") fee_father = {"{}_{}".format(key, father): val for key, val in fee_father.items()} fee_mother.update(fee_father) return pd.DataFrame(fee_mother, index=data.index) def mbi_gs( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Maslach Burnout Inventory – General Survey (MBI-GS)**. The MBI measures burnout as defined by the World Health Organization (WHO) and in the ICD-11. The MBI-GS is a psychological assessment instrument comprising 16 symptom items pertaining to occupational burnout. It is designed for use with occupational groups other than human services and education, including those working in jobs such as customer service, maintenance, manufacturing, management, and most other professions. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * Emotional Exhaustion (``EE``): [1, 2, 3, 4, 5] * Personal Accomplishment (``PA``): [6, 7, 8, 11, 12, 16] * Depersonalization / Cynicism (``DC``): [9, 10, 13, 14, 15] .. note:: This implementation assumes a score range of [0, 6]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` MBI-GS score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range """ score_name = "MBI_GS" score_range = [0, 6] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 16) subscales = { "EE": [1, 2, 3, 4, 5], # Emotional Exhaustion "PA": [6, 7, 8, 11, 12, 16], # Personal Accomplishment "DC": [9, 10, 13, 14, 15], # Depersonalization / Cynicism } _assert_value_range(data, score_range) # MBI is a mean score, not a sum score! mbi_data = _compute_questionnaire_subscales(data, score_name, subscales, agg_type="mean") data = pd.DataFrame(mbi_data, index=data.index) return data def mbi_gss( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Maslach Burnout Inventory – General Survey for Students (MBI-GS (S))**. The MBI measures burnout as defined by the World Health Organization (WHO) and in the ICD-11. The MBI-GS (S) is an adaptation of the MBI-GS designed to assess burnout in college and university students. It is available for use but its psychometric properties are not yet documented. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * Emotional Exhaustion (``EE``): [1, 2, 3, 4, 5] * Personal Accomplishment (``PA``): [6, 7, 8, 11, 12, 16] * Depersonalization / Cynicism (``DC``): [9, 10, 13, 14, 15] .. note:: This implementation assumes a score range of [0, 6]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` MBI-GS (S) score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range """ score_name = "MBI_GSS" score_range = [0, 6] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 16) subscales = { "EE": [1, 2, 3, 4, 5], "PA": [6, 7, 8, 11, 12, 16], "DC": [9, 10, 13, 14, 15], } _assert_value_range(data, score_range) # MBI is a mean score, not a sum score! mbi_data = _compute_questionnaire_subscales(data, score_name, subscales, agg_type="mean") data = pd.DataFrame(mbi_data, index=data.index) return data def mlq( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Meaning in Life Questionnaire (MLQ)**. The MLQ is a 10-item measure of the Presence of Meaning in Life, and the Search for Meaning in Life. The MLQ has been used to help people understand and track their perceptions about their lives. It has been included in numerous studies around the world, and in several internet-based resources concerning happiness and fulfillment. It consists of the subscales with the item indices (count-by-one, i.e., the first question has the index 1!): * ``PresenceMeaning``: [1, 4, 5, 6, 9] * ``SearchMeaning``: [2, 3, 7, 8, 10] .. note:: This implementation assumes a score range of [1, 7]. Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` MLQ score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., <NAME>., & <NAME>. (2006). The meaning in life questionnaire: Assessing the presence of and search for meaning in life. *Journal of counseling psychology*, 53(1), 80. """ score_name = "MLQ" score_range = [1, 7] # create copy of data data = data.copy() if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 10) subscales = { "PresenceMeaning": [1, 4, 5, 6, 9], "SearchMeaning": [2, 3, 7, 8, 10], } _assert_value_range(data, score_range) # Reverse scores 9 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales(data, subscales=subscales, idx_dict={"PresenceMeaning": [4]}, score_range=score_range) # MLQ is a mean score, not a sum score! mlq_data = _compute_questionnaire_subscales(data, score_name, subscales, agg_type="mean") return pd.DataFrame(mlq_data, index=data.index) # def ceca(data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None) -> pd.DataFrame: # """Compute the **Childhood Experiences of Care and Abuse Questionnaire (CECA)**. # # The CECA is a measure of childhood and adolescent experience of neglect and abuse. Its original use was to # investigate lifetime risk factors for psychological disorder. # # .. note:: # This implementation assumes a score range of [0, 4]. # Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range # beforehand. # # .. warning:: # Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with # questionnaire item columns, which typically also start with index 1! # # # Parameters # ---------- # data : :class:`~pandas.DataFrame` # dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or # a complete dataframe if ``columns`` parameter is supplied # columns : list of str or :class:`pandas.Index`, optional # list with column names in correct order. # This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is # passed as ``data``. # # # Returns # ------- # :class:`~pandas.DataFrame` # CECA score # # # Raises # ------ # `biopsykit.exceptions.ValidationError` # if number of columns does not match # `biopsykit.exceptions.ValueRangeError` # if values are not within the required score range # # References # ---------- # <NAME>., <NAME>., & <NAME>. (1994). Childhood Experience of Care and Abuse (CECA): a retrospective # interview measure. *Journal of Child Psychology and Psychiatry*, 35(8), 1419-1435. # # """ # score_name = "CECA" # # # create copy of data # data = data.copy() # # if columns is not None: # # if columns parameter is supplied: slice columns from dataframe # _assert_has_columns(data, [columns]) # data = data.loc[:, columns] # # ceca_data = [ # data.filter(like="Q3_05"), # data.filter(like="Q3_07"), # data.filter(like="Q3_09"), # data.filter(like="Q3_12").iloc[:, to_idx([5, 6])], # data.filter(like="Q3_13"), # data.filter(like="Q3_16").iloc[:, to_idx([5, 6])], # ] # # ceca_data = pd.concat(ceca_data, axis=1).sum(axis=1) # return pd.DataFrame(ceca_data, index=data.index, columns=[score_name]) def pfb( data: pd.DataFrame, columns: Optional[Union[Sequence[str], pd.Index]] = None, subscales: Optional[Dict[str, Sequence[int]]] = None, ) -> pd.DataFrame: """Compute the **Partnerschaftsfragebogen (PFB)**. .. note:: This implementation assumes a score range of [1, 4], except for the ``Glueck`` column, which has a score range of [1, 6] Use :func:`~biopsykit.questionnaires.utils.convert_scale()` to convert the items into the correct range beforehand. .. warning:: Column indices in ``subscales`` are assumed to start at 1 (instead of 0) to avoid confusion with questionnaire item columns, which typically also start with index 1! Parameters ---------- data : :class:`~pandas.DataFrame` dataframe containing questionnaire data. Can either be only the relevant columns for computing this score or a complete dataframe if ``columns`` parameter is supplied. columns : list of str or :class:`pandas.Index`, optional list with column names in correct order. This can be used if columns in the dataframe are not in the correct order or if a complete dataframe is passed as ``data``. subscales : dict, optional A dictionary with subscale names (keys) and column names or column indices (count-by-1) (values) if only specific subscales should be computed. Returns ------- :class:`~pandas.DataFrame` PFB score Raises ------ ValueError if ``subscales`` is supplied and dict values are something else than a list of strings or a list of ints :exc:`~biopsykit.utils.exceptions.ValidationError` if number of columns does not match :exc:`~biopsykit.utils.exceptions.ValueRangeError` if values are not within the required score range References ---------- <NAME>., <NAME>., & <NAME>. (2001). Der Partnerschaftsfragebogen (PFB). *Diagnostica*, 47(3), 132–141. """ score_name = "PFB" score_range = [1, 4] if columns is not None: # if columns parameter is supplied: slice columns from dataframe _assert_has_columns(data, [columns]) data = data.loc[:, columns] if subscales is None: _assert_num_columns(data, 31) subscales = { "Zaertlichkeit": [2, 3, 5, 9, 13, 14, 16, 23, 27, 28], "Streitverhalten": [1, 6, 8, 17, 18, 19, 21, 22, 24, 26], "Gemeinsamkeit": [4, 7, 10, 11, 12, 15, 20, 25, 29, 30], "Glueck": [31], } _pfb_assert_value_range(data, subscales, score_range) # invert item 19 # (numbers in the dictionary correspond to the *positions* of the items to be reversed in the item list specified # by the subscale dict) data = _invert_subscales(data, subscales=subscales, idx_dict={"Streitverhalten": [5]}, score_range=score_range) pfb_data = _compute_questionnaire_subscales(data, score_name, subscales) if len(data.columns) == 31: pfb_data[score_name] = data.iloc[:, 0:30].sum(axis=1) return
pd.DataFrame(pfb_data, index=data.index)
pandas.DataFrame
from datetime import date, datetime from pathlib import Path import matplotlib.pylab as plt import numpy as np import pandas as pd import seaborn as sns def load_data(data_dir: Path) -> pd.DataFrame: body_frames = [ pd.read_csv( fname, converters={ 0: lambda x: datetime.strptime(x, "%Y-%m-%d").date().toordinal() }, skiprows=1, ) for fname in data_dir.glob("*.csv") ] body_frame =
pd.concat(body_frames)
pandas.concat
from io import StringIO import streamlit as st from PIL import Image import pickle import base64 import pandas as pd import numpy as np # File download def filedownload(df): csv = df.to_csv() b64 = base64.b64encode(csv.encode()).decode() # strings <-> bytes conversions href = f'<a href="data:file/csv;base64,{b64}" download="prediction.csv">Download Predictions</a>' return href def taxa_extractor(input_seq,level=3): input_df=pd.read_csv("Profile_sequences_5.csv") input_taxa=pd.read_csv("Taxa_info.csv") from scipy.spatial import distance distance_holder=[] for i in range(input_df.shape[0]): distance_holder.append(distance.euclidean(input_seq, input_df.iloc[i,:].values[:-1])) return(input_taxa.iloc[np.argmin(distance_holder),level]) def significance(input_value): input_df=pd.read_csv("baseline_PKJK.csv") return(int(len(np.where(input_value > input_df.Value)[0])/len(input_df.Value)*100)) def processor(file_input, label="labels"): labels=[] sequences=[] for i in file_input: if ">" in i: labels.append(i.replace(">", "").replace('\n', '')) else: sequences.append(i.replace('\n', '')) if label=="labels": return labels elif label=="sequence": return sequences # Model building def build_model(file_input, rank): # Reads in saved regression model unique_sequences=pd.read_csv("unique_sequences_5.csv") unique_sequences=unique_sequences.iloc[:,1].values input_sequence_list=processor(file_input,label="sequence") label_list=processor(file_input, label="labels") prediction_output=[] significance_output=[] taxa_output=[] for j in input_sequence_list: unique_sequences_freq=[] unique_sequences_freq.append([j.count(i) for i in unique_sequences]) pickle_file=open('finalized_model_5_PKJK.pkl','rb') model=pickle.load(pickle_file) prediction = model.predict(
pd.DataFrame(unique_sequences_freq)
pandas.DataFrame
import pandas as pd import config import dataset import sys def join_csv_files(flist, ofname): pd.concat([pd.read_csv(f) for f in flist])\ .to_csv(ofname, index=None, compression='gzip') def create_app_flags_file(): dlist = [] for k, v in config.source_files.items(): d = pd.read_csv(v, index_col='appId') if k == 'offstore': d['relevant'] = 'y' elif (('relevant' not in d.columns) or (d.relevant.count() < len(d) * 0.5)) \ and ('ml_score' in d.columns): ## TODO: Remove this or set 0.5 to 0.2 or something print("----> Relevant column is missing or unpopulated... recreating", k, v) d['relevant'] = ((d['ml_score'] > 0.4) | (d.get('relevant',
pd.Series([])
pandas.Series
from __future__ import division, print_function, absolute_import import os import traceback import scipy.misc as misc import matplotlib.pyplot as plt import numpy as np import glob import pandas as pd import random from PIL import Image, ImageOps def get_data_A1A4(data_path, split_load): # Getting images (x data) imgname_train_A1 = np.array([glob.glob(data_path+'/CVPPP2017_LCC_training/TrainingSplits/A1'+str(h)+'/*.png') for h in split_load[0]]) imgname_train_A4 = np.array([glob.glob(data_path+'/CVPPP2017_LCC_training/TrainingSplits/A4'+str(h)+'/*.png') for h in split_load[0]]) imgname_val_A1 = np.array([glob.glob(data_path+'/CVPPP2017_LCC_training/TrainingSplits/A1'+str(split_load[1])+'/*.png')]) imgname_val_A4 = np.array([glob.glob(data_path+'/CVPPP2017_LCC_training/TrainingSplits/A4'+str(split_load[1])+'/*.png')]) imgname_test_A1 = np.array([glob.glob(data_path+'/CVPPP2017_LCC_training/TrainingSplits/A1'+str(split_load[2])+'/*.png')]) imgname_test_A4 = np.array([glob.glob(data_path+'/CVPPP2017_LCC_training/TrainingSplits/A4'+str(split_load[2])+'/*.png')]) filelist_train_A1 = list(np.sort(imgname_train_A1.flat)[1::2]) filelist_train_A4 = list(np.sort(imgname_train_A4.flat)[1::2]) filelist_train_A1_fg = list(np.sort(imgname_train_A1.flat)[0::2]) filelist_train_A4_fg = list(np.sort(imgname_train_A4.flat)[0::2]) filelist_train_A1_img = np.array([np.array(filelist_train_A1[h][-16:]) for h in range(0,len(filelist_train_A1))]) filelist_train_A4_img = np.array([np.array(filelist_train_A4[h][-17:]) for h in range(0,len(filelist_train_A4))]) filelist_train_A1_set = np.array([np.array(filelist_train_A1[h][-20:-18]) for h in range(0,len(filelist_train_A1))]) filelist_train_A4_set = np.array([np.array(filelist_train_A4[h][-20:-18]) for h in range(0,len(filelist_train_A4))]) filelist_val_A1 = list(np.sort(imgname_val_A1.flat)[1::2]) filelist_val_A4 = list(np.sort(imgname_val_A4.flat)[1::2]) filelist_val_A1_fg = list(np.sort(imgname_val_A1.flat)[0::2]) filelist_val_A4_fg = list(np.sort(imgname_val_A4.flat)[0::2]) filelist_val_A1_img = np.array([np.array(filelist_val_A1[h][-16:]) for h in range(0,len(filelist_val_A1))]) filelist_val_A4_img = np.array([np.array(filelist_val_A4[h][-17:]) for h in range(0,len(filelist_val_A4))]) filelist_val_A1_set = np.array([np.array(filelist_val_A1[h][-20:-18]) for h in range(0,len(filelist_val_A1))]) filelist_val_A4_set = np.array([np.array(filelist_val_A4[h][-20:-18]) for h in range(0,len(filelist_val_A4))]) filelist_test_A1 = list(np.sort(imgname_test_A1.flat)[1::2]) filelist_test_A4 = list(np.sort(imgname_test_A4.flat)[1::2]) filelist_test_A1_fg = list(np.sort(imgname_test_A1.flat)[0::2]) filelist_test_A4_fg = list(np.sort(imgname_test_A4.flat)[0::2]) filelist_test_A1_img = np.array([np.array(filelist_test_A1[h][-16:]) for h in range(0,len(filelist_test_A1))]) filelist_test_A4_img = np.array([np.array(filelist_test_A4[h][-17:]) for h in range(0,len(filelist_test_A4))]) filelist_test_A1_set = np.array([np.array(filelist_test_A1[h][-20:-18]) for h in range(0,len(filelist_test_A1))]) filelist_test_A4_set = np.array([np.array(filelist_test_A4[h][-20:-18]) for h in range(0,len(filelist_test_A4))]) x_train_A1 = np.array([np.array(Image.open(fname)) for fname in filelist_train_A1]) x_train_A1 = np.delete(x_train_A1,3,3) x_train_A4 = np.array([np.array(Image.open(fname)) for fname in filelist_train_A4]) x_train_A1_fg = np.array([np.array(Image.open(fname)) for fname in filelist_train_A1_fg]) x_train_A4_fg = np.array([np.array(Image.open(fname)) for fname in filelist_train_A4_fg]) x_val_A1 = np.array([np.array(Image.open(fname)) for fname in filelist_val_A1]) x_val_A1 = np.delete(x_val_A1,3,3) x_val_A4 = np.array([np.array(Image.open(fname)) for fname in filelist_val_A4]) x_val_A1_fg = np.array([np.array(Image.open(fname)) for fname in filelist_val_A1_fg]) x_val_A4_fg = np.array([np.array(Image.open(fname)) for fname in filelist_val_A4_fg]) x_test_A1 = np.array([np.array(Image.open(fname)) for fname in filelist_test_A1]) x_test_A1 = np.delete(x_test_A1,3,3) x_test_A4 = np.array([np.array(Image.open(fname)) for fname in filelist_test_A4]) x_test_A1_fg = np.array([np.array(Image.open(fname)) for fname in filelist_test_A1_fg]) x_test_A4_fg = np.array([np.array(Image.open(fname)) for fname in filelist_test_A4_fg]) x_train_res_A1 = np.array([misc.imresize(x_train_A1[i],[317,309,3]) for i in range(0,len(x_train_A1))]) x_train_res_A4 = np.array([misc.imresize(x_train_A4[i],[317,309,3]) for i in range(0,len(x_train_A4))]) x_val_res_A1 = np.array([misc.imresize(x_val_A1[i],[317,309,3]) for i in range(0,len(x_val_A1))]) x_val_res_A4 = np.array([misc.imresize(x_val_A4[i],[317,309,3]) for i in range(0,len(x_val_A4))]) x_test_res_A1 = np.array([misc.imresize(x_test_A1[i],[317,309,3]) for i in range(0,len(x_test_A1))]) x_test_res_A4 = np.array([misc.imresize(x_test_A4[i],[317,309,3]) for i in range(0,len(x_test_A4))]) x_train_res_A1_fg = np.array([misc.imresize(x_train_A1_fg[i],[317,309,3]) for i in range(0,len(x_train_A1_fg))]) x_train_res_A4_fg = np.array([misc.imresize(x_train_A4_fg[i],[317,309,3]) for i in range(0,len(x_train_A4_fg))]) x_val_res_A1_fg = np.array([misc.imresize(x_val_A1_fg[i],[317,309,3]) for i in range(0,len(x_val_A1))]) x_val_res_A4_fg = np.array([misc.imresize(x_val_A4_fg[i],[317,309,3]) for i in range(0,len(x_val_A4))]) x_test_res_A1_fg = np.array([misc.imresize(x_test_A1_fg[i],[317,309,3]) for i in range(0,len(x_test_A1_fg))]) x_test_res_A4_fg = np.array([misc.imresize(x_test_A4_fg[i],[317,309,3]) for i in range(0,len(x_test_A4_fg))]) x_train_all = np.concatenate((x_train_res_A1, x_train_res_A4), axis=0) x_val_all = np.concatenate((x_val_res_A1, x_val_res_A4), axis=0) x_test_all = np.concatenate((x_test_res_A1, x_test_res_A4), axis=0) for h in range(0,len(x_train_all)): x_img = x_train_all[h] x_img_pil = Image.fromarray(x_img) x_img_pil = ImageOps.autocontrast(x_img_pil) x_img_ar = np.array(x_img_pil) x_train_all[h] = x_img_ar for h in range(0,len(x_val_all)): x_img = x_val_all[h] x_img_pil = Image.fromarray(x_img) x_img_pil = ImageOps.autocontrast(x_img_pil) x_img_ar = np.array(x_img_pil) x_val_all[h] = x_img_ar for h in range(0,len(x_test_all)): x_img = x_test_all[h] x_img_pil = Image.fromarray(x_img) x_img_pil = ImageOps.autocontrast(x_img_pil) x_img_ar = np.array(x_img_pil) x_test_all[h] = x_img_ar x_train_all_fg = np.concatenate((x_train_res_A1_fg, x_train_res_A4_fg), axis=0) x_val_all_fg = np.concatenate((x_val_res_A1_fg, x_val_res_A4_fg), axis=0) x_test_all_fg = np.concatenate((x_test_res_A1_fg, x_test_res_A4_fg), axis=0) sum_train_all = np.zeros((len(x_train_all_fg),1)) sum_val_all = np.zeros((len(x_val_all_fg),1)) sum_test_all = np.zeros((len(x_test_all_fg),1)) for i in range(0, len(x_train_all_fg)): x_train_all_fg[i][x_train_all_fg[i] > 0] = 1 sum_train_all[i] = np.sum(x_train_all_fg[i]) for i in range(0, len(x_val_all_fg)): x_val_all_fg[i][x_val_all_fg[i] > 0] = 1 sum_val_all[i] = np.sum(x_val_all_fg[i]) for i in range(0, len(x_test_all_fg)): x_test_all_fg[i][x_test_all_fg[i] > 0] = 1 sum_test_all[i] = np.sum(x_test_all_fg[i]) x_train_img = np.concatenate((filelist_train_A1_img, filelist_train_A4_img), axis=0) x_val_img = np.concatenate((filelist_val_A1_img, filelist_val_A4_img), axis=0) x_test_img = np.concatenate((filelist_test_A1_img, filelist_test_A4_img), axis=0) x_train_set = np.concatenate((filelist_train_A1_set, filelist_train_A4_set), axis=0) x_val_set = np.concatenate((filelist_val_A1_set, filelist_val_A4_set), axis=0) x_test_set = np.concatenate((filelist_test_A1_set, filelist_test_A4_set), axis=0) # Getting targets (y data) # counts_A1 = np.array([glob.glob(data_path+'/CVPPP2017_LCC_training/TrainingSplits/A1.xlsx')]) counts_A4 = np.array([glob.glob(data_path+'/CVPPP2017_LCC_training/TrainingSplits/A4.xlsx')]) counts_train_flat_A1 = list(counts_A1.flat) train_labels_A1 = pd.DataFrame() y_train_A1_list = [] y_val_A1_list = [] y_test_A1_list = [] for f in counts_train_flat_A1: frame =
pd.read_excel(f, header=None)
pandas.read_excel
# -*- coding: utf-8 -*- """ This module is designed for the use with the coastdat2 weather data set of the Helmholtz-Zentrum Geesthacht. A description of the coastdat2 data set can be found here: https://www.earth-syst-sci-data.net/6/147/2014/ SPDX-FileCopyrightText: 2016-2019 <NAME> <<EMAIL>> SPDX-License-Identifier: MIT """ __copyright__ = "<NAME> <<EMAIL>>" __license__ = "MIT" import os import pandas as pd import pvlib from nose.tools import eq_ from windpowerlib.wind_turbine import WindTurbine from reegis import coastdat, feedin, config as cfg import warnings warnings.filterwarnings("ignore", category=RuntimeWarning) def feedin_wind_sets_tests(): fn = os.path.join( os.path.dirname(__file__), os.pardir, "tests", "data", "test_coastdat_weather.csv", ) wind_sets = feedin.create_windpowerlib_sets() weather = pd.read_csv(fn, header=[0, 1])["1126088"] data_height = cfg.get_dict("coastdat_data_height") wind_weather = coastdat.adapt_coastdat_weather_to_windpowerlib( weather, data_height ) df = pd.DataFrame() for wind_key, wind_set in wind_sets.items(): df[str(wind_key).replace(" ", "_")] = ( feedin.feedin_wind_sets(wind_weather, wind_set).sum().sort_index() ) s1 = df.transpose()["1"] s2 = pd.Series( { "ENERCON_127_hub135_7500": 1277.28988, "ENERCON_82_hub138_2300": 1681.47858, "ENERCON_82_hub78_3000": 1057.03957, "ENERCON_82_hub98_2300": 1496.55769, } ) pd.testing.assert_series_equal( s1.sort_index(), s2.sort_index(), check_names=False ) def feedin_windpowerlib_test(): fn = os.path.join( os.path.dirname(__file__), os.pardir, "tests", "data", "test_coastdat_weather.csv", ) weather = pd.read_csv(fn, header=[0, 1])["1126088"] turbine = {"hub_height": 135, "turbine_type": "E-141/4200"} data_height = cfg.get_dict("coastdat_data_height") wind_weather = coastdat.adapt_coastdat_weather_to_windpowerlib( weather, data_height ) # doctest: +SKIP eq_(int(feedin.feedin_windpowerlib(wind_weather, turbine).sum()), 2164) turbine = WindTurbine(**turbine) eq_(int(feedin.feedin_windpowerlib(wind_weather, turbine).sum()), 2164) def feedin_pvlib_test(): fn = os.path.join( os.path.dirname(__file__), os.pardir, "tests", "data", "test_coastdat_weather.csv", ) coastdat_id = "1126088" weather = pd.read_csv( fn, header=[0, 1], index_col=[0], date_parser=lambda idx: pd.to_datetime(idx, utc=True), )[coastdat_id] c = coastdat.fetch_data_coordinates_by_id(coastdat_id) location = pvlib.location.Location(**getattr(c, "_asdict")()) pv_weather = coastdat.adapt_coastdat_weather_to_pvlib(weather, location) sandia_modules = pvlib.pvsystem.retrieve_sam("sandiamod") sapm_inverters = pvlib.pvsystem.retrieve_sam("sandiainverter") pv = { "pv_set_name": "M_LG290G3__I_ABB_MICRO_025_US208", "module_name": "LG_LG290N1C_G3__2013_", "module_key": "LG290G3", "inverter_name": "ABB__MICRO_0_25_I_OUTD_US_208_208V__CEC_2014_", "surface_azimuth": 180, "surface_tilt": 35, "albedo": 0.2, } pv["module_parameters"] = sandia_modules[pv["module_name"]] pv["inverter_parameters"] = sapm_inverters[pv["inverter_name"]] pv["p_peak"] = pv["module_parameters"].Impo * pv["module_parameters"].Vmpo eq_(int(feedin.feedin_pvlib(location, pv, pv_weather).sum()), 1025) eq_(int(feedin.feedin_pvlib(location, pv, pv_weather).sum()), 1025) def feedin_pv_sets_tests(): fn = os.path.join( os.path.dirname(__file__), os.pardir, "tests", "data", "test_coastdat_weather.csv", ) pv_sets = feedin.create_pvlib_sets() coastdat_id = "1126088" weather = pd.read_csv( fn, header=[0, 1], index_col=[0], date_parser=lambda idx: pd.to_datetime(idx, utc=True), )[coastdat_id] c = coastdat.fetch_data_coordinates_by_id(coastdat_id) location = pvlib.location.Location(**getattr(c, "_asdict")()) pv_weather = coastdat.adapt_coastdat_weather_to_pvlib(weather, location) s1 =
pd.Series()
pandas.Series
import wandb from wandb import data_types import numpy as np import pytest import PIL import os import six import sys import glob import platform from click.testing import CliRunner from . import utils from .utils import dummy_data import matplotlib import rdkit.Chem from wandb import Api import time matplotlib.use("Agg") import matplotlib.pyplot as plt # noqa: E402 data = np.random.randint(255, size=(1000)) @pytest.fixture def api(runner): return Api() def test_wb_value(live_mock_server, test_settings): run = wandb.init(settings=test_settings) local_art = wandb.Artifact("N", "T") public_art = run.use_artifact("N:latest") wbvalue = data_types.WBValue() with pytest.raises(NotImplementedError): wbvalue.to_json(local_art) with pytest.raises(NotImplementedError): data_types.WBValue.from_json({}, public_art) assert data_types.WBValue.with_suffix("item") == "item.json" table = data_types.WBValue.init_from_json( { "_type": "table", "data": [[]], "columns": [], "column_types": wandb.data_types._dtypes.TypedDictType({}).to_json(), }, public_art, ) assert isinstance(table, data_types.WBValue) and isinstance( table, wandb.data_types.Table ) type_mapping = data_types.WBValue.type_mapping() assert all( [issubclass(type_mapping[key], data_types.WBValue) for key in type_mapping] ) assert wbvalue == wbvalue assert wbvalue != data_types.WBValue() run.finish() @pytest.mark.skipif(sys.version_info >= (3, 10), reason="no pandas py3.10 wheel") def test_log_dataframe(live_mock_server, test_settings): import pandas as pd run = wandb.init(settings=test_settings) cv_results = pd.DataFrame(data={"test_col": [1, 2, 3], "test_col2": [4, 5, 6]}) run.log({"results_df": cv_results}) run.finish() ctx = live_mock_server.get_ctx() assert len(ctx["artifacts"]) == 1 def test_raw_data(): wbhist = wandb.Histogram(data) assert len(wbhist.histogram) == 64 def test_np_histogram(): wbhist = wandb.Histogram(np_histogram=np.histogram(data)) assert len(wbhist.histogram) == 10 def test_manual_histogram(): wbhist = wandb.Histogram(np_histogram=([1, 2, 4], [3, 10, 20, 0])) assert len(wbhist.histogram) == 3 def test_invalid_histogram(): with pytest.raises(ValueError): wandb.Histogram(np_histogram=([1, 2, 3], [1])) image = np.zeros((28, 28)) def test_captions(): wbone = wandb.Image(image, caption="Cool") wbtwo = wandb.Image(image, caption="Nice") assert wandb.Image.all_captions([wbone, wbtwo]) == ["Cool", "Nice"] def test_bind_image(mocked_run): wb_image = wandb.Image(image) wb_image.bind_to_run(mocked_run, "stuff", 10) assert wb_image.is_bound() full_box = { "position": {"middle": (0.5, 0.5), "width": 0.1, "height": 0.2}, "class_id": 2, "box_caption": "This is a big car", "scores": {"acc": 0.3}, } # Helper function return a new dictionary with the key removed def dissoc(d, key): new_d = d.copy() new_d.pop(key) return new_d optional_keys = ["box_caption", "scores"] boxes_with_removed_optional_args = [dissoc(full_box, k) for k in optional_keys] def test_image_accepts_other_images(mocked_run): image_a = wandb.Image(np.random.random((300, 300, 3))) image_b = wandb.Image(image_a) assert image_a == image_b def test_image_accepts_bounding_boxes(mocked_run): img = wandb.Image(image, boxes={"predictions": {"box_data": [full_box]}}) img.bind_to_run(mocked_run, "images", 0) img_json = img.to_json(mocked_run) path = img_json["boxes"]["predictions"]["path"] assert os.path.exists(os.path.join(mocked_run.dir, path)) def test_image_accepts_bounding_boxes_optional_args(mocked_run): img = data_types.Image( image, boxes={"predictions": {"box_data": boxes_with_removed_optional_args}} ) img.bind_to_run(mocked_run, "images", 0) img_json = img.to_json(mocked_run) path = img_json["boxes"]["predictions"]["path"] assert os.path.exists(os.path.join(mocked_run.dir, path)) standard_mask = { "mask_data": np.array([[1, 2, 2, 2], [2, 3, 3, 4], [4, 4, 4, 4], [4, 4, 4, 2]]), "class_labels": {1: "car", 2: "pedestrian", 3: "tractor", 4: "cthululu"}, } def test_image_accepts_masks(mocked_run): img = wandb.Image(image, masks={"overlay": standard_mask}) img.bind_to_run(mocked_run, "images", 0) img_json = img.to_json(mocked_run) path = img_json["masks"]["overlay"]["path"] assert os.path.exists(os.path.join(mocked_run.dir, path)) def test_image_accepts_masks_without_class_labels(mocked_run): img = wandb.Image(image, masks={"overlay": dissoc(standard_mask, "class_labels")}) img.bind_to_run(mocked_run, "images", 0) img_json = img.to_json(mocked_run) path = img_json["masks"]["overlay"]["path"] assert os.path.exists(os.path.join(mocked_run.dir, path)) def test_cant_serialize_to_other_run(mocked_run, test_settings): """This isn't implemented yet. Should work eventually.""" other_run = wandb.wandb_sdk.wandb_run.Run(settings=test_settings) other_run._set_backend(mocked_run._backend) wb_image = wandb.Image(image) wb_image.bind_to_run(mocked_run, "stuff", 10) with pytest.raises(AssertionError): wb_image.to_json(other_run) def test_image_seq_to_json(mocked_run): wb_image = wandb.Image(image) wb_image.bind_to_run(mocked_run, "test", 0, 0) meta = wandb.Image.seq_to_json([wb_image], mocked_run, "test", 0) assert os.path.exists( os.path.join(mocked_run.dir, "media", "images", "test_0_0.png") ) meta_expected = { "_type": "images/separated", "count": 1, "height": 28, "width": 28, } assert utils.subdict(meta, meta_expected) == meta_expected def test_max_images(caplog, mocked_run): large_image = np.random.randint(255, size=(10, 10)) large_list = [wandb.Image(large_image)] * 200 large_list[0].bind_to_run(mocked_run, "test2", 0, 0) meta = wandb.Image.seq_to_json( wandb.wandb_sdk.data_types._prune_max_seq(large_list), mocked_run, "test2", 0 ) expected = { "_type": "images/separated", "count": data_types.Image.MAX_ITEMS, "height": 10, "width": 10, } path = os.path.join(mocked_run.dir, "media/images/test2_0_0.png") assert utils.subdict(meta, expected) == expected assert os.path.exists(os.path.join(mocked_run.dir, "media/images/test2_0_0.png")) def test_audio_sample_rates(): audio1 = np.random.uniform(-1, 1, 44100) audio2 = np.random.uniform(-1, 1, 88200) wbaudio1 = wandb.Audio(audio1, sample_rate=44100) wbaudio2 = wandb.Audio(audio2, sample_rate=88200) assert wandb.Audio.sample_rates([wbaudio1, wbaudio2]) == [44100, 88200] # test with missing sample rate with pytest.raises(ValueError): wandb.Audio(audio1) def test_audio_durations(): audio1 = np.random.uniform(-1, 1, 44100) audio2 = np.random.uniform(-1, 1, 88200) wbaudio1 = wandb.Audio(audio1, sample_rate=44100) wbaudio2 = wandb.Audio(audio2, sample_rate=44100) assert wandb.Audio.durations([wbaudio1, wbaudio2]) == [1.0, 2.0] def test_audio_captions(): audio = np.random.uniform(-1, 1, 44100) sample_rate = 44100 caption1 = "This is what a dog sounds like" caption2 = "This is what a chicken sounds like" # test with all captions wbaudio1 = wandb.Audio(audio, sample_rate=sample_rate, caption=caption1) wbaudio2 = wandb.Audio(audio, sample_rate=sample_rate, caption=caption2) assert wandb.Audio.captions([wbaudio1, wbaudio2]) == [caption1, caption2] # test with no captions wbaudio3 = wandb.Audio(audio, sample_rate=sample_rate) wbaudio4 = wandb.Audio(audio, sample_rate=sample_rate) assert wandb.Audio.captions([wbaudio3, wbaudio4]) is False # test with some captions wbaudio5 = wandb.Audio(audio, sample_rate=sample_rate) wbaudio6 = wandb.Audio(audio, sample_rate=sample_rate, caption=caption2) assert wandb.Audio.captions([wbaudio5, wbaudio6]) == ["", caption2] def test_audio_to_json(mocked_run): audio = np.zeros(44100) audioObj = wandb.Audio(audio, sample_rate=44100) audioObj.bind_to_run(mocked_run, "test", 0) meta = wandb.Audio.seq_to_json([audioObj], mocked_run, "test", 0) assert os.path.exists(os.path.join(mocked_run.dir, meta["audio"][0]["path"])) meta_expected = { "_type": "audio", "count": 1, "sampleRates": [44100], "durations": [1.0], } assert utils.subdict(meta, meta_expected) == meta_expected audio_expected = { "_type": "audio-file", "caption": None, "size": 88244, } assert utils.subdict(meta["audio"][0], audio_expected) == audio_expected wandb.finish() def test_audio_refs(): audioObj = wandb.Audio( "https://wandb-artifacts-refs-public-test.s3-us-west-2.amazonaws.com/StarWars3.wav" ) art = wandb.Artifact("audio_ref_test", "dataset") art.add(audioObj, "audio_ref") audio_expected = { "_type": "audio-file", "caption": None, } assert utils.subdict(audioObj.to_json(art), audio_expected) == audio_expected def test_guess_mode(): image = np.random.randint(255, size=(28, 28, 3)) wbimg = wandb.Image(image) assert wbimg.image.mode == "RGB" def test_pil(): pil = PIL.Image.new("L", (28, 28)) img = wandb.Image(pil) assert list(img.image.getdata()) == list(pil.getdata()) def test_matplotlib_image(): plt.plot([1, 2, 2, 4]) img = wandb.Image(plt) assert img.image.width == 640 def test_matplotlib_image_with_multiple_axes(): """Ensures that wandb.Image constructor can accept a pyplot or figure reference in which the figure has multiple axes. Importantly, there is no requirement that any of the axes have plotted data. """ for fig in utils.matplotlib_multiple_axes_figures(): wandb.Image(fig) # this should not error. for fig in utils.matplotlib_multiple_axes_figures(): wandb.Image(plt) # this should not error. @pytest.mark.skipif( sys.version_info >= (3, 9), reason="plotly doesn't support py3.9 yet" ) def test_matplotlib_plotly_with_multiple_axes(): """Ensures that wandb.Plotly constructor can accept a plotly figure reference in which the figure has multiple axes. Importantly, there is no requirement that any of the axes have plotted data. """ for fig in utils.matplotlib_multiple_axes_figures(): wandb.Plotly(fig) # this should not error. for fig in utils.matplotlib_multiple_axes_figures(): wandb.Plotly(plt) # this should not error. def test_plotly_from_matplotlib_with_image(): """Ensures that wandb.Plotly constructor properly errors when a pyplot with image is passed """ # try the figure version fig = utils.matplotlib_with_image() with pytest.raises(ValueError): wandb.Plotly(fig) plt.close() # try the plt version fig = utils.matplotlib_with_image() with pytest.raises(ValueError): wandb.Plotly(plt) plt.close() def test_image_from_matplotlib_with_image(): """Ensures that wandb.Image constructor supports a pyplot with image is passed""" # try the figure version fig = utils.matplotlib_with_image() wandb.Image(fig) # this should not error. plt.close() # try the plt version fig = utils.matplotlib_with_image() wandb.Image(plt) # this should not error. plt.close() @pytest.mark.skipif( sys.version_info >= (3, 9), reason="plotly doesn't support py3.9 yet" ) def test_make_plot_media_from_matplotlib_without_image(): """Ensures that wand.Plotly.make_plot_media() returns a Plotly object when there is no image """ fig = utils.matplotlib_without_image() assert type(wandb.Plotly.make_plot_media(fig)) == wandb.Plotly plt.close() fig = utils.matplotlib_without_image() assert type(wandb.Plotly.make_plot_media(plt)) == wandb.Plotly plt.close() def test_make_plot_media_from_matplotlib_with_image(): """Ensures that wand.Plotly.make_plot_media() returns an Image object when there is an image in the matplotlib figure """ fig = utils.matplotlib_with_image() assert type(wandb.Plotly.make_plot_media(fig)) == wandb.Image plt.close() fig = utils.matplotlib_with_image() assert type(wandb.Plotly.make_plot_media(plt)) == wandb.Image plt.close() def test_create_bokeh_plot(mocked_run): """Ensures that wandb.Bokeh constructor accepts a bokeh plot""" bp = dummy_data.bokeh_plot() bp = wandb.data_types.Bokeh(bp) bp.bind_to_run(mocked_run, "bokeh", 0) @pytest.mark.skipif(sys.version_info < (3, 6), reason="No moviepy.editor in py2") def test_video_numpy_gif(mocked_run): video = np.random.randint(255, size=(10, 3, 28, 28)) vid = wandb.Video(video, format="gif") vid.bind_to_run(mocked_run, "videos", 0) assert vid.to_json(mocked_run)["path"].endswith(".gif") @pytest.mark.skipif(sys.version_info < (3, 6), reason="No moviepy.editor in py2") def test_video_numpy_mp4(mocked_run): video = np.random.randint(255, size=(10, 3, 28, 28)) vid = wandb.Video(video, format="mp4") vid.bind_to_run(mocked_run, "videos", 0) assert vid.to_json(mocked_run)["path"].endswith(".mp4") @pytest.mark.skipif(sys.version_info < (3, 6), reason="No moviepy.editor in py2") def test_video_numpy_multi(mocked_run): video = np.random.random(size=(2, 10, 3, 28, 28)) vid = wandb.Video(video) vid.bind_to_run(mocked_run, "videos", 0) assert vid.to_json(mocked_run)["path"].endswith(".gif") @pytest.mark.skipif(sys.version_info < (3, 6), reason="No moviepy.editor in py2") def test_video_numpy_invalid(): video = np.random.random(size=(3, 28, 28)) with pytest.raises(ValueError): wandb.Video(video) def test_video_path(mocked_run): with open("video.mp4", "w") as f: f.write("00000") vid = wandb.Video("video.mp4") vid.bind_to_run(mocked_run, "videos", 0) assert vid.to_json(mocked_run)["path"].endswith(".mp4") def test_video_path_invalid(runner): with runner.isolated_filesystem(): with open("video.avi", "w") as f: f.write("00000") with pytest.raises(ValueError): wandb.Video("video.avi") def test_molecule(mocked_run): with open("test.pdb", "w") as f: f.write("00000") mol = wandb.Molecule("test.pdb") mol.bind_to_run(mocked_run, "rad", "summary") wandb.Molecule.seq_to_json([mol], mocked_run, "rad", "summary") assert os.path.exists(mol._path) wandb.finish() def test_molecule_file(mocked_run): with open("test.pdb", "w") as f: f.write("00000") mol = wandb.Molecule(open("test.pdb", "r")) mol.bind_to_run(mocked_run, "rad", "summary") wandb.Molecule.seq_to_json([mol], mocked_run, "rad", "summary") assert os.path.exists(mol._path) wandb.finish() def test_molecule_from_smiles(mocked_run): """Ensures that wandb.Molecule.from_smiles supports valid SMILES molecule string representations""" mol = wandb.Molecule.from_smiles("CC(=O)Nc1ccc(O)cc1") mol.bind_to_run(mocked_run, "rad", "summary") wandb.Molecule.seq_to_json([mol], mocked_run, "rad", "summary") assert os.path.exists(mol._path) wandb.finish() def test_molecule_from_invalid_smiles(mocked_run): """Ensures that wandb.Molecule.from_smiles errs if passed an invalid SMILES string""" with pytest.raises(ValueError): wandb.Molecule.from_smiles("TEST") wandb.finish() def test_molecule_from_rdkit_mol_object(mocked_run): """Ensures that wandb.Molecule.from_rdkit supports rdkit.Chem.rdchem.Mol objects""" mol = wandb.Molecule.from_rdkit(rdkit.Chem.MolFromSmiles("CC(=O)Nc1ccc(O)cc1")) mol.bind_to_run(mocked_run, "rad", "summary") wandb.Molecule.seq_to_json([mol], mocked_run, "rad", "summary") assert os.path.exists(mol._path) wandb.finish() def test_molecule_from_rdkit_mol_file(mocked_run): """Ensures that wandb.Molecule.from_rdkit supports .mol files""" substance = rdkit.Chem.MolFromSmiles("CC(=O)Nc1ccc(O)cc1") mol_file_name = "test.mol" rdkit.Chem.rdmolfiles.MolToMolFile(substance, mol_file_name) mol = wandb.Molecule.from_rdkit(mol_file_name) mol.bind_to_run(mocked_run, "rad", "summary") wandb.Molecule.seq_to_json([mol], mocked_run, "rad", "summary") assert os.path.exists(mol._path) wandb.finish() def test_molecule_from_rdkit_invalid_input(mocked_run): """Ensures that wandb.Molecule.from_rdkit errs on invalid input""" mol_file_name = "test" with pytest.raises(ValueError): wandb.Molecule.from_rdkit(mol_file_name) wandb.finish() def test_html_str(mocked_run): html = wandb.Html("<html><body><h1>Hello</h1></body></html>") html.bind_to_run(mocked_run, "rad", "summary") wandb.Html.seq_to_json([html], mocked_run, "rad", "summary") assert os.path.exists(html._path) wandb.finish() def test_html_styles(): with CliRunner().isolated_filesystem(): pre = ( '<base target="_blank"><link rel="stylesheet" type="text/css" ' 'href="https://app.wandb.ai/normalize.css" />' ) html = wandb.Html("<html><body><h1>Hello</h1></body></html>") assert ( html.html == "<html><head>" + pre + "</head><body><h1>Hello</h1></body></html>" ) html = wandb.Html("<html><head></head><body><h1>Hello</h1></body></html>") assert ( html.html == "<html><head>" + pre + "</head><body><h1>Hello</h1></body></html>" ) html = wandb.Html("<h1>Hello</h1>") assert html.html == pre + "<h1>Hello</h1>" html = wandb.Html("<h1>Hello</h1>", inject=False) assert html.html == "<h1>Hello</h1>" def test_html_file(mocked_run): with open("test.html", "w") as f: f.write("<html><body><h1>Hello</h1></body></html>") html = wandb.Html(open("test.html")) html.bind_to_run(mocked_run, "rad", "summary") wandb.Html.seq_to_json([html, html], mocked_run, "rad", "summary") assert os.path.exists(html._path) def test_html_file_path(mocked_run): with open("test.html", "w") as f: f.write("<html><body><h1>Hello</h1></body></html>") html = wandb.Html("test.html") html.bind_to_run(mocked_run, "rad", "summary") wandb.Html.seq_to_json([html, html], mocked_run, "rad", "summary") assert os.path.exists(html._path) def test_table_default(): table = wandb.Table() table.add_data("Some awesome text", "Positive", "Negative") assert table._to_table_json() == { "data": [["Some awesome text", "Positive", "Negative"]], "columns": ["Input", "Output", "Expected"], } def test_table_eq_debug(): # Invalid Type a = wandb.Table(data=[[1, 2, 3], [4, 5, 6]]) b = {} with pytest.raises(AssertionError): a._eq_debug(b, True) assert a != b # Mismatch Rows a = wandb.Table(data=[[1, 2, 3], [4, 5, 6]]) b = wandb.Table(data=[[1, 2, 3]]) with pytest.raises(AssertionError): a._eq_debug(b, True) assert a != b # Mismatch Columns a = wandb.Table(data=[[1, 2, 3], [4, 5, 6]]) b = wandb.Table(data=[[1, 2, 3], [4, 5, 6]], columns=["a", "b", "c"]) with pytest.raises(AssertionError): a._eq_debug(b, True) assert a != b # Mismatch Types a = wandb.Table(data=[[1, 2, 3]]) b = wandb.Table(data=[["1", "2", "3"]]) with pytest.raises(AssertionError): a._eq_debug(b, True) assert a != b # Mismatch Data a = wandb.Table(data=[[1, 2, 3], [4, 5, 6]]) b = wandb.Table(data=[[1, 2, 3], [4, 5, 100]]) with pytest.raises(AssertionError): a._eq_debug(b, True) assert a != b a = wandb.Table(data=[[1, 2, 3], [4, 5, 6]]) b = wandb.Table(data=[[1, 2, 3], [4, 5, 6]]) a._eq_debug(b, True) assert a == b @pytest.mark.skipif(sys.version_info >= (3, 10), reason="no pandas py3.10 wheel") def test_table_custom(): import pandas as pd table = wandb.Table(["Foo", "Bar"]) table.add_data("So", "Cool") table.add_row("&", "Rad") assert table._to_table_json() == { "data": [["So", "Cool"], ["&", "Rad"]], "columns": ["Foo", "Bar"], } df =
pd.DataFrame(columns=["Foo", "Bar"], data=[["So", "Cool"], ["&", "Rad"]])
pandas.DataFrame
from tqdm import tqdm from model.QACGBERT import * from util.tokenization import * import numpy as np import pandas as pd import random from torch.utils.data import DataLoader, TensorDataset label_list = ['Yes', 'No'] context_id_map_fiqa = {"legal": 0, "m&a": 1, "regulatory": 2, "risks": 3, "rumors": 4, "company communication": 5, "trade": 6, "central banks": 7, "market": 8, "volatility": 9, "financial": 10, "fundamentals": 11, "price action": 12, "insider activity": 13, "ipo": 14, "others": 15} class InputExample(object): def __init__(self, guid, text_a, text_b=None, label=None): self.guid = guid self.text_a = text_a self.text_b = text_b self.label = label class InputFeatures(object): def __init__(self, input_ids, input_mask, segment_ids, label_id, seq_len, context_ids): self.input_ids = input_ids self.input_mask = input_mask self.segment_ids = segment_ids self.label_id = label_id self.seq_len = seq_len self.context_ids = context_ids def truncate_seq_pair(tokens_a, tokens_b, max_length): while True: total_length = len(tokens_a) + len(tokens_b) if total_length <= max_length: break if len(tokens_a) > len(tokens_b): tokens_a.pop() else: tokens_b.pop() def convert_to_unicode(text): if six.PY3: if isinstance(text, str): return text elif isinstance(text, bytes): return text.decode("utf-8", "ignore") else: raise ValueError("Unsupported string type: %s" % (type(text))) else: raise ValueError("Not running on Python 3") def get_test_examples(path): test_data =
pd.read_csv(path, header=None)
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import division from functools import wraps import numpy as np from pandas import DataFrame, Series #from pandas.stats import moments import pandas as pd def simple_moving_average(prices, period=26): """ :param df: pandas dataframe object :param period: periods for calculating SMA :return: a pandas series """ weights = np.repeat(1.0, period) / period sma = np.convolve(prices, weights, 'valid') return sma def stochastic_oscillator_k(df): """Calculate stochastic oscillator %K for given data. :param df: pandas.DataFrame :return: pandas.DataFrame """ SOk = pd.Series((df['close'] - df['low']) / (df['high'] - df['low']), name='SO%k') df = df.join(SOk) return df def stochastic_oscillator_d(df, n): """Calculate stochastic oscillator %D for given data. :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ SOk = pd.Series((df['close'] - df['low']) / (df['high'] - df['low']), name='SO%k') SOd = pd.Series(SOk.ewm(span=n, min_periods=n).mean(), name='SO%d') df = df.join(SOd) return df def bollinger_bands(df, n, std, add_ave=True): """ :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ ave = df['close'].rolling(window=n, center=False).mean() sd = df['close'].rolling(window=n, center=False).std() upband = pd.Series(ave + (sd * std), name='bband_upper_' + str(n)) dnband = pd.Series(ave - (sd * std), name='bband_lower_' + str(n)) if add_ave: ave = pd.Series(ave, name='bband_ave_' + str(n)) df = df.join(pd.concat([upband, dnband, ave], axis=1)) else: df = df.join(pd.concat([upband, dnband], axis=1)) return df def money_flow_index(df, n): """Calculate Money Flow Index and Ratio for given data. :param df: pandas.DataFrame :param n: :return: pandas.DataFrame """ PP = (df['high'] + df['low'] + df['close']) / 3 i = 0 PosMF = [0] while i < df.index[-1]: if PP[i + 1] > PP[i]: PosMF.append(PP[i + 1] * df.loc[i + 1, 'volume']) else: PosMF.append(0) i = i + 1 PosMF = pd.Series(PosMF) TotMF = PP * df['volume'] MFR = pd.Series(PosMF / TotMF) MFI = pd.Series(MFR.rolling(n, min_periods=n).mean()) # df = df.join(MFI) return MFI def series_indicator(col): def inner_series_indicator(f): @wraps(f) def wrapper(s, *args, **kwargs): if isinstance(s, DataFrame): s = s[col] return f(s, *args, **kwargs) return wrapper return inner_series_indicator def _wilder_sum(s, n): s = s.dropna() nf = (n - 1) / n ws = [np.nan] * (n - 1) + [s[n - 1] + nf * sum(s[:n - 1])] for v in s[n:]: ws.append(v + ws[-1] * nf) return Series(ws, index=s.index) @series_indicator('high') def hhv(s, n): return pd.rolling_max(s, n) @series_indicator('low') def llv(s, n): return pd.rolling_min(s, n) @series_indicator('close') def ema(s, n, wilder=False): span = n if not wilder else 2 * n - 1 return pd.ewma(s, span=span) @series_indicator('close') def macd(s, nfast=12, nslow=26, nsig=9, percent=True): fast, slow = ema(s, nfast), ema(s, nslow) if percent: macd = 100 * (fast / slow - 1) else: macd = fast - slow sig = ema(macd, nsig) hist = macd - sig return DataFrame(dict(macd=macd, signal=sig, hist=hist, fast=fast, slow=slow)) def aroon(s, n=25): up = 100 * pd.rolling_apply(s.high, n + 1, lambda x: x.argmax()) / n dn = 100 * pd.rolling_apply(s.low, n + 1, lambda x: x.argmin()) / n return DataFrame(dict(up=up, down=dn)) @series_indicator('close') def rsi(s, n=14): diff = s.diff() which_dn = diff < 0 up, dn = diff, diff * 0 up[which_dn], dn[which_dn] = 0, -up[which_dn] emaup = ema(up, n, wilder=True) emadn = ema(dn, n, wilder=True) return 100 * emaup / (emaup + emadn) def stoch(s, nfastk=14, nfullk=3, nfulld=3): if not isinstance(s, DataFrame): s = DataFrame(dict(high=s, low=s, close=s)) hmax, lmin = hhv(s, nfastk), llv(s, nfastk) fastk = 100 * (s.close - lmin) / (hmax - lmin) fullk = pd.rolling_mean(fastk, nfullk) fulld = pd.rolling_mean(fullk, nfulld) return DataFrame(dict(fastk=fastk, fullk=fullk, fulld=fulld)) @series_indicator('close') def dtosc(s, nrsi=13, nfastk=8, nfullk=5, nfulld=3): srsi = stoch(rsi(s, nrsi), nfastk, nfullk, nfulld) return DataFrame(dict(fast=srsi.fullk, slow=srsi.fulld)) def atr(s, n=14): cs = s.close.shift(1) tr = s.high.combine(cs, max) - s.low.combine(cs, min) return ema(tr, n, wilder=True) def cci(s, n=20, c=0.015): if isinstance(s, DataFrame): s = s[['high', 'low', 'close']].mean(axis=1) mavg = pd.rolling_mean(s, n) mdev = pd.rolling_apply(s, n, lambda x: np.fabs(x - x.mean()).mean()) return (s - mavg) / (c * mdev) def cmf(s, n=20): clv = (2 * s.close - s.high - s.low) / (s.high - s.low) vol = s.volume return pd.rolling_sum(clv * vol, n) / pd.rolling_sum(vol, n) def force(s, n=2): return ema(s.close.diff() * s.volume, n) @series_indicator('close') def kst(s, r1=10, r2=15, r3=20, r4=30, n1=10, n2=10, n3=10, n4=15, nsig=9): rocma1 = pd.rolling_mean(s / s.shift(r1) - 1, n1) rocma2 = pd.rolling_mean(s / s.shift(r2) - 1, n2) rocma3 = pd.rolling_mean(s / s.shift(r3) - 1, n3) rocma4 = pd.rolling_mean(s / s.shift(r4) - 1, n4) kst = 100 * (rocma1 + 2 * rocma2 + 3 * rocma3 + 4 * rocma4) sig = pd.rolling_mean(kst, nsig) return DataFrame(dict(kst=kst, signal=sig)) def ichimoku(s, n1=9, n2=26, n3=52): conv = (hhv(s, n1) + llv(s, n1)) / 2 base = (hhv(s, n2) + llv(s, n2)) / 2 spana = (conv + base) / 2 spanb = (hhv(s, n3) + llv(s, n3)) / 2 return DataFrame(dict(conv=conv, base=base, spana=spana.shift(n2), spanb=spanb.shift(n2), lspan=s.close.shift(-n2))) def ultimate(s, n1=7, n2=14, n3=28): cs = s.close.shift(1) bp = s.close - s.low.combine(cs, min) tr = s.high.combine(cs, max) - s.low.combine(cs, min) avg1 = pd.rolling_sum(bp, n1) / pd.rolling_sum(tr, n1) avg2 = pd.rolling_sum(bp, n2) / pd.rolling_sum(tr, n2) avg3 =
pd.rolling_sum(bp, n3)
pandas.rolling_sum
import re import numpy as np import pandas as pd import pytest from woodwork.datacolumn import DataColumn from woodwork.exceptions import ColumnNameMismatchWarning, DuplicateTagsWarning from woodwork.logical_types import ( Categorical, CountryCode, Datetime, Double, Integer, NaturalLanguage, Ordinal, SubRegionCode, ZIPCode ) from woodwork.tests.testing_utils import to_pandas from woodwork.utils import import_or_none dd = import_or_none('dask.dataframe') ks = import_or_none('databricks.koalas') def test_datacolumn_init(sample_series): data_col = DataColumn(sample_series, use_standard_tags=False) # Koalas doesn't support category dtype if not (ks and isinstance(sample_series, ks.Series)): sample_series = sample_series.astype('category') pd.testing.assert_series_equal(to_pandas(data_col.to_series()), to_pandas(sample_series)) assert data_col.name == sample_series.name assert data_col.logical_type == Categorical assert data_col.semantic_tags == set() def test_datacolumn_init_with_logical_type(sample_series): data_col = DataColumn(sample_series, NaturalLanguage) assert data_col.logical_type == NaturalLanguage assert data_col.semantic_tags == set() data_col = DataColumn(sample_series, "natural_language") assert data_col.logical_type == NaturalLanguage assert data_col.semantic_tags == set() data_col = DataColumn(sample_series, "NaturalLanguage") assert data_col.logical_type == NaturalLanguage assert data_col.semantic_tags == set() def test_datacolumn_init_with_semantic_tags(sample_series): semantic_tags = ['tag1', 'tag2'] data_col = DataColumn(sample_series, semantic_tags=semantic_tags, use_standard_tags=False) assert data_col.semantic_tags == set(semantic_tags) def test_datacolumn_init_wrong_series(): error = 'Series must be one of: pandas.Series, dask.Series, koalas.Series, numpy.ndarray, or pandas.ExtensionArray' with pytest.raises(TypeError, match=error): DataColumn([1, 2, 3, 4]) with pytest.raises(TypeError, match=error): DataColumn({1, 2, 3, 4}) def test_datacolumn_init_with_name(sample_series, sample_datetime_series): name = 'sample_series' changed_name = 'changed_name' dc_use_series_name = DataColumn(sample_series) assert dc_use_series_name.name == name assert dc_use_series_name.to_series().name == name warning = 'Name mismatch between sample_series and changed_name. DataColumn and underlying series name are now changed_name' with pytest.warns(ColumnNameMismatchWarning, match=warning): dc_use_input_name = DataColumn(sample_series, name=changed_name) assert dc_use_input_name.name == changed_name assert dc_use_input_name.to_series().name == changed_name warning = 'Name mismatch between sample_datetime_series and changed_name. DataColumn and underlying series name are now changed_name' with pytest.warns(ColumnNameMismatchWarning, match=warning): dc_with_ltype_change = DataColumn(sample_datetime_series, name=changed_name) assert dc_with_ltype_change.name == changed_name assert dc_with_ltype_change.to_series().name == changed_name def test_datacolumn_inity_with_falsy_name(sample_series): falsy_name = 0 warning = 'Name mismatch between sample_series and 0. DataColumn and underlying series name are now 0' with pytest.warns(ColumnNameMismatchWarning, match=warning): dc_falsy_name = DataColumn(sample_series.copy(), name=falsy_name) assert dc_falsy_name.name == falsy_name assert dc_falsy_name.to_series().name == falsy_name def test_datacolumn_init_with_extension_array(): series_categories = pd.Series([1, 2, 3], dtype='category') extension_categories = pd.Categorical([1, 2, 3]) data_col = DataColumn(extension_categories) series = data_col.to_series() assert series.equals(series_categories) assert series.name is None assert data_col.name is None assert data_col.dtype == 'category' assert data_col.logical_type == Categorical series_ints =
pd.Series([1, 2, None, 4], dtype='Int64')
pandas.Series
import importlib import sys import numpy as np import pandas as pd import pytest from sweat import utils from sweat.metrics import power @pytest.fixture() def reload_power_module(): yield key_values = [(key, value) for key, value in sys.modules.items()] for key, value in key_values: if ( key.startswith("sweat.hrm") or key.startswith("sweat.pdm") or key.startswith("sweat.metrics") ): importlib.reload(value) def test_enable_type_casting_module(reload_power_module): pwr = [1, 2, 3] wap = [1, 2, 3] weight = 80 threshold_power = 80 assert isinstance(power.wpk(np.asarray(pwr), weight), np.ndarray) assert isinstance( power.relative_intensity(np.asarray(wap), threshold_power), np.ndarray ) with pytest.raises(TypeError): power.wpk(pwr, weight) with pytest.raises(TypeError): power.relative_intensity(wap, threshold_power) doc_string = power.wpk.__doc__ utils.enable_type_casting(power) assert isinstance(power.wpk(pwr, weight), list) assert isinstance(power.wpk(pd.Series(pwr), weight), pd.Series) assert isinstance(power.wpk(np.asarray(pwr), weight), np.ndarray) assert isinstance(power.relative_intensity(wap, threshold_power), list) assert isinstance( power.relative_intensity(pd.Series(wap), threshold_power), pd.Series ) assert isinstance( power.relative_intensity(np.asarray(wap), threshold_power), np.ndarray ) assert power.wpk.__doc__ == doc_string def test_enable_type_casting_func(reload_power_module): pwr = [1, 2, 3] wap = [1, 2, 3] weight = 80 threshold_power = 80 assert isinstance(power.wpk(np.asarray(pwr), weight), np.ndarray) assert isinstance( power.relative_intensity(np.asarray(wap), threshold_power), np.ndarray ) with pytest.raises(TypeError): power.wpk(pwr, weight) with pytest.raises(TypeError): power.relative_intensity(wap, threshold_power) doc_string = power.wpk.__doc__ wpk = utils.enable_type_casting(power.wpk) assert isinstance(wpk(pwr, weight), list) assert isinstance(wpk(pd.Series(pwr), weight), pd.Series) assert isinstance(wpk(np.asarray(pwr), weight), np.ndarray) with pytest.raises(TypeError): power.relative_intensity(wap, threshold_power) assert power.wpk.__doc__ == doc_string def test_enable_type_casting_all(reload_power_module): pwr = [1, 2, 3] wap = [1, 2, 3] weight = 80 threshold_power = 80 assert isinstance(power.wpk(np.asarray(pwr), weight), np.ndarray) assert isinstance( power.relative_intensity(np.asarray(wap), threshold_power), np.ndarray ) with pytest.raises(TypeError): power.wpk(pwr, weight) with pytest.raises(TypeError): power.relative_intensity(wap, threshold_power) doc_string = power.wpk.__doc__ utils.enable_type_casting() assert isinstance(power.wpk(pwr, weight), list) assert isinstance(power.wpk(pd.Series(pwr), weight), pd.Series) assert isinstance(power.wpk(np.asarray(pwr), weight), np.ndarray) assert isinstance(power.relative_intensity(wap, threshold_power), list) assert isinstance( power.relative_intensity(
pd.Series(wap)
pandas.Series
# coding=utf-8 import pathlib import numpy as np import pandas as pd import plotly.express as px def main(): ''' 生成树状图 ''' df = px.data.gapminder().query("year == 2007") fig = px.treemap(df, path=['continent', 'country'], values='pop', color='lifeExp', hover_data=['iso_alpha'], color_continuous_scale='RdBu', color_continuous_midpoint=np.average(df['lifeExp'], weights=df['pop'])) fig.show() def gen_report(file_path): comps = ['腾讯', '阿里', '百度', '京东', '美团', '小米', '字节跳动', '滴滴'] df_dict = pd.read_excel(file_path, comps) for k, v in df_dict.items(): v['投资主体'] = k # domain_set = set().union(* [set(df['行业']) for df in df_dict.values()]) # df_all = pd.concat(df_dict.values()) df_all =
pd.concat(df_dict)
pandas.concat
# -*- coding: utf-8 -*- # script import wikilanguages_utils # app import flask from flask import send_from_directory from dash import Dash import dash import dash_html_components as html import dash_core_components as dcc import dash_table_experiments as dt from dash.dependencies import Input, Output, State # viz import plotly import plotly.plotly as py import plotly.figure_factory as ff # data from urllib.parse import urlparse, parse_qs import pandas as pd import sqlite3 # other import logging from logging.handlers import RotatingFileHandler import datetime import time print ('\n\n\n*** START WCDO APP:'+str(datetime.datetime.now())) databases_path = '/srv/wcdo/databases/' territories = wikilanguages_utils.load_languageterritories_mapping() languages = wikilanguages_utils.load_wiki_projects_information(territories); wikilanguagecodes = languages.index.tolist() wikipedialanguage_numberarticles = wikilanguages_utils.load_wikipedia_language_editions_numberofarticles(wikilanguagecodes) for languagecode in wikilanguagecodes: if languagecode not in wikipedialanguage_numberarticles: wikilanguagecodes.remove(languagecode) languageswithoutterritory=['eo','got','ia','ie','io','jbo','lfn','nov','vo'] # Only those with a geographical context for languagecode in languageswithoutterritory: wikilanguagecodes.remove(languagecode) closest_langs = wikilanguages_utils.obtain_closest_for_all_languages(wikipedialanguage_numberarticles, wikilanguagecodes, 4) country_names, regions, subregions = wikilanguages_utils.load_iso_3166_to_geographical_regions() # LET THE SHOW START app = flask.Flask(__name__) if __name__ == '__main__': handler = RotatingFileHandler('wcdo_app.log', maxBytes=10000, backupCount=1) handler.setLevel(logging.INFO) app.logger.addHandler(handler) app.run(host='0.0.0.0') @app.route('/') def main(): return flask.redirect('https://meta.wikimedia.org/wiki/Wikipedia_Cultural_Diversity_Observatory') ### DASH APP ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### dash_app1 = Dash(__name__, server = app, url_base_pathname='/language_territories_mapping/') df = pd.read_csv(databases_path + 'language_territories_mapping.csv',sep='\t',na_filter = False) #df = df[['territoryname','territorynameNative','QitemTerritory','WikimediaLanguagecode','demonym','demonymNative','ISO3166','ISO31662']] df.WikimediaLanguagecode = df['WikimediaLanguagecode'].str.replace('-','_') df.WikimediaLanguagecode = df['WikimediaLanguagecode'].str.replace('be_tarask', 'be_x_old') df.WikimediaLanguagecode = df['WikimediaLanguagecode'].str.replace('nan', 'zh_min_nan') df = df.set_index('WikimediaLanguagecode') df['Language Name'] = pd.Series(languages[['languagename']].to_dict('dict')['languagename']) df = df.reset_index() columns_dict = {'Language Name':'Language','WikimediaLanguagecode':'Wiki','QitemTerritory':'WD Qitem','territoryname':'Territory','territorynameNative':'Territory (Local)','demonymNative':'Demonyms (Local)','ISO3166':'ISO 3166', 'ISO3662':'ISO 3166-2','country':'Country'} df=df.rename(columns=columns_dict) title = 'Language Territories Mapping' dash_app1.title = title dash_app1.layout = html.Div([ html.H3(title, style={'textAlign':'center'}), dt.DataTable( columns=['Wiki','Language','WD Qitem','Territory (Local)','Demonyms (Local)','ISO3166','ISO31662'], rows=df.to_dict('records'), filterable=True, sortable=True, id='datatable-languageterritories' ), html.A(html.H5('Home - Wikipedia Cultural Diverstiy Observatory'), href='https://meta.wikimedia.org/wiki/Wikipedia_Cultural_Diversity_Observatory', target="_blank", style={'textAlign': 'right', 'text-decoration':'none'}) ], className="container") ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### DASH APP ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### dash_app2 = Dash(__name__, server = app, url_base_pathname='/list_of_wikipedias_by_cultural_context_content/') conn = sqlite3.connect(databases_path + 'wcdo_stats.db'); cursor = conn.cursor() df = pd.DataFrame(wikilanguagecodes) df = df.set_index(0) df['wp_number_articles']= pd.Series(wikipedialanguage_numberarticles) # CCC % query = 'SELECT set1, abs_value, rel_value FROM wcdo_intersections WHERE set1descriptor = "wp" AND set2descriptor = "ccc" AND content = "articles" AND set1=set2 AND measurement_date IN (SELECT MAX(measurement_date) FROM wcdo_intersections) ORDER BY abs_value DESC;' rank_dict = {}; i=1 lang_dict = {} abs_rel_value_dict = {} abs_value_dict = {} for row in cursor.execute(query): lang_dict[row[0]]=languages.loc[row[0]]['languagename'] abs_rel_value_dict[row[0]]=round(row[2],2) abs_value_dict[row[0]]=int(row[1]) rank_dict[row[0]]=i i=i+1 df['Language'] = pd.Series(lang_dict) df['Nº'] = pd.Series(rank_dict) df['ccc_percent'] = pd.Series(abs_rel_value_dict) df['ccc_number_articles'] = pd.Series(abs_value_dict) df['Region']=languages.region for x in df.index.values.tolist(): if ';' in df.loc[x]['Region']: df.at[x, 'Region'] = df.loc[x]['Region'].split(';')[0] df['Subregion']=languages.subregion for x in df.index.values.tolist(): if ';' in df.loc[x]['Subregion']: df.at[x, 'Subregion'] = df.loc[x]['Subregion'].split(';')[0] # Renaming the columns columns_dict = {'Language':'Language','wp_number_articles':'Articles','ccc_number_articles':'CCC art.','ccc_percent':'CCC %'} df=df.rename(columns=columns_dict) df = df.reset_index() df = df.rename(columns={0: 'Wiki'}) df = df.fillna('') title = 'Lists of Wikipedias by Cultural Context Content' dash_app2.title = title dash_app2.layout = html.Div([ html.H3(title, style={'textAlign':'center'}), dt.DataTable( rows=df.to_dict('records'), columns = ['Nº','Language','Wiki','Articles','CCC art.','CCC %','Subregion','Region'], row_selectable=True, filterable=True, sortable=True, selected_row_indices=[], id='datatable-cccextent' ), html.Div(id='selected-indexes'), dcc.Graph( id='graph-cccextent' ), html.A(html.H5('Home - Wikipedia Cultural Diverstiy Observatory'), href='https://meta.wikimedia.org/wiki/Wikipedia_Cultural_Diversity_Observatory', target="_blank", style={'textAlign': 'right', 'text-decoration':'none'}) ], className="container") @dash_app2.callback( Output('datatable-cccextent', 'selected_row_indices'), [Input('graph-cccextent', 'clickData')], [State('datatable-cccextent', 'selected_row_indices')]) def app2_update_selected_row_indices(clickData, selected_row_indices): if clickData: for point in clickData['points']: if point['pointNumber'] in selected_row_indices: selected_row_indices.remove(point['pointNumber']) else: selected_row_indices.append(point['pointNumber']) return selected_row_indices @dash_app2.callback( Output('graph-cccextent', 'figure'), [Input('datatable-cccextent', 'rows'), Input('datatable-cccextent', 'selected_row_indices')]) def app2_update_figure(rows, selected_row_indices): dff = pd.DataFrame(rows) fig = plotly.tools.make_subplots( rows=3, cols=1, subplot_titles=('CCC Articles', 'CCC %', 'Wikipedia articles',), shared_xaxes=True) marker = {'color': ['#0074D9']*len(dff)} for i in (selected_row_indices or []): marker['color'][i] = '#FF851B' fig.append_trace({ 'name':'', 'hovertext':'articles', 'x': dff['Language'], 'y': dff['CCC art.'], 'type': 'bar', 'marker': marker }, 1, 1) fig.append_trace({ 'name':'', 'hovertext':'percent', 'x': dff['Language'], 'y': dff['CCC %'], 'type': 'bar', 'marker': marker }, 2, 1) fig.append_trace({ 'name':'', 'hovertext':'articles', 'x': dff['Language'], 'y': dff['Articles'], 'type': 'bar', 'marker': marker }, 3, 1) fig['layout']['showlegend'] = False fig['layout']['height'] = 800 fig['layout']['margin'] = { 'l': 40, 'r': 10, 't': 60, 'b': 200 } fig['layout']['yaxis3']['type'] = 'log' return fig ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### DASH APP ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### dash_app3 = Dash(__name__, server = app, url_base_pathname='/list_of_language_territories_by_cultural_context_content/') # QUESTION: What is the extent of Cultural Context Content in each language edition broken down to territories? # OBTAIN THE DATA. conn = sqlite3.connect(databases_path + 'wcdo_stats.db'); cursor = conn.cursor() # CCC query = 'SELECT set1 as languagecode, set2descriptor as Qitem, abs_value as CCC_articles, ROUND(rel_value,2) CCC_percent FROM wcdo_intersections WHERE set1descriptor = "ccc" AND set2 = "ccc" AND content = "articles" AND measurement_date IN (SELECT MAX(measurement_date) FROM wcdo_intersections) ORDER BY set1, set2descriptor DESC;' df1 = pd.read_sql_query(query, conn) # GL query = 'SELECT set1 as languagecode2, set2descriptor as Qitem2, abs_value as CCC_articles_GL, ROUND(rel_value,2) CCC_percent_GL FROM wcdo_intersections WHERE set1descriptor = "ccc" AND set2 = "ccc_geolocated" AND content = "articles" AND measurement_date IN (SELECT MAX(measurement_date) FROM wcdo_intersections) ORDER BY set1, set2descriptor DESC;' df2 = pd.read_sql_query(query, conn) # KW query = 'SELECT set1 as languagecode3, set2descriptor as Qitem3, abs_value as CCC_articles_KW, ROUND(rel_value,2) CCC_percent_KW FROM wcdo_intersections WHERE set1descriptor = "ccc" AND set2 = "ccc_keywords" AND content = "articles" AND measurement_date IN (SELECT MAX(measurement_date) FROM wcdo_intersections) ORDER BY set1, set2descriptor DESC;' df3 = pd.read_sql_query(query, conn) dfx = pd.concat([df1, df2, df3], axis=1) dfx = dfx[['languagecode','Qitem','CCC_articles','CCC_percent','CCC_articles_GL','CCC_percent_GL','CCC_articles_KW','CCC_percent_KW']] columns = ['territoryname','territorynameNative','country','ISO3166','ISO31662','subregion','region'] territoriesx = list() for index in dfx.index.values: qitem = dfx.loc[index]['Qitem'] languagecode = dfx.loc[index]['languagecode'] languagename = languages.loc[languagecode]['languagename'] current = [] try: current = territories.loc[territories['QitemTerritory'] == qitem].loc[languagecode][columns].values.tolist() current.append(languagename) except: current = [None,None,None,None,None,None,None,languagename] pass territoriesx.append(current) columns.append('languagename') all_territories = pd.DataFrame.from_records(territoriesx, columns=columns) df =
pd.concat([dfx, all_territories], axis=1)
pandas.concat
from dash import dcc, html, Input, Output, callback from mplcursors import HoverMode import numpy as np import pandas as pd from plotly.subplots import make_subplots import plotly.graph_objects as go import dash_bootstrap_components as dbc layout = html.Div( [ html.H2('Bitcoin ROI As Measured From The Market Cycle Bottom'), html.Div(dbc.Spinner(size='lg', color='black', type='border'), id='btc_roi_cycle_bottom'), html.Hr(), html.Br(), html.Div( [ ] ) ] ) @callback( Output('btc_roi_cycle_bottom', 'children'), Input('df-data', 'data')) def monthly_roi(data): df = pd.DataFrame(data) df['Date'] =
pd.to_datetime(df['Date'])
pandas.to_datetime
# Copyright (c) 2020 Civic Knowledge. This file is licensed under the terms of the # MIT license included in this distribution as LICENSE import logging import re from collections import defaultdict, deque from pathlib import Path from time import time import pandas as pd from synpums.util import * '' _logger = logging.getLogger(__name__) def sample_to_sum(N, df, col, weights): """Sample a number of records from a dataset, then return the smallest set of rows at the front of the dataset where the weight sums to more than N""" t = df.sample(n=N, weights=weights, replace=True) # Get the number of records that sum to N. arg = t[col].cumsum().sub(N).abs().astype(int).argmin() return t.iloc[:arg + 1] def rms(s): """Root mean square""" return np.sqrt(np.sum(np.square(s))) def vector_walk_callback(puma_task, tract_task, data, memo): pass def make_acs_target_df(acs, columns, geoid): t = acs.loc[geoid] target_map = {c + '_m90': c for c in columns if "WGTP" not in columns} target_df = pd.DataFrame({ 'est': t[target_map.values()], 'm90': t[target_map.keys()].rename(target_map) }) target_df['est_min'] = target_df.est - target_df.m90 target_df['est_max'] = target_df.est + target_df.m90 target_df.loc[target_df.est_min < 0, 'est_min'] = 0 return target_df.astype('Int64') def geoid_path(geoid): from pathlib import Path from geoid.acs import AcsGeoid go = AcsGeoid.parse(geoid) try: return Path(f"{go.level}/{go.stusab}/{go.county:03d}/{str(go)}.csv") except AttributeError: return Path(f"{go.level}/{go.stusab}/{str(go)}.csv") class AllocationTask(object): """Represents the allocation process to one tract""" def __init__(self, region_geoid, puma_geoid, acs_ref, hh_ref, cache_dir): self.region_geoid = region_geoid self.puma_geoid = puma_geoid self.acs_ref = acs_ref self.hh_ref = hh_ref self.cache_dir = cache_dir self.sample_pop = None self.sample_weights = None self.unallocated_weights = None # Initialized to the puma weights, gets decremented self.target_marginals = None self.allocated_weights = None self.household_count = None self.population_count = None self.gq_count = None self.gq_cols = None self.sex_age_cols = None self.hh_size_cols = None self.hh_race_type_cols = None self.hh_eth_type_cols = None self.hh_income_cols = None self._init = False self.running_allocated_marginals = None # A version of the sample_pop constructed by map_cp, added as an instance var so # the probabilities can be manipulated during the vector walk. self.cp_df = None self.cp_prob = None @property def row(self): from geoid.acs import AcsGeoid tract = AcsGeoid.parse(self.region_geoid) return [tract.state, tract.stusab, tract.county, self.region_geoid, self.puma_geoid, str(self.acs_ref), str(self.hh_ref)] def init(self, use_sample_weights=False, puma_weights=None): """Load all of the data, just before running the allocation""" if isinstance(self.hh_ref, pd.DataFrame): hh_source = self.hh_ref else: hh_source = pd.read_csv(self.hh_ref, index_col='SERIALNO', low_memory=False) \ .drop(columns=['geoid'], errors='ignore').astype('Int64') if isinstance(self.acs_ref, pd.DataFrame): acs = self.acs_ref else: acs = pd.read_csv(self.acs_ref, index_col='geoid', low_memory=False) # These are only for debugging. #self.hh_source = hh_source #self.tract_acs = acs return self._do_init(hh_source, acs, puma_weights=puma_weights) def _do_init(self, hh_source, acs, puma_weights=None): self.serialno = hh_source.index # Col 0 is the WGTP column w_cols = [c for c in hh_source.columns if "WGTP" in c] not_w_cols = [c for c in hh_source.columns if "WGTP" not in c] # Not actually a sample pop --- populations are supposed to be unweighted self.sample_pop = hh_source[['WGTP'] + not_w_cols].iloc[:, 1:].reset_index(drop=True).astype(int) # Shouldn't this be: # self.sample_pop = hh_source[not_w_cols].reset_index(drop=True).astype(int) self.sample_weights = hh_source.iloc[:, 0].reset_index(drop=True).astype(int) assert self.sample_pop.shape[0] == self.sample_weights.shape[0] not_w_cols = [c for c in hh_source.columns if "WGTP" not in c] self.target_marginals = make_acs_target_df(acs, not_w_cols, self.region_geoid) self.household_count = acs.loc[self.region_geoid].b11016_001 self.population_count = acs.loc[self.region_geoid].b01003_001 self.gq_count = acs.loc[self.region_geoid].b26001_001 self.total_count = self.household_count + self.gq_count self.allocated_weights = np.zeros(len(self.sample_pop)) self.unallocated_weights = puma_weights if puma_weights is not None else self.sample_weights.copy() self.running_allocated_marginals = pd.Series(0, index=self.target_marginals.index) # Sample pop, normalized to unit length to speed up cosine similarity self.sample_pop_norm = vectors_normalize(self.sample_pop.values) # Column sets self.gq_cols = ['b26001_001'] self.sex_age_cols = [c for c in hh_source.columns if c.startswith('b01001')] self.hh_size_cols = [c for c in hh_source.columns if c.startswith('b11016')] p = re.compile(r'b11001[^hi]_') self.hh_race_type_cols = [c for c in hh_source.columns if p.match(c)] p = re.compile(r'b11001[hi]_') self.hh_eth_type_cols = [c for c in hh_source.columns if p.match(c)] p = re.compile(r'b19025') self.hh_income_cols = [c for c in hh_source.columns if p.match(c)] # We will use this identity in the numpy version of step_scjhedule # assert all((self.cp.index / 2).astype(int) == self['index']) self.rng = np.random.default_rng() self.make_cp(self.sample_pop) self._init = True return acs def make_cp(self, sp): """Make a version of the sample population with two records for each row, one the negative of the one before it. This is used to generate rows that can be used in the vector walk.""" self.cp = pd.concat([sp, sp]).sort_index().reset_index() self.cp.insert(1, 'sign', 1) self.cp.insert(2, 'select_weight', 0) self.cp.iloc[0::2, 1:] = self.cp.iloc[0::2, 1:] * -1 # flip sign on the marginal counts self.update_cp() return self.cp def update_cp(self): self.cp.loc[0::2, 'select_weight'] = self.allocated_weights.tolist() self.cp.loc[1::2, 'select_weight'] = self.unallocated_weights.tolist() def set_cp_prob(self, cp_prob): pass @property def path(self): return Path(self.cache_dir).joinpath(geoid_path(str(self.region_geoid))).resolve() @property def pums(self): """Return the PUMS household and personal records for this PUMA""" from .pums import build_pums_dfp_dfh from geoid.acs import Puma puma = Puma.parse(self.puma_geoid) dfp, dfh = build_pums_dfp_dfh(puma.stusab, year=2018, release=5) return dfp, dfh def get_saved_frame(self): if self.path.exists(): return pd.read_csv(self.path.resolve(), low_memory=False) else: return None @property def results_frame(self): return pd.DataFrame({ 'geoid': self.region_geoid, 'serialno': self.serialno, 'weight': self.allocated_weights }) def save_frame(self): self.path.parent.mkdir(parents=True, exist_ok=True) df = pd.DataFrame({ 'serialno': self.serialno, 'weight': self.allocated_weights }) df = df[df.weight > 0] df.to_csv(self.path, index=False) def load_frame(self): df = pd.read_csv(self.path, low_memory=False) self.init() aw, _ = df.align(self.sample_weights, axis=0) self.allocated_weights = df.set_index('serialno').reindex(self.serialno).fillna(0).values[:, 0] def inc(self, rown, n=1): if self.allocated_weights[rown] > 0 or n > 0: self.allocated_weights[rown] += n # Increment the count column self.running_allocated_marginals += n * self.sample_pop.iloc[rown] @property def allocated_pop(self): return self.sample_pop.mul(self.allocated_weights, axis=0) @property def allocated_marginals(self): t = self.allocated_pop.sum() t.name = 'allocated_marginals' return t def calc_region_sum(self): return self.allocated_weights.sum() def column_diff(self, column): return (self.target_marginals.est[column] - self.allocated_marginals[column]) @property def target_diff(self): return self.target_marginals.est - self.allocated_marginals @property def rel_target_diff(self): return ((self.target_marginals.est - self.allocated_marginals) / self.target_marginals.est) \ .replace({np.inf: 0, -np.inf: 0}) @property def running_target_diff(self): return self.target_marginals.est - self.running_allocated_marginals @property def error_frame(self): return self.target_marginals \ .join(self.allocated_marginals.to_frame('allocated')) \ .join(self.m90_error.to_frame('m_90')) \ .join(self.target_diff.to_frame('diff')) \ .join(self.rel_target_diff.to_frame('rel')) @property def total_error(self): """Magnitude of the error vector""" return np.sqrt(np.sum(np.square(self.target_diff))) @property def running_total_error(self): """Magnitude of the error vector""" return np.sqrt(np.sum(np.square(self.running_target_diff))) @property def m90_error(self): """Error that is relative to the m90 limits. Any value within the m90 limits is an error of 0""" # There the allocated marginal is withing the m90 range, return the target marginal estimate # otherwise, return amount of the allocated marginals that is outside of the m90 range t = self.allocated_marginals - self.target_marginals.est t[self.allocated_marginals.between(self.target_marginals.est_min, self.target_marginals.est_max)] = 0 t[t > self.target_marginals.m90] = t - self.target_marginals.m90 t[t < -1 * self.target_marginals.m90] = t + self.target_marginals.m90 return t @property def m90_total_error(self): return np.sqrt(np.sum(np.square(self.m90_error))) @property def m90_rms_error(self): """RMS error of the m90 differences. Like m90 total error, but divides by the number of marginal value variables""" return np.sqrt(np.sum(np.square(self.m90_total_error)) / len(self.target_marginals)) # Equivalent to cosine similarity when the vectors are both normalized def cosine_similarities(self): '''Calculate the cosine similaries for all of the sample population records to the normalized error vector''' return self.sample_pop_norm.dot(vector_normalize(self.target_diff.values).T) def sample_multicol(self, columns): targets = self.target_marginals.est frames = [] for col in columns: target = targets.loc[col] if target > 0: t = self.sample_pop[self.sample_pop[col] > 0] w = self.sample_weights[self.sample_pop[col] > 0] if len(t) > 0 and w.sum() > 0: frames.append(sample_to_sum(target, t, col, w)) if frames: return pd.concat(frames) else: return None def _pop_to_weights(self, pop): '''Return weights by counting the records in a population''' t = pop.copy() t.insert(0, 'dummy', 1) t = t.groupby(t.index).dummy.count() t = t.align(self.sample_weights)[0].fillna(0).values return t def initialize_weights_set_sample(self, f=0.85): """Sample from the sample population one column at a time, in groups of columns that describe exclusive measures ( a household can contribute to only one marginal column) Then, resample the population to match the correct number of households""" assert self._init if f == 0: return frames = [ self.sample_multicol(self.hh_race_type_cols + self.gq_cols), self.sample_multicol(self.hh_eth_type_cols), self.sample_multicol(self.sex_age_cols), ] frames = [f for f in frames if f is not None] if len(frames) == 0: return # An initial population, which is of the wrong size, so just # convert it to weights t = pd.concat(frames) initial_weights = self._pop_to_weights(t) # These use those weights to re-sample the population. target_count = self.household_count + self.gq_count # Sample some fraction less than the target count, so we can vector walk to the final value target_count = int(target_count * f) t = self.sample_pop.sample(target_count, weights=initial_weights, replace=True) self.allocated_weights = self._pop_to_weights(t) self.unallocated_weights -= self.allocated_weights self.running_allocated_marginals = self.allocated_marginals def _rake(self, f=1): # Sort the columns by the error cols = list(self.error_frame.sort_values('diff', ascending=False).index) # cols = random.sample(list(self.sample_pop.columns), len(self.sample_pop.columns)): for col in cols: b = self.sample_pop[col].mul(self.allocated_weights, axis=0).sum() if b != 0: a = self.target_marginals.loc[col].replace({pd.NA: 0}).est r = a / b * f self.allocated_weights[self.sample_pop[col] > 0] *= r self.allocated_weights = np.round(self.allocated_weights, 0) def initialize_weights_raking(self, n_iter=5, initial_weights='sample'): """Set the allocated weights to an initial value by 1-D raking, adjusting the weights to fit the target marginal value for each column. """ if initial_weights == 'sample': assert self.allocated_weights.shape == self.sample_weights.shape self.allocated_weights = self.sample_weights else: self.allocated_weights = np.ones(self.allocated_weights.shape) for i in range(n_iter): # Sort the columns by the error cols = list(self.error_frame.sort_values('diff', ascending=False).index) # cols = random.sample(list(self.sample_pop.columns), len(self.sample_pop.columns)): for col in cols: b = self.sample_pop[col].mul(self.allocated_weights, axis=0).sum() if b != 0: a = self.target_marginals.loc[col].replace({pd.NA: 0}).est r = a / b self.allocated_weights[self.sample_pop[col] > 0] *= r self.allocated_weights = np.round(self.allocated_weights, 0) try: self.allocated_weights = self.allocated_weights.values except AttributeError: pass def initialize_weights_sample(self): """Initialize the allocated weights proportional to the sample population weights, adjusted to the total population. """ self.allocated_weights = (self.sample_weights / (self.sample_weights.sum())).multiply( self.household_count).values.round(0).astype(float) self.unallocated_weights -= self.allocated_weights def step_schedule_np(self, i, N, te, td, step_size_max, step_size_min, reversal_rate): """ Return the next set of samples to add or remove :param i: Loop index :param N: Max number of iterations :param cp: Sample population, transformed by make_cp :param te: Total error :param td: Marginals difference vector :param step_size_max: Maximum step size :param step_size_min: Minimum step size :param reversal_rate: Probability to allow an increase in error :param p: Probability to select each sample row. If None, use column 2 of cp :return: Records to add or remove from the allocated population """ # Compute change in each column of the error vector for adding or subtracting in # each of the sample population records # idx 0 is the index of the row in self.sample_pop # idx 1 is the sign, 1 or -1 # idx 2 is the selection weight # idx 3 and up are the census count columns expanded_pop = self.cp.values.astype(int) p = expanded_pop[:, 2] # For each new error vector, compute total error ( via vector length). By # removing the current total error, we get the change in total error for # adding or removing each row. ( positive values are better ) total_errors = (np.sqrt(np.square(expanded_pop[:, 3:] + td).sum(axis=1))) - te # For error reducing records, sort them and then mutliply # the weights by a linear ramp, so the larger values of # reduction get a relative preference over the lower reduction values. gt0 = np.argwhere(total_errors > 0).flatten() # Error reducing records srt = np.argsort(total_errors) # Sorted by error reducing_error = srt[np.in1d(srt, gt0)][::-1] # get the intersection. These are index values into self.cp # Selection probabilities, multiply by linear ramp to preference higher values. reducing_p = ((p[reducing_error]) * np.linspace(1, 0, len(reducing_error))) rps = np.sum(reducing_p) if rps > 0: reducing_p = np.nan_to_num(reducing_p / rps) else: reducing_p = [] increasing_error = np.argwhere(total_errors < 0).flatten() # Error increasing indexes increasing_p = p[increasing_error].flatten().clip(min=0) ips = np.sum(increasing_p) if ips != 0: increasing_p = np.nan_to_num(increasing_p / ips) # normalize to 1 else: increasing_p =[] # Min number of record to return in this step. The error-increasing records are in # addition to this number step_size = int((step_size_max - step_size_min) * ((N - i) / N) + step_size_min) # Randomly select from each group of increasing or reducing indexes. cc = [] if len(increasing_error) > 0 and ips > 0: cc.append(self.rng.choice(increasing_error, int(step_size * reversal_rate), p=increasing_p)) if len(reducing_error) > 0 and rps > 0: cc.append(self.rng.choice(reducing_error, int(step_size), p=reducing_p)) idx = np.concatenate(cc) # Columns are : 'index', 'sign', 'delta_err' delta_err = total_errors[idx].reshape(-1, 1).round(0).astype(int) return np.hstack([expanded_pop[idx][:, 0:2], delta_err]) # Return the index and sign columns of cp def _loop_asignment(self, ss): for j, (idx, sgn, *_) in enumerate(ss): idx = int(idx) if (self.allocated_weights[idx] > 0 and sgn < 0) or \ (self.unallocated_weights[idx]>0 and sgn > 0) : self.running_allocated_marginals += (sgn * self.sample_pop.iloc[idx]) self.allocated_weights[idx] += sgn # Increment the count column self.unallocated_weights[idx] -= sgn def _numpy_assignment(self, ss): # The following code is the numpy equivalent of the loop version of # assignment to the allocated marginals. It is about 20% faster than the loop # This selection on ss is the equivalent to this if statement in the loop version: # if self.allocated_weights[idx] > 0 or sgn > 0: # ss = ss[np.logical_or( np.isin(ss[:, 0], np.nonzero(self.allocated_weights > 0)), # self.allocated_weights[idx] > 0 ss[:, 1] > 0) # sgn > 0 ] # Assign the steps from the step schedule into the allocated weights if len(ss): idx = ss[:, 0].astype(int) sgn = ss[:, 1] # Update all weights by the array of signs self.allocated_weights[idx] += sgn # Don't allow negative weights self.allocated_weights[self.allocated_weights < 0] = 0 # Add in the signed sampled to the running marginal, to save the cost # of re-calculating the marginals. self.running_allocated_marginals += \ np.multiply(self.sample_pop.iloc[idx], sgn.reshape(ss.shape[0], -1)).sum() def _vector_walk(self, N=2000, min_iter=750, target_error=0.03, step_size_min=3, step_size_max=15, reversal_rate=.3, max_ssm=250, cb=None, memo=None): """Allocate PUMS records to this object's region. Args: N: min_iter: target_error: step_size_min: step_size_max: reversal_rate: max_ssm: """ assert self._init if target_error < 1: target_error = self.household_count * target_error min_allocation = None # allocated weights at last minimum steps_since_min = 0 min_error = self.total_error self.running_allocated_marginals = self.allocated_marginals if cb: # vector_walk_callback(puma_task, tract_task, data, memo): cb(memo.get('puma_task'), self, None, memo) for i in range(N): td = self.running_target_diff.values.astype(int) te = vector_length(td) # The unallocated weights can be updated both internally and externally -- # the array can be shared among all tracts in the puma self.update_cp() if te < min_error: min_error = te min_allocation = self.allocated_weights steps_since_min = 0 else: steps_since_min += 1 min_error = min(te, min_error) if (i > min_iter and te < target_error) or steps_since_min > max_ssm: break try: ss = self.step_schedule_np(i, N, te, td, step_size_max, step_size_min, reversal_rate) self._loop_asignment(ss) yield (i, te, min_error, steps_since_min, len(ss)) except ValueError as e: # Usually b/c numpy choice() got an empty array pass print(e) raise if min_allocation is not None: self.allocated_weights = min_allocation def vector_walk(self, N=2000, min_iter=750, target_error=0.03, step_size_min=3, step_size_max=10, reversal_rate=.3, max_ssm=250, callback=None, memo=None, stats = True): """Consider the target state and each household to be a vector. For each iteration select a household vector with the best cosine similarity to the vector to the target and add that household to the population. """ assert self._init rows = [] ts = time() errors = deque(maxlen=20) errors.extend([self.total_error] * 20) g = self._vector_walk( N=N, min_iter=min_iter, target_error=target_error, step_size_min=step_size_min, step_size_max=step_size_max, reversal_rate=reversal_rate, max_ssm=max_ssm, cb=callback, memo=memo) if stats is not True: list(g) return [] else: for i, te, min_error, steps_since_min, n_iter in g : d = {'i': i, 'time': time() - ts, 'step_size': n_iter, 'error': te, 'target_error': target_error, 'total_error': te, 'size': np.sum(self.allocated_weights), 'ssm': steps_since_min, 'min_error': min_error, 'mean_error': np.mean(errors), 'std_error': np.std(errors), 'uw_sum': np.sum(self.unallocated_weights), 'total_count': self.total_count } rows.append(d) errors.append(te) if callback and i % 10 == 0: # vector_walk_callback(puma_task, tract_task, data, memo): callback(None, self, None, memo) return rows @classmethod def get_us_tasks(cls, cache_dir, sl='tract', year=2018, release=5, limit=None, ignore_completed=True): """Return all of the tasks for all US states""" from geoid.censusnames import stusab tasks = [] for state in stusab.values(): state_tasks = cls.get_state_tasks(cache_dir, state, sl, year, release, limit, ignore_completed) tasks.extend(state_tasks) return tasks @classmethod def get_tasks(cls, cache_dir, state, sl='tract', year=2018, release=5, limit=None, use_tqdm=False, ignore_completed=True): if state.upper() == 'US': return cls.get_us_tasks(cache_dir, sl, year, release, limit, use_tqdm, ignore_completed) else: return cls.get_state_tasks(cache_dir, state, sl, year, release, limit, ignore_completed) @classmethod def get_state_tasks(cls, cache_dir, state, sl='tract', year=2018, release=5, limit=None, ignore_completed=True): """Fetch ( possibly download) the source data to generate allocation tasks, and cache the data if a cache_dir is provided""" from .acs import puma_tract_map from synpums import build_acs, build_pums_households from functools import partial import pickle _logger.info(f'Loading tasks for {state} from cache {cache_dir}') cp = Path(cache_dir).joinpath('tasks', 'source', f"{state}-{year}-{release}/") cp.mkdir(parents=True, exist_ok=True) asc_p = cp.joinpath("acs.csv") hh_p = cp.joinpath("households.csv") tasks_p = cp.joinpath("tasks.pkl") if limit: from itertools import islice limiter = partial(islice, limit) else: def limiter(g, *args, **kwargs): yield from g if tasks_p and tasks_p.exists(): with tasks_p.open('rb') as f: _logger.debug(f"Returning cached tasks from {str(tasks_p)}") return pickle.load(f) # Cached ACS files if asc_p and asc_p.exists(): tract_acs = pd.read_csv(asc_p, index_col='geoid', low_memory=False) else: tract_acs = build_acs(state, sl, year, release) if asc_p: tract_acs.to_csv(asc_p, index=True) # Cached Households if hh_p and hh_p.exists(): households = pd.read_csv(hh_p, index_col='SERIALNO', low_memory=False) else: households = build_pums_households(state, year=year, release=release) if hh_p: households.to_csv(hh_p, index=True) hh = households.groupby('geoid') hh_file_map = {} for key, g in hh: puma_p = cp.joinpath(f"pumas/{key}.csv") puma_p.parent.mkdir(parents=True, exist_ok=True) _logger.debug(f"Write puma file {str(puma_p)}") g.to_csv(puma_p) hh_file_map[key] = puma_p pt_map = puma_tract_map() tasks = [] for tract_geoid, targets in limiter(tract_acs.iterrows(), desc='Generate Tasks'): try: puma_geoid = pt_map[tract_geoid] t = AllocationTask(tract_geoid, puma_geoid, asc_p, hh_file_map[puma_geoid], cache_dir) if not t.path.exists() or ignore_completed is False: tasks.append(t) except Exception as e: print("Error", tract_geoid, type(e), e) if tasks_p: with tasks_p.open('wb') as f: _logger.debug(f"Write tasks file {str(tasks_p)}") pickle.dump(tasks, f, pickle.HIGHEST_PROTOCOL) return tasks def run(self, *args, callback=None, memo=None, **kwargs): self.init() self.initialize_weights_sample() rows = self.vector_walk(*args, callback=callback, memo=memo, **kwargs) self.save_frame() return rows class PumaAllocator(object): """Simultaneously allocate all of the tracts in a pums, attempting to reduce the error between the sum of the allocated weights and the PUMS weights""" def __init__(self, puma_geoid, tasks, cache_dir, state, year=2018, release=5): self.cache_dir = cache_dir self.puma_geoid = puma_geoid self.tasks = tasks self.year = year self.release = release self.state = state pums_files = [task.hh_ref for task in self.tasks] assert all([e == pums_files[0] for e in pums_files]) self.pums_file = pums_files[0] self._puma_target_marginals = None self._puma_allocated_marginals = None self._puma_max_weights = None self._puma_allocated_weights = None self._puma_unallocated_weights = None self.pums = pd.read_csv(pums_files[0], low_memory=False) self.weights = pd.DataFrame({ 'allocated': 0, 'pums': self.pums.WGTP, # Original PUMS weights 'remaining': self.pums.WGTP # Remaining }) self.prob = None self.gq_cols = None self.sex_age_cols = None self.hh_size_cols = None self.hh_race_type_cols = None self.hh_eth_type_cols = None self.hh_income_cols = None self.replicate = 0 def init(self, init_method='sample'): """Initialize the weights of all of the tasks""" from tqdm import tqdm self.hh_ref = hh_source = pd.read_csv(self.tasks[0].hh_ref, index_col='SERIALNO', low_memory=False) \ .drop(columns=['geoid'], errors='ignore').astype('Int64') self._puma_max_weights = hh_source.iloc[:, 0].reset_index(drop=True).astype(int) self._puma_unallocated_weights = self._puma_max_weights.copy() for task in tqdm(self.tasks): task.init(puma_weights=self._puma_unallocated_weights) if init_method == 'sample': self.initialize_weights_sample(task) if init_method == 'set': task.initialize_weights_set_sample() t0 = self.tasks[0] # Just to copy out some internal info. self.gq_cols = t0.gq_cols self.sex_age_cols = t0.sex_age_cols self.hh_size_cols = t0.hh_size_cols self.hh_race_type_cols = t0.hh_race_type_cols self.hh_eth_type_cols = t0.hh_eth_type_cols p = re.compile(r'b19025') self.hh_income_cols = [c for c in t0.hh_source.columns if p.match(c)] @classmethod def get_tasks(cls, cache_dir, state, year=2018, release=5): tasks = AllocationTask.get_state_tasks(cache_dir, state, sl='tract', year=2018, release=5) puma_tasks = defaultdict(list) for task in tasks: puma_tasks[task.puma_geoid].append(task) return puma_tasks @classmethod def get_allocators(cls, cache_dir, state, year=2018, release=5): tasks = AllocationTask.get_state_tasks(cache_dir, state, sl='tract', year=2018, release=5) puma_tasks = defaultdict(list) for task in tasks: puma_tasks[task.puma_geoid].append(task) return [PumaAllocator(puma_geoid, tasks, cache_dir, state, year, release) for puma_geoid, tasks in puma_tasks.items()] def initialize_weights_sample(self, task, frac=.7): """Initialize the allocated weights proportional to the sample population weights, adjusted to the total population. """ wf = self.weights_frame assert wf.remaining.sum() != 0 wn1 = wf.remaining / wf.remaining.sum() # weights normalized to 1 task.allocated_weights = rand_round(wn1.multiply(task.household_count).values.astype(float)) task.unallocated_weights = np.clip(task.unallocated_weights-task.allocated_weights, a_min=0, a_max=None) assert not any(task.unallocated_weights<0) def vector_walk(self, N=1200, min_iter=5000, target_error=0.03, step_size_min=1, step_size_max=10, reversal_rate=.3, max_ssm=150, callback=None, memo=None): """Run a vector walk on all of the tracts tasks in this puma """ from itertools import cycle rows = [] ts = time() memo['puma_task'] = self def make_vw(task): return iter(task._vector_walk( N=N, min_iter=min_iter, target_error=target_error, step_size_min=step_size_min, step_size_max=step_size_max, reversal_rate=reversal_rate, max_ssm=max_ssm, cb=callback, memo=memo)) task_iters = [(task, make_vw(task)) for task in self.tasks] stopped = set() running = set([e[0] for e in task_iters]) memo['n_stopped'] = len(stopped) memo['n_running'] = len(running) memo['n_calls'] = 0 while True: for task, task_iter in task_iters: if task in running: try: i, te, min_error, steps_since_min, n_iter = next(task_iter) memo['n_calls'] += 1 d = {'i': i, 'time': time() - ts, 'step_size': n_iter, 'error': te, 'target_error': target_error, 'size': np.sum(task.allocated_weights), 'ssm': steps_since_min, 'min_error': min_error, 'task': task } rows.append(d) if callback and i % 10 == 0: callback(self, task, d, memo) except StopIteration: stopped.add(task) running.remove(task) memo['n_stopped'] = len(stopped) memo['n_running'] = len(running) if len(running) == 0: return rows if callback: # vector_walk_callback(puma_task, tract_task, data, memo): callback(self, None, None, memo) assert False # Should never get here. def run(self, *args, callback=None, memo=None, **kwargs): self.init(init_method='sample') rows = self.vector_walk(*args, callback=callback, memo=memo, **kwargs) self.save_frame() return rows def get_task(self, geoid): for task in self.tasks: if geoid == task.region_geoid: return task return None def tune_puma_allocation(self): """Re-run all of the tasks in the puma, trying to reduce the discrepancy between the """ task_iters = [(task, iter(task._vector_walk())) for task in self.tasks] for task, task_iter in task_iters: try: task.cp_prob = self._update_probabilities() row = next(task_iter) print(task.region_geoid, self.rms_error, self.rms_weight_error, np.sum(task.cp_prob)) except StopIteration: print(task.region_geoid, 'stopped') @property def weights_frame(self): self.weights[ 'allocated'] = self.puma_allocated_weights # np.sum(np.array([task.allocated_weights for task in self.tasks]), axis=0) self.weights['remaining'] = self.weights.pums - self.weights.allocated self.weights['dff'] = self.weights.allocated - self.weights.pums self.weights['rdff'] = (self.weights.dff / self.weights.pums).fillna(0) self.weights['p'] = self.weights.rdff return self.weights def _update_probabilities(self): """Update the running cp_probs, the probabilities for selecting each PUMS household from the sample_pop, based on the error in weights for the households at the Puma level""" w = self.weights_frame w['p_pos'] = - w.p.where(w.p < 0, 0) w['p_neg'] = w.p.where(w.p > 0, 0) self.prob = np.array(w[['p_neg', 'p_pos']].values.flat) return self.prob @property def puma_target_marginals(self): from .acs import build_acs if self._puma_target_marginals is None: _puma_marginals = build_acs(state=self.state, sl='puma', year=self.year, release=self.release) cols = self.tasks[ 0].target_marginals.index # [c for c in _puma_marginals.columns if c.startswith('b') and not c.endswith('_m90')] self._puma_target_marginals = _puma_marginals.loc[self.puma_geoid][cols] return self._puma_target_marginals @property def puma_allocated_marginals(self): return self.allocated_marginals.sum() @property def allocated_marginals(self): series = {task.region_geoid: task.allocated_marginals for task in self.tasks} return pd.DataFrame(series).T @property def allocated_weights(self): series = {task.region_geoid: task.allocated_weights for task in self.tasks} return
pd.DataFrame(series)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Manipulação de dados - II # ## *DataFrames* # # O *DataFrame* é a segunda estrutura basilar do *pandas*. Um *DataFrame*: # - é uma tabela, ou seja, é bidimensional; # - tem cada coluna formada como uma *Series* do *pandas*; # - pode ter *Series* contendo tipos de dado diferentes. # In[1]: import numpy as np import pandas as pd # ## Criação de um *DataFrame* # O método padrão para criarmos um *DataFrame* é através de uma função com mesmo nome. # # ```python # df_exemplo = pd.DataFrame(dados_de_interesse, index = indice_de_interesse, # columns = colunas_de_interesse) # ``` # Ao criar um *DataFrame*, podemos informar # - `index`: rótulos para as linhas (atributos *index* das *Series*). # - `columns`: rótulos para as colunas (atributos *name* das *Series*). # No _template_, `dados_de_interesse` pode ser # # * um dicionário de: # * *arrays* unidimensionais do *numpy*; # * listas; # * dicionários; # * *Series* do *pandas*. # * um *array* bidimensional do *numpy*; # * uma *Series* do *Pandas*; # * outro *DataFrame*. # ### *DataFrame* a partir de dicionários de *Series* # # Neste método de criação, as *Series* do dicionário não precisam possuir o mesmo número de elementos. O *index* do *DataFrame* será dado pela **união** dos *index* de todas as *Series* contidas no dicionário. # Exemplo: # In[2]: serie_Idade = pd.Series({'Ana':20, 'João': 19, 'Maria': 21, 'Pedro': 22}, name="Idade") # In[3]: serie_Peso = pd.Series({'Ana':55, 'João': 80, 'Maria': 62, 'Pedro': 67, 'Túlio': 73}, name="Peso") # In[4]: serie_Altura = pd.Series({'Ana':162, 'João': 178, 'Maria': 162, 'Pedro': 165, 'Túlio': 171}, name="Altura") # In[5]: dicionario_series_exemplo = {'Idade': serie_Idade, 'Peso': serie_Peso, 'Altura': serie_Altura} # In[6]: df_dict_series = pd.DataFrame(dicionario_series_exemplo) # In[7]: df_dict_series # > Compare este resultado com a criação de uma planilha pelos métodos usuais. Veja que há muita flexibilidade para criarmos ou modificarmos uma tabela. # # Vejamos exemplos sobre como acessar intervalos de dados na tabela. # In[8]: pd.DataFrame(dicionario_series_exemplo, index=['João','Ana','Maria']) # In[9]:
pd.DataFrame(dicionario_series_exemplo, index=['Ana','Maria'], columns=['Altura','Peso'])
pandas.DataFrame
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda: self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] self.assertEqual(result, expected) result = s.iloc[0] self.assertEqual(result, expected) result = s['a'] self.assertEqual(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] self.assertEqual(result, expected) s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] self.assertEqual(result, expected) s2 = s.copy() s2['a'] = expected result = s2['a'] self.assertEqual(result, expected) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-11-06 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert (s.shape == rs.shape) assert (rs is not s) # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # GH 9731 s = Series(np.arange(10), dtype='int64') mask = s > 5 values = [2.5, 3.5, 4.5, 5.5] s[mask] = values expected = Series(lrange(6) + values, dtype='float64') assert_series_equal(s, expected) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5, 4, 3, 2, 1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4]) assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] self.assertTrue(isnull(result)) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isnull(s)] expected = Series(np.nan, index=[9]) assert_series_equal(result, expected) def test_where_setitem_invalid(self): # GH 2702 # make sure correct exceptions are raised on invalid list assignment # slice s = Series(list('abc')) def f(): s[0:3] = list(range(27)) self.assertRaises(ValueError, f) s[0:3] = list(range(3)) expected = Series([0, 1, 2]) assert_series_equal(s.astype(np.int64), expected, ) # slice with step s = Series(list('abcdef')) def f(): s[0:4:2] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abcdef')) s[0:4:2] = list(range(2)) expected = Series([0, 'b', 1, 'd', 'e', 'f']) assert_series_equal(s, expected) # neg slices s = Series(list('abcdef')) def f(): s[:-1] = list(range(27)) self.assertRaises(ValueError, f) s[-3:-1] = list(range(2)) expected = Series(['a', 'b', 'c', 0, 1, 'f']) assert_series_equal(s, expected) # list s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(2)) self.assertRaises(ValueError, f) # scalar s = Series(list('abc')) s[0] = list(range(10)) expected = Series([list(range(10)), 'b', 'c']) assert_series_equal(s, expected) def test_where_broadcast(self): # Test a variety of differently sized series for size in range(2, 6): # Test a variety of boolean indices for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: # Test a variety of different numbers as content for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: # Test numpy arrays, lists and tuples as the input to be # broadcast for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) s[selection] = arr # Construct the expected series by taking the source # data or item based on the selection expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(s, expected) s = Series(data) result = s.where(~selection, arr) assert_series_equal(result, expected) def test_where_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.where(cond, inplace=True) assert_series_equal(rs.dropna(), s[cond]) assert_series_equal(rs, s.where(cond)) rs = s.copy() rs.where(cond, -s, inplace=True) assert_series_equal(rs, s.where(cond, -s)) def test_where_dups(self): # GH 4550 # where crashes with dups in index s1 = Series(list(range(3))) s2 = Series(list(range(3))) comb = pd.concat([s1, s2]) result = comb.where(comb < 2) expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(result, expected) # GH 4548 # inplace updating not working with dups comb[comb < 1] = 5 expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) comb[comb < 2] += 10 expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) def test_where_datetime(self): s = Series(date_range('20130102', periods=2)) expected = Series([10, 10], dtype='datetime64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='datetime64[ns]') assert_series_equal(rs, expected) def test_where_timedelta(self): s = Series([1, 2], dtype='timedelta64[ns]') expected = Series([10, 10], dtype='timedelta64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='timedelta64[ns]') assert_series_equal(rs, expected) def test_mask(self): # compare with tested results in test_where s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(~cond, np.nan) assert_series_equal(rs, s.mask(cond)) rs = s.where(~cond) rs2 = s.mask(cond) assert_series_equal(rs, rs2) rs = s.where(~cond, -s) rs2 = s.mask(cond, -s) assert_series_equal(rs, rs2) cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) rs = s2.where(~cond[:3]) rs2 = s2.mask(cond[:3]) assert_series_equal(rs, rs2) rs = s2.where(~cond[:3], -s2) rs2 = s2.mask(cond[:3], -s2) assert_series_equal(rs, rs2) self.assertRaises(ValueError, s.mask, 1) self.assertRaises(ValueError, s.mask, cond[:3].values, -s) # dtype changes s = Series([1, 2, 3, 4]) result = s.mask(s > 2, np.nan) expected = Series([1, 2, np.nan, np.nan]) assert_series_equal(result, expected) def test_mask_broadcast(self): # GH 8801 # copied from test_where_broadcast for size in range(2, 6): for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) result = s.mask(selection, arr) expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(result, expected) def test_mask_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.mask(cond, inplace=True) assert_series_equal(rs.dropna(), s[~cond]) assert_series_equal(rs, s.mask(cond)) rs = s.copy() rs.mask(cond, -s, inplace=True) assert_series_equal(rs, s.mask(cond, -s)) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEqual(self.series[d1], 4) self.assertEqual(self.series[d2], 6) def test_where_numeric_with_string(self): # GH 9280 s = pd.Series([1, 2, 3]) w = s.where(s > 1, 'X') self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, ['X', 'Y', 'Z']) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, np.array(['X', 'Y', 'Z'])) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') def test_setitem_boolean(self): mask = self.series > self.series.median() # similiar indexed series result = self.series.copy() result[mask] = self.series * 2 expected = self.series * 2 assert_series_equal(result[mask], expected[mask]) # needs alignment result = self.series.copy() result[mask] = (self.series * 2)[0:5] expected = (self.series * 2)[0:5].reindex_like(self.series) expected[-mask] = self.series[mask] assert_series_equal(result[mask], expected[mask]) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.sort_values() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # get's coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan assert_series_equal(s, expected) def test_basic_indexing(self): s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b']) self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) self.assertRaises(KeyError, s.__getitem__, 'c') s = s.sort_index() self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) def test_int_indexing(self): s = Series(np.random.randn(6), index=[0, 0, 1, 1, 2, 2]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') # not monotonic s = Series(np.random.randn(6), index=[2, 2, 0, 0, 1, 1]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') def test_datetime_indexing(self): from pandas import date_range index = date_range('1/1/2000', '1/7/2000') index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp('1/8/2000') self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) # not monotonic s = Series(len(index), index=index) s = s[::-1] self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) def test_timedelta_assignment(self): # GH 8209 s = Series([]) s.loc['B'] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta('1 days'), index=['B'])) s = s.reindex(s.index.insert(0, 'A')) tm.assert_series_equal(s, Series( [np.nan, Timedelta('1 days')], index=['A', 'B'])) result = s.fillna(timedelta(1)) expected = Series(Timedelta('1 days'), index=['A', 'B']) tm.assert_series_equal(result, expected) s.loc['A'] = timedelta(1) tm.assert_series_equal(s, expected) # GH 14155 s = Series(10 * [np.timedelta64(10, 'm')]) s.loc[[1, 2, 3]] = np.timedelta64(20, 'm') expected = pd.Series(10 * [np.timedelta64(10, 'm')]) expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, 'm')) tm.assert_series_equal(s, expected) def test_underlying_data_conversion(self): # GH 4080 df = DataFrame(dict((c, [1, 2, 3]) for c in ['a', 'b', 'c'])) df.set_index(['a', 'b', 'c'], inplace=True) s = Series([1], index=[(2, 2, 2)]) df['val'] = 0 df df['val'].update(s) expected = DataFrame( dict(a=[1, 2, 3], b=[1, 2, 3], c=[1, 2, 3], val=[0, 1, 0])) expected.set_index(['a', 'b', 'c'], inplace=True) tm.assert_frame_equal(df, expected) # GH 3970 # these are chained assignments as well pd.set_option('chained_assignment', None) df = DataFrame({"aa": range(5), "bb": [2.2] * 5}) df["cc"] = 0.0 ck = [True] * len(df) df["bb"].iloc[0] = .13 # TODO: unused df_tmp = df.iloc[ck] # noqa df["bb"].iloc[0] = .15 self.assertEqual(df['bb'].iloc[0], 0.15) pd.set_option('chained_assignment', 'raise') # GH 3217 df = DataFrame(dict(a=[1, 3], b=[np.nan, 2])) df['c'] = np.nan df['c'].update(pd.Series(['foo'], index=[0])) expected = DataFrame(dict(a=[1, 3], b=[np.nan, 2], c=['foo', np.nan])) tm.assert_frame_equal(df, expected) def test_preserveRefs(self): seq = self.ts[[5, 10, 15]] seq[1] = np.NaN self.assertFalse(np.isnan(self.ts[10])) def test_drop(self): # unique s = Series([1, 2], index=['one', 'two']) expected = Series([1], index=['one']) result = s.drop(['two']) assert_series_equal(result, expected) result = s.drop('two', axis='rows') assert_series_equal(result, expected) # non-unique # GH 5248 s = Series([1, 1, 2], index=['one', 'two', 'one']) expected = Series([1, 2], index=['one', 'one']) result = s.drop(['two'], axis=0) assert_series_equal(result, expected) result = s.drop('two') assert_series_equal(result, expected) expected = Series([1], index=['two']) result = s.drop(['one']) assert_series_equal(result, expected) result = s.drop('one') assert_series_equal(result, expected) # single string/tuple-like s = Series(range(3), index=list('abc')) self.assertRaises(ValueError, s.drop, 'bc') self.assertRaises(ValueError, s.drop, ('a', )) # errors='ignore' s = Series(range(3), index=list('abc')) result = s.drop('bc', errors='ignore') assert_series_equal(result, s) result = s.drop(['a', 'd'], errors='ignore') expected = s.ix[1:] assert_series_equal(result, expected) # bad axis self.assertRaises(ValueError, s.drop, 'one', axis='columns') # GH 8522 s = Series([2, 3], index=[True, False]) self.assertTrue(s.index.is_object()) result = s.drop(True) expected = Series([3], index=[False]) assert_series_equal(result, expected) def test_align(self): def _check_align(a, b, how='left', fill=None): aa, ab = a.align(b, join=how, fill_value=fill) join_index = a.index.join(b.index, how=how) if fill is not None: diff_a = aa.index.difference(join_index) diff_b = ab.index.difference(join_index) if len(diff_a) > 0: self.assertTrue((aa.reindex(diff_a) == fill).all()) if len(diff_b) > 0: self.assertTrue((ab.reindex(diff_b) == fill).all()) ea = a.reindex(join_index) eb = b.reindex(join_index) if fill is not None: ea = ea.fillna(fill) eb = eb.fillna(fill) assert_series_equal(aa, ea) assert_series_equal(ab, eb) self.assertEqual(aa.name, 'ts') self.assertEqual(ea.name, 'ts') self.assertEqual(ab.name, 'ts') self.assertEqual(eb.name, 'ts') for kind in JOIN_TYPES: _check_align(self.ts[2:], self.ts[:-5], how=kind) _check_align(self.ts[2:], self.ts[:-5], how=kind, fill=-1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind) _check_align(self.ts[:0], self.ts[:-5], how=kind, fill=-1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind) _check_align(self.ts[:-5], self.ts[:0], how=kind, fill=-1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind) _check_align(self.ts[:0], self.ts[:0], how=kind, fill=-1) def test_align_fill_method(self): def _check_align(a, b, how='left', method='pad', limit=None): aa, ab = a.align(b, join=how, method=method, limit=limit) join_index = a.index.join(b.index, how=how) ea = a.reindex(join_index) eb = b.reindex(join_index) ea = ea.fillna(method=method, limit=limit) eb = eb.fillna(method=method, limit=limit) assert_series_equal(aa, ea) assert_series_equal(ab, eb) for kind in JOIN_TYPES: for meth in ['pad', 'bfill']: _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth, limit=1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth, limit=1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth, limit=1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth, limit=1) def test_align_nocopy(self): b = self.ts[:5].copy() # do copy a = self.ts.copy() ra, _ = a.align(b, join='left') ra[:5] = 5 self.assertFalse((a[:5] == 5).any()) # do not copy a = self.ts.copy() ra, _ = a.align(b, join='left', copy=False) ra[:5] = 5 self.assertTrue((a[:5] == 5).all()) # do copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right') rb[:3] = 5 self.assertFalse((b[:3] == 5).any()) # do not copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right', copy=False) rb[:2] = 5 self.assertTrue((b[:2] == 5).all()) def test_align_sameindex(self): a, b = self.ts.align(self.ts, copy=False) self.assertIs(a.index, self.ts.index) self.assertIs(b.index, self.ts.index) # a, b = self.ts.align(self.ts, copy=True) # self.assertIsNot(a.index, self.ts.index) # self.assertIsNot(b.index, self.ts.index) def test_align_multiindex(self): # GH 10665 midx = pd.MultiIndex.from_product([range(2), range(3), range(2)], names=('a', 'b', 'c')) idx = pd.Index(range(2), name='b') s1 = pd.Series(np.arange(12, dtype='int64'), index=midx) s2 = pd.Series(np.arange(2, dtype='int64'), index=idx) # these must be the same results (but flipped) res1l, res1r = s1.align(s2, join='left') res2l, res2r = s2.align(s1, join='right') expl = s1 tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) res1l, res1r = s1.align(s2, join='right') res2l, res2r = s2.align(s1, join='left') exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)], names=('a', 'b', 'c')) expl = pd.Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx) tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1] * 2, index=exp_idx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) def test_reindex(self): identity = self.series.reindex(self.series.index) # __array_interface__ is not defined for older numpies # and on some pythons try: self.assertTrue(np.may_share_memory(self.series.index, identity.index)) except (AttributeError): pass self.assertTrue(identity.index.is_(self.series.index)) self.assertTrue(identity.index.identical(self.series.index)) subIndex = self.series.index[10:20] subSeries = self.series.reindex(subIndex) for idx, val in compat.iteritems(subSeries): self.assertEqual(val, self.series[idx]) subIndex2 = self.ts.index[10:20] subTS = self.ts.reindex(subIndex2) for idx, val in compat.iteritems(subTS): self.assertEqual(val, self.ts[idx]) stuffSeries = self.ts.reindex(subIndex) self.assertTrue(np.isnan(stuffSeries).all()) # This is extremely important for the Cython code to not screw up nonContigIndex = self.ts.index[::2] subNonContig = self.ts.reindex(nonContigIndex) for idx, val in compat.iteritems(subNonContig): self.assertEqual(val, self.ts[idx]) # return a copy the same index here result = self.ts.reindex() self.assertFalse((result is self.ts)) def test_reindex_nan(self): ts = Series([2, 3, 5, 7], index=[1, 4, nan, 8]) i, j = [nan, 1, nan, 8, 4, nan], [2, 0, 2, 3, 1, 2] assert_series_equal(ts.reindex(i), ts.iloc[j]) ts.index = ts.index.astype('object') # reindex coerces index.dtype to float, loc/iloc doesn't assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False) def test_reindex_corner(self): # (don't forget to fix this) I think it's fixed self.empty.reindex(self.ts.index, method='pad') # it works # corner case: pad empty series reindexed = self.empty.reindex(self.ts.index, method='pad') # pass non-Index reindexed = self.ts.reindex(list(self.ts.index)) assert_series_equal(self.ts, reindexed) # bad fill method ts = self.ts[::2] self.assertRaises(Exception, ts.reindex, self.ts.index, method='foo') def test_reindex_pad(self): s = Series(np.arange(10), dtype='int64') s2 = s[::2] reindexed = s2.reindex(s.index, method='pad') reindexed2 = s2.reindex(s.index, method='ffill') assert_series_equal(reindexed, reindexed2) expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10)) assert_series_equal(reindexed, expected) # GH4604 s = Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e']) new_index = ['a', 'g', 'c', 'f'] expected = Series([1, 1, 3, 3], index=new_index) # this changes dtype because the ffill happens after result = s.reindex(new_index).ffill() assert_series_equal(result, expected.astype('float64')) result = s.reindex(new_index).ffill(downcast='infer') assert_series_equal(result, expected) expected = Series([1, 5, 3, 5], index=new_index) result = s.reindex(new_index, method='ffill') assert_series_equal(result, expected) # inferrence of new dtype s = Series([True, False, False, True], index=list('abcd')) new_index = 'agc' result = s.reindex(list(new_index)).ffill() expected = Series([True, True, False], index=list(new_index)) assert_series_equal(result, expected) # GH4618 shifted series downcasting s = Series(False, index=lrange(0, 5)) result = s.shift(1).fillna(method='bfill') expected = Series(False, index=lrange(0, 5)) assert_series_equal(result, expected) def test_reindex_nearest(self): s = Series(np.arange(10, dtype='int64')) target = [0.1, 0.9, 1.5, 2.0] actual = s.reindex(target, method='nearest') expected = Series(np.around(target).astype('int64'), target) assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest') assert_series_equal(expected, actual) actual = s.reindex_like(actual, method='nearest', tolerance=1) assert_series_equal(expected, actual) actual = s.reindex(target, method='nearest', tolerance=0.2) expected = Series([0, 1, np.nan, 2], target) assert_series_equal(expected, actual) def test_reindex_backfill(self): pass def test_reindex_int(self): ts = self.ts[::2] int_ts = Series(np.zeros(len(ts), dtype=int), index=ts.index) # this should work fine reindexed_int = int_ts.reindex(self.ts.index) # if NaNs introduced self.assertEqual(reindexed_int.dtype, np.float_) # NO NaNs introduced reindexed_int = int_ts.reindex(int_ts.index[::2]) self.assertEqual(reindexed_int.dtype, np.int_) def test_reindex_bool(self): # A series other than float, int, string, or object ts = self.ts[::2] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) # this should work fine reindexed_bool = bool_ts.reindex(self.ts.index) # if NaNs introduced self.assertEqual(reindexed_bool.dtype, np.object_) # NO NaNs introduced reindexed_bool = bool_ts.reindex(bool_ts.index[::2]) self.assertEqual(reindexed_bool.dtype, np.bool_) def test_reindex_bool_pad(self): # fail ts = self.ts[5:] bool_ts = Series(np.zeros(len(ts), dtype=bool), index=ts.index) filled_bool = bool_ts.reindex(self.ts.index, method='pad') self.assertTrue(isnull(filled_bool[:5]).all()) def test_reindex_like(self): other = self.ts[::2] assert_series_equal(self.ts.reindex(other.index), self.ts.reindex_like(other)) # GH 7179 day1 = datetime(2013, 3, 5) day2 = datetime(2013, 5, 5) day3 = datetime(2014, 3, 5) series1 = Series([5, None, None], [day1, day2, day3]) series2 = Series([None, None], [day1, day3]) result = series1.reindex_like(series2, method='pad') expected =
Series([5, np.nan], index=[day1, day3])
pandas.Series
# Author: <NAME> # # License: BSD 3 clause import logging import numpy as np import pandas as pd from gensim.models.doc2vec import Doc2Vec, TaggedDocument from gensim.utils import simple_preprocess from gensim.parsing.preprocessing import strip_tags import umap import hdbscan from sklearn.metrics.pairwise import cosine_similarity from wordcloud import WordCloud import matplotlib.pyplot as plt from joblib import dump, load from sklearn.cluster import dbscan import tempfile logger = logging.getLogger('top2vec') logger.setLevel(logging.WARNING) sh = logging.StreamHandler() sh.setFormatter(logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s')) logger.addHandler(sh) def default_tokenizer(doc): """Tokenize documents for training and remove too long/short words""" return simple_preprocess(strip_tags(doc), deacc=True) class Top2Vec: """ Top2Vec Creates jointly embedded topic, document and word vectors. Parameters ---------- documents: List of str Input corpus, should be a list of strings. min_count: int (Optional, default 50) Ignores all words with total frequency lower than this. For smaller corpora a smaller min_count will be necessary. speed: string (Optional, default 'learn') This parameter will determine how fast the model takes to train. The fast-learn option is the fastest and will generate the lowest quality vectors. The learn option will learn better quality vectors but take a longer time to train. The deep-learn option will learn the best quality vectors but will take significant time to train. The valid string speed options are: * fast-learn * learn * deep-learn use_corpus_file: bool (Optional, default False) Setting use_corpus_file to True can sometimes provide speedup for large datasets when multiple worker threads are available. Documents are still passed to the model as a list of str, the model will create a temporary corpus file for training. document_ids: List of str, int (Optional) A unique value per document that will be used for referring to documents in search results. If ids are not given to the model, the index of each document in the original corpus will become the id. keep_documents: bool (Optional, default True) If set to False documents will only be used for training and not saved as part of the model. This will reduce model size. When using search functions only document ids will be returned, not the actual documents. workers: int (Optional) The amount of worker threads to be used in training the model. Larger amount will lead to faster training. tokenizer: callable (Optional, default None) Override the default tokenization method. If None then gensim.utils.simple_preprocess will be used. verbose: bool (Optional, default False) Whether to print status data during training. """ def __init__(self, documents, min_count=50, speed="learn", use_corpus_file=False, document_ids=None, keep_documents=True, workers=None, tokenizer=None, verbose=False): if verbose: logger.setLevel(logging.DEBUG) else: logger.setLevel(logging.WARNING) # validate training inputs if speed == "fast-learn": hs = 0 negative = 5 epochs = 40 elif speed == "learn": hs = 1 negative = 0 epochs = 40 elif speed == "deep-learn": hs = 1 negative = 0 epochs = 400 elif speed == "test-learn": hs = 0 negative = 5 epochs = 1 else: raise ValueError("speed parameter needs to be one of: fast-learn, learn or deep-learn") if workers is None: pass elif isinstance(workers, int): pass else: raise ValueError("workers needs to be an int") if tokenizer is not None: self._tokenizer = tokenizer else: self._tokenizer = default_tokenizer # validate documents if not all((isinstance(doc, str) or isinstance(doc, np.str_)) for doc in documents): raise ValueError("Documents need to be a list of strings") if keep_documents: self.documents = np.array(documents, dtype="object") else: self.documents = None # validate document ids if document_ids is not None: if len(documents) != len(document_ids): raise ValueError("Document ids need to match number of documents") elif len(document_ids) != len(set(document_ids)): raise ValueError("Document ids need to be unique") if all((isinstance(doc_id, str) or isinstance(doc_id, np.str_)) for doc_id in document_ids): self.doc_id_type = np.str_ elif all((isinstance(doc_id, int) or isinstance(doc_id, np.int_)) for doc_id in document_ids): self.doc_id_type = np.int_ else: raise ValueError("Document ids need to be str or int") self.document_ids = np.array(document_ids) self.doc_id2index = dict(zip(document_ids, list(range(0, len(document_ids))))) else: self.document_ids = None self.doc_id2index = None self.doc_id_type = np.int_ if use_corpus_file: logger.info('Pre-processing documents for training') processed = [' '.join(self._tokenizer(doc)) for doc in documents] lines = "\n".join(processed) temp = tempfile.NamedTemporaryFile(mode='w+t') temp.write(lines) logger.info('Creating joint document/word embedding') if workers is None: self.model = Doc2Vec(corpus_file=temp.name, vector_size=300, min_count=min_count, window=15, sample=1e-5, negative=negative, hs=hs, epochs=epochs, dm=0, dbow_words=1) else: self.model = Doc2Vec(corpus_file=temp.name, vector_size=300, min_count=min_count, window=15, sample=1e-5, negative=negative, hs=hs, workers=workers, epochs=epochs, dm=0, dbow_words=1) temp.close() else: logger.info('Pre-processing documents for training') train_corpus = [TaggedDocument(self._tokenizer(doc), [i]) for i, doc in enumerate(documents)] logger.info('Creating joint document/word embedding') if workers is None: self.model = Doc2Vec(documents=train_corpus, vector_size=300, min_count=min_count, window=15, sample=1e-5, negative=negative, hs=hs, epochs=epochs, dm=0, dbow_words=1) else: self.model = Doc2Vec(documents=train_corpus, vector_size=300, min_count=min_count, window=15, sample=1e-5, negative=negative, hs=hs, workers=workers, epochs=epochs, dm=0, dbow_words=1) # create 5D embeddings of documents logger.info('Creating lower dimension embedding of documents') umap_model = umap.UMAP(n_neighbors=15, n_components=5, metric='cosine').fit(self.model.docvecs.vectors_docs) # find dense areas of document vectors logger.info('Finding dense areas of documents') cluster = hdbscan.HDBSCAN(min_cluster_size=15, metric='euclidean', cluster_selection_method='eom').fit(umap_model.embedding_) # calculate topic vectors from dense areas of documents logger.info('Finding topics') self._create_topic_vectors(cluster.labels_) # deduplicate topics self._deduplicate_topics() # calculate topic sizes and index nearest topic for each document self.topic_vectors, self.doc_top, self.doc_dist, self.topic_sizes = self._calculate_topic_sizes( self.topic_vectors) # find topic words and scores self.topic_words, self.topic_word_scores = self._find_topic_words_scores(topic_vectors=self.topic_vectors) # initialize variables for hierarchical topic reduction self.topic_vectors_reduced = None self.doc_top_reduced = None self.doc_dist_reduced = None self.topic_sizes_reduced = None self.topic_words_reduced = None self.topic_word_scores_reduced = None self.hierarchy = None def _create_topic_vectors(self, cluster_labels): unique_labels = set(cluster_labels) if -1 in unique_labels: unique_labels.remove(-1) self.topic_vectors = np.vstack([self.model.docvecs.vectors_docs[np.where(cluster_labels == label)[0]] .mean(axis=0) for label in unique_labels]) def _deduplicate_topics(self): core_samples, labels = dbscan(X=self.topic_vectors, eps=0.1, min_samples=2, metric="cosine") duplicate_clusters = set(labels) if len(duplicate_clusters) > 1 or -1 not in duplicate_clusters: # unique topics unique_topics = self.topic_vectors[np.where(labels == -1)[0]] if -1 in duplicate_clusters: duplicate_clusters.remove(-1) # merge duplicate topics for unique_label in duplicate_clusters: unique_topics = np.vstack( [unique_topics, self.topic_vectors[np.where(labels == unique_label)[0]] .mean(axis=0)]) self.topic_vectors = unique_topics def _calculate_topic_sizes(self, topic_vectors, hierarchy=None): # find nearest topic of each document doc_top, doc_dist = self._calculate_documents_topic(topic_vectors=topic_vectors, document_vectors=self.model.docvecs.vectors_docs) topic_sizes = pd.Series(doc_top).value_counts() return self._reorder_topics(topic_vectors, topic_sizes, doc_top, doc_dist, hierarchy) @staticmethod def _reorder_topics(topic_vectors, topic_sizes, doc_top, doc_dist, hierarchy=None): topic_vectors = topic_vectors[topic_sizes.index] old2new = dict(zip(topic_sizes.index, range(topic_sizes.shape[0]))) doc_top = np.array([old2new[i] for i in doc_top]) if hierarchy is None: topic_sizes.reset_index(drop=True, inplace=True) return topic_vectors, doc_top, doc_dist, topic_sizes else: hierarchy = [hierarchy[i] for i in topic_sizes.index] topic_sizes.reset_index(drop=True, inplace=True) return topic_vectors, doc_top, doc_dist, topic_sizes, hierarchy @staticmethod def _calculate_documents_topic(topic_vectors, document_vectors, dist=True): batch_size = 10000 doc_top = [] if dist: doc_dist = [] if document_vectors.shape[0] > batch_size: current = 0 batches = int(document_vectors.shape[0] / batch_size) extra = document_vectors.shape[0] % batch_size for ind in range(0, batches): res = cosine_similarity(document_vectors[current:current + batch_size], topic_vectors) doc_top.extend(np.argmax(res, axis=1)) if dist: doc_dist.extend(np.max(res, axis=1)) current += batch_size if extra > 0: res = cosine_similarity(document_vectors[current:current + extra], topic_vectors) doc_top.extend(np.argmax(res, axis=1)) if dist: doc_dist.extend(np.max(res, axis=1)) if dist: doc_dist = np.array(doc_dist) else: res = cosine_similarity(document_vectors, topic_vectors) doc_top = np.argmax(res, axis=1) if dist: doc_dist = np.max(res, axis=1) if dist: return doc_top, doc_dist else: return doc_top def _find_topic_words_scores(self, topic_vectors): topic_words = [] topic_word_scores = [] for topic_vector in topic_vectors: sim_words = self.model.wv.most_similar(positive=[topic_vector], topn=50) topic_words.append([word[0] for word in sim_words]) topic_word_scores.append([round(word[1], 4) for word in sim_words]) topic_words = np.array(topic_words) topic_word_scores = np.array(topic_word_scores) return topic_words, topic_word_scores def save(self, file): """ Saves the current model to the specified file. Parameters ---------- file: str File where model will be saved. """ dump(self, file) @classmethod def load(cls, file): """ Load a pre-trained model from the specified file. Parameters ---------- file: str File where model will be loaded from. """ return load(file) @staticmethod def _less_than_zero(num, var_name): if num < 0: raise ValueError(f"{var_name} cannot be less than 0.") def _validate_hierarchical_reduction(self): if self.hierarchy is None: raise ValueError("Hierarchical topic reduction has not been performed.") def _validate_hierarchical_reduction_num_topics(self, num_topics): current_num_topics = len(self.topic_vectors) if num_topics >= current_num_topics: raise ValueError(f"Number of topics must be less than {current_num_topics}.") def _validate_num_docs(self, num_docs): self._less_than_zero(num_docs, "num_docs") document_count = self.model.docvecs.count if num_docs > self.model.docvecs.count: raise ValueError(f"num_docs cannot exceed the number of documents: {document_count}.") def _validate_num_topics(self, num_topics, reduced): self._less_than_zero(num_topics, "num_topics") if reduced: topic_count = len(self.topic_vectors_reduced) if num_topics > topic_count: raise ValueError(f"num_topics cannot exceed the number of reduced topics: {topic_count}.") else: topic_count = len(self.topic_vectors) if num_topics > topic_count: raise ValueError(f"num_topics cannot exceed the number of topics: {topic_count}.") def _validate_topic_num(self, topic_num, reduced): self._less_than_zero(topic_num, "topic_num") if reduced: topic_count = len(self.topic_vectors_reduced) - 1 if topic_num > topic_count: raise ValueError(f"Invalid topic number: valid reduced topics numbers are 0 to {topic_count}.") else: topic_count = len(self.topic_vectors) - 1 if topic_num > topic_count: raise ValueError(f"Invalid topic number: valid original topics numbers are 0 to {topic_count}.") def _validate_topic_search(self, topic_num, num_docs, reduced): self._less_than_zero(num_docs, "num_docs") if reduced: if num_docs > self.topic_sizes_reduced[topic_num]: raise ValueError(f"Invalid number of documents: reduced topic {topic_num}" f" only has {self.topic_sizes_reduced[topic_num]} documents.") else: if num_docs > self.topic_sizes[topic_num]: raise ValueError(f"Invalid number of documents: original topic {topic_num}" f" only has {self.topic_sizes[topic_num]} documents.") def _validate_doc_ids(self, doc_ids, doc_ids_neg): if not isinstance(doc_ids, list): raise ValueError("doc_ids must be a list of string or int.") if not isinstance(doc_ids_neg, list): raise ValueError("doc_ids_neg must be a list of string or int.") doc_ids_all = doc_ids + doc_ids_neg for doc_id in doc_ids_all: if self.document_ids is not None: if doc_id not in self.document_ids: raise ValueError(f"{doc_id} is not a valid document id.") elif doc_id < 0 or doc_id > self.model.docvecs.count - 1: raise ValueError(f"{doc_id} is not a valid document id.") def _validate_keywords(self, keywords, keywords_neg): if not (isinstance(keywords, list) or isinstance(keywords, np.ndarray)): raise ValueError("keywords must be a list of strings.") if not (isinstance(keywords_neg, list) or isinstance(keywords_neg, np.ndarray)): raise ValueError("keywords_neg must be a list of strings.") keywords_lower = [keyword.lower() for keyword in keywords] keywords_neg_lower = [keyword.lower() for keyword in keywords_neg] for word in keywords_lower + keywords_neg_lower: if word not in self.model.wv.vocab: raise ValueError(f"'{word}' has not been learned by the model so it cannot be searched.") return keywords_lower, keywords_neg_lower def _get_document_ids(self, doc_index): if self.document_ids is None: return doc_index else: return self.document_ids[doc_index] def _get_document_indexes(self, doc_ids): if self.document_ids is None: return doc_ids else: return [self.doc_id2index[doc_id] for doc_id in doc_ids] def _get_word_vectors(self, keywords): return [self.model[word] for word in keywords] def _validate_document_ids_add_doc(self, documents, document_ids): if document_ids is None: raise ValueError("Document ids need to be provided.") if len(documents) != len(document_ids): raise ValueError("Document ids need to match number of documents.") elif len(document_ids) != len(set(document_ids)): raise ValueError("Document ids need to be unique.") if all((isinstance(doc_id, str) or isinstance(doc_id, np.str_)) for doc_id in document_ids): if self.doc_id_type == np.int_: raise ValueError("Document ids need to be of type int.") elif all((isinstance(doc_id, int) or isinstance(doc_id, np.int_)) for doc_id in document_ids): if self.doc_id_type == np.str_: raise ValueError("Document ids need to be of type str.") if len(set(document_ids).intersection(self.document_ids)) > 0: raise ValueError("Some document ids already exist in model.") @staticmethod def _validate_documents(documents): if not all((isinstance(doc, str) or isinstance(doc, np.str_)) for doc in documents): raise ValueError("Documents need to be a list of strings.") def _assign_documents_to_topic(self, document_vectors, topic_vectors, topic_sizes, doc_top, doc_dist, hierarchy=None): doc_top_new, doc_dist_new = self._calculate_documents_topic(topic_vectors, document_vectors, dist=True) doc_top = np.append(doc_top, doc_top_new) doc_dist = np.append(doc_dist, doc_dist_new) topic_sizes_new =
pd.Series(doc_top_new)
pandas.Series
# $Id$ # $HeadURL$ ################################################################ # The contents of this file are subject to the BSD 3Clause (New) # you may not use this file except in # compliance with the License. You may obtain a copy of the License at # http://directory.fsf.org/wiki/License:BSD_3Clause # Software distributed under the License is distributed on an "AS IS" # basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the # License for the specific language governing rights and limitations # under the License. # The Original Code is part of the PyRadi toolkit. # The Initial Developer of the Original Code is <NAME>, # Portions created by <NAME> are Copyright (C) 2006-2012 # All Rights Reserved. # Contributor(s): <NAME>, <NAME>, <NAME>, <NAME> ################################################################ """ This module provides functions for plotting cartesian and polar plots. This class provides a basic plotting capability, with a minimum number of lines. These are all wrapper functions, based on existing functions in other Python classes. Provision is made for combinations of linear and log scales, as well as polar plots for two-dimensional graphs. The Plotter class can save files to disk in a number of formats. For more examples of use see: https://github.com/NelisW/ComputationalRadiometry See the __main__ function for examples of use. This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, <NAME>, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646 """ __version__ = "$Revision$" __author__ = 'pyradi team' __all__ = ['Plotter','cubehelixcmap', 'FilledMarker', 'Markers','ProcessImage', 'savePlot'] import numpy as np import pandas as pd import math import sys import itertools import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.font_manager import FontProperties from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.backends.backend_pdf import PdfPages import matplotlib.dates as mdates from mpl_toolkits.axes_grid1 import make_axes_locatable # following for the pie plots from matplotlib.transforms import Affine2D import mpl_toolkits.axisartist.floating_axes as floating_axes import mpl_toolkits.axisartist.angle_helper as angle_helper from matplotlib.projections import PolarAxes from mpl_toolkits.axisartist.grid_finder import MaxNLocator from matplotlib.ticker import FormatStrFormatter from matplotlib.colors import LinearSegmentedColormap as LSC # see if plotly is available try: __import__('plotly.tools') imported_plotly = True from plotly import tools from plotly.offline import download_plotlyjs, offline from plotly.graph_objs import Scatter, Layout, Figure,Scatter3d,Mesh3d,ColorBar,Contour except ImportError: imported_plotly = False from datetime import datetime #################################################################### ## class FilledMarker: """Filled marker user-settable values. This class encapsulates a few variables describing a Filled marker. Default values are provided that can be overridden in user plots. Values relevant to filled makers are as follows: | marker = ['o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd'] | fillstyle = ['full', 'left', 'right', 'bottom', 'top', 'none'] | colour names = http://www.w3schools.com/html/html_colornames.asp """ def __init__(self, markerfacecolor=None, markerfacecoloralt=None, markeredgecolor=None, marker=None, markersize=None, fillstyle=None): """Define marker default values. Args: | markerfacecolor (colour): main colour for marker (optional) | markerfacecoloralt (colour): alterive colour for marker (optional) | markeredgecolor (colour): edge colour for marker (optional) | marker (string): string to specify the marker (optional) | markersize (int)): size of the marker (optional) | fillstyle (string): string to define fill style (optional) Returns: | Nothing. Creates the figure for subequent use. Raises: | No exception is raised. """ __all__ = ['__init__'] if markerfacecolor is None: self.markerfacecolor = 'r' else: self.markerfacecolor = markerfacecolor if markerfacecoloralt is None: self.markerfacecoloralt = 'b' else: self.markerfacecoloralt = markerfacecoloralt if markeredgecolor is None: self.markeredgecolor = 'k' else: self.markeredgecolor = markeredgecolor if marker is None: self.marker = 'o' else: self.marker = marker if markersize is None: self.markersize = 20 else: self.markersize = markersize if fillstyle is None: self.fillstyle = 'full' else: self.fillstyle = fillstyle ################################################################################### ################################################################################### class Markers: """Collect marker location and types and mark subplot. Build a list of markers at plot locations with the specified marker. """ #################################################################### ## def __init__(self, markerfacecolor = None, markerfacecoloralt = None, markeredgecolor = None, marker = None, markersize = None, fillstyle = None): """Set default marker values for this collection Specify default marker properties to be used for all markers in this instance. If no marker properties are specified here, the default FilledMarker marker properties will be used. Args: | markerfacecolor (colour): main colour for marker (optional) | markerfacecoloralt (colour): alternative colour for marker (optional) | markeredgecolor (colour): edge colour for marker (optional) | marker (string): string to specify the marker (optional) | markersize (int)): size of the marker (optional) | fillstyle (string): string to define fill style (optional) Returns: | Nothing. Creates the figure for subequent use. Raises: | No exception is raised. """ __all__ = ['__init__', 'add', 'plot'] if markerfacecolor is None: self.markerfacecolor = None else: self.markerfacecolor = markerfacecolor if markerfacecoloralt is None: self.markerfacecoloralt = None else: self.markerfacecoloralt = markerfacecoloralt if markeredgecolor is None: self.markeredgecolor = None else: self.markeredgecolor = markeredgecolor if marker is None: self.marker = None else: self.marker = marker if markersize is None: self.markersize = markersize else: self.markersize = markersize if fillstyle is None: self.fillstyle = None else: self.fillstyle = fillstyle #list if markers to be drawn self.markers = [] #################################################################### ## def add(self,x,y,markerfacecolor = None, markerfacecoloralt = None, markeredgecolor = None, marker = None, markersize = None, fillstyle = None): """Add a marker to the list, overridding properties if necessary. Specify location and any specific marker properties to be used. The location can be (xy,y) for cartesian plots or (theta,rad) for polars. If no marker properties are specified, the current marker class properties will be used. If the current maker instance does not specify properties, the default marker properties will be used. Args: | x (float): the x/theta location for the marker | y (float): the y/radial location for the marker | markerfacecolor (colour): main colour for marker (optional) | markerfacecoloralt (colour): alterive colour for marker (optional) | markeredgecolor (colour): edge colour for marker (optional) | marker (string): string to specify the marker (optional) | markersize (int)): size of the marker (optional) | fillstyle (string): string to define fill style (optional) Returns: | Nothing. Creates the figure for subequent use. Raises: | No exception is raised. """ if markerfacecolor is None: if self.markerfacecolor is not None: markerfacecolor = self.markerfacecolor if markerfacecoloralt is None: if self.markerfacecoloralt is not None: markerfacecoloralt = self.markerfacecoloralt if markeredgecolor is None: if self.markeredgecolor is not None: markeredgecolor = self.markeredgecolor if marker is None: if self.marker is not None: marker = self.marker if markersize is None: if self.markersize is not None: markersize = self.markersize if fillstyle is None: if self.fillstyle is not None: fillstyle = self.fillstyle marker = FilledMarker(markerfacecolor, markerfacecoloralt , markeredgecolor , marker, markersize , fillstyle) self.markers.append((x,y,marker)) #################################################################### ## def plot(self,ax): """Plot the current list of markers on the given axes. All the markers currently stored in the class will be drawn. Args: | ax (axes): an axes handle for the plot Returns: | Nothing. Creates the figure for subsequent use. Raises: | No exception is raised. """ usetex = plt.rcParams['text.usetex'] plt.rcParams['text.usetex'] = False # otherwise, '^' will cause trouble for marker in self.markers: ax.plot(marker[0], marker[1], color = marker[2].markerfacecolor, markerfacecoloralt = marker[2].markerfacecoloralt, markeredgecolor = marker[2].markeredgecolor, marker = marker[2].marker, markersize = marker[2].markersize, fillstyle = marker[2].fillstyle, linewidth=0) plt.rcParams['text.usetex'] = usetex ################################################################################### ################################################################################### class ProcessImage: """This class provides a functions to assist in the optimal display of images. """ #define the compression rule to be used in the equalisation function compressSet = [ [lambda x : x , lambda x : x, 'Linear'], [np.log, np.exp, 'Natural Log'], [np.sqrt, np.square, 'Square Root']] ############################################################ def __init__(self): """Class constructor Sets up some variables for use in this class Args: | None Returns: | Nothing Raises: | No exception is raised. """ __all__ = ['__init__', 'compressEqualizeImage', 'reprojectImageIntoPolar'] ############################################################ def compressEqualizeImage(self, image, selectCompressSet=2, numCbarlevels=20, cbarformat='.3f'): """Compress an image (and then inversely expand the color bar values), prior to histogram equalisation to ensure that the two keep in step, we store the compression function names as pairs, and invoke the compression function as follows: linear, log. sqrt. Note that the image is histogram equalised in all cases. Args: | image (np.ndarray): the image to be processed | selectCompressSet (int): compression selection [0,1,2] (optional) | numCbarlevels (int): number of labels in the colourbar (optional) | cbarformat (string): colourbar label format, e.g., '10.3f', '.5e' (optional) Returns: | imgHEQ (np.ndarray): the equalised image array | customticksz (zip(float, string)): colourbar levels and associated levels Raises: | No exception is raised. """ #compress the input image - rescale color bar tick to match below #also collapse into single dimension imgFlat = self.compressSet[selectCompressSet][0](image.flatten()) imgFlatSort = np.sort(imgFlat) #cumulative distribution cdf = imgFlatSort.cumsum()/imgFlatSort[-1] #remap image values to achieve histogram equalisation y=np.interp(imgFlat,imgFlatSort, cdf ) #and reshape to original image shape imgHEQ = y.reshape(image.shape) # #plot the histogram mapping # minData = np.min(imgFlat) # maxData = np.max(imgFlat) # print('Image irradiance range minimum={0} maximum={1}'.format(minData, maxData)) # irradRange=np.linspace(minData, maxData, 100) # normalRange = np.interp(irradRange,imgFlatSort, cdf ) # H = ryplot.Plotter(1, 1, 1,'Mapping Input Irradiance to Equalised Value', # figsize=(10, 10)) # H.plot(1, "","Irradiance [W/(m$^2$)]", "Equalised value",irradRange, # normalRange, powerLimits = [-4, 2, -10, 2]) # #H.getPlot().show() # H.saveFig('cumhist{0}.png'.format(entry), dpi=300) #prepare the color bar tick labels from image values (as plotted) imgLevels = np.linspace(np.min(imgHEQ), np.max(imgHEQ), numCbarlevels) #map back from image values to original values as read it (inverse to above) irrLevels=np.interp(imgLevels,cdf, imgFlatSort) #uncompress the tick labels - match with compression above fstr = '{0:' + cbarformat + '}' customticksz = list(zip(imgLevels, [fstr.format(self.compressSet[selectCompressSet][1](x)) for x in irrLevels])) return imgHEQ, customticksz ############################################################################## ## def reprojectImageIntoPolar(self, data, origin=None, framesFirst=True,cval=0.0): """Reprojects a 3D numpy array into a polar coordinate system, relative to some origin. This function reprojects an image from cartesian to polar coordinates. The origin of the new coordinate system defaults to the center of the image, unless the user supplies a new origin. The data format can be data.shape = (rows, cols, frames) or data.shape = (frames, rows, cols), the format of which is indicated by the framesFirst parameter. The reprojectImageIntoPolar function maps radial to cartesian coords. The radial image is however presented in a cartesian grid, the corners have no meaning. The radial coordinates are mapped to the radius, not the corners. This means that in order to map corners, the frequency is scaled with sqrt(2), The corners are filled with the value specified in cval. Args: | data (np.array): 3-D array to which transformation must be applied. | origin ( (x-orig, y-orig) ): data-coordinates of where origin should be placed | framesFirst (bool): True if data.shape is (frames, rows, cols), False if data.shape is (rows, cols, frames) | cval (float): the fill value to be used in coords outside the mapped range(optional) Returns: | output (float np.array): transformed images/array data in the same sequence as input sequence. | r_i (np.array[N,]): radial values for returned image. | theta_i (np.array[M,]): angular values for returned image. Raises: | No exception is raised. original code by <NAME> https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system """ import pyradi.ryutils as ryutils # import scipy as sp import scipy.ndimage as spndi if framesFirst: data = ryutils.framesLast(data) ny, nx = data.shape[:2] if origin is None: origin = (nx//2, ny//2) # Determine what the min and max r and theta coords will be x, y = ryutils.index_coords(data, origin=origin, framesFirst=framesFirst ) r, theta = ryutils.cart2polar(x, y) # Make a regular (in polar space) grid based on the min and max r & theta r_i = np.linspace(r.min(), r.max(), nx) theta_i = np.linspace(theta.min(), theta.max(), ny) theta_grid, r_grid = np.meshgrid(theta_i, r_i) # Project the r and theta grid back into pixel coordinates xi, yi = ryutils.polar2cart(r_grid, theta_grid) xi += origin[0] # We need to shift the origin back to yi += origin[1] # back to the lower-left corner... xi, yi = xi.flatten(), yi.flatten() coords = np.vstack((xi, yi)) # (map_coordinates requires a 2xn array) # Reproject each band individually and the restack # (uses less memory than reprojection the 3-dimensional array in one step) bands = [] for band in data.T: zi = spndi.map_coordinates(band, coords, order=1,cval=cval) bands.append(zi.reshape((nx, ny))) output = np.dstack(bands) if framesFirst: output = ryutils.framesFirst(output) return output, r_i, theta_i ################################################################################### ################################################################################### class Plotter: """ Encapsulates a plotting environment, optimized for compact code. This class provides a wrapper around Matplotlib to provide a plotting environment specialised towards typical pyradi visualisation. These functions were developed to provide sophisticated plots by entering the various plot options on a few lines, instead of typing many commands. Provision is made for plots containing subplots (i.e., multiple plots on the same figure), linear scale and log scale plots, images, and cartesian, 3-D and polar plots. """ ############################################################ ## def __init__(self,fignumber=0,subpltnrow=1,subpltncol=1,\ figuretitle=None, figsize=(9,9), titlefontsize=14, useplotly = False,doWarning=True): """Class constructor The constructor defines the number for this figure, allowing future reference to this figure. The number of subplot rows and columns allow the user to define the subplot configuration. The user can also provide a title to be used for the figure (centred on top) and finally, the size of the figure in inches can be specified to scale the text relative to the figure. Args: | fignumber (int): the plt figure number, must be supplied | subpltnrow (int): subplot number of rows | subpltncol (int): subplot number of columns | figuretitle (string): the overall heading for the figure | figsize ((w,h)): the figure size in inches | titlefontsize (int): the figure title size in points | useplotly (bool): Plotly activation parameter | doWarning (bool): print warning messages to the screen Returns: | Nothing. Creates the figure for subequent use. Raises: | No exception is raised. """ __all__ = ['__init__', 'saveFig', 'getPlot', 'plot', 'logLog', 'semilogX', 'semilogY', 'polar', 'showImage', 'plot3d', 'buildPlotCol', 'getSubPlot', 'meshContour', 'nextPlotCol', 'plotArray', 'polarMesh', 'resetPlotCol', 'mesh3D', 'polar3d', 'labelSubplot', 'emptyPlot','setup_pie_axes','pie'] version=mpl.__version__.split('.') vnum=float(version[0]+'.'+version[1]) if vnum<1.1: print('Install Matplotlib 1.1 or later') print('current version is {0}'.format(vnum)) sys.exit(-1) self.figurenumber = fignumber self.fig = plt.figure(self.figurenumber) self.fig.set_size_inches(figsize[0], figsize[1]) self.fig.clear() self.figuretitle = figuretitle self.doWarning = doWarning #Plotly variables initialization self.useplotly = useplotly if self.useplotly: self.Plotlyfig = [] self.Plotlydata = [] self.Plotlylayout = [] self.PlotlyXaxisTitles = [] self.PlotlyYaxisTitles = [] self.PlotlySubPlotTitles = [] self.PlotlySubPlotLabels = [] self.PlotlySubPlotNumbers = [] self.PlotlyPlotCalls = 0 self.PLcolor='' self.PLwidth=0 self.PLdash='' self.PLmultiAxisTitle='' self.PLmultipleYAxis=False self.PLyAxisSide='' self.PLyAxisOverlaying='' self.PLmultipleXAxis=False self.PLxAxisSide='' self.PLxAxisOverlaying='' self.PLIs3D=False self.PLType='' self.nrow=subpltnrow self.ncol=subpltncol # width reserved for space between subplots self.fig.subplots_adjust(wspace=0.25) #height reserved for space between subplots self.fig.subplots_adjust(hspace=0.4) #height reserved for top of the subplots of the figure self.fig.subplots_adjust(top=0.88) # define the default line colour and style self.buildPlotCol(plotCol=None, n=None) self.bbox_extra_artists = [] self.subplots = {} self.gridSpecsOuter = {} self.arrayRows = {} self.gridSpecsInner = {} if figuretitle: self.figtitle=plt.gcf().text(.5,.95,figuretitle,\ horizontalalignment='center',\ fontproperties=FontProperties(size=titlefontsize)) self.bbox_extra_artists.append(self.figtitle) ############################################################ ## def buildPlotCol(self, plotCol=None, n=None): """Set a sequence of default colour styles of appropriate length. The constructor provides a sequence with length 14 pre-defined plot styles. The user can define a new sequence if required. This function modulus-folds either sequence, in case longer sequences are required. Colours can be one of the basic colours: ['b', 'g', 'r', 'c', 'm', 'y', 'k'] or it can be a gray shade float value between 0 and 1, such as '0.75', or it can be in hex format '#eeefff' or it can be one of the legal html colours. See http://html-color-codes.info/ and http://www.computerhope.com/htmcolor.htm. http://latexcolor.com/ Args: | plotCol ([strings]): User-supplied list | of plotting styles(can be empty []). | n (int): Length of required sequence. Returns: | A list with sequence of plot styles, of required length. Raises: | No exception is raised. """ # assemble the list as requested, use default if not specified if plotCol is None: plotCol = ['b', 'g', 'r', 'c', 'm', 'y', 'k', '#5D8AA8','#E52B50','#FF7E00','#9966CC','#CD9575','#915C83', '#008000','#4B5320','#B2BEB5','#A1CAF1','#FE6F5E','#333399', '#DE5D83','#800020','#1E4D2B','#00BFFF','#007BA7','#FFBCD9'] if n is None: n = len(plotCol) self.plotCol = [plotCol[i % len(plotCol)] for i in range(n)] # copy this to circular list as well self.plotColCirc = itertools.cycle(self.plotCol) return self.plotCol ############################################################ ## def nextPlotCol(self): """Returns the next entry in a sequence of default plot line colour styles in circular list. One day I want to do this with a generator.... Args: | None Returns: | The next plot colour in the sequence. Raises: | No exception is raised. """ col = next(self.plotColCirc) return col ############################################################ ## def resetPlotCol(self): """Resets the plot colours to start at the beginning of the cycle. Args: | None Returns: | None. Raises: | No exception is raised. """ self.plotColCirc = itertools.cycle(self.plotCol) ############################################################ ## def saveFig(self, filename='mpl.png',dpi=300,bbox_inches='tight',\ pad_inches=0.1, useTrueType = True): """Save the plot to a disk file, using filename, dpi specification and bounding box limits. One of matplotlib's design choices is a bounding box strategy which may result in a bounding box that is smaller than the size of all the objects on the page. It took a while to figure this out, but the current default values for bbox_inches and pad_inches seem to create meaningful bounding boxes. These are however larger than the true bounding box. You still need a tool such as epstools or Adobe Acrobat to trim eps files to the true bounding box. The type of file written is picked up in the filename. Most backends support png, pdf, ps, eps and svg. Args: | filename (string): output filename to write plot, file ext | dpi (int): the resolution of the graph in dots per inch | bbox_inches: see matplotlib docs for more detail. | pad_inches: see matplotlib docs for more detail. | useTrueType: if True, truetype fonts are used in eps/pdf files, otherwise Type3 Returns: | Nothing. Saves a file to disk. Raises: | No exception is raised. """ # http://matplotlib.1069221.n5.nabble.com/TrueType-font-embedding-in-eps-problem-td12691.html # http://stackoverflow.com/questions/5956182/cannot-edit-text-in-chart-exported-by-matplotlib-and-opened-in-illustrator # http://newsgroups.derkeiler.com/Archive/Comp/comp.soft-sys.matlab/2008-07/msg02038.html if useTrueType: mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['ps.fonttype'] = 42 #http://stackoverflow.com/questions/15341757/how-to-check-that-pylab-backend-of-matplotlib-runs-inline/17826459#17826459 # print(mpl.get_backend()) if 'inline' in mpl.get_backend() and self.doWarning: print('**** If saveFig does not work inside the notebook please comment out the line "%matplotlib inline" ') print('To disable ryplot warnings, set doWarning=False') # return if len(filename)>0: if self.bbox_extra_artists: self.fig.savefig(filename, dpi=dpi, bbox_inches=bbox_inches, pad_inches=pad_inches,\ bbox_extra_artists= self.bbox_extra_artists); else: self.fig.savefig(filename, dpi=dpi, bbox_inches=bbox_inches, pad_inches=pad_inches); ############################################################ ## def getPlot(self): """Returns a handle to the current figure Args: | None Returns: | A handle to the current figure. Raises: | No exception is raised. """ return self.fig ############################################################ ## def labelSubplot(self, spax, ptitle=None, xlabel=None, ylabel=None, zlabel=None, titlefsize=10, labelfsize=10, ): """Set the sub-figure title and axes labels (cartesian plots only). Args: | spax (handle): subplot axis handle where labels must be drawn | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | zlabel (string): z axis label (optional) | titlefsize (float): title fontsize (optional) | labelfsize (float): x,y,z label fontsize (optional) Returns: | None. Raises: | No exception is raised. """ if xlabel is not None: spax.set_xlabel(xlabel,fontsize=labelfsize) if ylabel is not None: spax.set_ylabel(ylabel,fontsize=labelfsize) if zlabel is not None: spax.set_ylabel(zlabel,fontsize=labelfsize) if ptitle is not None: spax.set_title(ptitle,fontsize=titlefsize) ############################################################ ## def getSubPlot(self, subplotNum = 1): """Returns a handle to the subplot, as requested per subplot number. Subplot numbers range from 1 upwards. Args: | subplotNumer (int) : number of the subplot Returns: | A handle to the requested subplot or None if not found. Raises: | No exception is raised. """ if (self.nrow,self.ncol, subplotNum) in list(self.subplots.keys()): return self.subplots[(self.nrow,self.ncol, subplotNum)] else: return None ############################################################ ## def getXLim(self, subplotNum = 1): """Returns the x limits of the current subplot. Subplot numbers range from 1 upwards. Args: | subplotNumer (int) : number of the subplot Returns: | An array with the two limits Raises: | No exception is raised. """ if (self.nrow,self.ncol, subplotNum) in list(self.subplots.keys()): return np.asarray(self.subplots[(self.nrow,self.ncol, subplotNum)].get_xlim()) else: return None ############################################################ ## def getYLim(self, subplotNum = 1): """Returns the y limits of the current subplot. Subplot numbers range from 1 upwards. Args: | subplotNumer (int) : number of the subplot Returns: | An array with the two limits Raises: | No exception is raised. """ if (self.nrow,self.ncol, subplotNum) in list(self.subplots.keys()): return np.asarray(self.subplots[(self.nrow,self.ncol, subplotNum)].get_ylim()) else: return None ############################################################ ## def verticalLineCoords(self,subplotNum=1,x=0): """Returns two arrays for vertical line at x in the specific subplot. The line is drawn at specified x, with current y limits in subplot. Subplot numbers range from 1 upwards. Use as follows to draw a vertical line in plot: p.plot(1,*p.verticalLineCoords(subplotNum=1,x=freq),plotCol=['k']) Args: | subplotNumer (int) : number of the subplot | x (double): horizontal value used for line Returns: | A tuple with two arrays for line (x-coords,y-coords) Raises: | No exception is raised. """ if (self.nrow,self.ncol, subplotNum) in list(self.subplots.keys()): handle = self.subplots[(self.nrow,self.ncol, subplotNum)] x = np.asarray((x,x)) y = self.getYLim(subplotNum) return x,y else: return None ############################################################ ## def horizontalLineCoords(self,subplotNum=1,y=0): """Returns two arrays for horizontal line at y in the specific subplot. The line is drawn at specified y, with current x limits in subplot. Subplot numbers range from 1 upwards. Use as follows to draw a horizontal line in plot: p.plot(1,*p.horizontalLineCoords(subplotNum=1,x=freq),plotCol=['k']) Args: | subplotNumer (int) : number of the subplot | y (double): horizontal value used for line Returns: | A tuple with two arrays for line (x-coords,y-coords) Raises: | No exception is raised. """ if (self.nrow,self.ncol, subplotNum) in list(self.subplots.keys()): handle = self.subplots[(self.nrow,self.ncol, subplotNum)] y = np.asarray((y,y)) x = self.getXLim(subplotNum) return x,y else: return None ############################################################ ## def plot(self, plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[], legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10, labelfsize=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, drawGrid=True,xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None, clip_on=True,axesequal=False, xAxisFmt=None, yAxisFmt=None, PLcolor=None, PLwidth=None, PLdash=None, PLyAxisSide=None, PLyAxisOverlaying=None, PLmultipleYAxis=False, PLmultiAxisTitle=None, PLxAxisSide=None, PLxAxisOverlaying=None, PLmultipleXAxis=False ): #Plotly initialization parameters """Cartesian plot on linear scales for abscissa and ordinates. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list with M entries (optional) | legendAlpha (float): transparency for legend box (optional) | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLcolor (string): graph color scheme. Format 'rgb(r,g,b)' | PLwidth | PLdash (string): Line stlye | PLyAxisSide (string): Sets the location of the y-axis (left/right) | PLyAxisOverlaying (string): Sets the overlaying | PLmultipleYAxis (bool): Indicates presence of multiple axis | PLmultiAxisTitle (string): Sets the title of the multiple axis | PLxAxisSide (string): Sets the location of the x-axis (top/bottom) | PLxAxisOverlaying (string): Sets the overlaying | PLmultipleXAxis (bool): Indicates presence of multiple axis Returns: | the axis object for the plot Raises: | No exception is raised. """ #Plotly variables initialization self.PLcolor=PLcolor self.PLwidth=PLwidth self.PLdash=PLdash self.PLmultipleYAxis=PLmultipleYAxis self.PLmultiAxisTitle=PLmultiAxisTitle self.PLyAxisSide=PLyAxisSide self.PLyAxisOverlaying=PLyAxisOverlaying self.PLmultipleXAxis=PLmultipleXAxis self.PLxAxisSide=PLxAxisSide self.PLxAxisOverlaying=PLxAxisOverlaying ## see self.MyPlot for parameter details. pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] self.myPlot(ax.plot, plotnum, x, y, ptitle, xlabel, ylabel, plotCol, linewidths, label,legendAlpha, legendLoc, pltaxis, maxNX, maxNY, linestyle, powerLimits,titlefsize, xylabelfsize, xytickfsize, labelfsize, drawGrid, xScientific, yScientific, yInvert, xInvert, xIsDate, xTicks, xtickRotation, markers, markevery, markerfacecolor,markeredgecolor, zorders, clip_on,axesequal, xAxisFmt,yAxisFmt) return ax ############################################################ ## def logLog(self, plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[],legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10,labelfsize=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, drawGrid=True,xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None, clip_on=True,axesequal=False, xAxisFmt=None, yAxisFmt=None, PLcolor=None, PLwidth=None, PLdash=None, PLyAxisSide=None, PLyAxisOverlaying=None, PLmultipleYAxis=False, PLmultiAxisTitle=None): """Plot data on logarithmic scales for abscissa and ordinates. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list with M entries (optional) | legendAlpha (float): transparency for legend box (optional) | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLcolor (string): graph color scheme. Format 'rgb(r,g,b)' | PLwidth | PLdash (string): Line stlye | PLyAxisSide (string): Sets the location of the y-axis (left/right) | PLyAxisOverlaying (string): Sets the overlaying | PLmultipleYAxis (bool): Indicates presence of multiple axis | PLmultiAxisTitle (string): Sets the title of the multiple axis Returns: | the axis object for the plot Raises: | No exception is raised. """ # Plotly variables initialization self.PLcolor=PLcolor self.PLwidth=PLwidth self.PLdash=PLdash self.PLmultipleYAxis=PLmultipleYAxis self.PLmultiAxisTitle=PLmultiAxisTitle self.PLyAxisSide=PLyAxisSide self.PLyAxisOverlaying=PLyAxisOverlaying ## see self.MyPlot for parameter details. pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] # self.myPlot(ax.loglog, plotnum, x, y, ptitle, xlabel,ylabel,\ # plotCol, label,legendAlpha, pltaxis, \ # maxNX, maxNY, linestyle, powerLimits,titlefsize,xylabelfsize, # xytickfsize,labelfsize, drawGrid # xTicks, xtickRotation, # markers=markers) self.myPlot(ax.loglog, plotnum, x, y, ptitle, xlabel, ylabel, plotCol, linewidths, label,legendAlpha, legendLoc, pltaxis, maxNX, maxNY, linestyle, powerLimits,titlefsize, xylabelfsize, xytickfsize, labelfsize, drawGrid, xScientific, yScientific, yInvert, xInvert, xIsDate, xTicks, xtickRotation, markers, markevery, markerfacecolor,markeredgecolor, zorders, clip_on,axesequal, xAxisFmt,yAxisFmt) return ax ############################################################ ## def semilogX(self, plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[],legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10,labelfsize=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, drawGrid=True,xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None, clip_on=True, axesequal=False, xAxisFmt=None, yAxisFmt=None, PLcolor=None, PLwidth=None, PLdash=None, PLyAxisSide=None, PLyAxisOverlaying=None, PLmultipleYAxis=False, PLmultiAxisTitle=None): """Plot data on logarithmic scales for abscissa and linear scale for ordinates. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list with M entries (optional) | legendAlpha (float): transparency for legend box (optional) | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label notation power limits [x-low, x-high, y-low, y-high] (optional) (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLcolor (string): graph color scheme. Format 'rgb(r,g,b)' | PLwidth | PLdash (string): Line stlye | PLyAxisSide (string): Sets the location of the y-axis (left/right) | PLyAxisOverlaying (string): Sets the overlaying | PLmultipleYAxis (bool): Indicates presence of multiple axis | PLmultiAxisTitle (string): Sets the title of the multiple axis Returns: | the axis object for the plot Raises: | No exception is raised. """ #Plotly variables initialization self.PLcolor=PLcolor self.PLwidth=PLwidth self.PLdash=PLdash self.PLmultipleYAxis=PLmultipleYAxis self.PLmultiAxisTitle=PLmultiAxisTitle self.PLyAxisSide=PLyAxisSide self.PLyAxisOverlaying=PLyAxisOverlaying ## see self.MyPlot for parameter details. pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] self.myPlot(ax.semilogx, plotnum, x, y, ptitle, xlabel, ylabel,\ plotCol, linewidths, label,legendAlpha, legendLoc, pltaxis, maxNX, maxNY, linestyle, powerLimits, titlefsize, xylabelfsize, xytickfsize, labelfsize, drawGrid, xScientific, yScientific, yInvert, xInvert, xIsDate, xTicks, xtickRotation, markers, markevery, markerfacecolor,markeredgecolor, zorders, clip_on,axesequal, xAxisFmt,yAxisFmt) return ax ############################################################ ## def semilogY(self, plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[],legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10, labelfsize=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, drawGrid=True,xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None, clip_on=True,axesequal=False, xAxisFmt=None, yAxisFmt=None, PLcolor=None, PLwidth=None, PLdash=None, PLyAxisSide=None, PLyAxisOverlaying=None, PLmultipleYAxis=False, PLmultiAxisTitle=None): """Plot data on linear scales for abscissa and logarithmic scale for ordinates. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list withM entries (optional) | legendAlpha (float): transparency for legend box (optional) | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLcolor (string): graph color scheme. Format 'rgb(r,g,b)' | PLwidth | PLdash (string): Line stlye | PLyAxisSide (string): Sets the location of the y-axis (left/right) | PLyAxisOverlaying (string): Sets the overlaying | PLmultipleYAxis (bool): Indicates presence of multiple axis | PLmultiAxisTitle (string): Sets the title of the multiple axis Returns: | the axis object for the plot Raises: | No exception is raised. """ #Plotly variables initialization self.PLcolor=PLcolor self.PLwidth=PLwidth self.PLdash=PLdash self.PLmultipleYAxis=PLmultipleYAxis self.PLmultiAxisTitle=PLmultiAxisTitle self.PLyAxisSide=PLyAxisSide self.PLyAxisOverlaying=PLyAxisOverlaying ## see self.MyPlot for parameter details. pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] self.myPlot(ax.semilogy, plotnum, x, y, ptitle,xlabel,ylabel, plotCol, linewidths, label,legendAlpha, legendLoc, pltaxis, maxNX, maxNY, linestyle, powerLimits, titlefsize, xylabelfsize, xytickfsize, labelfsize, drawGrid, xScientific, yScientific, yInvert, xInvert, xIsDate, xTicks, xtickRotation, markers, markevery, markerfacecolor,markeredgecolor, zorders, clip_on, axesequal,xAxisFmt,yAxisFmt) return ax ############################################################ ## def stackplot(self, plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[],legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10, labelfsize=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, drawGrid=True,xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None, clip_on=True, axesequal=False, xAxisFmt=None, yAxisFmt=None, PLcolor=None, PLwidth=None, PLdash=None, PLyAxisSide=None, PLyAxisOverlaying=None, PLmultipleYAxis=False, PLmultiAxisTitle=None): """Plot stacked data on linear scales for abscissa and ordinates. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list withM entries (optional) | legendAlpha (float): transparency for legend box (optional) | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLcolor (string): graph color scheme. Format 'rgb(r,g,b)' | PLwidth | PLdash (string): Line stlye | PLyAxisSide (string): Sets the location of the y-axis (left/right) | PLyAxisOverlaying (string): Sets the overlaying | PLmultipleYAxis (bool): Indicates presence of multiple axis | PLmultiAxisTitle (string): Sets the title of the multiple axis Returns: | the axis object for the plot Raises: | No exception is raised. """ #Plotly variables initialization self.PLcolor=PLcolor self.PLwidth=PLwidth self.PLdash=PLdash self.PLmultipleYAxis=PLmultipleYAxis self.PLmultiAxisTitle=PLmultiAxisTitle self.PLyAxisSide=PLyAxisSide self.PLyAxisOverlaying=PLyAxisOverlaying ## see self.MyPlot for parameter details. pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] self.myPlot(ax.stackplot, plotnum, x, y.T, ptitle,xlabel,ylabel, plotCol, linewidths, label,legendAlpha, legendLoc, pltaxis, maxNX, maxNY, linestyle, powerLimits, titlefsize, xylabelfsize, xytickfsize, labelfsize, drawGrid, xScientific, yScientific, yInvert, xInvert, xIsDate, xTicks, xtickRotation, markers, markevery, markerfacecolor,markeredgecolor, zorders, clip_on, axesequal,xAxisFmt,yAxisFmt) return ax ############################################################ ## def myPlot(self, plotcommand,plotnum, x, y, ptitle=None,xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[], legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=0, maxNY=0, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10, labelfsize=10, drawGrid=True, xScientific=False, yScientific=False, yInvert=False, xInvert=False, xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None,clip_on=True,axesequal=False, xAxisFmt=None,yAxisFmt=None, PLyStatic=[0] ): """Low level helper function to create a subplot and plot the data as required. This function does the actual plotting, labelling etc. It uses the plotting function provided by its user functions. lineStyles = { '': '_draw_nothing', ' ': '_draw_nothing', 'None': '_draw_nothing', '--': '_draw_dashed', '-.': '_draw_dash_dot', '-': '_draw_solid', ':': '_draw_dotted'} Args: | plotcommand: name of a MatplotLib plotting function | plotnum (int): subplot number, 1-based index | ptitle (string): plot title | xlabel (string): x axis label | ylabel (string): y axis label | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list with M entries | legendAlpha (float): transparency for legend box | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. | maxNX (int): draw maxNX+1 tick labels on x axis | maxNY (int): draw maxNY+1 tick labels on y axis | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | drawGrid (bool): draw the grid on the plot (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLyStatic ([int]) the guy that added this did not document it properly Returns: | the axis object for the plot Raises: | No exception is raised. """ #Initialize plotlyPlot call when Plotly is activated if self.useplotly: self.PlotlyPlotCalls = self.PlotlyPlotCalls + 1 if x.ndim>1: xx=x else: if type(x)==type(pd.Series()): x = x.values xx=x.reshape(-1, 1) if y.ndim>1: yy=y else: if type(y)==type(pd.Series()): y = y.values yy=y.reshape(-1, 1) # plotCol = self.buildPlotCol(plotCol, yy.shape[1]) pkey = (self.nrow, self.ncol, plotnum) ax = self.subplots[pkey] if drawGrid: ax.grid(True) else: ax.grid(False) # use scientific format on axes #yfm = sbp.yaxis.get_major_formatter() #yfm.set_powerlimits([ -3, 3]) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=xylabelfsize) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=xylabelfsize) if xIsDate: ax.xaxis_date() ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) ax.xaxis.set_major_locator(mdates.DayLocator()) if maxNX >0: ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNX)) if maxNY >0: ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNY)) if xScientific: # formx = plt.FormatStrFormatter('%.3e') formx = plt.ScalarFormatter() formx.set_powerlimits([powerLimits[0], powerLimits[1]]) formx.set_scientific(True) ax.xaxis.set_major_formatter(formx) # http://matplotlib.1069221.n5.nabble.com/ScalarFormatter-td28042.html # http://matplotlib.org/api/ticker_api.html # http://matplotlib.org/examples/pylab_examples/newscalarformatter_demo.html # ax.xaxis.set_major_formatter( plt.FormatStrFormatter('%d')) # http://matplotlib.org/1.3.1/api/axes_api.html#matplotlib.axes.Axes.ticklabel_format # plt.ticklabel_format(style='sci', axis='x', # scilimits=(powerLimits[0], powerLimits[1])) if yScientific: formy = plt.ScalarFormatter() formy.set_powerlimits([powerLimits[2], powerLimits[3]]) formy.set_scientific(True) ax.yaxis.set_major_formatter(formy) # this user-defined format setting is given at the end of the function. # # override the format with user defined # if xAxisFmt is not None: # ax.xaxis.set_major_formatter(FormatStrFormatter(xAxisFmt)) # if yAxisFmt is not None: # ax.yaxis.set_major_formatter(FormatStrFormatter(yAxisFmt)) ###############################stacked plot ####################### if plotcommand==ax.stackplot: if not self.useplotly: if not plotCol: plotCol = [self.nextPlotCol() for col in range(0,yy.shape[0])] ax.stackplot(xx.reshape(-1), yy, colors=plotCol) ax.margins(0, 0) # Set margins to avoid "whitespace" # creating the legend manually ax.legend([mpl.patches.Patch(color=col) for col in plotCol], label, loc=legendLoc, framealpha=legendAlpha) else: #Plotly stacked plot #Plotly stacked plot variables PLXAxis = 0 PLYAxis = 0 for i in range(yy.shape[0]): PLXAxis = dict(type='category',) PLYAxis = dict(type='linear') try: if len(y[0,:]) > 1: self.Plotlydata.append(Scatter(x=x, y=y[i,:]+PLyStatic[0],mode='lines', name = label,fill='tonexty',line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) PLyStatic[0] += y[i,:] elif len(x[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,i], y=y,mode='lines', name = label,fill='tonexty',line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) except: self.Plotlydata.append(Scatter(x=x, y=y, name = label,fill='tonexty',line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) ###############################line plot ####################### else: # not a stacked plot for i in range(yy.shape[1]): #set up the line style, either given or next in sequence mmrk = '' if markers: if i >= len(markers): mmrk = markers[-1] else: mmrk = markers[i] if plotCol: if i >= len(plotCol): col = plotCol[-1] else: col = plotCol[i] else: col = self.nextPlotCol() if markerfacecolor==True: markerfacecolor = col elif markerfacecolor is None: markerfacecolor='none' else: pass # keep as is if markeredgecolor==True: markeredgecolor = col elif markeredgecolor is None: markeredgecolor='none' else: pass # keep as is if linestyle is None: linestyleL = '-' else: if type(linestyle) == type([1]): linestyleL = linestyle[i] else: linestyleL = linestyle if zorders: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 2 if not self.useplotly: if not label: if linewidths is not None: plotcommand(xx, yy[:, i], col, label=None, linestyle=linestyleL, markerfacecolor=markerfacecolor,markeredgecolor=markeredgecolor, marker=mmrk, markevery=markevery, linewidth=linewidths[i], clip_on=clip_on, zorder=zorder) else: plotcommand(xx, yy[:, i], col, label=None, linestyle=linestyleL, markerfacecolor=markerfacecolor,markeredgecolor=markeredgecolor, marker=mmrk, markevery=markevery, clip_on=clip_on, zorder=zorder) else: if linewidths is not None: # print('***************',linewidths) line, = plotcommand(xx,yy[:,i],col,#label=label[i], linestyle=linestyleL, markerfacecolor=markerfacecolor,markeredgecolor=markeredgecolor, marker=mmrk, markevery=markevery, linewidth=linewidths[i], clip_on=clip_on, zorder=zorder) else: line, = plotcommand(xx,yy[:,i],col,#label=label[i], linestyle=linestyleL, markerfacecolor=markerfacecolor,markeredgecolor=markeredgecolor, marker=mmrk, markevery=markevery, clip_on=clip_on, zorder=zorder) line.set_label(label[i]) leg = ax.legend( loc=legendLoc, fancybox=True,fontsize=labelfsize) leg.get_frame().set_alpha(legendAlpha) # ax.legend() self.bbox_extra_artists.append(leg) else:#Plotly plots if 'loglog' in str(plotcommand): PLXAxis = dict(type='log',showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=xlabel,mirror='all') PLYAxis = dict(type='log',showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=ylabel,mirror='all') # Assuming that either y or x has to 1 try: if len(x[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,i], y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) elif len(y[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,0], y=y[:,i], name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) except: self.Plotlydata.append(Scatter(x=x, y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif 'semilogx' in str(plotcommand): PLXAxis = dict(type='log',showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=xlabel,mirror='all') PLYAxis = dict(showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=ylabel,mirror='all') # Assuming that either y or x has to 1 try: if len(x[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,i], y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) elif len(y[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,0], y=y[:,i], name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) except: self.Plotlydata.append(Scatter(x=x, y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif 'semilogy' in str(plotcommand): PLXAxis = dict(showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=xlabel,mirror='all') PLYAxis = dict(type='log',showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=ylabel,mirror='all') # Assuming that either y or x has to 1 try: if len(x[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,i], y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) elif len(y[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,0], y=y[:,i], name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) except: self.Plotlydata.append(Scatter(x=x, y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) else: PLXAxis = dict(showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=xlabel,mirror='all') PLYAxis = dict(showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=ylabel,mirror='all') # Assuming that either y or x has to 1 try: if len(x[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,i], y=y, name = label,xaxis='x1', line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) elif len(y[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,0], y=y[:,i], name = label,xaxis='x1', line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) except: self.Plotlydata.append(Scatter(x=x, y=y, name = label,xaxis='x1', line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) #Plotly plots setup if self.useplotly: if self.PLmultipleYAxis: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,xaxis = PLXAxis,yaxis=PLYAxis,yaxis2=dict(title=self.PLmultiAxisTitle,side=self.PLyAxisSide,overlaying=self.PLyAxisOverlaying))) elif self.PLmultipleXAxis: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,yaxis=PLYAxis,xaxis = PLXAxis,xaxis2=dict(title=self.PLmultiAxisTitle,side=self.PLxAxisSide,overlaying=self.PLxAxisOverlaying))) else: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,xaxis = PLXAxis,yaxis=PLYAxis)) if self.ncol > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlySubPlotLabels.append(label) elif self.nrow > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlySubPlotLabels.append(label) if xIsDate: plt.gcf().autofmt_xdate() #scale the axes if pltaxis is not None: # ax.axis(pltaxis) if not xIsDate: ax.set_xlim(pltaxis[0],pltaxis[1]) ax.set_ylim(pltaxis[2],pltaxis[3]) if xTicks is not None: ticks = ax.set_xticks(list(xTicks.keys())) ax.set_xticklabels([xTicks[key] for key in xTicks], rotation=xtickRotation, fontsize=xytickfsize) if xTicks is None and xtickRotation is not None: ticks = ax.get_xticks() if xIsDate: from datetime import date ticks = [date.fromordinal(int(tick)).strftime('%Y-%m-%d') for tick in ticks] ax.set_xticks(ticks) # this is workaround for bug in matplotlib ax.set_xticklabels(ticks, rotation=xtickRotation, fontsize=xytickfsize) if(ptitle is not None): ax.set_title(ptitle, fontsize=titlefsize) # minor ticks are two points smaller than major ax.tick_params(axis='both', which='major', labelsize=xytickfsize) ax.tick_params(axis='both', which='minor', labelsize=xytickfsize-2) if yInvert: ax.set_ylim(ax.get_ylim()[::-1]) if xInvert: ax.set_xlim(ax.get_xlim()[::-1]) if axesequal: ax.axis('equal') # override the format with user defined if xAxisFmt is not None: ax.xaxis.set_major_formatter(FormatStrFormatter(xAxisFmt)) if yAxisFmt is not None: ax.yaxis.set_major_formatter(FormatStrFormatter(yAxisFmt)) return ax ############################################################ #Before this function is called, plot data is accumulated in runtime variables #At the call of this function the Plotly plots are plotted using the accumulated data. def plotlyPlot(self,filename=None,image=None,image_filename=None,auto_open=True): if ((self.nrow == self.ncol) & self.ncol == 1 & self.nrow == 1 ): #No subplots fig = Figure(data=self.Plotlydata,layout=self.Plotlylayout[0]) fig['layout'].update(title=str(self.figuretitle)) else: dataFormatCatch = 0 try: len(self.Plotlydata[0].y[1,:]) dataFormatCatch = 0 except: dataFormatCatch = 1 if self.PLIs3D: specRow = [] specCol = [] for r in range(int(self.nrow)): specRow.append({'is_3d': True}) for r in range(int(self.ncol)): specCol.append({'is_3d': True}) fig = tools.make_subplots(rows=int(self.nrow), cols=int(self.nrow), specs=[specRow,specCol])#[[{'is_3d': True}, {'is_3d': True}], [{'is_3d': True}, {'is_3d': True}]]) else: fig = tools.make_subplots(int(self.nrow), int(self.ncol), subplot_titles=self.PlotlySubPlotTitles) # make row and column formats rowFormat = [] colFormat = [] countRows = 1 rowCount = 1 colCount = 1 for tmp in range(int(self.nrow)*int(self.ncol)): if int(self.nrow) == int(self.ncol): if countRows == int(self.nrow): rowFormat.append(rowCount) rowCount = rowCount + 1 if rowCount > int(self.nrow): rowCount = 1 countRows = 1 elif countRows < int(self.nrow) : rowFormat.append(rowCount) countRows = countRows + 1 if colCount == int(self.ncol): colFormat.append(colCount) colCount = 1 elif colCount < int(self.ncol): colFormat.append(colCount) colCount = colCount + 1 else: if rowCount > int(self.nrow): rowCount = 1 rowFormat.append(rowCount) rowCount = rowCount + 1 else: rowFormat.append(rowCount) rowCount = rowCount + 1 if colCount > int(self.ncol): colCount = 1 colFormat.append(colCount) colCount = colCount + 1 else: colFormat.append(colCount) colCount = colCount + 1 if dataFormatCatch == 0: for tmp in range(self.PlotlyPlotCalls): if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[tmp], colFormat[tmp]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[tmp], colFormat[tmp]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: fig.append_trace(self.Plotlydata, rowFormat[tmp], colFormat[tmp]) else: rCntrl = 1 rIndex = 1 cIndex = 1 cCntrl = 1 rStpVal = int(len(self.Plotlydata)/len(rowFormat)) cStpVal = int(len(self.Plotlydata)/len(colFormat)) for i in range(len(self.Plotlydata)): if rCntrl > rStpVal: rCntrl = 1 rIndex = rIndex+1 if cCntrl > cStpVal: cCntrl = 1 cIndex = cIndex+1 if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[rIndex-1], colFormat[cIndex-1]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if(len(self.Plotlydata) == len(rowFormat)): fig.append_trace(self.Plotlydata[i], rowFormat[i], colFormat[i]) else: fig.append_trace(self.Plotlydata[i], rowFormat[self.PlotlySubPlotNumbers[i]-1], colFormat[self.PlotlySubPlotNumbers[i]-1]) cCntrl = cCntrl + 1 else: if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[rIndex-1], colFormat[cIndex-1]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: fig.append_trace(self.Plotlydata[i], rowFormat[rIndex-1], colFormat[cIndex-1]) rCntrl = rCntrl + 1 elif cCntrl > cStpVal: cCntrl = 1 cIndex = cIndex+1 if rCntrl > rStpVal: rCntrl = 1 rIndex = rIndex+1 if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[rIndex-1], colFormat[cIndex-1]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: fig.append_trace(self.Plotlydata[i], rowFormat[rIndex-1], colFormat[cIndex-1]) rCntrl = rCntrl + 1 else: if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[rIndex-1], colFormat[cIndex-1]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: fig.append_trace(self.Plotlydata[i], rowFormat[rIndex-1], colFormat[cIndex-1]) cCntrl = cCntrl + 1 else: if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[rIndex-1], colFormat[cIndex-1]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: fig.append_trace(self.Plotlydata[i], rowFormat[rIndex-1], colFormat[cIndex-1]) rCntrl = rCntrl + 1 cCntrl = cCntrl + 1 fig['layout'].update(title=str(self.figuretitle)) for j in range(self.PlotlyPlotCalls): if j < len(self.PlotlyXaxisTitles): fig['layout']['xaxis'+str(j+1)].update(title=self.PlotlyXaxisTitles[j],type=self.Plotlylayout[j].xaxis.type) else: fig['layout']['xaxis'+str(j+1)].update(type=self.Plotlylayout[j].xaxis.type) if j < len(self.PlotlyYaxisTitles): fig['layout']['yaxis'+str(j+1)].update(title=self.PlotlyYaxisTitles[j],type=self.Plotlylayout[j].yaxis.type) else: fig['layout']['yaxis'+str(j+1)].update(type=self.Plotlylayout[j].yaxis.type) if filename: offline.plot(fig,filename=filename) elif image: offline.plot(fig,image_filename=image_filename,image=image,auto_open=auto_open) else: offline.plot(fig) ############################################################ ## def emptyPlot(self,plotnum,projection='rectilinear'): """Returns a handler to an empty plot. This function does not do any plotting, the use must add plots using the standard MatPlotLib means. Args: | plotnum (int): subplot number, 1-based index | rectilinear (str): type of axes projection, from ['aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear.]. Returns: | the axis object for the plot Raises: | No exception is raised. """ pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum,projection=projection) ax = self.subplots[pkey] return ax ############################################################ ## def meshContour(self, plotnum, xvals, yvals, zvals, levels=10, ptitle=None, xlabel=None, ylabel=None, shading='flat', plotCol=[], pltaxis=None, maxNX=0, maxNY=0, xScientific=False, yScientific=False, powerLimits=[-4, 2, -4, 2], titlefsize=12, xylabelfsize=12, xytickfsize=10, meshCmap=cm.rainbow, cbarshow=False, cbarorientation='vertical', cbarcustomticks=[], cbarfontsize=12, drawGrid=False, yInvert=False, xInvert=False, contourFill=True, contourLine=True, logScale=False, negativeSolid=False, zeroContourLine=None, contLabel=False, contFmt='%.2f', contCol='k', contFonSz=8, contLinWid=0.5, zorders=None, PLcolorscale='' ): """XY colour mesh countour plot for (xvals, yvals, zvals) input sets. The data values must be given on a fixed mesh grid of three-dimensional $(x,y,z)$ array input sets. The mesh grid is defined in $(x,y)$, while the height of the mesh is the $z$ value. Given an existing figure, this function plots in a specified subplot position. Only one contour plot is drawn at a time. Future contours in the same subplot will cover any previous contours. The data set must have three two dimensional arrays, each for x, y, and z. The data in x, y, and z arrays must have matching data points. The x and y arrays each define the grid in terms of x and y values, i.e., the x array contains the x values for the data set, while the y array contains the y values. The z array contains the z values for the corresponding x and y values in the contour mesh. Z-values can be plotted on a log scale, in which case the colourbar is adjusted to show true values, but on the nonlinear scale. The current version only saves png files, since there appears to be a problem saving eps files. The xvals and yvals vectors may have non-constant grid-intervals, i.e., they do not have to be on regular intervals. Args: | plotnum (int): subplot number, 1-based index | xvals (np.array[N,M]): array of x values | yvals (np.array[N,M]): array of y values | zvals (np.array[N,M]): values on a (x,y) grid | levels (int or [float]): number of contour levels or a list of levels (optional) | ptitle (string): plot title (optional) | xlabel (string): x axis label (optional) | ylabel (string): y axis label (optional) | shading (string): not used currently (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | meshCmap (cm): colour map for the mesh (optional) | cbarshow (bool): if true, the show a colour bar (optional) | cbarorientation (string): 'vertical' (right) or 'horizontal' (below) (optional) | cbarcustomticks zip([z values/float],[tick labels/string])` define custom colourbar ticks locations for given z values(optional) | cbarfontsize (int): font size for colour bar (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis. Flip the y-axis up-down (optional) | xInvert (bool): invert the x-axis. Flip the x-axis left-right (optional) | contourFill (bool): fill contours with colour (optional) | contourLine (bool): draw a series of contour lines (optional) | logScale (bool): do Z values on log scale, recompute colourbar values (optional) | negativeSolid (bool): draw negative contours in solid lines, dashed otherwise (optional) | zeroContourLine (double): draw a single contour at given value (optional) | contLabel (bool): label the contours with values (optional) | contFmt (string): contour label c-printf format (optional) | contCol (string): contour label colour, e.g., 'k' (optional) | contFonSz (float): contour label fontsize (optional) | contLinWid (float): contour line width in points (optional) | zorders ([int]) list of zorders for drawing sequence, highest is last (optional) | PLcolorscale (?) Plotly parameter ? (optional) Returns: | the axis object for the plot Raises: | No exception is raised. """ #to rank 2 xx=xvals.reshape(-1, 1) yy=yvals.reshape(-1, 1) #if this is a log scale plot if logScale is True: zvals = np.log10(zvals) contour_negative_linestyle = plt.rcParams['contour.negative_linestyle'] if contourLine: if negativeSolid: plt.rcParams['contour.negative_linestyle'] = 'solid' else: plt.rcParams['contour.negative_linestyle'] = 'dashed' #create subplot if not existing if (self.nrow,self.ncol, plotnum) not in list(self.subplots.keys()): self.subplots[(self.nrow,self.ncol, plotnum)] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) #get axis ax = self.subplots[(self.nrow,self.ncol, plotnum)] if drawGrid: ax.grid(True) else: ax.grid(False) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=xylabelfsize) if xScientific: formx = plt.ScalarFormatter() formx.set_scientific(True) formx.set_powerlimits([powerLimits[0], powerLimits[1]]) ax.xaxis.set_major_formatter(formx) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=xylabelfsize) if yScientific: formy = plt.ScalarFormatter() formy.set_powerlimits([powerLimits[2], powerLimits[3]]) formy.set_scientific(True) ax.yaxis.set_major_formatter(formy) if maxNX >0: ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNX)) if maxNY >0: ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNY)) if plotCol: col = plotCol[0] else: col = self.nextPlotCol() if zorders is not None: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 2 if self.useplotly: self.PlotlyPlotCalls = self.PlotlyPlotCalls + 1 self.PLType = "meshContour" if cbarshow: self.Plotlydata.append(Contour(x=list(itertools.chain.from_iterable(xvals)), y=list(itertools.chain.from_iterable(yvals)), z=list(itertools.chain.from_iterable(zvals)), PLcolorscale=PLcolorscale)) #,color=color,colorbar = ColorBar(PLtickmode=PLtickmode,nticks=PLnticks, # PLtick0=PLtick0,PLdtick=PLdtick,PLtickvals=PLtickvals,PLticktext=PLticktext), # PLcolorscale = PLcolorScale,intensity = PLintensity)) else: self.Plotlydata.append(Contour(x=list(itertools.chain.from_iterable(xvals)), y=list(itertools.chain.from_iterable(yvals)), z=list(itertools.chain.from_iterable(zvals)),PLcolorscale=PLcolorscale)) #,color=color)) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) #do the plot if contourFill: pmplotcf = ax.contourf(xvals, yvals, zvals, levels, cmap=meshCmap, zorder=zorder) if contourLine: pmplot = ax.contour(xvals, yvals, zvals, levels, cmap=None, linewidths=contLinWid, colors=col, zorder=zorder) if zeroContourLine: pmplot = ax.contour(xvals, yvals, zvals, (zeroContourLine,), cmap=None, linewidths=contLinWid, colors=col, zorder=zorder) if contLabel: # and not contourFill: plt.clabel(pmplot, fmt = contFmt, colors = contCol, fontsize=contFonSz) #, zorder=zorder) if cbarshow and (contourFill): #http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html#colorbar-whose-height-or-width-in-sync-with-the-master-axes divider = make_axes_locatable(ax) if cbarorientation == 'vertical': cax = divider.append_axes("right", size="5%", pad=0.05) else: cax = divider.append_axes("bottom", size="5%", pad=0.1) if not cbarcustomticks: # cbar = self.fig.colorbar(pmplotcf,orientation=cbarorientation) cbar = self.fig.colorbar(pmplotcf,cax=cax) if logScale: cbartickvals = cbar.ax.yaxis.get_ticklabels() tickVals = [] # need this roundabout trick to handle minus sign in unicode for item in cbartickvals: valstr = float(item.get_text().replace(u'\N{MINUS SIGN}', '-').replace('$','')) # valstr = item.get_text().replace('\u2212', '-').replace('$','') val = 10**float(valstr) if abs(val) < 1000: str = '{0:f}'.format(val) else: str = '{0:e}'.format(val) tickVals.append(str) cbartickvals = cbar.ax.yaxis.set_ticklabels(tickVals) else: ticks, ticklabels = list(zip(*cbarcustomticks)) # cbar = self.fig.colorbar(pmplotcf,ticks=ticks, orientation=cbarorientation) cbar = self.fig.colorbar(pmplotcf,ticks=ticks, cax=cax) if cbarorientation == 'vertical': cbar.ax.set_yticklabels(ticklabels) else: cbar.ax.set_xticklabels(ticklabels) if cbarorientation == 'vertical': for t in cbar.ax.get_yticklabels(): t.set_fontsize(cbarfontsize) else: for t in cbar.ax.get_xticklabels(): t.set_fontsize(cbarfontsize) #scale the axes if pltaxis is not None: ax.axis(pltaxis) if(ptitle is not None): ax.set_title(ptitle, fontsize=titlefsize) # minor ticks are two points smaller than major ax.tick_params(axis='both', which='major', labelsize=xytickfsize) ax.tick_params(axis='both', which='minor', labelsize=xytickfsize-2) if yInvert: ax.set_ylim(ax.get_ylim()[::-1]) if xInvert: ax.set_xlim(ax.get_xlim()[::-1]) plt.rcParams['contour.negative_linestyle'] = contour_negative_linestyle if self.useplotly: if self.PLmultipleYAxis: if yInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel,autorange='reversed'))) elif xInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel,autorange='reversed'),yaxis=dict(title=ylabel))) else: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel)))#,font=dict(title=self.PLmultiAxisTitle,side=self.PLyAxisSide,overlaying=self.PLyAxisOverlaying))) elif self.PLmultipleXAxis: if yInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel,autorange='reversed'))) elif xInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel,autorange='reversed'),yaxis=dict(title=ylabel))) else: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel)))#,yaxis=PLYAxis,xaxis = PLXAxis,xaxis2=dict(title=self.PLmultiAxisTitle,side=self.PLxAxisSide,overlaying=self.PLxAxisOverlaying))) else: if yInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel,autorange='reversed'))) elif xInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel,autorange='reversed'),yaxis=dict(title=ylabel))) else: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel)))#,xaxis = PLXAxis,yaxis=PLYAxis)) if self.ncol > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) return ax ############################################################ ## def mesh3D(self, plotnum, xvals, yvals, zvals, ptitle=None, xlabel=None, ylabel=None, zlabel=None, rstride=1, cstride=1, linewidth=0, plotCol=None, edgeCol=None, pltaxis=None, maxNX=0, maxNY=0, maxNZ=0, xScientific=False, yScientific=False, zScientific=False, powerLimits=[-4, 2, -4, 2, -2, 2], titlefsize=12, xylabelfsize=12, xytickfsize=10, wireframe=False, surface=True, cmap=cm.rainbow, cbarshow=False, cbarorientation = 'vertical', cbarcustomticks=[], cbarfontsize = 12, drawGrid=True, xInvert=False, yInvert=False, zInvert=False, logScale=False, alpha=1, alphawire=1, azim=45, elev=30, distance=10, zorders=None, clip_on=True, PLcolor=None, PLcolorScale=None, PLtickmode=None, PLnticks=None, PLtick0=None, PLdtick=None, PLtickvals=None, PLticktext=None, PLintensity = None ): """XY colour mesh plot for (xvals, yvals, zvals) input sets. Given an existing figure, this function plots in a specified subplot position. Only one mesh is drawn at a time. Future meshes in the same subplot will cover any previous meshes. The mesh grid is defined in (x,y), while the height of the mesh is the z value. The data set must have three two dimensional arrays, each for x, y, and z. The data in x, y, and z arrays must have matching data points. The x and y arrays each define the grid in terms of x and y values, i.e., the x array contains the x values for the data set, while the y array contains the y values. The z array contains the z values for the corresponding x and y values in the mesh. Use wireframe=True to obtain a wireframe plot. Use surface=True to obtain a surface plot with fill colours. Z-values can be plotted on a log scale, in which case the colourbar is adjusted to show true values, but on the nonlinear scale. The xvals and yvals vectors may have non-constant grid-intervals, i.e., they do not have to be on regular intervals, but z array must correspond to the (x,y) grid. Args: | plotnum (int): subplot number, 1-based index | xvals (np.array[N,M]): array of x values, corresponding to (x,y) grid | yvals (np.array[N,M]): array of y values, corresponding to (x,y) grid | zvals (np.array[N,M]): array of z values, corresponding to (x,y) grid | ptitle (string): plot title (optional) | xlabel (string): x axis label (optional) | ylabel (string): y axis label (optional) | zlabel (string): z axis label (optional) | rstride (int): mesh line row (y axis) stride, every rstride value along y axis (optional) | cstride (int): mesh line column (x axis) stride, every cstride value along x axis (optional) | linewidth (float): mesh line width in points (optional) | plotCol ([strings]): fill colour, list with M=1 entries, use default if None (optional) | edgeCol ([strings]): mesh line colour , list with M=1 entries, use default if None (optional) | pltaxis ([xmin, xmax, ymin, ymax]): scale for x,y axes. z scale is not settable. Let Matplotlib decide if None (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | maxNZ (int): draw maxNY+1 tick labels on z axis (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | zScientific (bool): use scientific notation on z-axis (optional) | powerLimits[float]: scientific tick label power limits [x-neg, x-pos, y-neg, y-pos, z-neg, z-pos] (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis, z-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis, z-axis tick font size, default 10pt (optional) | wireframe (bool): If True, do a wireframe plot, (optional) | surface (bool): If True, do a surface plot, (optional) | cmap (cm): color map for the mesh (optional) | cbarshow (bool): if true, the show a color bar (optional) | cbarorientation (string): 'vertical' (right) or 'horizontal' (below) (optional) | cbarcustomticks zip([z values/float],[tick labels/string]): define custom colourbar ticks locations for given z values(optional) | cbarfontsize (int): font size for color bar (optional) | drawGrid (bool): draw the grid on the plot (optional) | xInvert (bool): invert the x-axis. Flip the x-axis left-right (optional) | yInvert (bool): invert the y-axis. Flip the y-axis left-right (optional) | zInvert (bool): invert the z-axis. Flip the z-axis up-down (optional) | logScale (bool): do Z values on log scale, recompute colourbar vals (optional) | alpha (float): surface transparency (optional) | alphawire (float): mesh transparency (optional) | azim (float): graph view azimuth angle [degrees] (optional) | elev (float): graph view evelation angle [degrees] (optional) | distance (float): distance between viewer and plot (optional) | zorder ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | PLcolor (string): Graph colors e.g 'FFFFFF' | PLcolorScale ([int,string]): Color scale for mesh graphs e.g [0, 'rgb(0, 0, 0)'] | PLtickmode (string): Plot mode | PLnticks (int): number of ticks | PLtick0 (int): First tick value | PLdtick (int): | PLtickvals [int]: Plot intervals | PLticktext [string]: Plot text | PLintensity Returns: | the axis object for the plot Raises: | No exception is raised. """ from mpl_toolkits.mplot3d.axes3d import Axes3D #if this is a log scale plot if logScale is True: zvals = np.log10(zvals) #create subplot if not existing if (self.nrow,self.ncol, plotnum) not in list(self.subplots.keys()): self.subplots[(self.nrow,self.ncol, plotnum)] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum, projection='3d') #get axis ax = self.subplots[(self.nrow,self.ncol, plotnum)] if drawGrid: ax.grid(True) else: ax.grid(False) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=xylabelfsize) if xScientific: formx = plt.ScalarFormatter() formx.set_scientific(True) formx.set_powerlimits([powerLimits[0], powerLimits[1]]) ax.xaxis.set_major_formatter(formx) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=xylabelfsize) if yScientific: formy = plt.ScalarFormatter() formy.set_powerlimits([powerLimits[2], powerLimits[3]]) formy.set_scientific(True) ax.yaxis.set_major_formatter(formy) if zlabel is not None: ax.set_zlabel(zlabel, fontsize=xylabelfsize) if zScientific: formz = plt.ScalarFormatter() formz.set_powerlimits([powerLimits[4], powerLimits[5]]) formz.set_scientific(True) ax.zaxis.set_major_formatter(formz) if maxNX >0: ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNX)) if maxNY >0: ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNY)) if maxNZ >0: ax.zaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNZ)) if plotCol: col = plotCol[0] else: col = self.nextPlotCol() if edgeCol: edcol = edgeCol[0] else: edcol = self.nextPlotCol() if zorders: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 1 if self.useplotly: self.PlotlyPlotCalls = self.PlotlyPlotCalls + 1 self.PLIs3D = True self.PLType = "mesh3D" if cbarshow: self.Plotlydata.append(Mesh3d(x=list(itertools.chain.from_iterable(xvals)), y=list(itertools.chain.from_iterable(yvals)), z=list(itertools.chain.from_iterable(zvals)),color=PLcolor, colorbar = ColorBar(PLtickmode=PLtickmode,nticks=PLnticks, PLtick0=PLtick0,PLdtick=PLdtick,PLtickvals=PLtickvals,PLticktext=PLticktext), PLcolorscale=PLcolorScale,intensity=PLintensity)) else: self.Plotlydata.append(Mesh3d(x=list(itertools.chain.from_iterable(xvals)), y=list(itertools.chain.from_iterable(yvals)), z=list(itertools.chain.from_iterable(zvals)),color=PLcolor)) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) #do the plot if surface: pmplot = ax.plot_surface(xvals, yvals, zvals, rstride=rstride, cstride=cstride, edgecolor=edcol, cmap=cmap, linewidth=linewidth, alpha=alpha, zorder=zorder, clip_on=clip_on) if wireframe: pmplot = ax.plot_wireframe(xvals, yvals, zvals, rstride=rstride, cstride=cstride, color=col, edgecolor=edcol, linewidth=linewidth, alpha=alphawire, zorder=zorder, clip_on=clip_on) ax.view_init(azim=azim, elev=elev) ax.dist = distance if cbarshow is True and cmap is not None: #http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html#colorbar-whose-height-or-width-in-sync-with-the-master-axes # divider = make_axes_locatable(ax) # if cbarorientation == 'vertical': # cax = divider.append_axes("right", size="5%", pad=0.05) # else: # cax = divider.append_axes("bottom", size="5%", pad=0.1) if not cbarcustomticks: cbar = self.fig.colorbar(pmplot,orientation=cbarorientation) # cbar = self.fig.colorbar(pmplot,cax=cax) if logScale: cbartickvals = cbar.ax.yaxis.get_ticklabels() tickVals = [] # need this roundabout trick to handle minus sign in unicode for item in cbartickvals: valstr = item.get_text().replace('\u2212', '-').replace('$','') val = 10**float(valstr) if abs(val) < 1000: str = '{0:f}'.format(val) else: str = '{0:e}'.format(val) tickVals.append(str) cbartickvals = cbar.ax.yaxis.set_ticklabels(tickVals) else: ticks, ticklabels = list(zip(*cbarcustomticks)) cbar = self.fig.colorbar(pmplot,ticks=ticks, orientation=cbarorientation) # cbar = self.fig.colorbar(pmplot,ticks=ticks, cax=cax) if cbarorientation == 'vertical': cbar.ax.set_yticklabels(ticklabels) else: cbar.ax.set_xticklabels(ticklabels) if cbarorientation == 'vertical': for t in cbar.ax.get_yticklabels(): t.set_fontsize(cbarfontsize) else: for t in cbar.ax.get_xticklabels(): t.set_fontsize(cbarfontsize) if(ptitle is not None): plt.title(ptitle, fontsize=titlefsize) #scale the axes if pltaxis is not None: # ax.axis(pltaxis) ax.set_xlim(pltaxis[0], pltaxis[1]) ax.set_ylim(pltaxis[2], pltaxis[3]) ax.set_zlim(pltaxis[4], pltaxis[5]) if(ptitle is not None): ax.set_title(ptitle, fontsize=titlefsize) # minor ticks are two points smaller than major ax.tick_params(axis='both', which='major', labelsize=xytickfsize) ax.tick_params(axis='both', which='minor', labelsize=xytickfsize-2) if xInvert: ax.set_xlim(ax.get_xlim()[::-1]) if yInvert: ax.set_ylim(ax.get_ylim()[::-1]) if zInvert: ax.set_zlim(ax.get_zlim()[::-1]) if self.useplotly: if self.PLmultipleYAxis: self.Plotlylayout.append(Layout(title = ptitle)) elif self.PLmultipleXAxis: self.Plotlylayout.append(Layout(title = ptitle)) else: self.Plotlylayout.append(Layout(title = ptitle)) if self.ncol > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) return ax ############################################################ ## def polar(self, plotnum, theta, r, ptitle=None, \ plotCol=None, label=[],labelLocation=[-0.1, 0.1], \ highlightNegative=True, highlightCol='#ffff00', highlightWidth=4,\ legendAlpha=0.0, linestyle=None,\ rscale=None, rgrid=[0,5], thetagrid=[30], \ direction='counterclockwise', zerooffset=0, titlefsize=12, drawGrid=True, zorders=None, clip_on=True, markers=[], markevery=None, ): """Create a subplot and plot the data in polar coordinates (linear radial orginates only). Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the radial values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The scale for the radial ordinates can be set with rscale. The number of radial grid circles can be set with rgrid - this provides a somewhat better control over the built-in radial grid in matplotlib. thetagrids defines the angular grid interval. The angular rotation direction can be set to be clockwise or counterclockwise. Likewise, the rotation offset where the plot zero angle must be, is set with `zerooffset`. For some obscure reason Matplitlib version 1.13 does not plot negative values on the polar plot. We therefore force the plot by making the values positive and then highlight it as negative. Args: | plotnum (int): subplot number, 1-based index | theta (np.array[N,] or [N,1]): angular abscissa in radians | r (np.array[N,] or [N,M]): radial ordinates - could be M columns | ptitle (string): plot title (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if None (optional) | label ([strings]): legend label, list with M entries (optional) | labelLocation ([x,y]): where the legend should located (optional) | highlightNegative (bool): indicate if negative data must be highlighted (optional) | highlightCol (string): negative highlight colour string (optional) | highlightWidth (int): negative highlight line width(optional) | legendAlpha (float): transparency for legend box (optional) | linestyle ([str]): line style to be used in plot | rscale ([rmin, rmax]): radial plotting limits. use default setting if None. If rmin is negative the zero is a circle and rmin is at the centre of the graph (optional) | rgrid ([rinc, numinc]): radial grid, use default is [0,5]. If rgrid is None don't show. If rinc=0 then numinc is number of intervals. If rinc is not zero then rinc is the increment and numinc is ignored (optional) | thetagrid (float): theta grid interval [degrees], if None don't show (optional) | direction (string): direction in increasing angle, 'counterclockwise' or 'clockwise' (optional) | zerooffset (float): rotation offset where zero should be [rad]. Positive zero-offset rotation is counterclockwise from 3'o'clock (optional) | titlefsize (int): title font size, default 12pt (optional) | drawGrid (bool): draw a grid on the graph (optional) | zorder ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) Returns: | the axis object for the plot Raises: | No exception is raised. """ if theta.ndim>1: tt=theta else: if type(theta)==type(pd.Series()): theta = theta.values tt=theta.reshape(-1, 1) if r.ndim>1: rr=r else: if type(r)==type(pd.Series()): r = r.values rr=r.reshape(-1, 1) MakeAbs = True if rscale is not None: if rscale[0] < 0: MakeAbs = False else: highlightNegative=True #override the function value else: highlightNegative=True #override the function value #plotCol = self.buildPlotCol(plotCol, rr.shape[1]) ax = None pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum, polar=True) ax = self.subplots[pkey] ax.grid(drawGrid) rmax=0 for i in range(rr.shape[1]): # negative val :forcing positive and phase shifting # if forceAbsolute: # ttt = tt + np.pi*(rr[:, i] < 0).reshape(-1, 1) # rrr = np.abs(rr[:, i]) # else: ttt = tt.reshape(-1,) rrr = rr[:, i].reshape(-1,) #print(rrr) if highlightNegative: #find zero crossings in data zero_crossings = np.where(np.diff(np.sign(rr),axis=0))[0] + 1 #split the input into different subarrays according to crossings negrrr = np.split(rr,zero_crossings) negttt = np.split(tt,zero_crossings) # print('zero crossing',zero_crossings) # print(len(negrrr)) # print(negrrr) mmrk = '' if markers: if i >= len(markers): mmrk = markers[-1] else: mmrk = markers[i] #set up the line style, either given or next in sequence if plotCol: col = plotCol[i] else: col = self.nextPlotCol() if linestyle is None: linestyleL = '-' else: if type(linestyle) == type([1]): linestyleL = linestyle[i] else: linestyleL = linestyle # print('p',ttt.shape) # print('p',rrr.shape) if zorders: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 2 if not label: if highlightNegative: lines = ax.plot(ttt, rrr, col, clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) neglinewith = highlightWidth*plt.getp(lines[0],'linewidth') for ii in range(0,len(negrrr)): if len(negrrr[ii]) > 0: if negrrr[ii][0] < 0: if MakeAbs: ax.plot(negttt[ii], np.abs(negrrr[ii]), highlightCol, linewidth=neglinewith, clip_on=clip_on, zorder=zorder, marker=mmrk, markevery=markevery,linestyle=linestyleL) else: ax.plot(negttt[ii], negrrr[ii], highlightCol, linewidth=neglinewith, clip_on=clip_on, zorder=zorder, marker=mmrk, markevery=markevery,linestyle=linestyleL) ax.plot(ttt, rrr, col, clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) rmax = np.maximum(np.abs(rrr).max(), rmax) rmin = 0 else: if highlightNegative: lines = ax.plot(ttt, rrr, col, clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) neglinewith = highlightWidth*plt.getp(lines[0],'linewidth') for ii in range(0,len(negrrr)): if len(negrrr[ii]) > 0: # print(len(negrrr[ii])) # if negrrr[ii][0] < 0: if negrrr[ii][0][0] < 0: if MakeAbs: ax.plot(negttt[ii], np.abs(negrrr[ii]), highlightCol, linewidth=neglinewith, clip_on=clip_on, zorder=zorder, marker=mmrk, markevery=markevery,linestyle=linestyleL) else: ax.plot(negttt[ii], negrrr[ii], highlightCol, linewidth=neglinewith, clip_on=clip_on, zorder=zorder, marker=mmrk, markevery=markevery,linestyle=linestyleL) ax.plot(ttt, rrr, col,label=label[i], clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) rmax=np.maximum(np.abs(rrr).max(), rmax) rmin = 0 if MakeAbs: ax.plot(ttt, np.abs(rrr), col, clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) else: ax.plot(ttt, rrr, col, clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) #Plotly polar setup if self.useplotly: # Assuming that either y or x has to 1 if thetagrid is None: tt=tt*(180.0/(np.pi)) else: tt=tt*(180.0/(np.pi*(thetagrid[0]/(-4.62*i+5)))) try: if len(r[0,:]) > 1: self.Plotlydata.append(Scatter(r=rr[:,i], t=tt[:,0], name = label,mode='lines')) elif len(theta[0,:]) > 1: self.Plotlydata.append(Scatter(r=rr[:,0], t=tt[:,i], name = label,mode='lines')) else: self.Plotlydata.append(Scatter(r=rr[:,0], t=tt[:,0], name = label,mode='lines')) except: self.Plotlydata.append(Scatter(r=rr[:,0], t=tt[:,0], name = label)) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) if label: fontP = mpl.font_manager.FontProperties() fontP.set_size('small') leg = ax.legend(loc='upper left', bbox_to_anchor=(labelLocation[0], labelLocation[1]), prop = fontP, fancybox=True) leg.get_frame().set_alpha(legendAlpha) self.bbox_extra_artists.append(leg) ax.set_theta_direction(direction) ax.set_theta_offset(zerooffset) #set up the grids if thetagrid is None: ax.set_xticklabels([]) else: plt.thetagrids(list(range(0, 360, thetagrid[0]))) #Set increment and maximum radial limits if rscale is None: rscale = [rmin, rmax] if rgrid is None: ax.set_yticklabels([]) else: if rgrid[0] == 0: ax.set_yticks(np.linspace(rscale[0],rscale[1],int(rgrid[1]))) if rgrid[0] != 0: numrgrid = (rscale[1] - rscale[0] ) / rgrid[0] ax.set_yticks(np.linspace(rscale[0],rscale[1],int(numrgrid+1.000001))) ax.set_ylim(rscale[0],rscale[1]) if(ptitle is not None): ax.set_title(ptitle, fontsize=titlefsize, \ verticalalignment ='bottom', horizontalalignment='center') if self.useplotly: if self.PLmultipleYAxis: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,orientation=+90)) elif self.PLmultipleXAxis: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,orientation=+90)) else: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,orientation=+90)) if self.ncol > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlySubPlotLabels.append(label) elif self.nrow > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlySubPlotLabels.append(label) return ax ############################################################ ## def showImage(self, plotnum, img, ptitle=None, xlabel=None, ylabel=None, cmap=plt.cm.gray, titlefsize=12, cbarshow=False, cbarorientation = 'vertical', cbarcustomticks=[], cbarfontsize = 12, labelfsize=10, xylabelfsize = 12,interpolation=None): """Creates a subplot and show the image using the colormap provided. Args: | plotnum (int): subplot number, 1-based index | img (np.ndarray): numpy 2d array containing the image | ptitle (string): plot title (optional) | xlabel (string): x axis label (optional) | ylabel (string): y axis label (optional) | cmap: matplotlib colormap, default gray (optional) | fsize (int): title font size, default 12pt (optional) | cbarshow (bool): if true, the show a colour bar (optional) | cbarorientation (string): 'vertical' (right) or 'horizontal' (below) (optional) | cbarcustomticks zip([tick locations/float],[tick labels/string]): locations in image grey levels (optional) | cbarfontsize (int): font size for colour bar (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | interpolation (str): 'none', 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos'(optional, see pyplot.imshow) Returns: | the axis object for the plot Raises: | No exception is raised. """ #http://matplotlib.sourceforge.net/examples/pylab_examples/colorbar_tick_labelling_demo.html #http://matplotlib.1069221.n5.nabble.com/Colorbar-Ticks-td21289.html pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] cimage = ax.imshow(img, cmap,interpolation=interpolation) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=xylabelfsize) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=xylabelfsize) ax.axis('off') if cbarshow is True: #http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html#colorbar-whose-height-or-width-in-sync-with-the-master-axes divider = make_axes_locatable(ax) if cbarorientation == 'vertical': cax = divider.append_axes("right", size="5%", pad=0.05) # else: # cay = divider.append_axes("bottom", size="5%", pad=0.1) if not cbarcustomticks: if cbarorientation == 'vertical': cbar = self.fig.colorbar(cimage,cax=cax) else: cbar = self.fig.colorbar(cimage,orientation=cbarorientation) else: ticks, ticklabels = list(zip(*cbarcustomticks)) if cbarorientation == 'vertical': cbar = self.fig.colorbar(cimage,ticks=ticks, cax=cax) else: cbar = self.fig.colorbar(cimage,ticks=ticks, orientation=cbarorientation) if cbarorientation == 'vertical': cbar.ax.set_yticklabels(ticklabels) else: cbar.ax.set_xticklabels(ticklabels) if cbarorientation == 'vertical': for t in cbar.ax.get_yticklabels(): t.set_fontsize(cbarfontsize) else: for t in cbar.ax.get_xticklabels(): t.set_fontsize(cbarfontsize) if(ptitle is not None): ax.set_title(ptitle, fontsize=titlefsize) return ax ############################################################ ## def plot3d(self, plotnum, x, y, z, ptitle=None, xlabel=None, ylabel=None, zlabel=None, plotCol=[], linewidths=None, pltaxis=None, label=None, legendAlpha=0.0, titlefsize=12, xylabelfsize = 12, xInvert=False, yInvert=False, zInvert=False,scatter=False, markers=None, markevery=None, azim=45, elev=30, zorders=None, clip_on=True, edgeCol=None, linestyle='-'): """3D plot on linear scales for x y z input sets. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that multiple 3D data sets can be plotted simultaneously by adding additional columns to the input coordinates of the (x,y,z) arrays, each set of columns representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,M]) x coordinates of each line. | y (np.array[N,] or [N,M]) y coordinates of each line. | z (np.array[N,] or [N,M]) z coordinates of each line. | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | zlabel (string): z axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if None (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | pltaxis ([xmin, xmax, ymin, ymax, zmin, zmax]) scale for x,y,z axes. Let Matplotlib decide if None. (optional) | label ([strings]): legend label for ordinate, list with M entries (optional) | legendAlpha (float): transparency for legend box (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x, y, z label font size, default 12pt (optional) | xInvert (bool): invert the x-axis (optional) | yInvert (bool): invert the y-axis (optional) | zInvert (bool): invert the z-axis (optional) | scatter (bool): draw only the points, no lines (optional) | markers ([string]): markers to be used for plotting data points (optional) | markevery (int | (startind, stride)): subsample when using markers (optional) | azim (float): graph view azimuth angle [degrees] (optional) | elev (float): graph view evelation angle [degrees] (optional) | zorder ([int]): list of zorder for drawing sequence, highest is last (optional) | clip_on (bool): clips objects to drawing axes (optional) | edgeCol ([int]): list of colour specs, value at [0] used for edge colour (optional). | linestyle (string): linestyle for this plot (optional) Returns: | the axis object for the plot Raises: | No exception is raised. """ # if required convert 1D arrays into 2D arrays if type(x)==type(
pd.Series()
pandas.Series
#!/usr/bin/env python # coding: utf-8 # In[ ]: from google.colab import drive # Import a library named google.colab drive.mount('/content/drive', force_remount=True) # mount the content to the directory `/content/drive` # In[ ]: get_ipython().run_line_magic('cd', '/content/drive/MyDrive/Netflix_Appetency_Prediction') # In[ ]: import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder import warnings warnings.filterwarnings('ignore') # In[ ]: train_df=pd.read_csv('train.csv') # In[ ]: test_df=pd.read_csv('test.csv') # In[ ]: id_list=test_df['id'] # In[ ]: train_df.info() # In[ ]: test_df.info() # #1.Find categorical variables and numerical variables # In[ ]: categorical_var=[column for column in train_df.columns if (train_df[column].dtype=='object') | (len(train_df[column].unique())<=20) ] # In[ ]: numerical_var=train_df.columns.drop(categorical_var) # In[ ]: print("categorical_var length:", len(categorical_var), '\n' "numerical_var length:", len(numerical_var)) # #2.Read target feature # In[ ]: train_df['target'].unique() # In[ ]: sns.countplot(train_df['target']) # #3.Observe percentage null values # # In[ ]: null_values_columns=[] percent_null_values=[] for column in train_df.columns: percent_null_value=((train_df[column].isna().sum())/(len(train_df))) * 100 if(percent_null_value > 0): null_values_columns.append(column) percent_null_values.append(percent_null_value) df_null=
pd.DataFrame(null_values_columns,columns=['column'])
pandas.DataFrame
''' Copyright 2022 Airbus SAS Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' ''' mode: python; py-indent-offset: 4; tab-width: 4; coding: utf-8 ''' import unittest from numpy.testing import assert_array_equal from pandas._testing import assert_frame_equal import pprint import numpy as np import pandas as pd from time import sleep from shutil import rmtree from pathlib import Path from os.path import join from sos_trades_core.execution_engine.execution_engine import ExecutionEngine from copy import deepcopy from tempfile import gettempdir class TestMultiScenarioOfDoeEval(unittest.TestCase): """ MultiScenario and doe_eval processes test class """ def setUp(self): ''' Initialize third data needed for testing ''' self.namespace = 'MyCase' self.study_name = f'{self.namespace}' self.repo = 'sos_trades_core.sos_processes.test' self.base_path = 'sos_trades_core.sos_wrapping.test_discs' self.exec_eng = ExecutionEngine(self.namespace) self.factory = self.exec_eng.factory def setup_my_usecase(self): ''' ''' ######### Numerical values #### x_1 = 2 x_2_a = 4 x_2_b = 5 a_1 = 3 b_1 = 4 a_2 = 6 b_2 = 2 constant = 3 power = 2 z_1 = 1.2 z_2 = 1.5 my_doe_algo = "lhs" n_samples = 4 ######### Selection of variables and DS #### input_selection_z_scenario_1 = { 'selected_input': [False, False, False, True, False, False], 'full_name': ['x', 'a','b','multi_scenarios.scenario_1.Disc3.z','constant','power']} input_selection_z_scenario_1 = pd.DataFrame(input_selection_z_scenario_1) input_selection_z_scenario_2 = { 'selected_input': [False, False, False, True, False, False], 'full_name': ['x', 'a','b','multi_scenarios.scenario_2.Disc3.z','constant','power']} input_selection_z_scenario_2 = pd.DataFrame(input_selection_z_scenario_2) output_selection_o_scenario_1 = { 'selected_output': [False, False, True], 'full_name': ['indicator', 'y', 'multi_scenarios.scenario_1.o']} output_selection_o_scenario_1 = pd.DataFrame(output_selection_o_scenario_1) output_selection_o_scenario_2 = { 'selected_output': [False, False, True], 'full_name': ['indicator', 'y', 'multi_scenarios.scenario_2.o']} output_selection_o_scenario_2 =
pd.DataFrame(output_selection_o_scenario_2)
pandas.DataFrame
# -*- coding: utf-8 -*- ## Copyright 2015-2021 PyPSA Developers ## You can find the list of PyPSA Developers at ## https://pypsa.readthedocs.io/en/latest/developers.html ## PyPSA is released under the open source MIT License, see ## https://github.com/PyPSA/PyPSA/blob/master/LICENSE.txt """ Power flow functionality. """ __author__ = ( "PyPSA Developers, see https://pypsa.readthedocs.io/en/latest/developers.html" ) __copyright__ = ( "Copyright 2015-2021 PyPSA Developers, see https://pypsa.readthedocs.io/en/latest/developers.html, " "MIT License" ) import logging logger = logging.getLogger(__name__) import time from operator import itemgetter import networkx as nx import numpy as np import pandas as pd from numpy import ones, r_ from numpy.linalg import norm from pandas.api.types import is_list_like from scipy.sparse import csc_matrix, csr_matrix, dok_matrix from scipy.sparse import hstack as shstack from scipy.sparse import issparse from scipy.sparse import vstack as svstack from scipy.sparse.linalg import spsolve from pypsa.descriptors import ( Dict, allocate_series_dataframes, degree, get_switchable_as_dense, zsum, ) pd.Series.zsum = zsum def normed(s): return s / s.sum() def real(X): return np.real(X.to_numpy()) def imag(X): return np.imag(X.to_numpy()) def _as_snapshots(network, snapshots): if snapshots is None: snapshots = network.snapshots if not is_list_like(snapshots): snapshots = pd.Index([snapshots]) if not isinstance(snapshots, pd.MultiIndex): snapshots = pd.Index(snapshots) assert snapshots.isin(network.snapshots).all() snapshots.name = "snapshot" return snapshots def _allocate_pf_outputs(network, linear=False): to_allocate = { "Generator": ["p"], "Load": ["p"], "StorageUnit": ["p"], "Store": ["p"], "ShuntImpedance": ["p"], "Bus": ["p", "v_ang", "v_mag_pu"], "Line": ["p0", "p1"], "Transformer": ["p0", "p1"], "Link": ["p" + col[3:] for col in network.links.columns if col[:3] == "bus"], } if not linear: for component, attrs in to_allocate.items(): if "p" in attrs: attrs.append("q") if "p0" in attrs and component != "Link": attrs.extend(["q0", "q1"]) allocate_series_dataframes(network, to_allocate) def _calculate_controllable_nodal_power_balance( sub_network, network, snapshots, buses_o ): for n in ("q", "p"): # allow all one ports to dispatch as set for c in sub_network.iterate_components( network.controllable_one_port_components ): c_n_set = get_switchable_as_dense( network, c.name, n + "_set", snapshots, c.ind ) network.pnl(c.name)[n].loc[snapshots, c.ind] = c_n_set # set the power injection at each node from controllable components network.buses_t[n].loc[snapshots, buses_o] = sum( [ ( (c.pnl[n].loc[snapshots, c.ind] * c.df.loc[c.ind, "sign"]) .groupby(c.df.loc[c.ind, "bus"], axis=1) .sum() .reindex(columns=buses_o, fill_value=0.0) ) for c in sub_network.iterate_components( network.controllable_one_port_components ) ] ) if n == "p": network.buses_t[n].loc[snapshots, buses_o] += sum( [ ( -c.pnl[n + str(i)] .loc[snapshots] .groupby(c.df["bus" + str(i)], axis=1) .sum() .reindex(columns=buses_o, fill_value=0) ) for c in network.iterate_components( network.controllable_branch_components ) for i in [int(col[3:]) for col in c.df.columns if col[:3] == "bus"] ] ) def _network_prepare_and_run_pf( network, snapshots, skip_pre, linear=False, distribute_slack=False, slack_weights="p_set", **kwargs ): if linear: sub_network_pf_fun = sub_network_lpf sub_network_prepare_fun = calculate_B_H else: sub_network_pf_fun = sub_network_pf sub_network_prepare_fun = calculate_Y if not skip_pre: network.determine_network_topology() calculate_dependent_values(network) _allocate_pf_outputs(network, linear) snapshots = _as_snapshots(network, snapshots) # deal with links if not network.links.empty: p_set = get_switchable_as_dense(network, "Link", "p_set", snapshots) network.links_t.p0.loc[snapshots] = p_set.loc[snapshots] for i in [ int(col[3:]) for col in network.links.columns if col[:3] == "bus" and col != "bus0" ]: eff_name = "efficiency" if i == 1 else "efficiency{}".format(i) efficiency = get_switchable_as_dense(network, "Link", eff_name, snapshots) links = network.links.index[network.links["bus{}".format(i)] != ""] network.links_t["p{}".format(i)].loc[snapshots, links] = ( -network.links_t.p0.loc[snapshots, links] * efficiency.loc[snapshots, links] ) itdf = pd.DataFrame(index=snapshots, columns=network.sub_networks.index, dtype=int) difdf = pd.DataFrame(index=snapshots, columns=network.sub_networks.index) cnvdf = pd.DataFrame( index=snapshots, columns=network.sub_networks.index, dtype=bool ) for sub_network in network.sub_networks.obj: if not skip_pre: find_bus_controls(sub_network) branches_i = sub_network.branches_i() if len(branches_i) > 0: sub_network_prepare_fun(sub_network, skip_pre=True) if isinstance(slack_weights, dict): sn_slack_weights = slack_weights[sub_network.name] else: sn_slack_weights = slack_weights if isinstance(sn_slack_weights, dict): sn_slack_weights = pd.Series(sn_slack_weights) if not linear: # escape for single-bus sub-network if len(sub_network.buses()) <= 1: ( itdf[sub_network.name], difdf[sub_network.name], cnvdf[sub_network.name], ) = sub_network_pf_singlebus( sub_network, snapshots=snapshots, skip_pre=True, distribute_slack=distribute_slack, slack_weights=sn_slack_weights, ) else: ( itdf[sub_network.name], difdf[sub_network.name], cnvdf[sub_network.name], ) = sub_network_pf_fun( sub_network, snapshots=snapshots, skip_pre=True, distribute_slack=distribute_slack, slack_weights=sn_slack_weights, **kwargs ) else: sub_network_pf_fun( sub_network, snapshots=snapshots, skip_pre=True, **kwargs ) if not linear: return Dict({"n_iter": itdf, "error": difdf, "converged": cnvdf}) def network_pf( network, snapshots=None, skip_pre=False, x_tol=1e-6, use_seed=False, distribute_slack=False, slack_weights="p_set", ): """ Full non-linear power flow for generic network. Parameters ---------- snapshots : list-like|single snapshot A subset or an elements of network.snapshots on which to run the power flow, defaults to network.snapshots skip_pre : bool, default False Skip the preliminary steps of computing topology, calculating dependent values and finding bus controls. x_tol: float Tolerance for Newton-Raphson power flow. use_seed : bool, default False Use a seed for the initial guess for the Newton-Raphson algorithm. distribute_slack : bool, default False If ``True``, distribute the slack power across generators proportional to generator dispatch by default or according to the distribution scheme provided in ``slack_weights``. If ``False`` only the slack generator takes up the slack. slack_weights : dict|str, default 'p_set' Distribution scheme describing how to determine the fraction of the total slack power (of each sub network individually) a bus of the subnetwork takes up. Default is to distribute proportional to generator dispatch ('p_set'). Another option is to distribute proportional to (optimised) nominal capacity ('p_nom' or 'p_nom_opt'). Custom weights can be specified via a dictionary that has a key for each subnetwork index (``network.sub_networks.index``) and a pandas.Series/dict with buses or generators of the corresponding subnetwork as index/keys. When specifying custom weights with buses as index/keys the slack power of a bus is distributed among its generators in proportion to their nominal capacity (``p_nom``) if given, otherwise evenly. Returns ------- dict Dictionary with keys 'n_iter', 'converged', 'error' and dataframe values indicating number of iterations, convergence status, and iteration error for each snapshot (rows) and sub_network (columns) """ return _network_prepare_and_run_pf( network, snapshots, skip_pre, linear=False, x_tol=x_tol, use_seed=use_seed, distribute_slack=distribute_slack, slack_weights=slack_weights, ) def newton_raphson_sparse( f, guess, dfdx, x_tol=1e-10, lim_iter=100, distribute_slack=False, slack_weights=None, ): """Solve f(x) = 0 with initial guess for x and dfdx(x). dfdx(x) should return a sparse Jacobian. Terminate if error on norm of f(x) is < x_tol or there were more than lim_iter iterations. """ slack_args = {"distribute_slack": distribute_slack, "slack_weights": slack_weights} converged = False n_iter = 0 F = f(guess, **slack_args) diff = norm(F, np.Inf) logger.debug("Error at iteration %d: %f", n_iter, diff) while diff > x_tol and n_iter < lim_iter: n_iter += 1 guess = guess - spsolve(dfdx(guess, **slack_args), F) F = f(guess, **slack_args) diff = norm(F, np.Inf) logger.debug("Error at iteration %d: %f", n_iter, diff) if diff > x_tol: logger.warning( 'Warning, we didn\'t reach the required tolerance within %d iterations, error is at %f. See the section "Troubleshooting" in the documentation for tips to fix this. ', n_iter, diff, ) elif not np.isnan(diff): converged = True return guess, n_iter, diff, converged def sub_network_pf_singlebus( sub_network, snapshots=None, skip_pre=False, distribute_slack=False, slack_weights="p_set", linear=False, ): """ Non-linear power flow for a sub-network consiting of a single bus. Parameters ---------- snapshots : list-like|single snapshot A subset or an elements of network.snapshots on which to run the power flow, defaults to network.snapshots skip_pre: bool, default False Skip the preliminary steps of computing topology, calculating dependent values and finding bus controls. distribute_slack : bool, default False If ``True``, distribute the slack power across generators proportional to generator dispatch by default or according to the distribution scheme provided in ``slack_weights``. If ``False`` only the slack generator takes up the slack. slack_weights : pandas.Series|str, default 'p_set' Distribution scheme describing how to determine the fraction of the total slack power a bus of the subnetwork takes up. Default is to distribute proportional to generator dispatch ('p_set'). Another option is to distribute proportional to (optimised) nominal capacity ('p_nom' or 'p_nom_opt'). Custom weights can be provided via a pandas.Series/dict that has the generators of the single bus as index/keys. """ snapshots = _as_snapshots(sub_network.network, snapshots) network = sub_network.network logger.info( "Balancing power on single-bus sub-network {} for snapshots {}".format( sub_network, snapshots ) ) if not skip_pre: find_bus_controls(sub_network) _allocate_pf_outputs(network, linear=False) if isinstance(slack_weights, dict): slack_weights = pd.Series(slack_weights) buses_o = sub_network.buses_o _calculate_controllable_nodal_power_balance( sub_network, network, snapshots, buses_o ) v_mag_pu_set = get_switchable_as_dense(network, "Bus", "v_mag_pu_set", snapshots) network.buses_t.v_mag_pu.loc[snapshots, sub_network.slack_bus] = v_mag_pu_set.loc[ :, sub_network.slack_bus ] network.buses_t.v_ang.loc[snapshots, sub_network.slack_bus] = 0.0 if distribute_slack: for bus, group in sub_network.generators().groupby("bus"): if slack_weights in ["p_nom", "p_nom_opt"]: assert ( not all(network.generators[slack_weights]) == 0 ), "Invalid slack weights! Generator attribute {} is always zero.".format( slack_weights ) bus_generator_shares = ( network.generators[slack_weights] .loc[group.index] .pipe(normed) .fillna(0) ) elif slack_weights == "p_set": generators_t_p_choice = get_switchable_as_dense( network, "Generator", slack_weights, snapshots ) assert ( not generators_t_p_choice.isna().all().all() ), "Invalid slack weights! Generator attribute {} is always NaN.".format( slack_weights ) assert ( not (generators_t_p_choice == 0).all().all() ), "Invalid slack weights! Generator attribute {} is always zero.".format( slack_weights ) bus_generator_shares = ( generators_t_p_choice.loc[snapshots, group.index] .apply(normed, axis=1) .fillna(0) ) else: bus_generator_shares = slack_weights.pipe(normed).fillna(0) network.generators_t.p.loc[ snapshots, group.index ] += bus_generator_shares.multiply( -network.buses_t.p.loc[snapshots, bus], axis=0 ) else: network.generators_t.p.loc[ snapshots, sub_network.slack_generator ] -= network.buses_t.p.loc[snapshots, sub_network.slack_bus] network.generators_t.q.loc[ snapshots, sub_network.slack_generator ] -= network.buses_t.q.loc[snapshots, sub_network.slack_bus] network.buses_t.p.loc[snapshots, sub_network.slack_bus] = 0.0 network.buses_t.q.loc[snapshots, sub_network.slack_bus] = 0.0 return 0, 0.0, True # dummy substitute for newton raphson output def sub_network_pf( sub_network, snapshots=None, skip_pre=False, x_tol=1e-6, use_seed=False, distribute_slack=False, slack_weights="p_set", ): """ Non-linear power flow for connected sub-network. Parameters ---------- snapshots : list-like|single snapshot A subset or an elements of network.snapshots on which to run the power flow, defaults to network.snapshots skip_pre: bool, default False Skip the preliminary steps of computing topology, calculating dependent values and finding bus controls. x_tol: float Tolerance for Newton-Raphson power flow. use_seed : bool, default False Use a seed for the initial guess for the Newton-Raphson algorithm. distribute_slack : bool, default False If ``True``, distribute the slack power across generators proportional to generator dispatch by default or according to the distribution scheme provided in ``slack_weights``. If ``False`` only the slack generator takes up the slack. slack_weights : pandas.Series|str, default 'p_set' Distribution scheme describing how to determine the fraction of the total slack power a bus of the subnetwork takes up. Default is to distribute proportional to generator dispatch ('p_set'). Another option is to distribute proportional to (optimised) nominal capacity ('p_nom' or 'p_nom_opt'). Custom weights can be provided via a pandas.Series/dict that has the buses or the generators of the subnetwork as index/keys. When using custom weights with buses as index/keys the slack power of a bus is distributed among its generators in proportion to their nominal capacity (``p_nom``) if given, otherwise evenly. Returns ------- Tuple of three pandas.Series indicating number of iterations, remaining error, and convergence status for each snapshot """ assert isinstance( slack_weights, (str, pd.Series, dict) ), "Type of 'slack_weights' must be string, pd.Series or dict. Is {}.".format( type(slack_weights) ) if isinstance(slack_weights, dict): slack_weights = pd.Series(slack_weights) elif isinstance(slack_weights, str): valid_strings = ["p_nom", "p_nom_opt", "p_set"] assert ( slack_weights in valid_strings ), "String value for 'slack_weights' must be one of {}. Is {}.".format( valid_strings, slack_weights ) snapshots = _as_snapshots(sub_network.network, snapshots) logger.info( "Performing non-linear load-flow on {} sub-network {} for snapshots {}".format( sub_network.network.sub_networks.at[sub_network.name, "carrier"], sub_network, snapshots, ) ) # _sub_network_prepare_pf(sub_network, snapshots, skip_pre, calculate_Y) network = sub_network.network if not skip_pre: calculate_dependent_values(network) find_bus_controls(sub_network) _allocate_pf_outputs(network, linear=False) # get indices for the components on this subnetwork branches_i = sub_network.branches_i() buses_o = sub_network.buses_o sn_buses = sub_network.buses().index sn_generators = sub_network.generators().index generator_slack_weights_b = False bus_slack_weights_b = False if isinstance(slack_weights, pd.Series): if all(i in sn_generators for i in slack_weights.index): generator_slack_weights_b = True elif all(i in sn_buses for i in slack_weights.index): bus_slack_weights_b = True else: raise AssertionError( "Custom slack weights pd.Series/dict must only have the", "generators or buses of the subnetwork as index/keys.", ) if not skip_pre and len(branches_i) > 0: calculate_Y(sub_network, skip_pre=True) _calculate_controllable_nodal_power_balance( sub_network, network, snapshots, buses_o ) def f(guess, distribute_slack=False, slack_weights=None): last_pq = -1 if distribute_slack else None network.buses_t.v_ang.loc[now, sub_network.pvpqs] = guess[ : len(sub_network.pvpqs) ] network.buses_t.v_mag_pu.loc[now, sub_network.pqs] = guess[ len(sub_network.pvpqs) : last_pq ] v_mag_pu = network.buses_t.v_mag_pu.loc[now, buses_o] v_ang = network.buses_t.v_ang.loc[now, buses_o] V = v_mag_pu * np.exp(1j * v_ang) if distribute_slack: slack_power = slack_weights * guess[-1] mismatch = V * np.conj(sub_network.Y * V) - s + slack_power else: mismatch = V * np.conj(sub_network.Y * V) - s if distribute_slack: F = r_[real(mismatch)[:], imag(mismatch)[1 + len(sub_network.pvs) :]] else: F = r_[real(mismatch)[1:], imag(mismatch)[1 + len(sub_network.pvs) :]] return F def dfdx(guess, distribute_slack=False, slack_weights=None): last_pq = -1 if distribute_slack else None network.buses_t.v_ang.loc[now, sub_network.pvpqs] = guess[ : len(sub_network.pvpqs) ] network.buses_t.v_mag_pu.loc[now, sub_network.pqs] = guess[ len(sub_network.pvpqs) : last_pq ] v_mag_pu = network.buses_t.v_mag_pu.loc[now, buses_o] v_ang = network.buses_t.v_ang.loc[now, buses_o] V = v_mag_pu * np.exp(1j * v_ang) index = r_[: len(buses_o)] # make sparse diagonal matrices V_diag = csr_matrix((V, (index, index))) V_norm_diag = csr_matrix((V / abs(V), (index, index))) I_diag = csr_matrix((sub_network.Y * V, (index, index))) dS_dVa = 1j * V_diag * np.conj(I_diag - sub_network.Y * V_diag) dS_dVm = V_norm_diag * np.conj(I_diag) + V_diag * np.conj( sub_network.Y * V_norm_diag ) J10 = dS_dVa[1 + len(sub_network.pvs) :, 1:].imag J11 = dS_dVm[1 + len(sub_network.pvs) :, 1 + len(sub_network.pvs) :].imag if distribute_slack: J00 = dS_dVa[:, 1:].real J01 = dS_dVm[:, 1 + len(sub_network.pvs) :].real J02 = csr_matrix(slack_weights, (1, 1 + len(sub_network.pvpqs))).T J12 = csr_matrix((1, len(sub_network.pqs))).T J_P_blocks = [J00, J01, J02] J_Q_blocks = [J10, J11, J12] else: J00 = dS_dVa[1:, 1:].real J01 = dS_dVm[1:, 1 + len(sub_network.pvs) :].real J_P_blocks = [J00, J01] J_Q_blocks = [J10, J11] J = svstack([shstack(J_P_blocks), shstack(J_Q_blocks)], format="csr") return J # Set what we know: slack V and v_mag_pu for PV buses v_mag_pu_set = get_switchable_as_dense(network, "Bus", "v_mag_pu_set", snapshots) network.buses_t.v_mag_pu.loc[snapshots, sub_network.pvs] = v_mag_pu_set.loc[ :, sub_network.pvs ] network.buses_t.v_mag_pu.loc[snapshots, sub_network.slack_bus] = v_mag_pu_set.loc[ :, sub_network.slack_bus ] network.buses_t.v_ang.loc[snapshots, sub_network.slack_bus] = 0.0 if not use_seed: network.buses_t.v_mag_pu.loc[snapshots, sub_network.pqs] = 1.0 network.buses_t.v_ang.loc[snapshots, sub_network.pvpqs] = 0.0 slack_args = {"distribute_slack": distribute_slack} slack_variable_b = 1 if distribute_slack else 0 if distribute_slack: if isinstance(slack_weights, str) and slack_weights == "p_set": generators_t_p_choice = get_switchable_as_dense( network, "Generator", slack_weights, snapshots ) bus_generation = generators_t_p_choice.rename( columns=network.generators.bus ) slack_weights_calc = ( pd.DataFrame( bus_generation.groupby(bus_generation.columns, axis=1).sum(), columns=buses_o, ) .apply(normed, axis=1) .fillna(0) ) elif isinstance(slack_weights, str) and slack_weights in ["p_nom", "p_nom_opt"]: assert ( not all(network.generators[slack_weights]) == 0 ), "Invalid slack weights! Generator attribute {} is always zero.".format( slack_weights ) slack_weights_calc = ( network.generators.groupby("bus") .sum()[slack_weights] .reindex(buses_o) .pipe(normed) .fillna(0) ) elif generator_slack_weights_b: # convert generator-based slack weights to bus-based slack weights slack_weights_calc = ( slack_weights.rename(network.generators.bus) .groupby(slack_weights.index.name) .sum() .reindex(buses_o) .pipe(normed) .fillna(0) ) elif bus_slack_weights_b: # take bus-based slack weights slack_weights_calc = slack_weights.reindex(buses_o).pipe(normed).fillna(0) ss = np.empty((len(snapshots), len(buses_o)), dtype=complex) roots = np.empty( ( len(snapshots), len(sub_network.pvpqs) + len(sub_network.pqs) + slack_variable_b, ) ) iters =
pd.Series(0, index=snapshots)
pandas.Series
import pandas as pd # FIXME: Not realistic as would like to adjust positions everyday def trade_summary(df_input, security_name, position_name): """ For static positions only, i.e. at any time a fixed unit of positions are live. i.e. if on day 0, 100 unit is bought, the unit will be kept at 100 throughout live signal Take a dataframe with timestamp index, security, and security_pos (position) and calculate PnL trade by trade. """ df = df_input.copy() df["long_short"] = (df[position_name] > 0) * 1 - (df[position_name] < 0) * 1 trade_detail = [] def update_trade(_trade_count, _position, _open_date, _open_price, _close_date, _close_price): trade_detail.append({"trade": _trade_count, "position": _position, "open_date": _open_date, "open_price": _open_price, "close_date": _close_date, "close_price": _close_price, "realized_pnl": _position * (_close_price - open_price)}) trade_count = 0 long_short = 0 for i, data_slice in enumerate(df.iterrows()): s = data_slice[1] # Slice if i > 0 and s.long_short != df.iloc[i - 1].long_short: if long_short != 0: close_price, close_date = s[security_name], s.name update_trade(trade_count, position, open_date, open_price, close_date, close_price) long_short = 0 if s.long_short != 0: open_price = s[security_name] position = s[position_name] open_date = s.name # date/time from index trade_count += 1 long_short = s.long_short if s.long_short != long_short: close_price, close_date = s[security_name], s.name close_date = s.name update_trade(trade_count, position, open_date, open_price, close_date, close_price) trade_summary_df = pd.DataFrame(trade_detail) # Merge realized PnL onto original time_series. TODO: Can consider returning only one single series trade_time_series = trade_summary_df[["close_date", "realized_pnl"]] trade_time_series = trade_time_series.set_index("close_date") trade_time_series.index.name = df_input.index.name # TODO: AMEND DATETIME FORMAT WHEN NECESSARY trade_time_series.index =
pd.to_datetime(trade_time_series.index, format="%d/%m/%Y")
pandas.to_datetime
import pandas as pd import tqdm, os, glob, json, re, time import numpy as np from nltk.corpus import stopwords from sklearn.model_selection import train_test_split import enchant import pickle as pkl BASEPATH = '/Users/Janjua/Desktop/Projects/Octofying-COVID19-Literature/dataset' stop_words = set(stopwords.words('english')) engDict = enchant.Dict("en_US") root_path = '/Users/Janjua/Desktop/Projects/Octofying-COVID19-Literature/dataset/CORD-19-research-challenge/' def retrieve_data_from_json(file_path): """ Reads the json file and returns the necessary items. # Arguments: file_path: the path to the .json file """ with open(file_path) as file: data = json.loads(file.read()) abstract, full_text = [], [] abstract = str([x['text'] for x in data['abstract']]) full_text = str([x['text'] for x in data['body_text']]) paper_id = data['paper_id'] return (paper_id, abstract, full_text) def prepare_dataset(): """ Reads the downloaded .csv file and performs some pre-processing on the data. # Returns: A dataframe file is returned which has cleaned data columns by removing the un-necessary information from the previous csv file. # Credits: Some aspects of code borrowed from: https://www.kaggle.com/ivanegapratama/covid-eda-initial-exploration-tool """ data = pd.read_csv(BASEPATH + "/CORD-19-research-challenge/metadata.csv") json_files = glob.glob(BASEPATH + "/CORD-19-research-challenge/*/*/*.json", recursive=True) covid_data_dict = {'paper_id': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'journal': []} for idx, entry in enumerate(json_files): if idx % (len(json_files) // 10) == 0: print('Processing: {} of {}'.format(idx, len(json_files))) paper_id, abstract, full_text = retrieve_data_from_json(entry) meta = data.loc[data['sha'] == paper_id] if len(meta) == 0: continue covid_data_dict['paper_id'].append(paper_id) covid_data_dict['abstract'].append(abstract) covid_data_dict['body_text'].append(full_text) try: authors = meta['authors'].values[0].split(';') if len(authors) > 2: covid_data_dict['authors'].append(authors[:1] + "...") else: covid_data_dict['authors'].append(". ".join(authors)) except: covid_data_dict['authors'].append(". ".join(authors)) covid_data_dict['title'].append(meta['title'].values[0]) covid_data_dict['journal'].append(meta['journal'].values[0]) covid_df = pd.DataFrame(covid_data_dict, columns=['paper_id', 'abstract', 'body_text', \ 'authors', 'title', 'journal']) covid_df['abstract_word_count'] = covid_df['abstract'].apply(lambda x: len(x.strip().split())) covid_df['body_text_word_count'] = covid_df['body_text'].apply(lambda x: len(x.strip().split())) # Removing preposition marks covid_df['body_text'] = covid_df['body_text'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','', x)) covid_df['abstract'] = covid_df['abstract'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','', x)) # Convert to lower case covid_df['body_text'] = covid_df['body_text'].apply(lambda x: x.lower()) covid_df['abstract'] = covid_df['abstract'].apply(lambda x: x.lower()) covid_df.to_csv(BASEPATH + '/COVID_19_Lit.csv', encoding='utf-8', index=False) print(covid_df.head()) print("Written dataframe to .csv file.") def to_one_hot(data_point_index, vocab_size): """ Converts numbers to one hot vectors # Returns: a one hot vector temp # Credits: Function taken from: https://gist.github.com/aneesh-joshi/c8a451502958fa367d84bf038081ee4b """ temp = np.zeros(vocab_size) temp[data_point_index] = 1 return temp def load_data_for_training_w2v(): """ Loads the data for training and testing for the word2vec model. """ data = pd.read_csv(BASEPATH + '/COVID_19_Lit.csv') corpus = data.drop(["paper_id", "abstract", "abstract_word_count", "body_text_word_count", "authors", "title", "journal"], axis=1) print(corpus.head(1)) words, n_gram = [], [] print(len(corpus)) start = time.time() for ix in range(0, len(corpus)): words.append(str(corpus.iloc[ix]['body_text'][1:-1]).split(" ")) print('Word Length: ', len(words)) for word in words: for i in range(len(word)-2+1): word1, word2 = word[i:i+2] if word1 != "" and word2 != "": if engDict.check(word1) == True and engDict.check(word2) == True: n_gram.append("".join(word[i:i+2])) end = time.time() print("Prepared n-grams in: {}s".format(end-start)) print("N-gram length: ", len(n_gram)) n_gram = n_gram[:100000] print("Reducing size to: ", len(n_gram)) word2int, int2word = {}, {} print("N-gram length: ", len(n_gram)) start = time.time() for i, word in enumerate(n_gram): word2int[word] = i int2word[i] = word word_with_neighbor = list(map(list, zip(n_gram, n_gram[1:]))) end = time.time() print("Computed neighbours in: {}s".format(end-start)) X, y = [], [] vocab_size = max(word2int.values()) + 1 print("Vocab size: ", vocab_size) start = time.time() for idx, word_neigh in enumerate(word_with_neighbor): if idx % (len(word_with_neighbor) // 10) == 0: print('Processing: {} of {}'.format(idx, len(word_with_neighbor))) X.append(to_one_hot(word2int[word_neigh[0]], vocab_size)) y.append(to_one_hot(word2int[word_neigh[1]], vocab_size)) X = np.asarray(X) y = np.asarray(y) end = time.time() print("Prepared the data vectors: {}s".format(end-start)) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) X_train = np.asarray(X_train) y_train = np.asarray(y_train) X_test = np.asarray(X_test) y_test = np.asarray(y_test) print("Shapes: \nX_train: {}\ny_train: {}\nX_test: {}\ny_test: {}".format(X_train.shape, y_train.shape, X_test.shape, y_test.shape)) np.save('arrays/X_train_w2v.npy', X_train) np.save('arrays/y_train_w2v.npy', y_train) np.save('arrays/X_test_w2v.npy', X_test) np.save('arrays/y_test_w2v.npy', y_test) print("Saved arrays!") def read_arrays_and_return(): """ Reads the prepared numpy arrays # Returns: the read np arrays """ X_train = np.load('arrays/X_train_w2v.npy') y_train = np.load('arrays/y_train_w2v.npy') X_test = np.load('arrays/X_test_w2v.npy') y_test = np.load('arrays/y_test_w2v.npy') return (X_train, X_test, y_train, y_test) class FileReader: def __init__(self, file_path): with open(file_path) as file: content = json.load(file) try: self.paper_id = content['paper_id'] except: pass #self.paper_id = str(content['paper_id']) self.abstract = [] self.body_text = [] # Abstract try: for entry in content['abstract']: self.abstract.append(entry['text']) except: pass # Body text for entry in content['body_text']: self.body_text.append(entry['text']) self.abstract = '\n'.join(self.abstract) self.body_text = '\n'.join(self.body_text) def __repr__(self): return f'{self.paper_id}: {self.abstract[:200]}... {self.body_text[:200]}...' def get_breaks(content, length): data = "" words = content.split(' ') total_chars = 0 # add break every length characters for i in range(len(words)): total_chars += len(words[i]) if total_chars > length: data = data + "<br>" + words[i] total_chars = 0 else: data = data + " " + words[i] return data def prepare_dataset_for_BERT(): print("Preparing dataset for BERT!") all_json = glob.glob(f'{root_path}/**/*.json', recursive=True) print('Len of all files: ', len(all_json)) metadata_path = f'{root_path}/metadata.csv' meta_df = pd.read_csv(metadata_path, dtype={ 'pubmed_id': str, 'Microsoft Academic Paper ID': str, 'doi': str }) dict_ = {'paper_id': [], 'abstract': [], 'body_text': [], 'authors': [], 'title': [], 'journal': [], 'abstract_summary': []} for idx, entry in enumerate(all_json): if idx % (len(all_json) // 10) == 0: print(f'Processing index: {idx} of {len(all_json)}') content = FileReader(entry) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] if len(meta_data) == 0: continue dict_['paper_id'].append(content.paper_id) dict_['abstract'].append(content.abstract) dict_['body_text'].append(content.body_text) if len(content.abstract) == 0: dict_['abstract_summary'].append("Not provided.") elif len(content.abstract.split(' ')) > 100: info = content.abstract.split(' ')[:100] summary = get_breaks(' '.join(info), 40) dict_['abstract_summary'].append(summary + "...") else: summary = get_breaks(content.abstract, 40) dict_['abstract_summary'].append(summary) meta_data = meta_df.loc[meta_df['sha'] == content.paper_id] try: authors = meta_data['authors'].values[0].split(';') if len(authors) > 2: dict_['authors'].append(". ".join(authors[:2]) + "...") else: dict_['authors'].append(". ".join(authors)) except Exception as e: dict_['authors'].append(meta_data['authors'].values[0]) try: title = get_breaks(meta_data['title'].values[0], 40) dict_['title'].append(title) except Exception as e: dict_['title'].append(meta_data['title'].values[0]) dict_['journal'].append(meta_data['journal'].values[0]) print('Paper ID len: ', len(dict_['paper_id'])) print('Abstract len: ', len(dict_['abstract'])) print('Text len: ', len(dict_['body_text'])) print('Title len: ', len(dict_['title'])) print('Journal len: ', len(dict_['journal'])) print('Abstract Summary len: ', len(dict_['abstract_summary'])) df_covid = pd.DataFrame(dict_, columns=['paper_id', 'abstract', 'body_text', 'authors', 'title', 'journal', 'abstract_summary']) print("Data Cleaning!") df_covid.drop_duplicates(['abstract', 'body_text'], inplace=True) df_covid.dropna(inplace=True) df_covid['body_text'] = df_covid['body_text'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','',x)) df_covid['abstract'] = df_covid['abstract'].apply(lambda x: re.sub('[^a-zA-z0-9\s]','',x)) df_covid['body_text'] = df_covid['body_text'].apply(lambda x: x.lower()) df_covid['abstract'] = df_covid['abstract'].apply(lambda x: x.lower()) df_covid.to_csv(root_path + "covid.csv") def preprocess_for_BERT(): if os.path.exists(root_path + "covid.csv"): df_covid_test = pd.read_csv(root_path + "covid.csv") text = df_covid_test.drop(["authors", "journal", "Unnamed: 0"], axis=1) text_dict = text.to_dict() len_text = len(text_dict["paper_id"]) print('Text Len: ', len_text) paper_id_list, body_text_list = [], [] title_list, abstract_list, abstract_summary_list = [], [], [] for i in tqdm.tqdm(range(0, len_text)): paper_id = text_dict["paper_id"][i] body_text = text_dict["body_text"][i].split("\n") title = text_dict["title"][i] abstract = text_dict["abstract"][i] abstract_summary = text_dict["abstract_summary"][i] for b in body_text: paper_id_list.append(paper_id) body_text_list.append(b) title_list.append(title) abstract_list.append(abstract) abstract_summary_list.append(abstract_summary) print('Writing initial sentences to CSV file!') df_sentences = pd.DataFrame({"paper_id": paper_id_list}, index=body_text_list) df_sentences.to_csv(root_path + "covid_sentences.csv") print('Writing complete sentences to CSV file!') df_sentences =
pd.DataFrame({"paper_id":paper_id_list,"title":title_list,"abstract":abstract_list,"abstract_summary":abstract_summary_list},index=body_text_list)
pandas.DataFrame
import pandas as pd import numpy as np from functions import fao_regions as regions data = 'data/' def data_build(crop_proxie, diet_div_crop, diet_source_crop, diet_ls_only, diet_ls_only_source, min_waste): """*** Import of country data to build national diets ***""" WPR_height = pd.read_csv(r"data/worldpopulationreview_height_data.csv") WPR_height.loc[WPR_height.Area == "North Korea", "Area"] = "Democratic People's Republic of Korea" Countrycodes = pd.read_csv(r"data/countrycodes.csv", sep = ";") #FAO_pop = pd.read_excel(data+"/FAOSTAT_Population_v3.xlsx") FAO_pop = pd.read_excel(data+"/FAOSTAT_2018_population.xlsx") FAO_pop.loc[FAO_pop.Area == "Cote d'Ivoire", "Area"] = "Côte d'Ivoire" FAO_pop.loc[FAO_pop.Area == "French Guyana", "Area"] = "French Guiana" FAO_pop.loc[FAO_pop.Area == "Réunion", "Area"] = "Réunion" """*** Import and sorting of data ***""" FAO_crops = pd.read_csv(data+"/FAOSTAT_crop Production.csv") FAO_crops["group"] = FAO_crops.apply(lambda x: regions.group(x["Item Code"]), axis=1) FAO_crops = FAO_crops.rename(columns={"Value" : "Production"}) FAO_crops["Production"] = FAO_crops["Production"] / 1000 FAO_crops["Unit"] = "1000 tonnes" FAO_animals = pd.read_csv(data+"/FAO_animal_prod_2016.csv") FAO_animals["group"] = FAO_animals.apply(lambda x: regions.group(x["Item Code"]), axis=1) FAO_animals.loc[FAO_animals.Area == "United Kingdom of Great Britain and Northern Ireland", "Area"] = "United Kingdom" FAO_animals = FAO_animals.rename(columns={"Value" : "Production"}) FAO_animals.drop(FAO_animals[FAO_animals.Unit != 'tonnes'].index, inplace = True) FAO_animals["Production"] = FAO_animals["Production"] / 1000 FAO_animals["Unit"] = "1000 tonnes" FAO_animals_5 = pd.read_csv(data+"/FAOSTAT_animal_prod_5.csv") FAO_animals_5["group"] = FAO_animals_5.apply(lambda x: regions.group(x["Item Code (FAO)"]), axis=1) FAO_animals_5.loc[FAO_animals_5.Area == "United Kingdom of Great Britain and Northern Ireland", "Area"] = "United Kingdom" FAO_animals_5 = FAO_animals_5.rename(columns={"Value" : "Production"}) FAO_animals_5.drop(FAO_animals_5[FAO_animals_5.Unit != 'tonnes'].index, inplace = True) FAO_animals_5["Production"] = FAO_animals_5["Production"] / 1000 FAO_animals_5["Unit"] = "1000 tonnes" FAO_animals_5 = FAO_animals_5.groupby(['Area', 'Item']).mean().reset_index() FAO_animals = pd.merge(FAO_animals, FAO_animals_5[['Area', 'Item', 'Production']], on = ["Area", "Item"], how = 'left') FAO_animals["Production"] = FAO_animals["Production_y"] FAO_animals = FAO_animals.drop(columns = ["Production_x", "Production_y"]) FAO_fish = pd.read_csv(data+"FAOSTAT_Fish.csv") FAO_fish = FAO_fish.rename(columns={"Value" : "Production"}) FAO_fish["group"] = FAO_fish.apply(lambda x: regions.group(x["Item Code"]), axis=1) meat_products = ["eggs", "beef and lamb", "chicken and other poultry",\ "pork", "whole milk or derivative equivalents"] fish_products = ["Freshwater Fish", "Demersal Fish", "Pelagic Fish",\ "Marine Fish, Other", "Crustaceans", "Cephalopods",\ "Molluscs, Other", "Meat, Aquatic Mammals", "Aquatic Animals, Others", "Aquatic Plants", "Fish, Body Oil", "Fish, Liver Oil"] other_items = ["Honey, natural", "Beeswax", "Silk-worm cocoons, reelable"] other_items = ["Beeswax", "Silk-worm cocoons, reelable"] """*** Import of protein data ***""" FAO_Protein =
pd.read_csv(data+"protein.csv")
pandas.read_csv
"""Standardize predictor values in a given tip attributes data frame using the mean and standard deviation from a fixed interval of training data and output the standardized attributes data frame and a tab-delimited file of the summary statistics used for standardization of each predictor. """ import argparse import pandas as pd from sklearn.preprocessing import StandardScaler import sys if __name__ == '__main__': parser = argparse.ArgumentParser( description="Standardize predictors", formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument("--tip-attributes", required=True, help="a tab-delimited file describing tip attributes at one or more timepoints") parser.add_argument("--standardized-attributes", required=True, help="tab-delimited output file with standardized values for each given predictor") parser.add_argument("--statistics", required=True, help="tab-delimited output file with mean and standard deviation used to standardize each predictor") parser.add_argument("--start-date", required=True, help="the earliest timepoint to calculate means and standard deviations from (YYYY-MM-DD format)") parser.add_argument("--end-date", required=True, help="the latest timepoint to calculate means and standard deviations from (YYYY-MM-DD format)") parser.add_argument("--predictors", nargs="+", help="a list of columns names for predictors whose values should be standardized") args = parser.parse_args() # Load tip attributes. df = pd.read_csv(args.tip_attributes, sep="\t") # Confirm presence of all requested predictor columns. missing_columns = set(args.predictors) - set(df.columns) if len(missing_columns) > 0: print("Error: Could not find the following columns in the given attributes table:", file=sys.stderr) for column in missing_columns: print(f" - {column}", file=sys.stderr) sys.exit(1) # Confirm that timepoints are defined. if not "timepoint" in df.columns: print("Error: The given attributes table is missing a 'timepoint' column", file=sys.stderr) sys.exit(1) # Convert string timepoints to datetime instances. df["timepoint"] = pd.to_datetime(df["timepoint"]) # Confirm availability of timepoints for calculating summary statistics. start_date = pd.to_datetime(args.start_date) end_date =
pd.to_datetime(args.end_date)
pandas.to_datetime
import networkx as nx import numpy as np import pandas as pd import math import numbers import os from collections import namedtuple from graph_nets import utils_np Point = namedtuple('Point', ['x', 'y', 'z']) Pos = namedtuple('Pos', ['x', 'y', 'z', 'eta', 'phi', 'theta', 'r3', 'r']) def calc_dphi(phi1, phi2): """Computes phi2-phi1 given in range [-pi,pi]""" dphi = phi2 - phi1 if dphi > np.pi: dphi -= 2*np.pi if dphi < -np.pi: dphi += 2*np.pi return dphi def pos_transform(r, phi, z): x = r * math.cos(phi) y = r * math.sin(phi) r3 = math.sqrt(r**2 + z**2) theta = math.acos(z/r3) eta = -math.log(math.tan(theta*0.5)) return Pos(x, y, z, eta, phi, theta, r3, r) def dist(x, y): return math.sqrt(x**2 + y**2) def wdist(a, d, w): pp = a.x*a.x + a.y*a.y + a.z*a.z*w pd = a.x*d.x + a.y*d.y + a.z*d.z*w dd = d.x*d.x + d.y*d.y + d.z*d.z*w return math.sqrt(abs(pp - pd*pd/dd)) def wdistr(r1, dr, az, dz, w): pp = r1*r1+az*az*w pd = r1*dr+az*dz*w dd = dr*dr+dz*dz*w return math.sqrt(abs(pp-pd*pd/dd)) def circle(a, b, c): ax = a.x-c.x ay = a.y-c.y bx = b.x-c.x by = b.y-c.y aa = ax*ax + ay*ay bb = bx*bx + by*by idet = 0.5/(ax*by-ay*bx) p0 = Point(x=(aa*by-bb*ay)*idet, y=(ax*bb-bx*aa)*idet, z=0) r = math.sqrt(p0.x*p0.x + p0.y*p0.y) p = Point(x=p0.x+c.x, y=p0.y+c.y, z=p0.z) return p, r def zdists(a, b): origin = Point(x=0, y=0, z=0) p, r = circle(origin, a, b) ang_ab = 2*math.asin(dist(a.x-b.x, a.y-b.y)*0.5/r) ang_a = 2*math.asin(dist(a.x, a.y)*0.5/r) return abs(b.z-a.z-a.z*ang_ab/ang_a) def get_edge_features2(in_node, out_node, add_angles=False): # input are the features of incoming and outgoing nodes # they are ordered as [r, phi, z] v_in = pos_transform(*in_node) v_out = pos_transform(*out_node) deta = v_out.eta - v_in.eta dphi = calc_dphi(v_out.phi, v_in.phi) dR = np.sqrt(deta**2 + dphi**2) #dZ = v_out.z - v_in.z dZ = v_in.z - v_out.z # results = {"distance": np.array([deta, dphi, dR, dZ])} if add_angles: pa = Point(x=v_out.x, y=v_out.y, z=v_out.z) pb = Point(x=v_in.x, y=v_in.y, z=v_in.z) pd = Point(x=pa.x-pb.x, y=pa.y-pb.y, z=pa.z-pb.z) wd0 = wdist(pa, pd, 0) wd1 = wdist(pa, pd, 1) zd0 = zdists(pa, pb) wdr = wdistr(v_out.r, v_in.r-v_out.r, pa.z, pd.z, 1) results['angles'] = np.array([wd0, wd1, zd0, wdr]) return results def get_edge_features(in_node, out_node): # input are the features of incoming and outgoing nodes # they are ordered as [r, phi, z] in_r, in_phi, in_z = in_node out_r, out_phi, out_z = out_node in_r3 = np.sqrt(in_r**2 + in_z**2) out_r3 = np.sqrt(out_r**2 + out_z**2) in_theta = np.arccos(in_z/in_r3) in_eta = -np.log(np.tan(in_theta/2.0)) out_theta = np.arccos(out_z/out_r3) out_eta = -np.log(np.tan(out_theta/2.0)) deta = out_eta - in_eta dphi = calc_dphi(out_phi, in_phi) dR = np.sqrt(deta**2 + dphi**2) dZ = in_z - out_z return np.array([deta, dphi, dR, dZ]) def data_dict_to_nx(dd_input, dd_target, use_digraph=True, bidirection=True): input_nx = utils_np.data_dict_to_networkx(dd_input) target_nx = utils_np.data_dict_to_networkx(dd_target) G = nx.DiGraph() if use_digraph else nx.Graph() for node_index, node_features in input_nx.nodes(data=True): G.add_node(node_index, pos=node_features['features']) for sender, receiver, features in target_nx.edges(data=True): G.add_edge(sender, receiver, solution=features['features']) if use_digraph and bidirection: G.add_edge(receiver, sender, solution=features['features']) return G def correct_networkx(Gi, isec, n_phi_sections=8, n_eta_sections=2): G = Gi.copy() phi_range = (-np.pi, np.pi) phi_edges = np.linspace(*phi_range, num=n_phi_sections+1) scale = [1000, np.pi/n_phi_sections, 1000] # update phi phi_min = phi_edges[isec//n_eta_sections] phi_max = phi_edges[isec//n_eta_sections+1] for node_id, features in G.nodes(data=True): new_feature = features['pos']*scale new_feature[1] = new_feature[1] + (phi_min + phi_max) / 2 if new_feature[1] > np.pi: new_feature[1] -= 2*np.pi if new_feature[1] < -np.pi: new_feature[1]+= 2*np.pi G.node[node_id].update(pos=new_feature) return G def networkx_graph_to_hitsgraph(G, is_digraph=True): n_nodes = len(G.nodes()) n_edges = len(G.edges())//2 if is_digraph else len(G.edges()) n_features = len(G.node[0]['pos']) X = np.zeros((n_nodes, n_features), dtype=np.float32) Ri = np.zeros((n_nodes, n_edges), dtype=np.uint8) Ro = np.zeros((n_nodes, n_edges), dtype=np.uint8) for node,features in G.nodes(data=True): X[node, :] = features['pos'] ## build relations segments = [] y = [] for n, nbrsdict in G.adjacency(): for nbr, eattr in nbrsdict.items(): ## as hitsgraph is a directed graph from inner-most to outer-most ## so assume sender < receiver; if n > nbr and is_digraph: continue segments.append((n, nbr)) y.append(int(eattr['solution'][0])) if len(y) != n_edges: print(len(y),"not equals to # of edges", n_edges) segments = np.array(segments) Ro[segments[:, 0], np.arange(n_edges)] = 1 Ri[segments[:, 1], np.arange(n_edges)] = 1 y = np.array(y, dtype=np.float32) return (X, Ri, Ro, y) def is_diff_networkx(G1, G2): """ G1,G2, networkx graphs Return True if they are different, False otherwise note that edge features are not checked! """ # check node features first GRAPH_NX_FEATURES_KEY = 'pos' node_id1 = np.array([ x[1][GRAPH_NX_FEATURES_KEY] for x in G1.nodes(data=True) if x[1][GRAPH_NX_FEATURES_KEY] is not None]) node_id2 = np.array([ x[1][GRAPH_NX_FEATURES_KEY] for x in G2.nodes(data=True) if x[1][GRAPH_NX_FEATURES_KEY] is not None]) # check edges diff = np.any(node_id1 != node_id2) for sender, receiver, _ in G1.edges(data=True): try: _ = G2.edges[(sender, receiver)] except KeyError: diff = True break return diff ## predefined group info vlids = [(7,2), (7,4), (7,6), (7,8), (7,10), (7,12), (7,14), (8,2), (8,4), (8,6), (8,8), (9,2), (9,4), (9,6), (9,8), (9,10), (9,12), (9,14), (12,2), (12,4), (12,6), (12,8), (12,10), (12,12), (13,2), (13,4), (13,6), (13,8), (14,2), (14,4), (14,6), (14,8), (14,10), (14,12), (16,2), (16,4), (16,6), (16,8), (16,10), (16,12), (17,2), (17,4), (18,2), (18,4), (18,6), (18,8), (18,10), (18,12)] n_det_layers = len(vlids) def merge_truth_info_to_hits(hits, particles, truth): if 'pt' not in particles.columns: px = particles.px py = particles.py pt = np.sqrt(px**2 + py**2) particles = particles.assign(pt=pt) hits = hits.merge(truth, on='hit_id', how='left') hits = hits.merge(particles, on='particle_id', how='left') # selective information # noise hits does not have particle info hits = hits.fillna(value=0) # Assign convenient layer number [0-47] vlid_groups = hits.groupby(['volume_id', 'layer_id']) hits = pd.concat([vlid_groups.get_group(vlids[i]).assign(layer=i) for i in range(n_det_layers)]) # add new features x = hits.x y = hits.y z = hits.z absz = np.abs(z) r = np.sqrt(x**2 + y**2) # distance from origin in transverse plane r3 = np.sqrt(r**2 + z**2) # in 3D phi = np.arctan2(hits.y, hits.x) theta = np.arccos(z/r3) eta = -np.log(np.tan(theta/2.)) tpx = hits.tpx tpy = hits.tpy tpt = np.sqrt(tpx**2 + tpy**2) hits = hits.assign(r=r, phi=phi, eta=eta, r3=r3, absZ=absz, tpt=tpt) # add hit indexes to column hit_idx hits = hits.rename_axis('hit_idx').reset_index() return hits def pairs_to_df(pairs, hits): """pairs is np.array, each row is a pair. columns are incoming and outgoing nodes return a DataFrame with columns, ['hit_id_in', 'hit_idx_in', 'layer_in', 'hit_id_out', 'hit_idx_out', 'layer_out'] """ # form a DataFrame in_nodes = pd.DataFrame(pairs[:, 0], columns=['hit_id']) out_nodes =
pd.DataFrame(pairs[:, 1], columns=['hit_id'])
pandas.DataFrame
import pandas as pd import os # using the merged_medianData.csv create dose-response files for each compound infolder = '../data/processed_data/01/LISS/01/' outfolder = '../data/processed_data/01/LISS/02/' if not os.path.exists(outfolder): os.makedirs(outfolder) geneList = pd.read_csv('../data/lists/gene_list.csv') genes = geneList['Gene'].tolist() data = pd.read_csv(infolder + 'merged_medianData.csv') df0 = data cmpMetas_cols = ['CMP', 'DOSES'] cmpMetas = pd.DataFrame(columns=cmpMetas_cols) compounds = data['CMP'].unique().tolist() times = [6, 24] df0 = data cmpMetas_cols = ['CMP', 'DOSES'] cmpMetas = pd.DataFrame(columns=cmpMetas_cols) compounds = data['CMP'].unique().tolist() times = [6, 24] # the control compounds do not have a dose responses # this is because there is only one 'dose' for each compound # the dose-response files must still be generated for future computations control_compounds = ['DMSO_0.5pct', 'DMSO_0.1pct', 'Medium'] # generate dose responses for all compounds except controls for i in times: df1 = df0[df0['TIME'] == i] df1 = df1[~df1['CMP'].isin(control_compounds)] for j in compounds: df2 = df1[df1['CMP'] == j] df2 = df2.sort_values('DOSE', axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') tempMetas = pd.DataFrame(columns=cmpMetas_cols) tempMetas['CMP'] = [j] doses = df2['DOSE'].tolist() tempMetas['DOSES'] = [doses] cmpMetas = cmpMetas.append(tempMetas) dosecourse_cols = ['GENE', '1', '2', '3', '4', '5', '6'] dosecourse = pd.DataFrame(columns=dosecourse_cols) for m in genes: dosecourseTemp = pd.DataFrame(columns=dosecourse_cols) dosecourseTemp['GENE'] = [m] geneValues = df2[m].tolist() geneValueDoseDict = dict(zip(['1', '2', '3', '4', '5', '6'], geneValues)) for k in geneValueDoseDict: dosecourseTemp[k] = [geneValueDoseDict[k]] dosecourse = dosecourse.append(dosecourseTemp) file = j + '_' + str(i) + 'h' dosecourse.to_csv((outfolder + file + '.csv'), index=False) cmpMetas = cmpMetas.drop_duplicates('CMP') cmpMetas.to_csv(outfolder + 'cmpMetas.csv', index=False) # generate dose responses for control compounds for i in times: df1 = df0[df0['TIME'] == i] for j in (control_compounds): df2 = df1[df1['CMP'] == j] df2 = df2.sort_values('DOSE', axis=0, ascending=True, inplace=False, kind='quicksort', na_position='last') dosecourse_cols = ['GENE', '1', '2', '3', '4', '5', '6'] dosecourse =
pd.DataFrame(columns=dosecourse_cols)
pandas.DataFrame
import logging import pandas as pd from src.utils import get_adj_matrix from src.hits import get_hits from src.pagerank import get_pagerank from src.simrank import get_simrank logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') logger = logging.getLogger(__name__) logger.setLevel(level=logging.INFO) def main(args): with open(args.input, 'r') as input: links = input.readlines() adj_matrix = get_adj_matrix(links) hubs, authorities = get_hits(adj_matrix) pagerank = get_pagerank(adj_matrix) # simRank calculation compare_nodes = (1, 2) simrank = get_simrank(compare_nodes, adj_matrix) logger.info(f'hubs: {hubs}, authorities: {authorities}') logger.info(f'pageRank: {pagerank}') logger.info(f'simRank: {simrank}') # Output values to files results =
pd.DataFrame({"hubs": hubs, "authorities": authorities, "pagerank": pagerank})
pandas.DataFrame
from czsc.extend.utils import push_text from datetime import datetime from czsc.extend.analyzeExtend import JKCzscTraderExtend as CzscTrader import traceback import time import datetime import shutil import os from czsc.objects import Signal, Factor, Event, Operate from czsc.data.jq import get_kline import pandas as pd # 基础参数配置 ct_path = os.path.join("d:\\data", "czsc_traders") os.makedirs(ct_path, exist_ok=True) symbol = '399006.XSHE' my_dic_container = {} def start(): moni_path = os.path.join(ct_path, "monitor") if os.path.exists(moni_path): shutil.rmtree(moni_path) os.makedirs(moni_path, exist_ok=True) events_monitor = [ # 开多 Event(name="一买", operate=Operate.LO, factors=[ Factor(name="5分钟类一买", signals_all=[Signal("5分钟_倒1笔_类买卖点_类一买_任意_任意_0")]), Factor(name="5分钟形一买", signals_all=[Signal("5分钟_倒1笔_基础形态_类一买_任意_任意_0")]), Factor(name="15分钟类一买", signals_all=[Signal("15分钟_倒1笔_类买卖点_类一买_任意_任意_0")]), Factor(name="15分钟形一买", signals_all=[Signal("15分钟_倒1笔_基础形态_类一买_任意_任意_0")]), Factor(name="30分钟类一买", signals_all=[Signal("30分钟_倒1笔_类买卖点_类一买_任意_任意_0")]), Factor(name="30分钟形一买", signals_all=[Signal("30分钟_倒1笔_基础形态_类一买_任意_任意_0")]), ]), Event(name="二买", operate=Operate.LO, factors=[ Factor(name="5分钟类二买", signals_all=[Signal("5分钟_倒1笔_类买卖点_类二买_任意_任意_0")]), Factor(name="5分钟形二买", signals_all=[Signal("5分钟_倒1笔_基础形态_类二买_任意_任意_0")]), Factor(name="15分钟类二买", signals_all=[Signal("15分钟_倒1笔_类买卖点_类二买_任意_任意_0")]), Factor(name="15分钟形二买", signals_all=[Signal("15分钟_倒1笔_基础形态_类二买_任意_任意_0")]), Factor(name="30分钟类二买", signals_all=[Signal("30分钟_倒1笔_类买卖点_类二买_任意_任意_0")]), Factor(name="30分钟形二买", signals_all=[Signal("30分钟_倒1笔_基础形态_类二买_任意_任意_0")]), ]), Event(name="三买", operate=Operate.LO, factors=[ Factor(name="5分钟类三买", signals_all=[Signal("5分钟_倒1笔_类买卖点_类三买_任意_任意_0")]), Factor(name="5分钟形三买", signals_all=[Signal("5分钟_倒1笔_基础形态_类三买_任意_任意_0")]), Factor(name="15分钟类三买", signals_all=[Signal("15分钟_倒1笔_类买卖点_类三买_任意_任意_0")]), Factor(name="15分钟形三买", signals_all=[Signal("15分钟_倒1笔_基础形态_类三买_任意_任意_0")]), Factor(name="30分钟类三买", signals_all=[Signal("30分钟_倒1笔_类买卖点_类三买_任意_任意_0")]), Factor(name="30分钟形三买", signals_all=[Signal("30分钟_倒1笔_基础形态_类三买_任意_任意_0")]), ]), # 平多 Event(name="一卖", operate=Operate.LE, factors=[ Factor(name="5分钟类一卖", signals_all=[Signal("5分钟_倒1笔_类买卖点_类一卖_任意_任意_0")]), Factor(name="5分钟形一卖", signals_all=[Signal("5分钟_倒1笔_基础形态_类一卖_任意_任意_0")]), Factor(name="15分钟类一卖", signals_all=[Signal("15分钟_倒1笔_类买卖点_类一卖_任意_任意_0")]), Factor(name="15分钟形一卖", signals_all=[Signal("15分钟_倒1笔_基础形态_类一卖_任意_任意_0")]), Factor(name="30分钟类一卖", signals_all=[Signal("30分钟_倒1笔_类买卖点_类一卖_任意_任意_0")]), Factor(name="30分钟形一卖", signals_all=[Signal("30分钟_倒1笔_基础形态_类一卖_任意_任意_0")]), ]), Event(name="二卖", operate=Operate.LE, factors=[ Factor(name="5分钟类二卖", signals_all=[Signal("5分钟_倒1笔_类买卖点_类二卖_任意_任意_0")]), Factor(name="5分钟形二卖", signals_all=[Signal("5分钟_倒1笔_基础形态_类二卖_任意_任意_0")]), Factor(name="15分钟类二卖", signals_all=[Signal("15分钟_倒1笔_类买卖点_类二卖_任意_任意_0")]), Factor(name="15分钟形二卖", signals_all=[Signal("15分钟_倒1笔_基础形态_类二卖_任意_任意_0")]), Factor(name="30分钟类二卖", signals_all=[Signal("30分钟_倒1笔_类买卖点_类二卖_任意_任意_0")]), Factor(name="30分钟形二卖", signals_all=[Signal("30分钟_倒1笔_基础形态_类二卖_任意_任意_0")]), ]), Event(name="三卖", operate=Operate.LE, factors=[ Factor(name="5分钟类三卖", signals_all=[Signal("5分钟_倒1笔_类买卖点_类三卖_任意_任意_0")]), Factor(name="5分钟形三卖", signals_all=[Signal("5分钟_倒1笔_基础形态_类三卖_任意_任意_0")]), Factor(name="15分钟类三卖", signals_all=[Signal("15分钟_倒1笔_类买卖点_类三卖_任意_任意_0")]), Factor(name="15分钟形三卖", signals_all=[Signal("15分钟_倒1笔_基础形态_类三卖_任意_任意_0")]), Factor(name="30分钟类三卖", signals_all=[Signal("30分钟_倒1笔_类买卖点_类三卖_任意_任意_0")]), Factor(name="30分钟形三卖", signals_all=[Signal("30分钟_倒1笔_基础形态_类三卖_任意_任意_0")]), ]), ] try: current_date: datetime = pd.to_datetime('2021-08-10') end_date =
pd.to_datetime("2021-08-20")
pandas.to_datetime
from typing import Dict, List, Tuple from multiprocessing import Pool from scipy.signal import find_peaks import numpy as np import pandas as pd import pyarrow.parquet as pq import numpy as np class DataPipeline: """ Top level class which takes in the parquet file and converts it to a low dimensional dataframe. """ def __init__( self, parquet_fname: str, data_processor_args, start_row_num: int, num_rows: int, concurrency: int = 100, ): self._fname = parquet_fname self._concurrency = concurrency self._nrows = num_rows self._start_row_num = start_row_num self._processor_args = data_processor_args self._process_count = 4 @staticmethod def run_one_chunk(arg_tuple): fname, processor_args, start_row, end_row, num_rows = arg_tuple cols = [str(i) for i in range(start_row, end_row)] data = pq.read_pandas(fname, columns=cols) data_df = data.to_pandas() processor = DataProcessor(**processor_args) output_df = processor.transform(data_df) print('Another ', round((end_row - start_row) / num_rows * 100, 2), '% Complete') del processor del data_df del data return output_df def run(self): outputs = [] args_list = [] for s_index in range(self._start_row_num, self._start_row_num + self._nrows, self._concurrency): e_index = s_index + self._concurrency args_this_chunk = [self._fname, self._processor_args, s_index, e_index, self._nrows] args_list.append(args_this_chunk) pool = Pool(self._process_count) outputs = pool.map(DataPipeline.run_one_chunk, args_list) pool.close() pool.join() final_output_df = pd.concat(outputs, axis=1) return final_output_df class DataProcessor: def __init__( self, intended_time_steps: int, original_time_steps: int, peak_threshold: int, smoothing_window: int = 3, remove_corona=False, corona_max_distance=5, corona_max_height_ratio=0.8, corona_cleanup_distance=10, num_processes: int = 7, ): self._o_steps = original_time_steps self._steps = intended_time_steps # 50 is a confident smoothed version # resulting signal after subtracting the smoothened version has some noise along with signal. # with 10, smoothened version seems to have some signals as well. self._smoothing_window = smoothing_window self._num_processes = num_processes self._peak_threshold = peak_threshold self._remove_corona = remove_corona self._corona_max_distance = corona_max_distance self._corona_max_height_ratio = corona_max_height_ratio self._corona_cleanup_distance = corona_cleanup_distance def get_noise(self, X_df: pd.DataFrame): """ TODO: we need to keep the noise. However, we don't want very high freq jitter. band pass filter is what is needed. """ msg = 'Expected len:{}, found:{}'.format(self._o_steps, len(X_df)) assert self._o_steps == X_df.shape[0], msg smoothe_df = X_df.rolling(self._smoothing_window, min_periods=1).mean() noise_df = X_df - smoothe_df del smoothe_df return noise_df @staticmethod def peak_data( ser: pd.Series, threshold: float, quantiles=[0, 0.25, 0.5, 0.75, 1], ) -> Dict[str, np.array]: maxima_peak_indices, maxima_data_dict = find_peaks(ser, threshold=threshold, width=0) maxima_width = maxima_data_dict['widths'] maxima_height = maxima_data_dict['prominences'] minima_peak_indices, minima_data_dict = find_peaks(-1 * ser, threshold=threshold, width=0) minima_width = minima_data_dict['widths'] minima_height = minima_data_dict['prominences'] peak_indices = np.concatenate([maxima_peak_indices, minima_peak_indices]) peak_width = np.concatenate([maxima_width, minima_width]) peak_height = np.concatenate([maxima_height, minima_height]) maxima_minima = np.concatenate([np.array([1] * len(maxima_height)), np.array([-1] * len(minima_height))]) index_ordering = np.argsort(peak_indices) peak_width = peak_width[index_ordering] peak_height = peak_height[index_ordering] peak_indices = peak_indices[index_ordering] maxima_minima = maxima_minima[index_ordering] return { 'width': peak_width, 'height': peak_height, 'maxima_minima': maxima_minima, 'indices': peak_indices, } @staticmethod def corona_discharge_index_pairs( ser: pd.Series, peak_threshold: float, corona_max_distance: int, corona_max_height_ratio: float, ) -> List[Tuple[int, int]]: """ Args: ser: time series data. peak_threshold: for detecting peaks, if elevation is more than this value, then consider it a peak. corona_max_distance: maximum distance between consequitive alternative peaks for it to be a corona discharge. corona_max_height_ratio: the alternate peaks should have similar peak heights. Returns: List of (peak1, peak2) indices. Note that these peaks are consequitive and have opposite sign """ data = DataProcessor.peak_data(ser, peak_threshold) corona_indices = [] for index, data_index in enumerate(data['indices']): if index < len(data['indices']) - 1: opposite_peaks = data['maxima_minima'][index] * data['maxima_minima'][index + 1] == -1 nearby_peaks = data['indices'][index + 1] - data['indices'][index] < corona_max_distance # for height ratio, divide smaller by larger height h1 = data['height'][index] h2 = data['height'][index + 1] height_ratio = (h1 / h2 if h1 < h2 else h2 / h1) similar_height = height_ratio > corona_max_height_ratio if opposite_peaks and nearby_peaks and similar_height: corona_indices.append((data_index, data['indices'][index + 1])) return corona_indices @staticmethod def remove_corona_discharge( ser: pd.Series, peak_threshold: float, corona_max_distance: int, corona_max_height_ratio: float, corona_cleanup_distance: int, ) -> pd.Series: """ Args: ser: time series data. peak_threshold: for detecting peaks, if elevation is more than this value, then consider it a peak. corona_max_distance: maximum distance between consequitive alternative peaks for it to be a corona discharge. corona_max_height_ratio: the alternate peaks should have similar peak heights. corona_cleanup_distance: how many indices after the corona discharge should the data be removed. Returns: ser: cleaned up time series data. """ pairs = DataProcessor.corona_discharge_index_pairs( ser, peak_threshold, corona_max_distance, corona_max_height_ratio, ) ser = ser.copy() for start_index, end_index in pairs: smoothing_start_index = max(0, start_index - 1) smoothing_end_index = min(end_index + corona_cleanup_distance, ser.index[-1]) start_val = ser.iloc[smoothing_start_index] end_val = ser.iloc[smoothing_end_index] count = smoothing_end_index - smoothing_start_index ser.iloc[smoothing_start_index:smoothing_end_index] = np.linspace(start_val, end_val, count) return ser @staticmethod def peak_stats(ser: pd.Series, threshold, quantiles=[0, 0.25, 0.5, 0.75, 1]): """ Returns quantiles of peak width, height, distances from next peak. """ data = DataProcessor.peak_data(ser, threshold, quantiles=quantiles) peak_indices = data['indices'] peak_width = data['width'] peak_height = data['height'] if len(peak_indices) == 0: # no peaks width_stats = [0] * len(quantiles) height_stats = [0] * len(quantiles) distance_stats = [0] * len(quantiles) else: peak_distances = np.diff(peak_indices) peak_width[peak_width > 100] = 100 width_stats = np.quantile(peak_width, quantiles) height_stats = np.quantile(peak_height, quantiles) # for just one peak, distance will be empty array. if len(peak_distances) == 0: assert len(peak_indices) == 1 distance_stats = [ser.shape[0]] * len(quantiles) else: distance_stats = np.quantile(peak_distances, quantiles) width_names = ['peak_width_' + str(i) for i in quantiles] height_names = ['peak_height_' + str(i) for i in quantiles] distance_names = ['peak_distances_' + str(i) for i in quantiles] index = width_names + height_names + distance_names + ['peak_count'] data = np.concatenate([width_stats, height_stats, distance_stats, [len(peak_indices)]]) return pd.Series(data, index=index) @staticmethod def get_peak_stats_df(df, peak_threshold): """ Args: df: columns are different examples. axis is time series. """ return df.apply(lambda x: DataProcessor.peak_stats(x, peak_threshold), axis=0) @staticmethod def pandas_describe(df): output_df = df.quantile([0, 0.25, 0.5, 0.75, 1], axis=0) output_df.index = list(map(lambda x: 'Quant-' + str(x), output_df.index.tolist())) abs_mean_df = df.abs().mean().to_frame('abs_mean') mean_df = df.mean().to_frame('mean') std_df = df.std().to_frame('std') return pd.concat([output_df, abs_mean_df.T, mean_df.T, std_df.T]) @staticmethod def transform_chunk(signal_time_series_df: pd.DataFrame, peak_threshold: float) -> pd.DataFrame: """ It sqashes the time series to a single point multi featured vector. """ df = signal_time_series_df # mean, var, percentile. # NOTE pandas.describe() is the costliest computation with 95% time of the function. metrics_df = DataProcessor.pandas_describe(df) peak_metrics_df = DataProcessor.get_peak_stats_df(df, peak_threshold) metrics_df.index = list(map(lambda x: 'signal_' + x, metrics_df.index)) temp_metrics = [metrics_df, peak_metrics_df] for smoothener in [1, 2, 4, 8, 16, 32]: diff_df = df.rolling(smoothener).mean()[::smoothener].diff().abs() temp_df = DataProcessor.pandas_describe(diff_df) temp_df.index = list(map(lambda x: 'diff_smoothend_by_' + str(smoothener) + ' ' + x, temp_df.index)) temp_metrics.append(temp_df) df = pd.concat(temp_metrics) df.index.name = 'features' return df def transform(self, X_df: pd.DataFrame): """ Args: X_df: dataframe with each column being one data point. Rows are timestamps. """ def cleanup_corona(x: pd.Series): return DataProcessor.remove_corona_discharge( x, self._peak_threshold, self._corona_max_distance, self._corona_max_height_ratio, self._corona_cleanup_distance, ) # Corona removed. if self._remove_corona: X_df = X_df.apply(cleanup_corona) # Remove the smoothened version of the data so as to work with noise. if self._smoothing_window > 0: X_df = self.get_noise(X_df) # stepsize many consequitive timestamps are compressed to form one timestamp. # this will ensure we are left with self._steps many timestamps. stepsize = self._o_steps // self._steps transformed_data = [] for s_tm_index in range(0, self._o_steps, stepsize): e_tm_index = s_tm_index + stepsize # NOTE: dask was leading to memory leak. #one_data_point = delayed(DataProcessor.transform_chunk)(X_df.iloc[s_tm_index:e_tm_index, :]) one_data_point = DataProcessor.transform_chunk(X_df.iloc[s_tm_index:e_tm_index, :], self._peak_threshold) transformed_data.append(one_data_point) # transformed_data = dd.compute(*transformed_data, scheduler='processes', num_workers=self._num_processes) # Add timestamp for ts in range(0, len(transformed_data)): transformed_data[ts]['ts'] = ts df =
pd.concat(transformed_data, axis=0)
pandas.concat
import re import pandas as pd # import matplotlib # matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.figure import Figure import matplotlib.ticker as ticker import matplotlib.dates as mdates import numpy as np import seaborn as sns; sns.set() from scipy.spatial.distance import squareform from scipy.spatial.distance import pdist, euclidean from sklearn.preprocessing import MinMaxScaler from datetime import datetime, timedelta from io import StringIO, BytesIO from app.models import Country, CountryStatus import base64 import plotly.figure_factory as ff data_dir = 'data/' def get_all_places(level='countries'): # df_places = pd.read_csv(data_dir + 'all_{}_compare.csv'.format(level)) df_places = Country.all_countries_names_as_df() return list(df_places['Name']) def get_all_countries_response(): df_places = pd.read_csv(data_dir + 'all_countries_response.csv') return list(df_places['Country']) def get_df_similar_places(place, level = 'countries'): # if level == 'cities': # df_sim = pd.read_csv(data_dir + 'all_{}_similarity.csv'.format(level)) # df_sim = df_sim[df_sim['CityBase'] == place] # df_sim = df_sim[['Name', 'gap', 'dist', 'Similarity']].set_index('Name') # return df_sim # df_orig = pd.read_csv(data_dir + 'total_cases_{}_normalized.csv'.format(level)) df_orig = Country.all_countries_as_df() df_orig_piv_day = df_orig.pivot(index='Name', columns='Day', values='TotalDeaths') df_orig_piv_day = df_orig_piv_day.fillna(0) sr_place = df_orig_piv_day.loc[place,] place_start = (sr_place > 0).idxmax() # place_start_cases = (df_orig.set_index('Name').loc[place,].set_index('Day')['Total'] > 0).idxmax() days_ahead = 14 #if level == 'countries' else 5 df_places_ahead = df_orig_piv_day[df_orig_piv_day.loc[:, max(place_start - days_ahead,0)] > 0.0] df_places_rate_norm = df_orig_piv_day.loc[df_places_ahead.index, :] # df_places_rate_norm = df_orig_piv_day.loc[['France', 'Italy'], :] df_places_rate_norm = df_places_rate_norm.append(df_orig_piv_day.loc[place,]) # reverse order to keep base place on top df_places_rate_norm = df_places_rate_norm.iloc[::-1] sr_place = df_orig_piv_day.loc[place,] # place_start = (sr_place > 0).idxmax() # sr_place_compare = sr_place.loc[place_start:].dropna() sr_place = df_orig_piv_day.loc[place,] place_start = (sr_place > 0).idxmax() sr_place_compare = sr_place.loc[place_start:].dropna() df_places_gap = pd.DataFrame({'Name': [], 'gap': [], 'dist': []}) df_places_gap = df_places_gap.append(pd.Series([place, 0.0, -1], index=df_places_gap.columns), ignore_index=True) for other_place in df_places_rate_norm.index[1:]: sr_other_place = df_places_rate_norm.loc[other_place,].fillna(0) min_dist = np.inf min_pos = 0 for i in range(0, 1 + len(sr_other_place) - len(sr_place_compare)): sr_other_place_compare = sr_other_place[i: i + len(sr_place_compare)] dist = euclidean(sr_place_compare, sr_other_place_compare) if (dist < min_dist): min_dist = dist min_pos = i day_place2 = sr_other_place.index[min_pos] gap = day_place2 - place_start df_places_gap = df_places_gap.append( pd.Series([other_place, gap, min_dist], index=df_places_gap.columns), ignore_index=True) df_places_gap = df_places_gap.set_index('Name') similar_places = df_places_gap.sort_values('dist') dist_max = euclidean(sr_place_compare, np.zeros(len(sr_place_compare))) similar_places['Similarity'] = similar_places['dist'].apply(lambda x: (1.0 - x / dist_max) if x >= 0 else 1) return similar_places # get similar places based on alighment of death curve def get_similar_places(place, level = 'countries'): similar_places = get_df_similar_places(place, level = level) # print(similar_places) tuples = [tuple(x) for x in similar_places[1:8].reset_index().to_numpy()] return tuples #get similar places based on socioeconomic features def get_similar_places_socio(place, level = 'countries'): df_socio_stats_orig = pd.read_csv(data_dir + 'socio_stats_{}.csv'.format(level)).drop('score', axis=1) if not len(df_socio_stats_orig.query('Name == "{}"'.format(place))): return [] df_socio_stats_orig_piv = df_socio_stats_orig.pivot(index='Name', columns='variable') df_socio_stats_orig_piv = df_socio_stats_orig_piv.fillna(df_socio_stats_orig_piv.mean()) scaler = MinMaxScaler() # feature_range=(-1, 1) df_socio_stats_orig_piv_norm = pd.DataFrame(scaler.fit_transform(df_socio_stats_orig_piv), columns=df_socio_stats_orig_piv.columns, index=df_socio_stats_orig_piv.index) df_dist = pd.DataFrame(squareform(pdist(df_socio_stats_orig_piv_norm)), index=df_socio_stats_orig_piv_norm.index, columns=df_socio_stats_orig_piv_norm.index) df_sim = df_dist.loc[:, place].to_frame(name='dist') df_sim['similarity'] = 1 - (df_sim['dist'] / df_sim['dist'].max()) df_sim = df_sim.sort_values('similarity', ascending=False).drop('dist', axis=1) tuples = [tuple(x) for x in df_sim[1:11].reset_index().to_numpy()] return tuples def get_places_by_variable(type = 'socio', level = 'countries', variable = 'Population', ascending = False): if type == 'socio': df_orig = pd.read_csv(data_dir + 'socio_stats_{}.csv'.format(level)).drop('score', axis=1) else: df_orig = pd.read_csv(data_dir + 'live_stats_{}.csv'.format(level)) # df_orig = df_orig.groupby(['Name', 'Date']).tail(1) df_orig = df_orig[df_orig['variable'] == variable].pivot(index='Name', columns='variable', values='value').reset_index() df_orig = df_orig[['Name', variable]].sort_values(variable, ascending = ascending).head(10) tuples = [tuple(x) for x in df_orig.reset_index(drop=True).to_numpy()] return tuples def get_fig_compare_rates(place, place2, level = 'countries', scale='log', y='total', mode='static', priority = 'now'): df_places_to_show = get_place_comparison_df(place, place2, level = level, priority = priority) fig = make_chart_comparison(df_places_to_show, level = level, scale=scale, y=y, mode=mode) return fig def get_html_compare_response(place, place2, level = 'countries', scale='log', y='total', mode='static', priority = 'now'): # df_places_to_show = get_place_comparison_df(place, place2, level = level, priority = priority, type = 'response') data_dir = 'data/' df_orig =
pd.read_csv(data_dir + 'response/official_response_countries.csv', parse_dates=['Date'])
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # # Introduction # # 1. [EDA (Exploratory Data Analysis)](#1) # 1. [Line Plot](#2) # 1. [Histogram](#3) # 1. [Scatter Plot](#4) # 1. [Bar Plot](#5) # 1. [Point Plot](#6) # 1. [Count Plot](#7) # 1. [Pie Chart](#8) # 1. [Pair Plot](#9) # # 1. [MACHINE LEARNING](#11) # 1. [Logistic Regression Classification](#12) # 1. [KNN (K-Nearest Neighbour) Classification](#13) # 1. [Support Vector Machine( SVM) Classification](#14) # 1. [Naive Bayes Classification](#15) # 1. [Decision Tree Classification](#16) # 1. [Random Forest Classification](#17) # 1. [Confusion Matrix](#18) # # 1. [Conclusion](#19) # # In[ ]: # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns # plotly library import plotly.plotly as py from plotly.offline import init_notebook_mode, iplot init_notebook_mode(connected=True) import plotly.graph_objs as go # Input data files are available in the "../../../input/aljarah_xAPI-Edu-Data/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import os print(os.listdir("../../../input/aljarah_xAPI-Edu-Data")) # Any results you write to the current directory are saved as output. # In[ ]: data=pd.read_csv("../../../input/aljarah_xAPI-Edu-Data/xAPI-Edu-Data.csv") # In[ ]: data.head() # In[ ]: data.info() # In[ ]: data.describe() # In[ ]: #heatmap f,ax=plt.subplots(figsize=(8,8)) print() print() # <a id="1"></a> # # EDA (Exploratory Data Analysis) # In[ ]: data.head() # <a id="2"></a> # # Line Plot # In[ ]: # Line Plot data.raisedhands.plot(kind="line",color="g",label = 'raisedhands',linewidth=1,alpha = 0.5,grid = True,linestyle = ':',figsize=(10,10)) plt.xlabel('x axis') # label = name of label plt.ylabel('y axis') plt.legend(loc="upper right") plt.title('Line Plot') # title = title of plot print() # In[ ]: plt.subplots(figsize=(10,10)) plt.plot(data.raisedhands[:100],linestyle="-.") plt.plot(data.VisITedResources[:100],linestyle="-") plt.xlabel("x axis") plt.ylabel("y axis") plt.title("Raidehands and VisITedResources Line Plot") plt.legend(loc="upper right") print() # In[ ]: #subplots raisedhands=data.raisedhands VisITedResources=data.VisITedResources plt.subplots(figsize=(10,10)) plt.subplot(2,1,1) plt.title("raisedhands-VisITedResources subplot") plt.plot(raisedhands[:100],color="r",label="raisedhands") plt.legend() plt.grid() plt.subplot(2,1,2) plt.plot(VisITedResources[:100],color="b",label="VisITedResources") plt.legend() plt.grid() print() # In[ ]: # discussion and raisedhands line plot in plotly # import graph objects as "go" import plotly.graph_objs as go # Creating trace1 trace1 = go.Scatter( x = np.arange(0,82), y = data.Discussion, mode = "lines", name = "discussion", marker = dict(color = 'rgba(16, 112, 2, 0.8)'), ) # Creating trace2 trace2 = go.Scatter( x =np.arange(0,82) , y = data.raisedhands, mode = "lines", name = "raisedhands", marker = dict(color = 'rgba(80, 26, 80, 0.8)'), ) df = [trace1, trace2] layout = dict(title = 'Discussion and Raisedhands of Students', xaxis= dict(title= 'raisedhands',ticklen= 5,zeroline= False) ) fig = dict(data = df, layout = layout) iplot(fig) # <a id="3"></a> # # Histogram Plot # In[ ]: #histogram of raisedhands data.raisedhands.plot(kind="hist",bins=10,figsize=(10,10),color="b",grid="True") plt.xlabel("raisedhands") plt.legend(loc="upper right") plt.title("raisedhands Histogram") print() # In[ ]: # histogram subplot with non cumulative and cumulative fig, axes = plt.subplots(nrows=2,ncols=1) #data.plot(kind="hist",y="raisedhands",bins = 50,range= (0,50),normed = True,ax = axes[0]) #data.plot(kind = "hist",y = "raisedhands",bins = 50,range= (0,50),normed = True,ax = axes[1],cumulative = True) plt.savefig('graph.png') print() # <a id="4"></a> # # Scatter Plot # In[ ]: #raidehands vs Discussion scatter plot plt.subplots(figsize=(10,10)) plt.scatter(data.raisedhands,data.Discussion,color="green") plt.xlabel("raisedhands") plt.ylabel("Discussion") plt.grid() plt.title("Raidehands vs Discussion Scatter Plot",color="red") print() # In[ ]: #raidehands vs AnnouncementsView scatter plot color_list1 = ['red' if i=='M' else 'blue' for i in data.gender] plt.subplots(figsize=(10,10)) plt.scatter(data.raisedhands,data.AnnouncementsView,color=color_list1, alpha=0.8) plt.xlabel("raisedhands") plt.ylabel("AnnouncementsView") plt.grid() plt.title("Raidehands vs Announcements View Scatter Plot",color="black",fontsize=15) print() # # Scatter Plot in Plotly # # * Import graph_objs as *go* # * Creating traces # * x = x axis # * y = y axis # * mode = type of plot like marker, line or line + markers # * name = name of the plots # * marker = marker is used with dictionary. # * color = color of lines. It takes RGB (red, green, blue) and opacity (alpha) # * text = The hover text (hover is curser) # * data = is a list that we add traces into it # * layout = it is dictionary. # * title = title of layout # * x axis = it is dictionary # * title = label of x axis # * ticklen = length of x axis ticks # * zeroline = showing zero line or not # * y axis = it is dictionary and same with x axis # * fig = it includes data and layout # * iplot() = plots the figure(fig) that is created by data and layout # In[ ]: len(data.raisedhands.unique()) # In[ ]: # raisedhands in terms of gender # import graph objects as "go" import plotly.graph_objs as go # creating trace1 trace1 =go.Scatter( x = np.arange(0,82), y = data[data.gender=='M'].raisedhands, mode = "markers", name = "male", marker = dict(color = 'rgba(0, 100, 255, 0.8)'), ) # creating trace2 trace2 =go.Scatter( x = np.arange(0,82), y = data[data.gender=="F"].raisedhands, mode = "markers", name = "female", marker = dict(color = 'rgba(255, 128, 255, 0.8)'), ) df = [trace1, trace2] layout = dict(title = 'raisedhands', xaxis= dict(title= 'index',ticklen= 5,zeroline= False), yaxis= dict(title= 'Values',ticklen= 5,zeroline= False) ) fig = dict(data = df, layout = layout) iplot(fig) # In[ ]: # Discussion in terms of gender # import graph objects as "go" import plotly.graph_objs as go # creating trace1 trace1 =go.Scatter( x = np.arange(0,82), y = data[data.gender=='M'].Discussion, mode = "markers", name = "male", marker = dict(color = 'rgba(0, 100, 255, 0.8)'), text= data[data.gender=="M"].gender) # creating trace2 trace2 =go.Scatter( x = np.arange(0,82), y = data[data.gender=="F"].Discussion, mode = "markers", name = "female", marker = dict(color = 'rgba(200, 50, 150, 0.8)'), text= data[data.gender=="F"].gender) df = [trace1, trace2] layout = dict(title = 'Discussion', xaxis= dict(title= 'index',ticklen= 5,zeroline= False), yaxis= dict(title= 'Values',ticklen= 5,zeroline= False) ) fig = dict(data = df, layout = layout) iplot(fig) # In[ ]: # Plotting Scatter Matrix color_list = ['red' if i=='M' else 'green' for i in data.gender] pd.plotting.scatter_matrix(data.loc[:, data.columns != 'gender'], c=color_list, figsize= [15,15], diagonal='hist', alpha=0.8, s = 200, marker = '.', edgecolor= "black") print() # <a id="5"></a> # # Bar Plot # In[ ]: # Raisehands Average in terms of Topic # we will create a data containing averages of the numerical values of our data. topic_list=list(data.Topic.unique()) rh_av=[] d_av=[] aview_av=[] vr_av=[] for i in topic_list: rh_av.append(sum(data[data["Topic"]==i].raisedhands)/len(data[data["Topic"]==i].raisedhands)) d_av.append(sum(data[data["Topic"]==i].Discussion)/len(data[data["Topic"]==i].Discussion)) aview_av.append(sum(data[data["Topic"]==i].AnnouncementsView)/len(data[data["Topic"]==i].AnnouncementsView)) vr_av.append(sum(data[data["Topic"]==i].VisITedResources)/len(data[data["Topic"]==i].VisITedResources)) data2=pd.DataFrame({"topic":topic_list,"raisedhands_avg":rh_av,"discussion_avg":d_av,"AnnouncementsView_avg":aview_av, "VisITedResources_avg":vr_av}) # we will sort data2 interms of index of raisedhands_avg in ascending order new_index2 = (data2['raisedhands_avg'].sort_values(ascending=True)).index.values sorted_data2 = data2.reindex(new_index2) sorted_data2.head() # visualization plt.figure(figsize=(15,10)) sns.barplot(x=sorted_data2['topic'], y=sorted_data2['raisedhands_avg']) plt.xticks(rotation= 90) plt.xlabel('Topics') plt.ylabel('Raisehands Average') plt.title("Raisehands Average in terms of Topic") # In[ ]: # horizontal bar plot # Raised hands, Discussion and Announcements View averages acording to topics f,ax = plt.subplots(figsize = (9,15)) #create a figure of 9x15 . sns.barplot(x=rh_av,y=topic_list,color='cyan',alpha = 0.5,label='Raised hands' ) sns.barplot(x=d_av,y=topic_list,color='blue',alpha = 0.7,label='Discussion') sns.barplot(x=aview_av,y=topic_list,color='red',alpha = 0.6,label='Announcements View') ax.legend(loc='upper right',frameon = True) ax.set(xlabel='Average ', ylabel='Topics',title = "Average of Numerical Values of Data According to Topics ") # # Bar Plot in Plotly # # * Import graph_objs as *go* # * Creating traces # * x = x axis # * y = y axis # * mode = type of plot like marker, line or line + markers # * name = name of the plots # * marker = marker is used with dictionary. # * color = color of lines. It takes RGB (red, green, blue) and opacity (alpha) # * line = It is dictionary. line between bars # * color = line color around bars # * text = The hover text (hover is curser) # * data = is a list that we add traces into it # * layout = it is dictionary. # * barmode = bar mode of bars like grouped # * fig = it includes data and layout # * iplot() = plots the figure(fig) that is created by data and layout # In[ ]: # raisehands and discussion average acording to topic # we will sort data2 interms of index of raisedhands_avg in descending order new_index3 = (data2['raisedhands_avg'].sort_values(ascending=False)).index.values sorted_data3 = data2.reindex(new_index3) # create trace1 trace1 = go.Bar( x = sorted_data3.topic, y = sorted_data3.raisedhands_avg, name = "raisedhands average", marker = dict(color = 'rgba(255, 174, 155, 0.5)', line=dict(color='rgb(0,0,0)',width=1.5)), text = sorted_data3.topic) # create trace2 trace2 = go.Bar( x = sorted_data3.topic, y = sorted_data3.discussion_avg, name = "discussion average", marker = dict(color = 'rgba(255, 255, 128, 0.5)', line=dict(color='rgb(0,0,0)',width=1.5)), text = sorted_data3.topic) df= [trace1, trace2] layout = go.Layout(barmode = "group",title= "Discussion and Raisedhands Average of Each Topic") fig = go.Figure(data = df, layout = layout) iplot(fig) # In[ ]: # raisehands and discussion average acording to PlaceofBirth #prepare data place_list=list(data.PlaceofBirth.unique()) rh_av=[] d_av=[] aview_av=[] vr_av=[] for i in place_list: rh_av.append(sum(data[data["PlaceofBirth"]==i].raisedhands)/len(data[data["PlaceofBirth"]==i].raisedhands)) d_av.append(sum(data[data["PlaceofBirth"]==i].Discussion)/len(data[data["PlaceofBirth"]==i].Discussion)) aview_av.append(sum(data[data["PlaceofBirth"]==i].AnnouncementsView)/len(data[data["PlaceofBirth"]==i].AnnouncementsView)) vr_av.append(sum(data[data["PlaceofBirth"]==i].VisITedResources)/len(data[data["PlaceofBirth"]==i].VisITedResources)) data4=pd.DataFrame({"PlaceofBirth":place_list,"raisedhands_avg":rh_av,"discussion_avg":d_av,"AnnouncementsView_avg":aview_av, "VisITedResources_avg":vr_av}) new_index4=data4["raisedhands_avg"].sort_values(ascending=False).index.values sorted_data4=data4.reindex(new_index4) # create trace1 trace1 = go.Bar( x = sorted_data4.PlaceofBirth, y = sorted_data4.raisedhands_avg, name = "raisedhands average", marker = dict(color = 'rgba(200, 125, 200, 0.5)', line=dict(color='rgb(0,0,0)',width=1.5)), text = sorted_data4.PlaceofBirth) # create trace2 trace2 = go.Bar( x = sorted_data4.PlaceofBirth, y = sorted_data4.discussion_avg, name = "discussion average", marker = dict(color = 'rgba(128, 255, 128, 0.5)', line=dict(color='rgb(0,0,0)',width=1.5)), text = sorted_data4.PlaceofBirth) df= [trace1, trace2] layout = go.Layout(barmode = "group",title= "Discussion and Raisedhands Average acording to PlaceofBirth") fig = go.Figure(data = df, layout = layout) iplot(fig) # In[ ]: trace1 = { 'x': sorted_data4.PlaceofBirth, 'y': sorted_data4.raisedhands_avg, 'name': 'raisedhands average', 'type': 'bar' }; trace2 = { 'x': sorted_data4.PlaceofBirth, 'y': sorted_data4.discussion_avg, 'name': 'discussion average', 'type': 'bar' }; df = [trace1, trace2]; layout = { 'xaxis': {'title': 'PlaceofBirth'}, 'barmode': 'relative', 'title': 'Raisedhands and Discussion Average Acording to Place of Birth' }; fig = go.Figure(data = df, layout = layout) iplot(fig) # <a id="6"></a> # # Point Plot # In[ ]: # Raisedhands vs Discussion Rate point plot #normalize the values of discussion_avg and raisedhands_avg data3=sorted_data2.copy() data3["raisedhands_avg"]=data3['raisedhands_avg']/max( data3['raisedhands_avg']) data3["discussion_avg"]=data3['discussion_avg']/max( data3['discussion_avg']) # visualize f,ax1 = plt.subplots(figsize =(12,10)) sns.pointplot(x='topic',y='raisedhands_avg',data=data3,color='lime',alpha=0.8) sns.pointplot(x='topic',y='discussion_avg',data=data3,color='red',alpha=0.8) plt.text(5,0.50,'Raised hands Average',color='red',fontsize = 17,style = 'italic') plt.text(5,0.46,'Discussion Average',color='lime',fontsize = 18,style = 'italic') plt.xlabel('Topics',fontsize = 15,color='blue') plt.ylabel('Values',fontsize = 15,color='blue') plt.title('Raisedhands vs Discussion Rate',fontsize = 20,color='blue') plt.grid() # In[ ]: # Raisedhands vs Discussion Rate point plot acording to place of birth #normalize the values of discussion_avg and raisedhands_avg data5=sorted_data4.copy() data5["raisedhands_avg"]=data5['raisedhands_avg']/max( data5['raisedhands_avg']) data5["discussion_avg"]=data5['discussion_avg']/max( data5['discussion_avg']) # visualize f,ax1 = plt.subplots(figsize =(12,10)) sns.pointplot(x='PlaceofBirth',y='raisedhands_avg',data=data5,color='red',alpha=0.8) sns.pointplot(x='PlaceofBirth',y='discussion_avg',data=data5,color='blue',alpha=0.8) plt.text(3,0.30,'Raised hands Average',color='red',fontsize = 17,style = 'italic') plt.text(3,0.36,'Discussion Average',color='blue',fontsize = 18,style = 'italic') plt.xlabel('PlaceofBirth',fontsize = 15,color='purple') plt.ylabel('Values',fontsize = 15,color='purple') plt.title('Raisedhands vs Discussion Rate',fontsize = 20,color='purple') plt.grid() # <a id="7"></a> # # Count Plot # In[ ]: data.gender.value_counts() # In[ ]: plt.subplots(figsize=(8,5)) sns.countplot(data.gender) plt.xlabel("gender",fontsize="15") plt.ylabel("numbers",fontsize="15") plt.title("Number of Genders in Data", color="red",fontsize="18") print() # In[ ]: #StageID unique values data.StageID.value_counts() # In[ ]: sns.countplot(data.StageID) plt.xlabel("StageID") plt.ylabel("numbers") plt.title("Number of StageID in Data", color="red",fontsize="18") print() # <a id="8"></a> # # Pie Chart # # * fig: create figures # * data: plot type # * values: values of plot # * labels: labels of plot # * name: name of plots # * hoverinfo: information in hover # * hole: hole width # * type: plot type like pie # * layout: layout of plot # * title: title of layout # * annotations: font, showarrow, text, x, y # In[ ]: labels=data.StageID.value_counts() colors=["grey","blue","green"] explode=[0,0,0] sizes=data.StageID.value_counts().values plt.figure(figsize = (7,7)) plt.pie(sizes, explode=explode, labels=labels, colors=colors, autopct='%1.1f%%') plt.title("StageID in Data",color = 'blue',fontsize = 15) print() # In[ ]: # StageID piechart in plotly pie1_list=data["StageID"].value_counts().values labels = data["StageID"].value_counts().index # figure fig = { "data": [ { "values": pie1_list, "labels": labels, "domain": {"x": [0, .5]}, "name": "StageID", "hoverinfo":"label+percent", "hole": .3, "type": "pie" },], "layout": { "title":"StageID Type", "annotations": [ { "font": { "size": 20}, "showarrow": False, "text": "StageID", "x": 0.20, "y": 1 }, ] } } iplot(fig) # <a id="9"></a> # # Pair Plot # In[ ]: data.head() # In[ ]: # raisedhands and VisITedResources pair plot print() print() # <a id="11"></a> # # MACHINE LEARNING # # <a href="https://ibb.co/hgB9j10"><img src="https://i.ibb.co/YNcQMTg/ml1.jpg" alt="ml1" border="0"> # In this part, we will use Machine Learning algoithms in our data. Machine Learning Classification algorithms have the following steps: # * Split data # * Fit data # * Predict Data # * Find Accuracy # In[ ]: data.head() # We need only numerical features. So create new data containing only numerical values. # In[ ]: data_new=data.loc[:,["gender","raisedhands","VisITedResources","AnnouncementsView","Discussion"]] # We will write 1 for male and 0 for female for classification. # In[ ]: data_new.gender=[1 if i=="M" else 0 for i in data_new.gender] # In[ ]: data_new.head() # <a id="12"></a> # # Logistic Regression Classification # # * When we talk about binary classification( 0 and 1 outputs) what comes to mind first is logistic regression. # * Logistic regression is actually a very simple neural network. # We need to prepare our data for classificaiton. # * We will determine x and y values. # * y: binary output (0 and 1) # * x_data: rest of the data (i.e. features of data except gender) # In[ ]: y=data_new.gender.values x_data=data_new.drop("gender",axis=1) # In[ ]: # normalize the values in x_data x=(x_data-np.min(x_data))/(np.max(x_data)-np.min(x_data)) # * create x_train, y_train, x_test and y_test arrays with train_test_split method. # In[ ]: from sklearn.model_selection import train_test_split x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=52) # In[ ]: #Logistic Regression from sklearn.linear_model import LogisticRegression #fit lr=LogisticRegression() lr.fit(x_train,y_train) #accuracy print("test accuracy is {}".format(lr.score(x_test,y_test))) # <a id="13"></a> # # KNN (K-Nearest Neighbour) Classification # 1. Choose K value. # 1. Find the K nearest data points. # 1. Find the number of data points for each class between K nearest neighbour. # 1. Identify the class of data or point we tested. # Assume that we have a graph and we want to determine the class of black points(i.e. they are in class green or red. ) # <a href="https://ibb.co/NmzLJF6"><img src="https://i.ibb.co/MGLRtgD/2.png" alt="2" border="0"> # # # # # # * First split data # * Fit data # * Predict Data # * Find Accuracy # * Find the convenient k value for the highest accuracy. # In[ ]: #split data from sklearn.neighbors import KNeighborsClassifier x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=1) knn=KNeighborsClassifier(n_neighbors=3) #fit knn.fit(x_train,y_train) #prediction prediction=knn.predict(x_test) # In[ ]: #prediction score (accuracy) print('KNN (K=3) accuracy is: ',knn.score(x_test,y_test)) # In[ ]: # find the convenient k value for range (1,31) score_list=[] train_accuracy=[] for i in range(1,31): knn2=KNeighborsClassifier(n_neighbors=i) knn2.fit(x_train,y_train) score_list.append(knn2.score(x_test,y_test)) train_accuracy.append(knn2.score(x_train,y_train)) plt.figure(figsize=(15,10)) plt.plot(range(1,31),score_list,label="testing accuracy",color="blue",linewidth=3) plt.plot(range(1,31),train_accuracy,label="training accuracy",color="orange",linewidth=3) plt.xlabel("k values in KNN") plt.ylabel("accuracy") plt.title("Accuracy results with respect to k values") plt.legend() plt.grid() print() print("Maximum value of testing accuracy is {} when k= {}.".format(np.max(score_list),1+score_list.index(np.max(score_list)))) # <a id="14"></a> # # Support Vector Machine (SVM) Classification # In[ ]: from sklearn.svm import SVC svm=SVC(random_state=1) svm.fit(x_train,y_train) #accuracy print("accuracy of svm algorithm: ",svm.score(x_test,y_test)) # <a id="15"></a> # # Naive Bayes Classification # In[ ]: from sklearn.naive_bayes import GaussianNB nb=GaussianNB() nb.fit(x_train,y_train) # test accuracy print("Accuracy of naive bayees algorithm: ",nb.score(x_test,y_test)) # <a id="16"></a> # # Decision Tree Classification # # We have points as seen in the figure and we want to classify these points. # # <a href="https://ibb.co/n8CYzwN"><img src="https://i.ibb.co/G3T8cd4/d11-640x538.jpg" alt="d11-640x538" border="0"></a> # # # We will classify these points by using 3 splits. # # <a href="https://ibb.co/y4n4rRk"><img src="https://i.ibb.co/FHbHFWY/d22-690x569.jpg" alt="d22-690x569" border="0"></a> # In[ ]: from sklearn.tree import DecisionTreeClassifier dt=DecisionTreeClassifier() dt.fit(x_train,y_train) print("Accuracy score for Decision Tree Classification: " ,dt.score(x_test,y_test)) # <a id="17"></a> # # Random Forest Classification # # Random Forest divides the train data into n samples, and for each n sample applies Decision Tree algorithm. At he end of n Decision Tree algorithm, it takes the answer which is more. # In[ ]: from sklearn.ensemble import RandomForestClassifier rf=RandomForestClassifier(n_estimators=100,random_state=1) rf.fit(x_train,y_train) print("random forest algorithm accuracy: ",rf.score(x_test,y_test)) # In[ ]: score_list1=[] for i in range(100,501,100): rf2=RandomForestClassifier(n_estimators=i,random_state=1) rf2.fit(x_train,y_train) score_list1.append(rf2.score(x_test,y_test)) plt.figure(figsize=(10,10)) plt.plot(range(100,501,100),score_list1) plt.xlabel("number of estimators") plt.ylabel("accuracy") plt.grid() print() print("Maximum value of accuracy is {} \nwhen n_estimators= {}.".format(max(score_list1),(1+score_list1.index(max(score_list1)))*100)) # As it seen in the graph, it is convenient to choose n_estimators=100 for the best accuracy result. # Let's look at between 100 and 130. # In[ ]: score_list2=[] for i in range(100,131): rf3=RandomForestClassifier(n_estimators=i,random_state=1) rf3.fit(x_train,y_train) score_list2.append(rf3.score(x_test,y_test)) plt.figure(figsize=(10,10)) plt.plot(range(100,131),score_list2) plt.xlabel("number of estimators") plt.ylabel("accuracy") plt.grid() print() print("Maximum value of accuracy is {} when number of estimators between 100 and 131 ".format(max(score_list2))) # Actually, this graph says that, if n_estimators is between 100 and 122, then the value of accuracy is not changing. # <a id="18"></a> # # Confusion Matrix # Confusion matrix gives the number of true and false predicitons in our classificaiton. It is more reliable than accuracy. # <br> Here, # * y_pred: results that we predict. # * y_test: our real values. # In[ ]: #Confusion matrix of Random Forest Classf. y_pred=rf.predict(x_test) y_true=y_test #cm from sklearn.metrics import confusion_matrix cm=confusion_matrix(y_true,y_pred) #cm visualization f,ax=plt.subplots(figsize=(8,8)) print() plt.xlabel("predicted value") plt.ylabel("real value") print() # We know that our accuracy is 0.7291, which is the best result, when number of estimators is 100 . But here we predicted # * 21 true for label 0=TN # * 49 true for label 1=TP # * 6 wrong for the label 1 =FN ( I predicted 6 label 0 but they are label 1) # * 20 wrong for label 0= FP ( I predicted 20 label 1 but they are label 0) # # In[ ]: #Confusion matrix of KNN Classf. y_pred1=knn.predict(x_test) y_true=y_test #cm cm1=confusion_matrix(y_true,y_pred1) #cm visualization f,ax=plt.subplots(figsize=(8,8)) print() plt.xlabel("predicted value") plt.ylabel("real value") print() # We know that our accuracy is 0.645 when k=3 . We predicted; # * 15 true for label 0=TN # * 47 true for label 1=TP # * 8 wrong for the label 1 =FN ( I predicted 8 label 0 but they are label 1) # * 26 wrong for label 0= FP ( I predicted 26 label 1 but they are label 0) # In[ ]: #Confusion matrix of Decision Tree Classf. y_pred2=dt.predict(x_test) y_true=y_test #cm cm2=confusion_matrix(y_true,y_pred2) #cm visualization f,ax=plt.subplots(figsize=(8,8)) print() plt.xlabel("predicted value") plt.ylabel("real value") print() # <a id="19"></a> # # Conclusion # # As it seen from confusion matrices, the number of wrong predictions are: # * KNN Classif: 8, 26 # * Decision Tree Classif: 16, 16 # * Random Forest Classif: 6, 20 # # It seems that Random Forest Classification is more effective which can also be seen from accuracy scores. Now lets check this by visualizing the scores. # In[ ]: dictionary={"model":["LR","KNN","SVM","NB","DT","RF"],"score":[lr.score(x_test,y_test),knn.score(x_test,y_test),svm.score(x_test,y_test),nb.score(x_test,y_test),dt.score(x_test,y_test),rf.score(x_test,y_test)]} df1=
pd.DataFrame(dictionary)
pandas.DataFrame
import numpy as np import pandas as pd import os import sys from subprocess import call import matplotlib matplotlib.use('TkAgg') import matplotlib.pyplot as plt from matplotlib.ticker import LinearLocator import scipy import json from sklearn.decomposition import PCA as skPCA from scipy.spatial import distance from scipy.cluster import hierarchy import seaborn as sns from matplotlib.colors import rgb2hex, colorConverter from pprint import pprint import difflib from operator import itemgetter import itertools from functools import reduce import matplotlib.ticker as ticker import math import matplotlib.patches as patches from collections import defaultdict import collections from sklearn.manifold import TSNE from sklearn.decomposition import TruncatedSVD from sklearn.cluster import KMeans import matplotlib.mlab as mlab def make_new_matrix_gene(org_matrix_by_gene, gene_list_source, exclude_list=""): if isinstance(gene_list_source,str): gene_df = pd.read_csv(open(gene_list_source,'rU'), sep=None, engine='python') try: gene_list = list(set(gene_df['GeneID'].tolist())) if exclude_list != "": gene_list = [g for g in gene_list if g not in exclude_list] except KeyError: sys.exit("Error: Please provide Gene list file with 'GeneID' as header.") try: group_list = gene_df['GroupID'].tolist() except KeyError: sys.exit("Error: Please provide Gene list file with 'GroupID' as header.") try: gmatrix_df = org_matrix_by_gene[gene_list] except KeyError as error_gene: cause1 = error_gene.args[0].strip(' not in index') cause = [v.strip('\n\' ') for v in cause1.strip('[]').split(' ')] absent_gene = cause print(' '.join(absent_gene)+' not in matrix file.') new_list = [x for x in gene_list if x not in absent_gene] gmatrix_df = org_matrix_by_gene[new_list] cmatrix_df = gmatrix_df.transpose() cell_list1 = cmatrix_df.columns.values new_cmatrix_df = cmatrix_df[cell_list1] new_gmatrix_df = new_cmatrix_df.transpose() return new_cmatrix_df, new_gmatrix_df elif isinstance(gene_list_source,list): if exclude_list == "": gene_list = gene_list_source else: gene_list = [g for g in gene_list_source if g not in exclude_list] try: gmatrix_df = org_matrix_by_gene[gene_list] except KeyError as error_gene: cause = error_gene.args[0] absent_gene = cause.split('\'')[1] print(absent_gene+' not in matrix file.') new_list = [x for x in gene_list if x not in [absent_gene]] gmatrix_df = org_matrix_by_gene[new_list] cmatrix_df = gmatrix_df.transpose() cell_list1 = cmatrix_df.columns.values new_cmatrix_df = cmatrix_df[cell_list1] new_gmatrix_df = new_cmatrix_df.transpose() return new_cmatrix_df, new_gmatrix_df else: sys.exit("Error: gene list must be filepath or a list.") def make_new_matrix_cell(org_matrix_by_cell, cell_list_file): cell_df = pd.read_csv(open(cell_list_file,'rU'), sep=None, engine='python') cell_list_new = list(set([cell.strip('\n') for cell in cell_df['SampleID'].tolist()])) cell_list_old = org_matrix_by_cell.columns.tolist() overlap = [c for c in cell_list_new if c in cell_list_old] not_in_matrix = [c for c in cell_list_new if c not in cell_list_old] if not_in_matrix != []: print('These cells were in the cell list provided, but not found in the matrix provided:') print(not_in_matrix) new_cmatrix_df = org_matrix_by_cell[overlap] new_gmatrix_df = new_cmatrix_df.transpose() return new_cmatrix_df, new_gmatrix_df def threshold_genes(by_gene, number_expressed=1, gene_express_cutoff=1.0): by_gene.apply(lambda column: (column >= 1).sum()) return def find_top_common_genes(log2_df_by_cell, num_common=25): top_common_list = [] count = 0 done = False log2_df_by_gene = log2_df_by_cell.transpose() log2_df2_gene = log2_df_by_gene.apply(pd.to_numeric,errors='coerce') log_mean = log2_df2_gene.mean(axis=0).sort_values(ascending=False) try: log2_sorted_gene = log2_df_by_gene.reindex_axis(log2_df_by_gene.mean(axis=0).sort_values(ascending=False).index, axis=1) except ValueError: overlap_list = [item for item, count in collections.Counter(log2_df_by_cell.index).items() if count > 1] print(overlap_list, len(overlap_list)) sys.exit('Error: Duplicate GeneIDs are present.') for gene in log2_sorted_gene.columns.tolist(): if sum(genes < 1 for genes in log2_df_by_gene[gene])<6: if count < num_common: count+=1 top_common_list.append(gene) if count == num_common: done = True break if done: return log2_df_by_gene[top_common_list].transpose() else: return [0] def log2_oulierfilter(df_by_cell, plot=False, already_log2=False): if not already_log2: log2_df = np.log2(df_by_cell+1) else: log2_df = df_by_cell top_log2 = find_top_common_genes(log2_df) if all(top_log2) != 0: log2_df2= log2_df.apply(pd.to_numeric,errors='coerce') log_mean = top_log2.mean(axis=0).sort_values(ascending=False) log2_sorted = top_log2.reindex_axis(top_log2.mean(axis=0).sort_values(ascending=False).index, axis=1) xticks = [] keep_col= [] log2_cutoff = np.average(np.average(log2_sorted))-2*np.average(np.std(log2_sorted)) for col, m in zip(log2_sorted.columns.tolist(),log2_sorted.mean()): if m > log2_cutoff: keep_col.append(col) xticks.append(col+' '+str("%.2f" % m)) excluded_cells = [x for x in log2_sorted.columns.tolist() if x not in keep_col] filtered_df_by_cell = df_by_cell[keep_col] filtered_df_by_gene = filtered_df_by_cell.transpose() if not already_log2: filtered_log2 = np.log2(filtered_df_by_cell[filtered_df_by_cell>0]) else: filtered_log2 = filtered_df_by_cell[filtered_df_by_cell>0] if plot: ax = sns.boxplot(data=filtered_log2, whis= .75, notch=True) ax = sns.stripplot(x=filtered_log2.columns.values, y=filtered_log2.mean(axis=0), size=4, jitter=True, edgecolor="gray") xtickNames = plt.setp(ax, xticklabels=xticks) plt.setp(xtickNames, rotation=90, fontsize=9) plt.show() plt.clf() sns.distplot(filtered_log2.mean()) plt.show() if not already_log2: log2_expdf_cell = np.log2(filtered_df_by_cell+1) else: log2_expdf_cell = filtered_df_by_cell log2_expdf_gene = log2_expdf_cell.transpose() return log2_expdf_cell, log2_expdf_gene else: print("no common genes found") return log2_df, log2_df.transpose() def augmented_dendrogram(*args, **kwargs): plt.clf() ddata = dendrogram(*args, **kwargs) if not kwargs.get('no_plot', False): for i, d in zip(ddata['icoord'], ddata['dcoord'], ): x = 0.5 * sum(i[1:3]) y = d[1] if y >= 200000: plt.plot(x, y, 'ro') plt.annotate("%.3g" % y, (x, y), xytext=(0, -8), textcoords='offset points', va='top', ha='center') plt.show() plt.savefig(os.path.join(new_file,'augmented_dendrogram.png')) def cluster_indices(cluster_assignments): n = cluster_assignments.max() indices = [] for cluster_number in range(1, n + 1): indices.append(np.where(cluster_assignments == cluster_number)[0]) return indices def clust_members(r_link, cutoff): clust = fcluster(r_link,cutoff) num_clusters = clust.max() indices = cluster_indices(clust) return num_clusters, indices def print_clust_membs(indices, cell_list): for k, ind in enumerate(indices): print("cluster", k + 1, "is", [cell_list[x] for x in ind]) def plot_tree(dendr, path_filename, pos=None, save=False): icoord = scipy.array(dendr['icoord']) dcoord = scipy.array(dendr['dcoord']) color_list = scipy.array(dendr['color_list']) xmin, xmax = icoord.min(), icoord.max() ymin, ymax = dcoord.min(), dcoord.max() if pos: icoord = icoord[pos] dcoord = dcoord[pos] for xs, ys, color in zip(icoord, dcoord, color_list): plt.plot(xs, ys, color) plt.xlim(xmin-10, xmax + 0.1*abs(xmax)) plt.ylim(ymin, ymax + 0.1*abs(ymax)) if save: plt.savefig(os.path.join(path_filename,'plot_dendrogram.png')) plt.show() # Create a nested dictionary from the ClusterNode's returned by SciPy def add_node(node, parent): # First create the new node and append it to its parent's children newNode = dict( node_id=node.id, children=[] ) parent["children"].append( newNode ) # Recursively add the current node's children if node.left: add_node( node.left, newNode ) if node.right: add_node( node.right, newNode ) cc = [] # Label each node with the names of each leaf in its subtree def label_tree(n, id2name): # If the node is a leaf, then we have its name if len(n["children"]) == 0: leafNames = [ id2name[n["node_id"]] ] # If not, flatten all the leaves in the node's subtree else: leafNames = reduce(lambda ls, c: ls + label_tree(c,id2name), n["children"], []) cc.append((len(leafNames), [x.strip('\n') for x in leafNames])) cc.sort(key=lambda tup: tup[0], reverse = True) # Delete the node id since we don't need it anymore and # it makes for cleaner JSON del n["node_id"] # Labeling convention: "-"-separated leaf names n["name"] = name = "-".join(sorted(map(str, leafNames))) return leafNames #Makes labeled json tree for visulaization in d3, makes and returns cc object within label_tree def make_tree_json(row_clusters, df_by_gene, path_filename): T= hierarchy.to_tree(row_clusters) # Create dictionary for labeling nodes by their IDs labels = list(df_by_gene.index) id2name = dict(zip(range(len(labels)), labels)) # Initialize nested dictionary for d3, then recursively iterate through tree d3Dendro = dict(children=[], name="Root1") add_node( T, d3Dendro ) label_tree( d3Dendro["children"][0], id2name ) # Output to JSON json.dump(d3Dendro, open(os.path.join(path_filename,"d3-dendrogram.json"), "w"), sort_keys=True, indent=4) return cc #finds significant genes between subclusters def find_twobytwo(cc, df_by_cell, full_by_cell_df, path_filename, cluster_size=20): gene_list = full_by_cell_df.index.tolist() by_gene_df = full_by_cell_df.transpose() pair_dict = {} parent = cc[0][1] p_num = cc[0][0] l_nums = [x[0] for x in cc] c_lists = [c[1] for c in cc[1:]] unique_count = 1 pair_list = [] for i, c in enumerate(c_lists): for i2, c2 in enumerate(c_lists): overlap = [i for i in c if i in c2] if not overlap and len(c)>=cluster_size and len(c2)>=cluster_size: if (c,c2) not in pair_list: pair_list.append((c,c2)) pair_list.append((c2,c)) pair_dict[str(len(c))+'cells_vs_'+str(len(c2))+'cells'+str(unique_count)]= [c, c2] unique_count+=1 for v, k in pair_dict.items(): g_pvalue_dict = {} index_list = [] sig_gene_list = [] cell_list1 = [x.strip('\n') for x in k[0]] cell_list2 = [xx.strip('\n') for xx in k[1]] group1 = str(len(cell_list1)) group2 = str(len(cell_list2)) df_by_cell_1 = full_by_cell_df[cell_list1] df_by_cell_2 = full_by_cell_df[cell_list2] df_by_gene_1 = df_by_cell_1.transpose() df_by_gene_2 = df_by_cell_2.transpose() for g in gene_list: g_pvalue = scipy.stats.f_oneway(df_by_gene_1[g], df_by_gene_2[g]) if g_pvalue[0] > 0 and g_pvalue[1] <= 1: g_pvalue_dict[g] = g_pvalue if g not in [s[0] for s in sig_gene_list]: sig_gene_list.append([g, g_pvalue[1]]) sig_gene_list.sort(key=lambda tup: tup[1]) pvalues = [p[1] for p in sig_gene_list] gene_index = [ge[0] for ge in sig_gene_list] mean_log2_exp_list = [] sig_1_2_list = [] mean1_list = [] mean2_list = [] for sig_gene in gene_index: sig_gene_df = by_gene_df[sig_gene] mean_log2_exp_list.append(sig_gene_df.mean()) sig_cell_df = sig_gene_df.transpose() mean_cell1 = sig_cell_df[cell_list1].mean() mean1_list.append(mean_cell1) mean_cell2 = sig_cell_df[cell_list2].mean() mean2_list.append(mean_cell2) ratio_1_2 = (mean_cell1+1)/(mean_cell2+1) sig_1_2_list.append(ratio_1_2) sig_df = pd.DataFrame({'pvalues':pvalues,'mean_all':mean_log2_exp_list,'mean_group1':mean1_list, 'mean_group2':mean2_list, 'ratio_1_2':sig_1_2_list}, index=gene_index) cell_names_df = pd.DataFrame({'cells1':pd.Series(cell_list1, index=range(len(cell_list1))), 'cells2':pd.Series(cell_list2, index=range(len(cell_list2)))}) sig_df.to_csv(os.path.join(path_filename,'sig_'+v+'_pvalues.txt'), sep = '\t') cell_names_df.to_csv(os.path.join(path_filename,'sig_'+v+'_cells.txt'), sep = '\t') def ellip_enclose(points, color, inc=1, lw=2, nst=2): """ Plot the minimum ellipse around a set of points. Based on: https://github.com/joferkington/oost_paper_code/blob/master/error_ellipse.py """ def eigsorted(cov): vals, vecs = np.linalg.eigh(cov) order = vals.argsort()[::-1] return vals[order], vecs[:,order] x = points[:,0] y = points[:,1] cov = np.cov(x, y) vals, vecs = eigsorted(cov) theta = np.degrees(np.arctan2(*vecs[:,0][::-1])) w, h = 2 * nst * np.sqrt(vals) center = np.mean(points, 0) ell = patches.Ellipse(center, width=inc*w, height=inc*h, angle=theta, facecolor=color, alpha=0.2, lw=0) edge = patches.Ellipse(center, width=inc*w, height=inc*h, angle=theta, facecolor='none', edgecolor=color, lw=lw) return ell, edge def return_top_pca_gene(df_by_gene, num_genes=100): gene_pca = skPCA(n_components=3) np_by_gene = np.asarray(df_by_gene) by_gene_trans = gene_pca.fit_transform(np_by_gene) Pc_df = pd.DataFrame(gene_pca.components_.T, columns=['PC-1', 'PC-2', 'PC-3'], index=df_by_gene.columns.tolist()) pca_rank_df = Pc_df.abs().sum(axis=1) Pc_sort_df = pca_rank_df.nlargest(len(df_by_gene.columns.tolist())) top_pca_list = Pc_sort_df.index.tolist() new_gene_matrix = df_by_gene[top_pca_list[0:num_genes]] return new_gene_matrix, top_pca_list[0:num_genes] def plot_PCA(args, df_by_gene, path_filename, num_genes=100, gene_list_filter=False, title='', plot=False, label_map=False, gene_map = False): gene_list = df_by_gene.columns.tolist() sns.set_palette("RdBu_r", 10, 1) if gene_list_filter: sig_by_gene = df_by_gene[gene_list_filter] sig_by_cell = sig_by_gene.transpose() else: sig_by_gene = df_by_gene sig_by_cell = sig_by_gene.transpose() gene_pca = skPCA(n_components=3) np_by_gene = np.asarray(sig_by_gene) by_gene_trans = gene_pca.fit_transform(np_by_gene) Pc_df = pd.DataFrame(gene_pca.components_.T, columns=['PC-1', 'PC-2', 'PC-3'], index=sig_by_gene.columns.tolist()) pca_rank_df = Pc_df.abs().sum(axis=1) Pc_sort_df = pca_rank_df.nlargest(len(sig_by_gene.columns.tolist())) top_pca_list = Pc_sort_df.index.tolist() top_by_gene = df_by_gene[top_pca_list[0:num_genes]] gene_top = skPCA(n_components=2) cell_pca = skPCA(n_components=2) top_by_cell = top_by_gene.transpose() np_top_gene = np.asarray(top_by_cell) np_top_cell = np.asarray(top_by_gene) top_cell_trans = cell_pca.fit_transform(np_top_cell) top_gene_trans = gene_top.fit_transform(np_top_gene) if not np.isnan(top_cell_trans).any(): fig, (ax_cell, ax_gene) = plt.subplots(2, 1, figsize=(15, 30), sharex=False) rect_cell = ax_cell.patch rect_gene = ax_gene.patch rect_cell.set_facecolor('white') rect_gene.set_facecolor('white') ax_cell.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) ax_gene.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) if label_map: annotate = args.annotate_cell_pca X = [x for x in top_cell_trans[:, 0]] Y = [y for y in top_cell_trans[:, 1]] labels = [label_map[cell][2] for cell in top_by_cell.columns.tolist()] markers = [label_map[cell][1] for cell in top_by_cell.columns.tolist()] colors = [label_map[cell][0] for cell in top_by_cell.columns.tolist()] label_done = [] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): if l in label_done: lab = '' else: lab= l label_done.append(l) xy_by_color_dict[color].append([X_pos,Y_pos]) ax_cell.scatter(X_pos, Y_pos, marker=m, c=color, label=lab, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_cell.add_artist(ell) ax_cell.add_artist(edge) else: ax_cell.scatter(top_cell_trans[:, 0], top_cell_trans[:, 1], alpha=0.75) annotate = args.annotate_cell_pca ax_cell.set_xlim([min(top_cell_trans[:, 0])-1, max(top_cell_trans[:, 0]+1)]) ax_cell.set_ylim([min(top_cell_trans[:, 1])-1, max(top_cell_trans[:, 1]+2)]) ax_cell.set_title(title+'_cell') if label_map: handles, labs = ax_cell.get_legend_handles_labels() # sort both labels and handles by labels labs, handles = zip(*sorted(zip(labs, handles), key=lambda t: t[0])) ax_cell.legend(handles, labs, loc='best', ncol=1, prop={'size':12}, markerscale=1.5, frameon=True) ax_cell.set_xlabel('PC1') ax_cell.set_ylabel('PC2') if annotate: for label, x, y in zip(top_by_cell.columns, top_cell_trans[:, 0], top_cell_trans[:, 1]): ax_cell.annotate(label, (x+0.1, y+0.1)) if gene_map: X = [x for x in top_gene_trans[:, 0]] Y = [y for y in top_gene_trans[:, 1]] labels = top_by_gene.columns.tolist() markers = [gene_map[gene][1] for gene in top_by_gene.columns.tolist()] colors = [gene_map[gene][0] for gene in top_by_gene.columns.tolist()] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): xy_by_color_dict[color].append([X_pos,Y_pos]) ax_gene.scatter(X_pos, Y_pos, marker=m, c=color, label = l, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_gene.add_artist(ell) ax_gene.add_artist(edge) else: ax_gene.scatter(top_gene_trans[:, 0], top_gene_trans[:, 1], alpha=0.75) ax_gene.set_xlim([min(top_gene_trans[:, 0])-1, max(top_gene_trans[:, 0])+1]) ax_gene.set_ylim([min(top_gene_trans[:, 1])-1, max(top_gene_trans[:, 1])+2]) ax_gene.set_title(title+'_gene') ax_gene.set_xlabel('PC1') ax_gene.set_ylabel('PC2') if args.annotate_gene_subset: plot_subset_path = os.path.join(os.path.dirname(args.filepath),args.annotate_gene_subset) genes_plot = pd.read_csv(plot_subset_path, sep='\t', index_col=False) for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if label in genes_plot['GeneID'].tolist(): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) else: for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) if plot: plt.show() if title != '': save_name = '_'.join(title.split(' ')[0:2]) plt.savefig(os.path.join(path_filename,save_name+'_skpca.pdf'), bbox_inches='tight') else: plt.savefig(os.path.join(path_filename,'Group0_skpca.pdf'), bbox_inches='tight') plt.close('all') return top_pca_list else: return [] def plot_SVD(args,df_by_gene, path_filename, num_genes=100, gene_list_filter=False, title='', plot=False, label_map=False, gene_map = False): gene_list = df_by_gene.columns.tolist() sns.set_palette("RdBu_r", 10, 1) if gene_list_filter: sig_by_gene = df_by_gene[gene_list_filter] sig_by_cell = sig_by_gene.transpose() else: sig_by_gene = df_by_gene sig_by_cell = sig_by_gene.transpose() gene_pca = TruncatedSVD(n_components=3) np_by_gene = np.asarray(sig_by_gene) by_gene_trans = gene_pca.fit_transform(np_by_gene) Pc_df = pd.DataFrame(gene_pca.components_.T, columns=['PC-1', 'PC-2', 'PC-3'], index=sig_by_gene.columns.tolist()) pca_rank_df = Pc_df.abs().sum(axis=1) Pc_sort_df = pca_rank_df.nlargest(len(sig_by_gene.columns.tolist())) top_pca_list = Pc_sort_df.index.tolist() top_by_gene = df_by_gene[top_pca_list[0:num_genes]] gene_top = TruncatedSVD(n_components=2) cell_pca = TruncatedSVD(n_components=2) top_by_cell = top_by_gene.transpose() np_top_gene = np.asarray(top_by_cell) np_top_cell = np.asarray(top_by_gene) top_cell_trans = cell_pca.fit_transform(np_top_cell) top_gene_trans = gene_top.fit_transform(np_top_gene) if not np.isnan(top_cell_trans).any(): fig, (ax_cell, ax_gene) = plt.subplots(2, 1, figsize=(15, 30), sharex=False) rect_cell = ax_cell.patch rect_gene = ax_gene.patch rect_cell.set_facecolor('white') rect_gene.set_facecolor('white') ax_cell.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) ax_gene.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) if label_map: annotate = args.annotate_cell_pca X = [x for x in top_cell_trans[:, 0]] Y = [y for y in top_cell_trans[:, 1]] labels = [label_map[cell][2] for cell in top_by_cell.columns.tolist()] markers = [label_map[cell][1] for cell in top_by_cell.columns.tolist()] colors = [label_map[cell][0] for cell in top_by_cell.columns.tolist()] label_done = [] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): if l in label_done: lab = '' else: lab= l label_done.append(l) xy_by_color_dict[color].append([X_pos,Y_pos]) ax_cell.scatter(X_pos, Y_pos, marker=m, c=color, label=lab, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_cell.add_artist(ell) ax_cell.add_artist(edge) else: ax_cell.scatter(top_cell_trans[:, 0], top_cell_trans[:, 1], alpha=0.75) annotate = args.annotate_cell_pca ax_cell.set_xlim([min(top_cell_trans[:, 0])-1, max(top_cell_trans[:, 0]+1)]) ax_cell.set_ylim([min(top_cell_trans[:, 1])-1, max(top_cell_trans[:, 1]+2)]) ax_cell.set_title(title+'_cell') if label_map: handles, labs = ax_cell.get_legend_handles_labels() # sort both labels and handles by labels labs, handles = zip(*sorted(zip(labs, handles), key=lambda t: t[0])) ax_cell.legend(handles, labs, loc='best', ncol=1, prop={'size':12}, markerscale=1.5, frameon=True) ax_cell.set_xlabel('PC1') ax_cell.set_ylabel('PC2') if annotate: for label, x, y in zip(top_by_cell.columns, top_cell_trans[:, 0], top_cell_trans[:, 1]): ax_cell.annotate(label, (x+0.1, y+0.1)) if gene_map: X = [x for x in top_gene_trans[:, 0]] Y = [y for y in top_gene_trans[:, 1]] labels = top_by_gene.columns.tolist() markers = [gene_map[gene][1] for gene in top_by_gene.columns.tolist()] colors = [gene_map[gene][0] for gene in top_by_gene.columns.tolist()] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): xy_by_color_dict[color].append([X_pos,Y_pos]) ax_gene.scatter(X_pos, Y_pos, marker=m, c=color, label = l, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_gene.add_artist(ell) ax_gene.add_artist(edge) else: ax_gene.scatter(top_gene_trans[:, 0], top_gene_trans[:, 1], alpha=0.75) ax_gene.set_xlim([min(top_gene_trans[:, 0])-1, max(top_gene_trans[:, 0])+1]) ax_gene.set_ylim([min(top_gene_trans[:, 1])-1, max(top_gene_trans[:, 1])+2]) ax_gene.set_title(title+'_gene') ax_gene.set_xlabel('PC1') ax_gene.set_ylabel('PC2') if args.annotate_gene_subset: plot_subset_path = os.path.join(os.path.dirname(args.filepath),args.annotate_gene_subset) genes_plot = pd.read_csv(plot_subset_path, sep='\t', index_col=False) for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if label in genes_plot['GeneID'].tolist(): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) else: for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) if plot: plt.show() if title != '': save_name = '_'.join(title.split(' ')[0:2]) plt.savefig(os.path.join(path_filename,save_name+'_TruncatedSVD.pdf'), bbox_inches='tight') #plot_url = py.plot_mpl(fig) else: #plot_url = py.plot_mpl(fig) plt.savefig(os.path.join(path_filename,'Group0_TruncatedSVD.pdf'), bbox_inches='tight') plt.close('all') return top_pca_list else: return [] #create cell and gene TSNE scatter plots (one pdf) def plot_TSNE(args,df_by_gene, path_filename, num_genes=100, gene_list_filter=False, title='', plot=False, label_map=False, gene_map = False): gene_list = df_by_gene.columns.tolist() sns.set_palette("RdBu_r", 10, 1) if gene_list_filter: sig_by_gene = df_by_gene[gene_list_filter] sig_by_cell = sig_by_gene.transpose() else: sig_by_gene = df_by_gene sig_by_cell = sig_by_gene.transpose() gene_pca = TruncatedSVD(n_components=3) np_by_gene = np.asarray(sig_by_gene) by_gene_trans = gene_pca.fit_transform(np_by_gene) Pc_df = pd.DataFrame(gene_pca.components_.T, columns=['PC-1', 'PC-2', 'PC-3'], index=sig_by_gene.columns.tolist()) pca_rank_df = Pc_df.abs().sum(axis=1) Pc_sort_df = pca_rank_df.nlargest(len(sig_by_gene.columns.tolist())) top_pca_list = Pc_sort_df.index.tolist() top_by_gene = df_by_gene[top_pca_list[0:num_genes]] gene_top = TSNE(n_components=2, init='pca', random_state=0) cell_pca = TSNE(n_components=2, init='pca', random_state=0) top_by_cell = top_by_gene.transpose() np_top_gene = np.asarray(top_by_cell) np_top_cell = np.asarray(top_by_gene) top_cell_trans = cell_pca.fit_transform(np_top_cell) top_gene_trans = gene_top.fit_transform(np_top_gene) if not np.isnan(top_cell_trans).any(): fig, (ax_cell, ax_gene) = plt.subplots(2, 1, figsize=(15, 30), sharex=False) rect_cell = ax_cell.patch rect_gene = ax_gene.patch rect_cell.set_facecolor('white') rect_gene.set_facecolor('white') ax_cell.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) ax_gene.grid(b=True, which='major', color='grey', linestyle='--', linewidth=0.3) if label_map: annotate = args.annotate_cell_pca X = [x for x in top_cell_trans[:, 0]] Y = [y for y in top_cell_trans[:, 1]] labels = [label_map[cell][2] for cell in top_by_cell.columns.tolist()] markers = [label_map[cell][1] for cell in top_by_cell.columns.tolist()] colors = [label_map[cell][0] for cell in top_by_cell.columns.tolist()] label_done = [] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): if l in label_done: lab = '' else: lab= l label_done.append(l) xy_by_color_dict[color].append([X_pos,Y_pos]) ax_cell.scatter(X_pos, Y_pos, marker=m, c=color, label=lab, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_cell.add_artist(ell) ax_cell.add_artist(edge) else: ax_cell.scatter(top_cell_trans[:, 0], top_cell_trans[:, 1], alpha=0.75) annotate = args.annotate_cell_pca ax_cell.set_xlim([min(top_cell_trans[:, 0])-1, max(top_cell_trans[:, 0]+1)]) ax_cell.set_ylim([min(top_cell_trans[:, 1])-1, max(top_cell_trans[:, 1]+2)]) ax_cell.set_title(title+'_cell') if label_map: handles, labs = ax_cell.get_legend_handles_labels() # sort both labels and handles by labels labs, handles = zip(*sorted(zip(labs, handles), key=lambda t: t[0])) ax_cell.legend(handles, labs, loc='best', ncol=1, prop={'size':12}, markerscale=1.5, frameon=True) ax_cell.set_xlabel('PC1') ax_cell.set_ylabel('PC2') if annotate: for label, x, y in zip(top_by_cell.columns, top_cell_trans[:, 0], top_cell_trans[:, 1]): ax_cell.annotate(label, (x+0.1, y+0.1)) if gene_map: X = [x for x in top_gene_trans[:, 0]] Y = [y for y in top_gene_trans[:, 1]] labels = top_by_gene.columns.tolist() markers = [gene_map[gene][1] for gene in top_by_gene.columns.tolist()] colors = [gene_map[gene][0] for gene in top_by_gene.columns.tolist()] xy_by_color_dict = {} for c in set(colors): xy_by_color_dict[c] = [] for X_pos, Y_pos, m, color, l in zip(X, Y, markers, colors, labels): xy_by_color_dict[color].append([X_pos,Y_pos]) ax_gene.scatter(X_pos, Y_pos, marker=m, c=color, label = l, s=30) if args.add_ellipse: for c in set(colors): ell, edge = ellip_enclose(np.asarray(xy_by_color_dict[c]), c) ax_gene.add_artist(ell) ax_gene.add_artist(edge) else: ax_gene.scatter(top_gene_trans[:, 0], top_gene_trans[:, 1], alpha=0.75) ax_gene.set_xlim([min(top_gene_trans[:, 0])-1, max(top_gene_trans[:, 0])+1]) ax_gene.set_ylim([min(top_gene_trans[:, 1])-1, max(top_gene_trans[:, 1])+2]) ax_gene.set_title(title+'_gene') ax_gene.set_xlabel('PC1') ax_gene.set_ylabel('PC2') if args.annotate_gene_subset: plot_subset_path = os.path.join(os.path.dirname(args.filepath),args.annotate_gene_subset) genes_plot = pd.read_csv(plot_subset_path, sep='\t', index_col=False) for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if label in genes_plot['GeneID'].tolist(): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) else: for label, x, y in zip(top_by_gene.columns, top_gene_trans[:, 0], top_gene_trans[:, 1]): if '_' in label: label = label.split('_')[0] ax_gene.annotate(label, (x+0.1, y+0.1)) if plot: plt.show() if title != '': save_name = '_'.join(title.split(' ')[0:2]) plt.savefig(os.path.join(path_filename,save_name+'_TSNE.pdf'), bbox_inches='tight') else: plt.savefig(os.path.join(path_filename,'Group0_TSNE.pdf'), bbox_inches='tight') plt.close('all') return top_pca_list else: return [] #create cell and gene TSNE scatter plots (one pdf) def plot_kmeans(args, df_by_gene, path_filename, kmeans_range, num_genes=100, gene_list_filter=False, title='', plot=False, label_map=False, gene_map = False, run_sig_test=False): from sklearn.metrics import silhouette_samples, silhouette_score import matplotlib.cm as cm gene_list = df_by_gene.columns.tolist() sns.set_palette("RdBu_r", 10, 1) if gene_list_filter: sig_by_gene = df_by_gene[gene_list_filter] sig_by_cell = sig_by_gene.transpose() else: sig_by_gene = df_by_gene sig_by_cell = sig_by_gene.transpose() gene_pca = TruncatedSVD(n_components=3) np_by_gene = np.asarray(sig_by_gene) by_gene_trans = gene_pca.fit_transform(np_by_gene) Pc_df = pd.DataFrame(gene_pca.components_.T, columns=['PC-1', 'PC-2', 'PC-3'], index=sig_by_gene.columns.tolist()) pca_rank_df = Pc_df.abs().sum(axis=1) Pc_sort_df = pca_rank_df.nlargest(len(sig_by_gene.columns.tolist())) top_pca_list = Pc_sort_df.index.tolist() top_by_gene = df_by_gene[top_pca_list[0:num_genes]] gene_top = TruncatedSVD(n_components=2) cell_pca = TruncatedSVD(n_components=2) top_by_cell = top_by_gene.transpose() np_top_gene = np.asarray(top_by_cell) np_top_cell = np.asarray(top_by_gene) top_cell_trans = cell_pca.fit_transform(np_top_cell) top_gene_trans = gene_top.fit_transform(np_top_gene) range_n_clusters = range(kmeans_range[0],kmeans_range[1]) for n_clusters in range_n_clusters: # Create a subplot with 1 row and 2 columns fig, (ax1, ax2) = plt.subplots(1, 2) fig.set_size_inches(18, 7) ax1.set_xlim([-0.1, 1]) # The (n_clusters+1)*10 is for inserting blank space between silhouette # plots of individual clusters, to demarcate them clearly. ax1.set_ylim([0, len(np_top_cell) + (n_clusters + 1) * 10]) #cluster cell PCA cell_clusterer = KMeans(n_clusters=n_clusters) top_cell_pred = cell_clusterer.fit_predict(top_cell_trans) #cluster gene PCA gene_clusterer = KMeans(n_clusters=n_clusters) top_gene_pred = gene_clusterer.fit_predict(top_gene_trans) pred_dict = {'SampleID':top_by_cell.columns, 'GroupID':['kmeans_'+str(p) for p in top_cell_pred]} df_pred = pd.DataFrame(pred_dict) cell_group_path = os.path.join(path_filename,'kmeans_cell_groups_'+str(n_clusters)+'.txt') df_pred.to_csv(cell_group_path, sep = '\t') #compute silouette averages and values silhouette_avg_cell = silhouette_score(top_cell_trans, top_cell_pred) print("For n_clusters =", n_clusters, "The average silhouette_score is :", silhouette_avg_cell) silhouette_avg_gene = silhouette_score(top_gene_trans, top_gene_pred) sample_silhouette_values_cell = silhouette_samples(top_cell_trans, top_cell_pred) sample_silhouette_values_gene = silhouette_samples(top_gene_trans, top_gene_pred) y_lower = 10 for i in range(n_clusters): # Aggregate the silhouette scores for samples belonging to # cluster i, and sort them ith_cluster_silhouette_values = \ sample_silhouette_values_cell[top_cell_pred == i] ith_cluster_silhouette_values.sort() size_cluster_i = ith_cluster_silhouette_values.shape[0] y_upper = y_lower + size_cluster_i color = cm.spectral(float(i) / n_clusters) ax1.fill_betweenx(np.arange(y_lower, y_upper), 0, ith_cluster_silhouette_values, facecolor=color, edgecolor=color, alpha=0.7) # Label the silhouette plots with their cluster numbers at the middle ax1.text(-0.05, y_lower + 0.5 * size_cluster_i, str(i)) # Compute the new y_lower for next plot y_lower = y_upper + 10 # 10 for the 0 samples ax1.set_title("The silhouette plot for the various clusters.") ax1.set_xlabel("The silhouette coefficient values") ax1.set_ylabel("Cluster label") # The vertical line for average silhoutte score of all the values ax1.axvline(x=silhouette_avg_cell, color="red", linestyle="--") ax1.set_yticks([]) # Clear the yaxis labels / ticks ax1.set_xticks([-0.1, 0, 0.2, 0.4, 0.6, 0.8, 1]) # 2nd Plot showing the actual clusters formed colors = cm.spectral(top_cell_pred.astype(float) / n_clusters) ax2.scatter(top_cell_trans[:, 0], top_cell_trans[:, 1], marker='.', s=30, lw=0, alpha=0.7, c=colors) # Labeling the clusters centers = cell_clusterer.cluster_centers_ # Draw white circles at cluster centers ax2.scatter(centers[:, 0], centers[:, 1], marker='o', c="white", alpha=1, s=200) for i, c in enumerate(centers): ax2.scatter(c[0], c[1], marker='$%d$' % i, alpha=1, s=50) ax2.set_title("The visualization of the clustered data.") ax2.set_xlabel("Feature space for the 1st feature") ax2.set_ylabel("Feature space for the 2nd feature") plt.suptitle(("Silhouette analysis for KMeans clustering on sample data " "with n_clusters = %d" % n_clusters), fontsize=14, fontweight='bold') plt.savefig(os.path.join(path_filename,'Group0_kmeans_'+str(n_clusters)+'_clusters.pdf'), bbox_inches='tight') plt.close('all') #use colors to make label map compatable with heatmap color_dict ={} markers = ['o', 'v','D','*','x','h', 's','p','8','^','>','<', 'd','o', 'v','D','*','x','h', 's','p','8','^','>','<', 'd'] color_dict =dict(zip(top_by_cell.columns, zip(colors,[markers[pred] for pred in top_cell_pred],['kmeans_'+str(p) for p in top_cell_pred]))) group_color_dict = dict(zip(['kmeans_'+str(p) for p in top_cell_pred],zip(colors,[markers[pred] for pred in top_cell_pred]))) #run heatmap with kmeans clustering and colors top_pca_by_gene, top_pca = return_top_pca_gene(df_by_gene, num_genes=args.gene_number) top_pca_by_cell = top_pca_by_gene.transpose() cell_linkage, plotted_df_by_gene, col_order = clust_heatmap(args, top_pca, top_pca_by_gene, path_filename, num_to_plot=args.gene_number, title= 'kmeans_label_with_'+str(n_clusters)+'_clusters',label_map=color_dict) if run_sig_test: multi_group_sig(args, df_by_gene.transpose(), cell_group_path, path_filename, group_color_dict, from_kmeans=str(n_clusters)) def clust_heatmap(args, gene_list, df_by_gene, path_filename, num_to_plot, title='', plot=False, label_map=False, gene_map=False, fontsize=18): cell_list = df_by_gene.index.tolist() cell_num =len(cell_list) longest_side = max(num_to_plot,cell_num*2) if longest_side == num_to_plot: sns.set(context= 'poster', font_scale = .4*(num_to_plot/100)) width_heatmap = min(28+round(cell_num/50),42+round(cell_num/40)) len_heatmap = min(43+round(num_to_plot/10),58+round(num_to_plot/30)) title_set = 1.15 else: sns.set(context= 'poster', font_scale = .6*(cell_num/120)) width_heatmap = min(42+round(cell_num/9),68+round(cell_num/40)) len_heatmap = min(47+round(num_to_plot/8),50+round(num_to_plot/30)) title_set = 1.12 font = {'size' : fontsize} plt.rc('font', **font) if len(str(args.z_direction)) > 1: z_choice = str(args.z_direction) if z_choice != 'None': sys.exit('Please enter a valid option (0, 1, or None) for z_direction') else: z_choice = int(args.z_direction) if z_choice != 0 and z_choice != 1: sys.exit('Please enter a valid option (0, 1, or None) for z_direction') cmap = sns.diverging_palette(255, 10, s=99, sep=1, as_cmap=True) cluster_df = df_by_gene[gene_list[0:num_to_plot]].transpose() cluster_df[abs(cluster_df)<3e-12] = 0.0 try: cg = sns.clustermap(cluster_df, method=args.method, metric=args.metric, z_score=z_choice, figsize=(width_heatmap, len_heatmap), cmap =cmap) col_order = cg.dendrogram_col.reordered_ind row_order = cg.dendrogram_row.reordered_ind if label_map and gene_map: Xlabs = [cell_list[i] for i in col_order] Xcolors = [label_map[cell][0] for cell in Xlabs] col_colors = pd.DataFrame({'Cell Groups': Xcolors},index=Xlabs) Xgroup_labels = [label_map[cell][2] for cell in Xlabs] Ylabs = [gene_list[i] for i in row_order] Ycolors = [gene_map[gene][0] for gene in Ylabs] Ygroup_labels= [gene_map[gene][2] for gene in Ylabs] row_colors = pd.DataFrame({'Gene Groups': Ycolors},index=Ylabs) cg = sns.clustermap(cluster_df, method=args.method, metric=args.metric, z_score=z_choice,row_colors=row_colors, col_colors=col_colors, figsize=(width_heatmap, len_heatmap), cmap =cmap) elif label_map: Xlabs = [cell_list[i] for i in col_order] Xcolors = [label_map[cell][0] for cell in Xlabs] Xgroup_labels = [label_map[cell][2] for cell in Xlabs] col_colors = pd.DataFrame({'Cell Groups': Xcolors},index=Xlabs) cg = sns.clustermap(cluster_df, method=args.method, metric=args.metric, z_score=z_choice, col_colors=col_colors, figsize=(width_heatmap, len_heatmap), cmap =cmap) elif gene_map: Ylabs = [gene_list[i] for i in row_order] Ycolors = [gene_map[gene][0] for gene in Ylabs] Ygroup_labels= [gene_map[gene][2] for gene in Ylabs] row_colors = pd.DataFrame({'Gene Groups': Ycolors},index=Ylabs) cg = sns.clustermap(cluster_df, method=args.method, metric=args.metric, z_score=z_choice,row_colors=row_colors, figsize=(width_heatmap, len_heatmap), cmap =cmap) cg.ax_heatmap.set_title(title, y=title_set) cg.cax.set_title('Z-score') if label_map: leg_handles_cell =[] group_seen_cell = [] for xtick, xcolor, xgroup_name in zip(cg.ax_heatmap.get_xticklabels(), Xcolors, Xgroup_labels): xtick.set_color(xcolor) xtick.set_rotation(270) xtick.set_fontsize(fontsize) if xgroup_name not in group_seen_cell: leg_handles_cell.append(patches.Patch(color=xcolor, label=xgroup_name)) group_seen_cell.append(xgroup_name) else: for xtick in cg.ax_heatmap.get_xticklabels(): xtick.set_rotation(270) xtick.set_fontsize(fontsize) if gene_map: leg_handles_gene =[] group_seen_gene = [] for ytick, ycolor, ygroup_name in zip(cg.ax_heatmap.get_yticklabels(), list(reversed(Ycolors)), list(reversed(Ygroup_labels))): ytick.set_color(ycolor) ytick.set_rotation(0) ytick.set_fontsize(fontsize) if ygroup_name not in group_seen_gene: leg_handles_gene.append(patches.Patch(color=ycolor, label=ygroup_name)) group_seen_gene.append(ygroup_name) else: for ytick in cg.ax_heatmap.get_yticklabels(): ytick.set_rotation(0) ytick.set_fontsize(fontsize) if gene_map and label_map: gene_legend = cg.ax_heatmap.legend(handles=leg_handles_gene, loc=2, bbox_to_anchor=(1.04, 0.8), title='Gene groups', prop={'size':fontsize}) plt.setp(gene_legend.get_title(),fontsize=fontsize) cg.ax_heatmap.add_artist(gene_legend) cell_legend = cg.ax_heatmap.legend(handles=leg_handles_cell, loc=2, bbox_to_anchor=(1.04, 1), title='Cell groups', prop={'size':fontsize}) plt.setp(cell_legend.get_title(),fontsize=fontsize) #cg.ax_heatmap.add_artist(cell_legend) elif label_map: cell_legend = cg.ax_heatmap.legend(handles=leg_handles_cell, loc=2, bbox_to_anchor=(1.04, 1), title='Cell groups', prop={'size':fontsize}) plt.setp(cell_legend.get_title(),fontsize=fontsize) elif gene_map: gene_legend = cg.ax_heatmap.legend(handles=leg_handles_gene, loc=2, bbox_to_anchor=(1.04, 0.8), title='Gene groups', prop={'size':fontsize}) plt.setp(gene_legend.get_title(),fontsize=fontsize) if plot: plt.show() cell_linkage = cg.dendrogram_col.linkage link_mat = pd.DataFrame(cell_linkage, columns=['row label 1', 'row label 2', 'distance', 'no. of items in clust.'], index=['cluster %d' %(i+1) for i in range(cell_linkage.shape[0])]) if title != '': save_name = '_'.join(title.split(' ')[0:2]) #plot_url = py.plot_mpl(cg) cg.savefig(os.path.join(path_filename, save_name+'_heatmap.pdf'), bbox_inches='tight') else: #plot_url = py.plot_mpl(cg) cg.savefig(os.path.join(path_filename,'Group0_Heatmap_all_cells.pdf'), bbox_inches='tight') plt.close('all') return cell_linkage, df_by_gene[gene_list[0:num_to_plot]], col_order except FloatingPointError: print('Linkage distance has too many zeros. Filter to remove non-expressed genes in order to produce heatmap. Heatmap with '+ str(len(cell_list))+' will not be created.') return False, False, False def make_subclusters(args, cc, log2_expdf_cell, log2_expdf_cell_full, path_filename, base_name, gene_corr_list, label_map=False, gene_map=False, cluster_size=20, group_colors=False): ''' Walks a histogram branch map 'cc' and does PCA (SVD), heatmap and correlation search for each non-overlapping tree branch. Stops at defined cluster_size (default is 20). ''' #initial cell group is parent parent = cc[0][1] #p_num is the number of cells in the parent group p_num = cc[0][0] #l_nums is number of members of each leaf of tree l_nums = [x[0] for x in cc] #cell list is the list of list of cells in each leaf of tree c_lists = [c[1] for c in cc] #Group ID will increment with each group so that each subcluter has a unique ID group_ID = 0 for num_members, cell_list in zip(l_nums, c_lists): #run all cell groups that are subgroups of the parent and greater than or equal to the cutoff cluster_size if num_members < p_num and num_members >= cluster_size: group_ID+=1 #save name for all files generated within this cluster i.e. 'Group_2_with_105_cells_heatmap.pdf' current_title = 'Group_'+str(group_ID)+'_with_'+str(num_members)+'_cells' cell_subset = log2_expdf_cell[list(set(cell_list))] gene_subset = cell_subset.transpose() gene_subset = gene_subset.loc[:,(gene_subset!=0).any()] full_cell_subset = log2_expdf_cell_full[list(set(cell_list))] full_gene_subset = full_cell_subset.transpose() full_gene_subset = full_gene_subset.loc[:,(full_gene_subset!=0).any()] norm_df_cell1 = np.exp2(full_cell_subset) norm_df_cell = norm_df_cell1 -1 norm_df_cell.to_csv(os.path.join(path_filename, base_name+'_'+current_title+'_matrix.txt'), sep = '\t', index_col=0) if gene_map: top_pca_by_gene, top_pca = return_top_pca_gene(gene_subset, num_genes=args.gene_number) plot_SVD(args,gene_subset, path_filename, num_genes=len(gene_subset.columns.tolist()), title=current_title, plot=False, label_map=label_map, gene_map=gene_map) else: top_pca_by_gene, top_pca = return_top_pca_gene(full_gene_subset, num_genes=args.gene_number) plot_SVD(args,full_gene_subset, path_filename, num_genes=int(args.gene_number), title=current_title, plot=False, label_map=label_map) if len(top_pca)<args.gene_number: plot_num = len(top_pca) else: plot_num = args.gene_number if top_pca != []: top_pca_by_cell = top_pca_by_gene.transpose() #if no_corr flag is provided (False) no correlation plots will be made if args.no_corr: if gene_corr_list != []: top_genes_search = top_pca[0:50] corr_plot(top_genes_search, full_gene_subset, path_filename, num_to_plot=3, gene_corr_list= gene_corr_list, title = current_title, label_map=label_map) else: top_genes_search = top_pca[0:50] corr_plot(top_genes_search, full_gene_subset, path_filename, num_to_plot=3, title = current_title, label_map=label_map) if gene_map: cell_linkage, plotted_df_by_gene, col_order = clust_heatmap(args, top_pca, top_pca_by_gene, path_filename, num_to_plot=plot_num, title=current_title, plot=False, label_map=label_map, gene_map = gene_map) else: cell_linkage, plotted_df_by_gene, col_order = clust_heatmap(args, top_pca, top_pca_by_gene, path_filename,num_to_plot=plot_num, title=current_title, plot=False, label_map=label_map) plt.close('all') else: print('Search for top genes by PCA failed in '+current_title+'. No plots will be generated for this subcluster. ') pass def clust_stability(args, log2_expdf_gene, path_filename, iterations, label_map=False): sns.set(context='poster', font_scale = 1) sns.set_palette("RdBu_r") stability_ratio = [] total_genes = len(log2_expdf_gene.columns.tolist()) end_num = 1000 iter_list = range(100,int(round(end_num)),int(round(end_num/iterations))) for gene_number in iter_list: title= str(gene_number)+' genes plot.' top_pca_by_gene, top_pca = return_top_pca_gene(df_by_gene, num_genes=gene_number) top_pca_by_cell = top_pca_by_gene.transpose() cell_linkage, plotted_df_by_gene, col_order = clust_heatmap(args, top_pca, top_pca_by_gene, num_to_plot=gene_number, title=title, label_map=label_map) if gene_number == 100: s1 = col_order s0 = col_order else: s2= col_order sm_running = difflib.SequenceMatcher(None,s1,s2) sm_first = difflib.SequenceMatcher(None,s0,s2) stability_ratio.append((sm_running.ratio(), sm_first.ratio())) s1=col_order plt.close() x= iter_list[1:] f, (ax1, ax2) = plt.subplots(2, 1, figsize=(10, 8), sharex=True) y1= [m[0] for m in stability_ratio] y2= [m[1] for m in stability_ratio] sns.barplot(x, y1, palette="RdBu_r", ax=ax1) ax1.set_ylabel('Running ratio (new/last)') sns.barplot(x, y2, palette="RdBu_r", ax=ax2) ax2.set_ylabel('Ratio to 100') plt.savefig(os.path.join(path_filename,'clustering_stability.pdf'), bbox_inches='tight') plt.show() plt.close('all') return stability_ratio #run correlation matrix and save only those above threshold def run_corr(df_by_gene, title, path_filename, method_name='pearson', sig_threshold= 0.5, run_new=True, min_period=3, save_corrs=False): if run_new: if len(df_by_gene.columns.tolist())>5000: df_by_gene, top_pca_list = return_top_pca_gene(df_by_gene, num_genes=5000) if method_name != 'kendall': corr_by_gene = df_by_gene.corr(method=method_name, min_periods=min_period) else: corr_by_gene = df_by_gene.corr(method=method_name) df_by_cell = df_by_gene.transpose() corr_by_cell = df_by_cell.corr() cor = corr_by_gene cor.loc[:,:] = np.tril(cor.values, k=-1) cor = cor.stack() corr_by_gene_pos = cor[cor >=sig_threshold] corr_by_gene_neg = cor[cor <=(sig_threshold*-1)] else: corr_by_g_pos = open(os.path.join(path_filename,'gene_correlations_sig_pos_'+method_name+'.p'), 'rb') corr_by_g_neg = open(os.path.join(path_filename,'gene_correlations_sig_neg_'+method_name+'.p'), 'rb') corr_by_gene_pos = pickle.load(corr_by_g_pos) corr_by_gene_neg = pickle.load(corr_by_g_neg) if save_corrs: with open(os.path.join(path_filename,'gene_correlations_sig_neg_'+method_name+'.p'), 'wb') as fp: pickle.dump(corr_by_gene_neg, fp) with open(os.path.join(path_filename,'gene_correlations_sig_pos_'+method_name+'.p'), 'wb') as fp0: pickle.dump(corr_by_gene_pos, fp0) with open(os.path.join(path_filename,'by_gene_corr.p'), 'wb') as fp1: pickle.dump(corr_by_gene, fp1) with open(os.path.join(path_filename,'by_cell_corr.p'), 'wb') as fp2: pickle.dump(corr_by_cell, fp2) cor_pos_df = pd.DataFrame(corr_by_gene_pos) cor_neg_df = pd.DataFrame(corr_by_gene_neg) sig_corr = cor_pos_df.append(cor_neg_df) sig_corrs = pd.DataFrame(sig_corr[0], columns=["corr"]) if run_new: sig_corrs.to_csv(os.path.join(path_filename, title+'_counts_corr_sig_'+method_name+'.txt'), sep = '\t') return sig_corrs #finds most correlated gene groups that are not overlapping def find_top_corrs(terms_to_search, sig_corrs, num_to_return, gene_corr_list = []): all_corrs_list = [] best_corrs_list = [] for term_to_search in terms_to_search: corr_tup = [(term_to_search, 1)] for index, row in sig_corrs.iterrows(): if term_to_search in index: if index[0]==term_to_search: corr_tup.append((index[1],row['corr'])) else: corr_tup.append((index[0],row['corr'])) all_corrs_list.append(corr_tup) all_corrs_list.sort(key=len, reverse=True) good_count = 0 corr_genes_seen = [] while good_count <= num_to_return: for i, corrs in enumerate(all_corrs_list): if corrs[0][0] not in corr_genes_seen: best_corrs_list.append(corrs) good_count+=1 for g, c in corrs: if g not in corr_genes_seen and '-' not in str(c): corr_genes_seen.append(g) if gene_corr_list != []: search_corrs = [] for term in gene_corr_list: corr_tup = [(term, 1)] for index, row in sig_corrs.iterrows(): if term in index: if index[0]==term: corr_tup.append((index[1],row['corr'])) else: corr_tup.append((index[0],row['corr'])) search_corrs.append(corr_tup) best_corrs_list = search_corrs+best_corrs_list return best_corrs_list[0:num_to_return+len(gene_corr_list)+1] else: return best_corrs_list[0:num_to_return] #corr_plot finds and plots all correlated genes, log turns on log scale, sort plots the genes in the rank order of the gene searched def corr_plot(terms_to_search, df_by_gene_corr, path_filename, title, num_to_plot, gene_corr_list = [], label_map=False, log=False, sort=True, sig_threshold=0.5): size_cells = len(df_by_gene_corr.index.tolist()) figlen=int(size_cells/12) if figlen < 15: figlen = 15 ncol = int(figlen/3.2) if size_cells <100: sig_threshold = -0.137*math.log(size_cells)+1.1322 sig_corrs = run_corr(df_by_gene_corr, title, path_filename, sig_threshold=sig_threshold) corr_list = find_top_corrs(terms_to_search, sig_corrs, num_to_plot, gene_corr_list=gene_corr_list) for corr_tup in corr_list: term_to_search = corr_tup[0][0] corr_tup.sort(key=itemgetter(1), reverse=True) corr_df =
pd.DataFrame(corr_tup, columns=['GeneID', 'Correlation'])
pandas.DataFrame
# coding: utf-8 # # Logistic Regression # Logistic regression is a statistical method for predicting binary classes. The outcome or target variable is dichotomous in nature. Dichotomous means there are only two possible classes. For example, it can be used for cancer detection problems. It computes the probability of an event occurrence. # # It is a special case of linear regression where the target variable is categorical in nature. It uses a log of odds as the dependent variable. Logistic Regression predicts the probability of occurrence of a binary event utilizing a logit function. # # Linear Regression Equation: # ![](http://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1534281880/image1_ga8gze.png) # Sigmoid Function # ![](http://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1534281880/image3_qldafx.png) # The last equation is called the Logistic Equation which is responsible for the calculation of Logistic Regression # ### Linear Regression Vs. Logistic Regression # Linear regression gives you a continuous output, but logistic regression provides a constant output. An example of the continuous output is house price and stock price. Example's of the discrete output is predicting whether a patient has cancer or not, predicting whether the customer will churn. Linear regression is estimated using Ordinary Least Squares (OLS) while logistic regression is estimated using Maximum Likelihood Estimation (MLE) approach. # ![](http://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1534281070/linear_vs_logistic_regression_edxw03.png) # ### Sigmoid Function # # The sigmoid function, also called logistic function gives an ‘S’ shaped curve that can take any real-valued number and map it into a value between 0 and 1. If the curve goes to positive infinity, y predicted will become 1, and if the curve goes to negative infinity, y predicted will become 0. If the output of the sigmoid function is more than 0.5, we can classify the outcome as 1 or YES, and if it is less than 0.5, we can classify it as 0 or NO. The outputcannotFor example: If the output is 0.75, we can say in terms of probability as: There is a 75 percent chance that patient will suffer from cancer. # ![](http://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1534281880/image4_gw5mmv.png) # ![](http://res.cloudinary.com/dyd911kmh/image/upload/f_auto,q_auto:best/v1534281070/sigmoid2_lv4c7i.png) # ### class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’warn’, max_iter=100, multi_class=’warn’, verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) # # penalty : str, ‘l1’, ‘l2’, ‘elasticnet’ or ‘none’, optional (default=’l2’) # # Used to specify the norm used in the penalization. The ‘newton-cg’, ‘sag’ and ‘lbfgs’ solvers support only l2 penalties. ‘elasticnet’ is only supported by the ‘saga’ solver. If ‘none’ (not supported by the liblinear solver), no regularization is applied. # # New in version 0.19: l1 penalty with SAGA solver (allowing ‘multinomial’ + L1) # dual : bool, optional (default=False) # # Dual or primal formulation. Dual formulation is only implemented for l2 penalty with liblinear solver. Prefer dual=False when n_samples > n_features. # tol : float, optional (default=1e-4) # # Tolerance for stopping criteria. # C : float, optional (default=1.0) # # Inverse of regularization strength; must be a positive float. Like in support vector machines, smaller values specify stronger regularization. # fit_intercept : bool, optional (default=True) # # Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. # intercept_scaling : float, optional (default=1) # # Useful only when the solver ‘liblinear’ is used and self.fit_intercept is set to True. In this case, x becomes [x, self.intercept_scaling], i.e. a “synthetic” feature with constant value equal to intercept_scaling is appended to the instance vector. The intercept becomes intercept_scaling * synthetic_feature_weight. # # Note! the synthetic feature weight is subject to l1/l2 regularization as all other features. To lessen the effect of regularization on synthetic feature weight (and therefore on the intercept) intercept_scaling has to be increased. # class_weight : dict or ‘balanced’, optional (default=None) # # Weights associated with classes in the form {class_label: weight}. If not given, all classes are supposed to have weight one. # # The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class frequencies in the input data as n_samples / (n_classes * np.bincount(y)). # # Note that these weights will be multiplied with sample_weight (passed through the fit method) if sample_weight is specified. # # New in version 0.17: class_weight=’balanced’ # random_state : int, RandomState instance or None, optional (default=None) # # The seed of the pseudo random number generator to use when shuffling the data. If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by np.random. Used when solver == ‘sag’ or ‘liblinear’. # solver : str, {‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’}, optional (default=’liblinear’). # # Algorithm to use in the optimization problem. # # For small datasets, ‘liblinear’ is a good choice, whereas ‘sag’ and ‘saga’ are faster for large ones. # For multiclass problems, only ‘newton-cg’, ‘sag’, ‘saga’ and ‘lbfgs’ handle multinomial loss; ‘liblinear’ is limited to one-versus-rest schemes. # ‘newton-cg’, ‘lbfgs’, ‘sag’ and ‘saga’ handle L2 or no penalty # ‘liblinear’ and ‘saga’ also handle L1 penalty # ‘saga’ also supports ‘elasticnet’ penalty # ‘liblinear’ does not handle no penalty # # Note that ‘sag’ and ‘saga’ fast convergence is only guaranteed on features with approximately the same scale. You can preprocess the data with a scaler from sklearn.preprocessing. # # New in version 0.17: Stochastic Average Gradient descent solver. # # New in version 0.19: SAGA solver. # # Changed in version 0.20: Default will change from ‘liblinear’ to ‘lbfgs’ in 0.22. # max_iter : int, optional (default=100) # # Maximum number of iterations taken for the solvers to converge. # multi_class : str, {‘ovr’, ‘multinomial’, ‘auto’}, optional (default=’ovr’) # # If the option chosen is ‘ovr’, then a binary problem is fit for each label. For ‘multinomial’ the loss minimised is the multinomial loss fit across the entire probability distribution, even when the data is binary. ‘multinomial’ is unavailable when solver=’liblinear’. ‘auto’ selects ‘ovr’ if the data is binary, or if solver=’liblinear’, and otherwise selects ‘multinomial’. # # New in version 0.18: Stochastic Average Gradient descent solver for ‘multinomial’ case. # # Changed in version 0.20: Default will change from ‘ovr’ to ‘auto’ in 0.22. # verbose : int, optional (default=0) # # For the liblinear and lbfgs solvers set verbose to any positive number for verbosity. # warm_start : bool, optional (default=False) # # When set to True, reuse the solution of the previous call to fit as initialization, otherwise, just erase the previous solution. Useless for liblinear solver. See the Glossary. # # New in version 0.17: warm_start to support lbfgs, newton-cg, sag, saga solvers. # n_jobs : int or None, optional (default=None) # # Number of CPU cores used when parallelizing over classes if multi_class=’ovr’”. This parameter is ignored when the solver is set to ‘liblinear’ regardless of whether ‘multi_class’ is specified or not. None means 1 unless in a joblib.parallel_backend context. -1 means using all processors. See Glossary for more details. # l1_ratio : float or None, optional (default=None) # # The Elastic-Net mixing parameter, with 0 <= l1_ratio <= 1. Only used if penalty='elasticnet'`. Setting ``l1_ratio=0 is equivalent to using penalty='l2', while setting l1_ratio=1 is equivalent to using penalty='l1'. For 0 < l1_ratio <1, the penalty is a combination of L1 and L2. # # ## Simplified Implmentation # In[147]: from sklearn.datasets import load_iris from sklearn.linear_model import LogisticRegression X, y = load_iris(return_X_y=True) clf = LogisticRegression(random_state=0, solver='lbfgs', multi_class='multinomial').fit(X, y) clf.predict(X[:2, :]) clf.predict_proba(X[:2, :]) clf.score(X, y) # ## Implementation in Python # ### Importing Libraries # In[2]: import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt get_ipython().run_line_magic('matplotlib', 'inline') # ### Importing Dataset # In[3]: link="D:/As a Trainer/Course Material/Machine Learning with Python/All Special/Logistic Regression/" df = pd.read_csv(link+'diabetes.csv') # In[4]: df.head() # In[5]: df.info() # In[6]: df.describe() # ### Exploratory Data Analysis # In[7]: sns.pairplot(df) # In[8]: df.isna() # In[9]: df[df.isna().any(axis=1)] # In[13]: df.isna().sum() # ### Creating profile Report # In[10]: import pandas_profiling pandas_profiling.ProfileReport(df) # In[15]: sns.distplot(df['BMI'],hist_kws=dict(edgecolor="black", linewidth=1),color='red') # ### Correlation Plot # In[16]: df.corr() # In[17]: plt.figure(figsize=(8,8)) sns.heatmap(df.corr(), annot = True) # In[21]: sns.set_style('whitegrid') sns.countplot(x='Outcome',hue='Outcome',data=df,palette='RdBu_r') # ### Checking Distribution of Age for Diabates # In[23]: sns.distplot(df['Age'],kde=False,color='darkblue',bins=20) # ### Splitting Dataset into Train and Test # In[25]: from sklearn.model_selection import train_test_split # #### Taking Featured Columns # In[34]: X = ['Pregnancies','Glucose','BloodPressure','SkinThickness','Insulin','BMI','DiabetesPedigreeFunction','Age'] y = ['Output'] # In[26]: df2 =
pd.DataFrame(data=df)
pandas.DataFrame
# qt5模块 from PyQt5 import QtCore, QtGui, QtWidgets from PyQt5.QtWidgets import * from PyQt5.QtGui import * from PyQt5.QtWebEngineWidgets import * from PyQt5.QtCore import * # 自定义模块 import mainpage import addpage import gridlayout import editpage import pinyintool # 内置模块 import sys import requests, base64, json import collections import os import re # 第三方模块 import pandas as pd from pandas import DataFrame from PIL import Image import phone from pyecharts.charts import Pie # 获取文件的路径 cdir = os.getcwd() # 文件路径 path=cdir+'/res/datafile/' # 读取路径 判断是否创建了文件 if not os.path.exists(path): # 根据路径建立文件夹 os.makedirs(path) # 姓名 公司 电话 手机 邮件 地址 城市 分类 name comp tel mobile email addr city type cardfile = pd.DataFrame(columns=['name', 'comp', 'tel', 'mobile', 'email', 'addr', 'city', 'type']) # 生成xlsx文件 cardfile.to_excel(path+'名片信息表.xlsx', sheet_name='data', index=None) # 编辑页面 class editWindow(QWidget,editpage.Ui_Form): # 初始化方法 def __init__(self): # 找到父类 首页面 super(editWindow, self).__init__() # 初始化页面方法 self.setupUi(self) # 为保存按钮添加事件 self.pushButton_2.clicked.connect(self.editkeep) # 显示添加名片页面 def OPEN(self): # 显示页面 self.show() # 保存编辑内容 def editkeep(self): # 获取按钮名称 indexName = self.pushButton_2.objectName() # 获取表 pi_table = pd.read_excel(path + '名片信息表.xlsx', sheet_name='data') # 获取控件信息 # 'name', 'comp', 'tel', 'mobile', 'email', 'addr', 'city', 'type' name = self.lineEdit.text() comp = self.lineEdit_2.text() tel = self.lineEdit_3.text() mobile = self.lineEdit_4.text() email = self.lineEdit_5.text() addr = self.lineEdit_6.text() # 判断手机号是否为空 if mobile.strip(): # 根据手机号判断区域 try: info = phone.Phone().find(int(mobile)) except Exception as e: print("根据手机号判断区域时出错", e) QMessageBox.critical(self, "错误:", "手机号码不正确!", QMessageBox.Ok) # 弹出提示对话框 self.lineEdit_4.setFocus() # 让手机文本框获得焦点 return # 判断手机号是否正确返回信息 if info == None: city = '其他' else: # 正确返回信息获取省 city = info['province'] else: city = '其他' # 判断姓名是否为空 if name.strip(): # 获取首字母拼音 type = pinyintool.getPinyin(name[0]) # 根据行号删除数据 datas = pi_table.drop(index=[int(indexName)], axis=0) data = datas.append({'name': name, 'comp': comp, 'tel': tel, 'mobile': mobile, 'email': email, 'addr': addr, 'city': city, 'type': type }, ignore_index=True) # 更新xlsx文件 DataFrame(data).to_excel(path + '名片信息表.xlsx', sheet_name='data', index=False) self.close() window.dataall() else: QMessageBox.information(self, '提示信息', '姓名不能为空') pass #首页列表样式 class griditem(QWidget,gridlayout.Ui_Form): # 初始化方法 def __init__(self): # 找到父类 首页面 super(griditem, self).__init__() # 初始化页面方法 self.setupUi(self) # 显示饼图类 class HtmlWindows(QMainWindow): def __init__(self): super(QMainWindow,self).__init__() self.setGeometry(200, 200, 850, 500) self.browser = QWebEngineView() def set(self,title,hurl): self.setWindowTitle(title) d = os.path.dirname(os.path.realpath(sys.argv[0])) # 获取当前文件所在路径 d=re.sub(r'\\','/',d) # 将路径中的分隔符\替换为/ url=d+'/res/datafile/'+hurl self.browser.load(QUrl(url)) self.setCentralWidget(self.browser) # 首页页面 class parentWindow(QWidget,mainpage.Ui_Form): # 初始化方法 def __init__(self): # 找到父类 首页面 super(parentWindow, self).__init__() # 初始化页面方法 self.setupUi(self) # 标签按钮绑定事件 self.pushButton_3.clicked.connect(self.dataall) self.pushButton_4.clicked.connect(lambda:self.dataother('A')) self.pushButton_6.clicked.connect(lambda:self.dataother('B')) self.pushButton_5.clicked.connect(lambda:self.dataother('C')) self.pushButton_7.clicked.connect(lambda:self.dataother('D')) self.pushButton_8.clicked.connect(lambda:self.dataother('E')) self.pushButton_9.clicked.connect(lambda:self.dataother('F')) self.pushButton_10.clicked.connect(lambda:self.dataother('G')) self.pushButton_11.clicked.connect(lambda:self.dataother('H')) self.pushButton_12.clicked.connect(lambda:self.dataother('I')) self.pushButton_13.clicked.connect(lambda:self.dataother('J')) self.pushButton_14.clicked.connect(lambda:self.dataother('K')) self.pushButton_15.clicked.connect(lambda:self.dataother('L')) self.pushButton_16.clicked.connect(lambda:self.dataother('M')) self.pushButton_17.clicked.connect(lambda:self.dataother('N')) self.pushButton_18.clicked.connect(lambda:self.dataother('O')) self.pushButton_19.clicked.connect(lambda:self.dataother('P')) self.pushButton_20.clicked.connect(lambda:self.dataother('Q')) self.pushButton_21.clicked.connect(lambda:self.dataother('R')) self.pushButton_22.clicked.connect(lambda:self.dataother('S')) self.pushButton_23.clicked.connect(lambda:self.dataother('T')) self.pushButton_24.clicked.connect(lambda:self.dataother('U')) self.pushButton_25.clicked.connect(lambda:self.dataother('V')) self.pushButton_26.clicked.connect(lambda:self.dataother('W')) self.pushButton_27.clicked.connect(lambda:self.dataother('X')) self.pushButton_28.clicked.connect(lambda:self.dataother('Y')) self.pushButton_29.clicked.connect(lambda:self.dataother('Z')) # 搜索按钮绑定事件 self.pushButton.clicked.connect(self.seachbtn) self.pushButton_30.clicked.connect(self.lookpie) # 显示全部数据 self.dataall() # 显示饼图 def lookpie(self): # 获取表数据 # 读取文件内容 pi_table = pd.read_excel(path + '名片信息表.xlsx', sheet_name='data') # 获取城市信息 citattr = pi_table['city'].values # 判断是否有城市信息 if len(citattr)==0: # 没有信息提示 QMessageBox.information(self, '提示信息', '没有联系人') return attr = [] v1 = [] # 循环表里city项 for i in citattr: # 判断city项是否包含在attr里 if not i in attr: # 不包含在attr表里时候添加到attr里 attr.append(i) # Counter(计数器)是对字典的补充,用于追踪值的出现次数。 d = collections.Counter(citattr) # 循环城市列表 for k in attr: # d[k] 是k在列表d中出现的次数 v1.append(d[k]) # 生成饼图 pie = Pie("联系人分布") pie.add("", attr, v1, is_label_show=True) pie.show_config() pie.render(path+'联系人分布饼图.html') # 显示饼图 htmlwidows.set('联系人分布','联系人分布饼图.html') htmlwidows.show() pass #搜索功能 def seachbtn(self): # 读取文件内容 pi_table = pd.read_excel(path + '名片信息表.xlsx', sheet_name='data') seachk=self.lineEdit.text() # 查询数据 用户名和公司如果有一个包含搜索内容筛选出来 cardArray = pi_table[(pi_table['name'].str.contains(seachk)) | (pi_table['comp'].str.contains(seachk))].values tb = pi_table[(pi_table['name'].str.contains(seachk)) | (pi_table['comp'].str.contains(seachk))] if len(cardArray) == 0: QMessageBox.information(self, '提示信息', '没有搜索内容') else: # 每次点循环删除管理器的组件 while self.gridLayout.count(): # 获取第一个组件 item = self.gridLayout.takeAt(0) widget = item.widget() # 删除组件 widget.deleteLater() i = -1 for n in range(len(cardArray)): # x 确定每行显示的个数 0,1,2 每行3个 x = n % 3 # 当x为0的时候设置换行 行数+1 if x == 0: i += 1 item = griditem() item.label_8.setText('姓名:' + str(cardArray[n][0])) item.label_9.setText('公司:' + str(cardArray[n][1])) item.label_10.setText('电话:' + str(cardArray[n][2])) item.label_11.setText('手机:' + str(cardArray[n][3])) item.label_12.setText('邮箱:' + str(cardArray[n][4])) item.label_13.setText('地址:' + str(cardArray[n][5])) # 设置名称 为获取项目行数 item.pushButton.setObjectName(str(tb.index.tolist()[n])) item.pushButton_3.setObjectName(str(tb.index.tolist()[n])) # 为按钮绑定点击事件 item.pushButton.clicked.connect(self.edit) item.pushButton_3.clicked.connect(self.deletedata) # 动态给gridlayout添加布局 self.gridLayout.addWidget(item, i, x) # 设置上下滑动控件可以滑动 把scrollAreaWidgetContents_2添加到scrollArea中 self.scrollAreaWidgetContents.setMinimumHeight(i * 200) # girdlayout 添加到滑动控件中 self.scrollAreaWidgetContents.setLayout(self.gridLayout) #显示全部数据 def dataall(self): # 每次点循环删除管理器的组件 while self.gridLayout.count(): # 获取第一个组件 item = self.gridLayout.takeAt(0) widget = item.widget() # 删除组件 widget.deleteLater() i=-1 # 读取文件内容 pi_table = pd.read_excel(path + '名片信息表.xlsx', sheet_name='data') # 获取所有数据 cardArray = pi_table.values # 循环数据 for n in range(len(cardArray)): # x 确定每行显示的个数 0,1,2 每行3个 x = n % 3 # 当x为0的时候设置换行,即行数+1 if x == 0: i += 1 item = griditem() item.label_8.setText('姓名:'+str(cardArray[n][0])) item.label_9.setText('公司:'+str(cardArray[n][1])) item.label_10.setText('电话:'+str(cardArray[n][2])) item.label_11.setText('手机:'+str(cardArray[n][3])) item.label_12.setText('邮箱:'+str(cardArray[n][4])) item.label_13.setText('地址:'+str(cardArray[n][5])) # 设置名称 为获取项目行数 item.pushButton.setObjectName(str(pi_table.index.tolist()[n])) item.pushButton_3.setObjectName(str(pi_table.index.tolist()[n])) # 为按钮绑定点击事件 item.pushButton.clicked.connect(self.edit) item.pushButton_3.clicked.connect(self.deletedata) # 动态添加控件到gridlayout中 self.gridLayout.addWidget(item,i, x) # 设置上下滑动控件可以滑动 把scrollAreaWidgetContents_2添加到scrollArea中 self.scrollAreaWidgetContents.setMinimumHeight(i*200) # 设置gridlayout到滑动控件中 self.scrollAreaWidgetContents.setLayout(self.gridLayout) pass # 删除数据方法 def deletedata(self): # 获取信号源 点击的按钮 sender = self.gridLayout.sender() # 获取按钮名称 indexName = sender.objectName() # 获取表信息 pi_table = pd.read_excel(path + '名片信息表.xlsx', sheet_name='data') # 根据行号删除数据 data=pi_table.drop(index=[int(indexName)], axis=0) # 更新xlsx文件 DataFrame(data).to_excel(path + '名片信息表.xlsx', sheet_name='data', index=False) # 显示全部数据 self.dataall() # 编辑数据 def edit(self): # 获取信号源 点击的按钮 sender = self.gridLayout.sender() # 获取按钮名称 indexName=sender.objectName() pi_table = pd.read_excel(path + '名片信息表.xlsx', sheet_name='data') # 根据行号 获取数据 cardArray =pi_table.iloc[[indexName]].values # 打开编辑页面 editWindow.OPEN() # 设置数据 editWindow.lineEdit.setText(str(cardArray[0][0])) editWindow.lineEdit_2.setText(str(cardArray[0][1])) editWindow.lineEdit_3.setText(str(cardArray[0][2])) editWindow.lineEdit_4.setText(str(cardArray[0][3])) editWindow.lineEdit_5.setText(str(cardArray[0][4])) editWindow.lineEdit_6.setText(str(cardArray[0][5])) # 设置按钮名称 editWindow.pushButton_2.setObjectName(str(indexName)) pass # 显示部分数据 def dataother(self,typeAZ): # 每次点循环删除管理器的组件 while self.gridLayout.count(): # 获取第一个组件 item = self.gridLayout.takeAt(0) # 获取布局 widget = item.widget() # 删除组件 widget.deleteLater() pass # 读取文件内容 pi_table = pd.read_excel(path + '名片信息表.xlsx', sheet_name='data') i = -1 # 筛选内容 cardArray = pi_table[pi_table['type'] == typeAZ].values tb= pi_table[pi_table['type'] == typeAZ] for n in range(len(cardArray)): # x 确定每行显示的个数 0,1,2 每行3个 x = n % 3 # 当x为0的时候设置换行 行数+1 if x == 0: i += 1 item = griditem() item.label_8.setText('姓名:' + str(cardArray[n][0])) item.label_9.setText('公司:' + str(cardArray[n][1])) item.label_10.setText('电话:' + str(cardArray[n][2])) item.label_11.setText('手机:' + str(cardArray[n][3])) item.label_12.setText('邮箱:' + str(cardArray[n][4])) item.label_13.setText('地址:' + str(cardArray[n][5])) # 设置名称 为获取项目行数 item.pushButton.setObjectName(str(tb.index.tolist()[n])) item.pushButton_3.setObjectName(str(tb.index.tolist()[n])) # 为按钮绑定点击事件 item.pushButton.clicked.connect(self.edit) item.pushButton_3.clicked.connect(self.deletedata) # 动态设置控件 self.gridLayout.addWidget(item, i, x) # 动态设置滑动控件滑动高度 self.scrollAreaWidgetContents.setMinimumHeight(i * 200) # giridLayout 添加到滑动控件中 self.scrollAreaWidgetContents.setLayout(self.gridLayout) #添加名片页面 class childWindow(QWidget,addpage.Ui_Form): # 初始化方法 def __init__(self): # 找到父类 添加名片页面 super(childWindow, self).__init__() # 初始化页面方法 self.setupUi(self) # 给选择名片按钮添加事件 self.pushButton.clicked.connect(self.openfile) # 给保存按钮添加事件 self.pushButton_2.clicked.connect(self.keep) #保存名片信息到文档 def keep(self): pi_table = pd.read_excel(path + '名片信息表.xlsx', sheet_name='data') # 获取输出框内容 name =self.lineEdit.text() comp = self.lineEdit_2.text() tel= self.lineEdit_3.text() mobile= self.lineEdit_4.text() email= self.lineEdit_5.text() addr= self.lineEdit_6.text() # 判断手机号是否为空 if mobile.strip(): # 根据手机号判断区域 try: info = phone.Phone().find(int(mobile)) except Exception as e: print("根据手机号判断区域时出错",e) QMessageBox.critical(self,"错误:","手机号码不正确!",QMessageBox.Ok) # 弹出提示对话框 self.lineEdit_4.setFocus() # 让手机文本框获得焦点 return # 判断手机号是否正确返回信息 if info==None: city = '其他' else: # 正确返回信息获取省 city = info['province'] else: city = '其他' # 判断姓名是否为空 if name.strip(): # 获取首字母拼音 type=pinyintool.getPinyin(name[0]) # 添加数据 data = pi_table.append({'name': name, 'comp': comp, 'tel': tel, 'mobile': mobile, 'email': email, 'addr': addr, 'city': city, 'type': type, }, ignore_index=True) # 更新xlsx文件
DataFrame(data)
pandas.DataFrame
from kiwoom import * from pandas import DataFrame kiwoom = Kiwoom() kiwoom.CommConnect() kospi = kiwoom.GetCodeListByMarket('0') kosdaq = kiwoom.GetCodeListByMarket('10') total = kospi + kosdaq rows = [] for code in total: name = kiwoom.GetMasterCodeName(code) rows.append((code, name)) columns = ['code', 'name'] df =
DataFrame(data=rows, columns=columns)
pandas.DataFrame
################################################################################ # This module counts overlapping lemmas among an item stem and the options from # the input lemma count columns. If the lemma count columns of passage sections # are also specified as the other input, the overlapping lemmas with # the corresponded item stem or the options are also counted. # Parameters df_ac_q: input pandas.DataFrame of questions, it should have, # at least, lemma count columns with the 'AC_Doc_ID's # as the index of the DataFrame, the question ID column, and # stem/option identifier column, if the DataFrame of # passages are also specified as the other input, # the DataFrame of questions should also have corresponded # passage name and the section columns, the module assumes # that the stem and options which have the same question # ID share the same passage name and the section(s) # question_id_clm: column name of question IDs which are shared by # the item stem and the options of each question # stem_option_name_clm: column name of stem/option identifier # lemma_start_q: integer column number (starting from zero) # specifying the starting point of lemma count # columns in the question DataFrame, from the point # to the end, all the columns should be the lemma # count columns # stop_words = None: list of lemmas to specify stop words, they # should all include in the question and passage # DataFrames # passage_name_clm_q = None: column name of the passage names # in the question DataFrame # passage_sec_clm_q = None: column name of the passage sections # in the question DataFrame # df_ac_p = None: input pandas.DataFrame of passages, it should have, # at least, lemma count columns, passage name # and the section columns # passage_name_clm_p = None: column name of the passage names # in the passage DataFrame # passage_sec_clm_p = None: column name of the passage sections # in the passage DataFrame # lemma_start_p = None: integer column number (starting from zero) # specifying the starting point of lemma count # columns in the passage DataFrame, from the point # to the end, all the columns should be the lemma # count columns # Returns Result: pandas.DataFrame as a result of overlapping lemma counts ################################################################################ def ac_overlapping_lemma(df_ac_q, question_id_clm, stem_option_name_clm, lemma_start_q, stop_words = None, passage_name_clm_q = None, passage_sec_clm_q = None, df_ac_p = None, passage_name_clm_p = None, passage_sec_clm_p = None, lemma_start_p = None): import pandas as pd import numpy as np df_ac_buf = df_ac_q.copy() df_ac_id_buf = df_ac_buf[question_id_clm] df_ac_id = df_ac_id_buf.drop_duplicates() ac_buf_index_name = df_ac_buf.index.name ac_buf_index = df_ac_buf.index df_ac_buf = df_ac_buf.set_index([question_id_clm, stem_option_name_clm]) df_ac_buf_lemma = df_ac_buf.iloc[:, (lemma_start_q -2):] if stop_words != None: df_ac_buf_lemma = df_ac_buf_lemma.drop(stop_words, axis=1) if df_ac_p is not None: df_ac_buf_p = df_ac_p.copy() df_ac_buf_p = df_ac_buf_p.set_index([passage_name_clm_p, passage_sec_clm_p]) # modified by <EMAIL> 09/22/2020 if stop_words != None: df_ac_buf_p = df_ac_buf_p.drop(stop_words, axis=1) df_ac_buf_p_lemma = df_ac_buf_p.iloc[:, (lemma_start_p -2):] # modified by <EMAIL> 09/22/2020 # In order to avoid overhead of the appending operation for each row, # the passage name and passage section name are compounded as a temporal index name df_ac_buf_p_lemma[question_id_clm] = [x[0] + ';' + x[1] for x in df_ac_buf_p_lemma.index] df_ac_buf_p_lemma[stem_option_name_clm] = 'Passage' df_ac_buf_p_lemma = df_ac_buf_p_lemma.set_index([question_id_clm, stem_option_name_clm]) row_lgth = df_ac_buf_lemma.shape[0] df_ac_buf_q_p_lemma = df_ac_buf_lemma.append(df_ac_buf_p_lemma) df_ac_buf_lemma = df_ac_buf_q_p_lemma.iloc[:row_lgth, :] df_ac_buf_p_lemma = df_ac_buf_q_p_lemma.iloc[row_lgth:, :] df_res = pd.DataFrame() for x in df_ac_id: print('Question:' + str(x)) if df_ac_p is not None: df_q_x = df_ac_buf.xs(x) passage_name = df_q_x[passage_name_clm_q][0] passage_sections = (df_q_x[passage_sec_clm_q][0]).split(';') print('Passage:' + passage_name) # modified by <EMAIL> 09/22/2020 # df_p_x = df_ac_buf_p.xs(passage_name) # df_p_x = df_p_x.loc[passage_sections] # df_ac_buf_p_lemma_x = df_p_x.iloc[:, (lemma_start_p -2):] # modified by <EMAIL> 09/22/2020 # In order to avoid overhead of the appending operation for each row, # the passage name and passage section name are compounded as a temporal index name # df_ac_buf_p_lemma_x = df_ac_buf_p_lemma.xs(passage_name) # df_ac_buf_p_lemma_x = df_ac_buf_p_lemma_x.loc[passage_sections] df_ac_buf_p_lemma_x = df_ac_buf_p_lemma[[x[0].startswith(passage_name) for x in df_ac_buf_p_lemma.index]] df_ac_buf_p_lemma_x = df_ac_buf_p_lemma_x[[x[0].endswith(tuple(passage_sections)) for x in df_ac_buf_p_lemma_x.index]] # modified by <EMAIL> 09/22/2020 # if stop_words != None: # df_ac_buf_p_lemma_x = df_ac_buf_p_lemma_x.drop(stop_words, axis=1) df_ac_buf_p_lemma_x_sum = pd.DataFrame({ 'Passage' : df_ac_buf_p_lemma_x.sum() }) df_ac_buf_lemma_x = (df_ac_buf_p_lemma_x_sum.transpose()).append(df_ac_buf_lemma.xs(x)) index_arr = df_ac_buf_lemma_x.index.values index_arr = np.append(index_arr[1:], index_arr[0]) df_ac_buf_lemma_x = df_ac_buf_lemma_x.reindex(index_arr) df_ac_buf_lemma_x.index.name = stem_option_name_clm df_ac_overlap_doc = ac_overlapping_terms(df_ac_buf_lemma_x) df_ac_overlap_doc = df_ac_overlap_doc.drop('Passage', axis=0) else: df_ac_overlap_doc = ac_overlapping_terms(df_ac_buf_lemma.xs(x)) df_ac_overlap_doc = df_ac_overlap_doc.reset_index() df_doc = pd.DataFrame({ question_id_clm : np.array([x] * len(df_ac_overlap_doc)) }) df_ac_overlap_doc[question_id_clm] = df_doc[question_id_clm] df_res = df_res.append(df_ac_overlap_doc, ignore_index=True) df_doc_id = pd.DataFrame({ ac_buf_index_name : ac_buf_index }) df_res[ac_buf_index_name] = df_doc_id[ac_buf_index_name] df_res = df_res.set_index(ac_buf_index_name) return df_res ################################################################################ # This module counts overlapping lemmas among the all input records # Parameters df_ac_q: input pandas.DataFrame it should only have lemma count # columns with an index of the DataFrame # Returns Result: pandas.DataFrame as a result of overlapping lemma counts ################################################################################ def ac_overlapping_terms(df_doc_term_matrix): import pandas as pd import numpy as np t = df_doc_term_matrix.shape row_lgth = t[0] col_lgth = t[1] doc_term_matrix_clm_count = [] doc_term_matrix_clm_terms = [] doc_term_matrix_index = df_doc_term_matrix.index doc_term_matrix_clms = df_doc_term_matrix.columns for x in doc_term_matrix_index: s = 'Count_' + x doc_term_matrix_clm_count.append(s) for x in doc_term_matrix_index: s = 'Terms_' + x doc_term_matrix_clm_terms.append(s) # df_overlapping_matrix = pd.DataFrame(np.empty((row_lgth, row_lgth * 2), # dtype=object), doc_term_matrix_index, # doc_term_matrix_clm_count + doc_term_matrix_clm_terms) df_overlapping_count_matrix = pd.DataFrame(np.empty((row_lgth, row_lgth), dtype=np.int64), doc_term_matrix_index, doc_term_matrix_clm_count) df_overlapping_term_matrix = pd.DataFrame(np.empty((row_lgth, row_lgth), dtype=object), doc_term_matrix_index, doc_term_matrix_clm_terms) # modified by <EMAIL> 09/20/2020 ''' df_overlapping_matrix = pd.concat([df_overlapping_count_matrix, df_overlapping_term_matrix], axis=1) for k, z in enumerate(doc_term_matrix_index): for i, x in enumerate(doc_term_matrix_clm_count): if k == i: #df_overlapping_matrix.iloc[k, i] = '' df_overlapping_matrix.iloc[k, i] = np.nan else: df_overlapping_matrix.iloc[k, i] = 0 df_overlapping_matrix.iloc[k, i + len(doc_term_matrix_clm_count)] = '' for j, y in enumerate(df_doc_term_matrix.iloc[i, :]): if y > 0: if df_doc_term_matrix.iloc[k, j] > 0: df_overlapping_matrix.iloc[k, i] += 1 s = df_overlapping_matrix.iloc[k, i + len(doc_term_matrix_clm_count)] if s == '': s = doc_term_matrix_clms[j] else: s = ';'.join([s, doc_term_matrix_clms[j]]) df_overlapping_matrix.iloc[k, i + len(doc_term_matrix_clm_count)] = s ''' for k, z in enumerate(doc_term_matrix_index): for i, x in enumerate(doc_term_matrix_clm_count): if k == i: df_overlapping_count_matrix.iloc[k, i] = np.nan else: se_multiply = df_doc_term_matrix.iloc[k] * df_doc_term_matrix.iloc[i] se_match = se_multiply / se_multiply df_overlapping_count_matrix.iloc[k, i] = int(se_match.sum()) se_match.index = df_doc_term_matrix.columns s = ';'.join(se_match[se_match > 0].index) df_overlapping_term_matrix.iloc[k, i] = s df_overlapping_matrix =
pd.concat([df_overlapping_count_matrix, df_overlapping_term_matrix], axis=1)
pandas.concat
from __future__ import division import copy import bt from bt.core import Node, StrategyBase, SecurityBase, AlgoStack, Strategy import pandas as pd import numpy as np from nose.tools import assert_almost_equal as aae import sys if sys.version_info < (3, 3): import mock else: from unittest import mock def test_node_tree(): c1 = Node('c1') c2 = Node('c2') p = Node('p', children=[c1, c2]) c1 = p['c1'] c2 = p['c2'] assert len(p.children) == 2 assert 'c1' in p.children assert 'c2' in p.children assert p == c1.parent assert p == c2.parent m = Node('m', children=[p]) p = m['p'] c1 = p['c1'] c2 = p['c2'] assert len(m.children) == 1 assert 'p' in m.children assert p.parent == m assert len(p.children) == 2 assert 'c1' in p.children assert 'c2' in p.children assert p == c1.parent assert p == c2.parent def test_strategybase_tree(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] assert len(s.children) == 2 assert 's1' in s.children assert 's2' in s.children assert s == s1.parent assert s == s2.parent def test_node_members(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) s1 = s['s1'] s2 = s['s2'] actual = s.members assert len(actual) == 3 assert s1 in actual assert s2 in actual assert s in actual actual = s1.members assert len(actual) == 1 assert s1 in actual actual = s2.members assert len(actual) == 1 assert s2 in actual def test_node_full_name(): s1 = SecurityBase('s1') s2 = SecurityBase('s2') s = StrategyBase('p', [s1, s2]) # we cannot access s1 and s2 directly since they are copied # we must therefore access through s assert s.full_name == 'p' assert s['s1'].full_name == 'p>s1' assert s['s2'].full_name == 'p>s2' def test_security_setup_prices(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 # now with setup c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) assert c1.price == 105 assert len(c1.prices) == 1 assert c1.prices[0] == 105 assert c2.price == 95 assert len(c2.prices) == 1 assert c2.prices[0] == 95 def test_strategybase_tree_setup(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) assert len(s.data) == 3 assert len(c1.data) == 3 assert len(c2.data) == 3 assert len(s._prices) == 3 assert len(c1._prices) == 3 assert len(c2._prices) == 3 assert len(s._values) == 3 assert len(c1._values) == 3 assert len(c2._values) == 3 def test_strategybase_tree_adjust(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) s.adjust(1000) assert s.capital == 1000 assert s.value == 1000 assert c1.value == 0 assert c2.value == 0 assert c1.weight == 0 assert c2.weight == 0 def test_strategybase_tree_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) c1.price == 100 c2.price == 100 i = 1 s.update(dts[i], data.ix[dts[i]]) c1.price == 105 c2.price == 95 i = 2 s.update(dts[i], data.ix[dts[i]]) c1.price == 100 c2.price == 100 def test_update_fails_if_price_is_nan_and_position_open(): c1 = SecurityBase('c1') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1'], data=100) data['c1'][dts[1]] = np.nan c1.setup(data) i = 0 # mock in position c1._position = 100 c1.update(dts[i], data.ix[dts[i]]) # test normal case - position & non-nan price assert c1._value == 100 * 100 i = 1 # this should fail, because we have non-zero position, and price is nan, so # bt has no way of updating the _value try: c1.update(dts[i], data.ix[dts[i]]) assert False except Exception as e: assert str(e).startswith('Position is open') # on the other hand, if position was 0, this should be fine, and update # value to 0 c1._position = 0 c1.update(dts[i], data.ix[dts[i]]) assert c1._value == 0 def test_strategybase_tree_allocate(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_child_from_strategy(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) s.adjust(1000) # since children have w == 0 this should stay in s s.allocate(1000) assert s.value == 1000 assert s.capital == 1000 assert c1.value == 0 assert c2.value == 0 # now allocate to c1 s.allocate(500, 'c1') assert c1.position == 5 assert c1.value == 500 assert s.capital == 1000 - 500 assert s.value == 1000 assert c1.weight == 500.0 / 1000 assert c2.weight == 0 def test_strategybase_tree_allocate_level2(): c1 = SecurityBase('c1') c12 = copy.deepcopy(c1) c2 = SecurityBase('c2') c22 = copy.deepcopy(c2) s1 = StrategyBase('s1', [c1, c2]) s2 = StrategyBase('s2', [c12, c22]) m = StrategyBase('m', [s1, s2]) s1 = m['s1'] s2 = m['s2'] c1 = s1['c1'] c2 = s1['c2'] c12 = s2['c1'] c22 = s2['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 m.setup(data) i = 0 m.update(dts[i], data.ix[dts[i]]) m.adjust(1000) # since children have w == 0 this should stay in s m.allocate(1000) assert m.value == 1000 assert m.capital == 1000 assert s1.value == 0 assert s2.value == 0 assert c1.value == 0 assert c2.value == 0 # now allocate directly to child s1.allocate(500) assert s1.value == 500 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 # now allocate directly to child of child c1.allocate(200) assert s1.value == 500 assert s1.capital == 500 - 200 assert c1.value == 200 assert c1.weight == 200.0 / 500 assert c1.position == 2 assert m.capital == 1000 - 500 assert m.value == 1000 assert s1.weight == 500.0 / 1000 assert s2.weight == 0 assert c12.value == 0 def test_strategybase_tree_allocate_long_short(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) s.adjust(1000) c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 c1.allocate(-200) assert c1.position == 3 assert c1.value == 300 assert c1.weight == 300.0 / 1000 assert s.capital == 1000 - 500 + 200 assert s.value == 1000 c1.allocate(-400) assert c1.position == -1 assert c1.value == -100 assert c1.weight == -100.0 / 1000 assert s.capital == 1000 - 500 + 200 + 400 assert s.value == 1000 # close up c1.allocate(-c1.value) assert c1.position == 0 assert c1.value == 0 assert c1.weight == 0 assert s.capital == 1000 - 500 + 200 + 400 - 100 assert s.value == 1000 def test_strategybase_tree_allocate_update(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('p', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[1]] = 105 data['c2'][dts[1]] = 95 s.setup(data) i = 0 s.update(dts[i], data.ix[dts[i]]) assert s.price == 100 s.adjust(1000) assert s.price == 100 assert s.value == 1000 assert s._value == 1000 c1.allocate(500) assert c1.position == 5 assert c1.value == 500 assert c1.weight == 500.0 / 1000 assert s.capital == 1000 - 500 assert s.value == 1000 assert s.price == 100 i = 1 s.update(dts[i], data.ix[dts[i]]) assert c1.position == 5 assert c1.value == 525 assert c1.weight == 525.0 / 1025 assert s.capital == 1000 - 500 assert s.value == 1025 assert np.allclose(s.price, 102.5) def test_strategybase_universe(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 105 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) assert len(s.universe) == 1 assert 'c1' in s.universe assert 'c2' in s.universe assert s.universe['c1'][dts[i]] == 105 assert s.universe['c2'][dts[i]] == 95 # should not have children unless allocated assert len(s.children) == 0 def test_strategybase_allocate(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data['c1'][dts[0]] = 100 data['c2'][dts[0]] = 95 s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 def test_strategybase_close(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] assert c1.position == 1 assert c1.value == 100 assert s.value == 1000 s.close('c1') assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_flatten(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=3) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) s.setup(data) i = 0 s.update(dts[i]) s.adjust(1000) s.allocate(100, 'c1') c1 = s['c1'] s.allocate(100, 'c2') c2 = s['c2'] assert c1.position == 1 assert c1.value == 100 assert c2.position == 1 assert c2.value == 100 assert s.value == 1000 s.flatten() assert c1.position == 0 assert c1.value == 0 assert s.value == 1000 def test_strategybase_multiple_calls(): s = StrategyBase('s') dts = pd.date_range('2010-01-01', periods=5) data = pd.DataFrame(index=dts, columns=['c1', 'c2'], data=100) data.c2[dts[0]] = 95 data.c1[dts[1]] = 95 data.c2[dts[2]] = 95 data.c2[dts[3]] = 95 data.c2[dts[4]] = 95 data.c1[dts[4]] = 105 s.setup(data) # define strategy logic def algo(target): # close out any open positions target.flatten() # get stock w/ lowest price c = target.universe.ix[target.now].idxmin() # allocate all capital to that stock target.allocate(target.value, c) # replace run logic s.run = algo # start w/ 1000 s.adjust(1000) # loop through dates manually i = 0 # update t0 s.update(dts[i]) assert len(s.children) == 0 assert s.value == 1000 # run t0 s.run(s) assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 c2 = s['c2'] assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update out t0 s.update(dts[i]) c2 == s['c2'] assert len(s.children) == 1 assert s.value == 1000 assert s.capital == 50 assert c2.value == 950 assert c2.weight == 950.0 / 1000 assert c2.price == 95 # update t1 i = 1 s.update(dts[i]) assert s.value == 1050 assert s.capital == 50 assert len(s.children) == 1 assert 'c2' in s.children c2 == s['c2'] assert c2.value == 1000 assert c2.weight == 1000.0 / 1050.0 assert c2.price == 100 # run t1 - close out c2, open c1 s.run(s) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 c1 = s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update out t1 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1050 assert s.capital == 5 assert c1 == s['c1'] assert c1.value == 1045 assert c1.weight == 1045.0 / 1050 assert c1.price == 95 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 100 # update t2 i = 2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 5 assert c1.value == 1100 assert c1.weight == 1100.0 / 1105 assert c1.price == 100 assert c2.value == 0 assert c2.weight == 0 assert c2.price == 95 # run t2 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t2 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t3 i = 3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t3 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t3 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 100 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update t4 i = 4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 # accessing price should refresh - this child has been idle for a while - # must make sure we can still have a fresh prices assert c1.price == 105 assert len(c1.prices) == 5 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # run t4 s.run(s) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 # update out t4 s.update(dts[i]) assert len(s.children) == 2 assert s.value == 1105 assert s.capital == 60 assert c1.value == 0 assert c1.weight == 0 assert c1.price == 105 assert c2.value == 1045 assert c2.weight == 1045.0 / 1105 assert c2.price == 95 def test_strategybase_multiple_calls_preset_secs(): c1 = SecurityBase('c1') c2 = SecurityBase('c2') s = StrategyBase('s', [c1, c2]) c1 = s['c1'] c2 = s['c2'] dts =
pd.date_range('2010-01-01', periods=5)
pandas.date_range
#!/usr/bin/env python # coding: utf-8 # In[10]: import pandas as pd from alphacast import Alphacast from dotenv import dotenv_values API_KEY = dotenv_values(".env").get("API_KEY") alphacast = Alphacast(API_KEY) def replaceMonthByNumber(x): x = x.str.replace('*','') meses = { 'Enero': 1, 'Febrero':2, 'Marzo': 3, 'Abril': 4, 'Mayo':5, 'Junio':6, 'Julio':7, 'Agosto':8, 'Septiembre':9, 'Octubre':10, 'Noviembre':11, 'Diciembre':12} for mes in meses: x = x.replace(mes,meses[mes]) return x def fix_data(df, year_col, month_col, join_col=True): if join_col: df.columns = df.columns.map(' - '.join) df["year"] = pd.to_numeric(df[year_col].ffill(), errors='coerce') df["month"] = replaceMonthByNumber(df[month_col]) df["day"] = 1 df["Date"] = pd.to_datetime(df[["year", "month", "day"]], errors="coerce") df = df[df["Date"].notnull()] df = df.set_index("Date") del df["year"] del df["day"] del df["month"] del df[year_col] del df[month_col] return df df_merge = pd.DataFrame() df = pd.read_excel('https://www.indec.gob.ar/ftp/cuadros/economia/sh_super_mayoristas.xls', sheet_name="Cuadro 1", skiprows=2, header=[0,1]) df = fix_data(df, "Período - Unnamed: 0_level_1", "Período - Unnamed: 1_level_1") df_merge = df_merge.merge(df, how="outer", left_index=True, right_index=True) df =
pd.read_excel('https://www.indec.gob.ar/ftp/cuadros/economia/sh_super_mayoristas.xls', sheet_name="Cuadro 2", skiprows=2, header=[0,1])
pandas.read_excel
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from datetime import datetime, timedelta import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as tck import matplotlib.font_manager as fm import math as m import matplotlib.dates as mdates import netCDF4 as nc from netCDF4 import Dataset id import itertools import datetime from scipy.stats import ks_2samp import matplotlib.colors as colors "Codigo que permite la porderación de la nubosidad por la ponderación de sus horas" ## ----------------------LECTURA DE DATOS DE GOES CH02----------------------- ## ds = Dataset('/home/nacorreasa/Maestria/Datos_Tesis/GOES/GOES_nc_CREADOS/GOES_VA_C2_2019_0320_0822.nc') ## -----------------INCORPORANDO LOS DATOS DE RADIACIÓN Y DE LOS EXPERIMENTOS----------------- ## df_P975 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel975.txt', sep=',', index_col =0) df_P350 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel350.txt', sep=',', index_col =0) df_P348 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel348.txt', sep=',', index_col =0) df_P975['Fecha_hora'] = df_P975.index df_P350['Fecha_hora'] = df_P350.index df_P348['Fecha_hora'] = df_P348.index df_P975.index = pd.to_datetime(df_P975.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') df_P350.index = pd.to_datetime(df_P350.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') df_P348.index = pd.to_datetime(df_P348.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') ## ----------------ACOTANDO LOS DATOS A VALORES VÁLIDOS---------------- ## 'Como en este caso lo que interesa es la radiacion, para la filtración de los datos, se' 'considerarán los datos de potencia mayores o iguales a 0, los que parecen generarse una' 'hora despues de cuando empieza a incidir la radiación.' df_P975 = df_P975[(df_P975['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P350 = df_P350[(df_P350['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P348 = df_P348[(df_P348['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P975_h = df_P975.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P350_h = df_P350.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P348_h = df_P348.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P975_h = df_P975_h.between_time('06:00', '17:00') df_P350_h = df_P350_h.between_time('06:00', '17:00') df_P348_h = df_P348_h.between_time('06:00', '17:00') #----------------------------------------------------------------------------- # Rutas para las fuentes ----------------------------------------------------- prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ## -------------------------------------------------------------------------- ## Umbral_up_348 = 46.26875 Umbral_down_348 = 22.19776 Umbrales_348 = [Umbral_down_348, Umbral_up_348] Umbral_up_350 = 49.4412 Umbral_down_350 = 26.4400 Umbrales_350 = [Umbral_down_350, Umbral_up_350] Umbral_up_975 = 49.4867 Umbral_down_975 = 17.3913 Umbrales_975 = [Umbral_down_975, Umbral_up_975] lat = ds.variables['lat'][:, :] lon = ds.variables['lon'][:, :] Rad = ds.variables['Radiancias'][:, :, :] ## -- Obtener el tiempo para cada valor tiempo = ds.variables['time'] fechas_horas = nc.num2date(tiempo[:], units=tiempo.units) for i in range(len(fechas_horas)): fechas_horas[i] = fechas_horas[i].strftime('%Y-%m-%d %H:%M') ## -- Selección del pixel de la TS y creación de DF lat_index_975 = np.where((lat[:, 0] > 6.25) & (lat[:, 0] < 6.26))[0][0] lon_index_975 = np.where((lon[0, :] < -75.58) & (lon[0, :] > -75.59))[0][0] Rad_pixel_975 = Rad[:, lat_index_975, lon_index_975] Rad_df_975 = pd.DataFrame() Rad_df_975['Fecha_Hora'] = fechas_horas Rad_df_975['Radiacias'] = Rad_pixel_975 Rad_df_975['Fecha_Hora'] = pd.to_datetime(Rad_df_975['Fecha_Hora'], format="%Y-%m-%d %H:%M", errors='coerce') Rad_df_975.index = Rad_df_975['Fecha_Hora'] Rad_df_975 = Rad_df_975.drop(['Fecha_Hora'], axis=1) ## -- Selección del pixel de la CI lat_index_350 = np.where((lat[:, 0] > 6.16) & (lat[:, 0] < 6.17))[0][0] lon_index_350 = np.where((lon[0, :] < -75.64) & (lon[0, :] > -75.65))[0][0] Rad_pixel_350 = Rad[:, lat_index_350, lon_index_350] Rad_df_350 = pd.DataFrame() Rad_df_350['Fecha_Hora'] = fechas_horas Rad_df_350['Radiacias'] = Rad_pixel_350 Rad_df_350['Fecha_Hora'] = pd.to_datetime(Rad_df_350['Fecha_Hora'], format="%Y-%m-%d %H:%M", errors='coerce') Rad_df_350.index = Rad_df_350['Fecha_Hora'] Rad_df_350 = Rad_df_350.drop(['Fecha_Hora'], axis=1) ## -- Selección del pixel de la JV lat_index_348 = np.where((lat[:, 0] > 6.25) & (lat[:, 0] < 6.26))[0][0] lon_index_348 = np.where((lon[0, :] < -75.54) & (lon[0, :] > -75.55))[0][0] Rad_pixel_348 = Rad[:, lat_index_348, lon_index_348] Rad_df_348 = pd.DataFrame() Rad_df_348['Fecha_Hora'] = fechas_horas Rad_df_348['Radiacias'] = Rad_pixel_348 Rad_df_348['Fecha_Hora'] = pd.to_datetime(Rad_df_348['Fecha_Hora'], format="%Y-%m-%d %H:%M", errors='coerce') Rad_df_348.index = Rad_df_348['Fecha_Hora'] Rad_df_348 = Rad_df_348.drop(['Fecha_Hora'], axis=1) 'OJOOOO DESDE ACÁ-----------------------------------------------------------------------------------------' 'Se comenta porque se estaba perdiendo la utilidad de la información cada 10 minutos al suavizar la serie.' ## ------------------------CAMBIANDO LOS DATOS HORARIOS POR LOS ORIGINALES---------------------- ## Rad_df_348_h = Rad_df_348 Rad_df_350_h = Rad_df_350 Rad_df_975_h = Rad_df_975 ## ------------------------------------DATOS HORARIOS DE REFLECTANCIAS------------------------- ## # Rad_df_348_h = Rad_df_348.groupby(pd.Grouper(freq="H")).mean() # Rad_df_350_h = Rad_df_350.groupby(pd.Grouper(freq="H")).mean() # Rad_df_975_h = Rad_df_975.groupby(pd.Grouper(freq="H")).mean() 'OJOOOO HASTA ACÁ-----------------------------------------------------------------------------------------' Rad_df_348_h = Rad_df_348_h.between_time('06:00', '17:00') Rad_df_350_h = Rad_df_350_h.between_time('06:00', '17:00') Rad_df_975_h = Rad_df_975_h.between_time('06:00', '17:00') ## --------------------------------------FDP COMO NP.ARRAY----- ------------------------------ ## Hist_348 = np.histogram(Rad_df_348_h['Radiacias'].values[~np.isnan(Rad_df_348_h['Radiacias'].values)]) Hist_350 = np.histogram(Rad_df_350_h['Radiacias'].values[~np.isnan(Rad_df_350_h['Radiacias'].values)]) Hist_975 = np.histogram(Rad_df_975_h['Radiacias'].values[~np.isnan(Rad_df_975_h['Radiacias'].values)]) ## ---------------------------------FDP COMO GRÁFICA----------------------------------------- ## fig = plt.figure(figsize=[10, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1, 3, 1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.hist(Rad_df_348_h['Radiacias'].values[~np.isnan(Rad_df_348_h['Radiacias'].values)], bins='auto', alpha = 0.5) Umbrales_line1 = [ax1.axvline(x=xc, color='k', linestyle='--') for xc in Umbrales_348] ax1.set_title(u'Distribución del FR en JV', fontproperties=prop, fontsize = 13) ax1.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax1.set_xlabel(u'Reflectancia', fontproperties=prop_1) ax2 = fig.add_subplot(1, 3, 2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.hist(Rad_df_350_h['Radiacias'].values[~np.isnan(Rad_df_350_h['Radiacias'].values)], bins='auto', alpha = 0.5) Umbrales_line2 = [ax2.axvline(x=xc, color='k', linestyle='--') for xc in Umbrales_350] ax2.set_title(u'Distribución del FR en CI', fontproperties=prop, fontsize = 13) ax2.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax2.set_xlabel(u'Reflectancia', fontproperties=prop_1) ax3 = fig.add_subplot(1, 3, 3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.hist(Rad_df_975_h['Radiacias'].values[~np.isnan(Rad_df_975_h['Radiacias'].values)], bins='auto', alpha = 0.5) Umbrales_line3 = [ax3.axvline(x=xc, color='k', linestyle='--') for xc in Umbrales_975] ax3.set_title(u'Distribución del FR en TS', fontproperties=prop, fontsize = 13) ax3.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax3.set_xlabel(u'Reflectancia', fontproperties=prop_1) plt.savefig('/home/nacorreasa/Escritorio/Figuras/HistoFRUmbral.png') plt.show() ## -------------------------OBTENER EL DF DEL ESCENARIO DESPEJADO---------------------------- ## df_348_desp = Rad_df_348_h[Rad_df_348_h['Radiacias'] < Umbral_down_348] df_350_desp = Rad_df_350_h[Rad_df_350_h['Radiacias'] < Umbral_down_350] df_975_desp = Rad_df_975_h[Rad_df_975_h['Radiacias'] < Umbral_down_975] ## --------------------------OBTENER EL DF DEL ESCENARIO NUBADO------------------------------ ## df_348_nuba = Rad_df_348_h[Rad_df_348_h['Radiacias'] > Umbral_up_348] df_350_nuba = Rad_df_350_h[Rad_df_350_h['Radiacias'] > Umbral_up_350] df_975_nuba = Rad_df_975_h[Rad_df_975_h['Radiacias'] > Umbral_up_975] ## -------------------------OBTENER LAS HORAS Y FECHAS DESPEJADAS---------------------------- ## Hora_desp_348 = df_348_desp.index.hour Fecha_desp_348 = df_348_desp.index.date Hora_desp_350 = df_350_desp.index.hour Fecha_desp_350 = df_350_desp.index.date Hora_desp_975 = df_975_desp.index.hour Fecha_desp_975 = df_975_desp.index.date ## ----------------------------OBTENER LAS HORAS Y FECHAS NUBADAS---------------------------- ## Hora_nuba_348 = df_348_nuba.index.hour Fecha_nuba_348 = df_348_nuba.index.date Hora_nuba_350 = df_350_nuba.index.hour Fecha_nuba_350 = df_350_nuba.index.date Hora_nuba_975 = df_975_nuba.index.hour Fecha_nuba_975 = df_975_nuba.index.date ## -----------------------------DIBUJAR LOS HISTOGRAMAS DE LAS HORAS ------ ----------------------- # fig = plt.figure(figsize=[10, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1, 3, 1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.hist(Hora_desp_348, bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax1.hist(Hora_nuba_348, bins='auto', alpha = 0.5, label = 'Nub') ax1.set_title(u'Distribución de nubes por horas en JV', fontproperties=prop, fontsize = 8) ax1.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax1.set_xlabel(u'Horas', fontproperties=prop_1) ax1.legend() ax2 = fig.add_subplot(1, 3, 2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.hist(Hora_desp_350, bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax2.hist(Hora_nuba_350, bins='auto', alpha = 0.5, label = 'Nub') ax2.set_title(u'Distribución de nubes por horas en CI', fontproperties=prop, fontsize = 8) ax2.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax2.set_xlabel(u'Horas', fontproperties=prop_1) ax2.legend() ax3 = fig.add_subplot(1, 3, 3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.hist(Hora_desp_975, bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax3.hist(Hora_nuba_975, bins='auto', alpha = 0.5, label = 'Nub') ax3.set_title(u'Distribución de nubes por horas en TS', fontproperties=prop, fontsize = 8) ax3.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax3.set_xlabel(u'Horas', fontproperties=prop_1) ax3.legend() plt.savefig('/home/nacorreasa/Escritorio/Figuras/HistoNubaDesp.png') plt.show() ##----------ENCONTRANDO LAS RADIACIONES CORRESPONDIENTES A LAS HORAS NUBOSAS----------## df_FH_nuba_348 = pd.DataFrame() df_FH_nuba_348 ['Fechas'] = Fecha_nuba_348 df_FH_nuba_348 ['Horas'] = Hora_nuba_348 df_FH_nuba_350 = pd.DataFrame() df_FH_nuba_350 ['Fechas'] = Fecha_nuba_350 df_FH_nuba_350 ['Horas'] = Hora_nuba_350 df_FH_nuba_975 = pd.DataFrame() df_FH_nuba_975 ['Fechas'] = Fecha_nuba_975 df_FH_nuba_975 ['Horas'] = Hora_nuba_975 df_FH_nuba_348_groupH = df_FH_nuba_348.groupby('Horas')['Fechas'].unique() df_nuba_348_groupH = pd.DataFrame(df_FH_nuba_348_groupH[df_FH_nuba_348_groupH.apply(lambda x: len(x)>1)]) ##NO entiendo bien acá que se está haciendo df_FH_nuba_350_groupH = df_FH_nuba_350.groupby('Horas')['Fechas'].unique() df_nuba_350_groupH = pd.DataFrame(df_FH_nuba_350_groupH[df_FH_nuba_350_groupH.apply(lambda x: len(x)>1)]) df_FH_nuba_975_groupH = df_FH_nuba_975.groupby('Horas')['Fechas'].unique() df_nuba_975_groupH = pd.DataFrame(df_FH_nuba_975_groupH[df_FH_nuba_975_groupH.apply(lambda x: len(x)>1)]) c = np.arange(6, 18, 1) Sk_Nuba_stat_975 = {} Sk_Nuba_pvalue_975 = {} Composites_Nuba_975 = {} for i in df_FH_nuba_975_groupH.index: H = str(i) if len(df_FH_nuba_975_groupH.loc[i]) == 1 : list = df_P975_h[df_P975_h.index.date == df_FH_nuba_975_groupH.loc[i][0]]['radiacion'].values list_sk_stat = np.ones(12)*np.nan list_sk_pvalue = np.ones(12)*np.nan elif len(df_FH_nuba_975_groupH.loc[i]) > 1 : temporal = pd.DataFrame() for j in range(len(df_FH_nuba_975_groupH.loc[i])): temporal = temporal.append(pd.DataFrame(df_P975_h[df_P975_h.index.date == df_FH_nuba_975_groupH.loc[i][j]]['radiacion'])) stat_975 = [] pvalue_975 = [] for k in c: temporal_sk = temporal[temporal.index.hour == k].radiacion.values Rad_sk = df_P975_h['radiacion'][df_P975_h.index.hour == k].values try: SK = ks_2samp(temporal_sk,Rad_sk) stat_975.append(SK[0]) pvalue_975.append(SK[1]) except ValueError: stat_975.append(np.nan) pvalue_975.append(np.nan) temporal_CD = temporal.groupby(by=[temporal.index.hour]).mean() list = temporal_CD['radiacion'].values list_sk_stat = stat_975 list_sk_pvalue = pvalue_975 Composites_Nuba_975[H] = list Sk_Nuba_stat_975 [H] = list_sk_stat Sk_Nuba_pvalue_975 [H] = list_sk_pvalue del H Comp_Nuba_975_df = pd.DataFrame(Composites_Nuba_975, index = c) Sk_Nuba_stat_975_df = pd.DataFrame(Sk_Nuba_stat_975, index = c) Sk_Nuba_pvalue_975_df = pd.DataFrame(Sk_Nuba_pvalue_975, index = c) Sk_Nuba_stat_350 = {} Sk_Nuba_pvalue_350 = {} Composites_Nuba_350 = {} for i in df_FH_nuba_350_groupH.index: H = str(i) if len(df_FH_nuba_350_groupH.loc[i]) == 1 : list = df_P350_h[df_P350_h.index.date == df_FH_nuba_350_groupH.loc[i][0]]['radiacion'].values list_sk_stat = np.ones(12)*np.nan list_sk_pvalue = np.ones(12)*np.nan elif len(df_FH_nuba_350_groupH.loc[i]) > 1 : temporal = pd.DataFrame() for j in range(len(df_FH_nuba_350_groupH.loc[i])): temporal = temporal.append(pd.DataFrame(df_P350_h[df_P350_h.index.date == df_FH_nuba_350_groupH.loc[i][j]]['radiacion'])) stat_350 = [] pvalue_350 = [] for k in c: temporal_sk = temporal[temporal.index.hour == k].radiacion.values Rad_sk = df_P350_h['radiacion'][df_P350_h.index.hour == k].values try: SK = ks_2samp(temporal_sk,Rad_sk) stat_350.append(SK[0]) pvalue_350.append(SK[1]) except ValueError: stat_350.append(np.nan) pvalue_350.append(np.nan) temporal_CD = temporal.groupby(by=[temporal.index.hour]).mean() list = temporal_CD['radiacion'].values list_sk_stat = stat_350 list_sk_pvalue = pvalue_350 Composites_Nuba_350[H] = list Sk_Nuba_stat_350 [H] = list_sk_stat Sk_Nuba_pvalue_350 [H] = list_sk_pvalue del H Comp_Nuba_350_df = pd.DataFrame(Composites_Nuba_350, index = c) Sk_Nuba_stat_350_df = pd.DataFrame(Sk_Nuba_stat_350, index = c) Sk_Nuba_pvalue_350_df = pd.DataFrame(Sk_Nuba_pvalue_350, index = c) Sk_Nuba_stat_348 = {} Sk_Nuba_pvalue_348 = {} Composites_Nuba_348 = {} for i in df_FH_nuba_348_groupH.index: H = str(i) if len(df_FH_nuba_348_groupH.loc[i]) == 1 : list = df_P348_h[df_P348_h.index.date == df_FH_nuba_348_groupH.loc[i][0]]['radiacion'].values list_sk_stat = np.ones(12)*np.nan list_sk_pvalue = np.ones(12)*np.nan elif len(df_FH_nuba_348_groupH.loc[i]) > 1 : temporal = pd.DataFrame() for j in range(len(df_FH_nuba_348_groupH.loc[i])): temporal = temporal.append(pd.DataFrame(df_P348_h[df_P348_h.index.date == df_FH_nuba_348_groupH.loc[i][j]]['radiacion'])) stat_348 = [] pvalue_348 = [] for k in c: temporal_sk = temporal[temporal.index.hour == k].radiacion.values Rad_sk = df_P348_h['radiacion'][df_P348_h.index.hour == k].values try: SK = ks_2samp(temporal_sk,Rad_sk) stat_348.append(SK[0]) pvalue_348.append(SK[1]) except ValueError: stat_348.append(np.nan) pvalue_348.append(np.nan) temporal_CD = temporal.groupby(by=[temporal.index.hour]).mean() list = temporal_CD['radiacion'].values list_sk_stat = stat_348 list_sk_pvalue = pvalue_348 Composites_Nuba_348[H] = list Sk_Nuba_stat_348 [H] = list_sk_stat Sk_Nuba_pvalue_348 [H] = list_sk_pvalue del H Comp_Nuba_348_df = pd.DataFrame(Composites_Nuba_348, index = c) Sk_Nuba_stat_348_df = pd.DataFrame(Sk_Nuba_stat_348, index = c) Sk_Nuba_pvalue_348_df = pd.DataFrame(Sk_Nuba_pvalue_348, index = c) ##----------ENCONTRANDO LAS RADIACIONES CORRESPONDIENTES A LAS HORAS DESPEJADAS----------## df_FH_desp_348 = pd.DataFrame() df_FH_desp_348 ['Fechas'] = Fecha_desp_348 df_FH_desp_348 ['Horas'] = Hora_desp_348 df_FH_desp_350 = pd.DataFrame() df_FH_desp_350 ['Fechas'] = Fecha_desp_350 df_FH_desp_350 ['Horas'] = Hora_desp_350 df_FH_desp_975 = pd.DataFrame() df_FH_desp_975 ['Fechas'] = Fecha_desp_975 df_FH_desp_975 ['Horas'] = Hora_desp_975 df_FH_desp_348_groupH = df_FH_desp_348.groupby('Horas')['Fechas'].unique() df_desp_348_groupH = pd.DataFrame(df_FH_desp_348_groupH[df_FH_desp_348_groupH.apply(lambda x: len(x)>1)]) ##NO entiendo bien acá que se está haciendo df_FH_desp_350_groupH = df_FH_desp_350.groupby('Horas')['Fechas'].unique() df_desp_350_groupH = pd.DataFrame(df_FH_desp_350_groupH[df_FH_desp_350_groupH.apply(lambda x: len(x)>1)]) df_FH_desp_975_groupH = df_FH_desp_975.groupby('Horas')['Fechas'].unique() df_desp_975_groupH = pd.DataFrame(df_FH_desp_975_groupH[df_FH_desp_975_groupH.apply(lambda x: len(x)>1)]) Sk_Desp_stat_975 = {} Sk_Desp_pvalue_975 = {} Composites_Desp_975 = {} for i in df_FH_desp_975_groupH.index: H = str(i) if len(df_FH_desp_975_groupH.loc[i]) == 1 : list = df_P975_h[df_P975_h.index.date == df_FH_desp_975_groupH.loc[i][0]]['radiacion'].values list_sk_stat = np.ones(12)*np.nan list_sk_pvalue = np.ones(12)*np.nan elif len(df_FH_desp_975_groupH.loc[i]) > 1 : temporal = pd.DataFrame() for j in range(len(df_FH_desp_975_groupH.loc[i])): temporal = temporal.append(pd.DataFrame(df_P975_h[df_P975_h.index.date == df_FH_desp_975_groupH.loc[i][j]]['radiacion'])) stat_975 = [] pvalue_975 = [] for k in c: temporal_sk = temporal[temporal.index.hour == k].radiacion.values Rad_sk = df_P975_h['radiacion'][df_P975_h.index.hour == k].values try: SK = ks_2samp(temporal_sk,Rad_sk) stat_975.append(SK[0]) pvalue_975.append(SK[1]) except ValueError: stat_975.append(np.nan) pvalue_975.append(np.nan) temporal_CD = temporal.groupby(by=[temporal.index.hour]).mean() list = temporal_CD['radiacion'].values list_sk_stat = stat_975 list_sk_pvalue = pvalue_975 Composites_Desp_975[H] = list Sk_Desp_stat_975 [H] = list_sk_stat Sk_Desp_pvalue_975 [H] = list_sk_pvalue del H Comp_Desp_975_df = pd.DataFrame(Composites_Desp_975, index = c) Sk_Desp_stat_975_df = pd.DataFrame(Sk_Desp_stat_975, index = c) Sk_Desp_pvalue_975_df = pd.DataFrame(Sk_Desp_pvalue_975, index = c) Sk_Desp_stat_350 = {} Sk_Desp_pvalue_350 = {} Composites_Desp_350 = {} for i in df_FH_desp_350_groupH.index: H = str(i) if len(df_FH_desp_350_groupH.loc[i]) == 1 : list = df_P350_h[df_P350_h.index.date == df_FH_desp_350_groupH.loc[i][0]]['radiacion'].values list_sk_stat = np.ones(12)*np.nan list_sk_pvalue = np.ones(12)*np.nan elif len(df_FH_desp_350_groupH.loc[i]) > 1 : temporal = pd.DataFrame() for j in range(len(df_FH_desp_350_groupH.loc[i])): temporal = temporal.append(pd.DataFrame(df_P350_h[df_P350_h.index.date == df_FH_desp_350_groupH.loc[i][j]]['radiacion'])) stat_350 = [] pvalue_350 = [] for k in c: temporal_sk = temporal[temporal.index.hour == k].radiacion.values Rad_sk = df_P350_h['radiacion'][df_P350_h.index.hour == k].values try: SK = ks_2samp(temporal_sk,Rad_sk) stat_350.append(SK[0]) pvalue_350.append(SK[1]) except ValueError: stat_350.append(np.nan) pvalue_350.append(np.nan) temporal_CD = temporal.groupby(by=[temporal.index.hour]).mean() list = temporal_CD['radiacion'].values list_sk_stat = stat_350 list_sk_pvalue = pvalue_350 Composites_Desp_350[H] = list Sk_Desp_stat_350 [H] = list_sk_stat Sk_Desp_pvalue_350 [H] = list_sk_pvalue del H Comp_Desp_350_df = pd.DataFrame(Composites_Desp_350, index = c) Sk_Desp_stat_350_df = pd.DataFrame(Sk_Desp_stat_350, index = c) Sk_Desp_pvalue_350_df = pd.DataFrame(Sk_Desp_pvalue_350, index = c) Sk_Desp_stat_348 = {} Sk_Desp_pvalue_348 = {} Composites_Desp_348 = {} for i in df_FH_desp_348_groupH.index: H = str(i) if len(df_FH_desp_348_groupH.loc[i]) == 1 : list = df_P348_h[df_P348_h.index.date == df_FH_desp_348_groupH.loc[i][0]]['radiacion'].values list_sk_stat = np.ones(12)*np.nan list_sk_pvalue = np.ones(12)*np.nan elif len(df_FH_desp_348_groupH.loc[i]) > 1 : temporal = pd.DataFrame() for j in range(len(df_FH_desp_348_groupH.loc[i])): temporal = temporal.append(pd.DataFrame(df_P348_h[df_P348_h.index.date == df_FH_desp_348_groupH.loc[i][j]]['radiacion'])) stat_348 = [] pvalue_348 = [] for k in c: temporal_sk = temporal[temporal.index.hour == k].radiacion.values Rad_sk = df_P348_h['radiacion'][df_P348_h.index.hour == k].values try: SK = ks_2samp(temporal_sk,Rad_sk) stat_348.append(SK[0]) pvalue_348.append(SK[1]) except ValueError: stat_348.append(np.nan) pvalue_348.append(np.nan) temporal_CD = temporal.groupby(by=[temporal.index.hour]).mean() list = temporal_CD['radiacion'].values list_sk_stat = stat_348 list_sk_pvalue = pvalue_348 Composites_Desp_348[H] = list Sk_Desp_stat_348 [H] = list_sk_stat Sk_Desp_pvalue_348 [H] = list_sk_pvalue del H Comp_Desp_348_df = pd.DataFrame(Composites_Desp_348, index = c) Sk_Desp_stat_348_df = pd.DataFrame(Sk_Desp_stat_348, index = c) Sk_Desp_pvalue_348_df = pd.DataFrame(Sk_Desp_pvalue_348, index = c) ##-------------------ESTANDARIZANDO LAS FORMAS DE LOS DATAFRAMES A LAS HORAS CASO DESPEJADO----------------## Comp_Desp_348_df = Comp_Desp_348_df[(Comp_Desp_348_df.index >= 6)&(Comp_Desp_348_df.index <18)] Comp_Desp_350_df = Comp_Desp_350_df[(Comp_Desp_350_df.index >= 6)&(Comp_Desp_350_df.index <18)] Comp_Desp_975_df = Comp_Desp_975_df[(Comp_Desp_975_df.index >= 6)&(Comp_Desp_975_df.index <18)] s = [str(i) for i in Comp_Nuba_348_df.index.values] ListNan = np.empty((1,len(Comp_Desp_348_df))) ListNan [:] = np.nan def convert(set): return [*set, ] a_Desp_348 = convert(set(s).difference(Comp_Desp_348_df.columns.values)) a_Desp_348.sort(key=int) if len(a_Desp_348) > 0: idx = [i for i,x in enumerate(s) if x in a_Desp_348] for i in range(len(a_Desp_348)): Comp_Desp_348_df.insert(loc = idx[i], column = a_Desp_348[i], value=ListNan[0]) del idx a_Desp_350 = convert(set(s).difference(Comp_Desp_350_df.columns.values)) a_Desp_350.sort(key=int) if len(a_Desp_350) > 0: idx = [i for i,x in enumerate(s) if x in a_Desp_350] for i in range(len(a_Desp_350)): Comp_Desp_350_df.insert(loc = idx[i], column = a_Desp_350[i], value=ListNan[0]) del idx a_Desp_975 = convert(set(s).difference(Comp_Desp_975_df.columns.values)) a_Desp_975.sort(key=int) if len(a_Desp_975) > 0: idx = [i for i,x in enumerate(s) if x in a_Desp_975] for i in range(len(a_Desp_975)): Comp_Desp_975_df.insert(loc = idx[i], column = a_Desp_975[i], value=ListNan[0]) del idx s = [str(i) for i in Comp_Desp_348_df.index.values] Comp_Desp_348_df = Comp_Desp_348_df[s] Comp_Desp_350_df = Comp_Desp_350_df[s] Comp_Desp_975_df = Comp_Desp_975_df[s] ##-------------------ESTANDARIZANDO LAS FORMAS DE LOS DATAFRAMES A LAS HORAS CASO NUBADO----------------## Comp_Nuba_348_df = Comp_Nuba_348_df[(Comp_Nuba_348_df.index >= 6)&(Comp_Nuba_348_df.index <18)] Comp_Nuba_350_df = Comp_Nuba_350_df[(Comp_Nuba_350_df.index >= 6)&(Comp_Nuba_350_df.index <18)] Comp_Nuba_975_df = Comp_Nuba_975_df[(Comp_Nuba_975_df.index >= 6)&(Comp_Nuba_975_df.index <18)] s = [str(i) for i in Comp_Nuba_348_df.index.values] ListNan = np.empty((1,len(Comp_Nuba_348_df))) ListNan [:] = np.nan def convert(set): return [*set, ] a_Nuba_348 = convert(set(s).difference(Comp_Nuba_348_df.columns.values)) a_Nuba_348.sort(key=int) if len(a_Nuba_348) > 0: idx = [i for i,x in enumerate(s) if x in a_Nuba_348] for i in range(len(a_Nuba_348)): Comp_Nuba_348_df.insert(loc = idx[i], column = a_Nuba_348[i], value=ListNan[0]) del idx a_Nuba_350 = convert(set(s).difference(Comp_Nuba_350_df.columns.values)) a_Nuba_350.sort(key=int) if len(a_Nuba_350) > 0: idx = [i for i,x in enumerate(s) if x in a_Nuba_350] for i in range(len(a_Nuba_350)): Comp_Nuba_350_df.insert(loc = idx[i], column = a_Nuba_350[i], value=ListNan[0]) del idx a_Nuba_975 = convert(set(s).difference(Comp_Nuba_975_df.columns.values)) a_Nuba_975.sort(key=int) if len(a_Nuba_975) > 0: idx = [i for i,x in enumerate(s) if x in a_Nuba_975] for i in range(len(a_Nuba_975)): Comp_Nuba_975_df.insert(loc = idx[i], column = a_Nuba_975[i], value=ListNan[0]) del idx Comp_Nuba_348_df = Comp_Nuba_348_df[s] Comp_Nuba_350_df = Comp_Nuba_350_df[s] Comp_Nuba_975_df = Comp_Nuba_975_df[s] ##-------------------CONTEO DE LA CANTIDAD DE DÍAS CONSIDERADOS NUBADOS Y DESPEJADOS----------------## Cant_Days_Nuba_348 = [] for i in range(len(s)): try: Cant_Days_Nuba_348.append(len(df_FH_nuba_348_groupH[df_FH_nuba_348_groupH .index == int(s[i])].values[0])) except IndexError: Cant_Days_Nuba_348.append(0) Cant_Days_Nuba_350 = [] for i in range(len(s)): try: Cant_Days_Nuba_350.append(len(df_FH_nuba_350_groupH[df_FH_nuba_350_groupH .index == int(s[i])].values[0])) except IndexError: Cant_Days_Nuba_350.append(0) Cant_Days_Nuba_975 = [] for i in range(len(s)): try: Cant_Days_Nuba_975.append(len(df_FH_nuba_975_groupH[df_FH_nuba_975_groupH .index == int(s[i])].values[0])) except IndexError: Cant_Days_Nuba_975.append(0) Cant_Days_Desp_348 = [] for i in range(len(s)): try: Cant_Days_Desp_348.append(len(df_FH_desp_348_groupH[df_FH_desp_348_groupH .index == int(s[i])].values[0])) except IndexError: Cant_Days_Desp_348.append(0) Cant_Days_Desp_350 = [] for i in range(len(s)): try: Cant_Days_Desp_350.append(len(df_FH_desp_350_groupH[df_FH_desp_350_groupH .index == int(s[i])].values[0])) except IndexError: Cant_Days_Desp_350.append(0) Cant_Days_Desp_975 = [] for i in range(len(s)): try: Cant_Days_Desp_975.append(len(df_FH_desp_975_groupH[df_FH_desp_975_groupH .index == int(s[i])].values[0])) except IndexError: Cant_Days_Desp_975.append(0) ##-------------------AJUSTADO LOS DATAFRAMES DE LOS ESTADÍSTICOS Y DEL VALOR P----------------## for i in range(len(c)): if str(c[i]) not in Sk_Desp_pvalue_975_df.columns: Sk_Desp_pvalue_975_df.insert(int(c[i]-6), str(c[i]), np.ones(12)*np.nan) if str(c[i]) not in Sk_Desp_pvalue_350_df.columns: Sk_Desp_pvalue_350_df.insert(int(c[i]-6), str(c[i]), np.ones(12)*np.nan) if str(c[i]) not in Sk_Desp_pvalue_348_df.columns: Sk_Desp_pvalue_348_df.insert(int(c[i]-6), str(c[i]), np.ones(12)*np.nan) if str(c[i]) not in Sk_Nuba_pvalue_350_df.columns: Sk_Nuba_pvalue_350_df.insert(int(c[i]-6), str(c[i]), np.ones(12)*np.nan) if str(c[i]) not in Sk_Nuba_pvalue_348_df.columns: Sk_Nuba_pvalue_348_df.insert(int(c[i]-6), str(c[i]), np.ones(12)*np.nan) if str(c[i]) not in Sk_Nuba_pvalue_975_df.columns: Sk_Nuba_pvalue_975_df.insert(int(c[i]-6), str(c[i]), np.ones(12)*np.nan) Significancia = 0.05 for i in c: Sk_Desp_pvalue_348_df.loc[Sk_Desp_pvalue_348_df[str(i)]< Significancia, str(i)] = 100 Sk_Desp_pvalue_350_df.loc[Sk_Desp_pvalue_350_df[str(i)]< Significancia, str(i)] = 100 Sk_Desp_pvalue_975_df.loc[Sk_Desp_pvalue_975_df[str(i)]< Significancia, str(i)] = 100 Sk_Nuba_pvalue_348_df.loc[Sk_Nuba_pvalue_348_df[str(i)]< Significancia, str(i)] = 100 Sk_Nuba_pvalue_350_df.loc[Sk_Nuba_pvalue_350_df[str(i)]< Significancia, str(i)] = 100 Sk_Nuba_pvalue_975_df.loc[Sk_Nuba_pvalue_975_df[str(i)]< Significancia, str(i)] = 100 row_Desp_348 = [] col_Desp_348 = [] for row in range(Sk_Desp_pvalue_348_df.shape[0]): for col in range(Sk_Desp_pvalue_348_df.shape[1]): if Sk_Desp_pvalue_348_df.get_value((row+6),str(col+6)) == 100: row_Desp_348.append(row) col_Desp_348.append(col) #print(row+6, col+6) row_Desp_350 = [] col_Desp_350 = [] for row in range(Sk_Desp_pvalue_350_df.shape[0]): for col in range(Sk_Desp_pvalue_350_df.shape[1]): if Sk_Desp_pvalue_350_df.get_value((row+6),str(col+6)) == 100: row_Desp_350.append(row) col_Desp_350.append(col) row_Desp_975 = [] col_Desp_975 = [] for row in range(Sk_Desp_pvalue_975_df.shape[0]): for col in range(Sk_Desp_pvalue_975_df.shape[1]): if Sk_Desp_pvalue_975_df.get_value((row+6),str(col+6)) == 100: row_Desp_975.append(row) col_Desp_975.append(col) row_Nuba_348 = [] col_Nuba_348 = [] for row in range(Sk_Nuba_pvalue_348_df.shape[0]): for col in range(Sk_Nuba_pvalue_348_df.shape[1]): if Sk_Nuba_pvalue_348_df.get_value((row+6),str(col+6)) == 100: row_Nuba_348.append(row) col_Nuba_348.append(col) #print(row+6, col+6) row_Nuba_350 = [] col_Nuba_350 = [] for row in range(Sk_Nuba_pvalue_350_df.shape[0]): for col in range(Sk_Nuba_pvalue_350_df.shape[1]): if Sk_Nuba_pvalue_350_df.get_value((row+6),str(col+6)) == 100: row_Nuba_350.append(row) col_Nuba_350.append(col) row_Nuba_975 = [] col_Nuba_975 = [] for row in range(Sk_Nuba_pvalue_975_df.shape[0]): for col in range(Sk_Nuba_pvalue_975_df.shape[1]): if Sk_Nuba_pvalue_975_df.get_value((row+6),str(col+6)) == 100: row_Nuba_975.append(row) col_Nuba_975.append(col) ##-------------------GRÁFICO DEL COMPOSITE NUBADO DE LA RADIACIÓN PARA CADA PUNTO Y LA CANT DE DÍAS----------------## plt.close("all") fig = plt.figure(figsize=(10., 8.),facecolor='w',edgecolor='w') ax1=fig.add_subplot(2,3,1) mapa = ax1.imshow(Comp_Nuba_348_df, interpolation = 'none', cmap = 'Spectral_r') ax1.set_yticks(range(0,12), minor=False) ax1.set_yticklabels(s, minor=False) ax1.set_xticks(range(0,12), minor=False) ax1.set_xticklabels(s, minor=False, rotation = 20) ax1.set_xlabel('Hora', fontsize=10, fontproperties = prop_1) ax1.set_ylabel('Hora', fontsize=10, fontproperties = prop_1) ax1.scatter(range(0,12),range(0,12), marker='x', facecolor = 'k', edgecolor = 'k', linewidth='1.', s=30) ax1.set_title(' x = Horas nubadas en JV', loc = 'center', fontsize=9) ax2=fig.add_subplot(2,3,2) mapa = ax2.imshow(Comp_Nuba_350_df, interpolation = 'none', cmap = 'Spectral_r') ax2.set_yticks(range(0,12), minor=False) ax2.set_yticklabels(s, minor=False) ax2.set_xticks(range(0,12), minor=False) ax2.set_xticklabels(s, minor=False, rotation = 20) ax2.set_xlabel('Hora', fontsize=10, fontproperties = prop_1) ax2.set_ylabel('Hora', fontsize=10, fontproperties = prop_1) ax2.scatter(range(0,12),range(0,12), marker='x', facecolor = 'k', edgecolor = 'k', linewidth='1.', s=30) ax2.set_title(' x = Horas nubadas en CI', loc = 'center', fontsize=9) ax3 = fig.add_subplot(2,3,3) mapa = ax3.imshow(Comp_Nuba_975_df, interpolation = 'none', cmap = 'Spectral_r') ax3.set_yticks(range(0,12), minor=False) ax3.set_yticklabels(s, minor=False) ax3.set_xticks(range(0,12), minor=False) ax3.set_xticklabels(s, minor=False, rotation = 20) ax3.set_xlabel('Hora', fontsize=10, fontproperties = prop_1) ax3.set_ylabel('Hora', fontsize=10, fontproperties = prop_1) ax3.scatter(range(0,12),range(0,12), marker='x', facecolor = 'k', edgecolor = 'k', linewidth='1.', s=30) ax3.set_title(' x = Horas nubadas en TS', loc = 'center', fontsize=9) cbar_ax = fig.add_axes([0.11, 0.93, 0.78, 0.008]) cbar = fig.colorbar(mapa, cax=cbar_ax, orientation='horizontal', format="%.2f") cbar.set_label(u"Insensidad de la radiación", fontsize=8, fontproperties=prop) ax4 = fig.add_subplot(2,3,4) ax4.spines['top'].set_visible(False) ax4.spines['right'].set_visible(False) ax4.bar(np.array(s), Cant_Days_Nuba_348, color='orange', align='center', alpha=0.5) ax4.set_xlabel(u'Hora', fontproperties = prop_1) ax4.set_ylabel(r"Cantidad de días", fontproperties = prop_1) ax4.set_xticks(range(0,12), minor=False) ax4.set_xticklabels(s, minor=False, rotation = 20) ax4.set_title(u' Cantidad de días en JV', loc = 'center', fontsize=9) ax5 = fig.add_subplot(2,3,5) ax5.spines['top'].set_visible(False) ax5.spines['right'].set_visible(False) ax5.bar(np.array(s), Cant_Days_Nuba_350, color='orange', align='center', alpha=0.5) ax5.set_xlabel(u'Hora', fontproperties = prop_1) ax5.set_ylabel(r"Cantidad de días", fontproperties = prop_1) ax5.set_xticks(range(0,12), minor=False) ax5.set_xticklabels(s, minor=False, rotation = 20) ax5.set_title(u' Cantidad de días en CI', loc = 'center', fontsize=9) ax6 = fig.add_subplot(2,3,6) ax6.spines['top'].set_visible(False) ax6.spines['right'].set_visible(False) ax6.bar(np.array(s), Cant_Days_Nuba_975, color='orange', align='center', alpha=0.5) ax6.set_xlabel(u'Hora', fontproperties = prop_1) ax6.set_ylabel(r"Cantidad de días", fontproperties = prop_1) ax6.set_xticks(range(0,12), minor=False) ax6.set_xticklabels(s, minor=False, rotation = 20) ax6.set_title(u' Cantidad de días en TS', loc = 'center', fontsize=9) plt.subplots_adjust(wspace=0.3, hspace=0.3) plt.savefig('/home/nacorreasa/Escritorio/Figuras/Composites_Nuba_Cant_Dias_R.png') plt.show() ##-------------------GRÁFICO DEL COMPOSITE DESPEJADO DE LA RADIACIÓN PARA CADA PUNTO Y LA CANT DE DÍAS----------------## plt.close("all") fig = plt.figure(figsize=(10., 8.),facecolor='w',edgecolor='w') ax1=fig.add_subplot(2,3,1) mapa = ax1.imshow(Comp_Desp_348_df, interpolation = 'none', cmap = 'Spectral_r') ax1.set_yticks(range(0,12), minor=False) ax1.set_yticklabels(s, minor=False) ax1.set_xticks(range(0,12), minor=False) ax1.set_xticklabels(s, minor=False, rotation = 20) ax1.set_xlabel('Hora', fontsize=10, fontproperties = prop_1) ax1.set_ylabel('Hora', fontsize=10, fontproperties = prop_1) ax1.scatter(range(0,12),range(0,12), marker='x', facecolor = 'k', edgecolor = 'k', linewidth='1.', s=30) ax1.set_title(' x = Horas despejadas en JV', loc = 'center', fontsize=9) ax2=fig.add_subplot(2,3,2) mapa = ax2.imshow(Comp_Desp_350_df, interpolation = 'none', cmap = 'Spectral_r') ax2.set_yticks(range(0,12), minor=False) ax2.set_yticklabels(s, minor=False) ax2.set_xticks(range(0,12), minor=False) ax2.set_xticklabels(s, minor=False, rotation = 20) ax2.set_xlabel('Hora', fontsize=10, fontproperties = prop_1) ax2.set_ylabel('Hora', fontsize=10, fontproperties = prop_1) ax2.scatter(range(0,12),range(0,12), marker='x', facecolor = 'k', edgecolor = 'k', linewidth='1.', s=30) ax2.set_title(' x = Horas despejadas en CI', loc = 'center', fontsize=9) ax3 = fig.add_subplot(2,3,3) mapa = ax3.imshow(Comp_Desp_975_df, interpolation = 'none', cmap = 'Spectral_r') ax3.set_yticks(range(0,12), minor=False) ax3.set_yticklabels(s, minor=False) ax3.set_xticks(range(0,12), minor=False) ax3.set_xticklabels(s, minor=False, rotation = 20) ax3.set_xlabel('Hora', fontsize=10, fontproperties = prop_1) ax3.set_ylabel('Hora', fontsize=10, fontproperties = prop_1) ax3.scatter(range(0,12),range(0,12), marker='x', facecolor = 'k', edgecolor = 'k', linewidth='1.', s=30) ax3.set_title(' x = Horas despejadas en TS', loc = 'center', fontsize=9) cbar_ax = fig.add_axes([0.11, 0.93, 0.78, 0.008]) cbar = fig.colorbar(mapa, cax=cbar_ax, orientation='horizontal', format="%.2f") cbar.set_label(u"Insensidad de la radiación", fontsize=8, fontproperties=prop) ax4 = fig.add_subplot(2,3,4) ax4.spines['top'].set_visible(False) ax4.spines['right'].set_visible(False) ax4.bar(np.array(s), Cant_Days_Desp_348, color='orange', align='center', alpha=0.5) ax4.set_xlabel(u'Hora', fontproperties = prop_1) ax4.set_ylabel(r"Cantidad de días", fontproperties = prop_1) ax4.set_xticks(range(0,12), minor=False) ax4.set_xticklabels(s, minor=False, rotation = 20) ax4.set_title(u' Cantidad de días en JV', loc = 'center', fontsize=9) ax5 = fig.add_subplot(2,3,5) ax5.spines['top'].set_visible(False) ax5.spines['right'].set_visible(False) ax5.bar(np.array(s), Cant_Days_Desp_350, color='orange', align='center', alpha=0.5) ax5.set_xlabel(u'Hora', fontproperties = prop_1) ax5.set_ylabel(r"Cantidad de días", fontproperties = prop_1) ax5.set_xticks(range(0,12), minor=False) ax5.set_xticklabels(s, minor=False, rotation = 20) ax5.set_title(u' Cantidad de días en CI', loc = 'center', fontsize=9) ax6 = fig.add_subplot(2,3,6) ax6.spines['top'].set_visible(False) ax6.spines['right'].set_visible(False) ax6.bar(np.array(s), Cant_Days_Desp_975, color='orange', align='center', alpha=0.5) ax6.set_xlabel(u'Hora', fontproperties = prop_1) ax6.set_ylabel(r"Cantidad de días", fontproperties = prop_1) ax6.set_xticks(range(0,12), minor=False) ax6.set_xticklabels(s, minor=False, rotation = 20) ax6.set_title(u' Cantidad de días en TS', loc = 'center', fontsize=9) plt.subplots_adjust(wspace=0.3, hspace=0.3) plt.savefig('/home/nacorreasa/Escritorio/Figuras/Composites_Desp_Cant_Dias_R.png') plt.title(u'Composites caso nubado', fontproperties=prop, fontsize = 8) plt.show() ##--------------------------TOTAL DE DÍAS DE REGISTRO---------------------## Total_dias_348 = len(Rad_df_348.groupby(pd.Grouper(freq="D")).mean()) Total_dias_350 = len(Rad_df_350.groupby(pd.Grouper(freq="D")).mean()) Total_dias_975 = len(Rad_df_975.groupby(
pd.Grouper(freq="D")
pandas.Grouper
# -*- coding: utf-8 -*- import re,pandas as pd import os pt=('\\txt') pathDir=os.listdir(pt) # csv_pt=os.getcwd()+"\\csv" # if not os.path.isdir(csv_pt): # 如果 _path 目录不存在,则创建 # os.makedirs(csv_pt) cols=['工单编号','上级工单编号','项目编号','工单描述','上级工单描述','施工单位','合同号','计划服务费','开工日期','完工日期','作业类型','通知单创建','通知单批准','计划','待审','下达','验收确认','完工确认','完工时间','打印者','打印日期','工序号','工作中心','控制码','工序内容','计划量','签证','物料编码','物料描述','单位计划量','出库量','签证'] l=[] x=0 l1=[] dfb = pd.DataFrame(columns=['工单编号', '上级工单编号', '项目编号', '工单描述', '上级工单描述', '施工单位', '合同号', '计划服务费','开工日期', '完工日期', '作业类型', '通知单创建', '通知单批准', '计划', '待审', '下达', '验收确认','完工确认', '完工时间', '打印者', '打印日期', '工序号', '工作中心', '控制码', '工序内容', '计划量', '签证', '物料编码', '物料描述', '单位计划量', '出库量', '签证', '单位', '数量确认']) for filename in pathDir: x=x+1 df = pd.DataFrame(index=range(30), columns=cols) def gg(rg,n): e=[] f = open(pt + '\\' + filename, encoding='gbk') for line in f: d=re.search(rg,line) if d: d=str(d.group()) e.append(d) print(e) df[n]=pd.Series(e) f.close() desc=gg('工单描述\s\S+','工单描述')#desc = re.findall('工单描述\s\S+', line) n=gg('工单编号\s\d+','工单编号') up_n=gg('上级工单编号\s\d+','上级工单编号') #sup_desc = re.findall('上级工单描述\s\d+', line) pro_n=gg('项目编号\s\d+','项目编号') #pro_co=re.findall('项目编号\s\d+',line) unit=gg('施工单位\s\S+','施工单位')#unit= re.findall('施工单位\s\S+', line) contr_co=gg('合同号\s\d+','合同号') #contr_co = re.findall('合同号\s\d+', line) cost=gg('计划服务费\s+\d+\,*\d*\.\d+','计划服务费')#cost = re.findall('计划服务费\s+\d+\,*\d*\.\d+', line) #if len(cost)>0: # money=cost[0].split()[1] start_d=gg('开工日期\s\S+','开工日期')#start_d = re.findall('开工日期\s\S+', line) over_d=gg('完工日期\s\S+','完工日期')#over_d = re.findall('完工日期\s\S+', line) worktp = gg('作业类型\s\S+', '作业类型')#worktp = re.findall('作业类型\s\S+', line) #ntc_crt = re.findall('通知单创建\s\S+', line) #ntc_pmt = re.findall('通知单批准\s\S+', line) #plan = re.findall('计划\s\S+', line) #ass= re.findall('待审\s\S+', line) #order= re.findall('下达\s\S+', line) #acpt_ck = re.findall('验收确认\s\S+', line) #fns_ck = re.findall('完工确认\s\S+', line) #fns_tm = re.findall('完工时间\s\S+', line) #printer = re.findall('打印者:\S+', line) #prt_d = re.findall('打印日期:\d+-\d+-\d+', line) ntc_crt = gg('通知单创建\s\S+', '通知单创建') ntc_pmt = gg('通知单批准\s\S+', '通知单批准') plan = gg('计划\s\S+', '计划') ass= gg('待审\s\S+', '待审') order= gg('下达\s\S+', '下达') acpt_ck = gg('验收确认\s\S+', '验收确认') fns_ck = gg('完工确认\s\S+', '完工确认') fns_tm = gg('完工时间\s\S+', '完工时间') printer = gg('打印者:\S+', '打印者') prt_d = gg('打印日期:\d+-\d+-\d+', '打印日期') wp_num = [] wk_ctr = [] ctr_code = [] wp_contts = [] cert = [] f = open(pt + '\\' + filename, encoding='gbk') for line in f: proc_set = re.findall('(^\d+)\s(\D+\d*)(\D+\d*)\s((\S*\d*\s*\.*)+)(\d+\.*\d*\D+)+\n', line)#426 if proc_set:# 工序号/工作中心/控制码/工序内容/签证 sets=list(proc_set[0]) wp_num.append(sets[0]) wk_ctr.append (sets[1]) ctr_code.append (sets[2]) wp_contts.append (sets[3]) cert.append (sets[5]) df['工序号']=pd.Series(wp_num) df['工作中心']=pd.Series(wk_ctr) df['控制码']=pd.Series(ctr_code) df['工序内容']=pd.Series(wp_contts) df['签证']=pd.Series(cert) wp_num = [] mat_code = [] mat_descr = [] msr_unit = [] all_num = [] cert=[] f.close() f = open(pt + '\\' + filename, encoding='gbk') for line in f: mat_set = re.findall('(^\d+)\s(\d+)\s((\S*\s*)+)\s(\D)\s((\d\.*\d*\s*)+)\n', line) # 140 if mat_set: # 工序号/物料编码/物料描述/单位/数量确认/计划量/出库量/签证 sets = list(mat_set[0]) wp_num.append(sets[0]) mat_code.append(sets[1]) mat_descr.append(sets[2]) msr_unit.append(sets[4]) all_num.append(sets[5]) cert.append(sets[6]) df['工序号']=pd.Series(wp_num) df['物料编码']=pd.Series(mat_code) df['物料描述']=pd.Series(mat_descr) df['单位']=pd.Series(msr_unit) df['数量确认']=pd.Series(all_num) df['签证']=pd.S
eries(cert)
pandas.Series
import streamlit as st import pandas as pd import numpy as np from sklearn import datasets from sklearn.ensemble import RandomForestClassifier import os st.write(""" # iris dataset flower prediction the app prdoict iris flower dataset ## by **<NAME>** www.github.com/akashAD98 """) st.sidebar.header("User input parameter") def user_input_data(): sepal_length=st.sidebar.slider('sepal lengrh1',4.3,7.9,5.4) sepal_width=st.sidebar.slider(' sepal width',2.0,4.4,3.4) petal_length=st.sidebar.slider('petal length',1.0,6.0,1.3) petal_width=st.sidebar.slider('petal width ',0.1,2.5,0.2) data={'sepal_length':sepal_length, 'sepal_width':sepal_width, 'petal_length':petal_length, 'petal_width':petal_width} features=
pd.DataFrame(data,index=[0])
pandas.DataFrame
# pylint: disable=redefined-outer-name,protected-access # pylint: disable=missing-function-docstring,missing-module-docstring,missing-class-docstring """This module contains tests of the tabulator Data Grid""" # http://tabulator.info/docs/4.7/quickstart # https://github.com/paulhodel/jexcel import pandas as pd import panel as pn import param import pytest from _pytest._code.code import TerminalRepr from bokeh.models import ColumnDataSource from awesome_panel_extensions.developer_tools.designer import Designer from awesome_panel_extensions.developer_tools.designer.services.component_reloader import ( ComponentReloader, ) from awesome_panel_extensions.widgets.tabulator import CSS_HREFS, Tabulator, TabulatorStylesheet def _data_records(): return [ {"id": 1, "name": "<NAME>", "age": 12, "col": "red", "dob": pd.Timestamp("14/05/1982")}, {"id": 2, "name": "<NAME>", "age": 1, "col": "blue", "dob": pd.Timestamp("14/05/1982")}, { "id": 3, "name": "<NAME>", "age": 42, "col": "green", "dob":
pd.Timestamp("22/05/1982")
pandas.Timestamp
#!/usr/bin/env python3 from __future__ import print_function import pandas as pd import tensorflow as tf import numpy as np import gzip import time from collections import OrderedDict from datetime import datetime import sys import os import subprocess import glob import argparse import scipy.optimize import scipy.stats as stats from scipy.special import loggamma sys.path.insert(1, os.path.dirname(__file__)) import genotypeio has_rpy2 = False e = subprocess.call('which R', shell=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) try: import rpy2 import rfunc if e==0: has_rpy2 = True except: pass if not has_rpy2: print("Warning: 'rfunc' cannot be imported. R and the 'rpy2' Python package are needed.") class SimpleLogger(object): def __init__(self, logfile=None, verbose=True): self.console = sys.stdout self.verbose = verbose if logfile is not None: self.log = open(logfile, 'w') else: self.log = None def write(self, message): if self.verbose: self.console.write(message+'\n') if self.log is not None: self.log.write(message+'\n') self.log.flush() output_dtype_dict = { 'num_var':np.int32, 'beta_shape1':np.float32, 'beta_shape2':np.float32, 'true_df':np.float32, 'pval_true_df':np.float64, 'variant_id':str, 'tss_distance':np.int32, 'ma_samples':np.int32, 'ma_count':np.int32, 'maf':np.float32, 'ref_factor':np.int32, 'pval_nominal':np.float64, 'slope':np.float32, 'slope_se':np.float32, 'pval_perm':np.float64, 'pval_beta':np.float64, } #------------------------------------------------------------------------------ # Core functions for mapping associations on GPU #------------------------------------------------------------------------------ class Residualizer(object): def __init__(self, C_t): # center and orthogonalize self.Q_t, _ = tf.qr(C_t - tf.reduce_mean(C_t, 0), full_matrices=False, name='qr') def transform(self, M_t, center=True): """Residualize rows of M wrt columns of C""" if center: M0_t = M_t - tf.reduce_mean(M_t, axis=1, keepdims=True) else: M0_t = M_t return M_t - tf.matmul(tf.matmul(M0_t, self.Q_t), self.Q_t, transpose_b=True) # keep original mean def residualize(M_t, C_t): """Residualize M wrt columns of C""" # center and orthogonalize Q_t, _ = tf.qr(C_t - tf.reduce_mean(C_t, 0), full_matrices=False, name='qr') # residualize M relative to C M0_t = M_t - tf.reduce_mean(M_t, axis=1, keepdims=True) return M_t - tf.matmul(tf.matmul(M0_t, Q_t), Q_t, transpose_b=True) # keep original mean def center_normalize(M_t, axis=0): """Center and normalize M""" if axis == 0: N_t = M_t - tf.reduce_mean(M_t, 0) return tf.divide(N_t, tf.sqrt(tf.reduce_sum(tf.pow(N_t, 2), 0))) elif axis == 1: N_t = M_t - tf.reduce_mean(M_t, axis=1, keepdims=True) return tf.divide(N_t, tf.sqrt(tf.reduce_sum(tf.pow(N_t, 2), axis=1, keepdims=True))) def calculate_maf(genotype_t): """Calculate minor allele frequency""" af_t = tf.reduce_sum(genotype_t,1) / (2*tf.cast(tf.shape(genotype_t)[1], tf.float32)) return tf.where(af_t>0.5, 1-af_t, af_t) def _calculate_corr(genotype_t, phenotype_t, covariates_t, return_sd=False): """Calculate correlation between normalized residual genotypes and phenotypes""" # residualize genotype_res_t = residualize(genotype_t, covariates_t) # variants x samples phenotype_res_t = residualize(phenotype_t, covariates_t) # phenotypes x samples if return_sd: _, gstd = tf.nn.moments(genotype_res_t, axes=1) _, pstd = tf.nn.moments(phenotype_res_t, axes=1) # center and normalize genotype_res_t = center_normalize(genotype_res_t, axis=1) phenotype_res_t = center_normalize(phenotype_res_t, axis=1) # correlation if return_sd: return tf.squeeze(tf.matmul(genotype_res_t, phenotype_res_t, transpose_b=True)), tf.sqrt(pstd / gstd) else: return tf.squeeze(tf.matmul(genotype_res_t, phenotype_res_t, transpose_b=True)) def _calculate_max_r2(genotypes_t, phenotypes_t, permutations_t, covariates_t, maf_threshold=0.05): maf_t = calculate_maf(genotypes_t) ix = tf.where(maf_t>=maf_threshold) g2 = tf.squeeze(tf.gather(genotypes_t, ix)) r2_nom_t = tf.pow(_calculate_corr(g2, phenotypes_t, covariates_t), 2) r2_emp_t = tf.pow(_calculate_corr(g2, permutations_t, covariates_t), 2) return tf.squeeze(tf.reduce_max(r2_nom_t, axis=0)), tf.squeeze(tf.reduce_max(r2_emp_t, axis=0)), tf.gather(tf.squeeze(ix), tf.argmax(r2_nom_t, axis=0)) def calculate_pval(r2_t, dof, maf_t=None, return_sparse=True, r2_threshold=0, return_r2=False): """Calculate p-values from squared correlations""" dims = r2_t.get_shape() if return_sparse: ix = tf.where(r2_t>=r2_threshold, name='threshold_r2') r2_t = tf.gather_nd(r2_t, ix) r2_t = tf.cast(r2_t, tf.float64) tstat = tf.sqrt(tf.divide(tf.scalar_mul(dof, r2_t), 1 - r2_t), name='tstat') tdist = tf.contrib.distributions.StudentT(np.float64(dof), loc=np.float64(0.0), scale=np.float64(1.0)) if return_sparse: pval_t = tf.SparseTensor(ix, tf.scalar_mul(2, tdist.cdf(-tf.abs(tstat))), dims) if maf_t is not None: maf_t = tf.gather(maf_t, ix[:,0]) else: pval_t = tf.scalar_mul(2, tdist.cdf(-tf.abs(tstat))) if maf_t is not None: if return_r2: return pval_t, maf_t, r2_t else: return pval_t, maf_t else: return pval_t def _interaction_assoc_row(genotype_t, phenotype_t, icovariates_t, return_sd=False): """ genotype_t must be a 1D tensor icovariates_t: [covariates_t, interaction_t] """ gi_covariates_t = tf.concat([icovariates_t, tf.reshape(genotype_t, [-1,1])], axis=1) ix_t = tf.reshape(tf.multiply(genotype_t, icovariates_t[:,-1]), [1,-1]) # must be 1 x N return _calculate_corr(ix_t, phenotype_t, gi_covariates_t, return_sd=return_sd) def calculate_association(genotype_t, phenotype_t, covariates_t, interaction_t=None, return_sparse=True, r2_threshold=None, return_r2=False): """Calculate genotype-phenotype associations""" maf_t = calculate_maf(genotype_t) if interaction_t is None: r2_t = tf.pow(_calculate_corr(genotype_t, phenotype_t, covariates_t), 2) dof = genotype_t.shape[1].value - 2 - covariates_t.shape[1].value else: icovariates_t = tf.concat([covariates_t, interaction_t], axis=1) r2_t = tf.pow(tf.map_fn(lambda x: _interaction_assoc_row(x, phenotype_t, icovariates_t), genotype_t, infer_shape=False), 2) dof = genotype_t.shape[1].value - 4 - covariates_t.shape[1].value return calculate_pval(r2_t, dof, maf_t, return_sparse=return_sparse, r2_threshold=r2_threshold, return_r2=return_r2) def get_sample_indexes(vcf_sample_ids, phenotype_df): """Get index of sample IDs in VCF""" return tf.constant([vcf_sample_ids.index(i) for i in phenotype_df.columns]) def initialize_data(phenotype_df, covariates_df, batch_size, interaction_s=None, dtype=tf.float32): """Generate placeholders""" num_samples = phenotype_df.shape[1] genotype_t = tf.placeholder(dtype, shape=[batch_size, num_samples]) phenotype_t = tf.constant(phenotype_df.values, dtype=dtype) phenotype_t = tf.reshape(phenotype_t, shape=[-1, num_samples]) covariates_t = tf.constant(covariates_df.values, dtype=dtype) covariates_t = tf.reshape(covariates_t, shape=[-1, covariates_df.shape[1]]) if interaction_s is None: return genotype_t, phenotype_t, covariates_t else: interaction_t = tf.constant(interaction_s.values, dtype=dtype) interaction_t = tf.reshape(interaction_t, [-1,1]) return genotype_t, phenotype_t, covariates_t, interaction_t #------------------------------------------------------------------------------ # Functions for beta-approximating empirical p-values #------------------------------------------------------------------------------ def pval_from_corr(r2, dof): tstat2 = dof * r2 / (1 - r2) return 2*stats.t.cdf(-np.abs(np.sqrt(tstat2)), dof) def df_cost(r2, dof): """minimize abs(1-alpha) as a function of M_eff""" pval = pval_from_corr(r2, dof) mean = np.mean(pval) var = np.var(pval) return mean * (mean * (1.0-mean) / var - 1.0) - 1.0 def beta_log_likelihood(x, shape1, shape2): """negative log-likelihood of beta distribution""" logbeta = loggamma(shape1) + loggamma(shape2) - loggamma(shape1+shape2) return (1.0-shape1)*np.sum(np.log(x)) + (1.0-shape2)*np.sum(np.log(1.0-x)) + len(x)*logbeta def fit_beta_parameters(r2_perm, dof, tol=1e-4, return_minp=False): """ r2_perm: array of max. r2 values from permutations dof: degrees of freedom """ try: true_dof = scipy.optimize.newton(lambda x: df_cost(r2_perm, x), dof, tol=tol, maxiter=50) except: print('WARNING: scipy.optimize.newton failed to converge (running scipy.optimize.minimize)') res = scipy.optimize.minimize(lambda x: np.abs(df_cost(r2_perm, x)), dof, method='Nelder-Mead', tol=tol) true_dof = res.x[0] pval = pval_from_corr(r2_perm, true_dof) mean, var = np.mean(pval), np.var(pval) beta_shape1 = mean * (mean * (1 - mean) / var - 1) beta_shape2 = beta_shape1 * (1/mean - 1) res = scipy.optimize.minimize(lambda s: beta_log_likelihood(pval, s[0], s[1]), [beta_shape1, beta_shape2], method='Nelder-Mead', tol=tol) beta_shape1, beta_shape2 = res.x if return_minp: return beta_shape1, beta_shape2, true_dof, pval else: return beta_shape1, beta_shape2, true_dof def calculate_beta_approx_pval(r2_perm, r2_nominal, dof, tol=1e-4): """ r2_nominal: nominal max. r2 (scalar or array) r2_perm: array of max. r2 values from permutations dof: degrees of freedom """ beta_shape1, beta_shape2, true_dof = fit_beta_parameters(r2_perm, dof, tol) pval_true_dof = pval_from_corr(r2_nominal, true_dof) pval_beta = stats.beta.cdf(pval_true_dof, beta_shape1, beta_shape2) return pval_beta, beta_shape1, beta_shape2, true_dof, pval_true_dof #------------------------------------------------------------------------------ # Top-level functions for running cis-/trans-QTL mapping #------------------------------------------------------------------------------ def calculate_cis_permutations(genotypes_t, range_t, phenotype_t, covariates_t, permutation_ix_t): """Calculate nominal and empirical correlations""" permutations_t = tf.gather(phenotype_t, permutation_ix_t) r_nominal_t, std_ratio_t = _calculate_corr(genotypes_t, tf.reshape(phenotype_t, [1,-1]), covariates_t, return_sd=True) corr_t = tf.pow(_calculate_corr(genotypes_t, permutations_t, covariates_t), 2) corr_t.set_shape([None,None]) r2_perm_t = tf.cast(tf.reduce_max(tf.boolean_mask(corr_t, ~tf.reduce_any(tf.is_nan(corr_t), 1)), axis=0), tf.float64) ix = tf.argmax(tf.pow(r_nominal_t, 2)) return r_nominal_t[ix], std_ratio_t[ix], range_t[ix], r2_perm_t, genotypes_t[ix], tf.shape(r_nominal_t)[0] def process_cis_permutations(r2_perm, r_nominal, std_ratio, g, num_var, dof, n_samples, nperm=10000): """Calculate beta-approximated empirical p-value and annotate phenotype""" r2_nominal = r_nominal*r_nominal pval_perm = (np.sum(r2_perm>=r2_nominal)+1) / (nperm+1) pval_beta, beta_shape1, beta_shape2, true_dof, pval_true_dof = calculate_beta_approx_pval(r2_perm, r2_nominal, dof) maf = np.sum(g) / (2*n_samples) if maf <= 0.5: ref_factor = 1 ma_samples = np.sum(g>0.5) ma_count = np.sum(g[g>0.5]) else: maf = 1-maf ref_factor = -1 ma_samples = np.sum(g<1.5) ma_count = np.sum(g[g<1.5]) slope = r_nominal * std_ratio tstat2 = dof * r2_nominal / (1 - r2_nominal) slope_se = np.abs(slope) / np.sqrt(tstat2) return pd.Series(OrderedDict([ ('num_var', num_var), ('beta_shape1', beta_shape1), ('beta_shape2', beta_shape2), ('true_df', true_dof), ('pval_true_df', pval_true_dof), ('variant_id', np.NaN), ('tss_distance', np.NaN), ('ma_samples', ma_samples), ('ma_count', ma_count), ('maf', maf), ('ref_factor', ref_factor), ('pval_nominal', pval_from_corr(r2_nominal, dof)), ('slope', slope), ('slope_se', slope_se), ('pval_perm', pval_perm), ('pval_beta', pval_beta), ])) def _process_group_permutations(buf): """ Merge results for grouped phenotypes buf: [r_nom, s_r, var_ix, r2_perm, g, ng, nid] """ # select phenotype with strongest nominal association max_ix = np.argmax(np.abs([b[0] for b in buf])) r_nom, s_r, var_ix = buf[max_ix][:3] g, ng, nid = buf[max_ix][4:] # select best phenotype correlation for each permutation r2_perm = np.max([b[3] for b in buf], 0) return r_nom, s_r, var_ix, r2_perm, g, ng, nid def map_cis(plink_reader, phenotype_df, phenotype_pos_df, covariates_df, group_s=None, nperm=10000, logger=None): """Run cis-QTL mapping""" assert np.all(phenotype_df.columns==covariates_df.index) if logger is None: logger = SimpleLogger() logger.write('cis-QTL mapping: empirical p-values for phenotypes') logger.write(' * {} samples'.format(phenotype_df.shape[1])) logger.write(' * {} phenotypes'.format(phenotype_df.shape[0])) if group_s is not None: logger.write(' * {} phenotype groups'.format(len(group_s.unique()))) group_dict = group_s.to_dict() logger.write(' * {} covariates'.format(covariates_df.shape[1])) logger.write(' * {} variants'.format(plink_reader.bed.shape[0])) dof = phenotype_df.shape[1] - 2 - covariates_df.shape[1] # permutation indices n_samples = phenotype_df.shape[1] ix = np.arange(n_samples) permutation_ix_t = tf.convert_to_tensor(np.array([np.random.permutation(ix) for i in range(nperm)])) # placeholders covariates_t = tf.constant(covariates_df.values, dtype=tf.float32) genotype_t = tf.placeholder(dtype=tf.float32, shape=(None)) phenotype_t = tf.placeholder(dtype=tf.float32, shape=(None)) # iterate over chromosomes res_df = [] start_time = time.time() with tf.Session() as sess: for chrom in phenotype_pos_df.loc[phenotype_df.index, 'chr'].unique(): logger.write(' Mapping chromosome {}'.format(chrom)) igc = genotypeio.InputGeneratorCis(plink_reader, phenotype_df.loc[phenotype_pos_df['chr']==chrom], phenotype_pos_df) dataset = tf.data.Dataset.from_generator(igc.generate_data, output_types=(tf.float32, tf.float32, tf.int32, tf.string)) dataset = dataset.prefetch(1) iterator = dataset.make_one_shot_iterator() next_phenotype, next_genotypes, next_range, next_id = iterator.get_next() r_nominal_t, std_ratio_t, varpos_t, r2_perm_t, g_t, ng_t = calculate_cis_permutations( next_genotypes, next_range, next_phenotype, covariates_t, permutation_ix_t) if group_s is None: for i in range(1, igc.n_phenotypes+1): r_nom, s_r, var_ix, r2_perm, g, ng, nid = sess.run([r_nominal_t, std_ratio_t, varpos_t, r2_perm_t, g_t, ng_t, next_id]) # post-processing (on CPU) res_s = process_cis_permutations(r2_perm, r_nom, s_r, g, ng, dof, phenotype_df.shape[1], nperm=nperm) res_s.name = nid.decode() res_s['variant_id'] = igc.chr_variant_pos.index[var_ix] res_s['tss_distance'] = igc.chr_variant_pos[res_s['variant_id']] - igc.phenotype_tss[res_s.name] res_df.append(res_s) print('\r * computing permutations for phenotype {}/{}'.format(i, igc.n_phenotypes), end='') print() else: n_groups = len(igc.phenotype_df.index.map(group_dict).unique()) buf = [] processed_groups = 0 previous_group = None for i in range(0, igc.n_phenotypes): group_id = group_dict[igc.phenotype_df.index[i]] ires = sess.run([r_nominal_t, std_ratio_t, varpos_t, r2_perm_t, g_t, ng_t, next_id]) if (group_id != previous_group and len(buf)>0): # new group, process previous # post-processing (on CPU) r_nom, s_r, var_ix, r2_perm, g, ng, nid = _process_group_permutations(buf) res_s = process_cis_permutations(r2_perm, r_nom, s_r, g, ng, dof, phenotype_df.shape[1], nperm=nperm) res_s.name = nid.decode() res_s['variant_id'] = igc.chr_variant_pos.index[var_ix] res_s['tss_distance'] = igc.chr_variant_pos[res_s['variant_id']] - igc.phenotype_tss[res_s.name] res_s['group_id'] = group_id res_s['group_size'] = len(buf) res_df.append(res_s) processed_groups += 1 print('\r * computing permutations for phenotype group {}/{}'.format(processed_groups, n_groups), end='') # reset buf = [ires] else: buf.append(ires) previous_group = group_id # process last group r_nom, s_r, var_ix, r2_perm, g, ng, nid = _process_group_permutations(buf) res_s = process_cis_permutations(r2_perm, r_nom, s_r, g, ng, dof, phenotype_df.shape[1], nperm=nperm) res_s.name = nid.decode() res_s['variant_id'] = igc.chr_variant_pos.index[var_ix] res_s['tss_distance'] = igc.chr_variant_pos[res_s['variant_id']] - igc.phenotype_tss[res_s.name] res_s['group_id'] = group_id res_s['group_size'] = len(buf) res_df.append(res_s) processed_groups += 1 print('\r * computing permutations for phenotype group {}/{}'.format(processed_groups, n_groups), end='\n') res_df = pd.concat(res_df, axis=1).T res_df.index.name = 'phenotype_id' logger.write(' Time elapsed: {:.2f} min'.format((time.time()-start_time)/60)) logger.write('done.') return res_df.astype(output_dtype_dict) def map_cis_independent(plink_reader, summary_df, phenotype_df, phenotype_pos_df, covariates_df, fdr=0.05, fdr_col='qval', nperm=10000, logger=None): """ Run independent cis-QTL mapping (forward-backward regression) summary_df: output from map_cis, annotated with q-values (calculate_qvalues) """ assert np.all(phenotype_df.index==phenotype_pos_df.index) if logger is None: logger = SimpleLogger() signif_df = summary_df[summary_df[fdr_col]<=fdr].copy() signif_df = signif_df[[ 'num_var', 'beta_shape1', 'beta_shape2', 'true_df', 'pval_true_df', 'variant_id', 'tss_distance', 'ma_samples', 'ma_count', 'maf', 'ref_factor', 'pval_nominal', 'slope', 'slope_se', 'pval_perm', 'pval_beta', ]] signif_threshold = signif_df['pval_beta'].max() # subset significant phenotypes ix = signif_df.index[signif_df.index.isin(phenotype_df.index)] phenotype_df = phenotype_df.loc[ix] phenotype_pos_df = phenotype_pos_df.loc[ix] logger.write('cis-QTL mapping: conditionally independent variants') logger.write(' * {} samples'.format(phenotype_df.shape[1])) logger.write(' * {} significant phenotypes'.format(signif_df.shape[0])) logger.write(' * {} covariates'.format(covariates_df.shape[1])) logger.write(' * {} variants'.format(plink_reader.bed.shape[0])) # print('Significance threshold: {}'.format(signif_threshold)) # permutation indices n_samples = phenotype_df.shape[1] ix = np.arange(n_samples) permutation_ix_t = tf.convert_to_tensor(np.array([np.random.permutation(ix) for i in range(nperm)])) # placeholders genotypes_t = tf.placeholder(dtype=tf.float32, shape=[None,None]) range_t = tf.placeholder(dtype=tf.int32, shape=[None]) phenotype_t = tf.placeholder(dtype=tf.float32, shape=[None]) covariates_t = tf.placeholder(dtype=tf.float32, shape=[None, None]) # graph r_nominal_t, std_ratio_t, varpos_t, r2_perm_t, g_t, ng_t = calculate_cis_permutations( genotypes_t, range_t, phenotype_t, covariates_t, permutation_ix_t) # iterate over chromosomes res_df = [] start_time = time.time() with tf.Session() as sess: for chrom in phenotype_pos_df['chr'].unique(): logger.write(' Mapping chromosome {}'.format(chrom)) igc = genotypeio.InputGeneratorCis(plink_reader, phenotype_df.loc[phenotype_pos_df['chr']==chrom], phenotype_pos_df) ix_dict = {i:k for k,i in enumerate(plink_reader.bim.loc[plink_reader.bim['chrom']==chrom, 'snp'])} igc.chr_genotypes, igc.chr_variant_pos = igc.plink_reader.get_region(chrom, verbose=False) igc.loaded_chrom = chrom # iterate through significant phenotypes, fetch associated genotypes for j, (phenotype, genotypes, genotype_range, phenotype_id) in enumerate(igc.generate_data(), 1): # 1) forward pass forward_df = [signif_df.loc[phenotype_id]] # initialize results with top variant covariates = covariates_df.values.copy() # initialize covariates dosage_dict = {} while True: # add variant to covariates variant_id = forward_df[-1]['variant_id'] ig = igc.chr_genotypes[ix_dict[variant_id]] dosage_dict[variant_id] = ig covariates = np.hstack([covariates, ig.reshape(-1,1)]).astype(np.float32) dof = phenotype_df.shape[1] - 2 - covariates.shape[1] # find next variant r_nom, s_r, var_ix, r2_perm, g, ng = sess.run([r_nominal_t, std_ratio_t, varpos_t, r2_perm_t, g_t, ng_t], feed_dict={genotypes_t:genotypes, range_t:genotype_range, phenotype_t:phenotype, covariates_t:covariates}) res_s = process_cis_permutations(r2_perm, r_nom, s_r, g, ng, dof, phenotype_df.shape[1], nperm=nperm) # add to list if significant if res_s['pval_beta'] <= signif_threshold: res_s.name = phenotype_id res_s['variant_id'] = igc.chr_variant_pos.index[var_ix] res_s['tss_distance'] = igc.chr_variant_pos[res_s['variant_id']] - igc.phenotype_tss[res_s.name] forward_df.append(res_s) else: break forward_df = pd.concat(forward_df, axis=1).T dosage_df = pd.DataFrame(dosage_dict) # print(forward_df) # 2) backward pass if forward_df.shape[0]>1: back_df = [] variant_set = set() for k,i in enumerate(forward_df['variant_id'], 1): covariates = np.hstack([ covariates_df.values, dosage_df[np.setdiff1d(forward_df['variant_id'], i)].values, ]) r_nom, s_r, var_ix, r2_perm, g, ng = sess.run([r_nominal_t, std_ratio_t, varpos_t, r2_perm_t, g_t, ng_t], feed_dict={genotypes_t:genotypes, range_t:genotype_range, phenotype_t:phenotype, covariates_t:covariates}) dof = phenotype_df.shape[1] - 2 - covariates.shape[1] res_s = process_cis_permutations(r2_perm, r_nom, s_r, g, ng, dof, phenotype_df.shape[1], nperm=nperm) res_s['variant_id'] = igc.chr_variant_pos.index[var_ix] if res_s['pval_beta'] <= signif_threshold and res_s['variant_id'] not in variant_set: res_s.name = phenotype_id res_s['tss_distance'] = igc.chr_variant_pos[res_s['variant_id']] - igc.phenotype_tss[res_s.name] res_s['rank'] = k back_df.append(res_s) variant_set.add(res_s['variant_id']) if len(back_df)>0: res_df.append(pd.concat(back_df, axis=1).T) # print('back') # print(pd.concat(back_df, axis=1).T) else: # single variant forward_df['rank'] = 1 res_df.append(forward_df) print('\r * computing independent QTL for phenotype {}/{}'.format(j, igc.n_phenotypes), end='') print() res_df = pd.concat(res_df, axis=0) res_df.index.name = 'phenotype_id' logger.write(' Time elapsed: {:.2f} min'.format((time.time()-start_time)/60)) logger.write('done.') return res_df.reset_index().astype(output_dtype_dict) def calculate_qvalues(res_df, fdr=0.05, qvalue_lambda=None): """Annotate permutation results with q-values, p-value threshold""" print('Computing q-values') print(' * Number of phenotypes tested: {}'.format(res_df.shape[0])) print(' * Correlation between Beta-approximated and empirical p-values: : {:.4f}'.format( stats.pearsonr(res_df['pval_perm'], res_df['pval_beta'])[0])) # calculate q-values if qvalue_lambda is None: qval, pi0 = rfunc.qvalue(res_df['pval_beta']) else: print(' * Calculating q-values with lambda = {:.3f}'.format(qvalue_lambda)) qval, pi0 = rfunc.qvalue(res_df['pval_beta'], qvalue_lambda) res_df['qval'] = qval print(' * Proportion of significant phenotypes (1-pi0): {:.2f}'.format(1 - pi0)) print(' * QTL phenotypes @ FDR {:.2f}: {}'.format(fdr, np.sum(res_df['qval']<=fdr))) # determine global min(p) significance threshold and calculate nominal p-value threshold for each gene ub = res_df.loc[res_df['qval']>fdr, 'pval_beta'].sort_values()[0] lb = res_df.loc[res_df['qval']<=fdr, 'pval_beta'].sort_values()[-1] pthreshold = (lb+ub)/2 print(' * min p-value threshold @ FDR {}: {:.6g}'.format(fdr, pthreshold)) res_df['pval_nominal_threshold'] = stats.beta.ppf(pthreshold, res_df['beta_shape1'], res_df['beta_shape2']) def annotate_genes(gene_df, annotation_gtf, lookup_df=None): """ Add gene and variant annotations (e.g., gene_name, rs_id, etc.) to gene-level output gene_df: output from map_cis() annotation_gtf: gene annotation in GTF format lookup_df: DataFrame with variant annotations, indexed by 'variant_id' """ gene_dict = {} print('['+datetime.now().strftime("%b %d %H:%M:%S")+'] Adding gene and variant annotations', flush=True) print(' * parsing GTF', flush=True) with open(annotation_gtf) as gtf: for row in gtf: row = row.strip().split('\t') if row[0][0]=='#' or row[2]!='gene': continue # get gene_id and gene_name from attributes attr = dict([i.split() for i in row[8].replace('"','').split(';') if i!='']) # gene_name, gene_chr, gene_start, gene_end, strand gene_dict[attr['gene_id']] = [attr['gene_name'], row[0], row[3], row[4], row[6]] print(' * annotating genes', flush=True) if 'group_id' in gene_df: gene_info = pd.DataFrame(data=[gene_dict[i] for i in gene_df['group_id']], columns=['gene_name', 'gene_chr', 'gene_start', 'gene_end', 'strand'], index=gene_df.index) else: gene_info = pd.DataFrame(data=[gene_dict[i] for i in gene_df.index], columns=['gene_name', 'gene_chr', 'gene_start', 'gene_end', 'strand'], index=gene_df.index) gene_df = pd.concat([gene_info, gene_df], axis=1) assert np.all(gene_df.index==gene_info.index) col_order = ['gene_name', 'gene_chr', 'gene_start', 'gene_end', 'strand', 'num_var', 'beta_shape1', 'beta_shape2', 'true_df', 'pval_true_df', 'variant_id', 'tss_distance'] if lookup_df is not None: print(' * adding variant annotations from lookup table', flush=True) gene_df = gene_df.join(lookup_df, on='variant_id') # add variant information col_order += list(lookup_df.columns) col_order += ['ma_samples', 'ma_count', 'maf', 'ref_factor', 'pval_nominal', 'slope', 'slope_se', 'pval_perm', 'pval_beta'] if 'group_id' in gene_df: col_order += ['group_id', 'group_size'] col_order += ['qval', 'pval_nominal_threshold'] gene_df = gene_df[col_order] print('done.', flush=True) return gene_df def get_significant_pairs(res_df, nominal_prefix, fdr=0.05): """Significant variant-phenotype pairs based on nominal p-value threshold for each phenotype""" print('['+datetime.now().strftime("%b %d %H:%M:%S")+'] tensorQTL: filtering significant variant-phenotype pairs', flush=True) assert 'qval' in res_df # significant phenotypes (apply FDR threshold) df = res_df.loc[res_df['qval']<=fdr, ['pval_nominal_threshold', 'pval_nominal', 'pval_beta']].copy() df.rename(columns={'pval_nominal': 'min_pval_nominal'}, inplace=True) signif_phenotype_ids = set(df.index) threshold_dict = df['pval_nominal_threshold'].to_dict() nominal_files = {os.path.basename(i).split('.')[-2]:i for i in glob.glob(nominal_prefix+'*.parquet')} chroms = sorted(nominal_files.keys()) signif_df = [] for k,c in enumerate(chroms, 1): print(' * parsing significant variant-phenotype pairs for chr. {}/{}'.format(k, len(chroms)), end='\r', flush=True) nominal_df = pd.read_parquet(nominal_files[c]) nominal_df = nominal_df[nominal_df['phenotype_id'].isin(signif_phenotype_ids)] m = nominal_df['pval_nominal']<nominal_df['phenotype_id'].apply(lambda x: threshold_dict[x]) signif_df.append(nominal_df[m]) print() signif_df = pd.concat(signif_df, axis=0) signif_df = signif_df.merge(df, left_on='phenotype_id', right_index=True) print('['+datetime.now().strftime("%b %d %H:%M:%S")+'] done', flush=True) return signif_df # signif_df.to_parquet(nominal_prefix.rsplit('.',1)[0]+'.cis_qtl_significant_pairs.parquet') def calculate_cis_nominal(genotypes_t, phenotype_t, covariates_t, dof): """ Calculate nominal associations genotypes_t: genotypes x samples phenotype_t: single phenotype covariates_t: covariates matrix, samples x covariates """ p = tf.reshape(phenotype_t, [1,-1]) r_nominal_t, std_ratio_t = _calculate_corr(genotypes_t, p, covariates_t, return_sd=True) r2_nominal_t = tf.pow(r_nominal_t, 2) pval_t = calculate_pval(r2_nominal_t, dof, maf_t=None, return_sparse=False) slope_t = tf.multiply(r_nominal_t, std_ratio_t) slope_se_t = tf.divide(tf.abs(slope_t), tf.sqrt(tf.divide(tf.scalar_mul(dof, r2_nominal_t), 1 - r2_nominal_t))) # calculate MAF n = covariates_t.shape[0].value n2 = 2*n af_t = tf.reduce_sum(genotypes_t,1) / n2 ix_t = af_t<=0.5 maf_t = tf.where(ix_t, af_t, 1-af_t) # calculate MA samples and counts m = tf.cast(genotypes_t>0.5, tf.float32) a = tf.reduce_sum(m, 1) b = tf.reduce_sum(tf.cast(genotypes_t<1.5, tf.float32), 1) ma_samples_t = tf.where(ix_t, a, b) m = tf.multiply(m, genotypes_t) a = tf.reduce_sum(m, 1) ma_count_t = tf.where(ix_t, a, n2-a) return pval_t, slope_t, slope_se_t, maf_t, ma_samples_t, ma_count_t def map_cis_nominal(plink_reader, phenotype_df, phenotype_pos_df, covariates_df, prefix, output_dir='.', logger=None): """ cis-QTL mapping: nominal associations for all variant-phenotype pairs Association results for each chromosome are written to parquet files in the format <output_dir>/<prefix>.cis_qtl_pairs.<chr>.parquet """ if logger is None: logger = SimpleLogger() logger.write('cis-QTL mapping: nominal associations for all variant-phenotype pairs') logger.write(' * {} samples'.format(phenotype_df.shape[1])) logger.write(' * {} phenotypes'.format(phenotype_df.shape[0])) logger.write(' * {} covariates'.format(covariates_df.shape[1])) logger.write(' * {} variants'.format(plink_reader.bed.shape[0])) # placeholders covariates_t = tf.constant(covariates_df.values, dtype=tf.float32) genotype_t = tf.placeholder(dtype=tf.float32, shape=(None)) phenotype_t = tf.placeholder(dtype=tf.float32, shape=(None)) dof = phenotype_df.shape[1] - 2 - covariates_df.shape[1] with tf.Session() as sess: # iterate over chromosomes start_time = time.time() for chrom in phenotype_pos_df.loc[phenotype_df.index, 'chr'].unique(): logger.write(' Mapping chromosome {}'.format(chrom)) igc = genotypeio.InputGeneratorCis(plink_reader, phenotype_df.loc[phenotype_pos_df['chr']==chrom], phenotype_pos_df) dataset = tf.data.Dataset.from_generator(igc.generate_data, output_types=(tf.float32, tf.float32, tf.int32, tf.string)) dataset = dataset.prefetch(1) iterator = dataset.make_one_shot_iterator() next_phenotype, next_genotypes, _, next_id = iterator.get_next() x = calculate_cis_nominal(next_genotypes, next_phenotype, covariates_t, dof) chr_res_df = [] for i in range(1, igc.n_phenotypes+1): (pval_nominal, slope, slope_se, maf, ma_samples, ma_count), phenotype_id = sess.run([x, next_id]) phenotype_id = phenotype_id.decode() r = igc.cis_ranges[phenotype_id] variant_ids = plink_reader.variant_pos[chrom].index[r[0]:r[1]+1] nv = len(variant_ids) tss_distance = np.int32(plink_reader.variant_pos[chrom].values[r[0]:r[1]+1] - igc.phenotype_tss[phenotype_id]) chr_res_df.append(pd.DataFrame(OrderedDict([ ('phenotype_id', [phenotype_id]*nv), ('variant_id', variant_ids), ('tss_distance', tss_distance), ('maf', maf), ('ma_samples', np.int32(ma_samples)), ('ma_count', np.int32(ma_count)), ('pval_nominal', pval_nominal), ('slope', slope), ('slope_se', slope_se), ]))) print('\r computing associations for phenotype {}/{}'.format(i, igc.n_phenotypes), end='') print() logger.write(' time elapsed: {:.2f} min'.format((time.time()-start_time)/60)) print(' * writing output') pd.concat(chr_res_df, copy=False).to_parquet(os.path.join(output_dir, '{}.cis_qtl_pairs.{}.parquet'.format(prefix, chrom))) logger.write('done.') def calculate_nominal_interaction(genotypes_t, phenotype_t, interaction_t, dof, residualizer, interaction_mask_t=None, maf_threshold_interaction=0.05, return_sparse=False, tstat_threshold=None): """""" phenotype_t = tf.reshape(phenotype_t, [1,-1]) # filter monomorphic sites (to avoid colinearity in X) mask_t = ~(tf.reduce_all(tf.equal(genotypes_t, 0), axis=1) | tf.reduce_all(tf.equal(genotypes_t, 1), axis=1) | tf.reduce_all(tf.equal(genotypes_t, 2), axis=1) ) if interaction_mask_t is not None: upper_t = tf.boolean_mask(genotypes_t, interaction_mask_t, axis=1) lower_t = tf.boolean_mask(genotypes_t, ~interaction_mask_t, axis=1) mask_t = (mask_t & (calculate_maf(upper_t) >= maf_threshold_interaction) & (calculate_maf(lower_t) >= maf_threshold_interaction) ) mask_t.set_shape([None]) # required for tf.boolean_mask genotypes_t = tf.boolean_mask(genotypes_t, mask_t) s = tf.shape(genotypes_t) ng = s[0] ns = tf.cast(s[1], tf.float32) g0_t = genotypes_t - tf.reduce_mean(genotypes_t, axis=1, keepdims=True) gi_t = tf.multiply(genotypes_t, interaction_t) gi0_t = gi_t - tf.reduce_mean(gi_t, axis=1, keepdims=True) i0_t = interaction_t - tf.reduce_mean(interaction_t) p_t = tf.reshape(phenotype_t, [1,-1]) p0_t = p_t - tf.reduce_mean(p_t, axis=1, keepdims=True) # residualize rows g0_t = residualizer.transform(g0_t, center=False) gi0_t = residualizer.transform(gi0_t, center=False) p0_t = residualizer.transform(p0_t, center=False) i0_t = residualizer.transform(i0_t, center=False) i0_t = tf.tile(i0_t, [ng, 1]) # regression X_t = tf.stack([g0_t, i0_t, gi0_t], axis=2) Xinv = tf.linalg.inv(tf.matmul(X_t, X_t, transpose_a=True)) b_t = tf.matmul(tf.matmul(Xinv, X_t, transpose_b=True), tf.tile(tf.reshape(p0_t, [1,1,-1]), [ng,1,1]), transpose_b=True) # calculate b, b_se r_t = tf.squeeze(tf.matmul(X_t, b_t)) - p0_t rss_t = tf.reduce_sum(tf.multiply(r_t, r_t), axis=1) Cx = Xinv * tf.reshape(rss_t, [-1,1,1]) / dof b_se_t = tf.sqrt(tf.matrix_diag_part(Cx)) b_t = tf.squeeze(b_t) tstat_t = tf.divide(tf.cast(b_t, tf.float64), tf.cast(b_se_t, tf.float64)) # weird tf bug? without cast/copy, divide appears to modify b_se_t?? # calculate pval tdist = tf.contrib.distributions.StudentT(np.float64(dof), loc=np.float64(0.0), scale=np.float64(1.0)) pval_t = tf.scalar_mul(2, tdist.cdf(-tf.abs(tstat_t))) # calculate MAF n2 = 2*ns af_t = tf.reduce_sum(genotypes_t,1) / n2 ix_t = af_t<=0.5 maf_t = tf.where(ix_t, af_t, 1-af_t) # calculate MA samples and counts m = tf.cast(genotypes_t>0.5, tf.float32) a = tf.reduce_sum(m, 1) b = tf.reduce_sum(tf.cast(genotypes_t<1.5, tf.float32), 1) ma_samples_t = tf.where(ix_t, a, b) m = tf.multiply(m, genotypes_t) a = tf.reduce_sum(m, 1) ma_count_t = tf.where(ix_t, a, n2-a) return pval_t, b_t, b_se_t, maf_t, ma_samples_t, ma_count_t, mask_t def map_cis_interaction_nominal(plink_reader, phenotype_df, phenotype_pos_df, covariates_df, interaction_s, prefix, maf_threshold_interaction=0.05, best_only=False, output_dir='.', logger=None): """ cis-QTL mapping: nominal associations for all variant-phenotype pairs Association results for each chromosome are written to parquet files in the format <output_dir>/<prefix>.cis_qtl_pairs.<chr>.parquet """ if logger is None: logger = SimpleLogger() logger.write('cis-QTL mapping: nominal associations for all variant-phenotype pairs') logger.write(' * {} samples'.format(phenotype_df.shape[1])) logger.write(' * {} phenotypes'.format(phenotype_df.shape[0])) logger.write(' * {} covariates'.format(covariates_df.shape[1])) logger.write(' * {} variants'.format(plink_reader.bed.shape[0])) logger.write(' * including interaction term') covariates_t = tf.constant(covariates_df.values, dtype=tf.float32) dof = phenotype_df.shape[1] - 4 - covariates_df.shape[1] interaction_t = tf.constant(interaction_s.values.reshape(1,-1), dtype=tf.float32) # 1 x n interaction_mask_t = tf.constant(interaction_s >= interaction_s.median()) residualizer = Residualizer(covariates_t) with tf.Session() as sess: # iterate over chromosomes start_time = time.time() best_assoc = [] for chrom in phenotype_pos_df.loc[phenotype_df.index, 'chr'].unique(): logger.write(' Mapping chromosome {}'.format(chrom)) igc = genotypeio.InputGeneratorCis(plink_reader, phenotype_df.loc[phenotype_pos_df['chr']==chrom], phenotype_pos_df) dataset = tf.data.Dataset.from_generator(igc.generate_data, output_types=(tf.float32, tf.float32, tf.int32, tf.string)) dataset = dataset.prefetch(1) iterator = dataset.make_one_shot_iterator() next_phenotype, next_genotypes, _, next_id = iterator.get_next() x = calculate_nominal_interaction(next_genotypes, next_phenotype, interaction_t, dof, residualizer, interaction_mask_t=interaction_mask_t, maf_threshold_interaction=0.05) chr_res_df = [] for i in range(1, igc.n_phenotypes+1): (pval, b, b_se, maf, ma_samples, ma_count, maf_mask), phenotype_id = sess.run([x, next_id]) phenotype_id = phenotype_id.decode() r = igc.cis_ranges[phenotype_id] variant_ids = plink_reader.variant_pos[chrom].index[r[0]:r[1]+1] tss_distance = np.int32(plink_reader.variant_pos[chrom].values[r[0]:r[1]+1] - igc.phenotype_tss[phenotype_id]) if maf_mask is not None: variant_ids = variant_ids[maf_mask] tss_distance = tss_distance[maf_mask] nv = len(variant_ids) df = pd.DataFrame(OrderedDict([ ('phenotype_id', [phenotype_id]*nv), ('variant_id', variant_ids), ('tss_distance', tss_distance), ('maf', maf), ('ma_samples', np.int32(ma_samples)), ('ma_count', np.int32(ma_count)), ('pval_g', pval[:,0]), ('b_g', b[:,0]), ('b_g_se', b_se[:,0]), ('pval_i', pval[:,1]), ('b_i', b[:,1]), ('b_i_se', b_se[:,1]), ('pval_gi', pval[:,2]), ('b_gi', b[:,2]), ('b_gi_se', b_se[:,2]), ])) if best_only: best_assoc.append(df.loc[df['pval_gi'].idxmin()]) else: chr_res_df.append(df) print('\r computing associations for phenotype {}/{}'.format(i, igc.n_phenotypes), end='') print() logger.write(' time elapsed: {:.2f} min'.format((time.time()-start_time)/60)) if not best_only: print(' * writing output') pd.concat(chr_res_df, copy=False).to_parquet(os.path.join(output_dir, '{}.cis_qtl_pairs.{}.parquet'.format(prefix, chrom))) if best_only: pd.concat(best_assoc, axis=1).T.set_index('phenotype_id').to_csv( os.path.join(output_dir, '{}.cis_qtl_top_assoc.txt.gz'.format(prefix)), sep='\t', float_format='%.6g', compression='gzip' ) logger.write('done.') def map_trans(genotype_df, phenotype_df, covariates_df, interaction_s=None, return_sparse=True, pval_threshold=1e-5, maf_threshold=0.05, return_r2=False, batch_size=20000, logger=None, verbose=True): """Run trans-QTL mapping from genotypes in memory""" if logger is None: logger = SimpleLogger(verbose=verbose) assert np.all(phenotype_df.columns==covariates_df.index) variant_ids = genotype_df.index.tolist() variant_dict = {i:j for i,j in enumerate(variant_ids)} n_variants = len(variant_ids) n_samples = phenotype_df.shape[1] logger.write('trans-QTL mapping') logger.write(' * {} samples'.format(n_samples)) logger.write(' * {} phenotypes'.format(phenotype_df.shape[0])) logger.write(' * {} covariates'.format(covariates_df.shape[1])) logger.write(' * {} variants'.format(n_variants)) if interaction_s is not None: logger.write(' * including interaction term') # with tf.device('/cpu:0'): ggt = genotypeio.GenotypeGeneratorTrans(genotype_df.values, batch_size=batch_size, dtype=np.float32) dataset_genotypes = tf.data.Dataset.from_generator(ggt.generate_data, output_types=tf.float32) dataset_genotypes = dataset_genotypes.prefetch(10) iterator = dataset_genotypes.make_one_shot_iterator() next_element = iterator.get_next() # index of VCF samples corresponding to phenotypes ix_t = get_sample_indexes(genotype_df.columns.tolist(), phenotype_df) next_element = tf.gather(next_element, ix_t, axis=1) # calculate correlation threshold for sparse output if return_sparse: dof = n_samples - 2 - covariates_df.shape[1] tstat_threshold = stats.t.ppf(pval_threshold/2, dof) r2_threshold = tstat_threshold**2 / (dof + tstat_threshold**2) else: r2_threshold = None tstat_threshold = None if interaction_s is None: genotypes, phenotypes, covariates = initialize_data(phenotype_df, covariates_df, batch_size=batch_size, dtype=tf.float32) # with tf.device('/gpu:0'): x = calculate_association(genotypes, phenotypes, covariates, return_sparse=return_sparse, r2_threshold=r2_threshold, return_r2=return_r2) else: genotypes, phenotypes, covariates, interaction = initialize_data(phenotype_df, covariates_df, batch_size=batch_size, interaction_s=interaction_s) x = calculate_association(genotypes, phenotypes, covariates, interaction_t=interaction, return_sparse=return_sparse, r2_threshold=r2_threshold) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) start_time = time.time() if verbose: print(' Mapping batches') with tf.Session() as sess: # run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) # run_metadata = tf.RunMetadata() # writer = tf.summary.FileWriter('logs', sess.graph, session=sess) sess.run(init_op) pval_list = [] maf_list = [] r2_list = [] for i in range(1, ggt.num_batches+1): if verbose: sys.stdout.write('\r * processing batch {}/{}'.format(i, ggt.num_batches)) sys.stdout.flush() g_iter = sess.run(next_element) # x: p_values, maf, {r2} p_ = sess.run(x, feed_dict={genotypes:g_iter})#, options=run_options, run_metadata=run_metadata) # writer.add_run_metadata(run_metadata, 'batch{}'.format(i)) pval_list.append(p_[0]) maf_list.append(p_[1]) if return_r2: r2_list.append(p_[2]) if return_sparse: pval = tf.sparse_concat(0, pval_list).eval() else: pval = tf.concat(pval_list, 0).eval() maf = tf.concat(maf_list, 0).eval() if return_r2: r2 = tf.concat(r2_list, 0).eval() if verbose: print() # writer.close() logger.write(' time elapsed: {:.2f} min'.format((time.time()-start_time)/60)) if return_sparse: ix = pval.indices[:,0]<n_variants # truncate last batch v = [variant_dict[i] for i in pval.indices[ix,0]] if phenotype_df.shape[0]>1: phenotype_ids = phenotype_df.index[pval.indices[ix,1]] else: phenotype_ids = phenotype_df.index.tolist()*len(pval.values) pval_df = pd.DataFrame( np.array([v, phenotype_ids, pval.values[ix], maf[ix]]).T, columns=['variant_id', 'phenotype_id', 'pval', 'maf'] ) pval_df['pval'] = pval_df['pval'].astype(np.float64) pval_df['maf'] = pval_df['maf'].astype(np.float32) if return_r2: pval_df['r2'] = r2[ix].astype(np.float32) else: # truncate last batch pval = pval[:n_variants] maf = maf[:n_variants] # add indices pval_df = pd.DataFrame(pval, index=variant_ids, columns=[i for i in phenotype_df.index]) pval_df['maf'] = maf pval_df.index.name = 'variant_id' if maf_threshold is not None and maf_threshold>0: logger.write(' * filtering output by MAF >= {}'.format(maf_threshold)) pval_df = pval_df[pval_df['maf']>=maf_threshold] logger.write('done.') return pval_df def map_trans_permutations(genotype_input, phenotype_df, covariates_df, permutations=None, split_chr=True, pval_df=None, nperms=10000, maf_threshold=0.05, batch_size=20000, logger=None): """ Warning: this function requires that all phenotypes are normally distributed, e.g., inverse normal transformed """ if logger is None: logger = SimpleLogger() assert np.all(phenotype_df.columns==covariates_df.index) if split_chr: plink_reader = genotype_input # assert isinstance(plink_reader, genotypeio.PlinkReader) if pval_df is not None: assert 'phenotype_chr' in pval_df and 'pval' in pval_df and np.all(pval_df.index==phenotype_df.index) variant_ids = plink_reader.bim['snp'].tolist() # index of VCF samples corresponding to phenotypes ix_t = get_sample_indexes(plink_reader.fam['iid'].tolist(), phenotype_df) else: genotype_df = genotype_input assert isinstance(genotype_df, pd.DataFrame) variant_ids = genotype_df.index.tolist() # index of VCF samples corresponding to phenotypes ix_t = get_sample_indexes(genotype_df.columns.tolist(), phenotype_df) n_variants = len(variant_ids) n_samples = phenotype_df.shape[1] dof = phenotype_df.shape[1] - 2 - covariates_df.shape[1] logger.write('trans-QTL mapping (FDR)') logger.write(' * {} samples'.format(n_samples)) logger.write(' * {} phenotypes'.format(phenotype_df.shape[0])) logger.write(' * {} covariates'.format(covariates_df.shape[1])) logger.write(' * {} variants'.format(n_variants)) if permutations is None: # generate permutations q = stats.norm.ppf(np.arange(1,n_samples+1)/(n_samples+1)) qv = np.tile(q,[nperms,1]) for i in np.arange(nperms): np.random.shuffle(qv[i,:]) else: assert permutations.shape[1]==n_samples nperms = permutations.shape[0] qv = permutations logger.write(' * {} permutations'.format(nperms)) permutations_t = tf.constant(qv, dtype=tf.float32) permutations_t = tf.reshape(permutations_t, shape=[-1, n_samples]) genotypes_t, phenotypes_t, covariates_t = initialize_data(phenotype_df, covariates_df, batch_size=batch_size, dtype=tf.float32) max_r2_nominal_t, max_r2_permuted_t, idxmax_t = _calculate_max_r2(genotypes_t, phenotypes_t, permutations_t, covariates_t, maf_threshold=maf_threshold) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) if split_chr: start_time = time.time() chr_max_r2_nominal = OrderedDict() chr_max_r2_empirical = OrderedDict() print(' Mapping batches') with tf.Session() as sess: sess.run(init_op) for chrom in plink_reader.bim['chrom'].unique(): genotypes, variant_pos = plink_reader.get_region(chrom, verbose=True) ggt = genotypeio.GenotypeGeneratorTrans(genotypes, batch_size=batch_size, dtype=np.float32) dataset_genotypes = tf.data.Dataset.from_generator(ggt.generate_data, output_types=tf.float32) dataset_genotypes = dataset_genotypes.prefetch(10) iterator = dataset_genotypes.make_one_shot_iterator() next_element = iterator.get_next() next_element = tf.gather(next_element, ix_t, axis=1) nominal_list = [] perms_list = [] nominal_idx_list = [] for i in range(1, ggt.num_batches+1): sys.stdout.write('\r * {}: processing batch {}/{} '.format(chrom, i, ggt.num_batches)) sys.stdout.flush() g_iter = sess.run(next_element) max_r2_nominal, max_r2_permuted = sess.run([max_r2_nominal_t, max_r2_permuted_t], feed_dict={genotypes_t:g_iter}) nominal_list.append(max_r2_nominal) perms_list.append(max_r2_permuted) chr_max_r2_nominal[chrom] = np.max(np.array(nominal_list), 0) chr_max_r2_empirical[chrom] = np.max(np.array(perms_list), 0) logger.write(' time elapsed: {:.2f} min'.format((time.time()-start_time)/60)) chr_max_r2_nominal = pd.DataFrame(chr_max_r2_nominal, index=phenotype_df.index) chr_max_r2_empirical = pd.DataFrame(chr_max_r2_empirical) # compute leave-one-out max max_r2_nominal = OrderedDict() max_r2_empirical = OrderedDict() for c in chr_max_r2_nominal: max_r2_nominal[c] = chr_max_r2_nominal[np.setdiff1d(chr_max_r2_nominal.columns, c)].max(1) max_r2_empirical[c] = chr_max_r2_empirical[np.setdiff1d(chr_max_r2_empirical.columns, c)].max(1) max_r2_nominal = pd.DataFrame(max_r2_nominal, index=phenotype_df.index) max_r2_empirical = pd.DataFrame(max_r2_empirical) # nperms x chrs if pval_df is not None: # nominal p-value (sanity check, matches pval_df['pval']) r2_nominal = max_r2_nominal.lookup(pval_df['phenotype_id'], pval_df['phenotype_chr']) tstat = np.sqrt( dof*r2_nominal / (1-r2_nominal) ) minp_nominal = pd.Series(2*stats.t.cdf(-np.abs(tstat), dof), index=pval_df['phenotype_id']) # empirical p-values tstat = np.sqrt( dof*max_r2_empirical / (1-max_r2_empirical) ) minp_empirical = pd.DataFrame(2*stats.t.cdf(-np.abs(tstat), dof), columns=tstat.columns) if pval_df is not None: pval_perm = np.array([(np.sum(minp_empirical[chrom]<=p)+1)/(nperms+1) for p, chrom in zip(pval_df['pval'], pval_df['phenotype_chr'])]) beta_shape1 = {} beta_shape2 = {} true_dof = {} for c in max_r2_empirical: beta_shape1[c], beta_shape2[c], true_dof[c] = fit_beta_parameters(max_r2_empirical[c], dof) if pval_df is not None: beta_shape1 = [beta_shape1[c] for c in pval_df['phenotype_chr']] beta_shape2 = [beta_shape2[c] for c in pval_df['phenotype_chr']] true_dof = [true_dof[c] for c in pval_df['phenotype_chr']] else: chroms = plink_reader.bim['chrom'].unique() beta_shape1 = [beta_shape1[c] for c in chroms] beta_shape2 = [beta_shape2[c] for c in chroms] true_dof = [true_dof[c] for c in chroms] if pval_df is not None: pval_true_dof = pval_from_corr(r2_nominal, true_dof) pval_beta = stats.beta.cdf(pval_true_dof, beta_shape1, beta_shape2) variant_id = [np.NaN]*len(pval_beta) else: ggt = genotypeio.GenotypeGeneratorTrans(genotype_df.values, batch_size=batch_size, dtype=np.float32) dataset_genotypes = tf.data.Dataset.from_generator(ggt.generate_data, output_types=tf.float32) dataset_genotypes = dataset_genotypes.prefetch(10) iterator = dataset_genotypes.make_one_shot_iterator() next_element = iterator.get_next() next_element = tf.gather(next_element, ix_t, axis=1) start_time = time.time() max_r2_nominal = [] max_r2_nominal_idx = [] max_r2_empirical = [] with tf.Session() as sess: sess.run(init_op) for i in range(ggt.num_batches): sys.stdout.write('\rProcessing batch {}/{}'.format(i+1, ggt.num_batches)) sys.stdout.flush() g_iter = sess.run(next_element) res = sess.run([max_r2_nominal_t, max_r2_permuted_t, idxmax_t], feed_dict={genotypes_t:g_iter}) max_r2_nominal.append(res[0]) max_r2_nominal_idx.append(res[2] + i*batch_size) max_r2_empirical.append(res[1]) print() max_r2_nominal = np.array(max_r2_nominal) max_r2_nominal_idx = np.array(max_r2_nominal_idx) max_r2_empirical = np.array(max_r2_empirical) logger.write(' time elapsed: {:.2f} min'.format((time.time()-start_time)/60)) if len(max_r2_nominal_idx.shape)==1: max_r2_nominal = max_r2_nominal.reshape(-1,1) max_r2_nominal_idx = max_r2_nominal_idx.reshape(-1,1) idxmax = np.argmax(max_r2_nominal, 0) variant_ix = [max_r2_nominal_idx[i,k] for k,i in enumerate(idxmax)] variant_id = genotype_df.index[variant_ix] max_r2_nominal = np.max(max_r2_nominal, 0) tstat = np.sqrt( dof*max_r2_nominal / (1-max_r2_nominal) ) minp_nominal = 2*stats.t.cdf(-np.abs(tstat), dof) max_r2_empirical = np.max(max_r2_empirical, 0) tstat = np.sqrt( dof*max_r2_empirical / (1-max_r2_empirical) ) minp_empirical = 2*stats.t.cdf(-np.abs(tstat), dof) pval_perm = np.array([(np.sum(minp_empirical<=p)+1)/(nperms+1) for p in minp_nominal]) # calculate beta p-values for each phenotype: beta_shape1, beta_shape2, true_dof, minp_vec = fit_beta_parameters(max_r2_empirical, dof, tol=1e-4, return_minp=True) pval_true_dof = pval_from_corr(max_r2_nominal, true_dof) pval_beta = stats.beta.cdf(pval_true_dof, beta_shape1, beta_shape2) if not split_chr or pval_df is not None: fit_df = pd.DataFrame(OrderedDict([ ('beta_shape1', beta_shape1), ('beta_shape2', beta_shape2), ('true_df', true_dof), ('min_pval_true_df', pval_true_dof), ('variant_id', variant_id), ('min_pval_nominal', minp_nominal), ('pval_perm', pval_perm), ('pval_beta', pval_beta), ]), index=phenotype_df.index) else: fit_df = pd.DataFrame(OrderedDict([ ('beta_shape1', beta_shape1), ('beta_shape2', beta_shape2), ('true_df', true_dof), ]), index=chroms) if split_chr: return fit_df, minp_empirical else: return fit_df, minp_vec def map_trans_tfrecord(vcf_tfrecord, phenotype_df, covariates_df, interaction_s=None, return_sparse=True, pval_threshold=1e-5, maf_threshold=0.05, batch_size=50000, logger=None): """Run trans-QTL mapping from genotypes in tfrecord""" if logger is None: logger = SimpleLogger() assert np.all(phenotype_df.columns==covariates_df.index) with open(vcf_tfrecord+'.samples') as f: vcf_sample_ids = f.read().strip().split('\n') n_samples_vcf = len(vcf_sample_ids) with gzip.open(vcf_tfrecord+'.variants.gz', 'rt') as f: variant_ids = f.read().strip().split('\n') variant_dict = {i:j for i,j in enumerate(variant_ids)} n_variants = len(variant_ids) # index of VCF samples corresponding to phenotypes ix_t = get_sample_indexes(vcf_sample_ids, phenotype_df) n_samples = phenotype_df.shape[1] # batched_dataset = dataset.apply(tf.contrib.data.padded_batch(batch_size, padded_shapes=[[batch_size], [None]])) # batched_dataset = dataset.padded_batch(batch_size, padded_shapes=(batch_size,n_samples), padding_values=0) with tf.device('/cpu:0'): batched_dataset = genotypeio.make_batched_dataset(vcf_tfrecord, batch_size, ix_t=ix_t) iterator = batched_dataset.make_one_shot_iterator() next_element = iterator.get_next() next_element = genotypeio.pad_up_to(next_element, [batch_size, n_samples]) # not clear if right/best way to do this logger.write(' * {} samples'.format(n_samples)) logger.write(' * {} phenotypes'.format(phenotype_df.shape[0])) logger.write(' * {} covariates'.format(covariates_df.shape[1])) logger.write(' * {} variants'.format(n_variants)) if interaction_s is not None: logger.write(' * including interaction term') num_batches = int(np.ceil(np.true_divide(n_variants, batch_size))) # calculate correlation threshold for sparse output if return_sparse: dof = n_samples - 2 - covariates_df.shape[1] t = stats.t.ppf(pval_threshold/2, dof)**2 / dof r2_threshold = t / (1+t) else: r2_threshold = None if interaction_s is None: genotypes, phenotypes, covariates = initialize_data(phenotype_df, covariates_df, batch_size=batch_size) with tf.device('/gpu:0'): p_values, maf = calculate_association(genotypes, phenotypes, covariates, return_sparse=return_sparse, r2_threshold=r2_threshold) else: genotypes, phenotypes, covariates, interaction = initialize_data(phenotype_df, covariates_df, batch_size=batch_size, interaction_s=interaction_s) p_values, maf = calculate_association(genotypes, phenotypes, covariates, interaction_t=interaction, return_sparse=return_sparse, r2_threshold=r2_threshold) # g = _parse_function(next_element, batch_size, n_samples, ix_t) init_op = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer()) start_time = time.time() with tf.Session() as sess: # run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE) # run_metadata = tf.RunMetadata() # writer = tf.summary.FileWriter('logs', sess.graph, session=sess) sess.run(init_op) pval_list = [] maf_list = [] for i in range(num_batches): sys.stdout.write('\rProcessing batch {}/{}'.format(i+1, num_batches)) sys.stdout.flush() g_iter = sess.run(next_element) # g_iter = sess.run(g) p_ = sess.run([p_values, maf], feed_dict={genotypes:g_iter})#, options=run_options, run_metadata=run_metadata) # writer.add_run_metadata(run_metadata, 'batch%d' % i) pval_list.append(p_[0]) maf_list.append(p_[1]) if return_sparse: pval = tf.sparse_concat(0, pval_list).eval() else: pval = tf.concat(pval_list, 0).eval() maf = tf.concat(maf_list, 0).eval() print() # writer.close() logger.write('Time elapsed: {:.2f} min'.format((time.time()-start_time)/60)) if return_sparse: ix = pval.indices[:,0]<n_variants # truncate last batch v = [variant_dict[i] for i in pval.indices[ix,0]] pval_df = pd.DataFrame( np.array([v, phenotype_df.index[pval.indices[ix,1]], pval.values[ix], maf[ix]]).T, columns=['variant_id', 'phenotype_id', 'pval', 'maf'] ) pval_df['pval'] = pval_df['pval'].astype(np.float64) pval_df['maf'] = pval_df['maf'].astype(np.float32) else: # truncate last batch pval = pval[:n_variants] maf = maf[:n_variants] # add indices pval_df = pd.DataFrame(pval, index=variant_ids, columns=[i for i in phenotype_df.index]) pval_df['maf'] = maf pval_df.index.name = 'variant_id' if maf_threshold is not None and maf_threshold>0: logger.write(' * filtering output by MAF >= {}'.format(maf_threshold)) pval_df = pval_df[pval_df['maf']>=maf_threshold] return pval_df def _in_cis(chrom, pos, gene_id, tss_dict, window=1000000): """Test if a variant-gene pair is in cis""" if chrom==tss_dict[gene_id]['chr']: tss = tss_dict[gene_id]['tss'] if pos>=tss-window and pos<=tss+window: return True else: return False else: return False def filter_cis(pval_df, tss_dict, window=1000000): """Filter out cis-QTLs""" drop_ix = [] for k,gene_id,variant_id in zip(pval_df['phenotype_id'].index, pval_df['phenotype_id'], pval_df['variant_id']): chrom, pos = variant_id.split('_',2)[:2] pos = int(pos) if _in_cis(chrom, pos, gene_id, tss_dict, window=window): drop_ix.append(k) return pval_df.drop(drop_ix) #------------------------------------------------------------------------------ # Input parsers #------------------------------------------------------------------------------ def read_phenotype_bed(phenotype_bed): """Load phenotype BED file as phenotype and TSS DataFrames""" if phenotype_bed.endswith('.bed.gz'): phenotype_df = pd.read_csv(phenotype_bed, sep='\t', index_col=3, dtype={'#chr':str, '#Chr':str}) elif phenotype_bed.endswith('.parquet'): phenotype_df =
pd.read_parquet(phenotype_bed)
pandas.read_parquet
from datetime import datetime import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, _testing as tm, ) def test_split(any_string_dtype): values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype) result = values.str.split("_") exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]]) tm.assert_series_equal(result, exp) # more than one char values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"], dtype=any_string_dtype) result = values.str.split("__") tm.assert_series_equal(result, exp) result = values.str.split("__", expand=False) tm.assert_series_equal(result, exp) # regex split values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype) result = values.str.split("[,_]") exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]]) tm.assert_series_equal(result, exp) def test_split_object_mixed(): mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0]) result = mixed.str.split("_") exp = Series( [ ["a", "b", "c"], np.nan, ["d", "e", "f"], np.nan, np.nan, np.nan, np.nan, np.nan, ] ) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.split("_", expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) @pytest.mark.parametrize("method", ["split", "rsplit"]) def test_split_n(any_string_dtype, method): s = Series(["a b", pd.NA, "b c"], dtype=any_string_dtype) expected = Series([["a", "b"], pd.NA, ["b", "c"]]) result = getattr(s.str, method)(" ", n=None) tm.assert_series_equal(result, expected) result = getattr(s.str, method)(" ", n=0) tm.assert_series_equal(result, expected) def test_rsplit(any_string_dtype): values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype) result = values.str.rsplit("_") exp = Series([["a", "b", "c"], ["c", "d", "e"], np.nan, ["f", "g", "h"]]) tm.assert_series_equal(result, exp) # more than one char values = Series(["a__b__c", "c__d__e", np.nan, "f__g__h"], dtype=any_string_dtype) result = values.str.rsplit("__") tm.assert_series_equal(result, exp) result = values.str.rsplit("__", expand=False) tm.assert_series_equal(result, exp) # regex split is not supported by rsplit values = Series(["a,b_c", "c_d,e", np.nan, "f,g,h"], dtype=any_string_dtype) result = values.str.rsplit("[,_]") exp = Series([["a,b_c"], ["c_d,e"], np.nan, ["f,g,h"]]) tm.assert_series_equal(result, exp) # setting max number of splits, make sure it's from reverse values = Series(["a_b_c", "c_d_e", np.nan, "f_g_h"], dtype=any_string_dtype) result = values.str.rsplit("_", n=1) exp = Series([["a_b", "c"], ["c_d", "e"], np.nan, ["f_g", "h"]]) tm.assert_series_equal(result, exp) def test_rsplit_object_mixed(): # mixed mixed = Series(["a_b_c", np.nan, "d_e_f", True, datetime.today(), None, 1, 2.0]) result = mixed.str.rsplit("_") exp = Series( [ ["a", "b", "c"], np.nan, ["d", "e", "f"], np.nan, np.nan, np.nan, np.nan, np.nan, ] ) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) result = mixed.str.rsplit("_", expand=False) assert isinstance(result, Series) tm.assert_almost_equal(result, exp) def test_split_blank_string(any_string_dtype): # expand blank split GH 20067 values = Series([""], name="test", dtype=any_string_dtype) result = values.str.split(expand=True) exp = DataFrame([[]], dtype=any_string_dtype) # NOTE: this is NOT an empty df tm.assert_frame_equal(result, exp) values = Series(["a b c", "a b", "", " "], name="test", dtype=any_string_dtype) result = values.str.split(expand=True) exp = DataFrame( [ ["a", "b", "c"], ["a", "b", np.nan], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], ], dtype=any_string_dtype, )
tm.assert_frame_equal(result, exp)
pandas._testing.assert_frame_equal
''' /******************************************************************************* * Copyright 2016-2019 Exactpro (Exactpro Systems Limited) * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. ******************************************************************************/ ''' import numpy import matplotlib.pyplot as plt import scipy.stats as stats import pandas import datetime import calendar class RelativeFrequencyChart: # returns coordinates for each chart column def get_coordinates(self, data, bins): # bins - chart columns count self.btt = numpy.array(list(data)) self.y, self.x, self.bars = plt.hist(self.btt, weights=numpy.zeros_like(self.btt) + 1. / self.btt.size, bins=bins) return self.x, self.y class FrequencyDensityChart: def get_coordinates_histogram(self, data, bins): self.btt = numpy.array(list(data)) self.y, self.x, self.bars = plt.hist(self.btt, bins=bins, density=True) return self.x, self.y def get_coordinates_line(self, data): try: self.btt = numpy.array(list(data)) self.density = stats.kde.gaussian_kde(list(data)) self.x_den = numpy.linspace(0, data.max(), data.count()) self.density = self.density(self.x_den) return self.x_den, self.density except numpy.linalg.linalg.LinAlgError: return [-1], [-1] class DynamicChart: def get_coordinates(self, frame, step_size): self.plot = {} # chart coordinates self.dynamic_bugs = [] self.x = [] self.y = [] self.plot['period'] = step_size if step_size == 'W-SUN': self.periods = DynamicChart.get_periods(self, frame, step_size) # separates DataFrame to the specified periods if len(self.periods) == 0: return 'error' self.cumulative = 0 # cumulative total of defect submission for specific period for self.period in self.periods: # checks whether the first day of period is Monday (if not then we change first day to Monday) if pandas.to_datetime(self.period[0]) < pandas.to_datetime(frame['Created_tr']).min(): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(self.period[1]))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()))) self.y.append(self.cumulative) else: self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(self.period[0])) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(self.period[1]))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str((self.period[0]))) self.y.append(self.cumulative) # check whether the date from new DataFrame is greater than date which is specified in settings if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(self.periods[-1][1]): # processing of days which are out of full period set self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) > pandas.to_datetime(self.periods[-1][1])) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(datetime.datetime.date(pandas.to_datetime(self.periods[-1][1], format='%Y-%m-%d')) + datetime.timedelta(days=1))) self.y.append(self.cumulative) self.dynamic_bugs.append(self.x) self.dynamic_bugs.append(self.y) self.plot['dynamic bugs'] = self.dynamic_bugs self.cumulative = 0 return self.plot if step_size in ['7D', '10D', '3M', '6M', 'A-DEC']: self.count0 = 0 self.count1 = 1 self.periods = DynamicChart.get_periods(self, frame, step_size) # DataFrame separation by the specified periods if len(self.periods) == 0: return 'error' self.cumulative = 0 self.countPeriodsList = len(self.periods) # count of calculated periods self.count = 1 if self.countPeriodsList == 1: if step_size == '7D': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()) +datetime.timedelta(days=7)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=7)): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+ datetime.timedelta(days=7))) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=7), step_size))) self.y.append(self.cumulative) self.cumulative = 0 if step_size == '10D': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10)): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10))) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min())+datetime.timedelta(days=10), step_size))) self.y.append(self.cumulative) self.cumulative = 0 if step_size == '3M': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 3)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 3)): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 3))) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 3), step_size))) self.y.append(self.cumulative) self.cumulative = 0 if step_size == '6M': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 6)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 6)): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 6))) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, DynamicChart.add_months(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr']).min()), 6), step_size))) self.y.append(self.cumulative) self.cumulative = 0 if step_size == 'A-DEC': self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(frame['Created_tr']).min()) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(str(int(self.periods[0])+1)))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(frame['Created_tr'], format='%Y-%m-%d').min()), step_size))) self.y.append(self.cumulative) if(pandas.to_datetime(frame['Created_tr']).max() > pandas.to_datetime(str(int(self.periods[0])+1))): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(str(int(self.periods[0])+1))) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(str(int(self.periods[0])+1))), step_size))) self.y.append(self.cumulative) self.cumulative = 0 else: while self.count < self.countPeriodsList: self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(self.periods[self.count0])) & (pandas.to_datetime(frame['Created_tr']) < pandas.to_datetime(self.periods[self.count1]))] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(self.periods[self.count0], format='%Y-%m-%d')), step_size))) self.y.append(self.cumulative) self.count0 = self.count0 + 1 self.count1 = self.count1 + 1 self.count = self.count + 1 if pandas.to_datetime(frame['Created_tr']).max() >= pandas.to_datetime(self.periods[-1]): self.newFrame = frame[(pandas.to_datetime(frame['Created_tr']) >= pandas.to_datetime(self.periods[-1])) & (pandas.to_datetime(frame['Created_tr']) <= pandas.to_datetime(frame['Created_tr']).max())] self.cumulative = self.cumulative + int(self.newFrame['Issue_key_tr'].count()) self.x.append(str(DynamicChart.get_date_for_dynamic_my(self, datetime.datetime.date(pandas.to_datetime(self.periods[-1], format='%Y-%m-%d')), step_size))) self.y.append(self.cumulative) self.cumulative = 0 self.dynamic_bugs.append(self.x) self.dynamic_bugs.append(self.y) self.plot['dynamic bugs'] = self.dynamic_bugs return self.plot # DataFrame separation (by periods) def get_periods(self, frame, period): self.periods = [] self.periodsFrame = pandas.period_range(start=
pandas.to_datetime(frame['Created_tr'])
pandas.to_datetime
from __future__ import division #brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest ##find parent directory and import model #parentddir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) #sys.path.append(parentddir) from ..agdrift_exe import Agdrift test = {} class TestAgdrift(unittest.TestCase): """ IEC unit tests. """ def setUp(self): """ setup the test as needed e.g. pandas to open agdrift qaqc csv Read qaqc csv and create pandas DataFrames for inputs and expected outputs :return: """ pass def tearDown(self): """ teardown called after each test e.g. maybe write test results to some text file :return: """ pass def create_agdrift_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty agdrift object agdrift_empty = Agdrift(df_empty, df_empty) return agdrift_empty def test_validate_sim_scenarios(self): """ :description determines if user defined scenarios are valid for processing :param application_method: type of Tier I application method employed :param aquatic_body_def: type of endpoint of concern (e.g., pond, wetland); implies whether : endpoint of concern parameters (e.g.,, pond width) are set (i.e., by user or EPA standard) :param drop_size_*: qualitative description of spray droplet size for aerial & ground applications :param boom_height: qualitative height above ground of spray boom :param airblast_type: type of orchard being sprayed :NOTE we perform an additional validation check related to distances later in the code just before integration :return """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() agdrift_empty.out_sim_scenario_chk = pd.Series([], dtype='object') expected_result = pd.Series([ 'Valid Tier I Aquatic Aerial Scenario', 'Valid Tier I Terrestrial Aerial Scenario', 'Valid Tier I Aquatic Aerial Scenario', 'Valid Tier I Terrestrial Aerial Scenario', 'Valid Tier I Aquatic Aerial Scenario', 'Valid Tier I Terrestrial Ground Scenario', 'Valid Tier I Aquatic Ground Scenario', 'Valid Tier I Terrestrial Ground Scenario', 'Valid Tier I Aquatic Ground Scenario', 'Valid Tier I Terrestrial Airblast Scenario', 'Valid Tier I Aquatic Airblast Scenario', 'Valid Tier I Terrestrial Airblast Scenario', 'Valid Tier I Aquatic Airblast Scenario', 'Valid Tier I Terrestrial Airblast Scenario', 'Invalid Tier I Aquatic Aerial Scenario', 'Invalid Tier I Aquatic Ground Scenario', 'Invalid Tier I Aquatic Airblast Scenario', 'Invalid Tier I Terrestrial Aerial Scenario', 'Valid Tier I Terrestrial Ground Scenario', 'Valid Tier I Terrestrial Airblast Scenario', 'Invalid scenario ecosystem_type', 'Invalid Tier I Aquatic Assessment application method', 'Invalid Tier I Terrestrial Assessment application method'],dtype='object') try: #set test data agdrift_empty.num_simulations = len(expected_result) agdrift_empty.application_method = pd.Series( ['tier_1_aerial', 'tier_1_aerial', 'tier_1_aerial', 'tier_1_aerial', 'tier_1_aerial', 'tier_1_ground', 'tier_1_ground', 'tier_1_ground', 'tier_1_ground', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_aerial', 'tier_1_ground', 'tier_1_airblast', 'tier_1_aerial', 'tier_1_ground', 'tier_1_airblast', 'tier_1_aerial', 'Tier II Aerial', 'Tier III Aerial'], dtype='object') agdrift_empty.ecosystem_type = pd.Series( ['aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'aquatic_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'terrestrial_assessment', 'terrestrial_assessment', 'Field Assessment', 'aquatic_assessment', 'terrestrial_assessment'], dtype='object') agdrift_empty.aquatic_body_type = pd.Series( ['epa_defined_pond', 'NaN', 'epa_defined_wetland', 'NaN', 'user_defined_pond', 'NaN', 'user_defined_wetland', 'NaN', 'epa_defined_wetland', 'NaN', 'user_defined_pond', 'NaN', 'user_defined_wetland', 'NaN', 'Defined Pond', 'user_defined_pond', 'epa_defined_pond', 'NaN', 'NaN', 'NaN', 'epa_defined_pond', 'user_defined_wetland', 'user_defined_pond'], dtype='object') agdrift_empty.terrestrial_field_type = pd.Series( ['NaN', 'user_defined_terrestrial', 'NaN', 'epa_defined_terrestrial', 'NaN', 'user_defined_terrestrial', 'NaN', 'user_defined_terrestrial', 'NaN', 'epa_defined_terrestrial', 'NaN', 'user_defined_terrestrial', 'NaN', 'user_defined_terrestrial', 'NaN', 'NaN', 'NaN', 'user_defined_terrestrial', 'user_defined_terrestrial', 'user_defined_terrestrial', 'NaN', 'NaN', 'user_defined_terrestrial'], dtype='object') agdrift_empty.drop_size_aerial = pd.Series( ['very_fine_to_fine', 'fine_to_medium', 'medium_to_coarse', 'coarse_to_very_coarse', 'fine_to_medium', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'medium_to_coarse', 'NaN', 'very_fine_to_medium', 'NaN', 'very_fine Indeed', 'NaN', 'very_fine_to_medium', 'medium_to_coarse', 'NaN'], dtype='object') agdrift_empty.drop_size_ground = pd.Series( ['NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'very_fine', 'fine_to_medium-coarse', 'very_fine', 'fine_to_medium-coarse', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'very_fine', 'NaN', 'fine_to_medium-coarse', 'very_fine', 'NaN', 'very_fine_to_medium', 'NaN', 'very_fine'], dtype='object') agdrift_empty.boom_height = pd.Series( ['NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'high', 'low', 'high', 'low', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'high', 'NaN', 'NaN', 'NaN', 'NaN'],dtype='object') agdrift_empty.airblast_type = pd.Series( ['NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'normal', 'dense', 'sparse', 'orchard', 'vineyard', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'vineyard', 'NaN', 'NaN', 'NaN'], dtype='object') agdrift_empty.validate_sim_scenarios() result = agdrift_empty.out_sim_scenario_chk npt.assert_array_equal(result, expected_result, err_msg="", verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_set_sim_scenario_id(self): """ :description provides scenario ids per simulation that match scenario names (i.e., column_names) from SQL database :param out_sim_scenario_id: scenario name as assigned to individual simulations :param num_simulations: number of simulations to assign scenario names :param out_sim_scenario_chk: from previous method where scenarios were checked for validity :param application_method: application method of scenario :param drop_size_*: qualitative description of spray droplet size for aerial and ground applications :param boom_height: qualitative height above ground of spray boom :param airblast_type: type of airblast application (e.g., vineyard, orchard) :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series(['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard', 'Invalid'], dtype='object') try: agdrift_empty.num_simulations = len(expected_result) agdrift_empty.out_sim_scenario_chk = pd.Series(['Valid Tier I Aerial', 'Valid Tier I Aerial', 'Valid Tier I Aerial', 'Valid Tier I Aerial', 'Valid Tier I Ground', 'Valid Tier I Ground', 'Valid Tier I Ground', 'Valid Tier I Ground', 'Valid Tier I Airblast', 'Valid Tier I Airblast', 'Valid Tier I Airblast', 'Valid Tier I Airblast', 'Valid Tier I Airblast', 'Invalid Scenario'], dtype='object') agdrift_empty.application_method = pd.Series(['tier_1_aerial', 'tier_1_aerial', 'tier_1_aerial', 'tier_1_aerial', 'tier_1_ground', 'tier_1_ground', 'tier_1_ground', 'tier_1_ground', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_aerial'], dtype='object') agdrift_empty.drop_size_aerial = pd.Series(['very_fine_to_fine', 'fine_to_medium', 'medium_to_coarse', 'coarse_to_very_coarse', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN'], dtype='object') agdrift_empty.drop_size_ground = pd.Series(['NaN', 'NaN', 'NaN', 'NaN', 'very_fine', 'fine_to_medium-coarse', 'very_fine', 'fine_to_medium-coarse', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN'], dtype='object') agdrift_empty.boom_height = pd.Series(['NaN', 'NaN', 'NaN', 'NaN', 'low', 'low', 'high', 'high', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN'], dtype='object') agdrift_empty.airblast_type = pd.Series(['NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'normal', 'dense', 'sparse', 'vineyard', 'orchard', 'NaN'], dtype='object') agdrift_empty.set_sim_scenario_id() result = agdrift_empty.out_sim_scenario_id npt.assert_array_equal(result, expected_result, err_msg="", verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_assign_column_names(self): """ :description assigns column names (except distaqnce column) from sql database to internal scenario names :param column_name: short name for pesiticide application scenario for which distance vs deposition data is provided :param scenario_name: internal variable for holding scenario names :param scenario_number: index for scenario_name (this method assumes the distance values could occur in any column :param distance_name: internal name for the column holding distance data :NOTE to test both outputs of this method I simply appended them together :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() agdrift_empty.scenario_name = pd.Series([], dtype='object') expected_result = pd.Series(['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard'], dtype='object') try: agdrift_empty.column_names = pd.Series(['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard', 'distance_ft']) #call method to assign scenario names agdrift_empty.assign_column_names() result = agdrift_empty.scenario_name npt.assert_array_equal(result, expected_result, err_msg="", verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_get_distances(self): """ :description retrieves distance values for deposition scenario datasets : all scenarios use same distances :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE any blank fields are filled with 'nan' :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) agdrift_empty.db_name = os.path.join(location, 'sqlite_agdrift_distance.db') agdrift_empty.db_table = 'output' expected_result = pd.Series([], dtype='float') try: expected_result = [0.,0.102525,0.20505,0.4101,0.8202,1.6404,3.2808,4.9212,6.5616,9.8424,13.1232,19.6848,26.2464, 32.808,39.3696,45.9312,52.4928,59.0544,65.616,72.1776,78.7392,85.3008,91.8624,98.424,104.9856, 111.5472,118.1088,124.6704,131.232,137.7936,144.3552,150.9168,157.4784,164.04,170.6016,177.1632, 183.7248,190.2864,196.848,203.4096,209.9712,216.5328,223.0944,229.656,236.2176,242.7792,249.3408, 255.9024,262.464,269.0256,275.5872,282.1488,288.7104,295.272,301.8336,308.3952,314.9568,321.5184, 328.08,334.6416,341.2032,347.7648,354.3264,360.888,367.4496,374.0112,380.5728,387.1344,393.696, 400.2576,406.8192,413.3808,419.9424,426.504,433.0656,439.6272,446.1888,452.7504,459.312,465.8736, 472.4352,478.9968,485.5584,492.12,498.6816,505.2432,511.8048,518.3664,524.928,531.4896,538.0512, 544.6128,551.1744,557.736,564.2976,570.8592,577.4208,583.9824,590.544,597.1056,603.6672,610.2288, 616.7904,623.352,629.9136,636.4752,643.0368,649.5984,656.16,662.7216,669.2832,675.8448,682.4064, 688.968,695.5296,702.0912,708.6528,715.2144,721.776,728.3376,734.8992,741.4608,748.0224,754.584, 761.1456,767.7072,774.2688,780.8304,787.392,793.9536,800.5152,807.0768,813.6384,820.2,826.7616, 833.3232,839.8848,846.4464,853.008,859.5696,866.1312,872.6928,879.2544,885.816,892.3776,898.9392, 905.5008,912.0624,918.624,925.1856,931.7472,938.3088,944.8704,951.432,957.9936,964.5552,971.1168, 977.6784,984.24,990.8016,997.3632] agdrift_empty.distance_name = 'distance_ft' agdrift_empty.num_db_values = len(expected_result) result = agdrift_empty.get_distances(agdrift_empty.num_db_values) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_get_scenario_deposition_data(self): """ :description retrieves deposition data for all scenarios from sql database : and checks that for each the first, last, and total number of values : are correct :param scenario: name of scenario for which data is to be retrieved :param num_values: number of values included in scenario datasets :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() #scenario_data = pd.Series([[]], dtype='float') result = pd.Series([], dtype='float') #changing expected values to the 161st expected_result = [0.50013,0.041273,161.0, #aerial_vf2f 0.49997,0.011741,161.0, #aerial_f2m 0.4999,0.0053241,161.0, #aerial_m2c 0.49988,0.0031189,161.0, #aerial_c2vc 1.019339,9.66E-04,161.0, #ground_low_vf 1.007885,6.13E-04,161.0, #ground_low_fmc 1.055205,1.41E-03,161.0, #ground_high_vf 1.012828,7.72E-04,161.0, #ground_high_fmc 8.91E-03,3.87E-05,161.0, #airblast_normal 0.1155276,4.66E-04,161.0, #airblast_dense 0.4762651,5.14E-05,161.0, #airblast_sparse 3.76E-02,3.10E-05,161.0, #airblast_vineyard 0.2223051,3.58E-04,161.0] #airblast_orchard try: agdrift_empty.num_db_values = 161 #set number of data values in sql db location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) agdrift_empty.db_name = os.path.join(location, 'sqlite_agdrift_distance.db') agdrift_empty.db_table = 'output' #agdrift_empty.db_name = 'sqlite_agdrift_distance.db' #this is the list of scenario names (column names) in sql db (the order here is important because #the expected values are ordered in this manner agdrift_empty.scenario_name = ['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard'] #cycle through reading scenarios and building result list for i in range(len(agdrift_empty.scenario_name)): #get scenario data scenario_data = agdrift_empty.get_scenario_deposition_data(agdrift_empty.scenario_name[i], agdrift_empty.num_db_values) print(scenario_data) #extract 1st and last values of scenario data and build result list (including how many values are #retrieved for each scenario if i == 0: #fix this result = [scenario_data[0], scenario_data[agdrift_empty.num_db_values - 1], float(len(scenario_data))] else: result.extend([scenario_data[0], scenario_data[agdrift_empty.num_db_values - 1], float(len(scenario_data))]) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_get_column_names(self): """ :description retrieves column names from sql database (sqlite_agdrift_distance.db) : (each column name refers to a specific deposition scenario; : the scenario name is used later to retrieve the deposition data) :parameter output name of sql database table from which to retrieve requested data :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) agdrift_empty.db_name = os.path.join(location, 'sqlite_agdrift_distance.db') agdrift_empty.db_table = 'output' result = pd.Series([], dtype='object') expected_result = ['distance_ft','aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard'] try: result = agdrift_empty.get_column_names() npt.assert_array_equal(result, expected_result, err_msg="", verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_filter_arrays(self): """ :description eliminate blank data cells (i.e., distances for which no deposition value is provided) (and thus reduce the number of x,y values to be used) :parameter x_in: array of distance values associated with values for a deposition scenario (e.g., Aerial/EPA Defined Pond) :parameter y_in: array of deposition values associated with a deposition scenario (e.g., Aerial/EPA Defined Pond) :parameter x_out: processed array of x_in values eliminating indices of blank distance/deposition values :parameter y_out: processed array of y_in values eliminating indices of blank distance/deposition values :NOTE y_in array is assumed to be populated by values >= 0. except for the blanks as 'nan' entries :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result_x = pd.Series([0.,1.,4.,5.,6.,7.], dtype='float') expected_result_y = pd.Series([10.,11.,14.,15.,16.,17.], dtype='float') try: x_in = pd.Series([0.,1.,2.,3.,4.,5.,6.,7.], dtype='float') y_in = pd.Series([10.,11.,'nan','nan',14.,15.,16.,17.], dtype='float') x_out, y_out = agdrift_empty.filter_arrays(x_in, y_in) result_x = x_out result_y = y_out npt.assert_allclose(result_x, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(result_y, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result_x, expected_result_x] tab = [result_y, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_list_sims_per_scenario(self): """ :description scan simulations and count number and indices of simulations that apply to each scenario :parameter num_scenarios number of deposition scenarios included in SQL database :parameter num_simulations number of simulations included in this model execution :parameter scenario_name name of deposition scenario as recorded in SQL database :parameter out_sim_scenario_id identification of deposition scenario specified per model run simulation :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_num_sims = pd.Series([2,2,2,2,2,2,2,2,2,2,2,2,2], dtype='int') expected_sim_indices = pd.Series([[0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [3,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [4,17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [5,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [6,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [7,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [8,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [9,22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [10,23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [11,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [12,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], dtype='int') try: agdrift_empty.scenario_name = pd.Series(['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard'], dtype='object') agdrift_empty.out_sim_scenario_id = pd.Series(['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard','aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard'], dtype='object') agdrift_empty.num_simulations = len(agdrift_empty.out_sim_scenario_id) agdrift_empty.num_scenarios = len(agdrift_empty.scenario_name) result_num_sims, result_sim_indices = agdrift_empty.list_sims_per_scenario() npt.assert_array_equal(result_num_sims, expected_num_sims, err_msg='', verbose=True) npt.assert_array_equal(result_sim_indices, expected_sim_indices, err_msg='', verbose=True) finally: tab = [result_num_sims, expected_num_sims, result_sim_indices, expected_sim_indices] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_determine_area_dimensions(self): """ :description determine relevant area/length/depth of waterbody or terrestrial area :param i: simulation number :param ecosystem_type: type of assessment to be conducted :param aquatic_body_type: source of dimensional data for area (EPA or User defined) :param terrestrial_field_type: source of dimensional data for area (EPA or User defined) :param *_width: default or user specified width of waterbody or terrestrial field :param *_length: default or user specified length of waterbody or terrestrial field :param *_depth: default or user specified depth of waterbody or terrestrial field :NOTE all areas, i.e., ponds, wetlands, and terrestrial fields are of 1 hectare size; the user can elect to specify a width other than the default width but it won't change the area size; thus for user specified areas the length is calculated and not specified by the user) :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_width = pd.Series([208.7, 208.7, 100., 400., 150., 0.], dtype='float') expected_length = pd.Series([515.8, 515.8, 1076.39, 269.098, 717.593, 0.], dtype='float') expected_depth = pd.Series([6.56, 0.4921, 7., 23., 0., 0.], dtype='float') try: agdrift_empty.ecosystem_type = pd.Series(['aquatic_assessment', 'aquatic_assessment', 'aquatic_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'terrestrial_assessment'], dtype='object') agdrift_empty.aquatic_body_type = pd.Series(['epa_defined_pond', 'epa_defined_wetland', 'user_defined_pond', 'user_defined_wetland', 'NaN', 'NaN'], dtype='object') agdrift_empty.terrestrial_field_type = pd.Series(['NaN', 'NaN', 'NaN', 'NaN', 'user_defined_terrestrial', 'epa_defined_terrestrial'], dtype='object') num_simulations = len(agdrift_empty.ecosystem_type) agdrift_empty.default_width = 208.7 agdrift_empty.default_length = 515.8 agdrift_empty.default_pond_depth = 6.56 agdrift_empty.default_wetland_depth = 0.4921 agdrift_empty.user_pond_width = pd.Series(['NaN', 'NaN', 100., 'NaN', 'NaN', 'NaN'], dtype='float') agdrift_empty.user_pond_depth = pd.Series(['NaN', 'NaN', 7., 'NaN', 'NaN', 'NaN'], dtype='float') agdrift_empty.user_wetland_width = pd.Series(['NaN', 'NaN', 'NaN', 400., 'NaN', 'NaN'], dtype='float') agdrift_empty.user_wetland_depth = pd.Series(['NaN','NaN', 'NaN', 23., 'NaN', 'NaN'], dtype='float') agdrift_empty.user_terrestrial_width = pd.Series(['NaN', 'NaN', 'NaN', 'NaN', 150., 'NaN'], dtype='float') width_result = pd.Series(num_simulations * ['NaN'], dtype='float') length_result = pd.Series(num_simulations * ['NaN'], dtype='float') depth_result = pd.Series(num_simulations * ['NaN'], dtype='float') agdrift_empty.out_area_width = pd.Series(num_simulations * ['nan'], dtype='float') agdrift_empty.out_area_length = pd.Series(num_simulations * ['nan'], dtype='float') agdrift_empty.out_area_depth = pd.Series(num_simulations * ['nan'], dtype='float') agdrift_empty.sqft_per_hectare = 107639 for i in range(num_simulations): width_result[i], length_result[i], depth_result[i] = agdrift_empty.determine_area_dimensions(i) npt.assert_allclose(width_result, expected_width, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(length_result, expected_length, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(depth_result, expected_depth, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [width_result, expected_width, length_result, expected_length, depth_result, expected_depth] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_foa(self): """ :description calculation of average deposition over width of water body :param integration_result result of integration of deposition curve across the distance : beginning at the near distance and extending to the far distance of the water body :param integration_distance effectively the width of the water body :param avg_dep_foa average deposition rate across the width of the water body :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([0.1538462, 0.5, 240.]) try: integration_result = pd.Series([1.,125.,3e5], dtype='float') integration_distance = pd.Series([6.5,250.,1250.], dtype='float') result = agdrift_empty.calc_avg_dep_foa(integration_result, integration_distance) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_lbac(self): """ Deposition calculation. :param avg_dep_foa: average deposition over width of water body as fraction of applied :param application_rate: actual application rate :param avg_dep_lbac: average deposition over width of water body in lbs per acre :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([6.5, 3.125e4, 3.75e8]) try: avg_dep_foa = pd.Series([1.,125.,3e5], dtype='float') application_rate = pd.Series([6.5,250.,1250.], dtype='float') result = agdrift_empty.calc_avg_dep_lbac(avg_dep_foa, application_rate) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_foa_from_lbac(self): """ Deposition calculation. :param avg_dep_foa: average deposition over width of water body as fraction of applied :param application_rate: actual application rate :param avg_dep_lbac: average deposition over width of water body in lbs per acre :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([1.553846e-01, 8.8e-06, 4.e-08]) try: avg_dep_lbac = pd.Series([1.01, 0.0022, 0.00005], dtype='float') application_rate = pd.Series([6.5,250.,1250.], dtype='float') result = agdrift_empty.calc_avg_dep_foa_from_lbac(avg_dep_lbac, application_rate) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_lbac_from_gha(self): """ Deposition calculation. :param avg_dep_gha: average deposition over width of water body in units of grams/hectare :param gms_per_lb: conversion factor to convert lbs to grams :param acres_per_hectare: conversion factor to convert hectares to acres :param avg_dep_lbac: average deposition over width of water body in lbs per acre :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([0.01516739, 0.111524, 0.267659]) try: avg_dep_gha = pd.Series([17., 125., 3e2], dtype='float') agdrift_empty.gms_per_lb = 453.592 agdrift_empty.acres_per_hectare = 2.471 result = agdrift_empty.calc_avg_dep_lbac_from_gha(avg_dep_gha) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_lbac_from_waterconc_ngl(self): """ :description calculate the average deposition onto the pond/wetland/field :param avg_dep_lbac: average deposition over width of water body in lbs per acre :param area_width: average width of water body :parem area_length: average length of water body :param area_depth: average depth of water body :param gms_per_lb: conversion factor to convert lbs to grams :param ng_per_gram conversion factor :param sqft_per_acre conversion factor :param liters_per_ft3 conversion factor :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([2.311455e-05, 2.209479e-03, 2.447423e-03]) try: avg_waterconc_ngl = pd.Series([17., 125., 3e2], dtype='float') area_width = pd.Series([50., 200., 500.], dtype='float') area_length = pd.Series([6331., 538., 215.], dtype='float') area_depth = pd.Series([0.5, 6.5, 3.], dtype='float') agdrift_empty.liters_per_ft3 = 28.3168 agdrift_empty.sqft_per_acre = 43560. agdrift_empty.ng_per_gram = 1.e9 agdrift_empty.gms_per_lb = 453.592 agdrift_empty.acres_per_hectare = 2.471 result = agdrift_empty.calc_avg_dep_lbac_from_waterconc_ngl(avg_waterconc_ngl, area_width, area_length, area_depth) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_lbac_from_mgcm2(self): """ :description calculate the average deposition of pesticide over the terrestrial field in lbs/acre :param avg_dep_lbac: average deposition over width of water body in lbs per acre :param area_depth: average depth of water body :param gms_per_lb: conversion factor to convert lbs to grams :param mg_per_gram conversion factor :param sqft_per_acre conversion factor :param cm2_per_ft2 conversion factor :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([2.676538e-02, 2.2304486, 44.608973]) try: avg_fielddep_mgcm2 = pd.Series([3.e-4, 2.5e-2, 5.e-01]) agdrift_empty.sqft_per_acre = 43560. agdrift_empty.gms_per_lb = 453.592 agdrift_empty.cm2_per_ft2 = 929.03 agdrift_empty.mg_per_gram = 1.e3 result = agdrift_empty.calc_avg_dep_lbac_from_mgcm2(avg_fielddep_mgcm2) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_gha(self): """ :description average deposition over width of water body in grams per acre :param avg_dep_lbac: average deposition over width of water body in lbs per acre :param gms_per_lb: conversion factor to convert lbs to grams :param acres_per_hectare: conversion factor to convert acres to hectares :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([1.401061, 0.3648362, 0.03362546]) try: avg_dep_lbac = pd.Series([1.25e-3,3.255e-4,3e-5], dtype='float') agdrift_empty.gms_per_lb = 453.592 agdrift_empty.acres_per_hectare = 2.47105 result = agdrift_empty.calc_avg_dep_gha(avg_dep_lbac) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_waterconc_ngl(self): """ :description calculate the average concentration of pesticide in the pond/wetland :param avg_dep_lbac: average deposition over width of water body in lbs per acre :param area_width: average width of water body :parem area_length: average length of water body :param area_depth: average depth of water body :param gms_per_lb: conversion factor to convert lbs to grams :param ng_per_gram conversion factor :param sqft_per_acre conversion factor :param liters_per_ft3 conversion factor :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([70.07119, 18.24654, 22.41823]) try: avg_dep_lbac = pd.Series([1.25e-3,3.255e-4,3e-5], dtype='float') area_width = pd.Series([6.56, 208.7, 997.], dtype='float') area_length = pd.Series([1.640838e4, 515.7595, 107.9629], dtype='float') area_depth = pd.Series([6.56, 6.56, 0.4921], dtype='float') agdrift_empty.ng_per_gram = 1.e9 agdrift_empty.liters_per_ft3 = 28.3168 agdrift_empty.gms_per_lb = 453.592 agdrift_empty.sqft_per_acre = 43560. result = agdrift_empty.calc_avg_waterconc_ngl(avg_dep_lbac ,area_width, area_length, area_depth) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_fielddep_mgcm2(self): """ :description calculate the average deposition of pesticide over the terrestrial field :param avg_dep_lbac: average deposition over width of water body in lbs per acre :param area_depth: average depth of water body :param gms_per_lb: conversion factor to convert lbs to grams :param mg_per_gram conversion factor :param sqft_per_acre conversion factor :param cm2_per_ft2 conversion factor :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([1.401063e-5, 3.648369e-6, 3.362552e-7]) try: avg_dep_lbac = pd.Series([1.25e-3,3.255e-4,3e-5], dtype='float') agdrift_empty.gms_per_lb = 453.592 agdrift_empty.sqft_per_acre = 43560. agdrift_empty.mg_per_gram = 1.e3 agdrift_empty.cm2_per_ft2 = 929.03 result = agdrift_empty.calc_avg_fielddep_mgcm2(avg_dep_lbac) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_generate_running_avg(self): """ :description retrieves values for distance and the first deposition scenario from the sql database :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE any blank fields are filled with 'nan' :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) agdrift_empty.db_name = os.path.join(location, 'sqlite_agdrift_distance.db') agdrift_empty.db_table = 'output' expected_result_x = pd.Series([], dtype='float') expected_result_y = pd.Series([], dtype='float') expected_result_npts = pd.Series([], dtype='object') x_array_in = pd.Series([], dtype='float') y_array_in = pd.Series([], dtype='float') x_array_out = pd.Series([], dtype='float') y_array_out = pd.Series([], dtype='float') try: expected_result_x = [0.,0.102525,0.20505,0.4101,0.8202,1.6404,3.2808,4.9212,6.5616,9.8424,13.1232,19.6848,26.2464, 32.808,39.3696,45.9312,52.4928,59.0544,65.616,72.1776,78.7392,85.3008,91.8624,98.424,104.9856, 111.5472,118.1088,124.6704,131.232,137.7936,144.3552,150.9168,157.4784,164.04,170.6016,177.1632, 183.7248,190.2864,196.848,203.4096,209.9712,216.5328,223.0944,229.656,236.2176,242.7792,249.3408, 255.9024,262.464,269.0256,275.5872,282.1488,288.7104,295.272,301.8336,308.3952,314.9568,321.5184, 328.08,334.6416,341.2032,347.7648,354.3264,360.888,367.4496,374.0112,380.5728,387.1344,393.696, 400.2576,406.8192,413.3808,419.9424,426.504,433.0656,439.6272,446.1888,452.7504,459.312,465.8736, 472.4352,478.9968,485.5584,492.12,498.6816,505.2432,511.8048,518.3664,524.928,531.4896,538.0512, 544.6128,551.1744,557.736,564.2976,570.8592,577.4208,583.9824,590.544,597.1056,603.6672,610.2288, 616.7904,623.352,629.9136,636.4752,643.0368,649.5984,656.16,662.7216,669.2832,675.8448,682.4064, 688.968,695.5296,702.0912,708.6528,715.2144,721.776,728.3376,734.8992,741.4608,748.0224,754.584, 761.1456,767.7072,774.2688,780.8304,787.392,793.9536,800.5152,807.0768,813.6384,820.2,826.7616, 833.3232,839.8848,846.4464,853.008,859.5696,866.1312,872.6928,879.2544,885.816,892.3776,898.9392, 905.5008,912.0624,918.624,925.1856,931.7472,938.3088,944.8704,951.432,957.9936,964.5552,971.1168, 977.6784,984.24,990.8016] expected_result_y = [0.364712246,0.351507467,0.339214283,0.316974687,0.279954504,0.225948786,0.159949625, 0.123048839,0.099781801,0.071666234,0.056352938,0.03860139,0.029600805,0.024150524, 0.020550354,0.01795028,0.015967703,0.014467663,0.013200146,0.01215011,0.011300098, 0.010550085,0.009905072,0.009345065,0.008845057,0.008400051,0.008000046,0.007635043, 0.007300039,0.007000034,0.006725033,0.00646503,0.006230027,0.006010027,0.005805023, 0.005615023,0.005435021,0.00527002,0.00511002,0.004960017,0.004820017,0.004685016, 0.004560015,0.004440015,0.004325013,0.004220012,0.004120012,0.004020012,0.003925011, 0.003835011,0.00375001,0.00367001,0.00359001,0.00351001,0.003435009,0.003365009, 0.003300007,0.003235009,0.003170007,0.003110007,0.003055006,0.003000007,0.002945006, 0.002895006,0.002845006,0.002795006,0.002745006,0.002695006,0.002650005,0.002610005, 0.002570005,0.002525006,0.002485004,0.002450005,0.002410005,0.002370005,0.002335004, 0.002300005,0.002265004,0.002235004,0.002205004,0.002175004,0.002145004,0.002115004, 0.002085004,0.002055004,0.002025004,0.002000002,0.001975004,0.001945004,0.001920002, 0.001900002,0.001875004,0.001850002,0.001830002,0.001805004,0.001780002,0.001760002, 0.001740002,0.001720002,0.001700002,0.001680002,0.001660002,0.001640002,0.001620002, 0.001605001,0.001590002,0.001570002,0.001550002,0.001535001,0.001520002,0.001500002, 0.001485001,0.001470002,0.001455001,0.001440002,0.001425001,0.001410002,0.001395001, 0.001385001,0.001370002,0.001355001,0.001340002,0.001325001,0.001315001,0.001305001, 0.001290002,0.001275001,0.001265001,0.001255001,0.001245001,0.001230002,0.001215001, 0.001205001,0.001195001,0.001185001,0.001175001,0.001165001,0.001155001,0.001145001, 0.001135001,0.001125001,0.001115001,0.001105001,0.001095001,0.001085001,0.001075001, 0.001065001,0.00106,0.001055001,0.001045001,0.001035001,0.001025001,0.001015001, 0.001005001,0.0009985,0.000993001,0.000985001,0.000977001,0.000969501] expected_result_npts = 160 x_dist = 6.56 agdrift_empty.distance_name = 'distance_ft' agdrift_empty.scenario_name = 'ground_low_vf' agdrift_empty.num_db_values = 161 x_array_in = agdrift_empty.get_distances(agdrift_empty.num_db_values) y_array_in = agdrift_empty.get_scenario_deposition_data(agdrift_empty.scenario_name, agdrift_empty.num_db_values) x_array_out, y_array_out, npts_out = agdrift_empty.generate_running_avg(agdrift_empty.num_db_values, x_array_in, y_array_in, x_dist) # write output arrays to excel file -- just for debugging agdrift_empty.write_arrays_to_csv(x_array_out, y_array_out, "output_array_generate.csv") npt.assert_array_equal(expected_result_npts, npts_out, verbose=True) npt.assert_allclose(x_array_out, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(y_array_out, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: pass tab1 = [x_array_out, expected_result_x] tab2 = [y_array_out, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print('expected {0} number of points and got {1} points'.format(expected_result_npts, npts_out)) print("x_array result/x_array_expected") print(tabulate(tab1, headers='keys', tablefmt='rst')) print("y_array result/y_array_expected") print(tabulate(tab2, headers='keys', tablefmt='rst')) return def test_generate_running_avg1(self): """ :description creates a running average for a specified x axis width (e.g., 7-day average values of an array) :param x_array_in: array of x-axis values :param y_array_in: array of y-axis values :param num_db_values: number of points in the input arrays :param x_array_out: array of x-zxis values in output array :param y_array_out: array of y-axis values in output array :param npts_out: number of points in the output array :param x_dist: width in x_axis units of running weighted average :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE This test uses a uniformly spaced x_array and monotonically increasing y_array :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result_x = pd.Series([], dtype='float') expected_result_y = pd.Series([], dtype='float') expected_result_npts = pd.Series([], dtype='object') x_array_in = pd.Series([], dtype='float') y_array_in = pd.Series([], dtype='float') x_array_out = pd.Series([], dtype='float') y_array_out = pd.Series([], dtype='float') try: expected_result_x = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10., 11.,12.,13.,14.,15.,16.,17.,18.,19.,20., 21.,22.,23.,24.,25.,26.,27.,28.,29.,30., 31.,32.,33.,34.,35.,36.,37.,38.,39.,40., 41.,42.,43.,44.] expected_result_y = [2.5,3.5,4.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5, 12.5,13.5,14.5,15.5,16.5,17.5,18.5,19.5,20.5,21.5, 22.5,23.5,24.5,25.5,26.5,27.5,28.5,29.5,30.5,31.5, 32.5,33.5,34.5,35.5,36.5,37.5,38.5,39.5,40.5,41.5, 42.5,43.5,44.5,45.5, 46.5] expected_result_npts = 45 x_dist = 5. num_db_values = 51 x_array_in = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10., 11.,12.,13.,14.,15.,16.,17.,18.,19.,20., 21.,22.,23.,24.,25.,26.,27.,28.,29.,30., 31.,32.,33.,34.,35.,36.,37.,38.,39.,40., 41.,42.,43.,44.,45.,46.,47.,48.,49.,50.] y_array_in = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10., 11.,12.,13.,14.,15.,16.,17.,18.,19.,20., 21.,22.,23.,24.,25.,26.,27.,28.,29.,30., 31.,32.,33.,34.,35.,36.,37.,38.,39.,40., 41.,42.,43.,44.,45.,46.,47.,48.,49.,50.] x_array_out, y_array_out, npts_out = agdrift_empty.generate_running_avg(num_db_values, x_array_in, y_array_in, x_dist) npt.assert_array_equal(expected_result_npts, npts_out, verbose=True) npt.assert_allclose(x_array_out, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(y_array_out, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: pass tab1 = [x_array_out, expected_result_x] tab2 = [y_array_out, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print('expected {0} number of points and got {1} points'.format(expected_result_npts, npts_out)) print(tabulate(tab1, headers='keys', tablefmt='rst')) print(tabulate(tab2, headers='keys', tablefmt='rst')) return def test_generate_running_avg2(self): """ :description creates a running average for a specified x axis width (e.g., 7-day average values of an array) :param x_array_in: array of x-axis values :param y_array_in: array of y-axis values :param num_db_values: number of points in the input arrays :param x_array_out: array of x-zxis values in output array :param y_array_out: array of y-axis values in output array :param npts_out: number of points in the output array :param x_dist: width in x_axis units of running weighted average :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE This test uses a non-uniformly spaced x_array and monotonically increasing y_array :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result_x = pd.Series([], dtype='float') expected_result_y = pd.Series([], dtype='float') expected_result_npts = pd.Series([], dtype='object') x_array_in = pd.Series([], dtype='float') y_array_in = pd.Series([], dtype='float') x_array_out = pd.Series([], dtype='float') y_array_out = pd.Series([], dtype='float') try: expected_result_x = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10., 11.5,12.,13.,14.,15.,16.,17.,18.,19.,20., 21.5,22.,23.,24.,25.,26.,27.,28.,29.,30., 31.5,32.,33.,34.,35.,36.,37.,38.,39.,40., 41.5,42.,43.,44.] expected_result_y = [2.5,3.5,4.5,5.5,6.5,7.5,8.4666667,9.4,10.4,11.4, 12.4,13.975,14.5,15.5,16.5,17.5,18.466666667,19.4,20.4,21.4, 22.4,23.975,24.5,25.5,26.5,27.5,28.46666667,29.4,30.4,31.4, 32.4,33.975,34.5,35.5,36.5,37.5,38.466666667,39.4,40.4,41.4, 42.4,43.975,44.5,45.5, 46.5] expected_result_npts = 45 x_dist = 5. agdrift_empty.num_db_values = 51 x_array_in = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10., 11.5,12.,13.,14.,15.,16.,17.,18.,19.,20., 21.5,22.,23.,24.,25.,26.,27.,28.,29.,30., 31.5,32.,33.,34.,35.,36.,37.,38.,39.,40., 41.5,42.,43.,44.,45.,46.,47.,48.,49.,50.] y_array_in = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10., 11.,12.,13.,14.,15.,16.,17.,18.,19.,20., 21.,22.,23.,24.,25.,26.,27.,28.,29.,30., 31.,32.,33.,34.,35.,36.,37.,38.,39.,40., 41.,42.,43.,44.,45.,46.,47.,48.,49.,50.] x_array_out, y_array_out, npts_out = agdrift_empty.generate_running_avg(agdrift_empty.num_db_values, x_array_in, y_array_in, x_dist) npt.assert_array_equal(expected_result_npts, npts_out, verbose=True) npt.assert_allclose(x_array_out, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(y_array_out, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: pass tab1 = [x_array_out, expected_result_x] tab2 = [y_array_out, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print('expected {0} number of points and got {1} points'.format(expected_result_npts, npts_out)) print(tabulate(tab1, headers='keys', tablefmt='rst')) print(tabulate(tab2, headers='keys', tablefmt='rst')) return def test_generate_running_avg3(self): """ :description creates a running average for a specified x axis width (e.g., 7-day average values of an array); averages reflect weighted average assuming linearity between x points; average is calculated as the area under the y-curve beginning at each x point and extending out x_dist divided by x_dist (which yields the weighted average y between the relevant x points) :param x_array_in: array of x-axis values :param y_array_in: array of y-axis values :param num_db_values: number of points in the input arrays :param x_array_out: array of x-zxis values in output array :param y_array_out: array of y-axis values in output array :param npts_out: number of points in the output array :param x_dist: width in x_axis units of running weighted average :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE This test uses a monotonically increasing y_array and inserts a gap in the x values that is greater than x_dist :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result_x = pd.Series([], dtype='float') expected_result_y = pd.Series([], dtype='float') expected_result_npts = pd.Series([], dtype='object') x_array_in = pd.Series([], dtype='float') y_array_in = pd.Series([], dtype='float') x_array_out = pd.Series([], dtype='float') y_array_out = pd.Series([], dtype='float') try: expected_result_x = [0.,1.,2.,3.,4.,5.,6.,7.,16.,17.,18.,19.,20., 21.,22.,23.,24.,25.,26.,27.,28.,29.,30., 31.,32.,33.,34.,35.,36.,37.,38.,39.,40., 41.,42.,43.,44.,45.,46.,47.,48.,49.,50.,51.,52.] expected_result_y = [2.5,3.5,4.5,5.4111111,6.14444444,6.7,7.07777777,7.277777777,10.5,11.5, 12.5,13.5,14.5,15.5,16.5,17.5,18.5,19.5,20.5,21.5, 22.5,23.5,24.5,25.5,26.5,27.5,28.5,29.5,30.5,31.5, 32.5,33.5,34.5,35.5,36.5,37.5,38.5,39.5,40.5,41.5, 42.5,43.5,44.5,45.5, 46.5] expected_result_npts = 45 x_dist = 5. num_db_values = 51 x_array_in = [0.,1.,2.,3.,4.,5.,6.,7.,16.,17.,18.,19.,20., 21.,22.,23.,24.,25.,26.,27.,28.,29.,30., 31.,32.,33.,34.,35.,36.,37.,38.,39.,40., 41.,42.,43.,44.,45.,46.,47.,48.,49.,50., 51.,52.,53.,54.,55.,56.,57.,58.] y_array_in = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10., 11.,12.,13.,14.,15.,16.,17.,18.,19.,20., 21.,22.,23.,24.,25.,26.,27.,28.,29.,30., 31.,32.,33.,34.,35.,36.,37.,38.,39.,40., 41.,42.,43.,44.,45.,46.,47.,48.,49.,50.] x_array_out, y_array_out, npts_out = agdrift_empty.generate_running_avg(num_db_values, x_array_in, y_array_in, x_dist) npt.assert_array_equal(expected_result_npts, npts_out, verbose=True) npt.assert_allclose(x_array_out, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(y_array_out, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: pass tab1 = [x_array_out, expected_result_x] tab2 = [y_array_out, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print('expected {0} number of points and got {1} points'.format(expected_result_npts, npts_out)) print(tabulate(tab1, headers='keys', tablefmt='rst')) print(tabulate(tab2, headers='keys', tablefmt='rst')) return def test_locate_integrated_avg(self): """ :description retrieves values for distance and the first deposition scenario from the sql database and generates running weighted averages from the first x,y value until it locates the user specified integrated average of interest :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE any blank fields are filled with 'nan' :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) agdrift_empty.db_name = os.path.join(location, 'sqlite_agdrift_distance.db') agdrift_empty.db_table = 'output' expected_result_x = pd.Series([], dtype='float') expected_result_y = pd.Series([], dtype='float') expected_result_npts = pd.Series([], dtype='object') x_array_in = pd.Series([], dtype='float') y_array_in = pd.Series([], dtype='float') x_array_out = pd.Series([], dtype='float') y_array_out = pd.Series([], dtype='float') try: expected_result_x = [0.,0.102525,0.20505,0.4101,0.8202,1.6404,3.2808,4.9212,6.5616,9.8424,13.1232,19.6848,26.2464, 32.808,39.3696,45.9312,52.4928,59.0544,65.616,72.1776,78.7392,85.3008,91.8624,98.424,104.9856, 111.5472,118.1088,124.6704,131.232,137.7936,144.3552,150.9168,157.4784,164.04,170.6016,177.1632, 183.7248,190.2864,196.848,203.4096,209.9712,216.5328,223.0944,229.656,236.2176,242.7792,249.3408, 255.9024,262.464,269.0256,275.5872,282.1488,288.7104,295.272,301.8336,308.3952,314.9568,321.5184, 328.08,334.6416,341.2032,347.7648,354.3264,360.888,367.4496,374.0112,380.5728,387.1344,393.696, 400.2576,406.8192,413.3808,419.9424,426.504,433.0656,439.6272,446.1888,452.7504,459.312,465.8736, 472.4352,478.9968,485.5584,492.12,498.6816,505.2432,511.8048,518.3664,524.928,531.4896,538.0512, 544.6128,551.1744,557.736,564.2976,570.8592,577.4208,583.9824,590.544,597.1056,603.6672,610.2288, 616.7904,623.352,629.9136,636.4752,643.0368,649.5984,656.16,662.7216,669.2832,675.8448,682.4064, 688.968,695.5296,702.0912,708.6528,715.2144,721.776,728.3376,734.8992,741.4608,748.0224,754.584, 761.1456,767.7072,774.2688,780.8304,787.392,793.9536,800.5152,807.0768,813.6384,820.2,826.7616, 833.3232,839.8848,846.4464,853.008,859.5696,866.1312,872.6928,879.2544,885.816,892.3776,898.9392, 905.5008,912.0624,918.624,925.1856,931.7472,938.3088,944.8704,951.432,957.9936,964.5552,971.1168, 977.6784,984.24,990.8016] expected_result_y = [0.364712246,0.351507467,0.339214283,0.316974687,0.279954504,0.225948786,0.159949625, 0.123048839,0.099781801,0.071666234,0.056352938,0.03860139,0.029600805,0.024150524, 0.020550354,0.01795028,0.015967703,0.014467663,0.013200146,0.01215011,0.011300098, 0.010550085,0.009905072,0.009345065,0.008845057,0.008400051,0.008000046,0.007635043, 0.007300039,0.007000034,0.006725033,0.00646503,0.006230027,0.006010027,0.005805023, 0.005615023,0.005435021,0.00527002,0.00511002,0.004960017,0.004820017,0.004685016, 0.004560015,0.004440015,0.004325013,0.004220012,0.004120012,0.004020012,0.003925011, 0.003835011,0.00375001,0.00367001,0.00359001,0.00351001,0.003435009,0.003365009, 0.003300007,0.003235009,0.003170007,0.003110007,0.003055006,0.003000007,0.002945006, 0.002895006,0.002845006,0.002795006,0.002745006,0.002695006,0.002650005,0.002610005, 0.002570005,0.002525006,0.002485004,0.002450005,0.002410005,0.002370005,0.002335004, 0.002300005,0.002265004,0.002235004,0.002205004,0.002175004,0.002145004,0.002115004, 0.002085004,0.002055004,0.002025004,0.002000002,0.001975004,0.001945004,0.001920002, 0.001900002,0.001875004,0.001850002,0.001830002,0.001805004,0.001780002,0.001760002, 0.001740002,0.001720002,0.001700002,0.001680002,0.001660002,0.001640002,0.001620002, 0.001605001,0.001590002,0.001570002,0.001550002,0.001535001,0.001520002,0.001500002, 0.001485001,0.001470002,0.001455001,0.001440002,0.001425001,0.001410002,0.001395001, 0.001385001,0.001370002,0.001355001,0.001340002,0.001325001,0.001315001,0.001305001, 0.001290002,0.001275001,0.001265001,0.001255001,0.001245001,0.001230002,0.001215001, 0.001205001,0.001195001,0.001185001,0.001175001,0.001165001,0.001155001,0.001145001, 0.001135001,0.001125001,0.001115001,0.001105001,0.001095001,0.001085001,0.001075001, 0.001065001,0.00106,0.001055001,0.001045001,0.001035001,0.001025001,0.001015001, 0.001005001,0.0009985,0.000993001,0.000985001,0.000977001,0.000969501] expected_result_npts = 160 expected_x_dist_of_interest = 990.8016 x_dist = 6.56 weighted_avg = 0.0009697 #this is the running average value we're looking for agdrift_empty.distance_name = 'distance_ft' agdrift_empty.scenario_name = 'ground_low_vf' agdrift_empty.num_db_values = 161 agdrift_empty.find_nearest_x = True x_array_in = agdrift_empty.get_distances(agdrift_empty.num_db_values) y_array_in = agdrift_empty.get_scenario_deposition_data(agdrift_empty.scenario_name, agdrift_empty.num_db_values) x_array_out, y_array_out, npts_out, x_dist_of_interest, range_chk = \ agdrift_empty.locate_integrated_avg(agdrift_empty.num_db_values, x_array_in, y_array_in, x_dist, weighted_avg) npt.assert_array_equal(expected_x_dist_of_interest, x_dist_of_interest, verbose=True) npt.assert_array_equal(expected_result_npts, npts_out, verbose=True) npt.assert_allclose(x_array_out, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(y_array_out, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: pass tab1 = [x_array_out, expected_result_x] tab2 = [y_array_out, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print('expected {0} x-units to area and got {1} '.format(expected_x_dist_of_interest, x_dist_of_interest)) print('expected {0} number of points and got {1} points'.format(expected_result_npts, npts_out)) print("x_array result/x_array_expected") print(tabulate(tab1, headers='keys', tablefmt='rst')) print("y_array result/y_array_expected") print(tabulate(tab2, headers='keys', tablefmt='rst')) return def test_locate_integrated_avg1(self): """ :description retrieves values for distance and the first deposition scenario from the sql database :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE this test is for a monotonically increasing function with some irregularity in x-axis points :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result_x = pd.Series([], dtype='float') expected_result_y = pd.Series([], dtype='float') x_array_in = pd.Series([], dtype='float') y_array_in = pd.Series([], dtype='float') x_array_out = pd.Series([], dtype='float') y_array_out = pd.Series([], dtype='float') try: expected_result_x = [0.,7.0,16.0,17.0,18.0,19.0,20.0,28.0,29.0,30.0,31.] expected_result_y = [0.357143,1.27778,4.4125,5.15,5.7125,6.1,6.3125,9.5,10.5,11.5,12.5] expected_result_npts = 11 expected_x_dist_of_interest = 30.5 x_dist = 5. weighted_avg = 12. num_db_values = 51 x_array_in = [0.,7.,16.,17.,18.,19.,20.,28.,29.,30., 31.,32.,33.,34.,35.,36.,37.,38.,39.,40., 41.,42.,43.,44.,45.,46.,47.,48.,49.,50., 51.,52.,53.,54.,55.,56.,57.,58.,59.,60., 61.,62.,63.,64.,65.,66.,67.,68.,69.,70., 71.] y_array_in = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9.,10., 11.,12.,13.,14.,15.,16.,17.,18.,19.,20., 21.,22.,23.,24.,25.,26.,27.,28.,29.,30., 31.,32.,33.,34.,35.,36.,37.,38.,39.,40., 41.,42.,43.,44.,45.,46.,47.,48.,49.,50.] agdrift_empty.find_nearest_x = True x_array_out, y_array_out, npts_out, x_dist_of_interest, range_chk = \ agdrift_empty.locate_integrated_avg(num_db_values, x_array_in, y_array_in, x_dist, weighted_avg) npt.assert_array_equal(expected_x_dist_of_interest, x_dist_of_interest, verbose=True) npt.assert_array_equal(expected_result_npts, npts_out, verbose=True) npt.assert_allclose(x_array_out, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(y_array_out, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: pass tab1 = [x_array_out, expected_result_x] tab2 = [y_array_out, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print('expected {0} x-units to area and got {1} '.format(expected_x_dist_of_interest, x_dist_of_interest)) print('expected {0} number of points and got {1} points'.format(expected_result_npts, npts_out)) print("x_array result/x_array_expected") print(tabulate(tab1, headers='keys', tablefmt='rst')) print("y_array result/y_array_expected") print(tabulate(tab2, headers='keys', tablefmt='rst')) return def test_locate_integrated_avg2(self): """ :description retrieves values for distance and the first deposition scenario from the sql database :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE This test is for a monotonically decreasing function with irregular x-axis spacing :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result_x = pd.Series([], dtype='float') expected_result_y = pd.Series([], dtype='float') x_array_in = pd.Series([], dtype='float') y_array_in = pd.Series([], dtype='float') x_array_out = pd.Series([], dtype='float') y_array_out = pd.Series([], dtype='float') try: expected_result_x = [0.,7.,16.,17.,18.,19.,20.,28.,29.,30., 34.,35.,36.,37.,38.,39.,40., 41.,42.,43.,44.,45.,46.,47.,48.,49.,50., 51.,52.,53.,54.,55.,56.,57.,58.,59.,60.] expected_result_y = [49.6429,48.7222,45.5875,44.85,44.2875,43.9,43.6875,41.175,40.7,40.3, 37.5,36.5,35.5,34.5,33.5,32.5,31.5,30.5,29.5,28.5, 27.5,26.5,25.5,24.5,23.5,22.5,21.5,20.5,19.5,18.5, 17.5,16.5,15.5,14.5,13.5,12.5,11.5] expected_result_npts = 37 expected_x_dist_of_interest = 60. x_dist = 5. weighted_avg = 12. num_db_values = 51 agdrift_empty.find_nearest_x = True x_array_in = [0.,7.,16.,17.,18.,19.,20.,28.,29.,30., 34.,35.,36.,37.,38.,39.,40., 41.,42.,43.,44.,45.,46.,47.,48.,49.,50., 51.,52.,53.,54.,55.,56.,57.,58.,59.,60., 61.,62.,63.,64.,65.,66.,67.,68.,69.,70., 71.,72.,73.,74. ] y_array_in = [50.,49.,48.,47.,46.,45.,44.,43.,42.,41., 40.,39.,38.,37.,36.,35.,34.,33.,32.,31., 30.,29.,28.,27.,26.,25.,24.,23.,22.,21., 20.,19.,18.,17.,16.,15.,14.,13.,12.,11., 10.,9.,8.,7.,6.,5.,4.,3.,2.,1.,0.] x_array_out, y_array_out, npts_out, x_dist_of_interest, range_chk = \ agdrift_empty.locate_integrated_avg(num_db_values, x_array_in, y_array_in, x_dist, weighted_avg) npt.assert_array_equal(expected_x_dist_of_interest, x_dist_of_interest, verbose=True) npt.assert_array_equal(expected_result_npts, npts_out, verbose=True) npt.assert_allclose(x_array_out, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(y_array_out, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: pass tab1 = [x_array_out, expected_result_x] tab2 = [y_array_out, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print('expected {0} x-units to area and got {1} '.format(expected_x_dist_of_interest, x_dist_of_interest)) print('expected {0} number of points and got {1} points'.format(expected_result_npts, npts_out)) print("x_array result/x_array_expected") print(tabulate(tab1, headers='keys', tablefmt='rst')) print("y_array result/y_array_expected") print(tabulate(tab2, headers='keys', tablefmt='rst')) return def test_locate_integrated_avg3(self): """ :description retrieves values for distance and the first deposition scenario from the sql database :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE this test is for a monotonically decreasing function with regular x-axis spacing :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result_x = pd.Series([], dtype='float') expected_result_y = pd.Series([], dtype='float') x_array_in = pd.Series([], dtype='float') y_array_in = pd.Series([], dtype='float') x_array_out = pd.Series([], dtype='float') y_array_out = pd.Series([], dtype='float') expected_result_x_dist = pd.Series([], dtype='float') try: expected_result_x = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9., 10.,11.,12.,13.,14.,15.,16.,17.,18.,19., 20.,21.,22.,23.,24.,25.,26.,27.,28.,29., 30.,31.,32.,33.,34.,35.,36.] expected_result_y = [47.5,46.5,45.5,44.5,43.5,42.5,41.5,40.5,39.5,38.5, 37.5,36.5,35.5,34.5,33.5,32.5,31.5,30.5,29.5,28.5, 27.5,26.5,25.5,24.5,23.5,22.5,21.5,20.5,19.5,18.5, 17.5,16.5,15.5,14.5,13.5,12.5,11.5] expected_result_npts = 37 expected_x_dist_of_interest = 36. x_dist = 5. weighted_avg = 12. num_db_values = 51 agdrift_empty.find_nearest_x = True x_array_in = [0.,1.,2.,3.,4.,5.,6.,7.,8.,9., 10.,11.,12.,13.,14.,15.,16.,17.,18.,19., 20.,21.,22.,23.,24.,25.,26.,27.,28.,29., 30.,31.,32.,33.,34.,35.,36.,37.,38.,39., 40.,41.,42.,43.,44.,45.,46.,47.,48.,49., 50.] y_array_in = [50.,49.,48.,47.,46.,45.,44.,43.,42.,41., 40.,39.,38.,37.,36.,35.,34.,33.,32.,31., 30.,29.,28.,27.,26.,25.,24.,23.,22.,21., 20.,19.,18.,17.,16.,15.,14.,13.,12.,11., 10.,9.,8.,7.,6.,5.,4.,3.,2.,1.,0.] x_array_out, y_array_out, npts_out, x_dist_of_interest, range_chk = \ agdrift_empty.locate_integrated_avg(num_db_values, x_array_in, y_array_in, x_dist, weighted_avg) npt.assert_array_equal(expected_x_dist_of_interest, x_dist_of_interest, verbose=True ) npt.assert_array_equal(expected_result_npts, npts_out, verbose=True ) npt.assert_allclose(x_array_out, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(y_array_out, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: pass tab1 = [x_array_out, expected_result_x] tab2 = [y_array_out, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print('expected {0} x-units to area and got {1} '.format(expected_x_dist_of_interest, x_dist_of_interest)) print('expected {0} number of points and got {1} points'.format(expected_result_npts, npts_out)) print("x_array result/x_array_expected") print(tabulate(tab1, headers='keys', tablefmt='rst')) print("y_array result/y_array_expected") print(tabulate(tab2, headers='keys', tablefmt='rst')) return def test_round_model_outputs(self): """ :description round output variable values (and place in output variable series) so that they can be directly compared to expected results (which were limited in terms of their output format from the OPP AGDRIFT model (V2.1.1) interface (we don't have the AGDRIFT code so we cannot change the output format to agree with this model :param avg_dep_foa: :param avg_dep_lbac: :param avg_dep_gha: :param avg_waterconc_ngl: :param avg_field_dep_mgcm2: :param num_sims: number of simulations :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() num_sims = 3 num_args = 5 agdrift_empty.out_avg_dep_foa = pd.Series(num_sims * [np.nan], dtype='float') agdrift_empty.out_avg_dep_lbac = pd.Series(num_sims * [np.nan], dtype='float') agdrift_empty.out_avg_dep_gha = pd.Series(num_sims * [np.nan], dtype='float') agdrift_empty.out_avg_waterconc_ngl = pd.Series(num_sims * [np.nan], dtype='float') agdrift_empty.out_avg_field_dep_mgcm2 = pd.Series(num_sims * [np.nan], dtype='float') result = pd.Series(num_sims * [num_args*[np.nan]], dtype='float') expected_result = pd.Series(num_sims * [num_args*[np.nan]], dtype='float') expected_result[0] = [1.26,1.26,1.26,1.26,1.26] expected_result[1] = [0.0004,0.0004,0.0004,0.0004,0.0004] expected_result[2] = [3.45e-05,3.45e-05,3.45e-05,3.45e-05,3.45e-05] try: #setting each variable to same values, each value tests a separate pathway through rounding method avg_dep_lbac = pd.Series([1.2567,3.55e-4,3.454e-5], dtype='float') avg_dep_foa = pd.Series([1.2567,3.55e-4,3.454e-5], dtype='float') avg_dep_gha = pd.Series([1.2567,3.55e-4,3.454e-5], dtype='float') avg_waterconc_ngl = pd.Series([1.2567,3.55e-4,3.454e-5], dtype='float') avg_field_dep_mgcm2 = pd.Series([1.2567,3.55e-4,3.454e-5], dtype='float') for i in range(num_sims): lbac = avg_dep_lbac[i] foa = avg_dep_foa[i] gha = avg_dep_gha[i] ngl = avg_waterconc_ngl[i] mgcm2 = avg_field_dep_mgcm2[i] agdrift_empty.round_model_outputs(foa, lbac, gha, ngl, mgcm2, i) result[i] = [agdrift_empty.out_avg_dep_foa[i], agdrift_empty.out_avg_dep_lbac[i], agdrift_empty.out_avg_dep_gha[i], agdrift_empty.out_avg_waterconc_ngl[i], agdrift_empty.out_avg_field_dep_mgcm2[i]] npt.assert_allclose(result[0], expected_result[0], rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(result[1], expected_result[1], rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(result[2], expected_result[2], rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_find_dep_pt_location(self): """ :description this method locates the downwind distance associated with a specific deposition rate :param x_array: array of distance values :param y_array: array of deposition values :param npts: number of values in x/y arrays :param foa: value of deposition (y value) of interest :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() result = [[],[],[],[]] expected_result = [(0.0, 'in range'), (259.1832, 'in range'), (997.3632, 'in range'), (np.nan, 'out of range')] try: x_array = [0.,0.102525,0.20505,0.4101,0.8202,1.6404,3.2808,4.9212,6.5616,9.8424,13.1232,19.6848,26.2464, 32.808,39.3696,45.9312,52.4928,59.0544,65.616,72.1776,78.7392,85.3008,91.8624,98.424,104.9856, 111.5472,118.1088,124.6704,131.232,137.7936,144.3552,150.9168,157.4784,164.04,170.6016,177.1632, 183.7248,190.2864,196.848,203.4096,209.9712,216.5328,223.0944,229.656,236.2176,242.7792,249.3408, 255.9024,262.464,269.0256,275.5872,282.1488,288.7104,295.272,301.8336,308.3952,314.9568,321.5184, 328.08,334.6416,341.2032,347.7648,354.3264,360.888,367.4496,374.0112,380.5728,387.1344,393.696, 400.2576,406.8192,413.3808,419.9424,426.504,433.0656,439.6272,446.1888,452.7504,459.312,465.8736, 472.4352,478.9968,485.5584,492.12,498.6816,505.2432,511.8048,518.3664,524.928,531.4896,538.0512, 544.6128,551.1744,557.736,564.2976,570.8592,577.4208,583.9824,590.544,597.1056,603.6672,610.2288, 616.7904,623.352,629.9136,636.4752,643.0368,649.5984,656.16,662.7216,669.2832,675.8448,682.4064, 688.968,695.5296,702.0912,708.6528,715.2144,721.776,728.3376,734.8992,741.4608,748.0224,754.584, 761.1456,767.7072,774.2688,780.8304,787.392,793.9536,800.5152,807.0768,813.6384,820.2,826.7616, 833.3232,839.8848,846.4464,853.008,859.5696,866.1312,872.6928,879.2544,885.816,892.3776,898.9392, 905.5008,912.0624,918.624,925.1856,931.7472,938.3088,944.8704,951.432,957.9936,964.5552,971.1168, 977.6784,984.24,990.8016, 997.3632] y_array = [0.364706389,0.351133211,0.338484161,0.315606383,0.277604029,0.222810736,0.159943507, 0.121479708,0.099778741,0.068653,0.05635,0.0386,0.0296,0.02415,0.02055,0.01795, 0.0159675,0.0144675,0.0132,0.01215,0.0113,0.01055,0.009905,0.009345,0.008845,0.0084, 0.008,0.007635,0.0073,0.007,0.006725,0.006465,0.00623,0.00601,0.005805,0.005615, 0.005435,0.00527,0.00511,0.00496,0.00482,0.004685,0.00456,0.00444,0.004325,0.00422, 0.00412,0.00402,0.003925,0.003835,0.00375,0.00367,0.00359,0.00351,0.003435,0.003365, 0.0033,0.003235,0.00317,0.00311,0.003055,0.003,0.002945,0.002895,0.002845,0.002795, 0.002745,0.002695,0.00265,0.00261,0.00257,0.002525,0.002485,0.00245,0.00241,0.00237, 0.002335,0.0023,0.002265,0.002235,0.002205,0.002175,0.002145,0.002115,0.002085, 0.002055,0.002025,0.002,0.001975,0.001945,0.00192,0.0019,0.001875,0.00185,0.00183, 0.001805,0.00178,0.00176,0.00174,0.00172,0.0017,0.00168,0.00166,0.00164,0.00162, 0.001605,0.00159,0.00157,0.00155,0.001535,0.00152,0.0015,0.001485,0.00147,0.001455, 0.00144,0.001425,0.00141,0.001395,0.001385,0.00137,0.001355,0.00134,0.001325,0.001315, 0.001305,0.00129,0.001275,0.001265,0.001255,0.001245,0.00123,0.001215,0.001205, 0.001195,0.001185,0.001175,0.001165,0.001155,0.001145,0.001135,0.001125,0.001115, 0.001105,0.001095,0.001085,0.001075,0.001065,0.00106,0.001055,0.001045,0.001035, 0.001025,0.001015,0.001005,0.0009985,0.000993,0.000985,0.000977,0.0009695,0.0009612] npts = len(x_array) num_sims = 4 foa = [0.37, 0.004, 0.0009613, 0.0008] for i in range(num_sims): result[i] = agdrift_empty.find_dep_pt_location(x_array, y_array, npts, foa[i]) npt.assert_equal(expected_result, result, verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_extend_curve_opp(self): """ :description extends/extrapolates an x,y array of data points that reflect a ln ln relationship by selecting a number of points near the end of the x,y arrays and fitting a line to the points ln ln transforms (two ln ln transforms can by applied; on using the straight natural log of each selected x,y point and one using a 'relative' value of each of the selected points -- the relative values are calculated by establishing a zero point closest to the selected points For AGDRIFT: extends distance vs deposition (fraction of applied) curve to enable model calculations when area of interest (pond, wetland, terrestrial field) lie partially outside the original curve (whose extent is 997 feet). The extension is achieved by fitting a line of best fit to the last 16 points of the original curve. The x,y values representing the last 16 points are natural log transforms of the distance and deposition values at the 16 points. Two long transforms are coded here, reflecting the fact that the AGDRIFT model (v2.1.1) uses each of them under different circumstandes (which I believe is not the intention but is the way the model functions -- my guess is that one of the transforms was used and then a second one was coded to increase the degree of conservativeness -- but the code was changed in only one of the two places where the transformation occurs. Finally, the AGDRIFT model extends the curve only when necessary (i.e., when it determines that the area of intereest lies partially beyond the last point of the origanal curve (997 ft). In this code all the curves are extended out to 1994 ft, which represents the furthest distance that the downwind edge of an area of concern can be specified. All scenario curves are extended here because we are running multiple simulations (e.g., monte carlo) and instead of extending the curves each time a simulation requires it (which may be multiple time for the same scenario curve) we just do it for all curves up front. There is a case to be made that the curves should be extended external to this code and simply provide the full curve in the SQLite database containing the original curve. :param x_array: array of x values to be extended (must be at least 17 data points in original array) :param y_array: array of y values to be extended :param max_dist: maximum distance (ft) associated with unextended x values :param dist_inc: increment (ft) for each extended data point :param num_pts_ext: number of points at end of original x,y arrays to be used for extending the curve :param ln_ln_trans: form of transformation to perform (True: straight ln ln, False: relative ln ln) :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result_x = pd.Series([], dtype='float') expected_result_y = pd.Series([], dtype='float') # x_array_in = pd.Series([], dtype='float') # y_array_in = pd.Series([], dtype='float') x_array_out = pd.Series([], dtype='float') y_array_out = pd.Series([], dtype='float') try: expected_result_x = [0.,6.5616,13.1232,19.6848,26.2464, 32.808,39.3696,45.9312,52.4928,59.0544,65.616,72.1776,78.7392,85.3008,91.8624,98.424,104.9856, 111.5472,118.1088,124.6704,131.232,137.7936,144.3552,150.9168,157.4784,164.04,170.6016,177.1632, 183.7248,190.2864,196.848,203.4096,209.9712,216.5328,223.0944,229.656,236.2176,242.7792,249.3408, 255.9024,262.464,269.0256,275.5872,282.1488,288.7104,295.272,301.8336,308.3952,314.9568,321.5184, 328.08,334.6416,341.2032,347.7648,354.3264,360.888,367.4496,374.0112,380.5728,387.1344,393.696, 400.2576,406.8192,413.3808,419.9424,426.504,433.0656,439.6272,446.1888,452.7504,459.312,465.8736, 472.4352,478.9968,485.5584,492.12,498.6816,505.2432,511.8048,518.3664,524.928,531.4896,538.0512, 544.6128,551.1744,557.736,564.2976,570.8592,577.4208,583.9824,590.544,597.1056,603.6672,610.2288, 616.7904,623.352,629.9136,636.4752,643.0368,649.5984,656.16,662.7216,669.2832,675.8448,682.4064, 688.968,695.5296,702.0912,708.6528,715.2144,721.776,728.3376,734.8992,741.4608,748.0224,754.584, 761.1456,767.7072,774.2688,780.8304,787.392,793.9536,800.5152,807.0768,813.6384,820.2,826.7616, 833.3232,839.8848,846.4464,853.008,859.5696,866.1312,872.6928,879.2544,885.816,892.3776,898.9392, 905.5008,912.0624,918.624,925.1856,931.7472,938.3088,944.8704,951.432,957.9936,964.5552,971.1168, 977.6784,984.24,990.8016,997.3632, 1003.9232,1010.4832,1017.0432,1023.6032,1030.1632,1036.7232,1043.2832,1049.8432,1056.4032, 1062.9632,1069.5232,1076.0832,1082.6432,1089.2032,1095.7632,1102.3232,1108.8832,1115.4432, 1122.0032,1128.5632,1135.1232,1141.6832,1148.2432,1154.8032,1161.3632,1167.9232,1174.4832, 1181.0432,1187.6032,1194.1632,1200.7232,1207.2832,1213.8432,1220.4032,1226.9632,1233.5232, 1240.0832,1246.6432,1253.2032,1259.7632,1266.3232,1272.8832,1279.4432,1286.0032,1292.5632, 1299.1232,1305.6832,1312.2432,1318.8032,1325.3632,1331.9232,1338.4832,1345.0432,1351.6032, 1358.1632,1364.7232,1371.2832,1377.8432,1384.4032,1390.9632,1397.5232,1404.0832,1410.6432, 1417.2032,1423.7632,1430.3232,1436.8832,1443.4432,1450.0032,1456.5632,1463.1232,1469.6832, 1476.2432,1482.8032,1489.3632,1495.9232,1502.4832,1509.0432,1515.6032,1522.1632,1528.7232, 1535.2832,1541.8432,1548.4032,1554.9632,1561.5232,1568.0832,1574.6432,1581.2032,1587.7632, 1594.3232,1600.8832,1607.4432,1614.0032,1620.5632,1627.1232,1633.6832,1640.2432,1646.8032, 1653.3632,1659.9232,1666.4832,1673.0432,1679.6032,1686.1632,1692.7232,1699.2832,1705.8432, 1712.4032,1718.9632,1725.5232,1732.0832,1738.6432,1745.2032,1751.7632,1758.3232,1764.8832, 1771.4432,1778.0032,1784.5632,1791.1232,1797.6832,1804.2432,1810.8032,1817.3632,1823.9232, 1830.4832,1837.0432,1843.6032,1850.1632,1856.7232,1863.2832,1869.8432,1876.4032,1882.9632, 1889.5232,1896.0832,1902.6432,1909.2032,1915.7632,1922.3232,1928.8832,1935.4432,1942.0032, 1948.5632,1955.1232,1961.6832,1968.2432,1974.8032,1981.3632,1987.9232,1994.4832] expected_result_y = [0.49997,0.37451,0.29849,0.25004,0.2138,0.19455,0.18448,0.17591,0.1678,0.15421,0.1401, 0.12693,0.11785,0.11144,0.10675,0.099496,0.092323,0.085695,0.079234,0.074253,0.070316, 0.067191,0.064594,0.062337,0.060348,0.058192,0.055224,0.051972,0.049283,0.04757, 0.046226,0.044969,0.043922,0.043027,0.041934,0.040528,0.039018,0.037744,0.036762, 0.035923,0.035071,0.034267,0.033456,0.032629,0.03184,0.031078,0.030363,0.02968,0.029028, 0.028399,0.027788,0.027199,0.026642,0.026124,0.025635,0.02517,0.024719,0.024287,0.023867, 0.023457,0.023061,0.022685,0.022334,0.021998,0.021675,0.02136,0.021055,0.020758,0.020467, 0.020186,0.019919,0.019665,0.019421,0.019184,0.018951,0.018727,0.018514,0.018311, 0.018118,0.017929,0.017745,0.017564,0.017387,0.017214,0.017046,0.016886,0.016732, 0.016587,0.016446,0.016309,0.016174,0.016039,0.015906,0.015777,0.015653,0.015532, 0.015418,0.015308,0.015202,0.015097,0.014991,0.014885,0.014782,0.014683,0.014588,0.0145, 0.014415,0.014334,0.014254,0.014172,0.01409,0.014007,0.013926,0.013846,0.01377,0.013697, 0.013628,0.013559,0.013491,0.013423,0.013354,0.013288,0.013223,0.01316,0.013099,0.01304, 0.012983,0.012926,0.01287,0.012814,0.012758,0.012703,0.012649,0.012597,0.012547,0.012499, 0.01245,0.012402,0.012352,0.012302,0.012254,0.012205,0.012158,0.012113,0.012068,0.012025, 0.011982,0.01194,0.011899,0.011859,0.011819,0.01178,0.011741,1.1826345E-02,1.1812256E-02, 1.1798945E-02,1.1786331E-02,1.1774344E-02,1.1762927E-02,1.1752028E-02,1.1741602E-02, 1.1731610E-02,1.1722019E-02,1.1712796E-02,1.1703917E-02,1.1695355E-02,1.1687089E-02, 1.1679100E-02,1.1671370E-02,1.1663883E-02,1.1656623E-02,1.1649579E-02,1.1642737E-02, 1.1636087E-02,1.1629617E-02,1.1623319E-02,1.1617184E-02,1.1611203E-02,1.1605369E-02, 1.1599676E-02,1.1594116E-02,1.1588684E-02,1.1583373E-02,1.1578179E-02,1.1573097E-02, 1.1568122E-02,1.1563249E-02,1.1558475E-02,1.1553795E-02,1.1549206E-02,1.1544705E-02, 1.1540288E-02,1.1535953E-02,1.1531695E-02,1.1527514E-02,1.1523405E-02,1.1519367E-02, 1.1515397E-02,1.1511493E-02,1.1507652E-02,1.1503873E-02,1.1500154E-02,1.1496493E-02, 1.1492889E-02,1.1489338E-02,1.1485841E-02,1.1482395E-02,1.1478999E-02,1.1475651E-02, 1.1472351E-02,1.1469096E-02,1.1465886E-02,1.1462720E-02,1.1459595E-02,1.1456512E-02, 1.1453469E-02,1.1450465E-02,1.1447499E-02,1.1444570E-02,1.1441677E-02,1.1438820E-02, 1.1435997E-02,1.1433208E-02,1.1430452E-02,1.1427728E-02,1.1425036E-02,1.1422374E-02, 1.1419742E-02,1.1417139E-02,1.1414566E-02,1.1412020E-02,1.1409502E-02,1.1407011E-02, 1.1404546E-02,1.1402107E-02,1.1399693E-02,1.1397304E-02,1.1394939E-02,1.1392598E-02, 1.1390281E-02,1.1387986E-02,1.1385713E-02,1.1383463E-02,1.1381234E-02,1.1379026E-02, 1.1376840E-02,1.1374673E-02,1.1372527E-02,1.1370400E-02,1.1368292E-02,1.1366204E-02, 1.1364134E-02,1.1362082E-02,1.1360048E-02,1.1358032E-02,1.1356033E-02,1.1354052E-02, 1.1352087E-02,1.1350139E-02,1.1348207E-02,1.1346291E-02,1.1344390E-02,1.1342505E-02, 1.1340635E-02,1.1338781E-02,1.1336941E-02,1.1335115E-02,1.1333304E-02,1.1331507E-02, 1.1329723E-02,1.1327954E-02,1.1326197E-02,1.1324454E-02,1.1322724E-02,1.1321007E-02, 1.1319303E-02,1.1317611E-02,1.1315931E-02,1.1314263E-02,1.1312608E-02,1.1310964E-02, 1.1309332E-02,1.1307711E-02,1.1306101E-02,1.1304503E-02,1.1302915E-02,1.1301339E-02, 1.1299773E-02,1.1298218E-02,1.1296673E-02,1.1295138E-02,1.1293614E-02,1.1292099E-02, 1.1290594E-02,1.1289100E-02,1.1287614E-02,1.1286139E-02,1.1284672E-02,1.1283215E-02, 1.1281767E-02,1.1280328E-02,1.1278898E-02,1.1277477E-02,1.1276065E-02,1.1274661E-02] expected_result_npts = [305] max_dist = 997.3632 dist_inc = 6.56 num_pts_ext = 16 ln_ln_trans = False #using the relative ln ln transformation in this test agdrift_empty.meters_per_ft = 0.3048 x_array_in = pd.Series([0.,6.5616,13.1232,19.6848,26.2464, 32.808,39.3696,45.9312,52.4928,59.0544,65.616,72.1776,78.7392,85.3008,91.8624,98.424,104.9856, 111.5472,118.1088,124.6704,131.232,137.7936,144.3552,150.9168,157.4784,164.04,170.6016,177.1632, 183.7248,190.2864,196.848,203.4096,209.9712,216.5328,223.0944,229.656,236.2176,242.7792,249.3408, 255.9024,262.464,269.0256,275.5872,282.1488,288.7104,295.272,301.8336,308.3952,314.9568,321.5184, 328.08,334.6416,341.2032,347.7648,354.3264,360.888,367.4496,374.0112,380.5728,387.1344,393.696, 400.2576,406.8192,413.3808,419.9424,426.504,433.0656,439.6272,446.1888,452.7504,459.312,465.8736, 472.4352,478.9968,485.5584,492.12,498.6816,505.2432,511.8048,518.3664,524.928,531.4896,538.0512, 544.6128,551.1744,557.736,564.2976,570.8592,577.4208,583.9824,590.544,597.1056,603.6672,610.2288, 616.7904,623.352,629.9136,636.4752,643.0368,649.5984,656.16,662.7216,669.2832,675.8448,682.4064, 688.968,695.5296,702.0912,708.6528,715.2144,721.776,728.3376,734.8992,741.4608,748.0224,754.584, 761.1456,767.7072,774.2688,780.8304,787.392,793.9536,800.5152,807.0768,813.6384,820.2,826.7616, 833.3232,839.8848,846.4464,853.008,859.5696,866.1312,872.6928,879.2544,885.816,892.3776,898.9392, 905.5008,912.0624,918.624,925.1856,931.7472,938.3088,944.8704,951.432,957.9936,964.5552,971.1168, 977.6784,984.24,990.8016,997.3632]) y_array_in = pd.Series([0.49997,0.37451,0.29849,0.25004,0.2138,0.19455,0.18448,0.17591,0.1678,0.15421,0.1401, 0.12693,0.11785,0.11144,0.10675,0.099496,0.092323,0.085695,0.079234,0.074253,0.070316, 0.067191,0.064594,0.062337,0.060348,0.058192,0.055224,0.051972,0.049283,0.04757, 0.046226,0.044969,0.043922,0.043027,0.041934,0.040528,0.039018,0.037744,0.036762, 0.035923,0.035071,0.034267,0.033456,0.032629,0.03184,0.031078,0.030363,0.02968,0.029028, 0.028399,0.027788,0.027199,0.026642,0.026124,0.025635,0.02517,0.024719,0.024287,0.023867, 0.023457 ,0.023061,0.022685,0.022334,0.021998,0.021675,0.02136,0.021055,0.020758,0.020467, 0.020186,0.019919,0.019665,0.019421,0.019184,0.018951,0.018727,0.018514,0.018311, 0.018118,0.017929,0.017745,0.017564,0.017387,0.017214,0.017046,0.016886,0.016732, 0.016587,0.016446,0.016309,0.016174,0.016039,0.015906,0.015777,0.015653,0.015532, 0.015418,0.015308,0.015202,0.015097,0.014991,0.014885,0.014782,0.014683,0.014588,0.0145, 0.014415,0.014334,0.014254,0.014172,0.01409,0.014007,0.013926,0.013846,0.01377,0.013697, 0.013628,0.013559,0.013491,0.013423,0.013354,0.013288,0.013223,0.01316,0.013099,0.01304, 0.012983,0.012926,0.01287,0.012814,0.012758,0.012703,0.012649,0.012597,0.012547,0.012499, 0.01245,0.012402,0.012352,0.012302,0.012254,0.012205,0.012158,0.012113,0.012068,0.012025, 0.011982,0.01194,0.011899,0.011859,0.011819,0.01178,0.011741]) x_array_out, y_array_out = agdrift_empty.extend_curve_opp(x_array_in, y_array_in, max_dist, dist_inc, num_pts_ext, ln_ln_trans) npts_out = [len(y_array_out)] # #agdrift_empty.write_arrays_to_csv(x_array_out, y_array_out, "extend_data.csv") npt.assert_array_equal(expected_result_npts, npts_out, verbose=True) npt.assert_allclose(x_array_out, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(y_array_out, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: pass tab1 = [x_array_out, expected_result_x] tab2 = [y_array_out, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print('expected {0} number of points and got {1} points'.format(expected_result_npts[0], npts_out[0])) print("x_array result/x_array_expected") print(tabulate(tab1, headers='keys', tablefmt='rst')) print("y_array result/y_array_expected") print(tabulate(tab2, headers='keys', tablefmt='rst')) return def test_extend_curve_opp1(self): """ :description extends/extrapolates an x,y array of data points that reflect a ln ln relationship by selecting a number of points near the end of the x,y arrays and fitting a line to the points ln ln transforms (two ln ln transforms can by applied; on using the straight natural log of each selected x,y point and one using a 'relative' value of each of the selected points -- the relative values are calculated by establishing a zero point closest to the selected points For AGDRIFT: extends distance vs deposition (fraction of applied) curve to enable model calculations when area of interest (pond, wetland, terrestrial field) lie partially outside the original curve (whose extent is 997 feet). The extension is achieved by fitting a line of best fit to the last 16 points of the original curve. The x,y values representing the last 16 points are natural log transforms of the distance and deposition values at the 16 points. Two long transforms are coded here, reflecting the fact that the AGDRIFT model (v2.1.1) uses each of them under different circumstandes (which I believe is not the intention but is the way the model functions -- my guess is that one of the transforms was used and then a second one was coded to increase the degree of conservativeness -- but the code was changed in only one of the two places where the transformation occurs. Finally, the AGDRIFT model extends the curve only when necessary (i.e., when it determines that the area of intereest lies partially beyond the last point of the origanal curve (997 ft). In this code all the curves are extended out to 1994 ft, which represents the furthest distance that the downwind edge of an area of concern can be specified. All scenario curves are extended here because we are running multiple simulations (e.g., monte carlo) and instead of extending the curves each time a simulation requires it (which may be multiple time for the same scenario curve) we just do it for all curves up front. There is a case to be made that the curves should be extended external to this code and simply provide the full curve in the SQLite database containing the original curve. :param x_array: array of x values to be extended (must be at least 17 data points in original array) :param y_array: array of y values to be extended :param max_dist: maximum distance (ft) associated with unextended x values :param dist_inc: increment (ft) for each extended data point :param num_pts_ext: number of points at end of original x,y arrays to be used for extending the curve :param ln_ln_trans: form of transformation to perform (True: straight ln ln, False: relative ln ln) :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result_x = pd.Series([], dtype='float') expected_result_y =
pd.Series([], dtype='float')
pandas.Series
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright Toolkit Authors """V3DBHandler.""" from copy import deepcopy from datetime import datetime import hashlib import importlib import logging import os from migrate import create_column import numpy as np import pandas as pd from sqlalchemy import sql, Column, Table, MetaData, inspect from sqlalchemy.exc import OperationalError, ProgrammingError from sqlalchemy.types import VARCHAR, DECIMAL, BOOLEAN, TEXT from sqlalchemy.dialects.mysql import DOUBLE from sqlalchemy.dialects.postgresql import DOUBLE_PRECISION from tqdm import tqdm from pydtk.db import V2BaseDBHandler as _V2BaseDBHandler from pydtk.utils.utils import load_config from pydtk.utils.utils import dicts_to_listed_dict_2d from pydtk.utils.utils import dtype_string_to_dtype_object from pydtk.utils.utils import serialize_dict_1d from pydtk.utils.utils import deserialize_dict_1d DB_HANDLERS = {} # key: db_class, value: dict( key: db_engine, value: handler ) def map_dtype(dtype, db_engine='general'): """Mapper for dtype. Args: dtype (str): dtype in dataframe db_engine (str): DB engine Returns: (dict): { 'df': dtype for Pandas.DataFrame, 'sql': dtype for SQL table } """ if dtype in ['int', 'int32', 'int64', 'float', 'float32', 'float64', 'double']: if db_engine in ['mysql', 'mariadb']: return {'df': 'double', 'sql': DOUBLE} elif db_engine in ['postgresql', 'timescaledb']: return {'df': 'double', 'sql': DOUBLE_PRECISION} else: return {'df': 'double', 'sql': DECIMAL} if dtype in ['bool']: return {'df': 'boolean', 'sql': BOOLEAN} if dtype in ['object', 'string', 'text']: return {'df': 'text', 'sql': TEXT} raise ValueError('Unsupported dtype: {}'.format(dtype)) def register_handlers(): """Register handlers.""" for filename in os.listdir(os.path.join(os.path.dirname(__file__))): if not os.path.isfile(os.path.join(os.path.dirname(__file__), filename)): continue if filename == '__init__.py': continue try: importlib.import_module( os.path.join('pydtk.db.v3.handlers', os.path.splitext(filename)[0]).replace(os.sep, '.') ) except ModuleNotFoundError: logging.debug('Failed to load handlers in {}'.format(filename)) def register_handler(db_classes, db_engines): """Register a DB-handler. Args: db_classes (list): list of db_class names (e.g. ['meta']) db_engines (list): list of supported db_engines (e.g. ['sqlite', 'mysql']) """ def decorator(cls): for db_class in db_classes: if db_class not in DB_HANDLERS.keys(): DB_HANDLERS.update({db_class: {}}) for db_engine in db_engines: if db_engine not in DB_HANDLERS[db_class].keys(): DB_HANDLERS[db_class].update({db_engine: cls}) return cls return decorator class BaseDBHandler(_V2BaseDBHandler): """Base handler for db.""" __version__ = 'v3' _df_class = 'base_df' def __new__(cls, db_class: str = None, db_engine: str = None, **kwargs) -> object: """Create object. Args: db_class (str): database class (e.g. 'meta') db_engine (str): database engine (e.g. 'sqlite') **kwargs: DB-handler specific arguments Returns: (object): the corresponding handler object """ if cls is BaseDBHandler: handler = cls._get_handler(db_class, db_engine) return super(BaseDBHandler, cls).__new__(handler) else: return super(BaseDBHandler, cls).__new__(cls) @classmethod def _get_handler(cls, db_class, db_engine=None): """Returns an appropriate handler. Args: db_class (str): database class (e.g. 'meta') db_engine (str): database engine (e.g. 'sqlite') Returns: (handler): database handler object """ # Load default config config = load_config(cls.__version__) # Check if the db_class is available if db_class not in DB_HANDLERS.keys(): raise ValueError('Unsupported db_class: {}'.format(db_class)) # Get db_engine from environment variable if not specified if db_engine is None: db_engine = os.environ.get('PYDTK_{}_DB_ENGINE'.format(db_class.upper()), None) # Get the default engine if not specified if db_engine is None: try: db_defaults = getattr(config.sql, db_class) db_engine = db_defaults.engine except (ValueError, AttributeError): raise ValueError('Could not find the default value') # Check if the corresponding handler is registered if db_engine not in DB_HANDLERS[db_class].keys(): raise ValueError('Unsupported db_engine: {}'.format(db_engine)) # Get a DB-handler supporting the engine return DB_HANDLERS[db_class][db_engine] def __init__(self, **kwargs): """Initialize BaseDBHandler. Args: **kwargs: kwargs """ self._count_total = 0 if 'db_class' in kwargs.keys(): del kwargs['db_class'] super(BaseDBHandler, self).__init__(**kwargs) def __next__(self): """Return the next item.""" if self._cursor >= len(self.df): self._cursor = 0 raise StopIteration() # Grab data data = self.df.take([self._cursor]).to_dict(orient='records')[0] # Delete internal column if 'uuid_in_df' in data.keys(): del data['uuid_in_df'] if 'creation_time_in_df' in data.keys(): del data['creation_time_in_df'] # Post-processes data = deserialize_dict_1d(data) # Increment self._cursor += 1 return data def _initialize_df(self): """Initialize DF.""" df = pd.concat( [pd.Series(name=c['name'], dtype=dtype_string_to_dtype_object(c['dtype'])) for c in self.columns if c['name'] != 'uuid_in_df' and c['name'] != 'creation_time_in_df'] # noqa: E501 + [
pd.Series(name='uuid_in_df', dtype=str)
pandas.Series
# pylint: disable=no-member,redefined-outer-name,unused-argument # pylint: disable=unused-variable """Unit tests for pandera API extensions.""" from typing import Any, Optional import pandas as pd import pytest import pandera as pa import pandera.strategies as st from pandera import PandasDtype, extensions from pandera.checks import Check @pytest.fixture(scope="function") def custom_check_teardown(): """Remove all custom checks after execution of each pytest function.""" yield for check_name in list(pa.Check.REGISTERED_CUSTOM_CHECKS): delattr(pa.Check, check_name) del pa.Check.REGISTERED_CUSTOM_CHECKS[check_name] @pytest.mark.parametrize( "data", [ pd.Series([10, 10, 10]), pd.DataFrame([[10, 10, 10], [10, 10, 10]]), ], ) def test_register_vectorized_custom_check(custom_check_teardown, data): """Test registering a vectorized custom check.""" @extensions.register_check_method( statistics=["val"], supported_types=(pd.Series, pd.DataFrame), check_type="vectorized", ) def custom_check(pandas_obj, *, val): return pandas_obj == val check = Check.custom_check(val=10) check_result = check(data) assert check_result.check_passed for kwargs in [ {"element_wise": True}, {"element_wise": False}, {"groupby": "column"}, {"groups": ["group1", "group2"]}, ]: with pytest.warns(UserWarning): Check.custom_check(val=10, **kwargs) with pytest.raises( ValueError, match="method with name 'custom_check' already defined", ): # pylint: disable=function-redefined @extensions.register_check_method(statistics=["val"]) def custom_check(pandas_obj, val): # noqa return pandas_obj != val @pytest.mark.parametrize( "data", [ pd.Series([10, 10, 10]), pd.DataFrame([[10, 10, 10], [10, 10, 10]]), ], ) def test_register_element_wise_custom_check(custom_check_teardown, data): """Test registering an element-wise custom check.""" @extensions.register_check_method( statistics=["val"], supported_types=(pd.Series, pd.DataFrame), check_type="element_wise", ) def custom_check(element, *, val): return element == val check = Check.custom_check(val=10) check_result = check(data) assert check_result.check_passed for kwargs in [ {"element_wise": True}, {"element_wise": False}, {"groupby": "column"}, {"groups": ["group1", "group2"]}, ]: with pytest.warns(UserWarning): Check.custom_check(val=10, **kwargs) with pytest.raises( ValueError, match="Element-wise checks should support DataFrame and Series " "validation", ): @extensions.register_check_method( supported_types=pd.Series, check_type="element_wise", ) def invalid_custom_check(*args): pass def test_register_custom_groupby_check(custom_check_teardown): """Test registering a custom groupby check.""" @extensions.register_check_method( statistics=["group_a", "group_b"], supported_types=(pd.Series, pd.DataFrame), check_type="groupby", ) def custom_check(dict_groups, *, group_a, group_b): """ Test that the mean values in group A is larger than that of group B. Note that this function can handle groups of both dataframes and series. """ return ( dict_groups[group_a].values.mean() > dict_groups[group_b].values.mean() ) # column groupby check data_column_check = pd.DataFrame( { "col1": [20, 20, 10, 10], "col2": list("aabb"), } ) schema_column_check = pa.DataFrameSchema( { "col1": pa.Column( int, Check.custom_check(group_a="a", group_b="b", groupby="col2"), ), "col2": pa.Column(str), } ) assert isinstance(schema_column_check(data_column_check), pd.DataFrame) # dataframe groupby check data_df_check = pd.DataFrame( { "col1": [20, 20, 10, 10], "col2": [30, 30, 5, 5], "col3": [10, 10, 1, 1], }, index=pd.Index(list("aabb"), name="my_index"), ) schema_df_check = pa.DataFrameSchema( columns={ "col1": pa.Column(int), "col2": pa.Column(int), "col3": pa.Column(int), }, index=pa.Index(str, name="my_index"), checks=Check.custom_check( group_a="a", group_b="b", groupby="my_index" ), ) assert isinstance(schema_df_check(data_df_check), pd.DataFrame) for kwargs in [{"element_wise": True}, {"element_wise": False}]: with pytest.warns(UserWarning): Check.custom_check(val=10, **kwargs) @pytest.mark.parametrize( "supported_types", [ 1, 10.0, "foo", {"foo": "bar"}, {1: 10}, ["foo", "bar"], [1, 10], ("foo", "bar"), (1, 10), ], ) def test_register_check_invalid_supported_types(supported_types): """Test that TypeError is raised on invalid supported_types arg.""" with pytest.raises(TypeError): @extensions.register_check_method(supported_types=supported_types) def custom_check(*args, **kwargs): pass @pytest.mark.skipif( not st.HAS_HYPOTHESIS, reason='needs "strategies" module dependencies' ) def test_register_check_with_strategy(custom_check_teardown): """Test registering a custom check with a data generation strategy.""" import hypothesis # pylint: disable=import-outside-toplevel,import-error def custom_ge_strategy( pandas_dtype: PandasDtype, strategy: Optional[st.SearchStrategy] = None, *, min_value: Any, ) -> st.SearchStrategy: if strategy is None: return st.pandas_dtype_strategy( pandas_dtype, min_value=min_value, exclude_min=False, ) return strategy.filter(lambda x: x > min_value) @extensions.register_check_method( statistics=["min_value"], strategy=custom_ge_strategy ) def custom_ge_check(pandas_obj, *, min_value): return pandas_obj >= min_value check = Check.custom_ge_check(min_value=0) strat = check.strategy(PandasDtype.Int) with pytest.warns(hypothesis.errors.NonInteractiveExampleWarning): assert strat.example() >= 0 def test_schema_model_field_kwarg(custom_check_teardown): """Test that registered checks can be specified in a Field.""" # pylint: disable=missing-class-docstring,too-few-public-methods @extensions.register_check_method( statistics=["val"], supported_types=(pd.Series, pd.DataFrame), check_type="vectorized", ) def custom_gt(pandas_obj, val): return pandas_obj > val @extensions.register_check_method( statistics=["min_value", "max_value"], supported_types=(pd.Series, pd.DataFrame), check_type="vectorized", ) def custom_in_range(pandas_obj, min_value, max_value): return (min_value <= pandas_obj) & (pandas_obj <= max_value) class Schema(pa.SchemaModel): """Schema that uses registered checks in Field.""" col1: pa.typing.Series[int] = pa.Field(custom_gt=100) col2: pa.typing.Series[float] = pa.Field( custom_in_range={"min_value": -10, "max_value": 10} ) class Config: coerce = True data = pd.DataFrame( { "col1": [101, 1000, 2000], "col2": [-5.0, 0.0, 6.0], } ) Schema.validate(data) for invalid_data in [ pd.DataFrame({"col1": [0], "col2": [-10.0]}),
pd.DataFrame({"col1": [1000], "col2": [-100.0]})
pandas.DataFrame
import pandas as pd from business_rules.operators import (DataframeType, StringType, NumericType, BooleanType, SelectType, SelectMultipleType, GenericType) from . import TestCase from decimal import Decimal import sys import pandas class StringOperatorTests(TestCase): def test_operator_decorator(self): self.assertTrue(StringType("foo").equal_to.is_operator) def test_string_equal_to(self): self.assertTrue(StringType("foo").equal_to("foo")) self.assertFalse(StringType("foo").equal_to("Foo")) def test_string_not_equal_to(self): self.assertTrue(StringType("foo").not_equal_to("Foo")) self.assertTrue(StringType("foo").not_equal_to("boo")) self.assertFalse(StringType("foo").not_equal_to("foo")) def test_string_equal_to_case_insensitive(self): self.assertTrue(StringType("foo").equal_to_case_insensitive("FOo")) self.assertTrue(StringType("foo").equal_to_case_insensitive("foo")) self.assertFalse(StringType("foo").equal_to_case_insensitive("blah")) def test_string_starts_with(self): self.assertTrue(StringType("hello").starts_with("he")) self.assertFalse(StringType("hello").starts_with("hey")) self.assertFalse(StringType("hello").starts_with("He")) def test_string_ends_with(self): self.assertTrue(StringType("hello").ends_with("lo")) self.assertFalse(StringType("hello").ends_with("boom")) self.assertFalse(StringType("hello").ends_with("Lo")) def test_string_contains(self): self.assertTrue(StringType("hello").contains("ell")) self.assertTrue(StringType("hello").contains("he")) self.assertTrue(StringType("hello").contains("lo")) self.assertFalse(StringType("hello").contains("asdf")) self.assertFalse(StringType("hello").contains("ElL")) def test_string_matches_regex(self): self.assertTrue(StringType("hello").matches_regex(r"^h")) self.assertFalse(StringType("hello").matches_regex(r"^sh")) def test_non_empty(self): self.assertTrue(StringType("hello").non_empty()) self.assertFalse(StringType("").non_empty()) self.assertFalse(StringType(None).non_empty()) class NumericOperatorTests(TestCase): def test_instantiate(self): err_string = "foo is not a valid numeric type" with self.assertRaisesRegexp(AssertionError, err_string): NumericType("foo") def test_numeric_type_validates_and_casts_decimal(self): ten_dec = Decimal(10) ten_int = 10 ten_float = 10.0 if sys.version_info[0] == 2: ten_long = long(10) else: ten_long = int(10) # long and int are same in python3 ten_var_dec = NumericType(ten_dec) # this should not throw an exception ten_var_int = NumericType(ten_int) ten_var_float = NumericType(ten_float) ten_var_long = NumericType(ten_long) self.assertTrue(isinstance(ten_var_dec.value, Decimal)) self.assertTrue(isinstance(ten_var_int.value, Decimal)) self.assertTrue(isinstance(ten_var_float.value, Decimal)) self.assertTrue(isinstance(ten_var_long.value, Decimal)) def test_numeric_equal_to(self): self.assertTrue(NumericType(10).equal_to(10)) self.assertTrue(NumericType(10).equal_to(10.0)) self.assertTrue(NumericType(10).equal_to(10.000001)) self.assertTrue(NumericType(10.000001).equal_to(10)) self.assertTrue(NumericType(Decimal('10.0')).equal_to(10)) self.assertTrue(NumericType(10).equal_to(Decimal('10.0'))) self.assertFalse(NumericType(10).equal_to(10.00001)) self.assertFalse(NumericType(10).equal_to(11)) def test_numeric_not_equal_to(self): self.assertTrue(NumericType(10).not_equal_to(10.00001)) self.assertTrue(NumericType(10).not_equal_to(11)) self.assertTrue(NumericType(Decimal('10.0')).not_equal_to(Decimal('10.1'))) self.assertFalse(NumericType(10).not_equal_to(10)) self.assertFalse(NumericType(10).not_equal_to(10.0)) self.assertFalse(NumericType(Decimal('10.0')).not_equal_to(Decimal('10.0'))) def test_other_value_not_numeric(self): error_string = "10 is not a valid numeric type" with self.assertRaisesRegexp(AssertionError, error_string): NumericType(10).equal_to("10") def test_numeric_greater_than(self): self.assertTrue(NumericType(10).greater_than(1)) self.assertFalse(NumericType(10).greater_than(11)) self.assertTrue(NumericType(10.1).greater_than(10)) self.assertFalse(NumericType(10.000001).greater_than(10)) self.assertTrue(NumericType(10.000002).greater_than(10)) def test_numeric_greater_than_or_equal_to(self): self.assertTrue(NumericType(10).greater_than_or_equal_to(1)) self.assertFalse(NumericType(10).greater_than_or_equal_to(11)) self.assertTrue(NumericType(10.1).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10.000001).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10.000002).greater_than_or_equal_to(10)) self.assertTrue(NumericType(10).greater_than_or_equal_to(10)) def test_numeric_less_than(self): self.assertTrue(NumericType(1).less_than(10)) self.assertFalse(NumericType(11).less_than(10)) self.assertTrue(NumericType(10).less_than(10.1)) self.assertFalse(NumericType(10).less_than(10.000001)) self.assertTrue(NumericType(10).less_than(10.000002)) def test_numeric_less_than_or_equal_to(self): self.assertTrue(NumericType(1).less_than_or_equal_to(10)) self.assertFalse(NumericType(11).less_than_or_equal_to(10)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.1)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.000001)) self.assertTrue(NumericType(10).less_than_or_equal_to(10.000002)) self.assertTrue(NumericType(10).less_than_or_equal_to(10)) class BooleanOperatorTests(TestCase): def test_instantiate(self): err_string = "foo is not a valid boolean type" with self.assertRaisesRegexp(AssertionError, err_string): BooleanType("foo") err_string = "None is not a valid boolean type" with self.assertRaisesRegexp(AssertionError, err_string): BooleanType(None) def test_boolean_is_true_and_is_false(self): self.assertTrue(BooleanType(True).is_true()) self.assertFalse(BooleanType(True).is_false()) self.assertFalse(BooleanType(False).is_true()) self.assertTrue(BooleanType(False).is_false()) class SelectOperatorTests(TestCase): def test_contains(self): self.assertTrue(SelectType([1, 2]).contains(2)) self.assertFalse(SelectType([1, 2]).contains(3)) self.assertTrue(SelectType([1, 2, "a"]).contains("A")) def test_does_not_contain(self): self.assertTrue(SelectType([1, 2]).does_not_contain(3)) self.assertFalse(SelectType([1, 2]).does_not_contain(2)) self.assertFalse(SelectType([1, 2, "a"]).does_not_contain("A")) class SelectMultipleOperatorTests(TestCase): def test_contains_all(self): self.assertTrue(SelectMultipleType([1, 2]). contains_all([2, 1])) self.assertFalse(SelectMultipleType([1, 2]). contains_all([2, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). contains_all([2, 1, "A"])) def test_is_contained_by(self): self.assertTrue(SelectMultipleType([1, 2]). is_contained_by([2, 1, 3])) self.assertFalse(SelectMultipleType([1, 2]). is_contained_by([2, 3, 4])) self.assertTrue(SelectMultipleType([1, 2, "a"]). is_contained_by([2, 1, "A"])) def test_shares_at_least_one_element_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_at_least_one_element_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_at_least_one_element_with([4, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). shares_at_least_one_element_with([4, "A"])) def test_shares_exactly_one_element_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_exactly_one_element_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_exactly_one_element_with([4, 3])) self.assertTrue(SelectMultipleType([1, 2, "a"]). shares_exactly_one_element_with([4, "A"])) self.assertFalse(SelectMultipleType([1, 2, 3]). shares_exactly_one_element_with([2, 3, "a"])) def test_shares_no_elements_with(self): self.assertTrue(SelectMultipleType([1, 2]). shares_no_elements_with([4, 3])) self.assertFalse(SelectMultipleType([1, 2]). shares_no_elements_with([2, 3])) self.assertFalse(SelectMultipleType([1, 2, "a"]). shares_no_elements_with([4, "A"])) class DataframeOperatorTests(TestCase): def test_exists(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, ], "var2": [3, 5, 6, ], }) result: pd.Series = DataframeType({"value": df}).exists({"target": "var1"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).exists({"target": "--r1"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df}).exists({"target": "invalid"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) def test_not_exists(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, ], "var2": [3, 5, 6, ] }) result: pd.Series = DataframeType({"value": df}).not_exists({"target": "invalid"}) self.assertTrue(result.equals(pd.Series([True, True, True, ]))) result: pd.Series = DataframeType({"value": df}).not_exists({"target": "var1"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) result: pd.Series = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_exists({"target": "--r1"}) self.assertTrue(result.equals(pd.Series([False, False, False, ]))) def test_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1, 2, 4, "", 7, ], "var2": [3, 5, 6, "", 2, ], "var3": [1, 3, 8, "", 7, ], "var4": ["test", "issue", "one", "", "two", ] }) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "" }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": 2 }).equals(pandas.Series([False, True, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, False, False, False, True, ]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).equal_to({ "target": "--r1", "comparator": "--r3" }).equals(pandas.Series([True, False, False, False, True, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var1", "comparator": 20 }).equals(pandas.Series([False, False, False, False, False, ]))) self.assertTrue(DataframeType({"value": df}).equal_to({ "target": "var4", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([False, False, False, False, False, ]))) def test_not_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).not_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_equal_to({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_equal_to({ "target": "--r1", "comparator": 20 }).equals(pandas.Series([True, True, True]))) def test_equal_to_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["word", "", "new", "val"], "var2": ["WORD", "", "test", "VAL"], "var3": ["LET", "", "GO", "read"] }) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "NEW" }).equals(pandas.Series([False, False, True, False]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "" }).equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).equal_to_case_insensitive({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, False, False, True]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, False, False, True]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).equal_to_case_insensitive({ "target": "var1", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([False, False, False, False]))) def test_not_equal_to_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["word", "new", "val"], "var2": ["WORD", "test", "VAL"], "var3": ["LET", "GO", "read"], "var4": ["WORD", "NEW", "VAL"] }) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, True, False]))) self.assertTrue(DataframeType({"value": df}).not_equal_to_case_insensitive({ "target": "var1", "comparator": "var1", "value_is_literal": True }).equals(pandas.Series([True, True, True]))) def test_less_than(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).less_than({ "target": "--r1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var2", "comparator": 2 }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than({ "target": "var1", "comparator": 3 }).equals(pandas.Series([True, True, False]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, None, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).less_than({ "target": "LBDY", "comparator": 5 }).equals(pandas.Series([True, False, False, False, False, ]))) def test_less_than_or_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).less_than_or_equal_to({ "target": "--r1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": "var1" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": 2 }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).less_than_or_equal_to({ "target": "var2", "comparator": "var3" }).equals(pandas.Series([False, False, True]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, 5, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).less_than_or_equal_to({ "target": "LBDY", "comparator": 5 }).equals(pandas.Series([True, True, False, False, False, ]))) def test_greater_than(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).greater_than({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var2", "comparator": 2 }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).greater_than({ "target": "var1", "comparator": 5000 }).equals(pandas.Series([False, False, False]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, None, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).greater_than({ "target": "LBDY", "comparator": 3 }).equals(pandas.Series([True, False, False, False, False, ]))) def test_greater_than_or_equal_to(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4] }) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).greater_than_or_equal_to({ "target": "var1", "comparator": "--r4" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var2", "comparator": "var3" }).equals(pandas.Series([True, True, False]))) self.assertTrue(DataframeType({"value": df}).greater_than_or_equal_to({ "target": "var2", "comparator": 2 }).equals(pandas.Series([True, True, True]))) another_df = pandas.DataFrame.from_dict( { "LBDY": [4, 3, None, None, None] } ) self.assertTrue(DataframeType({"value": another_df}).greater_than_or_equal_to({ "target": "LBDY", "comparator": 3 }).equals(pandas.Series([True, True, False, False, False, ]))) def test_contains(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4], "string_var": ["hj", "word", "c"], "var5": [[1,3,5],[1,3,5], [1,3,5]] }) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var1", "comparator": 2 }).equals(pandas.Series([False, True, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).contains({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "string_var", "comparator": "string_var" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "string_var", "comparator": "string_var", "value_is_literal": True }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).contains({ "target": "var5", "comparator": "var1" }).equals(pandas.Series([True, False, False]))) def test_does_not_contain(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4], "string_var": ["hj", "word", "c"], "var5": [[1,3,5],[1,3,5], [1,3,5]] }) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var1", "comparator": 5 }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).does_not_contain({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "string_var", "comparator": "string_var", "value_is_literal": True }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "string_var", "comparator": "string_var" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).does_not_contain({ "target": "var5", "comparator": "var1" }).equals(pandas.Series([False, True, True]))) def test_contains_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["pikachu", "charmander", "squirtle"], "var2": ["PIKACHU", "CHARIZARD", "BULBASAUR"], "var3": ["POKEMON", "CHARIZARD", "BULBASAUR"], "var4": [ ["pikachu", "charizard", "bulbasaur"], ["chikorita", "cyndaquil", "totodile"], ["chikorita", "cyndaquil", "totodile"] ] }) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var1", "comparator": "PIKACHU" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).contains_case_insensitive({ "target": "--r1", "comparator": "--r2" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var3", "comparator": "var3" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var3", "comparator": "var3", "value_is_literal": True }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).contains_case_insensitive({ "target": "var4", "comparator": "var2" }).equals(pandas.Series([True, False, False]))) def test_does_not_contain_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["pikachu", "charmander", "squirtle"], "var2": ["PIKACHU", "CHARIZARD", "BULBASAUR"], "var3": ["pikachu", "charizard", "bulbasaur"], "var4": [ ["pikachu", "charizard", "bulbasaur"], ["chikorita", "cyndaquil", "totodile"], ["chikorita", "cyndaquil", "totodile"] ] }) self.assertTrue(DataframeType({"value": df}).does_not_contain_case_insensitive({ "target": "var1", "comparator": "IVYSAUR" }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain_case_insensitive({ "target": "var3", "comparator": "var2" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).does_not_contain_case_insensitive({ "target": "var3", "comparator": "var3", "value_is_literal": True }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).does_not_contain_case_insensitive({ "target": "var3", "comparator": "var3" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).does_not_contain_case_insensitive({ "target": "var4", "comparator": "var2" }).equals(pandas.Series([False, True, True]))) def test_is_contained_by(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4], "var5": [[1,2,3], [1,2], [17]] }) self.assertTrue(DataframeType({"value": df}).is_contained_by({ "target": "var1", "comparator": [4,5,6] }).equals(pandas.Series([False, False, True]))) self.assertTrue(DataframeType({"value": df}).is_contained_by({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).is_contained_by({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([True, False, False]))) self.assertTrue(DataframeType({"value": df}).is_contained_by({ "target": "var1", "comparator": [9, 10, 11] }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_contained_by({ "target": "var1", "comparator": "var2" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_contained_by({ "target": "var1", "comparator": "var5" }).equals(pandas.Series([True, True, False]))) def test_is_not_contained_by(self): df = pandas.DataFrame.from_dict({ "var1": [1,2,4], "var2": [3,5,6], "var3": [1,3,8], "var4": [1,2,4], "var5": [[1,2,3], [1,2], [17]] }) self.assertTrue(DataframeType({"value": df}).is_not_contained_by({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).is_not_contained_by({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, True, True]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by({ "target": "var1", "comparator": [9, 10, 11] }).equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by({ "target": "var1", "comparator": "var1" }).equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by({ "target": "var1", "comparator": "var5" }).equals(pandas.Series([False, False, True]))) def test_is_contained_by_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"], "var4": [set(["word"]), set(["test"])] }) self.assertTrue(DataframeType({"value": df}).is_contained_by_case_insensitive({ "target": "var1", "comparator": ["word", "TEST"] }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df}).is_contained_by_case_insensitive({ "target": "var1", "comparator": "var1" }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df}).is_contained_by_case_insensitive({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).is_contained_by_case_insensitive({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df}).is_contained_by_case_insensitive({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df}).is_contained_by_case_insensitive({ "target": "var3", "comparator": "var4" }).equals(pandas.Series([False, False]))) def test_is_not_contained_by_case_insensitive(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"], "var4": [set(["word"]), set(["test"])] }) self.assertTrue(DataframeType({"value": df}).is_not_contained_by_case_insensitive({ "target": "var1", "comparator": ["word", "TEST"] }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by_case_insensitive({ "target": "var1", "comparator": "var3" }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).is_not_contained_by_case_insensitive({ "target": "var1", "comparator": "--r3" }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by_case_insensitive({ "target": "var1", "comparator": "var4" }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_contained_by_case_insensitive({ "target": "var3", "comparator": "var4" }).equals(pandas.Series([True, True]))) def test_prefix_matches_regex(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).prefix_matches_regex({ "target": "--r2", "comparator": "w.*", "prefix": 2 }).equals(pandas.Series([True, False]))) self.assertTrue(DataframeType({"value": df}).prefix_matches_regex({ "target": "var2", "comparator": "[0-9].*", "prefix": 2 }).equals(pandas.Series([False, False]))) def test_suffix_matches_regex(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).suffix_matches_regex({ "target": "--r1", "comparator": "es.*", "suffix": 3 }).equals(pandas.Series([False, True]))) self.assertTrue(DataframeType({"value": df}).suffix_matches_regex({ "target": "var1", "comparator": "[0-9].*", "suffix": 3 }).equals(pandas.Series([False, False]))) def test_not_prefix_matches_suffix(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_prefix_matches_regex({ "target": "--r1", "comparator": ".*", "prefix": 2 }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df}).not_prefix_matches_regex({ "target": "var2", "comparator": "[0-9].*", "prefix": 2 }).equals(pandas.Series([True, True]))) def test_not_suffix_matches_regex(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df}).not_suffix_matches_regex({ "target": "var1", "comparator": ".*", "suffix": 3 }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_suffix_matches_regex({ "target": "--r1", "comparator": "[0-9].*", "suffix": 3 }).equals(pandas.Series([True, True]))) def test_matches_suffix(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).matches_regex({ "target": "--r1", "comparator": ".*", }).equals(pandas.Series([True, True]))) self.assertTrue(DataframeType({"value": df}).matches_regex({ "target": "var2", "comparator": "[0-9].*", }).equals(pandas.Series([False, False]))) def test_not_matches_regex(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df}).not_matches_regex({ "target": "var1", "comparator": ".*", }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).not_matches_regex({ "target": "--r1", "comparator": "[0-9].*", }).equals(pandas.Series([True, True]))) def test_starts_with(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).starts_with({ "target": "--r1", "comparator": "WO", }).equals(pandas.Series([True, False]))) self.assertTrue(DataframeType({"value": df}).starts_with({ "target": "var2", "comparator": "ABC", }).equals(pandas.Series([False, False]))) def test_ends_with(self): df = pandas.DataFrame.from_dict({ "var1": ["WORD", "test"], "var2": ["word", "TEST"], "var3": ["another", "item"] }) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).ends_with({ "target": "--r1", "comparator": "abc", }).equals(pandas.Series([False, False]))) self.assertTrue(DataframeType({"value": df}).ends_with({ "target": "var1", "comparator": "est", }).equals(pandas.Series([False, True]))) def test_has_equal_length(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'value'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) result = df_operator.has_equal_length({"target": "--r_1", "comparator": 4}) self.assertTrue(result.equals(pandas.Series([True, False]))) def test_has_not_equal_length(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'value'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) result = df_operator.has_not_equal_length({"target": "--r_1", "comparator": 4}) self.assertTrue(result.equals(pandas.Series([False, True]))) def test_longer_than(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'value'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) self.assertTrue(df_operator.longer_than({"target": "--r_1", "comparator": 3}).equals(pandas.Series([True, True]))) def test_longer_than_or_equal_to(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'alex'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) self.assertTrue(df_operator.longer_than_or_equal_to({"target": "--r_1", "comparator": 3}).equals(pandas.Series([True, True]))) self.assertTrue(df_operator.longer_than_or_equal_to({"target": "var_1", "comparator": 4}).equals(pandas.Series([True, True]))) def test_shorter_than(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'val'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) self.assertTrue(df_operator.shorter_than({"target": "--r_1", "comparator": 5}).equals(pandas.Series([True, True]))) def test_shorter_than_or_equal_to(self): df = pandas.DataFrame.from_dict( { "var_1": ['test', 'alex'] } ) df_operator = DataframeType({"value": df, "column_prefix_map": {"--": "va"}}) self.assertTrue(df_operator.shorter_than_or_equal_to({"target": "--r_1", "comparator": 5}).equals(pandas.Series([True, True]))) self.assertTrue(df_operator.shorter_than_or_equal_to({"target": "var_1", "comparator": 4}).equals(pandas.Series([True, True]))) def test_contains_all(self): df = pandas.DataFrame.from_dict( { "var1": ['test', 'value', 'word'], "var2": ["test", "value", "test"] } ) self.assertTrue(DataframeType({"value": df}).contains_all({ "target": "var1", "comparator": "var2", })) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).contains_all({ "target": "--r1", "comparator": "--r2", })) self.assertFalse(DataframeType({"value": df}).contains_all({ "target": "var2", "comparator": "var1", })) self.assertTrue(DataframeType({"value": df}).contains_all({ "target": "var2", "comparator": ["test", "value"], })) def test_not_contains_all(self): df = pandas.DataFrame.from_dict( { "var1": ['test', 'value', 'word'], "var2": ["test", "value", "test"] } ) self.assertTrue(DataframeType({"value": df}).contains_all({ "target": "var1", "comparator": "var2", })) self.assertFalse(DataframeType({"value": df}).contains_all({ "target": "var2", "comparator": "var1", })) self.assertTrue(DataframeType({"value": df}).contains_all({ "target": "var2", "comparator": ["test", "value"], })) def test_invalid_date(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2099'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], } ) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).invalid_date({"target": "--r1"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).invalid_date({"target": "var3"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).invalid_date({"target": "var2"}) .equals(pandas.Series([False, False, False, True, True]))) def test_date_equal_to(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var1", "comparator": '2021'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "1997-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([False, False, True, False, False]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df, "column_prefix_map": {"--": "va"}}).date_equal_to({"target": "--r3", "comparator": "--r4", "date_component": "year"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "hour"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "minute"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "second"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "microsecond"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "year"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var5", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var6", "date_component": "year"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var6", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_equal_to({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_date_not_equal_to(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var1", "comparator": '2022'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var3", "comparator": "1998-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var3", "comparator": "var4", "date_component": "year"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var3", "comparator": "var6", "date_component": "hour"}) .equals(pandas.Series([False, False, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_not_equal_to({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_date_less_than(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var1", "comparator": '2022'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var3", "comparator": "1998-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var3", "comparator": "var4", "date_component": "year"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var3", "comparator": "var6", "date_component": "hour"}) .equals(pandas.Series([False, False, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_date_greater_than(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var1", "comparator": '2020'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var3", "comparator": "1996-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var3", "comparator": "var4", "date_component": "year"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var6", "comparator": "var3", "date_component": "hour"}) .equals(pandas.Series([False, False, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_greater_than({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_date_greater_than_or_equal_to(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var1", "comparator": '2020'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var1", "comparator": '2023'}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var3", "comparator": "1996-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var3", "comparator": "var4", "date_component": "year"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var6", "comparator": "var3", "date_component": "hour"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_greater_than_or_equal_to({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_date_less_than_or_equal_to(self): df = pandas.DataFrame.from_dict( { "var1": ['2021', '2021', '2021', '2021', '2021'], "var2": ["2099", "2022", "2034", "90999", "20999"], "var3": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var4": ["1997-07", "1997-07-16", "1997-07-16T19:20:30.45+01:00", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], "var5": ["1997-08", "1997-08-16", "1997-08-16T19:20:30.45+01:00", "1997-08-16T19:20:30+01:00", "1997-08-16T19:20+01:00"], "var6": ["1998-08", "1998-08-11", "1998-08-17T20:21:31.46+01:00", "1998-08-17T20:21:31+01:00", "1998-08-17T20:21+01:00"], "var7": ["", None, "", "", ""] } ) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var1", "comparator": '2022'}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var1", "comparator": '2020'}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var3", "comparator": "1998-07-16T19:20:30.45+01:00"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var3", "comparator": "var4"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var3", "comparator": "var4", "date_component": "year"}) .equals(pandas.Series([True, True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var6", "comparator": "var3", "date_component": "hour"}) .equals(pandas.Series([True, True, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var3", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).date_less_than_or_equal_to({"target": "var7", "comparator": "var7", "date_component": "month"}) .equals(pandas.Series([False, False, False, False, False]))) def test_is_incomplete_date(self): df = pandas.DataFrame.from_dict( { "var1": [ '2021', '2021', '2099'], "var2": [ "1997-07-16", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], } ) self.assertTrue(DataframeType({"value": df}).is_incomplete_date({"target" : "var1"}) .equals(pandas.Series([True, True, True]))) self.assertTrue(DataframeType({"value": df}).is_incomplete_date({"target" : "var2"}) .equals(pandas.Series([False, False, False]))) def test_is_complete_date(self): df = pandas.DataFrame.from_dict( { "var1": ["2021", "2021", "2099"], "var2": ["1997-07-16", "1997-07-16T19:20:30+01:00", "1997-07-16T19:20+01:00"], } ) self.assertTrue(DataframeType({"value": df}).is_complete_date({"target": "var1"}) .equals(pandas.Series([False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_complete_date({"target": "var2"}) .equals(pandas.Series([True, True, True]))) def test_is_unique_set(self): df = pandas.DataFrame.from_dict( {"ARM": ["PLACEBO", "PLACEBO", "A", "A"], "TAE": [1,1,1,2], "LAE": [1,2,1,2], "ARF": [1,2,3,4]}) self.assertTrue(DataframeType({"value": df}).is_unique_set({"target" : "ARM", "comparator": "LAE"}) .equals(pandas.Series([True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).is_unique_set({"target" : "ARM", "comparator": ["LAE"]}) .equals(pandas.Series([True, True, True, True]))) self.assertTrue(DataframeType({"value": df}).is_unique_set({"target" : "ARM", "comparator": ["TAE"]}) .equals(pandas.Series([False, False, True, True]))) self.assertTrue(DataframeType({"value": df}).is_unique_set({"target" : "ARM", "comparator": "TAE"}) .equals(pandas.Series([False, False, True, True]))) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "AR"}}).is_unique_set({"target" : "--M", "comparator": "--F"}) .equals(pandas.Series([True, True, True, True]))) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "AR"}}).is_unique_set({"target" : "--M", "comparator": ["--F"]}) .equals(pandas.Series([True, True, True, True]))) def test_is_not_unique_set(self): df = pandas.DataFrame.from_dict( {"ARM": ["PLACEBO", "PLACEBO", "A", "A"], "TAE": [1,1,1,2], "LAE": [1,2,1,2], "ARF": [1,2,3,4]}) self.assertTrue(DataframeType({"value": df}).is_not_unique_set({"target" : "ARM", "comparator": "LAE"}) .equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_unique_set({"target" : "ARM", "comparator": ["LAE"]}) .equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_unique_set({"target" : "ARM", "comparator": ["TAE"]}) .equals(pandas.Series([True, True, False, False]))) self.assertTrue(DataframeType({"value": df}).is_not_unique_set({"target" : "ARM", "comparator": "TAE"}) .equals(pandas.Series([True, True, False, False]))) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "AR"}}).is_not_unique_set({"target" : "--M", "comparator": "--F"}) .equals(pandas.Series([False, False, False, False]))) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "AR"}}).is_not_unique_set({"target" : "--M", "comparator": ["--F"]}) .equals(pandas.Series([False, False, False, False]))) def test_is_ordered_set(self): df = pandas.DataFrame.from_dict( {"USUBJID": [1,2,1,2], "SESEQ": [1,1,2,2] }) self.assertTrue(DataframeType({"value": df}).is_ordered_set({"target" : "SESEQ", "comparator": "USUBJID"})) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "SE"}}).is_ordered_set({"target" : "--SEQ", "comparator": "USUBJID"})) df2 = pandas.DataFrame.from_dict( {"USUBJID": [1,2,1,2], "SESEQ": [3,1,2,2] }) self.assertFalse(DataframeType({"value": df2}).is_ordered_set({"target" : "SESEQ", "comparator": "USUBJID"})) self.assertFalse(DataframeType({"value":df2, "column_prefix_map": {"--": "SE"}}).is_ordered_set({"target" : "--SEQ", "comparator": "USUBJID"})) def test_is_not_ordered_set(self): df = pandas.DataFrame.from_dict( {"USUBJID": [1,2,1,2], "SESEQ": [3,1,2,2] }) self.assertTrue(DataframeType({"value": df}).is_not_ordered_set({"target" : "SESEQ", "comparator": "USUBJID"})) self.assertTrue(DataframeType({"value":df, "column_prefix_map": {"--": "SE"}}).is_not_ordered_set({"target" : "--SEQ", "comparator": "USUBJID"})) df2 = pandas.DataFrame.from_dict( {"USUBJID": [1,2,1,2], "SESEQ": [1,1,2,2] }) self.assertFalse(DataframeType({"value": df2}).is_not_ordered_set({"target" : "SESEQ", "comparator": "USUBJID"})) self.assertFalse(DataframeType({"value":df2, "column_prefix_map": {"--": "SE"}}).is_not_ordered_set({"target" : "--SEQ", "comparator": "USUBJID"})) def test_is_unique_relationship(self): """ Test validates one-to-one relationship against a dataset. One-to-one means that a pair of columns can be duplicated but its integrity should not be violated. """ one_to_one_related_df = pandas.DataFrame.from_dict( { "STUDYID": [1, 2, 3, 1, 2], "USUBJID": ["TEST", "TEST-1", "TEST-2", "TEST-3", "TEST-4", ], "STUDYDESC": ["Russia", "USA", "China", "Russia", "USA", ], } ) self.assertTrue( DataframeType({"value": one_to_one_related_df}).is_unique_relationship( {"target": "STUDYID", "comparator": "STUDYDESC"} ).equals(pandas.Series([True, True, True, True, True])) ) self.assertTrue( DataframeType({"value": one_to_one_related_df}).is_unique_relationship( {"target": "STUDYDESC", "comparator": "STUDYID"} ).equals(pandas.Series([True, True, True, True, True])) ) self.assertTrue( DataframeType({"value": one_to_one_related_df, "column_prefix_map":{"--": "STUDY"}}).is_unique_relationship( {"target": "--ID", "comparator": "--DESC"} ).equals(pandas.Series([True, True, True, True, True])) ) self.assertTrue( DataframeType({"value": one_to_one_related_df, "column_prefix_map":{"--": "STUDY"}}).is_unique_relationship( {"target": "--DESC", "comparator": "--ID"} ).equals(pandas.Series([True, True, True, True, True])) ) df_violates_one_to_one = pandas.DataFrame.from_dict( { "STUDYID": ["TEST", "TEST-1", "TEST-2", "TEST-3", ], "TESTID": [1, 2, 1, 3], "TESTNAME": ["Functional", "Stress", "Functional", "Stress", ], } ) self.assertTrue(DataframeType({"value": df_violates_one_to_one}).is_unique_relationship( {"target": "TESTID", "comparator": "TESTNAME"}).equals(pandas.Series([True, False, True, False])) ) self.assertTrue(DataframeType({"value": df_violates_one_to_one}).is_unique_relationship( {"target": "TESTNAME", "comparator": "TESTID"}).equals(pandas.Series([True, False, True, False])) ) def test_is_not_unique_relationship(self): """ Test validates one-to-one relationship against a dataset. One-to-one means that a pair of columns can be duplicated but its integrity should not be violated. """ valid_df = pandas.DataFrame.from_dict( { "STUDYID": ["TEST", "TEST-1", "TEST-2", "TEST-3", ], "VISITNUM": [1, 2, 1, 3], "VISIT": ["Consulting", "Surgery", "Consulting", "Treatment", ], } ) self.assertTrue(DataframeType({"value": valid_df}).is_not_unique_relationship( {"target": "VISITNUM", "comparator": "VISIT"}).equals(pandas.Series([False, False, False, False])) ) self.assertTrue(DataframeType({"value": valid_df}).is_not_unique_relationship( {"target": "VISIT", "comparator": "VISITNUM"}).equals(pandas.Series([False, False, False, False])) ) valid_df_1 = pandas.DataFrame.from_dict( { "STUDYID": ["TEST", "TEST-1", "TEST-2", "TEST-3", ], "VISIT": ["Consulting", "Surgery", "Consulting", "Treatment", ], "VISITDESC": [ "Doctor Consultation", "Heart Surgery", "Doctor Consultation", "Long Lasting Treatment", ], } ) self.assertTrue(DataframeType({"value": valid_df_1}).is_not_unique_relationship( {"target": "VISIT", "comparator": "VISITDESC"}).equals(pandas.Series([False, False, False, False])) ) self.assertTrue(DataframeType({"value": valid_df_1}).is_not_unique_relationship( {"target": "VISITDESC", "comparator": "VISIT"}).equals(pandas.Series([False, False, False, False])) ) df_violates_one_to_one = pandas.DataFrame.from_dict( { "STUDYID": ["TEST", "TEST-1", "TEST-2", "TEST-3", ], "VISITNUM": [1, 2, 1, 3], "VISIT": ["Consulting", "Surgery", "Consulting", "Consulting", ], } ) self.assertTrue(DataframeType({"value": df_violates_one_to_one}).is_not_unique_relationship( {"target": "VISITNUM", "comparator": "VISIT"}).equals(pandas.Series([True, False, True, True])) ) self.assertTrue(DataframeType({"value": df_violates_one_to_one}).is_not_unique_relationship( {"target": "VISIT", "comparator": "VISITNUM"}).equals(pandas.Series([True, False, True, True])) ) df_violates_one_to_one_1 = pandas.DataFrame.from_dict( { "STUDYID": ["TEST", "TEST-1", "TEST-2", "TEST-3", "TEST-4", ], "VISIT": ["Consulting", "Consulting", "Surgery", "Consulting", "Treatment", ], "VISITDESC": ["Doctor Consultation", "Doctor Consultation", "Heart Surgery", "Heart Surgery", "Long Lasting Treatment", ], } ) self.assertTrue(DataframeType({"value": df_violates_one_to_one_1}).is_not_unique_relationship( {"target": "VISIT", "comparator": "VISITDESC"}).equals(
pandas.Series([True, True, True, True, False])
pandas.Series
# -*- coding: utf-8 -*- """ Created on Mon May 29 13:56:29 2017 @author: ning """ import pandas as pd import os import numpy as np #from sklearn.model_selection import StratifiedKFold,KFold #from sklearn.pipeline import Pipeline #from sklearn.preprocessing import StandardScaler #from sklearn.linear_model import LogisticRegressionCV #from sklearn.metrics import roc_curve,precision_recall_curve,auc,average_precision_score,confusion_matrix import matplotlib.pyplot as plt import matplotlib matplotlib.rcParams.update({'font.size':22}) matplotlib.rcParams['legend.numpoints'] = 1 import seaborn as sns sns.set_style('white') try: function_dir = 'D:\\NING - spindle\\Spindle_by_Graphical_Features' os.chdir(function_dir) except: function_dir = 'C:\\Users\\ning\\OneDrive\\python works\\Spindle_by_Graphical_Features' os.chdir(function_dir) #import eegPipelineFunctions try: file_dir = 'D:\\NING - spindle\\training set\\road_trip\\' # file_dir = 'D:\\NING - spindle\\training set\\road_trip_more_channels\\' os.chdir(file_dir) except: file_dir = 'C:\\Users\\ning\\Downloads\\road_trip\\' # file_dir = 'C:\\Users\\ning\\Downloads\\road_trip_more_channels\\' os.chdir(file_dir) def average(x): x = x[1:-1].split(', ') x = np.array(x,dtype=float) return np.nanmean(x) figsize = 6 signal_features_indivisual_results_RF=
pd.read_csv(file_dir+'individual_signal_feature_RF.csv')
pandas.read_csv
import numpy as np import pandas as pd import datetime as dt import pickle import bz2 from .analyzer import summarize_returns DATA_PATH = '../backtest/' class Portfolio(): """ Portfolio is the core class for event-driven backtesting. It conducts the backtesting in the following order: 1. Initialization: Set the capital base we invest and the securities we want to trade. 2. Receive the price information with .receive_price(): Insert the new price information of each securities so that the Portfolio class will calculated and updated the relevant status such as the portfolio value and position weights. 3. Rebalance with .rebalance(): Depending on the signal, we can choose to change the position on each securities. 4. Keep position with .keep_position(): If we don't rebalance the portfolio, we need to tell it to keep current position at the end of the market. Example ------- see Vol_MA.ipynb, Vol_MA_test_robustness.ipynb Parameters ---------- capital: numeric capital base we put into the porfolio inception: datetime.datetime the time when we start backtesting components: list of str tikers of securities to trade, such as ['AAPL', 'MSFT', 'AMZN] name: str name of the portfolio is_share_integer: boolean If true, the shares of securities will be rounded to integers. """ def __init__(self, capital, inception, components, name='portfolio', is_share_integer=False): # ----------------------------------------------- # initialize parameters # ----------------------------------------------- self.capital = capital # initial money invested if isinstance(components, str): components = [components] # should be list self.components = components # equities in the portfolio # self.commission_rate = commission_rate self.inception = inception self.component_prices = pd.DataFrame(columns=self.components) self.name = name self.is_share_integer = is_share_integer # self.benchmark = benchmark # ----------------------------------------------- # record portfolio status to series and dataFrames # ----------------------------------------------- # temoprary values self._nav = pd.Series(capital,index=[inception]) self._cash = pd.Series(capital,index=[inception]) self._security = pd.Series(0,index=[inception]) self._component_prices = pd.DataFrame(columns=self.components) # empty self._shares = pd.DataFrame(0, index=[inception], columns=self.components) self._positions = pd.DataFrame(0, index=[inception], columns=self.components) self._weights = pd.DataFrame(0, index=[inception], columns=self.components) self._share_changes = pd.DataFrame(columns=self.components) # empty self._now = self.inception self._max_nav = pd.Series(capital,index=[inception]) self._drawdown = pd.Series(0, index=[inception]) self._relative_drawdown = pd.Series(0, index=[inception]) # series self.nav_open = pd.Series() self.nav_close = pd.Series() self.cash_open = pd.Series() self.cash_close = pd.Series() self.security_open = pd.Series() self.security_close = pd.Series() self.max_nav = pd.Series() self.drawdown_open = pd.Series() self.drawdown_close = pd.Series() self.relative_drawdown_open = pd.Series() self.relative_drawdown_close = pd.Series() # dataframes self.shares_open =
pd.DataFrame(columns=self.components)
pandas.DataFrame
"""App run class.""" from functools import partial from tkinter import * from tkinter import filedialog import os import tkinter as tk import tkinter.messagebox import requests import json from requests.auth import HTTPBasicAuth import numpy as np import pandas as pd def auth_api(username, password): """Auth function to validate API.""" res = requests.get('https://api.quickbutik.com/v1/products', auth=HTTPBasicAuth(username.get(), password.get())) print(res.status_code) if res.status_code == 200: tkinter.messagebox.showinfo("Welcome to quickbutik.", "Login successfully.") new_frame.pack_forget() path_frame.pack() else: tkinter.messagebox.showinfo("Login failed.", "Wrong user name or password.") def check_path(json_path): """Check path.""" if os.path.exists(json_path): tkinter.messagebox.showinfo("File name error.", "File already existed.") return True else: return False def myconverter(obj): """Define customized json.dump function.""" if isinstance(obj, np.integer): return int(obj) elif isinstance(obj, np.floating): return float(obj) elif isinstance(obj, np.ndarray): return obj.tolist() def csv_to_json(csvFile, json_path): """Get csv file and export to json.""" jsonArray = [] with open(csvFile, 'r', encoding='latin-1') as csvf: data = pd.read_csv(csvf) sku = data.sku title = data.title description = data.description price = data.price before_price = data.before_price tax_rate = data.tax_rate weight = data.weight stock = data.stock gtin = data.gtin images = data.images headcategory_name = data.headcategory_name visible = data.visible x = 0 while x < len(sku): dict_list = {} # print(images[x]) image_list = [] image_dic = {} image_dic["url"] = images[x] image_list.append(image_dic) dict_list["sku"] = sku[x] dict_list["title"] = title[x] dict_list["description"] = description[x] dict_list["price"] = int(price[x]) # check if before price has any empty values before_price_data = pd.DataFrame(before_price) if before_price_data["before_price"].isnull().values.any(): dict_list["before_price"] = " " else: dict_list["before_price"] = before_price[x] # check if tax rate has nan tax_rate_data =
pd.DataFrame(tax_rate)
pandas.DataFrame
#!/usr/bin/env python import numpy as np import pandas as pd def _canonicalize(dtype): try: # put Series first so that, eg, 'Int8' properly gets mapped to the # nullable type rather than the numpy non-nullable 'int8' type s = pd.Series(data=[], dtype=dtype) return s.dtype except TypeError: pass try: # don't think this should handle anything a Series can't, but leave # this here to make sure a = np.empty(1, dtype=dtype) return a.dtype except TypeError: pass raise ValueError(f"Dtype '{dtype}' ({type(dtype)}) invalid for both " "Numpy arrays and Pandas series.") # _FLOAT_TYPES = [np.float16, np.float32, np.float64] _c = _canonicalize # shorten below definitions _FLOAT_TYPES = [_c(np.float16), _c(np.float32), _c(np.float64)] # _UNSIGNED_INT_TYPES = [np.uint8, np.uint16, np.uint32, np.uint64] # _SIGNED_INT_TYPES = [np.int8, np.int16, np.int32, np.int64] # _UNSIGNED_INT_TYPES = [np.uint8(), np.uint16(), np.uint32(), np.uint64()] # _SIGNED_INT_TYPES = [np.int8(), np.int16(), np.int32(), np.int64()] _UNSIGNED_INT_TYPES = [_c(np.uint8), _c(np.uint16), _c(np.uint32), _c(np.uint64)] _SIGNED_INT_TYPES = [_c(np.int8), _c(np.int16), _c(np.int32), _c(np.int64)] _NONNULLABLE_INT_TYPES = _UNSIGNED_INT_TYPES + _SIGNED_INT_TYPES # _NULLABLE_SIGNED_INT_TYPES = [ # pd.Int8Dtype(), pd.Int16Dtype(), pd.Int32Dtype(), pd.Int64Dtype()] # _NULLABLE_UNSIGNED_INT_TYPES = [ # pd.UInt8Dtype(), pd.UInt16Dtype(), pd.UInt32Dtype(), pd.UInt64Dtype()] # _NULLABLE_SIGNED_INT_TYPES = [_c(pd.Int8Dtype), _c(pd.Int16Dtype), # _c(pd.Int32Dtype), _c(pd.Int64Dtype)] # _NULLABLE_UNSIGNED_INT_TYPES = [_c(pd.UInt8Dtype), _c(pd.UInt16Dtype), # _c(pd.UInt32Dtype), _c(pd.UInt64Dtype)] # have to use string dtype codes, rather than, eg, pd.Int8Dtype or # pd.Int8Dtype() or resulting dtype is np.object; because pandas dtypes are # insane _NULLABLE_SIGNED_INT_TYPES = [ _c('Int8'), _c('Int16'), _c('Int32'), _c('Int64')] _NULLABLE_UNSIGNED_INT_TYPES = [ _c('UInt8'), _c('UInt16'), _c('UInt32'), _c('UInt64')] _NULLABLE_INT_TYPES = _NULLABLE_UNSIGNED_INT_TYPES + _NULLABLE_SIGNED_INT_TYPES _NULLABLE_TO_NONNULLABLE_INT_DTYPE = dict(zip( _NULLABLE_INT_TYPES, _NONNULLABLE_INT_TYPES)) _NONNULLABLE_TO_NULLABLE_INT_DTYPE = dict(zip( _NONNULLABLE_INT_TYPES, _NULLABLE_INT_TYPES)) # _NUMERIC_DTYPES = _NONNULLABLE_INT_TYPES + _NULLABLE_INT_TYPES + _FLOAT_TYPES # NOTE: np.bool is alias of python bool, while np.bool_ is custom a numpy type # _BOOLEAN_DTYPES = [np.dtype(np.bool), np.dtype(np.bool_), pd.BooleanDtype()] _BOOLEAN_DTYPES = [_c(np.bool), _c(np.bool_), _c('boolean')] _SIGNED_EQUIVALENT = { _c(np.uint8): _c(np.int8), _c(np.int8): _c(np.int8), # noqa _c(np.uint16): _c(np.int16), _c(np.int16): _c(np.int16), _c(np.uint32): _c(np.int32), _c(np.int32): _c(np.int32), _c(np.uint64): _c(np.int64), _c(np.int64): _c(np.int64), _c(pd.UInt8Dtype): _c(pd.Int8Dtype), # noqa _c(pd.Int8Dtype): _c(pd.Int8Dtype), # noqa _c(pd.UInt16Dtype): _c(pd.Int16Dtype), # noqa _c(pd.Int16Dtype): _c(pd.Int16Dtype), # noqa _c(pd.UInt32Dtype): _c(pd.Int32Dtype), # noqa _c(pd.Int32Dtype): _c(pd.Int32Dtype), # noqa _c(pd.UInt64Dtype): _c(pd.Int64Dtype), # noqa _c(pd.Int64Dtype): _c(pd.Int64Dtype)} # noqa _UNSIGNED_EQUIVALENT = { _c(np.uint8): _c(np.uint8), _c(np.int8): _c(np.uint8), # noqa _c(np.uint16): _c(np.uint16), _c(np.int16): _c(np.uint16), _c(np.uint32): _c(np.uint32), _c(np.int32): _c(np.uint32), _c(np.uint64): _c(np.uint64), _c(np.int64): _c(np.uint64), _c(pd.UInt8Dtype): _c(pd.UInt8Dtype), # noqa _c(pd.Int8Dtype): _c(pd.UInt8Dtype), # noqa _c(pd.UInt16Dtype): _c(pd.UInt16Dtype), # noqa _c(pd.Int16Dtype): _c(pd.UInt16Dtype), # noqa _c(pd.UInt32Dtype): _c(pd.UInt32Dtype), # noqa _c(pd.Int32Dtype): _c(pd.UInt32Dtype), # noqa _c(pd.UInt64Dtype): _c(pd.UInt64Dtype), # noqa _c(pd.Int64Dtype): _c(pd.UInt64Dtype)} # noqa # _SIGNED_EQUIVALENT = { # np.uint8(): np.int8(), np.int8(): np.int8(), # noqa # np.uint16(): np.int16(), np.int16(): np.int16(), # np.uint32(): np.int32(), np.int32(): np.int32(), # np.uint64(): np.int64(), np.int64(): np.int64(), # pd.UInt8Dtype(): pd.Int8Dtype(), pd.Int8Dtype(): pd.Int8Dtype(), # noqa # pd.UInt16Dtype(): pd.Int16Dtype(), pd.Int16Dtype(): pd.Int16Dtype(), # pd.UInt32Dtype(): pd.Int32Dtype(), pd.Int32Dtype(): pd.Int32Dtype(), # pd.UInt64Dtype(): pd.Int64Dtype(), pd.Int64Dtype(): pd.Int64Dtype()} # _UNSIGNED_EQUIVALENT = { # np.uint8(): np.uint8(), np.int8(): np.uint8(), # noqa # np.uint16(): np.uint16(), np.int16(): np.uint16(), # np.uint32(): np.uint32(), np.int32(): np.uint32(), # np.uint64(): np.uint64(), np.int64(): np.uint64(), # pd.UInt8Dtype(): pd.UInt8Dtype(), pd.Int8Dtype(): pd.UInt8Dtype(),# noqa # pd.UInt16Dtype(): pd.UInt16Dtype(), pd.Int16Dtype(): pd.UInt16Dtype(), # pd.UInt32Dtype(): pd.UInt32Dtype(), pd.Int32Dtype(): pd.UInt32Dtype(), # pd.UInt64Dtype(): pd.UInt64Dtype(), pd.Int64Dtype(): pd.UInt64Dtype()} # _PANDAS_NULLABLE_DTYPES_INSTANTIATED = [t() for t in _NULLABLE_INT_TYPES] + # _SUPPORTED_PANDAS_DTYPES = _NULLABLE_INT_TYPES + [pd.BooleanDtype()] def nullable_equivalent(dtype): if is_nullable(dtype): return dtype # TODO support nullable strings and other pandas dtypes # if dtype in _FLOAT_TYPES: if is_boolean(dtype): return _c('boolean') if is_float(dtype): return _c(dtype) dtype = _canonicalize(dtype) # if dtype in _NULLABLE_INT_TYPES: # return dtype return _NULLABLE_TO_NONNULLABLE_INT_DTYPE[dtype] def nonnullable_equivalent(dtype): if not is_nullable(dtype): return dtype if is_boolean(dtype): return _c(np.bool_) if is_float(dtype): return _c(dtype) dtype = _canonicalize(dtype) # if dtype in _NONNULLABLE_INT_TYPES: # return dtype # print("dtype: ", dtype, type(dtype)) # print("nullable int dtypes: ") # for t in _NULLABLE_INT_TYPES: # print(t, type(t)) # print("dtype in nullable ints: ", dtype in _NULLABLE_INT_TYPES) return _NULLABLE_TO_NONNULLABLE_INT_DTYPE[dtype] def signed_equivalent(dtype): dtype = _canonicalize(dtype) return _SIGNED_EQUIVALENT[dtype] def unsigned_equivalent(dtype): dtype = _canonicalize(dtype) return _UNSIGNED_EQUIVALENT[dtype] def is_complex(dtype): return pd.api.types.is_complex_dtype(dtype) def is_float(dtype): return pd.api.types.is_float_dtype(dtype) # return _canonicalize(dtype) in _FLOAT_TYPES def is_numeric(dtype): # print("is_numeric: checking dtype: ", dtype) if is_boolean(dtype): return False # dtype = _canonicalize(dtype) # if _canonicalize(dtype) in _BOOLEAN_DTYPES: # _ = _BOOLEAN_DTYPES # for btype in _BOOLEAN_DTYPES: # print("dtype, btype: ", dtype, btype) # if btype == dtype: # return False # if dtype in _BOOLEAN_DTYPES: # # exclude bools since they mess up quantization and just generally # # don't act like numbers # return False return
pd.api.types.is_numeric_dtype(dtype)
pandas.api.types.is_numeric_dtype
# Import Libraries to be used in this code module import pandas_datareader.data as dr # pandas library for data manipulation and analysis import pandas as pd from datetime import datetime, timedelta, date # library for date and time calculations import sqlalchemy as sal # SQL toolkit, Object-Relational Mapper for Python from pandas.tseries.holiday import get_calendar, HolidayCalendarFactory, GoodFriday # calendar module to use a pre-configured calendar import quandl from fredapi import Fred fred = Fred(api_key='<KEY>') # Declaration and Definition of DataFetch class class DataFetch: def __init__(self, engine, table_name): """ Get raw data for each ticker symbol :param engine: provides connection to MySQL Server :param table_name: table name where ticker symbols are stored """ self.engine = engine self.table_name = table_name self.datasource = 'yahoo' self.datalength = 2192 # last 6 years, based on actual calendar days of 365 def get_datasources(self): """ Method to query MySQL database for ticker symbols Use pandas read_sql_query function to pass query :return symbols: pandas data frame object containing the ticker symbols """ query = 'SELECT * FROM %s' % self.table_name symbols = pd.read_sql_query(query, self.engine) return symbols def get_data(self, sources): """ Get raw data from Yahoo! Finance for each ticker symbol Store data in MySQL database :param sources: provides ticker symbols of instruments being tracked """ now = datetime.now() # Date Variables start = datetime.now()-timedelta(days=self.datalength) # get date value from 3 years ago end = now.strftime("%Y-%m-%d") # Cycle through each ticker symbol for n in range(len(sources)): # data will be a 2D Pandas Dataframe data = dr.DataReader(sources.iat[n, sources.columns.get_loc('instrumentname')], self.datasource, start, end) symbol = [sources['instrumentid'][n]] * len(data) # add column to identify instrument id number data['instrumentid'] = symbol data = data.reset_index() # no designated index - easier to work with mysql database # Yahoo! Finance columns to match column names in MySQL database. # Column names are kept same to avoid any ambiguity. # Column names are not case-sensitive. data.rename(columns={'Date': 'date', 'High': 'high', 'Low': 'low', 'Open': 'open', 'Close': 'close', 'Adj Close': 'adj close', 'Volume': 'volume'}, inplace=True) data.sort_values(by=['date']) # make sure data is ordered by trade date # send data to database # replace data each time program is run data.to_sql('dbo_instrumentstatistics', self.engine, if_exists=('replace' if n == 0 else 'append'), index=False, dtype={'date': sal.Date, 'open': sal.FLOAT, 'high': sal.FLOAT, 'low': sal.FLOAT, 'close': sal.FLOAT, 'adj close': sal.FLOAT, 'volume': sal.FLOAT}) def get_calendar(self): """ Get date data to track weekends, holidays, quarter, etc Store in database table dbo_DateDim """ # drop data from table each time program is run truncate_query = 'TRUNCATE TABLE dbo_datedim' self.engine.execute(truncate_query) # 3 years of past data and up to 1 year of future forecasts begin = date.today() - timedelta(days=self.datalength) end = date.today() + timedelta(days=365) # list of US holidays cal = get_calendar('USFederalHolidayCalendar') # Create calendar instance cal.rules.pop(7) # Remove Veteran's Day cal.rules.pop(6) # Remove Columbus Day tradingCal =
HolidayCalendarFactory('TradingCalendar', cal, GoodFriday)
pandas.tseries.holiday.HolidayCalendarFactory
from sklearn.neighbors import KNeighborsClassifier import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, GridSearchCV # 网格搜索 + 最近邻分类器 def main(): # 导入数据集 data = pd.read_csv("D://A//data//FBlocation//train.csv") # 缩小给定数据集,缩小x/y范围,多条件查询 data = data.query("x > 1.0 & x < 1.25 & y > 2.5 & y < 2.75") # 格式化日期字段 date_value =
pd.to_datetime(data['time'], unit='s')
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Tue Oct 3 13:44:55 2017 @author: rgryan #===================================================================================================================== # This code takes a folder, with subfolders containing .std spectra (outputted from DOASIS), and converts them all # to line-format files. Each line in the file is one spectrum. # The line formatting is appropriate for reading in by QDOAS. # This code has been updated so it handle calibration and direct sun spectra # It has now been updated SO THAT IT CORRECTLY SUBTRACTS THE OFFSET AND DARK CURRENT SPECTRA. #===================================================================================================================== # Updated 03-10-2017, # For the Broady MAX-DOAS intercomparison campaign # RGRyan #===================================================================================================================== # data save in the following format: # st_ddmmyyyy_Uxxxxxxx # where st = spectrum type (sc = scattered light, ds = direct sun, dc = dark current cal, oc = offset cal) # ddmmyyyy = date # U (or V) indicates UV (or Visible) spectrum # xxxxxxx is the 7 digit folder number from DOASIS # (this is needed for the iteration thru folders, rather than strictly needed for naming purposes) #===================================================================================================================== # What needs to be varied? # 1. the folderpath and folderdate, specific to the main folder you're looking in # 2. The foldernumber (this needs to be the number of the first subfolder you want the program to go to) # 3. The lastfolder number (this tells the program when to stop looking and converting) # 4. The folder letter. Once all the "U"s are converted, then you have to change this in order to convert all # the "V"s # 5. Whether you want to do the offset and dark current correction """ # Section of things to check or change #===================================================================================================================== folderpath = 'C:/Users/rgryan/Google Drive/Documents/PhD/Data/Broady_data_backup/UWollongong/SP2017a/SP1703/' foldernumber = 0 # The initial subfolder number, where the program will start lastfolder = 100 # The final subfolder number, after which the program will stop converting folders0indexed = True # folder numbers starting with zero? folderletter = 'U' # 'U' for UV spectra, 'V' for visible spectra correct_dc = True # 'False' turns off the dark current correction correct_os = True # 'False' turns off the offset correction only_save_hs_int = True # True if wanting to save an abridged version of the horizon scan data, with only # intensity values, not all the spectral data calcCI = True # Calculate colour index? CIn = 330 # Numerator for color index CId = 390 # denominator for color index saveSC = True # save scattered light spectra? saveDS = False # save direct sun spectra? saveHS = True # save horizon scan spectra? saveDC = True # save dark current calibrations? saveOS = True # save offset calibrations? saveCI = True # save colour index results? inst = 'UW' # The data from which institution is being plotted? <just for saving purposes!> # UM = Uni. of Melb, UW = Wollongong Uni, NZ = NIWA New Zealand, # BM = Bureau of Meteorology Broadmeadows # Date format date_format_1 = True # For date format in UniMelb MS-DOAS STD spectra, MM/DD/YYYY date_format_2 = False # For date format in UW'gong MS-DOAS STD spectra, DD-Mon-YYYY # settings for saving end = ".txt" path2save = folderpath[3:]+folderletter+'\\' # Import section #===================================================================================================================== import numpy as np import glob import pandas as pd # Section to deal with dark and offset calibration spectra #===================================================================================================================== if inst == 'UM': UVoc__ = 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\UM_calfiles\\UM_UV_offset.std' visoc__ = 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\UM_calfiles\\UM_vis_offset.std' UVdc__= 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\UM_calfiles\\UM_UV_darkcurrent.std' visdc__ = 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\UM_calfiles\\UM_vis_darkcurrent.std' Uwlcal = 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\UM_calfiles\\UM_UVcal.txt' Vwlcal = 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\UM_calfiles\\UM_viscal.txt' elif inst == 'BM': UVoc__ = 'E:/PhD/Broady_data_backup/TIMTAM_ref_files/BM_calfiles/ofsuv_U0000003.std' visoc__ = 'E:/PhD/Broady_data_backup/TIMTAM_ref_files/BM_calfiles/ofsvis_V0000003.std' visdc__ = 'E:/PhD/Broady_data_backup/TIMTAM_ref_files/BM_calfiles/dcvis_V0000005.std' UVdc__ = 'E:/PhD/Broady_data_backup/TIMTAM_ref_files/BM_calfiles/dcuv_U0000005.std' Uwlcal = 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\BM_calfiles\\BM_UVcal.txt' Vwlcal = 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\BM_calfiles\\BM_viscal.txt' elif inst == 'UW': UVoc__ = 'E:/PhD/Broady_data_backup/UWollongong/Cals/offset_U_UW.std' visoc__ = 'E:/PhD/Broady_data_backup/UWollongong/Cals/offset_V_UW.std' visdc__ = 'E:/PhD/Broady_data_backup/UWollongong/Cals/dc_V_UW.std' UVdc__ = 'E:/PhD/Broady_data_backup/UWollongong/Cals/dc_U_UW.std' Uwlcal = 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\UW_calfiles\\UW_UVcal.txt' Vwlcal = 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\UW_calfiles\\UW_viscal.txt' elif inst == 'NZ': UVoc__ = 'E:/PhD/Broady_data_backup/NIWA/NIWA cal files/OFS_U0060764.std' UVdc__ = 'E:/PhD/Broady_data_backup/NIWA/NIWA cal files/DC_U0060763.std' visoc__ = 'C:\\Users\\rgryan\\Google Drive\\Documents\\PhD\\Data\\Broady_data_backup\\NIWA\\spectra\\NZ_STD_Spectra_V\\OFS_V0060764.std' visdc__ = 'C:\\Users\\rgryan\\Google Drive\\Documents\\PhD\\Data\\Broady_data_backup\\NIWA\\spectra\\NZ_STD_Spectra_V\\DC_V0060763.std' Uwlcal = 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\NZ_calfiles\\NZ_UVcal.txt' Vwlcal = 'C:\\Users\\rgryan\\Google Drive\\TIMTAM\\NZ_calfiles\\NZ_viscal.txt' else: print('Error - Offset or DC cal files not defined') # Read in Offset calibration for UV and Vis # ========================================== UVoc_path = open(UVoc__, 'r') UVoc_data = UVoc_path.readlines() UVoc_data_strpd = [(UVoc_data[i].strip('\n')) for i in range(len(UVoc_data))] visoc_path = open(visoc__, 'r') visoc_data = visoc_path.readlines() visoc_data_strpd = [(visoc_data[i].strip('\n')) for i in range(len(visoc_data))] # Find the data in the offset calibration spectrum # ========================================== if folderletter == 'U': ocCal_ = UVoc_data_strpd[3:2051] elif folderletter == 'V': ocCal_ = visoc_data_strpd[3:2051] ocCal = [float(i) for i in ocCal_] # Dark current calibration readin # ========================================== UVdc_path = open(UVdc__, 'r') UVdc_data = UVdc_path.readlines() UVdc_data_strpd = [(UVdc_data[i].strip('\n')) for i in range(len(UVdc_data))] visdc_path = open(visdc__, 'r') visdc_data = visdc_path.readlines() visdc_data_strpd = [(visdc_data[i].strip('\n')) for i in range(len(visdc_data))] if folderletter == 'U': dcCal_ = UVdc_data_strpd[3:2051] elif folderletter == 'V': dcCal_ = visdc_data_strpd[3:2051] dcCal = [float(i) for i in dcCal_] # Find the number of scans and the exposure time for the calibration spectra #=================================================================== oc_numscans_ = UVoc_data_strpd[2059] oc_numscansX = oc_numscans_.split() oc_numscans = float(oc_numscansX[1]) oc_texp_ = UVoc_data_strpd[2072] # time in ms oc_texpX = oc_texp_.split() oc_texp = float(oc_texpX[2]) oc_inttime = oc_texp*oc_numscans dc_numscans_ = UVdc_data_strpd[2059] dc_numscansX = dc_numscans_.split() dc_numscans = float(dc_numscansX[1]) dc_texp_ = UVdc_data_strpd[2072] # time in ms dc_texpX = dc_texp_.split() dc_texp = float(dc_texpX[2]) dc_inttime = dc_numscans*dc_texp #=================================================================== # Calibration spectra process # 1. Offset spectrum is proportional to number of scans. Therefore need to divide by number of scans if correct_os == True: ocCal_c1 = [(ocCal[i]/oc_numscans) for i in range(len(ocCal))] # This has units of counts/scan else: ocCal_c1 = [(0) for i in range(len(ocCal))] # 2. Correct dark-current spectrum for the offset if correct_dc == True: dcCal_c1 = [(dcCal[i] - ((ocCal_c1[i])*dc_numscans)) for i in range(len(dcCal))] # this has units of counts dcCal_c = [((dcCal_c1[i]/dc_inttime)) for i in range(len(dcCal))] # this has units of counts/ms else: dcCal_c = [(0) for i in range(len(dcCal))] # 3. Correct offset spectrum using corrected dark current spectrum if correct_os == True: ocCal_c2 = [(ocCal[i] - (dcCal_c[i]*oc_inttime)) for i in range(len(ocCal))] # this has units of counts ocCal_c = [(ocCal_c2[i]/oc_numscans) for i in range(len(ocCal_c2))] # this has units of counts/scan else: ocCal_c = [(0) for i in range(len(ocCal))] # corrected dark current passed to the next stage in units of counts/ms # corrected offeset spectrum passed to the next stage in units of counts/scan # Create wavelength cal dataframe so we only need to do this once, only to be # used if Colour Index calculation is performed if folderletter == 'U': w = open(Uwlcal, 'r') else: w = open(Vwlcal, 'r') wl_data = w.readlines() wl_data_strpd = [] for i in range(len(wl_data)): wl_data_strpd.append(wl_data[i].strip('\n')) #%% lastfolderplus1 = lastfolder+1 while foldernumber < lastfolderplus1: # Empty lists and data frames to write to; sc_list = [] # for scattered light measurements ds_list = [] # for direct sun measurements dc_list = [] # for dark current cakibration measurements oc_list = [] # for offset calibration measurements hs_list = [] # for horizon scan measurements ci_list = [] sc_frame_to_fill = pd.DataFrame() ds_frame_to_fill = pd.DataFrame() oc_frame_to_fill = pd.DataFrame() dc_frame_to_fill = pd.DataFrame() hs_frame_to_fill = pd.DataFrame() if folders0indexed: if len(str(foldernumber)) < 2: foldername = 'STD_'+folderletter+'000000'+str(foldernumber) elif len(str(foldernumber)) < 3: foldername = 'STD_'+folderletter+'00000'+str(foldernumber) elif len(str(foldernumber)) < 4: foldername = 'STD_'+folderletter+'0000'+str(foldernumber) elif len(str(foldernumber)) < 5: foldername = 'STD_'+folderletter+'000'+str(foldernumber) elif len(str(foldernumber)) < 6: foldername = 'STD_'+folderletter+'00'+str(foldernumber) elif len(str(foldernumber)) < 7: foldername = 'STD_'+folderletter+'0'+str(foldernumber) else: foldername = 'STD_'+folderletter+str(foldernumber) #total_path = folderpath+folderdate+foldername total_path = folderpath+foldername allFiles = glob.glob(total_path + "/*.std") print("Now converting: ", folderletter,foldernumber) for file_ in allFiles: f = open(file_, 'r') file_data = f.readlines() file_data_strpd = [] for i in range(len(file_data)): file_data_strpd.append(file_data[i].strip('\n')) # This section deals with the time and date #=================================================================== hhmmss = file_data_strpd[2056] # This is the measurement start time [hours, mins, secs] = [int(x) for x in hhmmss.split(':')] dec_time_ = float(hours+(mins/60)+(secs/3600)) # This is now decimal time, appropriate for QDOAS dec_time = round(dec_time_, 5) # Find and convert the date #=================================================================== if date_format_1 == True: date_MDY = file_data_strpd[2054] [month, day, year] = [int(info) for info in date_MDY.split("/")] day_str = str(day) month_str = str(month) year_str = str(int(year)) if day<10: day_str = "0"+day_str if month<10: month_str = "0"+month_str else: date_MDY = file_data_strpd[2054] [day, month, year] = [info for info in date_MDY.split("-")] day_str = str(int(day)) year_str = str(int(year)) if month == 'Jan': month_str = '01' elif month == 'Feb': month_str = '02' elif month == 'Mar': month_str = '03' elif month == 'Apr': month_str = '04' elif month == 'May': month_str = '05' elif month == 'Jun': month_str = '06' elif month == 'Jul': month_str = '07' elif month == 'Aug': month_str = '08' elif month == 'Sep': month_str = '09' elif month == 'Oct': month_str = '10' elif month == 'Nov': month_str = '11' else: month_str = '12' date_DMY = day_str +"/"+ month_str+"/" + year_str # This section finds the data #=================================================================== md_data = file_data_strpd[3:2051] md_data_int_ = [int(i) for i in md_data] # Find the number of scans and the exp time #=================================================================== numscans_ = file_data_strpd[2059] numscansX = numscans_.split() numscans = float(numscansX[1]) texp_ = file_data_strpd[2072] # time in ms texpX = texp_.split() texp = float(texpX[2]) inttime = numscans*texp # int time in ms inttime_sec = inttime/1000 # Calculate the Dark current spectrum to subtract; dc_ts = [(dcCal_c[i]*(inttime)) for i in range(len(md_data))] # dcCal_c comes in as counts/ms, so *by measurement # exposure time (ms) # Calculate the offset spectrum to subract; oc_ts = [(ocCal_c[i]*(numscans)) for i in range(len(md_data_int_))] # ocCal_c comes in as counts/scan, so *by # measurement number of scans # Total calibration spectrum to subtract cal_ts = [(oc_ts[i]+dc_ts[i]) for i in range(len(md_data_int_))] # cal_ts now has units of counts # The calibration-corrected data list to pass to the next stage: md_data_int = [(md_data_int_[i] - cal_ts[i]) for i in range(len(md_data_int_))] # Now we need to differentiate between DS, calibration and scattered light spectra # First, define the names for the different options; #================================================================================= ds = False # Direct sun oc = False # offset calibration spectrum dc = False # dark current calibration spectrum sc = False # scattered light (MAX) measurement hs = False # horizon scan measurements other_calib = False # To handle other (Hg lamp) calibrations which are run but don't actually work! angle_data = file_data_strpd[2051] #print(angle_data) if angle_data[0:2] == 'DS': ds = True elif angle_data[:] == 'ofs': oc = True elif angle_data[:] == 'dc': dc = True elif angle_data[0] == 'h': other_calib = True elif inttime_sec < 5: hs = True else: sc = True #else: # hs=True #================================================================================= # Direct sun spectrum case; #================================================================================= if ds: #find the elevation angle; [other1, EA_real_, other2] = [angle for angle in angle_data[3:].split(" ")] #[EAactual, azim] = [float(angle) for angle in angle_data[3:].split(" ")] EA_real = round(float(EA_real_), 2) # find the SZA; scan_geom = file_data_strpd[2099] scan_geom_split = scan_geom.split(" ") SZA_ = float(scan_geom_split[5]) SZA = round(SZA_, 2) # For direct sun measurements, the azimuth angle is the solar azimuth angle, which is also given # in the scan geometry section used to find the SZA; AzA_ = float(scan_geom_split[3]) AzA = round(AzA_, 2) # This section finds the calibration-corrected data #=================================================================== ds_data_flt = md_data_int # Put everything in the right order for QDOAS... ds_data_flt.insert(0, dec_time) # .append adds things to the end of a list ds_data_flt.insert(0, date_DMY) # .insert(0, x) adds x to the top of a list ds_data_flt.insert(0, EA_real) # Values added on top in reverse order to ds_data_flt.insert(0, AzA) # ensure they are in correct order! ds_data_flt.insert(0, SZA) # Prepare the new data frame for saving ds_data_flt_a = np.array(ds_data_flt) ds_data_flt_a.transpose() ds_data_df= pd.DataFrame(ds_data_flt_a) ds_data_dft = ds_data_df.transpose() ds_list.append(ds_data_dft) #================================================================================= # Scattered light spectrum case; #================================================================================= elif sc: #[EAset, EAactual, azipos] = [float(angle) for angle in angle_data.split(" ") if angle] [EAset, EAactual, azim] = [float(angle) for angle in angle_data.split(" ") if angle] #EA_real_ = float(EAset) if EAactual > 80: EA_real = 90 else: EA_real = round(EAactual, 2) # find the SZA; scan_geom = file_data_strpd[2099] scan_geom_split = scan_geom.split(" ") SZA = float(scan_geom_split[5]) SZA = round(SZA, 2) # We know the azimuth angle because we just use a compass to find it AzA = round(float(210), 1) # This section finds the calibration-corrected data #=================================================================== sc_data_flt = md_data_int if calcCI == True: sc_data_forCI = pd.DataFrame(md_data_int_) sc_data_forCI.columns = ['int'] sc_data_forCI['wl'] = pd.DataFrame(wl_data_strpd) sc_data_forCI = sc_data_forCI.astype('float') sc_data_forCI['wl_n_diff'] = abs(sc_data_forCI['wl'] - CIn) sc_data_forCI['wl_d_diff'] = abs(sc_data_forCI['wl'] - CId) numidx = sc_data_forCI['wl_n_diff'].idxmin() denidx = sc_data_forCI['wl_d_diff'].idxmin() CI = (sc_data_forCI['int'][numidx])/(sc_data_forCI['int'][denidx]) ave_int__ = file_data_strpd[2065] ave_int_split = ave_int__.split(" ") ave_int_ = float(ave_int_split[2]) ave_int = round(ave_int_, 2) if texp > 0: norm_ave_int = (ave_int/texp) else: norm_ave_int = 0 ci_data_flt = [] ci_data_flt.insert(0, CI) ci_data_flt.insert(0, norm_ave_int) ci_data_flt.insert(0, hhmmss) ci_data_flt.insert(0, date_DMY) ci_data_flt.insert(0, EAset) ci_data_flt.insert(0, AzA) ci_data_flt.insert(0, SZA) # Prepare the new data frame for saving ci_data_flt_a = np.array(ci_data_flt) ci_data_flt_a.transpose() ci_data_df= pd.DataFrame(ci_data_flt_a) ci_data_dft = ci_data_df.transpose() ci_list.append(ci_data_dft) # Put everything in the right order for QDOAS... sc_data_flt.insert(0, dec_time) # .append adds things to the end of a list sc_data_flt.insert(0, date_DMY) # .insert(0, x) adds x to the top of a list sc_data_flt.insert(0, EAset) # Values added on top in reverse order to sc_data_flt.insert(0, AzA) # ensure they are in correct order! sc_data_flt.insert(0, SZA) # Prepare the new data frame for saving sc_data_flt_a = np.array(sc_data_flt) sc_data_flt_a.transpose() sc_data_df= pd.DataFrame(sc_data_flt_a) sc_data_dft = sc_data_df.transpose() sc_list.append(sc_data_dft) #================================================================================= # Horizon scan case; #================================================================================= elif hs: [EAsupposed, EAactual, azim] = [float(angle) for angle in angle_data.split(" ")[:3] if angle] #[EAset, azipos] = [float(angle) for angle in angle_data.split(" ") if angle] #EA_real_ = float(EAstart) if EAactual > 80: EA_real = 90 else: EA_real = round(EAactual, 2) # find the SZA; scan_geom = file_data_strpd[2099] scan_geom_split = scan_geom.split(" ") SZA = float(scan_geom_split[5]) SZA = round(SZA, 2) # find intensity values int_1138 = float(file_data_strpd[1138]) int_1094 = float(file_data_strpd[1094]) ave_int__ = file_data_strpd[2065] ave_int_split = ave_int__.split(" ") ave_int_ = float(ave_int_split[2]) ave_int = round(ave_int_, 2) if texp > 0: norm_ave_int = (ave_int/texp) norm_int_1094 = int_1094/texp else: norm_ave_int = 0 norm_int_1094 = 0 # We know the azimuth angle because we just use a compass to find it AzA = float(200) AzA = round(AzA, 1) # This section finds the calibration-corrected data #=================================================================== if only_save_hs_int == True: hs_data_flt = [] hs_data_flt.insert(0, ave_int) hs_data_flt.insert(0, norm_int_1094) # second intensity point hs_data_flt.insert(0, norm_ave_int) # relative intensity between the two hs_data_flt.insert(0, dec_time) # .append adds things to the end of a list hs_data_flt.insert(0, date_DMY) # .insert(0, x) adds x to the top of a list hs_data_flt.insert(0, EA_real) # Values added on top in reverse order to hs_data_flt.insert(0, AzA) # ensure they are in correct order! hs_data_flt.insert(0, SZA) else: hs_data_flt = md_data_int # Appropriate for QDOAS! hs_data_flt.insert(0, dec_time) # .append adds things to the end of a list hs_data_flt.insert(0, date_DMY) # .insert(0, x) adds x to the top of a list hs_data_flt.insert(0, EA_real) # Values added on top in reverse order to hs_data_flt.insert(0, AzA) # ensure they are in correct order! hs_data_flt.insert(0, SZA) # Prepare the new data frame for saving hs_data_flt_a = np.array(hs_data_flt) hs_data_flt_a.transpose() hs_data_df= pd.DataFrame(hs_data_flt_a) hs_data_dft = hs_data_df.transpose() hs_list.append(hs_data_dft) #================================================================================= # Offset calibration spectrum case; #================================================================================= elif oc: SZA = 0 EA_real = 0 AzA = 0 # Put everything in the right order for QDOAS... # Don't want calibration corrected data here since this is the calibration! oc_data_flt = md_data_int_ oc_data_flt.insert(0, dec_time) oc_data_flt.insert(0, date_DMY) oc_data_flt.insert(0, 'oc') oc_data_flt.insert(0, numscans) oc_data_flt.insert(0, texp) # Prepare the new data frame for saving oc_data_flt_a = np.array(oc_data_flt) oc_data_flt_a.transpose() oc_data_df= pd.DataFrame(oc_data_flt_a) oc_data_dft = oc_data_df.transpose() oc_list.append(oc_data_dft) #================================================================================= # Dark current calibration spectrum case; #================================================================================= elif dc: SZA = 0 EA_real = 0 AzA = 0 # again don't want the calibration-corrected data so take md_data_int_ dc_data_flt = md_data_int_ # Put everything in the right order for QDOAS... dc_data_flt.insert(0, dec_time) dc_data_flt.insert(0, date_DMY) dc_data_flt.insert(0, 'dc') dc_data_flt.insert(0, numscans) dc_data_flt.insert(0, texp) # Prepare the new data frame for saving dc_data_flt_a = np.array(dc_data_flt) dc_data_flt_a.transpose() dc_data_df= pd.DataFrame(dc_data_flt_a) dc_data_dft = dc_data_df.transpose() dc_list.append(dc_data_dft) elif other_calib: print('Found calibration spectra in file ', foldernumber) else: print("oh dear, something has gone wrong :(") #print(date_DMY) # Saving section #================================================================================= date2save = day_str + month_str+ year_str # Save ds to file; #================================================================================= if len(ds_list)>0: if saveDS == True: ds_frame_to_fill = pd.concat(ds_list) ds_frame_to_fill.to_csv(r'C:/'+path2save+inst+'_DS_'+date2save+'-'+folderletter+str(foldernumber)+end, sep = ' ', header =None, index=None) #else: #print("There's no direct sun data in this folder") # Save sc to file; #================================================================================= if len(sc_list)>0: if saveSC == True: sc_frame_to_fill = pd.concat(sc_list) sc_frame_to_fill.to_csv(r'C:/'+path2save+inst+'_SC_'+date2save+'-'+folderletter+str(foldernumber)+end, sep = ' ', header =None, index=None) # Save hs to file; #================================================================================= if len(hs_list)>0: if saveHS == True: hs_frame_to_fill =
pd.concat(hs_list)
pandas.concat
import pandas as pd from .utils import * from ..smartapi_kg import MetaKG from ..call_apis import APIQueryDispatcher from ..config_new import BTE_FILTERS from .filter.nodeDegree import NodeDegreeFilter from .filter import Filter from ..expand import Expander from .printer import Print class Predict: def __init__(self, input_objs, intermediate_nodes, output_types, config=None): self.input_objs = input_objs self.intermediate_nodes = intermediate_nodes if isinstance(intermediate_nodes, str): intermediate_nodes = [intermediate_nodes] self.output_types = output_types self.intermediate_nodes.append(self.output_types) validate_max_intermediate_nodes(self.intermediate_nodes) self.steps_results = {} self.steps_nodes = {} self.kg = MetaKG() self.kg.constructMetaKG(source="local") self.query_completes = False self.config = config self.ep = Expander() self.pt = Print() def _expand_inputs(self, inputs, verbose=True): """ Expand inputs to its descendants. :param inputs: list of input bioentities with resolved ids. :param verbose: verbose """ if ( self.config and self.config.get("expand") and self.config.get("expand") is True ): if verbose: self.pt.print_expand_begin_message() expandedInputs = self.ep.expand(inputs.values()) if verbose: self.pt.print_expand_summary_message(expandedInputs) if expandedInputs: inputs.update(expandedInputs) return inputs def _annotate_edges_with_filters(self, edges, step): """ Add filter information to each edge. :param edges: list of edges. """ if ( self.config and self.config.get("filters") and isinstance(self.config["filters"], list) and step < len(self.config["filters"]) and isinstance(self.config["filters"][step], dict) and self.config["filters"][step] ): if len(set(self.config["filters"][step].keys()) - set(BTE_FILTERS)) == 0: return for edge in edges: output_nodes = self.intermediate_nodes[step] if isinstance(output_nodes, str): edge["filter"] = self.config["filters"][step] if isinstance(output_nodes, list): for i, node in enumerate(output_nodes): if node == edge["association"]["output_type"]: if isinstance(self.config["filters"][step], list): edge["filter"] = self.config["filters"][step][i] else: edge["filter"] = self.config["filters"][step] def _get_predicates_from_config(self, path): """ Get information on predicates from config. """ if ( self.config and self.config.get("predicates") and isinstance(self.config["predicates"], list) and path < len(self.config["predicates"]) ): predicates = self.config["predicates"][path] else: predicates = None return predicates def _annotate_results(self, step, source_types): # print("annotating results with NodeDegree!") # ft = NodeDegreeFilter(self.steps_results[step], {}) # ft.annotateNodeDegree() # self.steps_results[step] = ft.stepResult if "annotate" in self.config and isinstance(self.config["annotate"], list): ft = Filter(self.steps_results[step], self.config["annotate"], source_types) ft.annotate() self.steps_results[step] = ft.stepResult return ft return None def _filter_results(self, step, ft=None): if ( self.config and self.config.get("filters") and step < len(self.config["filters"]) ): if not ft: ft = Filter(self.steps_results[step], self.config["filters"][step]) else: ft.criteria = self.config["filters"][step] self.steps_results[step] = ft.filter_response() self.steps_nodes[step] = extractAllResolvedOutputIDs( self.steps_results[step] ) print( "\nAfter applying post-query filter, BTE retrieved {} unique output nodes.".format( len(self.steps_nodes[step]) ) ) return self.steps_nodes[step] def connect(self, verbose=True): if not validate_max_intermediate_nodes(self.intermediate_nodes): return self.query_completes = False inputs = restructureHintOutput(self.input_objs) inputs = self._expand_inputs(inputs, verbose=verbose) if verbose: self.pt.print_query_parameter_summary(inputs, self.intermediate_nodes) for i, node in enumerate(self.intermediate_nodes): if verbose: self.pt.print_query_plan_begin_message(i + 1) inputs = groupsIDsbySemanticType(inputs) source_types = list(inputs.keys()) predicates = self._get_predicates_from_config(i) if verbose: print( "Input Types: {}\nOutput Types: {}\nPredicates: {}\n".format( ",".join(list(inputs.keys())), node, predicates ) ) edges = getEdges(inputs, node, predicates, self.kg) if len(edges) == 0: self.pt.print_query_failure_message("APIs", i + 1) return annotatedEdges = [] for e in edges: annotatedEdges += annotateEdgesWithInput( e.get("edges"), e.get("inputs") ) if not annotatedEdges: self.pt.print_query_failure_message("APIs", i + 1) return self._annotate_edges_with_filters(annotatedEdges, i) dp = APIQueryDispatcher(annotatedEdges, verbose=verbose) self.steps_results[i] = dp.syncQuery() if not self.steps_results[i] or len(self.steps_results[i]) == 0: self.pt.print_query_failure_message("results", i + 1) return inputs = self.steps_nodes[i] = extractAllResolvedOutputIDs( self.steps_results[i] ) if verbose: self.pt.print_individual_query_step_summary(inputs) ft = self._annotate_results(i, source_types) inputs = self._filter_results(i, ft) self.query_completes = True if verbose: self.pt.print_final_result_summary(self.steps_nodes) def annotate(self, step=0, criteria=[]): ft = Filter(self.steps_results[step], criteria=criteria) self.steps_results[step] = ft.annotate() def display_table_view(self, extra_fields=[]): if not self.query_completes: print("Your query fails. Unable to display results!") return for step, step_result in self.steps_results.items(): df = stepResult2PandasTable( step_result, step, len(self.steps_results), extra_fields ) if step == 0: result = df continue join_columns = [ "node" + str(step) + item for item in ["_id", "_type", "_label"] ] result =
pd.merge(result, df, on=join_columns, how="inner")
pandas.merge
import pytest from doltpy.core.dolt import Dolt, _execute, DoltException from doltpy.core.write import UPDATE, import_df from doltpy.core.read import pandas_read_sql, read_table import shutil import pandas as pd import uuid import os from typing import Tuple, List from doltpy.core.tests.helpers import get_repo_path_tmp_path import sqlalchemy from retry import retry from sqlalchemy.engine import Engine BASE_TEST_ROWS = [ {'name': 'Rafael', 'id': 1}, {'name': 'Novak', 'id': 2} ] @pytest.fixture def create_test_data(tmp_path) -> str: path = os.path.join(tmp_path, str(uuid.uuid4())) pd.DataFrame(BASE_TEST_ROWS).to_csv(path, index_label=False) yield path os.remove(path) @pytest.fixture def create_test_table(init_empty_test_repo, create_test_data) -> Tuple[Dolt, str]: repo, test_data_path = init_empty_test_repo, create_test_data repo.sql(query=''' CREATE TABLE `test_players` ( `name` LONGTEXT NOT NULL COMMENT 'tag:0', `id` BIGINT NOT NULL COMMENT 'tag:1', PRIMARY KEY (`id`) ); ''') import_df(repo, 'test_players',
pd.read_csv(test_data_path)
pandas.read_csv
# @Author: <NAME><Nareshvrao> # @Date: 2020-12-22, 12:44:08 # @Last modified by: Naresh # @Last modified time: 2019-12-22, 1:13:26 import warnings warnings.filterwarnings("ignore") from pathlib import Path import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import tqdm from util.utils import * def compute_detail_score(df, dice): res = [] res.append(df[dice].mean()) #c1 -> c4 dice for label in ['Fish', 'Flower', 'Gravel', 'Sugar']: df_tmp = df[df['cls'] == label] res.append(df_tmp[dice].mean()) # neg & pos dice res.append(df[df['truth'] == ''][dice].mean()) res.append(df[df['truth'] != ''][dice].mean()) # c1 -> c4 pos for label in ['Fish', 'Flower', 'Gravel', 'Sugar']: df_tmp = df[df['cls'] == label] res.append(df_tmp[df_tmp['truth'] != ''][dice].mean()) return res def ensemble_rles(rles1, rles2, mode='intersect'): res = [] for rle1, rle2 in tqdm.tqdm(zip(rles1, rles2)): m1 = rle2mask(rle1, height=350, width=525, fill_value=1) m2 = rle2mask(rle2, height=350, width=525, fill_value=1) if mode == 'intersect': mask = ((m1+m2) == 2).astype(int) elif mode == 'union': mask = ((m1+m2) > 0).astype(int) else: RuntimeError('%s not implemented.'%mode) rle = mask2rle(mask) res.append(rle) return res def load_stacking(seg_name, tta, ts=0.5): df_seg_val = pd.read_csv('../output/'+seg_name+'/valid_5fold_tta%d.csv'%tta) df_seg_test = pd.read_csv('../output/'+seg_name+'/test_5fold_tta%d.csv'%tta) df_seg_val['s1'], df_seg_test['s1'] = np.nan, np.nan df_seg_val['s1'].loc[df_seg_val.pred >= ts] = '1 1' df_seg_test['s1'].loc[df_seg_test.pred >= ts] = '1 1' return df_seg_val[['Image_Label', 's1']], df_seg_test[['Image_Label', 's1']] def load_seg_pred(seg_name, name, tta): #load val df_val = [] try: for fold in range(5): if tta <= 1: df_val.append(pd.read_csv('../output/'+ seg_name + '/' + 'valid_fold%d.csv'%fold)) else: df_val.append(pd.read_csv('../output/'+ seg_name + '/' + 'valid_fold%d_tta%d.csv'%(fold, tta))) df_val = pd.concat(df_val) except: df_val = pd.read_csv('../output/'+ seg_name + '/' + 'valid_5fold_tta%d.csv'%(tta)) df_val = df_val[['Image_Label', 'EncodedPixels']] #df_val.rename(columns={'s3': 'EncodedPixels'}, inplace=True) df_test = pd.read_csv('../output/'+ seg_name + '/' + 'test_5fold_tta%d.csv'%tta) df_val.rename(columns={'EncodedPixels': name}, inplace=True) df_test.rename(columns={'EncodedPixels': name}, inplace=True) return df_val, df_test def load_seg_cls_pred(seg_name, name, tta, ts): #load val df_val = [] try: for fold in range(5): if tta <= 1: df_val.append(pd.read_csv('../output/'+ seg_name + '/' + 'valid_cls_fold%d.csv'%fold)) else: df_val.append(pd.read_csv('../output/'+ seg_name + '/' + 'valid_cls_fold%d_tta%d.csv'%(fold, tta))) df_val = pd.concat(df_val) except: df_val = pd.read_csv('../output/'+ seg_name + '/' + 'valid_5fold_tta%d.csv'%(tta)) df_val = df_val[['Image_Label', 'EncodedPixels']] #df_val.rename(columns={'s3': 'EncodedPixels'}, inplace=True) df_test = pd.read_csv('../output/'+ seg_name + '/' + 'test_cls_5fold_tta%d.csv'%tta) df_val['EncodedPixels'] = '1 1' df_val['EncodedPixels'].loc[df_val['0'] < ts] = np.nan df_test['EncodedPixels'] = '1 1' df_test['EncodedPixels'].loc[df_test['0'] < ts] = np.nan df_val.rename(columns={'EncodedPixels': name}, inplace=True) df_test.rename(columns={'EncodedPixels': name}, inplace=True) return df_val, df_test def load_classifier(classifier, tta): try: df_cls_val = [] df_cls_test = [] for fold in range(5): if tta <= 1: df_cls_val.append(pd.read_csv('../output/'+ classifier + '/' + 'valid_cls_fold%d.csv'%fold)) df_cls_test.append(pd.read_csv('../output/'+ classifier + '/' + 'test_cls_fold%d.csv'%fold)) else: df_cls_val.append(pd.read_csv('../output/'+ classifier + '/' + 'valid_cls_fold%d_tta%d.csv'%(fold, tta))) df_cls_test.append(pd.read_csv('../output/'+ classifier + '/' + 'test_cls_fold%d_tta%d.csv'%(fold, tta))) df_cls_val = pd.concat(df_cls_val) df_tmp = df_cls_test[0] for i in range(1, 5): assert(np.sum(df_tmp['Image_Label'] != df_cls_test[i]['Image_Label']) == 0) df_tmp['0'] += df_cls_test[i]['0'] df_tmp['0'] /= 5 df_cls_test = df_tmp except: df_cls_val = pd.read_csv('../output/'+ classifier + '/' + 'valid_cls_5fold_tta%d.csv'%tta) df_cls_test = pd.read_csv('../output/'+ classifier + '/' + 'test_cls_5fold_tta%d.csv'%tta) df_cls_val.rename(columns={'0': 'prob'}, inplace=True) df_cls_test.rename(columns={'0': 'prob'}, inplace=True) return df_cls_val, df_cls_test df_train = pd.read_csv('../input/train_350.csv') df_train.rename(columns={'EncodedPixels': 'truth'}, inplace=True) _save=1 tta=3 seg1 = 'densenet121-FPN-BCE-warmRestart-10x3-bs16' seg2 = 'b5-Unet-inception-FPN-b7-Unet-b7-FPN-b7-FPNPL' classifier = 'efficientnetb1-cls-BCE-reduceLR-bs16-PL' # load classifier results if classifier: if 'stacking' in classifier: df_cls_val = pd.read_csv('../output/'+classifier+'/valid_5fold_tta%d.csv'%tta).rename(columns={'pred': 'prob'}) df_cls_test = pd.read_csv('../output/'+classifier+'/test_5fold_tta%d.csv'%tta).rename(columns={'pred': 'prob'}) else: df_cls_val, df_cls_test = load_classifier(classifier, tta) # load seg results if isinstance(seg1, list): df_seg1_val, df_seg1_test = load_seg_pred(seg1[0], 's1', tta) for i in range(1, len(seg1)): d1, d2 = load_seg_pred(seg1[i], 's1', tta) df_seg1_val['s1'].loc[d1.s1.isnull()] = np.nan df_seg1_test['s1'].loc[d2.s1.isnull()] = np.nan elif 'stacking' in seg1: df_seg1_val, df_seg1_test = load_stacking(seg1, 3, ts=0.54) else: df_seg1_val, df_seg1_test = load_seg_pred(seg1, 's1', 1) df_seg2_val, df_seg2_test = load_seg_pred(seg2, 's2', tta) # merge seg valid df_seg_val = pd.merge(df_seg1_val, df_seg2_val, how='left') df_seg_val = pd.merge(df_seg_val, df_train, how='left') if classifier: df_seg_val = pd.merge(df_seg_val, df_cls_val[['Image_Label', 'prob']], how='left') df_seg_val['s3'] = df_seg_val['s1'].copy() df_seg_val['s3'].loc[df_seg_val['s1'].notnull()] = df_seg_val['s2'].loc[df_seg_val['s1'].notnull()] #df_seg_val['area'] = df_seg_val['s3'].apply(lambda x: rle2mask(x, height=350, width=525).sum()) df_seg_test = pd.merge(df_seg1_test, df_seg2_test, how='left') df_seg_test =
pd.merge(df_seg_test, df_cls_test[['Image_Label', 'prob']], how='left')
pandas.merge
#%% Import require packages import h5py import pandas as pd import tarfile import docker import time import re from knmy import knmy from timeloop import Timeloop from datetime import timedelta from dateutil.parser import parse from io import BytesIO #%% Helper functions. def to_writeable_timestamp(timestamp): timestamp_string = str(timestamp) cleaned_timestamp_string = re.sub(r'[ :]', '-', re.sub(r'\+.*', '',timestamp_string)) return(cleaned_timestamp_string) def write_beamformed(data_part_df): data_part_string = data_part_df.to_csv(sep=",", date_format="%Y-%m-%d %H:%M:%S", index=False) tarstream = BytesIO() tar = tarfile.TarFile(fileobj=tarstream, mode='w') file_data = data_part_string.encode('utf8') tarinfo = tarfile.TarInfo(name="measurement"+str(measurement_index)+"-"+str(measurement_index+index_delta)+".csv") tarinfo.size = len(file_data) tarinfo.mtime = time.time() tar.addfile(tarinfo, BytesIO(file_data)) tar.close() tarstream.seek(0) spark_master.put_archive("/opt/spark-data/beamformed", tarstream) def fetch_and_write_weather(last_timestamp, last_hourly_measurement): #Correct for datetime handling in knmy function by adding hour offset _, _, _, knmi_df = knmy.get_hourly_data(stations=[279], start=last_hourly_measurement-timedelta(hours=1), end=last_timestamp-timedelta(hours=1), parse=True) knmi_df = knmi_df.drop(knmi_df.index[0]) #drop first row, which contains a duplicate header knmi_df["timestamp"] = [(parse(date) + timedelta(hours=int(hour))) for date, hour in zip(knmi_df["YYYYMMDD"], knmi_df["HH"])] knmi_df = knmi_df.drop(["STN", "YYYYMMDD", "HH"], axis=1) weather_string = knmi_df.to_csv(sep=",", date_format="%Y-%m-%d %H:%M:%S", index=False) filename = "weather"+to_writeable_timestamp(last_hourly_measurement)+"-to-"+to_writeable_timestamp(last_timestamp)+".csv" tarstream = BytesIO() tar = tarfile.TarFile(fileobj=tarstream, mode='w') file_data = weather_string.encode('utf8') tarinfo = tarfile.TarInfo(name=filename) tarinfo.size = len(file_data) tarinfo.mtime = time.time() tar.addfile(tarinfo, BytesIO(file_data)) tar.close() tarstream.seek(0) spark_master.put_archive("/opt/spark-data/weather", tarstream) #%% initialize variables and initialize hdf5 access and docker containers filename = 'L701913_SAP000_B000_S0_P000_bf.h5' h5 = h5py.File(filename, "r") stokes = h5["/SUB_ARRAY_POINTING_000/BEAM_000/STOKES_0"] client = docker.from_env() spark_master = client.containers.get("spark-master") tl = Timeloop() time_start = parse(h5.attrs['OBSERVATION_START_UTC']) #Start of measurements as datetime object measurement_index = 102984 #Which measurement should streaming start with? # For when to test the hourly change: # 18*60*(10**6)/time_delta.microseconds # Out[172]: 102994.46881556361 # with 102984 first batch should have weather from hour 11, second batch from hour 12 index_delta = 100 #How many measurements should be sent each second time_delta = timedelta(seconds=h5["/SUB_ARRAY_POINTING_000/BEAM_000/COORDINATES/COORDINATE_0"].attrs["INCREMENT"]) #The time between two consecutive measurements # calculate first timestamp and set it to 1 hour before measurements start last_hourly_measurement = (time_start - timedelta(hours=1)).replace(minute=0, second=0, microsecond=0) #%% define jobs @tl.job(interval=timedelta(seconds=5)) def read_and_write(): global measurement_index global last_hourly_measurement #measurements -and- timestamp data_part_df =
pd.DataFrame(stokes[measurement_index:(measurement_index+index_delta),:])
pandas.DataFrame
# Based on https://www.kaggle.com/currie32/predicting-fraud-with-tensorflow import os import pandas as pd import numpy as np import tensorflow as tf from tensorflow.python.tools import freeze_graph from tensorflow.python.framework.graph_util import convert_variables_to_constants # from sklearn.cross_validation import train_test_split import matplotlib.pyplot as plt from sklearn.utils import shuffle from sklearn.metrics import confusion_matrix import seaborn as sns import matplotlib.gridspec as gridspec from sklearn.preprocessing import StandardScaler from sklearn.manifold import TSNE df = pd.read_csv("./input/creditcard.csv") print("Head: \n{}".format(df.head())) print("Describe: \n{}".format(df.describe())) print("Nulls: \n{}".format(df.isnull().sum())) # Let's see how time compares across fraudulent and normal transactions. print("Fraud") print(df.Time[df.Class == 1].describe()) print() print("Normal") print(df.Time[df.Class == 0].describe()) # f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(12,4)) # bins = 50 # ax1.hist(df.Time[df.Class == 1], bins = bins) # ax1.set_title('Fraud') # ax2.hist(df.Time[df.Class == 0], bins = bins) # ax2.set_title('Normal') # plt.xlabel('Time (in Seconds)') # plt.ylabel('Number of Transactions') # plt.show() # see if the transaction amount differs between the two types. print("Fraud") print(df.Amount[df.Class == 1].describe()) print() print("Normal") print(df.Amount[df.Class == 0].describe()) # f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(12,4)) # bins = 30 # ax1.hist(df.Amount[df.Class == 1], bins = bins) # ax1.set_title('Fraud') # ax2.hist(df.Amount[df.Class == 0], bins = bins) # ax2.set_title('Normal') # plt.xlabel('Amount ($)') # plt.ylabel('Number of Transactions') # plt.yscale('log') # plt.show() df['Amount_max_fraud'] = 1 df.loc[df.Amount <= 2125.87, 'Amount_max_fraud'] = 0 # Let's compare Time with Amount and see if we can learn anything new. # f, (ax1, ax2) = plt.subplots(2, 1, sharex=True, figsize=(12,6)) # # ax1.scatter(df.Time[df.Class == 1], df.Amount[df.Class == 1]) # ax1.set_title('Fraud') # # ax2.scatter(df.Time[df.Class == 0], df.Amount[df.Class == 0]) # ax2.set_title('Normal') # # plt.xlabel('Time (in Seconds)') # plt.ylabel('Amount') # plt.show() # take a look at the anonymized features. # Select only the anonymized features. # v_features = df.ix[:,1:29].columns # plt.figure(figsize=(20, 5*2)) # gs = gridspec.GridSpec(5, 6) # for i, cn in enumerate(df[v_features]): # ax = plt.subplot(gs[i]) # sns.distplot(df[cn][df.Class == 1], bins=50) # sns.distplot(df[cn][df.Class == 0], bins=50) # ax.set_xlabel('') # ax.set_title('histogram of feature: ' + str(cn)) # plt.show() # Drop all of the features that have very similar distributions between the two types of transactions. df = df.drop(['V28', 'V27', 'V26', 'V25', 'V24', 'V23', 'V22', 'V20', 'V15', 'V13', 'V8'], axis=1) # Based on the plots above, these features are created to identify values where fraudulent transaction are more common. df['V1_'] = df.V1.map(lambda x: 1 if x < -3 else 0) df['V2_'] = df.V2.map(lambda x: 1 if x > 2.5 else 0) df['V3_'] = df.V3.map(lambda x: 1 if x < -4 else 0) df['V4_'] = df.V4.map(lambda x: 1 if x > 2.5 else 0) df['V5_'] = df.V5.map(lambda x: 1 if x < -4.5 else 0) df['V6_'] = df.V6.map(lambda x: 1 if x < -2.5 else 0) df['V7_'] = df.V7.map(lambda x: 1 if x < -3 else 0) df['V9_'] = df.V9.map(lambda x: 1 if x < -2 else 0) df['V10_'] = df.V10.map(lambda x: 1 if x < -2.5 else 0) df['V11_'] = df.V11.map(lambda x: 1 if x > 2 else 0) df['V12_'] = df.V12.map(lambda x: 1 if x < -2 else 0) df['V14_'] = df.V14.map(lambda x: 1 if x < -2.5 else 0) df['V16_'] = df.V16.map(lambda x: 1 if x < -2 else 0) df['V17_'] = df.V17.map(lambda x: 1 if x < -2 else 0) df['V18_'] = df.V18.map(lambda x: 1 if x < -2 else 0) df['V19_'] = df.V19.map(lambda x: 1 if x > 1.5 else 0) df['V21_'] = df.V21.map(lambda x: 1 if x > 0.6 else 0) print("Boza") print(df.loc[1,:]) print("Boza2") bla = df.loc[df.Class == 1] print(bla.loc[541,:]) print("Head: \n{}".format(df.head())) print("Describe: \n{}".format(df.describe())) # Create a new feature for normal (non-fraudulent) transactions. df.loc[df.Class == 0, 'Normal'] = 1 df.loc[df.Class == 1, 'Normal'] = 0 # Rename 'Class' to 'Fraud'. df = df.rename(columns={'Class': 'Fraud'}) # 492 fraudulent transactions, 284,315 normal transactions. # 0.172% of transactions were fraud. print(df.Normal.value_counts()) print() print(df.Fraud.value_counts())
pd.set_option("display.max_columns", 101)
pandas.set_option
# -*- coding: utf-8 -*- """ @file:utils.py @time:2019/6/1 21:57 @author:Tangj @software:Pycharm @Desc """ import os import numpy as np from sklearn.base import BaseEstimator, TransformerMixin from sklearn.metrics import roc_auc_score from time import time import random import pandas as pd def frame_to_dict(train): train_dict = {} for col in train.columns: train_dict[col] = train[col].columns return trian_dict def del_adSize(ad_Size): ad_size_mean = [] ad_size_max = [] ad_size_min = [] for adSize in ad_Size: if not isinstance(adSize, str): # print(adSize) ad_size_mean.append(adSize) ad_size_max.append(adSize) ad_size_min.append(adSize) continue size = adSize.split(',') s = [] for i in size: s.append(int(i)) ad_size_mean.append(np.mean(s)) ad_size_max.append(np.max(s)) ad_size_min.append(np.min(s)) return ad_size_mean, ad_size_max, ad_size_max def write_data_into_parts(data, root_path, nums=5100000): l = data.shape[0] // nums for i in range(l + 1): begin = i * nums end = min(nums * (i + 1), data.shape[0]) t_data = data[begin:end] t_data.tofile(root_path + '.bin') def write_dict(path, data): fw = open(path, 'w') for key in data: fw.write(str(key) + ',' + str(data[key]) + '\n') fw.close() def read_allfea(path): f = open(path, 'r') fea = '0' for i in f: fea = i fea_val = fea.split(',') index_dict = {} for i, fea in enumerate(fea_val): index_dict[fea] = i + 1 if '-1' not in index_dict: index_dict['-1'] = len(fea_val) return fea, index_dict def one_hot_feature_concat(train, test, fea1, fea2, filter_num=100): train1 = train[fea1].values train2 = train[fea2].values test1 = test[fea1].values test2 = test[fea2].values train_data = [] test_data = [] train_res = [] test_res = [] for i, values in enumerate(train1): new = str(values) + '|' + str(train2[i]) train_data.append(new) for i, values in enumerate(test1): new = str(values) + '|' + str(test2[i]) # print(new) test_data.append(new) count_dict = {} for d in train_data: if d not in count_dict: count_dict[d] = 0 count_dict[d] += 1 filter_set = [] for i in count_dict: if count_dict[i] < 1: filter_set.append(i) index_dict = {} begin_index = 1 for d in train_data: # 给出现的value赋予一个index指引 if d in filter_set: d = '-1' if d not in index_dict: index_dict[d] = begin_index begin_index += 1 train_res.append(index_dict[d]) if '-1' not in index_dict: index_dict['-1'] = begin_index for d in test_data: if d not in index_dict or d in filter_set: d = '-1' test_res.append(index_dict[d]) print(test_res) return np.array(train_res), np.array(test_res) def one_hot_feature_process(train_data, val_data, test2_data, begin_num, filter_num=0): index_dict = {} begin_index = begin_num train_res = [] for d in train_data: # print(d) # 给出现的value赋予一个index指引 if d not in index_dict: index_dict[d] = begin_index begin_index += 1 # print(index_dict[d]) train_res.append(index_dict[d]) if '-1' not in index_dict: index_dict['-1'] = begin_index val_res = [] for d in val_data: if d not in index_dict: index_dict[d] = begin_index begin_index += 1 val_res.append(index_dict[d]) test2_res = [] for d in test2_data: if d not in index_dict: d = '-1' test2_res.append(index_dict[d]) # print(np.array(train_res)) return np.array(train_res), np.array(val_res), np.array(test2_res), index_dict def vector_feature_process(train_data, val_data, test2_data, begin_num, max_len, index_dict): train_res = [] train_res2 = [] val_res2 = [] test2_res2 = [] train_rate = [] val_rate = [] test2_rate = [] for d in train_data: lx = d.split(',') row = [0] * max_len row2 = [0] * max_len if len(lx) > max_len or d == 'all': j = 0 for i in index_dict: if j >= max_len: break row[j] = index_dict[i] j += 1 train_res.append(row) row2 = [1] * max_len train_res2.append(row2) train_rate.append(1) continue for i, x in enumerate(lx): if x not in index_dict: x = '-1' row[i] = index_dict[x] row2[row[i]] = 1 train_res.append(row) train_res2.append(row2) train_rate.append(len(lx) / max_len) val_res = [] for d in val_data: lx = d.split(',') row = [0] * max_len row2 = [0] * max_len if len(lx) > max_len or d == 'all': j = 0 for i in index_dict: if j >= max_len: break row[j] = index_dict[i] j += 1 val_res.append(row) row2 = [1] * max_len val_res2.append(row2) val_rate.append(1) continue for i, x in enumerate(lx): if x not in index_dict: x = '-1' row[i] = index_dict[x] row2[row[i]] = 1 val_res.append(row) val_res2.append(row2) val_rate.append(len(lx) / max_len) test2_res = [] for d in test2_data: lx = d.split(',') row = [0] * max_len row2 = [0] * max_len if len(lx) > max_len or d == 'all': j = 0 for i in index_dict: if j >= max_len: break row[j] = index_dict[i] j += 1 test2_res.append(row) row2 = [1] * max_len test2_res2.append(row2) test2_rate.append(1) continue for i, x in enumerate(lx): if x not in index_dict: x = '-1' row[i] = index_dict[x] row2[row[i]] = 1 test2_res.append(row) test2_res2.append(row2) test2_rate.append(len(lx) / max_len) return np.array(train_res), np.array(val_res), np.array(test2_res), index_dict, np.array(train_res2), np.array( val_res2), np.array(test2_res2), np.array(train_rate), np.array(val_rate), np.array(test2_rate), def count_one_feature_times(train, test, fea): count_dict = {} test_res = [] train_res = [] for val in train[fea].values: if val not in count_dict: count_dict[val] = 0 count_dict[val] += 1 if '-1' not in count_dict: count_dict['-1'] = 1 for i in train[fea].values: train_res.append(count_dict[i]) for i in test: if i not in count_dict: i = '-1' test_res.append(count_dict[i]) return np.array(train_res), np.array(test_res) def count_vector_feature_times(train, val_data, test, fea): count_dict = {} val_res = [] test_res = [] train_res = [] Train = pd.concat([train, val_data]) for val in Train[fea].values: vals = val.split(',') for i in vals: if i not in count_dict: count_dict[i] = 0 count_dict[i] += 1 if '-1' not in count_dict: count_dict['-1'] = 1 for val in train[fea].values: vals = val.split(',') l = [] for i in vals: l.append(count_dict[i]) # ['max', 'mean', 'min', 'median'] max_l = np.max(l) mean_l = np.mean(l) min_l = np.min(l) median_l = np.median(l) train_res.append([max_l, mean_l, min_l, median_l]) for val in val_data[fea].values: vals = val.split(',') l = [] for i in vals: l.append(count_dict[i]) # ['max', 'mean', 'min', 'median'] max_l = np.max(l) mean_l = np.mean(l) min_l = np.min(l) median_l = np.median(l) val_res.append([max_l, mean_l, min_l, median_l]) for val in test: vals = val.split(',') l = [] for i in vals: if i not in count_dict: i = '-1' l.append(count_dict[i]) # ['max', 'mean', 'min', 'median'] max_l = np.max(l) mean_l = np.mean(l) min_l = np.min(l) median_l = np.median(l) test_res.append([max_l, mean_l, min_l, median_l]) return np.array(train_res), np.array(val_res), np.array(test_res) # 对曝光、pctr和ecpm和bid的特征 def one_feature_exposure2(Train, test, fea, date): # 返回曝光的最大值,最小值,均值,中位数四个值, # 返回bid的最大值,最小值,均值,中位数四个值, test_res = [] train_res = [] id_res = [] reqday_res = [] train = Train num1 = train[train['day'] == 20190410].shape[0] id_res.extend(train[train['day'] == 20190410]['ad_id'].values) reqday_res.extend(train[train['day'] == 20190410]['day'].values) for i in range(num1): train_res.append([0, 0, 0, 0]) for i in range(len(date) - 1): day = int(date[i + 1]) train_compute = Train[Train['day'] == day] train_count = Train[Train['day'] < day] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: exposure_dict[value] = [] train1 = train_count[train_count[fea] == value]['sucess_rate'].values exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0, 0, 0, 0] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train_count = Train[Train['day'] > 20190414] exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['sucess_rate'].values exposure_dict[value] = [] exposure_dict[value].append(np.max(train1)) exposure_dict[value].append(np.min(train1)) exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0, 0, 0, 0] for value in test: if value not in exposure_dict: value = '-1' test_res.append(exposure_dict[value]) return np.array(train_res), np.array(test_res), np.array(id_res), np.array(reqday_res) def one_feature_exposure4(Train, test, fea, date): test_res = [] train_res = [] id_res = [] reqday_res = [] train = Train train_count = train[train['day'] == 20190410] train_compute = train[train['day'] == 20190410] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['ex'].values exposure_dict[value] = [] exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0.9, 0.9] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) train_count = train[train['day'] == 20190410] train_compute = train[train['day'] == 20190411] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) exposure_dict = {} for value in train_count[fea].values: if value not in exposure_dict: train1 = train_count[train_count[fea] == value]['ex'].values exposure_dict[value] = [] exposure_dict[value].append(np.mean(train1)) exposure_dict[value].append(np.median(train1)) if '-1' not in exposure_dict: exposure_dict['-1'] = [0.9, 0.9] for value in train_compute[fea].values: if value not in exposure_dict: value = '-1' train_res.append(exposure_dict[value]) for i in range(len(date) - 2): day1 = int(date[i + 2]) day2 = int(date[i + 1]) day3 = int(date[i]) train1 = Train[Train['day'] == day3] train2 = Train[Train['day'] == day2] train_compute = Train[Train['day'] == day1] id_res.extend(train_compute['ad_id'].values) reqday_res.extend(train_compute['day'].values) train_count =
pd.concat([train1, train2])
pandas.concat
""" Grab stocks from cad tickers """ import pandas as pd class TickerControllerV2: """ Grabs cad_tickers dataframes and normalized them """ def __init__(self, cfg: dict): """ Extract yahoo finance tickers from website Consider using hardcoded csvs sheets for the tickers to increase speed, no need to grab all data dynamically. """ self.yf_tickers = [] # import csv from github ticker_df = pd.read_csv( "https://raw.githubusercontent.com/FriendlyUser/cad_tickers_list/main/static/latest/stocks.csv" ) tickers_config = cfg.get("tickers_config") us_df = pd.DataFrame() if tickers_config != None: industries = tickers_config.get("industries") if industries != None: ticker_df = ticker_df[ticker_df["industry"].isin(industries)] us_cfg = tickers_config.get("us_tickers") if us_cfg != None: # apply filters # same format as above us_tickers_url = us_cfg.get("url") us_df =
pd.read_csv(us_tickers_url)
pandas.read_csv
import numpy as np import pandas as pd from utils import data_generator ## data dimension N_train = 110 # sum of training and valiadation set dim = 24 ## initialize parameters c1_value = round(np.random.uniform(0, 20),2) c2_value = round(np.random.uniform(0, 20),2) duration = round(np.random.uniform(1, 4)) eta = round(np.random.uniform(0.8, 1),2) paras = pd.DataFrame([[c1_value, c2_value, duration, eta]],columns=("c1", "c2", "P", "eta")) print( "Generating data!", "P1=", 0.5, "E1=", 0.5 * duration, "c1 =", c1_value, "c2 =", c2_value, "eta =", eta, ) ## load price data price_hist =
pd.read_csv("./ESID_data/price.csv")
pandas.read_csv
# THIS SCRIPT SERVES TO TRANSLATE INDIVIDUAL DATASET ANNOTATIONS TO CELL TYPE ANNOTATIONS AS IMPLEMENTED BY SASHA AND MARTIJN! :) import pandas as pd import numpy as np import scanpy as sc import utils # this is a custom script from me def nan_checker(entry): """replaces entry that is not a cell type label, but rather some other entry that exists in the table (e.g. |, >, nan) with None. Retains labels that look like proper labels.""" if entry == '|': new_entry = None elif entry == '>': new_entry = None elif pd.isna(entry): new_entry = None else: new_entry = entry return new_entry def load_harmonizing_table(path_to_csv): """Loads the csv download version of the google doc in which cell types for each dataset are assigned a consensus equivalent. Returns the cleaned dataframe""" cell_type_harm_df = pd.read_csv( path_to_csv, header=1 ) cell_type_harm_df = cell_type_harm_df.applymap(nan_checker) # strip white spaces cell_type_harm_df = cell_type_harm_df.apply(lambda x: x.str.strip() if x.dtype == "object" else x) return cell_type_harm_df def consensus_index_renamer(consensus_df, idx): highest_res = int(float(consensus_df.loc[idx, "highest_res"])) new_index = ( str(highest_res) + "_" + consensus_df.loc[idx, "level_" + str(highest_res)] ) return new_index def create_consensus_table(harmonizing_df, max_level=5): """creates a clean consensus table based on the harmonizing_df that also includes dataset level info. The output dataframe contains, for each consensus cell type, it's 'parent cell types', an indication of whether the cell type is considered new, and the level of the annotation. max_level - maximum level of annotation available""" # set up empty consensus df, that will be filled later on consensus_df = pd.DataFrame( columns=[ 'level_' + str(levnum) for levnum in range(1,max_level + 1) ] + [ 'highest_res','new','harmonizing_df_index' ] ) # store the index of the harmonizing df, so that we can match rows later on consensus_df["harmonizing_df_index"] = harmonizing_df.index # create dictionary storing the most recent instance of every level, # so that we always track the 'mother levels' of each instance most_recent_level_instance = dict() # loop through rows for idx in harmonizing_df.index: # set 'new' to false. This variable indicates if the cell type annotation # is new according to Sasha and Martijn. It will be checked/changed later. new = False # create a dictionary where we story the entries of this row, # for each level original_entries_per_level = dict() # create a dictionary where we store the final entries of this row, # for each level. That is, including the mother levels. final_entries_per_level = dict() # if all entries in this row are None, continue to next row: if ( sum( [ pd.isna(x) for x in harmonizing_df.loc[ idx, ["Level_" + str(levnum) for levnum in range(1, max_level + 1)] ] ] ) == max_level ): continue # for each level, check if we need to store the current entry, # the mother level entry, or no entry (we do not want to store daughters) for level in range(1, max_level + 1): original_entry = harmonizing_df.loc[idx, "Level_" + str(level)] # if the current level has an entry in the original dataframe, # update the 'most_recent_level_instance' # and store the entry as the final output entry for this level if original_entry != None: # store the lowest level annotated for this row: lowest_level = level # check if entry says 'New!', then we need to obtain actual label # from the dataset where the label appears if original_entry == "New!": # set new to true now new = True # get all the unique entries from this row # this should be only one entry aside from 'None' and 'New!' actual_label = list(set(harmonizing_df.loc[idx, :])) # filter out 'New!' and 'None' actual_label = [ x for x in actual_label if not pd.isna(x) and x != "New!" ][0] original_entry = actual_label # update most recent instance of level: most_recent_level_instance[level] = original_entry # store entry as final entry for this level final_entries_per_level[level] = original_entry # Moreover, store the most recent instances of the lower (parent) # levels as final output: for parent_level in range(1, level): final_entries_per_level[parent_level] = most_recent_level_instance[ parent_level ] # and set the daughter levels to None: for daughter_level in range(level + 1, max_level + 1): final_entries_per_level[daughter_level] = None break # if none of the columns have an entry, # set all of them to None: if bool(final_entries_per_level) == False: for level in range(1, 5): final_entries_per_level[level] = None # store the final outputs in the dataframe: consensus_df.loc[idx, "highest_res"] = int(lowest_level) consensus_df.loc[idx, "new"] = new consensus_df.loc[idx, consensus_df.columns[:max_level]] = [ final_entries_per_level[level] for level in range(1, max_level + 1) ] rows_to_keep = ( idx for idx in consensus_df.index if not consensus_df.loc[ idx, ["level_" + str(levnum) for levnum in range(1, max_level + 1)] ] .isna() .all() ) consensus_df = consensus_df.loc[rows_to_keep, :] # rename indices so that they also specify the level of origin # this allows for indexing by cell type while retaining uniqueness # (i.e. we're able to distinguis 'Epithelial' level 1, and level 2) consensus_df.index = [ consensus_index_renamer(consensus_df, idx) for idx in consensus_df.index ] # Now check if there are double index names. Sasha added multiple rows # for the same consensus type to accomodate his cluster names. We # should therefore merge these rows: # First create an empty dictionary in which to store the harmonizing_df row # indices of the multiple identical rows: harmonizing_df_index_lists = dict() for unique_celltype in set(consensus_df.index): # if there are multiple rows, the only way in which they should differ # is their harmonizing_df_index. Check this: celltype_sub_df = consensus_df.loc[unique_celltype] if type(celltype_sub_df) == pd.DataFrame and celltype_sub_df.shape[0] > 1: # check if all levels align: for level in range(1, max_level + 1): if len(set(celltype_sub_df["level_" + str(level)])) > 1: print( "WARNING: {} has different annotations in different rows at level {}. Look into this!!".format( unique_celltype, str(level) ) ) harmonizing_df_index_list = celltype_sub_df["harmonizing_df_index"].values # if there was only one index equal to the unique celltype, the # celltype_sub_df is actually a pandas series and we need to index # it diffently else: harmonizing_df_index_list = [celltype_sub_df["harmonizing_df_index"]] # store the harmonizing_df_index_list in the consensus df # we use the 'at' function to be able to store a list in a single # cell/entry of the dataframe. harmonizing_df_index_lists[unique_celltype] = harmonizing_df_index_list # now that we have a list per cell type, we can drop the duplicate columns consensus_df.drop_duplicates( subset=["level_" + str(levnum) for levnum in range(1, max_level + 1)], inplace=True ) # and replace the harmonizing_df_index column with the generated complete lists consensus_df["harmonizing_df_index"] = None for celltype in consensus_df.index: consensus_df.at[celltype, "harmonizing_df_index"] = harmonizing_df_index_lists[ celltype ] # forward propagate coarser annotations # add a prefix (matching with the original level of coarseness) to the # forward-propagated annotations for celltype in consensus_df.index: highest_res = consensus_df.loc[celltype, "highest_res"] # go to next level of loop if the highest_res is nan if not type(highest_res) == pd.Series: if pd.isna(highest_res): continue for i in range(highest_res + 1, max_level + 1): consensus_df.loc[celltype, "level_" + str(i)] = celltype return consensus_df def create_orig_ann_to_consensus_translation_df( adata, consensus_df, harmonizing_df, verbose=True, number_of_levels=5, ontology_type="cell_type", ): """returns a dataframe. The indices of the dataframe correspond to original labels from the dataset, with the study name as a prefix (as it appears in the input adata.obs.study), the columns contain information on the consensus translation. I.e. a translation at each level, whether or not the cell type is 'new', and what the level of the annotation is. ontology_type <"cell_type","anatomical_region_coarse","anatomical_region_fine"> - type of ontology """ # list the studies of interest. This name should correspond to the # study name in the anndata object, 'study' column. # store the column name in the "cell type harmonization table" (google doc) # that corresponds to the study, in a dictionary: study_cat = "study" studies = set(adata.obs[study_cat]) if ontology_type == "cell_type": harm_colnames = {study:study for study in studies} elif ontology_type == "anatomical_region_coarse": harm_colnames = {study: study + "_coarse" for study in studies} elif ontology_type == "anatomical_region_fine": harm_colnames = {study: study + "_fine" for study in studies} else: raise ValueError( "ontology_type must be set to either cell_type, anatomical_region_coarse or anatomical_region_fine. Exiting" ) # store set of studies original_annotation_names = { "cell_type": "original_celltype_ann", "anatomical_region_coarse": "anatomical_region_coarse", "anatomical_region_fine": "anatomical_region_detailed", } original_annotation_name = original_annotation_names[ontology_type] original_annotations_prefixed = sorted( set( [ cell_study + "_" + ann for cell_study, ann in zip( adata.obs[study_cat], adata.obs[original_annotation_name] ) if str(ann) != "nan" ] ) ) level_names = [ "level" + "_" + str(level_number) for level_number in range(1, number_of_levels + 1) ] translation_df = pd.DataFrame( index=original_annotations_prefixed, columns=level_names + ["new", "highest_res"], ) for study in studies: harm_colname = harm_colnames[study] if verbose: print("working on study " + study + "...") # get cell type names, remove nan and None from list: cell_types_original = sorted( set( [ cell for cell, cell_study in zip( adata.obs[original_annotation_name], adata.obs[study_cat] ) if cell_study == study and str(cell) != "nan" and str(cell) != "None" ] ) ) for label in cell_types_original: if verbose: print(label) # add study prefix for output, in that way we can distinguish # between identical labels in different studies label_prefixed = study + "_" + label # if the label is 'nan', skip this row if label == "nan": continue # get the rows in which this label appears in the study column # of the harmonizing_df: ref_rows = harmonizing_df[harm_colname][ harmonizing_df[harm_colname] == label ].index.tolist() # if the label does not occur, there is a discrepancy between the # labels in adata and the labels in the harmonizing table made # by Martijn and Sasha. if len(ref_rows) == 0: print( "HEY THERE ARE NO ROWS IN THE harmonizing_df WITH THIS LABEL ({}) AS ENTRY!".format( label ) ) # if the label occurs twice, there is some ambiguity as to how to # translate this label to a consensus label. In that case, translate # to the finest level that is identical in consensus translation # between the multiple rows. elif len(ref_rows) > 1: print( "HEY THE NUMBER OF ROWS WITH ENTRY {} IS NOT 1 but {}!".format( label, str(len(ref_rows)) ) ) # get matching indices from consensus_df: consensus_idc = list() for i in range(len(ref_rows)): consensus_idc.append( consensus_df[ [ ref_rows[i] in index_list for index_list in consensus_df["harmonizing_df_index"] ] ].index[0] ) # now get the translations for both cases: df_label_subset = consensus_df.loc[consensus_idc, :] # store only labels that are common among all rows with this label: for level in range(1, number_of_levels + 1): col = "level_" + str(level) n_translations = len(set(df_label_subset.loc[:, col])) if n_translations == 1: # update finest annotation finest_annotation = df_label_subset.loc[consensus_idc[0], col] # update finest annotation level finest_level = level # store current annotation at current level translation_df.loc[label_prefixed, col] = finest_annotation # if level labels differ between instances, store None for this level else: translation_df.loc[label_prefixed, col] = ( str(finest_level) + "_" + finest_annotation ) translation_df.loc[label_prefixed, "highest_res"] = finest_level # set "new" to false, since we fell back to a common annotation: translation_df.loc[label_prefixed, "new"] = False # add ref rows to harmonizing_df_index? # ... # if there is only one row with this label, copy the consensus labels # from the same row to the translation df. else: consensus_idx = consensus_df[ [ ref_rows[0] in index_list for index_list in consensus_df["harmonizing_df_index"] ] ] if len(consensus_idx) == 0: raise ValueError(f"label {label} does not have any reference label in your harmonizing df! Exiting.") consensus_idx = consensus_idx.index[ 0 ] # loc[label,'harmonizing_df_index'][0] translation_df.loc[label_prefixed, :] = consensus_df.loc[ consensus_idx, : ] if verbose: print("Done!") return translation_df def consensus_annotate_anndata( adata, translation_df, verbose=True, max_ann_level=5, ontology_type="cell_type" ): """annotates cells in adata with consensus annotation. Returns adata.""" # list the studies of interest. This name should correspond to the # study name in the anndata object, 'study' column. # get name of adata.obs column with original annotations: original_annotation_names = { "cell_type": "original_celltype_ann", "anatomical_region_coarse": "anatomical_region_coarse", "anatomical_region_fine": "anatomical_region_detailed", } original_annotation_name = original_annotation_names[ontology_type] # add prefix to original annotations, so that we can distinguish between # datasets: adata.obs[original_annotation_name + "_prefixed"] = [ cell_study + "_" + ann if str(ann) != "nan" else np.nan for cell_study, ann in zip(adata.obs.study, adata.obs[original_annotation_name]) ] # specify the columns to copy: col_to_copy = [ "level_" + str(level_number) for level_number in range(1, max_ann_level + 1) ] col_to_copy = col_to_copy + ["highest_res", "new"] # add prefix for in adata.obs: prefixes = { "cell_type": "ann_", "anatomical_region_coarse": "region_coarse_", "anatomical_region_fine": "region_fine_", } prefix = prefixes[ontology_type] col_to_copy_new_names = [prefix + name for name in col_to_copy] # add these columns to adata: for col_name_old, col_name_new in zip(col_to_copy, col_to_copy_new_names): translation_dict = dict(zip(translation_df.index, translation_df[col_name_old])) adata.obs[col_name_new] = adata.obs[original_annotation_name + "_prefixed"].map( translation_dict ) adata.obs.drop([original_annotation_name + "_prefixed"], axis=1, inplace=True) return adata # ANATOMICAL REGION HARMONIZATION: def merge_anatomical_annotations(ann_coarse, ann_fine): """Takes in two same-level annotation, for coarse and fine annotation, returns the finest annotation. To use on vectors, do: np.vectorize(merge_anatomical_annotations)( vector_coarse, vector_fine ) """ if utils.check_if_nan(ann_coarse): ann_coarse_annotated = False elif ann_coarse[0].isdigit() and ann_coarse[1] == "_": ann_coarse_annotated = ann_coarse[0] else: ann_coarse_annotated = True if utils.check_if_nan(ann_fine): ann_fine_annotated = False elif ann_fine[0].isdigit() and ann_fine[1] == "_": ann_fine_annotated = ann_fine[0] else: ann_fine_annotated = True # if finely annotated, return fine annotation if ann_fine_annotated == True: return ann_fine # if only coarse is annotated, return coarse annotation elif ann_coarse_annotated == True: return ann_coarse # if both are not annotated, return np.nan elif ann_coarse_annotated == False and ann_fine_annotated == False: return np.nan # if only one is not annotated, return the other: elif ann_coarse_annotated == False: return ann_fine elif ann_fine_annotated == False: return ann_coarse # if one or both are under-annotated (i.e. have # forward propagated annotations from higher levels), # choose the one with the highest prefix elif ann_coarse_annotated > ann_fine_annotated: return ann_coarse elif ann_fine_annotated > ann_coarse_annotated: return ann_fine elif ann_fine_annotated == ann_coarse_annotated: if ann_coarse == ann_fine: return ann_fine else: raise ValueError( "Contradicting annotations. ann_coarse: {}, ann_fine: {}".format( ann_coarse, ann_fine ) ) else: raise ValueError( "Something most have gone wrong. ann_coarse: {}, ann_fine: {}".format( ann_coarse, ann_fine ) ) def merge_coarse_and_fine_anatomical_ontology_anns( adata, remove_harm_coarse_and_fine_original=False, n_levels=3 ): """takes in an adata with in its obs: anatomical_region_coarse_level_[n] and anatomical_region_fine_level_[n] and merges those for n_levels. Returns adata with merged annotation under anatomical_region_level_[n]. Removes coarse and fine original harmonizations if remove_harm_coarse_and_fine_original is set to True.""" for lev in range(1, n_levels + 1): adata.obs["anatomical_region_level_" + str(lev)] = np.vectorize( merge_anatomical_annotations )( adata.obs["region_coarse_level_" + str(lev)], adata.obs["region_fine_level_" + str(lev)], ) adata.obs["anatomical_region_highest_res"] = np.vectorize(max)( adata.obs["region_coarse_highest_res"], adata.obs["region_fine_highest_res"] ) if remove_harm_coarse_and_fine_original: for lev in range(1, n_levels + 1): del adata.obs["region_coarse_level_" + str(lev)] del adata.obs["region_fine_level_" + str(lev)] del adata.obs["region_coarse_highest_res"] del adata.obs["region_fine_highest_res"] del adata.obs["region_coarse_new"] del adata.obs["region_fine_new"] return adata def add_clean_annotation(adata, max_level=5): """converts ann_level_[annotation level] to annotation without label propagation from lower levels. I.e. in level 2, we will not have 1_Epithelial anymore; instead cells without level 2 annotations will have annotation None. Returns adata with extra annotation levels. """ for level in range(1, max_level + 1): level_name = "ann_level_" + str(level) anns = sorted(set(adata.obs[level_name])) ann2pureann = dict(zip(anns, anns)) for ann_name in ann2pureann.keys(): if ann_name[:2] in ["1_", "2_", "3_", "4_"]: ann2pureann[ann_name] = None adata.obs[level_name + "_clean"] = adata.obs[level_name].map(ann2pureann) return adata def add_anatomical_region_ccf_score(adata, harmonizing_df): """ Adds ccf score according to mapping in harmoinzing_df. Uses adata.obs.anatomical_region_level_1 and adata.obs.anatomical_region_level_2 for mapping. Returns annotated adata """ an_region_l1_to_ccf_score = dict() an_region_l2_to_ccf_score = dict() for row, score in enumerate(harmonizing_df.continuous_score_upper_and_lower): if not pd.isnull(score): level_1_label = harmonizing_df["Level_1"][row] level_2_label = harmonizing_df["Level_2"][row] if not pd.isnull(level_2_label): an_region_l2_to_ccf_score[level_2_label] = score elif not pd.isnull(level_1_label): an_region_l1_to_ccf_score[level_1_label] = score l1_ccf_scores = adata.obs.anatomical_region_level_1.map(an_region_l1_to_ccf_score) l2_ccf_scores = adata.obs.anatomical_region_level_2.map(an_region_l2_to_ccf_score) # sanity checks: n_unannotated = sum( [ pd.isnull(l1_ccf) and pd.isnull(l2_ccf) for l1_ccf, l2_ccf in zip(l1_ccf_scores, l2_ccf_scores) ] ) n_annotated_double = sum( [ (pd.isnull(l1_ccf) == False and pd.isnull(l2_ccf) == False) for l1_ccf, l2_ccf in zip(l1_ccf_scores, l2_ccf_scores) ] ) if n_unannotated > 0: raise ValueError( "There are cells whose anatomical region don't correspond to any of your ccf keys. Exiting." ) if n_annotated_double > 0: raise ValueError( "There are cells that map to two different ccf values. Exiting." ) adata.obs["anatomical_region_ccf_score"] = l1_ccf_scores adata.obs.loc[ pd.isnull(l1_ccf_scores), "anatomical_region_ccf_score" ] = l2_ccf_scores[
pd.isnull(l1_ccf_scores)
pandas.isnull
from Functions.ParseFunctions import * import Functions.AdminFunctions as AF import pandas as pd #-------------- NESTED PATH CORRECTION --------------------------------# import os, re, sys # For all script files, we add the parent directory to the system path cwd = re.sub(r"[\\]", "/", os.getcwd()) cwd_list = cwd.split("/") path = sys.argv[0] path_list = path.split("/") # either the entire filepath is entered as command i python if cwd_list[0:3] == path_list[0:3]: full_path = path # or a relative path is entered, in which case we append the path to the cwd_path else: full_path = cwd + "/" + path # remove the overlap root_dir = re.search(r"(^.+HTML-projektet)", full_path).group(1) sys.path.append(root_dir) #----------------------------------------------------------------------# class Journal(): def __init__(self, journal_abb): self.name = AF.get_journal_name(journal_abb) self.abbreviation = journal_abb self._fp = AF.get_journal_dir(journal_abb) self.ref_df = pd.read_excel(f"{self._fp}/article_references.xlsx") def _get_toc_filenames(self): return os.listdir(f"{self._fp}/Tables_of_Contents") def list_years(self, type="df"): l = sorted(extract_from_filenames(self._get_toc_filenames(), "year")) if type in ['df']: return pd.DataFrame({'year': l}) elif type in ['list']: return l else: list_method_format_error() def list_volumes(self, type="df"): l = sorted(extract_from_filenames(self._get_toc_filenames(), "volume")) if type in ['df']: return
pd.DataFrame({'volume': l})
pandas.DataFrame
from flask import Flask, render_template, request, jsonify, redirect import pandas as pd import numpy as np from scipy import sparse import pickle5 as pickle ## For CB model def weighted_star_rating(x): v = x['review_count'] R = x['stars'] return (v/(v+m) * R) + (m/(m+v) * C) df = pd.read_csv('data/CA_trails.csv') m = df['review_count'].quantile(q=0.95) C = df['stars'].mean() df_Q = df[df['review_count'] > m].copy() df_Q['WSR'] = df_Q.apply(weighted_star_rating, axis=1) top_10 = df_Q.sort_values('WSR', ascending = False)[:10] ## Return this for top 10 in CA def pop_chart_per_region(region): df_region = df[df['location']==region] m = df['review_count'].quantile(q=0.70) C = df['stars'].mean() df_Q = df_region[ df_region['review_count'] > m] df_Q['WSR'] = df_Q.apply(weighted_star_rating, axis=1) top_5_in_region = df_Q.sort_values('WSR', ascending = False)[:5] return top_5_in_region PT_feature_cosine_sim = np.loadtxt('data/feature_sim.txt', delimiter =',') cosine_sim = np.loadtxt('data/text_sim.txt', delimiter =',') def get_recommendations_by_text_sim(idx, top_n=5): sim_scores = list(enumerate(cosine_sim[idx])) sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) sim_scores = sim_scores[1:top_n+1] trail_indices = [i[0] for i in sim_scores] result = df.iloc[trail_indices] return result def get_recommendations_by_feature_sim(idx, top_n=5): sim_scores = list(enumerate(PT_feature_cosine_sim[idx])) sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) sim_scores = sim_scores[1:top_n+1] trail_indices = [i[0] for i in sim_scores] result = df.iloc[trail_indices] return result def get_recommendations_by_hybrid_sim(idx, top_n=5): hybrid_cosine_sim = 0.5*PT_feature_cosine_sim + 0.5*cosine_sim sim_scores = list(enumerate(hybrid_cosine_sim[idx])) sim_scores = sorted(sim_scores, key=lambda x: x[1], reverse=True) sim_scores = sim_scores[1:top_n+1] trail_indices = [i[0] for i in sim_scores] result = df.iloc[trail_indices] return result order = ['name', 'location', 'stars','distance','elevation','duration','difficulty'] ## CF model trail_indices =
pd.read_csv('data/knn_trail_indices.csv')
pandas.read_csv
import sys import csv import pandas as pd import numpy as np def score (keyFileName, responseFileName): with open(keyFileName, 'r') as keyFile: reader = csv.reader(keyFile) key = [] for line in reader: key.append(line) with open(responseFileName, 'r') as responseFile: response = responseFile.readlines() if len(key) != len(response): print("length mismatch between key and submitted file") exit() categories = ["World", "Sports", "Business", "Sci/Tech"] correct = 0 incorrect = 0 matrix = np.zeros((len(categories), len(categories)), dtype=np.int8) confusion_matrix =
pd.DataFrame(matrix, columns=categories, index=categories)
pandas.DataFrame
""" Test cases for DataFrame.plot """ import string import warnings import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Series, date_range, ) import pandas._testing as tm from pandas.tests.plotting.common import TestPlotBase from pandas.io.formats.printing import pprint_thing pytestmark = pytest.mark.slow @td.skip_if_no_mpl class TestDataFramePlotsSubplots(TestPlotBase): def test_subplots(self): df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) for kind in ["bar", "barh", "line", "area"]: axes = df.plot(kind=kind, subplots=True, sharex=True, legend=True) self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) assert axes.shape == (3,) for ax, column in zip(axes, df.columns): self._check_legend_labels(ax, labels=[pprint_thing(column)]) for ax in axes[:-2]: self._check_visible(ax.xaxis) # xaxis must be visible for grid self._check_visible(ax.get_xticklabels(), visible=False) if kind != "bar": # change https://github.com/pandas-dev/pandas/issues/26714 self._check_visible(ax.get_xticklabels(minor=True), visible=False) self._check_visible(ax.xaxis.get_label(), visible=False) self._check_visible(ax.get_yticklabels()) self._check_visible(axes[-1].xaxis) self._check_visible(axes[-1].get_xticklabels()) self._check_visible(axes[-1].get_xticklabels(minor=True)) self._check_visible(axes[-1].xaxis.get_label()) self._check_visible(axes[-1].get_yticklabels()) axes = df.plot(kind=kind, subplots=True, sharex=False) for ax in axes: self._check_visible(ax.xaxis) self._check_visible(ax.get_xticklabels()) self._check_visible(ax.get_xticklabels(minor=True)) self._check_visible(ax.xaxis.get_label()) self._check_visible(ax.get_yticklabels()) axes = df.plot(kind=kind, subplots=True, legend=False) for ax in axes: assert ax.get_legend() is None def test_subplots_timeseries(self): idx = date_range(start="2014-07-01", freq="M", periods=10) df = DataFrame(np.random.rand(10, 3), index=idx) for kind in ["line", "area"]: axes = df.plot(kind=kind, subplots=True, sharex=True) self._check_axes_shape(axes, axes_num=3, layout=(3, 1)) for ax in axes[:-2]: # GH 7801 self._check_visible(ax.xaxis) # xaxis must be visible for grid self._check_visible(ax.get_xticklabels(), visible=False) self._check_visible(ax.get_xticklabels(minor=True), visible=False) self._check_visible(ax.xaxis.get_label(), visible=False) self._check_visible(ax.get_yticklabels()) self._check_visible(axes[-1].xaxis) self._check_visible(axes[-1].get_xticklabels()) self._check_visible(axes[-1].get_xticklabels(minor=True)) self._check_visible(axes[-1].xaxis.get_label()) self._check_visible(axes[-1].get_yticklabels()) self._check_ticks_props(axes, xrot=0) axes = df.plot(kind=kind, subplots=True, sharex=False, rot=45, fontsize=7) for ax in axes: self._check_visible(ax.xaxis) self._check_visible(ax.get_xticklabels()) self._check_visible(ax.get_xticklabels(minor=True)) self._check_visible(ax.xaxis.get_label()) self._check_visible(ax.get_yticklabels()) self._check_ticks_props(ax, xlabelsize=7, xrot=45, ylabelsize=7) def test_subplots_timeseries_y_axis(self): # GH16953 data = { "numeric": np.array([1, 2, 5]), "timedelta": [
pd.Timedelta(-10, unit="s")
pandas.Timedelta
from sklearn.metrics import matthews_corrcoef import pandas as pd infile_preds = "preds_mod_v1.csv" preds = pd.read_csv(infile_preds,index_col=0) actual = pd.read_csv("data/test.csv",index_col=0) preds["predictions"][preds["predictions"] > 0.5] = 1.0 preds["predictions"][preds["predictions"] < 0.51] = 0.0 all_df = pd.concat([preds,actual],axis=1) print("MCC for %s: %.3f" % (infile_preds,matthews_corrcoef(all_df["predictions"],all_df["target"]))) infile_preds = "preds_mod_v2.csv" preds = pd.read_csv(infile_preds,index_col=0) actual = pd.read_csv("data/test.csv",index_col=0) preds["predictions"][preds["predictions"] > 0.5] = 1.0 preds["predictions"][preds["predictions"] < 0.51] = 0.0 all_df = pd.concat([preds,actual],axis=1) print("MCC for %s: %.3f" % (infile_preds,matthews_corrcoef(all_df["predictions"],all_df["target"]))) infile_preds = "preds_mod_v3.csv" preds =
pd.read_csv(infile_preds,index_col=0)
pandas.read_csv
"""Provides access to *one* setting of the the IBM benchmarking data. The challenge data and further explanations of the corresponding data can be found in [2]. The authors also provide a rough evaluation guideline in their paper [1], which unfortunately has not been maintained since publication. The DGP is based on the same covariates as the ACIC2018 [3] challenge, which we hope to implement as a data set in a future version. References: [1] <NAME>, <NAME>, <NAME>, and <NAME>, “Benchmarking Framework for Performance-Evaluation of Causal Inference Analysis,” 2018. [2] Data Set Download: https://www.synapse.org/#!Synapse:syn11738767/wiki/512854 [3] ACIC2018 challenge: https://www.synapse.org/#!Synapse:syn11294478/wiki/494269 """ from typing import List, Optional import pandas as pd from ..frames import CausalFrame, Col from ..transport import get_covariates_df, get_outcomes_df from ..utils import ( Indices, add_pot_outcomes_if_missing, select_replication, to_rep_list, ) DATASET_NAME: str = "ibm" def load_ibm(select_rep: Optional[Indices] = None) -> List[CausalFrame]: """Provides the IBM benchmarking data in the common JustCause format. BEWARE: the replications have different sizes and should be used with caution. Args: select_rep: the desired replications Returns: data: list of CausalFrames, one for each replication """ covariates = get_covariates_df(DATASET_NAME) outcomes = get_outcomes_df(DATASET_NAME) if select_rep is not None: outcomes = select_replication(outcomes, select_rep) full =
pd.merge(covariates, outcomes, on=Col.sample_id)
pandas.merge
""" Copyright 2022 HSBC Global Asset Management (Deutschland) GmbH Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import numpy as np import pandas as pd import pytest import pyratings as rtg from tests import conftest @pytest.fixture(scope="session") def rtg_inputs_longterm(): return pd.DataFrame( data={ "rtg_sp": ["AAA", "AA-", "AA+", "BB-", "C", np.nan, "BBB+", "AA"], "rtg_moody": ["Aa1", "Aa3", "Aa2", "Ba3", "Ca", np.nan, np.nan, "Aa2"], "rtg_fitch": ["AA-", np.nan, "AA-", "B+", "C", np.nan, np.nan, "AA"], } ) @pytest.fixture(scope="session") def rtg_inputs_shortterm(): return pd.DataFrame( data={ "rtg_sp": ["A-1", "A-3", "A-1+", "D", "B", np.nan, "A-2", "A-3"], "rtg_moody": ["P-2", "NP", "P-1", "NP", "P-3", np.nan, np.nan, "P-3"], "rtg_fitch": ["F1", np.nan, "F1", "F3", "F3", np.nan, np.nan, "F3"], } ) def test_get_best_rating_longterm_with_explicit_rating_provider(rtg_inputs_longterm): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_best_ratings( rtg_inputs_longterm, rating_provider_input=["SP", "Moody", "Fitch"], tenor="long-term", ) expectations = pd.Series( data=["AAA", "AA-", "AA+", "BB-", "CC", np.nan, "BBB+", "AA"], name="best_rtg" ) pd.testing.assert_series_equal(actual, expectations) def test_get_best_rating_longterm_with_inferring_rating_provider(rtg_inputs_longterm): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_best_ratings(rtg_inputs_longterm, tenor="long-term") expectations = pd.Series( data=["AAA", "AA-", "AA+", "BB-", "CC", np.nan, "BBB+", "AA"], name="best_rtg" ) pd.testing.assert_series_equal(actual, expectations) def test_get_best_rating_shortterm_with_explicit_rating_provider(rtg_inputs_shortterm): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_best_ratings( rtg_inputs_shortterm, rating_provider_input=["SP", "Moody", "Fitch"], tenor="short-term", ) expectations = pd.Series( data=["A-1", "A-3", "A-1+", "A-3", "A-3", np.nan, "A-2", "A-3"], name="best_rtg" ) pd.testing.assert_series_equal(actual, expectations) def test_get_best_rating_shortterm_with_inferring_rating_provider(rtg_inputs_shortterm): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_best_ratings(rtg_inputs_shortterm, tenor="short-term") expectations = pd.Series( data=["A-1", "A-3", "A-1+", "A-3", "A-3", np.nan, "A-2", "A-3"], name="best_rtg" ) pd.testing.assert_series_equal(actual, expectations) def test_get_second_best_rating_longterm_with_explicit_rating_provider( rtg_inputs_longterm, ): """Test computation of second-best ratings on a security (line-by-line) basis.""" actual = rtg.get_second_best_ratings( rtg_inputs_longterm, rating_provider_input=["SP", "Moody", "Fitch"], tenor="long-term", ) expectations = pd.Series( data=["AA+", "AA-", "AA", "BB-", "C", np.nan, "BBB+", "AA"], name="second_best_rtg", ) pd.testing.assert_series_equal(actual, expectations) def test_get_second_best_rating_longterm_with_inferring_rating_provider( rtg_inputs_longterm, ): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_second_best_ratings(rtg_inputs_longterm, tenor="long-term") expectations = pd.Series( data=["AA+", "AA-", "AA", "BB-", "C", np.nan, "BBB+", "AA"], name="second_best_rtg", ) pd.testing.assert_series_equal(actual, expectations) def test_get_second_best_rating_shortterm_with_explicit_rating_provider( rtg_inputs_shortterm, ): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_second_best_ratings( rtg_inputs_shortterm, rating_provider_input=["SP", "Moody", "Fitch"], tenor="short-term", ) expectations = pd.Series( data=["A-1", "B", "A-1+", "B", "A-3", np.nan, "A-2", "A-3"], name="second_best_rtg", ) pd.testing.assert_series_equal(actual, expectations) def test_get_second_best_rating_shortterm_with_inferring_rating_provider( rtg_inputs_shortterm, ): """Test computation of best ratings on a security (line-by-line) basis.""" actual = rtg.get_second_best_ratings(rtg_inputs_shortterm, tenor="short-term") expectations = pd.Series( data=["A-1", "B", "A-1+", "B", "A-3", np.nan, "A-2", "A-3"], name="second_best_rtg", )
pd.testing.assert_series_equal(actual, expectations)
pandas.testing.assert_series_equal
import tempfile import copy import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import pandas as pd try: from scipy.spatial import distance from scipy.cluster import hierarchy _no_scipy = False except ImportError: _no_scipy = True try: import fastcluster assert fastcluster _no_fastcluster = False except ImportError: _no_fastcluster = True import numpy.testing as npt try: import pandas.testing as pdt except ImportError: import pandas.util.testing as pdt import pytest from .. import matrix as mat from .. import color_palette from .._testing import assert_colors_equal class TestHeatmap: rs = np.random.RandomState(sum(map(ord, "heatmap"))) x_norm = rs.randn(4, 8) letters = pd.Series(["A", "B", "C", "D"], name="letters") df_norm = pd.DataFrame(x_norm, index=letters) x_unif = rs.rand(20, 13) df_unif = pd.DataFrame(x_unif) default_kws = dict(vmin=None, vmax=None, cmap=None, center=None, robust=False, annot=False, fmt=".2f", annot_kws=None, cbar=True, cbar_kws=None, mask=None) def test_ndarray_input(self): p = mat._HeatMapper(self.x_norm, **self.default_kws) npt.assert_array_equal(p.plot_data, self.x_norm) pdt.assert_frame_equal(p.data, pd.DataFrame(self.x_norm)) npt.assert_array_equal(p.xticklabels, np.arange(8)) npt.assert_array_equal(p.yticklabels, np.arange(4)) assert p.xlabel == "" assert p.ylabel == "" def test_df_input(self): p = mat._HeatMapper(self.df_norm, **self.default_kws) npt.assert_array_equal(p.plot_data, self.x_norm) pdt.assert_frame_equal(p.data, self.df_norm) npt.assert_array_equal(p.xticklabels, np.arange(8)) npt.assert_array_equal(p.yticklabels, self.letters.values) assert p.xlabel == "" assert p.ylabel == "letters" def test_df_multindex_input(self): df = self.df_norm.copy() index = pd.MultiIndex.from_tuples([("A", 1), ("B", 2), ("C", 3), ("D", 4)], names=["letter", "number"]) index.name = "letter-number" df.index = index p = mat._HeatMapper(df, **self.default_kws) combined_tick_labels = ["A-1", "B-2", "C-3", "D-4"] npt.assert_array_equal(p.yticklabels, combined_tick_labels) assert p.ylabel == "letter-number" p = mat._HeatMapper(df.T, **self.default_kws) npt.assert_array_equal(p.xticklabels, combined_tick_labels) assert p.xlabel == "letter-number" @pytest.mark.parametrize("dtype", [float, np.int64, object]) def test_mask_input(self, dtype): kws = self.default_kws.copy() mask = self.x_norm > 0 kws['mask'] = mask data = self.x_norm.astype(dtype) p = mat._HeatMapper(data, **kws) plot_data = np.ma.masked_where(mask, data) npt.assert_array_equal(p.plot_data, plot_data) def test_mask_limits(self): """Make sure masked cells are not used to calculate extremes""" kws = self.default_kws.copy() mask = self.x_norm > 0 kws['mask'] = mask p = mat._HeatMapper(self.x_norm, **kws) assert p.vmax == np.ma.array(self.x_norm, mask=mask).max() assert p.vmin == np.ma.array(self.x_norm, mask=mask).min() mask = self.x_norm < 0 kws['mask'] = mask p = mat._HeatMapper(self.x_norm, **kws) assert p.vmin == np.ma.array(self.x_norm, mask=mask).min() assert p.vmax == np.ma.array(self.x_norm, mask=mask).max() def test_default_vlims(self): p = mat._HeatMapper(self.df_unif, **self.default_kws) assert p.vmin == self.x_unif.min() assert p.vmax == self.x_unif.max() def test_robust_vlims(self): kws = self.default_kws.copy() kws["robust"] = True p = mat._HeatMapper(self.df_unif, **kws) assert p.vmin == np.percentile(self.x_unif, 2) assert p.vmax == np.percentile(self.x_unif, 98) def test_custom_sequential_vlims(self): kws = self.default_kws.copy() kws["vmin"] = 0 kws["vmax"] = 1 p = mat._HeatMapper(self.df_unif, **kws) assert p.vmin == 0 assert p.vmax == 1 def test_custom_diverging_vlims(self): kws = self.default_kws.copy() kws["vmin"] = -4 kws["vmax"] = 5 kws["center"] = 0 p = mat._HeatMapper(self.df_norm, **kws) assert p.vmin == -4 assert p.vmax == 5 def test_array_with_nans(self): x1 = self.rs.rand(10, 10) nulls = np.zeros(10) * np.nan x2 = np.c_[x1, nulls] m1 = mat._HeatMapper(x1, **self.default_kws) m2 = mat._HeatMapper(x2, **self.default_kws) assert m1.vmin == m2.vmin assert m1.vmax == m2.vmax def test_mask(self): df = pd.DataFrame(data={'a': [1, 1, 1], 'b': [2, np.nan, 2], 'c': [3, 3, np.nan]}) kws = self.default_kws.copy() kws["mask"] = np.isnan(df.values) m = mat._HeatMapper(df, **kws) npt.assert_array_equal(np.isnan(m.plot_data.data), m.plot_data.mask) def test_custom_cmap(self): kws = self.default_kws.copy() kws["cmap"] = "BuGn" p = mat._HeatMapper(self.df_unif, **kws) assert p.cmap == mpl.cm.BuGn def test_centered_vlims(self): kws = self.default_kws.copy() kws["center"] = .5 p = mat._HeatMapper(self.df_unif, **kws) assert p.vmin == self.df_unif.values.min() assert p.vmax == self.df_unif.values.max() def test_default_colors(self): vals = np.linspace(.2, 1, 9) cmap = mpl.cm.binary ax = mat.heatmap([vals], cmap=cmap) fc = ax.collections[0].get_facecolors() cvals = np.linspace(0, 1, 9) npt.assert_array_almost_equal(fc, cmap(cvals), 2) def test_custom_vlim_colors(self): vals = np.linspace(.2, 1, 9) cmap = mpl.cm.binary ax = mat.heatmap([vals], vmin=0, cmap=cmap) fc = ax.collections[0].get_facecolors() npt.assert_array_almost_equal(fc, cmap(vals), 2) def test_custom_center_colors(self): vals = np.linspace(.2, 1, 9) cmap = mpl.cm.binary ax = mat.heatmap([vals], center=.5, cmap=cmap) fc = ax.collections[0].get_facecolors() npt.assert_array_almost_equal(fc, cmap(vals), 2) def test_cmap_with_properties(self): kws = self.default_kws.copy() cmap = copy.copy(mpl.cm.get_cmap("BrBG")) cmap.set_bad("red") kws["cmap"] = cmap hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal( cmap(np.ma.masked_invalid([np.nan])), hm.cmap(np.ma.masked_invalid([np.nan]))) kws["center"] = 0.5 hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal( cmap(np.ma.masked_invalid([np.nan])), hm.cmap(np.ma.masked_invalid([np.nan]))) kws = self.default_kws.copy() cmap = copy.copy(mpl.cm.get_cmap("BrBG")) cmap.set_under("red") kws["cmap"] = cmap hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal(cmap(-np.inf), hm.cmap(-np.inf)) kws["center"] = .5 hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal(cmap(-np.inf), hm.cmap(-np.inf)) kws = self.default_kws.copy() cmap = copy.copy(mpl.cm.get_cmap("BrBG")) cmap.set_over("red") kws["cmap"] = cmap hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal(cmap(-np.inf), hm.cmap(-np.inf)) kws["center"] = .5 hm = mat._HeatMapper(self.df_unif, **kws) npt.assert_array_equal(cmap(np.inf), hm.cmap(np.inf)) def test_tickabels_off(self): kws = self.default_kws.copy() kws['xticklabels'] = False kws['yticklabels'] = False p = mat._HeatMapper(self.df_norm, **kws) assert p.xticklabels == [] assert p.yticklabels == [] def test_custom_ticklabels(self): kws = self.default_kws.copy() xticklabels = list('iheartheatmaps'[:self.df_norm.shape[1]]) yticklabels = list('heatmapsarecool'[:self.df_norm.shape[0]]) kws['xticklabels'] = xticklabels kws['yticklabels'] = yticklabels p = mat._HeatMapper(self.df_norm, **kws) assert p.xticklabels == xticklabels assert p.yticklabels == yticklabels def test_custom_ticklabel_interval(self): kws = self.default_kws.copy() xstep, ystep = 2, 3 kws['xticklabels'] = xstep kws['yticklabels'] = ystep p = mat._HeatMapper(self.df_norm, **kws) nx, ny = self.df_norm.T.shape npt.assert_array_equal(p.xticks, np.arange(0, nx, xstep) + .5) npt.assert_array_equal(p.yticks, np.arange(0, ny, ystep) + .5) npt.assert_array_equal(p.xticklabels, self.df_norm.columns[0:nx:xstep]) npt.assert_array_equal(p.yticklabels, self.df_norm.index[0:ny:ystep]) def test_heatmap_annotation(self): ax = mat.heatmap(self.df_norm, annot=True, fmt=".1f", annot_kws={"fontsize": 14}) for val, text in zip(self.x_norm.flat, ax.texts): assert text.get_text() == "{:.1f}".format(val) assert text.get_fontsize() == 14 def test_heatmap_annotation_overwrite_kws(self): annot_kws = dict(color="0.3", va="bottom", ha="left") ax = mat.heatmap(self.df_norm, annot=True, fmt=".1f", annot_kws=annot_kws) for text in ax.texts: assert text.get_color() == "0.3" assert text.get_ha() == "left" assert text.get_va() == "bottom" def test_heatmap_annotation_with_mask(self): df = pd.DataFrame(data={'a': [1, 1, 1], 'b': [2, np.nan, 2], 'c': [3, 3, np.nan]}) mask = np.isnan(df.values) df_masked = np.ma.masked_where(mask, df) ax = mat.heatmap(df, annot=True, fmt='.1f', mask=mask) assert len(df_masked.compressed()) == len(ax.texts) for val, text in zip(df_masked.compressed(), ax.texts): assert "{:.1f}".format(val) == text.get_text() def test_heatmap_annotation_mesh_colors(self): ax = mat.heatmap(self.df_norm, annot=True) mesh = ax.collections[0] assert len(mesh.get_facecolors()) == self.df_norm.values.size plt.close("all") def test_heatmap_annotation_other_data(self): annot_data = self.df_norm + 10 ax = mat.heatmap(self.df_norm, annot=annot_data, fmt=".1f", annot_kws={"fontsize": 14}) for val, text in zip(annot_data.values.flat, ax.texts): assert text.get_text() == "{:.1f}".format(val) assert text.get_fontsize() == 14 def test_heatmap_annotation_with_limited_ticklabels(self): ax = mat.heatmap(self.df_norm, fmt=".2f", annot=True, xticklabels=False, yticklabels=False) for val, text in zip(self.x_norm.flat, ax.texts): assert text.get_text() == "{:.2f}".format(val) def test_heatmap_cbar(self): f = plt.figure() mat.heatmap(self.df_norm) assert len(f.axes) == 2 plt.close(f) f = plt.figure() mat.heatmap(self.df_norm, cbar=False) assert len(f.axes) == 1 plt.close(f) f, (ax1, ax2) = plt.subplots(2) mat.heatmap(self.df_norm, ax=ax1, cbar_ax=ax2) assert len(f.axes) == 2 plt.close(f) @pytest.mark.xfail(mpl.__version__ == "3.1.1", reason="matplotlib 3.1.1 bug") def test_heatmap_axes(self): ax = mat.heatmap(self.df_norm) xtl = [int(l.get_text()) for l in ax.get_xticklabels()] assert xtl == list(self.df_norm.columns) ytl = [l.get_text() for l in ax.get_yticklabels()] assert ytl == list(self.df_norm.index) assert ax.get_xlabel() == "" assert ax.get_ylabel() == "letters" assert ax.get_xlim() == (0, 8) assert ax.get_ylim() == (4, 0) def test_heatmap_ticklabel_rotation(self): f, ax = plt.subplots(figsize=(2, 2)) mat.heatmap(self.df_norm, xticklabels=1, yticklabels=1, ax=ax) for t in ax.get_xticklabels(): assert t.get_rotation() == 0 for t in ax.get_yticklabels(): assert t.get_rotation() == 90 plt.close(f) df = self.df_norm.copy() df.columns = [str(c) * 10 for c in df.columns] df.index = [i * 10 for i in df.index] f, ax = plt.subplots(figsize=(2, 2)) mat.heatmap(df, xticklabels=1, yticklabels=1, ax=ax) for t in ax.get_xticklabels(): assert t.get_rotation() == 90 for t in ax.get_yticklabels(): assert t.get_rotation() == 0 plt.close(f) def test_heatmap_inner_lines(self): c = (0, 0, 1, 1) ax = mat.heatmap(self.df_norm, linewidths=2, linecolor=c) mesh = ax.collections[0] assert mesh.get_linewidths()[0] == 2 assert tuple(mesh.get_edgecolor()[0]) == c def test_square_aspect(self): ax = mat.heatmap(self.df_norm, square=True) obs_aspect = ax.get_aspect() # mpl>3.3 returns 1 for setting "equal" aspect # so test for the two possible equal outcomes assert obs_aspect == "equal" or obs_aspect == 1 def test_mask_validation(self): mask = mat._matrix_mask(self.df_norm, None) assert mask.shape == self.df_norm.shape assert mask.values.sum() == 0 with pytest.raises(ValueError): bad_array_mask = self.rs.randn(3, 6) > 0 mat._matrix_mask(self.df_norm, bad_array_mask) with pytest.raises(ValueError): bad_df_mask = pd.DataFrame(self.rs.randn(4, 8) > 0) mat._matrix_mask(self.df_norm, bad_df_mask) def test_missing_data_mask(self): data = pd.DataFrame(np.arange(4, dtype=float).reshape(2, 2)) data.loc[0, 0] = np.nan mask = mat._matrix_mask(data, None) npt.assert_array_equal(mask, [[True, False], [False, False]]) mask_in = np.array([[False, True], [False, False]]) mask_out = mat._matrix_mask(data, mask_in) npt.assert_array_equal(mask_out, [[True, True], [False, False]]) def test_cbar_ticks(self): f, (ax1, ax2) = plt.subplots(2) mat.heatmap(self.df_norm, ax=ax1, cbar_ax=ax2, cbar_kws=dict(drawedges=True)) assert len(ax2.collections) == 2 @pytest.mark.skipif(_no_scipy, reason="Test requires scipy") class TestDendrogram: rs = np.random.RandomState(sum(map(ord, "dendrogram"))) default_kws = dict(linkage=None, metric='euclidean', method='single', axis=1, label=True, rotate=False) x_norm = rs.randn(4, 8) + np.arange(8) x_norm = (x_norm.T + np.arange(4)).T letters = pd.Series(["A", "B", "C", "D", "E", "F", "G", "H"], name="letters") df_norm = pd.DataFrame(x_norm, columns=letters) if not _no_scipy: if _no_fastcluster: x_norm_distances = distance.pdist(x_norm.T, metric='euclidean') x_norm_linkage = hierarchy.linkage(x_norm_distances, method='single') else: x_norm_linkage = fastcluster.linkage_vector(x_norm.T, metric='euclidean', method='single') x_norm_dendrogram = hierarchy.dendrogram(x_norm_linkage, no_plot=True, color_threshold=-np.inf) x_norm_leaves = x_norm_dendrogram['leaves'] df_norm_leaves = np.asarray(df_norm.columns[x_norm_leaves]) def test_ndarray_input(self): p = mat._DendrogramPlotter(self.x_norm, **self.default_kws) npt.assert_array_equal(p.array.T, self.x_norm) pdt.assert_frame_equal(p.data.T, pd.DataFrame(self.x_norm)) npt.assert_array_equal(p.linkage, self.x_norm_linkage) assert p.dendrogram == self.x_norm_dendrogram npt.assert_array_equal(p.reordered_ind, self.x_norm_leaves) npt.assert_array_equal(p.xticklabels, self.x_norm_leaves) npt.assert_array_equal(p.yticklabels, []) assert p.xlabel is None assert p.ylabel == '' def test_df_input(self): p = mat._DendrogramPlotter(self.df_norm, **self.default_kws) npt.assert_array_equal(p.array.T, np.asarray(self.df_norm)) pdt.assert_frame_equal(p.data.T, self.df_norm) npt.assert_array_equal(p.linkage, self.x_norm_linkage) assert p.dendrogram == self.x_norm_dendrogram npt.assert_array_equal(p.xticklabels, np.asarray(self.df_norm.columns)[ self.x_norm_leaves]) npt.assert_array_equal(p.yticklabels, []) assert p.xlabel == 'letters' assert p.ylabel == '' def test_df_multindex_input(self): df = self.df_norm.copy() index = pd.MultiIndex.from_tuples([("A", 1), ("B", 2), ("C", 3), ("D", 4)], names=["letter", "number"]) index.name = "letter-number" df.index = index kws = self.default_kws.copy() kws['label'] = True p = mat._DendrogramPlotter(df.T, **kws) xticklabels = ["A-1", "B-2", "C-3", "D-4"] xticklabels = [xticklabels[i] for i in p.reordered_ind] npt.assert_array_equal(p.xticklabels, xticklabels) npt.assert_array_equal(p.yticklabels, []) assert p.xlabel == "letter-number" def test_axis0_input(self): kws = self.default_kws.copy() kws['axis'] = 0 p = mat._DendrogramPlotter(self.df_norm.T, **kws) npt.assert_array_equal(p.array, np.asarray(self.df_norm.T)) pdt.assert_frame_equal(p.data, self.df_norm.T) npt.assert_array_equal(p.linkage, self.x_norm_linkage) assert p.dendrogram == self.x_norm_dendrogram npt.assert_array_equal(p.xticklabels, self.df_norm_leaves) npt.assert_array_equal(p.yticklabels, []) assert p.xlabel == 'letters' assert p.ylabel == '' def test_rotate_input(self): kws = self.default_kws.copy() kws['rotate'] = True p = mat._DendrogramPlotter(self.df_norm, **kws) npt.assert_array_equal(p.array.T, np.asarray(self.df_norm)) pdt.assert_frame_equal(p.data.T, self.df_norm) npt.assert_array_equal(p.xticklabels, []) npt.assert_array_equal(p.yticklabels, self.df_norm_leaves) assert p.xlabel == '' assert p.ylabel == 'letters' def test_rotate_axis0_input(self): kws = self.default_kws.copy() kws['rotate'] = True kws['axis'] = 0 p = mat._DendrogramPlotter(self.df_norm.T, **kws) npt.assert_array_equal(p.reordered_ind, self.x_norm_leaves) def test_custom_linkage(self): kws = self.default_kws.copy() try: import fastcluster linkage = fastcluster.linkage_vector(self.x_norm, method='single', metric='euclidean') except ImportError: d = distance.pdist(self.x_norm, metric='euclidean') linkage = hierarchy.linkage(d, method='single') dendrogram = hierarchy.dendrogram(linkage, no_plot=True, color_threshold=-np.inf) kws['linkage'] = linkage p = mat._DendrogramPlotter(self.df_norm, **kws) npt.assert_array_equal(p.linkage, linkage) assert p.dendrogram == dendrogram def test_label_false(self): kws = self.default_kws.copy() kws['label'] = False p = mat._DendrogramPlotter(self.df_norm, **kws) assert p.xticks == [] assert p.yticks == [] assert p.xticklabels == [] assert p.yticklabels == [] assert p.xlabel == "" assert p.ylabel == "" def test_linkage_scipy(self): p = mat._DendrogramPlotter(self.x_norm, **self.default_kws) scipy_linkage = p._calculate_linkage_scipy() from scipy.spatial import distance from scipy.cluster import hierarchy dists = distance.pdist(self.x_norm.T, metric=self.default_kws['metric']) linkage = hierarchy.linkage(dists, method=self.default_kws['method']) npt.assert_array_equal(scipy_linkage, linkage) @pytest.mark.skipif(_no_fastcluster, reason="fastcluster not installed") def test_fastcluster_other_method(self): import fastcluster kws = self.default_kws.copy() kws['method'] = 'average' linkage = fastcluster.linkage(self.x_norm.T, method='average', metric='euclidean') p = mat._DendrogramPlotter(self.x_norm, **kws) npt.assert_array_equal(p.linkage, linkage) @pytest.mark.skipif(_no_fastcluster, reason="fastcluster not installed") def test_fastcluster_non_euclidean(self): import fastcluster kws = self.default_kws.copy() kws['metric'] = 'cosine' kws['method'] = 'average' linkage = fastcluster.linkage(self.x_norm.T, method=kws['method'], metric=kws['metric']) p = mat._DendrogramPlotter(self.x_norm, **kws) npt.assert_array_equal(p.linkage, linkage) def test_dendrogram_plot(self): d = mat.dendrogram(self.x_norm, **self.default_kws) ax = plt.gca() xlim = ax.get_xlim() # 10 comes from _plot_dendrogram in scipy.cluster.hierarchy xmax = len(d.reordered_ind) * 10 assert xlim[0] == 0 assert xlim[1] == xmax assert len(ax.collections[0].get_paths()) == len(d.dependent_coord) @pytest.mark.xfail(mpl.__version__ == "3.1.1", reason="matplotlib 3.1.1 bug") def test_dendrogram_rotate(self): kws = self.default_kws.copy() kws['rotate'] = True d = mat.dendrogram(self.x_norm, **kws) ax = plt.gca() ylim = ax.get_ylim() # 10 comes from _plot_dendrogram in scipy.cluster.hierarchy ymax = len(d.reordered_ind) * 10 # Since y axis is inverted, ylim is (80, 0) # and therefore not (0, 80) as usual: assert ylim[1] == 0 assert ylim[0] == ymax def test_dendrogram_ticklabel_rotation(self): f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(self.df_norm, ax=ax) for t in ax.get_xticklabels(): assert t.get_rotation() == 0 plt.close(f) df = self.df_norm.copy() df.columns = [str(c) * 10 for c in df.columns] df.index = [i * 10 for i in df.index] f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(df, ax=ax) for t in ax.get_xticklabels(): assert t.get_rotation() == 90 plt.close(f) f, ax = plt.subplots(figsize=(2, 2)) mat.dendrogram(df.T, axis=0, rotate=True) for t in ax.get_yticklabels(): assert t.get_rotation() == 0 plt.close(f) @pytest.mark.skipif(_no_scipy, reason="Test requires scipy") class TestClustermap: rs = np.random.RandomState(sum(map(ord, "clustermap"))) x_norm = rs.randn(4, 8) + np.arange(8) x_norm = (x_norm.T + np.arange(4)).T letters = pd.Series(["A", "B", "C", "D", "E", "F", "G", "H"], name="letters") df_norm = pd.DataFrame(x_norm, columns=letters) default_kws = dict(pivot_kws=None, z_score=None, standard_scale=None, figsize=(10, 10), row_colors=None, col_colors=None, dendrogram_ratio=.2, colors_ratio=.03, cbar_pos=(0, .8, .05, .2)) default_plot_kws = dict(metric='euclidean', method='average', colorbar_kws=None, row_cluster=True, col_cluster=True, row_linkage=None, col_linkage=None, tree_kws=None) row_colors = color_palette('Set2', df_norm.shape[0]) col_colors = color_palette('Dark2', df_norm.shape[1]) if not _no_scipy: if _no_fastcluster: x_norm_distances = distance.pdist(x_norm.T, metric='euclidean') x_norm_linkage = hierarchy.linkage(x_norm_distances, method='single') else: x_norm_linkage = fastcluster.linkage_vector(x_norm.T, metric='euclidean', method='single') x_norm_dendrogram = hierarchy.dendrogram(x_norm_linkage, no_plot=True, color_threshold=-np.inf) x_norm_leaves = x_norm_dendrogram['leaves'] df_norm_leaves = np.asarray(df_norm.columns[x_norm_leaves]) def test_ndarray_input(self): cg = mat.ClusterGrid(self.x_norm, **self.default_kws) pdt.assert_frame_equal(cg.data, pd.DataFrame(self.x_norm)) assert len(cg.fig.axes) == 4 assert cg.ax_row_colors is None assert cg.ax_col_colors is None def test_df_input(self): cg = mat.ClusterGrid(self.df_norm, **self.default_kws) pdt.assert_frame_equal(cg.data, self.df_norm) def test_corr_df_input(self): df = self.df_norm.corr() cg = mat.ClusterGrid(df, **self.default_kws) cg.plot(**self.default_plot_kws) diag = cg.data2d.values[np.diag_indices_from(cg.data2d)] npt.assert_array_almost_equal(diag, np.ones(cg.data2d.shape[0])) def test_pivot_input(self): df_norm = self.df_norm.copy() df_norm.index.name = 'numbers' df_long = pd.melt(df_norm.reset_index(), var_name='letters', id_vars='numbers') kws = self.default_kws.copy() kws['pivot_kws'] = dict(index='numbers', columns='letters', values='value') cg = mat.ClusterGrid(df_long, **kws) pdt.assert_frame_equal(cg.data2d, df_norm) def test_colors_input(self): kws = self.default_kws.copy() kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cg = mat.ClusterGrid(self.df_norm, **kws) npt.assert_array_equal(cg.row_colors, self.row_colors) npt.assert_array_equal(cg.col_colors, self.col_colors) assert len(cg.fig.axes) == 6 def test_categorical_colors_input(self): kws = self.default_kws.copy() row_colors = pd.Series(self.row_colors, dtype="category") col_colors = pd.Series( self.col_colors, dtype="category", index=self.df_norm.columns ) kws['row_colors'] = row_colors kws['col_colors'] = col_colors exp_row_colors = list(map(mpl.colors.to_rgb, row_colors)) exp_col_colors = list(map(mpl.colors.to_rgb, col_colors)) cg = mat.ClusterGrid(self.df_norm, **kws) npt.assert_array_equal(cg.row_colors, exp_row_colors) npt.assert_array_equal(cg.col_colors, exp_col_colors) assert len(cg.fig.axes) == 6 def test_nested_colors_input(self): kws = self.default_kws.copy() row_colors = [self.row_colors, self.row_colors] col_colors = [self.col_colors, self.col_colors] kws['row_colors'] = row_colors kws['col_colors'] = col_colors cm = mat.ClusterGrid(self.df_norm, **kws) npt.assert_array_equal(cm.row_colors, row_colors) npt.assert_array_equal(cm.col_colors, col_colors) assert len(cm.fig.axes) == 6 def test_colors_input_custom_cmap(self): kws = self.default_kws.copy() kws['cmap'] = mpl.cm.PRGn kws['row_colors'] = self.row_colors kws['col_colors'] = self.col_colors cg = mat.clustermap(self.df_norm, **kws) npt.assert_array_equal(cg.row_colors, self.row_colors) npt.assert_array_equal(cg.col_colors, self.col_colors) assert len(cg.fig.axes) == 6 def test_z_score(self): df = self.df_norm.copy() df = (df - df.mean()) / df.std() kws = self.default_kws.copy() kws['z_score'] = 1 cg = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cg.data2d, df) def test_z_score_axis0(self): df = self.df_norm.copy() df = df.T df = (df - df.mean()) / df.std() df = df.T kws = self.default_kws.copy() kws['z_score'] = 0 cg = mat.ClusterGrid(self.df_norm, **kws) pdt.assert_frame_equal(cg.data2d, df) def test_standard_scale(self): df = self.df_norm.copy() df = (df - df.min()) / (df.max() - df.min()) kws = self.default_kws.copy() kws['standard_scale'] = 1 cg = mat.ClusterGrid(self.df_norm, **kws)
pdt.assert_frame_equal(cg.data2d, df)
pandas.util.testing.assert_frame_equal
import pandas as pd import numpy as np from keras.models import load_model from sklearn.metrics import roc_curve, roc_auc_score, auc, precision_recall_curve, average_precision_score import os import pickle from scipy.special import softmax from prg import prg class MetricsGenerator(object): def __init__(self, dataset_dir, model_dir, metrics_dir): self._model_dir = model_dir self._metrics_dir = metrics_dir self._train_x = pd.read_csv(dataset_dir + "train_x.csv") self._test_x = pd.read_csv(dataset_dir + "test_x.csv") self._train_x = self._train_x.drop(self._train_x.columns[0], axis=1) self._test_x = self._test_x.drop(self._test_x.columns[0], axis=1) self._train_y = pd.read_csv(dataset_dir + "train_y.csv") self._test_y = pd.read_csv(dataset_dir + "test_y.csv") def generate_metrics_for_model(self, model): error_df = self.get_error_df(model) roc_df, roc_auc_df = self.get_roc_and_auc_df(error_df) precision_recall_df, precision_recall_auc_df, average_precision_score_df = self.get_precision_recall_and_auc_df(error_df) prg_df, prg_auc_df = self.get_prg_and_auc_df(error_df) history_df = self.get_history_df(model) self.create(self._metrics_dir + "model" + str(model)) self.store_df("error_df", model,error_df) self.store_df("roc_df", model, roc_df) self.store_df("roc_auc_df", model, roc_auc_df) self.store_df("precision_recall_df", model, precision_recall_df) self.store_df("precision_recall_auc_df", model, precision_recall_auc_df) self.store_df("average_precision_score_df", model, average_precision_score_df) self.store_df("prg_df", model, prg_df) self.store_df("prg_auc_df", model, prg_auc_df) self.store_df("history_df", model, history_df) def get_error_df(self, model): model = load_model(self._model_dir + "model" + str(model) + ".h5") test_x_predicted = model.predict(self._test_x) mse = np.mean(np.power(self._test_x - test_x_predicted, 2), axis = 1) error_df = pd.DataFrame({'Reconstruction_error':mse, 'True_values': self._test_y['target']}) return error_df def get_roc_and_auc_df(self, error_df): false_pos_rate, true_pos_rate, thresholds = roc_curve(error_df.True_values, error_df.Reconstruction_error) i = np.arange(len(true_pos_rate)) roc_df = pd.DataFrame({'FPR': pd.Series(false_pos_rate, index=i), 'TPR': pd.Series(true_pos_rate, index=i), 'Threshold':
pd.Series(thresholds, index=i)
pandas.Series
import pyarrow.parquet as pq import pandas as pd import json from typing import List, Callable, Iterator, Union, Optional from sportsdataverse.config import WBB_BASE_URL, WBB_TEAM_BOX_URL, WBB_PLAYER_BOX_URL, WBB_TEAM_SCHEDULE_URL from sportsdataverse.errors import SeasonNotFoundError from sportsdataverse.dl_utils import download def load_wbb_pbp(seasons: List[int]) -> pd.DataFrame: """Load women's college basketball play by play data going back to 2002 Example: `wbb_df = sportsdataverse.wbb.load_wbb_pbp(seasons=range(2002,2022))` Args: seasons (list): Used to define different seasons. 2002 is the earliest available season. Returns: pd.DataFrame: Pandas dataframe containing the play-by-plays available for the requested seasons. Raises: ValueError: If `season` is less than 2002. """ data =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import os import sys from docx import Document from pathlib import Path from nbdev.showdoc import doc import ipywidgets as widgets from ipywidgets import interact, fixed, FileUpload import numpy as np import xlsxwriter from openpyxl import Workbook from openpyxl import load_workbook from IPython.display import display from ipywidgets import HTML from functools import partial import openpyxl from openpyxl.utils.dataframe import dataframe_to_rows from copy import copy import shutil from database import * # TODO fix formulas: overall satisfaction should go from B_scorerow:lastcolletter_scorerows # TODO fixe dived by 0 error in formulas # TODO put document links # TODO create script that retrieves document links class XLSXDoc: def __init__(self, db, xlsx_path=xlsx_path, month_year="JUN2021", ws_name='HR3-4 ', template_path=template_path, t_ws_name='HR3-4 '): self.xlsx_path = xlsx_path self.month_year = month_year self.file_name = f'NET UK - QMS - {month_year} - Indicators HR3-HR4.xlsx' self.file_path = self.xlsx_path/self.file_name self.xlsx_path.mkdir(parents=True, exist_ok=True) self.ws_name = ws_name self.template_path = template_path self.t_ws_name = t_ws_name self.db = db db.listen(self) self.regenerate() def regenerate(self): ''' Regenerate the excel according to the database ''' wb = Workbook() ws = wb.active ws.title = self.ws_name db_dict = self.db.get_db() scores = db_dict['scores'] n_employees = db_dict['n_employees'] xlsx_structure = { 'A1': 'Provided courses 2020-2021', 'A2': 'for each course is reported the average of the opinions expressed with rating from 0 to 5' } for k, v in xlsx_structure.items(): ws[k] = v # add the scores for i,r in enumerate(dataframe_to_rows(scores, index=True, header=True)): if(i != 1): ws.append(r) ws['A3'] = 'HR4' # popualate the score calcuation (with eqatuions) score_table_end = 2 + len(list(dataframe_to_rows(scores, index=True, header=True))) ws.cell(score_table_end,1, value = 'Course average rating') ws = self.__regenerate_formulas(ws) # add the docx links, a list of links for each course courses_docx = self.db.get_courses_docx() ws.cell(score_table_end + 1, 1, value='General Notes on the effectiveness of the course') for i, c in enumerate(scores.columns): if c in courses_docx.keys(): urls = courses_docx[c] cell_value = '' for url in urls: fname = url.stem path = 'docx' fpath = path + '/' + fname + '.docx' cell_value = cell_value + str(fpath) + ' ; ' cell_value = cell_value[:-3] ws.cell(score_table_end + 1, 2+i, value=cell_value) hr3_row = score_table_end + 3 ws.cell(hr3_row, 1, value='HR3') # add course_nr_row = hr3_row+1 ws.cell(course_nr_row, 1, value='provided courses (nr.)') ws.cell(course_nr_row, 2, value='=20-COUNTIFS(3:3, "Column*")') n_people_row = hr3_row+2 ws.cell(n_people_row, 1, value='Number of people affected') ws.cell(n_people_row, 2, value='=COUNTA(Tabella2[HR4])') n_employees_row = hr3_row+3 ws.cell(n_employees_row, 1, value='Number of employees') ws.cell(n_employees_row, 2, value=n_employees) ws.cell(n_employees_row, 3, value='* taken as the current total') summary_row = hr3_row + 5 year = 2020 ws.cell(summary_row, 1, value=f'Summary {year}') ws.cell(summary_row, 2, value='Indexes') ws.cell(summary_row, 3, value='Threshold') ws.cell(summary_row+1, 1, value='HR3 - coverage of staff') ws.cell(summary_row+1, 2, value='=B15/B16') ws.cell(summary_row+2, 1, value='HR4 - overall satisfaction') ws.cell(summary_row+2, 2, value='=AVERAGE(B10:R10)') self.save_changes_to_file(wb) self.__aplly_template_style() self.regenerate_download_direcotry() return wb, ws def regenerate_download_direcotry(self): # TODO put data in download_temp docx_paths = self.db.get_courses_docx() for courses in docx_paths.values(): for src in courses: dest = download_temp_docx/(str(src.stem) + '.docx') dest.touch() shutil.copy(src, dest) xlsx_dest = download_temp/(str(self.file_path.stem) + '.xlsx') shutil.copy(self.file_path, xlsx_dest) shutil.make_archive(download_dir, 'zip', download_temp) def get_wb_ws(self): ''' returns a the workbook corresponding to the actual file and the worksheet view of it ''' wb = load_workbook(self.file_path) ws = wb[self.ws_name] return wb, ws def get_courses(self): wb, ws = self.get_wb_ws() df = pd.DataFrame(ws.values).set_index(0) courses = df.iloc[2,:].dropna() return list(courses) def user_exists(self, name): wb, ws = self.get_wb_ws() df = pd.DataFrame(ws.values).set_index(0) row_n = df.index.get_loc('Course average rating') + 1 if(name in list(df.index)[3:row_n]): return True return False def course_exists(self, name): if(name in self.get_courses()): return True return False def add_user(self, name): wb, ws = self.get_wb_ws() if self.user_exists(name): raise ValueError('user already exists') ws.insert_rows(4) ws['A4'] = name self.__regenerate_formulas(ws) self.save_changes_to_file(wb) return ws def add_score(self, user, course, score): if course not in self.get_courses(): raise ValueError('Course does not exist') if not self.user_exists(user): self.add_user(user) wb, ws = self.get_wb_ws() df = pd.DataFrame(ws.values).set_index(0) row_n = df.index.get_loc(user) + 1 col_n =
pd.Index(df.iloc[2])
pandas.Index
import pandas as pd import random import pickle from tqdm import tqdm import seaborn as sns from sklearn.metrics import * from matplotlib import pyplot as plt from preferences import notas_pref from ahp import ahp from data_preparation import create_subsample from fine_tunning import fine_tunning from data_preparation import merge_matrices from tau_distance import normalised_kendall_tau_distance len_Q = 5 # n_samples to be evaluated CV = 5 # number of cross-validation test_size = 0.2 # 80% train and 20% test accepted_error = .05 # max tau distance accepted between current ranking and the predicted one df_var = pd.read_csv("dec_5obj_p2.csv", header=None) # decision variables # df_var = df_var.iloc[0:55, :].round(5) df_obj = pd.read_csv('obj_5obj_p2.csv', header=None) # values in Pareto front # df_obj = df_obj.iloc[0:55, :].round(5) npop, nvar = df_var.shape nobj = df_obj.shape[1] # Generate the preferences df_obj = df_obj.to_numpy() df_pref = notas_pref(df_obj) # AHP from the original alternatives rank_ahp = ahp(df_pref).index # Generate the index to be evaluated index = list(df_var.index) # Aleatory ranking aleatory = index.copy() random.shuffle(aleatory) # Start an aleatory ranking rank_aleatory = aleatory.copy() # Distances current_previous = [] current_ahp = [] # Metrics mse = [] rmse = [] r2 = [] mape = [] # Iterations iteration = [] cont = 0 temp = 1 for aux in tqdm(range(len_Q, npop, len_Q)): cont += 1 # Define Q and N-Q indexes Q_index = aleatory[0:aux] N_Q_index = [x for x in index if x not in Q_index] # Train df_Q = create_subsample(df_var=df_var, df_pref=df_pref, nobj=nobj, index=Q_index) X_train = df_Q.iloc[:, :-nobj] # to predict y_train = df_Q.iloc[:, -nobj:] # real targets # Test df_N_Q = create_subsample(df_var=df_var, df_pref=df_pref, nobj=nobj, index=N_Q_index) X_test = df_N_Q.iloc[:, :-nobj] # to predict y_test = df_N_Q.iloc[:, -nobj:] # real targets # Model training if temp > accepted_error: tuned_model = fine_tunning(CV, X_train, y_train) with open("tuned_model_cbic_5obj.pkl", 'wb') as arq: # Save best model pickle.dump(tuned_model, arq) tuned_model.fit(X_train, y_train) else: with open("tuned_model_cbic_5obj.pkl", "rb") as fp: # Load trained model tuned_model = pickle.load(fp) # Model evaluation y_pred = tuned_model.predict(X_test) y_pred =
pd.DataFrame(y_pred)
pandas.DataFrame
# Copyright (c) 2020, Xilinx # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of FINN nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import math import numpy as np import pandas as pd import torch from sklearn import preprocessing from sklearn.preprocessing import OneHotEncoder # quantize the UNSW_NB15 dataset and convert it to binary vectors # reimplementation # paper: https://ev.fe.uni-lj.si/1-2-2019/Murovic.pdf # original matlab code: https://git.io/JLLdN class UNSW_NB15_quantized(torch.utils.data.Dataset): def __init__( self, file_path_train, file_path_test, quantization=True, onehot=False, train=True, ): self.dataframe = ( pd.concat([pd.read_csv(file_path_train),
pd.read_csv(file_path_test)
pandas.read_csv
import re import numpy as np import pytest from pandas import Categorical, CategoricalIndex, DataFrame, Index, Series import pandas._testing as tm from pandas.core.arrays.categorical import recode_for_categories from pandas.tests.arrays.categorical.common import TestCategorical class TestCategoricalAPI: def test_ordered_api(self): # GH 9347 cat1 = Categorical(list("acb"), ordered=False) tm.assert_index_equal(cat1.categories, Index(["a", "b", "c"])) assert not cat1.ordered cat2 = Categorical(list("acb"), categories=list("bca"), ordered=False) tm.assert_index_equal(cat2.categories, Index(["b", "c", "a"])) assert not cat2.ordered cat3 = Categorical(list("acb"), ordered=True) tm.assert_index_equal(cat3.categories, Index(["a", "b", "c"])) assert cat3.ordered cat4 = Categorical(list("acb"), categories=list("bca"), ordered=True) tm.assert_index_equal(cat4.categories, Index(["b", "c", "a"])) assert cat4.ordered def test_set_ordered(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) cat2 = cat.as_unordered() assert not cat2.ordered cat2 = cat.as_ordered() assert cat2.ordered cat2.as_unordered(inplace=True) assert not cat2.ordered cat2.as_ordered(inplace=True) assert cat2.ordered assert cat2.set_ordered(True).ordered assert not cat2.set_ordered(False).ordered cat2.set_ordered(True, inplace=True) assert cat2.ordered cat2.set_ordered(False, inplace=True) assert not cat2.ordered # removed in 0.19.0 msg = "can't set attribute" with pytest.raises(AttributeError, match=msg): cat.ordered = True with pytest.raises(AttributeError, match=msg): cat.ordered = False def test_rename_categories(self): cat = Categorical(["a", "b", "c", "a"]) # inplace=False: the old one must not be changed res = cat.rename_categories([1, 2, 3]) tm.assert_numpy_array_equal( res.__array__(), np.array([1, 2, 3, 1], dtype=np.int64) ) tm.assert_index_equal(res.categories, Index([1, 2, 3])) exp_cat = np.array(["a", "b", "c", "a"], dtype=np.object_) tm.assert_numpy_array_equal(cat.__array__(), exp_cat) exp_cat = Index(["a", "b", "c"]) tm.assert_index_equal(cat.categories, exp_cat) # GH18862 (let rename_categories take callables) result = cat.rename_categories(lambda x: x.upper()) expected = Categorical(["A", "B", "C", "A"]) tm.assert_categorical_equal(result, expected) # and now inplace res = cat.rename_categories([1, 2, 3], inplace=True) assert res is None tm.assert_numpy_array_equal( cat.__array__(), np.array([1, 2, 3, 1], dtype=np.int64) ) tm.assert_index_equal(cat.categories, Index([1, 2, 3])) @pytest.mark.parametrize("new_categories", [[1, 2, 3, 4], [1, 2]]) def test_rename_categories_wrong_length_raises(self, new_categories): cat = Categorical(["a", "b", "c", "a"]) msg = ( "new categories need to have the same number of items as the " "old categories!" ) with pytest.raises(ValueError, match=msg): cat.rename_categories(new_categories) def test_rename_categories_series(self): # https://github.com/pandas-dev/pandas/issues/17981 c = Categorical(["a", "b"]) result = c.rename_categories(Series([0, 1], index=["a", "b"])) expected = Categorical([0, 1]) tm.assert_categorical_equal(result, expected) def test_rename_categories_dict(self): # GH 17336 cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"a": 4, "b": 3, "c": 2, "d": 1}) expected = Index([4, 3, 2, 1]) tm.assert_index_equal(res.categories, expected) # Test for inplace res = cat.rename_categories({"a": 4, "b": 3, "c": 2, "d": 1}, inplace=True) assert res is None tm.assert_index_equal(cat.categories, expected) # Test for dicts of smaller length cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"a": 1, "c": 3}) expected = Index([1, "b", 3, "d"]) tm.assert_index_equal(res.categories, expected) # Test for dicts with bigger length cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"a": 1, "b": 2, "c": 3, "d": 4, "e": 5, "f": 6}) expected = Index([1, 2, 3, 4]) tm.assert_index_equal(res.categories, expected) # Test for dicts with no items from old categories cat = Categorical(["a", "b", "c", "d"]) res = cat.rename_categories({"f": 1, "g": 3}) expected = Index(["a", "b", "c", "d"]) tm.assert_index_equal(res.categories, expected) def test_reorder_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical( ["a", "b", "c", "a"], categories=["c", "b", "a"], ordered=True ) # first inplace == False res = cat.reorder_categories(["c", "b", "a"]) # cat must be the same as before tm.assert_categorical_equal(cat, old) # only res is changed tm.assert_categorical_equal(res, new) # inplace == True res = cat.reorder_categories(["c", "b", "a"], inplace=True) assert res is None tm.assert_categorical_equal(cat, new) @pytest.mark.parametrize( "new_categories", [ ["a"], # not all "old" included in "new" ["a", "b", "d"], # still not all "old" in "new" ["a", "b", "c", "d"], # all "old" included in "new", but too long ], ) def test_reorder_categories_raises(self, new_categories): cat = Categorical(["a", "b", "c", "a"], ordered=True) msg = "items in new_categories are not the same as in old categories" with pytest.raises(ValueError, match=msg): cat.reorder_categories(new_categories) def test_add_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) old = cat.copy() new = Categorical( ["a", "b", "c", "a"], categories=["a", "b", "c", "d"], ordered=True ) # first inplace == False res = cat.add_categories("d") tm.assert_categorical_equal(cat, old) tm.assert_categorical_equal(res, new) res = cat.add_categories(["d"]) tm.assert_categorical_equal(cat, old) tm.assert_categorical_equal(res, new) # inplace == True res = cat.add_categories("d", inplace=True) tm.assert_categorical_equal(cat, new) assert res is None # GH 9927 cat = Categorical(list("abc"), ordered=True) expected = Categorical(list("abc"), categories=list("abcde"), ordered=True) # test with Series, np.array, index, list res = cat.add_categories(Series(["d", "e"])) tm.assert_categorical_equal(res, expected) res = cat.add_categories(np.array(["d", "e"])) tm.assert_categorical_equal(res, expected) res = cat.add_categories(Index(["d", "e"])) tm.assert_categorical_equal(res, expected) res = cat.add_categories(["d", "e"]) tm.assert_categorical_equal(res, expected) def test_add_categories_existing_raises(self): # new is in old categories cat = Categorical(["a", "b", "c", "d"], ordered=True) msg = re.escape("new categories must not include old categories: {'d'}") with pytest.raises(ValueError, match=msg): cat.add_categories(["d"]) def test_set_categories(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) exp_categories = Index(["c", "b", "a"]) exp_values = np.array(["a", "b", "c", "a"], dtype=np.object_) res = cat.set_categories(["c", "b", "a"], inplace=True) tm.assert_index_equal(cat.categories, exp_categories) tm.assert_numpy_array_equal(cat.__array__(), exp_values) assert res is None res = cat.set_categories(["a", "b", "c"]) # cat must be the same as before tm.assert_index_equal(cat.categories, exp_categories) tm.assert_numpy_array_equal(cat.__array__(), exp_values) # only res is changed exp_categories_back = Index(["a", "b", "c"]) tm.assert_index_equal(res.categories, exp_categories_back) tm.assert_numpy_array_equal(res.__array__(), exp_values) # not all "old" included in "new" -> all not included ones are now # np.nan cat = Categorical(["a", "b", "c", "a"], ordered=True) res = cat.set_categories(["a"]) tm.assert_numpy_array_equal(res.codes, np.array([0, -1, -1, 0], dtype=np.int8)) # still not all "old" in "new" res = cat.set_categories(["a", "b", "d"]) tm.assert_numpy_array_equal(res.codes, np.array([0, 1, -1, 0], dtype=np.int8)) tm.assert_index_equal(res.categories, Index(["a", "b", "d"])) # all "old" included in "new" cat = cat.set_categories(["a", "b", "c", "d"]) exp_categories = Index(["a", "b", "c", "d"]) tm.assert_index_equal(cat.categories, exp_categories) # internals... c = Categorical([1, 2, 3, 4, 1], categories=[1, 2, 3, 4], ordered=True) tm.assert_numpy_array_equal(c._codes, np.array([0, 1, 2, 3, 0], dtype=np.int8)) tm.assert_index_equal(c.categories, Index([1, 2, 3, 4])) exp = np.array([1, 2, 3, 4, 1], dtype=np.int64) tm.assert_numpy_array_equal(np.asarray(c), exp) # all "pointers" to '4' must be changed from 3 to 0,... c = c.set_categories([4, 3, 2, 1]) # positions are changed tm.assert_numpy_array_equal(c._codes, np.array([3, 2, 1, 0, 3], dtype=np.int8)) # categories are now in new order tm.assert_index_equal(c.categories, Index([4, 3, 2, 1])) # output is the same exp = np.array([1, 2, 3, 4, 1], dtype=np.int64) tm.assert_numpy_array_equal(np.asarray(c), exp) assert c.min() == 4 assert c.max() == 1 # set_categories should set the ordering if specified c2 = c.set_categories([4, 3, 2, 1], ordered=False) assert not c2.ordered tm.assert_numpy_array_equal(np.asarray(c), np.asarray(c2)) # set_categories should pass thru the ordering c2 = c.set_ordered(False).set_categories([4, 3, 2, 1]) assert not c2.ordered tm.assert_numpy_array_equal(np.asarray(c), np.asarray(c2)) def test_to_dense_deprecated(self): cat = Categorical(["a", "b", "c", "a"], ordered=True) with
tm.assert_produces_warning(FutureWarning)
pandas._testing.assert_produces_warning
import pandas as pd import world_bank_data as wb import plotly.graph_objs as go def sundial_plot(metric='SP.POP.TOTL', title='World Population', year=2000): """Plot the given metric as a sundial plot""" countries = wb.get_countries() values = wb.get_series(metric, date=year, id_or_value='id', simplify_index=True) df = countries[['region', 'name']].rename(columns={'name': 'country'}).loc[ countries.region != 'Aggregates'] df['values'] = values # The sunburst plot requires weights (values), labels, and parent (region, or World) # We build the corresponding table here columns = ['parents', 'labels', 'values'] level1 = df.copy() level1.columns = columns level1['text'] = level1['values'].apply(lambda pop: '{:,.0f}'.format(pop)) level2 = df.groupby('region')['values'].sum().reset_index()[['region', 'region', 'values']] level2.columns = columns level2['parents'] = 'World' # move value to text for this level level2['text'] = level2['values'].apply(lambda pop: '{:,.0f}'.format(pop)) level2['values'] = 0 level3 = pd.DataFrame({'parents': [''], 'labels': ['World'], 'values': [0.0], 'text': ['{:,.0f}'.format(values.loc['WLD'])]}) all_levels =
pd.concat([level1, level2, level3], axis=0)
pandas.concat
""" The :mod:`hillmaker.bydatetime` module includes functions for computing occupancy, arrival, and departure statistics by time bin of day and date. """ # Copyright 2022 <NAME> # import logging import numpy as np import pandas as pd from pandas import DataFrame from pandas import Series from pandas import Timestamp from datetime import datetime from pandas.tseries.offsets import Minute import hillmaker.hmlib as hmlib CONST_FAKE_OCCWEIGHT_FIELDNAME = 'FakeOccWeightField' CONST_FAKE_CATFIELD_NAME = 'FakeCatForTotals' OCC_TOLERANCE = 0.02 # This should inherit level from root logger logger = logging.getLogger(__name__) def make_bydatetime(stops_df, infield, outfield, start_analysis_np, end_analysis_np, catfield=None, bin_size_minutes=60, cat_to_exclude=None, totals=1, occ_weight_field=None, edge_bins=1, verbose=0): """ Create bydatetime table based on user inputs. This is the table from which summary statistics can be computed. Parameters ---------- stops_df: DataFrame Stop data infield: string Name of column in stops_df to use as arrival datetime outfield: string Name of column in stops_df to use as departure datetime start_analysis_np: numpy datetime64[ns] Start date for the analysis end_analysis_np: numpy datetime64[ns] End date for the analysis catfield : string, optional Column name corresponding to the categories. If none is specified, then only overall occupancy is analyzed. bin_size_minutes: int, default 60 Bin size in minutes. Should divide evenly into 1440. cat_to_exclude: list of strings, default None Categories to ignore edge_bins: int, default 1 Occupancy contribution method for arrival and departure bins. 1=fractional, 2=whole bin totals: int, default 1 0=no totals, 1=totals by datetime, 2=totals bydatetime as well as totals for each field in the catfields (only relevant for > 1 category field) occ_weight_field : string, optional (default=1.0) Column name corresponding to the weights to use for occupancy incrementing. verbose : int, default 0 The verbosity level. The default, zero, means silent mode. Returns ------- Dict of DataFrames Occupancy, arrivals, departures by category by datetime bin Examples -------- bydt_dfs = make_bydatetime(stops_df, 'InTime', 'OutTime', ... datetime(2014, 3, 1), datetime(2014, 6, 30), 'PatientType', 60) TODO ---- * Sanity checks on date ranges * Formal test using short stay data * Flow conservation checks Notes ----- References ---------- See Also -------- """ # Number of bins in analysis span num_bins = hmlib.bin_of_span(end_analysis_np, start_analysis_np, bin_size_minutes) + 1 # Compute min and max of in and out times min_intime = stops_df[infield].min() max_intime = stops_df[infield].max() min_outtime = stops_df[outfield].min() max_outtime = stops_df[outfield].max() logger.info(f"min of intime: {min_intime}") logger.info(f"max of intime: {max_intime}") logger.info(f"min of outtime: {min_outtime}") logger.info(f"max of outtime: {max_outtime}") # TODO - Add warnings here related to min and maxes out of whack with analysis range # Occupancy weights # If no occ weight field specified, create fake one containing 1.0 as values. # Avoids having to check during dataframe iteration whether or not to use # default occupancy weight. if occ_weight_field is None: occ_weight_vec = np.ones(len(stops_df.index), dtype=np.float64) occ_weight_df = DataFrame({CONST_FAKE_OCCWEIGHT_FIELDNAME: occ_weight_vec}) stops_df = pd.concat([stops_df, occ_weight_df], axis=1) occ_weight_field = CONST_FAKE_OCCWEIGHT_FIELDNAME # Handle cases of no catfield, or a single fieldname, (no longer supporting a list of fieldnames) # If no category, add a temporary dummy column populated with a totals str total_str = 'total' do_totals = True if catfield is not None: # If it's a string, it's a single cat field --> convert to list # Keeping catfield as a list in case I change mind about multiple category fields if isinstance(catfield, str): catfield = [catfield] else: totlist = [total_str] * len(stops_df) totseries = Series(totlist, dtype=str, name=CONST_FAKE_CATFIELD_NAME) totfield_df =
DataFrame({CONST_FAKE_CATFIELD_NAME: totseries})
pandas.DataFrame
''' inference.py: part of pybraincompare package Functions to calculate reverse inference ''' from __future__ import print_function from __future__ import division from builtins import range from past.utils import old_div from pybraincompare.ontology.graph import get_node_fields, get_node_by_name from pybraincompare.compare.maths import calculate_pairwise_correlation from pybraincompare.compare.mrutils import get_images_df from glob import glob import nibabel import pickle import pandas import numpy import math import re import os def likelihood_groups_from_tree(tree,standard_mask,input_folder,image_pattern="[0]+%s[.]", output_folder=None,node_pattern="[0-9]+",): '''likelihood_groups_from_tree Function to generate likelihood groups from a pybraincompare.ontology.tree object. These groups can then be used to calculate likelihoods (eg, p(activation|cognitive process). The groups are output as pickle objects. This is done because it is ideal to calculate likelihoods on a cluster. :param tree: dict a dictionary of nodes, with base nodes matching a particular pattern assumed to be image (.nii.gz) files. :param standard_mask: nifti image (nibabel) standard image mask that images are registered to :param output_folder: path a folder path to save likelihood groups :param input_folder: path the folder of images to be matched to the nodes of the tree. :param pattern: str the pattern to match to find the base image nodes. Default is a number of any length [neurovault image primary keys]. :param image_pattern: str a regular expression to find image files in images_folder. Default will match any number of leading zeros, any number, and any extension. :param node_pattern: str a regular expression to find image nodes in the tree, matched to name :return groups: pickle a pickle with the following ..note:: pbc_likelihood_groups_trm_12345.pkl group["nid"] = "trm_12345" group["in"] = ["path1","path2",..."pathN"] group["out"] = ["path3","path4",..."pathM"] group["meta"]: meta data for the node group["range_table"]: a data frame of ranges with "start" and "stop" to calculate the range is based on the mins and max of the entire set of images ''' # Find all nodes in the tree, match to images in folder nodes = get_node_fields(tree,field="name",nodes=[]) contender_files = glob("%s/*" %input_folder) # Images will match the specified pattern find_nodes = re.compile(node_pattern) image_nodes = [node for node in nodes if find_nodes.match(node)] image_nodes = numpy.unique(image_nodes).tolist() # Node names must now be matched to files file_lookup = dict() file_names = [os.path.split(path)[-1] for path in contender_files] for node in image_nodes: find_file = re.compile(image_pattern %node) idx = [file_names.index(x) for x in file_names if find_file.match(x)] if len(idx) > 1: raise ValueError("ERROR: found %s images that match pattern %s." %len(idx),find_file.pattern) elif len(idx) == 0: print("Did not find file for %s, will not be included in analysis." %(node)) else: file_lookup[node] = contender_files[idx[0]] # Use pandas dataframe to not risk weird dictionary iteration orders files = pandas.DataFrame(list(file_lookup.values()),columns=["path"]) files.index = list(file_lookup.keys()) # The remaining nodes in the tree (that are not images) will have a RI score concept_nodes = [x for x in nodes if x not in image_nodes] # create table of voxels for all images (the top node) mr = get_images_df(file_paths=files.path,mask=standard_mask) mr.index = files.index range_table = make_range_table(mr) # GROUPS ---------------------------------------------------- # Find groups for image sets at each node (**node names must be unique) # This is images at (and in lower levels) of node vs. everything else # will be used to calculate p([activation in range | region (voxel)] groups = [] for concept_node in concept_nodes: node = get_node_by_name(tree,concept_node) node_id = node["nid"] # for save image node_meta = node["meta"] if node: all_children = get_node_fields(node,"name",[]) children_in = [c for c in all_children if c in files.index] children_out = [c for c in files.index if c not in children_in] if len(children_in) > 0 and len(children_out) > 0: print("Generating group for concept node %s" %(concept_node)) group = {"in": files.path.loc[children_in].unique().tolist(), "out": files.path.loc[children_out].unique().tolist(), "range_table": range_table, "meta": node_meta, "nid": node_id, "name": concept_node} groups.append(group) if output_folder != None: outpkl = "%s/pbc_group_%s.pkl" %(output_folder,node_id) pickle.dump(group, open(outpkl,"wb")) return groups def make_range_table(mr,ranges=None): '''make_range_table Generate a table of ranges, in format ..note:: start stop [-28.0,-27.5] -28.0 -27.5 [-27.5,-27.0] -27.5 -27.0 [-27.0,-26.5] -27.0 -26.5 [-26.5,-26.0] -26.5 -26.0 from a table of values, where images/objects are expected in rows, and regions/voxels in columns ranges, if defined, should be a list of lists of ranges to extract. eg, [[start,stop],[start,stop]] where start is min, stop is max The absolute min and max are used to generate a table of ranges in the format above from min to max ''' range_table = pandas.DataFrame(columns=["start","stop"]) if ranges: error = "ERROR: ranges should be a list of ranges [[start,stop], ...]" if not isinstance(ranges,list): raise ValueError(error) for range_group in ranges: if not isinstance(range_group,list) or len(range_group) != 2: raise ValueError(error) name = "[%s,%s]" %(range_group[0],range_group[1]) range_table.loc[name] = [range_group[0],range_group[1]] # If no start or stop defined, get from min and max of data else: mins = mr.min(axis=0) maxs = mr.max(axis=0) absmin = math.floor(numpy.min(mins)) absmax = math.ceil(numpy.max(maxs)) steps = ((abs(absmin)+absmax)*2)+1 breaks = numpy.linspace(absmin,absmax,num=steps,retstep=True)[0] for s in range(0,len(breaks)-1): start = breaks[s] stop = breaks[s+1] name = "[%s,%s]" %(start,stop) range_table.loc[name] = [start,stop] return range_table def get_likelihood_df(nid,in_images,out_images,standard_mask,range_table, threshold=2.96,output_folder=None,method=["binary"]): '''get_likelihood_df will calculate likelihoods and save to a pandas df pickle. The user must specify the method [default is binary]. Method details: ranges: - likelihood in all thresholds defined (calculate_priors in ranges) binary - likelihood above / below a certain level [threshold, default=2.96] Note: you do not need to calculate likelihoods in advance for the mean metric (using a derivation of the distance from a mean image as a probability score) In this case, use calculate_reverse_inference_distance :param nid: str a unique identifier, a node ID from pybraincompare.ontology.tree :param in_images: list a list of files for the "in" group relevant to some concept :param out_images: list the rest :param standard_mask: nibabel.Nifti1Image object the standard mask images are in space of :param range_table: pandas data frame a data frame of ranges with "start" and "stop" to calculate the range is based on the mins and max of the entire set of images can be generated with pybraincompare.inference.make_range_table :param output_folder: path folder to save likelihood pickles [default is None] If output_folder is not specified, the df objects are returned. If specified, will return paths to saved pickle objects: pbc_likelihood_trm12345_df_in.pkl EACH VOXEL IS p(activation in voxel is in threshold) ''' # Read all images into one data frame if len(numpy.intersect1d(in_images,out_images)) > 0: raise ValueError("ERROR: in_images and out_images should not share images!") all_images = in_images + out_images mr = get_images_df(file_paths=all_images,mask=standard_mask) mr.index = all_images in_subset = mr.loc[in_images] out_subset = mr.loc[out_images] # Calculate likelihood for user defined methods df = dict() if "ranges" in method: df["out_ranges"] = calculate_likelihood_in_ranges(in_subset,range_table) df["in_ranges"] = calculate_likelihood_in_ranges(out_subset,range_table) if output_folder: df["in_ranges"] = save_likelihood_pickle(df["in_ranges"], output_folder,nid,"in_ranges") df["out_ranges"] = save_likelihood_pickle(df["out_ranges"], output_folder,nid,"out_ranges") if "binary" in method: df["in_bin"] = calculate_likelihood_binary(in_subset,threshold) df["out_bin"] = calculate_likelihood_binary(out_subset,threshold) if output_folder: df["in_bin"] = save_likelihood_pickle(df["in_bin"], output_folder, nid, "in_bin_%s" %threshold) df["in_out"] = save_likelihood_pickle(df["out_bin"], output_folder, nid, "out_bin_%s" %threshold) return df def save_likelihood_pickle(likelihood_df,output_folder,nid,suffix): outfile = "%s/pbc_likelihood_%s_df_%s.pkl" %(output_folder,nid,suffix) likelihood_df.to_pickle(outfile) return outfile def save_likelihood_nii(input_pkl,output_folder,standard_mask): '''save_likelihood_nii save a nii image for each threshold (column) across all voxels (rows) :param input_pkl: pickle object the input pickle with likelihood saved by pybraincompare.ontology.inference.get_likelihood_df :param output_folder: path folder for output nifti, one per threshold range pbc_likelihood_trm12345_df_in_[start]_[stop].nii EACH VOXEL IS p(activation in voxel is in threshold) for group [in or out] ''' likelihood =
pandas.read_pickle(input_pkl)
pandas.read_pickle
#!/usr/bin/env python """ Download Interface for HADS data """ import sys import cgi import os from io import StringIO import pandas as pd from pandas.io.sql import read_sql from pyiem.util import get_dbconn, utc, ssw PGCONN = get_dbconn('hads') DELIMITERS = {'comma': ',', 'space': ' ', 'tab': '\t'} def get_time(form): """ Get timestamps """ y1 = int(form.getfirst('year')) m1 = int(form.getfirst('month1')) m2 = int(form.getfirst('month2')) d1 = int(form.getfirst('day1')) d2 = int(form.getfirst('day2')) h1 = int(form.getfirst('hour1')) h2 = int(form.getfirst('hour2')) mi1 = int(form.getfirst('minute1')) mi2 = int(form.getfirst('minute2')) sts = utc(y1, m1, d1, h1, mi1) ets = utc(y1, m2, d2, h2, mi2) return sts, ets def threshold_search(table, threshold, thresholdvar, delimiter): """ Do the threshold searching magic """ cols = list(table.columns.values) searchfor = "HGI%s" % (thresholdvar.upper(),) cols5 = [s[:5] for s in cols] if searchfor not in cols5: error("Could not find %s variable for this site!" % (searchfor,)) return mycol = cols[cols5.index(searchfor)] above = False maxrunning = -99 maxvalid = None found = False res = [] for (station, valid), row in table.iterrows(): val = row[mycol] if val > threshold and not above: found = True res.append(dict(station=station, utc_valid=valid, event='START', value=val, varname=mycol)) above = True if val > threshold and above: if val > maxrunning: maxrunning = val maxvalid = valid if val < threshold and above: res.append(dict(station=station, utc_valid=maxvalid, event='MAX', value=maxrunning, varname=mycol)) res.append(dict(station=station, utc_valid=valid, event='END', value=val, varname=mycol)) above = False maxrunning = -99 maxvalid = None if found is False: error("# OOPS, did not find any exceedance!") return pd.DataFrame(res) def error(msg): """ send back an error """ ssw("Content-type: text/plain\n\n") ssw(msg) sys.exit(0) def main(): """ Go do something """ form = cgi.FieldStorage() # network = form.getfirst('network') delimiter = DELIMITERS.get(form.getfirst('delim', 'comma')) what = form.getfirst('what', 'dl') threshold = float(form.getfirst('threshold', -99)) thresholdvar = form.getfirst('threshold-var', 'RG') sts, ets = get_time(form) stations = form.getlist('stations') if not stations: ssw("Content-type: text/plain\n\n") ssw("Error, no stations specified for the query!") return if len(stations) == 1: stations.append('XXXXXXX') table = "raw%s" % (sts.year,) sql = """SELECT station, valid at time zone 'UTC' as utc_valid, key, value from """+table+""" WHERE station in %s and valid BETWEEN '%s' and '%s' and value > -999""" % (tuple(stations), sts, ets) df =
read_sql(sql, PGCONN)
pandas.io.sql.read_sql
""" Format data """ from __future__ import division, print_function import pandas as pd import numpy as np import re from os.path import dirname, join from copy import deepcopy import lawstructural.lawstructural.constants as lc import lawstructural.lawstructural.utils as lu #TODO: Take out entrant stuff from lawData class Format(object): """ Basic class for formatting dataset """ def __init__(self): self.dpath = join(dirname(dirname(__file__)), 'data') self.data_sets = self.data_imports() self.data = self.data_sets['usn'] self.ent_data = pd.DataFrame([]) @staticmethod def _col_fix(col): """ Fix column strings to be R-readable as well and to be consistent with older datasets. Think about changing name through rest of program instead. """ col = re.sub('%', 'Percent', col) col = re.sub('[() -/]', '', col) if col[0].isdigit(): col = re.sub('thpercentile', '', col) col = 'p' + col if col == 'Name': col = 'school' if col == 'Issueyear': col = 'year' if col == 'Overallrank': col = 'OverallRank' return col @staticmethod def _fix_bad_values(data): """ Fix known USN data typos """ data.loc[(data['school'] == 'University of Miami') & (data['year'] == 2000), 'Tuitionandfeesfulltime'] = 21000 data.loc[(data['school'] == 'Emory University') & (data['year'] == 2006), 'Employmentrateatgraduation'] = 72.4 data.loc[(data['school'] == 'Northwestern University') & (data['year'] == 2006), 'EmploymentRate9MonthsafterGraduation'] = 99.5 data.loc[(data['school'] == 'Michigan State University') & (data['year'] == 2001), 'BarpassageRateinJurisdiction'] = 75 data.loc[(data['school'] == 'Mississippi College') & (data['year'] == 2001), 'BarpassageRateinJurisdiction'] = 80 return data def usn_format(self): """ Basic USN import and format """ #data = pd.read_csv(join(self.dpath, 'usn2015.csv')) data = pd.read_csv(join(self.dpath, 'Law1988-2015.csv')) data = data[['Name', 'Value', 'Metric description', 'Issue year']] data = pd.pivot_table(data, values='Value', index=['Name', 'Issue year'], columns='Metric description') data = data.reset_index() names = data.columns.tolist() data.columns = [self._col_fix(el) for el in names] data = self._fix_bad_values(data) data = data.sort(['school', 'year']) data['year'] = data['year'].astype(int) return data def cpi_format(self): """ Basic CPI import and format """ data = pd.read_csv(join(self.dpath, 'lawCPI.csv')) # Make up for reporting vs data year in USNews and BLS data['year'] = data['year'] + 2 data = data[data['year'] <= 2015] data = data.reset_index(drop=True) return data @staticmethod def _id_name_fix(col): """ Fix outdated names of schools from id dataset """ #FIXME: Find out why this doesn't work for Drexel, Cath U old = ['Phoenix School of Law', 'Chapman University', 'Drexel University (Mack)', 'Indiana University--Indianapolis', 'Texas Wesleyan University', 'Catholic University of America (Columbus)', 'John Marshall Law School'] new = ['Arizona Summit Law School', 'Chapman University (Fowler)', 'Drexel University', 'Indiana University--Indianapolis (McKinney)', 'Texas A&M University', 'The Catholic University of America', 'The John Marshall Law School'] for i in xrange(len(old)): col = re.sub(old[i], new[i], col) return col def id_format(self): """ Import LSAC id's. Note that Irvine doesn't have an id. """ data = pd.read_csv(join(self.dpath, 'USNewsNameStateID.csv')) data['name'] = [self._id_name_fix(col) for col in data['name']] return data def elec_format(self): """ Import yearly electricity prices """ data = pd.read_csv(join(self.dpath, 'lawElectricity.csv')) states = pd.read_csv(join(self.dpath, 'lawStateAbbr.csv')) # Change state names to abbreviations data = pd.merge(data, states) data = data.drop('state', 1) columns = data.columns.tolist() index = columns.index('abbr') columns[index] = 'state' data.columns = columns data['year'] = data['year'] + 2 return data def data_imports(self): """ Import dictionary of initially formatted datasets Datasets are as follows with corresponding sources/scrapers usn --- - Data: US News and World Report - Source: ai.usnews.com cpi --- - Data: CPI data from BLS - Source: http://data.bls.gov/cgi-bin/dsrv?cu Series Id: CUUR0000SA0,CUUS0000SA0 Not Seasonally Adjusted Area: U.S. city average Item: All items Base Period: 1982-84=100 Years: 1986 to 2015 - Used to be data.bls.gov/timeseries/LNS14000000 wage ---- - Data: Market wages for lawyers from BLS - Source: bls.gov/oes states ------ - Data: US News name/state combinations - Source: US News Top Law Schools - Scraper: StateScraper.py id -- - Data: US News names and LSAC ID combinations - Source: http://www.lsac.org/lsacresources/publications/ official-guide-archives - Scraper: NameScraperLSAC.py entrants -------- - Data: School entrants, with id's and dates - Source: http://www.americanbar.org/groups/legal_education/ resources/aba_approved_law_schools/in_alphabetical_order.html via http://en.wikipedia.org/ wiki/List_of_law_schools_in_the_United_States - Scraper: entryscraper.py electricity ----------- - Data: State/Country level electricity prices - Source: eia.gov/electricity/monthly/backissues.html - Scraper: ElecScraper.py Returns ------- data_sets: dict; data sets from specified sources """ data_sets = { 'usn': self.usn_format(), 'cpi': self.cpi_format(), 'states': pd.read_csv(join(self.dpath, 'lawNameState.csv')), 'id': self.id_format(), 'entrants': pd.read_csv(join(self.dpath, 'lawEntrants.csv')), 'electricity': self.elec_format(), 'stateregions': pd.read_csv(join(self.dpath, 'StateRegions.csv')), 'aaup_comp_region': pd.read_csv(join(self.dpath, 'aaup_comp_region.csv')), 'aaup_comp': pd.read_csv(join(self.dpath, 'aaup_comp.csv')), 'aaup_salary_region': pd.read_csv(join(self.dpath, 'aaup_salary_region.csv')), 'aaup_salary': pd.read_csv(join(self.dpath, 'aaup_salary.csv')) } return data_sets def fill_ranks(self): """ Generate top/bottom/inside/squared rank variables, fill in unranked schools """ # Indicate top/bottom ranked schools self.data['TopRanked'] = 1 * (self.data['OverallRank'] == 1) self.data['BottomRanked'] = 1 * (self.data['OverallRank'] == np.nanmax(self.data['OverallRank'])) self.data['InsideRanked'] = 1 * ((self.data['OverallRank'] > 1) & (self.data['OverallRank'] < np.nanmax(self.data['OverallRank']))) # Squared rank self.data['OverallRankSquared'] = self.data['OverallRank']**2 # Fill in un-ranked schools as max(rank) + 1 or lc.UNRANKED mask =
pd.isnull(self.data['OverallRank'])
pandas.isnull
#!/usr/bin/env python # coding: utf-8 #!pip install sidrapy --upgrade import sidrapy import pandas as pd def get_estimated_population(cod_ibge): # Get Table df = sidrapy.get_table( table_code='6579', territorial_level='6', ibge_territorial_code=cod_ibge, period='all', header='n', ) # Dict dict_col = { 'D1C': 'id_municipio', 'D1N': 'municipio_nome', 'V': 'n_habitantes', 'D2N': 'ano' } # Remane Columns df.rename( dict_col, axis=1, inplace=True ) # Select Columns df = df[[v for k,v in dict_col.items()]] # Adjust Columns df.sort_values(by=['ano'], inplace=True) df['id_municipio'] = pd.to_numeric(df['id_municipio'], errors='coerce') df['n_habitantes'] =
pd.to_numeric(df['n_habitantes'], errors='coerce')
pandas.to_numeric