prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- """ Created on Thu May 21 09:55:29 2020 @author: Gary """ import pandas as pd import core.Find_silent_change as fsc import core.Read_FF as rff import difflib #import core.Construct_set as const_set output = './out/' tempdir = './tmp/' arcdir = './arc_testing/' upload_hash_ref = output+'upload_hash_ref.csv' change_log = output+'silent_change_log.csv' exclude_files = ['archive_2018_08_28.zip','sky_truth_final.zip'] skyfn = 'sky_truth_final' def getDfForCompare(fn,sources='./sources/'): fn = sources+fn raw_df = rff.Read_FF(zname=fn).import_raw() raw_df = raw_df[~(raw_df.IngredientKey.isna())] return raw_df def initializeSilentChangeRecords(): """Careful!!! This does what the name describes!""" ref = pd.DataFrame({'UploadKey':[],'last_hash':[]}) fsc.saveUpdatedHash(ref) def startFromScratch(): """Be aware - this initializes everything before running a LONG process on all archived files!""" initializeSilentChangeRecords() archives = fsc.createInitialCompareList() new = pd.DataFrame({'UploadKey':None,'rhash':None},index=[]) df = pd.DataFrame() for arc in archives[:2]: print(f'\nProcessing archive for silent changes:\n {arc}\n') olddf = df.copy() old = new.copy() old = old.rename({'rhash':'last_hash'},axis=1) df = getDfForCompare(arc[1],sources=arcdir) df = df.fillna(-9) new = fsc.makeHashTable(df) #print(old.head()) out = fsc.compareHashTables(old,new) print(f'Number silent changes: {out.silent_change.sum()}') # finding problems... if out.silent_change.sum()>0: print('Silent changes detected...') ukl = out[out.silent_change].UploadKey.unique().tolist() print(f'Number of disclosures with silent change detected: {len(ukl)}') #uk = out[out.silent_change].iloc[0].UploadKey for uk in ukl[:10]: if fsc.compareFrameAsStrings(olddf[olddf.UploadKey==uk], df[df.UploadKey==uk]): conc = pd.merge(olddf[olddf.UploadKey==uk],df[df.UploadKey==uk],on='IngredientKey',how='outer', indicator=True) cols = df.columns.tolist() cols.remove('IngredientKey') #print(f'Diff UploadKey: {uk}') #print(f'length conc: {len(conc)}') for col in cols: x = col+'_x' y = col+'_y' conc['comp'] = conc[x]==conc[y] if conc.comp.sum()<len(conc): print(f'{conc[~conc.comp][[x,y]]}') print(f'{col}, sum = {conc.comp.sum()}') # ============================================================================= # conc = conc.reindex(sorted(conc.columns), axis=1) # conc.to_csv('./tmp/temp.csv') # ============================================================================= return out def showDifference(uploadlst,olddf, df): for uk in uploadlst: print(f' Differences in {uk}') if fsc.compareFrameAsStrings(olddf[olddf.UploadKey==uk], df[df.UploadKey==uk]): conc = pd.merge(olddf[olddf.UploadKey==uk],df[df.UploadKey==uk],on='IngredientKey',how='outer', indicator=True) cols = df.columns.tolist() cols.remove('IngredientKey') for col in cols: x = col+'_x' y = col+'_y' conc['comp'] = conc[x]==conc[y] if conc.comp.sum()<len(conc): print(f'{conc[~conc.comp][[x,y]]}') print(f'{col}, sum = {conc.comp.sum()}') def startFromScratch2(): """Be aware - this initializes everything before running a LONG process on all archived files!""" initializeSilentChangeRecords() archives = fsc.createInitialCompareList() #new = pd.DataFrame({'UploadKey':None,'rhash':None},index=[]) df = pd.DataFrame() for arc in archives[-2:]: print(f'\nProcessing archive for silent changes:\n {arc}\n') olddf = df.copy() df = getDfForCompare(arc[1],sources=arcdir) if len(olddf)==0: # first run, nothing left to do continue oldulk = olddf.UploadKey.unique().tolist() df = fsc.getNormalizedDF(df) olddf = fsc.getNormalizedDF(olddf) ulk = df.UploadKey.unique().tolist() ukMissingFromNew = [] for uk in oldulk: if uk not in ulk: ukMissingFromNew.append(uk) print(f' Number of UploadKeys gone missing in new set: {len(ukMissingFromNew)}') # find matching records mg = pd.merge(olddf,df,on=['UploadKey','IngredientKey'],how='outer', indicator=True,validate='1:1') common = mg[mg['_merge']=='both'][['UploadKey','IngredientKey']].copy() newmg = pd.merge(common,df,on=['UploadKey','IngredientKey'],how='inner') #print(newmg.columns) newmg['rhash'] =
pd.util.hash_pandas_object(newmg,hash_key='1234')
pandas.util.hash_pandas_object
import numpy as np import pandas as pd lt = 'f:/lt/' region = pd.read_csv(lt + 'region.csv',sep='\t', index_col=0) # 排除内蒙古和西藏 # prvs = ['北京', '天津', '河北', '山东', '辽宁', '江苏', '上海', '浙江', '福建', '广东', '海南', '吉林', # '黑龙江', '山西', '河南', '安徽', '江西', '湖北', '湖南', '广西', '重庆', '四川', '贵州', '云南', # '陕西', '甘肃', '青海', '宁夏', '新疆'] prvs = ['北京', '天津', '河北', '山东', '辽宁', '江苏', '上海', '浙江', '福建', '广东', '广西', '海南', '吉林', '黑龙江', '山西', '河南', '安徽', '江西', '湖北', '湖南', '重庆', '四川', '贵州', '云南', '陕西', '甘肃', '青海', '宁夏', '新疆', '内蒙古'] years = ['2003', '2004', '2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012'] worker = pd.read_csv(lt + 'worker.csv', sep='\t', index_col=0).join(region) capital = pd.read_csv(lt + 'capital.csv', sep='\t', index_col=0).join(region) energy = pd.read_csv(lt + 'energy.csv', sep='\t', index_col=0).join(region) gdp = pd.read_csv(lt + 'gdp.csv', sep='\t', index_col=0).join(region) co2 =
pd.read_csv(lt + 'co2.csv', sep='\t', index_col=0)
pandas.read_csv
from matplotlib import pyplot as plt import pandas as pd plt.style.use("fivethirtyeight") #df['py_dev_y'] ages_x = [25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35] dev_y = [38496, 42000, 46752, 49320, 53200, 56000, 62316, 64928, 67317, 68748, 73752] fig, (ax, ax1) = plt.subplots(nrows = 2, ncols = 1, sharex = True) ax.plot(ages_x, dev_y, color="#444444", label="All Devs") py_dev_y = [45372, 48876, 53850, 57287, 63016, 65998, 70003, 70000, 71496, 75370, 83640] ax.plot(ages_x, py_dev_y, color="#008fd5", label="Python") js_dev_y = [37810, 43515, 46823, 49293, 53437, 56373, 62375, 66674, 68745, 68746, 74583] ax.plot(ages_x, js_dev_y, color="#e5ae38", label="JavaScript") data = { "ages" : ages_x, "Python": py_dev_y, "JavaScript": js_dev_y } df =
pd.DataFrame(data)
pandas.DataFrame
from datetime import time from bs4 import BeautifulSoup import json, random, re, requests import pandas as pd import csv page = str(input("Page : ")) url = "https://indeks.kompas.com/?page="+page r = requests.get(url) soup = BeautifulSoup(r.text, 'html.parser') data_berita =
pd.DataFrame()
pandas.DataFrame
import os import re import pandas as pd from .message import Message from datetime import datetime class KaggleDataSet(Message): """ Description =========== - A class containing number of methods and attributes (almost all're initialized) to create dataset in the form of csv/json etc. so that either (a) they could be used to work with pandas (b) or used to upload/publish our own created data on Kaggle (https://www.kaggle.com/datasets) as the data to be uploaded on Kaggle should be excellent and unique - This class provides attributes that you can use to - This class provides you methods that asks user to enter data for each column of rows 1 after 1 and generates csv/json as final output """ def __init__(self, path='.', extension = 'csv' ): """ A constructor ============= - which initializes number of parameters to start the creation of Kaggle dataset Parameters ========== - path: Absolute/relative path of the output file (csv, json) - extension: Extension to use for the output file (default: csv) """ self.__validate_and_set(path, extension) # Conatiner of enetered data (an input to pandas.DataFrame) self.container = {} # Used to store the number of enetered columns in the CSV self.total_columns = 0 # Used to store the name of enetered name of all columns (initially blank) self.columns = [] # Used to store length of all column names self.collens = [] # Private variable to maintain the calling sequences self.__states = {} # If DataFrame is SET self.df_set = False # For implementing the feature of printing relevant messages to the console self.message = Message() # Used to store the type of data types of all columns self.data_types = {} # Used to store number of enetered rows self.rows = 0 def __validate_and_set(self, path, extension): """ Description =========== - Validates path and returuns a tuple => (filedir, filename, extension) Opeartions ========== >>> os.path.splitext("C:\\TC\\a.txt") ('C:\\TC\\a', '.txt') >>> >>> os.path.exists(".") True >>> >>> >>> re.match("^\w+(\w+[-_])*\w+$", "dffdfd-ddgg-$") >>> re.match("^\w+(\w+[-_])*\w+$", "dffdfd-ddgg-dffd") <_sre.SRE_Match object at 0x00000000029FCD50> >>> >>> re.match("^\w+(\w+[-_])*\w+$", "dffdfd-ddgg_dffd") <_sre.SRE_Match object at 0x00000000029FCDC8> >>> >>> re.match("^\w+(\w+[-_])*\w+$", "dffdfd_ddgg_dffd") <_sre.SRE_Match object at 0x00000000029FCD50> >>> >>> re.match("^\w+(\w+[-_])*\w+$", "dffdfd_ddgg+dffd") >>> """ this_filename = datetime.now().strftime("DataSet-%d-%m-%Y-%H%M%S") this_dir = '.' # os.path.dirname(os.path.abspath(__file__)) if path and type(path) is str: filedir, file_w_ext = os.path.split(path) filename, ext = os.path.splitext(file_w_ext) if ext: ext = ext.lstrip('.') if ext in ['json', 'csv']: extension = ext else: extension = 'csv' else: extension = "csv" if not filedir: filedir = this_dir if not os.path.exists(filedir): filedir = this_dir if not re.match(r"^\w+(\w+[-_])*\w+$", filename): filename = this_filename self._Message__warning('Valid file names are: my-data-set, mydataset, my-data_set, mydataset.csv etc, so taking %s.%s' % (filename, extension)); else: filename = this_filename; filedir = this_dir if not extension in ["json", 'csv']: extension = 'csv'; # Used to store the relative/absolute path of the destination directory # This value will be used while creating the JSON/CSV file # If you do not provide file path while instantiation then the current # directory (.) will be used self.filedir = filedir # Used to store the base name of file (A.py => A) self.filename = filename # Used to store the extension of the file self.extension = extension # Repeatedly check for an existence of specified filename, # if it already exists (do not override) # and choose another file name by appending numbers like 1, 2, 3 and so...on self.__set_names() def get_data_type(self, value): """ Description =========== - It returns the type of data basically the result would be either 'numeric' or 'string' - If the passed data is int/float or if contains a sequence of numbers including . (dot) the returned value will always be 'numeric' otherwise 'string'. Code ==== + Below is the logic of getting the type of data >>> import re >>> >>> numeric_regex = r"^(\d+)$|^(\d+\.\d+)$|^(\d*\.\d+)$|^(\d+\.\d*)$" >>> re.match(numeric_regex, "14-08-1992") >>> re.match(numeric_regex, "14081992") <_sre.SRE_Match object; span=(0, 8), match='14081992'> >>> >>> re.match(numeric_regex, "140819.92") <_sre.SRE_Match object; span=(0, 9), match='140819.92'> >>> re.match(numeric_regex, "140819.") <_sre.SRE_Match object; span=(0, 7), match='140819.'> >>> re.match(numeric_regex, ".8855") <_sre.SRE_Match object; span=(0, 5), match='.8855'> >>> re.match(numeric_regex, ".") >>> re.match(numeric_regex, ".2") <_sre.SRE_Match object; span=(0, 2), match='.2'> >>> re.match(numeric_regex, "4") <_sre.SRE_Match object; span=(0, 1), match='4'> >>> """ numeric_regex = r"^(\d+)$|^(\d+\.\d+)$|^(\d*\.\d+)$|^(\d+\.\d*)$" if re.match(numeric_regex, str(value)): _type = 'numeric'; else: _type = 'string'; return _type; def get_value_for(self, rowno, colname, max_col_len): """ Description =========== - Returns the value entered on console """ s = "[DATA ENTRY] <row: " + str(rowno) + "> " l = len(s) + max_col_len + 4 f = ("%-" + str(l) + "s : ") % (s + " " + colname) value = input(f).strip() _type = self.get_data_type(value) if colname in self.data_types: """ { 'fullname': 'string', 'age': 'numeric' } """ current_type = self.data_types[colname] if _type != current_type: if self.data_types[colname] == "numeric": self._Message__warning('Previously this column was numeric, now it is of type string') self.data_types[colname] = _type # Set to string else: self.data_types[colname] = _type return value def set_container(self): """ Description =========== - Asks user to enter data for each rows, column by column - Finally sets the container attribute of the class """ ask_for_data_entry = True done = False if self.__states.get('start'): if self.__states.get('set_column_names'): done = True else: self._Message__warning("You are directly trying to invoke, set_container() method" ", please call start() => set_column_names() methods first") else: self._Message__warning("You are directly trying to invoke, set_container() method" ", please call start() method first") if done: satisfied = False rowno = 1 equals = "=" * 50 msg = "\n" + equals + "\nDo you want to add 1 more row / view data (y/n/v): " max_col_len = max(self.collens) while not satisfied: if ask_for_data_entry: for colname in self.columns: value = self.get_value_for(rowno, colname, max_col_len) if colname in self.container: self.container[colname].append(value) else: self.container[colname] = [value] inp = (input(msg).strip()).lower() if inp == 'y' or inp == 'yes': rowno += 1 print(equals) ask_for_data_entry = True continue # To continue with entering data for next row elif inp.lower() == 'v' or inp.lower() == 'view': self.__create() # Recreation of DataFrame with newly entered data self._Message__data(self.df) viewed = True ask_for_data_entry = False continue else: # This is just to make the code meaningful even break can also be used nmtc = no_or_mistakenly_typed_confirmation = input("Is this mistakenly typed (y/n): ").strip() if(nmtc.lower() == "n" or nmtc.lower() == "no"): self.rows = rowno satisfied = True elif not(nmtc.lower() == 'y' or nmtc.lower() == 'yes'): self._Message__warning("This is for your help, just type proper value to exit/continue") else: rowno += 1 print(equals) ask_for_data_entry = True self.__states["set_container"] = True return True # Success else: return False # Failure def set_column_names(self): """ Description =========== - Asks user to enter the name of columns that will appear in csv or (as keys in json object) """ if self.__states.get('start', None): cols = self.total_columns # To short the name (value of cols >= 1) d = { 1: '1st', 2: '2nd', 3: '3rd' } f = str(len(str(cols)) + 2) # cols => Total number of columns (extra 2 is for st, nd, rd, th etc.) s = "Enter the name of %s column: " % ("%-" + f + "s") i = 1 while i <= cols: if i <= 3: colname = input(s % (d[i])) else: colname = input(s % (str(i) + 'th')) if not(re.match(r"^\w*(\w+[-_])*\w+$", colname)): self._Message__warning("Please do not use characters for column names other than " "A-Za-z0-9_-") continue if colname in self.columns: self._Message__warning('The entered column name {} has been already choosen ' '(please enter another name)'.format(colname)) continue self.columns.append(colname) self.collens.append(len(colname)) i += 1 self.__states["set_column_names"] = True return True # Success else: self._Message__warning("You are directly trying to invoke, set_column_names() method" ", please call start() method first") return False # Failure def start(self): """ Description =========== - Initiates the process of creating dataset, asks for number of columns - Valiates entered value (no. of columns), checks if that is a positive integer - Checks if it is >= 1 - Continues to ask user to enter proper value if it does not satisfy the requirement """ everything_is_ok = False while not everything_is_ok: cols = input('Enter number of columns that you want in your dataset: ').strip(); if re.match(r"^\d+$", cols): cols = int(cols) if cols == 0: self._Message__warning("You are looking for 0 column names, please enter >= 1") continue everything_is_ok = True else: self._Message__warning("The entered value doesn't look like a +ve integer " "please enter a valid integer number") self.total_columns = cols self.__states = {"start": True} # Do not need to add \n either at beginning or end while calling messages # function like success() / warning() / error() etc. self._Message__success("You are successfully done with no. of columns") ret = self.set_column_names() if ret: self._Message__success("You are successfully done with the column names") else: self._Message__error("Something unexpected happened") ret = self.set_container() if ret: self._Message__success("You are successfully done with entering data for your dataset") else: self._Message__error("Something unexpected happened") def status_is_ok(self): states = self.__states if states.get("start", None): if states.get("set_column_names", None): if states.get("set_container", None): return True else: self._Message__warning("You are directly trying to invoke, view() method" ", please call start() => set_column_names() => set_container() methods first") else: self._Message__warning("You are directly trying to invoke, view() method" ", please call start() => set_column_names() methods first") else: self._Message__warning("You are directly trying to invoke, view() method" ", please call start() method first") return False # Failure def __create(self, **kwargs): self.df =
pd.DataFrame(self.container)
pandas.DataFrame
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not is_platform_little_endian(), reason="reason platform is not little endian" ) def test_encoding(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A="foo", B="bar"), index=range(5)) df.loc[2, "A"] = np.nan df.loc[3, "B"] = np.nan _maybe_remove(store, "df") store.append("df", df, encoding="ascii") tm.assert_frame_equal(store["df"], df) expected = df.reindex(columns=["A"]) result = store.select("df", Term("columns=A", encoding="ascii")) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "val", [ [b"E\xc9, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"a", b"b", b"c"], [b"EE, 17", b"", b"a", b"b", b"c"], [b"E\xc9, 17", b"\xf8\xfc", b"a", b"b", b"c"], [b"", b"a", b"b", b"c"], [b"\xf8\xfc", b"a", b"b", b"c"], [b"A\xf8\xfc", b"", b"a", b"b", b"c"], [np.nan, b"", b"b", b"c"], [b"A\xf8\xfc", np.nan, b"", b"b", b"c"], ], ) @pytest.mark.parametrize("dtype", ["category", object]) def test_latin_encoding(self, setup_path, dtype, val): enc = "latin-1" nan_rep = "" key = "data" val = [x.decode(enc) if isinstance(x, bytes) else x for x in val] ser = pd.Series(val, dtype=dtype) with ensure_clean_path(setup_path) as store: ser.to_hdf(store, key, format="table", encoding=enc, nan_rep=nan_rep) retr = read_hdf(store, key) s_nan = ser.replace(nan_rep, np.nan) if is_categorical_dtype(s_nan): assert is_categorical_dtype(retr) tm.assert_series_equal( s_nan, retr, check_dtype=False, check_categorical=False ) else: tm.assert_series_equal(s_nan, retr) # FIXME: don't leave commented-out # fails: # for x in examples: # roundtrip(s, nan_rep=b'\xf8\xfc') def test_append_some_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( { "A": Series(np.random.randn(20)).astype("int32"), "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) # some nans _maybe_remove(store, "df1") df.loc[0:15, ["A1", "B", "D", "E"]] = np.nan store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) # first column df1 = df.copy() df1.loc[:, "A1"] = np.nan _maybe_remove(store, "df1") store.append("df1", df1[:10]) store.append("df1", df1[10:]) tm.assert_frame_equal(store["df1"], df1) # 2nd column df2 = df.copy() df2.loc[:, "A2"] = np.nan _maybe_remove(store, "df2") store.append("df2", df2[:10]) store.append("df2", df2[10:]) tm.assert_frame_equal(store["df2"], df2) # datetimes df3 = df.copy() df3.loc[:, "E"] = np.nan _maybe_remove(store, "df3") store.append("df3", df3[:10]) store.append("df3", df3[10:]) tm.assert_frame_equal(store["df3"], df3) def test_append_all_nans(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( {"A1": np.random.randn(20), "A2": np.random.randn(20)}, index=np.arange(20), ) df.loc[0:15, :] = np.nan # nan some entire rows (dropna=True) _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df[-4:]) # nan some entire rows (dropna=False) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # tests the option io.hdf.dropna_table pd.set_option("io.hdf.dropna_table", False) _maybe_remove(store, "df3") store.append("df3", df[:10]) store.append("df3", df[10:]) tm.assert_frame_equal(store["df3"], df) pd.set_option("io.hdf.dropna_table", True) _maybe_remove(store, "df4") store.append("df4", df[:10]) store.append("df4", df[10:]) tm.assert_frame_equal(store["df4"], df[-4:]) # nan some entire rows (string are still written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # nan some entire rows (but since we have dates they are still # written!) df = DataFrame( { "A1": np.random.randn(20), "A2": np.random.randn(20), "B": "foo", "C": "bar", "D": Timestamp("20010101"), "E": datetime.datetime(2001, 1, 2, 0, 0), }, index=np.arange(20), ) df.loc[0:15, :] = np.nan _maybe_remove(store, "df") store.append("df", df[:10], dropna=True) store.append("df", df[10:], dropna=True) tm.assert_frame_equal(store["df"], df) _maybe_remove(store, "df2") store.append("df2", df[:10], dropna=False) store.append("df2", df[10:], dropna=False) tm.assert_frame_equal(store["df2"], df) # Test to make sure defaults are to not drop. # Corresponding to Issue 9382 df_with_missing = DataFrame( {"col1": [0, np.nan, 2], "col2": [1, np.nan, np.nan]} ) with ensure_clean_path(setup_path) as path: df_with_missing.to_hdf(path, "df_with_missing", format="table") reloaded = read_hdf(path, "df_with_missing") tm.assert_frame_equal(df_with_missing, reloaded) def test_read_missing_key_close_store(self, setup_path): # GH 25766 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(path, "k2") # smoke test to test that file is properly closed after # read with KeyError before another write df.to_hdf(path, "k2") def test_read_missing_key_opened_store(self, setup_path): # GH 28699 with ensure_clean_path(setup_path) as path: df = pd.DataFrame({"a": range(2), "b": range(2)}) df.to_hdf(path, "k1") store = pd.HDFStore(path, "r") with pytest.raises(KeyError, match="'No object named k2 in the file'"): pd.read_hdf(store, "k2") # Test that the file is still open after a KeyError and that we can # still read from it. pd.read_hdf(store, "k1") def test_append_frame_column_oriented(self, setup_path): with ensure_clean_store(setup_path) as store: # column oriented df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df.iloc[:, :2], axes=["columns"]) store.append("df1", df.iloc[:, 2:]) tm.assert_frame_equal(store["df1"], df) result = store.select("df1", "columns=A") expected = df.reindex(columns=["A"]) tm.assert_frame_equal(expected, result) # selection on the non-indexable result = store.select("df1", ("columns=A", "index=df.index[0:4]")) expected = df.reindex(columns=["A"], index=df.index[0:4]) tm.assert_frame_equal(expected, result) # this isn't supported with pytest.raises(TypeError): store.select("df1", "columns=A and index>df.index[4]") def test_append_with_different_block_ordering(self, setup_path): # GH 4096; using same frames, but different block orderings with ensure_clean_store(setup_path) as store: for i in range(10): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df["index"] = range(10) df["index"] += i * 10 df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") if i % 2 == 0: del df["int64"] df["int64"] = Series([1] * len(df), dtype="int64") if i % 3 == 0: a = df.pop("A") df["A"] = a df.set_index("index", inplace=True) store.append("df", df) # test a different ordering but with more fields (like invalid # combinate) with ensure_clean_store(setup_path) as store: df = DataFrame(np.random.randn(10, 2), columns=list("AB"), dtype="float64") df["int64"] = Series([1] * len(df), dtype="int64") df["int16"] = Series([1] * len(df), dtype="int16") store.append("df", df) # store additional fields in different blocks df["int16_2"] = Series([1] * len(df), dtype="int16") with pytest.raises(ValueError): store.append("df", df) # store multile additional fields in different blocks df["float_3"] = Series([1.0] * len(df), dtype="float64") with pytest.raises(ValueError): store.append("df", df) def test_append_with_strings(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big", df) tm.assert_frame_equal(store.select("df_big"), df) check_col("df_big", "values_block_1", 15) # appending smaller string ok df2 = DataFrame([[124, "asdqy"], [346, "dggnhefbdfb"]]) store.append("df_big", df2) expected = concat([df, df2]) tm.assert_frame_equal(store.select("df_big"), expected) check_col("df_big", "values_block_1", 15) # avoid truncation on elements df = DataFrame([[123, "asdqwerty"], [345, "dggnhebbsdfbdfb"]]) store.append("df_big2", df, min_itemsize={"values": 50}) tm.assert_frame_equal(store.select("df_big2"), df) check_col("df_big2", "values_block_1", 50) # bigger string on next append store.append("df_new", df) df_new = DataFrame( [[124, "abcdefqhij"], [346, "abcdefghijklmnopqrtsuvwxyz"]] ) with pytest.raises(ValueError): store.append("df_new", df_new) # min_itemsize on Series index (GH 11412) df = tm.makeMixedDataFrame().set_index("C") store.append("ss", df["B"], min_itemsize={"index": 4}) tm.assert_series_equal(store.select("ss"), df["B"]) # same as above, with data_columns=True store.append( "ss2", df["B"], data_columns=True, min_itemsize={"index": 4} ) tm.assert_series_equal(store.select("ss2"), df["B"]) # min_itemsize in index without appending (GH 10381) store.put("ss3", df, format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") store.append("ss3", df2) tm.assert_frame_equal(store.select("ss3"), pd.concat([df, df2])) # same as above, with a Series store.put("ss4", df["B"], format="table", min_itemsize={"index": 6}) store.append("ss4", df2["B"]) tm.assert_series_equal( store.select("ss4"), pd.concat([df["B"], df2["B"]]) ) # with nans _maybe_remove(store, "df") df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[1:4, "string"] = np.nan df["string2"] = "bar" df.loc[4:8, "string2"] = np.nan df["string3"] = "bah" df.loc[1:, "string3"] = np.nan store.append("df", df) result = store.select("df") tm.assert_frame_equal(result, df) with ensure_clean_store(setup_path) as store: def check_col(key, name, size): assert getattr( store.get_storer(key).table.description, name ).itemsize, size df = DataFrame(dict(A="foo", B="bar"), index=range(10)) # a min_itemsize that creates a data_column _maybe_remove(store, "df") store.append("df", df, min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"A": 200}) check_col("df", "A", 200) assert store.get_storer("df").data_columns == ["B", "A"] # a min_itemsize that creates a data_column2 _maybe_remove(store, "df") store.append("df", df, data_columns=["B"], min_itemsize={"values": 200}) check_col("df", "B", 200) check_col("df", "values_block_0", 200) assert store.get_storer("df").data_columns == ["B"] # infer the .typ on subsequent appends _maybe_remove(store, "df") store.append("df", df[:5], min_itemsize=200) store.append("df", df[5:], min_itemsize=200) tm.assert_frame_equal(store["df"], df) # invalid min_itemsize keys df = DataFrame(["foo", "foo", "foo", "barh", "barh", "barh"], columns=["A"]) _maybe_remove(store, "df") with pytest.raises(ValueError): store.append("df", df, min_itemsize={"foo": 20, "foobar": 20}) def test_append_with_empty_string(self, setup_path): with ensure_clean_store(setup_path) as store: # with all empty strings (GH 12242) df = DataFrame({"x": ["a", "b", "c", "d", "e", "f", ""]}) store.append("df", df[:-1], min_itemsize={"x": 1}) store.append("df", df[-1:], min_itemsize={"x": 1}) tm.assert_frame_equal(store.select("df"), df) def test_to_hdf_with_min_itemsize(self, setup_path): with ensure_clean_path(setup_path) as path: # min_itemsize in index with to_hdf (GH 10381) df = tm.makeMixedDataFrame().set_index("C") df.to_hdf(path, "ss3", format="table", min_itemsize={"index": 6}) # just make sure there is a longer string: df2 = df.copy().reset_index().assign(C="longer").set_index("C") df2.to_hdf(path, "ss3", append=True, format="table") tm.assert_frame_equal(pd.read_hdf(path, "ss3"), pd.concat([df, df2])) # same as above, with a Series df["B"].to_hdf(path, "ss4", format="table", min_itemsize={"index": 6}) df2["B"].to_hdf(path, "ss4", append=True, format="table") tm.assert_series_equal( pd.read_hdf(path, "ss4"), pd.concat([df["B"], df2["B"]]) ) @pytest.mark.parametrize( "format", [pytest.param("fixed", marks=td.xfail_non_writeable), "table"] ) def test_to_hdf_errors(self, format, setup_path): data = ["\ud800foo"] ser = pd.Series(data, index=pd.Index(data)) with ensure_clean_path(setup_path) as path: # GH 20835 ser.to_hdf(path, "table", format=format, errors="surrogatepass") result = pd.read_hdf(path, "table", errors="surrogatepass") tm.assert_series_equal(result, ser) def test_append_with_data_columns(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() df.iloc[0, df.columns.get_loc("B")] = 1.0 _maybe_remove(store, "df") store.append("df", df[:2], data_columns=["B"]) store.append("df", df[2:]) tm.assert_frame_equal(store["df"], df) # check that we have indices created assert store._handle.root.df.table.cols.index.is_indexed is True assert store._handle.root.df.table.cols.B.is_indexed is True # data column searching result = store.select("df", "B>0") expected = df[df.B > 0] tm.assert_frame_equal(result, expected) # data column searching (with an indexable and a data_columns) result = store.select("df", "B>0 and index>df.index[3]") df_new = df.reindex(index=df.index[4:]) expected = df_new[df_new.B > 0] tm.assert_frame_equal(result, expected) # data column selection with a string data_column df_new = df.copy() df_new["string"] = "foo" df_new.loc[1:4, "string"] = np.nan df_new.loc[5:6, "string"] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"]) result = store.select("df", "string='foo'") expected = df_new[df_new.string == "foo"] tm.assert_frame_equal(result, expected) # using min_itemsize and a data column def check_col(key, name, size): assert ( getattr(store.get_storer(key).table.description, name).itemsize == size ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"string": 30} ) check_col("df", "string", 30) _maybe_remove(store, "df") store.append("df", df_new, data_columns=["string"], min_itemsize=30) check_col("df", "string", 30) _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string"], min_itemsize={"values": 30} ) check_col("df", "string", 30) with ensure_clean_store(setup_path) as store: df_new["string2"] = "foobarbah" df_new["string_block1"] = "foobarbah1" df_new["string_block2"] = "foobarbah2" _maybe_remove(store, "df") store.append( "df", df_new, data_columns=["string", "string2"], min_itemsize={"string": 30, "string2": 40, "values": 50}, ) check_col("df", "string", 30) check_col("df", "string2", 40) check_col("df", "values_block_1", 50) with ensure_clean_store(setup_path) as store: # multiple data columns df_new = df.copy() df_new.iloc[0, df_new.columns.get_loc("A")] = 1.0 df_new.iloc[0, df_new.columns.get_loc("B")] = -1.0 df_new["string"] = "foo" sl = df_new.columns.get_loc("string") df_new.iloc[1:4, sl] = np.nan df_new.iloc[5:6, sl] = "bar" df_new["string2"] = "foo" sl = df_new.columns.get_loc("string2") df_new.iloc[2:5, sl] = np.nan df_new.iloc[7:8, sl] = "bar" _maybe_remove(store, "df") store.append("df", df_new, data_columns=["A", "B", "string", "string2"]) result = store.select( "df", "string='foo' and string2='foo' and A>0 and B<0" ) expected = df_new[ (df_new.string == "foo") & (df_new.string2 == "foo") & (df_new.A > 0) & (df_new.B < 0) ] tm.assert_frame_equal(result, expected, check_index_type=False) # yield an empty frame result = store.select("df", "string='foo' and string2='cool'") expected = df_new[(df_new.string == "foo") & (df_new.string2 == "cool")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example df_dc = df.copy() df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc["string2"] = "cool" df_dc["datetime"] = Timestamp("20010102") df_dc = df_dc._convert(datetime=True) df_dc.loc[3:5, ["A", "B", "datetime"]] = np.nan _maybe_remove(store, "df_dc") store.append( "df_dc", df_dc, data_columns=["B", "C", "string", "string2", "datetime"] ) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected, check_index_type=False) result = store.select("df_dc", ["B > 0", "C > 0", "string == foo"]) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected, check_index_type=False) with ensure_clean_store(setup_path) as store: # doc example part 2 np.random.seed(1234) index = date_range("1/1/2000", periods=8) df_dc = DataFrame( np.random.randn(8, 3), index=index, columns=["A", "B", "C"] ) df_dc["string"] = "foo" df_dc.loc[4:6, "string"] = np.nan df_dc.loc[7:9, "string"] = "bar" df_dc.loc[:, ["B", "C"]] = df_dc.loc[:, ["B", "C"]].abs() df_dc["string2"] = "cool" # on-disk operations store.append("df_dc", df_dc, data_columns=["B", "C", "string", "string2"]) result = store.select("df_dc", "B>0") expected = df_dc[df_dc.B > 0] tm.assert_frame_equal(result, expected) result = store.select("df_dc", ["B > 0", "C > 0", 'string == "foo"']) expected = df_dc[(df_dc.B > 0) & (df_dc.C > 0) & (df_dc.string == "foo")] tm.assert_frame_equal(result, expected) def test_create_table_index(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): def col(t, column): return getattr(store.get_storer(t).table.cols, column) # data columns df = tm.makeTimeDataFrame() df["string"] = "foo" df["string2"] = "bar" store.append("f", df, data_columns=["string", "string2"]) assert col("f", "index").is_indexed is True assert col("f", "string").is_indexed is True assert col("f", "string2").is_indexed is True # specify index=columns store.append( "f2", df, index=["string"], data_columns=["string", "string2"] ) assert col("f2", "index").is_indexed is False assert col("f2", "string").is_indexed is True assert col("f2", "string2").is_indexed is False # try to index a non-table _maybe_remove(store, "f2") store.put("f2", df) with pytest.raises(TypeError): store.create_table_index("f2") def test_append_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.append("mi", df) result = store.select("mi") tm.assert_frame_equal(result, df) # GH 3748 result = store.select("mi", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) with ensure_clean_path("test.hdf") as path: df.to_hdf(path, "df", format="table") result = read_hdf(path, "df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_column_multiindex(self, setup_path): # GH 4710 # recreate multi-indexes properly index = MultiIndex.from_tuples( [("A", "a"), ("A", "b"), ("B", "a"), ("B", "b")], names=["first", "second"] ) df = DataFrame(np.arange(12).reshape(3, 4), columns=index) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df", df) tm.assert_frame_equal( store["df"], expected, check_index_type=True, check_column_type=True ) store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) with pytest.raises(ValueError): store.put("df2", df, format="table", data_columns=["A"]) with pytest.raises(ValueError): store.put("df3", df, format="table", data_columns=True) # appending multi-column on existing table (see GH 6167) with ensure_clean_store(setup_path) as store: store.append("df2", df) store.append("df2", df) tm.assert_frame_equal(store["df2"], concat((df, df))) # non_index_axes name df = DataFrame( np.arange(12).reshape(3, 4), columns=Index(list("ABCD"), name="foo") ) expected = df.copy() if isinstance(expected.index, RangeIndex): expected.index = Int64Index(expected.index) with ensure_clean_store(setup_path) as store: store.put("df1", df, format="table") tm.assert_frame_equal( store["df1"], expected, check_index_type=True, check_column_type=True ) def test_store_multiindex(self, setup_path): # validate multi-index names # GH 5527 with ensure_clean_store(setup_path) as store: def make_index(names=None): return MultiIndex.from_tuples( [ (datetime.datetime(2013, 12, d), s, t) for d in range(1, 3) for s in range(2) for t in range(3) ], names=names, ) # no names _maybe_remove(store, "df") df = DataFrame(np.zeros((12, 2)), columns=["a", "b"], index=make_index()) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # partial names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", None, None]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) # series _maybe_remove(store, "s") s = Series(np.zeros(12), index=make_index(["date", None, None])) store.append("s", s) xp = Series(np.zeros(12), index=make_index(["date", "level_1", "level_2"])) tm.assert_series_equal(store.select("s"), xp) # dup with column _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "a", "t"]), ) with pytest.raises(ValueError): store.append("df", df) # dup within level _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "date", "date"]), ) with pytest.raises(ValueError): store.append("df", df) # fully names _maybe_remove(store, "df") df = DataFrame( np.zeros((12, 2)), columns=["a", "b"], index=make_index(["date", "s", "t"]), ) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) def test_select_columns_in_where(self, setup_path): # GH 6169 # recreate multi-indexes when columns is passed # in the `where` argument index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo_name", "bar_name"], ) # With a DataFrame df = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") expected = df[["A"]] tm.assert_frame_equal(store.select("df", columns=["A"]), expected) tm.assert_frame_equal(store.select("df", where="columns=['A']"), expected) # With a Series s = Series(np.random.randn(10), index=index, name="A") with ensure_clean_store(setup_path) as store: store.put("s", s, format="table") tm.assert_series_equal(store.select("s", where="columns=['A']"), s) def test_mi_data_columns(self, setup_path): # GH 14435 idx = pd.MultiIndex.from_arrays( [date_range("2000-01-01", periods=5), range(5)], names=["date", "id"] ) df = pd.DataFrame({"a": [1.1, 1.2, 1.3, 1.4, 1.5]}, index=idx) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=True) actual = store.select("df", where="id == 1") expected = df.iloc[[1], :] tm.assert_frame_equal(actual, expected) def test_pass_spec_to_storer(self, setup_path): df = tm.makeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df) with pytest.raises(TypeError): store.select("df", columns=["A"]) with pytest.raises(TypeError): store.select("df", where=[("columns=A")]) @td.xfail_non_writeable def test_append_misc(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df, chunksize=1) result = store.select("df") tm.assert_frame_equal(result, df) store.append("df1", df, expectedrows=10) result = store.select("df1") tm.assert_frame_equal(result, df) # more chunksize in append tests def check(obj, comparator): for c in [10, 200, 1000]: with ensure_clean_store(setup_path, mode="w") as store: store.append("obj", obj, chunksize=c) result = store.select("obj") comparator(result, obj) df = tm.makeDataFrame() df["string"] = "foo" df["float322"] = 1.0 df["float322"] = df["float322"].astype("float32") df["bool"] = df["float322"] > 0 df["time1"] = Timestamp("20130101") df["time2"] = Timestamp("20130102") check(df, tm.assert_frame_equal) # empty frame, GH4273 with ensure_clean_store(setup_path) as store: # 0 len df_empty = DataFrame(columns=list("ABC")) store.append("df", df_empty) with pytest.raises(KeyError, match="'No object named df in the file'"): store.select("df") # repeated append of 0/non-zero frames df = DataFrame(np.random.rand(10, 3), columns=list("ABC")) store.append("df", df) tm.assert_frame_equal(store.select("df"), df) store.append("df", df_empty) tm.assert_frame_equal(store.select("df"), df) # store df = DataFrame(columns=list("ABC")) store.put("df2", df) tm.assert_frame_equal(store.select("df2"), df) def test_append_raise(self, setup_path): with ensure_clean_store(setup_path) as store: # test append with invalid input to get good error messages # list in column df = tm.makeDataFrame() df["invalid"] = [["a"]] * len(df) assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # multiple invalid columns df["invalid2"] = [["a"]] * len(df) df["invalid3"] = [["a"]] * len(df) with pytest.raises(TypeError): store.append("df", df) # datetime with embedded nans as object df = tm.makeDataFrame() s = Series(datetime.datetime(2001, 1, 2), index=df.index) s = s.astype(object) s[0:5] = np.nan df["invalid"] = s assert df.dtypes["invalid"] == np.object_ with pytest.raises(TypeError): store.append("df", df) # directly ndarray with pytest.raises(TypeError): store.append("df", np.arange(10)) # series directly with pytest.raises(TypeError): store.append("df", Series(np.arange(10))) # appending an incompatible table df = tm.makeDataFrame() store.append("df", df) df["foo"] = "foo" with pytest.raises(ValueError): store.append("df", df) def test_table_index_incompatible_dtypes(self, setup_path): df1 = DataFrame({"a": [1, 2, 3]}) df2 = DataFrame({"a": [4, 5, 6]}, index=date_range("1/1/2000", periods=3)) with ensure_clean_store(setup_path) as store: store.put("frame", df1, format="table") with pytest.raises(TypeError): store.put("frame", df2, format="table", append=True) def test_table_values_dtypes_roundtrip(self, setup_path): with ensure_clean_store(setup_path) as store: df1 = DataFrame({"a": [1, 2, 3]}, dtype="f8") store.append("df_f8", df1) tm.assert_series_equal(df1.dtypes, store["df_f8"].dtypes) df2 = DataFrame({"a": [1, 2, 3]}, dtype="i8") store.append("df_i8", df2) tm.assert_series_equal(df2.dtypes, store["df_i8"].dtypes) # incompatible dtype with pytest.raises(ValueError): store.append("df_i8", df1) # check creation/storage/retrieval of float32 (a bit hacky to # actually create them thought) df1 = DataFrame(np.array([[1], [2], [3]], dtype="f4"), columns=["A"]) store.append("df_f4", df1) tm.assert_series_equal(df1.dtypes, store["df_f4"].dtypes) assert df1.dtypes[0] == "float32" # check with mixed dtypes df1 = DataFrame( { c: Series(np.random.randint(5), dtype=c) for c in ["float32", "float64", "int32", "int64", "int16", "int8"] } ) df1["string"] = "foo" df1["float322"] = 1.0 df1["float322"] = df1["float322"].astype("float32") df1["bool"] = df1["float32"] > 0 df1["time1"] = Timestamp("20130101") df1["time2"] = Timestamp("20130102") store.append("df_mixed_dtypes1", df1) result = store.select("df_mixed_dtypes1").dtypes.value_counts() result.index = [str(i) for i in result.index] expected = Series( { "float32": 2, "float64": 1, "int32": 1, "bool": 1, "int16": 1, "int8": 1, "int64": 1, "object": 1, "datetime64[ns]": 2, } ) result = result.sort_index() expected = expected.sort_index() tm.assert_series_equal(result, expected) def test_table_mixed_dtypes(self, setup_path): # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: store.append("df1_mixed", df) tm.assert_frame_equal(store.select("df1_mixed"), df) def test_unimplemented_dtypes_table_columns(self, setup_path): with ensure_clean_store(setup_path) as store: dtypes = [("date", datetime.date(2001, 1, 2))] # currently not supported dtypes #### for n, f in dtypes: df = tm.makeDataFrame() df[n] = f with pytest.raises(TypeError): store.append("df1_{n}".format(n=n), df) # frame df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["datetime1"] = datetime.date(2001, 1, 2) df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: # this fails because we have a date in the object block...... with pytest.raises(TypeError): store.append("df_unimplemented", df) @td.xfail_non_writeable @pytest.mark.skipif( LooseVersion(np.__version__) == LooseVersion("1.15.0"), reason=( "Skipping pytables test when numpy version is " "exactly equal to 1.15.0: gh-22098" ), ) def test_calendar_roundtrip_issue(self, setup_path): # 8591 # doc example from tseries holiday section weekmask_egypt = "Sun Mon Tue Wed Thu" holidays = [ "2012-05-01", datetime.datetime(2013, 5, 1), np.datetime64("2014-05-01"), ] bday_egypt = pd.offsets.CustomBusinessDay( holidays=holidays, weekmask=weekmask_egypt ) dt = datetime.datetime(2013, 4, 30) dts = date_range(dt, periods=5, freq=bday_egypt) s = Series(dts.weekday, dts).map(Series("Mon Tue Wed Thu Fri Sat Sun".split())) with ensure_clean_store(setup_path) as store: store.put("fixed", s) result = store.select("fixed") tm.assert_series_equal(result, s) store.append("table", s) result = store.select("table") tm.assert_series_equal(result, s) def test_roundtrip_tz_aware_index(self, setup_path): # GH 17618 time = pd.Timestamp("2000-01-01 01:00:00", tz="US/Eastern") df = pd.DataFrame(data=[0], index=[time]) with ensure_clean_store(setup_path) as store: store.put("frame", df, format="fixed") recons = store["frame"] tm.assert_frame_equal(recons, df) assert recons.index[0].value == 946706400000000000 def test_append_with_timedelta(self, setup_path): # GH 3577 # append timedelta df = DataFrame( dict( A=Timestamp("20130101"), B=[ Timestamp("20130101") + timedelta(days=i, seconds=10) for i in range(10) ], ) ) df["C"] = df["A"] - df["B"] df.loc[3:5, "C"] = np.nan with ensure_clean_store(setup_path) as store: # table _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df") tm.assert_frame_equal(result, df) result = store.select("df", where="C<100000") tm.assert_frame_equal(result, df) result = store.select("df", where="C<pd.Timedelta('-3D')") tm.assert_frame_equal(result, df.iloc[3:]) result = store.select("df", "C<'-3D'") tm.assert_frame_equal(result, df.iloc[3:]) # a bit hacky here as we don't really deal with the NaT properly result = store.select("df", "C<'-500000s'") result = result.dropna(subset=["C"]) tm.assert_frame_equal(result, df.iloc[6:]) result = store.select("df", "C<'-3.5D'") result = result.iloc[1:] tm.assert_frame_equal(result, df.iloc[4:]) # fixed _maybe_remove(store, "df2") store.put("df2", df) result = store.select("df2") tm.assert_frame_equal(result, df) def test_remove(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeDataFrame() store["a"] = ts store["b"] = df _maybe_remove(store, "a") assert len(store) == 1 tm.assert_frame_equal(df, store["b"]) _maybe_remove(store, "b") assert len(store) == 0 # nonexistence with pytest.raises( KeyError, match="'No object named a_nonexistent_store in the file'" ): store.remove("a_nonexistent_store") # pathing store["a"] = ts store["b/foo"] = df _maybe_remove(store, "foo") _maybe_remove(store, "b/foo") assert len(store) == 1 store["a"] = ts store["b/foo"] = df _maybe_remove(store, "b") assert len(store) == 1 # __delitem__ store["a"] = ts store["b"] = df del store["a"] del store["b"] assert len(store) == 0 def test_invalid_terms(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[0:4, "string"] = "bar" store.put("df", df, format="table") # some invalid terms with pytest.raises(TypeError): Term() # more invalid with pytest.raises(ValueError): store.select("df", "df.index[3]") with pytest.raises(SyntaxError): store.select("df", "index>") # from the docs with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table", data_columns=True) # check ok read_hdf( path, "dfq", where="index>Timestamp('20130104') & columns=['A', 'B']" ) read_hdf(path, "dfq", where="A>0 or C>0") # catch the invalid reference with ensure_clean_path(setup_path) as path: dfq = DataFrame( np.random.randn(10, 4), columns=list("ABCD"), index=date_range("20130101", periods=10), ) dfq.to_hdf(path, "dfq", format="table") with pytest.raises(ValueError): read_hdf(path, "dfq", where="A>0 or C>0") def test_same_name_scoping(self, setup_path): with ensure_clean_store(setup_path) as store: import pandas as pd df = DataFrame( np.random.randn(20, 2), index=pd.date_range("20130101", periods=20) ) store.put("df", df, format="table") expected = df[df.index > pd.Timestamp("20130105")] import datetime # noqa result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) from datetime import datetime # noqa # technically an error, but allow it result = store.select("df", "index>datetime.datetime(2013,1,5)") tm.assert_frame_equal(result, expected) result = store.select("df", "index>datetime(2013,1,5)") tm.assert_frame_equal(result, expected) def test_series(self, setup_path): s = tm.makeStringSeries() self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) ts = tm.makeTimeSeries() self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) ts2 = Series(ts.index, Index(ts.index, dtype=object)) self._check_roundtrip(ts2, tm.assert_series_equal, path=setup_path) ts3 = Series(ts.values, Index(np.asarray(ts.index, dtype=object), dtype=object)) self._check_roundtrip( ts3, tm.assert_series_equal, path=setup_path, check_index_type=False ) def test_float_index(self, setup_path): # GH #454 index = np.random.randn(10) s = Series(np.random.randn(10), index=index) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) @td.xfail_non_writeable def test_tuple_index(self, setup_path): # GH #492 col = np.arange(10) idx = [(0.0, 1.0), (2.0, 3.0), (4.0, 5.0)] data = np.random.randn(30).reshape((3, 10)) DF = DataFrame(data, index=idx, columns=col) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) self._check_roundtrip(DF, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.filterwarnings("ignore::pandas.errors.PerformanceWarning") def test_index_types(self, setup_path): with catch_warnings(record=True): values = np.random.randn(2) func = lambda l, r: tm.assert_series_equal( l, r, check_dtype=True, check_index_type=True, check_series_type=True ) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) with catch_warnings(record=True): ser = Series(values, [0, "y"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.datetime.today(), 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, ["y", 0]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [datetime.date.today(), "a"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1.23, "b"]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 1.53]) self._check_roundtrip(ser, func, path=setup_path) ser = Series(values, [1, 5]) self._check_roundtrip(ser, func, path=setup_path) ser = Series( values, [datetime.datetime(2012, 1, 1), datetime.datetime(2012, 1, 2)] ) self._check_roundtrip(ser, func, path=setup_path) def test_timeseries_preepoch(self, setup_path): dr = bdate_range("1/1/1940", "1/1/1960") ts = Series(np.random.randn(len(dr)), index=dr) try: self._check_roundtrip(ts, tm.assert_series_equal, path=setup_path) except OverflowError: pytest.skip("known failer on some windows platforms") @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_frame(self, compression, setup_path): df = tm.makeDataFrame() # put in some random NAs df.values[0, 0] = np.nan df.values[5, 3] = np.nan self._check_roundtrip_table( df, tm.assert_frame_equal, path=setup_path, compression=compression ) self._check_roundtrip( df, tm.assert_frame_equal, path=setup_path, compression=compression ) tdf = tm.makeTimeDataFrame() self._check_roundtrip( tdf, tm.assert_frame_equal, path=setup_path, compression=compression ) with ensure_clean_store(setup_path) as store: # not consolidated df["foo"] = np.random.randn(len(df)) store["df"] = df recons = store["df"] assert recons._data.is_consolidated() # empty self._check_roundtrip(df[:0], tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable def test_empty_series_frame(self, setup_path): s0 = Series(dtype=object) s1 = Series(name="myseries", dtype=object) df0 = DataFrame() df1 = DataFrame(index=["a", "b", "c"]) df2 = DataFrame(columns=["d", "e", "f"]) self._check_roundtrip(s0, tm.assert_series_equal, path=setup_path) self._check_roundtrip(s1, tm.assert_series_equal, path=setup_path) self._check_roundtrip(df0, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) @td.xfail_non_writeable @pytest.mark.parametrize( "dtype", [np.int64, np.float64, np.object, "m8[ns]", "M8[ns]"] ) def test_empty_series(self, dtype, setup_path): s = Series(dtype=dtype) self._check_roundtrip(s, tm.assert_series_equal, path=setup_path) def test_can_serialize_dates(self, setup_path): rng = [x.date() for x in bdate_range("1/1/2000", "1/30/2000")] frame = DataFrame(np.random.randn(len(rng), 4), index=rng) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) def test_store_hierarchical(self, setup_path): index = MultiIndex( levels=[["foo", "bar", "baz", "qux"], ["one", "two", "three"]], codes=[[0, 0, 0, 1, 1, 2, 2, 3, 3, 3], [0, 1, 2, 0, 1, 1, 2, 0, 1, 2]], names=["foo", "bar"], ) frame = DataFrame(np.random.randn(10, 3), index=index, columns=["A", "B", "C"]) self._check_roundtrip(frame, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame.T, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(frame["A"], tm.assert_series_equal, path=setup_path) # check that the names are stored with ensure_clean_store(setup_path) as store: store["frame"] = frame recons = store["frame"] tm.assert_frame_equal(recons, frame) def test_store_index_name(self, setup_path): df = tm.makeDataFrame() df.index.name = "foo" with ensure_clean_store(setup_path) as store: store["frame"] = df recons = store["frame"] tm.assert_frame_equal(recons, df) def test_store_index_name_with_tz(self, setup_path): # GH 13884 df = pd.DataFrame({"A": [1, 2]}) df.index = pd.DatetimeIndex([1234567890123456787, 1234567890123456788]) df.index = df.index.tz_localize("UTC") df.index.name = "foo" with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") recons = store["frame"] tm.assert_frame_equal(recons, df) @pytest.mark.parametrize("table_format", ["table", "fixed"]) def test_store_index_name_numpy_str(self, table_format, setup_path): # GH #13492 idx = pd.Index( pd.to_datetime([datetime.date(2000, 1, 1), datetime.date(2000, 1, 2)]), name="cols\u05d2", ) idx1 = pd.Index( pd.to_datetime([datetime.date(2010, 1, 1), datetime.date(2010, 1, 2)]), name="rows\u05d0", ) df = pd.DataFrame(np.arange(4).reshape(2, 2), columns=idx, index=idx1) # This used to fail, returning numpy strings instead of python strings. with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format=table_format) df2 = read_hdf(path, "df") tm.assert_frame_equal(df, df2, check_names=True) assert type(df2.index.name) == str assert type(df2.columns.name) == str def test_store_series_name(self, setup_path): df = tm.makeDataFrame() series = df["A"] with ensure_clean_store(setup_path) as store: store["series"] = series recons = store["series"] tm.assert_series_equal(recons, series) @td.xfail_non_writeable @pytest.mark.parametrize( "compression", [False, pytest.param(True, marks=td.skip_if_windows_python_3)] ) def test_store_mixed(self, compression, setup_path): def _make_one(): df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["int1"] = 1 df["int2"] = 2 return df._consolidate() df1 = _make_one() df2 = _make_one() self._check_roundtrip(df1, tm.assert_frame_equal, path=setup_path) self._check_roundtrip(df2, tm.assert_frame_equal, path=setup_path) with ensure_clean_store(setup_path) as store: store["obj"] = df1 tm.assert_frame_equal(store["obj"], df1) store["obj"] = df2 tm.assert_frame_equal(store["obj"], df2) # check that can store Series of all of these types self._check_roundtrip( df1["obj1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["bool1"], tm.assert_series_equal, path=setup_path, compression=compression, ) self._check_roundtrip( df1["int1"], tm.assert_series_equal, path=setup_path, compression=compression, ) @pytest.mark.filterwarnings( "ignore:\\nduplicate:pandas.io.pytables.DuplicateWarning" ) def test_select_with_dups(self, setup_path): # single dtypes df = DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=["A"]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # dups across dtypes df = concat( [ DataFrame(np.random.randn(10, 4), columns=["A", "A", "B", "B"]), DataFrame( np.random.randint(0, 10, size=20).reshape(10, 2), columns=["A", "C"] ), ], axis=1, ) df.index = date_range("20130101 9:30", periods=10, freq="T") with ensure_clean_store(setup_path) as store: store.append("df", df) result = store.select("df") expected = df tm.assert_frame_equal(result, expected, by_blocks=True) result = store.select("df", columns=df.columns) expected = df tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["A"]] result = store.select("df", columns=["A"]) tm.assert_frame_equal(result, expected, by_blocks=True) expected = df.loc[:, ["B", "A"]] result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) # duplicates on both index and columns with ensure_clean_store(setup_path) as store: store.append("df", df) store.append("df", df) expected = df.loc[:, ["B", "A"]] expected = concat([expected, expected]) result = store.select("df", columns=["B", "A"]) tm.assert_frame_equal(result, expected, by_blocks=True) def test_overwrite_node(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeDataFrame() ts = tm.makeTimeSeries() store["a"] = ts tm.assert_series_equal(store["a"], ts) def test_select(self, setup_path): with ensure_clean_store(setup_path) as store: with catch_warnings(record=True): # select with columns= df = tm.makeTimeDataFrame() _maybe_remove(store, "df") store.append("df", df) result = store.select("df", columns=["A", "B"]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # equivalently result = store.select("df", [("columns=['A', 'B']")]) expected = df.reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # all a data columns _maybe_remove(store, "df") store.append("df", df, data_columns=True) result = store.select("df", ["A > 0"], columns=["A", "B"]) expected = df[df.A > 0].reindex(columns=["A", "B"]) tm.assert_frame_equal(expected, result) # with a data column, but different columns _maybe_remove(store, "df") store.append("df", df, data_columns=["A"]) result = store.select("df", ["A > 0"], columns=["C", "D"]) expected = df[df.A > 0].reindex(columns=["C", "D"]) tm.assert_frame_equal(expected, result) def test_select_dtypes(self, setup_path): with ensure_clean_store(setup_path) as store: # with a Timestamp data column (GH #2637) df = DataFrame( dict(ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300)) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A"]) result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # bool columns (GH #2849) df = DataFrame(np.random.randn(5, 2), columns=["A", "B"]) df["object"] = "foo" df.loc[4:5, "object"] = "bar" df["boolv"] = df["A"] > 0 _maybe_remove(store, "df") store.append("df", df, data_columns=True) expected = df[df.boolv == True].reindex(columns=["A", "boolv"]) # noqa for v in [True, "true", 1]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) expected = df[df.boolv == False].reindex(columns=["A", "boolv"]) # noqa for v in [False, "false", 0]: result = store.select( "df", "boolv == {v!s}".format(v=v), columns=["A", "boolv"] ) tm.assert_frame_equal(expected, result) # integer index df = DataFrame(dict(A=np.random.rand(20), B=np.random.rand(20))) _maybe_remove(store, "df_int") store.append("df_int", df) result = store.select("df_int", "index<10 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) # float index df = DataFrame( dict( A=np.random.rand(20), B=np.random.rand(20), index=np.arange(20, dtype="f8"), ) ) _maybe_remove(store, "df_float") store.append("df_float", df) result = store.select("df_float", "index<10.0 and columns=['A']") expected = df.reindex(index=list(df.index)[0:10], columns=["A"]) tm.assert_frame_equal(expected, result) with ensure_clean_store(setup_path) as store: # floats w/o NaN df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) store.append("df1", df, data_columns=True) result = store.select("df1", where="values>2.0") expected = df[df["values"] > 2.0] tm.assert_frame_equal(expected, result) # floats with NaN df.iloc[0] = np.nan expected = df[df["values"] > 2.0] store.append("df2", df, data_columns=True, index=False) result = store.select("df2", where="values>2.0") tm.assert_frame_equal(expected, result) # https://github.com/PyTables/PyTables/issues/282 # bug in selection when 0th row has a np.nan and an index # store.append('df3',df,data_columns=True) # result = store.select( # 'df3', where='values>2.0') # tm.assert_frame_equal(expected, result) # not in first position float with NaN ok too df = DataFrame(dict(cols=range(11), values=range(11)), dtype="float64") df["cols"] = (df["cols"] + 10).apply(str) df.iloc[1] = np.nan expected = df[df["values"] > 2.0] store.append("df4", df, data_columns=True) result = store.select("df4", where="values>2.0") tm.assert_frame_equal(expected, result) # test selection with comparison against numpy scalar # GH 11283 with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() expected = df[df["A"] > 0] store.append("df", df, data_columns=True) np_zero = np.float64(0) # noqa result = store.select("df", where=["A>np_zero"]) tm.assert_frame_equal(expected, result) def test_select_with_many_inputs(self, setup_path): with ensure_clean_store(setup_path) as store: df = DataFrame( dict( ts=bdate_range("2012-01-01", periods=300), A=np.random.randn(300), B=range(300), users=["a"] * 50 + ["b"] * 50 + ["c"] * 100 + ["a{i:03d}".format(i=i) for i in range(100)], ) ) _maybe_remove(store, "df") store.append("df", df, data_columns=["ts", "A", "B", "users"]) # regular select result = store.select("df", "ts>=Timestamp('2012-02-01')") expected = df[df.ts >= Timestamp("2012-02-01")] tm.assert_frame_equal(expected, result) # small selector result = store.select( "df", "ts>=Timestamp('2012-02-01') & users=['a','b','c']" ) expected = df[ (df.ts >= Timestamp("2012-02-01")) & df.users.isin(["a", "b", "c"]) ] tm.assert_frame_equal(expected, result) # big selector along the columns selector = ["a", "b", "c"] + ["a{i:03d}".format(i=i) for i in range(60)] result = store.select( "df", "ts>=Timestamp('2012-02-01') and users=selector" ) expected = df[(df.ts >= Timestamp("2012-02-01")) & df.users.isin(selector)] tm.assert_frame_equal(expected, result) selector = range(100, 200) result = store.select("df", "B=selector") expected = df[df.B.isin(selector)] tm.assert_frame_equal(expected, result) assert len(result) == 100 # big selector along the index selector = Index(df.ts[0:100].values) result = store.select("df", "ts=selector") expected = df[df.ts.isin(selector.values)] tm.assert_frame_equal(expected, result) assert len(result) == 100 def test_select_iterator(self, setup_path): # single table with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame(500) _maybe_remove(store, "df") store.append("df", df) expected = store.select("df") results = list(store.select("df", iterator=True)) result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=100)) assert len(results) == 5 result = concat(results) tm.assert_frame_equal(expected, result) results = list(store.select("df", chunksize=150)) result = concat(results) tm.assert_frame_equal(result, expected) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df_non_table") with pytest.raises(TypeError): read_hdf(path, "df_non_table", chunksize=100) with pytest.raises(TypeError): read_hdf(path, "df_non_table", iterator=True) with ensure_clean_path(setup_path) as path: df = tm.makeTimeDataFrame(500) df.to_hdf(path, "df", format="table") results = list(read_hdf(path, "df", chunksize=100)) result = concat(results) assert len(results) == 5 tm.assert_frame_equal(result, df) tm.assert_frame_equal(result, read_hdf(path, "df")) # multiple with ensure_clean_store(setup_path) as store: df1 = tm.makeTimeDataFrame(500) store.append("df1", df1, data_columns=True) df2 = tm.makeTimeDataFrame(500).rename(columns="{}_2".format) df2["foo"] = "bar" store.append("df2", df2) df = concat([df1, df2], axis=1) # full selection expected = store.select_as_multiple(["df1", "df2"], selector="df1") results = list( store.select_as_multiple(["df1", "df2"], selector="df1", chunksize=150) ) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_complete_8014(self, setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # no iterator with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/o iteration and no where clause works result = store.select("df") tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, begin # of range, works where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, single term, end # of range, works where = "index <= '{end_dt}'".format(end_dt=end_dt) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # select w/o iterator and where clause, inclusive range, # works where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) result = store.select("df", where=where) tm.assert_frame_equal(expected, result) # with iterator, full range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[-1] # select w/iterator and no where clause works results = list(store.select("df", chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) tm.assert_frame_equal(expected, result) def test_select_iterator_non_complete_8014(self, setup_path): # GH 8014 # using iterator and where clause chunksize = 1e4 # with iterator, non complete range with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[1] end_dt = expected.index[-2] # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[ (expected.index >= beg_dt) & (expected.index <= end_dt) ] tm.assert_frame_equal(rexpected, result) # with iterator, empty where with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100064, "S") _maybe_remove(store, "df") store.append("df", expected) end_dt = expected.index[-1] # select w/iterator and where clause, single term, begin of range where = "index > '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) assert 0 == len(results) def test_select_iterator_many_empty_frames(self, setup_path): # GH 8014 # using iterator and where clause can return many empty # frames. chunksize = int(1e4) # with iterator, range limited to the first chunk with ensure_clean_store(setup_path) as store: expected = tm.makeTimeDataFrame(100000, "S") _maybe_remove(store, "df") store.append("df", expected) beg_dt = expected.index[0] end_dt = expected.index[chunksize - 1] # select w/iterator and where clause, single term, begin of range where = "index >= '{beg_dt}'".format(beg_dt=beg_dt) results = list(store.select("df", where=where, chunksize=chunksize)) result = concat(results) rexpected = expected[expected.index >= beg_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, single term, end of range where = "index <= '{end_dt}'".format(end_dt=end_dt) results = list(store.select("df", where=where, chunksize=chunksize)) assert len(results) == 1 result = concat(results) rexpected = expected[expected.index <= end_dt] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause, inclusive range where = "index >= '{beg_dt}' & index <= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) # should be 1, is 10 assert len(results) == 1 result = concat(results) rexpected = expected[ (expected.index >= beg_dt) & (expected.index <= end_dt) ] tm.assert_frame_equal(rexpected, result) # select w/iterator and where clause which selects # *nothing*. # # To be consistent with Python idiom I suggest this should # return [] e.g. `for e in []: print True` never prints # True. where = "index <= '{beg_dt}' & index >= '{end_dt}'".format( beg_dt=beg_dt, end_dt=end_dt ) results = list(store.select("df", where=where, chunksize=chunksize)) # should be [] assert len(results) == 0 @pytest.mark.filterwarnings( "ignore:\\nthe :pandas.io.pytables.AttributeConflictWarning" ) def test_retain_index_attributes(self, setup_path): # GH 3499, losing frequency info on index recreation df = DataFrame( dict(A=Series(range(3), index=date_range("2000-1-1", periods=3, freq="H"))) ) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "data") store.put("data", df, format="table") result = store.get("data") tm.assert_frame_equal(df, result) for attr in ["freq", "tz", "name"]: for idx in ["index", "columns"]: assert getattr(getattr(df, idx), attr, None) == getattr( getattr(result, idx), attr, None ) # try to append a table with a different frequency with catch_warnings(record=True): df2 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) store.append("data", df2) assert store.get_storer("data").info["index"]["freq"] is None # this is ok _maybe_remove(store, "df2") df2 = DataFrame( dict( A=Series( range(3), index=[ Timestamp("20010101"), Timestamp("20010102"), Timestamp("20020101"), ], ) ) ) store.append("df2", df2) df3 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) store.append("df2", df3) @pytest.mark.filterwarnings( "ignore:\\nthe :pandas.io.pytables.AttributeConflictWarning" ) def test_retain_index_attributes2(self, setup_path): with ensure_clean_path(setup_path) as path: with catch_warnings(record=True): df = DataFrame( dict( A=Series( range(3), index=date_range("2000-1-1", periods=3, freq="H") ) ) ) df.to_hdf(path, "data", mode="w", append=True) df2 = DataFrame( dict( A=Series( range(3), index=date_range("2002-1-1", periods=3, freq="D") ) ) ) df2.to_hdf(path, "data", append=True) idx = date_range("2000-1-1", periods=3, freq="H") idx.name = "foo" df = DataFrame(dict(A=Series(range(3), index=idx))) df.to_hdf(path, "data", mode="w", append=True) assert read_hdf(path, "data").index.name == "foo" with catch_warnings(record=True): idx2 = date_range("2001-1-1", periods=3, freq="H") idx2.name = "bar" df2 = DataFrame(dict(A=Series(range(3), index=idx2))) df2.to_hdf(path, "data", append=True) assert read_hdf(path, "data").index.name is None def test_frame_select(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: store.put("frame", df, format="table") date = df.index[len(df) // 2] crit1 = Term("index>=date") assert crit1.env.scope["date"] == date crit2 = "columns=['A', 'D']" crit3 = "columns=A" result = store.select("frame", [crit1, crit2]) expected = df.loc[date:, ["A", "D"]] tm.assert_frame_equal(result, expected) result = store.select("frame", [crit3]) expected = df.loc[:, ["A"]] tm.assert_frame_equal(result, expected) # invalid terms df = tm.makeTimeDataFrame() store.append("df_time", df) with pytest.raises(ValueError): store.select("df_time", "index>0") # can't select if not written as table # store['frame'] = df # with pytest.raises(ValueError): # store.select('frame', [crit1, crit2]) def test_frame_select_complex(self, setup_path): # select via complex criteria df = tm.makeTimeDataFrame() df["string"] = "foo" df.loc[df.index[0:4], "string"] = "bar" with ensure_clean_store(setup_path) as store: store.put("df", df, format="table", data_columns=["string"]) # empty result = store.select("df", 'index>df.index[3] & string="bar"') expected = df.loc[(df.index > df.index[3]) & (df.string == "bar")] tm.assert_frame_equal(result, expected) result = store.select("df", 'index>df.index[3] & string="foo"') expected = df.loc[(df.index > df.index[3]) & (df.string == "foo")] tm.assert_frame_equal(result, expected) # or result = store.select("df", 'index>df.index[3] | string="bar"') expected = df.loc[(df.index > df.index[3]) | (df.string == "bar")] tm.assert_frame_equal(result, expected) result = store.select( "df", "(index>df.index[3] & " 'index<=df.index[6]) | string="bar"' ) expected = df.loc[ ((df.index > df.index[3]) & (df.index <= df.index[6])) | (df.string == "bar") ] tm.assert_frame_equal(result, expected) # invert result = store.select("df", 'string!="bar"') expected = df.loc[df.string != "bar"] tm.assert_frame_equal(result, expected) # invert not implemented in numexpr :( with pytest.raises(NotImplementedError): store.select("df", '~(string="bar")') # invert ok for filters result = store.select("df", "~(columns=['A','B'])") expected = df.loc[:, df.columns.difference(["A", "B"])] tm.assert_frame_equal(result, expected) # in result = store.select("df", "index>df.index[3] & columns in ['A','B']") expected = df.loc[df.index > df.index[3]].reindex(columns=["A", "B"]) tm.assert_frame_equal(result, expected) def test_frame_select_complex2(self, setup_path): with ensure_clean_path(["parms.hdf", "hist.hdf"]) as paths: pp, hh = paths # use non-trivial selection criteria parms = DataFrame({"A": [1, 1, 2, 2, 3]}) parms.to_hdf(pp, "df", mode="w", format="table", data_columns=["A"]) selection = read_hdf(pp, "df", where="A=[2,3]") hist = DataFrame( np.random.randn(25, 1), columns=["data"], index=MultiIndex.from_tuples( [(i, j) for i in range(5) for j in range(5)], names=["l1", "l2"] ), ) hist.to_hdf(hh, "df", mode="w", format="table") expected = read_hdf(hh, "df", where="l1=[2, 3, 4]") # scope with list like l = selection.index.tolist() # noqa store = HDFStore(hh) result = store.select("df", where="l1=l") tm.assert_frame_equal(result, expected) store.close() result = read_hdf(hh, "df", where="l1=l") tm.assert_frame_equal(result, expected) # index index = selection.index # noqa result = read_hdf(hh, "df", where="l1=index") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=selection.index") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=selection.index.tolist()") tm.assert_frame_equal(result, expected) result = read_hdf(hh, "df", where="l1=list(selection.index)") tm.assert_frame_equal(result, expected) # scope with index store = HDFStore(hh) result = store.select("df", where="l1=index") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=selection.index") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=selection.index.tolist()") tm.assert_frame_equal(result, expected) result = store.select("df", where="l1=list(selection.index)") tm.assert_frame_equal(result, expected) store.close() def test_invalid_filtering(self, setup_path): # can't use more than one filter (atm) df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: store.put("df", df, format="table") # not implemented with pytest.raises(NotImplementedError): store.select("df", "columns=['A'] | columns=['B']") # in theory we could deal with this with pytest.raises(NotImplementedError): store.select("df", "columns=['A','B'] & columns=['C']") def test_string_select(self, setup_path): # GH 2973 with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() # test string ==/!= df["x"] = "none" df.loc[2:7, "x"] = "" store.append("df", df, data_columns=["x"]) result = store.select("df", "x=none") expected = df[df.x == "none"] tm.assert_frame_equal(result, expected) result = store.select("df", "x!=none") expected = df[df.x != "none"] tm.assert_frame_equal(result, expected) df2 = df.copy() df2.loc[df2.x == "", "x"] = np.nan store.append("df2", df2, data_columns=["x"]) result = store.select("df2", "x!=none") expected = df2[isna(df2.x)] tm.assert_frame_equal(result, expected) # int ==/!= df["int"] = 1 df.loc[2:7, "int"] = 2 store.append("df3", df, data_columns=["int"]) result = store.select("df3", "int=2") expected = df[df.int == 2] tm.assert_frame_equal(result, expected) result = store.select("df3", "int!=2") expected = df[df.int != 2] tm.assert_frame_equal(result, expected) def test_read_column(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # GH 17912 # HDFStore.select_column should raise a KeyError # exception if the key is not a valid store with pytest.raises(KeyError, match="No object named df in the file"): store.select_column("df", "index") store.append("df", df) # error with pytest.raises( KeyError, match=re.escape("'column [foo] not found in the table'") ): store.select_column("df", "foo") with pytest.raises(Exception): store.select_column("df", "index", where=["index>5"]) # valid result = store.select_column("df", "index") tm.assert_almost_equal(result.values, Series(df.index).values) assert isinstance(result, Series) # not a data indexable column with pytest.raises(ValueError): store.select_column("df", "values_block_0") # a data column df2 = df.copy() df2["string"] = "foo" store.append("df2", df2, data_columns=["string"]) result = store.select_column("df2", "string") tm.assert_almost_equal(result.values, df2["string"].values) # a data column with NaNs, result excludes the NaNs df3 = df.copy() df3["string"] = "foo" df3.loc[4:6, "string"] = np.nan store.append("df3", df3, data_columns=["string"]) result = store.select_column("df3", "string") tm.assert_almost_equal(result.values, df3["string"].values) # start/stop result = store.select_column("df3", "string", start=2) tm.assert_almost_equal(result.values, df3["string"].values[2:]) result = store.select_column("df3", "string", start=-2) tm.assert_almost_equal(result.values, df3["string"].values[-2:]) result = store.select_column("df3", "string", stop=2) tm.assert_almost_equal(result.values, df3["string"].values[:2]) result = store.select_column("df3", "string", stop=-2) tm.assert_almost_equal(result.values, df3["string"].values[:-2]) result = store.select_column("df3", "string", start=2, stop=-2) tm.assert_almost_equal(result.values, df3["string"].values[2:-2]) result = store.select_column("df3", "string", start=-2, stop=2) tm.assert_almost_equal(result.values, df3["string"].values[-2:2]) # GH 10392 - make sure column name is preserved df4 = DataFrame({"A": np.random.randn(10), "B": "foo"}) store.append("df4", df4, data_columns=True) expected = df4["B"] result = store.select_column("df4", "B") tm.assert_series_equal(result, expected) def test_coordinates(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") store.append("df", df) # all c = store.select_as_coordinates("df") assert (c.values == np.arange(len(df.index))).all() # get coordinates back & test vs frame _maybe_remove(store, "df") df = DataFrame(dict(A=range(5), B=range(5))) store.append("df", df) c = store.select_as_coordinates("df", ["index<3"]) assert (c.values == np.arange(3)).all() result = store.select("df", where=c) expected = df.loc[0:2, :] tm.assert_frame_equal(result, expected) c = store.select_as_coordinates("df", ["index>=3", "index<=4"]) assert (c.values == np.arange(2) + 3).all() result = store.select("df", where=c) expected = df.loc[3:4, :] tm.assert_frame_equal(result, expected) assert isinstance(c, Index) # multiple tables
_maybe_remove(store, "df1")
pandas.tests.io.pytables.common._maybe_remove
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds":
pandas.StringDtype()
pandas.StringDtype
# -*- coding: utf-8 -*- ''' Analysis module for analysis of angle-dependence Author: <NAME>, Max Planck Institute of Microstructure Physics, Halle Weinberg 2 06120 Halle <EMAIL> ''' ''' Input zone ''' # ____________________________________________________________________________ # SETTINGS # Data ''' "selectFileType" How to select input files: Mode 0: Select each file seperately through UI Mode 1: Select file that specifies all file locations Mode 2: Give file locations file in code (need to know what you are doing) ''' selectFileType = 2 ''' "analysisMode": Requirements for different modes: a) Lineshape analysis (frequency-dependence) b) AMR calibration c) Irf calibration d) PHE and AHE calibration Mode 0: Plotting mode. Requires only angle-dependent data Mode 1: "c-free" fitting. V_amr is a fitting parameter and Vs and Va are fitted simulatneously to ensure Vamr is the same for both fits. Requirement: a) Mode 2: Quantitative fitting. Torques have quantitative meaning. Requirements: a)-c) Mode 3: Semi-quantitative fitting with generalized Karimeddiny artifact description. Requirements: a)-c) Mode 4: Semi-quantitative fitting with generalized Karimeddiny artifact descirption in XX and XY direction. Requirements: a)-d) ''' analysisMode = 4 ''' "Vset_mode": Only for analysisMode 4. Specify which data to use for fitting. 0: Vsxx, Vaxx, Vsxy 1: Vsxx, Vaxx, Vaxy ''' Vset_mode = 0 voltageMagnitude = 'mu' # V flipSign = False fit_phi_offset = False # Only implements for c-free mode fit_comps_list = ['xyz'] # Select assumed torque components assume_arts = True norm_to = 'yFL' # Only for mode 1. Specify which torque component to normalize to. plotPhiMode = 1 # 0: raw angle, 1: shifted angle delta_phi = 45 # distance between angle tick values (deg) plotDpi = 600 saveData = True ''' Input zone ends here. ''' # ____________________________________________________________________________ # CODE import tkinter as tk from tkinter import filedialog import pandas as pd import matplotlib.pyplot as plt from files import File from plots import GenPlot, BoxText from helpers.file_handling import read_csv_Series import numpy as np import modules.stfmrAnglePlotFitting as apf from modules.stfmrAnglePlotFittingCFree import angleDepFittingCFree, get_norm_torques from modules.stfmrKarimeddinyFitting import V_Karimeddiny_fitting, get_norm_torques_karimed, calc_Ru from modules.stfmrKarimeddinyHallFitting import V_Karimeddiny_Hall_fitting, get_norm_torques_karimed, calc_Ru import stfmrHelpers.stfmrAnglePlotFitHelpers as aph from units import rad2deg from stfmrHelpers.stfmrAnglePlotUIHelper import get_ipFileLocationsFilesFromUI if selectFileType == 0: ipFileLocationsFiles = [get_ipFileLocationsFilesFromUI(analysisMode)] elif selectFileType == 1: root = tk.Tk() root.withdraw() ipFileLocationsFiles = [File(filedialog.askopenfilename(parent=root, title='Choose .csv file with input files locations'))] elif selectFileType == 2: ipFileLocationsFiles = [ # File(r'D:\owncloud\0_Personal\ANALYSIS\Mn3SnN\ST-FMR\MA2959-2\220131\D1_0deg\02_angle-dependence\fittingOutput\angleDependence\MA2959-2-D1_angleDep_input_files.csv'), # File(r'D:\owncloud\0_Personal\ANALYSIS\Mn3SnN\ST-FMR\MA2959-2\220131\D3_45deg\01_angle-dependence\fittingOutput\angleDependence\MA2959-2-D3_angleDep_input_files.csv'), # File(r'D:\owncloud\0_Personal\ANALYSIS\Mn3SnN\ST-FMR\MA2960-2\220202\D1_0deg\003_angle-dependence\fittingOutput\angleDependence\MA2960-2-D1_angleDep_input_files.csv'), # File(r'D:\owncloud\0_Personal\ANALYSIS\Mn3SnN\ST-FMR\MA2960-2\220203\D4_90deg\002_angle-dependence\pos_field\fittingOutput\angleDependence\MA2960-2-D4_angleDep_input_files.csv') File(r'D:\owncloud\0_Personal\ANALYSIS\Mn3SnN\ST-FMR\MA2959-2\220131\D1_0deg\02_angle-dependence\fittingOutput\angleDependence\MA2959-2-D1_angleDep_input_files.csv') ] else: raise ValueError(f'Select files type "{selectFileType}" not defined') inputFiles = [] ipFileLocations = [] for ipFileLocationsFile in ipFileLocationsFiles: # Get input file locations ipFileLocations = read_csv_Series(ipFileLocationsFile.fileDirName) ipAngleDepFittingSummaryFile = File(ipFileLocations['angle dependence fitting summary']) # Get input data inputData = pd.read_csv(ipAngleDepFittingSummaryFile.fileDirName,index_col=False) if analysisMode == 4: # Get additional data from XY measurement ipAngleDepFittingXYSummaryFile = File(ipFileLocations['angle dependence fitting summary transversal']) inputDataXY = pd.read_csv(ipAngleDepFittingXYSummaryFile.fileDirName,index_col=False) # Extract important collumns if voltageMagnitude == 'mu': y_label = 'V ($\mu$V)' voltageDivider = 1e-6 if plotPhiMode == 0: try: x = inputData['Angle (deg)'] except: try: x = inputData['fieldAngle (deg)'] except: raise ValueError x_label = '$\phi$ (deg)' Vs = inputData['Vsym (V)'] Vas = inputData['Vas (V)'] if analysisMode == 4: Vsxx = Vs Vaxx = Vas Vsxy = inputDataXY['Vsym (V)'] Vaxy = inputDataXY['Vas (V)'] elif plotPhiMode == 1: x = inputData.sort_values(by='fieldAngle (deg)')['fieldAngle (deg)'] x_label = '$\phi$ (deg)' Vs = inputData.sort_values(by='fieldAngle (deg)')['Vsym (V)'] Vas = inputData.sort_values(by='fieldAngle (deg)')['Vas (V)'] # Extract fixed parameters I = float(inputData['Current (mA)'][0]) P = float(inputData['rf Power (dBm)'][0]) f = float(inputData['Frequency (GHz)'][0]) # Flip sign if defined if flipSign == True: Vs *= -1 Vas *= -1 # _________________________________________________________________________ # ANALYSIS MODE 0 if analysisMode == 0: # Simple data plotting without fit fig, ax = plt.subplots() ax.scatter(x, Vs, label='Vs') ax.scatter(x, Vas, label='Vas') plt.plot(x, Vs) plt.plot(x, Vas) ax.set_xlabel(x_label) ax.set_ylabel(y_label) ax.legend() ax.set_xticks(np.arange(0, 361, delta_phi)) ax.set_title('I = {} mA, f = {} GHz, P = {} dBm'.format(I, f, P)) outputFileSubdir = ipAngleDepFittingSummaryFile.fileDir + '/angleDependence/plot-only' outputFile = File(outputFileSubdir, ipAngleDepFittingSummaryFile.fileNameWOExt + '_anglePlot.png') outputFile.makeDirIfNotExist() if saveData is True: fig.savefig(outputFile.fileDirName, bbox_inches="tight", dpi=plotDpi) # _________________________________________________________________________ # ANALYSIS MODE 1 elif analysisMode == 1: ''' c-free fitting ''' opFileDir = ipAngleDepFittingSummaryFile.fileDir + '/angleDependence/c-free' opFileParams = File(opFileDir, 'fitparams_summary.csv') opParamsSum =
pd.DataFrame()
pandas.DataFrame
import os import tensorflow as tf import math import numpy as np import pandas as pd import glob import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm from waymo_open_dataset.protos.scenario_pb2 import Scenario import matplotlib.patches as patches import matplotlib.patheffects as path_effects def get_file_list(filepath): all_files = sorted(glob.glob(filepath)) segs_name_index = [] for file in all_files: segment_name = os.path.basename(file) segs_name_index.append(segment_name[-14:-9]) # print(segs_name_all) #print(segs_name_index) return all_files, segs_name_index global point_has_been_pointed point_has_been_pointed = [] def plot_top_view_single_pic_map(trj_in,file_index,scenario_id_in, scenario,target_left,target_right,length,trafficlight_lane,lane_turn_right_id_real=[]): global point_has_been_pointed #plt.figure(figsize=(10, 7)) fig, ax = plt.subplots(1,2,figsize=(14,7)) plt.xlabel('global center x (m)', fontsize=10) plt.ylabel('global center y (m)', fontsize=10) plt.axis('square') plt.xlim([trj_in['center_x'].min() - 1, trj_in['center_x'].max() + 1]) plt.ylim([trj_in['center_y'].min() - 1, trj_in['center_y'].max() + 1]) title_name = 'Scenario ' + str(scenario_id_in) plt.title(title_name, loc='left') plt.xticks(np.arange(round(float(trj_in['center_x'].min())), round(float(trj_in['center_x'].max())), 20),fontsize=5) plt.yticks(np.arange(round(float(trj_in['center_y'].min())), round(float(trj_in['center_y'].max())), 20), fontsize=5) #ax = plt.subplots(121) map_features = scenario.map_features road_edge_count = 0 lane_count = 0 road_line = 0 all_element_count = 0 for single_feature in map_features: all_element_count += 1 id_ = single_feature.id #print("id is %d"%id_) if list(single_feature.road_edge.polyline)!= []: road_edge_count += 1 single_line_x = [] single_line_y = [] # print("road_edge id is %d"%single_feature.id) for polyline in single_feature.road_edge.polyline: single_line_x.append(polyline.x) single_line_y.append(polyline.y) ax[0].plot(single_line_x, single_line_y, color='black', linewidth=0.3) # 道路边界为黑色 if list(single_feature.lane.polyline)!= []: lane_count += 1 single_line_x = [] single_line_y = [] for polyline in single_feature.lane.polyline: single_line_x.append(polyline.x) single_line_y.append(polyline.y) #z1 = np.polyfit(single_line_x,single_line_y,8) #p1 = np.poly1d(z1) #y_hat = p1(single_line_x) #ax.plot(single_line_x,y_hat,color='green', linewidth=0.5) if id_ in target_left: ax[0].plot(single_line_x, single_line_y, color='green', linewidth=0.5) ax[1].plot(single_line_x, single_line_y, color='green', linewidth=0.5) elif id_ in target_right: if id_ in lane_turn_right_id_real: #目标交叉口的右转车道 ax[0].plot(single_line_x, single_line_y, color='red', linewidth=0.5) ax[1].plot(single_line_x, single_line_y, color='red', linewidth=0.5) else: ax[0].plot(single_line_x, single_line_y, color='purple', linewidth=0.5) ax[1].plot(single_line_x, single_line_y, color='purple', linewidth=0.5) #deeppink elif id_ in trafficlight_lane: #有信号灯数据的车道 ax[0].plot(single_line_x, single_line_y, color='deeppink', linewidth=0.5) ax[1].plot(single_line_x, single_line_y, color='deeppink', linewidth=0.5) else: ax[0].plot(single_line_x, single_line_y, color='blue', linewidth=0.5) # 道路中心线为蓝色 if (single_line_x[0],single_line_y[0]) not in point_has_been_pointed: ax[0].text(single_line_x[0], single_line_y[0], id_, fontsize=1.5) point_has_been_pointed.append((single_line_x[0],single_line_y[0])) else: ax[0].text(single_line_x[0]-5, single_line_y[0]-5, id_,color='red', fontsize=1.5) point_has_been_pointed.append((single_line_x[0]-5, single_line_y[0]-5)) if list(single_feature.road_line.polyline)!=[]: road_line += 1 single_line_x = [] single_line_y = [] for polyline in single_feature.road_line.polyline: single_line_x.append(polyline.x) single_line_y.append(polyline.y) ax[0].plot(single_line_x, single_line_y, color='black', linestyle=':', linewidth=0.3) # 道路标线为 虚线 fig_save_name = 'E:/Result_save/figure_save/intersection_topo_figure_test/top_view_segment_' + str( file_index) + '_scenario_' + str( scenario_id_in) + '_trajectory.jpg' #print(fig_save_name) plt.savefig(fig_save_name, dpi=600) #plt.show() plt.close('all') return road_edge_count, lane_count, road_line,all_element_count def get_lane_min_dis(single_scenario_all_feature,map_features_id_list,ego_lane_id,other_lanes,connect_type): ego_index = map_features_id_list.index(ego_lane_id) ego_lane_info = single_scenario_all_feature[ego_index] lane_inter_dis = [] #用于记录本车道最尽头和目标车道最尽头之间的距离,用于判定是否为交叉口内部 ego_lane_point = () other_lane_point = [] for other_lane_id in other_lanes: other_lane_index = map_features_id_list.index(other_lane_id) other_lane_info = single_scenario_all_feature[other_lane_index] if connect_type == 'entry': x1,y1 = ego_lane_info.lane.polyline[0].x,ego_lane_info.lane.polyline[0].y x2,y2 = other_lane_info.lane.polyline[0].x,other_lane_info.lane.polyline[0].y ego_lane_point = (ego_lane_info.lane.polyline[0].x,ego_lane_info.lane.polyline[0].y) #如果是进入的关系,则返回该车道的第一个点 other_lane_point.append((other_lane_info.lane.polyline[0].x,other_lane_info.lane.polyline[0].y)) if connect_type == 'exit': x1, y1 = ego_lane_info.lane.polyline[-1].x, ego_lane_info.lane.polyline[-1].y x2, y2 = other_lane_info.lane.polyline[-1].x, other_lane_info.lane.polyline[-1].y ego_lane_point = ( ego_lane_info.lane.polyline[-1].x, ego_lane_info.lane.polyline[-1].y) # 如果是驶出的关系,则返回该车道的最后一个点 other_lane_point.append((other_lane_info.lane.polyline[-1].x, other_lane_info.lane.polyline[-1].y)) dis = np.sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2)) lane_inter_dis.append(dis) return lane_inter_dis,ego_lane_point,other_lane_point def cal_angle(x1,y1,x2,y2): if x2!=x1: angle = (math.atan((y2-y1)/(x2-x1)))*180/np.pi else: angle = 90 #避免斜率不存在的情况 return angle def get_lane_angle_chane(polyline_list,ego_lane_id): #计算 angle_start = 0 angle_end = 0 length = len(polyline_list) x_list = [] y_list = [] turn_type = 'straight' x1, y1 = polyline_list[0].x, polyline_list[0].y x4, y4 = polyline_list[-1].x, polyline_list[-1].y for polyline in polyline_list: x_list.append(polyline.x) y_list.append(polyline.y) try: # print(polyline_list) x2, y2 = polyline_list[3].x, polyline_list[3].y x3, y3 = polyline_list[-3].x, polyline_list[-3].y angle_start = cal_angle(x1,y1, x2, y2) angle_end = cal_angle(x3,y3,x4,y4) delta_angle = angle_end - angle_start # 大于0为左转,小于0为右转 except: angle_start = angle_end = delta_angle = None #判断左右转信息 index_mid = int(length/2) x_mid = polyline_list[index_mid].x y_mid = polyline_list[index_mid].y # p1 = np.array((x_mid-x1,y_mid-y1)) # p2 = np.array((x4-x_mid,y4-y_mid)) p3 = (x_mid-x1)*(y4-y_mid)-(y_mid-y1)*(x4-x_mid) #print(p3) if p3 > 0: turn_type = 'left' elif p3<0: turn_type = 'right' #print("Turn type is %s"%turn_type) return angle_start,angle_end,delta_angle,turn_type def cal_lane_slpoe(polyline): x1,y1 = polyline[0].x,polyline[0].y #直线起点xy坐标 x2,y2 = polyline[-1].x,polyline[-1].y #直线终点xy坐标 if x2-x1 != 0: slope = (y2-y1)/(x2-x1) else: slope = 90 return slope def map_topo_info_extract(map_features): #提取车道连接关系等拓扑信息 single_feature_all_lane_polyline = [] # 一个scenario中所有的车道信息(仅包括散点) lane_id_all = [] #一个scenario中所有车道的ID信息 all_lane_entry_exit_info = [] # 记录所有车道的进出车道信息 single_map_dict = {} lane_turn_left_id = [] #记录交叉口内部所有左转车道ID lane_turn_right_id = [] #记录交叉口内部所有右转车道ID for single_feature in map_features: # 先将每根车道线的信息保存成列表 single_scenario_all_feature.append(single_feature) map_features_id_list.append(single_feature.id) for single_feature in map_features: single_lane_entry_exit_info = {} # 记录一个车道的进出车道信息,包括与之相邻车道终点与该车道终点的距离(用于和交叉口尺寸阈值进行判定) if list(single_feature.lane.polyline) != []: ego_lane_id = single_feature.id entry_lanes = single_feature.lane.entry_lanes exit_lanes = single_feature.lane.exit_lanes entry_lanes_dis, ego_lane_point_entry, entry_lane_point = get_lane_min_dis(single_scenario_all_feature, map_features_id_list, ego_lane_id, entry_lanes, 'entry') exit_lanes_dis, ego_lane_point_exit, exit_lane_point = get_lane_min_dis(single_scenario_all_feature, map_features_id_list, ego_lane_id, exit_lanes, 'exit') angle_start, angle_end, delta_angle, turn_type = get_lane_angle_chane(single_feature.lane.polyline, ego_lane_id) # 该线段的角度变化值 single_lane_entry_exit_info['file_index'] = file_index single_lane_entry_exit_info['scenario_id'] = scenario_label single_lane_entry_exit_info['lane_id'] = ego_lane_id single_lane_entry_exit_info['angle_start'] = angle_start single_lane_entry_exit_info['angle_end'] = angle_end single_lane_entry_exit_info['ego_lane_angle_change'] = delta_angle single_lane_entry_exit_info['is_a_turn'] = '' if delta_angle: if abs(delta_angle) > 35: #由50暂时修正为35 # if 120>delta_angle >50: #为左转 # if delta_angle > 50: # 为左转 if turn_type == 'left': single_lane_entry_exit_info['is_a_turn'] = 'left' lane_turn_left_id.append(ego_lane_id) # elif -120<delta_angle <-50: # elif delta_angle < -50: elif turn_type == 'right': single_lane_entry_exit_info['is_a_turn'] = 'right' lane_turn_right_id.append(ego_lane_id) # 整个交叉口右转车道只有四根 else: single_lane_entry_exit_info['is_a_turn'] = 'straight' else: single_lane_entry_exit_info['is_a_turn'] = 'straight' if single_lane_entry_exit_info['is_a_turn'] == 'straight': single_lane_entry_exit_info['lane_slope'] = cal_lane_slpoe(single_feature.lane.polyline) #如果是直线车道,计算这条车道的斜率,用于后续计算交叉口角度 # single_lane_entry_exit_info['is a turn'] = turn_type #相连接车道信息提取 single_lane_entry_exit_info['ego_lane_point_entry'] = ego_lane_point_entry single_lane_entry_exit_info['ego_lane_point_exit'] = ego_lane_point_exit single_lane_entry_exit_info['entry_lanes'] = entry_lanes single_lane_entry_exit_info['entry_lanes_dis'] = entry_lanes_dis single_lane_entry_exit_info['entry_lane_point'] = entry_lane_point single_lane_entry_exit_info['exit_lanes'] = exit_lanes single_lane_entry_exit_info['exit_lanes_dis'] = exit_lanes_dis single_lane_entry_exit_info['exit_lane_point'] = exit_lane_point #相邻车道信息提取 lane_index_all = len(list(single_feature.lane.polyline)) #这条路被分成的小片段序列总数(即散点总数) single_lane_entry_exit_info['left_neighbors_id'] = -1 #先初始化 single_lane_entry_exit_info['right_neighbors_id'] = -1 if list(single_feature.lane.left_neighbors) != []: #左边有车道 left_neighbors_temp = list(single_feature.lane.left_neighbors) flag1 = 0 for left_neighbor in left_neighbors_temp: # print('index') # print(ego_lane_id) # print(lane_index_all) # print(left_neighbor.self_end_index) if abs(left_neighbor.self_end_index - lane_index_all)<2: left_neighbors_id = left_neighbor.feature_id #记录满足条件的那条左边相邻车道的ID #print("left_neighbors %d" % left_neighbors_id) flag1 = 1 break if flag1 ==1: single_lane_entry_exit_info['left_neighbors_id'] = left_neighbors_id #print(left_neighbors_id) if list(single_feature.lane.right_neighbors) != []: #右边右车道 right_neighbors_temp = list(single_feature.lane.right_neighbors) flag2 = 0 for right_neighbor in right_neighbors_temp: #print('index222') #print(lane_index_all) #print(left_neighbor.self_end_index) if abs(right_neighbor.self_end_index -lane_index_all)<2: right_neighbors_id = right_neighbor.feature_id #print("right_neighbors %d"%right_neighbors_id) flag2 = 1 break if flag2 == 1: single_lane_entry_exit_info['right_neighbors_id'] = right_neighbors_id #将一些信息重新记录,便于数据检索和处理 lane_id_all.append(single_feature.id) all_lane_entry_exit_info.append(single_lane_entry_exit_info) single_feature_all_lane_polyline.append((single_feature.id, single_feature.lane.polyline)) single_map_dict[single_feature.id] = single_feature.lane.polyline # 使用字典进行检索,得到所有车道的坐标点信息 # print('qqqq') # print(single_scenario_all_lane_entry_exit_info) # print(single_map_dict,lane_turn_left_id,lane_turn_right_id) return all_lane_entry_exit_info,single_map_dict,lane_turn_left_id,lane_turn_right_id def intersection_angle_cal(df_all_lan_topo_info): from sklearn.cluster import KMeans intersection_angle = 0 slope_list = pd.unique(df_all_lan_topo_info[df_all_lan_topo_info['is_a_turn']== 'straight']['lane_slope'].tolist()) #print('slope_list:') #print(slope_list) estimator = KMeans(n_clusters=2) # 构造聚类器 estimator.fit(np.array(slope_list).reshape(-1, 1)) # 聚类 label_pred = estimator.labels_ # 获取聚类标签 k1 = np.mean(slope_list[label_pred==0]) #这一类斜率的平均值计算 k2 = np.mean(slope_list[label_pred==1]) #print('k1:%f,k2:%f'%(k1,k2)) intersection_angle = math.atan(abs((k2-k1)/(1+k1*k2)))*180/np.pi return intersection_angle class Point(): def __init__(self,x,y): self.x = x self.y = y def get_point_order(points): #得到正确的点的连线顺序,以得到正确的多边形 points_new = [] points_new_plus = [] #将交叉口范围稍微扩大 left_point = {} #某个点左侧最近的点 right_point = {} #某个点右侧最近的点 for A in points: angle_vec = 0 for B in points: for C in points: if (A.x!=B.x and A.y!=B.y)and (C.x!=B.x and C.y!=B.y) and (C.x!=A.x and C.y!=A.y): vec_AB = Point(B.x-A.x,B.y-A.y) vec_AC = Point(C.x-A.x,C.y-A.y) vec_BA = Point(-vec_AB.x,-vec_AB.y) #print(vec_AB.x,vec_AB.y,vec_AC.x,vec_AC.y,A.x,A.y,C.x,C.y) #print(abs(math.sqrt(vec_AB.x**2+vec_AB.y**2)*math.sqrt(vec_AC.x**2+vec_AC.y**2))) cos_angle = (vec_AB.x*vec_AC.x+vec_AB.y*vec_AC.y)/abs(math.sqrt(vec_AB.x**2+vec_AB.y**2)*math.sqrt(vec_AC.x**2+vec_AC.y**2)) #print(cos_angle) angle_vec_temp = abs(math.acos(cos_angle)*180/np.pi) #print(angle_vec_temp) if angle_vec_temp > angle_vec: angle_vec = angle_vec_temp #print(angle_vec) p5 = vec_BA.x*vec_AC.y - vec_AC.x*vec_BA.y if p5>0: left_point[points.index(A)] = points.index(B) right_point[points.index(A)] = points.index(C) elif p5<0: left_point[points.index(A)] = points.index(C) right_point[points.index(A)] = points.index(B) A = points[0] points_new.append((A.x,A.y)) points_new_plus.append((A.x+5,A.y+5)) points_new_index = [0] for i in range(20): A = points[left_point[points.index(A)]] points_new.append((A.x,A.y)) points_new_plus.append((A.x + 5, A.y + 5)) if left_point[points.index(A)] == 0: break points_new_index.append(left_point[points.index(A)]) return points_new,points_new_plus def rayCasting(p, poly): #判断一个点是否在多边形内部 px,py = p[0],p[1] flag = -1 i = 0 l = len(poly) j = l - 1 # for(i = 0, l = poly.length, j = l - 1; i < l; j = i, i++): while i < l: sx = poly[i][0] sy = poly[i][1] tx = poly[j][0] ty = poly[j][1] # 点与多边形顶点重合 if (sx == px and sy == py) or (tx == px and ty == py): flag = 1 # 判断线段两端点是否在射线两侧 if (sy < py and ty >= py) or (sy >= py and ty < py): # 线段上与射线 Y 坐标相同的点的 X 坐标 x = sx + (py - sy) * (tx - sx) / (ty - sy) # 点在多边形的边上 if x == px: flag = 1 # 射线穿过多边形的边界 if x > px: flag = -flag j = i i += 1 # 射线穿过多边形边界的次数为奇数时点在多边形内 return flag def judge_lane_in_intersection(lane_polyline,intersection_range): flag = 0 #如果flag=1 则这条车道在交叉口内部,否则不在 point_start = (lane_polyline[0].x,lane_polyline[0].y) point_end = (lane_polyline[-1].x,lane_polyline[-1].y) if (rayCasting(point_start, intersection_range) == 1) and (rayCasting(point_end, intersection_range) == 1): flag = 1 return flag def get_one_direction_lane_info(right_lane_id,df_all_lan_topo_info,single_map_dict,lane_turn_left_id): lane_in_num,lane_out_num = 0,0 #这里统计的出口道信息是进口道方向逆时针转90°后方向的出口道 lane_in_id,lane_out_id = [],[] entry_lane_id = df_all_lan_topo_info[df_all_lan_topo_info['lane_id']==right_lane_id]['entry_lanes'].iloc[0][0] exit_lane_id = df_all_lan_topo_info[df_all_lan_topo_info['lane_id']==right_lane_id]['exit_lanes'].iloc[0][0] #----------------进口道信息提取-------------------- #车道ID及数量 #右转车道右侧的车道一般是自行车车道,暂时不做处理 lane_in_id.append(entry_lane_id) lane_in_left = df_all_lan_topo_info[df_all_lan_topo_info['lane_id'] == entry_lane_id]['left_neighbors_id'] while (lane_in_left.tolist()[0] != -1):#如果左侧没有车道,则为单车道 flag = 0 lane_in_left = df_all_lan_topo_info[df_all_lan_topo_info['lane_id'] == entry_lane_id]['left_neighbors_id'] # print('ssddffs') #print(lane_in_left.tolist()) # print(lane_in_left.tolist()) # print(lane_in_left.values) # print(lane_in_left.tolist()[0] ==-1) if (lane_in_left.tolist()[0] == -1): break lane_in_id.append(lane_in_left.tolist()[0]) entry_lane_id = lane_in_left.tolist()[0] #print(entry_lane_id) lane_in_num = len(lane_in_id) #-------------------出口道信息提取--------------------------- # 车道ID及数量 lane_out_id.append(exit_lane_id) lane_out_left = df_all_lan_topo_info[df_all_lan_topo_info['lane_id'] == exit_lane_id]['left_neighbors_id'] while (lane_out_left.tolist()[0] != -1):#如果左侧没有车道,则为单车道 flag = 0 lane_out_left = df_all_lan_topo_info[df_all_lan_topo_info['lane_id'] == exit_lane_id]['left_neighbors_id'] if (lane_out_left.tolist()[0] == -1): break lane_out_id.append(lane_out_left.tolist()[0]) exit_lane_id = lane_out_left.tolist()[0] lane_out_num = len(lane_out_id) return lane_in_num, lane_in_id, lane_out_num, lane_out_id def get_lane_width(df_all_lan_topo_info,single_map_dict,lane_in_num, lane_in_id, lane_out_num, lane_out_id): lane_in_width, lane_out_width = 0,0 #计算进口道车道宽度 #车道宽度计算 if lane_in_num>1: width_in_sum = 0 for i in range(lane_in_num-1): lane_in_cal_1_id = lane_in_id[i] lane_in_cal_2_id = lane_in_id[i + 1] x1,y1 = single_map_dict[lane_in_cal_1_id][-1].x, single_map_dict[lane_in_cal_1_id][-1].y #进口道这里是最后一个点,出口道这里应该第1个点 x2, y2 = single_map_dict[lane_in_cal_2_id][-1].x, single_map_dict[lane_in_cal_2_id][-1].y #print("one lane width is %f"%(math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2))) width_in_sum += math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) lane_in_width = width_in_sum / (lane_in_num-1) #print("lane width ave = %f"%lane_in_width) elif lane_in_num == 1: lane_in_width = 3.5 #这里需要统筹对向出口道才行 #计算出口道车道宽度 if lane_out_num > 1: width_out_sum = 0 for i in range(lane_out_num-1): lane_out_cal_1_id = lane_out_id[i] lane_out_cal_2_id = lane_out_id[i+1] x1,y1 = single_map_dict[lane_out_cal_1_id][0].x,single_map_dict[lane_out_cal_1_id][0].y x2, y2 = single_map_dict[lane_out_cal_2_id][0].x, single_map_dict[lane_out_cal_2_id][0].y width_out_sum += math.sqrt((x2 - x1) ** 2 + (y2 - y1) ** 2) lane_out_width = width_out_sum / (lane_out_num-1) elif lane_out_num ==1: lane_out_width = 3.5 return lane_in_width,lane_out_width def intersection_info_extract(df_all_lane_topo_info,single_map_dict,lane_turn_left_id_ori,lane_turn_right_id_ori,intersection_center_loc,length_1): intersection_info = {} intersection_info['file_index'] = df_all_lane_topo_info['file_index'].iloc[0] intersection_info['scenario_id'] = df_all_lane_topo_info['scenario_id'].iloc[0] intersection_info['intersection_center_point'] = intersection_center_loc # 交互车辆所在的中心位置 #---------------------筛选该目标交叉口范围的所有左转、右转车道------------------------ length_1 = 100 #初步将交叉口范围定在50m,后面可能需要更改 A = (intersection_center_loc[0]-length_1/2,intersection_center_loc[1]+length_1/2) B = (intersection_center_loc[0]+length_1/2,intersection_center_loc[1]+length_1/2) C = (intersection_center_loc[0]+length_1/2,intersection_center_loc[1]-length_1/2) D = (intersection_center_loc[0]-length_1/2,intersection_center_loc[1]-length_1/2) intersection_range_approximate = [A,B,C,D] lane_turn_left_id = [] lane_turn_right_id = [] #筛选目标交叉口内部的左转、右转车道 for left_id in lane_turn_left_id_ori: if (judge_lane_in_intersection(single_map_dict[left_id],intersection_range_approximate)==1): lane_turn_left_id.append(left_id) for right_id in lane_turn_right_id_ori: if (judge_lane_in_intersection(single_map_dict[right_id],intersection_range_approximate)==1): #!!! lane_turn_right_id.append(right_id) # print('mmmm') # print(lane_turn_left_id_ori, lane_turn_right_id_ori) # print(lane_turn_left_id,lane_turn_right_id) intersection_info['lane_id_turn_left_inside'] = lane_turn_left_id intersection_info['lane_id_turn_right_inside'] = lane_turn_right_id #以下的处理全部基于所有右转、左转车道的分流点、合流点进行 merging_points_left = [] merging_points_right = [] #右转车道的合流点 diverging_points_left = [] diverging_points_right = [] #右转车道的分流点 all_lane_id = pd.unique(df_all_lane_topo_info['lane_id'].tolist()) points_key = [] #右转合流点、分流点集合 for right_lane_id in lane_turn_right_id: #提取所有与右转车道连接的分流点、合流点 point_start_x = single_map_dict[right_lane_id][0].x #起点,即分流点 point_start_y = single_map_dict[right_lane_id][0].y point_end_x = single_map_dict[right_lane_id][-1].x #终点,即合流点 point_end_y = single_map_dict[right_lane_id][-1].y merging_points_right.append((point_end_x,point_end_y)) diverging_points_right.append((point_start_x,point_start_y)) point_start = Point(point_start_x,point_start_y) point_end = Point(point_end_x,point_end_y) points_key.append(point_start) points_key.append(point_end) #得到该右转车道的进入车道和驶出车道 #print('test_1:') #print(df_single_scenario_lane_topo_info[df_single_scenario_lane_topo_info['lane_id']==right_lane_id]['entry_lanes']) entry_lane_id = df_all_lane_topo_info[df_all_lane_topo_info['lane_id'] == right_lane_id]['entry_lanes'].iloc[0] exit_lane_id = df_all_lane_topo_info[df_all_lane_topo_info['lane_id'] == right_lane_id]['exit_lanes'].iloc[0] #判断与右转车道相连接的车道是进口道还是出口道 df_all_lane_topo_info.loc[df_all_lane_topo_info['lane_id'] == entry_lane_id, 'entry_or_exit'] = 'entry' df_all_lane_topo_info.loc[df_all_lane_topo_info['lane_id'] == exit_lane_id, 'entry_or_exit'] = 'exit' df_all_lane_topo_info.loc[df_all_lane_topo_info['lane_id'] == right_lane_id, 'entry_or_exit'] = 'inside' #右转车道自身位于交叉口内部 #将进口道、出口道的车道功能标记一下 df_all_lane_topo_info.loc[df_all_lane_topo_info['lane_id'] == entry_lane_id, 'lane_function'] = 'right' #记录车道功能,本身是直行车道,功能是用于右转 df_all_lane_topo_info.loc[df_all_lane_topo_info['lane_id'] == exit_lane_id, 'lane_function'] = 'right' df_all_lane_topo_info.loc[:, 'entry_or_exit'] = '' #print(points_key,lane_turn_right_id) points_key_new, points_key_new_plus = get_point_order(points_key) # 得到正确的能够将所有右转合流、分流点连接为多边形的顺序 points_key_new_plus 将整个多边形向外扩展5m,以满足冗余 for lane_in_id in all_lane_id: if (lane_in_id not in lane_turn_left_id) and (lane_in_id not in lane_turn_right_id): if judge_lane_in_intersection(single_map_dict[lane_in_id], points_key_new_plus) ==1: df_all_lane_topo_info.loc[df_all_lane_topo_info['lane_id'] == lane_in_id, 'entry_or_exit'] = 'inside' # 车道位于交叉口内部 for left_lane_id in lane_turn_left_id: #对于所有的左转车道 #df_single_scenario_lane_topo_info[df_single_scenario_lane_topo_info['lane_id'] == left_lane_id]['entry_or_exit'] = 'inside' # 左转车道自身位于位于交叉口内部 df_all_lane_topo_info.loc[df_all_lane_topo_info['lane_id'] == left_lane_id, 'entry_or_exit'] = 'inside' # 左转车道自身位于位于交叉口内部 entry_lane_id = df_all_lane_topo_info[df_all_lane_topo_info['lane_id'] == left_lane_id]['entry_lanes'].iloc[0] exit_lane_id = df_all_lane_topo_info[df_all_lane_topo_info['lane_id'] == left_lane_id]['exit_lanes'].iloc[0] #记录进出口道功能 df_all_lane_topo_info.loc[df_all_lane_topo_info['lane_id'] == entry_lane_id, 'entry_or_exit'] = 'entry' df_all_lane_topo_info.loc[df_all_lane_topo_info['lane_id'] == exit_lane_id, 'entry_or_exit'] = 'exit' #标记车道功能 df_all_lane_topo_info.loc[df_all_lane_topo_info['lane_id'] == entry_lane_id, 'lane_function'] = 'left' #本身是直行车道,功能是用于左转 df_all_lane_topo_info.loc[df_all_lane_topo_info['lane_id'] == exit_lane_id, 'lane_function'] = 'left' #print('sss') #print(df_single_scenario_lane_topo_info['entry_or_exit']) intersection_info['intersection_anlge'] = round(intersection_angle_cal(df_all_lane_topo_info), 2) #交叉口类型判断,这里需要修正,需要讨论更多的类型 if len(merging_points_right) >= 4 and len(diverging_points_right)>=4 : if 105>=intersection_info['intersection_anlge']>=75: intersection_info['Type'] = 'Cross' #十字型交叉口 elif 0<intersection_info['intersection_anlge']<75 or 105<intersection_info['intersection_anlge']<180: intersection_info['Type'] = 'X' #X型交叉口 elif len(merging_points_right) >= 2 and len(diverging_points_right)>= 2 : intersection_info['Type'] = 'T' #T型交叉口 #----------Extract the lane number and width of the intersection extract_direction_index = 1 #print(lane_turn_right_id) for right_lane_id in lane_turn_right_id: lane_in_num, lane_in_id, lane_out_num, lane_out_id = get_one_direction_lane_info(right_lane_id, df_all_lane_topo_info, single_map_dict, lane_turn_left_id) lane_in_width,lane_out_width = get_lane_width(df_all_lane_topo_info, single_map_dict, lane_in_num, lane_in_id, lane_out_num, lane_out_id) #计算车道宽度 #print(lane_in_num, lane_in_id, lane_in_width,lane_out_num, lane_out_id, lane_out_width) #进口道车道数量、车道id、车道宽度信息记录 intersection_info['direction_' + str(extract_direction_index) + '_in_lane_num'] = lane_in_num intersection_info['direction_' + str(extract_direction_index) + '_in_lane_id_list'] = lane_in_id intersection_info['direction_' + str(extract_direction_index) + '_in_lane_width'] = round(lane_in_width,2) #出口道车道数量、车道id、车道宽度信息记录 intersection_info['direction_' + str(extract_direction_index) + '_out_lane_num'] = lane_out_num intersection_info['direction_' + str(extract_direction_index) + '_out_lane_id_list'] = lane_out_id intersection_info['direction_' + str(extract_direction_index) + '_out_lane_width'] = round(lane_out_width) extract_direction_index += 1 return intersection_info, df_all_lane_topo_info,lane_turn_right_id def map_lane_point_extract(map_features,file_index,scenario_label): map_point_list = [] for single_feature in map_features: if list(single_feature.road_edge.polyline) != []: #类型为road_edge for polyline in single_feature.road_edge.polyline: dic_map = {} dic_map['file_index'] = file_index dic_map['scenario_label'] = scenario_label dic_map['line_id'] = single_feature.id dic_map['type'] = 'road_edge' if single_feature.road_edge.type == 0: dic_map['line_type'] = 'UNKNOWN' elif single_feature.road_edge.type ==1: dic_map['line_type'] = 'ROAD_EDGE_BOUNDARY' elif single_feature.road_edge.type == 2: dic_map['line_type'] = 'ROAD_EDGE_MEDIAN' dic_map['point_x'] = polyline.x dic_map['point_y'] = polyline.y dic_map['point_z'] = polyline.z map_point_list.append(dic_map) if list(single_feature.lane.polyline) != []: for polyline in single_feature.lane.polyline: dic_map = {} dic_map['file_index'] = file_index dic_map['scenario_label'] = scenario_label dic_map['line_id'] = single_feature.id dic_map['type'] = 'lane' if single_feature.lane.type == 0: dic_map['line_type'] = 'UNDEFINED' elif single_feature.lane.type ==1: dic_map['line_type'] = 'FREEWAY' elif single_feature.lane.type == 2: dic_map['line_type'] = 'SURFACE_STREET' elif single_feature.lane.type == 3: dic_map['line_type'] = 'BIKE_LANE' dic_map['point_x'] = polyline.x dic_map['point_y'] = polyline.y dic_map['point_z'] = polyline.z dic_map['entry_lanes'] = single_feature.lane.entry_lanes dic_map['exit_lanes'] = single_feature.lane.exit_lanes # dic_map['left_neighbors_id'] = single_feature.lane.left_neighbors.feature_id # dic_map['right_neighbors_id'] = single_feature.lane.right_neighbors.feature_id map_point_list.append(dic_map) if list(single_feature.road_line.polyline) != []: for polyline in single_feature.road_line.polyline: dic_map = {} dic_map['file_index'] = file_index dic_map['scenario_label'] = scenario_label dic_map['line_id'] = single_feature.id dic_map['type'] = 'road_line' if single_feature.road_line.type == 0: dic_map['line_type'] = 'UNKNOWN' elif single_feature.road_line.type ==1: dic_map['line_type'] = 'BROKEN_SINGLE_WHITE' elif single_feature.road_line.type == 2: dic_map['line_type'] = 'SOLID_SINGLE_WHITE' elif single_feature.road_line.type == 3: dic_map['line_type'] = 'SOLID_DOUBLE_WHITE' elif single_feature.road_line.type == 4: dic_map['line_type'] = 'BROKEN_SINGLE_YELLOW' elif single_feature.road_line.type == 5: dic_map['line_type'] = 'BROKEN_DOUBLE_YELLOW' elif single_feature.road_line.type == 6: dic_map['line_type'] = 'SOLID_SINGLE_YELLOW' elif single_feature.road_line.type == 7: dic_map['line_type'] = 'SOLID_DOUBLE_YELLOW' elif single_feature.road_line.type == 8: dic_map['line_type'] = 'PASSING_DOUBLE_YELLOW' dic_map['point_x'] = polyline.x dic_map['point_y'] = polyline.y dic_map['point_z'] = polyline.z map_point_list.append(dic_map) df_single_scenario_map_point = pd.DataFrame(map_point_list) return df_single_scenario_map_point if __name__ == '__main__': #-----------------------load_data --------------------- test_state = 1 filepath_oridata = 'E:/waymo_motion_dataset/training_20s.tfrecord-*-of-01000' all_file_list, file_index_list = get_file_list(filepath_oridata) scenario_all_count = 0 all_intersection_info = [] length = 80 #目标交叉口的距离范围,需要进行调整 target_scenario = 16 target_segment = 9 for i in tqdm(range(len(file_index_list))): single_segment_all_scenario_all_lane_topo_info = [] file_index = file_index_list[i] segment_file = all_file_list[i] print('Now is the file:%s' % file_index) if file_index == '00000': segment_id = 0 else: segment_id = eval(file_index.strip('0')) if test_state == 1 : if segment_id < target_segment: continue elif segment_id > target_segment: break filepath_trj = 'E:/Result_save/data_save/all_scenario_all_objects_info/'+ file_index +'_all_scenario_all_object_info_1.csv' seg_trj = pd.read_csv(filepath_trj) single_seg_all_scenario_id =
pd.unique(seg_trj['scenario_label'])
pandas.unique
from datetime import datetime import numpy as np import pandas as pd import pytest from numba import njit import vectorbt as vbt from tests.utils import record_arrays_close from vectorbt.generic.enums import range_dt, drawdown_dt from vectorbt.portfolio.enums import order_dt, trade_dt, log_dt day_dt = np.timedelta64(86400000000000) example_dt = np.dtype([ ('id', np.int64), ('col', np.int64), ('idx', np.int64), ('some_field1', np.float64), ('some_field2', np.float64) ], align=True) records_arr = np.asarray([ (0, 0, 0, 10, 21), (1, 0, 1, 11, 20), (2, 0, 2, 12, 19), (3, 1, 0, 13, 18), (4, 1, 1, 14, 17), (5, 1, 2, 13, 18), (6, 2, 0, 12, 19), (7, 2, 1, 11, 20), (8, 2, 2, 10, 21) ], dtype=example_dt) records_nosort_arr = np.concatenate(( records_arr[0::3], records_arr[1::3], records_arr[2::3] )) group_by = pd.Index(['g1', 'g1', 'g2', 'g2']) wrapper = vbt.ArrayWrapper( index=['x', 'y', 'z'], columns=['a', 'b', 'c', 'd'], ndim=2, freq='1 days' ) wrapper_grouped = wrapper.replace(group_by=group_by) records = vbt.records.Records(wrapper, records_arr) records_grouped = vbt.records.Records(wrapper_grouped, records_arr) records_nosort = records.replace(records_arr=records_nosort_arr) records_nosort_grouped = vbt.records.Records(wrapper_grouped, records_nosort_arr) # ############# Global ############# # def setup_module(): vbt.settings.numba['check_func_suffix'] = True vbt.settings.caching.enabled = False vbt.settings.caching.whitelist = [] vbt.settings.caching.blacklist = [] def teardown_module(): vbt.settings.reset() # ############# col_mapper.py ############# # class TestColumnMapper: def test_col_arr(self): np.testing.assert_array_equal( records['a'].col_mapper.col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( records.col_mapper.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_get_col_arr(self): np.testing.assert_array_equal( records.col_mapper.get_col_arr(), records.col_mapper.col_arr ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_arr(), np.array([0, 0, 0, 0, 0, 0, 1, 1, 1]) ) def test_col_range(self): np.testing.assert_array_equal( records['a'].col_mapper.col_range, np.array([ [0, 3] ]) ) np.testing.assert_array_equal( records.col_mapper.col_range, np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) def test_get_col_range(self): np.testing.assert_array_equal( records.col_mapper.get_col_range(), np.array([ [0, 3], [3, 6], [6, 9], [-1, -1] ]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_range(), np.array([[0, 6]]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_range(), np.array([[0, 6], [6, 9]]) ) def test_col_map(self): np.testing.assert_array_equal( records['a'].col_mapper.col_map[0], np.array([0, 1, 2]) ) np.testing.assert_array_equal( records['a'].col_mapper.col_map[1], np.array([3]) ) np.testing.assert_array_equal( records.col_mapper.col_map[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records.col_mapper.col_map[1], np.array([3, 3, 3, 0]) ) def test_get_col_map(self): np.testing.assert_array_equal( records.col_mapper.get_col_map()[0], records.col_mapper.col_map[0] ) np.testing.assert_array_equal( records.col_mapper.get_col_map()[1], records.col_mapper.col_map[1] ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5]) ) np.testing.assert_array_equal( records_grouped['g1'].col_mapper.get_col_map()[1], np.array([6]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[0], np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) np.testing.assert_array_equal( records_grouped.col_mapper.get_col_map()[1], np.array([6, 3]) ) def test_is_sorted(self): assert records.col_mapper.is_sorted() assert not records_nosort.col_mapper.is_sorted() # ############# mapped_array.py ############# # mapped_array = records.map_field('some_field1') mapped_array_grouped = records_grouped.map_field('some_field1') mapped_array_nosort = records_nosort.map_field('some_field1') mapped_array_nosort_grouped = records_nosort_grouped.map_field('some_field1') mapping = {x: 'test_' + str(x) for x in pd.unique(mapped_array.values)} mp_mapped_array = mapped_array.replace(mapping=mapping) mp_mapped_array_grouped = mapped_array_grouped.replace(mapping=mapping) class TestMappedArray: def test_config(self, tmp_path): assert vbt.MappedArray.loads(mapped_array.dumps()) == mapped_array mapped_array.save(tmp_path / 'mapped_array') assert vbt.MappedArray.load(tmp_path / 'mapped_array') == mapped_array def test_mapped_arr(self): np.testing.assert_array_equal( mapped_array['a'].values, np.array([10., 11., 12.]) ) np.testing.assert_array_equal( mapped_array.values, np.array([10., 11., 12., 13., 14., 13., 12., 11., 10.]) ) def test_id_arr(self): np.testing.assert_array_equal( mapped_array['a'].id_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.id_arr, np.array([0, 1, 2, 3, 4, 5, 6, 7, 8]) ) def test_col_arr(self): np.testing.assert_array_equal( mapped_array['a'].col_arr, np.array([0, 0, 0]) ) np.testing.assert_array_equal( mapped_array.col_arr, np.array([0, 0, 0, 1, 1, 1, 2, 2, 2]) ) def test_idx_arr(self): np.testing.assert_array_equal( mapped_array['a'].idx_arr, np.array([0, 1, 2]) ) np.testing.assert_array_equal( mapped_array.idx_arr, np.array([0, 1, 2, 0, 1, 2, 0, 1, 2]) ) def test_is_sorted(self): assert mapped_array.is_sorted() assert mapped_array.is_sorted(incl_id=True) assert not mapped_array_nosort.is_sorted() assert not mapped_array_nosort.is_sorted(incl_id=True) def test_sort(self): assert mapped_array.sort().is_sorted() assert mapped_array.sort().is_sorted(incl_id=True) assert mapped_array.sort(incl_id=True).is_sorted(incl_id=True) assert mapped_array_nosort.sort().is_sorted() assert mapped_array_nosort.sort().is_sorted(incl_id=True) assert mapped_array_nosort.sort(incl_id=True).is_sorted(incl_id=True) def test_apply_mask(self): mask_a = mapped_array['a'].values >= mapped_array['a'].values.mean() np.testing.assert_array_equal( mapped_array['a'].apply_mask(mask_a).id_arr, np.array([1, 2]) ) mask = mapped_array.values >= mapped_array.values.mean() filtered = mapped_array.apply_mask(mask) np.testing.assert_array_equal( filtered.id_arr, np.array([2, 3, 4, 5, 6]) ) np.testing.assert_array_equal(filtered.col_arr, mapped_array.col_arr[mask]) np.testing.assert_array_equal(filtered.idx_arr, mapped_array.idx_arr[mask]) assert mapped_array_grouped.apply_mask(mask).wrapper == mapped_array_grouped.wrapper assert mapped_array_grouped.apply_mask(mask, group_by=False).wrapper.grouper.group_by is None def test_map_to_mask(self): @njit def every_2_nb(inout, idxs, col, mapped_arr): inout[idxs[::2]] = True np.testing.assert_array_equal( mapped_array.map_to_mask(every_2_nb), np.array([True, False, True, True, False, True, True, False, True]) ) def test_top_n_mask(self): np.testing.assert_array_equal( mapped_array.top_n_mask(1), np.array([False, False, True, False, True, False, True, False, False]) ) def test_bottom_n_mask(self): np.testing.assert_array_equal( mapped_array.bottom_n_mask(1), np.array([True, False, False, True, False, False, False, False, True]) ) def test_top_n(self): np.testing.assert_array_equal( mapped_array.top_n(1).id_arr, np.array([2, 4, 6]) ) def test_bottom_n(self): np.testing.assert_array_equal( mapped_array.bottom_n(1).id_arr, np.array([0, 3, 8]) ) def test_to_pd(self): target = pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), index=wrapper.index, columns=wrapper.columns ) pd.testing.assert_series_equal( mapped_array['a'].to_pd(), target['a'] ) pd.testing.assert_frame_equal( mapped_array.to_pd(), target ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0.), target.fillna(0.) ) mapped_array2 = vbt.MappedArray( wrapper, records_arr['some_field1'].tolist() + [1], records_arr['col'].tolist() + [2], idx_arr=records_arr['idx'].tolist() + [2] ) with pytest.raises(Exception): _ = mapped_array2.to_pd() pd.testing.assert_series_equal( mapped_array['a'].to_pd(ignore_index=True), pd.Series(np.array([10., 11., 12.]), name='a') ) pd.testing.assert_frame_equal( mapped_array.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., np.nan], [11., 14., 11., np.nan], [12., 13., 10., np.nan] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.to_pd(fill_value=0, ignore_index=True), pd.DataFrame( np.array([ [10., 13., 12., 0.], [11., 14., 11., 0.], [12., 13., 10., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.to_pd(ignore_index=True), pd.DataFrame( np.array([ [10., 12.], [11., 11.], [12., 10.], [13., np.nan], [14., np.nan], [13., np.nan], ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_apply(self): @njit def cumsum_apply_nb(idxs, col, a): return np.cumsum(a) np.testing.assert_array_equal( mapped_array['a'].apply(cumsum_apply_nb).values, np.array([10., 21., 33.]) ) np.testing.assert_array_equal( mapped_array.apply(cumsum_apply_nb).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=False).values, np.array([10., 21., 33., 13., 27., 40., 12., 23., 33.]) ) np.testing.assert_array_equal( mapped_array_grouped.apply(cumsum_apply_nb, apply_per_group=True).values, np.array([10., 21., 33., 46., 60., 73., 12., 23., 33.]) ) assert mapped_array_grouped.apply(cumsum_apply_nb).wrapper == \ mapped_array.apply(cumsum_apply_nb, group_by=group_by).wrapper assert mapped_array.apply(cumsum_apply_nb, group_by=False).wrapper.grouper.group_by is None def test_reduce(self): @njit def mean_reduce_nb(col, a): return np.mean(a) assert mapped_array['a'].reduce(mean_reduce_nb) == 11. pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0.), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, fill_value=0., wrap_kwargs=dict(dtype=np.int_)), pd.Series(np.array([11., 13.333333333333334, 11., 0.]), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, wrap_kwargs=dict(to_timedelta=True)), pd.Series(np.array([11., 13.333333333333334, 11., np.nan]), index=wrapper.columns).rename('reduce') * day_dt ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(mean_reduce_nb), pd.Series([12.166666666666666, 11.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) assert mapped_array_grouped['g1'].reduce(mean_reduce_nb) == 12.166666666666666 pd.testing.assert_series_equal( mapped_array_grouped[['g1']].reduce(mean_reduce_nb), pd.Series([12.166666666666666], index=pd.Index(['g1'], dtype='object')).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb), mapped_array_grouped.reduce(mean_reduce_nb, group_by=False) ) pd.testing.assert_series_equal( mapped_array.reduce(mean_reduce_nb, group_by=group_by), mapped_array_grouped.reduce(mean_reduce_nb) ) def test_reduce_to_idx(self): @njit def argmin_reduce_nb(col, a): return np.argmin(a) assert mapped_array['a'].reduce(argmin_reduce_nb, returns_idx=True) == 'x' pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True), pd.Series(np.array(['x', 'x', 'z', np.nan], dtype=object), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 0, 2, -1], dtype=int), index=wrapper.columns).rename('reduce') ) pd.testing.assert_series_equal( mapped_array_grouped.reduce(argmin_reduce_nb, returns_idx=True, to_index=False), pd.Series(np.array([0, 2], dtype=int), index=pd.Index(['g1', 'g2'], dtype='object')).rename('reduce') ) def test_reduce_to_array(self): @njit def min_max_reduce_nb(col, a): return np.array([np.min(a), np.max(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.Series([10., 12.], index=pd.Index(['min', 'max'], dtype='object'), name='a') ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(name_or_index=['min', 'max'])), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), index=pd.Index(['min', 'max'], dtype='object'), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, fill_value=0.), pd.DataFrame( np.array([ [10., 13., 10., 0.], [12., 14., 12., 0.] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, wrap_kwargs=dict(to_timedelta=True)), pd.DataFrame( np.array([ [10., 13., 10., np.nan], [12., 14., 12., np.nan] ]), columns=wrapper.columns ) * day_dt ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame( np.array([ [10., 10.], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True, group_by=False) ) pd.testing.assert_frame_equal( mapped_array.reduce(min_max_reduce_nb, returns_array=True, group_by=group_by), mapped_array_grouped.reduce(min_max_reduce_nb, returns_array=True) ) pd.testing.assert_series_equal( mapped_array_grouped['g1'].reduce(min_max_reduce_nb, returns_array=True), pd.Series([10., 14.], name='g1') ) pd.testing.assert_frame_equal( mapped_array_grouped[['g1']].reduce(min_max_reduce_nb, returns_array=True), pd.DataFrame([[10.], [14.]], columns=pd.Index(['g1'], dtype='object')) ) def test_reduce_to_idx_array(self): @njit def idxmin_idxmax_reduce_nb(col, a): return np.array([np.argmin(a), np.argmax(a)]) pd.testing.assert_series_equal( mapped_array['a'].reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['min', 'max'], dtype='object'), name='a' ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, wrap_kwargs=dict(name_or_index=['min', 'max']) ), pd.DataFrame( { 'a': ['x', 'z'], 'b': ['x', 'y'], 'c': ['z', 'x'], 'd': [np.nan, np.nan] }, index=pd.Index(['min', 'max'], dtype='object') ) ) pd.testing.assert_frame_equal( mapped_array.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 0, 2, -1], [2, 1, 0, -1] ]), columns=wrapper.columns ) ) pd.testing.assert_frame_equal( mapped_array_grouped.reduce( idxmin_idxmax_reduce_nb, returns_array=True, returns_idx=True, to_index=False ), pd.DataFrame( np.array([ [0, 2], [1, 0] ]), columns=pd.Index(['g1', 'g2'], dtype='object') ) ) def test_nth(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth(0), pd.Series(np.array([10., 13., 12., np.nan]), index=wrapper.columns).rename('nth') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth(-1), pd.Series(np.array([12., 13., 10., np.nan]), index=wrapper.columns).rename('nth') ) with pytest.raises(Exception): _ = mapped_array.nth(10) pd.testing.assert_series_equal( mapped_array_grouped.nth(0), pd.Series(np.array([10., 12.]), index=pd.Index(['g1', 'g2'], dtype='object')).rename('nth') ) def test_nth_index(self): assert mapped_array['a'].nth(0) == 10. pd.testing.assert_series_equal( mapped_array.nth_index(0), pd.Series( np.array(['x', 'x', 'x', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) assert mapped_array['a'].nth(-1) == 12. pd.testing.assert_series_equal( mapped_array.nth_index(-1), pd.Series( np.array(['z', 'z', 'z', np.nan], dtype='object'), index=wrapper.columns ).rename('nth_index') ) with pytest.raises(Exception): _ = mapped_array.nth_index(10) pd.testing.assert_series_equal( mapped_array_grouped.nth_index(0), pd.Series( np.array(['x', 'x'], dtype='object'), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('nth_index') ) def test_min(self): assert mapped_array['a'].min() == mapped_array['a'].to_pd().min() pd.testing.assert_series_equal( mapped_array.min(), mapped_array.to_pd().min().rename('min') ) pd.testing.assert_series_equal( mapped_array_grouped.min(), pd.Series([10., 10.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('min') ) def test_max(self): assert mapped_array['a'].max() == mapped_array['a'].to_pd().max() pd.testing.assert_series_equal( mapped_array.max(), mapped_array.to_pd().max().rename('max') ) pd.testing.assert_series_equal( mapped_array_grouped.max(), pd.Series([14., 12.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('max') ) def test_mean(self): assert mapped_array['a'].mean() == mapped_array['a'].to_pd().mean() pd.testing.assert_series_equal( mapped_array.mean(), mapped_array.to_pd().mean().rename('mean') ) pd.testing.assert_series_equal( mapped_array_grouped.mean(), pd.Series([12.166667, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('mean') ) def test_median(self): assert mapped_array['a'].median() == mapped_array['a'].to_pd().median() pd.testing.assert_series_equal( mapped_array.median(), mapped_array.to_pd().median().rename('median') ) pd.testing.assert_series_equal( mapped_array_grouped.median(), pd.Series([12.5, 11.], index=pd.Index(['g1', 'g2'], dtype='object')).rename('median') ) def test_std(self): assert mapped_array['a'].std() == mapped_array['a'].to_pd().std() pd.testing.assert_series_equal( mapped_array.std(), mapped_array.to_pd().std().rename('std') ) pd.testing.assert_series_equal( mapped_array.std(ddof=0), mapped_array.to_pd().std(ddof=0).rename('std') ) pd.testing.assert_series_equal( mapped_array_grouped.std(), pd.Series([1.4719601443879746, 1.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('std') ) def test_sum(self): assert mapped_array['a'].sum() == mapped_array['a'].to_pd().sum() pd.testing.assert_series_equal( mapped_array.sum(), mapped_array.to_pd().sum().rename('sum') ) pd.testing.assert_series_equal( mapped_array_grouped.sum(), pd.Series([73.0, 33.0], index=pd.Index(['g1', 'g2'], dtype='object')).rename('sum') ) def test_count(self): assert mapped_array['a'].count() == mapped_array['a'].to_pd().count() pd.testing.assert_series_equal( mapped_array.count(), mapped_array.to_pd().count().rename('count') ) pd.testing.assert_series_equal( mapped_array_grouped.count(), pd.Series([6, 3], index=pd.Index(['g1', 'g2'], dtype='object')).rename('count') ) def test_idxmin(self): assert mapped_array['a'].idxmin() == mapped_array['a'].to_pd().idxmin() pd.testing.assert_series_equal( mapped_array.idxmin(), mapped_array.to_pd().idxmin().rename('idxmin') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmin(), pd.Series( np.array(['x', 'z'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmin') ) def test_idxmax(self): assert mapped_array['a'].idxmax() == mapped_array['a'].to_pd().idxmax() pd.testing.assert_series_equal( mapped_array.idxmax(), mapped_array.to_pd().idxmax().rename('idxmax') ) pd.testing.assert_series_equal( mapped_array_grouped.idxmax(), pd.Series( np.array(['y', 'x'], dtype=object), index=pd.Index(['g1', 'g2'], dtype='object') ).rename('idxmax') ) def test_describe(self): pd.testing.assert_series_equal( mapped_array['a'].describe(), mapped_array['a'].to_pd().describe() ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=None), mapped_array.to_pd().describe(percentiles=None) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=[]), mapped_array.to_pd().describe(percentiles=[]) ) pd.testing.assert_frame_equal( mapped_array.describe(percentiles=np.arange(0, 1, 0.1)), mapped_array.to_pd().describe(percentiles=np.arange(0, 1, 0.1)) ) pd.testing.assert_frame_equal( mapped_array_grouped.describe(), pd.DataFrame( np.array([ [6., 3.], [12.16666667, 11.], [1.47196014, 1.], [10., 10.], [11.25, 10.5], [12.5, 11.], [13., 11.5], [14., 12.] ]), columns=pd.Index(['g1', 'g2'], dtype='object'), index=mapped_array.describe().index ) ) def test_value_counts(self): pd.testing.assert_series_equal( mapped_array['a'].value_counts(), pd.Series( np.array([1, 1, 1]), index=
pd.Float64Index([10.0, 11.0, 12.0], dtype='float64')
pandas.Float64Index
import pandas as pd from pathlib import Path import matplotlib.pyplot as plt import seaborn as sns import scanpy as sc import json from scipy.stats import zscore import numpy as np #---------------------------------------------------------------- f_gl='./out/a01_heatmap_01_pp/gene.json' f_ada='./out/a00_p7_04_anno/p7.h5ad' f_meta='./raw/meta_info.csv' fd_out='./out/a01_heatmap_02_plot' l_cell=['IHC', 'OHC', 'Pillar', 'Deiter'] #-------------------------------------------------------- Path(fd_out).mkdir(exist_ok=True, parents=True) #color map df_meta=pd.read_csv(f_meta, index_col=0) dic_cmap=df_meta.to_dict()['color'] #--------------------------------------------------------- def plot_top(df, f_out, l_cell=l_cell, sz=(6,6), dic_cmap=dic_cmap): cmap=[dic_cmap[i] for i in l_cell] #clean df=df.loc[:, ['anno']] df['anno']=df.anno.cat.codes df=df.loc[:, ['anno']].T #plot fig, ax=plt.subplots(figsize=sz) ax=sns.heatmap(df, cmap=cmap, cbar=False) #adjust ax.xaxis.label.set_visible(False) ax.yaxis.label.set_visible(False) plt.xticks([]) plt.yticks([]) #save plt.tight_layout() plt.savefig(f_out, dpi=300) plt.close() return def plot_hm(df, f_out, size=(10,15), vmax=None, vmin=-0.3, y=14): df=df.drop_duplicates() #2. heatmap fig, ax=plt.subplots(figsize=size) ax=sns.heatmap(df, cmap='Purples', vmax=vmax, vmin=vmin, cbar=True) #3. adjust ax.xaxis.label.set_visible(False) ax.yaxis.label.set_visible(False) plt.xticks([]) plt.yticks(np.arange(0.5, df.shape[0]+0.5, 1), df.index.tolist(), fontsize=y, rotation=0, weight='medium') #4. save plt.tight_layout() plt.savefig(f_out, dpi=300) plt.close() return ############################################################################ #load ada=sc.read(f_ada) with open(f_gl, 'r') as f: dic_gene=json.load(f) #get gene list l_gene=[] l=l_cell+['Others'] for cell in l: l_gene.extend(dic_gene[cell]) #make df ada=ada[:, l_gene] df=pd.DataFrame(ada.X, index=ada.obs.index, columns=ada.var.index) df['anno']=ada.obs['anno'] df=df.loc[df['anno'].isin(l_cell), :] df['anno']=
pd.Categorical(df['anno'], categories=l_cell, ordered=True)
pandas.Categorical
from pathlib import Path from tqdm.notebook import tqdm from tqdm import trange import pickle import nltk import math import os import random import re import torch import torch.nn as nn from transformers import AdamW, get_linear_schedule_with_warmup from torch.utils.data import (DataLoader, RandomSampler, WeightedRandomSampler, SequentialSampler, TensorDataset) from transformers import (WEIGHTS_NAME, BertConfig, BertForSequenceClassification, BertTokenizer, XLMConfig, XLMForSequenceClassification, XLMTokenizer, XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer, RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer, BartConfig, BartTokenizer, BartForSequenceClassification, LongformerConfig, LongformerForSequenceClassification, LongformerTokenizer, AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer, ElectraConfig, ElectraForSequenceClassification, ElectraTokenizer, ReformerConfig, ReformerForSequenceClassification, ReformerTokenizer, MobileBertConfig, MobileBertForSequenceClassification, MobileBertTokenizer, DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer, AutoTokenizer, AutoModel, AutoModelForSequenceClassification, ) import sys import warnings from collections import namedtuple, OrderedDict from functools import partial import scipy.sparse as sp from sklearn.base import BaseEstimator, TransformerMixin from sklearn.feature_extraction.text import _document_frequency from sklearn.utils.validation import check_is_fitted from pathlib import Path from tqdm import tqdm import pandas as po import numpy as np from sklearn.metrics.pairwise import cosine_distances from paths import get_path_predict, get_path_df_scores, get_path_q from rank import maybe_concat_texts, BM25Vectorizer, deduplicate_combos, remove_combo_suffix, add_missing_idxs, get_ranks, get_preds SEP = "#" * 100 + "\n" MODE_TRAIN = "train" MODE_DEV = "dev" MODE_TEST = "test" def obtain_useful(path_data, path_tables, mode='train',top_k = 500): with warnings.catch_warnings(): warnings.filterwarnings("ignore", category=UserWarning) df_exp = get_df_explanations(path_tables, path_data) uid2idx = {uid: idx for idx, uid in enumerate(df_exp.uid.tolist())} uids = df_exp.uid.apply(remove_combo_suffix).values path_q = get_path_q(path_data, mode) df = get_questions(str(path_q), uid2idx, path_data) ranks = get_ranks(df, df_exp, use_embed=False, use_recursive_tfidf=True) preds = get_preds(ranks, df, df_exp) df_exp_copy = df_exp.set_index('uid') uid2text = df_exp_copy['text'].to_dict() return df, df_exp, uids, uid2idx, uid2text, ranks, preds def obtain_model_names_and_classes(model_name='roberta', model_type='roberta-base'): MODEL_CLASSES = { 'bert': (BertConfig, BertForSequenceClassification, BertTokenizer), 'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer), 'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer), 'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer), 'bart': (BartConfig, BartForSequenceClassification, BartTokenizer), 'longformer':(LongformerConfig, LongformerForSequenceClassification, LongformerTokenizer), 'albert':(AlbertConfig, AlbertForSequenceClassification, AlbertTokenizer), 'electra':(ElectraConfig, ElectraForSequenceClassification, ElectraTokenizer), 'reformer':(ReformerConfig, ReformerForSequenceClassification, ReformerTokenizer), 'distilbert':(DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer), 'scibert':( AutoModel, AutoModelForSequenceClassification,AutoTokenizer), } types_of_models=[{'bert':['bert-base-uncased']},{'xlm':['xlm-mlm-en-2048']},{'roberta':['roberta-base']},{'bart':["facebook/bart-base"]},{'longformer':['allenai/longformer-base-4096']},{'albert':['albert-xlarge-v2','albert-large-v2','albert-base-v2']},{'electra':['google/electra-large-generator']},{'reformer':['google/reformer-crime-and-punishment','google/reformer-enwik8']},{'distilbert':['distilbert-base-uncased']},{'scibert':['allenai/scibert_scivocab_uncased']}] print("Choose from the list of models and their respective pretrained versions:") print(types_of_models) model_with_no_token_types =['roberta', 'bart' ,'longformer','albert','electra','reformer','distilbert','scibert'] config_class, model_classifier, model_tokenizer = MODEL_CLASSES[model_name] tokenizer = model_tokenizer.from_pretrained(model_type) return MODEL_CLASSES, model_with_no_token_types, tokenizer def compute_ranks(true, pred): ranks = [] if not true or not pred: return ranks targets = list(true) for i, pred_id in enumerate(pred): for true_id in targets: if pred_id == true_id: ranks.append(i + 1) targets.remove(pred_id) break if targets: warnings.warn( 'targets list should be empty, but it contains: ' + ', '.join(targets), ListShouldBeEmptyWarning) for _ in targets: ranks.append(0) return ranks def average_precision_score(gold, pred): if not gold or not pred: return 0. correct = 0 ap = 0. true = set(gold) for rank, element in enumerate(pred): if element in true: correct += 1 ap += correct / (rank + 1.) true.remove(element) return ap / len(gold) def prepare_features(seq_1,seq_2, max_seq_length = 300, zero_pad = True, include_CLS_token = True, include_SEP_token = True): ## Tokenzine Input tokens_a = tokenizer.tokenize(seq_1) tokens_b = tokenizer.tokenize(seq_2) ## Truncate if len(tokens_a) > max_seq_length - 2: tokens_a = tokens_a[0:(max_seq_length - 2)] if len(tokens_b) > max_seq_length - 2: tokens_b = tokens_b[0:(max_seq_length - 2)] ## Initialize Tokens tokens = [] if include_CLS_token: tokens.append(tokenizer.cls_token) ## Add Tokens and separators for token in tokens_a: tokens.append(token) if include_SEP_token: tokens.append(tokenizer.sep_token) for token in tokens_b: tokens.append(token) if include_SEP_token: tokens.append(tokenizer.sep_token) input_ids = tokenizer.convert_tokens_to_ids(tokens) ## Input Mask input_mask = [1] * len(input_ids) ##Segment_ids segment_ids = [0]*(len(tokens_a)+1) segment_ids+= [1]*(len(tokens_b)+1) segment_ids = [0] + segment_ids ## Zero-pad sequence length if zero_pad: while len(input_ids) < max_seq_length: input_ids.append(0) input_mask.append(0) segment_ids.append(0) #return torch.tensor(input_ids).unsqueeze(0), input_mask return input_ids, input_mask ,segment_ids class DefaultLemmatizer: """ Works best to transform texts before and also get lemmas during tokenization """ def __init__(self, path_data: Path = None) -> None: if path_data is None: self.word2lemma = {} else: path_anno = path_data.joinpath("annotation") path = path_anno.joinpath("lemmatization-en.txt") def read_csv(_path: str, names: list = None) -> po.DataFrame: return po.read_csv(_path, header=None, sep="\t", names=names) df = read_csv(str(path), ["lemma", "word"]) #path_extra = path_anno.joinpath( # "expl-tablestore-export-2017-08-25-230344/tables/LemmatizerAdditions.tsv" #) path_extra = path_anno.joinpath("LemmatizerAdditions.tsv") df_extra = read_csv(str(path_extra), ["lemma", "word", "useless"]) df_extra.drop(columns=["useless"], inplace=True) df_extra.dropna(inplace=True) length_old = len(df) # df = po.concat([df, df_extra]) # Actually concat extra hurts MAP (0.462->0.456) print( f"Default lemmatizer ({length_old}) concatenated (or not) with extras ({len(df_extra)}) -> {len(df)}" ) lemmas = df.lemma.tolist() words = df.word.tolist() def only_alpha(text: str) -> str: # Remove punct eg dry-clean -> dryclean so # they won't get split by downstream tokenizers return "".join([c for c in text if c.isalpha()]) self.word2lemma = { words[i].lower(): only_alpha(lemmas[i]).lower() for i in range(len(words)) } def transform(self, raw_texts: list) -> list: def _transform(text: str): return " ".join( [self.word2lemma.get(word) or word for word in text.split()]) return [_transform(text) for text in raw_texts] # Basic function from tfidf_baseline def read_explanations(path): header = [] uid = None df = po.read_csv(path, sep='\t') for name in df.columns: if name.startswith('[SKIP]'): if 'UID' in name and not uid: uid = name else: header.append(name) if not uid or len(df) == 0: warnings.warn('Possibly misformatted file: ' + path) return [] return df.apply( lambda r: (r[uid], ' '.join(str(s) for s in list(r[header]) if not
po.isna(s)
pandas.isna
"""Implement Snowfall class. This module contains the Snowfall class used to run repeated (!) simulations of water nucleation in vials. It makes use of class Snowflake for the individual simulations. """ import numpy as np import pandas as pd import re import matplotlib.pyplot as plt import seaborn as sns import multiprocessing as mp from typing import List, Tuple, Union, Sequence, Optional from ethz_snow.snowflake import Snowflake class Snowfall: """A class to handle multiple Stochastic Nucleation of Water simulation. More information regarding the equations and their derivation can be found in XXX, Deck et al. (2021) as well as the Snowflake class documentation. Parameters: Nrep (int): Number of repetitions. pool_size (int): Size of worker pool for parallelization. stats (dict): Statistics for each simulation. stats_df (pd.DataFrame): Long-form table of all statistics. simulationStatus (int): Status of simulation (0 = not run, 1 = run). """ def __init__(self, Nrep: int = 5, pool_size: int = None, **kwargs): """Construct a Snowfall object. Args: Nrep (int, optional): Number of repetitions. Defaults to 5. pool_size (int, optional): Size of worker pool for parallelization. Defaults to None (= # of cpu cores). """ self.pool_size = pool_size self.Nrep = int(Nrep) if "seed" in kwargs.keys(): # seed will be chosen by Snowfall del kwargs["seed"] if ("storeStates" in kwargs.keys()) and (kwargs["storeStates"] is not None): print("WARNING: States cannot be stored for Snowfall simulations.") del kwargs["storeStates"] Sf_template = Snowflake(**kwargs) Sf_template._buildHeatflowMatrices() # pre-build H_int, H_ext, H_shelf self.Sf_template = Sf_template self.stats = dict() self.stats_df =
pd.DataFrame()
pandas.DataFrame
""" Extracts basic patient information. """ import click import feather import pandas as pd from logging import * @click.command() @click.option( '--input', required=True, help='read input data from XLS file INPUT') @click.option( '--output', required=True, help='output extracted data to Feather file OUTPUT') def main(input, output): basicConfig( level=INFO, handlers=[ StreamHandler(), FileHandler( '{}.log'.format(output), mode='w') ]) info('Reading data from {}'.format(input)) data =
pd.read_excel(input)
pandas.read_excel
import nose import os import string from distutils.version import LooseVersion from datetime import datetime, date, timedelta from pandas import Series, DataFrame, MultiIndex, PeriodIndex, date_range from pandas.compat import range, lrange, StringIO, lmap, lzip, u, zip import pandas.util.testing as tm from pandas.util.testing import ensure_clean from pandas.core.config import set_option import numpy as np from numpy import random from numpy.random import randn from numpy.testing import assert_array_equal from numpy.testing.decorators import slow import pandas.tools.plotting as plotting def _skip_if_no_scipy(): try: import scipy except ImportError: raise nose.SkipTest("no scipy") @tm.mplskip class TestSeriesPlots(tm.TestCase): def setUp(self): import matplotlib as mpl self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1') self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.iseries = tm.makePeriodSeries() self.iseries.name = 'iseries' def tearDown(self): tm.close() @slow def test_plot(self): _check_plot_works(self.ts.plot, label='foo') _check_plot_works(self.ts.plot, use_index=False) _check_plot_works(self.ts.plot, rot=0) _check_plot_works(self.ts.plot, style='.', logy=True) _check_plot_works(self.ts.plot, style='.', logx=True) _check_plot_works(self.ts.plot, style='.', loglog=True) _check_plot_works(self.ts[:10].plot, kind='bar') _check_plot_works(self.iseries.plot) _check_plot_works(self.series[:5].plot, kind='bar') _check_plot_works(self.series[:5].plot, kind='line') _check_plot_works(self.series[:5].plot, kind='barh') _check_plot_works(self.series[:10].plot, kind='barh') _check_plot_works(Series(randn(10)).plot, kind='bar', color='black') @slow def test_plot_figsize_and_title(self): # figsize and title import matplotlib.pyplot as plt ax = self.series.plot(title='Test', figsize=(16, 8)) self.assertEqual(ax.title.get_text(), 'Test') assert_array_equal(np.round(ax.figure.get_size_inches()), np.array((16., 8.))) @slow def test_bar_colors(self): import matplotlib.pyplot as plt import matplotlib.colors as colors default_colors = plt.rcParams.get('axes.color_cycle') custom_colors = 'rgcby' df = DataFrame(randn(5, 5)) ax = df.plot(kind='bar') rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(default_colors[i % len(default_colors)]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() ax = df.plot(kind='bar', color=custom_colors) rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(custom_colors[i]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot(kind='bar', colormap='jet') rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() # Test colormap functionality ax = df.plot(kind='bar', colormap=cm.jet) rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() df.ix[:, [0]].plot(kind='bar', color='DodgerBlue') @slow def test_bar_linewidth(self): df = DataFrame(randn(5, 5)) # regular ax = df.plot(kind='bar', linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # stacked ax = df.plot(kind='bar', stacked=True, linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # subplots axes = df.plot(kind='bar', linewidth=2, subplots=True) for ax in axes: for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) @slow def test_bar_log(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) ax = Series([200, 500]).plot(log=True, kind='bar') assert_array_equal(ax.yaxis.get_ticklocs(), expected) def test_rotation(self): df = DataFrame(randn(5, 5)) ax = df.plot(rot=30) for l in ax.get_xticklabels(): self.assertEqual(l.get_rotation(), 30) def test_irregular_datetime(self): rng = date_range('1/1/2000', '3/1/2000') rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]] ser = Series(randn(len(rng)), rng) ax = ser.plot() xp = datetime(1999, 1, 1).toordinal() ax.set_xlim('1/1/1999', '1/1/2001') self.assertEqual(xp, ax.get_xlim()[0]) @slow def test_hist(self): _check_plot_works(self.ts.hist) _check_plot_works(self.ts.hist, grid=False) _check_plot_works(self.ts.hist, figsize=(8, 10)) _check_plot_works(self.ts.hist, by=self.ts.index.month) import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) _check_plot_works(self.ts.hist, ax=ax) _check_plot_works(self.ts.hist, ax=ax, figure=fig) _check_plot_works(self.ts.hist, figure=fig) tm.close() fig, (ax1, ax2) = plt.subplots(1, 2) _check_plot_works(self.ts.hist, figure=fig, ax=ax1) _check_plot_works(self.ts.hist, figure=fig, ax=ax2) with tm.assertRaises(ValueError): self.ts.hist(by=self.ts.index, figure=fig) @slow def test_hist_layout(self): n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n)}) with tm.assertRaises(ValueError): df.height.hist(layout=(1, 1)) with tm.assertRaises(ValueError): df.height.hist(layout=[1, 1]) @slow def test_hist_layout_with_by(self): import matplotlib.pyplot as plt n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1)) tm.close() _check_plot_works(df.height.hist, by=df.gender, layout=(1, 2)) tm.close() _check_plot_works(df.weight.hist, by=df.category, layout=(1, 4)) tm.close() _check_plot_works(df.weight.hist, by=df.category, layout=(4, 1)) tm.close() @slow def test_hist_no_overlap(self): from matplotlib.pyplot import subplot, gcf, close x = Series(randn(2)) y = Series(randn(2)) subplot(121) x.hist() subplot(122) y.hist() fig = gcf() axes = fig.get_axes() self.assertEqual(len(axes), 2) @slow def test_plot_fails_with_dupe_color_and_style(self): x = Series(randn(2)) with tm.assertRaises(ValueError): x.plot(style='k--', color='k') @slow def test_hist_by_no_extra_plots(self): import matplotlib.pyplot as plt n = 10 df = DataFrame({'gender': tm.choice(['Male', 'Female'], size=n), 'height': random.normal(66, 4, size=n)}) axes = df.height.hist(by=df.gender) self.assertEqual(len(plt.get_fignums()), 1) def test_plot_fails_when_ax_differs_from_figure(self): from pylab import figure, close fig1 = figure() fig2 = figure() ax1 = fig1.add_subplot(111) with tm.assertRaises(AssertionError): self.ts.hist(ax=ax1, figure=fig2) @slow def test_kde(self): _skip_if_no_scipy() _check_plot_works(self.ts.plot, kind='kde') _check_plot_works(self.ts.plot, kind='density') ax = self.ts.plot(kind='kde', logy=True) self.assertEqual(ax.get_yscale(), 'log') @slow def test_kde_kwargs(self): _skip_if_no_scipy() from numpy import linspace _check_plot_works(self.ts.plot, kind='kde', bw_method=.5, ind=linspace(-100,100,20)) _check_plot_works(self.ts.plot, kind='density', bw_method=.5, ind=linspace(-100,100,20)) ax = self.ts.plot(kind='kde', logy=True, bw_method=.5, ind=linspace(-100,100,20)) self.assertEqual(ax.get_yscale(), 'log') @slow def test_kde_color(self): _skip_if_no_scipy() ax = self.ts.plot(kind='kde', logy=True, color='r') lines = ax.get_lines() self.assertEqual(len(lines), 1) self.assertEqual(lines[0].get_color(), 'r') @slow def test_autocorrelation_plot(self): from pandas.tools.plotting import autocorrelation_plot _check_plot_works(autocorrelation_plot, self.ts) _check_plot_works(autocorrelation_plot, self.ts.values) @slow def test_lag_plot(self): from pandas.tools.plotting import lag_plot _check_plot_works(lag_plot, self.ts) _check_plot_works(lag_plot, self.ts, lag=5) @slow def test_bootstrap_plot(self): from pandas.tools.plotting import bootstrap_plot _check_plot_works(bootstrap_plot, self.ts, size=10) def test_invalid_plot_data(self): s = Series(list('abcd')) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: with tm.assertRaises(TypeError): s.plot(kind=kind) @slow def test_valid_object_plot(self): s = Series(lrange(10), dtype=object) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: _check_plot_works(s.plot, kind=kind) def test_partially_invalid_plot_data(self): s = Series(['a', 'b', 1.0, 2]) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: with tm.assertRaises(TypeError): s.plot(kind=kind) def test_invalid_kind(self): s = Series([1, 2]) with tm.assertRaises(ValueError): s.plot(kind='aasdf') @slow def test_dup_datetime_index_plot(self): dr1 = date_range('1/1/2009', periods=4) dr2 = date_range('1/2/2009', periods=4) index = dr1.append(dr2) values = randn(index.size) s = Series(values, index=index) _check_plot_works(s.plot) @tm.mplskip class TestDataFramePlots(tm.TestCase): def setUp(self): import matplotlib as mpl self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1') def tearDown(self): tm.close() @slow def test_plot(self): df = tm.makeTimeDataFrame() _check_plot_works(df.plot, grid=False) _check_plot_works(df.plot, subplots=True) _check_plot_works(df.plot, subplots=True, use_index=False) df = DataFrame({'x': [1, 2], 'y': [3, 4]}) self._check_plot_fails(df.plot, kind='line', blarg=True) df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) _check_plot_works(df.plot, use_index=True) _check_plot_works(df.plot, sort_columns=False) _check_plot_works(df.plot, yticks=[1, 5, 10]) _check_plot_works(df.plot, xticks=[1, 5, 10]) _check_plot_works(df.plot, ylim=(-100, 100), xlim=(-100, 100)) _check_plot_works(df.plot, subplots=True, title='blah') _check_plot_works(df.plot, title='blah') tuples = lzip(string.ascii_letters[:10], range(10)) df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples)) _check_plot_works(df.plot, use_index=True) # unicode index = MultiIndex.from_tuples([(u('\u03b1'), 0), (u('\u03b1'), 1), (u('\u03b2'), 2), (u('\u03b2'), 3), (u('\u03b3'), 4), (u('\u03b3'), 5), (u('\u03b4'), 6), (u('\u03b4'), 7)], names=['i0', 'i1']) columns = MultiIndex.from_tuples([('bar', u('\u0394')), ('bar', u('\u0395'))], names=['c0', 'c1']) df = DataFrame(np.random.randint(0, 10, (8, 2)), columns=columns, index=index) _check_plot_works(df.plot, title=u('\u03A3')) def test_nonnumeric_exclude(self): import matplotlib.pyplot as plt df = DataFrame({'A': ["x", "y", "z"], 'B': [1, 2, 3]}) ax = df.plot() self.assertEqual(len(ax.get_lines()), 1) # B was plotted @slow def test_implicit_label(self): df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) ax = df.plot(x='a', y='b') self.assertEqual(ax.xaxis.get_label().get_text(), 'a') @slow def test_explicit_label(self): df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) ax = df.plot(x='a', y='b', label='LABEL') self.assertEqual(ax.xaxis.get_label().get_text(), 'LABEL') @slow def test_plot_xy(self): import matplotlib.pyplot as plt # columns.inferred_type == 'string' df = tm.makeTimeDataFrame() self._check_data(df.plot(x=0, y=1), df.set_index('A')['B'].plot()) self._check_data(df.plot(x=0), df.set_index('A').plot()) self._check_data(df.plot(y=0), df.B.plot()) self._check_data(df.plot(x='A', y='B'), df.set_index('A').B.plot()) self._check_data(df.plot(x='A'), df.set_index('A').plot()) self._check_data(df.plot(y='B'), df.B.plot()) # columns.inferred_type == 'integer' df.columns = lrange(1, len(df.columns) + 1) self._check_data(df.plot(x=1, y=2), df.set_index(1)[2].plot()) self._check_data(df.plot(x=1), df.set_index(1).plot()) self._check_data(df.plot(y=1), df[1].plot()) # figsize and title ax = df.plot(x=1, y=2, title='Test', figsize=(16, 8)) self.assertEqual(ax.title.get_text(), 'Test') assert_array_equal(np.round(ax.figure.get_size_inches()), np.array((16., 8.))) # columns.inferred_type == 'mixed' # TODO add MultiIndex test @slow def test_xcompat(self): import pandas as pd import matplotlib.pyplot as plt df = tm.makeTimeDataFrame() ax = df.plot(x_compat=True) lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() pd.plot_params['xaxis.compat'] = True ax = df.plot() lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() pd.plot_params['x_compat'] = False ax = df.plot() lines = ax.get_lines() tm.assert_isinstance(lines[0].get_xdata(), PeriodIndex) tm.close() # useful if you're plotting a bunch together with pd.plot_params.use('x_compat', True): ax = df.plot() lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() ax = df.plot() lines = ax.get_lines() tm.assert_isinstance(lines[0].get_xdata(), PeriodIndex) def test_unsorted_index(self): df = DataFrame({'y': np.arange(100)}, index=np.arange(99, -1, -1), dtype=np.int64) ax = df.plot() l = ax.get_lines()[0] rs = l.get_xydata() rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64) tm.assert_series_equal(rs, df.y) def _check_data(self, xp, rs): xp_lines = xp.get_lines() rs_lines = rs.get_lines() def check_line(xpl, rsl): xpdata = xpl.get_xydata() rsdata = rsl.get_xydata() assert_array_equal(xpdata, rsdata) [check_line(xpl, rsl) for xpl, rsl in zip(xp_lines, rs_lines)] tm.close() @slow def test_subplots(self): df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True, sharex=True, legend=True) for ax in axes: self.assert_(ax.get_legend() is not None) axes = df.plot(subplots=True, sharex=True) for ax in axes[:-2]: [self.assert_(not label.get_visible()) for label in ax.get_xticklabels()] [self.assert_(label.get_visible()) for label in ax.get_yticklabels()] [self.assert_(label.get_visible()) for label in axes[-1].get_xticklabels()] [self.assert_(label.get_visible()) for label in axes[-1].get_yticklabels()] axes = df.plot(subplots=True, sharex=False) for ax in axes: [self.assert_(label.get_visible()) for label in ax.get_xticklabels()] [self.assert_(label.get_visible()) for label in ax.get_yticklabels()] @slow def test_plot_scatter(self): from matplotlib.pylab import close df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['x', 'y', 'z', 'four']) _check_plot_works(df.plot, x='x', y='y', kind='scatter') _check_plot_works(df.plot, x=1, y=2, kind='scatter') with tm.assertRaises(ValueError): df.plot(x='x', kind='scatter') with
tm.assertRaises(ValueError)
pandas.util.testing.assertRaises
import sys import nltk nltk.download(['punkt', 'wordnet']) import re import numpy as np import pandas as pd import pickle from nltk.tokenize import word_tokenize from nltk.stem import WordNetLemmatizer from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from xgboost import XGBClassifier from sklearn.multioutput import MultiOutputClassifier from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.pipeline import Pipeline from sklearn.metrics import classification_report, accuracy_score, recall_score, precision_score, f1_score from sqlalchemy import create_engine def load_data(database_filepath): """ Load the SQLite database from the database_filepath. Separate it to two parts: (1) message input and (2) message type labels. INPUTS: database_filename: path of SQLite database of cleaned messeage table RETURN: X: inputs of messages Y: labels of message categories column_name: the categories names """ engine = create_engine('sqlite:///'+database_filepath) df =
pd.read_sql('DisasterResponse',con=engine)
pandas.read_sql
import multiprocessing import os import sys import pandas import pathlib import shlex import subprocess import gzip import bz2 from functools import partial import shlex # Compatible with both pre- and post Biopython 1.78: try: from Bio.Alphabet import generic_dna except ImportError: generic_dna = None from Bio.Seq import Seq from vtam.utils.Logger import Logger from vtam.utils.FileParams import FileParams from vtam.utils.PathManager import PathManager from vtam.utils.FileSampleInformation import FileSampleInformation from vtam.utils.FilesInputCutadapt import FilesInputCutadapt class CommandSortReads(object): """Class for the Merge command""" @staticmethod def main(fastainfo, fastadir, sorteddir, params=None, num_threads=multiprocessing.cpu_count(), no_reverse=False, tag_to_end=False, primer_to_end=False): Logger.instance().info(f"OPTIONS:\n no_reverse: {not no_reverse} \n tag_to_end {not tag_to_end} \n primer_to_end {not primer_to_end}") if sys.platform.startswith('win'): num_threads = 1 ############################################################################################ # # params.yml parameters # ############################################################################################ params_dic = FileParams(params).get_params_dic() cutadapt_error_rate = params_dic['cutadapt_error_rate'] cutadapt_minimum_length = params_dic['cutadapt_minimum_length'] cutadapt_maximum_length = params_dic['cutadapt_maximum_length'] ############################################################################################ # # Loop over tag and primer pairs to demultiplex and trim reads # ############################################################################################ merged_fastainfo_df = FileSampleInformation(fastainfo).read_tsv_into_df() pathlib.Path(sorteddir).mkdir(parents=True, exist_ok=True) tempdir = PathManager.instance().get_tempdir() merged_fasta_list = [] results_list = [] sample_info = {} # make sure every file is analysed once. for i in range(merged_fastainfo_df.shape[0]): if merged_fastainfo_df.iloc[i].mergedfasta not in merged_fasta_list: merged_fasta_list.append(merged_fastainfo_df.iloc[i].mergedfasta) for mergedfasta in merged_fasta_list: inputFiles = FilesInputCutadapt(fastainfo, mergedfasta, no_reverse, tag_to_end) tagFile_path = inputFiles.tags_file() info = inputFiles.get_df_info() for key in info.keys(): if key in sample_info.keys(): sample_info[key] = sample_info[key] + info[key] else: sample_info[key] = info[key] Logger.instance().debug("Analysing FASTA file: {}".format(mergedfasta)) in_raw_fasta_path = os.path.join(fastadir, mergedfasta) ######################################################################################## # # cutadapt --cores=0 -e 0 --no-indels --trimmed-only -g tagFile:$tagfile # --overlap length -o "tagtrimmed.{name}.fasta" in_raw_fasta_path # ######################################################################################## base = os.path.basename(in_raw_fasta_path) base, base_suffix = base.split('.', 1) out_fasta_path = os.path.join(tempdir, "sorted") cmd_cutadapt_tag_dic = { 'in_fasta_path': in_raw_fasta_path, 'out_fasta': out_fasta_path, 'num_threads': num_threads, 'tagFile': tagFile_path, 'base_suffix': base_suffix, } cmd_cutadapt_tag_str = 'cutadapt --cores={num_threads} --no-indels --error-rate 0 --trimmed-only ' \ '-g file:{tagFile} --output {out_fasta}_{{name}}.{base_suffix} {in_fasta_path}' \ .format(**cmd_cutadapt_tag_dic) Logger.instance().debug("Running: {}".format(cmd_cutadapt_tag_str)) if sys.platform.startswith("win"): args = cmd_cutadapt_tag_str else: args = shlex.split(cmd_cutadapt_tag_str) run_result = subprocess.run(args=args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) Logger.instance().info(run_result.stdout.decode()) inputFiles.remove_tags_file() ######################################################################################## # # Trim primers from output # cutadapt --quiet --cores=0 -e trim_error --no-indels --trimmed-only # --minimum-length minimum_length --maximum-length maximum_length # --output input_path + {name} + suffix outputfile # ######################################################################################## primers = inputFiles.primers() try: tags_samples = inputFiles.get_sample_names() except Exception as e: Logger.instance().error(e) return for primer in primers: marker, primerfwd, primerrev, lenprimerfwd, lenprimerrev = primer for tag_sample in tags_samples: name, run, marker2, sample, replicate, _, _ = tag_sample if marker not in marker2: continue in_fasta_path = out_fasta_path + "_" + name + "." + base_suffix baseMerge = mergedfasta.split(".")[0] outname = run + "_" + marker + "_" + sample + "_" + replicate + "_" + baseMerge + "_trimmed" if name.endswith("_reversed"): outname = outname + "_reversed" out_fasta_path_new = os.path.join(tempdir, outname + "." + base_suffix) results_list.append(out_fasta_path_new) if not "_reversed" in name: if generic_dna: # Biopython <1.78 primerRev = str(Seq(primerrev, generic_dna).reverse_complement()) else: # Biopython =>1.78 primerRev = str(Seq(primerrev).reverse_complement()) primerFwd = primerfwd lenPrimerFwd = lenprimerfwd lenPrimerRev = lenprimerrev else: if generic_dna: # Biopython <1.78 primerRev = str(Seq(primerfwd, generic_dna).reverse_complement()) else: # Biopython =>1.78 primerRev = str(Seq(primerfwd).reverse_complement()) primerFwd = primerrev lenPrimerFwd = lenprimerrev lenPrimerRev = lenprimerfwd cmd_cutadapt_primer_dic = { 'in_fasta_path': in_fasta_path, 'out_fasta': out_fasta_path_new, 'error_rate': cutadapt_error_rate, 'num_threads': num_threads, 'primerFwd': primerFwd, 'primerRev': primerRev, 'lenPrimerFwd': lenPrimerFwd, 'lenPrimerRev': lenPrimerRev, 'read_min_length': cutadapt_minimum_length, 'read_max_length': cutadapt_maximum_length, } if not primer_to_end: #works if the command is selected cmd_cutadapt_primer_str = 'cutadapt --cores={num_threads} --no-indels --error-rate {error_rate} ' \ '--minimum-length {read_min_length} --maximum-length {read_max_length} ' \ '--trimmed-only -g "^{primerFwd}...{primerRev}$" --output {out_fasta} {in_fasta_path}'\ .format(**cmd_cutadapt_primer_dic) else: cmd_cutadapt_primer_str = 'cutadapt --cores={num_threads} --no-indels --error-rate {error_rate} ' \ '--minimum-length {read_min_length} --maximum-length {read_max_length} ' \ '--trimmed-only -g "{primerFwd};min_overlap={lenPrimerFwd}...{primerRev};min_overlap={lenPrimerRev}" '\ '--output {out_fasta} {in_fasta_path}'\ .format(**cmd_cutadapt_primer_dic) Logger.instance().debug("Running: {}".format(cmd_cutadapt_primer_str)) if sys.platform.startswith("win"): args = cmd_cutadapt_primer_str else: args = shlex.split(cmd_cutadapt_primer_str) run_result = subprocess.run(args=args, stdout=subprocess.PIPE, stderr=subprocess.STDOUT) Logger.instance().info(run_result.stdout.decode()) ################################################################### # # Reverse complement back rc fasta and pool # ################################################################### for file in results_list: if "_trimmed" in file: out_final_fasta_path = os.path.join(sorteddir, os.path.split(file)[-1]) in_fasta_path = os.path.join(tempdir, file) if out_final_fasta_path.endswith(".gz"): _open = partial(gzip.open) elif out_final_fasta_path.endswith(".bz2"): _open = partial(bz2.open) else: _open = open if in_fasta_path.endswith(".gz"): _open2 = partial(gzip.open) elif in_fasta_path.endswith(".bz2"): _open2 = partial(bz2.open) else: _open2 = open if "_reversed" in file: Logger.instance().debug("Pooling fwd and rc reads...") out_final_fasta_path = out_final_fasta_path.replace("_reversed", "") with _open(out_final_fasta_path, 'at') as fout: with _open2(in_fasta_path, 'rt') as fin: for line in fin.readlines(): if not line.startswith('>'): if generic_dna: # Biopython <1.78 fout.write("%s\n" % str( Seq(line.strip(), generic_dna).reverse_complement())) else: # Biopython =>1.78 fout.write("%s\n" % str( Seq(line.strip()).reverse_complement())) else: fout.write(line) else: with _open(out_final_fasta_path, 'at') as fout: with _open2(in_fasta_path, 'rt') as fin: for line in fin.readlines(): fout.write(line) results_list = [os.path.split(result)[-1] for result in results_list if "_reversed" not in result] del sample_info['mergedfasta'] del sample_info['primerrev'] del sample_info['primerfwd'] del sample_info['tagrev'] del sample_info['tagfwd'] sample_info['sortedfasta'] = results_list sample_info_df =
pandas.DataFrame(sample_info)
pandas.DataFrame
from urllib.parse import urlparse import pytest import pandas as pd import numpy as np from visions.core.implementations.types import * from visions.application.summaries.summary import CompleteSummary @pytest.fixture(scope="class") def summary(): return CompleteSummary() def validate_summary_output(test_series, visions_type, correct_output, summary): trial_output = summary.summarize_series(test_series, visions_type) for metric, result in correct_output.items(): assert metric in trial_output, "Metric `{metric}` is missing".format( metric=metric ) assert ( trial_output[metric] == result ), "Expected value {result} for metric `{metric}`, got {output}".format( result=result, metric=metric, output=trial_output[metric] ) def test_integer_summary(summary, visions_type=visions_integer): test_series = pd.Series([0, 1, 2, 3, 4]) correct_output = { "n_unique": 5, "mean": 2, "median": 2, "std": pytest.approx(1.58113, 0.00001), "max": 4, "min": 0, "n_records": 5, "n_zeros": 1, } validate_summary_output(test_series, visions_type, correct_output, summary) def test_integer_missing_summary(summary, visions_type=visions_integer): test_series = pd.Series([0, 1, 2, 3, 4]) correct_output = { "n_unique": 5, "mean": 2, "median": 2, "std": pytest.approx(1.58113, 0.00001), "max": 4, "min": 0, "n_records": 5, "n_zeros": 1, "na_count": 0, } validate_summary_output(test_series, visions_type, correct_output, summary) def test_float_missing_summary(summary, visions_type=visions_float): test_series = pd.Series([0.0, 1.0, 2.0, 3.0, 4.0, np.nan]) correct_output = { "n_unique": 5, "median": 2, "mean": 2, "std": pytest.approx(1.58113, 0.00001), "max": 4, "min": 0, "n_records": 6, "n_zeros": 1, "na_count": 1, } validate_summary_output(test_series, visions_type, correct_output, summary) def test_bool_missing_summary(summary, visions_type=visions_bool): test_series = pd.Series([True, False, True, True, np.nan]) correct_output = {"n_records": 5, "na_count": 1} validate_summary_output(test_series, visions_type, correct_output, summary) def test_categorical_missing_summary(summary, visions_type=visions_categorical): test_series = pd.Series( pd.Categorical( [True, False, np.nan, "test"], categories=[True, False, "test", "missing"], ordered=True, ) ) correct_output = { "n_unique": 3, "n_records": 4, "na_count": 1, "category_size": 4, "missing_categorical_values": True, } validate_summary_output(test_series, visions_type, correct_output, summary) def test_complex_missing_summary(summary, visions_type=visions_complex): test_series = pd.Series([0 + 0j, 0 + 1j, 1 + 0j, 1 + 1j, np.nan]) correct_output = {"n_unique": 4, "mean": 0.5 + 0.5j, "na_count": 1, "n_records": 5} validate_summary_output(test_series, visions_type, correct_output, summary) def test_datetime_missing_summary(summary, visions_type=visions_datetime): test_series = pd.Series( [
pd.datetime(2010, 1, 1)
pandas.datetime
from pathlib import Path import pandas as pd from fuzzywuzzy import fuzz import time import numpy as np pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) def main(): # start time of function start_time = time.time() # project directory project_dir = str(Path(__file__).resolve().parents[1]) # dataframe with 'dirty' data # zip_path = r'\data\interim\04_zipcodes_clean_test.csv' zip_path = r'\data\interim\04_zipcodes_clean.csv' # dataframe with 'municipalities data mun_path = r'\data\interim\02_municipalities.csv' # read dataframes zip = pd.read_csv(project_dir + zip_path, sep=',') mun = pd.read_csv(project_dir + mun_path, sep=',') # COUNTIES THAT HAVE CHANGED ITS NAME - FIXING THE MISTAKES # counties that have changed its name counties_changed = mun[mun["county"] == 'karkonoski[a]'].copy() counties_changed["county"] = "jeleniogórski" counties_changed["concat"] = counties_changed.apply(lambda cc: (cc["municipality"] + " " + cc["county"]).lower(), axis=1) concat = counties_changed["concat"].tolist() concat = list(dict.fromkeys(concat)) concat.sort() # comapring counties that changed name with the counties in ADRESS zip["CONCAT"] = zip.apply(lambda zip: concat_match(zip["ADRESS"], concat) if zip["ADRESS"].find('jeleniogórski') != -1 else zip['CONCAT'], axis=1) # MUN_COU - creating one column with municipality and county zip['MUN_COU'] = zip.apply( lambda zip: zip['CONCAT'] if str(zip['CONCAT']).find('jeleniogórski') != -1 else zip['MUN_COU'], axis=1) # strippirng counties that changed name from adress column zip['ADRESS_2'] = zip.apply(lambda zip: strippping_concat(zip['ADRESS'], zip['MUN_COU']) if str(zip['MUN_COU']).find('jeleniogórski') != -1 else zip['ADRESS_2'], axis=1) # COUNTIES WITH TOO LONG NAMES - FIXING THE ADRESS 2 COLUMN # extracting counties with names longer than 20 characters mun['county_length'] = mun.apply(lambda mun: len(mun['county']), axis=1) county_long = mun[mun['county_length'] >= 20].copy() county_long["concat"] = county_long.apply(lambda cl: (cl["municipality"] + " " + cl["county"]).lower(), axis=1) county_long = county_long['concat'].tolist() county_long = list(dict.fromkeys(county_long )) county_long.sort() county_long_list = [] for county in county_long: if county.find('-') != -1: split_list = county.split('-') county_long_list.append(split_list[0]) county_long_list.append(split_list[1]) else: split_list = county.split(' ') county_long_list.append(split_list[0]) county_long_list.append(split_list[1]) county_long_list = list(dict.fromkeys(county_long_list)) county_long_list.sort() zip["CONCAT"].replace('', np.nan) concat = zip[zip["CONCAT"].isnull()] zip['ADRESS_2'] = zip.apply(lambda zip: strippping_adress(zip["ADRESS"], county_long_list) if (pd.isna(zip["CONCAT"]) == True) else zip["ADRESS_2"], axis=1) # dropping unnecessary columns zip.drop(columns=["CONCAT", 'CONCAT_LONG'], inplace=True) # MUNICIPALITIES AND COUNTIES - GETTING THE RIGHT NAMES # filling empty values with nan and then copy the previous value zip["MUN_COU_2"] = zip["MUN_COU"] zip["MUN_COU_2"].replace('', np.nan) zip['MUN_COU_2'].fillna(axis=0, method='ffill', inplace=True) # print(zip["MUN_COU_2"]) # ADRES_3 - GETTING FULL ADRESS FOR ROWS THAT ARE SPLITED zip["MUN_COU"].replace('', np.nan) # crating new column zip["ADRESS_3"] = zip["ADRESS_2"] # getting rid off adress data in empty / duplicated rows zip["ADRESS_2"] = zip.apply(lambda zip: np.nan if (
pd.isna(zip["MUN_COU"])
pandas.isna
from __future__ import with_statement, print_function, absolute_import from itertools import * from functools import * import json from pandas import Series from stitch.core.stitch_frame import StitchFrame from stitch.core.utils import * from stitch.core.errors import * # ------------------------------------------------------------------------------ ''' .. module:: backingstore :platform: Unix :synopsis: Backingstore base for interfacing with Probe API .. moduleauthor:: <NAME> <<EMAIL>> ''' class BackingStore(Base): def __init__(self): super(BackingStore, self).__init__() self._data = None self._results = None @property def source_data(self): # method for retrieving source data raise EmptyFunction('Please define this function in your subclass') @property def data(self): return self._data @property def results(self): return self._results # -------------------------------------------------------------------------- def get_database(self): self.update() database = {} database['metadata'] = {} database['metadata']['data_type'] = 'json orient=records, DataFrame' database['data'] = self._data.to_json(orient='records') return database def update(self): data = [] for datum in self.source_data: data.append(
Series(datum)
pandas.Series
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from ast import literal_eval from datetime import datetime train = pd.read_csv('train.csv') test = pd.read_csv('test.csv') sub=test.copy() print (train.shape) print (test.shape) # In[30]: train.isnull().sum() # In[31]: test.isnull().sum() # In[2]: data=train.append(test) data.reset_index(inplace=True) data.drop('index',axis=1,inplace=True) data.head(3) # ### Data Descriptive Analysis # In[3]: data.shape # In[4]: data.describe(include='all') # In[ ]: data[data['revenue']==data['revenue'].max()] # In[5]: data[data['budget']==data['budget'].max()] # In[6]: data.head() # # Feature Engineering # In[7]: # Let's see how much missing data we have here first data.isnull().sum() # In[8]: # There are severl columns with high percentage of missing values. I may consider to drop them afterward. print ('The percentage of missing value of each column:') print ('*'*50) print (round(data.isnull().sum()/data.shape[0]*100,2)) # In[ ]: # For some categorical data, I'd like to fill in na with mode. I check the mode of them first to see if it is reasonable. print (data['genres'].mode()[0]) print (data['spoken_languages'].mode()[0]) print (data['production_companies'].mode()[0]) print (data['production_countries'].mode()[0]) # In[ ]: # There is only one missing value in 'release_date'. I'll google it and fill na manually. data[data['release_date'].isnull()] # In[ ]: # The most ideal way to fill in missing value of 'spoken_language' is to use 'original_language'. However, the data # format is quite different, may lead to redundant process. There are only 7 of them are not English. So I'll stick # to using mode to fill na for 'spoken_languages'. data[data['spoken_languages'].isnull()]['original_language'].value_counts() # In[ ]: # Since I will convert 'cast' and 'crew' into no. of cast/crew after feature engineering, I just fill in 0 here. data['cast'].fillna('0',inplace=True) data['crew'].fillna('0',inplace=True) # As mentioned before, these four columns fill in with mode. data['genres'].fillna(data['genres'].mode()[0],inplace=True) data['production_countries'].fillna(data['production_countries'].mode()[0],inplace=True) data['production_companies'].fillna(data['production_companies'].mode()[0],inplace=True) data['spoken_languages'].fillna(data['spoken_languages'].mode()[0],inplace=True) # Google says this movie's release date is 3/20/01. I choose to believe Google. data['release_date'].fillna('3/20/01',inplace=True) # For the continuous variable, fill in with mean value. data['runtime'].fillna(data['runtime'].mean(),inplace=True) # Just using 'original_title' to fill in 'title'. data['title'].fillna(data['original_title'],inplace=True) # In[ ]: # Beautiful!! We have sorted most of the missing values. data.isnull().sum() # In[9]: # Convert 'belongs_to_collection' to binary value: is or is not serial movie. data['belongs_to_collection'].fillna(0,inplace=True) data['belongs_to_collection']=data['belongs_to_collection'].apply(lambda x:1 if x!=0 else x) # In[10]: # Almost all of movies are released. This variable maybe is not so useful. data['status'].value_counts() # In[ ]: # I'm not gonna dig into analysing 'words' stuffs. These are the variables I'm not gonna use in my model. notusing=['Keywords', 'homepage', 'id', 'imdb_id', 'original_language', 'original_title', 'overview', 'poster_path', 'status', 'tagline'] data.drop(notusing,axis=1,inplace=True) # In[ ]: data.head() # In[ ]: # Now let's create some functions dealing with the columns with json-like values. def find_name(string): s=eval(string) # list of dict l=[] for i in s: l.append(i['name']) return l def find_language(string): t=eval(string) l=[] for i in t: l.append(i['iso_639_1']) return l def find_actors(string): if eval(string)==0: return 0 else: t=eval(string) l=[] for i in t: l.append(i['name']) return l # In[ ]: # Apply the functions to those json-like columns. data['cast']=data['cast'].apply(find_actors) data['crew']=data['crew'].apply(find_actors) data['genres']=data['genres'].apply(find_name) data['production_companies']=data['production_companies'].apply(find_name) data['production_countries']=data['production_countries'].apply(find_name) data['spoken_languages']=data['spoken_languages'].apply(find_language) # I converted 'cast' and 'crew' into the no. of cast/crew, which is doable after the previous process. data['no_of_cast']=data['cast'].apply(lambda x:len(x) if x!=0 else 0) data['no_of_crew']=data['crew'].apply(lambda x:len(x) if x!=0 else 0) data.drop(['cast','crew'],axis=1,inplace=True) data.head() # In[ ]: # Most of the movies containing 1 to 3 genres. Some have more. print ('Movies with each no. of genres') print ('*'*50) print (data['genres'].apply(lambda x:len(x)).value_counts()) # In[11]: # Convert the 'genres' into dummy variables. # The logic behind this transformation can be found here. https://stackoverflow.com/questions/29034928/pandas-convert-a-column-of-list-to-dummies # It is quite clear to me, doing me a huge favor. data=pd.get_dummies(data['genres'].apply(pd.Series).stack()).sum(level=0).merge(data,left_index=True,right_index=True) # In[ ]: data.head() # ### The way I fill in missing value in 'budget', which is 0, is fill in with the mean budget of the genres that movie contains. I calculate mean budget of each genre and then put it back to the missing budget. # In[12]: # Firtly, calculate the mean budget of each genre. list_of_genres=[] for i in data['genres']: for j in i: if j not in list_of_genres: list_of_genres.append(j) d={} for i in list_of_genres: genre=i mean_budget=data.groupby(i)['budget'].mean() d[genre]=mean_budget[1] pd.Series(d).sort_values() # In[13]: # This part is just for inspection. To see how many countries/companies/languages in total list_of_companies=[] for i in data['production_companies']: for j in i: if j not in list_of_companies: list_of_companies.append(j) list_of_countries=[] for i in data['production_countries']: for j in i: if j not in list_of_countries: list_of_countries.append(j) len(list_of_countries) list_of_language=[] for i in data['spoken_languages']: for j in i: if j not in list_of_language: list_of_language.append(j) len(list_of_language) print ('The total number of company occurs is {}'.format(len(list_of_companies))) print ('The total number of country occurs is {}'.format(len(list_of_countries))) print ('The total number of language occurs is {}'.format(len(list_of_language))) # In[14]: # Replace the 0 budget with nan. data['budget'].replace(0,np.nan,inplace=True) data[data['budget'].isnull()][['budget','genres']].head(10) # In[15]: # This function will calculate the mean budget value of that movie. # For example, for the index 4 movie, the function will calculate the mean of the mean budget of Action and the mean # budget of Thriller. def fill_budget(l): el=[] for i in l: if d[i] not in el: el.append(d[i]) return (np.mean(el)) # In[16]: data['budget'].fillna(data['genres'].apply(fill_budget),inplace=True) # In[17]: # Most of the movies are produced by 1 to 3 companies. Some have more. print ('Movies with each no. of production company') print ('*'*50) data['production_companies'].apply(lambda x:len(x)).value_counts() # In[18]: # Most of the movies was shoot in under 2 countries. Some have more. print ('Movies with each no. of production_countries') print ('*'*50) data['production_countries'].apply(lambda x:len(x)).value_counts() # In[ ]: # Surprisingly, the budget doesn't have much to do with how many countries the movie was shoot, but how many companies # involved. data['no_of_country']=data['production_countries'].apply(lambda x:len(x)) data['no_of_company']=data['production_companies'].apply(lambda x:len(x)) data[['budget','no_of_country','no_of_company']].corr() # ### Deal with release date # In[19]: data['release_date'].head() # In[20]: # If we just apply the datetime function of panda, there will be some year like 2048, 2050, 2072 happen. I'm pretty # sure the time traveling has not been invented yet. The year has to be handled first. If it is greater than 18, it # must be 19xx. def fix_year(x): year=x.split('/')[2] if int(year)>18: return x[:-2]+'20'+year else: return x[:-2]+'19'+year data['release_date']=data['release_date'].apply(fix_year) data['release_date']=pd.to_datetime(data['release_date'],infer_datetime_format=True) # In[21]: # There still might be some ambiguities like 11, 15, 09. How does computer know it refers to 2011 or 1911? It don't. # So eventually I decided not to use the 'year'. But the month and date and weekday can still be really informative. #data['year']=data['release_date'].dt.year data['month']=data['release_date'].dt.month data['day']=data['release_date'].dt.day data['weekday']=data['release_date'].dt.weekday # Mapping weekday and month. data['weekday']=data['weekday'].map({0:'Mon',1:'Tue',2:'Wed',3:'Thur',4:'Fri',5:'Sat',6:'Sun'}) data['month']=data['month'].map({1:'Jan',2:'Feb',3:'Mar',4:'Apr',5:'May',6:'Jun',7:'July',8:'Aug',9:'Sep',10:'Oct',11:'Nov',12:'Dec'}) # In[22]: data[['release_date','month','day','weekday']].head() # In[23]: data.drop(['release_date'],axis=1,inplace=True) data.iloc[:5,20:] # In[24]: # There are nearly 90 movies are English. # I'd like to know will the movie is/is not foreign language affect the revenue? l=[] for i in data['spoken_languages']: if 'en' in i: l.append(i) len(l)/data.shape[0] # In[25]: # Convert 'spoken_languages' into binary variable 'language_en'. def en_or_not(l): if 'en' in l: return 1 else: return 0 data['language_en']=data['spoken_languages'].apply(en_or_not) data.drop('spoken_languages',axis=1,inplace=True) # In[26]: # Same situation in 'production_countries'. Nearly 80% movies were shoot in USA. u=[] for i in data['production_countries']: if 'United States of America' in i: u.append(i) len(u)/data.shape[0] # In[27]: # Convert 'production_countries' into binary variable 'produce_in_USA' def usa_or_not(l): if 'United States of America' in l: return 1 else: return 0 data['produce_in_USA']=data['production_countries'].apply(usa_or_not) data.drop('production_countries',axis=1,inplace=True) # In[44]: top_company=pd.read_csv('../input/top-company-list/top_company.csv') top_company=top_company['Production Company'].tolist() top_company[:5] # In[45]: data.iloc[:,20:].head() # In[46]: #data['top_director']=data['director'].apply(lambda x:1 if x in top_director else 0) def get_top_company(l): n=0 for i in l: if i in top_company: n+=1 return n data['top_production_company']=data['production_companies'].apply(get_top_company) data.drop('production_companies',axis=1,inplace=True) # ## Normalisation # In[47]: # To avoid the model being affected by the scale of each variable, normalise the continuous variable. data['budget']=data['budget'].apply(lambda x:(x-np.min(data['budget']))/(np.max(data['budget']-np.min(data['budget'])))) data['popularity']=data['popularity'].apply(lambda x:(x-np.min(data['popularity']))/(np.max(data['popularity']-np.min(data['popularity'])))) data['runtime']=data['runtime'].apply(lambda x:(x-np.min(data['runtime']))/(np.max(data['runtime']-np.min(data['runtime'])))) # In[48]: # Set the index to movie title, and we are ready to go!! data.set_index('title',inplace=True) data.head() # In[49]: plt.figure(figsize=(20,12)) plt.title('Violin plot of revenue of each month',fontsize=20) sns.violinplot(x=data[data['revenue'].notnull()]['month'],y=data[data['revenue'].notnull()]['revenue'],scale='count') # In[50]: plt.figure(figsize=(20,12)) plt.title('Violin plot of revenue of each weekday',fontsize=20) sns.violinplot(x=data[data['revenue'].notnull()]['weekday'],y=data[data['revenue'].notnull()]['revenue'],scale='count') # In[51]: data.drop('genres',axis=1,inplace=True) # Month and weekday need to be converted to dummy variables. data=pd.get_dummies(data) # In[52]: data.iloc[:5,20:29] # ### All done!!! We're good to do some exploratory analysis! # # EDA # In[53]: # For the EDA, I only use the training dataset. Train=data[data['revenue'].notnull()] Train.head(5) # In[54]: # Does a movie is serial or not matter? print (Train.groupby('belongs_to_collection')['revenue'].mean()) Train.groupby('belongs_to_collection')['revenue'].mean().plot.barh() # In[55]: Train['belongs_to_collection'].value_counts() # In[56]: sns.swarmplot(x=Train['belongs_to_collection'],y=Train['revenue']) # In[57]: list_of_genres # In[58]: # Similar to creating a series of mean budget of each genre, here we create 'revenue'. g={} for i in list_of_genres: mean_rev=Train.groupby(i)['revenue'].mean() g[i]=mean_rev[1] g # In[59]: plt.figure(figsize=(20,8)) pd.Series(g).sort_values().plot.barh() plt.title('Mean revenue of each genre',fontsize=20) plt.xlabel('Revenue',fontsize=20) # In[60]: print (pd.DataFrame(Train.groupby('language_en')['revenue'].mean())) plt.figure(figsize=(10,4)) Train.groupby('language_en')['revenue'].mean().sort_values().plot.barh() plt.title('Mean revenue of is or is not foreign film.',fontsize=20) plt.xlabel('Revenue',fontsize=20) # In[61]: plt.figure(figsize=(10,4)) sns.swarmplot(x=Train['language_en'],y=Train['revenue']) plt.title('Swarm plot of is or is not foreign film',fontsize=20) # In[62]: print (pd.DataFrame(Train.groupby('produce_in_USA')['revenue'].mean())) plt.figure(figsize=(10,4)) Train.groupby('produce_in_USA')['revenue'].mean().sort_values().plot.barh() plt.title('Mean revenue of shoot in USA or not') plt.xlabel('revenue') # In[63]: plt.figure(figsize=(10,4)) sns.swarmplot(x=Train['produce_in_USA'],y=Train['revenue']) plt.title('Swarm plot of movie produced in USA or not',fontsize=20) # In[64]: plt.figure(figsize=(10,4)) plt.title('Mean revenue of each no. of top production company',fontsize=20) Train.groupby('top_production_company')['revenue'].mean().plot.bar() plt.xlabel('No. of top production company',fontsize=20) plt.ylabel('Revenue',fontsize=20) # In[65]: plt.figure(figsize=(10,4)) plt.title('Swarm plot of mean revenue of each no. of top production company',fontsize=20) plt.xlabel('No. of top production company',fontsize=20) plt.ylabel('Revenue',fontsize=20) sns.swarmplot(x=Train['top_production_company'],y=Train['revenue']) # In[66]: plt.figure(figsize=(8,8)) plt.scatter(Train['runtime'],Train['revenue']) plt.title('Scatter plot of runtime vs revenue',fontsize=20) plt.xlabel('runtime',fontsize=20) plt.ylabel('Revenue',fontsize=20) # In[67]: plt.figure(figsize=(8,8)) plt.scatter(Train['budget'],Train['revenue']) plt.title('Scatter plot of budget vs revenue',fontsize=20) plt.xlabel('budget',fontsize=20) plt.ylabel('Revenue',fontsize=20) # In[68]: plt.figure(figsize=(8,8)) plt.scatter(Train['popularity'],Train['revenue']) plt.title('Scatter plot of popularity vs revenue',fontsize=20) plt.xlabel('popularity',fontsize=20) plt.ylabel('Revenue',fontsize=20) # In[69]: month=['Jan','Feb','Mar','Apr','May','Jun','July','Aug','Sep','Oct','Nov','Dec'] m={} for i in month: mean=Train.groupby('month_'+i)['revenue'].mean() m[i]=mean[1] pd.Series(m) # In[70]: for i in month: print (i,Train['month_'+i].value_counts()[1]) # In[71]: plt.figure(figsize=(20,8))
pd.Series(m)
pandas.Series
""" Construct the graph representation of brain imaging and population graph """ import os import numpy as np import pandas as pd from sklearn.preprocessing import OneHotEncoder from sklearn.metrics.pairwise import cosine_similarity def brain_graph(logs, atlas, path, data_folder): if not os.path.exists(path): os.makedirs(path) # the global mean is not included in ho_labels.csv atlas.loc[-1] = [3455, 'Background'] print(atlas.shape) # label the regions as right/left/global mean label = [] for e in atlas['area'].values: if e.startswith('Left'): label.append(0) elif e.startswith('Right'): label.append(1) else: label.append(-1) atlas['label'] = label atlas.sort_values('index', inplace=True) atlas = atlas.reset_index().drop('level_0', axis=1) ################### # Adjacent matrix # ################### print('Processing the adjacent matrix...') # now the index in [0, 110] adj = np.zeros([111, 111]) not_right = [i for i in range(111) if atlas['label'][i] != 1] not_left = [i for i in range(111) if atlas['label'][i] != 0] not_gb = [i for i in range(111) if atlas['label'][i] != -1] # Build the bipartite brain graph for idx in range(111): if atlas['label'][idx] == 0: adj[idx, not_left] = 1 elif atlas['label'][idx] == 1: adj[idx, not_right] = 1 elif atlas['label'][idx] == -1: adj[idx, not_gb] = 1 # now form the sparse adj matrix # node id:[1, 111*871] node_ids = np.array_split(np.arange(1, 111 * 871 + 1), 871) adj_matrix = [] for i in range(871): node_id = node_ids[i] for j in range(111): for k in range(111): if adj[j, k]: adj_matrix.append([node_id[j], node_id[k]]) # save sparse adj matrix
pd.DataFrame(adj_matrix)
pandas.DataFrame
from lib.allgemein import liste_in_floats_umwandeln import pandas as pd import untangle from decimal import * #written by <NAME> def get_xml_RecordTime_excitationwl(dateiname): obj = untangle.parse(dateiname) RecordTime = obj.XmlMain.Documents.Document['RecordTime'] excitationwl = float(obj.XmlMain.Documents.Document.xDim.Calibration['LaserWave']) return RecordTime, excitationwl def get_timestamps(dateiname): obj = untangle.parse(dateiname) predf = [] for i in range(0, len(obj.XmlMain.Documents.Document.Data.Frame)): timestamp = obj.XmlMain.Documents.Document.Data.Frame[i]['TimeStamp'] timestamp = Decimal(timestamp) predf.append(timestamp) posi = list(range(0, len(predf), 1)) colunames = [] for i in posi: colu = 'Frame ' + str(i + 1) colunames.append(colu) df = pd.DataFrame(predf, index=colunames, columns=['timestamp']) df_timestamps = df.transpose() return df_timestamps def get_positions(dateiname): obj = untangle.parse(dateiname) predf = [] for i in range(0,len(obj.XmlMain.Documents.Document.Data.Frame)): positions = obj.XmlMain.Documents.Document.Data.Frame[i]['ValuePosition'] z = positions.split(";") ft = liste_in_floats_umwandeln(z) predf.append(ft) posi=list(range(0, len(predf),1)) colunames = [] for i in posi: colu = 'Frame ' + str(i + 1) colunames.append(colu) df = pd.DataFrame(predf, index=colunames, columns=['x [µm]','y [µm]','z [µm]']) df = df.transpose() return df def get_relwavenumber(dateiname): obj = untangle.parse(dateiname) relwavenumber = obj.XmlMain.Documents.Document.xDim.Calibration['ValueArray'] relwavenumber = relwavenumber.split('|') predf = liste_in_floats_umwandeln(relwavenumber) del predf[0] df1 =
pd.DataFrame(predf, columns=['relWavenumber [1/cm]'])
pandas.DataFrame
''' This file is used to read in the json files that contain the metadata from the PartNet meta data files and ultimately creates the first round of the dfmeta file. It uses some complicated tree structures to capture the data and attempt to generate a description. However, this method was mostly overwritten by the descriptor.py file which uses a different methodology to make the descriptions. But that file still uses a large amount of the data generated here. This file is only intended to be run locally. ''' #%% Imports import json import os import inflect from nltk.corpus import wordnet as wn import pandas as pd import pandas_ods_reader as por import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm import utils as ut import configs as cf #%% Setup text processing inflect = inflect.engine() vocab = set() #%% Define loadset cats_to_load = ['Table','Chair','Lamp','Faucet','Clock','Bottle','Vase','Laptop','Bed','Mug','Bowl'] catids_to_load = [4379243,3001627,3636649,3325088,3046257,2876657,3593526,3642806,2818832,3797390,2880940] #%% Get JSON files and preprocess def getAndPrintJSON(index, dir_fp, reverse=False, verbose=False) : indent = 2 json_res_fp = os.path.join(dir_fp, str(index), 'result_after_merging.json') json_meta_fp = os.path.join(dir_fp, str(index), 'meta.json') meta = ut.getJSON(json_meta_fp) mid = meta['model_id'] mcat = meta['model_cat'] annoid = meta['anno_id'] if (not mcat in cats_to_load) : return None if (verbose) : print('{}\n{}\n{}'.format(index, mid, mcat)) res = ut.getJSON(json_res_fp) json_formatted_str = json.dumps(res, indent=indent) resl = json_formatted_str.splitlines() output = [] index = 0 for line in resl : if ('name' in line) : level = int(line.split(':')[0].count(' ') / (2*indent) - 1) name = line.split('"')[-2] name = name.replace('_', ' ') output.append({'name':name, 'level':level}) vocab.add(name) index = index + 1 if (output[0]['level'] > output[-1]['level']) : output.reverse() output.insert(0, {'mid':mid}) output.insert(1, {'mcat':mcat}) output.insert(2, {'annoid':annoid}) return output #%% Get all JSON data json_dir = cf.PARTNET_META_STATS_DIR json_fps = os.listdir(json_dir) data = [] for fp in tqdm(json_fps, total=len(json_fps)) : shape = getAndPrintJSON(fp, json_dir, False) if (shape == None) : continue data.append(shape) dfmids = pd.DataFrame([ [item[0]['mid'], item[1]['mcat'], item[2]['annoid']] for item in data], columns=['mid', 'cattext', 'annoid']) #%% Explore vocab def getSyns(word) : syns = wn.synsets(word) synonyms = [] for syn in syns : for l in syn.lemmas() : synonyms.append(l.name()) return synonyms def getDef(word) : syns = wn.synsets(word) if len(syns) > 0 : return syns[0].definition() else : return 'N/A' for word in vocab : for w in word.split(' ') : syns = getSyns(w) print('{:32} {}'.format(w, set(syns[1:5]))) for word in vocab : for w in word.split(' |') : print('{:32} {}'.format(w, getDef(w))) for word in vocab : defs = wn.synsets(word) print(word) if len(defs) > 0 : print('{} : {}'.format(word, defs[0])) #%% Node class for gathering tree info from the given part hierarchy class Node: def __init__(self, name='root', level=0): self.name = name self.children = [] self.level = level self.total_children = 0 self.quantity = 1 self.mid = '' self.mcat = '' self.desc_level = 0 self.desc_max = 0 def __repr__(self): return "{}".format(self.name) def printTree(self): for child in self.children: print('{:2d} : {} : {} : {}{}'.format(child.level, child.total_children, child.quantity, ' '*child.level*2, child.name)) child.printTree() def getDetails(self, names_only=False) : desc = '' if not self.name == 'root' : desc = ' {},{},{},{}|'.format(self.name, self.level, len(self.children), self.quantity) if (names_only) : desc = '{}|'.format(self.name) for child in self.children : desc = desc + child.getDetails(names_only) return desc def treesEqual(self, root1, root2) : return (root1.getDetails() == root2.getDetails()) def collapseMulti(self) : if (len(self.children) == 0) : return child_descs = [child.getDetails() for child in self.children] uniq_descs = set(child_descs) ids_to_remove = [] for uniq in uniq_descs : found = False for i, entry in enumerate(child_descs) : if (uniq==entry and not found) : # print(' {} : {} : {} '.format(entry, i, len(self.children))) self.children[i].quantity = child_descs.count(uniq) found = True elif (uniq==entry and found) : # print('removed', entry, i) ids_to_remove.append(i) for index in sorted(ids_to_remove, reverse=True): del self.children[index] for child in self.children : child.collapseMulti() def removeZeros(self) : for child in reversed(self.children) : if (child.quantity == 0) : self.children.remove(child) child.removeZeros() if (child.quantity > 1) : child.name = inflect.plural(child.name) def sumUp(self) : total = len(self.children) for child in self.children : total = total + child.sumUp() self.total_children = total return total def dSmall(self) : names = list(filter(None, self.getDetails(names_only=True).split('|'))) desc = '' if len(names) == 0 : desc = 'Nothing' if len(names) == 1 : desc = '{}.'.format(names[0]) if len(names) == 2 : desc = '{} with a {}.'.format(names[0], names[1]) if len(names) == 3 : desc = '{} with a {} made of a {}.'.format(names[0],names[1], names[2]) if len(names) >= 4 : desc = 'Overload' return desc def dReg(self, index, outof) : if (len(self.children) == 0) : return 'OVERLOAD: {} '.format(self.name) # return ' {} {}.'.format( self.quantity if self.quantity>1 else 'a', self.name) if (len(self.children) == 1) : # multi = 'each of ' if self.quantity > 1 else '' multi = (self.quantity > 1) if (len(self.children[0].children) == 0) : if multi : return 'each {} is made of {} {}. '.format( inflect.singular_noun(self.name), self.children[0].quantity if self.children[0].quantity>1 else 'a', self.children[0].name) else : return 'the {} is made of {} {}. '.format(self.name, self.children[0].quantity if self.children[0].quantity>1 else 'a', self.children[0].name) elif (len(self.children[0].children) == 1) : # has just 1 child return 'the {} which is {} '.format(self.name, self.children[0].dReg(index+1, outof)) else : # has multiple children return 'the {} which is {} '.format(self.name, self.children[0].dReg(index+1, outof)) desc_subs = '' i = len(self.children) imax = i for child in self.children : singular = not inflect.singular_noun(child.name) multi = 'a' if singular else ' {} '.format(child.quantity) template = ', {} {} ' if i==imax : template = '{} {} ' if i==1 : template = 'and {} {} ' desc_subs = desc_subs + template.format(multi, child.name) i = i - 1 return 'the {} has {}. '.format(self.name, desc_subs) def dRoot(self) : if (self.mcat == 'Vase') : return self.dRootVase() if (self.level<1 and self.total_children < 3) : return ' {} '.format(self.dSmall()) if (len(self.children) > 1 or self.level >= 2) : desc_subs = '' desc_all_subs = '' i = len(self.children) imax = i for child in self.children : singular = not inflect.singular_noun(child.name) multi = 'a' if singular else 'a set of {}'.format(child.quantity) template = '{}, {} {}' if i==imax : template = '{} {} {}' if i==1 : template = '{} and {} {}' desc_subs = template.format(desc_subs, multi, child.name) desc_all_subs = desc_all_subs + (child.dReg(1,0) if (len(child.children)>0) else '') i = i - 1 return 'a {} that is made of {}. {}'.format(self.name, desc_subs, desc_all_subs) else : return '{} that is {}'.format( self.name, self.children[0].dRoot() ) def dSmallVase(self) : names = list(filter(None, self.getDetails(names_only=True).split('|'))) desc = '' if len(names) == 0 : desc = 'Nothing' if len(names) == 1 : desc = '{}.'.format(names[0]) if len(names) == 2 : desc = '{} with a {}.'.format(names[0], names[1]) if len(names) == 3 : desc = '{} with a {} made of a {}.'.format(names[0],names[1], names[2]) if len(names) >= 4 : desc = 'Overload' return desc def dRegVase(self) : if self.name == 'containing things' : desc_subs = '' i = len(self.children) imax = i for child in self.children : singular = not inflect.singular_noun(child.name) multi = 'a' if singular else ' {} '.format(child.quantity) template = ', {} {} ' if i==imax : template = '{} {} ' if i==1 : template = 'and {} {} ' desc_subs = desc_subs + template.format(multi, child.name) i = i - 1 return ' the {} contains {}. '.format('vase', desc_subs) if (len(self.children) == 0) : return 'OVERLOAD: {} '.format(self.name) if (len(self.children) == 1) : multi = (self.quantity > 1) if (len(self.children[0].children) == 0) : if multi : return 'each {} is made of {} {}. '.format( inflect.singular_noun(self.name), self.children[0].quantity if self.children[0].quantity>1 else 'a', self.children[0].name) else : return 'the {} is made of {} {}. '.format(self.name, self.children[0].quantity if self.children[0].quantity>1 else 'a', self.children[0].name) elif (len(self.children[0].children) == 1) : # has just 1 child return 'the {} which is {} '.format(self.name, self.children[0].dRegVase()) else : # has multiple children return 'the {} which is {} '.format(self.name, self.children[0].dRegVase()) desc_subs = '' i = len(self.children) imax = i for child in self.children : singular = not inflect.singular_noun(child.name) multi = 'a' if singular else ' {} '.format(child.quantity) template = ', {} {} ' if i==imax : template = '{} {} ' if i==1 : template = 'and {} {} ' desc_subs = desc_subs + template.format(multi, child.name) i = i - 1 return 'the {} has {}. '.format(self.name, desc_subs) def dRootVase(self) : new_children = self.children if (self.level<1 and (self.total_children) < 3) : return ' {} '.format(self.dSmallVase()) if (len(new_children) > 1 or self.level >= 2) : desc_subs = '' desc_all_subs = '' i = len(new_children) imax = i for child in new_children : if child.name == 'containing things' : desc_all_subs = desc_all_subs + child.dRegVase() continue multi = 'a' if child.quantity > 0 else 'a set of {}'.format(child.quantity) template = '{}, {} {}' if i==imax : template = '{} {} {}' if i==1 : template = '{} and {} {}' desc_subs = template.format(desc_subs, multi, child.name) desc_all_subs = desc_all_subs + (child.dRegVase() if (len(child.children)>0) else '') i = i - 1 return 'a {} that is made of {}. {}'.format(self.name, desc_subs, desc_all_subs) else : return '{} that is {}'.format( self.name, new_children[0].dRootVase() ) ''' Exampple descriptions and tree structures : a chair that has a chair back and a chair seat. the chair back is made of a back surface with a back single surface. the chair seat is made of a seat surface with a seat single surface. 0 : 6 : 1 : chair 1 : 2 : 1 : chair back 2 : 1 : 1 : back surface 3 : 0 : 1 : back single surface 1 : 2 : 1 : chair seat 2 : 1 : 1 : seat surface 3 : 0 : 1 : seat single surface 0 : 12 : 1 : table 1 : 11 : 1 : regular table 2 : 7 : 1 : table base 3 : 6 : 1 : regular leg base 4 : 0 : 2 : circular stretchers 4 : 0 : 4 : legs 2 : 2 : 1 : tabletop 3 : 1 : 1 : tabletop surface 4 : 0 : 1 : board 0 : 8 : 1 : pot 1 : 2 : 1 : containing things 2 : 0 : 1 : liquid or soil 2 : 0 : 1 : plant 1 : 1 : 1 : body 2 : 0 : 1 : container 1 : 2 : 1 : base 2 : 1 : 1 : foot base 3 : 0 : 4 : feet a pot that is made of a body and a base. it contains liquid or soil and a plant. the body is made of a container and the base is made of a food base with 4 feet. ''' #%% Generate descriptions phrases = { 'combiner' : ['with', 'with', 'with', 'that has', 'made up of'], 'starter' : ['a'], 'multi' : ['each with', 'each one has', 'each having'], } def getShapeTree(data, max_depth = 10) : fdata = [item for item in data[3:] if item['level'] <= max_depth] root = Node() root.mid = data[0]['mid'] root.mcat = data[1]['mcat'] root.annoid = data[2]['annoid'] # print('{} {} {}'.format(len(data), root.mid, root.mcat, len(root.children))) for record in fdata: last = root for _ in range(record['level']): last = last.children[-1] last.children.append(Node(record['name'], record['level'])) root.collapseMulti() # root.removeZeros() root.sumUp() return root fix_replacements = [[' ', ' '], [' .', '.'], ['..', '.'], [' ,', ',']] def removeDescExtras(desc) : for rp in fix_replacements : desc = desc.replace(rp[0], rp[1]) if desc.startswith('a ') : desc = desc[2:] return desc #%% Get shape descriptions based on tree hierarchies and create dataframe # rn.shuffle(data) cat_index = 3 # cats_to_load = [' 0 Table','1 Chair','2 Lamp','3 Faucet','4 Clock','5 Bottle','6 Vase','7 Laptop','8 Knife'] cat_data = [entry for entry in data if cats_to_load[cat_index] in entry[1]['mcat']] shapes = [getShapeTree(shape, 4) for shape in data] dfdesc = {} for index, shape in enumerate(shapes) : desc = '{}'.format(shape.children[0].dRoot()) if not shape.mcat == 'Vase' else '{}'.format(shape.children[0].dRootVase()) desc = removeDescExtras(desc) details = shape.getDetails() dfdesc[shape.mid] = [shape.mcat, shape.annoid, desc, details] # print('\nIndex: {:2d} {} {}\n{}'.format(index, shape.mcat, shape.mid, desc)) # shape.prinTree() dfdesc = pd.DataFrame.from_dict(dfdesc, orient='index') dfdesc.columns = ['cattext', 'annoid', 'desc', 'details'] dfdesc.index.name = 'mid' #%% Inspect trees for i, shape in enumerate(shapes[:20]) : print('\nIndex: {}'.format(i)) shape.printTree() #%% Load all meta data filepaths from ShapeNetCore database meta_dir = '/media/starstorms/DATA/Insight/ShapeNet/stats/ShapeNetCore.v2' meta_fps = [] for dirName, subdirList, fileList in os.walk(meta_dir): for fname in fileList: fullpath = os.path.join(dirName, fname) meta_fps.append(fullpath) #%% Get all metadata and put into DF (takes a long time, use precomputed below) dfmeta = pd.DataFrame(columns = ['mid', 'cat', 'numv', 'xmin', 'xmax', 'centx', 'dx', 'ymin', 'ymax', 'centy', 'dy', 'zmin', 'zmax', 'centz', 'dz']) i = 0 for meta_fp in tqdm(meta_fps, total=len(meta_fps)) : meta_js = ut.getJSON(meta_fp) mcat = meta_fp.split('/')[8] dfmeta.loc[i] = [meta_js['id'], mcat, meta_js['numVertices'], meta_js['min'][0], meta_js['max'][0], meta_js['centroid'][0], meta_js['max'][0] - meta_js['min'][0], meta_js['min'][1], meta_js['max'][1], meta_js['centroid'][1], meta_js['max'][1] - meta_js['min'][1], meta_js['min'][2], meta_js['max'][2], meta_js['centroid'][2], meta_js['max'][2] - meta_js['min'][2] ] i = i + 1 #%% Write / reload the data from the previous cell # pd.DataFrame.to_csv(dfmeta, '/home/starstorms/Insight/ShapeNet/meta/df_meta_raw.csv') dfmeta = pd.read_csv('/home/starstorms/Insight/ShapeNet/meta/df_meta_raw.csv') #%% Read tax and meta info tax = ut.readTax() tax_cats = tax[tax.synsetId.isin(catids_to_load)] # dfmeta = ut.readMeta() # dfmeta.drop(['desc','cattext'], axis=1, inplace=True) #%% Fix and normalize numeric columns of interest dffixcols = ['dx','dy','dz', 'dsq'] dfnormcols = ['dx','dy','dz','dsq', 'numv'] dfall = pd.DataFrame.merge(dfmeta, dfdesc[['cattext', 'annoid', 'desc', 'details']], how='left', on=['mid', 'mid']) dfall = dfall.drop_duplicates(subset='mid') dfall['dsq'] = abs(abs(dfall.dx) - abs(dfall.dz)) dfall[dffixcols] = dfall[dffixcols].div(dfall[dffixcols].sum(axis=1), axis=0) # dfall[dfnormcols] = dfall[dfnormcols].apply(stats.zscore) # dfstats = [dfall[dfall.cattext==cattxt][dfnormcols].describe().reset_index() for cattxt in cats_to_load] #%% Create shape overall classes based on bboxs duniq = dfall.cat.unique() qbins = [0, .1, .3, .7, .9, 1.0] dfclasscols = [col.replace('d','c') for col in dffixcols] for col in dfclasscols : dfall[str(col)] = int(len(qbins)/2) for col1, col2 in zip(dffixcols, dfclasscols) : for catid_uniq in duniq : dfall[col2].loc[dfall.cat==catid_uniq] =
pd.qcut(dfall[col1].loc[dfall.cat==catid_uniq], labels=False, q=qbins, precision=0, duplicates='drop')
pandas.qcut
# Import Packages from IPython.display import clear_output import pandas as pd import requests from requests.utils import requote_uri from fake_useragent import UserAgent from lxml import html from bs4 import BeautifulSoup from tqdm import tqdm import time from textblob import TextBlob from langdetect import detect import re import random import nltk from nltk.corpus import stopwords from nltk.stem import SnowballStemmer import pickle from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix ,accuracy_score, classification_report from sklearn.naive_bayes import BernoulliNB, GaussianNB, ComplementNB from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from gensim.models.doc2vec import Doc2Vec, TaggedDocument import nltk import gensim import scipy.stats as st import numpy as np import matplotlib.pyplot as plt def fix_http(URL): if URL != '': if ('http' in URL) & (URL[-1:] == '/'): return URL elif ('http' in URL) & (URL[-1:] != '/'): return URL + '/' elif ('http' not in URL) & (URL[-1:] == '/'): return 'http://' + URL else: return 'http://' + URL + '/' ua = UserAgent() def get_html(URL, Timeout): header = {'User-Agent': str(ua.random)} try: page = requests.get(URL, timeout=Timeout, headers=header) except: return None return page.text def get_html_ssl(URL, Timeout): header = {'User-Agent': str(ua.random)} try: page = requests.get(URL, timeout=Timeout, headers=header, verify=False) except: return None return page.text def scrape_urls(CSV_file, URL_column, clean=False, output_file=None): requests.packages.urllib3.disable_warnings() tqdm(disable=True, total=0) if len(tqdm._instances) > 0: while len(tqdm._instances) > 0: tqdm._instances.pop().close() clear_output(wait=True) df = pd.read_csv(CSV_file) if (clean): df = df[pd.isnull(df[URL_column]) != True] html_texts = [] for url in tqdm(df[URL_column].tolist(), total=len(df[URL_column])): text = get_html(fix_http(url), 10) if(text is None): text = get_html_ssl(fix_http(url), 10) html_texts.append(text) df['Raw_HTML'] = html_texts if (output_file is None): df.to_csv("scraped_html_file.csv", index=False) else: df.to_csv(output_file, index=False) return "Successfully Completed!" def visible_texts(soup): re_spaces = re.compile(r'\s{3,}') text = ' '.join([s for s in soup.strings if s.parent.name not in ('style', 'script', 'head', 'title')]) return re_spaces.sub(' ', text) def language_detector(page): try: soup = BeautifulSoup(page, 'html.parser') for tag in soup.find_all('div', id=re.compile(r'(cook)|(popup)')): tag.decompose() for tag in soup.find_all('div', class_=re.compile(r'(cook)|(popup)')): tag.decompose() body_text = visible_texts(BeautifulSoup(visible_texts(soup), 'html.parser')) if len(soup.find_all('frame')) > 0: frame_text = '' for f in soup.find_all('frame'): frame_request = requests.get(f['src']) frame_soup = BeautifulSoup(frame_request.content, 'html.parser') frame_text = frame_text + ' ' + visible_texts(BeautifulSoup(visible_texts(frame_soup), 'html.parser')) body_text = body_text + frame_text return detect(body_text) except: return 'unknown' def detect_language(CSV_file = 'scraped_html_file.csv', HTML_column = 'Raw_HTML'): tqdm(disable=True, total=0) if len(tqdm._instances) > 0: while len(tqdm._instances) > 0: tqdm._instances.pop().close() clear_output(wait=True) df = pd.read_csv(CSV_file) languages = [] counter = 0 for html in tqdm(df[HTML_column].tolist(), total=len(df[HTML_column])): languages.append(language_detector(html)) counter += 1 if(counter % 100 == 0): time.sleep(30) df['Languages'] = languages df.to_csv(CSV_file, index=False) return "Successfully Completed!" def language_detector2(URL): try: page = requests.get(URL, timeout=10) soup = BeautifulSoup(page.content, 'html.parser') for tag in soup.find_all('div', id=re.compile(r'(cook)|(popup)')): tag.decompose() for tag in soup.find_all('div', class_=re.compile(r'(cook)|(popup)')): tag.decompose() body_text = visible_texts(BeautifulSoup(visible_texts(soup), 'html.parser')) if len(soup.find_all('frame')) > 0: frame_text = '' for f in soup.find_all('frame'): frame_request = requests.get(f['src']) frame_soup = BeautifulSoup(frame_request.content, 'html.parser') frame_text = frame_text + ' ' + visible_texts(BeautifulSoup(visible_texts(frame_soup), 'html.parser')) body_text = body_text + frame_text return len(body_text.split()), detect(body_text) except: return 0, 'unknown' def language_switcher(URL, lang_code): success_boolean = False try: page = requests.get(URL) except: return success_boolean, '' soup = BeautifulSoup(page.text, 'html.parser') returned_list = soup.find_all(hreflang=re.compile(lang_code), href=True) if (len(returned_list) == 0): returned_list = soup.find_all(href=True) for item in returned_list: lower_string = str(item.text).lower() if (any(['nl' == word for word in lower_string.split()])): success_boolean = True new_page = item['href'] if ('http' not in item['href']): new_page = URL + item['href'].strip('.') if language_detector2(new_page)[1] == 'nl': return success_boolean, new_page for item in returned_list: lower_string = str(item['href']).lower() if (lower_string.find('nl') != -1): success_boolean = True new_page = item['href'] if ('http' not in item['href']): new_page = URL + item['href'].strip('.') if language_detector2(new_page)[1] == 'nl': return success_boolean, new_page return success_boolean, '' elif (len(returned_list) == 1): success_boolean = True new_page = returned_list[0]['href'] if ('http' not in returned_list[0]['href']): new_page = URL + returned_list[0]['href'].strip('.') if language_detector2(new_page)[1] == 'nl': return success_boolean, new_page elif (len(returned_list) > 1): success_boolean = True for item in returned_list: new_page = item['href'] if (item['href'].find('be') != -1): if ('http' not in item['href']): new_page = URL + item['href'].strip('.') if language_detector2(new_page)[1] == 'nl': return success_boolean, new_page new_page = returned_list[0]['href'] if ('http' not in returned_list[0]['href']): new_page = URL + returned_list[0]['href'].strip('.') if language_detector2(new_page)[1] == 'nl': return success_boolean, new_page else: return success_boolean, '' def crawl_contact_page(URL, Base_URL, request_page): new_pages = [] soup_crawl = BeautifulSoup(request_page.text, 'html.parser') returned_list = soup_crawl.find_all(href=True) for item in returned_list: lower_href_text = ''.join(str(item.text).lower().strip()) if ('cont' in lower_href_text): if ('www' in item['href']): new_pages.append(item['href']) else: new_page = Base_URL + item['href'].strip('.') new_pages.append(new_page) return list(set(new_pages)) def crawl_location_page(URL, Base_URL, request_page): new_pages = [] soup_crawl = BeautifulSoup(request_page.text, 'html.parser') returned_list = soup_crawl.find_all(href=True) for item in returned_list: lower_href_text = ''.join(str(item.text).lower().strip()) if (('vest' in lower_href_text) | ('loc' in lower_href_text)): if ('www' in item['href']): new_pages.append(item['href']) else: new_page = Base_URL + item['href'].strip('.') new_pages.append(new_page) return list(set(new_pages)) def validate_zip(URL, Base_URL, zip_1, zip_2): page = requests.get(URL) contact_pages = crawl_contact_page(URL, Base_URL, page) location_pages = crawl_location_page(URL, Base_URL, page) total_pages = contact_pages + location_pages print(total_pages) soup = BeautifulSoup(page.text, 'lxml') [s.decompose() for s in soup('script')] all_text = ' '.join(re.sub(r'\n', ' ', soup.get_text()).split()) numeric_text = re.findall(r'\d+', all_text) if (any([str(zip_1) == number for number in numeric_text]) | any([str(zip_2) == number for number in numeric_text])): return True elif (len(total_pages) != 0): for new_page in total_pages: time.sleep(3) page = requests.get(new_page) soup = BeautifulSoup(page.text, 'lxml') [s.decompose() for s in soup('script')] all_text = ' '.join(re.sub(r'\n', ' ', soup.get_text()).split()) numeric_text = re.findall(r'\d+', all_text) if (any([str(zip_1) == number for number in numeric_text]) | any([str(zip_2) == number for number in numeric_text])): return True return False def validate_street(URL, Base_URL, street_raw): page = requests.get(URL) contact_pages = crawl_contact_page(URL, Base_URL, page) location_pages = crawl_location_page(URL, Base_URL, page) total_pages = contact_pages + location_pages print(total_pages) soup = BeautifulSoup(page.text, 'lxml') [s.decompose() for s in soup('script')] all_text = ' '.join(re.sub(r'\n', ' ', soup.get_text()).split()) street_raw_temp = re.sub(r'\d+', '', street_raw).strip() final_street = re.sub('[\(\[].*?[\)\]]', '', street_raw_temp) if (final_street in all_text): return True elif (len(total_pages) != 0): for new_page in total_pages: time.sleep(3) page = requests.get(new_page) soup = BeautifulSoup(page.text, 'lxml') [s.decompose() for s in soup('script')] all_text = ' '.join(re.sub(r'\n', ' ', soup.get_text()).split()) if (final_street in all_text): return True return False def extract_url_from_email(Email): try: return (re.findall(r'@([A-Za-z.]+)', Email)[0]).strip() except: return '' # Input is 4 columns; cur_email,cur_web,email,web columns def assign_primary_URL(cur_web, cur_email, web, email): if not (pd.isnull(cur_web)): return fix_http(cur_web) elif not (pd.isnull(cur_email)): return fix_http(extract_url_from_email(cur_email)) elif not (pd.isnull(web)): return fix_http(web) elif not (pd.isnull(email)): return fix_http(extract_url_from_email(email)) else: return '' def get_status_code(URL): try: return requests.get(URL, timeout=10).status_code except: return 0 def get_NL_URL(URL, status_code): try: if status_code == 200: if language_detector(URL)[1] != 'nl': success_code, new_url = language_switcher(URL, 'nl') if success_code & (new_url != ''): return new_url return URL except: return URL def switch_language(CSV_file = 'scraped_html_file.csv', language_column = 'Languages', URL_column = 'URL'): requests.packages.urllib3.disable_warnings() df = pd.read_csv(CSV_file) tqdm(disable=True, total=0) if len(tqdm._instances) > 0: while len(tqdm._instances) > 0: tqdm._instances.pop().close() clear_output(wait=True) for index, row in tqdm(df.iterrows(), total=df.shape[0]): if((df.loc[index, language_column] not in ['nl', 'en']) and (pd.isnull(df.loc[index, 'Raw_HTML']) == False)): if (language_switcher(df.loc[index, URL_column], 'nl') is not None): success_code, new_url = language_switcher(df.loc[index, URL_column], 'nl') if success_code & (new_url != ''): df.loc[index, URL_column] = new_url df.loc[index, 'Raw_HTML'] = get_html_ssl(fix_http(df.loc[index, URL_column]), 10) df.loc[index, language_column] = language_detector(df.loc[index, 'Raw_HTML']) df.to_csv(CSV_file, index=False) return "Successfully Completed!" def filter_get_language_distribution(CSV_file = 'scraped_html_file.csv', Language_column = 'Languages'): df = pd.read_csv(CSV_file) print(df.Languages.value_counts()) df = df[df[Language_column].isin(['nl', 'en'])] df.to_csv(CSV_file, index=False) return "Successfully Completed!" # Clean Text + Get if any other frames def clean_pop_cookie_frame(raw_text): soup = BeautifulSoup(raw_text, 'html.parser') for tag in soup.find_all('div', id=re.compile(r'(cook)|(popup)')): tag.decompose() for tag in soup.find_all('div', class_=re.compile(r'(cook)|(popup)')): tag.decompose() body_text = visible_texts(BeautifulSoup(visible_texts(soup), 'html.parser')) if len(soup.find_all('frame')) > 0: frame_text = '' for f in soup.find_all('frame'): try: frame_request = requests.get(f['src'], timeout=10) frame_soup = BeautifulSoup(frame_request.content, 'html.parser') frame_text = frame_text + ' ' + visible_texts(BeautifulSoup(visible_texts(frame_soup), 'html.parser')) except: frame_text = '' body_text = body_text + frame_text return body_text.strip() def lower_punct_number_clean(text, lower_bound_letter_length): temp_text = re.sub('[^A-Za-z ]+', '', text) temp_text = ' '.join([i for i in temp_text.split() if len(i) >= lower_bound_letter_length]) return temp_text.lower().strip() english_stopwords = stopwords.words('english') dutch_stopwords = stopwords.words('dutch') def remove_stopwords(text, lang): if (lang == 'nl'): temp_text = ' '.join([word for word in text.split() if word not in dutch_stopwords]) return ' '.join([word for word in temp_text.split() if word not in english_stopwords]) elif (lang == 'en'): return ' '.join([word for word in text.split() if word not in english_stopwords]) else: return None english_stemmer = SnowballStemmer(language='english') dutch_stemmer = SnowballStemmer(language='dutch') def stem_text(text, lang): if (text == None): return None elif (lang == 'nl'): return ' '.join([dutch_stemmer.stem(word) for word in text.split()]) elif (lang == 'en'): return ' '.join([english_stemmer.stem(word) for word in text.split()]) else: return None def count_words(text): if (text == None): return None else: return len(text.split()) def HTML_to_text(CSV_file = 'scraped_html_file.csv', HTML_column = 'Raw_HTML'): df =
pd.read_csv(CSV_file)
pandas.read_csv
# pylint: disable-msg=E1101,W0612 from datetime import datetime, time, timedelta, date import sys import os import operator from distutils.version import LooseVersion import nose import numpy as np randn = np.random.randn from pandas import (Index, Series, TimeSeries, DataFrame, isnull, date_range, Timestamp, Period, DatetimeIndex, Int64Index, to_datetime, bdate_range, Float64Index) import pandas.core.datetools as datetools import pandas.tseries.offsets as offsets import pandas.tseries.tools as tools import pandas.tseries.frequencies as fmod import pandas as pd from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tslib import NaT, iNaT import pandas.lib as lib import pandas.tslib as tslib import pandas.index as _index from pandas.compat import range, long, StringIO, lrange, lmap, zip, product import pandas.core.datetools as dt from numpy.random import rand from numpy.testing import assert_array_equal from pandas.util.testing import assert_frame_equal import pandas.compat as compat import pandas.core.common as com from pandas import concat from pandas import _np_version_under1p7 from numpy.testing.decorators import slow def _skip_if_no_pytz(): try: import pytz except ImportError: raise nose.SkipTest("pytz not installed") def _skip_if_has_locale(): import locale lang, _ = locale.getlocale() if lang is not None: raise nose.SkipTest("Specific locale is set {0}".format(lang)) class TestTimeSeriesDuplicates(tm.TestCase): _multiprocess_can_split_ = True def setUp(self): dates = [datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 4), datetime(2000, 1, 5)] self.dups = Series(np.random.randn(len(dates)), index=dates) def test_constructor(self): tm.assert_isinstance(self.dups, TimeSeries) tm.assert_isinstance(self.dups.index, DatetimeIndex) def test_is_unique_monotonic(self): self.assertFalse(self.dups.index.is_unique) def test_index_unique(self): uniques = self.dups.index.unique() expected = DatetimeIndex([datetime(2000, 1, 2), datetime(2000, 1, 3), datetime(2000, 1, 4), datetime(2000, 1, 5)]) self.assertEqual(uniques.dtype, 'M8[ns]') # sanity self.assertTrue(uniques.equals(expected)) self.assertEqual(self.dups.index.nunique(), 4) # #2563 self.assertTrue(isinstance(uniques, DatetimeIndex)) dups_local = self.dups.index.tz_localize('US/Eastern') dups_local.name = 'foo' result = dups_local.unique() expected = DatetimeIndex(expected, tz='US/Eastern') self.assertTrue(result.tz is not None) self.assertEqual(result.name, 'foo') self.assertTrue(result.equals(expected)) # NaT arr = [ 1370745748 + t for t in range(20) ] + [iNaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) arr = [ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT] idx = DatetimeIndex(arr * 3) self.assertTrue(idx.unique().equals(DatetimeIndex(arr))) self.assertEqual(idx.nunique(), 21) def test_index_dupes_contains(self): d = datetime(2011, 12, 5, 20, 30) ix = DatetimeIndex([d, d]) self.assertTrue(d in ix) def test_duplicate_dates_indexing(self): ts = self.dups uniques = ts.index.unique() for date in uniques: result = ts[date] mask = ts.index == date total = (ts.index == date).sum() expected = ts[mask] if total > 1: assert_series_equal(result, expected) else: assert_almost_equal(result, expected[0]) cp = ts.copy() cp[date] = 0 expected = Series(np.where(mask, 0, ts), index=ts.index) assert_series_equal(cp, expected) self.assertRaises(KeyError, ts.__getitem__, datetime(2000, 1, 6)) # new index ts[datetime(2000,1,6)] = 0 self.assertEqual(ts[datetime(2000,1,6)], 0) def test_range_slice(self): idx = DatetimeIndex(['1/1/2000', '1/2/2000', '1/2/2000', '1/3/2000', '1/4/2000']) ts = Series(np.random.randn(len(idx)), index=idx) result = ts['1/2/2000':] expected = ts[1:] assert_series_equal(result, expected) result = ts['1/2/2000':'1/3/2000'] expected = ts[1:4] assert_series_equal(result, expected) def test_groupby_average_dup_values(self): result = self.dups.groupby(level=0).mean() expected = self.dups.groupby(self.dups.index).mean() assert_series_equal(result, expected) def test_indexing_over_size_cutoff(self): import datetime # #1821 old_cutoff = _index._SIZE_CUTOFF try: _index._SIZE_CUTOFF = 1000 # create large list of non periodic datetime dates = [] sec = datetime.timedelta(seconds=1) half_sec = datetime.timedelta(microseconds=500000) d = datetime.datetime(2011, 12, 5, 20, 30) n = 1100 for i in range(n): dates.append(d) dates.append(d + sec) dates.append(d + sec + half_sec) dates.append(d + sec + sec + half_sec) d += 3 * sec # duplicate some values in the list duplicate_positions = np.random.randint(0, len(dates) - 1, 20) for p in duplicate_positions: dates[p + 1] = dates[p] df = DataFrame(np.random.randn(len(dates), 4), index=dates, columns=list('ABCD')) pos = n * 3 timestamp = df.index[pos] self.assertIn(timestamp, df.index) # it works! df.ix[timestamp] self.assertTrue(len(df.ix[[timestamp]]) > 0) finally: _index._SIZE_CUTOFF = old_cutoff def test_indexing_unordered(self): # GH 2437 rng = date_range(start='2011-01-01', end='2011-01-15') ts = Series(randn(len(rng)), index=rng) ts2 = concat([ts[0:4],ts[-4:],ts[4:-4]]) for t in ts.index: s = str(t) expected = ts[t] result = ts2[t] self.assertTrue(expected == result) # GH 3448 (ranges) def compare(slobj): result = ts2[slobj].copy() result = result.sort_index() expected = ts[slobj] assert_series_equal(result,expected) compare(slice('2011-01-01','2011-01-15')) compare(slice('2010-12-30','2011-01-15')) compare(slice('2011-01-01','2011-01-16')) # partial ranges compare(slice('2011-01-01','2011-01-6')) compare(slice('2011-01-06','2011-01-8')) compare(slice('2011-01-06','2011-01-12')) # single values result = ts2['2011'].sort_index() expected = ts['2011'] assert_series_equal(result,expected) # diff freq rng = date_range(datetime(2005, 1, 1), periods=20, freq='M') ts = Series(np.arange(len(rng)), index=rng) ts = ts.take(np.random.permutation(20)) result = ts['2005'] for t in result.index: self.assertTrue(t.year == 2005) def test_indexing(self): idx = date_range("2001-1-1", periods=20, freq='M') ts = Series(np.random.rand(len(idx)),index=idx) # getting # GH 3070, make sure semantics work on Series/Frame expected = ts['2001'] df = DataFrame(dict(A = ts)) result = df['2001']['A'] assert_series_equal(expected,result) # setting ts['2001'] = 1 expected = ts['2001'] df.loc['2001','A'] = 1 result = df['2001']['A'] assert_series_equal(expected,result) # GH3546 (not including times on the last day) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:00', freq='H') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = date_range(start='2013-05-31 00:00', end='2013-05-31 23:59', freq='S') ts = Series(lrange(len(idx)), index=idx) expected = ts['2013-05'] assert_series_equal(expected,ts) idx = [ Timestamp('2013-05-31 00:00'), Timestamp(datetime(2013,5,31,23,59,59,999999))] ts = Series(lrange(len(idx)), index=idx) expected = ts['2013'] assert_series_equal(expected,ts) # GH 3925, indexing with a seconds resolution string / datetime object df = DataFrame(randn(5,5),columns=['open','high','low','close','volume'],index=date_range('2012-01-02 18:01:00',periods=5,tz='US/Central',freq='s')) expected = df.loc[[df.index[2]]] result = df['2012-01-02 18:01:02'] assert_frame_equal(result,expected) # this is a single date, so will raise self.assertRaises(KeyError, df.__getitem__, df.index[2],) def test_recreate_from_data(self): if _np_version_under1p7: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'A', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N', 'C'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, periods=1) idx = DatetimeIndex(org, freq=f) self.assertTrue(idx.equals(org)) # unbale to create tz-aware 'A' and 'C' freq if _np_version_under1p7: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H'] else: freqs = ['M', 'Q', 'D', 'B', 'T', 'S', 'L', 'U', 'H', 'N'] for f in freqs: org = DatetimeIndex(start='2001/02/01 09:00', freq=f, tz='US/Pacific', periods=1) idx = DatetimeIndex(org, freq=f, tz='US/Pacific') self.assertTrue(idx.equals(org)) def assert_range_equal(left, right): assert(left.equals(right)) assert(left.freq == right.freq) assert(left.tz == right.tz) class TestTimeSeries(tm.TestCase): _multiprocess_can_split_ = True def test_is_(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') self.assertTrue(dti.is_(dti)) self.assertTrue(dti.is_(dti.view())) self.assertFalse(dti.is_(dti.copy())) def test_dti_slicing(self): dti = DatetimeIndex(start='1/1/2005', end='12/1/2005', freq='M') dti2 = dti[[1, 3, 5]] v1 = dti2[0] v2 = dti2[1] v3 = dti2[2] self.assertEqual(v1, Timestamp('2/28/2005')) self.assertEqual(v2, Timestamp('4/30/2005')) self.assertEqual(v3, Timestamp('6/30/2005')) # don't carry freq through irregular slicing self.assertIsNone(dti2.freq) def test_pass_datetimeindex_to_index(self): # Bugs in #1396 rng = date_range('1/1/2000', '3/1/2000') idx = Index(rng, dtype=object) expected = Index(rng.to_pydatetime(), dtype=object) self.assert_numpy_array_equal(idx.values, expected.values) def test_contiguous_boolean_preserve_freq(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') mask = np.zeros(len(rng), dtype=bool) mask[10:20] = True masked = rng[mask] expected = rng[10:20] self.assertIsNotNone(expected.freq) assert_range_equal(masked, expected) mask[22] = True masked = rng[mask] self.assertIsNone(masked.freq) def test_getitem_median_slice_bug(self): index = date_range('20090415', '20090519', freq='2B') s = Series(np.random.randn(13), index=index) indexer = [slice(6, 7, None)] result = s[indexer] expected = s[indexer[0]] assert_series_equal(result, expected) def test_series_box_timestamp(self): rng = date_range('20090415', '20090519', freq='B') s = Series(rng) tm.assert_isinstance(s[5], Timestamp) rng = date_range('20090415', '20090519', freq='B') s = Series(rng, index=rng) tm.assert_isinstance(s[5], Timestamp) tm.assert_isinstance(s.iget_value(5), Timestamp) def test_date_range_ambiguous_arguments(self): # #2538 start = datetime(2011, 1, 1, 5, 3, 40) end = datetime(2011, 1, 1, 8, 9, 40) self.assertRaises(ValueError, date_range, start, end, freq='s', periods=10) def test_timestamp_to_datetime(self): _skip_if_no_pytz() rng = date_range('20090415', '20090519', tz='US/Eastern') stamp = rng[0] dtval = stamp.to_pydatetime() self.assertEqual(stamp, dtval) self.assertEqual(stamp.tzinfo, dtval.tzinfo) def test_index_convert_to_datetime_array(self): _skip_if_no_pytz() def _check_rng(rng): converted = rng.to_pydatetime() tm.assert_isinstance(converted, np.ndarray) for x, stamp in zip(converted, rng): tm.assert_isinstance(x, datetime) self.assertEqual(x, stamp.to_pydatetime()) self.assertEqual(x.tzinfo, stamp.tzinfo) rng = date_range('20090415', '20090519') rng_eastern = date_range('20090415', '20090519', tz='US/Eastern') rng_utc = date_range('20090415', '20090519', tz='utc') _check_rng(rng) _check_rng(rng_eastern) _check_rng(rng_utc) def test_ctor_str_intraday(self): rng = DatetimeIndex(['1-1-2000 00:00:01']) self.assertEqual(rng[0].second, 1) def test_series_ctor_plus_datetimeindex(self): rng = date_range('20090415', '20090519', freq='B') data = dict((k, 1) for k in rng) result = Series(data, index=rng) self.assertIs(result.index, rng) def test_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) result = s[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected[-3:] = np.nan assert_series_equal(result, expected) result = s[-2:].reindex(index) result = result.fillna(method='bfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected[:3] = np.nan assert_series_equal(result, expected) def test_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index, method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index, method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) result = df[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = df[:2].reindex(index).fillna(method='pad') expected.values[-3:] = np.nan tm.assert_frame_equal(result, expected) result = df[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = df[-2:].reindex(index).fillna(method='backfill') expected.values[:3] = np.nan tm.assert_frame_equal(result, expected) def test_frame_setitem_timestamp(self): # 2155 columns = DatetimeIndex(start='1/1/2012', end='2/1/2012', freq=datetools.bday) index = lrange(10) data = DataFrame(columns=columns, index=index) t = datetime(2012, 11, 1) ts = Timestamp(t) data[ts] = np.nan # works def test_sparse_series_fillna_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) ss = s[:2].reindex(index).to_sparse() result = ss.fillna(method='pad', limit=5) expected = ss.fillna(method='pad', limit=5) expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) ss = s[-2:].reindex(index).to_sparse() result = ss.fillna(method='backfill', limit=5) expected = ss.fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_series_pad_backfill_limit(self): index = np.arange(10) s = Series(np.random.randn(10), index=index) s = s.to_sparse() result = s[:2].reindex(index, method='pad', limit=5) expected = s[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected[-3:] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) result = s[-2:].reindex(index, method='backfill', limit=5) expected = s[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected[:3] = np.nan expected = expected.to_sparse() assert_series_equal(result, expected) def test_sparse_frame_pad_backfill_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index, method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index, method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_sparse_frame_fillna_limit(self): index = np.arange(10) df = DataFrame(np.random.randn(10, 4), index=index) sdf = df.to_sparse() result = sdf[:2].reindex(index) result = result.fillna(method='pad', limit=5) expected = sdf[:2].reindex(index).fillna(method='pad') expected = expected.to_dense() expected.values[-3:] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) result = sdf[-2:].reindex(index) result = result.fillna(method='backfill', limit=5) expected = sdf[-2:].reindex(index).fillna(method='backfill') expected = expected.to_dense() expected.values[:3] = np.nan expected = expected.to_sparse() tm.assert_frame_equal(result, expected) def test_pad_require_monotonicity(self): rng = date_range('1/1/2000', '3/1/2000', freq='B') rng2 = rng[::2][::-1] self.assertRaises(ValueError, rng2.get_indexer, rng, method='pad') def test_frame_ctor_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) df = DataFrame({'A': np.random.randn(len(rng)), 'B': dates}) self.assertTrue(np.issubdtype(df['B'].dtype, np.dtype('M8[ns]'))) def test_frame_add_datetime64_column(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') df = DataFrame(index=np.arange(len(rng))) df['A'] = rng self.assertTrue(np.issubdtype(df['A'].dtype, np.dtype('M8[ns]'))) def test_frame_datetime64_pre1900_repr(self): df = DataFrame({'year': date_range('1/1/1700', periods=50, freq='A-DEC')}) # it works! repr(df) def test_frame_add_datetime64_col_other_units(self): n = 100 units = ['h', 'm', 's', 'ms', 'D', 'M', 'Y'] ns_dtype = np.dtype('M8[ns]') for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df[unit] = vals ex_vals = to_datetime(vals.astype('O')) self.assertEqual(df[unit].dtype, ns_dtype) self.assertTrue((df[unit].values == ex_vals).all()) # Test insertion into existing datetime64 column df = DataFrame({'ints': np.arange(n)}, index=np.arange(n)) df['dates'] = np.arange(n, dtype=np.int64).view(ns_dtype) for unit in units: dtype = np.dtype('M8[%s]' % unit) vals = np.arange(n, dtype=np.int64).view(dtype) tmp = df.copy() tmp['dates'] = vals ex_vals = to_datetime(vals.astype('O')) self.assertTrue((tmp['dates'].values == ex_vals).all()) def test_to_datetime_unit(self): epoch = 1370745748 s = Series([ epoch + t for t in range(20) ]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = Series([ epoch + t for t in range(20) ] + [iNaT]).astype(float) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) s = concat([Series([ epoch + t for t in range(20) ]).astype(float),Series([np.nan])],ignore_index=True) result = to_datetime(s,unit='s') expected = Series([ Timestamp('2013-06-09 02:42:28') + timedelta(seconds=t) for t in range(20) ] + [NaT]) assert_series_equal(result,expected) def test_series_ctor_datetime64(self): rng = date_range('1/1/2000 00:00:00', '1/1/2000 1:59:50', freq='10s') dates = np.asarray(rng) series = Series(dates) self.assertTrue(np.issubdtype(series.dtype, np.dtype('M8[ns]'))) def test_index_cast_datetime64_other_units(self): arr = np.arange(0, 100, 10, dtype=np.int64).view('M8[D]') idx = Index(arr) self.assertTrue((idx.values == tslib.cast_to_nanoseconds(arr)).all()) def test_index_astype_datetime64(self): idx = Index([datetime(2012, 1, 1)], dtype=object) if not _np_version_under1p7: raise nose.SkipTest("test only valid in numpy < 1.7") casted = idx.astype(np.dtype('M8[D]')) expected = DatetimeIndex(idx.values) tm.assert_isinstance(casted, DatetimeIndex) self.assertTrue(casted.equals(expected)) def test_reindex_series_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') series = Series(rng) result = series.reindex(lrange(15)) self.assertTrue(np.issubdtype(result.dtype, np.dtype('M8[ns]'))) mask = result.isnull() self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_reindex_frame_add_nat(self): rng = date_range('1/1/2000 00:00:00', periods=10, freq='10s') df = DataFrame({'A': np.random.randn(len(rng)), 'B': rng}) result = df.reindex(lrange(15)) self.assertTrue(np.issubdtype(result['B'].dtype, np.dtype('M8[ns]'))) mask = com.isnull(result)['B'] self.assertTrue(mask[-5:].all()) self.assertFalse(mask[:-5].any()) def test_series_repr_nat(self): series = Series([0, 1000, 2000, iNaT], dtype='M8[ns]') result = repr(series) expected = ('0 1970-01-01 00:00:00\n' '1 1970-01-01 00:00:00.000001\n' '2 1970-01-01 00:00:00.000002\n' '3 NaT\n' 'dtype: datetime64[ns]') self.assertEqual(result, expected) def test_fillna_nat(self): series = Series([0, 1, 2, iNaT], dtype='M8[ns]') filled = series.fillna(method='pad') filled2 = series.fillna(value=series.values[2]) expected = series.copy() expected.values[3] = expected.values[2] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='pad') filled2 = df.fillna(value=series.values[2]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) series = Series([iNaT, 0, 1, 2], dtype='M8[ns]') filled = series.fillna(method='bfill') filled2 = series.fillna(value=series[1]) expected = series.copy() expected[0] = expected[1] assert_series_equal(filled, expected) assert_series_equal(filled2, expected) df = DataFrame({'A': series}) filled = df.fillna(method='bfill') filled2 = df.fillna(value=series[1]) expected = DataFrame({'A': expected}) assert_frame_equal(filled, expected) assert_frame_equal(filled2, expected) def test_string_na_nat_conversion(self): # GH #999, #858 from pandas.compat import parse_date strings = np.array(['1/1/2000', '1/2/2000', np.nan, '1/4/2000, 12:34:56'], dtype=object) expected = np.empty(4, dtype='M8[ns]') for i, val in enumerate(strings): if com.isnull(val): expected[i] = iNaT else: expected[i] = parse_date(val) result = tslib.array_to_datetime(strings) assert_almost_equal(result, expected) result2 = to_datetime(strings) tm.assert_isinstance(result2, DatetimeIndex) assert_almost_equal(result, result2) malformed = np.array(['1/100/2000', np.nan], dtype=object) result = to_datetime(malformed) assert_almost_equal(result, malformed) self.assertRaises(ValueError, to_datetime, malformed, errors='raise') idx = ['a', 'b', 'c', 'd', 'e'] series = Series(['1/1/2000', np.nan, '1/3/2000', np.nan, '1/5/2000'], index=idx, name='foo') dseries = Series([to_datetime('1/1/2000'), np.nan, to_datetime('1/3/2000'), np.nan, to_datetime('1/5/2000')], index=idx, name='foo') result = to_datetime(series) dresult = to_datetime(dseries) expected = Series(np.empty(5, dtype='M8[ns]'), index=idx) for i in range(5): x = series[i] if isnull(x): expected[i] = iNaT else: expected[i] = to_datetime(x) assert_series_equal(result, expected) self.assertEqual(result.name, 'foo') assert_series_equal(dresult, expected) self.assertEqual(dresult.name, 'foo') def test_to_datetime_iso8601(self): result = to_datetime(["2012-01-01 00:00:00"]) exp = Timestamp("2012-01-01 00:00:00") self.assertEqual(result[0], exp) result = to_datetime(['20121001']) # bad iso 8601 exp = Timestamp('2012-10-01') self.assertEqual(result[0], exp) def test_to_datetime_default(self): rs = to_datetime('2001') xp = datetime(2001, 1, 1) self.assertTrue(rs, xp) #### dayfirst is essentially broken #### to_datetime('01-13-2012', dayfirst=True) #### self.assertRaises(ValueError, to_datetime('01-13-2012', dayfirst=True)) def test_to_datetime_on_datetime64_series(self): # #2699 s = Series(date_range('1/1/2000', periods=10)) result = to_datetime(s) self.assertEqual(result[0], s[0]) def test_to_datetime_with_apply(self): # this is only locale tested with US/None locales _skip_if_has_locale() # GH 5195 # with a format and coerce a single item to_datetime fails td = Series(['May 04', 'Jun 02', 'Dec 11'], index=[1,2,3]) expected = pd.to_datetime(td, format='%b %y') result = td.apply(pd.to_datetime, format='%b %y') assert_series_equal(result, expected) td = pd.Series(['May 04', 'Jun 02', ''], index=[1,2,3]) self.assertRaises(ValueError, lambda : pd.to_datetime(td,format='%b %y')) self.assertRaises(ValueError, lambda : td.apply(pd.to_datetime, format='%b %y')) expected = pd.to_datetime(td, format='%b %y', coerce=True) result = td.apply(lambda x: pd.to_datetime(x, format='%b %y', coerce=True)) assert_series_equal(result, expected) def test_nat_vector_field_access(self): idx = DatetimeIndex(['1/1/2000', None, None, '1/4/2000']) fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(idx, field) expected = [getattr(x, field) if x is not NaT else -1 for x in idx] self.assert_numpy_array_equal(result, expected) def test_nat_scalar_field_access(self): fields = ['year', 'quarter', 'month', 'day', 'hour', 'minute', 'second', 'microsecond', 'nanosecond', 'week', 'dayofyear'] for field in fields: result = getattr(NaT, field) self.assertEqual(result, -1) self.assertEqual(NaT.weekday(), -1) def test_to_datetime_types(self): # empty string result = to_datetime('') self.assertIs(result, NaT) result = to_datetime(['', '']) self.assertTrue(isnull(result).all()) # ints result = Timestamp(0) expected = to_datetime(0) self.assertEqual(result, expected) # GH 3888 (strings) expected = to_datetime(['2012'])[0] result = to_datetime('2012') self.assertEqual(result, expected) ### array = ['2012','20120101','20120101 12:01:01'] array = ['20120101','20120101 12:01:01'] expected = list(to_datetime(array)) result = lmap(Timestamp,array) tm.assert_almost_equal(result,expected) ### currently fails ### ### result = Timestamp('2012') ### expected = to_datetime('2012') ### self.assertEqual(result, expected) def test_to_datetime_unprocessable_input(self): # GH 4928 self.assert_numpy_array_equal( to_datetime([1, '1']), np.array([1, '1'], dtype='O') ) self.assertRaises(TypeError, to_datetime, [1, '1'], errors='raise') def test_to_datetime_other_datetime64_units(self): # 5/25/2012 scalar = np.int64(1337904000000000).view('M8[us]') as_obj = scalar.astype('O') index = DatetimeIndex([scalar]) self.assertEqual(index[0], scalar.astype('O')) value = Timestamp(scalar) self.assertEqual(value, as_obj) def test_to_datetime_list_of_integers(self): rng = date_range('1/1/2000', periods=20) rng = DatetimeIndex(rng.values) ints = list(rng.asi8) result = DatetimeIndex(ints) self.assertTrue(rng.equals(result)) def test_to_datetime_dt64s(self): in_bound_dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] for dt in in_bound_dts: self.assertEqual( pd.to_datetime(dt), Timestamp(dt) ) oob_dts = [ np.datetime64('1000-01-01'), np.datetime64('5000-01-02'), ] for dt in oob_dts: self.assertRaises(ValueError, pd.to_datetime, dt, errors='raise') self.assertRaises(ValueError, tslib.Timestamp, dt) self.assertIs(pd.to_datetime(dt, coerce=True), NaT) def test_to_datetime_array_of_dt64s(self): dts = [ np.datetime64('2000-01-01'), np.datetime64('2000-01-02'), ] # Assuming all datetimes are in bounds, to_datetime() returns # an array that is equal to Timestamp() parsing self.assert_numpy_array_equal( pd.to_datetime(dts, box=False), np.array([Timestamp(x).asm8 for x in dts]) ) # A list of datetimes where the last one is out of bounds dts_with_oob = dts + [np.datetime64('9999-01-01')] self.assertRaises( ValueError, pd.to_datetime, dts_with_oob, coerce=False, errors='raise' ) self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=True), np.array( [ Timestamp(dts_with_oob[0]).asm8, Timestamp(dts_with_oob[1]).asm8, iNaT, ], dtype='M8' ) ) # With coerce=False and errors='ignore', out of bounds datetime64s # are converted to their .item(), which depending on the version of # numpy is either a python datetime.datetime or datetime.date self.assert_numpy_array_equal( pd.to_datetime(dts_with_oob, box=False, coerce=False), np.array( [dt.item() for dt in dts_with_oob], dtype='O' ) ) def test_index_to_datetime(self): idx = Index(['1/1/2000', '1/2/2000', '1/3/2000']) result = idx.to_datetime() expected = DatetimeIndex(datetools.to_datetime(idx.values)) self.assertTrue(result.equals(expected)) today = datetime.today() idx = Index([today], dtype=object) result = idx.to_datetime() expected = DatetimeIndex([today]) self.assertTrue(result.equals(expected)) def test_to_datetime_freq(self): xp = bdate_range('2000-1-1', periods=10, tz='UTC') rs = xp.to_datetime() self.assertEqual(xp.freq, rs.freq) self.assertEqual(xp.tzinfo, rs.tzinfo) def test_range_misspecified(self): # GH #1095 self.assertRaises(ValueError, date_range, '1/1/2000') self.assertRaises(ValueError, date_range, end='1/1/2000') self.assertRaises(ValueError, date_range, periods=10) self.assertRaises(ValueError, date_range, '1/1/2000', freq='H') self.assertRaises(ValueError, date_range, end='1/1/2000', freq='H') self.assertRaises(ValueError, date_range, periods=10, freq='H') def test_reasonable_keyerror(self): # GH #1062 index = DatetimeIndex(['1/3/2000']) try: index.get_loc('1/1/2000') except KeyError as e: self.assertIn('2000', str(e)) def test_reindex_with_datetimes(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) result = ts.reindex(list(ts.index[5:10])) expected = ts[5:10] tm.assert_series_equal(result, expected) result = ts[list(ts.index[5:10])] tm.assert_series_equal(result, expected) def test_promote_datetime_date(self): rng = date_range('1/1/2000', periods=20) ts = Series(np.random.randn(20), index=rng) ts_slice = ts[5:] ts2 = ts_slice.copy() ts2.index = [x.date() for x in ts2.index] result = ts + ts2 result2 = ts2 + ts expected = ts + ts[5:] assert_series_equal(result, expected) assert_series_equal(result2, expected) # test asfreq result = ts2.asfreq('4H', method='ffill') expected = ts[5:].asfreq('4H', method='ffill') assert_series_equal(result, expected) result = rng.get_indexer(ts2.index) expected = rng.get_indexer(ts_slice.index) self.assert_numpy_array_equal(result, expected) def test_asfreq_normalize(self): rng = date_range('1/1/2000 09:30', periods=20) norm = date_range('1/1/2000', periods=20) vals = np.random.randn(20) ts = Series(vals, index=rng) result = ts.asfreq('D', normalize=True) norm = date_range('1/1/2000', periods=20) expected = Series(vals, index=norm) assert_series_equal(result, expected) vals = np.random.randn(20, 3) ts = DataFrame(vals, index=rng) result = ts.asfreq('D', normalize=True) expected = DataFrame(vals, index=norm) assert_frame_equal(result, expected) def test_date_range_gen_error(self): rng = date_range('1/1/2000 00:00', '1/1/2000 00:18', freq='5min') self.assertEqual(len(rng), 4) def test_first_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.first('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.first('10d') self.assertEqual(len(result), 10) result = ts.first('3M') expected = ts[:'3/31/2000'] assert_series_equal(result, expected) result = ts.first('21D') expected = ts[:21] assert_series_equal(result, expected) result = ts[:0].first('3M') assert_series_equal(result, ts[:0]) def test_last_subset(self): ts = _simple_ts('1/1/2000', '1/1/2010', freq='12h') result = ts.last('10d') self.assertEqual(len(result), 20) ts = _simple_ts('1/1/2000', '1/1/2010') result = ts.last('10d') self.assertEqual(len(result), 10) result = ts.last('21D') expected = ts['12/12/2009':] assert_series_equal(result, expected) result = ts.last('21D') expected = ts[-21:] assert_series_equal(result, expected) result = ts[:0].last('3M') assert_series_equal(result, ts[:0]) def test_add_offset(self): rng = date_range('1/1/2000', '2/1/2000') result = rng + offsets.Hour(2) expected = date_range('1/1/2000 02:00', '2/1/2000 02:00') self.assertTrue(result.equals(expected)) def test_format_pre_1900_dates(self): rng = date_range('1/1/1850', '1/1/1950', freq='A-DEC') rng.format() ts = Series(1, index=rng) repr(ts) def test_repeat(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) def test_at_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_series_equal(result, expected) df = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts[time(9, 30)] result_df = df.ix[time(9, 30)] expected = ts[(rng.hour == 9) & (rng.minute == 30)] exp_df = df[(rng.hour == 9) & (rng.minute == 30)] # expected.index = date_range('1/1/2000', '1/4/2000') assert_series_equal(result, expected) tm.assert_frame_equal(result_df, exp_df) chunk = df.ix['1/4/2000':] result = chunk.ix[time(9, 30)] expected = result_df[-1:] tm.assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = Series(np.random.randn(len(rng)), index=rng) result = ts.at_time(time(0, 0)) assert_series_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = Series(np.random.randn(len(rng)), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_at_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) rs = ts.at_time(rng[1]) self.assertTrue((rs.index.hour == rng[1].hour).all()) self.assertTrue((rs.index.minute == rng[1].minute).all()) self.assertTrue((rs.index.second == rng[1].second).all()) result = ts.at_time('9:30') expected = ts.at_time(time(9, 30)) assert_frame_equal(result, expected) result = ts.ix[time(9, 30)] expected = ts.ix[(rng.hour == 9) & (rng.minute == 30)] assert_frame_equal(result, expected) # midnight, everything rng = date_range('1/1/2000', '1/31/2000') ts = DataFrame(np.random.randn(len(rng), 3), index=rng) result = ts.at_time(time(0, 0)) assert_frame_equal(result, ts) # time doesn't exist rng = date_range('1/1/2012', freq='23Min', periods=384) ts = DataFrame(np.random.randn(len(rng), 2), rng) rs = ts.at_time('16:00') self.assertEqual(len(rs), 0) def test_between_time(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_series_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = Series(np.random.randn(len(rng)), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_between_time_frame(self): rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(0, 0) etime = time(1, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue(t >= stime) else: self.assertTrue(t > stime) if inc_end: self.assertTrue(t <= etime) else: self.assertTrue(t < etime) result = ts.between_time('00:00', '01:00') expected = ts.between_time(stime, etime) assert_frame_equal(result, expected) # across midnight rng = date_range('1/1/2000', '1/5/2000', freq='5min') ts = DataFrame(np.random.randn(len(rng), 2), index=rng) stime = time(22, 0) etime = time(9, 0) close_open = product([True, False], [True, False]) for inc_start, inc_end in close_open: filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 self.assertEqual(len(filtered), exp_len) for rs in filtered.index: t = rs.time() if inc_start: self.assertTrue((t >= stime) or (t <= etime)) else: self.assertTrue((t > stime) or (t <= etime)) if inc_end: self.assertTrue((t <= etime) or (t >= stime)) else: self.assertTrue((t < etime) or (t >= stime)) def test_dti_constructor_preserve_dti_freq(self): rng = date_range('1/1/2000', '1/2/2000', freq='5min') rng2 = DatetimeIndex(rng) self.assertEqual(rng.freq, rng2.freq) def test_normalize(self): rng = date_range('1/1/2000 9:30', periods=10, freq='D') result = rng.normalize() expected = date_range('1/1/2000', periods=10, freq='D') self.assertTrue(result.equals(expected)) rng_ns = pd.DatetimeIndex(np.array([1380585623454345752, 1380585612343234312]).astype("datetime64[ns]")) rng_ns_normalized = rng_ns.normalize() expected = pd.DatetimeIndex(np.array([1380585600000000000, 1380585600000000000]).astype("datetime64[ns]")) self.assertTrue(rng_ns_normalized.equals(expected)) self.assertTrue(result.is_normalized) self.assertFalse(rng.is_normalized) def test_to_period(self): from pandas.tseries.period import period_range ts = _simple_ts('1/1/2000', '1/1/2001') pts = ts.to_period() exp = ts.copy() exp.index = period_range('1/1/2000', '1/1/2001') assert_series_equal(pts, exp) pts = ts.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) def create_dt64_based_index(self): data = [Timestamp('2007-01-01 10:11:12.123456Z'), Timestamp('2007-01-01 10:11:13.789123Z')] index = DatetimeIndex(data) return index def test_to_period_millisecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='L') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123Z', 'L')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789Z', 'L')) def test_to_period_microsecond(self): index = self.create_dt64_based_index() period = index.to_period(freq='U') self.assertEqual(2, len(period)) self.assertEqual(period[0], Period('2007-01-01 10:11:12.123456Z', 'U')) self.assertEqual(period[1], Period('2007-01-01 10:11:13.789123Z', 'U')) def test_to_period_tz(self): _skip_if_no_pytz() from dateutil.tz import tzlocal from pytz import utc as UTC xp = date_range('1/1/2000', '4/1/2000').to_period() ts = date_range('1/1/2000', '4/1/2000', tz='US/Eastern') result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=UTC) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) ts = date_range('1/1/2000', '4/1/2000', tz=tzlocal()) result = ts.to_period()[0] expected = ts[0].to_period() self.assertEqual(result, expected) self.assertTrue(ts.to_period().equals(xp)) def test_frame_to_period(self): K = 5 from pandas.tseries.period import period_range dr = date_range('1/1/2000', '1/1/2001') pr = period_range('1/1/2000', '1/1/2001') df = DataFrame(randn(len(dr), K), index=dr) df['mix'] = 'a' pts = df.to_period() exp = df.copy() exp.index = pr assert_frame_equal(pts, exp) pts = df.to_period('M') self.assertTrue(pts.index.equals(exp.index.asfreq('M'))) df = df.T pts = df.to_period(axis=1) exp = df.copy() exp.columns = pr assert_frame_equal(pts, exp) pts = df.to_period('M', axis=1) self.assertTrue(pts.columns.equals(exp.columns.asfreq('M'))) self.assertRaises(ValueError, df.to_period, axis=2) def test_timestamp_fields(self): # extra fields from DatetimeIndex like quarter and week idx = tm.makeDateIndex(100) fields = ['dayofweek', 'dayofyear', 'week', 'weekofyear', 'quarter', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end'] for f in fields: expected = getattr(idx, f)[-1] result = getattr(Timestamp(idx[-1]), f) self.assertEqual(result, expected) self.assertEqual(idx.freq, Timestamp(idx[-1], idx.freq).freq) self.assertEqual(idx.freqstr, Timestamp(idx[-1], idx.freq).freqstr) def test_woy_boundary(self): # make sure weeks at year boundaries are correct d = datetime(2013,12,31) result = Timestamp(d).week expected = 1 # ISO standard self.assertEqual(result, expected) d = datetime(2008,12,28) result = Timestamp(d).week expected = 52 # ISO standard self.assertEqual(result, expected) d = datetime(2009,12,31) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,1) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) d = datetime(2010,1,3) result = Timestamp(d).week expected = 53 # ISO standard self.assertEqual(result, expected) result = np.array([Timestamp(datetime(*args)).week for args in [(2000,1,1),(2000,1,2),(2005,1,1),(2005,1,2)]]) self.assertTrue((result == [52, 52, 53, 53]).all()) def test_timestamp_date_out_of_range(self): self.assertRaises(ValueError, Timestamp, '1676-01-01') self.assertRaises(ValueError, Timestamp, '2263-01-01') # 1475 self.assertRaises(ValueError, DatetimeIndex, ['1400-01-01']) self.assertRaises(ValueError, DatetimeIndex, [datetime(1400, 1, 1)]) def test_timestamp_repr(self): # pre-1900 stamp = Timestamp('1850-01-01', tz='US/Eastern') repr(stamp) iso8601 = '1850-01-01 01:23:45.012345' stamp = Timestamp(iso8601, tz='US/Eastern') result = repr(stamp) self.assertIn(iso8601, result) def test_timestamp_from_ordinal(self): # GH 3042 dt = datetime(2011, 4, 16, 0, 0) ts = Timestamp.fromordinal(dt.toordinal()) self.assertEqual(ts.to_pydatetime(), dt) # with a tzinfo stamp = Timestamp('2011-4-16', tz='US/Eastern') dt_tz = stamp.to_pydatetime() ts = Timestamp.fromordinal(dt_tz.toordinal(),tz='US/Eastern') self.assertEqual(ts.to_pydatetime(), dt_tz) def test_datetimeindex_integers_shift(self): rng = date_range('1/1/2000', periods=20) result = rng + 5 expected = rng.shift(5) self.assertTrue(result.equals(expected)) result = rng - 5 expected = rng.shift(-5) self.assertTrue(result.equals(expected)) def test_astype_object(self): # NumPy 1.6.1 weak ns support rng = date_range('1/1/2000', periods=20) casted = rng.astype('O') exp_values = list(rng) self.assert_numpy_array_equal(casted, exp_values) def test_catch_infinite_loop(self): offset = datetools.DateOffset(minute=5) # blow up, don't loop forever self.assertRaises(Exception, date_range, datetime(2011, 11, 11), datetime(2011, 11, 12), freq=offset) def test_append_concat(self): rng = date_range('5/8/2012 1:45', periods=10, freq='5T') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) result = ts.append(ts) result_df = df.append(df) ex_index = DatetimeIndex(np.tile(rng.values, 2)) self.assertTrue(result.index.equals(ex_index)) self.assertTrue(result_df.index.equals(ex_index)) appended = rng.append(rng) self.assertTrue(appended.equals(ex_index)) appended = rng.append([rng, rng]) ex_index = DatetimeIndex(np.tile(rng.values, 3)) self.assertTrue(appended.equals(ex_index)) # different index names rng1 = rng.copy() rng2 = rng.copy() rng1.name = 'foo' rng2.name = 'bar' self.assertEqual(rng1.append(rng1).name, 'foo') self.assertIsNone(rng1.append(rng2).name) def test_append_concat_tz(self): #GH 2938 _skip_if_no_pytz() rng = date_range('5/8/2012 1:45', periods=10, freq='5T', tz='US/Eastern') rng2 = date_range('5/8/2012 2:35', periods=10, freq='5T', tz='US/Eastern') rng3 = date_range('5/8/2012 1:45', periods=20, freq='5T', tz='US/Eastern') ts = Series(np.random.randn(len(rng)), rng) df = DataFrame(np.random.randn(len(rng), 4), index=rng) ts2 = Series(np.random.randn(len(rng2)), rng2) df2 = DataFrame(np.random.randn(len(rng2), 4), index=rng2) result = ts.append(ts2) result_df = df.append(df2) self.assertTrue(result.index.equals(rng3)) self.assertTrue(result_df.index.equals(rng3)) appended = rng.append(rng2) self.assertTrue(appended.equals(rng3)) def test_set_dataframe_column_ns_dtype(self): x = DataFrame([datetime.now(), datetime.now()]) self.assertEqual(x[0].dtype, np.dtype('M8[ns]')) def test_groupby_count_dateparseerror(self): dr = date_range(start='1/1/2012', freq='5min', periods=10) # BAD Example, datetimes first s = Series(np.arange(10), index=[dr, lrange(10)]) grouped = s.groupby(lambda x: x[1] % 2 == 0) result = grouped.count() s = Series(np.arange(10), index=[lrange(10), dr]) grouped = s.groupby(lambda x: x[0] % 2 == 0) expected = grouped.count() assert_series_equal(result, expected) def test_datetimeindex_repr_short(self): dr = date_range(start='1/1/2012', periods=1) repr(dr) dr = date_range(start='1/1/2012', periods=2) repr(dr) dr = date_range(start='1/1/2012', periods=3) repr(dr) def test_constructor_int64_nocopy(self): # #1624 arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] == -1).all()) arr = np.arange(1000, dtype=np.int64) index = DatetimeIndex(arr, copy=True) arr[50:100] = -1 self.assertTrue((index.asi8[50:100] != -1).all()) def test_series_interpolate_method_values(self): # #1646 ts = _simple_ts('1/1/2000', '1/20/2000') ts[::2] = np.nan result = ts.interpolate(method='values') exp = ts.interpolate() assert_series_equal(result, exp) def test_frame_datetime64_handling_groupby(self): # it works! df = DataFrame([(3, np.datetime64('2012-07-03')), (3, np.datetime64('2012-07-04'))], columns=['a', 'date']) result = df.groupby('a').first() self.assertEqual(result['date'][3], Timestamp('2012-07-03')) def test_series_interpolate_intraday(self): # #1698 index = pd.date_range('1/1/2012', periods=4, freq='12D') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(days=1)).order() exp = ts.reindex(new_index).interpolate(method='time') index = pd.date_range('1/1/2012', periods=4, freq='12H') ts = pd.Series([0, 12, 24, 36], index) new_index = index.append(index + pd.DateOffset(hours=1)).order() result = ts.reindex(new_index).interpolate(method='time') self.assert_numpy_array_equal(result.values, exp.values) def test_frame_dict_constructor_datetime64_1680(self): dr = date_range('1/1/2012', periods=10) s = Series(dr, index=dr) # it works! DataFrame({'a': 'foo', 'b': s}, index=dr) DataFrame({'a': 'foo', 'b': s.values}, index=dr) def test_frame_datetime64_mixed_index_ctor_1681(self): dr = date_range('2011/1/1', '2012/1/1', freq='W-FRI') ts = Series(dr) # it works! d = DataFrame({'A': 'foo', 'B': ts}, index=dr) self.assertTrue(d['B'].isnull().all()) def test_frame_timeseries_to_records(self): index = date_range('1/1/2000', periods=10) df = DataFrame(np.random.randn(10, 3), index=index, columns=['a', 'b', 'c']) result = df.to_records() result['index'].dtype == 'M8[ns]' result = df.to_records(index=False) def test_frame_datetime64_duplicated(self): dates = date_range('2010-07-01', end='2010-08-05') tst = DataFrame({'symbol': 'AAA', 'date': dates}) result = tst.duplicated(['date', 'symbol']) self.assertTrue((-result).all()) tst = DataFrame({'date': dates}) result = tst.duplicated() self.assertTrue((-result).all()) def test_timestamp_compare_with_early_datetime(self): # e.g. datetime.min stamp = Timestamp('2012-01-01') self.assertFalse(stamp == datetime.min) self.assertFalse(stamp == datetime(1600, 1, 1)) self.assertFalse(stamp == datetime(2700, 1, 1)) self.assertNotEqual(stamp, datetime.min) self.assertNotEqual(stamp, datetime(1600, 1, 1)) self.assertNotEqual(stamp, datetime(2700, 1, 1)) self.assertTrue(stamp > datetime(1600, 1, 1)) self.assertTrue(stamp >= datetime(1600, 1, 1)) self.assertTrue(stamp < datetime(2700, 1, 1)) self.assertTrue(stamp <= datetime(2700, 1, 1)) def test_to_html_timestamp(self): rng = date_range('2000-01-01', periods=10) df = DataFrame(np.random.randn(10, 4), index=rng) result = df.to_html() self.assertIn('2000-01-01', result) def test_to_csv_numpy_16_bug(self): frame = DataFrame({'a': date_range('1/1/2000', periods=10)}) buf = StringIO() frame.to_csv(buf) result = buf.getvalue() self.assertIn('2000-01-01', result) def test_series_map_box_timestamps(self): # #2689, #2627 s = Series(date_range('1/1/2000', periods=10)) def f(x): return (x.hour, x.day, x.month) # it works! s.map(f) s.apply(f) DataFrame(s).applymap(f) def test_concat_datetime_datetime64_frame(self): # #2624 rows = [] rows.append([datetime(2010, 1, 1), 1]) rows.append([datetime(2010, 1, 2), 'hi']) df2_obj = DataFrame.from_records(rows, columns=['date', 'test']) ind = date_range(start="2000/1/1", freq="D", periods=10) df1 = DataFrame({'date': ind, 'test':lrange(10)}) # it works! pd.concat([df1, df2_obj]) def test_period_resample(self): # GH3609 s = Series(range(100),index=date_range('20130101', freq='s', periods=100), dtype='float') s[10:30] = np.nan expected = Series([34.5, 79.5], index=[Period('2013-01-01 00:00', 'T'), Period('2013-01-01 00:01', 'T')]) result = s.to_period().resample('T', kind='period') assert_series_equal(result, expected) result2 = s.resample('T', kind='period') assert_series_equal(result2, expected) def test_period_resample_with_local_timezone(self): # GH5430 _skip_if_no_pytz() import pytz local_timezone = pytz.timezone('America/Los_Angeles') start = datetime(year=2013, month=11, day=1, hour=0, minute=0, tzinfo=pytz.utc) # 1 day later end = datetime(year=2013, month=11, day=2, hour=0, minute=0, tzinfo=pytz.utc) index = pd.date_range(start, end, freq='H') series = pd.Series(1, index=index) series = series.tz_convert(local_timezone) result = series.resample('D', kind='period') # Create the expected series expected_index = (pd.period_range(start=start, end=end, freq='D') - 1) # Index is moved back a day with the timezone conversion from UTC to Pacific expected = pd.Series(1, index=expected_index) assert_series_equal(result, expected) def test_pickle(self): #GH4606 from pandas.compat import cPickle import pickle for pick in [pickle, cPickle]: p = pick.loads(pick.dumps(NaT)) self.assertTrue(p is NaT) idx = pd.to_datetime(['2013-01-01', NaT, '2014-01-06']) idx_p = pick.loads(pick.dumps(idx)) self.assertTrue(idx_p[0] == idx[0]) self.assertTrue(idx_p[1] is NaT) self.assertTrue(idx_p[2] == idx[2]) def _simple_ts(start, end, freq='D'): rng = date_range(start, end, freq=freq) return Series(np.random.randn(len(rng)), index=rng) class TestDatetimeIndex(tm.TestCase): _multiprocess_can_split_ = True def test_hash_error(self): index = date_range('20010101', periods=10) with tm.assertRaisesRegexp(TypeError, "unhashable type: %r" % type(index).__name__): hash(index) def test_stringified_slice_with_tz(self): #GH2658 import datetime start=datetime.datetime.now() idx=DatetimeIndex(start=start,freq="1d",periods=10) df=DataFrame(lrange(10),index=idx) df["2013-01-14 23:44:34.437768-05:00":] # no exception here def test_append_join_nondatetimeindex(self): rng = date_range('1/1/2000', periods=10) idx = Index(['a', 'b', 'c', 'd']) result = rng.append(idx) tm.assert_isinstance(result[0], Timestamp) # it works rng.join(idx, how='outer') def test_astype(self): rng = date_range('1/1/2000', periods=10) result = rng.astype('i8') self.assert_numpy_array_equal(result, rng.asi8) def test_to_period_nofreq(self): idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-04']) self.assertRaises(ValueError, idx.to_period) idx = DatetimeIndex(['2000-01-01', '2000-01-02', '2000-01-03'], freq='infer') idx.to_period() def test_000constructor_resolution(self): # 2252 t1 = Timestamp((1352934390 * 1000000000) + 1000000 + 1000 + 1) idx = DatetimeIndex([t1]) self.assertEqual(idx.nanosecond[0], t1.nanosecond) def test_constructor_coverage(self): rng = date_range('1/1/2000', periods=10.5) exp = date_range('1/1/2000', periods=10) self.assertTrue(rng.equals(exp)) self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', periods='foo', freq='D') self.assertRaises(ValueError, DatetimeIndex, start='1/1/2000', end='1/10/2000') self.assertRaises(ValueError, DatetimeIndex, '1/1/2000') # generator expression gen = (datetime(2000, 1, 1) + timedelta(i) for i in range(10)) result = DatetimeIndex(gen) expected = DatetimeIndex([datetime(2000, 1, 1) + timedelta(i) for i in range(10)]) self.assertTrue(result.equals(expected)) # NumPy string array strings = np.array(['2000-01-01', '2000-01-02', '2000-01-03']) result = DatetimeIndex(strings) expected = DatetimeIndex(strings.astype('O')) self.assertTrue(result.equals(expected)) from_ints = DatetimeIndex(expected.asi8) self.assertTrue(from_ints.equals(expected)) # non-conforming self.assertRaises(ValueError, DatetimeIndex, ['2000-01-01', '2000-01-02', '2000-01-04'], freq='D') self.assertRaises(ValueError, DatetimeIndex, start='2011-01-01', freq='b') self.assertRaises(ValueError, DatetimeIndex, end='2011-01-01', freq='B') self.assertRaises(ValueError, DatetimeIndex, periods=10, freq='D') def test_constructor_name(self): idx = DatetimeIndex(start='2000-01-01', periods=1, freq='A', name='TEST') self.assertEqual(idx.name, 'TEST') def test_comparisons_coverage(self): rng =
date_range('1/1/2000', periods=10)
pandas.date_range
import pandas as pd import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification import os import wandb from utils import set_seed, parse_training_args from dataset import ToxicDataset from trainer import Trainer from model import convert_regressor_to_binary, convert_binary_to_regressor if __name__ == "__main__": args = parse_training_args() config = vars(args) if config["use_extra_data"]: extra_files = [ os.path.join(config["extra_data_dir"], f) for f in os.listdir(config["extra_data_dir"]) ] config["extra_files"] = extra_files wandb.login() if config["num_labels"] is None or config["num_labels"] == 1: project = "jigsaw-train" else: project = "jigsaw-binary-train" with wandb.init( project=project, group=str(args.group_id), name=f"{args.group_id}-{args.checkpoint}", config=config, ): config = wandb.config set_seed(config.seed) train_data = pd.read_csv(config.train_path) if config.use_extra_data: extra_data = [pd.read_csv(f) for f in extra_files] train_data =
pd.concat([train_data] + extra_data)
pandas.concat
def PCoA_analysis(TaXon_table_xlsx, meta_data_to_test, taxonomic_level, width, height, pcoa_s, path_to_outdirs, template, font_size, color_discrete_sequence, pcoa_dissimilarity): import pandas as pd import numpy as np from skbio.diversity import beta_diversity from skbio.stats.ordination import pcoa from skbio.stats.distance import anosim import plotly.graph_objects as go from plotly.subplots import make_subplots import plotly.express as px from pathlib import Path import PySimpleGUI as sg import os, webbrowser from itertools import combinations TaXon_table_xlsx = Path(TaXon_table_xlsx) Meta_data_table_xlsx = Path(str(path_to_outdirs) + "/" + "Meta_data_table" + "/" + TaXon_table_xlsx.stem + "_metadata.xlsx") TaXon_table_df = pd.read_excel(TaXon_table_xlsx, header=0).fillna("unidentified") TaXon_table_samples = TaXon_table_df.columns.tolist()[10:] Meta_data_table_df = pd.read_excel(Meta_data_table_xlsx, header=0).fillna("nan") Meta_data_table_samples = Meta_data_table_df['Samples'].tolist() metadata_list = Meta_data_table_df[meta_data_to_test].values.tolist() metadata_loc = Meta_data_table_df.columns.tolist().index(meta_data_to_test) ## drop samples with metadata called nan (= empty) drop_samples = [i[0] for i in Meta_data_table_df.values.tolist() if i[metadata_loc] == "nan"] if drop_samples != []: ## filter the TaXon table TaXon_table_df = TaXon_table_df.drop(drop_samples, axis=1) TaXon_table_samples = TaXon_table_df.columns.tolist()[10:] ## also remove empty OTUs row_filter_list = [] for row in TaXon_table_df.values.tolist(): reads = set(row[10:]) if reads != {0}: row_filter_list.append(row) columns = TaXon_table_df.columns.tolist() TaXon_table_df = pd.DataFrame(row_filter_list, columns=columns) Meta_data_table_df = pd.DataFrame([i for i in Meta_data_table_df.values.tolist() if i[0] not in drop_samples], columns=Meta_data_table_df.columns.tolist()) Meta_data_table_samples = Meta_data_table_df['Samples'].tolist() ## create a y axis title text taxon_title = taxonomic_level.lower() ## adjust taxonomic level if neccessary if taxonomic_level in ["ASVs", "ESVs", "OTUs", "zOTUs"]: taxon_title = taxonomic_level taxonomic_level = "ID" # check if the meta data differs if len(set(Meta_data_table_df[meta_data_to_test])) == len(Meta_data_table_df['Samples'].tolist()): sg.Popup("The meta data is unique for all samples. Please adjust the meta data table!", title=("Error")) raise RuntimeError # check if the meta data differs if len(set(Meta_data_table_df[meta_data_to_test])) == 1: sg.Popup("The meta data is similar for all samples. Please adjust the meta data table!", title=("Error")) raise RuntimeError if sorted(TaXon_table_samples) == sorted(Meta_data_table_samples): samples = Meta_data_table_samples ## extract the relevant data TaXon_table_df = TaXon_table_df[[taxonomic_level] + samples] ## define an aggregation function to combine multiple hit of one taxonimic level aggregation_functions = {} ## define samples functions for sample in samples: ## 'sum' will calculate the sum of p/a data aggregation_functions[sample] = 'sum' ## define taxon level function aggregation_functions[taxonomic_level] = 'first' ## create condensed dataframe TaXon_table_df = TaXon_table_df.groupby(TaXon_table_df[taxonomic_level]).aggregate(aggregation_functions) if 'unidentified' in TaXon_table_df.index: TaXon_table_df = TaXon_table_df.drop('unidentified') data = TaXon_table_df[samples].transpose().values.tolist() jc_dm = beta_diversity(pcoa_dissimilarity, data, samples) ordination_result = pcoa(jc_dm) metadata_list = Meta_data_table_df[meta_data_to_test].values.tolist() anosim_results = anosim(jc_dm, metadata_list, permutations=999) anosim_r = round(anosim_results['test statistic'], 5) anosim_p = anosim_results['p-value'] textbox = meta_data_to_test + ", " + taxon_title + "<br>Anosim " + "R = " + str(anosim_r) + " " + "p = " + str(anosim_p) ####################################################################################### # create window to ask for PCoA axis to test def slices(list, slice): for i in range(0, len(list), slice): yield list[i : i + slice] # collect the PCoA proportion explained values proportion_explained_list = [] for i, pcoa_axis in enumerate(ordination_result.proportion_explained): if round(pcoa_axis* 100, 2) >= 1: proportion_explained_list.append("PC" + str(i+1) + " (" + str(round(pcoa_axis* 100, 2)) + " %)") pcoa_axis_checkboxes = list(slices([sg.Checkbox(name, key=name, size=(15,1)) for name in proportion_explained_list], 10)) pcoa_window_layout = [ [sg.Text('Check up to four axes to be displayed')], [sg.Frame(layout = pcoa_axis_checkboxes, title = '')], [sg.Text('Only axes >= 1 % explained variance are shown')], [sg.CB("Connect categories", default=True, key="draw_mesh")], [sg.Text('')], [sg.Button('Plot', key='Plot')], [sg.Button('Back')], ] pcoa_window = sg.Window('PCoA axis', pcoa_window_layout, keep_on_top=True) while True: event, values = pcoa_window.read() draw_mesh = values["draw_mesh"] if event is None or event == 'Back': break if event == 'Plot': ## create a subfolder for better sorting and overview dirName = Path(str(path_to_outdirs) + "/" + "PCoA_plots" + "/" + TaXon_table_xlsx.stem + "/") if not os.path.exists(dirName): os.mkdir(dirName) # collect the pcoa axis values axis_to_plot = [key for key,value in values.items() if value == True and "PC" in key] # pass on only if two pcoa axes were checked if len(axis_to_plot) == 2: cat1 = axis_to_plot[1].split()[0] cat2 = axis_to_plot[0].split()[0] df_pcoa = ordination_result.samples[[cat1, cat2]] df_pcoa.insert(2, "Metadata", Meta_data_table_df[meta_data_to_test].values.tolist(), True) df_pcoa.insert(3, "Samples", Meta_data_table_df["Samples"].values.tolist(), True) if draw_mesh == True: combinations_list =[] for metadata in df_pcoa["Metadata"]: ## collect all entries for the respective metadata arr = df_pcoa.loc[df_pcoa['Metadata'] == metadata][[cat1, cat2, "Metadata", "Samples"]].to_numpy() ## create a df for all possible combinations using itertools combinations for entry in list(combinations(arr, 2)): combinations_list.append(list(entry[0])) combinations_list.append(list(entry[1])) ## create a dataframe to draw the plot from df =
pd.DataFrame(combinations_list)
pandas.DataFrame
import calendar from enum import Enum from typing import Any, List, Mapping, Optional, Sequence, Tuple, Union import numpy as np import pandas as pd class DistrType(Enum): """Indicates the type distribution of data in a series.""" Continuous = "continuous" Binary = "binary" Categorical = "categorical" Datetime = "datetime" def is_continuous(self): return self == DistrType.Continuous def is_binary(self): return self == DistrType.Binary def is_categorical(self): return self == DistrType.Categorical def is_datetime(self): return self == DistrType.Datetime def zipped_hist( data: Tuple[pd.Series, ...], bin_edges: Optional[np.ndarray] = None, normalize: bool = True, ret_bins: bool = False, distr_type: Optional[str] = None, ) -> Union[Tuple[pd.Series, ...], Tuple[Tuple[pd.Series, ...], Optional[np.ndarray]]]: """Bins a tuple of series' and returns the aligned histograms. Args: data (Tuple[pd.Series, ...]): A tuple consisting of the series' to be binned. All series' must have the same dtype. bin_edges (Optional[np.ndarray], optional): Bin edges to bin continuous data by. Defaults to None. normalize (bool, optional): Normalize the histograms, turning them into pdfs. Defaults to True. ret_bins (bool, optional): Returns the bin edges used in the histogram. Defaults to False. distr_type (Optional[str]): The type of distribution of the target attribute. Can be "categorical" or "continuous". If None the type of distribution is inferred based on the data in the column. Defaults to None. Returns: Union[Tuple[np.ndarray, ...], Tuple[Tuple[np.ndarray, ...], Optional[np.ndarray]]]: A tuple of np.ndarrays consisting of each histogram for the input data. Additionally returns bins if ret_bins is True. """ joint = pd.concat(data) is_continuous = distr_type == "continuous" if distr_type is not None else infer_distr_type(joint).is_continuous() # Compute histograms of the data, bin if continuous if is_continuous: # Compute shared bin_edges if not given, and use np.histogram to form histograms if bin_edges is None: bin_edges = np.histogram_bin_edges(joint, bins="auto") hists = [np.histogram(series, bins=bin_edges)[0] for series in data] if normalize: with np.errstate(divide="ignore", invalid="ignore"): hists = [np.nan_to_num(hist / hist.sum()) for hist in hists] else: # For categorical data, form histogram using value counts and align space = joint.unique() dicts = [sr.value_counts(normalize=normalize) for sr in data] hists = [np.array([d.get(val, 0) for val in space]) for d in dicts] ps = [pd.Series(hist) for hist in hists] if ret_bins: return tuple(ps), bin_edges return tuple(ps) def bin( column: pd.Series, n_bins: Optional[int] = None, remove_outliers: Optional[float] = 0.1, quantile_based: bool = False, bin_centers=False, **kwargs, ) -> pd.Series: """Bin continous values into discrete bins. Args: column (pd.Series): The column or series containing the data to be binned. n_bins (Optional[int], optional): The number of bins. Defaults to Freedman-Diaconis rule. remove_outliers (Optional[float], optional): Any data point outside this quantile (two-sided) will be dropped before computing bins. If `None`, outliers are not removed. Defaults to 0.1. quantile_based (bool, optional): Whether the bin computation is quantile based. Defaults to False. bin_centers (bool, optional): Return the mean of the intervals instead of the intervals themselves. Defaults to False. **kwargs: Key word arguments for pd.cut or pd.qcut. Returns: pd.Series: The binned column. """ column = infer_dtype(column) column_clean = column.dropna() n_bins = n_bins or fd_opt_bins(column) if remove_outliers: percentiles = [remove_outliers * 100.0 / 2, 100 - remove_outliers * 100.0 / 2] start, end = np.percentile(column_clean, percentiles) if start == end: start, end = min(column_clean), max(column_clean) column_clean = column_clean[(start <= column_clean) & (column_clean <= end)] if not quantile_based: _, bins = pd.cut(column_clean, n_bins, retbins=True, **kwargs) else: _, bins = pd.qcut(column_clean, n_bins, retbins=True, **kwargs) bins = list(bins) # Otherwise it is np.ndarray bins[0], bins[-1] = column.min(), column.max() # Manually construct interval index for dates as pandas can't do a quantile date interval by itself. if isinstance(bins[0], pd.Timestamp): bins = pd.IntervalIndex([pd.Interval(bins[n], bins[n + 1]) for n in range(len(bins) - 1)], closed="left") binned = pd.Series(pd.cut(column, bins=bins, include_lowest=True, **kwargs)) if bin_centers: binned = binned.apply(lambda i: i.mid) return binned def quantize_date(column: pd.Series) -> pd.Series: """Quantize a column of dates into bins of uniform width in years, days or months. Args: column (pd.Series): The column of dates to quantize. Must be have a dtype of "datetime64[ns]". Returns: pd.Series: Quantized series. """ TEN_YEAR_THRESHOLD = 15 TEN_MIN_THRESHOLD = 15 TEN_SEC_THRESHOLD = 15 if column.dtype != "datetime64[ns]": raise ValueError("'quantize_date' requires the column to be a pandas datetime object") years, months, days = column.dt.year, column.dt.month, column.dt.day hours, minutes, seconds = column.dt.hour, column.dt.minute, column.dt.second # Assuming dates don't go back beyond a 100 years. if years.max() - years.min() >= TEN_YEAR_THRESHOLD: return ((years // 10) * 10).apply(lambda x: str(x) + "-" + str(x + 10)) elif years.nunique() > 1: return years elif months.nunique() > 1: return months.apply(lambda x: calendar.month_abbr[x]) elif days.nunique() > 1: return days.apply(lambda x: "Day " + str(x)) elif hours.nunique() > 1: return hours.apply(lambda x: "Hour " + str(x)) elif minutes.max() - minutes.min() > TEN_MIN_THRESHOLD: return ((minutes // 10) * 10).apply(lambda x: str(x) + "min-" + str(x + 10) + "min") elif minutes.nunique() > 1: return minutes.apply(lambda x: str(x) + "m") elif seconds.max() - seconds.min() > TEN_SEC_THRESHOLD: return ((seconds // 10) * 10).apply(lambda x: str(x) + "s-" + str(x + 10) + "s") return seconds def infer_dtype(col: pd.Series) -> pd.Series: """Infers the type of the data and converts the data to it. Args: col (str): The column of the dataframe to transform. Returns: pd.Series: The column converted to its inferred type. """ column = col.copy() in_dtype = str(column.dtype) # Try to convert it to numeric if column.dtype.kind not in ("i", "u", "f", "M"): n_nans = column.isna().sum() col_num =
pd.to_numeric(column, errors="coerce")
pandas.to_numeric
""" database.py -- sqlite storage of relevant functional info for Harvey. Language: Python 3.9 """ from typing import Tuple import json import logging import pathlib import sqlite3 import pandas as pd from harvey.utils.exceptions import DatabaseError MAPPING_FILE = pathlib.Path(__file__).parents[1].joinpath("json/db_tables.json") class Database(object): """Container for bot items.""" def __init__(self, database: pathlib.Path): self.database = pathlib.Path(database) if self.database.exists(): logging.debug( f"Initializing database connection to DB file at " f"'{self.database.name}'." ) else: logging.debug(f"Creating database at DB file '{self.database.name}'.") self.rr_role_table = None # Set for linting. self.rr_post_table = None self.logging_channel_table = None self.sales_feed_table = None with open(MAPPING_FILE, "r") as f: self.mapping = json.loads(f.read()) for var, info in self.mapping["tables"].items(): setattr(self, var, info["name"]) self.create_tables() def get_conn(self) -> Tuple[sqlite3.Connection, sqlite3.Cursor]: """Helper function to connect to the internal database. Returns ---------- Tuple[sqlite3.Connection, sqlite3.Cursor] Connection and cursor objects. """ conn = sqlite3.connect(self.database) cursor = conn.cursor() return conn, cursor def create_tables(self): """Create database tables if they don't already exist. Parameters ---------- query: str Table create query. """ logging.debug("Beginning table instantiation.") conn, cursor = self.get_conn() for table_type, table_info in self.mapping["tables"].items(): logging.debug(f"Creating {table_type} table '{table_info['name']}'.") cursor.execute(table_info["create_query"]) conn.commit() conn.close() logging.info("Completed table instantiation.") def role_exists( self, emoji_id: int, role_id: int, guild_id: int, ) -> bool: """Check if a role exists on the self.rr_role_table table. Parameters ---------- emoji_id: int Emoji ID to check. role_id: int Role ID to check. guild_id: int Guild ID to check. Returns ---------- bool True if role was found. False otherwise. """ query = ( f"SELECT * FROM '{self.rr_role_table}' WHERE 1=1 AND emoji_id = {emoji_id} " f"AND role_id = {role_id} AND guild_id = {guild_id}" ) conn, _ = self.get_conn() res =
pd.read_sql_query(query, con=conn)
pandas.read_sql_query
#!/usr/bin/env python # coding: utf-8 # # Benchmark Results # This notebook visualizes the output from the different models on different classification problems # In[1]: import collections import glob import json import os import numpy as np import pandas as pd from plotnine import * from saged.utils import split_sample_names, create_dataset_stat_df, get_dataset_stats, parse_map_file # ## Set Up Functions and Get Metadata # In[3]: def return_unlabeled(): # For use in a defaultdict return 'unlabeled' # In[4]: data_dir = '../../data/' map_file = os.path.join(data_dir, 'sample_classifications.pkl') sample_to_label = parse_map_file(map_file) sample_to_label = collections.defaultdict(return_unlabeled, sample_to_label) # In[ ]: metadata_path = os.path.join(data_dir, 'aggregated_metadata.json') metadata = None with open(metadata_path) as json_file: metadata = json.load(json_file) sample_metadata = metadata['samples'] # In[ ]: experiments = metadata['experiments'] sample_to_study = {} for study in experiments: for accession in experiments[study]['sample_accession_codes']: sample_to_study[accession] = study # ## Sepsis classification # In[8]: in_files = glob.glob('../../results/single_label.*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[9]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics # In[10]: plot = ggplot(sepsis_metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('PCA vs untransformed data for classifying sepsis') print(plot) # In[11]: plot = ggplot(sepsis_metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_jitter(size=3) plot += ggtitle('PCA vs untransformed data for classifying sepsis') print(plot) # ## All labels # In[12]: in_files = glob.glob('../../results/all_labels.*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[13]: metrics = None for path in in_files: if metrics is None: metrics = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('all_labels.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] metrics['unsupervised'] = unsupervised_model metrics['supervised'] = supervised_model else: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('all_labels.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model metrics = pd.concat([metrics, new_df]) metrics # In[14]: plot = ggplot(metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('PCA vs untransformed data for all label classification') print(plot) # In[15]: plot = ggplot(metrics, aes(x='supervised', y='accuracy', fill='unsupervised')) plot += geom_jitter(size=2) plot += ggtitle('PCA vs untransformed data for all label classification') print(plot) # # Subsets of healthy labels # In[16]: in_files = glob.glob('../../results/subset_label.sepsis*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[17]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics = sepsis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') sepsis_metrics['healthy_used'] = sepsis_metrics['healthy_used'].round(1) sepsis_metrics # In[18]: print(sepsis_metrics[sepsis_metrics['healthy_used'] == 1]) # In[19]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', )) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[20]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[21]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Same analysis, but with tb instead of sepsis # In[22]: in_files = glob.glob('../../results/subset_label.tb*') in_files = [file for file in in_files if 'be_corrected' not in file] print(in_files[:5]) # In[23]: tuberculosis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') if len(model_info) == 4: unsupervised_model = model_info[0] supervised_model = model_info[1] else: unsupervised_model = 'untransformed' supervised_model = model_info[0] new_df['unsupervised'] = unsupervised_model new_df['supervised'] = supervised_model tuberculosis_metrics = pd.concat([tuberculosis_metrics, new_df]) tuberculosis_metrics = tuberculosis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') tuberculosis_metrics['healthy_used'] = tuberculosis_metrics['healthy_used'].round(1) tuberculosis_metrics # In[24]: print(tuberculosis_metrics[tuberculosis_metrics['healthy_used'] == 1]) # In[25]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[26]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='unsupervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[27]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Supervised Results Only # The results above show that unsupervised learning mostly hurts performance rather than helping. # The visualizations below compare each model based only on its supervised results. # In[28]: supervised_sepsis = sepsis_metrics[sepsis_metrics['unsupervised'] == 'untransformed'] # In[29]: plot = ggplot(supervised_sepsis, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[30]: supervised_tb = tuberculosis_metrics[tuberculosis_metrics['unsupervised'] == 'untransformed'] # In[31]: plot = ggplot(supervised_tb, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[32]: plot = ggplot(supervised_tb, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Batch Effect Correction # In[33]: in_files = glob.glob('../../results/subset_label.sepsis*be_corrected.tsv') print(in_files[:5]) # In[34]: sepsis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('sepsis.')[-1] print(model_info) model_info = model_info.split('.') print(model_info) supervised_model = model_info[0] new_df['supervised'] = supervised_model sepsis_metrics = pd.concat([sepsis_metrics, new_df]) sepsis_metrics = sepsis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') sepsis_metrics['healthy_used'] = sepsis_metrics['healthy_used'].round(1) sepsis_metrics # In[35]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', )) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[36]: plot = ggplot(sepsis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## TB Batch effect corrected # In[37]: in_files = glob.glob('../../results/subset_label.tb*be_corrected.tsv') print(in_files[:5]) # In[38]: tuberculosis_metrics = pd.DataFrame() for path in in_files: new_df = pd.read_csv(path, sep='\t') model_info = path.strip('.tsv').split('tb.')[-1] model_info = model_info.split('.') supervised_model = model_info[0] new_df['supervised'] = supervised_model tuberculosis_metrics = pd.concat([tuberculosis_metrics, new_df]) tuberculosis_metrics = tuberculosis_metrics.rename({'fraction of healthy used': 'healthy_used'}, axis='columns') tuberculosis_metrics['healthy_used'] = tuberculosis_metrics['healthy_used'].round(1) tuberculosis_metrics # In[39]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy')) plot += geom_boxplot() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # In[40]: plot = ggplot(tuberculosis_metrics, aes(x='factor(healthy_used)', y='accuracy', fill='supervised')) plot += geom_violin() plot += ggtitle('Effect of subsetting healthy data on prediction accuracy') print(plot) # ## Better Metrics, Same Label Distribution in Train and Val sets # In[11]: in_files = glob.glob('../../results/keep_ratios.sepsis*be_corrected.tsv') print(in_files[:5]) # In[12]: sepsis_metrics =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Authors: <NAME> UNESCO-IHE 2016 Contact: <EMAIL> Repository: https://github.com/wateraccounting/wa Module: Sheets/sheet1 """ import os import pandas as pd import time import xml.etree.ElementTree as ET import subprocess def create_sheet3(basin, period, units, data, output, template=False): """ Keyword arguments: basin -- The name of the basin period -- The period of analysis units -- A list with the units of the data: [<water consumption>, <land productivity>, <water productivity>] data -- A csv file that contains the water data. The csv file has to follow an specific format. A sample csv is available in the link: https://github.com/wateraccounting/wa/tree/master/Sheets/csv output -- A list (length 2) with the output paths of the jpg files for the two parts of the sheet template -- A list (length 2) of the svg files of the sheet. Use False (default) to use the standard svg files. Example: from wa.Sheets import * create_sheet3(basin='Helmand', period='2007-2011', units=['km3/yr', 'kg/ha/yr', 'kg/m3'], data=[r'C:\Sheets\csv\Sample_sheet3_part1.csv', r'C:\Sheets\csv\Sample_sheet3_part2.csv'], output=[r'C:\Sheets\sheet_3_part1.jpg', r'C:\Sheets\sheet_3_part2.jpg']) """ # Read table df1 = pd.read_csv(data[0], sep=';') df2 = pd.read_csv(data[1], sep=';') # Data frames df1c = df1.loc[df1.USE == "CROP"] df1n = df1.loc[df1.USE == "NON-CROP"] df2c = df2.loc[df2.USE == "CROP"] df2n = df2.loc[df2.USE == "NON-CROP"] # Read csv file part 1 crop_r01c01 = float(df1c.loc[(df1c.TYPE == "Cereals") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c01 = float(df1c.loc[(df1c.TYPE == "Cereals") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c01 = float(df1c.loc[(df1c.TYPE == "Cereals") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c01 = crop_r02c01 + crop_r03c01 crop_r01c02 = float(df1c.loc[(df1c.SUBTYPE == "Root/tuber crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c02 = float(df1c.loc[(df1c.SUBTYPE == "Root/tuber crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c02 = float(df1c.loc[(df1c.SUBTYPE == "Root/tuber crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c02 = crop_r02c02 + crop_r03c02 crop_r01c03 = float(df1c.loc[(df1c.SUBTYPE == "Leguminous crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c03 = float(df1c.loc[(df1c.SUBTYPE == "Leguminous crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c03 = float(df1c.loc[(df1c.SUBTYPE == "Leguminous crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c03 = crop_r02c03 + crop_r03c03 crop_r01c04 = float(df1c.loc[(df1c.SUBTYPE == "Sugar crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c04 = float(df1c.loc[(df1c.SUBTYPE == "Sugar crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c04 = float(df1c.loc[(df1c.SUBTYPE == "Sugar crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c04 = crop_r02c04 + crop_r03c04 crop_r01c05 = float(df1c.loc[(df1c.TYPE == "Non-cereals") & (df1c.SUBCLASS == "ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r02c05 = float(df1c.loc[(df1c.TYPE == "Non-cereals") & (df1c.SUBCLASS == "ET rainfall") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r03c05 = float(df1c.loc[(df1c.TYPE == "Non-cereals") & (df1c.SUBCLASS == "Incremental ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r04c05 = crop_r02c05 + crop_r03c05 crop_r01c06 = float(df1c.loc[(df1c.SUBTYPE == "Vegetables & melons") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c06 = float(df1c.loc[(df1c.SUBTYPE == "Vegetables & melons") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c06 = float(df1c.loc[(df1c.SUBTYPE == "Vegetables & melons") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c06 = crop_r02c06 + crop_r03c06 crop_r01c07 = float(df1c.loc[(df1c.SUBTYPE == "Fruits & nuts") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c07 = float(df1c.loc[(df1c.SUBTYPE == "Fruits & nuts") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c07 = float(df1c.loc[(df1c.SUBTYPE == "Fruits & nuts") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c07 = crop_r02c07 + crop_r03c07 crop_r01c08 = float(df1c.loc[(df1c.TYPE == "Fruit & vegetables") & (df1c.SUBCLASS == "ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r02c08 = float(df1c.loc[(df1c.TYPE == "Fruit & vegetables") & (df1c.SUBCLASS == "ET rainfall") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r03c08 = float(df1c.loc[(df1c.TYPE == "Fruit & vegetables") & (df1c.SUBCLASS == "Incremental ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r04c08 = crop_r02c08 + crop_r03c08 crop_r01c09 = float(df1c.loc[(df1c.TYPE == "Oilseeds") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c09 = float(df1c.loc[(df1c.TYPE == "Oilseeds") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c09 = float(df1c.loc[(df1c.TYPE == "Oilseeds") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c09 = crop_r02c09 + crop_r03c09 crop_r01c10 = float(df1c.loc[(df1c.TYPE == "Feed crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c10 = float(df1c.loc[(df1c.TYPE == "Feed crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c10 = float(df1c.loc[(df1c.TYPE == "Feed crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c10 = crop_r02c10 + crop_r03c10 crop_r01c11 = float(df1c.loc[(df1c.TYPE == "Beverage crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c11 = float(df1c.loc[(df1c.TYPE == "Beverage crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c11 = float(df1c.loc[(df1c.TYPE == "Beverage crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c11 = crop_r02c11 + crop_r03c11 crop_r01c12 = float(df1c.loc[(df1c.TYPE == "Other crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c12 = float(df1c.loc[(df1c.TYPE == "Other crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c12 = float(df1c.loc[(df1c.TYPE == "Other crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c12 = crop_r02c12 + crop_r03c12 noncrop_r01c01 = float(df1n.loc[(df1n.TYPE == "Fish (Aquaculture)") & (df1n.SUBCLASS == "ET")].WATER_CONSUMPTION) noncrop_r02c01 = float(df1n.loc[(df1n.TYPE == "Fish (Aquaculture)") & (df1n.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) noncrop_r03c01 = float(df1n.loc[(df1n.TYPE == "Fish (Aquaculture)") & (df1n.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) noncrop_r04c01 = noncrop_r02c01 + noncrop_r03c01 noncrop_r01c02 = float(df1n.loc[(df1n.TYPE == "Timber") & (df1n.SUBCLASS == "ET")].WATER_CONSUMPTION) noncrop_r02c02 = float(df1n.loc[(df1n.TYPE == "Timber") & (df1n.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) noncrop_r03c02 = float(df1n.loc[(df1n.TYPE == "Timber") & (df1n.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) noncrop_r04c02 = noncrop_r02c02 + noncrop_r03c02 crop_r01 = pd.np.nansum([crop_r01c01, crop_r01c02, crop_r01c03, crop_r01c04, crop_r01c05, crop_r01c06, crop_r01c07, crop_r01c08, crop_r01c09, crop_r01c10, crop_r01c11, crop_r01c12]) crop_r02 = pd.np.nansum([crop_r02c01, crop_r02c02, crop_r02c03, crop_r02c04, crop_r02c05, crop_r02c06, crop_r02c07, crop_r02c08, crop_r02c09, crop_r02c10, crop_r02c11, crop_r02c12]) crop_r03 = pd.np.nansum([crop_r03c01, crop_r03c02, crop_r03c03, crop_r03c04, crop_r03c05, crop_r03c06, crop_r03c07, crop_r03c08, crop_r03c09, crop_r03c10, crop_r03c11, crop_r03c12]) crop_r04 = crop_r02 + crop_r03 noncrop_r01 = pd.np.nansum([noncrop_r01c01, noncrop_r01c02]) noncrop_r02 = pd.np.nansum([noncrop_r02c01, noncrop_r02c02]) noncrop_r03 = pd.np.nansum([noncrop_r03c01, noncrop_r03c02]) noncrop_r04 = noncrop_r02 + noncrop_r03 ag_water_cons = crop_r01 + crop_r04 + noncrop_r01 + noncrop_r04 # Read csv file part 2 # Land productivity lp_r01c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r02c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r03c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r04c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r01c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r02c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r03c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r04c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r01c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) # Water productivity wp_r01c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r02c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r03c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r04c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r01c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r02c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r03c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r04c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r01c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) # Calculations & modify svgs if not template: path = os.path.dirname(os.path.abspath(__file__)) svg_template_path_1 = os.path.join(path, 'svg', 'sheet_3_part1.svg') svg_template_path_2 = os.path.join(path, 'svg', 'sheet_3_part2.svg') else: svg_template_path_1 = os.path.abspath(template[0]) svg_template_path_2 = os.path.abspath(template[1]) tree1 = ET.parse(svg_template_path_1) tree2 = ET.parse(svg_template_path_2) #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Titles xml_txt_box = tree1.findall('''.//*[@id='basin']''')[0] xml_txt_box.getchildren()[0].text = 'Basin: ' + basin xml_txt_box = tree1.findall('''.//*[@id='period']''')[0] xml_txt_box.getchildren()[0].text = 'Period: ' + period xml_txt_box = tree1.findall('''.//*[@id='units']''')[0] xml_txt_box.getchildren()[0].text = 'Part 1: Agricultural water consumption (' + units[0] + ')' xml_txt_box = tree2.findall('''.//*[@id='basin2']''')[0] xml_txt_box.getchildren()[0].text = 'Basin: ' + basin xml_txt_box = tree2.findall('''.//*[@id='period2']''')[0] xml_txt_box.getchildren()[0].text = 'Period: ' + period xml_txt_box = tree2.findall('''.//*[@id='units2']''')[0] xml_txt_box.getchildren()[0].text = 'Part 2: Land productivity (' + units[1] + ') and water productivity (' + units[2] + ')' # Part 1 xml_txt_box = tree1.findall('''.//*[@id='crop_r01c01']''')[0] if not pd.isnull(crop_r01c01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c02']''')[0] if not pd.isnull(crop_r01c02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c03']''')[0] if not pd.isnull(crop_r01c03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c04']''')[0] if not pd.isnull(crop_r01c04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c05']''')[0] if not pd.isnull(crop_r01c05): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c06']''')[0] if not pd.isnull(crop_r01c06): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c07']''')[0] if not pd.isnull(crop_r01c07): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c08']''')[0] if not pd.isnull(crop_r01c08): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c09']''')[0] if not pd.isnull(crop_r01c09): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c10']''')[0] if not pd.isnull(crop_r01c10): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c11']''')[0] if not pd.isnull(crop_r01c11): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c12']''')[0] if not pd.isnull(crop_r01c12): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01']''')[0] if not pd.isnull(crop_r01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c01']''')[0] if not pd.isnull(crop_r02c01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c02']''')[0] if not pd.isnull(crop_r02c02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c03']''')[0] if not pd.isnull(crop_r02c03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c04']''')[0] if not pd.isnull(crop_r02c04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c05']''')[0] if not pd.isnull(crop_r02c05): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c06']''')[0] if not pd.isnull(crop_r02c06): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c07']''')[0] if not pd.isnull(crop_r02c07): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c08']''')[0] if not pd.isnull(crop_r02c08): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c09']''')[0] if not pd.isnull(crop_r02c09): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c10']''')[0] if not pd.isnull(crop_r02c10): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c11']''')[0] if not pd.isnull(crop_r02c11): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c12']''')[0] if not pd.isnull(crop_r02c12): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02']''')[0] if not pd.isnull(crop_r02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c01']''')[0] if not pd.isnull(crop_r03c01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c02']''')[0] if not pd.isnull(crop_r03c02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c03']''')[0] if not pd.isnull(crop_r03c03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c04']''')[0] if not pd.isnull(crop_r03c04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c05']''')[0] if not pd.isnull(crop_r03c05): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c06']''')[0] if not
pd.isnull(crop_r03c06)
pandas.isnull
# -*- coding: utf-8 -*- """ Authors: <NAME> UNESCO-IHE 2016 Contact: <EMAIL> Repository: https://github.com/wateraccounting/wa Module: Sheets/sheet1 """ import os import pandas as pd import time import xml.etree.ElementTree as ET import subprocess def create_sheet3(basin, period, units, data, output, template=False): """ Keyword arguments: basin -- The name of the basin period -- The period of analysis units -- A list with the units of the data: [<water consumption>, <land productivity>, <water productivity>] data -- A csv file that contains the water data. The csv file has to follow an specific format. A sample csv is available in the link: https://github.com/wateraccounting/wa/tree/master/Sheets/csv output -- A list (length 2) with the output paths of the jpg files for the two parts of the sheet template -- A list (length 2) of the svg files of the sheet. Use False (default) to use the standard svg files. Example: from wa.Sheets import * create_sheet3(basin='Helmand', period='2007-2011', units=['km3/yr', 'kg/ha/yr', 'kg/m3'], data=[r'C:\Sheets\csv\Sample_sheet3_part1.csv', r'C:\Sheets\csv\Sample_sheet3_part2.csv'], output=[r'C:\Sheets\sheet_3_part1.jpg', r'C:\Sheets\sheet_3_part2.jpg']) """ # Read table df1 = pd.read_csv(data[0], sep=';') df2 = pd.read_csv(data[1], sep=';') # Data frames df1c = df1.loc[df1.USE == "CROP"] df1n = df1.loc[df1.USE == "NON-CROP"] df2c = df2.loc[df2.USE == "CROP"] df2n = df2.loc[df2.USE == "NON-CROP"] # Read csv file part 1 crop_r01c01 = float(df1c.loc[(df1c.TYPE == "Cereals") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c01 = float(df1c.loc[(df1c.TYPE == "Cereals") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c01 = float(df1c.loc[(df1c.TYPE == "Cereals") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c01 = crop_r02c01 + crop_r03c01 crop_r01c02 = float(df1c.loc[(df1c.SUBTYPE == "Root/tuber crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c02 = float(df1c.loc[(df1c.SUBTYPE == "Root/tuber crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c02 = float(df1c.loc[(df1c.SUBTYPE == "Root/tuber crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c02 = crop_r02c02 + crop_r03c02 crop_r01c03 = float(df1c.loc[(df1c.SUBTYPE == "Leguminous crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c03 = float(df1c.loc[(df1c.SUBTYPE == "Leguminous crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c03 = float(df1c.loc[(df1c.SUBTYPE == "Leguminous crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c03 = crop_r02c03 + crop_r03c03 crop_r01c04 = float(df1c.loc[(df1c.SUBTYPE == "Sugar crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c04 = float(df1c.loc[(df1c.SUBTYPE == "Sugar crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c04 = float(df1c.loc[(df1c.SUBTYPE == "Sugar crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c04 = crop_r02c04 + crop_r03c04 crop_r01c05 = float(df1c.loc[(df1c.TYPE == "Non-cereals") & (df1c.SUBCLASS == "ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r02c05 = float(df1c.loc[(df1c.TYPE == "Non-cereals") & (df1c.SUBCLASS == "ET rainfall") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r03c05 = float(df1c.loc[(df1c.TYPE == "Non-cereals") & (df1c.SUBCLASS == "Incremental ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r04c05 = crop_r02c05 + crop_r03c05 crop_r01c06 = float(df1c.loc[(df1c.SUBTYPE == "Vegetables & melons") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c06 = float(df1c.loc[(df1c.SUBTYPE == "Vegetables & melons") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c06 = float(df1c.loc[(df1c.SUBTYPE == "Vegetables & melons") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c06 = crop_r02c06 + crop_r03c06 crop_r01c07 = float(df1c.loc[(df1c.SUBTYPE == "Fruits & nuts") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c07 = float(df1c.loc[(df1c.SUBTYPE == "Fruits & nuts") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c07 = float(df1c.loc[(df1c.SUBTYPE == "Fruits & nuts") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c07 = crop_r02c07 + crop_r03c07 crop_r01c08 = float(df1c.loc[(df1c.TYPE == "Fruit & vegetables") & (df1c.SUBCLASS == "ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r02c08 = float(df1c.loc[(df1c.TYPE == "Fruit & vegetables") & (df1c.SUBCLASS == "ET rainfall") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r03c08 = float(df1c.loc[(df1c.TYPE == "Fruit & vegetables") & (df1c.SUBCLASS == "Incremental ET") & (df1c.SUBTYPE == "Merged")].WATER_CONSUMPTION) crop_r04c08 = crop_r02c08 + crop_r03c08 crop_r01c09 = float(df1c.loc[(df1c.TYPE == "Oilseeds") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c09 = float(df1c.loc[(df1c.TYPE == "Oilseeds") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c09 = float(df1c.loc[(df1c.TYPE == "Oilseeds") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c09 = crop_r02c09 + crop_r03c09 crop_r01c10 = float(df1c.loc[(df1c.TYPE == "Feed crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c10 = float(df1c.loc[(df1c.TYPE == "Feed crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c10 = float(df1c.loc[(df1c.TYPE == "Feed crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c10 = crop_r02c10 + crop_r03c10 crop_r01c11 = float(df1c.loc[(df1c.TYPE == "Beverage crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c11 = float(df1c.loc[(df1c.TYPE == "Beverage crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c11 = float(df1c.loc[(df1c.TYPE == "Beverage crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c11 = crop_r02c11 + crop_r03c11 crop_r01c12 = float(df1c.loc[(df1c.TYPE == "Other crops") & (df1c.SUBCLASS == "ET")].WATER_CONSUMPTION) crop_r02c12 = float(df1c.loc[(df1c.TYPE == "Other crops") & (df1c.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) crop_r03c12 = float(df1c.loc[(df1c.TYPE == "Other crops") & (df1c.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) crop_r04c12 = crop_r02c12 + crop_r03c12 noncrop_r01c01 = float(df1n.loc[(df1n.TYPE == "Fish (Aquaculture)") & (df1n.SUBCLASS == "ET")].WATER_CONSUMPTION) noncrop_r02c01 = float(df1n.loc[(df1n.TYPE == "Fish (Aquaculture)") & (df1n.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) noncrop_r03c01 = float(df1n.loc[(df1n.TYPE == "Fish (Aquaculture)") & (df1n.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) noncrop_r04c01 = noncrop_r02c01 + noncrop_r03c01 noncrop_r01c02 = float(df1n.loc[(df1n.TYPE == "Timber") & (df1n.SUBCLASS == "ET")].WATER_CONSUMPTION) noncrop_r02c02 = float(df1n.loc[(df1n.TYPE == "Timber") & (df1n.SUBCLASS == "ET rainfall")].WATER_CONSUMPTION) noncrop_r03c02 = float(df1n.loc[(df1n.TYPE == "Timber") & (df1n.SUBCLASS == "Incremental ET")].WATER_CONSUMPTION) noncrop_r04c02 = noncrop_r02c02 + noncrop_r03c02 crop_r01 = pd.np.nansum([crop_r01c01, crop_r01c02, crop_r01c03, crop_r01c04, crop_r01c05, crop_r01c06, crop_r01c07, crop_r01c08, crop_r01c09, crop_r01c10, crop_r01c11, crop_r01c12]) crop_r02 = pd.np.nansum([crop_r02c01, crop_r02c02, crop_r02c03, crop_r02c04, crop_r02c05, crop_r02c06, crop_r02c07, crop_r02c08, crop_r02c09, crop_r02c10, crop_r02c11, crop_r02c12]) crop_r03 = pd.np.nansum([crop_r03c01, crop_r03c02, crop_r03c03, crop_r03c04, crop_r03c05, crop_r03c06, crop_r03c07, crop_r03c08, crop_r03c09, crop_r03c10, crop_r03c11, crop_r03c12]) crop_r04 = crop_r02 + crop_r03 noncrop_r01 = pd.np.nansum([noncrop_r01c01, noncrop_r01c02]) noncrop_r02 = pd.np.nansum([noncrop_r02c01, noncrop_r02c02]) noncrop_r03 = pd.np.nansum([noncrop_r03c01, noncrop_r03c02]) noncrop_r04 = noncrop_r02 + noncrop_r03 ag_water_cons = crop_r01 + crop_r04 + noncrop_r01 + noncrop_r04 # Read csv file part 2 # Land productivity lp_r01c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r02c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r03c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r04c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r01c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r02c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r03c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r04c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].LAND_PRODUCTIVITY) lp_r01c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r01c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r02c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r03c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r04c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) lp_r05c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield")].LAND_PRODUCTIVITY) lp_r06c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield rainfall")].LAND_PRODUCTIVITY) lp_r07c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Incremental yield")].LAND_PRODUCTIVITY) lp_r08c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Total yield")].LAND_PRODUCTIVITY) # Water productivity wp_r01c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c01 = float(df2c.loc[(df2c.TYPE == "Cereals") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c02 = float(df2c.loc[(df2c.SUBTYPE == "Root/tuber crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c03 = float(df2c.loc[(df2c.SUBTYPE == "Leguminous crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c04 = float(df2c.loc[(df2c.SUBTYPE == "Sugar crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r02c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r03c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r04c05 = float(df2c.loc[(df2c.TYPE == "Non-cereals") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r01c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c06 = float(df2c.loc[(df2c.SUBTYPE == "Vegetables & melons") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c07 = float(df2c.loc[(df2c.SUBTYPE == "Fruits & nuts") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r02c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Yield rainfall") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r03c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Incremental yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r04c08 = float(df2c.loc[(df2c.TYPE == "Fruit & vegetables") & (df2c.SUBCLASS == "Total yield") & (df2c.SUBTYPE == "Merged")].WATER_PRODUCTIVITY) wp_r01c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c09 = float(df2c.loc[(df2c.TYPE == "Oilseeds") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c10 = float(df2c.loc[(df2c.TYPE == "Feed crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c11 = float(df2c.loc[(df2c.TYPE == "Beverage crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r01c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r02c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r03c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r04c12 = float(df2c.loc[(df2c.TYPE == "Other crops") & (df2c.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c01 = float(df2n.loc[(df2n.SUBTYPE == "Meat") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c02 = float(df2n.loc[(df2n.SUBTYPE == "Milk") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c03 = float(df2n.loc[(df2n.TYPE == "Fish (Aquaculture)") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) wp_r05c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield")].WATER_PRODUCTIVITY) wp_r06c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Yield rainfall")].WATER_PRODUCTIVITY) wp_r07c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Incremental yield")].WATER_PRODUCTIVITY) wp_r08c04 = float(df2n.loc[(df2n.TYPE == "Timber") & (df2n.SUBCLASS == "Total yield")].WATER_PRODUCTIVITY) # Calculations & modify svgs if not template: path = os.path.dirname(os.path.abspath(__file__)) svg_template_path_1 = os.path.join(path, 'svg', 'sheet_3_part1.svg') svg_template_path_2 = os.path.join(path, 'svg', 'sheet_3_part2.svg') else: svg_template_path_1 = os.path.abspath(template[0]) svg_template_path_2 = os.path.abspath(template[1]) tree1 = ET.parse(svg_template_path_1) tree2 = ET.parse(svg_template_path_2) #+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # Titles xml_txt_box = tree1.findall('''.//*[@id='basin']''')[0] xml_txt_box.getchildren()[0].text = 'Basin: ' + basin xml_txt_box = tree1.findall('''.//*[@id='period']''')[0] xml_txt_box.getchildren()[0].text = 'Period: ' + period xml_txt_box = tree1.findall('''.//*[@id='units']''')[0] xml_txt_box.getchildren()[0].text = 'Part 1: Agricultural water consumption (' + units[0] + ')' xml_txt_box = tree2.findall('''.//*[@id='basin2']''')[0] xml_txt_box.getchildren()[0].text = 'Basin: ' + basin xml_txt_box = tree2.findall('''.//*[@id='period2']''')[0] xml_txt_box.getchildren()[0].text = 'Period: ' + period xml_txt_box = tree2.findall('''.//*[@id='units2']''')[0] xml_txt_box.getchildren()[0].text = 'Part 2: Land productivity (' + units[1] + ') and water productivity (' + units[2] + ')' # Part 1 xml_txt_box = tree1.findall('''.//*[@id='crop_r01c01']''')[0] if not pd.isnull(crop_r01c01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c02']''')[0] if not pd.isnull(crop_r01c02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c03']''')[0] if not pd.isnull(crop_r01c03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c04']''')[0] if not pd.isnull(crop_r01c04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c05']''')[0] if not pd.isnull(crop_r01c05): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c06']''')[0] if not pd.isnull(crop_r01c06): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c07']''')[0] if not pd.isnull(crop_r01c07): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c08']''')[0] if not pd.isnull(crop_r01c08): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c09']''')[0] if not pd.isnull(crop_r01c09): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c10']''')[0] if not pd.isnull(crop_r01c10): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c11']''')[0] if not pd.isnull(crop_r01c11): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01c12']''')[0] if not pd.isnull(crop_r01c12): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r01']''')[0] if not pd.isnull(crop_r01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c01']''')[0] if not pd.isnull(crop_r02c01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c02']''')[0] if not pd.isnull(crop_r02c02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c03']''')[0] if not pd.isnull(crop_r02c03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c04']''')[0] if not pd.isnull(crop_r02c04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c05']''')[0] if not pd.isnull(crop_r02c05): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c06']''')[0] if not pd.isnull(crop_r02c06): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c07']''')[0] if not pd.isnull(crop_r02c07): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c08']''')[0] if not pd.isnull(crop_r02c08): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c09']''')[0] if not pd.isnull(crop_r02c09): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c10']''')[0] if not pd.isnull(crop_r02c10): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c11']''')[0] if not pd.isnull(crop_r02c11): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02c12']''')[0] if not pd.isnull(crop_r02c12): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r02']''')[0] if not pd.isnull(crop_r02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c01']''')[0] if not pd.isnull(crop_r03c01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c02']''')[0] if not pd.isnull(crop_r03c02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c03']''')[0] if not pd.isnull(crop_r03c03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c04']''')[0] if not pd.isnull(crop_r03c04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c05']''')[0] if not pd.isnull(crop_r03c05): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c06']''')[0] if not pd.isnull(crop_r03c06): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c07']''')[0] if not pd.isnull(crop_r03c07): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c08']''')[0] if not pd.isnull(crop_r03c08): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c09']''')[0] if not pd.isnull(crop_r03c09): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c10']''')[0] if not pd.isnull(crop_r03c10): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c11']''')[0] if not pd.isnull(crop_r03c11): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03c12']''')[0] if not pd.isnull(crop_r03c12): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r03']''')[0] if not pd.isnull(crop_r03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c01']''')[0] if not pd.isnull(crop_r04c01): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c02']''')[0] if not pd.isnull(crop_r04c02): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c03']''')[0] if not pd.isnull(crop_r04c03): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c04']''')[0] if not pd.isnull(crop_r04c04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c05']''')[0] if not pd.isnull(crop_r04c05): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c06']''')[0] if not pd.isnull(crop_r04c06): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c07']''')[0] if not pd.isnull(crop_r04c07): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c08']''')[0] if not pd.isnull(crop_r04c08): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c09']''')[0] if not pd.isnull(crop_r04c09): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c10']''')[0] if not pd.isnull(crop_r04c10): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c11']''')[0] if not pd.isnull(crop_r04c11): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04c12']''')[0] if not pd.isnull(crop_r04c12): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='crop_r04']''')[0] if not pd.isnull(crop_r04): xml_txt_box.getchildren()[0].text = '%.2f' % crop_r04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r01c01']''')[0] if not pd.isnull(noncrop_r01c01): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r01c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r01c02']''')[0] if not pd.isnull(noncrop_r01c02): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r01c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r01']''')[0] if not pd.isnull(noncrop_r01) and noncrop_r01 > 0.001: xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r02c01']''')[0] if not pd.isnull(noncrop_r02c01): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r02c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r02c02']''')[0] if not pd.isnull(noncrop_r02c02): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r02c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r02']''')[0] if not pd.isnull(noncrop_r02) and noncrop_r02 > 0.001: xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r03c01']''')[0] if not pd.isnull(noncrop_r03c01): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r03c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r03c02']''')[0] if not pd.isnull(noncrop_r03c02): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r03c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r03']''')[0] if not pd.isnull(noncrop_r03) and noncrop_r03 > 0.001: xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r04c01']''')[0] if not pd.isnull(noncrop_r04c01): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r04c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r04c02']''')[0] if not pd.isnull(noncrop_r04c02): xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r04c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree1.findall('''.//*[@id='noncrop_r04']''')[0] if not pd.isnull(noncrop_r04) and noncrop_r04 > 0.001: xml_txt_box.getchildren()[0].text = '%.2f' % noncrop_r04 else: xml_txt_box.getchildren()[0].text = '-' # Part 2 xml_txt_box = tree1.findall('''.//*[@id='ag_water_cons']''')[0] if not pd.isnull(ag_water_cons): xml_txt_box.getchildren()[0].text = '%.2f' % ag_water_cons else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c01']''')[0] if not pd.isnull(lp_r01c01): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c02']''')[0] if not pd.isnull(lp_r01c02): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c03']''')[0] if not pd.isnull(lp_r01c03): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c04']''')[0] if not pd.isnull(lp_r01c04): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c05']''')[0] if not pd.isnull(lp_r01c05): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c06']''')[0] if not pd.isnull(lp_r01c06): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c07']''')[0] if not pd.isnull(lp_r01c07): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c08']''')[0] if not pd.isnull(lp_r01c08): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c09']''')[0] if not pd.isnull(lp_r01c09): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c10']''')[0] if not pd.isnull(lp_r01c10): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c11']''')[0] if not pd.isnull(lp_r01c11): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r01c12']''')[0] if not pd.isnull(lp_r01c12): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r01c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c01']''')[0] if not pd.isnull(lp_r02c01): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c02']''')[0] if not pd.isnull(lp_r02c02): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c03']''')[0] if not pd.isnull(lp_r02c03): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c04']''')[0] if not pd.isnull(lp_r02c04): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c05']''')[0] if not pd.isnull(lp_r02c05): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c06']''')[0] if not pd.isnull(lp_r02c06): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c07']''')[0] if not pd.isnull(lp_r02c07): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c08']''')[0] if not pd.isnull(lp_r02c08): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c09']''')[0] if not pd.isnull(lp_r02c09): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c10']''')[0] if not pd.isnull(lp_r02c10): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c11']''')[0] if not pd.isnull(lp_r02c11): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r02c12']''')[0] if not pd.isnull(lp_r02c12): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r02c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c01']''')[0] if not pd.isnull(lp_r03c01): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c02']''')[0] if not pd.isnull(lp_r03c02): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c03']''')[0] if not pd.isnull(lp_r03c03): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c04']''')[0] if not pd.isnull(lp_r03c04): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c05']''')[0] if not pd.isnull(lp_r03c05): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c06']''')[0] if not pd.isnull(lp_r03c06): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c07']''')[0] if not pd.isnull(lp_r03c07): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c08']''')[0] if not pd.isnull(lp_r03c08): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c09']''')[0] if not pd.isnull(lp_r03c09): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c10']''')[0] if not pd.isnull(lp_r03c10): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c11']''')[0] if not pd.isnull(lp_r03c11): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r03c12']''')[0] if not pd.isnull(lp_r03c12): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r03c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c01']''')[0] if not pd.isnull(lp_r04c01): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c02']''')[0] if not pd.isnull(lp_r04c02): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c03']''')[0] if not pd.isnull(lp_r04c03): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c04']''')[0] if not pd.isnull(lp_r04c04): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c05']''')[0] if not pd.isnull(lp_r04c05): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c06']''')[0] if not pd.isnull(lp_r04c06): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c07']''')[0] if not pd.isnull(lp_r04c07): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c08']''')[0] if not pd.isnull(lp_r04c08): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c09']''')[0] if not pd.isnull(lp_r04c09): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c10']''')[0] if not pd.isnull(lp_r04c10): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c11']''')[0] if not pd.isnull(lp_r04c11): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='lp_r04c12']''')[0] if not pd.isnull(lp_r04c12): xml_txt_box.getchildren()[0].text = '%.0f' % lp_r04c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c01']''')[0] if not pd.isnull(wp_r01c01): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c02']''')[0] if not pd.isnull(wp_r01c02): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c03']''')[0] if not pd.isnull(wp_r01c03): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c04']''')[0] if not pd.isnull(wp_r01c04): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c05']''')[0] if not pd.isnull(wp_r01c05): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c06']''')[0] if not pd.isnull(wp_r01c06): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c07']''')[0] if not pd.isnull(wp_r01c07): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c08']''')[0] if not pd.isnull(wp_r01c08): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c09']''')[0] if not pd.isnull(wp_r01c09): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c10']''')[0] if not pd.isnull(wp_r01c10): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c11']''')[0] if not pd.isnull(wp_r01c11): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r01c12']''')[0] if not pd.isnull(wp_r01c12): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r01c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c01']''')[0] if not pd.isnull(wp_r02c01): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c02']''')[0] if not pd.isnull(wp_r02c02): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c03']''')[0] if not pd.isnull(wp_r02c03): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c03 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c04']''')[0] if not pd.isnull(wp_r02c04): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c04 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c05']''')[0] if not pd.isnull(wp_r02c05): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c05 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c06']''')[0] if not pd.isnull(wp_r02c06): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c06 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c07']''')[0] if not pd.isnull(wp_r02c07): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c07 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c08']''')[0] if not pd.isnull(wp_r02c08): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c08 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c09']''')[0] if not pd.isnull(wp_r02c09): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c09 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c10']''')[0] if not pd.isnull(wp_r02c10): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c10 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c11']''')[0] if not pd.isnull(wp_r02c11): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c11 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r02c12']''')[0] if not pd.isnull(wp_r02c12): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r02c12 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r03c01']''')[0] if not pd.isnull(wp_r03c01): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r03c01 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r03c02']''')[0] if not pd.isnull(wp_r03c02): xml_txt_box.getchildren()[0].text = '%.2f' % wp_r03c02 else: xml_txt_box.getchildren()[0].text = '-' xml_txt_box = tree2.findall('''.//*[@id='wp_r03c03']''')[0] if not
pd.isnull(wp_r03c03)
pandas.isnull
# To add a new cell, type '#%%' # To add a new markdown cell, type '#%% [markdown]' #%% Change working directory from the workspace root to the ipynb file location. Turn this addition off with the DataScience.changeDirOnImportExport setting # ms-python.python added import os try: os.chdir(os.path.join(os.getcwd(), 'eddy_src/q_learning_stock')) print(os.getcwd()) except: pass import numpy as np import pandas as pd import indicators import util import config import pred_model import matplotlib.pyplot as plt import datetime import sys from bokeh.io import curdoc, output_notebook, show from bokeh.layouts import row, column, gridplot from bokeh.models import ColumnDataSource, RangeTool, BoxAnnotation, HoverTool from bokeh.models.widgets import Slider, TextInput from bokeh.plotting import figure, output_file from bokeh.core.properties import value #%% # Stock formed indexes vs actual index def plot_passive_daily_comparisons(df_list: list, stock:str): """**First dataframe must be the Portfolio with switching.** """ temp_df1 = df_list[0].iloc[0:0] # temp_df1.drop(temp_df1.columns[0],axis=1,inplace=True) temp_df2 = df_list[1].iloc[0:0] # temp_df2.drop(temp_df2.columns[0],axis=1,inplace=True) temp_date_range = df_list[0]['Date'].tolist() for date in temp_date_range: df1 = df_list[0][df_list[0]['Date'] == date] # df1.drop(df1.columns[0],axis=1,inplace=True) # print(df1) # sys.exit() df2 = df_list[1][df_list[1]['Date'] == date] if not (df1.empty or df2.empty): temp_df1.append(df1, ignore_index=True) temp_df2.append(df2, ignore_index=True) # print(temp_df1) # sys.exit() p = figure(title="Daily price Comparison", x_axis_type='datetime', background_fill_color="#fafafa") p.add_tools(HoverTool( tooltips=[ ( 'Date', '@x{%F}'), ( 'Price', '$@y{%0.2f}'), # use @{ } for field names with spaces ], formatters={ 'x': 'datetime', # use 'datetime' formatter for 'date' field, 'y' : 'printf' }, mode='mouse' )) p.line(temp_df1['Date'].tolist(), temp_df1['Net'].values.tolist(), legend="Rebalanced stock portfolio", line_color="black") p.line(temp_df2['Date'].tolist(), temp_df2[stock].values.tolist(), legend=f"{stock} index") p.legend.location = "top_left" show(p) stock_list = ['^BVSP', '^TWII', '^IXIC'] for symbol in stock_list: daily_df = pd.read_csv(f'data/algo/{symbol}/daily_nav.csv', parse_dates=['Date']) passive_daily_df = pd.read_csv('data/algo/index/passive_daily_nav.csv', parse_dates=['Date']) df_list = [daily_df, passive_daily_df] plot_passive_daily_comparisons(df_list, symbol) #%% df1 =
pd.read_csv('data/goldman/GGSIX.csv')
pandas.read_csv
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sun Jan 20 10:24:34 2019 @author: labadmin """ # -*- coding: utf-8 -*- """ Created on Wed Jan 02 21:05:32 2019 @author: Hassan """ import pandas as pd from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.decomposition import PCA from sklearn.preprocessing import StandardScaler from sklearn.metrics import classification_report, confusion_matrix from sklearn.model_selection import GridSearchCV from sklearn.discriminant_analysis import LinearDiscriminantAnalysis as LDA from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis as QDA from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import AdaBoostClassifier from sklearn.ensemble import RandomForestClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import GradientBoostingClassifier as GBC from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import BorderlineSMOTE from imblearn.over_sampling import SMOTENC data_ben1=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending1\\dataset1.csv",skiprows=4) data_ben2=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending1\\dataset2.csv",skiprows=4) data_ben3=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending1\\dataset3.csv",skiprows=4) data_ben4=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending1\\dataset4.csv",skiprows=4) data_ben5=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending1\\dataset5.csv",skiprows=4) data_ben6=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending1\\dataset6.csv",skiprows=4) data_ben7=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending1\\dataset7.csv",skiprows=4) frames_ben1 = [data_ben1,data_ben2,data_ben3,data_ben4,data_ben5,data_ben6,data_ben7] result_ben1 = pd.concat(frames_ben1) result_ben1.index=range(3360) df_ben1 = pd.DataFrame({'label': [1]},index=range(0,3360)) dat_ben1=pd.concat([result_ben1,df_ben1],axis=1) #------------------------------------------------------------------------------------------------- data__ben1=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending2\\dataset1.csv",skiprows=4) data__ben2=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending2\\dataset2.csv",skiprows=4) data__ben3=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending2\\dataset3.csv",skiprows=4) data__ben4=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending2\\dataset4.csv",skiprows=4) data__ben4=data__ben4['# Columns: time'].str.split(expand=True) data__ben4.columns=['# Columns: time','avg_rss12','var_rss12','avg_rss13','var_rss13','avg_rss23','var_rss23'] data__ben5=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending2\\dataset5.csv",skiprows=4) data__ben6=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\bending2\\dataset6.csv",skiprows=4) frames_ben2 = [data__ben1,data__ben2,data__ben3,data__ben4,data__ben5,data__ben6] result_ben2 = pd.concat(frames_ben2) result_ben2.index=range(2880) df_ben2 = pd.DataFrame({'label': [2]},index=range(0,2880)) dat__ben2=pd.concat([result_ben2,df_ben2],axis=1) #----------------------------------------------------------------------------------------------------- data_cyc1=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset1.csv",skiprows=4) data_cyc2=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset2.csv",skiprows=4) data_cyc3=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset3.csv",skiprows=4) data_cyc4=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset4.csv",skiprows=4) data_cyc5=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset5.csv",skiprows=4) data_cyc6=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset6.csv",skiprows=4) data_cyc7=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset7.csv",skiprows=4) data_cyc8=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset8.csv",skiprows=4) data_cyc9=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset99.csv",skiprows=4) data_cyc10=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset10.csv",skiprows=4) data_cyc11=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset11.csv",skiprows=4) data_cyc12=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset12.csv",skiprows=4) data_cyc13=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset13.csv",skiprows=4) data_cyc14=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset144.csv",skiprows=4) data_cyc15=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\cycling\\dataset15.csv",skiprows=4) frames_cyc = [data_cyc1,data_cyc2,data_cyc3,data_cyc4,data_cyc5,data_cyc6,data_cyc7,data_cyc8,data_cyc9,data_cyc10,data_cyc11,data_cyc12,data_cyc13,data_cyc14,data_cyc15] result_cyc = pd.concat(frames_cyc) result_cyc.index=range(7200) df_cyc = pd.DataFrame({'label': [3]},index=range(0,7200)) data_cyc=pd.concat([result_cyc,df_cyc],axis=1) #---------------------------------------------------------------------------------------------- data_ly1=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\lying\\dataset1.csv",skiprows=4) data_ly2=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\lying\\dataset2.csv",skiprows=4) data_ly3=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\lying\\dataset3.csv",skiprows=4) data_ly4=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\lying\\dataset4.csv",skiprows=4) data_ly5=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\lying\\dataset5.csv",skiprows=4) data_ly6=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\lying\\dataset6.csv",skiprows=4) data_ly7=pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\lying\\dataset7.csv",skiprows=4) data_ly8=
pd.read_csv("F:\\Projects\\Master\\Statistical learning\\project\\lying\\dataset8.csv",skiprows=4)
pandas.read_csv
import sys import os sys.path.append(os.getcwd()) import pyomo.environ as pyo from typing import Dict, List, Tuple from time import time from pyomo.core import Constraint # TODO: Remove this and use pyo.Constraint.Feasible/Skip from tabulate import tabulate from pyomo.util.infeasible import log_infeasible_constraints import argparse import pandas as pd from src.alns.solution import ProblemDataExtended from src.read_problem_data import ProblemData import src.alns.alns class FfprpModel: def __init__(self, prbl: ProblemData, extended_model: bool = False, y_init_dict: Dict[Tuple[str, str, int], int] = None, ) -> None: # GENERAL MODEL SETUP self.m = pyo.ConcreteModel() self.solver_factory = pyo.SolverFactory('gurobi') self.results = None self.solution = None self.extended_model = extended_model ################################################################################################################ # SETS ######################################################################################################### # NODE SETS self.m.NODES = pyo.Set(initialize=prbl.nodes) self.m.NODES_INCLUDING_DUMMIES = pyo.Set( initialize=prbl.nodes + ['d_0', 'd_-1']) # d_0 is dummy origin, d_-1 is dummy destination self.m.NODES_INCLUDING_DUMMY_START = pyo.Set(initialize=prbl.nodes + ['d_0']) self.m.NODES_INCLUDING_DUMMY_END = pyo.Set(initialize=prbl.nodes + ['d_-1']) self.m.FACTORY_NODES = pyo.Set(initialize=prbl.factory_nodes) self.m.ORDER_NODES = pyo.Set(initialize=prbl.order_nodes) self.m.PRODUCTS = pyo.Set(initialize=prbl.products) self.m.VESSELS = pyo.Set(initialize=prbl.vessels) # ARCS self.m.ARCS = pyo.Set(self.m.VESSELS, initialize=prbl.arcs_for_vessels) arcs_for_vessels_trip = [(v, i, j) for v in self.m.VESSELS for i, j in prbl.arcs_for_vessels[v]] self.m.ARCS_FOR_VESSELS_TRIP = pyo.Set(initialize=arcs_for_vessels_trip) # TIME PERIOD SETS self.m.TIME_PERIODS = pyo.Set(initialize=prbl.time_periods) # TUPLE SETS orders_related_to_nodes_tup = [(factory_node, order_node) for factory_node in prbl.factory_nodes for order_node in prbl.order_nodes] + [ (order_node, order_node) for order_node in prbl.order_nodes] self.m.ORDERS_RELATED_TO_NODES_TUP = pyo.Set(dimen=2, initialize=orders_related_to_nodes_tup) nodes_for_vessels_tup = [(vessel, node) for vessel, node in prbl.nodes_for_vessels.keys() if prbl.nodes_for_vessels[vessel, node] == 1] self.m.NODES_FOR_VESSELS_TUP = pyo.Set(dimen=2, initialize=nodes_for_vessels_tup) factory_nodes_for_vessels_tup = [(vessel, node) for vessel, node in nodes_for_vessels_tup if node in prbl.factory_nodes] self.m.FACTORY_NODES_FOR_VESSELS_TUP = pyo.Set(dimen=2, initialize=factory_nodes_for_vessels_tup) order_nodes_for_vessels_tup = [(vessel, node) for vessel, node in nodes_for_vessels_tup if node in prbl.order_nodes] self.m.ORDER_NODES_FOR_VESSELS_TUP = pyo.Set(dimen=2, initialize=order_nodes_for_vessels_tup) vessels_relevantnodes_ordernodes = [(vessel, relevant_node, order_node) for vessel, order_node in order_nodes_for_vessels_tup for relevant_node, order_node2 in orders_related_to_nodes_tup if order_node2 == order_node and (vessel, relevant_node) in nodes_for_vessels_tup ] self.m.ORDER_NODES_RELEVANT_NODES_FOR_VESSELS_TRIP = pyo.Set(dimen=3, initialize=vessels_relevantnodes_ordernodes) vessels_factorynodes_ordernodes = [(vessel, factory_node, order_node) for vessel, order_node in order_nodes_for_vessels_tup for vessel2, factory_node in factory_nodes_for_vessels_tup if vessel == vessel2 ] self.m.ORDER_NODES_FACTORY_NODES_FOR_VESSELS_TRIP = pyo.Set(dimen=3, initialize=vessels_factorynodes_ordernodes) vessels_for_factory_nodes_tup = [(node, vessel) for vessel, node in nodes_for_vessels_tup if node in prbl.factory_nodes] self.m.VESSELS_FOR_FACTORY_NODES_TUP = pyo.Set(dimen=2, initialize=vessels_for_factory_nodes_tup) time_windows_for_orders_tup = [(order, time_period) for order, time_period in prbl.time_windows_for_orders.keys() if prbl.time_windows_for_orders[order, time_period] == 1] self.m.TIME_WINDOWS_FOR_ORDERS_TUP = pyo.Set(dimen=2, initialize=time_windows_for_orders_tup) self.m.PRODUCTION_LINES = pyo.Set(initialize=prbl.production_lines) self.m.PRODUCTION_LINES_FOR_FACTORIES_TUP = pyo.Set(dimen=2, initialize=prbl.production_lines_for_factories) products_within_same_product_group_tup = [(prod1, prod2) for product_group in prbl.product_groups.keys() for prod1 in prbl.product_groups[product_group] for prod2 in prbl.product_groups[product_group]] self.m.PRODUCTS_WITHIN_SAME_PRODUCT_GROUP_TUP = pyo.Set(dimen=2, initialize=products_within_same_product_group_tup) self.m.ZONES = pyo.Set(initialize=prbl.orders_for_zones.keys()) orders_for_zones_tup = [(zone, order) for zone, li in prbl.orders_for_zones.items() for order in li] self.m.ORDERS_FOR_ZONES_TUP = pyo.Set(dimen=2, initialize=orders_for_zones_tup) green_nodes_for_vessel_tup = [(vessel, node) for vessel, node in nodes_for_vessels_tup if node in prbl.orders_for_zones['green']] self.m.GREEN_NODES_FOR_VESSEL_TUP = pyo.Set(dimen=2, initialize=green_nodes_for_vessel_tup) green_and_yellow_nodes_for_vessel_tup = [(vessel, node) for vessel, node in nodes_for_vessels_tup if node in prbl.orders_for_zones['green'] + prbl.orders_for_zones[ 'yellow']] self.m.GREEN_AND_YELLOW_NODES_FOR_VESSEL_TUP = pyo.Set(initialize=green_and_yellow_nodes_for_vessel_tup) # sick_arcs_tup = list(set([(orig, dest) # for (v, orig, dest) in prbl.min_wait_if_sick.keys() # if prbl.min_wait_if_sick[v, orig, dest] > 0])) # self.m.WAIT_EDGES = pyo.Set(dimen=2, # initialize=sick_arcs_tup) # prbl.min_wait_if_sick.keys()) wait_edges_for_vessels_trip = [(v, i, j) for v in self.m.VESSELS for u, i, j in prbl.min_wait_if_sick.keys() if u == v and (i, j) in self.m.ARCS[v]] self.m.WAIT_EDGES_FOR_VESSEL_TRIP = pyo.Set(dimen=3, initialize=wait_edges_for_vessels_trip) # Extension if extended_model: self.m.TIME_WINDOW_VIOLATIONS = pyo.Set( initialize=[i for i in range(-prbl.max_tw_violation, prbl.max_tw_violation + 1)]) print("Done setting sets!") ################################################################################################################ # PARAMETERS ################################################################################################### self.m.vessel_ton_capacities = pyo.Param(self.m.VESSELS, initialize=prbl.vessel_ton_capacities) self.m.vessel_nprod_capacities = pyo.Param(self.m.VESSELS, initialize=prbl.vessel_nprod_capacities) # self.m.production_min_capacities = pyo.Param(self.m.PRODUCTION_LINES, # self.m.PRODUCTS, # initialize=prbl.production_min_capacities) self.m.production_max_capacities = pyo.Param(self.m.PRODUCTION_LINES, self.m.PRODUCTS, initialize=prbl.production_max_capacities) self.m.production_start_costs = pyo.Param(self.m.FACTORY_NODES, self.m.PRODUCTS, initialize=prbl.production_start_costs) self.m.production_stops = pyo.Param(self.m.FACTORY_NODES, self.m.TIME_PERIODS, initialize=prbl.production_stops) self.m.factory_inventory_capacities = pyo.Param(self.m.FACTORY_NODES, initialize=prbl.factory_inventory_capacities) self.m.factory_initial_inventories = pyo.Param(self.m.FACTORY_NODES, self.m.PRODUCTS, initialize=prbl.factory_initial_inventories) self.m.inventory_unit_costs = pyo.Param(self.m.FACTORY_NODES, initialize=prbl.inventory_unit_costs) self.m.transport_unit_costs = pyo.Param(self.m.VESSELS, initialize=prbl.transport_unit_costs) self.m.transport_times = pyo.Param(self.m.VESSELS, self.m.NODES_INCLUDING_DUMMY_START, self.m.NODES_INCLUDING_DUMMY_END, initialize=prbl.transport_times) self.m.transport_times_exact = pyo.Param(self.m.VESSELS, self.m.NODES_INCLUDING_DUMMY_START, self.m.NODES_INCLUDING_DUMMY_END, initialize=prbl.transport_times_exact) self.m.loading_unloading_times = pyo.Param(self.m.VESSELS, self.m.NODES, initialize=prbl.loading_unloading_times) self.m.demands = pyo.Param(self.m.ORDERS_RELATED_TO_NODES_TUP, self.m.PRODUCTS, initialize=prbl.demands) self.m.production_line_min_times = pyo.Param(self.m.PRODUCTION_LINES, self.m.PRODUCTS, initialize=prbl.production_line_min_times) self.m.start_time_for_vessels = pyo.Param(self.m.VESSELS, initialize=prbl.start_times_for_vessels) self.m.vessel_initial_locations = pyo.Param(self.m.VESSELS, initialize=prbl.vessel_initial_locations, within=pyo.Any) self.m.factory_max_vessels_destination = pyo.Param(self.m.FACTORY_NODES, initialize=prbl.factory_max_vessels_destination) self.m.factory_max_vessels_loading = pyo.Param(self.m.FACTORY_NODES, self.m.TIME_PERIODS, initialize=prbl.factory_max_vessels_loading) self.m.external_delivery_penalties = pyo.Param(self.m.ORDER_NODES, initialize=prbl.external_delivery_penalties) self.m.min_wait_if_sick = pyo.Param(self.m.WAIT_EDGES_FOR_VESSEL_TRIP, initialize=prbl.min_wait_if_sick) # self.m.warm_start = pyo.Param({0}, # initialize={0:False}, # mutable=True) # Extension if extended_model: tw_violation_unit_cost = {k: prbl.tw_violation_unit_cost * abs(k) for k in self.m.TIME_WINDOW_VIOLATIONS} self.m.time_window_violation_cost = pyo.Param(self.m.TIME_WINDOW_VIOLATIONS, initialize=tw_violation_unit_cost) # Fetch first (min) and last (max) time period within the time window of each order tw_min, tw_max = {}, {} for i in self.m.ORDER_NODES: tw_min[i] = min(t for i2, t in time_windows_for_orders_tup if i == i2) tw_max[i] = max(t for i2, t in time_windows_for_orders_tup if i == i2) self.m.tw_min = pyo.Param(self.m.ORDER_NODES, initialize=tw_min) self.m.tw_max = pyo.Param(self.m.ORDER_NODES, initialize=tw_max) # self.m.inventory_targets = pyo.Param(self.m.FACTORY_NODES, # self.m.PRODUCTS, # initialize=prbl.inventory_targets) self.m.inventory_unit_rewards = pyo.Param(self.m.FACTORY_NODES, initialize=prbl.inventory_unit_rewards) print("Done setting parameters!") ################################################################################################################ # VARIABLES #################################################################################################### self.m.x = pyo.Var(self.m.ARCS_FOR_VESSELS_TRIP, self.m.TIME_PERIODS, domain=pyo.Boolean, initialize=0) self.m.w = pyo.Var(self.m.VESSELS, self.m.NODES, self.m.TIME_PERIODS, domain=pyo.Boolean, initialize=0) # def y_init(m, v, i, t): # return y_init_dict[(v, i, t)] if (y_init_dict is not None and prbl.is_order_node(i)) else 0 self.m.y = pyo.Var(self.m.NODES_FOR_VESSELS_TUP, self.m.TIME_PERIODS, domain=pyo.Boolean, initialize=0) self.m.z = pyo.Var(self.m.ORDER_NODES_RELEVANT_NODES_FOR_VESSELS_TRIP, self.m.TIME_PERIODS, domain=pyo.Boolean, initialize=0) self.m.l = pyo.Var(self.m.VESSELS, self.m.PRODUCTS, self.m.TIME_PERIODS, domain=pyo.NonNegativeReals, initialize=0) self.m.h = pyo.Var(self.m.VESSELS, self.m.PRODUCTS, self.m.TIME_PERIODS, domain=pyo.Boolean, initialize=0) # self.m.q = pyo.Var(self.m.PRODUCTION_LINES, # self.m.PRODUCTS, # self.m.TIME_PERIODS, # domain=pyo.NonNegativeReals, # initialize=0) self.m.g = pyo.Var(self.m.PRODUCTION_LINES, self.m.PRODUCTS, self.m.TIME_PERIODS, domain=pyo.Boolean, initialize=0) self.m.s = pyo.Var(self.m.FACTORY_NODES, self.m.PRODUCTS, self.m.TIME_PERIODS, domain=pyo.NonNegativeReals, initialize=0) self.m.a = pyo.Var(self.m.PRODUCTION_LINES, self.m.TIME_PERIODS, domain=pyo.Boolean, initialize=0) self.m.delta = pyo.Var(self.m.PRODUCTION_LINES, self.m.PRODUCTS, self.m.TIME_PERIODS, domain=pyo.Boolean, initialize=0) self.m.e = pyo.Var(self.m.ORDER_NODES, domain=pyo.Boolean, initialize=0) # Extension if extended_model: self.m.lambd = pyo.Var(self.m.ORDER_NODES, self.m.TIME_WINDOW_VIOLATIONS, domain=pyo.Boolean, initialize=0) self.m.s_plus = pyo.Var(self.m.FACTORY_NODES, self.m.PRODUCTS, domain=pyo.NonNegativeReals, initialize=0) print("Done setting variables!") ################################################################################################################ # OBJECTIVE #################################################################################################### def obj(model): return (sum(model.inventory_unit_costs[i] * model.s[i, p, t] for t in model.TIME_PERIODS for p in model.PRODUCTS for i in model.FACTORY_NODES) + sum(model.transport_unit_costs[v] * model.transport_times_exact[v, i, j] * model.x[v, i, j, t] for t in model.TIME_PERIODS for v in model.VESSELS for i, j in model.ARCS[v] if i != 'd_0' and j != 'd_-1') + sum(model.production_start_costs[i, p] * model.delta[l, p, t] for i in model.FACTORY_NODES for (ii, l) in model.PRODUCTION_LINES_FOR_FACTORIES_TUP if i == ii for p in model.PRODUCTS for t in model.TIME_PERIODS) + sum(model.external_delivery_penalties[i] * model.e[i] for i in model.ORDER_NODES)) def obj_extended(model): return (obj(model) + sum(model.time_window_violation_cost[k] * model.lambd[i, k] for i in model.ORDER_NODES for k in model.TIME_WINDOW_VIOLATIONS) - sum(model.inventory_unit_rewards[i] * model.s_plus[i, p] for i in model.FACTORY_NODES for p in model.PRODUCTS)) if extended_model: self.m.objective = pyo.Objective(rule=obj_extended, sense=pyo.minimize) else: self.m.objective = pyo.Objective(rule=obj, sense=pyo.minimize) print("Done setting objective!") ################################################################################################################ # CONSTRAINTS ################################################################################################## # def constr_y_heuristic_flying_start(model, v, i, t): # if prbl.is_factory_node(node_id=i) or not model.warm_start[0]: # return Constraint.Skip # return model.y[v, i, t] == int(y_init_dict[v, i, t]) # # self.m.constr_y_heuristic_flying_start = pyo.Constraint(self.m.NODES_FOR_VESSELS_TUP, # self.m.TIME_PERIODS, # rule=constr_y_heuristic_flying_start, # name="constr_y_heuristic_flying_start") # def constr_max_one_activity(model, v, t): # relevant_nodes = {n for (vessel, n) in model.NODES_FOR_VESSELS_TUP if vessel == v} # # return (sum(model.y_minus[v, i, t] + # model.y_plus[v, i, t] + # sum(model.x[v, i, j, t] for j in relevant_nodes) + # model.w[v, i, t] # for i in relevant_nodes) # <= 1) def constr_max_one_activity(model, v, t): if t < model.start_time_for_vessels[v]: # Skip constraint if vessel has not become available in t return pyo.Constraint.Skip else: return (sum(model.y[v, i, tau] for v2, i in model.NODES_FOR_VESSELS_TUP if v2 == v for tau in range(max(0, t - model.loading_unloading_times[v, i] + 1), t + 1)) + sum(model.x[v, i, j, tau] for i, j in model.ARCS[v] for tau in range(max(0, t - model.transport_times[v, i, j] + 1), t + 1)) + sum(model.w[v, i, t] for v2, i in model.NODES_FOR_VESSELS_TUP if v2 == v) == 1) self.m.constr_max_one_activity = pyo.Constraint(self.m.VESSELS, self.m.TIME_PERIODS, rule=constr_max_one_activity, name="constr_max_one_activity") def constr_max_m_vessels_loading(model, i, t): return (sum(model.y[v, i, tau] for i2, v in model.VESSELS_FOR_FACTORY_NODES_TUP if i2 == i for tau in range(max(0, t - model.loading_unloading_times[v, i] + 1), t + 1)) <= model.factory_max_vessels_loading[i, t]) self.m.constr_max_m_vessels_loading = pyo.Constraint(self.m.FACTORY_NODES, self.m.TIME_PERIODS, rule=constr_max_m_vessels_loading, name="constr_max_m_vessels_loading") def constr_delivery_within_time_window(model, i): relevant_vessels = {vessel for (vessel, j) in model.ORDER_NODES_FOR_VESSELS_TUP if j == i} relevant_time_periods = {t for (j, t) in model.TIME_WINDOWS_FOR_ORDERS_TUP if j == i} return (sum(model.y[v, i, t] for v in relevant_vessels for t in relevant_time_periods) + model.e[i] == 1) self.m.constr_delivery_within_time_window = pyo.Constraint(self.m.ORDER_NODES, rule=constr_delivery_within_time_window, name="constr_delivery_within_time_window") def constr_sailing_after_loading_unloading(model, v, i, t): loading_unloading_time = pyo.value(model.loading_unloading_times[v, i]) relevant_destination_nodes = [j for i2, j in model.ARCS[v] if i2 == i and j != 'd_-1'] if t < loading_unloading_time: return 0 == sum(model.x[v, i, j, t] for j in relevant_destination_nodes) else: return (model.y[v, i, (t - loading_unloading_time)] == sum(model.x[v, i, j, t] for j in relevant_destination_nodes)) self.m.constr_sailing_after_loading_unloading = pyo.Constraint(self.m.NODES_FOR_VESSELS_TUP, self.m.TIME_PERIODS, rule=constr_sailing_after_loading_unloading, name="constr_sailing_after_loading_unloading") def constr_wait_load_unload_after_sailing(model, v, i, t): relevant_nodes = [j for j, i2 in model.ARCS[v] if i2 == i and model.transport_times[v, j, i] <= t] # Only allow sailing from i to dummy end node if arc is defined x_to_dummy_end = model.x[v, i, 'd_-1', t] if (i, 'd_-1') in model.ARCS[v] else 0 if t == 0: # exclude w_t-1 return (sum( model.x[v, j, i, (t - model.transport_times[v, j, i])] for j in relevant_nodes) == model.y[v, i, t] + model.w[v, i, t] + x_to_dummy_end) else: return (sum( model.x[v, j, i, (t - model.transport_times[v, j, i])] for j in relevant_nodes) + model.w[v, i, (t - 1)] == model.y[v, i, t] + model.w[v, i, t] + x_to_dummy_end) self.m.constr_wait_load_unload_after_sailing = pyo.Constraint(self.m.NODES_FOR_VESSELS_TUP, self.m.TIME_PERIODS, rule=constr_wait_load_unload_after_sailing, name="constr_wait_load_unload_after_sailing") def constr_start_route(model, v): return model.x[v, 'd_0', model.vessel_initial_locations[v], model.start_time_for_vessels[v]] == 1 self.m.constr_start_route = pyo.Constraint(self.m.VESSELS, rule=constr_start_route, name="constr_start_route") def constr_start_route_once(model, v): return (sum(model.x[v, 'd_0', j, t] for i, j in model.ARCS[v] if i == 'd_0' for t in model.TIME_PERIODS) == 1) self.m.constr_start_route_once = pyo.Constraint(self.m.VESSELS, rule=constr_start_route_once, name="constr_start_route_once") def constr_end_route_once(model, v): return (sum(model.x[v, i, 'd_-1', t] for t in model.TIME_PERIODS for vessel, i in model.FACTORY_NODES_FOR_VESSELS_TUP if vessel == v) == 1) self.m.constr_end_route_once = pyo.Constraint(self.m.VESSELS, rule=constr_end_route_once, name="constr_end_route_once") def constr_maximum_vessels_at_end_destination(model, i): return (sum(model.x[v, i, 'd_-1', t] for v in model.VESSELS for t in model.TIME_PERIODS) <= model.factory_max_vessels_destination[i]) self.m.constr_maximum_vessels_at_end_destination = pyo.Constraint(self.m.FACTORY_NODES, rule=constr_maximum_vessels_at_end_destination, name="constr_maximum_vessels_at_end_destination") def constr_pickup_requires_factory_visit(model, v, i, j, t): return model.z[v, i, j, t] <= model.y[v, i, t] self.m.constr_pickup_requires_factory_visit = pyo.Constraint(self.m.ORDER_NODES_FACTORY_NODES_FOR_VESSELS_TRIP, self.m.TIME_PERIODS, rule=constr_pickup_requires_factory_visit, name="constr_pickup_requires_factory_visit") def constr_delivery_requires_order_visit(model, v, i, t): return model.z[v, i, i, t] == model.y[v, i, t] self.m.constr_delivery_requires_order_visit = pyo.Constraint(self.m.ORDER_NODES_FOR_VESSELS_TUP, self.m.TIME_PERIODS, rule=constr_delivery_requires_order_visit, name="constr_delivery_requires_order_visit") def constr_vessel_initial_load(model, v, p): return (model.l[v, p, 0] == sum(model.demands[i, j, p] * model.z[v, i, j, 0] for (v2, i, j) in model.ORDER_NODES_RELEVANT_NODES_FOR_VESSELS_TRIP if v2 == v)) self.m.constr_vessel_initial_load = pyo.Constraint(self.m.VESSELS, self.m.PRODUCTS, rule=constr_vessel_initial_load, name="constr_vessel_initial_load") def constr_load_balance(model, v, p, t): if t == 0: return Constraint.Feasible return (model.l[v, p, t] == model.l[v, p, (t - 1)] - sum(model.demands[i, j, p] * model.z[v, i, j, t] for (v2, i, j) in model.ORDER_NODES_RELEVANT_NODES_FOR_VESSELS_TRIP if v2 == v)) self.m.constr_load_balance = pyo.Constraint(self.m.VESSELS, self.m.PRODUCTS, self.m.TIME_PERIODS, rule=constr_load_balance, name="constr_load_balance") def constr_product_load_binary_activator(model, v, p, t): return model.l[v, p, t] <= model.vessel_ton_capacities[v] * model.h[v, p, t] self.m.constr_product_load_binary_activator = pyo.Constraint(self.m.VESSELS, self.m.PRODUCTS, self.m.TIME_PERIODS, rule=constr_product_load_binary_activator, name="constr_product_load_binary_activator") def constr_load_below_vessel_ton_capacity(model, v, t): if t == 0: return Constraint.Feasible return sum(model.l[v, p, (t - 1)] for p in model.PRODUCTS) <= (model.vessel_ton_capacities[v] * (1 - sum(model.y[v, i, t] for i in model.FACTORY_NODES))) self.m.constr_load_below_vessel_ton_capacity = pyo.Constraint(self.m.VESSELS, self.m.TIME_PERIODS, rule=constr_load_below_vessel_ton_capacity, name="constr_load_below_vessel_ton_capacity") def constr_load_below_vessel_nprod_capacity(model, v, t): return sum(model.h[v, p, t] for p in model.PRODUCTS) <= model.vessel_nprod_capacities[v] self.m.constr_load_below_vessel_nprod_capacity = pyo.Constraint(self.m.VESSELS, self.m.TIME_PERIODS, rule=constr_load_below_vessel_nprod_capacity, name="constr_load_below_vessel_nprod_capacity") # def constr_zero_final_load(model, v, p): # return model.l[v, p, max(model.TIME_PERIODS)] == 0 # # self.m.constr_zero_final_load = pyo.Constraint(self.m.VESSELS, # self.m.PRODUCTS, # rule=constr_zero_final_load) def constr_inventory_below_capacity(model, i, t): return sum(model.s[i, p, t] for p in model.PRODUCTS) <= model.factory_inventory_capacities[i] self.m.constr_inventory_below_capacity = pyo.Constraint(self.m.FACTORY_NODES, self.m.TIME_PERIODS, rule=constr_inventory_below_capacity, name="constr_inventory_below_capacity") def constr_initial_inventory(model, i, p): return (model.s[i, p, 0] == model.factory_initial_inventories[i, p] + sum(model.demands[i, j, p] * model.z[v, i, j, 0] for (v, i2, j) in model.ORDER_NODES_RELEVANT_NODES_FOR_VESSELS_TRIP if i2 == i)) self.m.constr_initial_inventory = pyo.Constraint(self.m.FACTORY_NODES, self.m.PRODUCTS, rule=constr_initial_inventory, name="constr_initial_inventory") def constr_inventory_balance(model, i, p, t): if t == 0: return Constraint.Feasible return (model.s[i, p, t] == model.s[i, p, (t - 1)] + sum(model.production_max_capacities[l, p] * model.g[l, p, (t - 1)] for (ii, l) in model.PRODUCTION_LINES_FOR_FACTORIES_TUP if ii == i) + sum(model.demands[i, j, p] * model.z[v, i, j, t] for v, i2, j in model.ORDER_NODES_RELEVANT_NODES_FOR_VESSELS_TRIP if i2 == i)) # sum(model.q[l, p, t - 1] for (ii, l) in model.PRODUCTION_LINES_FOR_FACTORIES_TUP if ii == i) + self.m.constr_inventory_balance = pyo.Constraint(self.m.FACTORY_NODES, self.m.PRODUCTS, self.m.TIME_PERIODS, rule=constr_inventory_balance, name="constr_inventory_balance") def constr_production_below_max_capacity(model, i, l, p, t): # return (model.q[l, p, t] # == model.production_stops[i, t] * model.production_max_capacities[l, p] * model.g[l, p, t]) return model.g[l, p, t] <= model.production_stops[i, t] self.m.constr_production_below_max_capacity = pyo.Constraint(self.m.PRODUCTION_LINES_FOR_FACTORIES_TUP, self.m.PRODUCTS, self.m.TIME_PERIODS, rule=constr_production_below_max_capacity, name="constr_production_below_max_capacity") # def constr_production_above_min_capacity(model, l, p, t): # return model.q[l, p, t] >= model.production_min_capacities[l, p] * model.g[l, p, t] # # self.m.constr_production_above_min_capacity = pyo.Constraint(self.m.PRODUCTION_LINES, # self.m.PRODUCTS, # self.m.TIME_PERIODS, # rule=constr_production_above_min_capacity) def constr_activate_delta(model, l, p, t): if t == 0: return Constraint.Feasible return model.g[l, p, t] - model.g[l, p, t - 1] <= model.delta[l, p, t] self.m.constr_activate_delta = pyo.Constraint(self.m.PRODUCTION_LINES, self.m.PRODUCTS, self.m.TIME_PERIODS, rule=constr_activate_delta, name="constr_activate_delta") def constr_initial_production_start(model, l, p): return model.delta[l, p, 0] == model.g[l, p, 0] self.m.constr_initial_production_start = pyo.Constraint(self.m.PRODUCTION_LINES, self.m.PRODUCTS, rule=constr_initial_production_start, name="constr_initial_production_start") def constr_produce_minimum_number_of_periods(model, l, p, t): relevant_time_periods = {tau for tau in model.TIME_PERIODS if t <= tau <= t + model.production_line_min_times[l, p] - 1} return (model.production_line_min_times[l, p] * model.delta[l, p, t] <= sum(model.g[l, p, tau] for tau in relevant_time_periods)) self.m.constr_produce_minimum_number_of_periods = pyo.Constraint(self.m.PRODUCTION_LINES, self.m.PRODUCTS, self.m.TIME_PERIODS, rule=constr_produce_minimum_number_of_periods, name="constr_produce_minimum_number_of_periods") def constr_production_line_availability(model, l, t): return model.a[l, t] + sum(model.g[l, p, t] for p in model.PRODUCTS) == 1 self.m.constr_production_line_availability = pyo.Constraint(self.m.PRODUCTION_LINES, self.m.TIME_PERIODS, rule=constr_production_line_availability, name="constr_production_line_availability") def constr_production_shift(model, l, p, t): if t == 0: return Constraint.Feasible relevant_products = {q for (qq, q) in model.PRODUCTS_WITHIN_SAME_PRODUCT_GROUP_TUP if qq == p} return model.g[l, p, (t - 1)] <= model.a[l, t] + sum(model.g[l, q, t] for q in relevant_products) self.m.constr_production_shift = pyo.Constraint(self.m.PRODUCTION_LINES, self.m.PRODUCTS, self.m.TIME_PERIODS, rule=constr_production_shift, name="constr_production_shift") def constr_wait_if_visit_sick_farm(model, v, i, j, t): if model.transport_times[v, i, j] <= t <= len(model.TIME_PERIODS) - model.min_wait_if_sick[v, i, j]: return (model.min_wait_if_sick[v, i, j] * model.x[v, i, j, t - model.transport_times[v, i, j]] <= sum(model.w[v, j, tau] for tau in range(t, t + model.min_wait_if_sick[v, i, j]))) else: return Constraint.Feasible self.m.constr_wait_if_visit_sick_farm = pyo.Constraint(self.m.WAIT_EDGES_FOR_VESSEL_TRIP, self.m.TIME_PERIODS, rule=constr_wait_if_visit_sick_farm, name="constr_wait_if_visit_sick_farm") # Extension if extended_model: def constr_delivery_no_tw_violation(model, i): return (sum(model.y[v, i, t] for v, j in model.ORDER_NODES_FOR_VESSELS_TUP if i == j for j, t in model.TIME_WINDOWS_FOR_ORDERS_TUP if i == j) == model.lambd[i, 0]) self.m.constr_delivery_within_time_window.deactivate() # Deactivate the current delivery constraint self.m.constr_delivery_no_tw_violation = pyo.Constraint(self.m.ORDER_NODES, rule=constr_delivery_no_tw_violation, name="constr_delivery_no_tw_violation") def constr_delivery_tw_violation_earlier(model, i, k): if k < 0 and self.m.tw_min[i] + k in model.TIME_PERIODS: return (sum(model.y[v, i, self.m.tw_min[i] + k] for v, j in model.ORDER_NODES_FOR_VESSELS_TUP if i == j) == model.lambd[i, k]) else: return Constraint.Skip self.m.constr_delivery_tw_violation_earlier = pyo.Constraint(self.m.ORDER_NODES, self.m.TIME_WINDOW_VIOLATIONS, rule=constr_delivery_tw_violation_earlier, name="constr_delivery_tw_violation_earlier") def constr_delivery_tw_violation_later(model, i, k): if k > 0 and self.m.tw_max[i] + k in model.TIME_PERIODS: return (sum(model.y[v, i, self.m.tw_max[i] + k] for v, j in model.ORDER_NODES_FOR_VESSELS_TUP if i == j) == model.lambd[i, k]) else: return Constraint.Skip self.m.constr_delivery_tw_violation_later = pyo.Constraint(self.m.ORDER_NODES, self.m.TIME_WINDOW_VIOLATIONS, rule=constr_delivery_tw_violation_later, name="constr_delivery_tw_violation_later") def constr_choose_one_tw_violation(model, i): return (sum(model.lambd[i, k] for k in model.TIME_WINDOW_VIOLATIONS if model.tw_max[i] + k in model.TIME_PERIODS and model.tw_min[i] + k in model.TIME_PERIODS) + model.e[i] == 1) self.m.constr_choose_one_tw_violation = pyo.Constraint(self.m.ORDER_NODES, rule=constr_choose_one_tw_violation, name="constr_choose_one_tw_violation") def constr_rewarded_inventory_below_inventory_level(model, i, p): return model.s_plus[i, p] <= model.s[i, p, max(model.TIME_PERIODS)] self.m.constr_rewarded_inventory_below_inventory_level = pyo.Constraint(self.m.FACTORY_NODES, self.m.PRODUCTS, rule=constr_rewarded_inventory_below_inventory_level, name="constr_rewarded_inventory_below_inventory_level") def constr_rewarded_inventory_below_inventory_target(model, i, p): return model.s_plus[i, p] <= model.inventory_targets[i, p] self.m.constr_rewarded_inventory_below_inventory_target = pyo.Constraint(self.m.FACTORY_NODES, self.m.PRODUCTS, rule=constr_rewarded_inventory_below_inventory_target, name="constr_rewarded_inventory_below_inventory_target") print("Done setting constraints!") def solve(self, verbose: bool = True, time_limit: int = None, warm_start: bool = False) -> None: print("Solver running...") # self.m.constr_y_heuristic_flying_start.deactivate() t = time() t_warm_solve = 0 if warm_start: pass # print(f"Preparing for warm-start...") # self.solver_factory.options['TimeLimit'] = time_limit # self.m.constr_y_heuristic_flying_start.activate() # self.solver_factory.options['SolutionLimit'] = 1 # try: # self.results = self.solver_factory.solve(self.m, tee=verbose) # self.m.write("debug.lp") # if self.results.solver.termination_condition == pyo.TerminationCondition.infeasible: # warm_start = False # print(f"Initial ALNS solution was regarded infeasible") # except ValueError: # print(f"No warm-start initial solution found within time limit") # warm_start = False # # self.solver_factory.options['SolutionLimit'] = 2000000000 # Gurobi's default value # print(f"...warm-start model completed!") # t_warm_solve = time() - t if time_limit: remaining_time_limit = time_limit # max(time_limit - t_warm_solve, 60) if time_limit > 60 else time_limit - t_warm_solve print(f"{round(remaining_time_limit, 1)} seconds remains out of the total of {time_limit} seconds") self.solver_factory.options['TimeLimit'] = remaining_time_limit # time limit in seconds try: # self.m.constr_y_heuristic_flying_start.deactivate() print(f"Solving model...") self.results = self.solver_factory.solve(self.m, tee=verbose, warmstart=warm_start) # logfile=f'../../log_files/console_output_{log_name}.log' print(f"...model solved!") print("Termination condition", self.results.solver.termination_condition) if self.results.solver.termination_condition != pyo.TerminationCondition.optimal: print("Not optimal termination condition: ", self.results.solver.termination_condition) # log_infeasible_constraints(self.m, log_variables=True, log_expression=True) print("Solve time: ", round(time() - t, 1)) except ValueError: print(f"No solution found within time limit of {time_limit} seconds") def print_result(self): def print_result_variablewise(): def print_vessel_routing(): print("VESSEL ROUTING (x variable)") for v in self.m.VESSELS: for t in self.m.TIME_PERIODS: for i, j in self.m.ARCS[v]: if pyo.value(self.m.x[v, i, j, t]) == 1: print("Vessel", v, "travels from", i, "to", j, "in time period", t) print() print() def print_waiting(): print("WAITING (w variable)") for v in self.m.VESSELS: for i in self.m.ORDER_NODES: for t in self.m.TIME_PERIODS: if pyo.value(self.m.w[v, i, t]) >= 0.5: print("Vessel", v, "waits to deliver order", i, "in time period", t) print() def print_order_delivery_and_pickup(): print("ORDER DELIVERY AND PICKUP (y variable)") for v in self.m.VESSELS: for t in self.m.TIME_PERIODS: for (vv, i) in self.m.NODES_FOR_VESSELS_TUP: if v == vv: activity_str = "loading" if i in self.m.FACTORY_NODES else "unloading" if pyo.value(self.m.y[v, i, t]) >= 0.5: print(t, ": vessel ", v, " starts ", activity_str, " in node ", i, sep="") print() def print_factory_production(): print("FACTORY PRODUCTION (q variable)") production = False for t in self.m.TIME_PERIODS: for l in self.m.PRODUCTION_LINES: for p in self.m.PRODUCTS: if pyo.value(self.m.g[l, p, t]) >= 0.5: print("Production line", l, "produces", pyo.value(self.m.production_max_capacities[l, p]), "tons of product", p, "in time period", t) production = True if not production: print("Nothing is produced") print() def print_factory_inventory(): print("FACTORY INVENTORY (r variable)") for t in self.m.TIME_PERIODS: for i in self.m.FACTORY_NODES: for p in self.m.PRODUCTS: if pyo.value(self.m.s[i, p, t]) >= 0.5: print("Factory", i, "holds", pyo.value(self.m.s[i, p, t]), "tons of product", p, "as inventory in time period", t) print() def print_factory_pickup(): print("FACTORY PICKUPS (z variable)") for v in self.m.VESSELS: for t in self.m.TIME_PERIODS: for j in self.m.ORDER_NODES: for i in {n for (n, o) in self.m.ORDERS_RELATED_TO_NODES_TUP if o == j}: if pyo.value(self.m.z[v, i, j, t]) >= 0.5: print("Vessel", v, "handles order", j, "in node", i, "in time period", t) print() def print_vessel_load(): print("VESSEL LOAD (l variable)") for v in self.m.VESSELS: for p in self.m.PRODUCTS: for t in self.m.TIME_PERIODS: if pyo.value(self.m.l[v, p, t]) >= 0.5: print("Vessel", v, "carries", pyo.value(self.m.l[v, p, t]), "tons of product", p, "in time period", t) print() def print_orders_not_delivered(): all_delivered = True print("ORDERS NOT DELIVERED (e variable)") for i in self.m.ORDER_NODES: if pyo.value(self.m.e[i]) >= 0.5: print("Order", i, "is not delivered") all_delivered = False if all_delivered: print("All orders have been delivered") print() def print_production_starts(): print("PRODUCTION START (delta variable)") for i in self.m.FACTORY_NODES: relevant_production_lines = {l for (ii, l) in self.m.PRODUCTION_LINES_FOR_FACTORIES_TUP if ii == i} for l in relevant_production_lines: print("Production line", l, "at factory", i) for t in self.m.TIME_PERIODS: for p in self.m.PRODUCTS: if pyo.value(self.m.delta[l, p, t]) >= 0.5: print(t, ": production of product ", p, " is started, imposing a cost of ", pyo.value(self.m.production_start_costs[i, p]), ", and ", pyo.value(self.m.production_max_capacities[l, p]), " is produced", sep="") print() def print_production_happens(): print("PRODUCTION HAPPENS (g variable)") for i in self.m.FACTORY_NODES: relevant_production_lines = {l for (ii, l) in self.m.PRODUCTION_LINES_FOR_FACTORIES_TUP if ii == i} for l in relevant_production_lines: print("Production line", l, "at factory", i) for t in self.m.TIME_PERIODS: for p in self.m.PRODUCTS: if pyo.value(self.m.g[l, p, t]) >= 0.5: print(t, ": production of product ", p, " happens ", sep="") print() def print_final_inventory(): print("FINAL INVENTORY AND TARGETS (r_plus variable)") for i in self.m.FACTORY_NODES: print("Factory", i) for p in self.m.PRODUCTS: if self.extended_model: print("Rewarded inventory of product ", p, " is ", pyo.value(self.m.s_plus[i, p]), ", total final inventory is ", pyo.value(self.m.s[i, p, (max(self.m.TIME_PERIODS))]), " and its target is ", pyo.value(self.m.inventory_targets[i, p]), sep="") else: print("Final inventory for", p, "is", pyo.value(self.m.s[i, p, (max(self.m.TIME_PERIODS))])) print() def print_available_production_lines(): print("AVAILABLE PRODUCTION LINES") for ll in self.m.PRODUCTION_LINES: for t in self.m.TIME_PERIODS: print(t, ": production line ", ll, " has value ", pyo.value(self.m.a[ll, t]), sep="") print() def print_time_window_violations(): if self.extended_model: for k in self.m.TIME_WINDOW_VIOLATIONS: orders_with_k_violation = [i for i in self.m.ORDER_NODES if self.m.lambd[i, k]() > 0.5] s = " " if k <= 0 else "+" print(s + str(k), "violation:", orders_with_k_violation) else: print("No time window violation, extension is not applied") print() # PRINTING print() # print_factory_production() # print_factory_inventory() # print_vessel_routing() # print_order_delivery_and_pickup() # print_factory_pickup() # print_waiting() # print_vessel_load() print_orders_not_delivered() # print_production_starts() # print_production_happens() # print_final_inventory() # print_available_production_lines() # print_time_window_violations() def print_result_eventwise(): def print_routes_simple(): table = [] for v in self.m.VESSELS: row = [v] for t in self.m.TIME_PERIODS: action_in_period = False for i in self.m.NODES: # Check if node may be visited by vessel if i not in [i2 for v2, i2 in self.m.NODES_FOR_VESSELS_TUP if v2 == v]: continue if self.m.y[v, i, t]() > 0.5: row.append(i) # load or unload action_in_period = True if self.m.w[v, i, t]() > 0.5: row.append('.') # wait action_in_period = True if i in self.m.FACTORY_NODES and self.m.x[v, i, 'd_-1', t]() >= 0.5: # route ends row.append(i) action_in_period = True for i, j in self.m.ARCS[v]: if self.m.x[v, i, j, t]() > 0.5 and i != 'd_0' and j != 'd_-1': row.append(">") # sail action_in_period = True if not action_in_period: row.append(" ") table.append(row) print(tabulate(table, headers=["vessel"] + list(self.m.TIME_PERIODS))) print() def print_y(): active_y_s = [(v, i, t) for v in self.m.VESSELS for v2, i in self.m.NODES_FOR_VESSELS_TUP for t in self.m.TIME_PERIODS if v2 == v and self.m.y[v, i, t]() > 0.5] print("Active y's:", active_y_s) def print_routing(include_loads=True): for v in self.m.VESSELS: print("ROUTING OF VESSEL", v) for t in self.m.TIME_PERIODS: curr_load = [round(self.m.l[v, p, t]()) for p in self.m.PRODUCTS] # x variable for i, j in self.m.ARCS[v]: if pyo.value(self.m.x[v, i, j, t]) >= 0.5: print(t, ": ", i, " --> ", j, sep="") if include_loads and i != 'd_0': print(" load: ", curr_load) # w variable for i in self.m.NODES: if pyo.value(self.m.w[v, i, t]) >= 0.5: print(t, ": waits to go to ", i, sep="") if include_loads: print(" load: ", curr_load) for i in [j for (vessel, j) in self.m.NODES_FOR_VESSELS_TUP if vessel == v]: # y variable if pyo.value(self.m.y[v, i, t]) >= 0.5: activity_str = "loads" if i in self.m.FACTORY_NODES else "unloads" print(t, ": ", activity_str, " in node ", i, sep="") if include_loads: print(" load: ", curr_load) # z variable for (v2, n, o) in self.m.ORDER_NODES_RELEVANT_NODES_FOR_VESSELS_TRIP: if v2 == v and pyo.value(self.m.z[v, n, o, t]) >= 0.5: print(" [handles order ", o, " in node ", n, "]", sep="") print() def print_vessel_load(): for v in self.m.VESSELS: print("LOAD AT VESSEL", v) for t in self.m.TIME_PERIODS: curr_load = [round(self.m.l[v, p, t]()) for p in self.m.PRODUCTS] if sum(curr_load) > 0.5: print(t, ": ", curr_load, sep="") print() def print_production_and_inventory(): for i in self.m.FACTORY_NODES: print("PRODUCTION AND INVENTORY AT FACTORY", i) for t in self.m.TIME_PERIODS: relevant_production_lines = {l for (ii, l) in self.m.PRODUCTION_LINES_FOR_FACTORIES_TUP if ii == i} production = [round(sum(self.m.g[l, p, t]() * self.m.production_max_capacities[l, p] for l in relevant_production_lines)) for p in sorted(self.m.PRODUCTS)] inventory = [round(self.m.s[i, p, t]()) for p in sorted(self.m.PRODUCTS)] if sum(production) > 0.5: print(t, ": production: \t", production, sep="") print(t, ": inventory: \t", inventory, sep="") # for p in self.m.PRODUCTS: # if pyo.value(self.m.q[i, p, t]) >= 0.5: # print(t, ": production of ", round(pyo.value(self.m.q[i, p, t]), 1), # " tons of product ", # p, sep="") # if pyo.value(self.m.s[i, p, t]) >= 0.5: # print(t, ": inventory level is ", round(pyo.value(self.m.s[i, p, t]), 1), # " tons of product ", p, sep="") # relevant_order_nodes = {j for (f, j) in self.m.ORDER_NODES_FOR_FACTORIES_TUP if f == i} # loaded_onto_vessels = pyo.value(sum( # self.m.demands[i, j, p] * self.m.z[v, i, j, t] # for (v, i2, j) in self.m.ORDER_NODES_RELEVANT_NODES_FOR_VESSELS_TUP if i == i2)) # if loaded_onto_vessels >= 0.5: # print(t, ": ", round(loaded_onto_vessels, 1), " tons of product ", p, # " is loaded onto vessels ", sep="") print() def print_production_simple(): for i in self.m.FACTORY_NODES: relevant_production_lines = {l for (ii, l) in self.m.PRODUCTION_LINES_FOR_FACTORIES_TUP if ii == i} table = [] print("Factory", i) for p in self.m.PRODUCTS: row = [p, "prod"] for t in self.m.TIME_PERIODS: if sum(self.m.g[l, p, t]() for l in relevant_production_lines) > 0.5: row.append( round(sum(self.m.g[l, p, t]() * self.m.production_max_capacities[l, p] for l in relevant_production_lines))) # + " [" + str(self.m.s[i, p, t]()) + "]") else: row.append(" ") table.append(row) row = ["\"", "inv"] for t in self.m.TIME_PERIODS: if t == 0: row.append(round(self.m.s[i, p, 0]())) elif abs(self.m.s[i, p, t]() - self.m.s[i, p, t - 1]()) > 0.5: row.append(round(self.m.s[i, p, t]())) # + " [" + str(self.m.s[i, p, t]()) + "]") else: row.append(" ") table.append(row) table.append(["____"] * (len(list(self.m.TIME_PERIODS)) + 2)) print(tabulate(table, headers=["product", "prod/inv"] + list(self.m.TIME_PERIODS))) print() # print_routing(include_loads=False) # print_vessel_load() # print_production_and_inventory() print_production_simple() print_y() print_routes_simple() def print_objective_function_components(): inventory_cost = self.get_inventory_cost() transport_cost = self.get_transport_cost() production_start_cost = self.get_production_start_cost() unmet_order_cost = self.get_unmet_order_cost() sum_obj = inventory_cost + transport_cost + unmet_order_cost + production_start_cost if self.extended_model: time_window_violation_cost = (sum(self.m.time_window_violation_cost[k] * self.m.lambd[i, k]() for i in self.m.ORDER_NODES for k in self.m.TIME_WINDOW_VIOLATIONS)) final_inventory_reward = (-sum(self.m.inventory_unit_rewards[i] * pyo.value(self.m.s_plus[i, p]) for i in self.m.FACTORY_NODES for p in self.m.PRODUCTS)) sum_obj += time_window_violation_cost + final_inventory_reward print("Time window violation cost:", round(time_window_violation_cost, 2)) print("Final inventory reward (negative cost):", round(final_inventory_reward, 2)) print("Inventory cost:", round(inventory_cost, 2)) print("Transport cost:", round(transport_cost, 2)) print("Production start cost:", round(production_start_cost, 2)) print("Unmet order cost:", round(unmet_order_cost, 2)) print("Sum of above cost components:", round(sum_obj, 15)) print("Objective value (from Gurobi):", pyo.value(self.m.objective)) print_result_variablewise() print_result_eventwise() print_objective_function_components() def get_production_start_cost(self) -> int: return int(sum(self.m.production_start_costs[i, p] * pyo.value(self.m.delta[l, p, t]) for i in self.m.FACTORY_NODES for (ii, l) in self.m.PRODUCTION_LINES_FOR_FACTORIES_TUP if i == ii for p in self.m.PRODUCTS for t in self.m.TIME_PERIODS)) def get_inventory_cost(self) -> int: return int(sum(self.m.inventory_unit_costs[i] * pyo.value(self.m.s[i, p, t]) for t in self.m.TIME_PERIODS for p in self.m.PRODUCTS for i in self.m.FACTORY_NODES)) def get_transport_cost(self) -> int: return int(sum(self.m.transport_unit_costs[v] * self.m.transport_times_exact[v, i, j] * pyo.value(self.m.x[v, i, j, t]) for t in self.m.TIME_PERIODS for v in self.m.VESSELS for i, j in self.m.ARCS[v] if i != 'd_0' and j != 'd_-1')) def get_unmet_order_cost(self) -> int: return int(sum(self.m.external_delivery_penalties[i] * pyo.value(self.m.e[i]) for i in self.m.ORDER_NODES)) def get_orders_not_served(self) -> List[str]: orders_not_served: List[str] = [] for i in self.m.ORDER_NODES: if pyo.value(self.m.e[i]) > 0.5: orders_not_served.append(i) return orders_not_served def write_to_file(self, excel_writer: pd.ExcelWriter, id: int = 0) -> None: inventory_cost = self.get_inventory_cost() transport_cost = self.get_transport_cost() unmet_order_cost = self.get_unmet_order_cost() production_start_cost = self.get_production_start_cost() lb = self.results.Problem._list[0].lower_bound ub = self.results.Problem._list[0].upper_bound solve_time = self.results.Solver._list[0].wall_time solution_dict = {'obj_val': round(pyo.value(self.m.objective), 2), 'production_start_cost': round(production_start_cost, 2), 'inventory_cost': round(inventory_cost, 2), 'transport_cost': round(transport_cost, 2), 'unmet_order_cost': round(unmet_order_cost, 2), 'number_orders_not_served': len(self.get_orders_not_served()), 'lower_bound': round(lb, 2), 'upper_bound': round(ub, 2), 'mip_gap': str(round(((ub-lb)/ub)*100, 2)) + "%", 'time_limit [sec]': self.solver_factory.options['TimeLimit'], 'solve_time': solve_time} # TODO # TODO: Add relevant data sheet_name = "run_" + str(id) df = pd.DataFrame(solution_dict, index=[0]).transpose() df.to_excel(excel_writer, sheet_name=sheet_name, startrow=1) if __name__ == '__main__': # problem_data = ProblemData('../../data/input_data/small_testcase_one_vessel.xlsx') # problem_data = ProblemData('../../data/input_data/small_testcase.xlsx') # problem_data = ProblemData('../../data/input_data/medium_testcase.xlsx') # problem_data = ProblemData('../../data/input_data/large_testcase.xlsx') # problem_data = ProblemData('../../data/input_data/larger_testcase.xlsx') # problem_data = ProblemData('../../data/input_data/larger_testcase_4vessels.xlsx') # PARAMETERS TO FIX BEFORE USE ### partial_warm_start = False # TODO: Fix num_alns_iterations = 100 # only used if partial_warm_start = True extensions = False # extensions _not_ supported in generated test files # PARAMETERS TO CHANGE ### # time_limit = 100 # EXTERNAL RUN parser = argparse.ArgumentParser(description='process FFPRP input parameters') parser.add_argument('input_filepath', type=str, help='path of input data file') parser.add_argument('time_limit', type=str, help='path of input data file') args = parser.parse_args() output_filepath = "data/output_data/gurobi-" + str(args.input_filepath.split("/")[-1]) time_limit = int(args.time_limit) # Execution line format: python3 src/models/ffprp_model.py data/input_data/f1-v3-o20-t50.xlsx # PARAMETERS NOT TO CHANGE ### problem_data = ProblemData(args.input_filepath) # ProblemData(file_path) problem_data.soft_tw = extensions y_init_dict = None if partial_warm_start: pass # problem_data_ext = ProblemDataExtended(file_path) # TODO: Fix to avoid to prbl reads (problem with nodes field) # problem_data_ext.soft_tw = extensions # t = time() # y_init_dict = src.alns.alns.run_alns(prbl=problem_data_ext, iterations=num_alns_iterations, # skip_production_problem_postprocess=partial_warm_start, verbose=False) # print(f"ALNS warmup time {round(time() - t, 1)}") model = FfprpModel(problem_data, extended_model=extensions) #, y_init_dict=y_init_dict) model.solve(time_limit=time_limit, warm_start=partial_warm_start) # WRITE TO FILE excel_writer =
pd.ExcelWriter(output_filepath, engine='openpyxl', mode='w', options={'strings_to_formulas': False})
pandas.ExcelWriter
""" Train BERT-based models for each of the three cQA StackExchange topics: Apple, Cooking and Travel. Make predictions for the corresponding test sets and save to a CSV file. Steps for each topic: 1. Load training data. 2. Load validation data. 3. Initialise and train a model. <SKIP> 4. Sanity check by testing on the training and validation sets. <SKIP> 5. Load test data. 6. Compute predictions. <INITIALLY put 1 for the gold and 0 for the other answers> 7. Write to CSV files. Each topic stores CSV files under 'data/BERT_cQA_vec_pred/%s/' % topic. For each question in the test dataset, we save a separate CSV file. The csv files contain a row per candidate answer + a row at the end for the gold answer (this row will be a duplicate of one of the others.) The columns are: 'answer' (the text of the answer), 'prediction' (the score), 'vector' (the embedding of the answer taken from our final BERT layer). """ import csv import sys import pandas as pd import logging import os import numpy as np import torch from torch.nn import ReLU from torch.utils.data import Dataset, DataLoader from transformers import BertTokenizer, BertModel, AdamW, get_linear_schedule_with_warmup, DistilBertModel, \ DistilBertTokenizer from torch import nn, tensor, dtype logging.basicConfig(level=logging.INFO) class BertRanker(nn.Module): def __init__(self): super(BertRanker, self).__init__() bert = BertModel.from_pretrained("bert-base-cased") self.embedding_size = bert.config.hidden_size # self.bert = DistilBertModel.from_pretrained("distilbert-base-cased") self.bert = nn.DataParallel(bert) self.pooling = nn.AdaptiveAvgPool1d(1) self.pooling = nn.DataParallel(self.pooling) # self.out = nn.Linear(bert.config.hidden_size, 1) self.W1 = nn.Linear(self.embedding_size, 100) self.W1 = nn.DataParallel(self.W1) self.W2 = nn.Linear(100, 10) self.W2 = nn.DataParallel(self.W2) self.out = nn.Linear(10, 1) # only need one output because we just want a rank score self.relu = ReLU() def forward(self, input_ids1, attention_mask1, input_ids2, attention_mask2): sequence_emb = self.bert( input_ids=input_ids1, attention_mask=attention_mask1 )[0] sequence_emb = sequence_emb.transpose(1, 2) pooled_output_1 = self.pooling(sequence_emb) pooled_output_1 = pooled_output_1.transpose(2, 1) h1_1 = self.relu(self.W1(pooled_output_1)) h2_1 = self.relu(self.W2(h1_1)) scores_1 = self.out(h2_1) sequence_emb = self.bert( input_ids=input_ids2, attention_mask=attention_mask2 )[0] sequence_emb = sequence_emb.transpose(1, 2) pooled_output_2 = self.pooling(sequence_emb) pooled_output_2 = pooled_output_2.transpose(2, 1) h1_2 = self.relu(self.W1(pooled_output_2)) h2_2 = self.relu(self.W2(h1_2)) scores_2 = self.out(h2_2) return scores_1, scores_2 def forward_single_item(self, input_ids, attention_mask): sequence_emb = self.bert( input_ids=input_ids, attention_mask=attention_mask )[0] sequence_emb = sequence_emb.transpose(1, 2) pooled_output = self.pooling(sequence_emb) pooled_output = pooled_output.transpose(2, 1) h1 = self.relu(self.W1(pooled_output)) h2 = self.relu(self.W2(h1)) scores = self.out(h2) return scores, torch.squeeze(pooled_output).detach() def train_epoch(model, data_loader, loss_fn, optimizer, device, scheduler): model = model.train() losses = [] ncorrect = 0 count_examples = 0 for step, batch in enumerate(data_loader): if np.mod(step, 100) == 0: print("Training step %i / %i" % (step, len(data_loader))) input_ids1 = batch["input_ids1"].to(device) attention_mask1 = batch["attention_mask1"].to(device) input_ids2 = batch["input_ids2"].to(device) attention_mask2 = batch["attention_mask2"].to(device) scores_1, scores_2 = model( input_ids1=input_ids1, attention_mask1=attention_mask1, input_ids2=input_ids2, attention_mask2=attention_mask2 ) ncorrect += float(torch.sum(torch.gt(scores_1, scores_2))) # first score is always meant to be higher count_examples += len(scores_1) loss = loss_fn(scores_1, scores_2, batch['targets'].to(device)) losses.append(float(loss.item())) loss.backward() nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0) optimizer.step() scheduler.step() optimizer.zero_grad() return ncorrect / float(count_examples), np.mean(losses) def train_bertcqa(data_loader, nepochs=1, random_seed=42, save_path='saved_bertcqa_params', reload_model=False): # For reproducibility while debugging. TODO: vary this during real experiments. np.random.seed(random_seed) torch.manual_seed(random_seed) # Get the device for running the training and prediction if torch.cuda.is_available(): device = torch.device("cuda") print('Selecting device -- using cuda') print('Selected device: ') print(device) print('Current cuda device:') print(torch.cuda.current_device()) else: device = torch.device("cpu") print('Selecting device -- using CPU') # Create the BERT-based model model = BertRanker() model = model.to(device) if reload_model and os.path.exists(save_path+'.pkl'): print('Found a previously-saved model... reloading') model.load_state_dict(torch.load(save_path+'.pkl')) with open(save_path+'_num_epochs.txt', 'r') as fh: epochs_completed = int(fh.read()) print('Number of epochs already completed: %i' % epochs_completed) else: epochs_completed = 0 optimizer = AdamW(model.parameters(), lr=5e-5, correct_bias=False) optimizer.zero_grad() scheduler = get_linear_schedule_with_warmup( optimizer, num_warmup_steps=len(data_loader) * nepochs * 0.1, num_training_steps=len(data_loader) * nepochs ) loss_fn = nn.MarginRankingLoss(margin=0.0).to(device) for epoch in range(epochs_completed, nepochs): print('Training epoch %i' % epoch) train_acc, train_loss = train_epoch( model, data_loader, loss_fn, optimizer, device, scheduler ) print(f'Train loss {train_loss} pairwise label accuracy {train_acc}') print('Saving trained model') torch.save(model.state_dict(), save_path+'.pkl') # write the number of epochs to file. If we need to restart training, we don't need to repeat all epochs. with open(save_path+'_num_epochs.txt', 'w') as fh: fh.write(str(epoch+1)) return model, device def predict_bertcqa(model, data_loader, device): scores = np.zeros(0) vectors = np.zeros((0, model.embedding_size)) qids = np.zeros(0) ismatch = np.zeros(0) model.eval() for step, batch in enumerate(data_loader): if np.mod(step, 100) == 0: print("Prediction step %i / %i" % (step, len(data_loader))) input_ids = batch["input_ids"].to(device) attention_mask = batch["attention_mask"].to(device) batch_scores, batch_vectors = model.forward_single_item(input_ids, attention_mask) print('step %i' % step) print('batch_vctor shape ' + str(batch_vectors.shape)) print('vectors shape ' + str(vectors.shape)) scores = np.append(scores, batch_scores.cpu().detach().numpy().flatten()) batch_vectors = batch_vectors.cpu().numpy() if batch_vectors.ndim == 1: batch_vectors = batch_vectors[None, :] vectors = np.concatenate((vectors, batch_vectors), axis=0) qids = np.append(qids, batch["qid"].detach().numpy().flatten()) ismatch = np.append(ismatch, batch["ismatch"].detach().numpy().flatten()) print('Outputting an embedding vector with shape ' + str(np.array(vectors).shape)) return scores, vectors, qids, ismatch def evaluate_accuracy(model, data_loader, device): scores, vectors, qids, matches = predict_bertcqa(model, data_loader, device) unique_questions = np.unique(qids) ncorrect = 0 nqs = len(unique_questions) for q_id in unique_questions: qscores = scores[qids == q_id] isgold = matches[qids == q_id] if isgold[np.argmax(qscores)]: ncorrect += 1 acc = ncorrect / float(nqs) print("Accuracy = %f" % acc) return acc, scores, vectors # Create the dataset class class SEPairwiseDataset(Dataset): def __init__(self, qa_pairs: list): self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased') # BertTokenizer.from_pretrained('bert-base-cased') self.qa_pairs = qa_pairs self.max_len = 512 def __len__(self): return len(self.qa_pairs) def __getitem__(self, i): # first item in the pair encoding1 = self.tokenizer.encode_plus( self.qa_pairs[i][0], add_special_tokens=True, max_length=self.max_len, return_token_type_ids=False, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', ) # second item in the pair encoding2 = self.tokenizer.encode_plus( self.qa_pairs[i][1], add_special_tokens=True, max_length=self.max_len, return_token_type_ids=False, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', ) return { 'text1': self.qa_pairs[i][0], 'text2': self.qa_pairs[i][1], 'input_ids1': encoding1['input_ids'].flatten(), 'input_ids2': encoding2['input_ids'].flatten(), 'attention_mask1': encoding1['attention_mask'].flatten(), 'attention_mask2': encoding2['attention_mask'].flatten(), 'targets': tensor(1, dtype=torch.float) } class SESingleDataset(Dataset): def __init__(self, qas: list, qids: list, aids: list, goldids: dict): self.tokenizer = DistilBertTokenizer.from_pretrained('distilbert-base-cased') # BertTokenizer.from_pretrained('bert-base-cased') self.qas = qas self.qids = qids self.aids = aids self.goldids = goldids self.max_len = 512 def __len__(self): return len(self.qas) def __getitem__(self, i): # first item in the pair encoding1 = self.tokenizer.encode_plus( self.qas[i], add_special_tokens=True, max_length=self.max_len, return_token_type_ids=False, pad_to_max_length=True, return_attention_mask=True, return_tensors='pt', ) return { 'text1': self.qas[i], 'input_ids': encoding1['input_ids'].flatten(), 'attention_mask': encoding1['attention_mask'].flatten(), 'targets': tensor(1, dtype=torch.long), 'qid': self.qids[i], 'ismatch': self.goldids[self.qids[i]] == self.aids[i] } def construct_pairwise_dataset(dataframe, n_neg_samples=10): """ Function for constructing a pairwise training set where each pair consists of a matching QA sequence and a non-matching QA sequence. :param n_neg_samples: Number of pairs to generate for each question by sampling non-matching answers and pairing them with matching answers. :param dataframe: :return: """ # Get the positive (matching) qs and as from traindata and put into pairs # Sample a number of negative (non-matching) qs and as from the answers listed for each question in traindata qa_pairs = [] for idx, qid in enumerate(dataframe.index): # Reconstruct the text sequences for the training questions tokids = questions.loc[qid].values[0].split(' ') toks = vocab[np.array(tokids).astype(int)] question = ' '.join(toks) # Reconstruct the text sequences for the true answers gold_ans_id = dataframe.loc[qid]["goldid"] # some of the lines seem to have two gold ids. Just use the first. gold_ans_ids = gold_ans_id.split(' ') gold_ans_id = gold_ans_ids[0] tokids = answers.loc[gold_ans_id].values[0].split(' ') toks = vocab[np.array(tokids).astype(int)] gold_ans = ' '.join(toks) # Join the sequences. Insert '[SEP]' between the two sequences qa_gold = question + ' [SEP] ' + gold_ans # Reconstruct the text sequences for random wrong answers wrong_ans_ids = dataframe.loc[qid]["ansids"] wrong_ans_ids = wrong_ans_ids.split(' ') if len(wrong_ans_ids) < n_neg_samples + 1: continue if n_neg_samples == 0: # use all the wrong answers (exclude the gold one that is mixed in) n_wrongs = len(wrong_ans_ids) - 1 widx = 0 else: # use a specified sample size n_wrongs = n_neg_samples qa_wrongs = [] while len(qa_wrongs) < n_wrongs: if n_neg_samples == 0: # choose the next wrong answer, skip over the gold answer. wrong_ans_id = wrong_ans_ids[widx] widx += 1 if wrong_ans_id == gold_ans_id: wrong_ans_id = wrong_ans_ids[widx] widx += 1 else: # choose a new negative sample wrong_ans_id = gold_ans_id while wrong_ans_id == gold_ans_id: wrong_ans_id = wrong_ans_ids[np.random.randint(len(wrong_ans_ids))] tokids = answers.loc[wrong_ans_id].values[0].split(' ') toks = vocab[np.array(tokids).astype(int)] wrong_ans = ' '.join(toks) qa_wrong = question + ' [SEP] ' + wrong_ans qa_wrongs.append(qa_wrong) qa_pairs.append((qa_gold, qa_wrong)) data_loader = DataLoader( SEPairwiseDataset(qa_pairs), batch_size=16, num_workers=8 ) data = next(iter(data_loader)) return qa_pairs, data_loader, data def construct_single_item_dataset(dataframe): """ Constructs a dataset where each element is a single QA pair. It contains all the sampled non-matching answers from the given dataframe. A list of question IDs is returned to indicate which items relate to the same question, along with a dict with question IDs as keys and the indexes of the gold answers within the answers for their corresponding questions as items. :param dataframe: :return: """ # Get the positive (matching) qs and as from traindata and put into pairs # Sample a number of negative (non-matching) qs and as from the answers listed for each question in traindata qas = [] qids = [] aids = [] goldids = {} for idx, qid in enumerate(dataframe.index): # Reconstruct the text sequences for the training questions tokids = questions.loc[qid].values[0].split(' ') toks = vocab[np.array(tokids).astype(int)] question = ' '.join(toks) # Reconstruct the text sequences for random wrong answers ans_ids = dataframe.loc[qid]["ansids"] ans_ids = ans_ids.split(' ') if len(ans_ids) < 2: continue ans_ids = np.unique(ans_ids) # make sure we don't have the same answer multiple times gold_id = dataframe.loc[qid]["goldid"] gold_id = gold_id.split(' ') gold_id = gold_id[0] for ans_idx, ans_id in enumerate(ans_ids): tokids = answers.loc[ans_id].values[0].split(' ') toks = vocab[np.array(tokids).astype(int)] wrong_ans = ' '.join(toks) qa_wrong = question + ' [SEP] ' + wrong_ans qas.append(qa_wrong) qids.append(qid) aids.append(ans_id) if ans_id == gold_id: goldids[qid] = ans_id if qid not in goldids: print("Didn't find the goldid in the list of candidates for q %i. Gold ID = %s, answers = %s" % (qid, dataframe.loc[qid]["goldid"], dataframe.loc[qid]["ansids"])) data_loader = DataLoader( SESingleDataset(qas, qids, aids, goldids), batch_size=16, num_workers=8 ) data = next(iter(data_loader)) return qas, qids, goldids, aids, data_loader, data if __name__ == "__main__": # Create the output dir outputdir = './data/cqa_base_models/BERT_vec_pred' if not os.path.exists(outputdir): os.mkdir(outputdir) # Our chosen topics topic = sys.argv[1] # ['apple', 'cooking', 'travel'] print('Loading the training data for %s' % topic) # Data directory: datadir = './data/cqa_data/%s.stackexchange.com' % topic # answers.tsv: each row corresponds to an answer; first column is answer ID; rows contain # the space-separated IDs of the tokens in the answers. # questions.tsv: as above but first column is question ID, rows contain space-separated token IDs of questions. # train.tsv, test.tsv and valid.tsv contain the questions & candidates in each set. First column is question ID, # second column is gold answer ID, third column is a space-separated list of candidate answer IDs. # vocab.tsv is needed to retrieve the text of the questions and answers from the token IDs. First col is ID and # second col is the token. # load the vocab vocab = pd.read_csv(os.path.join(datadir, 'vocab.tsv'), sep='\t', quoting=csv.QUOTE_NONE, header=None, index_col=0, names=['tokens'], dtype=str, keep_default_na=False)["tokens"].values # load the questions questions = pd.read_csv(os.path.join(datadir, 'questions.tsv'), sep='\t', header=None, index_col=0) # load the answers answers = pd.read_csv(os.path.join(datadir, 'answers.tsv'), sep='\t', header=None, index_col=0) # Load the training set traindata = pd.read_csv(os.path.join(datadir, 'train.tsv'), sep='\t', header=None, names=['goldid', 'ansids'], index_col=0) tr_qa_pairs, tr_data_loader, tr_data = construct_pairwise_dataset(traindata, n_neg_samples=20) qmax = 0 noverlength = 0 for q in tr_qa_pairs: l = len(q[0].split(' ')) qmax = l if l > qmax else qmax if l > 512: noverlength += 1 print('QuestionAnswer max length: %i' % qmax) print('Number over length = %i' % noverlength) print('number of qas = %i' % len(tr_qa_pairs)) # Train the model ---------------------------------------------------------------------------------------------- bertcqa_model, device = train_bertcqa(tr_data_loader, 3, 42, os.path.join(outputdir, 'model_params_%s' % topic), reload_model=True) # Compute performance on training set -------------------------------------------------------------------------- # Training is very large, don't bother with this. # print("Evaluating on training set:") # tr_qas2, tr_qids2, tr_goldids2, tr_aids2, tr_data_loader2, tr_data2 = construct_single_item_dataset(traindata) # evaluate_accuracy(bertcqa_model, tr_data_loader2, device) # Compute performance on validation set ------------------------------------------------------------------------ # Load the validation set # validationdata = pd.read_csv(os.path.join(datadir, 'valid.tsv'), sep='\t', header=None, # names=['goldid', 'ansids'], index_col=0, nrows=2) # va_qas, va_qids, va_goldids, va_aids, va_data_loader, va_data = construct_single_item_dataset(validationdata) # # print("Evaluating on validation set:") # evaluate_accuracy(bertcqa_model, va_data_loader, device, va_qids, va_goldids) # Compute performance on test set ------------------------------------------------------------------------------ # Load the test set testdata = pd.read_csv(os.path.join(datadir, 'test.tsv'), sep='\t', header=None, names=['goldid', 'ansids'], index_col=0) te_qas, te_qids, te_goldids, te_aids, te_data_loader, te_data = construct_single_item_dataset(testdata) print("Evaluating on test set:") _, te_scores, te_vectors = evaluate_accuracy(bertcqa_model, te_data_loader, device) # Output predictions in the right format for the GPPL experiments ---------------------------------------------- # Save predictions for the test data fname_text = os.path.join(outputdir, '%s_text.tsv' % topic) fname_numerical = os.path.join(outputdir, '%s_num.tsv' % topic) # The text data and other info goes here: text_df = pd.DataFrame(columns=['qid', 'answer', 'isgold']) # Store the prediction and embedding vectors here: numerical_data = np.empty((len(te_qids), 1 + bertcqa_model.embedding_size)) for i, qid in enumerate(te_qids): if np.mod(i, 100) == 0: print("Outputting qa pair %i / %i" % (i, len(te_qids))) goldid = te_goldids[qid] ansid = te_aids[i] tokids = answers.loc[ansid].values[0].split(' ') toks = vocab[np.array(tokids).astype(int)] answer_text = ' '.join(toks) score = te_scores[i] vector = te_vectors[i] isgold = True if goldid == ansid else False text_df = text_df.append( {'qid': qid, 'answer': answer_text, 'isgold': isgold}, ignore_index=True ) numerical_data[i, 0] = score numerical_data[i, 1:] = vector text_df.to_csv(fname_text, sep='\t')
pd.DataFrame(numerical_data)
pandas.DataFrame
import pandas as pd import numpy as np import json from bs4 import BeautifulSoup import requests import matplotlib.pyplot as plt # save data import pickle def save(data,fileName): with open(fileName+'.dat', 'wb') as f: pickle.dump(data, f) def load(fileName): with open(fileName+'.dat', 'rb') as f: new_data = pickle.load(f) return new_data # # all_coins_dict = json.loads(BeautifulSoup( # # requests.get('https://api.coincap.io/v2/assets').content, "html.parser").prettify()) # all_coins_dict = requests.get('https://api.coincap.io/v2/assets').json() # # print(all_coins_dict) # all_coins_df = pd.DataFrame(all_coins_dict["data"]) # # print(all_coins_df) # coins_by_mcap = all_coins_df[all_coins_df["marketCapUsd"].astype(float) > 1e9] # coin_portfolio = coins_by_mcap['id'] # save(coin_portfolio,'coin_portfolio') coin_portfolio = load('coin_portfolio') # del(coin_portfolio['bitcoin-sv']) # del(coin_portfolio['ethereum']) # coin_portfolio.drop([,'ethereum']) # indexVal = coin_portfolio[ coin_portfolio.values == 'bitcoin-sv' ].index # coin_portfolio.drop(indexVal , inplace=True) # indexVal = coin_portfolio[ coin_portfolio.values == 'ethereum' ].index # coin_portfolio.drop(indexVal , inplace=True) # indexVal = coin_portfolio[ coin_portfolio.values == 'nano' ].index # coin_portfolio.drop(indexVal , inplace=True) # indexVal = coin_portfolio[ coin_portfolio.values == 'zcash' ].index # coin_portfolio.drop(indexVal , inplace=True) # new_coins = pd.Series(['zcash']) # not enough data on this api for nano # coin_portfolio.append(new_coins) print("Portfolio coins with MCAP > 1 Billion :\n",coin_portfolio.values) # save(coin_portfolio,'coin_portfolio') #Create a DataFrame that will hold all the price & data for all the selected coins combined_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Apr 5 15:40:55 2021 @author: liukang """ import numpy as np import pandas as pd from sklearn.metrics import average_precision_score from sklearn.metrics import roc_auc_score import warnings warnings.filterwarnings('ignore') disease_list=pd.read_csv('/home/liukang/Doc/Error_analysis/subgroup_in_previous_study.csv') result = pd.read_csv('/home/liukang/Doc/AUPRC/test_result_10_No_Com.csv') round_num = 1000 disease_final_result = pd.DataFrame() test_total = pd.DataFrame() for i in range(1,5): test_data = pd.read_csv('/home/liukang/Doc/valid_df/test_{}.csv'.format(i)) test_total =
pd.concat([test_total,test_data])
pandas.concat
import os try: import pandas as pd except: os.system('pip3 install pandas') import pandas as pd try: import psycopg2 except: os.system('pip3 install psycopg2-binary') import psycopg2 import numpy as np from psycopg2.extensions import register_adapter, AsIs psycopg2.extensions.register_adapter(np.int64, psycopg2._psycopg.AsIs) class POSTGREE_WRITER: def __init__(self, string_to_connect='postgresql://postgres:postgres@pdbserv:5432/postgres'): self.string_to_connect = string_to_connect self.conn = psycopg2.connect(self.string_to_connect) self.cursor = self.conn.cursor() def __create_DF(self, path='./habr_news/'): DF_ALL = pd.DataFrame() for file in os.listdir(path): full_filename = '{}{}'.format(path, file) DF = pd.read_parquet(full_filename) DF_ALL =
pd.concat([DF_ALL, DF])
pandas.concat
""" Functions used for pre-processing """ #import math import pickle #import copy #import config import os # for multiprocessing from functools import partial from multiprocessing import Pool, cpu_count from joblib import Parallel, delayed import joblib import numpy as np import pandas as pd from sklearn.decomposition import PCA def load_results(filename): """ Load a pickle file """ with open(filename, 'rb') as file_to_load: data = pickle.load(file_to_load, encoding='bytes') return data def save_results(rootpath, filename, results): """ Save results as a pickle file """ if not os.path.exists(rootpath): os.makedirs(rootpath) with open(rootpath + filename, 'wb') as file_to_save: pickle.dump(results, file_to_save) ########## Code to perform Principal Component Analysis (PCA) on a covariate ################### def do_pca_on_covariate(df_train, df_test, n_components=10, location='pacific', var_id='sst'): """ Do PCA: learn PC loadings from training data, and project test data onto corresponding directions Args: df_train: multi-index (spatial-temporal) pandas dataframe -- Training data used to compute Principal axes in feature space df_test: multi-index pandas dataframe -- Test data n_components: int -- Number of components to keep location: str -- location indicator of the climate variable var_id: str -- climate variable to process Returns: df1: pandas dataframe -- PCs for training data df2: pandas dataframe -- PCs for test data """ # check the legitimate of the given parameters if not isinstance(df_train, pd.DataFrame): if isinstance(df_train, pd.Series): df_train = df_train.to_frame() # convert pd.series to pd.dataframe else: raise ValueError("Training data needs to be a pandas dataframe") if not isinstance(df_test, pd.DataFrame): if isinstance(df_test, pd.Series): df_test = df_test.to_frame() # convert pd.series to pd.dataframe else: raise ValueError("Test data needs to be a pandas dataframe") # check dataframe level! if len(df_train.index.names) < 3 or len(df_test.index.names) < 3: raise ValueError("Multiindex dataframe includes 3 levels: [lat,lon,start_date]") # flatten the dataframe such that the number of # samples equals the number of dates in the dataframe # and the number of features equals to lat x lon df_train_flat = df_train.unstack(level=[0, 1]) df_test_flat = df_test.unstack(level=[0, 1]) x_train = df_train_flat.to_numpy() x_test = df_test_flat.to_numpy() # make sure no NAN if np.isnan(x_train).sum() > 0: np.nan_to_num(x_train, 0) if np.isnan(x_test).sum() > 0: np.nan_to_num(x_test, 0) # Initialize the PCA model such that it will reture the top n_components pca = PCA(n_components=n_components) # Fit the model with Xtrain and apply the dimensionality reduction on Xtrain. pca_train = pca.fit_transform(x_train) # Apply dimensionality reduction to Xtest pca_test = pca.transform(x_test) # Convert PCs of Xtrain and Xtest to pandas dataframe col = ['{}_{}_pca_{}'.format(location, var_id, i) for i in range(n_components)] df1 = pd.DataFrame(data=pca_train, columns=col, index=df_train_flat.index) df2 = pd.DataFrame(data=pca_test, columns=col, index=df_test_flat.index) return(df1, df2) def get_pca_from_covariate(rootpath, data, var_name, var_location, train_start, train_end, test_start, test_end, n_components=10): """ Apply PCA on spatial-temporal Climate variables (Covariates), e.g., Sea surface temperature (SST) Args: data: multi-index pandas dataframe -- raw covariate to apply PCA var_name: str -- covariance name var_location: str -- covariance location (pacific, atlantic, us, and global) rootpath: str -- directory to save the results train_start, train_end: pd.Timestamp() -- the start date and the end date of the training set test_start, test_end: pd.Timestamp() -- the start date and the end date of the test set """ idx = pd.IndexSlice # check the legitimate of the given parameters if not isinstance(data, pd.DataFrame): if isinstance(data, pd.Series): data = data.to_frame() # convert pd.series to pd.dataframe else: raise ValueError("Covariate needs to be a pandas multiindex dataframe") # check if the train start date and the train end date is out of range if train_start < data.index.get_level_values('start_date')[0]: raise ValueError("Train start date is out of range!") if train_end > data.index.get_level_values('start_date')[-1]: raise ValueError("Train end date is out of range!") # check if the test start date and the test end date is out of range if test_start < train_start: raise ValueError("Test start date is out of range!") if test_end < train_end or test_end > data.index.get_level_values('start_date')[-1]: raise ValueError("Test end date is out of range!") print('create training-test split') train_x = data.loc[idx[:, :, train_start:train_end], :] test_x = data.loc[idx[:, :, test_start:test_end], :] # start PCA print('start pca') train_x_pca, test_x_pca = do_pca_on_covariate(train_x[var_name], test_x[var_name], n_components, var_location, var_name) # save PCA data all_x_pca = train_x_pca.append(test_x_pca) all_x_pca.to_hdf(rootpath + '{}_{}_pca_all.h5'.format(var_location, var_name), key=var_name, mode='w') ########## Code to perform z-score on a time-series using long-term mean and std ############################ def get_mean(df1, var_id='tmp2m', date_id='start_date'): """ Compute the mean and standard deviation of a covariate on the given period Args: d1: multi-index pandas dataframe -- covariate var_id: str -- covariate name date_id: str -- index column name for date Return(s): df1: multi-index pandas dataframe -- with month-day-mean-std added """ indexnames = df1.index.names idxlevel = indexnames.index(date_id) df1 = df1.assign(month=df1.index.get_level_values(idxlevel).month) df1 = df1.assign(day=df1.index.get_level_values(idxlevel).day) # get mean of each date df1['{}_daily_mean'.format(var_id)] = df1.groupby(['month', 'day'])[var_id].transform('mean') # get std of each date df1['{}_daily_std'.format(var_id)] = df1.groupby(['month', 'day'])[var_id].transform('std') return df1.fillna(0) def add_month_day(df1, date_id='start_date'): """ Extract the month-of-year and day-of-year from the date index, and add it to the datafram Args: d1: multi-index pandas dataframe -- covariate date_id: str -- index column name for date """ indexnames = df1.index.names idxlevel = indexnames.index(date_id) df1 = df1.assign(month=df1.index.get_level_values(idxlevel).month) df1 = df1.assign(day=df1.index.get_level_values(idxlevel).day) return(df1) def zscore_temporal(rootpath, data, var, train_start='1986-01-01', train_end='2016-12-31', test_start='2017-01-01', test_end='2018-12-31', date_id='start_date'): """ Do zscore on time series only (no spatial information), e.g., pca of a covariate Args: rootpath: directory to save the results data: pd.Dataframe -- dataframe contains data that is about to apply zscore var: str -- variable name train_start, train_end: str -- the start date and the end date of the training set test_start, test_end: str -- the start date and the end date of the test set date_id: str -- index column name for date """ # check the legitimate of the given parameters if not isinstance(data, pd.DataFrame) and not isinstance(data, pd.Series): raise ValueError("Data needs to be a pandas dataframe/series.") idx = pd.IndexSlice target = data[var].to_frame() print('pre-process: {}'.format(var)) df1 = target.loc[idx[train_start:train_end], :] # train df2 = target.loc[idx[test_start:test_end], :] # test df1 = get_mean(df1, var) # get first element of each group: mean for each location each month-day month_day = df1.groupby(['month', 'day']).first() month_day = month_day.reset_index() # add month-day column to second dataframe df2 = add_month_day(df2) df2.reset_index(level=0, inplace=True) var_cols = ['{}_daily_{}'.format(var, col_type) for col_type in ['mean', 'std']] # add mean and std get from df1 df2 = df2.merge(month_day[['month', 'day'] + var_cols], how='left', on=['month', 'day']) df2 = df2.sort_values(by=[date_id]) df2 = df2.set_index([date_id]) # add multi-index back df1[var + '_zscore'] = (df1[var] - df1['{}_daily_mean'.format(var)]) / df1['{}_daily_std'.format(var)] df2[var + '_zscore'] = (df2[var] - df2['{}_daily_mean'.format(var)]) / df2['{}_daily_std'.format(var)] df_all = df1.append(df2) df_all.to_hdf(rootpath + '{}_zscore.h5'.format(var), key=var, mode='w') def zscore_spatial_temporal(rootpath, target, var_id='tmp2m', train_start='1986-01-01', train_end='2016-12-31', test_start='2017-01-01', test_end='2018-12-31', date_id='start_date'): """ Apply zscore on spatial-temporal climate variable, e.g., the target variable tmp2m Args: rootpath: directory to save the results data: pd.Dataframe -- dataframe contains data that is about to apply zscore var_id: variable name train_start, train_end: str -- the start date and the end date of the training set test_start, test_end: str -- the start date and the end date of the test set date_id: column name for time/date """ idx = pd.IndexSlice df1 = target.loc[idx[:, :, train_start:train_end], :] # train df2 = target.loc[idx[:, :, test_start:test_end], :]# test # ---- Day-Month Mean of each location ---- # # Add 'month', 'day' column, and get mean and std of each date, each location df1 = df1.groupby(['lat', 'lon']).apply(lambda df: get_mean(df, var_id, date_id)) # get first element of each group: mean for each location each month-day month_day = df1.groupby(['lat', 'lon', 'month', 'day']).first() month_day = month_day.reset_index() # add month-day column to second dataframe df2 = df2.groupby(['lat', 'lon']).apply(lambda df: add_month_day(df, date_id)) df2.reset_index(level=2, inplace=True) var_cols = ['{}_daily_{}'.format(var_id, col_type) for col_type in ['mean', 'std']] # add mean and std get from df1 df2 = df2.merge(month_day[['lat', 'lon', 'month', 'day'] + var_cols], how='left', on=['lat', 'lon', 'month', 'day']) df2 = df2.sort_values(by=['lat', 'lon', date_id]) df2 = df2.set_index(['lat', 'lon', date_id]) # add multi-index back df1[var_id+'_zscore'] = (df1[var_id] - df1['{}_daily_mean'.format(var_id)])/df1['{}_daily_std'.format(var_id)] df2[var_id+'_zscore'] = (df2[var_id] - df2['{}_daily_mean'.format(var_id)])/df2['{}_daily_std'.format(var_id)] df_all = df1.append(df2) df_all.sort_index(level=['lat', 'lon'], inplace=True) df_all.to_hdf(rootpath + 'target_{}_multitask_zscore.h5'.format(var_id), key=var_id, mode='w') ############## train-validation split ################## def create_sequence_custom(today, time_frame, covariate_map, past_years=2, curr_shift_days=[7, 14, 28], past_shift_days=[7, 14, 28]): """ Feature aggregation: add features from past dates Args: today: pd.Timestamp() -- the date we want to aggregate feature time_frame: pandas dataframe -- corresponding dates for covariate map covariate_map: numpy array -- data/feature we use to aggregate past_years: int -- number of years in the past to be included curr_shift_days: list of int -- past dates/neighbors in the current year/most recent year to be included past_shift_days: list of int -- both past and future dates/neighbors in the past year to be included Return: agg_x: numpy array -- the aggragated feature for the date provided by "today" """ combine = [today] + [today - pd.DateOffset(days=day) for day in curr_shift_days] for k in range(past_years): # go to the past k years today = today -
pd.DateOffset(years=1)
pandas.DateOffset
import os import itertools from os.path import dirname, join, basename, exists from typing import List, Tuple, Callable, Union import cv2 import numpy as np from numpy.lib.npyio import save import pandas as pd from tqdm import tqdm from PIL import Image, ImageDraw from openslide import OpenSlide from ._functional import ( get_thumbnail, get_downsamples, try_thresholds, resize, detect_spots, get_spots, get_theta ) from .preprocess.functional import preprocess, tissue_mask from .helpers._utils import ( remove_extension, remove_images, flatten, multiprocess_map ) from ._logger import logger __all__ = [ 'Dearrayer' ] class Dearrayer(object): """ Cut TMA spots from a TMA array slide. Args: slide_path (str): Path to the TMA slide array. All formats that are supported by openslide can be used. threshold (int or float, optional): Threshold value for tissue detection. Defaults to 1.1. If threshold is an integer between [0, 255]: This value will be used as an threshold for tissue detection. Different thresholds can be easily searched with the Cutter.try_thresholds() function. If threshold is a float: In this case, Otsu's binarization is used and the found threshold is multiplied by `threshold` as Otsu isn't optimal for histological images. downsample (int, optional): Downsample used for the thumbnail. The user might have to tweak this value depending on the magnification of the slide. The TMA spot detection method is optimized for downsamlpe=64 when the magnification is 20x. If no spots are found, try adjusting the downsample or tweak the spot detection variables with ``Dearrayer.try_spot_mask()`` function. Defaults to 64. min_area_multiplier (float, optional): Remove all detected contours that have an area smaller than ``median_area*min_area_multiplier``. Defaults to 0.2. max_area_multiplier (float, optional): Remove all detected contours that have an area larger than ``median_area*max_area_multiplier``. Defaults to None. kernel_size (Tuple[int], optional): Kernel size used during spot detection. Defaults to (8, 8). create_thumbnail (bool, optional): Create a thumbnail if downsample is not available. Defaults to False. Raises: IOError: slide_path not found. ValueError: downsample is not available and create_thumbnail=False. """ def __init__( self, slide_path: str, threshold: Union[int, float] = 1.1, downsample: int = 64, min_area_multiplier: float = 0.2, max_area_multiplier: float = None, kernel_size: Tuple[int] = (8, 8), create_thumbnail: bool = False): super().__init__() # Define openslide reader. if not exists(slide_path): raise IOError(f'{slide_path} not found.') self.openslide_reader = OpenSlide(slide_path) # Assing basic stuff that user can see/check. self.slide_path = slide_path self.slide_name = remove_extension(basename(slide_path)) self.dimensions = self.openslide_reader.dimensions self.downsample = downsample self.threshold = threshold self.min_area_multiplier = min_area_multiplier self.max_area_multiplier = max_area_multiplier self.kernel_size = kernel_size self._spots_saved = False # Get spots. self._thumbnail = get_thumbnail( slide_path=self.slide_path, downsample=self.downsample, create_thumbnail=create_thumbnail ) if self._thumbnail is None: # Downsample not available. raise ValueError( f'Thumbnail not available for downsample {self.downsample}. ' 'Please set create_thumbnail=True or select downsample from\n\n' f'{self._downsamples()}' ) self.threshold, self._tissue_mask = tissue_mask( image=self._thumbnail, threshold=self.threshold, return_threshold=True ) self._spot_mask = detect_spots( mask=self._tissue_mask, min_area_multiplier=self.min_area_multiplier, max_area_multiplier=self.max_area_multiplier, kernel_size=self.kernel_size, ) self._numbers, self._bounding_boxes = get_spots( spot_mask=self._spot_mask, downsample=self.downsample, ) if self._numbers is None or self._bounding_boxes is None: logger.warning( 'No spots detected from the slide! Please try and adjust, ' 'the kernel_size, min_area_multiplier and max_area_multiplier ' 'parameters using the dearrayer.try_spot_mask() function.' ) self.spot_metadata = None self._annotate() else: self.spot_metadata = pd.DataFrame( np.hstack((self._numbers.reshape(-1, 1), self._bounding_boxes))) self.spot_metadata.columns = [ 'number', 'x', 'y', 'width', 'height'] self._annotate() if len([x for x in self._numbers if '_' in x]) > 0: logger.warning( 'Some spots were assinged the same number. Please check the ' f'annotated thumbnail for slide {self.slide_name}.' ) def __repr__(self): return self.__class__.__name__ + '()' def __len__(self): return len(self._bounding_boxes) def summary(self): """Returns a summary of the dearraying process.""" print(self._summary()) def _summary(self, cut=False): summary = ( f"{self.slide_name}" f"\n Number of TMA spots: {len(self._bounding_boxes)}" f"\n Downsample: {self.downsample}" f"\n Threshold: {self.threshold}" f"\n Min area multiplier: {self.min_area_multiplier}" f"\n Max area multiplier: {self.max_area_multiplier}" f"\n Kernel size: {self.kernel_size}" f"\n Dimensions: {self.dimensions}" ) if cut: summary += ( f"\n Tile width: {self.width}" f"\n Tile overlap: {self.overlap}" f"\n Max background: {self.max_background}" ) return summary def get_thumbnail(self, max_pixels: int = 1_000_000) -> Image.Image: """ Returns an Pillow Image of the thumbnail for inspection. Args: max_pixels (int, optional): Downsample the image until the image has less than max_pixles pixels. Defaults to 1_000_000. Returns: Image.Image: Thumbnail. """ return resize(self._thumbnail, max_pixels) def get_annotated_thumbnail(self, max_pixels: int = 5_000_000) -> Image.Image: """ Returns an Pillow Image of the annotated thumbnail for inspection. Args: max_pixels (int, optional): Downsample the image until the image has less than max_pixles pixels. Defaults to 5_000_000. Returns: Image.Image: Annotated thumbnail. """ return resize(self._annotated_thumbnail, max_pixels) def get_tissue_mask(self, max_pixels: int = 1_000_000) -> Image.Image: """ Returns an Pillow Image of the tissue mask for inspection. Args: max_pixels (int, optional): Downsample the image until the image has less than max_pixles pixels. Defaults to 1_000_000. Returns: Image.Image: Tissue mask. """ mask = self._tissue_mask # Flip for a nicer image. mask = 1 - mask mask = mask/mask.max()*255 mask = Image.fromarray(mask.astype(np.uint8)) return resize(mask, max_pixels) def get_spot_mask(self, max_pixels: int = 1_000_000) -> Image.Image: """ Returns an Pillow Image of the TMA spot mask for inspection. Args: max_pixels (int, optional): Downsample the image until the image has less than max_pixles pixels. Defaults to 1_000_000. Returns: Image.Image: Spot mask. """ mask = self._spot_mask # Flip for a nicer image. mask = 1 - mask mask = mask/mask.max()*255 mask = Image.fromarray(mask.astype(np.uint8)) return resize(mask, max_pixels) def _annotate(self): """Draw bounding boxes and numbers to the thumbnail.""" fontsize = (self.spot_metadata.width.median()/6000)*70/self.downsample self._annotated_thumbnail = self._thumbnail.copy() if self.spot_metadata is None: return else: annotated = ImageDraw.Draw(self._annotated_thumbnail) # Bounding boxes. for i in range(len(self)): x, y, w, h = self._bounding_boxes[i]/self.downsample annotated.rectangle( [x, y, x+w, y+h], outline='red', width=round(fontsize*5)) arr = np.array(self._annotated_thumbnail) # Numbers. for i in range(len(self)): x, y, w, h = self._bounding_boxes[i]/self.downsample arr = cv2.putText( arr, str(self._numbers[i]), (int(x+10), int(y-10+h)), cv2.FONT_HERSHEY_SCRIPT_SIMPLEX, fontsize, (0, 0, 255), round(fontsize*3), cv2.LINE_AA ) self._annotated_thumbnail = Image.fromarray(arr) def try_thresholds( self, thresholds: List[int] = [250, 240, 230, 220, 200, 190, 180, 170, 160, 150, 140], max_pixels=1_000_000) -> Image.Image: """ Try out different thresholds for tissue detection. The function prepares tissue masks with given thresholds and slaps them all together in one summary image. Args: thresholds (List[int], optional): Thresholds to try. Defaults to [250, 240, 230, 220, 200, 190, 180, 170, 160, 150, 140]. max_pixels (int, optional): Downsample the image until the image has less than max_pixles pixels. Defaults to 1_000_000. Returns: Image.Image: [description] """ return try_thresholds(thumbnail=self._thumbnail, thresholds=thresholds) def try_spot_mask( self, min_area_multiplier: float = 0.1, max_area_multiplier: float = 2, kernel_size: Tuple[int] = (5, 5), max_pixels: int = 1_000_000) -> Image.Image: """ Try out different values for TMA spot detection. Args: min_area_multiplier (float, optional): Increase if some of the small shit is detected as a spot. Decrease if some spots are missed. Defaults to 0.1. max_area_multiplier (float, optional): Increase if some spots are missed. Decrease if some large elements are detected as spots. Defaults to 2. kernel_size (Tuple[int], optional): Increase with a small downsample and vice versa. Defaults to (5, 5). max_pixels (int, optional): Downsample the image until the image has less than max_pixles pixels. Defaults to 1_000_000. Returns: Image.Image: TMA spot massk. """ mask = detect_spots( image=self._thumbnail, mask=self._tissue_mask, min_area_multiplier=min_area_multiplier, max_area_multiplier=max_area_multiplier, kernel_size=kernel_size, ) # Flip for a nicer image. mask = 1 - mask mask = mask/mask.max()*255 mask = Image.fromarray(mask.astype(np.uint8)) return resize(mask, max_pixels) def _prepare_directories(self, output_dir: str) -> None: out_dir = join(output_dir, self.slide_name) # Save paths. self._thumb_path = join(out_dir, f'thumbnail_{self.downsample}.jpeg') self._annotated_path = join(out_dir, 'thumbnail_annotated.jpeg') self._spot_meta_path = join(out_dir, 'spot_metadata.csv') self._tile_meta_path = join(out_dir, 'metadata.csv') self._image_dir = join(out_dir, 'spots') self._tile_dir = join(out_dir, 'tiles') self._summary_path = join(out_dir, 'summary.txt') # Make dirs. os.makedirs(self._image_dir, exist_ok=True) def save_spots( self, output_dir: str, overwrite: bool = False, image_format: str = 'jpeg', quality: int = 95) -> pd.DataFrame: """ Save TMA spots, coordinates and spot numbering. Args: output_dir (str): Parent directory for all output. overwrite (bool, optional): This will **remove** all saved images, thumbnail and metadata and save images again.. Defaults to False. image_format (str, optional): Format can be jpeg or png. Defaults to 'jpeg'. quality (int, optional): For jpeg compression. Defaults to 95. Raises: ValueError: Invalid image format. Returns: pd.DataFrame: Coordinates and spot numbers. """ allowed_formats = ['jpeg', 'png'] if image_format not in allowed_formats: raise ValueError( 'Image format {} not allowed. Select from {}'.format( image_format, allowed_formats )) self._prepare_directories(output_dir) # Check if slide has been cut before. if exists(self._thumb_path) and not overwrite: logger.warning( 'Spots have already been cut! Please set overwrite=True if ' 'you wish to save them again.' ) self.spot_metadata = pd.read_csv(self._spot_meta_path) self._spots_saved = True return self.spot_metadata elif exists(self._thumb_path) and overwrite: # Remove all previous files. os.remove(self._annotated_path) remove_images(self._image_dir) # Save text summary. with open(self._summary_path, "w") as f: f.write(self._summary()) # Save both thumbnails. self._thumbnail.save(self._thumb_path, quality=95) self._annotated_thumbnail.save(self._annotated_path, quality=95) # Multiprocessing to speed things up! data = list(zip(self._numbers, self._bounding_boxes)) spot_paths = multiprocess_map( func=save_spot, func_args={ 'slide_path': self.slide_path, 'image_dir': self._image_dir, 'image_format': image_format, 'quality': quality, }, lst=data, total=len(data), desc=self.slide_name, ) # Finally save metadata. self.spot_metadata['path'] = spot_paths self.spot_metadata.to_csv(self._spot_meta_path, index=False) self._spots_saved = True return self.spot_metadata def save_tiles( self, width: int, overlap: float = 0.0, max_background: float = 0.999, overwrite: bool = False, image_format: str = 'jpeg', quality: int = 95, custom_preprocess: Callable[[Image.Image], dict] = None ) -> pd.DataFrame: """ Cut tiles from dearrayed TMA spots. Args: width (int): Tile width. overlap (float, optional): Overlap between neighbouring tiles. Defaults to 0.0. max_background (float, optional): Maximum amount of background allowed for a tile. Defaults to 0.999. overwrite (bool, optional): This will **remove** the tiles directory completely and save all the tiles again. Defaults to False. image_format (str, optional): Format can be jpeg or png. Defaults to 'jpeg'. quality (int, optional): For jpeg compression. Defaults to 95. custom_preprocess (Callable[[Image.Image], dict], optional): This is intended for users that want to define their own preprocessing function. The function must take a Pillow image as an input and return a dictionary of desired metrics. Defaults to None. Raises: ValueError: Invalid image format. IOError: Spots have not been saved first with Dearrayer.save(). IOError: No spot paths found. Returns: pd.DataFrame: Metadata. """ allowed_formats = ['jpeg', 'png'] if image_format not in allowed_formats: raise ValueError( 'Image format {} not allowed. Select from {}'.format( image_format, allowed_formats )) if not self._spots_saved: raise IOError('Please save the spots first with Dearrayer.save()') if exists(self._tile_dir) and overwrite == False: logger.warning( f'{self._tile_dir} already exists! If you want to save tiles ' 'again please set overwrite=True.' ) return pd.read_csv(self._tile_meta_path) else: # Create the tiles directory os.makedirs(self._tile_dir, exist_ok=True) # Update summary.txt self.width = width self.overlap = overlap self.max_background = max_background with open(self._summary_path, "w") as f: f.write(self._summary(cut=True)) # Let's collect all spot paths. spot_paths = self.spot_metadata['path'].tolist() # Remove nan paths. spot_paths = [x for x in spot_paths if isinstance(x, str)] if len(spot_paths) == 0: raise IOError('No spot paths found!') # Wrap the saving function so it can be parallized. metadata = multiprocess_map( func=save_tile, func_args={ 'image_dir': self._tile_dir, 'width': width, 'overlap': overlap, 'threshold': self.threshold, 'max_background': max_background, 'image_format': image_format, 'quality': quality, 'custom_preprocess': custom_preprocess }, lst=spot_paths, total=len(spot_paths), desc='Cutting tiles', ) metadata = list(filter(lambda x: x is not None, metadata)) metadata = flatten(metadata) if len(metadata) == 0: logger.warning(f'No tiles saved from any of the spots!') return None # Save metadata. self.tile_metadata =
pd.DataFrame(metadata)
pandas.DataFrame
from .busSim.manager import managerFactory from .result.searchResult import SearchResult from .util import gen_start_time, transform from .gtfs_edit import copy_with_edits from .service.yelp import get_results from .census import Census import numpy as np import pandas as pd import geopandas as gpd from shapely.geometry import Polygon from shapely.wkt import loads from pyproj import Transformer from zipfile import ZipFile from io import TextIOWrapper import os from pathlib import Path from math import ceil, floor from collections import defaultdict import time class SCanalyzer: def __init__(self, gtfs_path): self.gtfs_path = gtfs_path self.orig_gtfs_path = gtfs_path self.base_out_path = self._get_out_path() self.out_path = self.base_out_path self._preprocess_gtfs() def gtfs_edit(self, edit_fn, route, from_orig=True): orig_gtfs_name = os.path.basename(self.orig_gtfs_path) modified_gtfs_name = f"{edit_fn.__name__}-{route}-{orig_gtfs_name}" modified_gtfs_path = os.path.join( self.base_out_path, modified_gtfs_name) from_path = self.orig_gtfs_path if from_orig else self.gtfs_path copy_with_edits(from_path, modified_gtfs_path, edit_fn, route) self.gtfs_path = modified_gtfs_path def set_batch_label(self, label): self.out_path = os.path.join(self.base_out_path, label) Path(self.out_path).mkdir(parents=True, exist_ok=True) def reset_batch_label(self): self.out_path = self.base_out_path def search(self, config, perf_df=None): # prerun check if not config.is_runnable(): raise Exception("The current config is not runnable") # dynamically init a manager manager = managerFactory.create( config.get_run_env(), gtfs_path=self.gtfs_path, out_path=self.out_path, borders=self.borders) result_df = manager.run_batch(config, perf_df) return result_df def load_census(self, cache=True): """ Looks for a stops.csv file in data/mmt_gtfs, queries TigerWeb Census API to pull out census tracts based on the center and radius of the system. An optional addition of 1km (default) is added to the radius. From the tracts, and a default set of demographs the ACS 5-year 2019 dataset is queried to get the demographics data for each tract. A few statistics are computed. It returns a geodataframe with all of this information and saves it to the output folder. cache default=True, if true will load a saved result and return """ # Pull from Cache and return: cache_path = os.path.join(self.base_out_path, "census.csv") if cache and os.path.exists(cache_path): census_df = pd.read_csv(cache_path) return self._csvdf_to_gdf(census_df) # Create the Geodataframe: c = Census(gtfs_filename="../data/mmt_gtfs/stops.csv") gdf_tracts = c.getCensusTracts() demographic_data = c.getDemographicsData( gdf_tracts, demographics=['Race', 'Vehicles']) # Save output: demographic_data.to_csv(cache_path, index=False) return self._csvdf_to_gdf(demographic_data) def load_yelp(self, api_key, services=["banks", "clinics", "dentists", "hospitals", "supermarket"], cache=True): cache_path = os.path.join(self.base_out_path, "services.csv") if cache and os.path.exists(cache_path): return
pd.read_csv(cache_path)
pandas.read_csv
import pandas as pd import numpy as np from sklearn import ensemble, feature_extraction, preprocessing from sklearn.calibration import CalibratedClassifierCV # import data train =
pd.read_csv('../input/train.csv')
pandas.read_csv
import pandas as pd import numpy as np from datetime import datetime from multiprocessing import Pool from functools import partial from plots import * from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) ''' Notice: This computer software was prepared by Battelle Memorial Institute, hereinafter the Contractor, under Contract No. DE-AC05-76RL01830 with the Department of Energy (DOE). All rights in the computer software are reserved by DOE on behalf of the United States Government and the Contractor as provided in the Contract. You are authorized to use this computer software for Governmental purposes but it is not to be released or distributed to the public. NEITHER THE GOVERNMENT NOR THE CONTRACTOR MAKES ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY FOR THE USE OF THIS SOFTWARE. This notice including this sentence must appear on any copies of this computer software. ''' ''' This class implements repo centric methods. These metrics assume that the data is in the order id,created_at,type,actor.id,repo.id ''' ''' This method returns the distributon for the diffusion delay. Question #1 Inputs: DataFrame - Data eventType - A list of events to filter data on unit - Time unit for time differences, e.g. "s","d","h" metadata_file - CSV file with repo creation times. Otherwise use first repo observation as proxy for creation time. Output: A list (array) of deltas in days ''' def getRepoDiffusionDelay(df,eventType=None,unit='h',metadata_file = '', plot=False, saveData=False): if metadata_file != '': repo_metadata = pd.read_csv(metadata_file) repo_metadata = repo_metadata[['full_name_h','created_at']] repo_metadata['created_at'] = pd.to_datetime(repo_metadata['created_at']) #Standardize Time and Sort Dataframe df.columns = ['time','event','user','repo'] #Checks for specific event type, uses both Fork and WatchEvent if eventType is not None: df = df[df.event.isin(eventType)] df['time'] = pd.to_datetime(df['time']) df = df.sort_values(by='time') if metadata_file != '': df = df.merge(repo_metadata,left_on='repo',right_on='full_name_h',how='left') df = df[['repo','created_at','time']].dropna() df['delta'] = (df['time']-df['created_at']).apply(lambda x: int(x / np.timedelta64(1, unit))) else: #Find difference between event time and "creation time" of repo #Creation time is first seen event creation_day = df['time'].min() df['delta'] = (df['time']-creation_day).apply(lambda x: int(x / np.timedelta64(1, unit))) df = df.iloc[1:] delta = df['delta'].values if plot==False: return delta ############## ## Plotting ## ############## if eventType is not None: eventList = [] for ele in eventType: eventList.append(ele[:-5]) eventType = '/'.join(eventList) else: eventType = 'All' unit_labels = {'s':'Seconds', 'h':'Hours', 'd':'Days'} ##To Save or not if saveData != False: plot_histogram(delta,unit_labels[unit] + ' Between '+eventType+' Event and Creation Event','Number of Events','Diffusion Delay',loc=saveData + '_histogram.png') ##plotting line graph plot_line_graph(delta,'Event Number','Delta between '+eventType+' Event and Creation','Diffusion Delay',labels=eventType,loc=saveData + '_linegraph.png') else: print(plot_histogram(delta,unit_labels[unit] + ' Between '+eventType+' Event and Creation Event','Number of Events','Diffusion Delay',loc=saveData)) ##plotting line graph print(plot_line_graph(delta,'Event Number','Delta between '+eventType+' Event and Creation','Diffusion Delay',labels=eventType,loc=saveData)) return delta ''' This method returns the growth of a repo over time. Question #2 Input: df - Dataframe of all data for a repo cumSum - This is a boolean that indicates if the dataframe should be cumuluative over time. output - A dataframe that describes the repo growth. Indexed on time. ''' def getRepoGrowth(df, cumSum=False, plot=False, saveData=False): df.columns = ['time', 'event','user', 'repo'] df['id'] = df.index df['time'] = pd.to_datetime(df['time']) df = df.sort_values(by='time') df.set_index('time', inplace=True) df['hour'] = df.index.hour df['day'] = df.index.day df['month'] = df.index.month df['year'] = df.index.year #get daily event counts p = df[['year', 'month', 'day', 'id']].groupby(['year', 'month', 'day']).count() p = pd.DataFrame(p).reset_index() #get cumulative sum of daily event counts if cumSum == True: p['id'] = p.cumsum(axis=0)['id'] p.columns = ['year', 'month', 'day', 'value'] p['date'] = p.apply(lambda x: datetime.strptime("{0} {1} {2}".format(x['year'], x['month'], x['day']), "%Y %m %d"), axis=1) p['date'] = pd.to_datetime(p['date'].dt.strftime('%Y-%m-%d')) p = p.set_index(p['date']) del p['year'] del p['month'] del p['day'] del p['date'] p = p.reset_index() if plot== False: return p ############## ## Plotting ## ############## cumTitle = '' if cumSum: cumTitle = 'Cumulative Sum of ' if saveData != False: plot_time_series(p,'Time','Total Number of Events', cumTitle + 'Events Over Time', loc=saveData+'_time_series_cumsum'+str(cumSum)+'.png') #To mimic PNNL Graph, run with CumSum as False plot_histogram(p['value'].values,'Events Per Day',cumTitle + 'Total Number of Days','Distribution Over Daily Event Counts', loc=saveData + 'histogram_cumsum' +str(cumSum)+'.png') else: print(plot_time_series(p,'Time','Total Number of Events',cumTitle + 'Events Over Time')) #To mimic PNNL Graph, run with CumSum as False print(plot_histogram(p['value'].values,'Events Per Day',cumTitle + 'Total Number of Days','Distribution Over Daily Event Counts')) return p ''' This method returns the the number of events on a repo before it "dies" (deleted or no activity) Question #2 Input - Dataframe of a repo Output - Number of events before death ''' def getLifetimeDepth(df): df.columns = ['time','event','user','repo'] df['time'] = pd.to_datetime(df['time']) df = df.sort_values(by='time') return len(df) ''' Time from creation to "death" of repo (deleted or no activity) Question #2 Input - Dataframe of a repo Output - Time from creation to "death" (default is days) ''' def getLifetimeTime(df): df.columns = ['time', 'event', 'user', 'repo'] df['time'] = pd.to_datetime(df['time']) df = df.sort_values(by='time') p = pd.DataFrame(df.iloc[[0, -1]]) p['delta'] = (p['time'] - p['time'].shift()).fillna(0) p['ans'] = p['delta'].apply(lambda x: x.total_seconds()).astype('int64') / (24 * 60 * 60) return p['ans'].values[1] ''' Calcultes the number of contributers, with or without duplicates. Question # 4 Input: df - Data frame can be repo or non-repo centric dropDup - Boolean to indicate whether or not the metric should contain duplicate users (on a daily basis), if None run Both cumaltive - Boolean to indicate whether or not the metric should be cumulative over time ''' def getContributions(df,dropDup=False,cumulative=False, plot=False, saveData=False, wfEvents=True): def contributionsHelper(df,dropDup,cumulative): if dropDup: df = df.drop_duplicates(subset=['user']) p = df[['user', 'year', 'month', 'day']].groupby(['year', 'month', 'day']).nunique() p = pd.DataFrame(p) del p['day'] del p['year'] del p['month'] p = p.reset_index() if cumulative: p['user'] = p.cumsum(axis=0)['user'] p['date'] = p.apply(lambda x: datetime.strptime("{0} {1} {2}".format(x['year'], x['month'], x['day']), "%Y %m %d"), axis=1) p['date'] = p['date'].dt.strftime('%Y-%m-%d') p['date'] = pd.to_datetime(p['date']) del p['year'] del p['month'] del p['day'] return p df.columns = [ 'time', 'event', 'user', 'repo'] df['time'] = pd.to_datetime(df['time']) if wfEvents == True: df = df[(df.event != 'ForkEvent') & (df.event != 'WatchEvent')] df = df.sort_values(by='time') df.set_index('time', inplace=True) df['hour'] = df.index.hour df['day'] = df.index.day df['month'] = df.index.month df['year'] = df.index.year #Running Both Duplicate and Non Duplicate if dropDup == None: #run both noDups = contributionsHelper(df, True, cumulative) containsDup = contributionsHelper(df,False, cumulative) noDups = noDups.reset_index(drop=True) containsDup = containsDup.reset_index(drop=True) ############## ## Plotting ## ############## if saveData != False: plot_contributions_twolines(containsDup,noDups,'Time','Number of Users','Number of Contributing Users Over Time', loc=saveData + '_containsDup_contributions_cumulative_' +str(cumulative)+ '.png') else: print(plot_contributions_twolines(containsDup,noDups,'Time','Number of Users','Cumulative Number of Contributing Users Over Time')) return noDups, containsDup else: results = contributionsHelper(df,dropDup, cumulative) ############## ## Plotting ## ############## title = 'with' if dropDup: title = 'without' cumTitle = '' if cumulative: cumTitle = 'Cumulative ' p = results p = p.rename(columns={"user": "value"}) if not plot: return p sns.set_style('whitegrid') sns.set_context('talk') if saveData != False: # To mimic PNNl's output have the cumulative as True plot_contributions_oneline(p,'Time','Number of Users',cumTitle +'Number of Users Over Time', loc=saveData + '_one_line_no_duplicates_cumsum' + str(cumulative) + '.png') #To mimic PNNL's output have cumulative as False plot_histogram(p.value.values,'Total Number of Contributors','Days',cumTitle+'Distribution of Unique Contributors '+title+' Duplicates', loc=saveData + '_histogram_no_duplicates_cumsum' + str(cumulative) + '.png') else: # To mimic PNNl's output have the cumulative as True #plot_contributions_oneline(p,'Time','Number of Users', cumTitle + 'Number of Contributing Users Over Time') #To mimic PNNL's output have cumulative as False #plot_histogram(p.user.values,'Total Number of Contributors','Days', cumTitle + 'Distribution of Unique Contributors '+title+' Duplicates') pass return p ''' This method returns the average time between events for each repo NOTE: Multithreading is highly recommended for datasets with more than 5000 repos. Question #12 Inputs: df - Data frame of all data for repos repos - (Optional) List of specific repos to calculate the metric for nCPu - (Optional) Number of CPU's to run metric in parallel Outputs: A list of average times for each repo. Length should match number of repos. Elements with NaN correspond to a repo only having a single event. ''' def getAvgTimebwEvents(df,repos=None, nCPU=1, plot=False, saveData=False): # Standardize Time and Sort Dataframe df.columns = ['time', 'event', 'user', 'repo'] df['time'] = pd.to_datetime(df['time']) if repos == None: repos = df['repo'].unique() p = Pool(nCPU) args = [(df, repos[i]) for i, item_a in enumerate(repos)] deltas = p.map(getMeanTimeHelper,args) p.join() p.close() if plot==False: return deltas if saveData != False: plot_histogram(deltas,'Time Between PullRequestEvents in Seconds','Number of Repos','Average Time Between PullRequestEvents for ' + community, loc=saveData + '_histogram.png') else: print(plot_histogram(deltas,'Time Between PullRequestEvents in Seconds','Number of Repos','Average Time Between PullRequestEvents for' + community)) ''' Helper function for getting the average time between events Inputs: Same as average time between events Output: Same as average time between events ''' def getMeanTime(df, r): d = df[df.repo == r] d = d.sort_values(by='time') delta = np.mean(np.diff(d.time)) / np.timedelta64(1, 's') return delta def getMeanTimeHelper(args): return getMeanTime(*args) return deltas ''' This method returns the distribution for each event over time or by weekday. Default is over time. Question #5 Inputs: df - Data frame of all data for repos nCPu - (Optional) Number of CPU's to run metric in parallel weekday - (Optional) Boolean to indicate whether the distribution should be done by weekday. Default is False. Output: Dataframe with the distribution of events by weekday. Columns: Event, Weekday, Count ''' def getDistributionOfEvents(df,nCPU = 1,weekday=False, plot=False, saveData=False): df.columns = ['time','event','user','repo'] df['id'] = df.index df_split = np.array_split(df,nCPU) pool = Pool(nCPU) distribution_partial = partial(processDistOfEvents, weekday=weekday) df_list = pool.map(distribution_partial,df_split) pool.close() pool.join() # Merge List into a single dataframe sum_col = "user" if weekday else "id" if weekday: columns = ['event', 'weekday'] else: columns = ['event', 'date'] df_1 = df_list[0] for i in range(1, len(df_list)): df_1 = pd.merge(df_1, df_list[i], on=columns, how='outer') df_1 = df_1[columns + ['value']] if plot==False: return df_1 ############## ## Plotting ## ############## if saveData != False: plot_distribution_of_events(df_1,weekday, loc=saveData + '.png') else: print(plot_distribution_of_events(df_1,weekday)) return df_1 ''' Helper Function for getting the Dist. of Events per weekday. ''' def processDistOfEvents(df,weekday): df['time'] = pd.to_datetime(df['time']) df = df.sort_values(by='time') df.set_index('time', inplace=True) df['hour'] = df.index.hour df['day'] = df.index.day df['month'] = df.index.month df['year'] = df.index.year if weekday: df['weekday'] =df.apply(lambda x:datetime(x['year'],x['month'],x['day']).weekday(),axis=1) p = df[['event','user','weekday']].groupby(['event','weekday']).count() p.columns = ['value'] p = p.reset_index() return p else: p = df[['event', 'year', 'month', 'day','id']].groupby(['event', 'year', 'month','day']).count() p = pd.DataFrame(p).reset_index() p.columns = ['event', 'year', 'month','day','value'] p['date'] = p.apply(lambda x: datetime.strptime("{0} {1} {2}".format(x['year'], x['month'],x['day']), "%Y %m %d"), axis=1) p['date'] = p['date'].dt.strftime('%Y-%m-%d') p = p.reset_index() return p ''' This method returns the distribution of event type per repo e.g. x repos with y number of events, z repos with n amounts of events. Question #12,13,14 Inputs: df - Data frame with data for all repos eventType - Event time to get distribution over Outputs: Dataframe with the distribution of event type per repo. Columns are repo id and the count of that event. ''' def getDistributionOfEventsByRepo(df,eventType='WatchEvent', plot=False, saveData=False,log=True): df.columns = ['time', 'event', 'user', 'repo'] df = df[df.event == eventType] p = df[['repo', 'event']].groupby(['repo']).count() p = p.sort_values(by='event') p.columns = ['value'] p = p.reset_index() if plot == False: return p ############## ## Plotting ## ############## ylabel = 'Number of Repos ' if log == True: ylabel += '(Log)' if saveData != False: plot_histogram(p['value'].values,'Number of Events',ylabel,'Distribution of '+eventType+' across Repos',log=log, loc=saveData + '_histogram.png') else: print(plot_histogram(p['value'].values,'Number of Events',ylabel,'Distribution of '+eventType+' across Repos',log=log)) return p ''' This method returns the top-k repos by event count for a certain event type Question #12,13 Inputs: df - Data frame with data for all repos eventType - Event time to get distribution over Outputs: Dataframe with the top-k repos and their event counts. Columns are repo id and the count of that event. ''' def getTopKRepos(df,k=100,eventType='WatchEvent',plot=False,saveData=False): df.columns = ['time', 'event', 'user', 'repo'] df = df[df.event == eventType] p = df[['repo', 'event']].groupby(['repo']).count() p = p.sort_values(by='event',ascending=False) p.columns = ['value'] return p.head(k) ''' This method returns the distribution of repo life over the dataframe. Repo life is defined from the first time a repo event is seen or created to when it is deleted or the last event in the dataframe. Question #12 Inputs: df - Data frame with the data for all repos Outputs: List of deltas for each repos lifetime. ''' def getDisributionOverRepoLife(df, plot=False, log = True, saveData=False): df.columns = ['time','event','user', 'repo'] df['time'] = pd.to_datetime(df['time']) df = df.sort_values(by='time') df_max = df[['repo', 'time']].groupby('repo').max() df_min = df[['repo', 'time']].groupby('repo').min() df_min = df_min.reset_index() df_max = df_max.reset_index() df_min.columns = ['repo', 'minTime'] m = df_min.merge(df_max) m['delta'] = m[['time']].sub(m['minTime'], axis=0) delta = m['delta'].values #Converts deltas to days (modify as necessary) delta = delta / (10 ** 9) / 86400 delta = [int(x) for x in delta if int(x) <= 25] if plot == False: return delta ############## ## Plotting ## ############## if saveData != False: plot_histogram(delta,'Length of Repo Life in Days','Number of Repos (Log)','Distrbution of Repo Life',log=log, loc=saveData + '_histogram.png') else: print(plot_histogram(delta,'Length of Repo Life in Days','Number of Repos (Log)','Distrbution of Repo Life',log=log)) return delta ''' This method returns the gini coefficient for the data frame. Question #6,15 Input: df - Data frame containing data can be any subset of data type - (Optional) This is the type of gini coefficient. Options: user or repo (case sensitive) Output: g - gini coefficient ''' def getGiniCoef(df, type='repo', plot=False, saveData=False): df.columns = ['time', 'event' ,'user', 'repo'] df = df[['repo', 'user']].groupby([type]).count() df.columns = ['counts'] df = df.reset_index() values = df['counts'].values values = np.sort(np.array(values)) cdf = np.cumsum(values) / float(np.sum(values)) percent_nodes = np.arange(len(values)) / float(len(values)) g = 1 - 2*np.trapz(x=percent_nodes,y=cdf) if plot == False: return g x = cdf y = percent_nodes data =
pd.DataFrame({'cum_nodes': y, 'cum_value': x})
pandas.DataFrame
#!/usr/bin/env python3 import logging import math from asyncio.log import logger from copy import copy from datetime import datetime, timedelta import arrow import numpy as np import pandas as pd import requests from electricitymap.contrib.config import ZONES_CONFIG from parsers.lib.config import refetch_frequency from . import DK, ENTSOE, statnett ZONE_CONFIG = ZONES_CONFIG["NL"] @refetch_frequency(timedelta(days=1)) def fetch_production( zone_key="NL", session=None, target_datetime=None, logger=logging.getLogger(__name__), ): if target_datetime is None: target_datetime = arrow.utcnow() else: target_datetime = arrow.get(target_datetime) r = session or requests.session() consumptions = ENTSOE.fetch_consumption( zone_key=zone_key, session=r, target_datetime=target_datetime, logger=logger ) if not consumptions: return for c in consumptions: del c["source"] df_consumptions = pd.DataFrame.from_dict(consumptions).set_index("datetime") # NL has exchanges with BE, DE, NO, GB, DK-DK1 exchanges = [] for exchange_key in ["BE", "DE", "GB"]: zone_1, zone_2 = sorted([exchange_key, zone_key]) exchange = ENTSOE.fetch_exchange( zone_key1=zone_1, zone_key2=zone_2, session=r, target_datetime=target_datetime, logger=logger, ) if not exchange: return exchanges.extend(exchange or []) # add NO data, fetch once for every hour # This introduces an error, because it doesn't use the average power flow # during the hour, but rather only the value during the first minute of the # hour! zone_1, zone_2 = sorted(["NO", zone_key]) exchange_NO = [ statnett.fetch_exchange( zone_key1=zone_1, zone_key2=zone_2, session=r, target_datetime=dt.datetime, logger=logger, ) for dt in arrow.Arrow.range( "hour", arrow.get(min([e["datetime"] for e in exchanges])).replace(minute=0), arrow.get(max([e["datetime"] for e in exchanges])).replace(minute=0), ) ] exchanges.extend(exchange_NO) # add DK1 data (only for dates after operation) if target_datetime > arrow.get("2019-08-24", "YYYY-MM-DD"): zone_1, zone_2 = sorted(["DK-DK1", zone_key]) df_dk = pd.DataFrame( DK.fetch_exchange( zone_key1=zone_1, zone_key2=zone_2, session=r, target_datetime=target_datetime, logger=logger, ) ) # Because other exchanges and consumption data is only available per hour # we floor the timpstamp to hour and group by hour with averaging of netFlow df_dk["datetime"] = df_dk["datetime"].dt.floor("H") exchange_DK = ( df_dk.groupby(["datetime"]) .aggregate({"netFlow": "mean", "sortedZoneKeys": "max", "source": "max"}) .reset_index() ) # because averaging with high precision numbers leads to rounding errors exchange_DK = exchange_DK.round({"netFlow": 3}) exchanges.extend(exchange_DK.to_dict(orient="records")) # We want to know the net-imports into NL, so if NL is in zone_1 we need # to flip the direction of the flow. E.g. 100MW for NL->DE means 100MW # export to DE and needs to become -100MW for import to NL. for e in exchanges: if e["sortedZoneKeys"].startswith("NL->"): e["NL_import"] = -1 * e["netFlow"] else: e["NL_import"] = e["netFlow"] del e["source"] del e["netFlow"] df_exchanges = pd.DataFrame.from_dict(exchanges).set_index("datetime") # Sum all exchanges to NL imports df_exchanges = df_exchanges.groupby("datetime").sum() # Fill missing values by propagating the value forward df_consumptions_with_exchanges = df_consumptions.join(df_exchanges).fillna( method="ffill", limit=3 ) # Limit to 3 x 15min # Load = Generation + netImports # => Generation = Load - netImports df_total_generations = ( df_consumptions_with_exchanges["consumption"] - df_consumptions_with_exchanges["NL_import"] ) # Fetch all production productions = ENTSOE.fetch_production( zone_key=zone_key, session=r, target_datetime=target_datetime, logger=logger ) if not productions: return # Flatten production dictionaries (we ignore storage) for p in productions: # if for some reason theré's no unknown value if not "unknown" in p["production"] or p["production"]["unknown"] == None: p["production"]["unknown"] = 0 Z = sum([x or 0 for x in p["production"].values()]) # Only calculate the difference if the datetime exists # If total ENTSOE reported production (Z) is less than total generation # (calculated from consumption and imports), then there must be some # unknown production missing, so we add the difference. # The difference can actually be negative, because consumption is based # on TSO network load, but locally generated electricity may never leave # the DSO network and be substantial (e.g. Solar). if ( p["datetime"] in df_total_generations and Z < df_total_generations[p["datetime"]] ): p["production"]["unknown"] = round( (df_total_generations[p["datetime"]] - Z + p["production"]["unknown"]), 3, ) # Add capacities solar_capacity_df = get_solar_capacities() wind_capacity_df = get_wind_capacities() for p in productions: p["capacity"] = { "solar": round(get_solar_capacity_at(p["datetime"], solar_capacity_df), 3), "wind": round(get_wind_capacity_at(p["datetime"], wind_capacity_df), 3), } # Filter invalid # We should probably add logging to this return [p for p in productions if p["production"]["unknown"] > 0] def fetch_production_energieopwek_nl( session=None, target_datetime=None, logger=logging.getLogger(__name__) ) -> list: if target_datetime is None: target_datetime = arrow.utcnow() # Get production values for target and target-1 day df_current = get_production_data_energieopwek(target_datetime, session=session) df_previous = get_production_data_energieopwek( target_datetime.shift(days=-1), session=session ) # Concat them, oldest first to keep chronological order intact df = pd.concat([df_previous, df_current]) output = [] base_time = ( arrow.get(target_datetime.date(), "Europe/Paris").shift(days=-1).to("utc") ) for i, prod in enumerate(df.to_dict(orient="records")): output.append( { "zoneKey": "NL", "datetime": base_time.shift(minutes=i * 15).datetime, "production": prod, "source": "energieopwek.nl, entsoe.eu", } ) return output def get_production_data_energieopwek(date, session=None): r = session or requests.session() # The API returns values per day from local time midnight until the last # round 10 minutes if the requested date is today or for the entire day if # it's in the past. 'sid' can be anything. url = "http://energieopwek.nl/jsonData.php?sid=2ecde3&Day=%s" % date.format( "YYYY-MM-DD" ) response = r.get(url) obj = response.json() production_input = obj["TenMin"]["Country"] # extract the power values in kW from the different production types # we only need column 0, 1 and 3 contain energy sum values df_solar = ( pd.DataFrame(production_input["Solar"]) .drop(["1", "3"], axis=1) .astype(int) .rename(columns={"0": "solar"}) ) df_offshore = ( pd.DataFrame(production_input["WindOffshore"]) .drop(["1", "3"], axis=1) .astype(int) ) df_onshore = ( pd.DataFrame(production_input["Wind"]).drop(["1", "3"], axis=1).astype(int) ) # We don't differentiate between onshore and offshore wind so we sum them # toghether and build a single data frame with named columns df_wind = df_onshore.add(df_offshore).rename(columns={"0": "wind"}) df = pd.concat([df_solar, df_wind], axis=1) # resample from 10min resolution to 15min resolution to align with ENTSOE data # we duplicate every row and then group them per 3 and take the mean df = ( pd.concat([df] * 2) .sort_index(axis=0) .reset_index(drop=True) .groupby(by=lambda x: math.floor(x / 3)) .mean() ) # Convert kW to MW with kW resolution df = df.apply(lambda x: round(x / 1000, 3)) return df def get_wind_capacities() -> pd.DataFrame: url_wind_capacities = "https://api.windstats.nl/stats" capacities_df = pd.DataFrame(columns=["datetime", "capacity (MW)"]) try: r = requests.get(url_wind_capacities) per_year_split_capacity = r.json()["combinedPowerPerYearSplitByLandAndSea"] except Exception as e: logger.error(f"Error fetching wind capacities: {e}") return capacities_df per_year_capacity = { f"{year}-01-01 00:00:00+00:00": sum(split.values()) for (year, split) in per_year_split_capacity.items() } capacities_df["datetime"] = pd.to_datetime(list(per_year_capacity.keys())) capacities_df["capacity (MW)"] = list(per_year_capacity.values()) capacities_df = capacities_df.set_index("datetime") return capacities_df def get_solar_capacities() -> pd.DataFrame: solar_capacity_base_url = "https://opendata.cbs.nl/ODataApi/odata/82610ENG/UntypedDataSet?$filter=((EnergySourcesTechniques+eq+%27E006590+%27))+and+(" START_YEAR = 2010 end_year = arrow.now().year years = list(range(START_YEAR, end_year + 1)) url_solar_capacity = copy(solar_capacity_base_url) for i, year in enumerate(years): if i == len(years) - 1: url_solar_capacity += f"(Periods+eq+%27{year}JJ00%27))" else: url_solar_capacity += f"(Periods+eq+%27{year}JJ00%27)+or+" solar_capacity_df =
pd.DataFrame(columns=["datetime", "capacity (MW)"])
pandas.DataFrame
# -*- coding: utf-8 -* ########## file path ########## ##### input file # training set keys uic-label with k_means clusters' label path_df_part_1_uic_label_cluster = "df_part_1_uic_label_cluster.csv" path_df_part_2_uic_label_cluster = "df_part_2_uic_label_cluster.csv" path_df_part_3_uic = "df_part_3_uic.csv" # data_set features path_df_part_1_U = "df_part_1_U.csv" path_df_part_1_I = "df_part_1_I.csv" path_df_part_1_C = "df_part_1_C.csv" path_df_part_1_IC = "df_part_1_IC.csv" path_df_part_1_UI = "df_part_1_UI.csv" path_df_part_1_UC = "df_part_1_UC.csv" path_df_part_2_U = "df_part_2_U.csv" path_df_part_2_I = "df_part_2_I.csv" path_df_part_2_C = "df_part_2_C.csv" path_df_part_2_IC = "df_part_2_IC.csv" path_df_part_2_UI = "df_part_2_UI.csv" path_df_part_2_UC = "df_part_2_UC.csv" path_df_part_3_U = "df_part_3_U.csv" path_df_part_3_I = "df_part_3_I.csv" path_df_part_3_C = "df_part_3_C.csv" path_df_part_3_IC = "df_part_3_IC.csv" path_df_part_3_UI = "df_part_3_UI.csv" path_df_part_3_UC = "df_part_3_UC.csv" # item_sub_set P path_df_P = "tianchi_fresh_comp_train_item.csv" ##### output file path_df_result = "res_gbdt_k_means_subsample.csv" path_df_result_tmp = "df_result_tmp.csv" # depending package import pandas as pd import numpy as np from sklearn.ensemble import GradientBoostingClassifier from sklearn import metrics import matplotlib.pyplot as plt import seaborn as sns import time # some functions def df_read(path, mode='r'): '''the definition of dataframe loading function''' data_file = open(path, mode) try: df = pd.read_csv(data_file, index_col=False) finally: data_file.close() return df def subsample(df, sub_size): '''the definition of sub-sample function @param df: dataframe @param sub_size: sub_sample set size @return sub-dataframe with the same formation of df''' if sub_size >= len(df): return df else: return df.sample(n=sub_size) ##### loading data of part 1 & 2 df_part_1_uic_label_cluster = df_read(path_df_part_1_uic_label_cluster) df_part_2_uic_label_cluster = df_read(path_df_part_2_uic_label_cluster) df_part_1_U = df_read(path_df_part_1_U) df_part_1_I = df_read(path_df_part_1_I) df_part_1_C = df_read(path_df_part_1_C) df_part_1_IC = df_read(path_df_part_1_IC) df_part_1_UI = df_read(path_df_part_1_UI) df_part_1_UC = df_read(path_df_part_1_UC) df_part_2_U = df_read(path_df_part_2_U) df_part_2_I = df_read(path_df_part_2_I) df_part_2_C = df_read(path_df_part_2_C) df_part_2_IC = df_read(path_df_part_2_IC) df_part_2_UI = df_read(path_df_part_2_UI) df_part_2_UC = df_read(path_df_part_2_UC) ##### generation of training set & valid set def train_set_construct(np_ratio=1, sub_ratio=1): ''' # generation of train set @param np_ratio: int, the sub-sample rate of training set for N/P balanced. @param sub_ratio: float ~ (0~1], the further sub-sample rate of training set after N/P balanced. ''' train_part_1_uic_label = df_part_1_uic_label_cluster[df_part_1_uic_label_cluster['class'] == 0].sample( frac=sub_ratio) train_part_2_uic_label = df_part_2_uic_label_cluster[df_part_2_uic_label_cluster['class'] == 0].sample( frac=sub_ratio) frac_ratio = sub_ratio * np_ratio / 1200 for i in range(1, 1001, 1): train_part_1_uic_label_0_i = df_part_1_uic_label_cluster[df_part_1_uic_label_cluster['class'] == i] train_part_1_uic_label_0_i = train_part_1_uic_label_0_i.sample(frac=frac_ratio) train_part_1_uic_label = pd.concat([train_part_1_uic_label, train_part_1_uic_label_0_i]) train_part_2_uic_label_0_i = df_part_2_uic_label_cluster[df_part_2_uic_label_cluster['class'] == i] train_part_2_uic_label_0_i = train_part_2_uic_label_0_i.sample(frac=frac_ratio) train_part_2_uic_label = pd.concat([train_part_2_uic_label, train_part_2_uic_label_0_i]) print("training subset uic_label keys is selected.") # constructing training set train_part_1_df = pd.merge(train_part_1_uic_label, df_part_1_U, how='left', on=['user_id']) train_part_1_df = pd.merge(train_part_1_df, df_part_1_I, how='left', on=['item_id']) train_part_1_df = pd.merge(train_part_1_df, df_part_1_C, how='left', on=['item_category']) train_part_1_df = pd.merge(train_part_1_df, df_part_1_IC, how='left', on=['item_id', 'item_category']) train_part_1_df = pd.merge(train_part_1_df, df_part_1_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) train_part_1_df = pd.merge(train_part_1_df, df_part_1_UC, how='left', on=['user_id', 'item_category']) train_part_2_df = pd.merge(train_part_2_uic_label, df_part_2_U, how='left', on=['user_id']) train_part_2_df = pd.merge(train_part_2_df, df_part_2_I, how='left', on=['item_id']) train_part_2_df = pd.merge(train_part_2_df, df_part_2_C, how='left', on=['item_category']) train_part_2_df = pd.merge(train_part_2_df, df_part_2_IC, how='left', on=['item_id', 'item_category']) train_part_2_df = pd.merge(train_part_2_df, df_part_2_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) train_part_2_df = pd.merge(train_part_2_df, df_part_2_UC, how='left', on=['user_id', 'item_category']) train_df = pd.concat([train_part_1_df, train_part_2_df]) # fill the missing value as -1 (missing value are time features) train_df.fillna(-1, inplace=True) # using all the features for training gbdt model train_X = train_df.as_matrix( ['u_b1_count_in_6', 'u_b2_count_in_6', 'u_b3_count_in_6', 'u_b4_count_in_6', 'u_b_count_in_6', 'u_b1_count_in_3', 'u_b2_count_in_3', 'u_b3_count_in_3', 'u_b4_count_in_3', 'u_b_count_in_3', 'u_b1_count_in_1', 'u_b2_count_in_1', 'u_b3_count_in_1', 'u_b4_count_in_1', 'u_b_count_in_1', 'u_b4_rate', 'u_b4_diff_hours', 'i_u_count_in_6', 'i_u_count_in_3', 'i_u_count_in_1', 'i_b1_count_in_6', 'i_b2_count_in_6', 'i_b3_count_in_6', 'i_b4_count_in_6', 'i_b_count_in_6', 'i_b1_count_in_3', 'i_b2_count_in_3', 'i_b3_count_in_3', 'i_b4_count_in_3', 'i_b_count_in_3', 'i_b1_count_in_1', 'i_b2_count_in_1', 'i_b3_count_in_1', 'i_b4_count_in_1', 'i_b_count_in_1', 'i_b4_rate', 'i_b4_diff_hours', 'c_u_count_in_6', 'c_u_count_in_3', 'c_u_count_in_1', 'c_b1_count_in_6', 'c_b2_count_in_6', 'c_b3_count_in_6', 'c_b4_count_in_6', 'c_b_count_in_6', 'c_b1_count_in_3', 'c_b2_count_in_3', 'c_b3_count_in_3', 'c_b4_count_in_3', 'c_b_count_in_3', 'c_b1_count_in_1', 'c_b2_count_in_1', 'c_b3_count_in_1', 'c_b4_count_in_1', 'c_b_count_in_1', 'c_b4_rate', 'c_b4_diff_hours', 'ic_u_rank_in_c', 'ic_b_rank_in_c', 'ic_b4_rank_in_c', 'ui_b1_count_in_6', 'ui_b2_count_in_6', 'ui_b3_count_in_6', 'ui_b4_count_in_6', 'ui_b_count_in_6', 'ui_b1_count_in_3', 'ui_b2_count_in_3', 'ui_b3_count_in_3', 'ui_b4_count_in_3', 'ui_b_count_in_3', 'ui_b1_count_in_1', 'ui_b2_count_in_1', 'ui_b3_count_in_1', 'ui_b4_count_in_1', 'ui_b_count_in_1', 'ui_b_count_rank_in_u', 'ui_b_count_rank_in_uc', 'ui_b1_last_hours', 'ui_b2_last_hours', 'ui_b3_last_hours', 'ui_b4_last_hours', 'uc_b1_count_in_6', 'uc_b2_count_in_6', 'uc_b3_count_in_6', 'uc_b4_count_in_6', 'uc_b_count_in_6', 'uc_b1_count_in_3', 'uc_b2_count_in_3', 'uc_b3_count_in_3', 'uc_b4_count_in_3', 'uc_b_count_in_3', 'uc_b1_count_in_1', 'uc_b2_count_in_1', 'uc_b3_count_in_1', 'uc_b4_count_in_1', 'uc_b_count_in_1', 'uc_b_count_rank_in_u', 'uc_b1_last_hours', 'uc_b2_last_hours', 'uc_b3_last_hours', 'uc_b4_last_hours']) train_y = train_df['label'].values print("train subset is generated.") return train_X, train_y def valid_set_construct(sub_ratio=0.1): ''' # generation of valid set @param sub_ratio: float ~ (0~1], the sub-sample rate of original valid set ''' valid_part_1_uic_label = df_part_1_uic_label_cluster[df_part_1_uic_label_cluster['class'] == 0].sample( frac=sub_ratio) valid_part_2_uic_label = df_part_2_uic_label_cluster[df_part_2_uic_label_cluster['class'] == 0].sample( frac=sub_ratio) for i in range(1, 1001, 1): valid_part_1_uic_label_0_i = df_part_1_uic_label_cluster[df_part_1_uic_label_cluster['class'] == i] valid_part_1_uic_label_0_i = valid_part_1_uic_label_0_i.sample(frac=sub_ratio) valid_part_1_uic_label = pd.concat([valid_part_1_uic_label, valid_part_1_uic_label_0_i]) valid_part_2_uic_label_0_i = df_part_2_uic_label_cluster[df_part_2_uic_label_cluster['class'] == i] valid_part_2_uic_label_0_i = valid_part_2_uic_label_0_i.sample(frac=sub_ratio) valid_part_2_uic_label = pd.concat([valid_part_2_uic_label, valid_part_2_uic_label_0_i]) # constructing valid set valid_part_1_df = pd.merge(valid_part_1_uic_label, df_part_1_U, how='left', on=['user_id']) valid_part_1_df = pd.merge(valid_part_1_df, df_part_1_I, how='left', on=['item_id']) valid_part_1_df = pd.merge(valid_part_1_df, df_part_1_C, how='left', on=['item_category']) valid_part_1_df = pd.merge(valid_part_1_df, df_part_1_IC, how='left', on=['item_id', 'item_category']) valid_part_1_df = pd.merge(valid_part_1_df, df_part_1_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) valid_part_1_df = pd.merge(valid_part_1_df, df_part_1_UC, how='left', on=['user_id', 'item_category']) valid_part_2_df = pd.merge(valid_part_2_uic_label, df_part_2_U, how='left', on=['user_id']) valid_part_2_df = pd.merge(valid_part_2_df, df_part_2_I, how='left', on=['item_id']) valid_part_2_df = pd.merge(valid_part_2_df, df_part_2_C, how='left', on=['item_category']) valid_part_2_df = pd.merge(valid_part_2_df, df_part_2_IC, how='left', on=['item_id', 'item_category']) valid_part_2_df = pd.merge(valid_part_2_df, df_part_2_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) valid_part_2_df = pd.merge(valid_part_2_df, df_part_2_UC, how='left', on=['user_id', 'item_category']) valid_df = pd.concat([valid_part_1_df, valid_part_2_df]) # fill the missing value as -1 (missing value are time features) valid_df.fillna(-1, inplace=True) # using all the features for valid gbdt model valid_X = valid_df.as_matrix( ['u_b1_count_in_6', 'u_b2_count_in_6', 'u_b3_count_in_6', 'u_b4_count_in_6', 'u_b_count_in_6', 'u_b1_count_in_3', 'u_b2_count_in_3', 'u_b3_count_in_3', 'u_b4_count_in_3', 'u_b_count_in_3', 'u_b1_count_in_1', 'u_b2_count_in_1', 'u_b3_count_in_1', 'u_b4_count_in_1', 'u_b_count_in_1', 'u_b4_rate', 'u_b4_diff_hours', 'i_u_count_in_6', 'i_u_count_in_3', 'i_u_count_in_1', 'i_b1_count_in_6', 'i_b2_count_in_6', 'i_b3_count_in_6', 'i_b4_count_in_6', 'i_b_count_in_6', 'i_b1_count_in_3', 'i_b2_count_in_3', 'i_b3_count_in_3', 'i_b4_count_in_3', 'i_b_count_in_3', 'i_b1_count_in_1', 'i_b2_count_in_1', 'i_b3_count_in_1', 'i_b4_count_in_1', 'i_b_count_in_1', 'i_b4_rate', 'i_b4_diff_hours', 'c_u_count_in_6', 'c_u_count_in_3', 'c_u_count_in_1', 'c_b1_count_in_6', 'c_b2_count_in_6', 'c_b3_count_in_6', 'c_b4_count_in_6', 'c_b_count_in_6', 'c_b1_count_in_3', 'c_b2_count_in_3', 'c_b3_count_in_3', 'c_b4_count_in_3', 'c_b_count_in_3', 'c_b1_count_in_1', 'c_b2_count_in_1', 'c_b3_count_in_1', 'c_b4_count_in_1', 'c_b_count_in_1', 'c_b4_rate', 'c_b4_diff_hours', 'ic_u_rank_in_c', 'ic_b_rank_in_c', 'ic_b4_rank_in_c', 'ui_b1_count_in_6', 'ui_b2_count_in_6', 'ui_b3_count_in_6', 'ui_b4_count_in_6', 'ui_b_count_in_6', 'ui_b1_count_in_3', 'ui_b2_count_in_3', 'ui_b3_count_in_3', 'ui_b4_count_in_3', 'ui_b_count_in_3', 'ui_b1_count_in_1', 'ui_b2_count_in_1', 'ui_b3_count_in_1', 'ui_b4_count_in_1', 'ui_b_count_in_1', 'ui_b_count_rank_in_u', 'ui_b_count_rank_in_uc', 'ui_b1_last_hours', 'ui_b2_last_hours', 'ui_b3_last_hours', 'ui_b4_last_hours', 'uc_b1_count_in_6', 'uc_b2_count_in_6', 'uc_b3_count_in_6', 'uc_b4_count_in_6', 'uc_b_count_in_6', 'uc_b1_count_in_3', 'uc_b2_count_in_3', 'uc_b3_count_in_3', 'uc_b4_count_in_3', 'uc_b_count_in_3', 'uc_b1_count_in_1', 'uc_b2_count_in_1', 'uc_b3_count_in_1', 'uc_b4_count_in_1', 'uc_b_count_in_1', 'uc_b_count_rank_in_u', 'uc_b1_last_hours', 'uc_b2_last_hours', 'uc_b3_last_hours', 'uc_b4_last_hours']) valid_y = valid_df['label'].values print("valid subset is generated.") return valid_X, valid_y ##### generation and splitting to training set & valid set def valid_train_set_construct(valid_ratio=0.5, valid_sub_ratio=0.5, train_np_ratio=1, train_sub_ratio=0.5): ''' # generation of train set @param valid_ratio: float ~ [0~1], the valid set ratio in total set and the rest is train set @param valid_sub_ratio: float ~ (0~1), random sample ratio of valid set @param train_np_ratio:(1~1200), the sub-sample ratio of training set for N/P balanced. @param train_sub_ratio: float ~ (0~1), random sample ratio of train set after N/P subsample @return valid_X, valid_y, train_X, train_y ''' msk_1 = np.random.rand(len(df_part_1_uic_label_cluster)) < valid_ratio msk_2 = np.random.rand(len(df_part_2_uic_label_cluster)) < valid_ratio valid_df_part_1_uic_label_cluster = df_part_1_uic_label_cluster.loc[msk_1] valid_df_part_2_uic_label_cluster = df_part_2_uic_label_cluster.loc[msk_2] valid_part_1_uic_label = valid_df_part_1_uic_label_cluster[valid_df_part_1_uic_label_cluster['class'] == 0].sample( frac=valid_sub_ratio) valid_part_2_uic_label = valid_df_part_2_uic_label_cluster[valid_df_part_2_uic_label_cluster['class'] == 0].sample( frac=valid_sub_ratio) ### constructing valid set for i in range(1, 1001, 1): valid_part_1_uic_label_0_i = valid_df_part_1_uic_label_cluster[valid_df_part_1_uic_label_cluster['class'] == i] if len(valid_part_1_uic_label_0_i) != 0: valid_part_1_uic_label_0_i = valid_part_1_uic_label_0_i.sample(frac=valid_sub_ratio) valid_part_1_uic_label = pd.concat([valid_part_1_uic_label, valid_part_1_uic_label_0_i]) valid_part_2_uic_label_0_i = valid_df_part_2_uic_label_cluster[valid_df_part_2_uic_label_cluster['class'] == i] if len(valid_part_2_uic_label_0_i) != 0: valid_part_2_uic_label_0_i = valid_part_2_uic_label_0_i.sample(frac=valid_sub_ratio) valid_part_2_uic_label = pd.concat([valid_part_2_uic_label, valid_part_2_uic_label_0_i]) valid_part_1_df = pd.merge(valid_part_1_uic_label, df_part_1_U, how='left', on=['user_id']) valid_part_1_df = pd.merge(valid_part_1_df, df_part_1_I, how='left', on=['item_id']) valid_part_1_df = pd.merge(valid_part_1_df, df_part_1_C, how='left', on=['item_category']) valid_part_1_df = pd.merge(valid_part_1_df, df_part_1_IC, how='left', on=['item_id', 'item_category']) valid_part_1_df = pd.merge(valid_part_1_df, df_part_1_UI, how='left', on=['user_id', 'item_id', 'item_category', 'label']) valid_part_1_df = pd.merge(valid_part_1_df, df_part_1_UC, how='left', on=['user_id', 'item_category']) valid_part_2_df = pd.merge(valid_part_2_uic_label, df_part_2_U, how='left', on=['user_id']) valid_part_2_df = pd.merge(valid_part_2_df, df_part_2_I, how='left', on=['item_id']) valid_part_2_df =
pd.merge(valid_part_2_df, df_part_2_C, how='left', on=['item_category'])
pandas.merge
import numpy as np import pandas as pd import pandas_datareader.data as web import datetime as dt import requests import io import zipfile from kungfu.series import FinancialSeries from kungfu.frame import FinancialDataFrame def download_factor_data(freq='D'): ''' Downloads factor data from Kenneth French's website and returns dataframe. freq can be either 'D' (daily) or 'M' (monthly). ''' if freq is 'D': # Download Carhartt 4 Factors factors_daily = web.DataReader("F-F_Research_Data_Factors_daily", "famafrench", start='1/1/1900')[0] mom = web.DataReader('F-F_Momentum_Factor_daily', 'famafrench', start='1/1/1900')[0] factors_daily = factors_daily.join(mom) factors_daily = factors_daily[['Mkt-RF','SMB','HML','Mom ','RF']] factors_daily.columns = ['Mkt-RF','SMB','HML','Mom','RF'] return FinancialDataFrame(factors_daily) elif freq is 'M': # Download Carhartt 4 Factors factors_monthly = web.DataReader("F-F_Research_Data_Factors", "famafrench", start='1/1/1900')[0] # mom = web.DataReader('F-F_Momentum_Factor', 'famafrench', start='1/1/1900')[0] #There seems to be a problem with the data file, fix if mom is needed # factors_monthly = factors_monthly.join(mom) # factors_monthly = factors_monthly[['Mkt-RF','SMB','HML','Mom ','RF']] factors_monthly.index = factors_monthly.index.to_timestamp() # factors_monthly.columns = ['Mkt-RF','SMB','HML','Mom','RF'] factors_monthly.columns = ['Mkt-RF','SMB','HML','RF'] factors_monthly.index = factors_monthly.index+pd.tseries.offsets.MonthEnd(0) return FinancialDataFrame(factors_monthly) def download_industry_data(freq='D', excessreturns = True): ''' Downloads industry data from <NAME>'s website and returns dataframe. freq can be either 'D' (daily) or 'M' (monthly). excessreturns is a boolean to define if the the function should return excess returns. ''' if freq is 'D': # Download Fama/French 49 Industries industries_daily = web.DataReader("49_Industry_Portfolios_Daily", "famafrench", start='1/1/1900')[0] industries_daily[(industries_daily <= -99.99) | (industries_daily == -999)] = np.nan #set missing data to NaN industries_daily = industries_daily.rename_axis('Industry', axis='columns') if excessreturns is True: factors_daily = web.DataReader("F-F_Research_Data_Factors_daily", "famafrench", start='1/1/1900')[0] industries_daily = industries_daily.subtract(factors_daily['RF'], axis=0) #transform into excess returns return industries_daily elif freq is 'M': # Download Fama/French 49 Industries industries_monthly = web.DataReader("49_Industry_Portfolios", "famafrench", start='1/1/1900')[0] industries_monthly[(industries_monthly <= -99.99) | (industries_monthly == -999)] = np.nan #set missing data to NaN industries_monthly = industries_monthly.rename_axis('Industry', axis='columns') industries_monthly.index = industries_monthly.index.to_timestamp() if excessreturns is True: factors_monthly = web.DataReader("F-F_Research_Data_Factors", "famafrench", start='1/1/1900')[0] factors_monthly.index = factors_monthly.index.to_timestamp() industries_monthly = industries_monthly.subtract(factors_monthly['RF'], axis=0) #transform into excess returns industries_monthly.index = industries_monthly.index+pd.tseries.offsets.MonthEnd(0) return industries_monthly def download_25portfolios_data(freq='D', excessreturns = True): ''' Downloads 25 portfolios data from Kenneth French's website and returns dataframe. freq can be either 'D' (daily) or 'M' (monthly). excessreturns is a boolean to define if the the function should return excess returns. ''' if freq is 'D': # Download Fama/French 25 portfolios portfolios_daily = web.DataReader("25_Portfolios_5x5_CSV", "famafrench", start='1/1/1900')[0] portfolios_daily[(portfolios_daily <= -99.99) | (portfolios_daily == -999)] = np.nan #set missing data to NaN if excessreturns is True: factors_daily = web.DataReader("F-F_Research_Data_Factors_daily", "famafrench", start='1/1/1900')[0] portfolios_daily = portfolios_daily.subtract(factors_daily['RF'], axis=0) #transform into excess returns return portfolios_daily elif freq is 'M': # Download Fama/French 25 portfolios portfolios_monthly = web.DataReader("25_Portfolios_5x5_Daily_CSV", "famafrench", start='1/1/1900')[0] portfolios_monthly[(industries_monthly <= -99.99) | (industries_monthly == -999)] = np.nan #set missing data to NaN portfolios_monthly.index = portfolios_monthly.index.to_timestamp() if excessreturns is True: factors_monthly = web.DataReader("F-F_Research_Data_Factors", "famafrench", start='1/1/1900')[0] factors_monthly.index = factors_monthly.index.to_timestamp() portfolios_monthly = portfolios_monthly.subtract(factors_monthly['RF'], axis=0) #transform into excess returns return portfolios_monthly def download_recessions_data(freq='M', startdate='1/1/1900', enddate=dt.datetime.today()): ''' Downloads NBER recessions from FRED and returns series. freq can be either 'D' (daily) or 'M' (monthly). startdate and enddate define the length of the timeseries. ''' USREC_monthly = web.DataReader('USREC', 'fred',start = startdate, end=enddate) if freq is 'M': return USREC_monthly if freq is 'D': first_day = USREC_monthly.index.min() - pd.DateOffset(day=1) last_day = USREC_monthly.index.max() + pd.DateOffset(day=31) dayindex = pd.date_range(first_day, last_day, freq='D') dayindex.name = 'DATE' USREC_daily = USREC_monthly.reindex(dayindex, method='ffill') return USREC_daily def download_jpy_usd_data(): ''' Downloads USD/JPY exchange rate data from FRED and returns series. ''' jpy = web.DataReader('DEXJPUS', 'fred', start = '1900-01-01') return jpy def download_cad_usd_data(): ''' Downloads USD/CAD exchange rate data from FRED and returns series. ''' cad = web.DataReader('DEXCAUS', 'fred', start = '1900-01-01') return cad def download_vix_data(): ''' Downloads VIX index data from FRED and returns series. ''' vix = web.DataReader('VIXCLS', 'fred', start = '1900-01-01') return vix def download_goyal_welch_svar(): ''' Downloads Goyal/Welch SVAR data from Amit Goyal's website and returns DataFrame. ''' url = 'http://www.hec.unil.ch/agoyal/docs/PredictorData2017.xlsx' sheet = pd.read_excel(url, sheet_name='Monthly') dates = sheet['yyyymm'] SVAR = pd.DataFrame(sheet['svar']) SVAR.index = [(dt.datetime(year = math.floor(date/100),month = date%100,day = 1)+dt.timedelta(days=32)).replace(day=1)-dt.timedelta(days=1) for date in dates] return SVAR def download_sadka_liquidity(): ''' Downloads Sadka liquidity factor data from <NAME>'s website and returns DataFrame. ''' url = 'http://www2.bc.edu/ronnie-sadka/Sadka-LIQ-factors-1983-2012-WRDS.xlsx' sheet = pd.read_excel(url, sheet_name='Sheet1') dates = sheet['Date'] SadkaLIQ1 = pd.DataFrame(sheet['Fixed-Transitory']) SadkaLIQ1.index = [(dt.datetime(year = math.floor(date/100),month = date%100,day = 1)+dt.timedelta(days=32)).replace(day=1)-dt.timedelta(days=1) for date in dates] SadkaLIQ2 =
pd.DataFrame(sheet['Variable-Permanent'])
pandas.DataFrame
"""Auto ARIMA transformer is a time series transformer that predicts target using ARIMA models""" # For more information about the python ARIMA package # please visit https://www.alkaline-ml.com/pmdarima/index.html import importlib from h2oaicore.transformer_utils import CustomTimeSeriesTransformer import datatable as dt import numpy as np import pandas as pd from h2oaicore.systemutils import make_experiment_logger, loggerinfo, loggerwarning class MyAutoArimaTransformer(CustomTimeSeriesTransformer): _binary = False _multiclass = False _modules_needed_by_name = ['pmdarima'] _included_model_classes = None @staticmethod def get_default_properties(): return dict(col_type="time_column", min_cols=1, max_cols=1, relative_importance=1) def fit(self, X: dt.Frame, y: np.array = None): """ Fits ARIMA models (1 per time group) using historical target values contained in y :param X: Datatable frame containing the features :param y: numpy array containing the historical values of the target :return: self """ # Import the ARIMA python module pm = importlib.import_module('pmdarima') # Init models self.models = {} # Convert to pandas X = X.to_pandas() XX = X[self.tgc].copy() XX['y'] = np.array(y) self.nan_value = np.mean(y) self.ntrain = X.shape[0] # Group the input by TGC (Time group column) excluding the time column itself tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column)) if len(tgc_wo_time) > 0: XX_grp = XX.groupby(tgc_wo_time) else: XX_grp = [([None], XX)] # Get the logger if it exists logger = None if self.context and self.context.experiment_id: logger = make_experiment_logger( experiment_id=self.context.experiment_id, tmp_dir=self.context.tmp_dir, experiment_tmp_dir=self.context.experiment_tmp_dir ) # Build 1 ARIMA model per time group columns nb_groups = len(XX_grp) for _i_g, (key, X) in enumerate(XX_grp): # Just say where we are in the fitting process if (_i_g + 1) % max(1, nb_groups // 20) == 0: loggerinfo(logger, "Auto ARIMA : %d%% of groups fitted" % (100 * (_i_g + 1) // nb_groups)) key = key if isinstance(key, list) else [key] grp_hash = '_'.join(map(str, key)) # print("auto arima - fitting on data of shape: %s for group: %s" % (str(X.shape), grp_hash)) order = np.argsort(X[self.time_column]) try: model = pm.auto_arima(X['y'].values[order], error_action='ignore') except: model = None self.models[grp_hash] = model return self def transform(self, X: dt.Frame): """ Uses fitted models (1 per time group) to predict the target If self.is_train exists, it means we are doing in-sample predictions if it does not then we Arima is used to predict the future :param X: Datatable Frame containing the features :return: ARIMA predictions """ X = X.to_pandas() XX = X[self.tgc].copy() tgc_wo_time = list(np.setdiff1d(self.tgc, self.time_column)) if len(tgc_wo_time) > 0: XX_grp = XX.groupby(tgc_wo_time) else: XX_grp = [([None], XX)] # Get the logger if it exists logger = None if self.context and self.context.experiment_id: logger = make_experiment_logger( experiment_id=self.context.experiment_id, tmp_dir=self.context.tmp_dir, experiment_tmp_dir=self.context.experiment_tmp_dir ) nb_groups = len(XX_grp) preds = [] for _i_g, (key, X) in enumerate(XX_grp): # Just say where we are in the fitting process if (_i_g + 1) % max(1, nb_groups // 20) == 0: loggerinfo(logger, "Auto ARIMA : %d%% of groups transformed" % (100 * (_i_g + 1) // nb_groups)) key = key if isinstance(key, list) else [key] grp_hash = '_'.join(map(str, key)) # print("auto arima - transforming data of shape: %s for group: %s" % (str(X.shape), grp_hash)) order = np.argsort(X[self.time_column]) if grp_hash in self.models: model = self.models[grp_hash] if model is not None: yhat = model.predict_in_sample() \ if hasattr(self, 'is_train') else model.predict(n_periods=X.shape[0]) yhat = yhat[order] XX =
pd.DataFrame(yhat, columns=['yhat'])
pandas.DataFrame
from PriceIndices import Indices, MarketHistory import pandas as pd import numpy as np history = MarketHistory() def get_coin_data(crypto='bitcoin', start_date='20130428', end_date='20200501', save_data=None): df = history.get_price(crypto, start_date, end_date) df_bi = Indices.get_bvol_index(df) # Bitmax Volatility Index df_bi.drop('price', axis=1, inplace=True) df_rsi = Indices.get_rsi(df) # Relative Strength Index df_rsi.drop(['price', 'RS_Smooth', 'RSI_1'], axis=1, inplace=True) df_sma = Indices.get_simple_moving_average(df) # Simple Moving Average df_sma.drop(['price'], axis=1, inplace=True) df_bb = Indices.get_bollinger_bands(df) # Bollunger Bands df_bb.drop(['price'], axis=1, inplace=True) df_ema = Indices.get_exponential_moving_average(df, [20, 50]) # Exponential Moving Average df_ema.drop(['price'], axis=1, inplace=True) df_macd = Indices.get_moving_average_convergence_divergence(df) # Moving Average Convergence Divergence df_macd.drop(['price',], axis=1, inplace=True) df = pd.merge(df, df_macd, on='date', how='left') df = pd.merge(df, df_rsi, on='date', how='left') df =
pd.merge(df, df_bi, on='date', how='left')
pandas.merge
import sys import os import math import copy import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import rankdata import multiprocessing as mp import logging import scanpy as sc import anndata as ad from scipy.io import mmread,mmwrite from scipy.sparse import csr_matrix,issparse import matplotlib as mpl from functools import reduce from sklearn.decomposition import PCA import umap from sctriangulate.colors import * # for publication ready figure mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['ps.fonttype'] = 42 mpl.rcParams['font.family'] = 'Arial' def sctriangulate_preprocessing_setting(backend='Agg',png=False): # change the backend mpl.use(backend) if png: # for publication and super large dataset mpl.rcParams['savefig.dpi'] = 600 mpl.rcParams['figure.dpi'] = 600 def small_txt_to_adata(int_file,gene_is_index=True): ''' given a small dense expression (<2GB) txt file, load them into memory as adata, and also make sure the X is sparse matrix. :param int_file: string, path to the input txt file, delimited by tab :param gene_is_index: boolean, whether the gene/features are the index. :return: AnnData Exmaples:: from sctriangulate.preprocessing import small_txt_to_adata adata= = small_txt_to_adata('./input.txt',gene_is_index=True) ''' df = pd.read_csv(int_file,sep='\t',index_col=0) if gene_is_index: adata = ad.AnnData(X=csr_matrix(df.values.T),var=pd.DataFrame(index=df.index.values),obs=pd.DataFrame(index=df.columns.values)) else: adata = ad.AnnData(X=csr_matrix(df.values),var=pd.DataFrame(index=df.columns.values),obs=pd.DataFrame(index=df.index.values)) adata.var_names_make_unique() adata.X = csr_matrix(adata.X) return adata def large_txt_to_mtx(int_file,out_folder,gene_is_index=True,type_convert_to='int16'): # whether the txt if gene * cell ''' Given a large txt dense expression file, convert them to mtx file on cluster to facilitate future I/O :param int_file: string, path to the intput txt file, delimited by tab :param out_folder: string, path to the output folder where the mtx file will be stored :param gene_is_index: boolean, whether the gene/features is the index in the int_file. :param type_convert_to: string, since it is a large dataframe, need to read in chunk, to accelarate it and reduce the memory footprint, we convert it to either 'int16' if original data is count, or 'float32' if original data is normalized data. Examples:: from sctriangulate.preprocessing import large_txt_to_mtx large_txt_to_mtx(int_file='input.txt',out_folder='./data',gene_is_index=False,type_convert_to='float32') ''' reader = pd.read_csv(int_file,sep='\t',index_col=0,chunksize=1000) store = [] for chunk in reader: tmp = chunk.astype(type_convert_to) store.append(tmp) data = pd.concat(store) print(data.shape) '''save as mtx, now!!!''' if not os.path.exists(out_folder): os.mkdir(out_folder) if gene_is_index: data.index.to_series().to_csv(os.path.join(out_folder,'genes.tsv'),sep='\t',header=None,index=None) data.columns.to_series().to_csv(os.path.join(out_folder,'barcodes.tsv'),sep='\t',header=None,index=None) mmwrite(os.path.join(out_folder,'matrix.mtx'),csr_matrix(data.values)) else: data.columns.to_series().to_csv(os.path.join(out_folder,'genes.tsv'),sep='\t',header=None,index=None) data.index.to_series().to_csv(os.path.join(out_folder,'barcodes.tsv'),sep='\t',header=None,index=None) mmwrite(os.path.join(out_folder,'matrix.mtx'),csr_matrix(data.values.T)) def mtx_to_adata(int_folder,gene_is_index=True,feature='genes',feature_col='index',barcode_col='index'): # whether the mtx file is gene * cell ''' convert mtx file to adata in RAM, make sure the X is sparse. :param int_folder: string, folder where the mtx files are stored. :param gene_is_index: boolean, whether the gene is index. :param feature: string, the name of the feature tsv file, if rna, it will be genes.tsv. :param feature_col: 'index' as index, or a int (which column, python is zero based) to use in your feature.tsv as feature :param barcode_col: 'index' as index, or a int (which column, python is zero based) to use in your barcodes.tsv as barcode :return: AnnData Examples:: from sctriangulate.preprocessing import mtx_to_adata mtx_to_adata(int_folder='./data',gene_is_index=False,feature='genes') ''' if feature_col == 'index': gene = pd.read_csv(os.path.join(int_folder,'{}.tsv'.format(feature)),sep='\t',index_col=0,header=None).index else: gene = pd.read_csv(os.path.join(int_folder,'{}.tsv'.format(feature)),sep='\t',index_col=0,header=None)[feature_col] if barcode_col == 'index': cell = pd.read_csv(os.path.join(int_folder,'barcodes.tsv'),sep='\t',index_col=0,header=None).index else: cell = pd.read_csv(os.path.join(int_folder,'barcodes.tsv'),sep='\t',index_col=0,header=None)[barcode_col] value = csr_matrix(mmread(os.path.join(int_folder,'matrix.mtx'))) if gene_is_index: value = value.T adata = ad.AnnData(X=value,obs=pd.DataFrame(index=cell),var=pd.DataFrame(index=gene)) else: adata = ad.AnnData(X=value,obs=pd.DataFrame(index=cell),var=pd.DataFrame(index=gene)) adata.var.index.name = None adata.var_names_make_unique() return adata def mtx_to_large_txt(int_folder,out_file,gene_is_index=False): ''' convert mtx back to large dense txt expression dataframe. :param int_folder: string, path to the input mtx folder. :param out_file: string, path to the output txt file. :param gene_is_index: boolean, whether the gene is the index. Examples:: from sctriangulate.preprocessing import mtx_to_large_txt mtx_to_large_txt(int_folder='./data',out_file='input.txt',gene_is_index=False) ''' gene = pd.read_csv(os.path.join(int_folder,'genes.tsv'),sep='\t',index_col=0,header=None).index cell = pd.read_csv(os.path.join(int_folder,'barcodes.tsv'),sep='\t',index_col=0,header=None).index value = mmread(os.path.join(int_folder,'matrix.mtx')).toarray() if gene_is_index: data = pd.DataFrame(data=value,index=gene,columns=cell) else: data = pd.DataFrame(data=value.T,index=cell,columns=gene) data.to_csv(out_file,sep='\t',chunksize=1000) def adata_to_mtx(adata,gene_is_index=True,var_column=None,obs_column=None,outdir='data'): # create folder if not exist if not os.path.exists(outdir): os.mkdir(outdir) # write genes.tsv if var_column is None: var = adata.var_names.to_series() else: var = adata.var[var_column] var.to_csv(os.path.join(outdir,'genes.tsv'),sep='\t',header=None,index=None) # write barcodes.tsv if obs_column is None: obs = adata.obs_names.to_series() else: obs = adata.obs[obs_column] obs.to_csv(os.path.join(outdir,'barcodes.tsv'),sep='\t',header=None,index=None) # write matrix.mtx if not gene_is_index: mmwrite(os.path.join(outdir,'matrix.mtx'),make_sure_mat_sparse(adata.X)) else: mmwrite(os.path.join(outdir,'matrix.mtx'),make_sure_mat_sparse(adata.X).transpose()) def add_azimuth(adata,result,name='predicted.celltype.l2'): ''' a convenient function if you have azimuth predicted labels in hand, and want to add the label to the adata. :param adata: AnnData :param result: string, the path to the 'azimuth_predict.tsv' file :param name: string, the column name where the user want to transfer to the adata. Examples:: from sctriangulate.preprocessing import add_azimuth add_azimuth(adata,result='./azimuth_predict.tsv',name='predicted.celltype.l2') ''' azimuth = pd.read_csv(result,sep='\t',index_col=0) azimuth_map = azimuth[name].to_dict() azimuth_prediction = azimuth['{}.score'.format(name)].to_dict() azimuth_mapping = azimuth['mapping.score'].to_dict() adata.obs['azimuth'] = adata.obs_names.map(azimuth_map).values adata.obs['prediction_score'] = adata.obs_names.map(azimuth_prediction).values adata.obs['mapping_score'] = adata.obs_names.map(azimuth_mapping).values def add_annotations(adata,inputs,cols_input,index_col=0,cols_output=None,kind='disk'): ''' Adding annotations from external sources to the adata :param adata: Anndata :param inputs: string, path to the txt file where the barcode to cluster label information is stored. :param cols_input: list, what columns the users want to transfer to the adata. :param index_col: int, for the input, which column will serve as the index column :param cols_output: list, corresponding to the cols_input, how these columns will be named in the adata.obs columns :param kind: a string, either 'disk', or 'memory', disk means the input is the path to the text file, 'memory' means the input is the variable name in the RAM that represents the dataframe Examples:: from sctriangulate.preprocessing import add_annotations add_annotations(adata,inputs='./annotation.txt',cols_input=['col1','col2'],index_col=0,cols_output=['annotation1','annontation2'],kind='disk') add_annotations(adata,inputs=df,cols_input=['col1','col2'],index_col=0,cols_output=['annotation1','annontation2'],kind='memory') ''' # means a single file such that one column is barcodes, annotations are within other columns if kind == 'disk': annotations = pd.read_csv(inputs,sep='\t',index_col=index_col).loc[:,cols_input] elif kind == 'memory': # index_col will be ignored annotations = inputs.loc[:,cols_input] mappings = [] for col in cols_input: mapping = annotations[col].to_dict() mappings.append(mapping) if cols_output is None: for i,col in enumerate(cols_input): adata.obs[col] = adata.obs_names.map(mappings[i]).fillna('Unknown').values adata.obs[col] = adata.obs[col].astype('str').astype('category') else: for i in range(len(cols_input)): adata.obs[cols_output[i]] = adata.obs_names.map(mappings[i]).fillna('Unknown').values adata.obs[cols_output[i]] = adata.obs[cols_output[i]].astype('str').astype('category') def add_umap(adata,inputs,mode,cols=None,index_col=0): ''' if umap embedding is pre-computed, add it back to adata object. :param adata: Anndata :param inputs: string, path to the the txt file where the umap embedding was stored. :param mode: string, valid value 'pandas_disk', 'pandas_memory', 'numpy' * **pandas_disk**: the `inputs` argument should be the path to the txt file * **pandas_memory**: the `inputs` argument should be the name of the pandas dataframe in the program, inputs=df * **numpy**, the `inputs` argument should be a 2D ndarray contains pre-sorted (same order as barcodes in adata) umap coordinates :param cols: list, what columns contain umap embeddings :param index_col: int, which column will serve as the index column. Examples:: from sctriangulate.preprocessing import add_umap add_umap(adata,inputs='umap.txt',mode='pandas_disk',cols=['umap1','umap2'],index_col=0) ''' # make sure cols are [umap_x, umap_y] if mode == 'pandas_disk': df = pd.read_csv(inputs,sep='\t',index_col=index_col) umap_x = df[cols[0]].to_dict() umap_y = df[cols[1]].to_dict() adata.obs['umap_x'] = adata.obs_names.map(umap_x).values adata.obs['umap_y'] = adata.obs_names.map(umap_y).values adata.obsm['X_umap'] = adata.obs.loc[:,['umap_x','umap_y']].values adata.obs.drop(columns=['umap_x','umap_y'],inplace=True) elif mode == 'pandas_memory': df = inputs umap_x = df[cols[0]].to_dict() umap_y = df[cols[1]].to_dict() adata.obs['umap_x'] = adata.obs_names.map(umap_x).values adata.obs['umap_y'] = adata.obs_names.map(umap_y).values adata.obsm['X_umap'] = adata.obs.loc[:,['umap_x','umap_y']].values adata.obs.drop(columns=['umap_x','umap_y'],inplace=True) elif mode == 'numpy': # assume the order is correct adata.obsm['X_umap'] = inputs def doublet_predict(adata): # gave RNA count or log matrix ''' wrapper function for running srublet, a new column named 'doublet_scores' will be added to the adata :param adata: Anndata :return: dict Examples:: from sctriangulate.preprocessing import doublet_predict mapping = doublet_predict(old_adata) ''' from scipy.sparse import issparse import scrublet as scr if issparse(adata.X): adata.X = adata.X.toarray() counts_matrix = adata.X scrub = scr.Scrublet(counts_matrix) doublet_scores, predicted_doublets = scrub.scrub_doublets(min_counts=1, min_cells=1) adata.obs['doublet_scores'] = doublet_scores return adata.obs['doublet_scores'].to_dict() def make_sure_adata_writable(adata,delete=False): ''' maks sure the adata is able to write to disk, since h5 file is stricted typed, so no mixed dtype is allowd. this function basically is to detect the column of obs/var that are of mixed types, and delete them. :param adata: Anndata :param delete: boolean, False will just print out what columns are mixed type, True will automatically delete those columns :return: Anndata Examples:: from sctriangulate.preprocessing import make_sure_adata_writable make_sure_adata_writable(adata,delete=True) ''' # check index, can not have name var_names = adata.var_names obs_names = adata.obs_names var_names.name = None obs_names.name = None adata.var_names = var_names adata.obs_names = obs_names # make sure column is pure type, basically, if mixed tyep, delete the column, and print out the delete columns # go to: https://github.com/theislab/scanpy/issues/1866 var = adata.var obs = adata.obs for col in var.columns: if var[col].dtypes == 'O': all_type = np.array([type(item) for item in var[col]]) first = all_type[0] if (first==all_type).all() and first == str: # object, but every item is str continue else: # mixed type print('column {} in var will be deleted, because mixed types'.format(col)) if delete: adata.var.drop(columns=[col],inplace=True) for col in obs.columns: if obs[col].dtypes == 'O': all_type = np.array([type(item) for item in obs[col]]) first = all_type[0] if (first==all_type).all() and first == str: # object, but every item is str continue else: # mixed type print('column {} in obs will be deleted, because mixed types'.format(col)) if delete: adata.obs.drop(columns=[col],inplace=True) return adata def scanpy_recipe(adata,species='human',is_log=False,resolutions=[1,2,3],modality='rna',umap=True,save=True,pca_n_comps=None,n_top_genes=3000): ''' Main preprocessing function. Run Scanpy normal pipeline to achieve Leiden clustering with various resolutions across multiple modalities. :param adata: Anndata :param species: string, 'human' or 'mouse' :param is_log: boolean, whether the adata.X is count or normalized data. :param resolutions: list, what leiden resolutions the users want to obtain. :param modality: string, valid values: 'rna','adt','atac', 'binary'[mutation data, TCR data, etc] :param umap: boolean, whether to compute umap embedding. :param save: boolean, whether to save the obtained adata object with cluster label information in it. :param pca_n_comps: int, how many PCs to keep when running PCA. Suggestion: RNA (30-50), ADT (15), ATAC (100) :param n_top_genes: int, how many features to keep when selecting highly_variable_genes. Suggestion: RNA (3000), ADT (ignored), ATAC (50000-100000) :return: Anndata Examples:: from sctriangulate.preprocessing import scanpy_recipe # rna adata = scanpy_recipe(adata,is_log=False,resolutions=[1,2,3],modality='rna',pca_n_comps=50,n_top_genes=3000) # adt adata = scanpy_recipe(adata,is_log=False,resolutions=[1,2,3],modality='adt',pca_n_comps=15) # atac adata = scanpy_recipe(adata,is_log=False,resolutions=[1,2,3],modality='atac',pca_n_comps=100,n_top_genes=100000) # binary adata = scanpy_recipe(adata,resolutions=[1,2,3],modality='binary') ''' adata.var_names_make_unique() # normal analysis if modality == 'rna': if not is_log: # count data if species == 'human': adata.var['mt'] = adata.var_names.str.startswith('MT-') elif species == 'mouse': adata.var['mt'] = adata.var_names.str.startswith('mt-') sc.pp.calculate_qc_metrics(adata,qc_vars=['mt'],percent_top=None,inplace=True,log1p=False) sc.pp.normalize_total(adata,target_sum=1e4) sc.pp.log1p(adata) sc.pp.highly_variable_genes(adata,flavor='seurat',n_top_genes=n_top_genes) adata.raw = adata adata = adata[:,adata.var['highly_variable']] sc.pp.regress_out(adata,['total_counts','pct_counts_mt']) sc.pp.scale(adata,max_value=10) sc.tl.pca(adata,n_comps=pca_n_comps) sc.pp.neighbors(adata) for resolution in resolutions: sc.tl.leiden(adata,resolution=resolution,key_added='sctri_{}_leiden_{}'.format(modality,resolution)) if umap: sc.tl.umap(adata) # put raw back to X, and make sure it is sparse matrix adata = adata.raw.to_adata() if not issparse(adata.X): adata.X = csr_matrix(adata.X) if save: resolutions = '_'.join([str(item) for item in resolutions]) adata.write('adata_after_scanpy_recipe_{}_{}_umap_{}.h5ad'.format(modality,resolutions,umap)) else: # log(1+x) and depth normalized data if species == 'human': adata.var['mt'] = adata.var_names.str.startswith('MT-') elif species == 'mouse': adata.var['mt'] = adata.var_names.str.startswith('mt-') sc.pp.calculate_qc_metrics(adata,qc_vars=['mt'],percent_top=None,inplace=True,log1p=False) sc.pp.highly_variable_genes(adata,flavor='seurat',n_top_genes=n_top_genes) adata.raw = adata adata = adata[:,adata.var['highly_variable']] sc.pp.regress_out(adata,['total_counts','pct_counts_mt']) sc.pp.scale(adata,max_value=10) sc.tl.pca(adata,n_comps=pca_n_comps) sc.pp.neighbors(adata) for resolution in resolutions: sc.tl.leiden(adata,resolution=resolution,key_added='sctri_{}_leiden_{}'.format(modality,resolution)) if umap: sc.tl.umap(adata) # put raw back to X, and make sure it is sparse matrix adata = adata.raw.to_adata() if not issparse(adata.X): adata.X = csr_matrix(adata.X) if save: resolutions = '_'.join([str(item) for item in resolutions]) adata.write('adata_after_scanpy_recipe_{}_{}_umap_{}.h5ad'.format(modality,resolutions,umap)) elif modality == 'atac': if not is_log: sc.pp.calculate_qc_metrics(adata,percent_top=None,inplace=True,log1p=False) sc.pp.normalize_total(adata,target_sum=1e4) sc.pp.log1p(adata) sc.pp.highly_variable_genes(adata,flavor='seurat',n_top_genes=n_top_genes) adata.raw = adata adata = adata[:,adata.var['highly_variable']] #sc.pp.scale(adata,max_value=10) # because in episcanpy toturial, it seems to be ignored sc.tl.pca(adata,n_comps=pca_n_comps) sc.pp.neighbors(adata) for resolution in resolutions: sc.tl.leiden(adata,resolution=resolution,key_added='sctri_{}_leiden_{}'.format(modality,resolution)) if umap: sc.tl.umap(adata) adata = adata.raw.to_adata() if not issparse(adata.X): adata.X = csr_matrix(adata.X) if save: resolutions = '_'.join([str(item) for item in resolutions]) adata.write('adata_after_scanpy_recipe_{}_{}_umap_{}.h5ad'.format(modality,resolutions,umap)) else: sc.pp.calculate_qc_metrics(adata,percent_top=None,inplace=True,log1p=False) sc.pp.highly_variable_genes(adata,flavor='seurat',n_top_genes=n_top_genes) adata.raw = adata adata = adata[:,adata.var['highly_variable']] #sc.pp.scale(adata,max_value=10) sc.tl.pca(adata,n_comps=pca_n_comps) sc.pp.neighbors(adata) for resolution in resolutions: sc.tl.leiden(adata,resolution=resolution,key_added='sctri_{}_leiden_{}'.format(modality,resolution)) if umap: sc.tl.umap(adata) adata = adata.raw.to_adata() if not issparse(adata.X): adata.X = csr_matrix(adata.X) if save: resolutions = '_'.join([str(item) for item in resolutions]) adata.write('adata_after_scanpy_recipe_{}_{}_umap_{}.h5ad'.format(modality,resolutions,umap)) elif modality == 'adt': if not is_log: sc.pp.calculate_qc_metrics(adata,percent_top=None,inplace=True,log1p=False) adata.X = make_sure_mat_sparse(Normalization.CLR_normalization(make_sure_mat_dense(adata.X))) sc.tl.pca(adata,n_comps=pca_n_comps) sc.pp.neighbors(adata) for resolution in resolutions: sc.tl.leiden(adata,resolution=resolution,key_added='sctri_{}_leiden_{}'.format(modality,resolution)) if umap: sc.tl.umap(adata) if not issparse(adata.X): adata.X = csr_matrix(adata.X) if save: resolutions = '_'.join([str(item) for item in resolutions]) adata.write('adata_after_scanpy_recipe_{}_{}_umap_{}.h5ad'.format(modality,resolutions,umap)) else: sc.tl.pca(adata,n_comps=pca_n_comps) sc.pp.neighbors(adata) for resolution in resolutions: sc.tl.leiden(adata,resolution=resolution,key_added='sctri_{}_leiden_{}'.format(modality,resolution)) if umap: sc.tl.umap(adata) if not issparse(adata.X): adata.X = csr_matrix(adata.X) if save: resolutions = '_'.join([str(item) for item in resolutions]) adata.write('adata_after_scanpy_recipe_{}_{}_umap_{}.h5ad'.format(modality,resolutions,umap)) elif modality == 'binary': # mutation #sc.tl.pca(adata,n_comps=pca_n_comps) sc.pp.neighbors(adata,use_rep='X',metric='jaccard') for resolution in resolutions: sc.tl.leiden(adata,resolution=resolution,key_added='sctri_{}_leiden_{}'.format(modality,resolution)) if umap: sc.tl.umap(adata) if not issparse(adata.X): adata.X = csr_matrix(adata.X) if save: resolutions = '_'.join([str(item) for item in resolutions]) adata.write('adata_after_scanpy_recipe_{}_{}_umap_{}.h5ad'.format(modality,resolutions,umap)) elif modality == 'spatial': sc.pp.scale(adata) sc.pp.neighbors(adata) for resolution in resolutions: sc.tl.leiden(adata,resolution=resolution,key_added='sctri_{}_leiden_{}'.format(modality,resolution)) if save: resolutions = '_'.join([str(item) for item in resolutions]) adata.write('adata_after_scanpy_recipe_{}_{}_umap_{}.h5ad'.format(modality,resolutions,False)) return adata def concat_rna_and_other(adata_rna,adata_other,umap,name,prefix): ''' concatenate rna adata and another modality's adata object :param adata_rna: AnnData :param adata_other: Anndata :param umap: string, whose umap to use, either 'rna' or 'other' :param name: string, the name of other modality, for example, 'adt' or 'atac' :param prefix: string, the prefix added in front of features from other modality, by scTriangulate convertion, adt will be 'AB_', atac will be ''. :return adata_combine: Anndata Examples:: from sctriangulate.preprocessing import concat_rna_and_other concat_rna_and_other(adata_rna,adata_adt,umap='rna',name='adt',prefix='AB_') ''' adata_rna = adata_rna.copy() adata_other = adata_other.copy() # remove layers, [!obsm], varm, obsp, varp, raw for adata in [adata_rna,adata_other]: del adata.layers del adata.varm del adata.obsp del adata.varp del adata.raw adata_other = adata_other[adata_rna.obs_names,:] # make sure the obs order is the same adata_other.var_names = [prefix + item for item in adata_other.var_names] adata_combine = ad.concat([adata_rna,adata_other],axis=1,join='outer',merge='first',label='modality',keys=['rna','{}'.format(name)]) if umap == 'rna': adata_combine.obsm['X_umap'] = adata_rna.obsm['X_umap'] elif umap == 'other': adata_combine.obsm['X_umap'] = adata_other.obsm['X_umap'] if not issparse(adata_combine.X): adata_combine.X = csr_matrix(adata_combine.X) return adata_combine def nca_embedding(adata,nca_n_components,label,method,max_iter=50,plot=True,save=True,format='pdf',legend_loc='on data',n_top_genes=None,hv_features=None,add_features=None): ''' Doing Neighborhood component ananlysis (NCA), so it is a supervised PCA that takes the label from the annotation, and try to generate a UMAP embedding that perfectly separate the labelled clusters. :param adata: the Anndata :param nca_n_components: recommend to be 10 based on `Ref <https://www.nature.com/articles/s41586-021-03969-3>`_ :param label: string, the column name which contains the label information :param method: either 'umap' or 'tsne' :param max_iter: for the NCA, default is 50, it is generally good enough :param plot: whether to plot the umap/tsne or not :param save: whether to save the plot or not :param format: the saved format, default is 'pdf' :param legend_loc: 'on data' or 'right margin' :param n_top_genes: how many hypervariable genes to choose for NCA, recommended 3000 or 5000, default is None, means there will be other features to add, multimodal setting :param hv_features: a list contains the user-supplied hypervariable genes/features, in multimodal setting, this can be [rna genes] + [ADT protein] :param add_features: this should be another adata contains features from other modalities, or None means just for RNA Example:: from sctriangulate.preprocessing import nca_embedding # only RNA nca_embedding(adata,nca_n_components=10,label='annotation1',method='umap',n_top_genes=3000) # RNA + ADT # list1 contains [gene features that are variable] and [ADT features that are variable] nca_embedding(adata_rna,nca_n_components=10,label='annotation1',method='umap',n_top_genes=3000,hv_features=list1, add_features=adata_adt) ''' from sklearn.neighbors import NeighborhoodComponentsAnalysis adata = adata if n_top_genes is not None: sc.pp.highly_variable_genes(adata,flavor='seurat',n_top_genes=n_top_genes) else: if add_features is not None: # first add the features, input should be anndata adata = concat_rna_and_other(adata,add_features,umap=None,name='add_features',prefix='add_features_') if hv_features is not None: # custom hv tmp = pd.Series(index=adata.var_names,data=np.full(len(adata.var_names),fill_value=False)) tmp.loc[hv_features] = True adata.var['highly_variable'] = tmp.values adata.raw = adata adata = adata[:,adata.var['highly_variable']] X = make_sure_mat_dense(adata.X) y = adata.obs[label].values nca = NeighborhoodComponentsAnalysis(n_components=nca_n_components,max_iter=max_iter) embed = nca.fit_transform(X,y) # (n_cells,n_components) adata.obsm['X_nca'] = embed adata = adata.raw.to_adata() if method == 'umap': sc.pp.neighbors(adata,use_rep='X_nca') sc.tl.umap(adata) sc.pl.umap(adata,color=label,frameon=False,legend_loc=legend_loc) if save: plt.savefig(os.path.join('.','nca_embedding_{}_{}.{}'.format(label,method,format)),bbox_inches='tight') plt.close() elif method == 'tsne': sc.tl.tsne(adata,use_rep='X_nca') sc.pl.tsne(adata,color=label,frameon=False,legend_loc=legend_loc) if save: plt.savefig(os.path.join('.','nca_embedding_{}_{}.{}'.format(label,method,format)),bbox_inches='tight') plt.close() adata.X = make_sure_mat_sparse(adata.X) return adata def umap_dual_view_save(adata,cols): ''' generate a pdf file with two umap up and down, one is with legend on side, another is with legend on data. More importantly, this allows you to generate multiple columns iteratively. :param adata: Anndata :param cols: list, all columns from which we want to draw umap. Examples:: from sctriangulate.preprocessing import umap_dual_view_save umap_dual_view_save(adata,cols=['annotation1','annotation2','total_counts']) ''' for col in cols: fig,ax = plt.subplots(nrows=2,ncols=1,figsize=(8,20),gridspec_kw={'hspace':0.3}) # for final_annotation sc.pl.umap(adata,color=col,frameon=False,ax=ax[0]) sc.pl.umap(adata,color=col,frameon=False,legend_loc='on data',legend_fontsize=5,ax=ax[1]) plt.savefig('./umap_dual_view_{}.pdf'.format(col),bbox_inches='tight') plt.close() def just_log_norm(adata): sc.pp.normalize_total(adata,target_sum=1e4) sc.pp.log1p(adata) return adata def format_find_concat(adata,canonical_chr_only=True,gtf_file='gencode.v38.annotation.gtf',key_added='gene_annotation',**kwargs): ''' this is a wrapper function to add nearest genes to your ATAC peaks or bins. For instance, if the peak is chr1:55555-55566, it will be annotated as chr1:55555-55566_gene1;gene2 :param adata: The anndata, the var_names is the peak/bin, please make sure the format is like chr1:55555-55566 :param canonical_chr_only: boolean, default to True, means only contain features on canonical chromosomes. for human, it is chr1-22 and X,Y :param gtf_file: the path to the gtf files, we provide the hg38 on this `google drive link <https://drive.google.com/file/d/11gbJl2-wZr3LbpWaU9RiUAGPebqWYi1z/view?usp=sharing>`_ to download :param key_added: string, the column name where the gene annotation will be inserted to adata.var, default is 'gene_annotation' :return adata: Anndata, the gene annotation will be added to var, and the var_name will be suffixed with gene annotation, if canonical_chr_only is True, then only features on canonical chromsome will be retained. Example:: adata = format_find_concat(adata) ''' adata= reformat_peak(adata,canonical_chr_only=canonical_chr_only) find_genes(adata,gtf_file=gtf_file,key_added=key_added,**kwargs) adata.var_names = [name + '_' + gene for name,gene in zip(adata.var_names,adata.var[key_added])] return adata class GeneConvert(object): ''' A collection of gene symbol conversion functions. Now support: 1. ensemblgene id to gene symbol. ''' @staticmethod def ensemblgene_to_symbol(query,species): ''' Examples:: from sctriangulate.preprocessing import GeneConvert converted_list = GeneConvert.ensemblgene_to_symbol(['ENSG00000010404','ENSG00000010505'],species='human') ''' # assume query is a list, will also return a list import mygene mg = mygene.MyGeneInfo() out = mg.querymany(query,scopes='ensemblgene',fileds='symbol',species=species,returnall=True,as_dataframe=True,df_index=True) result = out['out']['symbol'].fillna('unknown_gene').tolist() try: assert len(query) == len(result) except AssertionError: # have duplicate results df = out['out'] df_unique = df.loc[~df.index.duplicated(),:] result = df_unique['symbol'].fillna('unknown_gene').tolist() return result def dual_gene_plot(adata,gene1,gene2,s=8,save=True,format='pdf',dir='.',umap_lim=None): from scipy.sparse import issparse if issparse(adata.X): adata.X = adata.X.toarray() index1 = np.where(adata.var_names == gene1)[0][0] index2 = np.where(adata.var_names == gene2)[0][0] exp1 = adata.X[:,index1] exp2 = adata.X[:,index2] color = [] for i in range(len(exp1)): if exp1[i] > 0 and exp2[i] > 0: color.append('#F2DE77') elif exp1[i] > 0 and exp2[i] == 0: color.append('#5ABF9A') elif exp1[i] == 0 and exp2[i] > 0: color.append('#F25C69') else: color.append('lightgrey') fig, ax = plt.subplots() if umap_lim is not None: ax.set_xlim(umap_lim[0]) ax.set_ylim(umap_lim[1]) ax.scatter(x=adata.obsm['X_umap'][:,0],y=adata.obsm['X_umap'][:,1],s=s,c=color) import matplotlib.lines as mlines ax.legend(handles=[mlines.Line2D([],[],marker='o',color=i,linestyle='') for i in ['#F2DE77','#5ABF9A','#F25C69','lightgrey']], labels=['Both','{}'.format(gene1),'{}'.format(gene2),'None'],frameon=False,loc='upper left',bbox_to_anchor=[1,1]) if save: plt.savefig(os.path.join(dir,'sctri_dual_gene_plot_{}_{}.{}'.format(gene1,gene2,format)),bbox_inches='tight') plt.close() return ax def multi_gene_plot(adata,genes,s=8,save=True,format='pdf',dir='.',umap_lim=None): from scipy.sparse import issparse if issparse(adata.X): adata.X = adata.X.toarray() exp_list = [] for gene in genes: index_gene = np.where(adata.var_names == gene)[0][0] exp_gene = adata.X[:,index_gene] exp_list.append(exp_gene) color = [] for i in range(len(exp_list[0])): if len(genes) == 3: c = ['#04BFBF','#83A603','#F7766D'] elif len(genes) == 4: c = ['#04BFBF','#83A603','#F7766D','#E36DF2'] elif len(genes) == 5: c = ['#04BFBF','#83A603','#F7766D','#E36DF2','#A69B03'] b = '#BABABA' l_exp = np.array([exp[i] for exp in exp_list]) n_exp = np.count_nonzero(l_exp > 0) if n_exp > 1: color.append(c[np.where(l_exp==l_exp.max())[0][0]]) elif n_exp == 1: color.append(c[np.where(l_exp>0)[0][0]]) elif n_exp == 0: color.append(b) fig, ax = plt.subplots() if umap_lim is not None: ax.set_xlim(umap_lim[0]) ax.set_ylim(umap_lim[1]) ax.scatter(x=adata.obsm['X_umap'][:,0],y=adata.obsm['X_umap'][:,1],s=s,c=color) import matplotlib.lines as mlines ax.legend(handles=[mlines.Line2D([],[],marker='o',color=i,linestyle='') for i in c+[b]], labels=genes + ['None'],frameon=False, loc='upper left',bbox_to_anchor=[1,1]) if save: output = '_'.join(genes) plt.savefig(os.path.join(dir,'sctri_multi_gene_plot_{}.{}'.format(output,format)),bbox_inches='tight') plt.close() return ax def make_sure_mat_dense(mat): ''' make sure a matrix is dense :param mat: ndarary :return mat: ndarray (dense) Examples:: mat = make_sure_mat_dense(mat) ''' if not issparse(mat): pass else: mat = mat.toarray() return mat def make_sure_mat_sparse(mat): # will be csr if the input mat is a dense array ''' make sure a matrix is sparse :param mat: ndarary :return mat: ndarray (sparse) Examples:: mat = make_sure_mat_dense(mat) ''' if not issparse(mat): mat = csr_matrix(mat) else: pass return mat class Normalization(object): ''' a series of Normalization functions Now support: 1. CLR normalization 2. total count normalization (CPTT, CPM) 3. GMM normalization ''' # matrix should be cell x feature, expecting a ndarray @staticmethod def CLR_normalization(mat): ''' Examples:: from sctriangulate.preprocessing import Normalization post_mat = Normalization.CLR_normalization(pre_mat) ''' from scipy.stats import gmean gmeans = gmean(mat+1,axis=1).reshape(-1,1) post = np.log(mat/gmeans + 1) return post @staticmethod def total_normalization(mat,target=1e4): ''' Examples:: from sctriangulate.preprocessing import Normalization post_mat = Normalization.total_normalization(pre_mat) ''' total = np.sum(mat,axis=1).reshape(-1,1) sf = total/target post = np.log(mat/sf + 1) return post @staticmethod def GMM_normalization(mat): ''' Examples:: from sctriangulate.preprocessing import Normalization post_mat = Normalization.GMM_normalization(pre_mat) ''' mat = Normalization.total_normalization(mat) from sklearn.mixture import GaussianMixture model = GaussianMixture(n_components=2,random_state=0) model.fit(mat) means = model.means_ # (n_components,n_features) bg_index = np.argmin(means.mean(axis=1)) bg_mean = means[bg_index,:].reshape(1,-1) post = mat - bg_mean return post def gene_activity_count_matrix_new_10x(fall_in_promoter,fall_in_gene,valid=None): ''' Full explanation please refer to ``gene_activity_count_matrix_old_10x`` Examples:: from sctriangulate.preprocessing import gene_activity_count_matrix_new_10x gene_activity_count_matrix_new_10x(fall_in_promoter,fall_in_gene,valid=None) ''' gene_promoter = pd.read_csv(fall_in_promoter,sep='\t',header=None) gene_body = pd.read_csv(fall_in_gene,sep='\t',header=None) bucket = [] for i in range(gene_promoter.shape[0]): row = gene_promoter.iloc[i] in_gene = row[3] in_barcode = row[6] in_count = row[7] try: in_barcode = in_barcode.split(';') in_count = [int(item) for item in in_count.split(';')] except AttributeError: # means no fragments fall into the promoter continue # tmp will be three column, barcode, count, gene, no index tmp = pd.DataFrame({'barcode':in_barcode,'count':in_count}).groupby(by='barcode')['count'].sum().to_frame() tmp['gene'] = np.full(shape=tmp.shape[0],fill_value=in_gene) tmp.reset_index(inplace=True) bucket.append(tmp) for i in range(gene_body.shape[0]): row = gene_body.iloc[i] in_gene = row[3] in_barcode = row[6] in_count = row[7] try: in_barcode = in_barcode.split(';') in_count = [int(item) for item in in_count.split(';')] except AttributeError: # means no fragments fall into the promoter continue # tmp will be three column, barcode, count, gene, no index tmp = pd.DataFrame({'barcode':in_barcode,'count':in_count}).groupby(by='barcode')['count'].sum().to_frame() tmp['gene'] = np.full(shape=tmp.shape[0],fill_value=in_gene) tmp.reset_index(inplace=True) bucket.append(tmp) df = pd.concat(bucket) if valid is not None: df = df.loc[df['barcode'].isin(valid),:] final = df.groupby(by=['barcode','gene'])['count'].sum().unstack(fill_value=0) return final def gene_activity_count_matrix_old_10x(fall_in_promoter,fall_in_gene,valid=None): ''' this function is to generate gene activity count matrix, please refer to ``gene_activity_count_matrix_new_10x`` for latest version of 10x fragements.tsv output. how to get these two arguments? (LIGER team approach) 1. sort the fragment, gene and promoter bed, or use function in this module to sort the reference bed files:: sort -k1,1 -k2,2n -k3,3n pbmc_granulocyte_sorted_10k_atac_fragments.tsv > atac_fragments.sort.bed sort -k 1,1 -k2,2n -k3,3n hg19_genes.bed > hg19_genes.sort.bed sort -k 1,1 -k2,2n -k3,3n hg19_promoters.bed > hg19_promoters.sort.bed 2. bedmap:: module load bedops bedmap --ec --delim "\t" --echo --echo-map-id hg19_promoters.sort.bed atac_fragments.sort.bed > atac_promoters_bc.bed bedmap --ec --delim "\t" --echo --echo-map-id hg19_genes.sort.bed atac_fragments.sort.bed > atac_genes_bc.bed the following was taken from http://htmlpreview.github.io/?https://github.com/welch-lab/liger/blob/master/vignettes/Integrating_scRNA_and_scATAC_data.html * **delim**. This changes output delimiter from ‘|’ to indicated delimiter between columns, which in our case is “\t”. * **ec**. Adding this will check all problematic input files. * **echo**. Adding this will print each line from reference file in output. The reference file in our case is gene or promoter index. * **echo-map-id**. Adding this will list IDs of all overlapping elements from mapping files, which in our case are cell barcodes from fragment files. 3. Finally:: from sctriangulate.preprocessing import gene_activity_count_matrix_old_10x gene_activity_count_matrix_old_10x(fall_in_promoter,fall_in_gene,valid=None) ''' gene_promoter = pd.read_csv(fall_in_promoter,sep='\t',header=None) gene_body = pd.read_csv(fall_in_gene,sep='\t',header=None) bucket = [] for i in range(gene_promoter.shape[0]): row = gene_promoter.iloc[i] in_gene = row[3] in_barcode = row[6] try: in_barcode = in_barcode.split(';') except AttributeError: # means no fragments fall into the promoter continue tmp = pd.Series(in_barcode).value_counts().to_frame(name='count') tmp['gene'] = np.full(shape=tmp.shape[0],fill_value=in_gene) tmp.reset_index(inplace=True) # three column: index, count, gene bucket.append(tmp) for i in range(gene_body.shape[0]): row = gene_body.iloc[i] in_gene = row[3] in_barcode = row[6] try: in_barcode = in_barcode.split(';') except AttributeError: # means no fragments fall into the promoter continue tmp = pd.Series(in_barcode).value_counts().to_frame(name='count') tmp['gene'] = np.full(shape=tmp.shape[0],fill_value=in_gene) tmp.reset_index(inplace=True) # three column: index, count, gene bucket.append(tmp) df = pd.concat(bucket) if valid is not None: df = df.loc[df['index'].isin(valid),:] final = df.groupby(by=['index','gene'])['count'].sum().unstack(fill_value=0) return final def gene_bed_to_promoter_bed(gene_bed_path,promoter_bed_path,up_bp=3000): gene_bed = pd.read_csv(gene_bed_path,header=None,sep='\t') with open(promoter_bed_path,'w') as f: for i in range(gene_bed.shape[0]): row = gene_bed.iloc[i] chro = row[0] start = row[1] end = row[2] name = row[3] score = row[4] strand = row[5] if strand == '+': new_start = start - up_bp new_end = start else: new_start = end new_end = end + up_bp f.write('{}\t{}\t{}\t{}\t{}\t{}\n'.format(chro,new_start,new_end,name,score,strand)) def ensembl_gtf_to_gene_bed(gtf_path,bed_path,sort=True): # only interested in gene feature hg38_gtf = pd.read_csv(gtf_path,skiprows=5,header=None,sep='\t') hg38_gtf_gene = hg38_gtf.loc[hg38_gtf[2]=='gene',:] # gotta have gene symbol col = [] for i in range(hg38_gtf_gene.shape[0]): metadata = hg38_gtf_gene.iloc[i,8] if 'gene_name' in metadata: col.append(True) else: col.append(False) hg38_gtf_gene_have_symbol = hg38_gtf_gene.loc[col,:] # add biotype and gene name col1 = [] col2 = [] for i in range(hg38_gtf_gene_have_symbol.shape[0]): metadata = hg38_gtf_gene_have_symbol.iloc[i, 8] biotype = metadata.split('; ')[-1].split(' ')[-1].strip(';').strip('"') name = metadata.split('; ')[2].split(' ')[1].strip('"') col1.append(biotype) col2.append(name) hg38_gtf_gene_have_symbol['biotype'] = col1 hg38_gtf_gene_have_symbol['name'] = col2 # biotype has to be either protein_coding, IG or TR gene col = (hg38_gtf_gene_have_symbol['biotype']=='protein_coding') |\ (hg38_gtf_gene_have_symbol['biotype']=='IG_C_gene') |\ (hg38_gtf_gene_have_symbol['biotype']=='IG_D_gene') |\ (hg38_gtf_gene_have_symbol['biotype']=='IG_J_gene') |\ (hg38_gtf_gene_have_symbol['biotype']=='IG_V_gene') |\ (hg38_gtf_gene_have_symbol['biotype']=='TR_C_gene') |\ (hg38_gtf_gene_have_symbol['biotype']=='TR_D_gene') |\ (hg38_gtf_gene_have_symbol['biotype']=='TR_J_gene') |\ (hg38_gtf_gene_have_symbol['biotype']=='TR_V_gene') hg38_gtf_gene_have_symbol_biotype_correct = hg38_gtf_gene_have_symbol.loc[col,:] # chromsome need to be correct chr_need_chr = ['1','2','3','4','5','6','7','8','9','10','11','12','13','14','15','16','17','18','19','20','21','22'] chr_need_int = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22] chr_need_other = ['X','Y'] # don't include MT decause fragment.tsv file doesn't output that chr_need = chr_need_chr + chr_need_int + chr_need_other hg38_gtf_gene_have_symbol_biotype_correct_chr = hg38_gtf_gene_have_symbol_biotype_correct.loc[hg38_gtf_gene_have_symbol_biotype_correct[0].isin(chr_need),:] prefixed_chr = ['chr' + str(item) for item in hg38_gtf_gene_have_symbol_biotype_correct_chr[0]] hg38_gtf_gene_have_symbol_biotype_correct_chr[0] = prefixed_chr # get final result, BED6 format final = hg38_gtf_gene_have_symbol_biotype_correct_chr.loc[:,[0,3,4,'name',5,6]] if sort: ''' equivalent to: sort -k1,1 -k2,2n -k3,3n gene.bed ''' final.sort_values(by=[0,3,4],inplace=True) final.to_csv(bed_path,sep='\t',index=None,header=None) # this function is taken from episcanpy, all the credits to the original developer: # https://github.com/colomemaria/epiScanpy/blob/master/episcanpy/tools/_find_genes.py # to download the gtf file ''' https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_38/gencode.v38.annotation.gtf.gz ''' def find_genes(adata, gtf_file, key_added='gene_annotation', upstream=2000, downstream=0, feature_type='gene', annotation='HAVANA', raw=False): """ This function is taken from `episcanpy <https://github.com/colomemaria/epiScanpy/blob/master/episcanpy/tools/_find_genes.py>`_. all the credits to the original developer merge values of peaks/windows/features overlapping genebodies + 2kb upstream. It is possible to extend the search for closest gene to a given number of bases downstream as well. There is commonly 2 set of annotations in a gtf file(HAVANA, ENSEMBL). By default, the function will search annotation from HAVANA but other annotation label/source can be specifed. It is possible to use other type of features than genes present in a gtf file such as transcripts or CDS. Examples:: from sctriangulate.preprocessing import find_genes find_genes(adata,gtf_file='gencode.v38.annotation.gtf) """ ### extracting the genes gtf = {} with open(gtf_file) as f: for line in f: if line[0:2] != '##' and '\t'+feature_type+'\t' in line and '\t'+annotation+'\t' in line: line = line.rstrip('\n').split('\t') if line[6] == '-': if line[0] not in gtf.keys(): gtf[line[0]] = [[int(line[3])-downstream, int(line[4])+upstream,line[-1].split(';')[:-1]]] else: gtf[line[0]].append([int(line[3])-downstream, int(line[4])+upstream,line[-1].split(';')[:-1]]) else: if line[0] not in gtf.keys(): gtf[line[0]] = [[int(line[3])-upstream, int(line[4])+downstream,line[-1].split(';')[:-1]]] else: gtf[line[0]].append([int(line[3])-upstream, int(line[4])+downstream,line[-1].split(';')[:-1]]) # extracting the feature coordinates raw_adata_features = {} feature_index = 0 for line in adata.var_names.tolist(): line = line.split('_') if line[0] not in raw_adata_features.keys(): raw_adata_features[line[0]] = [[int(line[1]),int(line[2]), feature_index]] else: raw_adata_features[line[0]].append([int(line[1]),int(line[2]), feature_index]) feature_index += 1 ## find the genes overlaping the features. gene_index = [] for chrom in raw_adata_features.keys(): if chrom in gtf.keys(): chrom_index = 0 previous_features_index = 0 for feature in raw_adata_features[chrom]: gene_name = [] feature_start = feature[0] feature_end = feature[1] for gene in gtf[chrom]: if (gene[1]<= feature_start): # the gene is before the feature. we need to test the next gene. continue elif (feature_end <= gene[0]): # the gene is after the feature. we need to test the next feature. break else: # the window is overlapping the gene. for n in gene[-1]: if 'gene_name' in n: gene_name.append(n.lstrip('gene_name "').rstrip('""')) if gene_name == []: gene_index.append('intergenic') elif len(gene_name)==1: gene_index.append(gene_name[0]) else: gene_index.append(";".join(list(set(gene_name)))) adata.var[key_added] = gene_index def reformat_peak(adata,canonical_chr_only=True): ''' To use ``find_genes`` function, please first reformat the peak from 10X format "chr1:10109-10357" to find_gene format "chr1_10109_10357" :param adata: AnnData :param canonical_chr_only: boolean, only kept the canonical chromosome :return: AnnData Examples:: from sctriangulate.preprocessing import reformat_peak adata = reformat_peak(adata,canonical_chr_only=True) ''' var_names = adata.var_names valid = set(['chr1','chr2','chr3','chr4','chr5','chr6','chr7','chr8','chr9','chr10','chr11','chr12','chr13','chr14','chr15','chr16', 'chr17','chr18','chr19','chr20','chr21','chr22','chrX','chrY']) col = [] for item in var_names: chr_ = item.split(':')[0] if chr_ in valid: start = item.split(':')[1].split('-')[0] end = item.split(':')[1].split('-')[1] now = '_'.join([chr_,start,end]) col.append(now) else: col.append('non_canonical_chr') adata.var_names = col if canonical_chr_only: adata = adata[:,adata.var_names!='non_canonical_chr'].copy() return adata def plot_coexpression(adata,gene1,gene2,kind,hist2d_bins=50,hist2d_cmap=bg_greyed_cmap('viridis'),hist2d_vmin=1e-5,hist2d_vmax=None, scatter_dot_color='blue',contour_cmap='viridis',contour_levels=None,contour_scatter=True,contour_scatter_dot_size=5, contour_train_kde='valid',surface3d_cmap='coolwarm',save=True,outdir='.',name=None): x = np.squeeze(make_sure_mat_dense(adata[:,gene1].X)) y = np.squeeze(make_sure_mat_dense(adata[:,gene2].X)) if kind == 'scatter': fig,ax = plt.subplots() ax.scatter(x,y,color=scatter_dot_color) ax.set_xlabel('{}'.format(gene1)) ax.set_ylabel('{}'.format(gene2)) elif kind == 'hist2d': fig,ax = plt.subplots() hist2d = ax.hist2d(x,y,bins=hist2d_bins,cmap=hist2d_cmap,vmin=hist2d_vmin,vmax=hist2d_vmax) fig.colorbar(mappable=hist2d[3],ax=ax) ax.set_xlabel('{}'.format(gene1)) ax.set_ylabel('{}'.format(gene2)) elif kind == 'contour': from scipy.stats import gaussian_kde fig,ax = plt.subplots() X,Y = np.meshgrid(np.linspace(x.min(),x.max(),100),np.linspace(y.min(),y.max(),100)) positions = np.vstack([X.ravel(),Y.ravel()]) # (2, 10000) values = np.vstack([x,y]) # (2, 2700) if contour_train_kde == 'valid': # data points that are non-zero for both gene1 and gen2 values_to_kde = values[:,np.logical_not(np.any(values==0,axis=0))] elif contour_train_kde == 'semi_valid': # data points that are non-zero for at least one of the gene values_to_kde = values[:,np.logical_not(np.all(values==0,axis=0))] elif contour_train_kde == 'full': # all data points will be used for kde estimation values_to_kde == values kernel = gaussian_kde(values_to_kde) density = kernel(positions) # (10000,) density = density.reshape(X.shape) # (100,100) cset = ax.contour(X,Y,density,levels=contour_levels,cmap=contour_cmap) if contour_scatter: dot_density = kernel(values) dot_density_color = [cm.viridis(round(np.interp(x=item,xp=[dot_density.min(),dot_density.max()],fp=[0,255]))) for item in dot_density] ax.scatter(x,y,c=dot_density_color,s=contour_scatter_dot_size) from matplotlib.colors import Normalize fig.colorbar(mappable=cm.ScalarMappable(norm=Normalize(),cmap=contour_cmap),ax=ax) ax.set_xlabel('{}'.format(gene1)) ax.set_ylabel('{}'.format(gene2)) elif kind == 'contourf': from scipy.stats import gaussian_kde fig,ax = plt.subplots() X,Y = np.meshgrid(np.linspace(x.min(),x.max(),100),np.linspace(y.min(),y.max(),100)) positions = np.vstack([X.ravel(),Y.ravel()]) # (2, 10000) values = np.vstack([x,y]) # (2, 2700) if contour_train_kde == 'valid': # data points that are non-zero for both gene1 and gen2 values_to_kde = values[:,np.logical_not(np.any(values==0,axis=0))] elif contour_train_kde == 'semi_valid': # data points that are non-zero for at least one of the gene values_to_kde = values[:,np.logical_not(np.all(values==0,axis=0))] elif contour_train_kde == 'full': # all data points will be used for kde estimation values_to_kde == values kernel = gaussian_kde(values_to_kde) density = kernel(positions) # (10000,) density = density.reshape(X.shape) # (100,100) cfset = ax.contourf(X,Y,density,levels=contour_levels,cmap=contour_cmap) cset = ax.contour(X,Y,density,levels=contour_levels,colors='k') clable = ax.clabel(cset,inline=True,fontsize=5) from matplotlib.colors import Normalize fig.colorbar(mappable=cm.ScalarMappable(norm=Normalize(),cmap=contour_cmap),ax=ax) ax.set_xlabel('{}'.format(gene1)) ax.set_ylabel('{}'.format(gene2)) elif kind == 'surface3d': fig = plt.figure() from scipy.stats import gaussian_kde X,Y = np.meshgrid(np.linspace(x.min(),x.max(),100),np.linspace(y.min(),y.max(),100)) positions = np.vstack([X.ravel(),Y.ravel()]) # (2, 10000) values = np.vstack([x,y]) # (2, 2700) if contour_train_kde == 'valid': # data points that are non-zero for both gene1 and gen2 values_to_kde = values[:,np.logical_not(np.any(values==0,axis=0))] elif contour_train_kde == 'semi_valid': # data points that are non-zero for at least one of the gene values_to_kde = values[:,np.logical_not(np.all(values==0,axis=0))] elif contour_train_kde == 'full': # all data points will be used for kde estimation values_to_kde == values kernel = gaussian_kde(values_to_kde) density = kernel(positions) # (10000,) density = density.reshape(X.shape) # (100,100) ax = plt.axes(projection='3d') surf = ax.plot_surface(X,Y,density,cmap=surface3d_cmap) ax.set_xlabel('{}'.format(gene1)) ax.set_ylabel('{}'.format(gene2)) ax.set_zlabel('PDF for KDE') fig.colorbar(mappable=surf,ax=ax) if save: if name is None: plt.savefig(os.path.join(outdir,'coexpression_{}_{}_{}_plot.pdf'.format(kind,gene1,gene2)),bbox_inches='tight') plt.close() else: plt.savefig(os.path.join(outdir,name),bbox_inches='tight') plt.close() return ax def umap_color_exceed_102(adata,key,dot_size=None,legend_fontsize=6,outdir='.',name=None): ''' draw a umap that bypass the scanpy 102 color upper bound, this can generate as many as 433 clusters. :param adata: Anndata :param key: the categorical column in adata.obs, which will be plotted :param dot_size: None or number :param legend_fontsize: defualt is 6 :param outdir: output directory, default is '.' :param name: name of the plot, default is None Exmaple:: from sctriangulate.preprocessing import umap_color_exceed_102 umap_color_exceed_102(adata,key='leiden6') # more than 130 clusters .. image:: ./_static/more_than102.png :height: 550px :width: 550px :align: center :target: target ''' fig,ax = plt.subplots() mapping = colors_for_set(adata.obs[key].unique().tolist()) color = adata.obs[key].map(mapping).values if dot_size is None: dot_size = 120000/adata.shape[0] ax.scatter(adata.obsm['X_umap'][:,0],adata.obsm['X_umap'][:,1],c=color,s=dot_size) import matplotlib.lines as mlines ax.legend(handles=[mlines.Line2D([],[],marker='o',linestyle='',color=i) for i in mapping.values()], labels=[i for i in mapping.keys()],loc='upper left',bbox_to_anchor=(1,1),ncol=3,frameon=False,prop={'size':6}) if name is None: name = 'umap_{}_exceed_102.pdf'.format(key) plt.savefig(os.path.join(outdir,name),bbox_inches='tight') plt.close() def custom_two_column_sankey(adata,left_annotation,right_annotation,opacity=0.6,pad=3,thickness=10,margin=300,text=True,save=True,as_html=True,outdir='.'): import plotly.graph_objects as go import kaleido df = adata.obs.loc[:,[left_annotation,right_annotation]] node_label = df[left_annotation].unique().tolist() + df[right_annotation].unique().tolist() node_color = pick_n_colors(len(node_label)) link = [] for source,sub in df.groupby(by=left_annotation): for target,subsub in sub.groupby(by=right_annotation): if subsub.shape[0] > 0: link.append((source,target,subsub.shape[0],subsub.shape[0]/sub.shape[0])) link_info = list(zip(*link)) link_source = [node_label.index(item) for item in link_info[0]] link_target = [node_label.index(item) for item in link_info[1]] link_value = link_info[2] link_pert = [round(item,2) for item in link_info[3]] link_color = ['rgba{}'.format(tuple([infer_to_256(item) for item in to_rgb(node_color[i])] + [opacity])) for i in link_source] node_plotly = dict(pad = pad, thickness = thickness,line = dict(color = "grey", width = 0.1),label = node_label,color = node_color) link_plotly = dict(source=link_source,target=link_target,value=link_value,color=link_color,customdata=link_pert, hovertemplate='%{source.label} -> %{target.label} <br /> number of cells: %{value} <br /> percentage: %{customdata}') if not text: fig = go.Figure(data=[go.Sankey(node = node_plotly,link = link_plotly, textfont=dict(color='rgba(0,0,0,0)',size=1))]) else: fig = go.Figure(data=[go.Sankey(node = node_plotly,link = link_plotly)]) fig.update_layout(title_text='sankey_{}_{}'.format(left_annotation,right_annotation), font_size=6, margin=dict(l=margin,r=margin)) if save: if not as_html: fig.write_image(os.path.join(outdir,'two_column_sankey_{}_{}_text_{}.pdf'.format(left_annotation,right_annotation,text))) else: fig.write_html(os.path.join(outdir,'two_column_sankey_{}_{}_text_{}.html'.format(left_annotation,right_annotation,text)),include_plotlyjs='cdn') def rna_umap_transform(outdir,ref_exp,ref_group,q_exp_list,q_group_list,q_identifier_list,pca_n_components,umap_min_dist=0.5): ''' Take a reference expression matrix (pandas dataframe), and a list of query expression matrics (pandas dataframe), along with a list of query expression identifiers. This function will generate the umap transformation of your reference exp, and make sure to squeeze your each query exp to the same umap transformation. :param outdir: the path in which all the results will go :param ref_exp: the pandas dataframe object,index is the features, column is the cell barcodes :param ref_group: the pandas series object, index is the cell barcodes, the value is the clusterlabel information :param q_exp_list: the list of pandas dataframe object, requirement is the same as ref_exp :param q_group_list: the list of pandas series object, requirement is the same as ref_group :param q_identifier_list: the list of string, to denote the name of each query dataset :param pca_n_components: the int, denote the PCs to use for PCA :param umap_min_dist: the float number, denote the min_dist parameter for umap program Examples:: rna_umap_transform(outdir='.',ref_exp=ref_df,ref_group=ref_group_df,q_exp_list=[q1_df],q_group_list=[q1_group_df],q_identifier_list=['q1'],pca_n_components=50) ''' # create outdir if not exist if not os.path.exists(outdir): os.mkdir(outdir) ref_variable = ref_exp.index.values store_df = [] store_variable = [] for q_exp in q_exp_list: q_variable = q_exp.index.values store_df.append(q_exp) store_variable.append(q_variable) # find common features between ref and all qs. all_variable = copy.deepcopy(store_variable) all_variable.insert(0,ref_variable) common_variable = list(reduce(lambda a,b: set(a).intersection(set(b)),all_variable)) # subset the exps, also transpose ref_exp_common = ref_exp.loc[common_variable,:].T store_df_common = [] for q_exp in store_df: q_exp_common = q_exp.loc[common_variable,:].T store_df_common.append(q_exp_common) # train pca and umap on ref ref_pca_model = PCA(n_components = pca_n_components).fit(ref_exp_common.values) ref_pca_score = ref_pca_model.transform(ref_exp_common.values) ref_umap_model = umap.UMAP(min_dist=umap_min_dist).fit(ref_pca_score) ref_umap_embed = ref_umap_model.embedding_ # transform all the querys store_q_umap = [] for q_exp_common in store_df_common: q_pca_score = ref_pca_model.transform(q_exp_common.values) q_umap_embed = ref_umap_model.transform(q_pca_score) store_q_umap.append(q_umap_embed) ref_umap_embed_df = pd.DataFrame(data=ref_umap_embed,index=ref_exp_common.index,columns=['umap_x','umap_y']) ref_umap_embed_df.to_csv(os.path.join(outdir,'ref_umap.txt'),sep='\t') for i,item in enumerate(store_q_umap): q_exp_common = store_df_common[i] item = pd.DataFrame(data=item,index=q_exp_common.index,columns=['umap_x','umap_y']) item.to_csv(os.path.join(outdir,'query_{}_umap.txt'.format(q_identifier_list[i])),sep='\t') # visualization all_identifier = ['ref'] + q_identifier_list all_exp = [ref_exp_common] + store_df_common all_label_mapping = [group_df.to_dict() for group_df in [ref_group] + q_group_list] all_umap = [ref_umap_embed] + store_q_umap for i,exp,label_map,embed in zip(all_identifier,all_exp,all_label_mapping,all_umap): adata = ad.AnnData(X=exp.values,obs=pd.DataFrame(index=exp.index),var=
pd.DataFrame(index=exp.columns)
pandas.DataFrame
import numpy as np import pandas as pd import string from datetime import datetime from sklearn.preprocessing import MinMaxScaler from sklearn.datasets import make_regression def simulate_seasonal_term(periodicity, total_cycles, noise_std=1., harmonics=None): """Generates a seasonality term""" # https://www.statsmodels.org/dev/examples/notebooks/generated/statespace_seasonal.html duration = periodicity * total_cycles assert duration == int(duration) duration = int(duration) harmonics = harmonics if harmonics else int(np.floor(periodicity / 2)) lambda_p = 2 * np.pi / float(periodicity) gamma_jt = noise_std * np.random.randn((harmonics)) gamma_star_jt = noise_std * np.random.randn((harmonics)) total_timesteps = 100 * duration # Pad for burn in series = np.zeros(total_timesteps) for t in range(total_timesteps): gamma_jtp1 = np.zeros_like(gamma_jt) gamma_star_jtp1 = np.zeros_like(gamma_star_jt) for j in range(1, harmonics + 1): cos_j = np.cos(lambda_p * j) sin_j = np.sin(lambda_p * j) gamma_jtp1[j - 1] = (gamma_jt[j - 1] * cos_j + gamma_star_jt[j - 1] * sin_j + noise_std * np.random.randn()) gamma_star_jtp1[j - 1] = (- gamma_jt[j - 1] * sin_j + gamma_star_jt[j - 1] * cos_j + noise_std * np.random.randn()) series[t] = np.sum(gamma_jtp1) gamma_jt = gamma_jtp1 gamma_star_jt = gamma_star_jtp1 wanted_series = series[-duration:] # Discard burn in return wanted_series def make_synthetic_series(seed=0): """Generate synthetic data with regressors""" np.random.seed(seed) # simulate seasonality seasonality_term = simulate_seasonal_term(periodicity=52, total_cycles=4, harmonics=3) # scale data scaler = MinMaxScaler(feature_range=(np.max(seasonality_term), np.max(seasonality_term) * 2)) seasonality_term = scaler.fit_transform(seasonality_term[:, None]) # datetime index dt = pd.date_range(start='2016-01-04', periods=len(seasonality_term), freq='7D') # create df df =
pd.DataFrame(seasonality_term, columns=['response'], index=dt)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import seaborn as sns from sklearn.neighbors import DistanceMetric import networkx as nx from itertools import combinations def undo_PCA(x, pca, pca_comp): mu = np.mean(x, axis=0) xhat = np.dot(pca.transform(x), pca_comp) xhat += mu print(xhat.shape) return xhat.T def emb2exp(semb, gemb, semb_bias, gemb_bias): x = np.dot(semb, gemb.T) x += semb_bias x += gemb_bias.T print(x.shape) return x def plot_samp_3dPCA(samp_pca, cats, cat2col, subset_idxs=[], showcat=False, showlegend=True, alpha=0.1, s=25, fs=(20,20)): if len(subset_idxs)==0: X = samp_pca[0] Y = samp_pca[1] Z = samp_pca[2] else: X = samp_pca[0][subset_idxs] Y = samp_pca[1][subset_idxs] Z = samp_pca[2][subset_idxs] colors = [cat2col[c] for c in cats] fig = plt.figure(figsize=fs) ax = fig.gca(projection='3d') ax.scatter(X, Y, Z, c=colors, s=s, alpha=alpha) if showcat: for x, y, z, c in zip(X, Y, Z, cats): ax.text(x, y, z, c, fontsize=8) if showlegend: proxies = [] for c in cat2col: proxies.append(plt.Rectangle((0, 0), 1, 1, fc=cat2col[c])) ax.legend(proxies, list(set(list(cat2col))), numpoints = 1) ax.set_xlabel('PC1') ax.set_ylabel('PC2') ax.set_zlabel('PC3') plt.show() def plot_gene_3dPCA(gene_pca, genelist, hl_idxs=[], hl_cols=['r', 'g', 'b'], showhlgene=True, showbg=True, bgcol=(0.5,0.5,0.5), bgs=30, bgalpha=0.1, hlfs=10, hls=30, hlalpha=0.8, fs=(20,20)): X = gene_pca[0] Y = gene_pca[1] Z = gene_pca[2] fig = plt.figure(figsize=fs) ax = fig.gca(projection='3d') if showbg: ax.scatter(X, Y, Z, c=(0.5,0.5,0.5), s=bgs, alpha=bgalpha) for i, hl in enumerate(hl_idxs): for idx in hl: if showhlgene: ax.text(X[idx],Y[idx],Z[idx],genelist[idx], color=hl_cols[i], fontsize=hlfs) ax.scatter(X[idx],Y[idx],Z[idx], c=hl_cols[i], s=hls, alpha=hlalpha) ax.set_xlabel('PC1') ax.set_ylabel('PC2') ax.set_zlabel('PC3') plt.show() def find_centroid(emb, sid2ca, sids, cancer): idxs = [i for i,s in enumerate(sids) if sid2ca[s]==cancer] arr = np.array([emb[i] for i in idxs]) return np.mean(arr, axis=0) def print_gdist(g1, g2, dist, gene2idx): print(dist[gene2idx[g1]][gene2idx[g2]]) def get_emb_dist(emb, return_pd=True, index=[], distmetric='euclidean', masked=False, maskval=10): dist = DistanceMetric.get_metric(distmetric) emb_dist = np.absolute(dist.pairwise(emb)) if masked: utri = np.triu_indices(len(emb_dist)) emb_dist_masked = emb_dist emb_dist_masked[utri] = maskval res = emb_dist_masked else: res = emb_dist if return_pd: res = pd.DataFrame(res, index=index, columns=index) print('shape: %s; mean: %.3f; std: %.3f' % (str(emb_dist.shape), emb_dist.mean(), emb_dist.std())) mean = np.mean(emb_dist, axis=0) std = np.std(emb_dist, axis=0) return res, mean, std def n_closest_nbs(dist, gene, n=10): n += 1 arr = np.array(dist[gene]) nb_idx = np.argpartition(arr, n)[:n] tdf = pd.DataFrame(dist[gene][nb_idx]).T.assign(parent=gene) mdf = pd.melt(tdf, id_vars='parent', var_name='child', value_name='l2dist') mdf = mdf[mdf.child != gene] return mdf def pull_close_nbs(dist, gene, th, distmetric='l2dist'): arr = np.array(dist[gene]) nb_idx = np.where(arr < th)[0] tdf = pd.DataFrame(dist[gene][nb_idx]).T.assign(parent=gene) mdf = pd.melt(tdf, id_vars='parent', var_name='child', value_name=distmetric) mdf = mdf[mdf.child != gene] return mdf def get_close_nbs_mdf(dist, genes, th, verbose=True): dist_nbs_mdfs = [pull_close_nbs(dist, g, th=th) for g in genes] dist_nbs_mdf = pd.concat(dist_nbs_mdfs) if verbose: print('len: %d' % len(dist_nbs_mdf)) return dist_nbs_mdf def get_connectivity_score(mdf): arr = list(mdf['parent']) + list(mdf['child']) genes = list(set(arr)) print('counting gene connectivity...') counts = [arr.count(g) for g in genes] total_count = np.sum(counts) print('calculating score...') percent = [c/total_count for c in counts] pds = pd.Series(percent, index=genes) print('# of genes: %d' % len(genes)) return pds, genes def get_cs_df(mdf1, mdf2, colname=['cancer', 'normal'], get_diff=False, show_zscore=False, show_outliers=False, z_cutoff=3): print('getting score of set 1...') cs1, g1 = get_connectivity_score(mdf1) print('getting score of set 2...') cs2, g2 = get_connectivity_score(mdf2) print('# of common genes: %d' % len(list(set(g1) & set(g2)))) cs1_df = cs1.to_frame(); cs1_df.columns = [colname[0]] cs2_df = cs2.to_frame(); cs2_df.columns = [colname[1]] cs_df =
pd.concat([cs1_df, cs2_df], axis=1)
pandas.concat
from abc import abstractmethod import logging import os import re import tempfile from typing import List, Union import arff import numpy as np import pandas as pd import pandas.api.types as pat from ..data import Dataset, DatasetType, Datasplit, Feature from ..datautils import read_csv, to_data_frame from ..resources import config as rconfig from ..utils import Namespace as ns, as_list, lazy_property, list_all_files, memoize, path_from_split, profile, split_path from .fileutils import download_file, is_archive, is_valid_url, unarchive_file, url_exists log = logging.getLogger(__name__) train_search_pat = re.compile(r"(?:(.*)[_-])train(?:[_-](\d+))?\.\w+") test_search_pat = re.compile(r"(?:(.*)[_-])test(?:[_-](\d+))?\.\w+") class FileLoader: def __init__(self, cache_dir=None): self._cache_dir = cache_dir if cache_dir else tempfile.mkdtemp(prefix='amlb_cache') @profile(logger=log) def load(self, dataset, fold=0): dataset = dataset if isinstance(dataset, ns) else ns(path=dataset) log.debug("Loading dataset %s", dataset) paths = self._extract_train_test_paths(dataset.path if 'path' in dataset else dataset, fold=fold) assert fold < len(paths['train']), f"No training dataset available for fold {fold} among dataset files {paths['train']}" # seed = rget().seed(fold) # if len(paths['test']) == 0: # log.warning("No test file in the dataset, the train set will automatically be split 90%/10% using the given seed.") # else: assert fold < len(paths['test']), f"No test dataset available for fold {fold} among dataset files {paths['test']}" target = dataset['target'] type_ = dataset['type'] features = dataset['features'] ext = os.path.splitext(paths['train'][fold])[1].lower() train_path = paths['train'][fold] test_path = paths['test'][fold] if len(paths['test']) > 0 else None log.info(f"Using training set {train_path} with test set {test_path}.") if ext == '.arff': return ArffDataset(train_path, test_path, target=target, features=features, type=type_) elif ext == '.csv': return CsvDataset(train_path, test_path, target=target, features=features, type=type_) else: raise ValueError(f"Unsupported file type: {ext}") def _extract_train_test_paths(self, dataset, fold=None): if isinstance(dataset, (tuple, list)): assert len(dataset) % 2 == 0, "dataset list must contain an even number of paths: [train_0, test_0, train_1, test_1, ...]." return self._extract_train_test_paths(ns(train=[p for i, p in enumerate(dataset) if i % 2 == 0], test=[p for i, p in enumerate(dataset) if i % 2 == 1]), fold=fold) elif isinstance(dataset, ns): return dict(train=[self._extract_train_test_paths(p)['train'][0] if i == fold else None for i, p in enumerate(as_list(dataset.train))], test=[self._extract_train_test_paths(p)['train'][0] if i == fold else None for i, p in enumerate(as_list(dataset.test))]) else: assert isinstance(dataset, str) dataset = os.path.expanduser(dataset) dataset = dataset.format(**rconfig().common_dirs) if os.path.exists(dataset): if os.path.isfile(dataset): if is_archive(dataset): arch_name, _ = os.path.splitext(os.path.basename(dataset)) dest_folder = os.path.join(self._cache_dir, arch_name) if not os.path.exists(dest_folder): # don't uncompress if previously done dest_folder = unarchive_file(dataset, dest_folder) return self._extract_train_test_paths(dest_folder) else: return dict(train=[dataset], test=[]) elif os.path.isdir(dataset): files = list_all_files(dataset) log.debug("Files found in dataset folder %s: %s", dataset, files) assert len(files) > 0, f"Empty folder: {dataset}" if len(files) == 1: return dict(train=files, test=[]) train_matches = [m for m in [train_search_pat.search(f) for f in files] if m] test_matches = [m for m in [test_search_pat.search(f) for f in files] if m] # verify they're for the same dataset (just based on name) assert train_matches and test_matches, f"Folder {dataset} must contain at least one training and one test dataset." root_names = {m[1] for m in (train_matches+test_matches)} assert len(root_names) == 1, f"All dataset files in {dataset} should follow the same naming: xxxxx_train_N.ext or xxxxx_test_N.ext with N starting from 0." train_no_fold = next((m[0] for m in train_matches if m[2] is None), None) test_no_fold = next((m[0] for m in test_matches if m[2] is None), None) if train_no_fold and test_no_fold: return dict(train=[train_no_fold], test=[test_no_fold]) paths = dict(train=[], test=[]) fold = 0 while fold >= 0: train = next((m[0] for m in train_matches if m[2] == str(fold)), None) test = next((m[0] for m in test_matches if m[2] == str(fold)), None) if train and test: paths['train'].append(train) paths['test'].append(test) fold += 1 else: fold = -1 assert len(paths) > 0, f"No dataset file found in {dataset}: they should follow the naming xxxx_train.ext, xxxx_test.ext or xxxx_train_0.ext, xxxx_test_0.ext, xxxx_train_1.ext, ..." return paths elif is_valid_url(dataset): cached_file = os.path.join(self._cache_dir, os.path.basename(dataset)) if not os.path.exists(cached_file): # don't download if previously done assert url_exists(dataset), f"Invalid path/url: {dataset}" download_file(dataset, cached_file) return self._extract_train_test_paths(cached_file) else: raise ValueError(f"Invalid dataset description: {dataset}") class FileDataset(Dataset): def __init__(self, train: Datasplit, test: Datasplit, target: Union[int, str] = None, features: List[Union[ns, str]] = None, type: str = None): super().__init__() self._train = train self._test = test self._target = target self._features = features self._type = type @property def type(self) -> DatasetType: assert self.target is not None return (DatasetType[self._type] if self._type is not None else DatasetType.regression if self.target.values is None else DatasetType.binary if len(self.target.values) == 2 else DatasetType.multiclass) @property def train(self) -> Datasplit: return self._train @property def test(self) -> Datasplit: return self._test @property def features(self) -> List[Feature]: return self._get_metadata('features') @property def target(self) -> Feature: return self._get_metadata('target') @memoize def _get_metadata(self, prop): meta = self._train.load_metadata() return meta[prop] class FileDatasplit(Datasplit): def __init__(self, dataset: FileDataset, format: str, path: str): super().__init__(dataset, format) self._path = path self._data = {format: path} def data_path(self, format): supported_formats = [cls.format for cls in __file_converters__] if format not in supported_formats: name = split_path(self._path).basename raise ValueError(f"Dataset {name} is only available in one of {supported_formats} formats.") return self._get_data(format) @lazy_property def data(self): # use codecs for unicode support: path = codecs.load(self._path, 'rb', 'utf-8') log.debug("Loading datasplit %s.", self.path) return self.load_data() @abstractmethod def load_data(self): pass @abstractmethod def load_metadata(self): pass def _get_data(self, fmt): if fmt not in self._data: converter = _get_file_convert_cls(fmt)() self._data[fmt] = converter.convert(self) return self._data[fmt] def _find_target_feature(self, features: List[Feature]): target = self.dataset._target return (features[target] if isinstance(target, int) else next(f for f in features if f.name == target) if isinstance(target, str) else next((f for f in features if f.name.lower() in ['target', 'class']), None) or features[-1]) def _set_feature_as_target(self, target: Feature): # for classification problems, ensure that the target appears as categorical ds_type = self.dataset._type if ds_type and DatasetType[ds_type] in [DatasetType.binary, DatasetType.multiclass]: if not target.is_categorical(): log.warning("Forcing target column %s as 'category' for classification problems: was originally detected as '%s'.", target.name, target.data_type) # target.data_type = 'category' target.is_target = True class ArffDataset(FileDataset): def __init__(self, train_path, test_path, target=None, features=None, type=None): # todo: handle auto-split (if test_path is None): requires loading the training set, split, save super().__init__(ArffDatasplit(self, train_path), ArffDatasplit(self, test_path), target=target, features=features, type=type) class ArffDatasplit(FileDatasplit): def __init__(self, dataset, path): super().__init__(dataset, format='arff', path=path) self._ds = None def _ensure_loaded(self): if self._ds is None: with open(self.path) as f: self._ds = arff.load(f) @profile(logger=log) def load_metadata(self): self._ensure_loaded() attrs = self._ds['attributes'] # arff loader types = ['NUMERIC', 'REAL', 'INTEGER', 'STRING'] to_feature_type = lambda arff_type: ('category' if isinstance(arff_type, (list, set)) else 'string' if arff_type.lower() == 'string' else 'int' if arff_type.lower() == 'integer' else 'float' if arff_type.lower() == 'real' else 'number' if arff_type.lower() == 'numeric' else 'object') features = [Feature(i, attr[0], to_feature_type(attr[1])) for i, attr in enumerate(attrs)] target = self._find_target_feature(features) self._set_feature_as_target(target) df = to_data_frame(self._ds['data']) for f in features: col = df.iloc[:, f.index] f.has_missing_values = col.hasnans if f.is_categorical(): arff_type = attrs[f.index][1] assert isinstance(arff_type, (list, set)) f.values = sorted(arff_type) meta = dict( features=features, target=target ) log.debug("Metadata for dataset %s: %s", self.path, meta) return meta @profile(logger=log) def load_data(self): self._ensure_loaded() columns = [f.name for f in self.dataset.features] df = pd.DataFrame(self._ds['data'], columns=columns) dt_conversions = {f.name: f.data_type for f in self.dataset.features if f.data_type == 'category'} if dt_conversions: df = df.astype(dt_conversions, copy=False) return df def release(self, properties=None): super().release(properties) self._ds = None class CsvDataset(FileDataset): def __init__(self, train_path, test_path, target=None, features=None, type=None): # todo: handle auto-split (if test_path is None): requires loading the training set, split, save super().__init__(CsvDatasplit(self, train_path), CsvDatasplit(self, test_path), target=target, features=features, type=type) self._dtypes = None class CsvDatasplit(FileDatasplit): def __init__(self, dataset, path): super().__init__(dataset, format='csv', path=path) self._ds = None def _ensure_loaded(self): if self._ds is None: if self.dataset._dtypes is None: df = read_csv(self.path) # df = df.convert_dtypes() dt_conversions = {name: 'category' for name, dtype in zip(df.dtypes.index, df.dtypes.values) if pat.is_string_dtype(dtype) or pat.is_object_dtype(dtype)} # we could be a bit more clever in the future and convert 'string' to category iff len(distinct values) << nrows if dt_conversions: df = df.astype(dt_conversions, copy=False) self._ds = df self.dataset._dtypes = self._ds.dtypes else: self._ds = read_csv(self.path, dtype=self.dataset._dtypes.to_dict()) @profile(logger=log) def load_metadata(self): self._ensure_loaded() dtypes = self.dataset._dtypes to_feature_type = lambda dt: ('int' if pat.is_integer_dtype(dt) else 'float' if pat.is_float_dtype(dt) else 'number' if pat.is_numeric_dtype(dt) else 'category' if pat.is_categorical_dtype(dt) else 'string' if pat.is_string_dtype(dt) # else 'datetime' if pat.is_datetime64_dtype(dt) else 'object') features = [Feature(i, col, to_feature_type(dtypes[i])) for i, col in enumerate(self._ds.columns)] for f in features: col = self._ds.iloc[:, f.index] f.has_missing_values = col.hasnans if f.is_categorical(): f.values = sorted(self._ds.dtypes[f.name].categories.values) target = self._find_target_feature(features) self._set_feature_as_target(target) meta = dict( features=features, target=target ) log.debug("Metadata for dataset %s: %s", self.path, meta) return meta @profile(logger=log) def load_data(self): self._ensure_loaded() return self._ds def release(self, properties=None): super().release(properties) self._ds = None class FileConverter: format = None def __init__(self) -> None: super().__init__() def convert(self, split: FileDatasplit) -> str: sp = split_path(split._path) sp.extension = self.format target_path = path_from_split(sp) if not os.path.isfile(target_path): self._write_file(split.data, target_path) return target_path @abstractmethod def _write_file(self, df, path): pass class ArffConverter(FileConverter): format = 'arff' def _write_file(self, df, path): name = split_path(path).basename with open(path, 'w') as file: description = f"Arff dataset file generated by automlbenchmark from {name}." attributes = [(c, ('INTEGER' if pat.is_integer_dtype(dt) else 'REAL' if pat.is_float_dtype(dt) else 'NUMERIC' if pat.is_numeric_dtype(dt) else sorted(dt.categories.values) if
pat.is_categorical_dtype(dt)
pandas.api.types.is_categorical_dtype
import pytest import pandas as pd import numpy as np from pandas.util.testing import assert_frame_equal, assert_index_equal from pdblp import pdblp import blpapi import os @pytest.fixture(scope="module") def port(request): return request.config.getoption("--port") @pytest.fixture(scope="module") def host(request): return request.config.getoption("--host") @pytest.fixture(scope="module") def timeout(request): return request.config.getoption("--timeout") @pytest.fixture(scope="module") def con(host, port, timeout): return pdblp.BCon(host=host, port=port, timeout=timeout).start() @pytest.fixture(scope="module") def data_path(): return os.path.join(os.path.dirname(__file__), "data/") def pivot_and_assert(df, df_exp, with_date=False): # as shown below, since the raw data returned from bbg is an array # with unknown ordering, there is no guruantee that the `position` will # always be the same so pivoting prior to comparison is necessary # # fieldData = { # INDX_MWEIGHT[] = { # INDX_MWEIGHT = { # Member Ticker and Exchange Code = "BON8" # Percentage Weight = 2.410000 # } # INDX_MWEIGHT = { # Member Ticker and Exchange Code = "C N8" # Percentage Weight = 6.560000 # } # INDX_MWEIGHT = { # Member Ticker and Exchange Code = "CLN8" # Percentage Weight = 7.620000 # } # } # } name_cols = list(df_exp.name.unique()) sort_cols = list(df_exp.name.unique()) index_cols = ["name", "position", "field", "ticker"] if with_date: sort_cols.append("date") index_cols.append("date") df = (df.set_index(index_cols).loc[:, "value"] .unstack(level=0).reset_index().drop(columns="position") .sort_values(by=sort_cols, axis=0)) df_exp = (df_exp.set_index(index_cols).loc[:, "value"] .unstack(level=0).reset_index().drop(columns="position") .sort_values(by=sort_cols, axis=0)) # deal with mixed types resulting in str from csv read for name in name_cols: try: df_exp.loc[:, name] = df_exp.loc[:, name].astype(float) except ValueError: pass for name in name_cols: try: df.loc[:, name] = df.loc[:, name].astype(float) except ValueError: pass if with_date: df.loc[:, "date"] = pd.to_datetime(df.loc[:, "date"], format="%Y%m%d") df_exp.loc[:, "date"] = pd.to_datetime(df_exp.loc[:, "date"], format="%Y%m%d") assert_frame_equal(df, df_exp) ifbbg = pytest.mark.skipif(pytest.config.cache.get('offline', False), reason="No BBG connection, skipping tests") @ifbbg def test_bdh_empty_data_only(con): df = con.bdh( tickers=['1437355D US Equity'], flds=['PX_LAST', 'VOLUME'], start_date='20180510', end_date='20180511', longdata=False ) df_exp = pd.DataFrame( [], index=pd.DatetimeIndex([], name='date'), columns=pd.MultiIndex.from_product([[], []], names=('ticker', 'field')) ) assert_frame_equal(df, df_exp) @ifbbg def test_bdh_empty_data_with_non_empty_data(con): df = con.bdh( tickers=['AAPL US Equity', '1437355D US Equity'], flds=['PX_LAST', 'VOLUME'], start_date='20180510', end_date='20180511', longdata=False ) df_exp = pd.DataFrame( [[190.04, 27989289.0], [188.59, 26212221.0]], index=pd.DatetimeIndex(["20180510", "20180511"], name="date"), columns=pd.MultiIndex.from_product([["AAPL US Equity"], ["PX_LAST", "VOLUME"]], names=["ticker", "field"]) ) assert_frame_equal(df, df_exp) @ifbbg def test_bdh_partially_empty_data(con): df = con.bdh( tickers=['XIV US Equity', 'AAPL US Equity'], flds=['PX_LAST'], start_date='20180215', end_date='20180216', longdata=False ) df_exp = pd.DataFrame( [[6.04, 172.99], [np.NaN, 172.43]], index=pd.DatetimeIndex(["20180215", "20180216"], name="date"), columns=pd.MultiIndex.from_product( [["XIV US Equity", "AAPL US Equity"], ["PX_LAST"]], names=["ticker", "field"] ) )
assert_frame_equal(df, df_exp)
pandas.util.testing.assert_frame_equal
import glob from evaluation_metrics.inception_score import calculate_inception_score_given_tensor from evaluation_metrics.fid_score import calculate_fid_given_tensor from models.sync_batchnorm import DataParallelWithCallback import pandas as pd import torch import os def inceptions_score_fid_all(base_dir, generator_func, z_sampling_func, y_sampling_func, use_data_parallel, n_minibatch_sampling, refrence_fid_statistics_path): model_paths = sorted(glob.glob(base_dir + "/models/gen_ema*.pytorch")) epochs = [] inception_scores = [] fids = [] print(f"Calculating All Inception Scores / FIDs... (# {len(model_paths)})") for i, path in enumerate(model_paths): model = generator_func() model.load_state_dict(torch.load(path)) if use_data_parallel: model = DataParallelWithCallback(model) # generate images with torch.no_grad(): imgs = [] for _ in range(n_minibatch_sampling): z = z_sampling_func() y = y_sampling_func() x = model(z, y) imgs.append(x) imgs = torch.cat(imgs, dim=0).cpu() # eval_is iscore, _ = calculate_inception_score_given_tensor(imgs) # fid fid_score = calculate_fid_given_tensor(imgs, refrence_fid_statistics_path) # epoch epoch = int(os.path.basename(path).replace("gen_ema_epoch_", "").replace(".pytorch", "")) epochs.append(epoch) inception_scores.append(iscore) fids.append(fid_score) print(f"epoch = {epoch}, inception_score = {iscore}, fid = {fid_score} [{i+1}/{len(model_paths)}]") df =
pd.DataFrame({"epoch": epochs, "inception_score": inception_scores, "fid": fids})
pandas.DataFrame
import investpy import pandas as pd from lxml import html import requests import os from finetwork.utils._utils import isnotebook if isnotebook(): from tqdm.notebook import tqdm else: from tqdm import tqdm import json import numpy as np import datetime import trading_calendars as tc class FinData: def __init__(self, from_date, to_date, tickers, country, market=None, index=False): self.from_date = from_date self.to_date = to_date self.country = country self.tickers = tickers self.market = market self.index = index def get_data(self, dividends_correction = True, save = True, save_format = 'csv', save_path = 'data/', trading_day_thresh = 0.55): index = self.index from_date = self.from_date to_date = self.to_date market = self.market tickers = self.tickers country = self.country if index: tickers=[tickers] data_dict = {} sectors_dict = {} if market == 'world_indices': cal = tc.get_calendar('NYSE') else: cal = tc.get_calendar(market) cal_trading = cal.sessions_in_range(pd.to_datetime(from_date), pd.to_datetime(to_date)) cal_trading = [ datetime.date.strftime(i, "%Y-%m-%d") for i in cal_trading ] from_date = datetime.datetime.strptime( min(cal_trading), '%Y-%m-%d' ).strftime('%d/%m/%Y') to_date = datetime.datetime.strptime( max(cal_trading), '%Y-%m-%d' ).strftime('%d/%m/%Y') n_trading = len(cal_trading) for i, code in (enumerate(tqdm(tickers))): try: if index: data = investpy.indices.get_index_historical_data( index=code, country=country, from_date=from_date, to_date=to_date ) else: data = investpy.get_stock_historical_data( stock=code, country=country, from_date=from_date, to_date=to_date ) if datetime.datetime.strptime( str(data.index.min().date()), '%Y-%m-%d' ).strftime('%d/%m/%Y')==(from_date)\ and datetime.datetime.strptime( str(data.index.max().date()), '%Y-%m-%d' ).strftime('%d/%m/%Y')==(to_date)\ and
pd.to_datetime(data.index)
pandas.to_datetime
import nose import os import string from distutils.version import LooseVersion from datetime import datetime, date, timedelta from pandas import Series, DataFrame, MultiIndex, PeriodIndex, date_range from pandas.compat import range, lrange, StringIO, lmap, lzip, u, zip import pandas.util.testing as tm from pandas.util.testing import ensure_clean from pandas.core.config import set_option import numpy as np from numpy import random from numpy.random import randn from numpy.testing import assert_array_equal from numpy.testing.decorators import slow import pandas.tools.plotting as plotting def _skip_if_no_scipy(): try: import scipy except ImportError: raise nose.SkipTest("no scipy") @tm.mplskip class TestSeriesPlots(tm.TestCase): def setUp(self): import matplotlib as mpl self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1') self.ts = tm.makeTimeSeries() self.ts.name = 'ts' self.series = tm.makeStringSeries() self.series.name = 'series' self.iseries = tm.makePeriodSeries() self.iseries.name = 'iseries' def tearDown(self): tm.close() @slow def test_plot(self): _check_plot_works(self.ts.plot, label='foo') _check_plot_works(self.ts.plot, use_index=False) _check_plot_works(self.ts.plot, rot=0) _check_plot_works(self.ts.plot, style='.', logy=True) _check_plot_works(self.ts.plot, style='.', logx=True) _check_plot_works(self.ts.plot, style='.', loglog=True) _check_plot_works(self.ts[:10].plot, kind='bar') _check_plot_works(self.iseries.plot) _check_plot_works(self.series[:5].plot, kind='bar') _check_plot_works(self.series[:5].plot, kind='line') _check_plot_works(self.series[:5].plot, kind='barh') _check_plot_works(self.series[:10].plot, kind='barh') _check_plot_works(Series(randn(10)).plot, kind='bar', color='black') @slow def test_plot_figsize_and_title(self): # figsize and title import matplotlib.pyplot as plt ax = self.series.plot(title='Test', figsize=(16, 8)) self.assertEqual(ax.title.get_text(), 'Test') assert_array_equal(np.round(ax.figure.get_size_inches()), np.array((16., 8.))) @slow def test_bar_colors(self): import matplotlib.pyplot as plt import matplotlib.colors as colors default_colors = plt.rcParams.get('axes.color_cycle') custom_colors = 'rgcby' df = DataFrame(randn(5, 5)) ax = df.plot(kind='bar') rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(default_colors[i % len(default_colors)]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() ax = df.plot(kind='bar', color=custom_colors) rects = ax.patches conv = colors.colorConverter for i, rect in enumerate(rects[::5]): xp = conv.to_rgba(custom_colors[i]) rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() from matplotlib import cm # Test str -> colormap functionality ax = df.plot(kind='bar', colormap='jet') rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() # Test colormap functionality ax = df.plot(kind='bar', colormap=cm.jet) rects = ax.patches rgba_colors = lmap(cm.jet, np.linspace(0, 1, 5)) for i, rect in enumerate(rects[::5]): xp = rgba_colors[i] rs = rect.get_facecolor() self.assertEqual(xp, rs) tm.close() df.ix[:, [0]].plot(kind='bar', color='DodgerBlue') @slow def test_bar_linewidth(self): df = DataFrame(randn(5, 5)) # regular ax = df.plot(kind='bar', linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # stacked ax = df.plot(kind='bar', stacked=True, linewidth=2) for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) # subplots axes = df.plot(kind='bar', linewidth=2, subplots=True) for ax in axes: for r in ax.patches: self.assertEqual(r.get_linewidth(), 2) @slow def test_bar_log(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) ax = Series([200, 500]).plot(log=True, kind='bar') assert_array_equal(ax.yaxis.get_ticklocs(), expected) def test_rotation(self): df = DataFrame(randn(5, 5)) ax = df.plot(rot=30) for l in ax.get_xticklabels(): self.assertEqual(l.get_rotation(), 30) def test_irregular_datetime(self): rng = date_range('1/1/2000', '3/1/2000') rng = rng[[0, 1, 2, 3, 5, 9, 10, 11, 12]] ser = Series(randn(len(rng)), rng) ax = ser.plot() xp = datetime(1999, 1, 1).toordinal() ax.set_xlim('1/1/1999', '1/1/2001') self.assertEqual(xp, ax.get_xlim()[0]) @slow def test_hist(self): _check_plot_works(self.ts.hist) _check_plot_works(self.ts.hist, grid=False) _check_plot_works(self.ts.hist, figsize=(8, 10)) _check_plot_works(self.ts.hist, by=self.ts.index.month) import matplotlib.pyplot as plt fig, ax = plt.subplots(1, 1) _check_plot_works(self.ts.hist, ax=ax) _check_plot_works(self.ts.hist, ax=ax, figure=fig) _check_plot_works(self.ts.hist, figure=fig) tm.close() fig, (ax1, ax2) = plt.subplots(1, 2) _check_plot_works(self.ts.hist, figure=fig, ax=ax1) _check_plot_works(self.ts.hist, figure=fig, ax=ax2) with tm.assertRaises(ValueError): self.ts.hist(by=self.ts.index, figure=fig) @slow def test_hist_layout(self): n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n)}) with tm.assertRaises(ValueError): df.height.hist(layout=(1, 1)) with tm.assertRaises(ValueError): df.height.hist(layout=[1, 1]) @slow def test_hist_layout_with_by(self): import matplotlib.pyplot as plt n = 10 gender = tm.choice(['Male', 'Female'], size=n) df = DataFrame({'gender': gender, 'height': random.normal(66, 4, size=n), 'weight': random.normal(161, 32, size=n), 'category': random.randint(4, size=n)}) _check_plot_works(df.height.hist, by=df.gender, layout=(2, 1)) tm.close() _check_plot_works(df.height.hist, by=df.gender, layout=(1, 2)) tm.close() _check_plot_works(df.weight.hist, by=df.category, layout=(1, 4)) tm.close() _check_plot_works(df.weight.hist, by=df.category, layout=(4, 1)) tm.close() @slow def test_hist_no_overlap(self): from matplotlib.pyplot import subplot, gcf, close x = Series(randn(2)) y = Series(randn(2)) subplot(121) x.hist() subplot(122) y.hist() fig = gcf() axes = fig.get_axes() self.assertEqual(len(axes), 2) @slow def test_plot_fails_with_dupe_color_and_style(self): x = Series(randn(2)) with tm.assertRaises(ValueError): x.plot(style='k--', color='k') @slow def test_hist_by_no_extra_plots(self): import matplotlib.pyplot as plt n = 10 df = DataFrame({'gender': tm.choice(['Male', 'Female'], size=n), 'height': random.normal(66, 4, size=n)}) axes = df.height.hist(by=df.gender) self.assertEqual(len(plt.get_fignums()), 1) def test_plot_fails_when_ax_differs_from_figure(self): from pylab import figure, close fig1 = figure() fig2 = figure() ax1 = fig1.add_subplot(111) with tm.assertRaises(AssertionError): self.ts.hist(ax=ax1, figure=fig2) @slow def test_kde(self): _skip_if_no_scipy() _check_plot_works(self.ts.plot, kind='kde') _check_plot_works(self.ts.plot, kind='density') ax = self.ts.plot(kind='kde', logy=True) self.assertEqual(ax.get_yscale(), 'log') @slow def test_kde_kwargs(self): _skip_if_no_scipy() from numpy import linspace _check_plot_works(self.ts.plot, kind='kde', bw_method=.5, ind=linspace(-100,100,20)) _check_plot_works(self.ts.plot, kind='density', bw_method=.5, ind=linspace(-100,100,20)) ax = self.ts.plot(kind='kde', logy=True, bw_method=.5, ind=linspace(-100,100,20)) self.assertEqual(ax.get_yscale(), 'log') @slow def test_kde_color(self): _skip_if_no_scipy() ax = self.ts.plot(kind='kde', logy=True, color='r') lines = ax.get_lines() self.assertEqual(len(lines), 1) self.assertEqual(lines[0].get_color(), 'r') @slow def test_autocorrelation_plot(self): from pandas.tools.plotting import autocorrelation_plot _check_plot_works(autocorrelation_plot, self.ts) _check_plot_works(autocorrelation_plot, self.ts.values) @slow def test_lag_plot(self): from pandas.tools.plotting import lag_plot _check_plot_works(lag_plot, self.ts) _check_plot_works(lag_plot, self.ts, lag=5) @slow def test_bootstrap_plot(self): from pandas.tools.plotting import bootstrap_plot _check_plot_works(bootstrap_plot, self.ts, size=10) def test_invalid_plot_data(self): s = Series(list('abcd')) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: with tm.assertRaises(TypeError): s.plot(kind=kind) @slow def test_valid_object_plot(self): s = Series(lrange(10), dtype=object) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: _check_plot_works(s.plot, kind=kind) def test_partially_invalid_plot_data(self): s = Series(['a', 'b', 1.0, 2]) kinds = 'line', 'bar', 'barh', 'kde', 'density' for kind in kinds: with tm.assertRaises(TypeError): s.plot(kind=kind) def test_invalid_kind(self): s = Series([1, 2]) with tm.assertRaises(ValueError): s.plot(kind='aasdf') @slow def test_dup_datetime_index_plot(self): dr1 = date_range('1/1/2009', periods=4) dr2 = date_range('1/2/2009', periods=4) index = dr1.append(dr2) values = randn(index.size) s = Series(values, index=index) _check_plot_works(s.plot) @tm.mplskip class TestDataFramePlots(tm.TestCase): def setUp(self): import matplotlib as mpl self.mpl_le_1_2_1 = str(mpl.__version__) <= LooseVersion('1.2.1') def tearDown(self): tm.close() @slow def test_plot(self): df = tm.makeTimeDataFrame() _check_plot_works(df.plot, grid=False) _check_plot_works(df.plot, subplots=True) _check_plot_works(df.plot, subplots=True, use_index=False) df = DataFrame({'x': [1, 2], 'y': [3, 4]}) self._check_plot_fails(df.plot, kind='line', blarg=True) df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) _check_plot_works(df.plot, use_index=True) _check_plot_works(df.plot, sort_columns=False) _check_plot_works(df.plot, yticks=[1, 5, 10]) _check_plot_works(df.plot, xticks=[1, 5, 10]) _check_plot_works(df.plot, ylim=(-100, 100), xlim=(-100, 100)) _check_plot_works(df.plot, subplots=True, title='blah') _check_plot_works(df.plot, title='blah') tuples = lzip(string.ascii_letters[:10], range(10)) df = DataFrame(np.random.rand(10, 3), index=MultiIndex.from_tuples(tuples)) _check_plot_works(df.plot, use_index=True) # unicode index = MultiIndex.from_tuples([(u('\u03b1'), 0), (u('\u03b1'), 1), (u('\u03b2'), 2), (u('\u03b2'), 3), (u('\u03b3'), 4), (u('\u03b3'), 5), (u('\u03b4'), 6), (u('\u03b4'), 7)], names=['i0', 'i1']) columns = MultiIndex.from_tuples([('bar', u('\u0394')), ('bar', u('\u0395'))], names=['c0', 'c1']) df = DataFrame(np.random.randint(0, 10, (8, 2)), columns=columns, index=index) _check_plot_works(df.plot, title=u('\u03A3')) def test_nonnumeric_exclude(self): import matplotlib.pyplot as plt df = DataFrame({'A': ["x", "y", "z"], 'B': [1, 2, 3]}) ax = df.plot() self.assertEqual(len(ax.get_lines()), 1) # B was plotted @slow def test_implicit_label(self): df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) ax = df.plot(x='a', y='b') self.assertEqual(ax.xaxis.get_label().get_text(), 'a') @slow def test_explicit_label(self): df = DataFrame(randn(10, 3), columns=['a', 'b', 'c']) ax = df.plot(x='a', y='b', label='LABEL') self.assertEqual(ax.xaxis.get_label().get_text(), 'LABEL') @slow def test_plot_xy(self): import matplotlib.pyplot as plt # columns.inferred_type == 'string' df = tm.makeTimeDataFrame() self._check_data(df.plot(x=0, y=1), df.set_index('A')['B'].plot()) self._check_data(df.plot(x=0), df.set_index('A').plot()) self._check_data(df.plot(y=0), df.B.plot()) self._check_data(df.plot(x='A', y='B'), df.set_index('A').B.plot()) self._check_data(df.plot(x='A'), df.set_index('A').plot()) self._check_data(df.plot(y='B'), df.B.plot()) # columns.inferred_type == 'integer' df.columns = lrange(1, len(df.columns) + 1) self._check_data(df.plot(x=1, y=2), df.set_index(1)[2].plot()) self._check_data(df.plot(x=1), df.set_index(1).plot()) self._check_data(df.plot(y=1), df[1].plot()) # figsize and title ax = df.plot(x=1, y=2, title='Test', figsize=(16, 8)) self.assertEqual(ax.title.get_text(), 'Test') assert_array_equal(np.round(ax.figure.get_size_inches()), np.array((16., 8.))) # columns.inferred_type == 'mixed' # TODO add MultiIndex test @slow def test_xcompat(self): import pandas as pd import matplotlib.pyplot as plt df = tm.makeTimeDataFrame() ax = df.plot(x_compat=True) lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() pd.plot_params['xaxis.compat'] = True ax = df.plot() lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() pd.plot_params['x_compat'] = False ax = df.plot() lines = ax.get_lines() tm.assert_isinstance(lines[0].get_xdata(), PeriodIndex) tm.close() # useful if you're plotting a bunch together with pd.plot_params.use('x_compat', True): ax = df.plot() lines = ax.get_lines() self.assert_(not isinstance(lines[0].get_xdata(), PeriodIndex)) tm.close() ax = df.plot() lines = ax.get_lines() tm.assert_isinstance(lines[0].get_xdata(), PeriodIndex) def test_unsorted_index(self): df = DataFrame({'y': np.arange(100)}, index=np.arange(99, -1, -1), dtype=np.int64) ax = df.plot() l = ax.get_lines()[0] rs = l.get_xydata() rs = Series(rs[:, 1], rs[:, 0], dtype=np.int64) tm.assert_series_equal(rs, df.y) def _check_data(self, xp, rs): xp_lines = xp.get_lines() rs_lines = rs.get_lines() def check_line(xpl, rsl): xpdata = xpl.get_xydata() rsdata = rsl.get_xydata() assert_array_equal(xpdata, rsdata) [check_line(xpl, rsl) for xpl, rsl in zip(xp_lines, rs_lines)] tm.close() @slow def test_subplots(self): df = DataFrame(np.random.rand(10, 3), index=list(string.ascii_letters[:10])) axes = df.plot(subplots=True, sharex=True, legend=True) for ax in axes: self.assert_(ax.get_legend() is not None) axes = df.plot(subplots=True, sharex=True) for ax in axes[:-2]: [self.assert_(not label.get_visible()) for label in ax.get_xticklabels()] [self.assert_(label.get_visible()) for label in ax.get_yticklabels()] [self.assert_(label.get_visible()) for label in axes[-1].get_xticklabels()] [self.assert_(label.get_visible()) for label in axes[-1].get_yticklabels()] axes = df.plot(subplots=True, sharex=False) for ax in axes: [self.assert_(label.get_visible()) for label in ax.get_xticklabels()] [self.assert_(label.get_visible()) for label in ax.get_yticklabels()] @slow def test_plot_scatter(self): from matplotlib.pylab import close df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['x', 'y', 'z', 'four']) _check_plot_works(df.plot, x='x', y='y', kind='scatter') _check_plot_works(df.plot, x=1, y=2, kind='scatter') with tm.assertRaises(ValueError): df.plot(x='x', kind='scatter') with tm.assertRaises(ValueError): df.plot(y='y', kind='scatter') @slow def test_plot_bar(self): from matplotlib.pylab import close df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['one', 'two', 'three', 'four']) _check_plot_works(df.plot, kind='bar') _check_plot_works(df.plot, kind='bar', legend=False) _check_plot_works(df.plot, kind='bar', subplots=True) _check_plot_works(df.plot, kind='bar', stacked=True) df = DataFrame(randn(10, 15), index=list(string.ascii_letters[:10]), columns=lrange(15)) _check_plot_works(df.plot, kind='bar') df = DataFrame({'a': [0, 1], 'b': [1, 0]}) _check_plot_works(df.plot, kind='bar') def test_bar_stacked_center(self): # GH2157 df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5)) ax = df.plot(kind='bar', stacked='True', grid=True) self.assertEqual(ax.xaxis.get_ticklocs()[0], ax.patches[0].get_x() + ax.patches[0].get_width() / 2) def test_bar_center(self): df = DataFrame({'A': [3] * 5, 'B': lrange(5)}, index=lrange(5)) ax = df.plot(kind='bar', grid=True) self.assertEqual(ax.xaxis.get_ticklocs()[0], ax.patches[0].get_x() + ax.patches[0].get_width()) @slow def test_bar_log_no_subplots(self): # GH3254, GH3298 matplotlib/matplotlib#1882, #1892 # regressions in 1.2.1 expected = np.array([1., 10.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 100)) # no subplots df = DataFrame({'A': [3] * 5, 'B': lrange(1, 6)}, index=lrange(5)) ax = df.plot(kind='bar', grid=True, log=True) assert_array_equal(ax.yaxis.get_ticklocs(), expected) @slow def test_bar_log_subplots(self): expected = np.array([1., 10., 100., 1000.]) if not self.mpl_le_1_2_1: expected = np.hstack((.1, expected, 1e4)) ax = DataFrame([Series([200, 300]), Series([300, 500])]).plot(log=True, kind='bar', subplots=True) assert_array_equal(ax[0].yaxis.get_ticklocs(), expected) assert_array_equal(ax[1].yaxis.get_ticklocs(), expected) @slow def test_boxplot(self): df = DataFrame(randn(6, 4), index=list(string.ascii_letters[:6]), columns=['one', 'two', 'three', 'four']) df['indic'] = ['foo', 'bar'] * 3 df['indic2'] = ['foo', 'bar', 'foo'] * 2 _check_plot_works(df.boxplot) _check_plot_works(df.boxplot, column=['one', 'two']) _check_plot_works(df.boxplot, column=['one', 'two'], by='indic') _check_plot_works(df.boxplot, column='one', by=['indic', 'indic2']) _check_plot_works(df.boxplot, by='indic') _check_plot_works(df.boxplot, by=['indic', 'indic2']) _check_plot_works(plotting.boxplot, df['one']) _check_plot_works(df.boxplot, notch=1) _check_plot_works(df.boxplot, by='indic', notch=1) df = DataFrame(np.random.rand(10, 2), columns=['Col1', 'Col2']) df['X'] = Series(['A', 'A', 'A', 'A', 'A', 'B', 'B', 'B', 'B', 'B']) _check_plot_works(df.boxplot, by='X') @slow def test_kde(self): _skip_if_no_scipy() df = DataFrame(randn(100, 4)) _check_plot_works(df.plot, kind='kde') _check_plot_works(df.plot, kind='kde', subplots=True) ax = df.plot(kind='kde') self.assert_(ax.get_legend() is not None) axes = df.plot(kind='kde', logy=True, subplots=True) for ax in axes: self.assertEqual(ax.get_yscale(), 'log') @slow def test_hist(self): import matplotlib.pyplot as plt df = DataFrame(randn(100, 4)) _check_plot_works(df.hist) _check_plot_works(df.hist, grid=False) # make sure layout is handled df = DataFrame(randn(100, 3)) _check_plot_works(df.hist) axes = df.hist(grid=False) self.assert_(not axes[1, 1].get_visible()) df = DataFrame(randn(100, 1)) _check_plot_works(df.hist) # make sure layout is handled df = DataFrame(randn(100, 6)) _check_plot_works(df.hist) # make sure sharex, sharey is handled _check_plot_works(df.hist, sharex=True, sharey=True) # handle figsize arg _check_plot_works(df.hist, figsize=(8, 10)) # make sure xlabelsize and xrot are handled ser = df[0] xf, yf = 20, 20 xrot, yrot = 30, 30 ax = ser.hist(xlabelsize=xf, xrot=30, ylabelsize=yf, yrot=30) ytick = ax.get_yticklabels()[0] xtick = ax.get_xticklabels()[0] self.assertAlmostEqual(ytick.get_fontsize(), yf) self.assertAlmostEqual(ytick.get_rotation(), yrot) self.assertAlmostEqual(xtick.get_fontsize(), xf) self.assertAlmostEqual(xtick.get_rotation(), xrot) xf, yf = 20, 20 xrot, yrot = 30, 30 axes = df.hist(xlabelsize=xf, xrot=30, ylabelsize=yf, yrot=30) for i, ax in enumerate(axes.ravel()): if i < len(df.columns): ytick = ax.get_yticklabels()[0] xtick = ax.get_xticklabels()[0] self.assertAlmostEqual(ytick.get_fontsize(), yf) self.assertAlmostEqual(ytick.get_rotation(), yrot) self.assertAlmostEqual(xtick.get_fontsize(), xf) self.assertAlmostEqual(xtick.get_rotation(), xrot) tm.close() # make sure kwargs to hist are handled ax = ser.hist(normed=True, cumulative=True, bins=4) # height of last bin (index 5) must be 1.0 self.assertAlmostEqual(ax.get_children()[5].get_height(), 1.0) tm.close() ax = ser.hist(log=True) # scale of y must be 'log' self.assertEqual(ax.get_yscale(), 'log') tm.close() # propagate attr exception from matplotlib.Axes.hist with
tm.assertRaises(AttributeError)
pandas.util.testing.assertRaises
"""Create symlinks to images grouped by label. """ import argparse import json import logging import os import psutil import time from pathlib import Path from typing import Dict, List, Set import pandas as pd from tqdm import tqdm from autofocus.util import discard_duplicate_rows def main(detections_path: str, outdir: str, labelmap_path: str=None, label_priority_path: str=None, keep_unresolved: bool=False, ): detections =
pd.read_csv(detections_path)
pandas.read_csv
import numpy as np import pandas as pd from fbprophet import Prophet Charlottenburg_Wilmersdorf = pd.read_csv('DFs/TG_Charlottenburg-Wilmersdorf.txt', sep=",", header=0) Friedrichshain_Kreuzberg = pd.read_csv('DFs/TG_Friedrichshain-Kreuzberg.txt', sep=",", header=0) Lichtenberg = pd.read_csv('DFs/TG_Lichtenberg.txt', sep=",", header=0) Marzahn_Hellersdorf = pd.read_csv('DFs/TG_Marzahn-Hellersdorf.txt', sep=",", header=0) Mitte = pd.read_csv('DFs/TG_Mitte.txt', sep=",", header=0) NeuKoln = pd.read_csv('DFs/TG_NeuKoln.txt', sep=",", header=0) Pankow =
pd.read_csv('DFs/TG_Pankow.txt', sep=",", header=0)
pandas.read_csv
# -*- coding: utf-8 -*- """ Tools for correcting energy-balance components to improve energy balance closure and other data management, validation and scientific analysis tools. """ from pathlib import Path import xarray import numpy as np import pandas as pd from sklearn import linear_model from sklearn.metrics import mean_squared_error from refet.calcs import _ra_daily, _rso_simple import refet from .data import Data from .plot import Plot from .util import monthly_resample, Convert class QaQc(Plot, Convert): """ Numerical routines for correcting daily energy balance closure for eddy covariance data and other data analysis tools. Two routines are provided for improving energy balance closure by adjusting turbulent fluxes, latent energy and sensible heat, the Energy Balance Ratio method (modified from `FLUXNET <https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/>`__) and the Bowen Ratio method. The :obj:`QaQc` object also has multiple tools for temporal frequency aggregation and resampling, estimation of climatic and statistical variables (e.g. ET and potential shortwave radiation), downloading gridMET reference ET, managing data and metadata, interactive validation plots, and managing a structure for input and output data files. Input data is expected to be a :obj:`.Data` instance or a :obj:`pandas.DataFrame`. Keyword Arguments: data (:obj:`.Data`): :obj:`.Data` instance to create :obj:`.QaQc` instance. drop_gaps (bool): default :obj:`True`. If :obj:`True` automatically filter variables on days with sub-daily measurement gaps less than ``daily_frac``. daily_frac (float): default 1.00. Fraction of sub-daily data required otherwise the daily value will be filtered out if ``drop_gaps`` is :obj:`True`. E.g. if ``daily_frac = 0.5`` and the input data is hourly, then data on days with less than 12 hours of data will be forced to null within :attr:`QaQc.df`. This is important because systematic diurnal gaps will affect the autmoatic resampling that occurs when creating a :obj:`QaQc` instance and the daily data is used in closure corrections, other calculations, and plots. If sub-daily linear interpolation is applied to energy balance variables the gaps are counted *after* the interpolation. max_interp_hours (None or float): default 2. Length of largest gap to fill with linear interpolation in energy balance variables if input datas temporal frequency is less than daily. This value will be used to fill gaps when :math:`Rn > 0` or :math:`Rn` is missing during each day. max_interp_hours_night (None or float): default 4. Length of largest gap to fill with linear interpolation in energy balance variables if input datas temporal frequency is less than daily when :math:`Rn < 0` within 12:00PM-12:00PM daily intervals. Attributes: agg_dict (dict): Dictionary with internal variable names as keys and method of temporal resampling (e.g. "mean" or "sum") as values. config (:obj:`configparser.ConfigParser`): Config parser instance created from the data within the config.ini file. config_file (:obj:`pathlib.Path`): Absolute path to config.ini file used for initialization of the :obj:`fluxdataqaqc.Data` instance used to create the :obj:`QaQc` instance. corrected (bool): False until an energy balance closure correction has been run by calling :meth:`QaQc.correct_data`. corr_methods (tuple): List of Energy Balance Closure correction routines usable by :meth:`QaQc.correct_data`. corr_meth (str or None): Name of most recently applied energy balance closure correction. elevation (float): Site elevation in meters. gridMET_exists (bool): True if path to matching gridMET time series file exists on disk and has time series for reference ET and precipitation and the dates for these fully overlap with the energy balance variables, i.e. the date index of :attr:`QaQc.df`. gridMET_meta (dict): Dictionary with information for gridMET variables that may be downloaded using :meth:`QaQc.download_gridMET`. inv_map (dict): Dictionary with input climate file names as keys and internal names as values. May only include pairs when they differ. latitude (float): Site latitude in decimal degrees. longitude (float): Site longitude in decimal degrees. out_dir (pathlib.Path): Default directory to save output of :meth:`QaQc.write` or :meth:`QaQc.plot` methods. n_samples_per_day (int): If initial time series temporal frequency is less than 0 then this value will be updated to the number of samples detected per day, useful for post-processing based on the count of sub-daily gaps in energy balance variables, e.g. "LE_subday_gaps". plot_file (pathlib.Path or None): path to plot file once it is created/saved by :meth:`QaQc.plot`. site_id (str): Site ID. temporal_freq (str): Temporal frequency of initial (as found in input climate file) data as determined by :func:`pandas.infer_freq`. units (dict): Dictionary with internal variable names as keys and units as found in config as values. variables (dict): Dictionary with internal variable names as keys and names as found in the input data as values. Note: Upon initialization of a :obj:`QaQc` instance the temporal frequency of the input data checked using :func:`pandas.infer_freq` which does not always correctly parse datetime indices, if it is not able to correctly determine the temporal frequency the time series will be resampled to daily frequency but if it is in fact already at daily frequency the data will be unchanged. In this case the :attr:`QaQc.temporal_freq` will be set to "na". """ # dictionary used for temporally aggregating variables agg_dict = { 'ASCE_ETo': 'sum', 'ASCE_ETr': 'sum', 'energy': 'mean', 'flux': 'mean', 'flux_corr': 'mean', 'br': 'mean', 'ET': 'sum', 'ET_corr': 'sum', 'ET_gap': 'sum', 'ET_fill': 'sum', 'ET_fill_val': 'sum', 'ET_user_corr': 'sum', 'ebr': 'mean', 'ebr_corr': 'mean', 'ebr_user_corr': 'mean', 'ebr_5day_clim': 'mean', 'gridMET_ETr': 'sum', 'gridMET_ETo': 'sum', 'gridMET_prcp': 'sum', 'lw_in': 'mean', 't_avg': 'mean', 't_max': 'mean', 't_min': 'mean', 't_dew': 'mean', 'rso': 'mean', 'sw_pot': 'mean', 'sw_in': 'mean', 'vp': 'mean', 'vpd': 'mean', 'ppt': 'sum', 'ppt_corr': 'sum', 'ws': 'mean', 'Rn': 'mean', 'Rn_subday_gaps': 'sum', 'rh' : 'mean', 'sw_out': 'mean', 'lw_out': 'mean', 'G': 'mean', 'G_subday_gaps': 'sum', 'LE': 'mean', 'LE_corr': 'mean', 'LE_subday_gaps': 'sum', 'LE_user_corr': 'mean', 'H': 'mean', 'H_corr': 'mean', 'H_subday_gaps': 'sum', 'H_user_corr': 'mean', } # EBR correction methods available corr_methods = ( 'ebr', 'br', 'lin_regress' ) # gridMET dict, keys are names which can be passed to download_gridMET gridMET_meta = { 'ETr': { 'nc_suffix': 'agg_met_etr_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_mean_reference_evapotranspiration_alfalfa', 'rename': 'gridMET_ETr', 'units': 'mm' }, 'pr': { 'nc_suffix': 'agg_met_pr_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'precipitation_amount', 'rename': 'gridMET_prcp', 'units': 'mm' }, 'pet': { 'nc_suffix': 'agg_met_pet_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_mean_reference_evapotranspiration_grass', 'rename': 'gridMET_ETo', 'units': 'mm' }, 'sph': { 'nc_suffix': 'agg_met_sph_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_mean_specific_humidity', 'rename': 'gridMET_q', 'units': 'kg/kg' }, 'srad': { 'nc_suffix': 'agg_met_srad_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_mean_shortwave_radiation_at_surface', 'rename': 'gridMET_srad', 'units': 'w/m2' }, 'vs': { 'nc_suffix': 'agg_met_vs_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_mean_wind_speed', 'rename': 'gridMET_u10', 'units': 'm/s' }, 'tmmx': { 'nc_suffix': 'agg_met_tmmx_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_maximum_temperature', 'rename': 'gridMET_tmax', 'units': 'K' }, 'tmmn': { 'nc_suffix': 'agg_met_tmmn_1979_CurrentYear_CONUS.nc#fillmismatch', 'name': 'daily_minimum_temperature', 'rename': 'gridMET_tmin', 'units': 'K' }, } # all potentially calculated variables for energy balance corrections _eb_calc_vars = ( 'br', 'br_user_corr', 'energy', 'energy_corr', 'ebr', 'ebr_corr', 'ebr_user_corr', 'ebc_cf', 'ebr_5day_clim', 'flux', 'flux_corr', 'flux_user_corr', 'G_corr', 'H_corr', 'LE_corr', 'Rn_corr' ) # potentially calculated variables for ET _et_calc_vars = ( 'ET', 'ET_corr', 'ET_user_corr' ) # potentially calculated ET gap fill variables _et_gap_fill_vars = ( 'ET_gap', 'ET_fill', 'ET_fill_val', 'ETrF', 'ETrF_filtered', 'EToF', 'EToF_filtered' ) def __init__(self, data=None, drop_gaps=True, daily_frac=1.00, max_interp_hours=2, max_interp_hours_night=4): if isinstance(data, Data): self.config_file = data.config_file self.config = data.config data.df.head();# need to access to potentially calc vp/vpd self._df = data.df self.variables = data.variables self.units = data.units self.elevation = data.elevation self.latitude = data.latitude self.longitude = data.longitude self.out_dir = data.out_dir self.site_id = data.site_id # flip variable naming dict for internal use self.inv_map = { v: k for k, v in self.variables.items() if ( not k in self._df.columns ) } # using 'G' in multiple g plot may overwrite G name internally if not 'G' in self.inv_map.values(): user_G_name = self.variables.get('G') if user_G_name: self.inv_map[user_G_name] = 'G' # data will be loaded if it has not yet via Data.df self.temporal_freq = self._check_daily_freq( drop_gaps, daily_frac, max_interp_hours, max_interp_hours_night ) # check units, convert if possible for energy balance, ppt, Rs, vp, self._check_convert_units() self._check_gridMET() # assume energy balance vars exist, will be validated upon corr self._has_eb_vars = True elif data is not None: print('{} is not a valid input type'.format(type(data))) raise TypeError("Must assign a fluxdataqaqc.data.Data object") else: self._df = None self.corrected = False self.corr_meth = None def daily_ASCE_refET(self, reference='short', anemometer_height=None): """ Calculate daily ASCE standardized short (ETo) or tall (ETr) reference ET from input data and wind measurement height. The resulting time series will automatically be merged into the :attr:`.Data.df` dataframe named "ASCE_ETo" or "ASCE_ETr" respectively. Keyword Arguments: reference (str): default "short", calculate tall or short ASCE reference ET. anemometer_height (float or None): wind measurement height in meters , default :obj:`None`. If :obj:`None` then look for the "anemometer_height" entry in the **METADATA** section of the config.ini, if not there then print a warning and use 2 meters. Returns: :obj:`None` Note: If the hourly ASCE variables were prior calculated from a :obj:`.Data` instance they will be overwritten as they are saved with the same names. """ df = self.df.rename(columns=self.inv_map) req_vars = ['vp', 'ws', 'sw_in', 't_min', 't_max'] if not set(req_vars).issubset(df.columns): print('Missing one or more required variables, cannot compute') return if anemometer_height is None: anemometer_height = self.config.get( 'METADATA', 'anemometer_height', fallback=None ) if anemometer_height is None: print( 'WARNING: anemometer height was not given and not found in ' 'the config files metadata, proceeding with height of 2 m' ) anemometer_height = 2 # RefET will convert to MJ-m2-hr input_units = { 'rs': 'w/m2' } length = len(df.t_min) tmin = df.t_min tmax = df.t_max rs = df.sw_in ea = df.vp uz = df.ws zw = np.full(length, anemometer_height) lat = np.full(length, self.latitude) doy = df.index.dayofyear elev = np.full(length, self.elevation) REF = refet.Daily( tmin, tmax, ea, rs, uz, zw, elev, lat, doy, method='asce', input_units=input_units, ) if reference == 'short': ret = REF.eto() name = 'ASCE_ETo' elif reference == 'tall': ret = REF.etr() name = 'ASCE_ETr' # can add directly into QaQc.df df[name] = ret self._df = df.rename(columns=self.variables) self.variables[name] = name self.units[name] = 'mm' def _check_convert_units(self): """ Verify if units are recognized for variables in QaQc.allowable_units, next verify that they have required units as in QaQc.required_units if not convert them. Conversions are handled by util.Convert.convert class method. """ # force all input units to lower case for k, v in self.units.items(): self.units[k] = v.lower() # can add check/rename unit aliases, e.g. C or c or celcius, etc... df = self._df.rename(columns=self.inv_map) for v, u in self.units.items(): if not v in QaQc.required_units.keys(): # variable is not required to have any particular unit, skip continue elif not u in QaQc.allowable_units[v]: print('ERROR: {} units are not recognizable for var: {}\n' 'allowable input units are: {}\nNot converting.'.format( u, v, ','.join(QaQc.allowable_units[v]) ) ) elif not u == QaQc.required_units[v]: # do conversion, update units # pass variable, initial unit, unit to be converted to, df df = Convert.convert(v, u, QaQc.required_units[v], df) self.units[v] = QaQc.required_units[v] self._df = df def _check_gridMET(self): """ Check if gridMET has been downloaded (file path in config), if so also check if dates fully intersect those of station data. If both conditions are not met then update :attr:`gridMET_exists` to False otherwise assign True. Arguments: None Returns: None """ gridfile = self.config.get('METADATA','gridMET_file_path',fallback=None) if gridfile is None: self.gridMET_exists = False else: try: grid_df = pd.read_csv( gridfile, parse_dates=True, index_col='date' ) gridMET_dates = grid_df.index station_dates = self.df.index # add var names and units to attributes for val in grid_df.columns: meta = [ v for k,v in QaQc.gridMET_meta.items() if \ v['rename'] == val ][0] self.variables[meta['rename']] = meta['rename'] self.units[meta['rename']] = meta['units'] # flag False if ETr was not downloaded for our purposes if not {'gridMET_ETr','gridMET_ETo'}.issubset(grid_df.columns): self.gridMET_exists = False elif station_dates.isin(gridMET_dates).all(): self.gridMET_exists = True # some gridMET exists but needs to be updated for coverage else: self.gridMET_exists = False except: print('WARNING: unable to find/read gridMET file\n {}'.format( gridfile) ) self.gridMET_exists = False def download_gridMET(self, variables=None): """ Download reference ET (alfalfa and grass) and precipitation from gridMET for all days in flux station time series by default. Also has ability to download other specific gridMET variables by passing a list of gridMET variable names. Possible variables and their long form can be found in :attr:`QaQc.gridMET_meta`. Upon download gridMET time series for the nearest gridMET cell will be merged into the instances dataframe attibute :attr:`QaQc.df` and all gridMET variable names will have the prefix "gridMET\_" for identification. The gridMET time series file will be saved to a subdirectory called "gridMET_data" within the directory that contains the config file for the current :obj:`QaQc` instance and named with the site ID and gridMET cell centroid lat and long coordinates in decimal degrees. Arguments: variables (None, str, list, or tuple): default None. List of gridMET variable names to download, if None download ETr and precipitation. See the keys of the :attr:`QaQc.gridMET_meta` dictionary for a list of all variables that can be downloaded by this method. Returns: :obj:`None` Note: Any previously downloaded gridMET time series will be overwritten when calling the method, however if using the the gap filling method of the "ebr" correction routine the download will not overwrite currently existing data so long as gridMET reference ET and precipitation is on disk and its path is properly set in the config file. """ # opendap thredds server server_prefix =\ 'http://thredds.northwestknowledge.net:8080/thredds/dodsC/' if variables is None: variables = ['ETr', 'pet', 'pr'] elif not isinstance(variables, (str,list,tuple)): print( 'ERROR: {} is not a valid gridMET variable ' 'or list of variable names, valid options:' '\n{}'.format( variables, ', '.join([v for v in QaQc.gridMET_meta]) ) ) return if isinstance(variables, str): variables = list(variables) station_dates = self.df.index grid_dfs = [] for i,v in enumerate(variables): if not v in QaQc.gridMET_meta: print( 'ERROR: {} is not a valid gridMET variable, ' 'valid options: {}'.format( v, ', '.join([v for v in QaQc.gridMET_meta]) ) ) continue meta = QaQc.gridMET_meta[v] self.variables[meta['rename']] = meta['rename'] self.units[meta['rename']] = meta['units'] print('Downloading gridMET var: {}\n'.format(meta['name'])) netcdf = '{}{}'.format(server_prefix, meta['nc_suffix']) ds = xarray.open_dataset(netcdf).sel( lon=self.longitude, lat=self.latitude, method='nearest' ).drop('crs') df = ds.to_dataframe().loc[station_dates].rename( columns={meta['name']:meta['rename']} ) df.index.name = 'date' # ensure date col name is 'date' # on first variable (if multiple) grab gridcell centroid coords if i == 0: lat_centroid = df.lat[0] lon_centroid = df.lon[0] df.drop(['lat', 'lon'], axis=1, inplace=True) grid_dfs.append(df) # combine data df = pd.concat(grid_dfs, axis=1) # save gridMET time series to CSV in subdirectory where config file is gridMET_file = self.config_file.parent.joinpath( 'gridMET_data' ).joinpath('{}_{:.4f}N_{:.4f}W.csv'.format( self.site_id, lat_centroid, lon_centroid ) ) gridMET_file.parent.mkdir(parents=True, exist_ok=True) self.config.set( 'METADATA', 'gridMET_file_path', value=str(gridMET_file) ) df.to_csv(gridMET_file) # rewrite config with updated gridMET file path with open(str(self.config_file), 'w') as outf: self.config.write(outf) # drop previously calced vars for replacement, no join duplicates self._df = _drop_cols(self._df, variables) self._df = self._df.join(df) self.gridMET_exists = True def _check_daily_freq(self, drop_gaps, daily_frac, max_interp_hours, max_interp_hours_night): """ Check temporal frequency of input Data, resample to daily if not already Note: If one or more sub-dauly values are missing for a day the entire day will be replaced with a null (:obj:`numpy.nan`). If user QC values for filtering data are present they will also be resampled to daily means, however this should not be an issue as the filtering step occurs in a :obj:`fluxdataqaqc.Data` object. """ # rename columns to internal names df = self._df.rename(columns=self.inv_map) if not isinstance(df, pd.DataFrame): return freq = pd.infer_freq(df.index) second_day = df.index.date[2] third_day = second_day + pd.Timedelta(1, unit='D') # pd.infer_freq does not always work and may return None if freq and freq > 'D': pass elif freq and freq < 'D': print('\nThe input data temporal frequency appears to be less than', 'daily.') # slice is transposed if only one date entry elif len(df.loc[str(third_day)].index) == len(df.columns) and \ (df.loc[str(third_day)].index == df.columns).all(): print('\nInput temporal frequency is already daily.') freq = 'D' # add missing dates (if exist) for full time series records/plots idx = pd.date_range(df.index.min(), df.index.max()) df = df.reindex(idx) df.index.name = 'date' elif freq is None: freq = 'na' if not freq == 'D': # find frequency manually, optionally drop days with subdaily gaps # see if two adj. dates exist, skip first day in case it is not full max_times_in_day = len(df.loc[str(third_day)].index) self.n_samples_per_day = max_times_in_day downsample = False if daily_frac > 1: print('ERROR: daily_frac must be between 0 and 1, using 1') daily_frac = 1 elif daily_frac < 0: print('ERROR: daily_frac must be between 0 and 1, using 0') daily_frac = 0 if not str(third_day) in df.index and drop_gaps: print('WARNING: it looks like the input temporal frequency', 'is greater than daily, downsampling, proceed with' , 'caution!\n') downsample = True energy_bal_vars = ['LE', 'H', 'Rn', 'G'] asce_std_interp_vars = ['t_avg','sw_in','ws','vp'] # for interpolation of energy balance variables if they exist energy_bal_vars = list( set(energy_bal_vars).intersection(df.columns) ) asce_std_interp_vars = list( set(asce_std_interp_vars).intersection(df.columns) ) interp_vars = asce_std_interp_vars + energy_bal_vars # add subday gap col for energy balance comps to sum daily gap count for v in energy_bal_vars: df['{}_subday_gaps'.format(v)] = False df.loc[df[v].isna(), '{}_subday_gaps'.format(v)] = True print('Data is being resampled to daily temporal frequency.') sum_cols = [k for k,v in self.agg_dict.items() if v == 'sum'] sum_cols = list(set(sum_cols).intersection(df.columns)) mean_cols = set(df.columns) - set(sum_cols) means = df.loc[:,mean_cols].apply( pd.to_numeric, errors='coerce').resample('D').mean().copy() # issue with resample sum of nans, need to drop first else 0 sums = df.loc[:,sum_cols].dropna().apply( pd.to_numeric, errors='coerce').resample('D').sum() if max_interp_hours is not None: # linearly interpolate energy balance components only max_gap = int(round(max_interp_hours/24 * max_times_in_day)) max_night_gap = int( round(max_interp_hours_night/24 * max_times_in_day) ) print( 'Linearly interpolating gaps in energy balance components ' 'up to {} hours when Rn < 0 and up to {} hours when ' 'Rn >= 0.'.format(max_interp_hours_night, max_interp_hours) ) tmp = df[interp_vars].apply( pd.to_numeric, errors='coerce' ) if 'Rn' in energy_bal_vars: grped_night = tmp.loc[ (tmp.Rn < 0) & (tmp.Rn.notna()) ].copy() grped_night.drop_duplicates(inplace=True) grped_night = grped_night.groupby( pd.Grouper(freq='24H', offset='12H')).apply( lambda x: x.interpolate( method='linear', limit=max_night_gap, limit_direction='both', limit_area='inside' ) ) grped_day = tmp.loc[(tmp.Rn >= 0) | (tmp.Rn.isna())].copy() grped_day.drop_duplicates(inplace=True) grped_day = grped_day.groupby( pd.Grouper(freq='24H')).apply( lambda x: x.interpolate( method='linear', limit=max_gap, limit_direction='both', limit_area='inside' ) ) else: grped_night = tmp.copy() grped_night.drop_duplicates(inplace=True) grped_night = grped_night.groupby( pd.Grouper(freq='24H', offset='12H')).apply( lambda x: x.interpolate( method='linear', limit=max_night_gap, limit_direction='both', limit_area='inside' ) ) grped_day = tmp.copy() grped_day.drop_duplicates(inplace=True) grped_day = grped_day.groupby( pd.Grouper(freq='24H')).apply( lambda x: x.interpolate( method='linear', limit=max_gap, limit_direction='both', limit_area='inside' ) ) # get full datetime index from grouper operation if type(grped_night.index) is pd.MultiIndex: grped_night.index = grped_night.index.get_level_values(1) if type(grped_day.index) is pd.MultiIndex: grped_day.index = grped_day.index.get_level_values(1) interped = pd.concat([grped_day, grped_night]) if interped.index.duplicated().any(): interped = interped.loc[ ~interped.index.duplicated(keep='first') ] # overwrite non-interpolated daily means means[interp_vars] =\ interped[interp_vars].resample('D').mean().copy() if 't_avg' in interp_vars: means['t_min'] = interped.t_avg.resample('D').min() means['t_max'] = interped.t_avg.resample('D').max() self.variables['t_min'] = 't_min' self.units['t_min'] = self.units['t_avg'] self.variables['t_max'] = 't_max' self.units['t_max'] = self.units['t_avg'] interp_vars = interp_vars + ['t_min','t_max'] interped[['t_min','t_max']] = means[['t_min','t_max']] if drop_gaps: # make sure round errors do not affect this value n_vals_needed = int(round(max_times_in_day * daily_frac)) # don't overwrite QC flag columns data_cols = [ c for c in df.columns if not c.endswith('_qc_flag') ] # interpolate first before counting gaps if max_interp_hours: df[interp_vars] = interped[interp_vars].copy() days_with_gaps = df[data_cols].groupby( df.index.date).count() < n_vals_needed df = means.join(sums) # drop days based on fraction of missing subday samples if not downsample and drop_gaps: print( 'Filtering days with less then {}% or {}/{} sub-daily ' 'measurements'.format( daily_frac * 100, n_vals_needed, max_times_in_day ) ) df[days_with_gaps] = np.nan else: self.n_samples_per_day = 1 self._df = df.rename(columns=self.variables) return freq @property def df(self): """ See :attr:`fluxdataqaqc.Data.df` as the only difference is that the :attr:`QaQc.df` is first resampled to daily frequency. """ # avoid overwriting pre-assigned data if isinstance(self._df, pd.DataFrame): return self._df.rename(columns=self.variables) @df.setter def df(self, data_frame): if not isinstance(data_frame, pd.DataFrame): raise TypeError("Must assign a Pandas.DataFrame object") self._df = data_frame @property def monthly_df(self): """ Temporally resample time series data to monthly frequency based on monthly means or sums based on :attr:`QaQc.agg_dict`, provides data as :obj:`pandas.DataFrame`. Note that monthly means or sums are forced to null values if less than 20 percent of a months days are missing in the daily data (:attr:`QaQc.df`). Also, for variables that are summed (e.g. ET or precipitation) missing days (if less than 20 percent of the month) will be filled with the month's daily mean value before summation. If a :obj:`QaQc` instance has not yet run an energy balance correction i.e. :attr:`QaQc.corrected` = :obj:`False` before accessing :attr:`monthly_df` then the default routine of data correction (energy balance ratio method) will be conducted. Utilize the :attr:`QaQc.monthly_df` property the same way as the :attr:`fluxdataqaqc.Data.df`, see it's API documentation for examples. Tip: If you have additional variables in :attr:`QaQc.df` or would like to change the aggregation method for the monthly time series, adjust the instance attribute :attr:`QaQc.agg_dict` before accessing the :attr:`QaQc.monthly_df`. """ if not self.corrected and self._has_eb_vars: self.correct_data() # rename columns to internal names df = self._df.rename(columns=self.inv_map).copy() # avoid including string QC flags because of float forcing on resample numeric_cols = [c for c in df.columns if not '_qc_flag' in c] sum_cols = [k for k,v in self.agg_dict.items() if v == 'sum'] # to avoid warning/error of missing columns sum_cols = list(set(sum_cols).intersection(df.columns)) mean_cols = list(set(numeric_cols) - set(sum_cols)) # if data type has changed to 'obj' resample skips... # make sure data exists if len(mean_cols) >= 1: means = monthly_resample(df[mean_cols], mean_cols, 'mean', 0.8) else: means = None if len(sum_cols) >= 1: sums = monthly_resample(df[sum_cols], sum_cols, 'sum', 0.8) else: sums = None if isinstance(means, pd.DataFrame) and isinstance(sums, pd.DataFrame): df = means.join(sums) elif isinstance(means, pd.DataFrame): df = means elif isinstance(sums, pd.DataFrame): df = sums # use monthly sums for ebr columns not means of ratio if set(['LE','H','Rn','G']).issubset(df.columns): df.ebr = (df.H + df.LE) / (df.Rn - df.G) if set(['LE_corr','H_corr','Rn','G']).issubset(df.columns): df.ebr_corr = (df.H_corr + df.LE_corr) / (df.Rn - df.G) if set(['LE_user_corr','H_user_corr','Rn','G']).issubset(df.columns): df['ebr_user_corr']=(df.H_user_corr+df.LE_user_corr) / (df.Rn-df.G) df.replace([np.inf, -np.inf], np.nan, inplace=True) return df.rename(columns=self.variables) def write(self, out_dir=None, use_input_names=False): """ Save daily and monthly time series of initial and "corrected" data in CSV format. Note, if the energy balance closure correction (:attr:`QaQc.correct_data`) has not been run, this method will run it with default options before saving time series files to disk. The default location for saving output time series files is within an "output" subdifrectory of the parent directory containing the config.ini file that was used to create the :obj:`fluxdataqaqc.Data` and :obj:`QaQc` objects, the names of the files will start with the site_id and have either the "daily_data" or "monthly_data" suffix. Keyword Arguments: out_dir (str or :obj:`None`): default :obj:`None`. Directory to save CSVs, if :obj:`None` save to :attr:`out_dir` instance variable (typically "output" directory where config.ini file exists). use_input_names (bool): default :obj:`False`. If :obj:`False` use ``flux-data-qaqc`` variable names as in output file header, or if :obj:`True` use the user's input variable names where possible (for variables that were read in and not modified or calculated by ``flux-data-qaqc``). Returns: :obj:`None` Example: Starting from a config.ini file, >>> from fluxdataqaqc import Data, QaQc >>> d = Data('path/to/config.ini') >>> q = QaQc(d) >>> # note no energy balance closure correction has been run >>> q.corrected False >>> q.write() >>> q.corrected True Note: To save data created by multiple correction routines, be sure to run the correction and then save to different output directories otherwise output files will be overwritten with the most recently used correction option. """ if out_dir is None: out_dir = self.out_dir else: out_dir = Path(out_dir) self.out_dir = out_dir.absolute() if not out_dir.is_dir(): print( '{} does not exist, creating directory'.format( out_dir.absolute() ) ) out_dir.mkdir(parents=True, exist_ok=True) if not self.corrected and self._has_eb_vars: print( 'WARNING: energy balance closure corrections have not yet been' 'run. Using default options before writing output time series.' ) self.correct_data() daily_outf = out_dir / '{}_daily_data.csv'.format(self.site_id) monthly_outf = out_dir / '{}_monthly_data.csv'.format(self.site_id) if use_input_names: self.df.to_csv(daily_outf) self.monthly_df.to_csv(monthly_outf) else: self.df.rename(columns=self.inv_map).to_csv(daily_outf) self.monthly_df.rename(columns=self.inv_map).to_csv(monthly_outf) @classmethod def from_dataframe(cls, df, site_id, elev_m, lat_dec_deg, var_dict, drop_gaps=True, daily_frac=1.00, max_interp_hours=2, max_interp_hours_night=4): """ Create a :obj:`QaQc` object from a :obj:`pandas.DataFrame` object. Arguments: df (:obj:`pandas.DataFrame`): DataFrame of climate variables with datetime index named 'date' site_id (str): site identifier such as station name elev_m (int or float): elevation of site in meters lat_dec_deg (float): latitude of site in decimal degrees var_dict (dict): dictionary that maps `flux-data-qaqc` variable names to user's columns in `df` e.g. {'Rn': 'netrad', ...} see :attr:`fluxdataqaqc.Data.variable_names_dict` for list of `flux-data-qaqc` variable names Returns: None Note: When using this method, any output files (CSVs, plots) will be saved to a directory named "output" in the current working directory. """ qaqc = cls() # use property setter, make sure it is a dataframe object qaqc.df = df qaqc.site_id = site_id qaqc.latitude = lat_dec_deg qaqc.elevation = elev_m qaqc.out_dir = Path('output').absolute() qaqc.variables = var_dict # TODO handle assigned units qaqc.inv_map = {v: k for k, v in var_dict.items()} qaqc.temporal_freq = qaqc._check_daily_freq( drop_gaps, daily_frac, max_interp_hours, max_interp_hours_night ) qaqc.corrected = False qaqc.corr_meth = None qaqc._has_eb_vars = True return qaqc def correct_data(self, meth='ebr', et_gap_fill=True, y='Rn', refET='ETr', x=['G','LE','H'], fit_intercept=False): """ Correct turblent fluxes to improve energy balance closure using an Energy Balance Ratio method modified from `FLUXNET <https://fluxnet.fluxdata.org/data/fluxnet2015-dataset/data-processing/>`__. Currently three correction options are available: 'ebr' (Energy Balance Ratio), 'br' (Bowen Ratio), and 'lin_regress' (least squares linear regression). If you use one method followed by another corrected,the corrected versions of LE, H, ET, ebr, etc. will be overwritten with the most recently used approach. This method also computes potential clear sky radiation (saved as "rso") using an ASCE approach based on station elevation and latitude. ET is calculated from raw and corrected LE using daily air temperature to correct the latent heat of vaporization, if air temp. is not available in the input data then air temp. is assumed at 20 degrees celcius. Corrected or otherwise newly calculated variables are named using the following suffixes to distinguish them: .. code-block:: text uncorrected LE, H, etc. from input data have no suffix _corr uses adjusted LE, H, etc. from the correction method used _user_corr uses corrected LE, H, etc. found in data file (if provided) Arguments: y (str): name of dependent variable for regression, must be in :attr:`QaQc.variables` keys, or a user-added variable. Only used if ``meth='lin_regress'``. x (str or list): name or list of independent variables for regression, names must be in :attr:`QaQc.variables` keys, or a user-added variable. Only used if ``meth='lin_regress'``. Keyword Arguments: meth (str): default 'ebr'. Method to correct energy balance. et_gap_fill (bool): default True. If true fill any remaining gaps in corrected ET with ETr * ETrF, where ETr is alfalfa reference ET from gridMET and ETrF is the filtered, smoothed (7 day moving avg. min 2 days) and linearly interpolated crop coefficient. The number of days in each month that corrected ET are filled will is provided in :attr:`QaQc.monthly_df` as the column "ET_gap". refET (str): default "ETr". Which gridMET reference product to use for ET gap filling, "ETr" or "ETo" are valid options. fit_intercept (bool): default False. Fit intercept for regression or set to zero if False. Only used if ``meth='lin_regress'``. apply_coefs (bool): default False. If :obj:`True` then apply fitted coefficients to their respective variables for linear regression correction method, rename the variables with the suffix "_corr". Returns: :obj:`None` Example: Starting from a correctly formatted config.ini and climate time series file, this example shows how to read in the data and apply the energy balance ratio correction without gap-filling with gridMET ETr x ETrF. >>> from fluxdataqaqc import Data, QaQc >>> d = Data('path/to/config.ini') >>> q = QaQc(d) >>> q.corrected False Now apply the energy balance closure correction >>> q.correct_data(meth='ebr', et_gap_fill=False) >>> q.corrected True Note: If ``et_gap_fill`` is set to :obj:`True` (default) the gap filled days of corrected ET will be used to recalculate LE_corr for those days with the gap filled values, i.e. LE_corr will also be gap-filled. Note: The *ebr_corr* variable or energy balance closure ratio is calculated from the corrected versions of LE and H independent of the method. When using the 'ebr' method the energy balance correction factor (what is applied to the raw H and LE) is left as calculated (inverse of ebr) and saved as *ebc_cf*. See Also: For explanation of the linear regression method see the :meth:`QaQc.lin_regress` method, calling that method with the keyword argument ``apply_coefs=True`` and :math:`Rn` as the y variable and the other energy balance components as the x variables will give the same result as the default inputs to this function when ``meth='lin_regress``. """ # in case starting in Python and no df assigned yet if not isinstance(self._df, pd.DataFrame): print('Please assign a dataframe of acceptable data first!') return if meth not in self.corr_methods: err_msg = ('ERROR: {} is not a valid correction option, please ' 'use one of the following: {}'.format(meth, ', '.join( [el for el in self.corr_methods])) ) raise ValueError(err_msg) # calculate clear sky radiation if not already computed self._calc_rso() # energy balance corrections eb_vars = {'Rn','LE','H','G'} if not eb_vars.issubset(self.variables.keys()) or\ not eb_vars.issubset( self.df.rename(columns=self.inv_map).columns): print( '\nMissing one or more energy balance variables, cannot perform' ' energy balance correction.' ) self._has_eb_vars = False # calculate raw (from input LE) ET self._calc_et() # fill gaps of raw ET with ET from smoothed and gap filled ETrF*ETr if et_gap_fill: self._ET_gap_fill(et_name='ET', refET=refET) return if meth == 'ebr': self._ebr_correction() elif meth == 'br': self._bowen_ratio_correction() elif meth == 'lin_regress': if y not in eb_vars or len(set(x).difference(eb_vars)) > 0: print( 'WARNING: correcting energy balance variables using ' 'depedendent or independent variables that are not ' 'energy balance components will cause undesired results!' '\nIt is recommended to use only Rn, G, LE, and H for ' 'dependent (y) and independent (x) variables.' ) self.lin_regress( y=y, x=x, fit_intercept=fit_intercept, apply_coefs=True ) self.corr_meth = meth # calculate raw, corrected ET self._calc_et() # fill gaps of corr ET with ET from smoothed and gap filled ETrF*ETr if et_gap_fill: self._ET_gap_fill(et_name='ET_corr', refET=refET) # update inv map for naming self.inv_map = { v: k for k, v in self.variables.items() if ( not v.replace('_mean', '') == k or not k in self.df.columns) } # using 'G' in multiple g plot may overwrite G name internally if not 'G' in self.inv_map.values(): user_G_name = self.variables.get('G') self.inv_map[user_G_name] = 'G' def _calc_vpd_from_vp(self): """ Based on ASCE standardized ref et eqn. 37, air temperature must be in celcius and actual vapor pressure in kPa. Can also calculate VP from VPD and air temperature, es and rel. humidity. """ df = self.df.rename(columns=self.inv_map) # calculate vpd from actual vapor pressure and temp # check if needed variables exist and units are correct has_vpd_vars = set(['vp','t_avg']).issubset(df.columns) units_correct = ( self.units.get('vp') == 'kpa' and self.units.get('t_avg') == 'c' ) if has_vpd_vars and units_correct: # saturation vapor pressure (es) es = 0.6108 * np.exp(17.27 * df.t_avg / (df.t_avg + 237.3)) df['vpd'] = es - df.vp df['es'] = es self.variables['vpd'] = 'vpd' self.units['vpd'] = 'kpa' self.variables['es'] = 'es' self.units['es'] = 'kpa' # same calc actual vapor pressure from vapor pressure deficit and temp has_vp_vars = set(['vpd','t_avg']).issubset(df.columns) units_correct = ( self.units.get('vpd') == 'kpa' and self.units.get('t_avg') == 'c' ) if has_vp_vars and units_correct: # saturation vapor pressure (es) es = 0.6108 * np.exp(17.27 * df.t_avg / (df.t_avg + 237.3)) df['vp'] = es - df.vpd df['es'] = es self.variables['vp'] = 'vp' self.units['vp'] = 'kpa' self.variables['es'] = 'es' self.units['es'] = 'kpa' if not 'rh' in self.variables and {'vp','es'}.issubset(self.variables): if not self.units.get('vp') == 'kpa': pass else: print( 'Calculating relative humidity from actual and saturation ' 'vapor pressure and air temperature' ) df['rh'] = 100 * (df.vp / df.es) self.variables['rh'] = 'rh' self.units['rh'] = '%' self._df = df def _ET_gap_fill(self, et_name='ET_corr', refET='ETr'): """ Use gridMET reference ET to calculate ET from ETrF/EToF, smooth and gap fill calced ET and then use to fill gaps in corrected ET. Keeps tabs on number of days in ET that were filled in each month. Keyword Arguments: et_name (str): default "ET_corr". Name of ET variable to use when calculating the crop coefficient and to fill gaps with calculated ET. Returns: :obj:`None` """ # drop relavant calculated variables if they exist self._df = _drop_cols(self._df, self._et_gap_fill_vars) # get ETr if not on disk if not self.gridMET_exists: self.download_gridMET() else: # gridMET file has been verified and has all needed dates, just load gridfile = self.config.get( 'METADATA','gridMET_file_path',fallback=None ) print( 'gridMET reference ET already downloaded for station at:\n' '{}\nnot redownloading.'.format(gridfile) ) grid_df =
pd.read_csv(gridfile, parse_dates=True, index_col='date')
pandas.read_csv
import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall from pandas import ( DataFrame, DatetimeIndex, Series, date_range, ) import pandas._testing as tm from pandas.core.window import ExponentialMovingWindow def test_doc_string(): df = DataFrame({"B": [0, 1, 2, np.nan, 4]}) df df.ewm(com=0.5).mean() def test_constructor(frame_or_series): c = frame_or_series(range(5)).ewm # valid c(com=0.5) c(span=1.5) c(alpha=0.5) c(halflife=0.75) c(com=0.5, span=None) c(alpha=0.5, com=None) c(halflife=0.75, alpha=None) # not valid: mutually exclusive msg = "comass, span, halflife, and alpha are mutually exclusive" with pytest.raises(ValueError, match=msg): c(com=0.5, alpha=0.5) with pytest.raises(ValueError, match=msg): c(span=1.5, halflife=0.75) with pytest.raises(ValueError, match=msg): c(alpha=0.5, span=1.5) # not valid: com < 0 msg = "comass must satisfy: comass >= 0" with pytest.raises(ValueError, match=msg): c(com=-0.5) # not valid: span < 1 msg = "span must satisfy: span >= 1" with pytest.raises(ValueError, match=msg): c(span=0.5) # not valid: halflife <= 0 msg = "halflife must satisfy: halflife > 0" with pytest.raises(ValueError, match=msg): c(halflife=0) # not valid: alpha <= 0 or alpha > 1 msg = "alpha must satisfy: 0 < alpha <= 1" for alpha in (-0.5, 1.5): with pytest.raises(ValueError, match=msg): c(alpha=alpha) @pytest.mark.parametrize("method", ["std", "mean", "var"]) def test_numpy_compat(method): # see gh-12811 e = ExponentialMovingWindow(Series([2, 4, 6]), alpha=0.5) msg = "numpy operations are not valid with window objects" with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(e, method)(1, 2, 3) with pytest.raises(UnsupportedFunctionCall, match=msg): getattr(e, method)(dtype=np.float64) def test_ewma_times_not_datetime_type(): msg = r"times must be datetime64\[ns\] dtype." with pytest.raises(ValueError, match=msg): Series(range(5)).ewm(times=np.arange(5)) def test_ewma_times_not_same_length(): msg = "times must be the same length as the object." with pytest.raises(ValueError, match=msg): Series(range(5)).ewm(times=np.arange(4).astype("datetime64[ns]")) def test_ewma_halflife_not_correct_type(): msg = "halflife must be a timedelta convertible object" with pytest.raises(ValueError, match=msg): Series(range(5)).ewm(halflife=1, times=np.arange(5).astype("datetime64[ns]")) def test_ewma_halflife_without_times(halflife_with_times): msg = "halflife can only be a timedelta convertible argument if times is not None." with pytest.raises(ValueError, match=msg): Series(range(5)).ewm(halflife=halflife_with_times) @pytest.mark.parametrize( "times", [ np.arange(10).astype("datetime64[D]").astype("datetime64[ns]"), date_range("2000", freq="D", periods=10), date_range("2000", freq="D", periods=10).tz_localize("UTC"), ], ) @pytest.mark.parametrize("min_periods", [0, 2]) def test_ewma_with_times_equal_spacing(halflife_with_times, times, min_periods): halflife = halflife_with_times data = np.arange(10.0) data[::2] = np.nan df = DataFrame({"A": data, "time_col": date_range("2000", freq="D", periods=10)}) with tm.assert_produces_warning(FutureWarning, match="nuisance columns"): # GH#42738 result = df.ewm(halflife=halflife, min_periods=min_periods, times=times).mean() expected = df.ewm(halflife=1.0, min_periods=min_periods).mean() tm.assert_frame_equal(result, expected) def test_ewma_with_times_variable_spacing(tz_aware_fixture): tz = tz_aware_fixture halflife = "23 days" times = DatetimeIndex( ["2020-01-01", "2020-01-10T00:04:05", "2020-02-23T05:00:23"] ).tz_localize(tz) data = np.arange(3) df = DataFrame(data) result = df.ewm(halflife=halflife, times=times).mean() expected = DataFrame([0.0, 0.5674161888241773, 1.545239952073459]) tm.assert_frame_equal(result, expected) def test_ewm_with_nat_raises(halflife_with_times): # GH#38535 ser = Series(range(1)) times = DatetimeIndex(["NaT"]) with pytest.raises(ValueError, match="Cannot convert NaT values to integer"): ser.ewm(com=0.1, halflife=halflife_with_times, times=times) def test_ewm_with_times_getitem(halflife_with_times): # GH 40164 halflife = halflife_with_times data = np.arange(10.0) data[::2] = np.nan times = date_range("2000", freq="D", periods=10) df = DataFrame({"A": data, "B": data}) result = df.ewm(halflife=halflife, times=times)["A"].mean() expected = df.ewm(halflife=1.0)["A"].mean() tm.assert_series_equal(result, expected) @pytest.mark.parametrize("arg", ["com", "halflife", "span", "alpha"]) def test_ewm_getitem_attributes_retained(arg, adjust, ignore_na): # GH 40164 kwargs = {arg: 1, "adjust": adjust, "ignore_na": ignore_na} ewm = DataFrame({"A": range(1), "B": range(1)}).ewm(**kwargs) expected = {attr: getattr(ewm, attr) for attr in ewm._attributes} ewm_slice = ewm["A"] result = {attr: getattr(ewm, attr) for attr in ewm_slice._attributes} assert result == expected def test_ewm_vol_deprecated(): ser = Series(range(1)) with tm.assert_produces_warning(FutureWarning): result = ser.ewm(com=0.1).vol() expected = ser.ewm(com=0.1).std() tm.assert_series_equal(result, expected) def test_ewma_times_adjust_false_raises(): # GH 40098 with pytest.raises( NotImplementedError, match="times is not supported with adjust=False." ): Series(range(1)).ewm( 0.1, adjust=False, times=date_range("2000", freq="D", periods=1) ) @pytest.mark.parametrize( "func, expected", [ [ "mean", DataFrame( { 0: range(5), 1: range(4, 9), 2: [7.428571, 9, 10.571429, 12.142857, 13.714286], }, dtype=float, ), ], [ "std", DataFrame( { 0: [np.nan] * 5, 1: [4.242641] * 5, 2: [4.6291, 5.196152, 5.781745, 6.380775, 6.989788], } ), ], [ "var", DataFrame( { 0: [np.nan] * 5, 1: [18.0] * 5, 2: [21.428571, 27, 33.428571, 40.714286, 48.857143], } ), ], ], ) def test_float_dtype_ewma(func, expected, float_numpy_dtype): # GH#42452 df = DataFrame( {0: range(5), 1: range(6, 11), 2: range(10, 20, 2)}, dtype=float_numpy_dtype ) e = df.ewm(alpha=0.5, axis=1) result = getattr(e, func)() tm.assert_frame_equal(result, expected) def test_times_string_col_deprecated(): # GH 43265 data = np.arange(10.0) data[::2] = np.nan df = DataFrame({"A": data, "time_col": date_range("2000", freq="D", periods=10)}) with tm.assert_produces_warning(FutureWarning, match="Specifying times"): result = df.ewm(halflife="1 day", min_periods=0, times="time_col").mean() expected = df.ewm(halflife=1.0, min_periods=0).mean() tm.assert_frame_equal(result, expected) def test_ewm_sum_adjust_false_notimplemented(): data = Series(range(1)).ewm(com=1, adjust=False) with pytest.raises(NotImplementedError, match="sum is not"): data.sum() @pytest.mark.parametrize( "expected_data, ignore", [[[10.0, 5.0, 2.5, 11.25], False], [[10.0, 5.0, 5.0, 12.5], True]], ) def test_ewm_sum(expected_data, ignore): # xref from Numbagg tests # https://github.com/numbagg/numbagg/blob/v0.2.1/numbagg/test/test_moving.py#L50 data = Series([10, 0, np.nan, 10]) result = data.ewm(alpha=0.5, ignore_na=ignore).sum() expected = Series(expected_data) tm.assert_series_equal(result, expected) def test_ewma_adjust(): vals = Series(np.zeros(1000)) vals[5] = 1 result = vals.ewm(span=100, adjust=False).mean().sum() assert np.abs(result - 1) < 1e-2 def test_ewma_cases(adjust, ignore_na): # try adjust/ignore_na args matrix s = Series([1.0, 2.0, 4.0, 8.0]) if adjust: expected = Series([1.0, 1.6, 2.736842, 4.923077]) else: expected = Series([1.0, 1.333333, 2.222222, 4.148148]) result = s.ewm(com=2.0, adjust=adjust, ignore_na=ignore_na).mean() tm.assert_series_equal(result, expected) def test_ewma_nan_handling(): s = Series([1.0] + [np.nan] * 5 + [1.0]) result = s.ewm(com=5).mean() tm.assert_series_equal(result, Series([1.0] * len(s))) s = Series([np.nan] * 2 + [1.0] + [np.nan] * 2 + [1.0]) result = s.ewm(com=5).mean() tm.assert_series_equal(result, Series([np.nan] * 2 + [1.0] * 4)) @pytest.mark.parametrize( "s, adjust, ignore_na, w", [ ( Series([np.nan, 1.0, 101.0]), True, False, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0], ), ( Series([np.nan, 1.0, 101.0]), True, True, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0], ), ( Series([np.nan, 1.0, 101.0]), False, False, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), (1.0 / (1.0 + 2.0))], ), ( Series([np.nan, 1.0, 101.0]), False, True, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), (1.0 / (1.0 + 2.0))], ), ( Series([1.0, np.nan, 101.0]), True, False, [(1.0 - (1.0 / (1.0 + 2.0))) ** 2, np.nan, 1.0], ), ( Series([1.0, np.nan, 101.0]), True, True, [(1.0 - (1.0 / (1.0 + 2.0))), np.nan, 1.0], ), ( Series([1.0, np.nan, 101.0]), False, False, [(1.0 - (1.0 / (1.0 + 2.0))) ** 2, np.nan, (1.0 / (1.0 + 2.0))], ), ( Series([1.0, np.nan, 101.0]), False, True, [(1.0 - (1.0 / (1.0 + 2.0))), np.nan, (1.0 / (1.0 + 2.0))], ), ( Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]), True, False, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))) ** 3, np.nan, np.nan, 1.0, np.nan], ), ( Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]), True, True, [np.nan, (1.0 - (1.0 / (1.0 + 2.0))), np.nan, np.nan, 1.0, np.nan], ), ( Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]), False, False, [ np.nan, (1.0 - (1.0 / (1.0 + 2.0))) ** 3, np.nan, np.nan, (1.0 / (1.0 + 2.0)), np.nan, ], ), ( Series([np.nan, 1.0, np.nan, np.nan, 101.0, np.nan]), False, True, [ np.nan, (1.0 - (1.0 / (1.0 + 2.0))), np.nan, np.nan, (1.0 / (1.0 + 2.0)), np.nan, ], ), ( Series([1.0, np.nan, 101.0, 50.0]), True, False, [ (1.0 - (1.0 / (1.0 + 2.0))) ** 3, np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0, ], ), ( Series([1.0, np.nan, 101.0, 50.0]), True, True, [ (1.0 - (1.0 / (1.0 + 2.0))) ** 2, np.nan, (1.0 - (1.0 / (1.0 + 2.0))), 1.0, ], ), ( Series([1.0, np.nan, 101.0, 50.0]), False, False, [ (1.0 - (1.0 / (1.0 + 2.0))) ** 3, np.nan, (1.0 - (1.0 / (1.0 + 2.0))) * (1.0 / (1.0 + 2.0)), (1.0 / (1.0 + 2.0)) * ((1.0 - (1.0 / (1.0 + 2.0))) ** 2 + (1.0 / (1.0 + 2.0))), ], ), ( Series([1.0, np.nan, 101.0, 50.0]), False, True, [ (1.0 - (1.0 / (1.0 + 2.0))) ** 2, np.nan, (1.0 - (1.0 / (1.0 + 2.0))) * (1.0 / (1.0 + 2.0)), (1.0 / (1.0 + 2.0)), ], ), ], ) def test_ewma_nan_handling_cases(s, adjust, ignore_na, w): # GH 7603 expected = (s.multiply(w).cumsum() / Series(w).cumsum()).fillna(method="ffill") result = s.ewm(com=2.0, adjust=adjust, ignore_na=ignore_na).mean() tm.assert_series_equal(result, expected) if ignore_na is False: # check that ignore_na defaults to False result = s.ewm(com=2.0, adjust=adjust).mean() tm.assert_series_equal(result, expected) def test_ewm_alpha(): # GH 10789 arr = np.random.randn(100) locs = np.arange(20, 40) arr[locs] = np.NaN s = Series(arr) a = s.ewm(alpha=0.61722699889169674).mean() b = s.ewm(com=0.62014947789973052).mean() c = s.ewm(span=2.240298955799461).mean() d = s.ewm(halflife=0.721792864318).mean() tm.assert_series_equal(a, b) tm.assert_series_equal(a, c) tm.assert_series_equal(a, d) def test_ewm_domain_checks(): # GH 12492 arr = np.random.randn(100) locs = np.arange(20, 40) arr[locs] = np.NaN s = Series(arr) msg = "comass must satisfy: comass >= 0" with pytest.raises(ValueError, match=msg): s.ewm(com=-0.1) s.ewm(com=0.0) s.ewm(com=0.1) msg = "span must satisfy: span >= 1" with pytest.raises(ValueError, match=msg): s.ewm(span=-0.1) with pytest.raises(ValueError, match=msg): s.ewm(span=0.0) with pytest.raises(ValueError, match=msg): s.ewm(span=0.9) s.ewm(span=1.0) s.ewm(span=1.1) msg = "halflife must satisfy: halflife > 0" with pytest.raises(ValueError, match=msg): s.ewm(halflife=-0.1) with pytest.raises(ValueError, match=msg): s.ewm(halflife=0.0) s.ewm(halflife=0.1) msg = "alpha must satisfy: 0 < alpha <= 1" with pytest.raises(ValueError, match=msg): s.ewm(alpha=-0.1) with pytest.raises(ValueError, match=msg): s.ewm(alpha=0.0) s.ewm(alpha=0.1) s.ewm(alpha=1.0) with pytest.raises(ValueError, match=msg): s.ewm(alpha=1.1) @pytest.mark.parametrize("method", ["mean", "std", "var"]) def test_ew_empty_series(method): vals = Series([], dtype=np.float64) ewm = vals.ewm(3) result = getattr(ewm, method)() tm.assert_almost_equal(result, vals) @pytest.mark.parametrize("min_periods", [0, 1]) @pytest.mark.parametrize("name", ["mean", "var", "std"]) def test_ew_min_periods(min_periods, name): # excluding NaNs correctly arr = np.random.randn(50) arr[:10] = np.NaN arr[-10:] = np.NaN s = Series(arr) # check min_periods # GH 7898 result = getattr(s.ewm(com=50, min_periods=2), name)() assert result[:11].isna().all() assert not result[11:].isna().any() result = getattr(s.ewm(com=50, min_periods=min_periods), name)() if name == "mean": assert result[:10].isna().all() assert not result[10:].isna().any() else: # ewm.std, ewm.var (with bias=False) require at least # two values assert result[:11].isna().all() assert not result[11:].isna().any() # check series of length 0 result = getattr(Series(dtype=object).ewm(com=50, min_periods=min_periods), name)() tm.assert_series_equal(result, Series(dtype="float64")) # check series of length 1 result = getattr(Series([1.0]).ewm(50, min_periods=min_periods), name)() if name == "mean": tm.assert_series_equal(result, Series([1.0])) else: # ewm.std, ewm.var with bias=False require at least # two values tm.assert_series_equal(result, Series([np.NaN])) # pass in ints result2 = getattr(Series(np.arange(50)).ewm(span=10), name)() assert result2.dtype == np.float_ @pytest.mark.parametrize("name", ["cov", "corr"]) def test_ewm_corr_cov(name): A = Series(np.random.randn(50), index=range(50)) B = A[2:] + np.random.randn(48) A[:10] = np.NaN B.iloc[-10:] = np.NaN result = getattr(A.ewm(com=20, min_periods=5), name)(B) assert np.isnan(result.values[:14]).all() assert not np.isnan(result.values[14:]).any() @pytest.mark.parametrize("min_periods", [0, 1, 2]) @pytest.mark.parametrize("name", ["cov", "corr"]) def test_ewm_corr_cov_min_periods(name, min_periods): # GH 7898 A = Series(np.random.randn(50), index=range(50)) B = A[2:] + np.random.randn(48) A[:10] = np.NaN B.iloc[-10:] = np.NaN result = getattr(A.ewm(com=20, min_periods=min_periods), name)(B) # binary functions (ewmcov, ewmcorr) with bias=False require at # least two values assert np.isnan(result.values[:11]).all() assert not np.isnan(result.values[11:]).any() # check series of length 0 empty = Series([], dtype=np.float64) result = getattr(empty.ewm(com=50, min_periods=min_periods), name)(empty) tm.assert_series_equal(result, empty) # check series of length 1 result = getattr(Series([1.0]).ewm(com=50, min_periods=min_periods), name)( Series([1.0]) ) tm.assert_series_equal(result, Series([np.NaN])) @pytest.mark.parametrize("name", ["cov", "corr"]) def test_different_input_array_raise_exception(name): A = Series(np.random.randn(50), index=range(50)) A[:10] = np.NaN msg = "other must be a DataFrame or Series" # exception raised is Exception with pytest.raises(ValueError, match=msg): getattr(A.ewm(com=20, min_periods=5), name)(np.random.randn(50)) @pytest.mark.parametrize("name", ["var", "std", "mean"]) def test_ewma_series(series, name): series_result = getattr(series.ewm(com=10), name)() assert isinstance(series_result, Series) @pytest.mark.parametrize("name", ["var", "std", "mean"]) def test_ewma_frame(frame, name): frame_result = getattr(frame.ewm(com=10), name)() assert isinstance(frame_result, DataFrame) def test_ewma_span_com_args(series): A = series.ewm(com=9.5).mean() B = series.ewm(span=20).mean() tm.assert_almost_equal(A, B) msg = "comass, span, halflife, and alpha are mutually exclusive" with pytest.raises(ValueError, match=msg): series.ewm(com=9.5, span=20) msg = "Must pass one of comass, span, halflife, or alpha" with pytest.raises(ValueError, match=msg): series.ewm().mean() def test_ewma_halflife_arg(series): A = series.ewm(com=13.932726172912965).mean() B = series.ewm(halflife=10.0).mean() tm.assert_almost_equal(A, B) msg = "comass, span, halflife, and alpha are mutually exclusive" with pytest.raises(ValueError, match=msg): series.ewm(span=20, halflife=50) with pytest.raises(ValueError, match=msg): series.ewm(com=9.5, halflife=50) with pytest.raises(ValueError, match=msg): series.ewm(com=9.5, span=20, halflife=50) msg = "Must pass one of comass, span, halflife, or alpha" with pytest.raises(ValueError, match=msg): series.ewm() def test_ewm_alpha_arg(series): # GH 10789 s = series msg = "Must pass one of comass, span, halflife, or alpha" with pytest.raises(ValueError, match=msg): s.ewm() msg = "comass, span, halflife, and alpha are mutually exclusive" with pytest.raises(ValueError, match=msg): s.ewm(com=10.0, alpha=0.5) with pytest.raises(ValueError, match=msg): s.ewm(span=10.0, alpha=0.5) with pytest.raises(ValueError, match=msg): s.ewm(halflife=10.0, alpha=0.5) @pytest.mark.parametrize("func", ["cov", "corr"]) def test_ewm_pairwise_cov_corr(func, frame): result = getattr(frame.ewm(span=10, min_periods=5), func)() result = result.loc[(slice(None), 1), 5] result.index = result.index.droplevel(1) expected = getattr(frame[1].ewm(span=10, min_periods=5), func)(frame[5]) tm.assert_series_equal(result, expected, check_names=False) def test_numeric_only_frame(arithmetic_win_operators, numeric_only): # GH#46560 kernel = arithmetic_win_operators df = DataFrame({"a": [1], "b": 2, "c": 3}) df["c"] = df["c"].astype(object) ewm = df.ewm(span=2, min_periods=1) op = getattr(ewm, kernel, None) if op is not None: result = op(numeric_only=numeric_only) columns = ["a", "b"] if numeric_only else ["a", "b", "c"] expected = df[columns].agg([kernel]).reset_index(drop=True).astype(float) assert list(expected.columns) == columns tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("kernel", ["corr", "cov"]) @pytest.mark.parametrize("use_arg", [True, False]) def test_numeric_only_corr_cov_frame(kernel, numeric_only, use_arg): # GH#46560 df = DataFrame({"a": [1, 2, 3], "b": 2, "c": 3}) df["c"] = df["c"].astype(object) arg = (df,) if use_arg else () ewm = df.ewm(span=2, min_periods=1) op = getattr(ewm, kernel) result = op(*arg, numeric_only=numeric_only) # Compare result to op using float dtypes, dropping c when numeric_only is True columns = ["a", "b"] if numeric_only else ["a", "b", "c"] df2 = df[columns].astype(float) arg2 = (df2,) if use_arg else () ewm2 = df2.ewm(span=2, min_periods=1) op2 = getattr(ewm2, kernel) expected = op2(*arg2, numeric_only=numeric_only) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("dtype", [int, object]) def test_numeric_only_series(arithmetic_win_operators, numeric_only, dtype): # GH#46560 kernel = arithmetic_win_operators ser = Series([1], dtype=dtype) ewm = ser.ewm(span=2, min_periods=1) op = getattr(ewm, kernel, None) if op is None: # Nothing to test return if numeric_only and dtype is object: msg = f"ExponentialMovingWindow.{kernel} does not implement numeric_only" with pytest.raises(NotImplementedError, match=msg): op(numeric_only=numeric_only) else: result = op(numeric_only=numeric_only) expected = ser.agg([kernel]).reset_index(drop=True).astype(float) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("kernel", ["corr", "cov"]) @pytest.mark.parametrize("use_arg", [True, False]) @pytest.mark.parametrize("dtype", [int, object]) def test_numeric_only_corr_cov_series(kernel, use_arg, numeric_only, dtype): # GH#46560 ser =
Series([1, 2, 3], dtype=dtype)
pandas.Series
import pandas as pd def load_payment(payment_file: str) -> pd.DataFrame: payments = pd.read_csv(payment_file, sep=',') pmnts_sts = payments.groupby(['client_id', 'pmnts_name']).agg(['mean', 'count']) pmnts_sts.columns = ['_'.join(col) for col in pmnts_sts.columns] pmnts_sts = pmnts_sts.reset_index() features_pool = [] for values in ['sum_rur_mean', 'sum_rur_count']: df_features_ = pd.pivot_table( pmnts_sts, values=values, index='client_id', columns='pmnts_name', ) df_features_.columns = df_features_.columns.str.replace(' ', '_') df_features_ = df_features_.add_prefix('pmnts_name_' + values + '_') features_pool.append(df_features_) feats =
pd.concat(features_pool, axis=1)
pandas.concat
from bs4 import BeautifulSoup import requests import pandas as pd def get_data(): #Store the data url and table in a variable to be used later data_url = 'https://en.wikipedia.org/wiki/Road_safety_in_Europe' data_id = 'wikitable sortable' #Send a request to get the data from the data_url link response = requests.get(data_url) #Using the BeautifulSoup library to store and parse out the data recieved from the get request soup = BeautifulSoup(response.text, 'html.parser') #using the find method to specifically select the table with the specified class attribute and storing into a variable road_safety_table = soup.find('table', {'class' : data_id}) #Autopopulate the row span technique to set a new row after the data from each previous tag has been set rows = road_safety_table.find_all('tr') #Setting the column header as the first row of the raw data returned and replacing the \n string from the header names with an empty string columns = [v.text.replace('\n', '') for v in rows[0].find_all('th')] df =
pd.DataFrame(columns=columns)
pandas.DataFrame
import unittest import canopy import pandas as pd import numpy as np temperatureK = 373.15 temperatureC = 100.0 temperatureF = 212.0 temperatureK2 = 473.15 temperatureC2 = 200.0 temperatureF2 = 392.0 class UnitsTest(unittest.TestCase): def setUp(self): self.units = canopy.Units() # Specific units. def test_specific_units(self): self.assertAlmostEqual( self.units.convert_value_between_units(1, 'inHg', 'Pa'), 3386.39, delta=0.01); self.assertAlmostEqual( self.units.convert_value_between_units(1000, 'Pa', 'inHg'), 0.2953, delta=0.0001); def test_try_get_conversion_to_si(self): existing = self.units.try_get_conversion_to_si('F') self.assertEqual(existing.factor, 5/9) self.assertEqual(existing.offset, 459.67 * 5 / 9) missing = self.units.try_get_conversion_to_si('blah') self.assertEqual(missing, None) def test_get_conversion_to_si(self): existing = self.units.get_conversion_to_si('F') self.assertEqual(existing.factor, 5/9) self.assertEqual(existing.offset, 459.67 * 5 / 9) with self.assertRaises(KeyError): self.units.get_conversion_to_si('blah') def test_get_conversion_to_si_or_default(self): existing = self.units.get_conversion_to_si_or_default('F') self.assertEqual(existing.factor, 5/9) self.assertEqual(existing.offset, 459.67 * 5 / 9) missing = self.units.get_conversion_to_si_or_default('blah') self.assertEqual(missing.factor, 1) self.assertEqual(missing.offset, 0) # FROM SI def test_convert_value_from_si(self): self.assertAlmostEqual(self.units.convert_value_from_si(temperatureK, 'C'), temperatureC, delta=0.01) self.assertAlmostEqual(self.units.convert_value_from_si(temperatureK, 'F'), temperatureF, delta=0.01) self.assertAlmostEqual(self.units.convert_value_from_si(temperatureK, 'C', True), temperatureK, delta=0.01) self.assertAlmostEqual(self.units.convert_value_from_si(temperatureK, 'F', True), temperatureK * 9 / 5, delta=0.01) self.assertEqual(self.units.convert_value_from_si(temperatureK, 'K'), temperatureK) def test_convert_array_from_si(self): data = np.array([temperatureK, temperatureK2]) data_copy = np.copy(data) result = self.units.convert_array_from_si(data, 'F') self.assertIsNot(result, data) self.assertFalse(np.array_equal(result, data)) self.assertTrue(np.array_equal(data, data_copy)) self.assertEqual(len(result), 2) self.assertAlmostEqual(result[0], temperatureF, delta=0.01) self.assertAlmostEqual(result[1], temperatureF2, delta=0.01) def test_convert_array_from_si_no_conversion_required(self): data = np.array([temperatureK, temperatureK2]) result = self.units.convert_array_from_si(data, 'K') self.assertIs(result, data) def test_convert_array_from_si_always_return_copy(self): data = np.array([temperatureK, temperatureK2]) result = self.units.convert_array_from_si(data, 'K', always_return_copy=True) self.assertIsNot(result, data) self.assertTrue(np.array_equal(result, data)) def test_convert_array_from_si_inplace(self): data = np.array([temperatureK, temperatureK2]) result = self.units.convert_array_from_si(data, 'F', inplace=True) self.assertIs(result, data) self.assertEqual(len(result), 2) self.assertAlmostEqual(result[0], temperatureF, delta=0.01) self.assertAlmostEqual(result[1], temperatureF2, delta=0.01) def test_convert_series_from_si(self): data = pd.Series([temperatureK, temperatureK2]) data_copy = data.copy() result = self.units.convert_series_from_si(data, 'F') self.assertIsNot(result, data) self.assertFalse(result.equals(data)) self.assertTrue(data.equals(data_copy)) self.assertEqual(len(result), 2) self.assertAlmostEqual(result[0], temperatureF, delta=0.01) self.assertAlmostEqual(result[1], temperatureF2, delta=0.01) def test_convert_series_from_si_no_conversion_required(self): data = pd.Series([temperatureK, temperatureK2]) result = self.units.convert_series_from_si(data, 'K') self.assertIs(result, data) def test_convert_series_from_si_always_return_copy(self): data = pd.Series([temperatureK, temperatureK2]) result = self.units.convert_series_from_si(data, 'K', always_return_copy=True) self.assertIsNot(result, data) self.assertTrue(result.equals(data)) def test_convert_series_from_si_inplace(self): data =
pd.Series([temperatureK, temperatureK2])
pandas.Series
from datetime import datetime, timedelta from io import StringIO import re import sys import numpy as np import pytest from pandas._libs.tslib import iNaT from pandas.compat import PYPY from pandas.compat.numpy import np_array_datetime64_compat from pandas.core.dtypes.common import ( is_datetime64_dtype, is_datetime64tz_dtype, is_object_dtype, is_timedelta64_dtype, needs_i8_conversion, ) from pandas.core.dtypes.dtypes import DatetimeTZDtype import pandas as pd from pandas import ( CategoricalIndex, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, PeriodIndex, Series, Timedelta, TimedeltaIndex, Timestamp, ) from pandas.core.accessor import PandasDelegate from pandas.core.arrays import DatetimeArray, PandasArray, TimedeltaArray from pandas.core.base import NoNewAttributesMixin, PandasObject from pandas.core.indexes.datetimelike import DatetimeIndexOpsMixin import pandas.util.testing as tm class CheckStringMixin: def test_string_methods_dont_fail(self): repr(self.container) str(self.container) bytes(self.container) def test_tricky_container(self): if not hasattr(self, "unicode_container"): pytest.skip("Need unicode_container to test with this") repr(self.unicode_container) str(self.unicode_container) class CheckImmutable: mutable_regex = re.compile("does not support mutable operations") def check_mutable_error(self, *args, **kwargs): # Pass whatever function you normally would to pytest.raises # (after the Exception kind). with pytest.raises(TypeError): self.mutable_regex(*args, **kwargs) def test_no_mutable_funcs(self): def setitem(): self.container[0] = 5 self.check_mutable_error(setitem) def setslice(): self.container[1:2] = 3 self.check_mutable_error(setslice) def delitem(): del self.container[0] self.check_mutable_error(delitem) def delslice(): del self.container[0:3] self.check_mutable_error(delslice) mutable_methods = getattr(self, "mutable_methods", []) for meth in mutable_methods: self.check_mutable_error(getattr(self.container, meth)) def test_slicing_maintains_type(self): result = self.container[1:2] expected = self.lst[1:2] self.check_result(result, expected) def check_result(self, result, expected, klass=None): klass = klass or self.klass assert isinstance(result, klass) assert result == expected class TestPandasDelegate: class Delegator: _properties = ["foo"] _methods = ["bar"] def _set_foo(self, value): self.foo = value def _get_foo(self): return self.foo foo = property(_get_foo, _set_foo, doc="foo property") def bar(self, *args, **kwargs): """ a test bar method """ pass class Delegate(PandasDelegate, PandasObject): def __init__(self, obj): self.obj = obj def setup_method(self, method): pass def test_invalid_delegation(self): # these show that in order for the delegation to work # the _delegate_* methods need to be overridden to not raise # a TypeError self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._properties, typ="property", ) self.Delegate._add_delegate_accessors( delegate=self.Delegator, accessors=self.Delegator._methods, typ="method" ) delegate = self.Delegate(self.Delegator()) with pytest.raises(TypeError): delegate.foo with pytest.raises(TypeError): delegate.foo = 5 with pytest.raises(TypeError): delegate.foo() @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): # Delegate does not implement memory_usage. # Check that we fall back to in-built `__sizeof__` # GH 12924 delegate = self.Delegate(self.Delegator()) sys.getsizeof(delegate) class Ops: def _allow_na_ops(self, obj): """Whether to skip test cases including NaN""" if (isinstance(obj, Index) and obj.is_boolean()) or not obj._can_hold_na: # don't test boolean / integer dtypes return False return True def setup_method(self, method): self.bool_index = tm.makeBoolIndex(10, name="a") self.int_index = tm.makeIntIndex(10, name="a") self.float_index = tm.makeFloatIndex(10, name="a") self.dt_index = tm.makeDateIndex(10, name="a") self.dt_tz_index = tm.makeDateIndex(10, name="a").tz_localize(tz="US/Eastern") self.period_index = tm.makePeriodIndex(10, name="a") self.string_index = tm.makeStringIndex(10, name="a") self.unicode_index = tm.makeUnicodeIndex(10, name="a") arr = np.random.randn(10) self.bool_series = Series(arr, index=self.bool_index, name="a") self.int_series = Series(arr, index=self.int_index, name="a") self.float_series = Series(arr, index=self.float_index, name="a") self.dt_series = Series(arr, index=self.dt_index, name="a") self.dt_tz_series = self.dt_tz_index.to_series(keep_tz=True) self.period_series = Series(arr, index=self.period_index, name="a") self.string_series = Series(arr, index=self.string_index, name="a") self.unicode_series = Series(arr, index=self.unicode_index, name="a") types = ["bool", "int", "float", "dt", "dt_tz", "period", "string", "unicode"] self.indexes = [getattr(self, "{}_index".format(t)) for t in types] self.series = [getattr(self, "{}_series".format(t)) for t in types] # To test narrow dtypes, we use narrower *data* elements, not *index* elements index = self.int_index self.float32_series = Series(arr.astype(np.float32), index=index, name="a") arr_int = np.random.choice(10, size=10, replace=False) self.int8_series = Series(arr_int.astype(np.int8), index=index, name="a") self.int16_series = Series(arr_int.astype(np.int16), index=index, name="a") self.int32_series = Series(arr_int.astype(np.int32), index=index, name="a") self.uint8_series = Series(arr_int.astype(np.uint8), index=index, name="a") self.uint16_series = Series(arr_int.astype(np.uint16), index=index, name="a") self.uint32_series = Series(arr_int.astype(np.uint32), index=index, name="a") nrw_types = ["float32", "int8", "int16", "int32", "uint8", "uint16", "uint32"] self.narrow_series = [getattr(self, "{}_series".format(t)) for t in nrw_types] self.objs = self.indexes + self.series + self.narrow_series def check_ops_properties(self, props, filter=None, ignore_failures=False): for op in props: for o in self.is_valid_objs: # if a filter, skip if it doesn't match if filter is not None: filt = o.index if isinstance(o, Series) else o if not filter(filt): continue try: if isinstance(o, Series): expected = Series(getattr(o.index, op), index=o.index, name="a") else: expected = getattr(o, op) except (AttributeError): if ignore_failures: continue result = getattr(o, op) # these could be series, arrays or scalars if isinstance(result, Series) and isinstance(expected, Series): tm.assert_series_equal(result, expected) elif isinstance(result, Index) and isinstance(expected, Index): tm.assert_index_equal(result, expected) elif isinstance(result, np.ndarray) and isinstance( expected, np.ndarray ): tm.assert_numpy_array_equal(result, expected) else: assert result == expected # freq raises AttributeError on an Int64Index because its not # defined we mostly care about Series here anyhow if not ignore_failures: for o in self.not_valid_objs: # an object that is datetimelike will raise a TypeError, # otherwise an AttributeError err = AttributeError if issubclass(type(o), DatetimeIndexOpsMixin): err = TypeError with pytest.raises(err): getattr(o, op) @pytest.mark.parametrize("klass", [Series, DataFrame]) def test_binary_ops_docs(self, klass): op_map = { "add": "+", "sub": "-", "mul": "*", "mod": "%", "pow": "**", "truediv": "/", "floordiv": "//", } for op_name in op_map: operand1 = klass.__name__.lower() operand2 = "other" op = op_map[op_name] expected_str = " ".join([operand1, op, operand2]) assert expected_str in getattr(klass, op_name).__doc__ # reverse version of the binary ops expected_str = " ".join([operand2, op, operand1]) assert expected_str in getattr(klass, "r" + op_name).__doc__ class TestIndexOps(Ops): def setup_method(self, method): super().setup_method(method) self.is_valid_objs = self.objs self.not_valid_objs = [] def test_none_comparison(self): # bug brought up by #1079 # changed from TypeError in 0.17.0 for o in self.is_valid_objs: if isinstance(o, Series): o[0] = np.nan # noinspection PyComparisonWithNone result = o == None # noqa assert not result.iat[0] assert not result.iat[1] # noinspection PyComparisonWithNone result = o != None # noqa assert result.iat[0] assert result.iat[1] result = None == o # noqa assert not result.iat[0] assert not result.iat[1] result = None != o # noqa assert result.iat[0] assert result.iat[1] if is_datetime64_dtype(o) or is_datetime64tz_dtype(o): # Following DatetimeIndex (and Timestamp) convention, # inequality comparisons with Series[datetime64] raise with pytest.raises(TypeError): None > o with pytest.raises(TypeError): o > None else: result = None > o assert not result.iat[0] assert not result.iat[1] result = o < None assert not result.iat[0] assert not result.iat[1] def test_ndarray_compat_properties(self): for o in self.objs: # Check that we work. for p in ["shape", "dtype", "T", "nbytes"]: assert getattr(o, p, None) is not None # deprecated properties for p in ["flags", "strides", "itemsize"]: with tm.assert_produces_warning(FutureWarning): assert getattr(o, p, None) is not None with tm.assert_produces_warning(FutureWarning): assert hasattr(o, "base") # If we have a datetime-like dtype then needs a view to work # but the user is responsible for that try: with tm.assert_produces_warning(FutureWarning): assert o.data is not None except ValueError: pass with pytest.raises(ValueError): with tm.assert_produces_warning(FutureWarning): o.item() # len > 1 assert o.ndim == 1 assert o.size == len(o) with tm.assert_produces_warning(FutureWarning): assert Index([1]).item() == 1 assert Series([1]).item() == 1 def test_value_counts_unique_nunique(self): for orig in self.objs: o = orig.copy() klass = type(o) values = o._values if isinstance(values, Index): # reset name not to affect latter process values.name = None # create repeated values, 'n'th element is repeated by n+1 times # skip boolean, because it only has 2 values at most if isinstance(o, Index) and o.is_boolean(): continue elif isinstance(o, Index): expected_index = Index(o[::-1]) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" else: expected_index = Index(values[::-1]) idx = o.index.repeat(range(1, len(o) + 1)) # take-based repeat indices = np.repeat(np.arange(len(o)), range(1, len(o) + 1)) rep = values.take(indices) o = klass(rep, index=idx, name="a") # check values has the same dtype as the original assert o.dtype == orig.dtype expected_s = Series( range(10, 0, -1), index=expected_index, dtype="int64", name="a" ) result = o.value_counts() tm.assert_series_equal(result, expected_s) assert result.index.name is None assert result.name == "a" result = o.unique() if isinstance(o, Index): assert isinstance(result, o.__class__) tm.assert_index_equal(result, orig) assert result.dtype == orig.dtype elif is_datetime64tz_dtype(o): # datetimetz Series returns array of Timestamp assert result[0] == orig[0] for r in result: assert isinstance(r, Timestamp) tm.assert_numpy_array_equal( result.astype(object), orig._values.astype(object) ) else: tm.assert_numpy_array_equal(result, orig.values) assert result.dtype == orig.dtype assert o.nunique() == len(np.unique(o.values)) @pytest.mark.parametrize("null_obj", [np.nan, None]) def test_value_counts_unique_nunique_null(self, null_obj): for orig in self.objs: o = orig.copy() klass = type(o) values = o._ndarray_values if not self._allow_na_ops(o): continue # special assign to the numpy array if is_datetime64tz_dtype(o): if isinstance(o, DatetimeIndex): v = o.asi8 v[0:2] = iNaT values = o._shallow_copy(v) else: o = o.copy() o[0:2] = pd.NaT values = o._values elif needs_i8_conversion(o): values[0:2] = iNaT values = o._shallow_copy(values) else: values[0:2] = null_obj # check values has the same dtype as the original assert values.dtype == o.dtype # create repeated values, 'n'th element is repeated by n+1 # times if isinstance(o, (DatetimeIndex, PeriodIndex)): expected_index = o.copy() expected_index.name = None # attach name to klass o = klass(values.repeat(range(1, len(o) + 1))) o.name = "a" else: if isinstance(o, DatetimeIndex): expected_index = orig._values._shallow_copy(values) else: expected_index = Index(values) expected_index.name = None o = o.repeat(range(1, len(o) + 1)) o.name = "a" # check values has the same dtype as the original assert o.dtype == orig.dtype # check values correctly have NaN nanloc = np.zeros(len(o), dtype=np.bool) nanloc[:3] = True if isinstance(o, Index): tm.assert_numpy_array_equal(pd.isna(o), nanloc) else: exp = Series(nanloc, o.index, name="a") tm.assert_series_equal(pd.isna(o), exp) expected_s_na = Series( list(range(10, 2, -1)) + [3], index=expected_index[9:0:-1], dtype="int64", name="a", ) expected_s = Series( list(range(10, 2, -1)), index=expected_index[9:1:-1], dtype="int64", name="a", ) result_s_na = o.value_counts(dropna=False) tm.assert_series_equal(result_s_na, expected_s_na) assert result_s_na.index.name is None assert result_s_na.name == "a" result_s = o.value_counts() tm.assert_series_equal(o.value_counts(), expected_s) assert result_s.index.name is None assert result_s.name == "a" result = o.unique() if isinstance(o, Index): tm.assert_index_equal(result, Index(values[1:], name="a")) elif is_datetime64tz_dtype(o): # unable to compare NaT / nan tm.assert_extension_array_equal(result[1:], values[2:]) assert result[0] is pd.NaT else: tm.assert_numpy_array_equal(result[1:], values[2:]) assert pd.isna(result[0]) assert result.dtype == orig.dtype assert o.nunique() == 8 assert o.nunique(dropna=False) == 9 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_inferred(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) expected = Series([4, 3, 2, 1], index=["b", "a", "d", "c"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(np.unique(np.array(s_values, dtype=np.object_))) tm.assert_index_equal(s.unique(), exp) else: exp = np.unique(np.array(s_values, dtype=np.object_)) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 4 # don't sort, have to sort after the fact as not sorting is # platform-dep hist = s.value_counts(sort=False).sort_values() expected = Series([3, 1, 4, 2], index=list("acbd")).sort_values() tm.assert_series_equal(hist, expected) # sort ascending hist = s.value_counts(ascending=True) expected = Series([1, 2, 3, 4], index=list("cdab")) tm.assert_series_equal(hist, expected) # relative histogram. hist = s.value_counts(normalize=True) expected = Series([0.4, 0.3, 0.2, 0.1], index=["b", "a", "d", "c"]) tm.assert_series_equal(hist, expected) @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_bins(self, klass): s_values = ["a", "b", "b", "b", "b", "c", "d", "d", "a", "a"] s = klass(s_values) # bins with pytest.raises(TypeError): s.value_counts(bins=1) s1 = Series([1, 1, 2, 3]) res1 = s1.value_counts(bins=1) exp1 = Series({Interval(0.997, 3.0): 4}) tm.assert_series_equal(res1, exp1) res1n = s1.value_counts(bins=1, normalize=True) exp1n = Series({Interval(0.997, 3.0): 1.0}) tm.assert_series_equal(res1n, exp1n) if isinstance(s1, Index): tm.assert_index_equal(s1.unique(), Index([1, 2, 3])) else: exp = np.array([1, 2, 3], dtype=np.int64) tm.assert_numpy_array_equal(s1.unique(), exp) assert s1.nunique() == 3 # these return the same res4 = s1.value_counts(bins=4, dropna=True) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4 = s1.value_counts(bins=4, dropna=False) intervals = IntervalIndex.from_breaks([0.997, 1.5, 2.0, 2.5, 3.0]) exp4 = Series([2, 1, 1, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4, exp4) res4n = s1.value_counts(bins=4, normalize=True) exp4n = Series([0.5, 0.25, 0.25, 0], index=intervals.take([0, 3, 1, 2])) tm.assert_series_equal(res4n, exp4n) # handle NA's properly s_values = ["a", "b", "b", "b", np.nan, np.nan, "d", "d", "a", "a", "b"] s = klass(s_values) expected = Series([4, 3, 2], index=["b", "a", "d"]) tm.assert_series_equal(s.value_counts(), expected) if isinstance(s, Index): exp = Index(["a", "b", np.nan, "d"]) tm.assert_index_equal(s.unique(), exp) else: exp = np.array(["a", "b", np.nan, "d"], dtype=object) tm.assert_numpy_array_equal(s.unique(), exp) assert s.nunique() == 3 s = klass({}) expected = Series([], dtype=np.int64) tm.assert_series_equal(s.value_counts(), expected, check_index_type=False) # returned dtype differs depending on original if isinstance(s, Index): tm.assert_index_equal(s.unique(), Index([]), exact=False) else: tm.assert_numpy_array_equal(s.unique(), np.array([]), check_dtype=False) assert s.nunique() == 0 @pytest.mark.parametrize("klass", [Index, Series]) def test_value_counts_datetime64(self, klass): # GH 3002, datetime64[ns] # don't test names though txt = "\n".join( [ "xxyyzz20100101PIE", "xxyyzz20100101GUM", "xxyyzz20100101EGG", "xxyyww20090101EGG", "foofoo20080909PIE", "foofoo20080909GUM", ] ) f = StringIO(txt) df = pd.read_fwf( f, widths=[6, 8, 3], names=["person_id", "dt", "food"], parse_dates=["dt"] ) s = klass(df["dt"].copy()) s.name = None idx = pd.to_datetime( ["2010-01-01 00:00:00", "2008-09-09 00:00:00", "2009-01-01 00:00:00"] ) expected_s = Series([3, 2, 1], index=idx) tm.assert_series_equal(s.value_counts(), expected_s) expected = np_array_datetime64_compat( ["2010-01-01 00:00:00", "2009-01-01 00:00:00", "2008-09-09 00:00:00"], dtype="datetime64[ns]", ) if isinstance(s, Index): tm.assert_index_equal(s.unique(), DatetimeIndex(expected)) else: tm.assert_numpy_array_equal(s.unique(), expected) assert s.nunique() == 3 # with NaT s = df["dt"].copy() s = klass(list(s.values) + [pd.NaT]) result = s.value_counts() assert result.index.dtype == "datetime64[ns]" tm.assert_series_equal(result, expected_s) result = s.value_counts(dropna=False) expected_s[pd.NaT] = 1 tm.assert_series_equal(result, expected_s) unique = s.unique() assert unique.dtype == "datetime64[ns]" # numpy_array_equal cannot compare pd.NaT if isinstance(s, Index): exp_idx = DatetimeIndex(expected.tolist() + [pd.NaT]) tm.assert_index_equal(unique, exp_idx) else: tm.assert_numpy_array_equal(unique[:3], expected) assert pd.isna(unique[3]) assert s.nunique() == 3 assert s.nunique(dropna=False) == 4 # timedelta64[ns] td = df.dt - df.dt + timedelta(1) td = klass(td, name="dt") result = td.value_counts() expected_s = Series([6], index=[Timedelta("1day")], name="dt") tm.assert_series_equal(result, expected_s) expected = TimedeltaIndex(["1 days"], name="dt") if isinstance(td, Index): tm.assert_index_equal(td.unique(), expected) else: tm.assert_numpy_array_equal(td.unique(), expected.values) td2 = timedelta(1) + (df.dt - df.dt) td2 = klass(td2, name="dt") result2 = td2.value_counts() tm.assert_series_equal(result2, expected_s) def test_factorize(self): for orig in self.objs: o = orig.copy() if isinstance(o, Index) and o.is_boolean(): exp_arr = np.array([0, 1] + [0] * 8, dtype=np.intp) exp_uniques = o exp_uniques = Index([False, True]) else: exp_arr = np.array(range(len(o)), dtype=np.intp) exp_uniques = o codes, uniques = o.factorize() tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal(uniques, Index(orig), check_names=False) else: # factorize explicitly resets name tm.assert_index_equal(uniques, exp_uniques, check_names=False) def test_factorize_repeated(self): for orig in self.objs: o = orig.copy() # don't test boolean if isinstance(o, Index) and o.is_boolean(): continue # sort by value, and create duplicates if isinstance(o, Series): o = o.sort_values() n = o.iloc[5:].append(o) else: indexer = o.argsort() o = o.take(indexer) n = o[5:].append(o) exp_arr = np.array( [5, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], dtype=np.intp ) codes, uniques = n.factorize(sort=True) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): tm.assert_index_equal( uniques, Index(orig).sort_values(), check_names=False ) else: tm.assert_index_equal(uniques, o, check_names=False) exp_arr = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 2, 3, 4], np.intp) codes, uniques = n.factorize(sort=False) tm.assert_numpy_array_equal(codes, exp_arr) if isinstance(o, Series): expected = Index(o.iloc[5:10].append(o.iloc[:5])) tm.assert_index_equal(uniques, expected, check_names=False) else: expected = o[5:10].append(o[:5]) tm.assert_index_equal(uniques, expected, check_names=False) def test_duplicated_drop_duplicates_index(self): # GH 4060 for original in self.objs: if isinstance(original, Index): # special case if original.is_boolean(): result = original.drop_duplicates() expected = Index([False, True], name="a") tm.assert_index_equal(result, expected) continue # original doesn't have duplicates expected = np.array([False] * len(original), dtype=bool) duplicated = original.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = original.drop_duplicates() tm.assert_index_equal(result, original) assert result is not original # has_duplicates assert not original.has_duplicates # create repeated values, 3rd and 5th values are duplicated idx = original[list(range(len(original))) + [5, 3]] expected = np.array([False] * len(original) + [True, True], dtype=bool) duplicated = idx.duplicated() tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool tm.assert_index_equal(idx.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep="last") tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep="last") tm.assert_index_equal(result, idx[~expected]) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = np.array(base) duplicated = idx.duplicated(keep=False) tm.assert_numpy_array_equal(duplicated, expected) assert duplicated.dtype == bool result = idx.drop_duplicates(keep=False) tm.assert_index_equal(result, idx[~expected]) with pytest.raises( TypeError, match=( r"drop_duplicates\(\) got an " r"unexpected keyword argument" ), ): idx.drop_duplicates(inplace=True) else: expected = Series( [False] * len(original), index=original.index, name="a" ) tm.assert_series_equal(original.duplicated(), expected) result = original.drop_duplicates() tm.assert_series_equal(result, original) assert result is not original idx = original.index[list(range(len(original))) + [5, 3]] values = original._values[list(range(len(original))) + [5, 3]] s = Series(values, index=idx, name="a") expected = Series( [False] * len(original) + [True, True], index=idx, name="a" ) tm.assert_series_equal(s.duplicated(), expected) tm.assert_series_equal(s.drop_duplicates(), original) base = [False] * len(idx) base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep="last"), expected) tm.assert_series_equal( s.drop_duplicates(keep="last"), s[~np.array(base)] ) base = [False] * len(original) + [True, True] base[3] = True base[5] = True expected = Series(base, index=idx, name="a") tm.assert_series_equal(s.duplicated(keep=False), expected) tm.assert_series_equal( s.drop_duplicates(keep=False), s[~np.array(base)] ) s.drop_duplicates(inplace=True) tm.assert_series_equal(s, original) def test_drop_duplicates_series_vs_dataframe(self): # GH 14192 df = pd.DataFrame( { "a": [1, 1, 1, "one", "one"], "b": [2, 2, np.nan, np.nan, np.nan], "c": [3, 3, np.nan, np.nan, "three"], "d": [1, 2, 3, 4, 4], "e": [ datetime(2015, 1, 1), datetime(2015, 1, 1), datetime(2015, 2, 1), pd.NaT, pd.NaT, ], } ) for column in df.columns: for keep in ["first", "last", False]: dropped_frame = df[[column]].drop_duplicates(keep=keep) dropped_series = df[column].drop_duplicates(keep=keep) tm.assert_frame_equal(dropped_frame, dropped_series.to_frame()) def test_fillna(self): # # GH 11343 # though Index.fillna and Series.fillna has separate impl, # test here to confirm these works as the same for orig in self.objs: o = orig.copy() values = o.values # values will not be changed result = o.fillna(o.astype(object).values[0]) if isinstance(o, Index): tm.assert_index_equal(o, result) else: tm.assert_series_equal(o, result) # check shallow_copied assert o is not result for null_obj in [np.nan, None]: for orig in self.objs: o = orig.copy() klass = type(o) if not self._allow_na_ops(o): continue if needs_i8_conversion(o): values = o.astype(object).values fill_value = values[0] values[0:2] = pd.NaT else: values = o.values.copy() fill_value = o.values[0] values[0:2] = null_obj expected = [fill_value] * 2 + list(values[2:]) expected = klass(expected, dtype=orig.dtype) o = klass(values) # check values has the same dtype as the original assert o.dtype == orig.dtype result = o.fillna(fill_value) if isinstance(o, Index): tm.assert_index_equal(result, expected) else: tm.assert_series_equal(result, expected) # check shallow_copied assert o is not result @pytest.mark.skipif(PYPY, reason="not relevant for PyPy") def test_memory_usage(self): for o in self.objs: res = o.memory_usage() res_deep = o.memory_usage(deep=True) if is_object_dtype(o) or ( isinstance(o, Series) and is_object_dtype(o.index) ): # if there are objects, only deep will pick them up assert res_deep > res else: assert res == res_deep if isinstance(o, Series): assert ( o.memory_usage(index=False) + o.index.memory_usage() ) == o.memory_usage(index=True) # sys.getsizeof will call the .memory_usage with # deep=True, and add on some GC overhead diff = res_deep - sys.getsizeof(o) assert abs(diff) < 100 def test_searchsorted(self): # See gh-12238 for o in self.objs: index = np.searchsorted(o, max(o)) assert 0 <= index <= len(o) index = np.searchsorted(o, max(o), sorter=range(len(o))) assert 0 <= index <= len(o) def test_validate_bool_args(self): invalid_values = [1, "True", [1, 2, 3], 5.0] for value in invalid_values: with pytest.raises(ValueError): self.int_series.drop_duplicates(inplace=value) def test_getitem(self): for i in self.indexes: s = pd.Series(i) assert i[0] == s.iloc[0] assert i[5] == s.iloc[5] assert i[-1] == s.iloc[-1] assert i[-1] == i[9] with pytest.raises(IndexError): i[20] with pytest.raises(IndexError): s.iloc[20] @pytest.mark.parametrize("indexer_klass", [list, pd.Index]) @pytest.mark.parametrize( "indexer", [ [True] * 10, [False] * 10, [True, False, True, True, False, False, True, True, False, True], ], ) def test_bool_indexing(self, indexer_klass, indexer): # GH 22533 for idx in self.indexes: exp_idx = [i for i in range(len(indexer)) if indexer[i]] tm.assert_index_equal(idx[indexer_klass(indexer)], idx[exp_idx]) s = pd.Series(idx) tm.assert_series_equal(s[indexer_klass(indexer)], s.iloc[exp_idx]) def test_get_indexer_non_unique_dtype_mismatch(self): # GH 25459 indexes, missing = pd.Index(["A", "B"]).get_indexer_non_unique(pd.Index([0])) tm.assert_numpy_array_equal(np.array([-1], dtype=np.intp), indexes) tm.assert_numpy_array_equal(np.array([0], dtype=np.int64), missing) class TestTranspose(Ops): errmsg = "the 'axes' parameter is not supported" def test_transpose(self): for obj in self.objs: tm.assert_equal(obj.transpose(), obj) def test_transpose_non_default_axes(self): for obj in self.objs: with pytest.raises(ValueError, match=self.errmsg): obj.transpose(1) with pytest.raises(ValueError, match=self.errmsg): obj.transpose(axes=1) def test_numpy_transpose(self): for obj in self.objs: tm.assert_equal(np.transpose(obj), obj) with pytest.raises(ValueError, match=self.errmsg): np.transpose(obj, axes=1) class TestNoNewAttributesMixin: def test_mixin(self): class T(NoNewAttributesMixin): pass t = T() assert not hasattr(t, "__frozen") t.a = "test" assert t.a == "test" t._freeze() assert "__frozen" in dir(t) assert getattr(t, "__frozen") with pytest.raises(AttributeError): t.b = "test" assert not hasattr(t, "b") class TestToIterable: # test that we convert an iterable to python types dtypes = [ ("int8", int), ("int16", int), ("int32", int), ("int64", int), ("uint8", int), ("uint16", int), ("uint32", int), ("uint64", int), ("float16", float), ("float32", float), ("float64", float), ("datetime64[ns]", Timestamp), ("datetime64[ns, US/Eastern]", Timestamp), ("timedelta64[ns]", Timedelta), ] @pytest.mark.parametrize("dtype, rdtype", dtypes) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Series, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable(self, typ, method, dtype, rdtype): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype, obj", [ ("object", object, "a"), ("object", int, 1), ("category", object, "a"), ("category", int, 1), ], ) @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) @pytest.mark.parametrize("typ", [Series, Index]) def test_iterable_object_and_category(self, typ, method, dtype, rdtype, obj): # gh-10904 # gh-13258 # coerce iteration to underlying python / pandas types s = typ([obj], dtype=dtype) result = method(s)[0] assert isinstance(result, rdtype) @pytest.mark.parametrize("dtype, rdtype", dtypes) def test_iterable_items(self, dtype, rdtype): # gh-13258 # test if items yields the correct boxed scalars # this only applies to series s = Series([1], dtype=dtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) _, result = list(s.items())[0] assert isinstance(result, rdtype) @pytest.mark.parametrize( "dtype, rdtype", dtypes + [("object", int), ("category", int)] ) @pytest.mark.parametrize("typ", [Series, Index]) @pytest.mark.filterwarnings("ignore:\\n Passing:FutureWarning") # TODO(GH-24559): Remove the filterwarnings def test_iterable_map(self, typ, dtype, rdtype): # gh-13236 # coerce iteration to underlying python / pandas types s = typ([1], dtype=dtype) result = s.map(type)[0] if not isinstance(rdtype, tuple): rdtype = tuple([rdtype]) assert result in rdtype @pytest.mark.parametrize( "method", [ lambda x: x.tolist(), lambda x: x.to_list(), lambda x: list(x), lambda x: list(x.__iter__()), ], ids=["tolist", "to_list", "list", "iter"], ) def test_categorial_datetimelike(self, method): i = CategoricalIndex([Timestamp("1999-12-31"), Timestamp("2000-12-31")]) result = method(i)[0] assert isinstance(result, Timestamp) def test_iter_box(self): vals = [Timestamp("2011-01-01"), Timestamp("2011-01-02")] s = Series(vals) assert s.dtype == "datetime64[ns]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz is None assert res == exp vals = [ Timestamp("2011-01-01", tz="US/Eastern"), Timestamp("2011-01-02", tz="US/Eastern"), ] s = Series(vals) assert s.dtype == "datetime64[ns, US/Eastern]" for res, exp in zip(s, vals): assert isinstance(res, Timestamp) assert res.tz == exp.tz assert res == exp # timedelta vals = [Timedelta("1 days"), Timedelta("2 days")] s = Series(vals) assert s.dtype == "timedelta64[ns]" for res, exp in zip(s, vals): assert isinstance(res, Timedelta) assert res == exp # period vals = [pd.Period("2011-01-01", freq="M"), pd.Period("2011-01-02", freq="M")] s = Series(vals) assert s.dtype == "Period[M]" for res, exp in zip(s, vals): assert isinstance(res, pd.Period) assert res.freq == "M" assert res == exp @pytest.mark.parametrize( "array, expected_type, dtype", [ (np.array([0, 1], dtype=np.int64), np.ndarray, "int64"), (np.array(["a", "b"]), np.ndarray, "object"), (pd.Categorical(["a", "b"]), pd.Categorical, "category"), ( pd.DatetimeIndex(["2017", "2018"], tz="US/Central"), DatetimeArray, "datetime64[ns, US/Central]", ), ( pd.PeriodIndex([2018, 2019], freq="A"), pd.core.arrays.PeriodArray, pd.core.dtypes.dtypes.PeriodDtype("A-DEC"), ), ( pd.IntervalIndex.from_breaks([0, 1, 2]), pd.core.arrays.IntervalArray, "interval", ), # This test is currently failing for datetime64[ns] and timedelta64[ns]. # The NumPy type system is sufficient for representing these types, so # we just use NumPy for Series / DataFrame columns of these types (so # we get consolidation and so on). # However, DatetimeIndex and TimedeltaIndex use the DateLikeArray # abstraction to for code reuse. # At the moment, we've judged that allowing this test to fail is more # practical that overriding Series._values to special case # Series[M8[ns]] and Series[m8[ns]] to return a DateLikeArray. pytest.param( pd.DatetimeIndex(["2017", "2018"]), np.ndarray, "datetime64[ns]", marks=[pytest.mark.xfail(reason="datetime _values", strict=True)], ), pytest.param( pd.TimedeltaIndex([10 ** 10]), np.ndarray, "m8[ns]", marks=[pytest.mark.xfail(reason="timedelta _values", strict=True)], ), ], ) def test_values_consistent(array, expected_type, dtype): l_values = pd.Series(array)._values r_values = pd.Index(array)._values assert type(l_values) is expected_type assert type(l_values) is type(r_values) tm.assert_equal(l_values, r_values) @pytest.mark.parametrize( "array, expected", [ (np.array([0, 1], dtype=np.int64), np.array([0, 1], dtype=np.int64)), (np.array(["0", "1"]), np.array(["0", "1"], dtype=object)), (pd.Categorical(["a", "a"]), np.array([0, 0], dtype="int8")), ( pd.DatetimeIndex(["2017-01-01T00:00:00"]), np.array(["2017-01-01T00:00:00"], dtype="M8[ns]"), ), ( pd.DatetimeIndex(["2017-01-01T00:00:00"], tz="US/Eastern"), np.array(["2017-01-01T05:00:00"], dtype="M8[ns]"), ), (pd.TimedeltaIndex([10 ** 10]), np.array([10 ** 10], dtype="m8[ns]")), ( pd.PeriodIndex(["2017", "2018"], freq="D"), np.array([17167, 17532], dtype=np.int64), ), ], ) def test_ndarray_values(array, expected): l_values = pd.Series(array)._ndarray_values r_values = pd.Index(array)._ndarray_values tm.assert_numpy_array_equal(l_values, r_values) tm.assert_numpy_array_equal(l_values, expected) @pytest.mark.parametrize("arr", [np.array([1, 2, 3])]) def test_numpy_array(arr): ser = pd.Series(arr) result = ser.array expected = PandasArray(arr) tm.assert_extension_array_equal(result, expected) def test_numpy_array_all_dtypes(any_numpy_dtype): ser = pd.Series(dtype=any_numpy_dtype) result = ser.array if is_datetime64_dtype(any_numpy_dtype): assert isinstance(result, DatetimeArray) elif is_timedelta64_dtype(any_numpy_dtype): assert isinstance(result, TimedeltaArray) else: assert isinstance(result, PandasArray) @pytest.mark.parametrize( "array, attr", [ (pd.Categorical(["a", "b"]), "_codes"), (pd.core.arrays.period_array(["2000", "2001"], freq="D"), "_data"), (pd.core.arrays.integer_array([0, np.nan]), "_data"), (pd.core.arrays.IntervalArray.from_breaks([0, 1]), "_left"), (pd.SparseArray([0, 1]), "_sparse_values"), (DatetimeArray(np.array([1, 2], dtype="datetime64[ns]")), "_data"), # tz-aware Datetime ( DatetimeArray( np.array( ["2000-01-01T12:00:00", "2000-01-02T12:00:00"], dtype="M8[ns]" ), dtype=DatetimeTZDtype(tz="US/Central"), ), "_data", ), ], ) @pytest.mark.parametrize("box", [pd.Series, pd.Index]) def test_array(array, attr, box): if array.dtype.name in ("Int64", "Sparse[int64, 0]") and box is pd.Index: pytest.skip("No index type for {}".format(array.dtype)) result = box(array, copy=False).array if attr: array = getattr(array, attr) result = getattr(result, attr) assert result is array def test_array_multiindex_raises(): idx = pd.MultiIndex.from_product([["A"], ["a", "b"]]) with pytest.raises(ValueError, match="MultiIndex"): idx.array @pytest.mark.parametrize( "array, expected", [ (np.array([1, 2], dtype=np.int64), np.array([1, 2], dtype=np.int64)), (pd.Categorical(["a", "b"]), np.array(["a", "b"], dtype=object)), ( pd.core.arrays.period_array(["2000", "2001"], freq="D"), np.array([pd.Period("2000", freq="D"), pd.Period("2001", freq="D")]), ), ( pd.core.arrays.integer_array([0, np.nan]), np.array([0, np.nan], dtype=object), ), ( pd.core.arrays.IntervalArray.from_breaks([0, 1, 2]), np.array([
pd.Interval(0, 1)
pandas.Interval
from pyPheWAS.pyPhewasCorev2 import icd9_codes, icd10_codes import pandas as pd import time import numpy as np from Bio import Entrez from tqdm import tqdm dev_email = '<EMAIL>' umls_cols = ['CUI', 'LAT', 'TS', 'LUI', 'STT', 'SUI', 'ISPREF', 'AUI', 'SAUI', 'SCUI', 'SDUI', 'SAB', 'TTY', 'CODE', 'STR', 'SRL', 'SUPPRESS', 'CVF', 'other'] usable_cols = ['CUI','LAT','SAB','CODE','STR'] def load_umls(umls_path): umls = pd.read_table(umls_path, sep='|', header=None, names=umls_cols, skiprows=1, low_memory=False, usecols=usable_cols) umls = umls[umls['LAT']=='ENG'] return umls def load_search_terms(term_file): df =
pd.read_csv(term_file, header=None, names=['search_terms'])
pandas.read_csv
# -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. ''' Simply utility functions to improve QOL of QM developers and QM users ''' import logging import re import sys import traceback import warnings import logging import sys import os import pandas as pd import numpy as np from scipy.spatial import distance from typing import Tuple, TYPE_CHECKING from copy import deepcopy from qiskit_metal.draw import Vector from numpy.linalg import norm if TYPE_CHECKING: from qiskit_metal import logger __all__ = [ 'copy_update', 'dict_start_with', 'data_frame_empty_typed', 'clean_name', 'enable_warning_traceback', 'get_traceback', 'print_traceback_easy', 'log_error_easy', 'monkey_patch', 'can_write_to_path', 'can_write_to_path_with_warning', 'toggle_numbers', 'bad_fillet_idxs', 'compress_vertex_list', 'get_range_of_vertex_to_not_fillet' ] #################################################################################### # Dictionary related def copy_update(options, *args, deep_copy=True, **kwargs): ''' Utility funciton to merge two dictionaries. Args: options (object): Options deep_copy (bool): True to do a deep copy kwargs (dict): Dictionary of parameters Returns: dict: Merged dictionary ''' if deep_copy: options = deepcopy(options) options.update(*args, **kwargs) else: options = options.copy() options.update(*args, **kwargs) return options def dict_start_with(my_dict, start_with, as_=list): ''' Case sensitive https://stackoverflow.com/questions/17106819/accessing-python-dict-values-with-the-key-start-characters Args: my_dict (dict): The dictionary starts_with (str): String to check of as_ (type): A list of dict. Defaults to list. Returns: list or dict: Parts of the dictionary with keys starting with the given text .. code-block:: python my_dict = {'name': 'Klauss', 'age': 26, 'Date of birth': '15th july'} dict_start_with(my_dict, 'Date') ''' if as_ == list: # start_with in k] return [v for k, v in my_dict.items() if k.startswith(start_with)] elif as_ == dict: return {k: v for k, v in my_dict.items() if k.startswith(start_with)} # def display_options(*ops_names, options=None, find_dot_keys=True, do_display=True): # ''' # Print html display of options dictionary by default `DEFAULT_OPTIONS` # Example use: # --------------- # display_options('make_transmon_pocket_v1', 'make_transmon_connector_v1') # or # dfs, html = display_options(Metal_Transmon_Pocket.__name__, do_display=False) # ''' # # IDEA: display also ._hfss and ._gds etc. for those that have it and add to plugins # if options is None: # from .. import DEFAULT_OPTIONS # options = DEFAULT_OPTIONS # res = [] # for keyname in ops_names: # if find_dot_keys: # names = list(filter(lambda x, match=keyname: x is match or # x.startswith(match+'.'), DEFAULT_OPTIONS.keys())) # names.sort() # for name in names: # res += [pd.Series(options[name], name=name).to_frame()] # else: # res += [pd.Series(options[keyname], name=keyname).to_frame()] # from pyEPR.toolbox import display_dfs # res_html = display_dfs(*res, do_display=do_display) #why not just directly call the function DataFrame_display_side_by_side(*args) ? # return res, res_html def data_frame_empty_typed(column_types: dict): """Creates and empty DataFrame with dtypes for each column given by the dictionary. Arguments: column_types (dict): A key, dtype pairs Returns: DataFrame: An empty dataframe with the typed columns """ df =
pd.DataFrame()
pandas.DataFrame
""" Analysis functions for pom data 05/09/2018 """ import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns " Creating dataframes and aggregating population biomarker data per simulation " def fill_in_grouped_sim_data(grouped_sim_data, results, biomarker, sim_types, sim_type_amp_relationship, sim_name_conversions, how_to_fill, filter_biomarkers_for_outliers=False, threshold=None): """" Fill in a dataframe with aggregated biomarker data """ # Check inputs assert any([amp_scale_factor == 1 for _,amp_scale_factor in sim_type_amp_relationship.items()]), "No base value of 1 for any of the sim types in sim_type_amp_relationship" for name in grouped_sim_data.index: # To do here: get simulations from the conversion dict, do the appropriate averaging for the how_to_fill method, add that data in # Then, get gnav18 from the simulation short name and the amplitudes from the long names using the conversion dict. # Add these in too. # And we're done #names = # Get simulations simulations = sim_name_conversions[name] for simulation, sim_type in simulations.items(): # Input biomarker data unaggregated_data = results.loc[:,(simulation,biomarker)] if threshold: # Only keep rows that are not below or at threshold unaggregated_data = unaggregated_data[unaggregated_data <= threshold] # filtering of biomarkers for outliers if filter_biomarkers_for_outliers: if biomarker == "APHalfWidth": # Remove outliers outlier_definition = get_outlier_definition(biomarker) # ms outliers = unaggregated_data >= outlier_definition num_outliers = outliers.sum() mask = ~outliers # Invert boolean series unaggregated_data = unaggregated_data[mask] #if num_outliers > 0: #print("Removed {} AP Half Width outliers > {}".format(num_outliers, outlier_definition)) if how_to_fill == 'mean': data = unaggregated_data.mean() elif how_to_fill == 'std': data = unaggregated_data.std() elif how_to_fill == 'median': data = unaggregated_data.median() elif how_to_fill == 'mean_fillna': data = unaggregated_data.fillna(0).mean() elif how_to_fill == 'mean_freq_fillna': assert biomarker == 'ISI', "Biomarker for frequency needs to be ISI not {}".format(biomarker) # Convert to frequency, then fill nans with 0s and take mean unaggregated_data = 1000.0/unaggregated_data data = unaggregated_data.fillna(0).mean() elif how_to_fill == 'mean_freq_dropna': assert biomarker == 'ISI' # Convert to frequency, then DROP nans and take mean unaggregated_data = 1000.0/unaggregated_data data = unaggregated_data.dropna().mean() elif isinstance(how_to_fill, int): # Model index data = unaggregated_data.loc[how_to_fill] else: raise ValueError("How to fill method: {} not supported.".format(how_to_fill)) grouped_sim_data.at[name,(biomarker, sim_type)] = data # Input amplitudes amp = get_amplitude(simulation, amp_units='pA', delimiter='_') grouped_sim_data.at[name, ('Amp', sim_type)] = amp # Input scaling factors scaling_factors = list(grouped_sim_data['Scaling factors'].columns) for scaling_factor in scaling_factors: # Get scaling factor scaling_factor_value = get_parameter_scaling(simulation, scaling_factor, delimiter='_') grouped_sim_data.at[name, ('Scaling factors', scaling_factor)] = scaling_factor_value def make_grouped_sim_data(pop, biomarker='APFullWidth', agg='mean', filter_outliers=False, scaled_parameters=['GNav18'], threshold=None): " Aggregate population biomarker results per simulation to analyse at a per simulation level over the ensemble population. " sim_types = ['step', 'ramp'] # First entry in list is the base sim_type_as_base = sim_types[0] # Use step as base as ramp has amplitude x10 of step sim_type_amp_relationship = {'step':1, 'ramp':10} assert sim_type_amp_relationship[sim_type_as_base] == 1 grouped_sim_data = make_empty_grouped_sim_data( pop=pop, biomarker=biomarker, filter_outliers=filter_outliers, scaled_parameters=scaled_parameters, sim_types=sim_types, sim_type_as_base=sim_type_as_base, sim_type_amp_relationship=sim_type_amp_relationship, ) sim_name_conversions = make_sim_name_conversions (pop.get_simulation_names(), sim_types, sim_type_amp_relationship, sim_type_as_base ) fill_in_grouped_sim_data(grouped_sim_data, pop.results, biomarker, sim_types, sim_type_amp_relationship, sim_name_conversions, how_to_fill=agg, filter_biomarkers_for_outliers=filter_outliers, threshold=threshold) if biomarker is not 'Firing pattern': grouped_sim_data = grouped_sim_data.astype(float) return grouped_sim_data def make_empty_grouped_sim_data(pop, biomarker='APFullWidth', filter_outliers=False, scaled_parameters=['GNav18'], sim_types=['step','ramp'], sim_type_as_base='step', sim_type_amp_relationship={'step':1, 'ramp':10}, ): " Aggregate population biomarker results per simulation to analyse at a per simulation level over the ensemble population. " arrays =[[biomarker]*len(sim_types)+['Amp']*len(sim_types) + ['Scaling factors']*len(scaled_parameters),sim_types*2 + scaled_parameters] # Build multiarray columns columns = pd.MultiIndex.from_arrays(arrays, names=['','']) sim_names = pop.get_simulation_names() sim_name_conversions = make_sim_name_conversions(sim_names, sim_types, sim_type_amp_relationship, sim_type_as_base) short_sim_names = sorted(list(sim_name_conversions.keys())) grouped_sim_data = pd.DataFrame(columns=columns, index=short_sim_names) return grouped_sim_data def make_sim_name_conversions(sim_names, sim_types, sim_type_amp_relationship, sim_type_as_base): " Make conversion dict from short sim names to full sim names with sim type " sim_name_conversions = {} # Get list of sim_names common to step and ramp # Complexity: ramp and step amps are different so we will just get the name from step for sim_type in sim_types: for sim_name in sim_names: # # Ignore rheobase simulations and do base sim type first - important to get oreder right in sim_name_conversions if (sim_name not in sim_types) & (sim_type in sim_name): short_sim_name, _sim_type = process_sim_name(sim_name, sim_types, sim_type_amp_relationship, amp_units='pA', delimiter='_') assert _sim_type == sim_type # Build up conversion dict from short name to full names and store sim_type if short_sim_name in sim_name_conversions.keys(): sim_name_conversions[short_sim_name][sim_name] = sim_type else: assert sim_type == sim_type_as_base, "Sim type: {}, name:{}, short_sim_name:{}".format(sim_type, sim_name, short_sim_name) sim_name_conversions[short_sim_name] = {sim_name:sim_type} return sim_name_conversions " Data processing " def process_firing_pattern_data(firing_pattern_percentages, sim_types=['step','ramp'], sim_type_amp_relationship = {'step':1, 'ramp':10}, scaled_parameters=['GNav18'], ): """ Process simulation names to extract simulation parameters and rename to remove stimulation protocol from name Flow: 1. Convert sim names by removing sim type and storing the conversion between full and shortened names. 2. Create a formatted dataframe and fill in the firing pattern percentages from the values in the original dataframe. 3. Extract simulation parameters from the simulation name and add to the formatted dataframe. TODO: This code shares a lot of code with the functions for aggregating biomarker data. Could refactor into one set of functions sharing common code. """ # TODO: Could turn these lines creating sim_names and sim_name_conversions # into a function shared with similar code for biomarkers sim_type_as_base = sim_types[0] sim_names = firing_pattern_percentages.index.tolist() short_sim_names = [] # Simulation names without stimulation protocol sim_name_conversions = {} # Conversion between full and short sim names for sim_type in sim_types: for sim_name in sim_names: if (sim_name not in sim_types) & (sim_type in sim_name): # Remove rheobase simulations short_sim_name, _sim_type = process_sim_name(sim_name, sim_types, sim_type_amp_relationship, amp_units='pA', delimiter='_') assert _sim_type == sim_type # Create conversion between names if short_sim_name in sim_name_conversions.keys(): sim_name_conversions[short_sim_name][sim_name] = sim_type else: assert sim_type == sim_type_as_base, ( "Sim type: {}, name:{}, short_sim_name:{} is not the base sim type for the sim type amp relationship.".format( sim_type, sim_name, short_sim_name)) sim_name_conversions[short_sim_name] = {sim_name:sim_type} if sim_type == sim_type_as_base: # Only add step to sim_names to avoid adding ramp as ramp has different amplitude short_sim_names.append(short_sim_name) short_sim_names = sorted(short_sim_names) formatted_firing_pattern_data = format_firing_pattern_percentages( firing_pattern_percentages, short_sim_names, sim_name_conversions, scaled_parameters, sim_types, sim_type_amp_relationship, ) return formatted_firing_pattern_data def format_firing_pattern_percentages(firing_pattern_percentages, short_sim_names, sim_name_conversions, scaled_parameters, sim_types, sim_type_amp_relationship): """ Fill in a dataframe with firing pattern percentages for each simulation Equivalent to fill_in_grouped_sim_data() but for firing patterns not single numeric biomarkers. Copy code from fill_in_grouped_sim_data where needed but: 1. We don't need a how to fill option as we aggregate by percentages always. 2. We do need to fill in for all firing patterns, not just one biomarker. """ " Create formatted dataframe with column multiindex " assert len(scaled_parameters) == 1, "Multiple scaled parameters not supported by format_firing_percentages yet" firing_pattern_names = firing_pattern_percentages.columns.tolist() sim_type_as_base = sim_types[0] # First sim type in list is the base assert sim_type_amp_relationship[sim_type_as_base] == 1 arrays = [list(np.repeat(firing_pattern_names,len(sim_types))) + ['Amp','Amp', 'Scaling factors'], sim_types*(1+len(firing_pattern_names)) + scaled_parameters] # Build multiarray columns columns = pd.MultiIndex.from_arrays(arrays, names=['','']) formatted_firing_pattern_data =
pd.DataFrame(index=short_sim_names, columns=columns)
pandas.DataFrame
import pandas as pd HDNames= ['Cement','BFS','FLA','Water','SP','CA','FA','Age','CCS'] Data = pd.read_excel('ConcreteData.xlsx', names=HDNames) print(Data.head(20)) print(Data.info()) summary = Data.describe() print(summary) import seaborn as sns sns.set(style="ticks") sns.boxplot(data = Data) sns.pairplot(data = Data) from sklearn.preprocessing import MinMaxScaler scaler = MinMaxScaler() print(scaler.fit(Data)) DataScaled = scaler.fit_transform(Data) DataScaled = pd.DataFrame(DataScaled, columns=HDNames) summary = DataScaled.describe() print(summary) sns.boxplot(data = DataScaled) from sklearn.model_selection import train_test_split Predictors = pd.DataFrame(DataScaled.iloc[:,:8]) Response =
pd.DataFrame(DataScaled.iloc[:,8])
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # # Week 4 Video notebooks # # This is the notebook file corresponding to the Week 4 videos. # ## Encoding data types # # Reference: [Altair documentation](https://altair-viz.github.io/user_guide/encoding.html#encoding-data-types) # In[1]: import pandas as pd import altair as alt # In[2]: df = pd.DataFrame({"a":[3,2,1,4],"b":[4,8,3,1]}) # In[3]: alt.Chart(df).mark_bar().encode( x = "a", y = "b" ) # In[4]: df # In[5]: alt.Chart(df).mark_bar(width=50).encode( x = "a", y = "b" ) # In[6]: alt.Chart(df).mark_bar().encode( x = "a:N", y = "b", color = "a:N" ) # In[7]: alt.Chart(df).mark_bar().encode( x = "a:O", y = "b", color = "a:O" ) # In[8]: alt.Chart(df).mark_bar().encode( x = alt.X("a:O", sort=None), y = "b", color = "a:O" ) # In[9]: df.a # ## Interactive bar chart # In[10]: import pandas as pd import altair as alt import seaborn as sns # In[11]: penguin = sns.load_dataset("penguins") # In[12]: penguin # In[13]: penguin.columns # In[14]: c1 = alt.Chart(penguin).mark_circle().encode( x = alt.X('bill_length_mm', scale=alt.Scale(zero=False)), y = alt.Y('flipper_length_mm',scale=alt.Scale(domain=(160,240))), color = "species" ) # In[15]: type(c1) # In[16]: c1 # In[17]: brush = alt.selection_interval() # In[18]: c1.add_selection(brush) # In[19]: c2 = alt.Chart(penguin).mark_bar().encode( x = "species", y = "count()", color = "species" ) # In[20]: c2 # In[21]: c1 = c1.add_selection(brush) # In[22]: penguin.species.unique() # In[23]: c2 = alt.Chart(penguin).mark_bar().encode( x = alt.X("species", scale = alt.Scale(domain=penguin.species.unique())), y = alt.Y("count()", scale = alt.Scale(domain=(0,160))), color = "species" ).transform_filter(brush) # In[24]: c1|c2 # ## pd.to_datetime # In[25]: import pandas as pd import altair as alt import seaborn as sns # In[26]: taxis = sns.load_dataset("taxis") # In[27]: taxis.head(6) # In[28]: alt.Chart(taxis[::10]).mark_circle().encode( x = "pickup", y = "distance" ) # In[29]: taxis.dtypes # In[30]: taxis.loc[10,"pickup"] # In[31]: type(taxis.loc[10,"pickup"]) # In[32]: alt.Chart(taxis[::10]).mark_circle().encode( x = "pickup:T", y = "distance", tooltip = "pickup:T" ) # In[33]: taxis["pickup"] # In[34]: pd.to_datetime(taxis["pickup"]) # In[35]:
pd.to_datetime(taxis["pickup"])
pandas.to_datetime
# -*- coding: utf-8 -*- """ Created on Fri Mar 1 13:37:10 2019 @author:Imarticus Machine Learning Team """ import numpy as np import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib.pyplot as plt import seaborn as sns color = sns.color_palette() pd.options.mode.chained_assignment = None # default='warn' order_products_test_df=
pd.read_csv("order_products_test.csv")
pandas.read_csv
""" Author: <NAME> Created: 27/08/2020 11:13 AM """ import pandas as pd import os import numpy as np from supporting_functions.conversions import convert_RH_vpa from supporting_functions.woodward_2020_params import get_woodward_mean_full_params test_dir = os.path.join(os.path.dirname(__file__), 'test_data') def establish_peyman_input(return_pet=False): # use the scott farm so that it doesn't need irrigation # time period [2010 - 2013) # load weather data weather_path = os.path.join(test_dir, 'hamilton_ruakura_ews2010-2013_{}.csv') pressure = pd.read_csv(os.path.join(test_dir, 'hamilton_AWS_pressure.csv'), skiprows=8).loc[:, ['year', 'doy', 'pmsl']].set_index(['year', 'doy']) rain = pd.read_csv(weather_path.format('rain')).loc[:, ['year', 'doy', 'rain']].set_index(['year', 'doy']) temp = pd.read_csv(weather_path.format('temp')).loc[:, ['year', 'doy', 'tmax', 'tmin']].set_index(['year', 'doy']) rad = pd.read_csv(weather_path.format('rad')).loc[:, ['year', 'doy', 'radn']].set_index(['year', 'doy']) wind = pd.read_csv(weather_path.format('wind')).loc[:, ['year', 'doy', 'wind']].set_index(['year', 'doy']) pet = pd.read_csv(weather_path.format('pet')).loc[:, ['year', 'doy', 'pet']].set_index(['year', 'doy']) rh = pd.read_csv(weather_path.format('rh')).loc[:, ['year', 'doy', 'rh']] rh.loc[:, 'rh'] = pd.to_numeric(rh.rh, errors='coerce') rh = rh.groupby(['year', 'doy']).mean() dates = pd.Series(pd.date_range('2010-01-01', '2012-12-31')) matrix_weather = pd.DataFrame({'year': dates.dt.year, 'doy': dates.dt.dayofyear, 'to_delete': 1}).set_index(['year', 'doy']) matrix_weather = pd.merge(matrix_weather, temp, how='outer', left_index=True, right_index=True) matrix_weather = pd.merge(matrix_weather, rain, how='outer', left_index=True, right_index=True) matrix_weather = pd.merge(matrix_weather, rad, how='outer', left_index=True, right_index=True) matrix_weather = pd.merge(matrix_weather, rh, how='outer', left_index=True, right_index=True) matrix_weather = pd.merge(matrix_weather, wind, how='outer', left_index=True, right_index=True) matrix_weather = pd.merge(matrix_weather, pet, how='outer', left_index=True, right_index=True) matrix_weather = pd.merge(matrix_weather, pressure, how='outer', left_index=True, right_index=True) matrix_weather.loc[:, 'vpa'] = convert_RH_vpa(matrix_weather.loc[:, 'rh'], matrix_weather.loc[:, 'tmin'], matrix_weather.loc[:, 'tmax']) matrix_weather = matrix_weather.fillna(method='ffill') if return_pet: matrix_weather.drop(columns=['rh', 'to_delete', 'wind', 'vpa', 'pmsl'], inplace=True) else: matrix_weather.drop(columns=['rh', 'to_delete', 'pet', 'pmsl'], inplace=True) matrix_weather.loc[:, 'max_irr'] = 10. matrix_weather.loc[:, 'irr_trig'] = 0 matrix_weather.loc[:, 'irr_targ'] = 1 matrix_weather.loc[:, 'irr_trig_store'] = 0 matrix_weather.loc[:, 'irr_targ_store'] = 1 matrix_weather.loc[:, 'external_inflow'] = 0 matrix_weather.reset_index(inplace=True) # load harvest data from <NAME>'s paper harvest_nm = 'harvest_Scott_0.txt' days_harvest = pd.read_csv(os.path.join(test_dir, harvest_nm), delim_whitespace=True, names=['year', 'doy', 'percent_harvest'] ).astype(int) # floor matches what simon did. days_harvest = days_harvest.loc[(days_harvest.year >= 2010) & (days_harvest.year < 2013)] days_harvest.loc[:, 'frac_harv'] = days_harvest.loc[:, 'percent_harvest'] / 100 days_harvest.loc[:, 'harv_trig'] = 0 days_harvest.loc[:, 'harv_targ'] = 0 days_harvest.loc[:, 'weed_dm_frac'] = 0 days_harvest.loc[:, 'reseed_trig'] = -1 days_harvest.loc[:, 'reseed_basal'] = 1 days_harvest.drop(columns=['percent_harvest'], inplace=True) # load parameters from simon woodward's paper params = get_woodward_mean_full_params('scott') doy_irr = [0] return params, matrix_weather, days_harvest, doy_irr def _compair_pet(): """just to compaire the pet and peyman results, the are slightly differnt, but I think that is due to different methods of calculating PET,""" from basgra_python import run_basgra_nz verbose = False params, matrix_weather, days_harvest, doy_irr = establish_peyman_input(False) peyman_out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose, dll_path='default', supply_pet=False) params, matrix_weather, days_harvest, doy_irr = establish_peyman_input(True) pet_out = run_basgra_nz(params, matrix_weather, days_harvest, doy_irr, verbose=verbose, dll_path='default', supply_pet=True) from supporting_functions.plotting import plot_multiple_results plot_multiple_results({'pet': pet_out, 'peyman': peyman_out}) def establish_org_input(site='scott'): if site == 'scott': harvest_nm = 'harvest_Scott_0.txt' weather_nm = 'weather_Scott.txt' # col = 1 + 8 * (1) elif site == 'lincoln': harvest_nm = 'harvest_Lincoln_0.txt' weather_nm = 'weather_Lincoln.txt' # col = 1 + 8 * (3 - 1) else: raise ValueError('unexpected site') params = get_woodward_mean_full_params(site) matrix_weather = pd.read_csv(os.path.join(test_dir, weather_nm), delim_whitespace=True, index_col=0, header=0, names=['year', 'doy', 'tmin', 'tmax', 'rain', 'radn', 'pet']) # set start date as doy 121 2011 idx = (matrix_weather.year > 2011) | ((matrix_weather.year == 2011) & (matrix_weather.doy >= 121)) matrix_weather = matrix_weather.loc[idx].reset_index(drop=True) # set end date as doy 120, 2017 idx = (matrix_weather.year < 2017) | ((matrix_weather.year == 2017) & (matrix_weather.doy <= 120)) matrix_weather = matrix_weather.loc[idx].reset_index(drop=True) matrix_weather.loc[:, 'max_irr'] = 10. matrix_weather.loc[:, 'irr_trig'] = 0 matrix_weather.loc[:, 'irr_targ'] = 1 matrix_weather.loc[:, 'irr_trig_store'] = 0 matrix_weather.loc[:, 'irr_targ_store'] = 1 matrix_weather.loc[:, 'external_inflow'] = 0 days_harvest = pd.read_csv(os.path.join(test_dir, harvest_nm), delim_whitespace=True, names=['year', 'doy', 'percent_harvest'] ).astype(int) # floor matches what simon did. days_harvest.loc[:, 'frac_harv'] = days_harvest.loc[:, 'percent_harvest'] / 100 days_harvest.loc[:, 'harv_trig'] = 0 days_harvest.loc[:, 'harv_targ'] = 0 days_harvest.loc[:, 'weed_dm_frac'] = 0 days_harvest.loc[:, 'reseed_trig'] = -1 days_harvest.loc[:, 'reseed_basal'] = 1 days_harvest.drop(columns=['percent_harvest'], inplace=True) doy_irr = [0] return params, matrix_weather, days_harvest, doy_irr def clean_harvest(days_harvest, matrix_weather): stop_year = matrix_weather['year'].max() stop_day = matrix_weather.loc[matrix_weather.year == stop_year, 'doy'].max() days_harvest.loc[(days_harvest.year == stop_year) & (days_harvest.doy > stop_day), 'year'] = -1 # cull harvest after end of weather data days_harvest = days_harvest.loc[days_harvest.year > 0] # the size matching is handled internally return days_harvest def get_org_correct_values(): sample_output_path = os.path.join(test_dir, 'sample_org_output.csv') sample_data =
pd.read_csv(sample_output_path, index_col=0)
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jul 2 15:41:04 2021 Run MLR hedonic with run_MLR_on_all_years(features=best1) use plot_price_rooms_new_from_new_ds for time_series new rooms MLR for standertized betas use plot_regular_feats_comparison_from_new_ds For RF, HP tuning : run_CV_on_all_years(df,savepath=ml_path,model_name='RF', feats=best_rf2+['SEI']) Multifunction for RF results: loop_over_RF_models_years(df, path=work_david/'ML', mode='score', pgrid='normal' use mode = 'score' to calculate the R^2 for training and test use mode = 'time-series' to get the predictions. use mode = 'shap' to calculate the SHAP values for the test sets.(warning this takes longest) use mode = 'X_test' to get the test sets. use mode = 'FI' to get feature importances. then there are plot functions for RF and MLR: 1) plot_RF_time_series(time-series) 2) plot_RF_FI_results(fi) 3) First, produce MLR SHAPS: svs=produce_shap_MLR_all_years(df) then, produce_RF_abs_SHAP_all_years(path=ml_path/'RF_rooms_345',mlr_shap=svs) 4) how to produce weighted mean distance to ECs for all Israeli settelments: first load israeli settelment mid-points: gdf=geo_location_settelments_israel() (from cbs_procedures) then run calculate_distance_from_gdf_to_employment_centers: dis = calculate_distance_from_gdf_to_employment_centers(gdf,n=18, x_coord_name='X', y_coord_name='Y') finally save to csv: dis.to_csv(work_david/'Israel_settlments_with_mean_weighted_distance_to_ECs.csv', na_rep='NA',sep=',', index=False) @author: shlomi """ from MA_paths import work_david from MA_paths import savefig_path import numpy as np ml_path = work_david / 'ML' features = ['Floor_number', 'SEI', 'New', 'Periph_value', 'Sale_year', 'Rooms_345', 'distance_to_nearest_kindergarten', 'distance_to_nearest_school', 'Total_ends'] features1 = ['FLOORNO', 'DEALNATURE', 'NEWPROJECTTEXT', 'BUILDINGYEAR', 'SEI_value', 'Ground', 'P2015_value', 'year', 'Building_Growth_Rate'] features2 = ['FLOORNO', 'DEALNATURE', 'NEWPROJECTTEXT', 'SEI_value', 'Ground', 'year', 'Building_Growth_Rate'] features3 = ['Floor_number', 'SEI', 'New', 'Periph_value', 'Sale_year', 'Rooms_345', 'Total_ends', 'mean_distance_to_4_mokdim'] best = ['SEI', 'New', 'Sale_year', 'Rooms_345', 'Total_ends', 'mean_distance_to_28_mokdim', 'Netflow'] best1 = ['SEI', 'New', 'Sale_year', 'Rooms_345', 'Total_ends', 'mean_distance_to_28_mokdim'] best_years = best + ['year_{}'.format(x) for x in np.arange(2001, 2020)] best_for_bs = best + ['city_code', 'Price'] next_best = ['Floor_number', 'New', 'Sale_year', 'Rooms', 'Total_ends'] best_rf = ['SEI_value_2015', 'SEI_value_2017', 'New', 'Sale_year', 'Rooms','Netflow', 'Total_ends', 'mean_distance_to_28_mokdim'] best_rf1 = ['SEI_value_2015', 'SEI_value_2017', 'New', 'Sale_year', 'Rooms', 'Total_ends', 'mean_distance_to_28_mokdim'] best_rf2 = ['SEI_value_2015', 'SEI_value_2017', 'New', 'Sale_year', 'Rooms_345', 'Total_ends', 'mean_distance_to_28_mokdim'] dummies = ['New', 'Rooms_4', 'Rooms_5'] year_dummies = ['year_{}'.format(x) for x in np.arange(2001,2020)] room_dummies = ['Rooms_4', 'Rooms_5'] best_regular = ['SEI', 'Total_ends', 'mean_distance_to_28_mokdim', 'Netflow'] best_regular1 = ['SEI', 'Total_ends', 'mean_distance_to_28_mokdim'] general_features = ['Price', 'Rooms', 'Area_m2', 'New', 'Floor_number', 'Floors_In_Building', 'Age', 'Total_ends', 'SEI', 'mean_distance_to_28_mokdim'] apts = ['דירה', 'דירה בבית קומות'] apts_more = apts + ["קוטג' דו משפחתי", "קוטג' חד משפחתי", "דירת גן", "בית בודד", "דירת גג", "דירת גג (פנטהאוז)"] plot_names = {'Floor_number': 'Floor', # 'New': 'New Apartment', 'Periph_value': 'Peripheriality', 'distance_to_nearest_kindergarten': 'Nearest kindergarten', 'distance_to_nearest_school': 'Nearest school', 'Total_ends': 'Building rate', 'mean_distance_to_28_mokdim': 'Distance to ECs', 'SEI': 'Socio-Economic Index', 'SEI_value_2015': 'Social-Economic Index', 'SEI_value_2017': 'Social-Economic Index', 'Rooms': 'Rooms', 'Rooms_3': '3 Rooms', 'Rooms_5': '5 Rooms', 'Netflow': 'Net migration', 'MISH': 'AHP', 'New': 'Used/New' } short_plot_names = {'Total_ends': 'BR', 'mean_distance_to_28_mokdim': 'Distance', 'SEI': 'SEI', 'New': 'Used/New'} vars_plot_names = {'Total_ends': 'BR', 'mean_distance_to_28_mokdim': 'DI', 'SEI': 'SE', 'New': 'NE', 'Rooms': 'RM'} vars_explained_plot_names = {'Total_ends': 'BR (Building Rate)', 'mean_distance_to_28_mokdim': 'DI (Distance to ECs)', 'SEI': 'SE (Socio-Economic Index)', 'New': 'NE (Used/New)', 'Rooms': 'RM (# of Rooms)'} add_units_dict = {'Distance': 'Distance [km]', 'BR': r'BR [Apts$\cdot$yr$^{-1}$]', 'Netflow': r'Netflow [people$\cdot$yr$^{-1}$]'} add_units_dict_short = {'DI': 'DI [km]', 'BR': r'BR [Apts$\cdot$yr$^{-1}$]'} # AHP : Afforable Housing Program def pct_change(x): import numpy as np return (np.exp(x)-1)*100 def plot_single_tree(rf_model, X_train, y_train, est_index=100, samples=25, max_depth=2): from sklearn import tree import matplotlib.pyplot as plt import seaborn as sns import numpy as np # rf = RandomForestRegressor(max_depth=15,n_estimators=250) # feats = ['Status', 'Rooms', 'BR', 'Distance', 'SEI'] X_train = X_train.rename(vars_plot_names, axis=1) feats = ['NE', 'RM', 'BR', 'DI', 'SE'] # sns.set_theme(font_scale=1.8) fig, ax = plt.subplots(figsize=(17, 10)) inds = X_train.sample(n=samples).index y_train = np.log(np.exp(y_train)/4) rf_model.fit(X_train.loc[inds], y_train.loc[inds]) _ = tree.plot_tree(rf_model[est_index],precision=2, fontsize=18, rounded=True, feature_names=feats, filled=True, ax=ax, max_depth=max_depth, proportion=False) filename = 'Nadlan_tree_example.png' plt.savefig(savefig_path / filename, bbox_inches='tight', pad_inches=0.1) return fig def compare_r2_RF_MLR(sc, ds, mode='diagram'): """compare R2 score from dataset (sc=loop_over with mode=score) and ds=run_MLR_on_all_years""" import pandas as pd import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style='ticks', font_scale=1.6) fig, ax = plt.subplots(figsize=(17, 10)) df = ds['R-squared'].to_dataframe() df = pd.concat([df, sc], axis=1) df.columns = ['Hedonic', 'RF train', 'RF test'] df['year'] = df.index df = df.melt(id_vars=['year'], var_name='Model', value_name=r'R$^2$') # df['year'] = pd.to_datetime(df['year'], format='%Y') if mode == 'diagram': ax = sns.barplot(data=df, x='year', ax=ax, hue='Model', y=r'R$^2$') # ax.set_ylabel('Apartment area [{}]'.format(unit_label)) h, l =ax.get_legend_handles_labels() ax.legend_.remove() ax.legend(h, l, ncol=3, title='Model') ax.set_xlabel('') ax.grid(True) sns.despine(fig) fig.tight_layout() # for wide dataframe: # df = df.pivot_table(columns=['Model'],values='R$^2$',index='year') return df def remove_outlier_area_per_room(df, col='Area_m2', k=1.5): from Migration_main import remove_outlier import pandas as pd dfs = [] for room in df['Rooms'].dropna().unique(): df1 = remove_outlier(df[df['Rooms'] == room], col_name=col, k=k) dfs.append(df1) df = pd.concat(dfs, axis=0) return df def plot_rooms_area_distribution(df, units='m2'): import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style='ticks', font_scale=1.8) fig, ax = plt.subplots(figsize=(17, 10)) if units == 'ft2': df['Area_ft2'] = df['Area_m2'] * 10.764 col = 'Area_ft2' unit_label = 'ft$^2$' elif units == 'm2': col = 'Area_m2' unit_label = 'm$^2$' sns.violinplot(data=df, x='Rooms', y=col, ax=ax, palette='inferno') ax.set_ylabel('Apartment area [{}]'.format(unit_label)) ax.set_xlabel('Number of rooms') ax.grid(True) sns.despine(fig) fig.tight_layout() return fig def plot_general_features_corr_heatmap(df, feats=general_features, year=None): import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style='ticks', font_scale=1.5) fig, ax = plt.subplots(figsize=(17, 10)) if year is not None: df = df[df['Sale_year']==year] title = 'year = {}'.format(year) else: title = '2000 to 2019' dff = df[feats] dff = dff.rename(short_plot_names, axis=1) g = sns.heatmap(dff.corr(),annot=True,cmap='coolwarm', ax=ax, center=0) g.set_xticklabels(g.get_xticklabels(), rotation=45, ha='right') fig.tight_layout() fig.suptitle(title) fig.subplots_adjust(top=0.945) return fig def plot_RF_time_series(X_ts, units='nis'): """plot rooms new time series from RF model""" import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from cbs_procedures import read_mean_salary sns.set_theme(style='ticks', font_scale=1.8) fig, ax = plt.subplots(figsize=(17, 10)) X_ts = X_ts[X_ts['Rooms'].isin([3, 4, 5])] X_ts['Rooms'] = X_ts['Rooms'].astype(int) X_ts = X_ts.rename({'New': 'Used/New'}, axis=1) X_ts['Used/New'][X_ts['Used/New']==0] = 'Used' X_ts['Used/New'][X_ts['Used/New']==1] = 'New' if units == 'dollar': X_ts['Price'] /= 4 * 1000 ylabel = 'Apartment Price [Thousands $]' elif units == 'nis': X_ts['Price'] /= 1e6 ylabel = 'Apartment Price [millions NIS]' elif units == 'salary': sal = read_mean_salary().rename({'year': 'Year'}, axis=1) X_ts = pd.merge(X_ts, sal, on='Year', how='inner') X_ts['Price'] /= X_ts['mean_salary'] ylabel = 'Mean salary' X_ts['Year'] = pd.to_datetime(X_ts['Year'], format='%Y') X_ts = X_ts.reset_index(drop=True) sns.lineplot(data=X_ts, x='Year', y='Price', hue='Rooms', style='Used/New', ax=ax, palette='tab10', markers=True, markersize=10) ax.set_ylabel(ylabel) ax.set_xlabel('') ax.grid(True) sns.despine(fig) fig.tight_layout() return fig def produce_shap_MLR_all_years(df, feats=best1, abs_val=True): from sklearn.linear_model import LinearRegression import shap import numpy as np years = np.arange(2000, 2020, 1) svs = [] for year in years: print(year) X, y = prepare_new_X_y_with_year(df, features=feats, year=year, y_name='Price') lr = LinearRegression() lr.fit(X, y) ex = shap.LinearExplainer(lr, X) shap_values = ex.shap_values(X) SV = convert_shap_values_to_pandas(shap_values, X) if abs_val: print('producing ABS SHAP.') SV = produce_abs_SHAP_from_df(SV, X, plot=False) svs.append(SV) return svs def loop_over_RF_models_years(df, path=work_david/'ML', mode='score', pgrid='normal', feats=best_rf2+['SEI']): import numpy as np import pandas as pd import shap import xarray as xr years = np.arange(2000, 2020, 1) train_scores = [] test_scores = [] x_tests = [] fis = [] # shaps = [] for year in years: print(year) _, gr = load_HP_params_from_optimized_model(path, pgrid=pgrid, year=year) rf = gr.best_estimator_ X_train, X_test, y_train, y_test = produce_X_y_RF_per_year(df, year=year, verbose=0, feats=feats) rf.fit(X_train, y_train) if mode == 'score': train_scores.append(rf.score(X_train, y_train)) test_scores.append(rf.score(X_test, y_test)) elif mode == 'time-series': y_pred = rf.predict(X_test) y_pred = np.exp(y_pred) X_test['Price'] = y_pred X_test['Year'] = year X_test = X_test.reset_index(drop=True) x_tests.append(X_test) elif mode == 'shap': # rf.fit(X_train, y_train) explainer = shap.TreeExplainer(rf) shap_values = explainer.shap_values(X_test.values) SV = convert_shap_values_to_pandas(shap_values, X_test) filename = 'Nadlan_SHAP_RF_{}.csv'.format(year) SV.to_csv(path/filename, index=False) # SV = SV.to_xarray().to_array('feature') # return SV, X_test # shaps.append(SV) elif mode == 'X_test': X_test.index.name = 'sample' filename = 'Nadlan_X_test_RF_{}.csv'.format(year) X_test.to_csv(path/filename, index=False) # x_tests.append(X_test.to_xarray().to_array('feature')) elif mode == 'FI': fi = pd.DataFrame(rf.feature_importances_).T fi.columns = X_train.columns fi['year'] = year fis.append(fi) if mode == 'score': sc = pd.DataFrame(train_scores) sc.columns = ['train_r2'] sc['test_r2'] = test_scores sc.index = years return sc elif mode == 'time-series': X_ts = pd.concat(x_tests, axis=0) return X_ts elif mode == 'FI': FI = pd.concat(fis, axis=0) return FI # elif mode == 'shap': # sv_da = xr.concat(shaps, 'year') # sv_da['year'] = years # sv_da.attrs['long_name'] = 'Shapley values via SHAP Python package.' # sv_da.to_netcdf(path/'Nadlan_SHAP_RF_{}-{}.nc'.format(years[0], years[-1])) # return sv_da # elif mode == 'X_test': # X_ts = xr.concat(x_tests, 'year') # X_ts['year'] = years # X_ts.attrs['long_name'] = 'X_tests per year to use with the SHAP' # X_ts.to_netcdf(path/'Nadlan_X_test_RF_{}-{}.nc'.format(years[0], years[-1])) # return X_ts def load_all_yearly_shap_values(path=work_david/'ML'): import numpy as np years = np.arange(2000, 2020, 1) svs = [] X_tests = [] for year in years: sv, X_test = load_yearly_shap_values(path, year) svs.append(sv) X_tests.append(X_test) return svs, X_tests def load_yearly_shap_values(path=work_david/'ML', year=2000): import pandas as pd X_test = pd.read_csv(path/'Nadlan_X_test_RF_{}.csv'.format(year)) shap_values = pd.read_csv(path/'Nadlan_SHAP_RF_{}.csv'.format(year)) assert len(X_test)==len(shap_values) return shap_values, X_test def load_shap_values(path=work_david/'ML', samples=10000, interaction_too=True, rename=True): import pandas as pd import xarray as xr print('loading {} samples.'.format(samples)) X_test = pd.read_csv(path/'X_test_RF_{}.csv'.format(samples)) shap_values = pd.read_csv(path/'SHAP_values_RF_{}.csv'.format(samples)) if rename: X_test = X_test.rename(short_plot_names, axis=1) shap_values = shap_values.rename(short_plot_names, axis=1) if interaction_too: print('loading interaction values too.') shap_interaction_values = xr.load_dataarray(path/'SHAP_interaction_values_RF_{}.nc'.format(samples)) shap_interaction_values['feature1'] = X_test.columns shap_interaction_values['feature2'] = X_test.columns return X_test, shap_values, shap_interaction_values else: return X_test, shap_values def plot_dependence(shap_values, X_test, x_feature='RM', y_features=['DI', 'SE', 'BR'], alpha=0.2, cmap=None, units='pct_change', plot_size=1.5, fontsize=16, x_jitter=0.75): import shap import matplotlib.pyplot as plt import seaborn as sns import matplotlib.ticker as tck sns.set_theme(style='ticks', font_scale=1.2) fig, axes = plt.subplots(len(y_features), 1, sharex=True, figsize=(8, 10)) X = X_test.copy() X = X.rename(vars_plot_names, axis=1) shap_values = shap_values.rename(vars_plot_names, axis=1) X = X.rename(add_units_dict_short, axis=1) # X['Old/New'] = X['Old/New'].astype(int) # new_dict = {0: 'Old', 1: 'New'} # X['Old/New'] = X['Old/New'].map(new_dict) if units == 'pct_change': shap_values = shap_values.apply(pct_change) for i, y in enumerate(y_features): y_new = add_units_dict_short.get(y, y) shap.dependence_plot(x_feature, shap_values.values, X, x_jitter=x_jitter, dot_size=4, alpha=alpha, interaction_index=y_new, ax=axes[i]) if 'DI' in x_feature: axes[i].set_xlim(25, 150) if 'RM' in x_feature: axes[i].set_xlabel('RM [# of rooms]') cb = fig.axes[-1] mapp = cb.collections[1] fig.canvas.draw() cbar = fig.colorbar(mapp, ax=axes[i],aspect=50, pad=0.05, label=y_new) cbar.set_alpha(0.85) cbar.draw_all() cb.remove() # cbar.ax.set_yticklabels(['Low', 'High'], fontsize=fontsize) # cbar.set_label('Predictor value') cbar.outline.set_visible(False) # axes[i].set_ylabel(axes[i].get_ylabel(), fontsize=fontsize) # axes[i].set_xlabel(axes[i].get_xlabel(), fontsize=fontsize) # axes[i].tick_params(labelsize=fontsize) axes[i].grid(True) if units == 'pct_change': la = 'Price change\nfor {} [%]'.format(x_feature) axes[i].set_ylabel(la) [ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize) for ax in fig.axes] [ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize) for ax in fig.axes] [ax.tick_params(labelsize=fontsize) for ax in fig.axes] [ax.yaxis.set_major_locator(tck.MaxNLocator(5)) for ax in fig.axes] fig.tight_layout() return fig def plot_summary_shap_values(shap_values, X_test, alpha=0.7, cmap=None, plot_size=1.5, fontsize=16, units='pct_change'): import shap import seaborn as sns import matplotlib.pyplot as plt sns.set_theme(style='ticks', font_scale=1.8) X_test = X_test.rename(vars_plot_names, axis=1) shap_values = shap_values.rename(vars_plot_names, axis=1) if units == 'pct_change': shap_values = shap_values.apply(pct_change) if cmap is None: shap.summary_plot(shap_values.values, X_test, alpha=alpha, plot_size=plot_size) else: if not isinstance(cmap, str): cm = cmap.get_mpl_colormap() else: cm = sns.color_palette(cmap, as_cmap=True) shap.summary_plot(shap_values.values, X_test, alpha=alpha, cmap=cm, plot_size=plot_size) if len(shap_values.shape) > 2: fig = plt.gcf() [ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize) for ax in fig.axes] [ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize) for ax in fig.axes] [ax.set_title(ax.get_title(), fontsize=fontsize) for ax in fig.axes] [ax.tick_params(labelsize=fontsize) for ax in fig.axes] else: fig, ax = plt.gcf(), plt.gca() if units == 'pct_change': ax.set_xlabel('Price change [%]', fontsize=fontsize) else: ax.set_xlabel(ax.get_xlabel(), fontsize=fontsize) ax.set_ylabel(ax.get_ylabel(), fontsize=fontsize) ax.tick_params(labelsize=fontsize) cb = fig.axes[-1] cbar = fig.colorbar(cb.collections[1], ticks=[0, 1], aspect=50, pad=0.05) cb.remove() cbar.ax.set_yticklabels(['Low', 'High'], fontsize=fontsize) cbar.set_label('Predictor value') cbar.ax.tick_params(size=0) cbar.outline.set_visible(False) # cb.set_ylabel(cb.get_ylabel(), fontsize=fontsize) # cb.tick_params(labelsize=fontsize) fig.tight_layout() return fig def select_years_interaction_term(ds, regressor='SEI'): regs = ['{}_{}'.format(x, regressor) for x in year_dummies] ds = ds.sel(regressor=regs) return ds def produce_RF_abs_SHAP_all_years(path=ml_path, plot=True, mlr_shap=None, units=None): import xarray as xr import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt SVs, X_tests = load_all_yearly_shap_values(path) k2s = [] for i, year in enumerate(np.arange(2000, 2020, 1)): shap_df = SVs[i] # shap_df.drop('year', axis=1, inplace=True) X_test = X_tests[i] # X_test.drop('year', axis=1, inplace=True) k2 = produce_abs_SHAP_from_df(shap_df, X_test, plot=False) k2['year'] = year if mlr_shap is not None: k2['Model'] = 'RF' k2_mlr = mlr_shap[i] k2_mlr['year'] = year k2_mlr['Model'] = 'Hedonic' k2_mlr = k2_mlr[k2_mlr['Predictor'].isin(best_regular1)] k2 = pd.concat([k2, k2_mlr], axis=0) k2s.append(k2) abs_shap = pd.concat(k2s, axis=0) abs_shap = abs_shap.reset_index(drop=True) if plot: sns.set_theme(style='ticks', font_scale=1.6) fig, ax = plt.subplots(figsize=(17, 10)) abs_shap['year'] = pd.to_datetime(abs_shap['year'], format='%Y') abs_shap = abs_shap[abs_shap['Predictor']!='New'] abs_shap = abs_shap[abs_shap['Predictor']!='Rooms'] # order: order = ['SE (Socio-Economic Index)', 'BR (Building Rate)', 'DI (Distance to ECs)'] abs_shap['Predictor'] = abs_shap['Predictor'].map(vars_explained_plot_names) abs_shap['SHAP_abs'] *= np.sign(abs_shap['Corr']) if units == 'pct_change': abs_shap['SHAP_abs'] = abs_shap['SHAP_abs'].apply(pct_change) # order = ['Socio-Economic Index', 'Building rate', 'Distance to ECs'] if mlr_shap is not None: sns.lineplot(data=abs_shap, x='year', y='SHAP_abs', hue='Predictor', ax=ax, palette='Dark2', ci='sd', markers=True, linewidth=2, hue_order=order, style='Model', markersize=10) else: sns.lineplot(data=abs_shap, x='year', y='SHAP_abs', hue='Predictor', ax=ax, palette='Dark2', ci='sd', markers=True, linewidth=2, hue_order=order, markersize=10) if units == 'pct_change': ax.set_ylabel('Price change [%]') else: ax.set_ylabel("mean |SHAP values|") ax.set_xlabel('') ax.grid(True) h, la = ax.get_legend_handles_labels() ax.legend_.remove() ax.legend(h, la, ncol=2, loc='center') sns.despine(fig) fig.tight_layout() return abs_shap def produce_abs_SHAP_from_df(shap_df, X_test, plot=False): import pandas as pd shap_v = pd.DataFrame(shap_df) feature_list = X_test.columns shap_v.columns = feature_list df_v = X_test.copy().reset_index()#.drop('time', axis=1) # Determine the correlation in order to plot with different colors corr_list = list() for i in feature_list: b = np.corrcoef(shap_v[i], df_v[i])[1][0] corr_list.append(b) corr_df = pd.concat( [pd.Series(feature_list), pd.Series(corr_list)], axis=1).fillna(0) # Make a data frame. Column 1 is the feature, and Column 2 is the correlation coefficient corr_df.columns = ['Predictor', 'Corr'] corr_df['Sign'] = np.where(corr_df['Corr'] > 0, 'red', 'blue') # Plot it shap_abs = np.abs(shap_v) k = pd.DataFrame(shap_abs.mean()).reset_index() k.columns = ['Predictor', 'SHAP_abs'] k2 = k.merge(corr_df, left_on='Predictor', right_on='Predictor', how='inner') k2 = k2.sort_values(by='SHAP_abs', ascending=True) if plot: colorlist = k2['Sign'] ax = k2.plot.barh(x='Predictor', y='SHAP_abs', color=colorlist, figsize=(5, 6), legend=False) ax.set_xlabel("SHAP Value (Red = Positive Impact)") return k2 def ABS_SHAP(df_shap, df): import numpy as np import pandas as pd import seaborn as sns sns.set_theme(style='ticks', font_scale=1.2) #import matplotlib as plt # Make a copy of the input data shap_v = pd.DataFrame(df_shap) feature_list = df.columns shap_v.columns = feature_list df_v = df.copy().reset_index()#.drop('time', axis=1) # Determine the correlation in order to plot with different colors corr_list = list() for i in feature_list: b = np.corrcoef(shap_v[i], df_v[i])[1][0] corr_list.append(b) corr_df = pd.concat( [pd.Series(feature_list), pd.Series(corr_list)], axis=1).fillna(0) # Make a data frame. Column 1 is the feature, and Column 2 is the correlation coefficient corr_df.columns = ['Predictor', 'Corr'] corr_df['Sign'] = np.where(corr_df['Corr'] > 0, 'red', 'blue') # Plot it shap_abs = np.abs(shap_v) k = pd.DataFrame(shap_abs.mean()).reset_index() k.columns = ['Predictor', 'SHAP_abs'] k2 = k.merge(corr_df, left_on='Predictor', right_on='Predictor', how='inner') k2 = k2.sort_values(by='SHAP_abs', ascending=True) colorlist = k2['Sign'] ax = k2.plot.barh(x='Predictor', y='SHAP_abs', color=colorlist, figsize=(5, 6), legend=False) ax.set_xlabel("SHAP Value (Red = Positive Impact)") return def plot_simplified_shap_tree_explainer(rf_model): import shap rf_model.fit(X, y) dfX = X.to_dataset('regressor').to_dataframe() dfX = dfX.rename( {'qbo_cdas': 'QBO', 'anom_nino3p4': 'ENSO', 'co2': r'CO$_2$'}, axis=1) ex_rf = shap.Explainer(rf_model) shap_values_rf = ex_rf.shap_values(dfX) ABS_SHAP(shap_values_rf, dfX) return def convert_shap_values_to_pandas(shap_values, X_test): import pandas as pd SV = pd.DataFrame(shap_values) SV.columns = X_test.columns SV.index.name = 'sample' return SV def plot_Tree_explainer_shap(rf_model, X_train, y_train, X_test, samples=1000): import shap from shap.utils import sample print('fitting...') rf_model.fit(X_train, y_train) # explain all the predictions in the test set print('explaining...') explainer = shap.TreeExplainer(rf_model) # rename features: X_test = X_test.rename(plot_names, axis=1) if samples is not None: print('using just {} samples out of {}.'.format(samples, len(X_test))) shap_values = explainer.shap_values(sample(X_test, samples).values) shap.summary_plot(shap_values, sample(X_test, samples)) SV = convert_shap_values_to_pandas(shap_values, sample(X_test, samples)) else: shap_values = explainer.shap_values(X_test.values) shap.summary_plot(shap_values, X_test) SV = convert_shap_values_to_pandas(shap_values, X_test) # shap.summary_plot(shap_values_rf, dfX, plot_size=1.1) return SV # def get_mean_std_from_df_feats(df, feats=best, ignore=['New', 'Rooms_345', 'Sale_year'], # log=['Total_ends']): # import numpy as np # f = [x for x in best if x not in ignore] # df1 = df.copy() # if log is not None: # df1[log] = (df1[log]+1).apply(np.log) # mean = df1[f].mean() # std = df1[f].std() # return mean, std def produce_rooms_new_years_from_ds_var(ds, dsvar='beta_coef', new_cat='Used/New', new='New', old='Used'): import numpy as np import pandas as pd df = ds[dsvar].to_dataset('year').to_dataframe().T dfs = [] # 3 rooms old: dff = df['const'].apply(np.exp).to_frame('Price') dff['Rooms'] = 3 dff[new_cat] = old dfs.append(dff) # 3 rooms new: dff = (df['const']+df['New']).apply(np.exp).to_frame('Price') dff['Rooms'] = 3 dff[new_cat] = new dfs.append(dff) # 4 rooms old: dff = (df['const']+df['Rooms_4']).apply(np.exp).to_frame('Price') dff['Rooms'] = 4 dff[new_cat] = old dfs.append(dff) # 4 rooms new: dff = (df['const']+df['New']+df['Rooms_4']+df['Rooms_4_New']).apply(np.exp).to_frame('Price') dff['Rooms'] = 4 dff[new_cat] = new dfs.append(dff) # 5 rooms old: dff = (df['const']+df['Rooms_5']).apply(np.exp).to_frame('Price') dff['Rooms'] = 5 dff[new_cat] = old dfs.append(dff) # 5 rooms new: dff = (df['const']+df['New']+df['Rooms_5']+df['Rooms_5_New']).apply(np.exp).to_frame('Price') dff['Rooms'] = 5 dff[new_cat] = new dfs.append(dff) dff = pd.concat(dfs, axis=0) dff['year'] = dff.index return dff def calculate_pct_change_for_long_ds_var(ds_var_long, year=2000): d = ds_var_long.pivot(index='year', columns=[ 'Rooms', 'Old/New'], values='Price') d_ref = d.loc[year] d /= d_ref d -= 1 d *= 100 d['year']=d.index df = d.melt(id_vars=['year'],value_name='Price') return df def calculate_period_pct_change_from_ds(ds, syear=2008, eyear=2019): beta=produce_rooms_new_years_from_ds_var(ds,'beta_coef') beta = beta.pivot(index='year', columns=['Rooms', 'Used/New'], values='Price') beta.columns = ['{}-{}'.format(rooms, new) for rooms, new in beta.columns] pct = 100 * (beta.loc[eyear] - beta.loc[syear]) / beta.loc[syear] return pct def plot_price_rooms_new_from_new_ds(ds, add_cbs_index=False, units='nis'): import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from cbs_procedures import read_apt_price_index from cbs_procedures import read_mean_salary sns.set_theme(style='ticks', font_scale=1.8) fig, ax = plt.subplots(figsize=(17, 10)) beta = produce_rooms_new_years_from_ds_var(ds, 'beta_coef') # calculate pct change between 2008 and 2019: pct = (beta.loc[2019,'Price'].values-beta.loc[2008,'Price'].values)/beta.loc[2008,'Price'].values pct *= 100 beta1 = beta.copy() beta1.loc[2019, 'pct_change_2019_2008'] = pct print(beta1.loc[2019]) # calculate pct change Old/New in 2008: pct=(beta[beta['Used/New']=='New'].loc[2008,'Price']-beta[beta['Used/New']=='Used'].loc[2008,'Price'])/beta[beta['Used/New']=='Used'].loc[2008,'Price'] pct *= 100 print(pct) # calculate pct change Old/New in 2019: pct=(beta[beta['Used/New']=='New'].loc[2019,'Price']-beta[beta['Used/New']=='Used'].loc[2019,'Price'])/beta[beta['Used/New']=='Used'].loc[2019,'Price'] pct *= 100 print(pct) upper = produce_rooms_new_years_from_ds_var(ds, 'CI_95_upper') lower = produce_rooms_new_years_from_ds_var(ds, 'CI_95_lower') if units == 'pct_change': beta = calculate_pct_change_for_long_ds_var(beta, 2000) upper = calculate_pct_change_for_long_ds_var(upper, 2000) lower = calculate_pct_change_for_long_ds_var(lower, 2000) df = pd.concat([lower, beta, upper], axis=0) if units == 'dollar': # approx 4 NIS to 1 $ in whole 2000-2019 df['Price'] /= 4 * 1000 # price in thousands of $ ylabel = 'Apartment Price [Thousands $]' elif units == 'nis': ylabel = 'Apartment Price [millions NIS]' df['Price'] /= 1e6 elif units == 'salary': sal = read_mean_salary() df = pd.merge(df, sal, on='year', how='inner') df['Price'] /= df['mean_salary'] ylabel = 'Mean salary' elif units == 'pct_change': ylabel = 'Apartment price change from 2000 [%]' df['year'] = pd.to_datetime(df['year'], format='%Y') df = df.reset_index(drop=True) sns.lineplot(data=df, x='year', y='Price', hue='Rooms', style='Used/New', ax=ax, palette='tab10', ci='sd', markers=True, markersize=10) ax.set_ylabel(ylabel) ax.set_xlabel('') if add_cbs_index: cbs = read_apt_price_index(path=work_david, resample='AS', normalize_year=2000) cbs = cbs.loc['2000':'2019'] if units == 'pct_change': cbs /= cbs.iloc[0] cbs -= 1 cbs *= 100 cbs_label = 'Dwellings price index change from 2000 [%]' cbs.columns = ['Apartment Price Index'] cbs['year'] = pd.to_datetime(cbs.index, format='%Y') if units != 'pct_change': twin = ax.twinx() else: twin = ax sns.lineplot(data=cbs, x='year', y='Apartment Price Index', ax=twin, color='k', linewidth=2) twin.set_ylabel('Dwellings Price Index') twin.set_xlabel('') twin.set_ylim(50, 300) ax.grid(True) sns.despine(fig) fig.tight_layout() return fig def plot_regular_feats_comparison_from_new_ds(ds,reg_name='Predictor', feats=best_regular1, units='pct_change'): import seaborn as sns import matplotlib.pyplot as plt import pandas as pd sns.set_theme(style='ticks', font_scale=1.8) fig, ax = plt.subplots(figsize=(17, 10)) dfs = [] df = ds['beta_coef'].to_dataset('year').to_dataframe().T dff = df[feats].melt(ignore_index=False) dff['year'] = dff.index dfs.append(dff) df = ds['CI_95_upper'].to_dataset('year').to_dataframe().T dff = df[feats].melt(ignore_index=False) dff['year'] = dff.index dfs.append(dff) df = ds['CI_95_lower'].to_dataset('year').to_dataframe().T dff = df[feats].melt(ignore_index=False) dff['year'] = dff.index dfs.append(dff) dff = pd.concat(dfs, axis=0) dff['regressor'] = dff['regressor'].map(vars_explained_plot_names) dff = dff.rename({'regressor': reg_name}, axis=1) dff['year'] = pd.to_datetime(dff['year'], format='%Y') dff = dff.reset_index(drop=True) if units == 'pct_change': dff['value'] = dff['value'].apply(pct_change) sns.lineplot(data=dff, x='year', y='value', hue=reg_name, ax=ax, ci='sd', markers=True, palette='Dark2') if units == 'pct_change': ylabel = 'Price change [%]' else: ylabel = r'Standardized $\beta$s' ax.set_ylabel(ylabel) ax.set_xlabel('') h, l = ax.get_legend_handles_labels() ax.legend_.remove() ax.legend(h, l, ncol=1, title='Predictor', loc='center') ax.grid(True) sns.despine(fig) fig.tight_layout() return dff def prepare_new_X_y_with_year(df, year=2000, y_name='Price', features=best1): import pandas as pd def return_X_with_interaction(X, dummy_list, var_list): Xs = [] for num_var in var_list: X1 = get_design_with_pair_interaction( X, dummy_list+[num_var]) Xs.append(X1) X1 = pd.concat(Xs, axis=1) X1 = X1.loc[:, ~X1.columns.duplicated()] return X1 # m, s = get_mean_std_from_df_feats(df) X, y, scaler = produce_X_y( df, y_name=y_name, year=year, feats=features, dummy='Rooms_345', plot_Xcorr=True, scale_X=True) # X[best_regular] -= m # X[best_regular] /= s # regular vars vs. time (years): # X1 = return_X_with_interaction(X, ['trend'], best_regular) # rooms dummies and new: X2 = return_X_with_interaction(X, room_dummies, ['New']) # rooms dummies and years: # X3 = return_X_with_interaction(X, ['trend'], room_dummies) # New and years: # X4 = return_X_with_interaction(X, year_dummies, ['New']) X = pd.concat([X, X2],axis=1) #, X3, X4], axis=1) X = X.loc[:, ~X.columns.duplicated()] return X, y def prepare_new_X_y(df, y_name='Price'): import pandas as pd def return_X_with_interaction(X, dummy_list, var_list): Xs = [] for num_var in var_list: X1 = get_design_with_pair_interaction( X, dummy_list+[num_var]) Xs.append(X1) X1 = pd.concat(Xs, axis=1) X1 = X1.loc[:, ~X1.columns.duplicated()] return X1 X, y, scaler = produce_X_y( df, y_name=y_name, year=None, feats=best_years, dummy='Rooms_345', plot_Xcorr=True, scale_X=True) # regular vars vs. time (years): X1 = return_X_with_interaction(X, year_dummies, best_regular) # rooms dummies and new: X2 = return_X_with_interaction(X, room_dummies, ['New']) # rooms dummies and years: # X3 = return_X_with_interaction(X, year_dummies, room_dummies) # New and years: # X4 = return_X_with_interaction(X, year_dummies, ['New']) X = pd.concat([X1, X2],axis=1) #, X3, X4], axis=1) X = X.loc[:, ~X.columns.duplicated()] return X, y def prepare_new_X_y_with_trend(df, y_name='Price'): import pandas as pd def return_X_with_interaction(X, dummy_list, var_list): Xs = [] for num_var in var_list: X1 = get_design_with_pair_interaction( X, dummy_list+[num_var]) Xs.append(X1) X1 = pd.concat(Xs, axis=1) X1 = X1.loc[:, ~X1.columns.duplicated()] return X1 X, y, scaler = produce_X_y( df, y_name=y_name, year='trend', feats=best, dummy='Rooms_345', plot_Xcorr=True, scale_X=True) # regular vars vs. time (years): X1 = return_X_with_interaction(X, ['trend'], best_regular) # rooms dummies and new: X2 = return_X_with_interaction(X, room_dummies, ['New']) # rooms dummies and years: X3 = return_X_with_interaction(X, ['trend'], room_dummies) # New and years: # X4 = return_X_with_interaction(X, year_dummies, ['New']) X = pd.concat([X1, X2, X3],axis=1) #, X3, X4], axis=1) X = X.loc[:, ~X.columns.duplicated()] return X, y def get_design_with_pair_interaction(data, group_pair): """ Get the design matrix with the pairwise interactions Parameters ---------- data (pandas.DataFrame): Pandas data frame with the two variables to build the design matrix of their two main effects and their interaction group_pair (iterator): List with the name of the two variables (name of the columns) to build the design matrix of their two main effects and their interaction Returns ------- x_new (pandas.DataFrame): Pandas data frame with the design matrix of their two main effects and their interaction """ import pandas as pd import itertools x =
pd.get_dummies(data[group_pair])
pandas.get_dummies
# -*- coding: utf-8 -*- """ Created on Tue Oct 30 10:12:34 2018 @author: kite """ """ 完成策略的回测,绘制以沪深300为基准的收益曲线,计算年化收益、最大回撤、夏普比率 主要的方法包括: ma10_factor: is_k_up_break_ma10:当日K线是否上穿10日均线 is_k_down_break_ma10:当日K线是否下穿10日均线 compare_close_2_ma_10:工具方法,某日收盘价和当日对应的10日均线的关系 backtest:回测主逻辑方法,从股票池获取股票后,按照每天的交易日一天天回测 """ import pickle from pymongo import DESCENDING, ASCENDING import numpy as np import pandas as pd import matplotlib.pyplot as plt from stock_pool_strategy import stock_pool, find_out_stocks from database import DB_CONN from factor.ma10_factor import is_k_up_break_ma10, is_k_down_break_ma10 from stock_util import get_trading_dates, compute_drawdown, dynamic_max_drawdown, compute_sharpe_ratio, compute_ir plt.rcParams['figure.figsize'] = [14, 8] plt.rcParams['image.interpolation'] = 'nearest' plt.rcParams['image.cmap'] = 'gray' plt.style.use('ggplot') SINGLE_DAY_MAX_DROP_RATE = 0.03 MAX_DROP_RATE = 0.1 ATR_WIN = 14 ATR_RATIO = 2 RISK_RATIO = 0.01 def backtest(begin_date, end_date, stop_method=None, pos_method='equal'): """ Arguments: begin_date: 回测开始日期 end_date: 回测结束日期 stop_method : 止损方式 None : 无止损 fixed : 固定比例止损 float : 浮动止损 ATR_float_dynamic : 动态ATR浮动止损 ATR_float_static : 静态ATR浮动止损 pos_method : 头寸分配方式 equal : 均仓分配头寸 atr : 按照ATR分配头寸 Returns: Account: 数据类型,dict init_assets : 初始资产, 默认1E7 history_table : 交割单 net_value : 每日净值 final_net_value : 最终日净值 profit : 收益 day_profit : 每日收益 positions : 每日仓位 stop_loss : 止损的方式和止损参数 position_manage : 头寸管理方式和相关参数 """ # 记录止损时间点 # stop_lose_position_date_current = [] # stop_lose_position_date = [] # 记录回测账户信息 Account = {} # 仓位相关的初始化 position_manage = {} if pos_method == 'equal': single_position = 2E5 position_manage['头寸分配方式'] = '均仓' Account['position_manage'] = position_manage elif pos_method == 'atr': position_manage['头寸分配方式'] = 'ATR分配头寸' position_manage['ATR_WIN'] = ATR_WIN position_manage['RISK_RATIO'] = RISK_RATIO Account['position_manage'] = position_manage positions = pd.Series() # 记录每日仓位信息 stop_loss = {} cash = 1E7 init_assets = cash Account['init_assets'] = init_assets Account['start'] = begin_date Account['end'] = end_date if stop_method is None: Account['stop_loss'] = '无止损' elif stop_method == 'fixed': stop_loss['单日跌幅比例'] = SINGLE_DAY_MAX_DROP_RATE stop_loss['累计跌幅比例'] = MAX_DROP_RATE stop_loss['止损方式'] = '固定比例止损' Account['stop_loss'] = stop_loss elif stop_method == 'float': stop_loss['跌幅比例'] = MAX_DROP_RATE stop_loss['止损方式'] = '浮动止损' Account['stop_loss'] = stop_loss elif (stop_method == 'ATR_float_dynamic') or (stop_method == 'ATR_float_static'): stop_loss['ATR_WIN'] = ATR_WIN stop_loss['ATR_RATIO'] = ATR_RATIO stop_loss['止损方式'] = '动态ATR浮动止损' Account['stop_loss'] = stop_loss # 时间为key的净值、收益和同期沪深基准 df_profit = pd.DataFrame(columns=['net_value', 'profit', 'hs300']) # 时间为key的单日收益和同期沪深基准 df_day_profit =
pd.DataFrame(columns=['profit', 'hs300'])
pandas.DataFrame
# -*- coding: utf-8 -*- from unittest import TestCase import pandas as pd from pandas.util.testing import assert_frame_equal import numpy as np from datetime import datetime as dt from numpy.testing import assert_array_almost_equal from parameterized import parameterized from alphaware.base import (Factor, FactorContainer) from alphaware.preprocess import (Winsorizer, FactorWinsorizer) class TestWinsorizer(TestCase): @parameterized.expand([(np.array([1, 2, 3, 10, 4, 1, 3]), (2.5, 97.5), np.array([1, 2, 3, 9.1, 4, 1, 3]))]) def test_winsorize(self, x, quantile_range, expected): calculated = Winsorizer(quantile_range).fit_transform(x) assert_array_almost_equal(calculated, expected) def test_factor_winsorizer(self): index = pd.MultiIndex.from_product([['2014-01-30', '2014-02-28'], ['001', '002', '003', '004', '005']], names=['trade_date', 'ticker']) data1 = pd.DataFrame(index=index, data=[1.0, 1.0, 1.2, 200.0, 0.9, 5.0, 5.0, 5.1, 5.9, 5.0]) factor_test1 = Factor(data=data1, name='test1') data2 = pd.DataFrame(index=index, data=[2.6, 2.5, 2.8, 2.9, 2.7, 1.9, -10.0, 2.1, 2.0, 1.9]) factor_test2 = Factor(data=data2, name='test2') data3 = pd.DataFrame(index=index, data=[3.0, 3.0, 30.0, 5.0, 4.0, 6.0, 7.0, 6.0, 6.0, 5.9]) factor_test3 = Factor(data=data3, name='test3') fc = FactorContainer('2014-01-30', '2014-02-28', [factor_test1, factor_test2, factor_test3]) quantile_range = (1, 99) calculated = FactorWinsorizer(quantile_range).fit_transform(fc) index = pd.MultiIndex.from_product([[dt(2014, 1, 30), dt(2014, 2, 28)], ['001', '002', '003', '004', '005']], names=['trade_date', 'ticker']) expected = pd.DataFrame({'test1': [1.0, 1.0, 1.2, 192.048, 0.904, 5.0, 5.0, 5.1, 5.868, 5.0], 'test2': [2.6, 2.504, 2.8, 2.896, 2.7, 1.9, -9.524, 2.096, 2.0, 1.9], 'test3': [3.0, 3.0, 29.0, 5.0, 4.0, 6.0, 6.96, 6.0, 6.0, 5.904]}, index=index)
assert_frame_equal(calculated, expected)
pandas.util.testing.assert_frame_equal
import pandas as pd import yfinance as yf #get user preferences prior to running script #ask user to choose whether to use a list of stocks from a csv file or to use the ticker_collector.py script to get after hours stocks from marketwatch. print(' Welcome to Bacon Saver!', '\n\n', 'Are you using a list of ticker symbols from a csv file,', '\n', 'or would you like to get a list from the after hours screener on marketwatch?') set_source = input(" Please enter CSV or MOV to set the source of the stock list.") #ask user to set the EMA days u_ema = int(input(' Enter the desired number of days to calculate the exponential moving average, 9 is the recommended value.')) #ask user to set the option chain expiration date user_ochain = input(' Enter the option chain expiration date in YYYY-MM-DD format.') def display_status(): print("The source of the stock list will be: ", set_source) print("The exponential moving average will be calculated using", user_ema, "days") print("The option chain expiration used will be: ", user_ochain) print("Please wait while the program runs. Starting script...") movers_list =[] movers_df = pd.DataFrame() def get_movers(): df = pd.read_html("https://www.marketwatch.com/tools/screener/after-hours") dfg = df[0] #create new series that keeps only first string value in 'Symbol Symbol' column, discarding anything after space dfgainers = dfg['Symbol Symbol'].str[:4] dflosers = df[1] dflosers2 = dflosers['Symbol Symbol'].str[:4] dfgainers2 = dfgainers.str.strip() df_final = dfgainers2.append(dflosers2.str.strip()) df_final2 = pd.DataFrame() df_final2["Symbol"] = df_final df_final2.to_csv(r'PATH_TO_CSV') movers_list.append(df_final2["Symbol"]) #get web list saved to csv file and create new list manual_list = pd.read_csv(r'PATH_TO_CSV') auto_list = pd.read_csv(r'PATH_TO_CSV') #Create Symbols From Dataset target_symbols_long =[] target_symbols_short = [] movers_df = pd.DataFrame(movers_list) short_df = [] long_df = [] master_df = pd.DataFrame() def screener(): for i in Symbols: i = i.strip() stock = yf.Ticker(i) # get stock info #print(stock.info['longBusinessSummary']) # get historical market data hist = stock.history(period="1mo") histd = pd.DataFrame(hist) df = pd.DataFrame() df["Symbol"] = str(i) df["Date"] = pd.to_datetime(histd.index, unit='ms') df["Close"] = histd["Close"].values df["Volume"] = hist['Volume'].values df["EMA9"] = df["Close"].ewm(span=u_ema).mean() df["Symbol"] = stock.ticker df.fillna("nan") bool_long = df["EMA9"].iloc[-1] < hist["Close"].iloc[-1] ##create Boolean to filter out stocks to go long on. if bool_long == True: target_list_long = df['Symbol'][0] target_symbols_long.append(target_list_long) print("Stock ", i, "is within buying parameters. Dataframe: ") print(df.tail(1)) try: optc = stock.option_chain(user_ochain) optcz = optc.calls[['strike', 'lastPrice', 'bid', 'ask', 'volume', 'openInterest', 'impliedVolatility']][9:16] optczdf =
pd.DataFrame(optcz)
pandas.DataFrame
# NBA Stats Clustering # Copyright <NAME>, 2019 # various techniques for dimension reduction import numpy as np import pandas as pd # pca from scratch # influenced by in-class notebook I did on pca. def pca(m, dims): # k dims k = min(m.shape[-1], dims) m_t = m.T mm_t = np.matmul(m, m_t) m_tm = np.matmul(m_t, m) # select matrix based on square matrix with smaller dimensions matrix = mm_t if mm_t.shape[0] < m_tm.shape[0] else m_tm # compute eigenvalues and eigenvectors eigvals, eigvecs = np.linalg.eig(matrix) # get sorted eigenvalues, and we'll use the k principal eigenvectors e = np.array([x for _,x in sorted(zip(eigvals,eigvecs))[::-1]]) # get those eigenvectors ek = e[:,:k] # multiply by original data to get reduced dimension data me2 = np.matmul(m, ek) columns = [f'x{i}' for i in range(me2.shape[-1])] # put into datafram df =
pd.DataFrame(me2, columns=columns)
pandas.DataFrame
# Source: https://github.com/Screetsec/Sudomy/issues/28 # # This fetches the data displayed on the Google Safe Browsing Transparency Report and outputs it as a CSV # that can be imported into a Kaggle dataset. # The original visualization can be found here: https://transparencyreport.google.com/safe-browsing/overview import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from datetime import datetime, date RUN_TIME = int(datetime.utcnow().timestamp() * 1000) START_TIME = datetime.fromtimestamp(1148194800000 // 1000) # Here are the URL requests I found on the page: UNSAFE_URL = f"https://transparencyreport.google.com/transparencyreport/api/v3/safebrowsing/sites?dataset=0&series=malwareDetected,phishingDetected&start=1148194800000&end={RUN_TIME}" NUMBER_URL = f"https://transparencyreport.google.com/transparencyreport/api/v3/safebrowsing/sites?dataset=1&series=malware,phishing&start=1148194800000&end={RUN_TIME}" SITES_URL = f"https://transparencyreport.google.com/transparencyreport/api/v3/safebrowsing/sites?start=1148194800000&series=attack,compromised&end={RUN_TIME}" BROWSER_WARNINGS_URL = f"https://transparencyreport.google.com/transparencyreport/api/v3/safebrowsing/warnings?dataset=users&start=1148194800000&end={RUN_TIME}&series=users" SEARCH_WARNINGS_URL = f"https://transparencyreport.google.com/transparencyreport/api/v3/safebrowsing/warnings?dataset=search&start=1148194800000&end={RUN_TIME}&series=search" RESPONSE_TIME_URL = f"https://transparencyreport.google.com/transparencyreport/api/v3/safebrowsing/notify?dataset=1&start=1148194800000&end={RUN_TIME}&series=response" REINFECTION_URL = f"https://transparencyreport.google.com/transparencyreport/api/v3/safebrowsing/notify?dataset=0&start=1148194800000&end={RUN_TIME}&series=reinfect" COLUMN_NAMES = [ "WeekOf", "Malware sites detected", "Phishing sites detected", "Malware sites number", "Phishing sites number", "Attack sites", "Compromised sites", "Browser warnings", "Search warnings", "Webmaster response time", "Reinfection rate" ] def load_dataframe(): dates = pd.date_range(start=START_TIME, end=datetime.fromtimestamp(RUN_TIME // 1000), freq='W', normalize=True) df = pd.DataFrame(columns=COLUMN_NAMES) df["WeekOf"] = dates df = df.set_index("WeekOf") return df df = load_dataframe() import requests import json def fetch_as_json(url): r = requests.get(url) c = r.content c = c[5:] j = json.loads(c) return j[0][1] def malware_phishing_detected(df): pts = fetch_as_json(UNSAFE_URL) for pt in pts: date = pd.to_datetime(pt[0], unit='ms').normalize() malware = pt[1][0] phishing = pt[1][1] malware = malware[0] if malware else np.NaN phishing = phishing[0] if phishing else np.NaN df[COLUMN_NAMES[1]][date] = malware df[COLUMN_NAMES[2]][date] = phishing return df def malware_phishing_number(df): pts = fetch_as_json(NUMBER_URL) for pt in pts: date = pd.to_datetime(pt[0], unit='ms').normalize() malware = pt[1][0] phishing = pt[1][1] malware = malware[0] if malware else np.NaN phishing = phishing[0] if phishing else np.NaN df[COLUMN_NAMES[3]][date] = malware df[COLUMN_NAMES[4]][date] = phishing return df def site_count(df): pts = fetch_as_json(SITES_URL) for pt in pts: date = pd.to_datetime(pt[0], unit='ms').normalize() attack = pt[1][0] comped = pt[1][1] attack = attack[0] if attack else np.NaN comped = comped[0] if comped else np.NaN df[COLUMN_NAMES[5]][date] = attack df[COLUMN_NAMES[6]][date] = comped return df def browser_warnings(df): pts = fetch_as_json(BROWSER_WARNINGS_URL) for pt in pts: date = pd.to_datetime(pt[0], unit='ms').normalize() value = pt[1][0] value = value[0] if value else np.NaN df[COLUMN_NAMES[7]][date] = value return df def search_warnings(df): pts = fetch_as_json(SEARCH_WARNINGS_URL) for pt in pts: date = pd.to_datetime(pt[0], unit='ms').normalize() value = pt[1][0] value = value[0] if value else np.NaN df[COLUMN_NAMES[8]][date] = value return df def response_time(df): pts = fetch_as_json(RESPONSE_TIME_URL) for pt in pts: date = pd.to_datetime(pt[0], unit='ms').normalize() value = pt[1][0] value = value[0] if value else np.NaN df[COLUMN_NAMES[9]][date] = value return df def reinfection_rate(df): pts = fetch_as_json(REINFECTION_URL) for pt in pts: date =
pd.to_datetime(pt[0], unit='ms')
pandas.to_datetime
# Copyright (c) 2019 Princeton University # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from datetime import datetime, timedelta import json import os.path import pandas as pd # Local from GenConfigs import * from .Logger import ScriptLogger logger = ScriptLogger(loggername='workload_analyzer/perf_mon_analyzer', filename=os.path.join(DATA_DIR, 'logs', 'WA.log')) def ReadPQOSMSRMon(pqos_msr_mon_file): """ This function parses the output of the pqos-msr-mon. """ with open(pqos_msr_mon_file) as f: lines = f.readlines() records = {'timestamp': [], 'Core': [], 'IPC': [], 'LLC Misses': [], 'LLC Util (KB)': [], 'MBL (MB/s)': []} tmp_records = {'timestamp': [], 'Core': [], 'IPC': [], 'LLC Misses': [], 'LLC Util (KB)': [], 'MBL (MB/s)': []} prev_timestamp, index = None, -1 for line_index in range(len(lines)): line = lines[line_index] if 'TIME' in line: index += 1 timestamp = datetime.strptime(line[5:-1], '%Y-%m-%d %H:%M:%S') if (timestamp != prev_timestamp): for key, value in tmp_records.items(): if key == 'timestamp': for i in value: records[key] += [prev_timestamp + timedelta(seconds=1.0*i/index)] else: records[key] += value tmp_records = {'timestamp': [], 'Core': [], 'IPC': [ ], 'LLC Misses': [], 'LLC Util (KB)': [], 'MBL (MB/s)': []} index = 0 prev_timestamp = timestamp elif 'CORE' in line: pass else: tmp_records['timestamp'].append(index) separated = line.split(' ') separated = [v for v in separated if v != ''] tmp_records['Core'].append(int(separated[0])) tmp_records['IPC'].append(float(separated[1])) tmp_records['LLC Misses'].append(int(separated[2][:-1])*1000) tmp_records['LLC Util (KB)'].append(float(separated[3])) tmp_records['MBL (MB/s)'].append(float(separated[4])) for key, value in tmp_records.items(): if key == 'timestamp': for i in value: records[key] += [prev_timestamp + timedelta(seconds=1.0*i/index)] else: records[key] += value # return the records as Pandas dataframe records_df = pd.DataFrame(records) return records_df def ReadPerfMon(perf_mon_file): """ This function parses the output of the Linux Perf tool. """ with open(perf_mon_file) as f: lines = f.readlines() records = {'timestamp': []} # more fields are added dynamically for line in lines: separated = line.split(' ') separated = [v for v in separated if v != ''] try: if 'counted' in separated[2]: del separated[2] except: pass if (len(separated) < 3) or (len(separated) > 4): continue time = float(separated[0]) field = separated[2] try: val = int(separated[1].replace(',', '')) except: val = None try: records[field].append(val) except: records[field] = [val] # first element of the list try: if records['timestamp'][-1] != time: records['timestamp'].append(time) except: records['timestamp'].append(time) # first append # return the records as Pandas dataframe return
pd.DataFrame(records)
pandas.DataFrame
import pandas as pd import numpy as np import lightgbm as lgbm from scipy import sparse from datetime import datetime def load_sparse_matrix(filename): y = np.load(filename) z = sparse.coo_matrix((y['data'], (y['row'], y['col'])), shape=y['shape']) return z x_train = load_sparse_matrix('../input/train_tfidf.npz') x_test = load_sparse_matrix('../input/test_tfidf.npz') target = pd.read_csv('../input/train.csv', usecols=['final_status']) train = pd.read_csv('../input/train.csv', usecols=['created_at', 'deadline', 'launched_at', 'state_changed_at']) test =
pd.read_csv('../input/test.csv', usecols=['created_at', 'deadline', 'launched_at', 'state_changed_at', 'project_id'])
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np import matplotlib import matplotlib.pyplot as plt matplotlib.style.use('ggplot') import seaborn as sns #Prepare data, making it binary (0/1) df = pd.read_pickle("datasetspandas/dutch_export_transposed.pkl") ibd = df.loc[df['Unnamed: 0'].str.contains('33_')] ibd.apply(lambda row: row.astype(str).str.contains('-1').any(), axis=1) ibd2 = ibd.fillna(0) ibd2 = ibd2.set_index('Unnamed: 0') ibd3 = ibd2.apply(pd.to_numeric) ibd3 = ibd3.where(ibd3 <= 0, 1) ibd3 = ibd3.where(ibd3 >= 0, 0) #Check if there any remaining NaNs (-1) ibd3[ibd3.eq(-1).any(1)] #Save ibd3.to_pickle("datasetspandas/dutch_export_transposed_ibd_binary.pkl") #PCA import pandas as pd import numpy as np from sklearn.decomposition import PCA #Read data data = pd.read_pickle("datasetspandas/dutch_export_transposed_ibd_binary.pkl") #Selection of prevalent features, removal of antibodies that are present in less than 5% of samples def Prevalence(Series): Prev = Series.sum()/Series.count() return(Prev) Prev_thresh = 0.05 print("Computing antibody prevalence") Prevalences = data.apply(Prevalence, axis=0) Vector_keep = Prevalences > Prev_thresh #True/False vector of the features with prevalence > 5% data_f = data[Vector_keep.index[Vector_keep]] #Removal of columns that do not pass the prevalence threshold #Perform PCA print("Computing PCA") pca = PCA(n_components=10) #specify no of principal components pca.fit(data_f) Egenvectors = pca.components_ Explained = pca.explained_variance_ratio_ * 100 #Percentage variance explained Explained = [round(Explained[0],1)], round(Explained[1],1) PCs = pca.transform(data_f) #Compute PCs using the eigenvectors calculated in the PCA function Eigenvectors = Egenvectors.T Eigenvectors = pd.DataFrame(Eigenvectors,columns=["Load_PC1", "Load_PC2", "Load_PC3", "Load_PC4", "Load_PC5", "Load_PC6", "Load_PC7", "Load_PC8", "Load_PC9", "Load_PC10"]) Eigenvectors["Probe"] = data_f.columns #import sample info metadata = pd.read_excel("datasetspandas/Metadata IBD cohort_Arno_updated_aug2021.xlsx") metadata.set_index('Sample_id_WIS') #Creating a pandas dataframe with the PCs, IDs and cohort info PCs = pd.DataFrame(PCs,columns=["PC1", "PC2", "PC3", "PC4", "PC5", "PC6", "PC7", "PC8", "PC9", "PC10"]) PCs.index = data_f.index data_f.index.names = ["Sample_id_WIS"] PCs_merged = PCs.merge(metadata, on=["Sample_id_WIS"]) #In-between: examining loading factors of PCs loadingfactors = pd.read_csv("datasetspandas/Loadings_PCIBD.csv") loadingfactors.sort_values(by='Load_PC1', ascending=False) proteindata = pd.read_csv("datasetspandas/df_info_AT.csv") proteindata = proteindata.rename({'Unnamed: 0': 'Probe'}, axis=1) loadingfactorswithproteins = loadingfactors.merge(proteindata, on=["Probe"]) del loadingfactorswithproteins[{'aa_seq', 'len_seq', 'pos', 'is_pos_cntrl', 'is_neg_cntrl', 'is_phage', 'is_influenza', 'is_allergens', 'is_genome_editing', 'IEDB_DOIDs', 'IEDB_comments', 'IEDB_organism_name', 'IEDB_parent_species', 'is_rand_cntrl', 'is_VFDB', 'is_patho_strain', 'is_IgA_coated_strain', 'is_probio_strain', 'bac_src', 'is_gut_microbiome', 'Unnamed: 0'}] loadingfactorswithproteins.to_excel("datasetspandas/loadingfactorsIBDcohort.xlsx") #Visualization of loading factors sns.set(rc={'figure.figsize':(11.7,8.27)}, font_scale = 1.5) sns.set(rc={"figure.dpi":300, 'savefig.dpi':300}) sns.set_style("white") Plot = sns.scatterplot(x="Load_PC1", y="Load_PC2", data=loadingfactors) #Add % of variance explained by the PC in each axis Plot.set(xlabel="Load_PC1({N}%)".format(N=str(Explained[0])) , ylabel ="Load_PC2({N}%)".format(N=str(Explained[1]))) Plot.figure.savefig("datasetspandas/PCAIBD-loadingfactors.png") #Clustering algorithm (KMeans). As visual inspection of PCA seems to indicate two major clusters, set k to 2 print("2-means clustering algorithm") from sklearn.cluster import KMeans kmeans = KMeans(n_clusters=2, random_state=0).fit(data_f) Clusters = kmeans.labels_ #Adding clusters to dataframe Clusters = pd.DataFrame(Clusters,columns=["Cluster"]) PCs_merged =
pd.concat([PCs_merged, Clusters],axis=1)
pandas.concat
""" Classes for porfolio construction """ import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from numpy.linalg import inv, eig from scipy.optimize import minimize import scipy.cluster.hierarchy as sch from quantfin.statistics import cov2corr class HRP(object): """ Implements Hierarchical Risk Parity """ def __init__(self, cov, corr=None, method='single', metric='euclidean'): """ Combines the assets in `data` using HRP returns an object with the following attributes: - 'cov': covariance matrix of the returns - 'corr': correlation matrix of the returns - 'sort_ix': list of sorted column names according to cluster - 'link': linkage matrix of size (N-1)x4 with structure Y=[{y_m,1 y_m,2 y_m,3 y_m,4}_m=1,N-1]. At the i-th iteration, clusters with indices link[i, 0] and link[i, 1] are combined to form cluster n+1. A cluster with an index less than n corresponds to one of the original observations. The distance between clusters link[i, 0] and link[i, 1] is given by link[i, 2]. The fourth value link[i, 3] represents the number of original observations in the newly formed cluster. - 'weights': final weights for each asset :param data: pandas DataFrame where each column is a series of returns :param method: any method available in scipy.cluster.hierarchy.linkage :param metric: any metric available in scipy.cluster.hierarchy.linkage """ # TODO include detoning as an optional input assert isinstance(cov, pd.DataFrame), "input 'cov' must be a pandas DataFrame" self.cov = cov if corr is None: self.corr = cov2corr(cov) else: assert isinstance(corr, pd.DataFrame), "input 'corr' must be a pandas DataFrame" self.corr = corr self.method = method self.metric = metric self.link = self._tree_clustering(self.corr, self.method, self.metric) self.sort_ix = self._get_quasi_diag(self.link) self.sort_ix = self.corr.index[self.sort_ix].tolist() # recover labels self.sorted_corr = self.corr.loc[self.sort_ix, self.sort_ix] # reorder correlation matrix self.weights = self._get_recursive_bisection(self.cov, self.sort_ix) # TODO self.cluster_nember = sch.fcluster(self.link, t=5, criterion='maxclust') @staticmethod def _tree_clustering(corr, method, metric): dist = np.sqrt((1 - corr)/2) link = sch.linkage(dist, method, metric) return link @staticmethod def _get_quasi_diag(link): link = link.astype(int) sort_ix = pd.Series([link[-1, 0], link[-1, 1]]) num_items = link[-1, 3] while sort_ix.max() >= num_items: sort_ix.index = range(0, sort_ix.shape[0]*2, 2) # make space df0 = sort_ix[sort_ix >= num_items] # find clusters i = df0.index j = df0.values - num_items sort_ix[i] = link[j, 0] # item 1 df0 = pd.Series(link[j, 1], index=i+1) sort_ix = sort_ix.append(df0) # item 2 sort_ix = sort_ix.sort_index() # re-sort sort_ix.index = range(sort_ix.shape[0]) # re-index return sort_ix.tolist() def _get_recursive_bisection(self, cov, sort_ix): w = pd.Series(1, index=sort_ix, name='HRP') c_items = [sort_ix] # initialize all items in one cluster # c_items = sort_ix while len(c_items) > 0: # bi-section c_items = [i[j:k] for i in c_items for j, k in ((0, len(i) // 2), (len(i) // 2, len(i))) if len(i) > 1] for i in range(0, len(c_items), 2): # parse in pairs c_items0 = c_items[i] # cluster 1 c_items1 = c_items[i + 1] # cluster 2 c_var0 = self._get_cluster_var(cov, c_items0) c_var1 = self._get_cluster_var(cov, c_items1) alpha = 1 - c_var0 / (c_var0 + c_var1) w[c_items0] *= alpha # weight 1 w[c_items1] *= 1 - alpha # weight 2 return w def _get_cluster_var(self, cov, c_items): cov_ = cov.loc[c_items, c_items] # matrix slice w_ = self._get_ivp(cov_).reshape(-1, 1) c_var = np.dot(np.dot(w_.T, cov_), w_)[0, 0] return c_var @staticmethod def _get_ivp(cov): ivp = 1 / np.diag(cov) ivp /= ivp.sum() return ivp def plot_corr_matrix(self, save_path=None, show_chart=True, cmap='vlag', linewidth=0, figsize=(10, 10)): """ Plots the correlation matrix :param save_path: local directory to save file. If provided, saves a png of the image to the address. :param show_chart: If True, shows the chart. :param cmap: matplotlib colormap. :param linewidth: witdth of the grid lines of the correlation matrix. :param figsize: tuple with figsize dimensions. """ sns.clustermap(self.corr, method=self.method, metric=self.metric, cmap=cmap, figsize=figsize, linewidths=linewidth, col_linkage=self.link, row_linkage=self.link) if not (save_path is None): plt.savefig(save_path) if show_chart: plt.show() plt.close() def plot_dendrogram(self, show_chart=True, save_path=None, figsize=(8, 8), threshold=None): """ Plots the dendrogram using scipy's own method. :param show_chart: If True, shows the chart. :param save_path: local directory to save file. :param figsize: tuple with figsize dimensions. :param threshold: height of the dendrogram to color the nodes. If None, the colors of the nodes follow scipy's standard behaviour, which cuts the dendrogram on 70% of its height (0.7*max(self.link[:,2]). """ plt.figure(figsize=figsize) dn = sch.dendrogram(self.link, orientation='left', labels=self.sort_ix, color_threshold=threshold) plt.tight_layout() if not (save_path is None): plt.savefig(save_path) if show_chart: plt.show() plt.close() class MinVar(object): """ Implements Minimal Variance Portfolio """ # TODO review this class def __init__(self, data): """ Combines the assets in 'data' by finding the minimal variance portfolio returns an object with the following atributes: - 'cov': covariance matrix of the returns - 'weights': final weights for each asset :param data: pandas DataFrame where each column is a series of returns """ assert isinstance(data, pd.DataFrame), "input 'data' must be a pandas DataFrame" self.cov = data.cov() eq_cons = {'type': 'eq', 'fun': lambda w: w.sum() - 1} w0 = np.zeros(self.cov.shape[0]) res = minimize(self._port_var, w0, method='SLSQP', constraints=eq_cons, options={'ftol': 1e-9, 'disp': False}) if not res.success: raise ArithmeticError('Convergence Failed') self.weights = pd.Series(data=res.x, index=self.cov.columns, name='Min Var') def _port_var(self, w): return w.dot(self.cov).dot(w) class IVP(object): """ Implements Inverse Variance Portfolio """ # TODO review this class def __init__(self, data, use_std=False): """ Combines the assets in 'data' by their inverse variances returns an object with the following atributes: - 'cov': covariance matrix of the returns - 'weights': final weights for each asset :param data: pandas DataFrame where each column is a series of returns :param use_std: if True, uses the inverse standard deviation. If False, uses the inverse variance. """ assert isinstance(data, pd.DataFrame), "input 'data' must be a pandas DataFrame" assert isinstance(use_std, bool), "input 'use_variance' must be boolean" self.cov = data.cov() w = np.diag(self.cov) if use_std: w = np.sqrt(w) w = 1 / w w = w / w.sum() self.weights = pd.Series(data=w, index=self.cov.columns, name='IVP') class ERC(object): """ Implements Equal Risk Contribution portfolio """ # TODO review this class def __init__(self, data, vol_target=0.10): """ Combines the assets in 'data' so that all of them have equal contributions to the overall risk of the portfolio. Returns an object with the following atributes: - 'cov': covariance matrix of the returns - 'weights': final weights for each asset :param data: pandas DataFrame where each column is a series of returns """ self.cov = data.cov() self.vol_target = vol_target self.n_assets = self.cov.shape[0] cons = ({'type': 'ineq', 'fun': lambda w: vol_target - self._port_vol(w)}, # <= 0 {'type': 'eq', 'fun': lambda w: 1 - w.sum()}) w0 = np.zeros(self.n_assets) res = minimize(self._dist_to_target, w0, method='SLSQP', constraints=cons) self.weights = pd.Series(index=self.cov.columns, data=res.x, name='ERC') def _port_vol(self, w): return np.sqrt(w.dot(self.cov).dot(w)) def _risk_contribution(self, w): return w * ((w @ self.cov) / (self._port_vol(w)**2)) def _dist_to_target(self, w): return np.abs(self._risk_contribution(w) - np.ones(self.n_assets)/self.n_assets).sum() class PrincipalPortfolios(object): """ Implementation of the 'Principal Portfolios'. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3623983 """ def __init__(self, returns, signals): # TODO covariance shirinkage using Eigenvalue reconstruction """ [DESCRIPTION HERE OF ALL THE ATTRIBUTES] :param returns: :param signals: Should already have the appropriate lag. """ self.asset_names = list(returns.columns) self.asset_number = len(self.asset_names) self.returns, self.signals = self._trim_dataframes(returns, signals) self.pred_matrix = self._get_prediction_matrix() self.cov_returns = self._get_covariance_returns() # Principal Portfolios (PP) self.svd_left, self.svd_values, self.svd_right = self._get_svd() self.er_pp = self.svd_values.sum() # equivalent to tr(L @ PI) self.optimal_selection = self.svd_right @ self.svd_left.T # paper calls this L, proposition 3, pg 13 self.optimal_weights = self._get_optimal_weights() # Latent factor self.factor_weights = self._get_factor_weights() # Symmetry decompositions self.pi_s, self.pi_a = self._get_symmetry_separation(self.pred_matrix) # Principal Exposure Portfolios (PEP) - Symmetric Strategies self.pi_s_eigval, self.pi_s_eigvec = self._get_symmetric_eig() # Principal Alpha Portfolios (PAP) - Anti-symmetric Strategies self.pi_a_eigval, self.pi_a_eigvec = self._get_antisymmetric_eig() def get_pp(self, k=1): """ Gets the weights of k-th principal portfolio, shown in euqation 15 of the paper. :param k: int. The number of the desired principal portfolio. :return: tuple. First entry are the weights, second is the selection matrix and third is the singular value, which can be interpreted as the expected return (proposition 4). """ assert k <= self.asset_number, "'k' must not be bigger than then number of assets" uk = self.svd_left[:, k - 1].reshape((-1, 1)) vk = self.svd_right[:, k - 1].reshape((-1, 1)) s = self.signals.iloc[-1].values singval = self.svd_values[k - 1] lk = vk @ uk.T wk = (s.T @ lk) wk = pd.Series(index=self.asset_names, data=wk, name=f'PP {k}') return wk, lk, singval def get_pep(self, k=1, absolute=True): """ Gets the weights of k-th principal exposure portfolio (PEP), shown in equation 30 of the paper. :param k: int. The number of the desired principal exposure portfolio. :param absolute: If eigenvalues should be sorted on absolute value or not. Default is true, to get the PEPs in order of expected return. :return: tuple. First entry are the weights, second is the selection matrix and third is the eigenvalue, which can be interpreted as the expected return (proposition 6). """ assert k <= self.asset_number, "'k' must not be bigger than then number of assets" eigval, eigvec = self.pi_s_eigval, self.pi_s_eigvec s = self.signals.iloc[-1].values if absolute: signal = np.sign(eigval) eigvec = eigvec * signal # Switch the signals of the eigenvectors with negative eigenvalues eigval = np.abs(eigval) idx = eigval.argsort()[::-1] # re sort eigenvalues based on absolute value and the associated eigenvectors eigval = eigval[idx] eigvec = eigvec[:, idx] vsk = eigvec[:, k - 1].reshape((-1, 1)) # from equation 30 lsk = vsk @ vsk.T wsk = s.T @ lsk wsk = pd.Series(data=wsk, index=self.asset_names, name=f'PEP {k}') return wsk, lsk, eigval[k - 1] def get_pap(self, k=1): """ Gets the weights of k-th principal alpha portfolio (PAP), shown in equation 35 of the paper. :param k: int. The number of the desired principal alpha portfolio. :return: tuple. First entry are the weights, second is the selection matrix and third is the eigenvalue times 2, which can be interpreted as the expected return (proposition 8). """ assert k <= self.asset_number/2, "'k' must not be bigger than then half of the number of assets" eigval, eigvec = self.pi_a_eigval, self.pi_a_eigvec s = self.signals.iloc[-1].values v = eigvec[:, k - 1].reshape((-1, 1)) x = v.real y = v.imag l = x @ y.T - y @ x.T w = s.T @ l w = pd.Series(data=w, index=self.asset_names, name=f'PAP {k}') return w, l, 2 * eigval[k - 1] def _get_prediction_matrix(self): size = self.returns.shape[0] # dev_mat = np.eye(size) - np.ones((size, size)) * (1 / size) pi = (1 / size) * (self.returns.values.T @ self.signals.values) return pi def _get_optimal_weights(self): s = self.signals.iloc[-1].values l = self.optimal_selection w = s.dot(l) # paper calls this S'L w = pd.Series(index=self.asset_names, data=w) return w def _get_svd(self): pi = self.pred_matrix u, sing_values, vt = np.linalg.svd(pi) return u, sing_values, vt.T def _get_covariance_returns(self): cov = self.returns.cov() return cov def _get_factor_weights(self): cov = self.cov_returns.values s = self.signals.iloc[-1].values factor_weights = ((s @ inv(cov) @ s)**(-1)) * (inv(cov) @ s) factor_weights =
pd.Series(data=factor_weights, index=self.asset_names, name='Factor Weights')
pandas.Series
import numpy as np import pickle as pkl import pandas as pd import os, nltk, argparse, json from gensim.models import Word2Vec from tensorflow.contrib.keras import preprocessing # Get embed_matrix(np.ndarray), word2index(dict) and index2word(dict). All of them including extra unknown word "<unk>" and padding word "<pad>", that is, returned size = param size + 2. # embedding_model: A pre-trained gensim.models.Word2Vec model. def build_emb_matrix_and_vocab(embedding_model, keep_in_dict=10000, embedding_size=50): # 0 th element is the default one for unknown words, and keep_in_dict+1 th element is used as padding. emb_matrix = np.zeros((keep_in_dict+2, embedding_size)) word2index = {} index2word = {} for k in range(1, keep_in_dict+1): word = embedding_model.wv.index2word[k-1] word2index[word] = k index2word[k] = word emb_matrix[k] = embedding_model[word] word2index['<unk>'] = 0 index2word[0] = '<unk>' word2index['<pad>'] = keep_in_dict+1 index2word[keep_in_dict+1] = '<pad>' return emb_matrix, word2index, index2word # Get an sentence (list of words) as list of index. All words change into lower form. def __sent2index(wordlist, word2index): wordlist = [word.lower() for word in wordlist] sent_index = [word2index[word] if word in word2index else 0 for word in wordlist] return sent_index # Read data from directory <data_dir>, return a list (text) of list (sent) of list (word index). def __gen_data_imdbv1(data_dir, word2index, forHAN): data = [] for filename in os.listdir(data_dir): file = os.path.join(data_dir, filename) with open(file) as f: content = f.readline() if forHAN: sent_list = nltk.sent_tokenize(content) sents_word = [nltk.word_tokenize(sent) for sent in sent_list] sents_index = [__sent2index(wordlist, word2index) for wordlist in sents_word] data.append(sents_index) else: word_list = nltk.word_tokenize(content) words_index = __sent2index(word_list, word2index) data.append(words_index) return data # Read data from directory <data_dir>, return a list (text) of list (sent) of list (word index). def __gen_data_scdata(data_file, word2index, forHAN, for_infer=False): data = [] label = [] with open(data_file, 'r') as f: lines = f.readlines() for line in lines: jsob = json.loads(line) if not for_infer: label.append(int(jsob['label'])) content = jsob['text'] if forHAN: sent_list = nltk.sent_tokenize(content) sents_word = [nltk.word_tokenize(sent) for sent in sent_list] sents_index = [__sent2index(wordlist, word2index) for wordlist in sents_word] data.append(sents_index) else: word_list = nltk.word_tokenize(content) words_index = __sent2index(word_list, word2index) data.append(words_index) return data, label # Pass in indexed dataset, padding and truncating to corresponding length in both text & sent level. # return data_formatted(after padding&truncating), text_lens(number of sents), text_sent_lens(number of words in each sents inside the text) def preprocess_text_HAN(data, max_sent_len, max_text_len, keep_in_dict=10000): text_lens = [] # how many sents in each text text_sent_lens = [] # a list of list, how many words in each no-padding sent data_formatted = [] # padded and truncated data for text in data: # 1. text_lens sent_lens = [len(sent) for sent in text] text_len = len(sent_lens) text_right_len = min(text_len, max_text_len) text_lens.append(text_right_len) # 2. text_sent_lens & data_formatted sent_right_lens = [min(sent_len, max_sent_len) for sent_len in sent_lens] text_formatted = preprocessing.sequence.pad_sequences(text, maxlen=max_sent_len, padding="post", truncating="post", value=keep_in_dict+1) # sent level's padding & truncating are both done, here are padding and truncating in text level below. lack_text_len = max_text_len - text_len if lack_text_len > 0: # padding sent_right_lens += [0]*lack_text_len extra_rows = np.full((lack_text_len, max_sent_len), keep_in_dict+1) # complete-paddinged sents text_formatted_right_len = np.append(text_formatted, extra_rows, axis=0) elif lack_text_len < 0: # truncating sent_right_lens = sent_right_lens[:max_text_len] row_index = [max_text_len+i for i in list(range(0, -lack_text_len))] text_formatted_right_len = np.delete(text_formatted, row_index, axis=0) else: # exactly, nothing to do text_formatted_right_len = text_formatted text_sent_lens.append(sent_right_lens) data_formatted.append(text_formatted_right_len) return data_formatted, text_lens, text_sent_lens # Pass in indexed dataset, padding and truncating to corresponding length in sent level. # return data_formatted(after padding&truncating), sent_lens(number of words inside the sent) def preprocess_text(data, max_sent_len, keep_in_dict=10000): # 1. sent_lens sent_lens = [] for sent in data: sent_len = len(sent) sent_right_len = min(sent_len, max_sent_len) sent_lens.append(sent_right_len) #2. data_formatted data_formatted = preprocessing.sequence.pad_sequences(data, maxlen=max_sent_len, padding="post", truncating="post", value=keep_in_dict+1) #print(type(data_formatted)) data_formatted = list(data_formatted) return data_formatted, sent_lens # do all things above and save. def imdbv1(working_dir="../data/aclImdb", forHAN=False): #============================================================ # 1. embedding matrix, word2index table, index2word table #============================================================ fname = os.path.join(working_dir, "imdb_embedding") if os.path.isfile(fname): embedding_model = Word2Vec.load(fname) else: print("please run gen_word_embeddings.py first to generate embeddings!") exit(1) print("generate word2index and index2word, get corresponding-sized embedding maxtrix...") emb_matrix, word2index, index2word = build_emb_matrix_and_vocab(embedding_model) #================================================================ # 2. indexed dataset: number/int representation, not string #================================================================ print("tokenizing and word-index-representing...") train_dir = os.path.join(working_dir, "train") train_pos_dir = os.path.join(train_dir, "pos") train_neg_dir = os.path.join(train_dir, "neg") test_dir = os.path.join(working_dir, "test") test_pos_dir = os.path.join(test_dir, "pos") test_neg_dir = os.path.join(test_dir, "neg") train_pos_data = __gen_data_imdbv1(train_pos_dir, word2index, forHAN) train_neg_data = __gen_data_imdbv1(train_neg_dir, word2index, forHAN) train_data = train_neg_data + train_pos_data test_pos_data = __gen_data_imdbv1(test_pos_dir, word2index, forHAN) test_neg_data = __gen_data_imdbv1(test_neg_dir, word2index, forHAN) test_data = test_neg_data + test_pos_data #================================ # 3. padding and truncating #================================ print("padding and truncating...") if forHAN: x_train, train_text_lens, train_text_sent_lens = preprocess_text_HAN(train_data, max_sent_length, max_text_length) x_test, test_text_lens, test_text_sent_lens = preprocess_text_HAN(test_data, max_sent_length, max_text_length) else: x_train, train_sent_lens = preprocess_text(train_data, max_sent_length) x_test, test_sent_lens = preprocess_text(test_data, max_sent_length) y_train = [0]*len(train_neg_data)+[1]*len(train_pos_data) y_test = [0]*len(test_neg_data)+[1]*len(test_pos_data) #=============== # 4. saving #=============== print("save word embedding matrix...") emb_filename = os.path.join(working_dir, "emb_matrix") pkl.dump([emb_matrix, word2index, index2word], open(emb_filename, "wb")) print("save data for training...") if forHAN: df_train = pd.DataFrame({'text':x_train, 'label':y_train, 'text_length':train_text_lens, 'sents_length':train_text_sent_lens}) else: df_train = pd.DataFrame({'text':x_train, 'label':y_train, 'text_length':train_sent_lens}) train_filename = os.path.join(working_dir, "train_df_file") df_train.to_pickle(train_filename) print("save data for testing...") if mode=="han": df_test = pd.DataFrame({'text':x_test, 'label':y_test, 'text_length':test_text_lens, 'sents_length':test_text_sent_lens}) else: df_test = pd.DataFrame({'text':x_test, 'label':y_test, 'text_length':test_sent_lens}) test_filename = os.path.join(working_dir, "test_df_file") df_test.to_pickle(test_filename) # do all things above and save. def scdata(working_dir="../data/sentence_consistency_data", forHAN=False): #============================================================ # 1. embedding matrix, word2index table, index2word table #============================================================ fname = os.path.join(working_dir, "scdata_embedding") if os.path.isfile(fname): embedding_model = Word2Vec.load(fname) else: print("please run gen_word_embeddings.py first to generate embeddings!") exit(1) print("generate word2index and index2word, get corresponding-sized embedding maxtrix...") emb_matrix, word2index, index2word = build_emb_matrix_and_vocab(embedding_model) #================================================================ # 2. indexed dataset: number/int representation, not string #================================================================ print("tokenizing and word-index-representing...") train_file = os.path.join(working_dir, "train_data") test_file = os.path.join(working_dir, "test_data") valid_file = os.path.join(working_dir, "valid_data") train_data, y_train = __gen_data_scdata(train_file, word2index, forHAN) test_data, _ = __gen_data_scdata(test_file, word2index, forHAN, for_infer=True) valid_data, y_valid = __gen_data_scdata(valid_file, word2index, forHAN) #================================ # 3. padding and truncating #================================ print("padding and truncating...") if forHAN: x_train, train_text_lens, train_text_sent_lens = preprocess_text_HAN(train_data, max_sent_length, max_text_length) x_test, test_text_lens, test_text_sent_lens = preprocess_text_HAN(test_data, max_sent_length, max_text_length) x_valid, valid_text_lens, valid_text_sent_lens = preprocess_text_HAN(valid_data, max_sent_length, max_text_length) else: x_train, train_sent_lens = preprocess_text(train_data, max_sent_length) x_test, test_sent_lens = preprocess_text(test_data, max_sent_length) x_valid, valid_sent_lens = preprocess_text(valid_data, max_sent_length) #=============== # 4. saving #=============== print("save word embedding matrix...") emb_filename = os.path.join(working_dir, "emb_matrix") pkl.dump([emb_matrix, word2index, index2word], open(emb_filename, "wb")) print("save data for training...") if forHAN: df_train = pd.DataFrame({'text':x_train, 'label':y_train, 'text_length':train_text_lens, 'sents_length':train_text_sent_lens}) else: df_train = pd.DataFrame({'text':x_train, 'label':y_train, 'text_length':train_sent_lens}) train_filename = os.path.join(working_dir, "train_df_file") df_train.to_pickle(train_filename) print("save data for testing...") if forHAN: df_test =
pd.DataFrame({'text':x_test, 'text_length':test_text_lens, 'sents_length':test_text_sent_lens})
pandas.DataFrame
from aniachi.systemUtils import Welcome as W from wsgiref.simple_server import make_server from pyramid.config import Configurator from pyramid.response import Response from pyramid.httpexceptions import HTTPFound from pyramid.response import FileResponse from pyramid.view import view_config from pyramid.httpexceptions import HTTPNotFound from fbprophet import Prophet from termcolor import colored import os import numpy as np import pandas as pd import pkg_resources import matplotlib.pyplot as plt import matplotlib from io import StringIO from io import BytesIO import xml.etree.ElementTree as et import pickle as pkl import base64 import traceback import datetime import openpyxl import setuptools import aniachi import socket import pyqrcode import argparse import textwrap port = 8080 file ='mx_us.csv' @view_config(route_name='hello', renderer='home.jinja2') def hello_world(request): return {'name': 'Running Server','port':port,'pyramid':pkg_resources.get_distribution('pyramid').version ,'numpy':np.__version__,'pandas':pd.__version__ ,'favicon':'aniachi_logo.png','matplotlib':matplotlib.__version__, 'fbprophet':pkg_resources.get_distribution('fbprophet').version,'openpyxl ':openpyxl.__version__,'setuptools':setuptools.__version__, 'py_common_fetch':pkg_resources.get_distribution('py-common-fetch').version,'host':socket.gethostbyname(socket.gethostname()), 'pyqrcode':pkg_resources.get_distribution('pyqrcode').version,'argparse':argparse.__version__,'pypng':pkg_resources.get_distribution('pypng').version } # # @view_config(route_name='entry') def entry_point(request): return HTTPFound(location='app/welcome') # # def getParamterOrdefault(d,k,v,valid): aux = v try: if (d[k] in valid): aux = d[k] except Exception as e: pass return aux # # def getIntParameter(d,k,v,r): aux=int(v) try: if isinstance(int(d[k]), int): if int(d[k]) in r: aux= int(d[k]) except Exception as e: pass return aux def getDataframe(): return pd.read_csv(os.path.join(os.getcwd(),file)) # # def getFilteredDataframe(): mx_peso = getDataframe() mx_peso.columns = ['date', 'mx_usd'] mx_peso.date = pd.to_datetime(mx_peso['date'], format='%Y-%m-%d') # remove dots mx_peso = mx_peso[mx_peso['mx_usd'] != '.'] mx_peso.mx_usd = mx_peso.mx_usd.astype(float) return mx_peso # # def getForecastData(days=120): mx_peso = getDataframe() mx_peso.columns = ['date', 'mx_usd'] mx_peso.date = pd.to_datetime(mx_peso['date'], format='%Y-%m-%d') # remove dots mx_peso = mx_peso[mx_peso['mx_usd'] != '.'] mx_peso.mx_usd = mx_peso.mx_usd.astype(float) df = pd.DataFrame.copy(mx_peso, deep=True) df.columns = ['ds', 'y'] prophet = Prophet(changepoint_prior_scale=0.15) prophet.fit(df) forecast = prophet.make_future_dataframe(periods=days, freq='D') forecast = prophet.predict(forecast) return prophet, forecast @view_config(route_name='dataset') def datasetServer(request): format = getParamterOrdefault(request.params,'format','default',['html','json','xml','serialized','csv','excel']) if (format=='csv'): df = getDataframe() s = StringIO() df.to_csv(s) r = Response(s.getvalue(), content_type='application/CSV', charset='UTF-8') elif (format=='json'): df = getDataframe() s = StringIO() df.to_json(s) r = Response(s.getvalue(), content_type='application/json', charset='UTF-8') elif (format=='xml'): df = getDataframe() root = et.Element('root') for i, row in df.iterrows(): data = et.SubElement(root, 'data') data.set('iter',str(i)) date = et.SubElement(data, 'date') value = et.SubElement(data, 'value') date.text = row[0] value.text = row[1] r = Response(et.tostring(root), content_type='application/xml', charset='UTF-8') elif (format=='html'): df = getDataframe() s = StringIO() df.to_html(s,index=True) r = Response(s.getvalue(), content_type='text/html', charset='UTF-8') elif (format=='serialized'): r = Response(base64.encodebytes(pkl.dumps(getDataframe())).decode('utf-8'), content_type='text/html', charset='UTF-8') elif (format == 'excel'): b= BytesIO() pd.ExcelWriter(b) getDataframe().to_excel(b) r = Response(b.getvalue(), content_type='application/force-download', content_disposition='attachment; filename=data.xls') else: r = Response('Bad paramters ' + str(request.params), content_type='text/html', charset='UTF-8') return r # # @view_config(route_name='forecast') def forecastServer(request): format = getParamterOrdefault(request.params, 'format', 'default', ['html', 'json', 'xml', 'serialized', 'csv', 'excel']) days = getIntParameter(request.params, 'days', -1, range(20, 301)) if days == -1 or format=='default': r = Response('Bad paramters ' + str(request.params), content_type='text/html', charset='UTF-8') else: if (format=='csv'): _ , df = getForecastData(days) s = StringIO() df.to_csv(s) r = Response(s.getvalue(), content_type='text/plain', charset='UTF-8') elif (format == 'html'): _ , df = getForecastData(days) s = StringIO() df.to_html(s, index=True) r = Response(s.getvalue(), content_type='text/html', charset='UTF-8') elif (format=='xml'): _ , df = getForecastData(days) root = et.Element('root') for i, row in df.iterrows(): data = et.SubElement(root, 'row') data.set('iter', str(i)) for head in df.columns: aux = et.SubElement(data, head) aux.text = str(row[head]) r = Response(et.tostring(root), content_type='text/xml', charset='UTF-8') elif (format=='json'): _ , df = getForecastData(days) s = StringIO() df.to_json(s) r = Response(s.getvalue(), content_type='text/plain', charset='UTF-8') elif (format == 'serialized'): _, df = getForecastData(days) r = Response(base64.encodebytes(pkl.dumps(df)).decode('utf-8'), content_type='text/html', charset='UTF-8') elif (format == 'excel'): b= BytesIO()
pd.ExcelWriter(b)
pandas.ExcelWriter
# 1.题出问题 # 什么样的人在泰坦尼克号中更容易存活? # 2.理解数据 # 2.1 采集数据 # https://www.kaggle.com/c/titanic # 2.2 导入数据 # 忽略警告提示 import warnings warnings.filterwarnings('ignore') # 导入处理数据包 import numpy as np import pandas as pd # 导入数据 # 训练数据集 train = pd.read_csv("./train.csv") # 测试数据集 test = pd.read_csv("./test.csv") # 显示所有列 pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) pd.set_option('max_colwidth', 100) # 训练数据891条 print('训练数据集:', train.shape, "\n", '测试数据集:', test.shape, sep='') rowNum_train = train.shape[0] rowNum_test = test.shape[0] print('kaggle训练数据集行数:', rowNum_train, '\n' 'kaggle测试数据集行数:', rowNum_test, sep ='') #合并数据集,方便同时对两个数据集进行清洗 full = train.append(test, ignore_index = True) print('合并后的数据集:', full.shape) ''' describe只能查看数据类型的描述统计信息,对于其他类型的数据不显示,比如字符串类型姓名(name),客舱号(Cabin) 这很好理解,因为描述统计指标是计算数值,所以需要该列的数据类型是数据 ''' # 2.3 查看数据集信息 # 查看数据 print(full.head()) # 获取数据类型列的描述统计信息 full.describe() # 查看每一列的数据类型,和数据总数 full.info() ''' 数据总共有1309行。 其中数据类型列:年龄(Age)、船舱号(Cabin)里面有缺失数据: 1)年龄(Age)里面数据总数是1046条,缺失了1309-1046=263,缺失率263/1309=20% 2)船票价格(Fare)里面数据总数是1308条,缺失了1条数据 字符串列: 1)登船港口(Embarked)里面数据总数是1307,只缺失了2条数据,缺失比较少 2)船舱号(Cabin)里面数据总数是295,缺失了1309-295=1014,缺失率=1014/1309=77.5%,缺失比较大 这为我们下一步数据清洗指明了方向,只有知道哪些数据缺失数据,我们才能有针对性的处理。 ''' # 3.数据清洗 # 3.1数据预处理 ''' 数据总共有1309行。 其中数据类型列:年龄(Age)、船舱号(Cabin)里面有缺失数据: 1)年龄(Age)里面数据总数是1046条,缺失了1309-1046=263,缺失率263/1309=20% 2)船票价格(Fare)里面数据总数是1308条,缺失了1条数据 对于数据类型,处理缺失值最简单的方法就是用平均数来填充缺失值 ''' print('处理前:') full.info() # 年龄(Age) full['Age'] = full['Age'].fillna(full['Age'].mean()) # 船票价格(Fare) full['Fare'] = full['Fare'].fillna(full['Fare'].mean()) print('处理好后:') full.info() # 检查数据处理是否正常 print(full.head()) ''' 总数据是1309 字符串列: 1)登船港口(Embarked)里面数据总数是1307,只缺失了2条数据,缺失比较少 2)船舱号(Cabin)里面数据总数是295,缺失了1309-295=1014,缺失率=1014/1309=77.5%,缺失比较大 ''' #登船港口(Embarked):查看里面数据长啥样 ''' 出发地点:S=英国南安普顿Southampton 途径地点1:C=法国 瑟堡市Cherbourg 途径地点2:Q=爱尔兰 昆士敦Queenstown ''' print(full['Embarked'].head()) ''' 分类变量Embarked,看下最常见的类别,用其填充 ''' print(full['Embarked'].value_counts()) ''' 从结果来看,S类别最常见。我们将缺失值填充为最频繁出现的值: S=英国南安普顿Southampton ''' full['Embarked'] = full['Embarked'].fillna( 'S' ) # 船舱号(Cabin):查看里面数据长啥样 print(full['Cabin'].head(), '\n') # 缺失数据比较多,船舱号(Cabin)缺失值填充为U,表示未知(Uknow) full['Cabin'] = full['Cabin'].fillna( 'U' ) # 检查数据处理是否正常 print(full.head(), '\n') # 查看最终缺失值处理情况,记住生成情况(Survived)这里一列是我们的标签, # 用来做机器学习预测的,不需要处理这一列 full.info() # 3.2 特征提取 # 3.2.1 数据分类 ''' 1.数值类型: 乘客编号(PassengerId),年龄(Age),船票价格(Fare),同代直系亲属人数(SibSp),不同代直系亲属人数(Parch) 2.时间序列:无 3.分类数据: 1)有直接类别的 乘客性别(Sex):男性male,女性female 登船港口(Embarked):出发地点S=英国南安普顿Southampton,途径地点1:C=法国 瑟堡市Cherbourg,出发地点2:Q=爱尔兰 昆士敦Queenstown 客舱等级(Pclass):1=1等舱,2=2等舱,3=3等舱 2)字符串类型:可能从这里面提取出特征来,也归到分类数据中 乘客姓名(Name) 客舱号(Cabin) 船票编号(Ticket) ''' full.info() # 3.2.1 分类数据:有直接类别的 # 乘客性别(Sex): 男性male,女性female # 登船港口(Embarked):出发地点S=英国南安普顿Southampton,途径地点1:C=法国 瑟堡市Cherbourg,出发地点2:Q=爱尔兰 昆士敦Queenstown # 客舱等级(Pclass):1=1等舱,2=2等舱,3=3等舱 # 性别 # 查看性别数据列 print(full['Sex'].head()) ''' 将性别的值映射为数值 男(male)对应数值1,女(female)对应数值0 ''' sex_mapDict = {'male' : 1, 'female' : 0} # map函数:对Series每个数据应用自定义的函数计算 full['Sex'] = full['Sex'].map(sex_mapDict) print(full.head()) # 登录港口(Embarked) ''' 登船港口(Embarked)的值是: 出发地点:S=英国南安普顿Southampton 途径地点1:C=法国 瑟堡市Cherbourg 途径地点2:Q=爱尔兰 昆士敦Queenstown ''' print(full['Embarked'].head()) # 存放提取后的特征 embarkedDf = pd.DataFrame() ''' 使用get_dummies进行one-hot编码,产生虚拟变量(dummy variables),列名前缀是Embarked ''' embarkedDf = pd.get_dummies(full['Embarked'], prefix='Embarked') # 添加one-hot编码产生的虚拟变量(dummy variables)到泰坦尼克号数据集full full = pd.concat([full, embarkedDf], axis = 1) ''' 因为已经使用登船港口(Embarked)进行了one-hot编码产生了它的虚拟变量(dummy variables) 所以这里把登船港口(Embarked)删掉 ''' full.drop('Embarked', axis=1, inplace=True) print(full.head()) ''' 上面drop删除某一列代码解释: 因为drop(name,axis=1)里面指定了name是哪一列,比如指定的是A这一列,axis=1表示按行操作。 那么结合起来就是把A列里面每一行删除,最终结果是删除了A这一列. 简单来说,使用drop删除某几列的方法记住这个语法就可以了:drop([列名1,列名2],axis=1) ''' # 客舱等级(Pclass) ''' 客舱等级(Pclass): 1=1等舱,2=2等舱,3=3等舱 ''' # 存放提取后的特征 pclassDf = pd.DataFrame() # 用get_dummies进行one-hot编码,列名前缀是Pclass pclassDf = pd.get_dummies(full['Pclass'], prefix= 'Pclass') print(pclassDf.head()) # 添加one-hot编码产生的虚拟变量(dummy variables)到泰坦尼克号数据集full full = pd.concat([full, pclassDf], axis=1) # 删除客舱等级(Pclass)这一列 full.drop('Pclass', axis=1, inplace=True) print(full.head()) # 3.2.1 分类类型:字符串类型 # 从姓名中提取头衔 ''' 查看姓名这一列长啥样 注意到在乘客名字(Name)中,有一个非常显著的特点: 乘客头衔每个名字当中都包含了具体的称谓或者说是头衔,将这部分信息提取出来后可以作为非常有用一个新变量,可以帮助我们进行预测。 例如: Braund, Mr. <NAME> Heikkinen, <NAME> <NAME>, <NAME> Peter, Master. <NAME> ''' print(full['Name'].head()) #练习从字符串中提取头衔,例如Mr #split用于字符串分割,返回一个列表 #看到姓名中'Braund, Mr. <NAME>',逗号前面的是“名”,逗号后面是‘头衔. 姓’ namel = 'Braund, Mr. <NAME>' ''' split用于字符串按分隔符分割,返回一个列表。这里按逗号分隔字符串 也就是字符串'Braund, Mr. <NAME>'被按分隔符,'拆分成两部分[Braund,Mr. Owen Harris] 你可以把返回的列表打印出来瞧瞧,这里获取到列表中元素序号为1的元素,也就是获取到头衔所在的那部分,即Mr. Owen Harris这部分 ''' # Mr. <NAME> str1 = namel.split(',')[1] ''' 继续对字符串Mr. <NAME>按分隔符'.'拆分,得到这样一个列表[Mr, Owen Harris] 这里获取到列表中元素序号为0的元素,也就是获取到头衔所在的那部分Mr ''' # Mr. str2 = str1.split(',')[0] # strip() 方法用于移除字符串头尾指定的字符(默认为空格) str3 = str2.strip() ''' 定义函数:从姓名中获取头衔 ''' def getTitle(name): str1=name.split( ',' )[1] #Mr. <NAME> str2=str1.split( '.' )[0]#Mr #strip() 方法用于移除字符串头尾指定的字符(默认为空格) str3=str2.strip() return str3 # 存放提取后的特征 titleDf = pd.DataFrame() # map函数:对Series每个数据应用自定义的函数计算 titleDf['Title'] = full['Name'].map(getTitle) print(titleDf.head()) ''' 定义以下几种头衔类别: Officer政府官员 Royalty王室(皇室) Mr已婚男士 Mrs已婚妇女 Miss年轻未婚女子 Master有技能的人/教师 ''' # 姓名中头衔字符串与定义头衔类别的映射关系 title_mapDict = { "Capt": "Officer", "Col": "Officer", "Major": "Officer", "Jonkheer": "Royalty", "Don": "Royalty", "Sir" : "Royalty", "Dr": "Officer", "Rev": "Officer", "the Countess":"Royalty", "Dona": "Royalty", "Mme": "Mrs", "Mlle": "Miss", "Ms": "Mrs", "Mr" : "Mr", "Mrs" : "Mrs", "Miss" : "Miss", "Master" : "Master", "Lady" : "Royalty" } # map函数:对Series每个数据应用自定义的函数计算 titleDf['Title'] = titleDf['Title'].map(title_mapDict) # # 使用get_dummies进行one-hot编码 # titleDf['Title'] = titleDf['Title'].map(title_mapDict) # 使用get_dummies 进行 one-hot编码 titleDf = pd.get_dummies(titleDf['Title']) print(titleDf.head()) # 添加one-hot编码产生的虚拟变量(dummy variables)到泰坦尼克号数据集full full = pd.concat([full, titleDf], axis=1) # 删除名字这一列 full.drop('Name', axis=1, inplace=True) print('删除名字这一列', full.shape) full.head() # 从客舱号中提取客舱类别 # 补充知识:匿名函数 ''' python 使用 lambda 来创建匿名函数。 所谓匿名,意即不再使用 def 语句这样标准的形式定义一个函数,预防如下: lambda 参数1,参数2:函数体或者表达式 ''' # 定义匿名函数:对两个数相加 sum = lambda a, b: a + b # 调用sum函数 print("相加后的值为:", sum(10, 20)) ''' 客舱号的首字母是客舱的类别 ''' # 查看客舱号的内容 print(full['Cabin'].head()) # 存放客舱号信息 cabinDf = pd.DataFrame() ''' 客场号的类别值是首字母,例如: C85 类别映射为首字母C ''' full['Cabin'] = full['Cabin'].map(lambda c : c[0]) # 使用get_dummies进行one-hot编码,列名前缀是Cabin cabinDf =
pd.get_dummies(full['Cabin'], prefix='Cabin')
pandas.get_dummies
import pandas as pd #import seaborn as sns from matplotlib import pyplot as plt import pdb import glob def get_all_dataframe( data_source='election_reporting_dot_com', state='mi', year=2020, ): county_folder_list = [ x.split('/')[-2] for x in glob.glob( './election_reporting_com/2020/mi/*/' ) ] state = 'mi' df_dict_all = { 'party': pd.DataFrame(), 'president': pd.DataFrame(), 'senator': pd.DataFrame() } for county in county_folder_list: print(f'getting dataframe for county {county}') df_dict = get_county_dataframe( data_source='election_reporting_dot_com', state='mi', county=county, year=2020 ) # pdb.set_trace() for x in df_dict.keys(): if x in df_dict_all: df_dict_all[x] = pd.concat( [df_dict_all[x], df_dict[x]], ignore_index=True ) else: print(f'key {x} not recognized. precess c to continue') pdb.set_trace() return df_dict_all def get_county_dataframe( data_source='election_reporting_dot_com', state='mi', county='kent', year=2020 ): ''' get data pandas dataframe dictionary given state, conuty, year and data source ''' if data_source == 'election_reporting_dot_com': file_list = glob.glob( f'./election_reporting_com/{year}/{state}/{county}/*cleaned.csv' ) df_dict = {} # df_dict_keys = [ # x.split('/')[-1].split('.')[0] for x in file_list # ] df_dict_keys = ['party', 'president', 'senator'] # for x, y in zip(df_dict_keys, file_list): for y in file_list: print(f'reading from {y}') for x in df_dict_keys: if x in y: df_dict[x] = pd.read_csv(y) else: return None return df_dict def plot_president_vs_senator_all_counties( fig_counter_base=100, state='mi', save_figure=True, year=2020 ): fig_counter = fig_counter_base df_dict = get_all_dataframe() df_p = df_dict['president'] df_s = df_dict['senator'] # precincts = df_p['precinct'].unique() df_merge =
pd.merge(df_p, df_s, suffixes=('_p', '_s'), how='inner', on='precinct')
pandas.merge
"""Tools for generating and forecasting with ensembles of models.""" import datetime import numpy as np import pandas as pd import json from autots.models.base import PredictionObject from autots.models.model_list import no_shared from autots.tools.impute import fill_median horizontal_aliases = ['horizontal', 'probabilistic'] def summarize_series(df): """Summarize time series data. For now just df.describe().""" df_sum = df.describe(percentiles=[0.1, 0.25, 0.5, 0.75, 0.9]) return df_sum def mosaic_or_horizontal(all_series: dict): """Take a mosaic or horizontal model and return series or models. Args: all_series (dict): dict of series: model (or list of models) """ first_value = all_series[next(iter(all_series))] if isinstance(first_value, dict): return "mosaic" else: return "horizontal" def parse_horizontal(all_series: dict, model_id: str = None, series_id: str = None): """Take a mosaic or horizontal model and return series or models. Args: all_series (dict): dict of series: model (or list of models) model_id (str): name of model to find series for series_id (str): name of series to find models for Returns: list """ if model_id is None and series_id is None: raise ValueError( "either series_id or model_id must be specified in parse_horizontal." ) if mosaic_or_horizontal(all_series) == 'mosaic': if model_id is not None: return [ser for ser, mod in all_series.items() if model_id in mod.values()] else: return list(set(all_series[series_id].values())) else: if model_id is not None: return [ser for ser, mod in all_series.items() if mod == model_id] else: # list(set([mod for ser, mod in all_series.items() if ser == series_id])) return [all_series[series_id]] def BestNEnsemble( ensemble_params, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime: dict, prediction_interval: float = 0.9, ): """Generate mean forecast for ensemble of models. Args: ensemble_params (dict): BestN ensemble param dict should have "model_weights": {model_id: weight} where 1 is default weight per model forecasts (dict): {forecast_id: forecast dataframe} for all models same for lower_forecasts, upper_forecasts forecast_runtime (dict): dictionary of {forecast_id: timedelta of runtime} prediction_interval (float): metadata on interval """ startTime = datetime.datetime.now() forecast_keys = list(forecasts.keys()) model_weights = dict(ensemble_params.get("model_weights", {})) ensemble_params['model_weights'] = model_weights ensemble_params['models'] = { k: v for k, v in dict(ensemble_params.get('models')).items() if k in forecast_keys } model_count = len(forecast_keys) if model_count < 1: raise ValueError("BestN failed, no component models available.") sample_df = next(iter(forecasts.values())) columnz = sample_df.columns indices = sample_df.index model_divisor = 0 ens_df = pd.DataFrame(0, index=indices, columns=columnz) ens_df_lower = pd.DataFrame(0, index=indices, columns=columnz) ens_df_upper = pd.DataFrame(0, index=indices, columns=columnz) for idx, x in forecasts.items(): current_weight = float(model_weights.get(idx, 1)) ens_df = ens_df + (x * current_weight) # also .get(idx, 0) ens_df_lower = ens_df_lower + (lower_forecasts[idx] * current_weight) ens_df_upper = ens_df_upper + (upper_forecasts[idx] * current_weight) model_divisor = model_divisor + current_weight ens_df = ens_df / model_divisor ens_df_lower = ens_df_lower / model_divisor ens_df_upper = ens_df_upper / model_divisor ens_runtime = datetime.timedelta(0) for x in forecasts_runtime.values(): ens_runtime = ens_runtime + x ens_result = PredictionObject( model_name="Ensemble", forecast_length=len(ens_df.index), forecast_index=ens_df.index, forecast_columns=ens_df.columns, lower_forecast=ens_df_lower, forecast=ens_df, upper_forecast=ens_df_upper, prediction_interval=prediction_interval, predict_runtime=datetime.datetime.now() - startTime, fit_runtime=ens_runtime, model_parameters=ensemble_params, ) return ens_result def DistEnsemble( ensemble_params, forecasts_list, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime, prediction_interval, ): """Generate forecast for distance ensemble.""" # handle that the inputs are now dictionaries forecasts = list(forecasts.values()) lower_forecasts = list(lower_forecasts.values()) upper_forecasts = list(upper_forecasts.values()) forecasts_runtime = list(forecasts_runtime.values()) first_model_index = forecasts_list.index(ensemble_params['FirstModel']) second_model_index = forecasts_list.index(ensemble_params['SecondModel']) forecast_length = forecasts[0].shape[0] dis_frac = ensemble_params['dis_frac'] first_bit = int(np.ceil(forecast_length * dis_frac)) second_bit = int(np.floor(forecast_length * (1 - dis_frac))) ens_df = ( forecasts[first_model_index] .head(first_bit) .append(forecasts[second_model_index].tail(second_bit)) ) ens_df_lower = ( lower_forecasts[first_model_index] .head(first_bit) .append(lower_forecasts[second_model_index].tail(second_bit)) ) ens_df_upper = ( upper_forecasts[first_model_index] .head(first_bit) .append(upper_forecasts[second_model_index].tail(second_bit)) ) id_list = list(ensemble_params['models'].keys()) model_indexes = [idx for idx, x in enumerate(forecasts_list) if x in id_list] ens_runtime = datetime.timedelta(0) for idx, x in enumerate(forecasts_runtime): if idx in model_indexes: ens_runtime = ens_runtime + forecasts_runtime[idx] ens_result_obj = PredictionObject( model_name="Ensemble", forecast_length=len(ens_df.index), forecast_index=ens_df.index, forecast_columns=ens_df.columns, lower_forecast=ens_df_lower, forecast=ens_df, upper_forecast=ens_df_upper, prediction_interval=prediction_interval, predict_runtime=datetime.timedelta(0), fit_runtime=ens_runtime, model_parameters=ensemble_params, ) return ens_result_obj def horizontal_classifier(df_train, known: dict, method: str = "whatever"): """ CLassify unknown series with the appropriate model for horizontal ensembling. Args: df_train (pandas.DataFrame): historical data about the series. Columns = series_ids. known (dict): dict of series_id: classifier outcome including some but not all series in df_train. Returns: dict. """ # known = {'EXUSEU': 'xx1', 'MCOILWTICO': 'xx2', 'CSUSHPISA': 'xx3'} columnz = df_train.columns.tolist() X = summarize_series(df_train).transpose() X = fill_median(X) known_l = list(known.keys()) unknown = list(set(columnz) - set(known_l)) Xt = X.loc[known_l] Xf = X.loc[unknown] Y = np.array(list(known.values())) from sklearn.naive_bayes import GaussianNB clf = GaussianNB() clf.fit(Xt, Y) result = clf.predict(Xf) result_d = dict(zip(Xf.index.tolist(), result)) # since this only has estimates, overwrite with known that includes more final = {**result_d, **known} # temp = pd.DataFrame({'series': list(final.keys()), 'model': list(final.values())}) # temp2 = temp.merge(X, left_on='series', right_index=True) return final def mosaic_classifier(df_train, known): """CLassify unknown series with the appropriate model for mosaic ensembles.""" known.index.name = "forecast_period" upload = pd.melt( known, var_name="series_id", value_name="model_id", ignore_index=False, ).reset_index(drop=False) upload['forecast_period'] = upload['forecast_period'].astype(int) missing_cols = df_train.columns[ ~df_train.columns.isin(upload['series_id'].unique()) ] if not missing_cols.empty: forecast_p = np.arange(upload['forecast_period'].max() + 1) p_full = np.tile(forecast_p, len(missing_cols)) missing_rows = pd.DataFrame( { 'forecast_period': p_full, 'series_id': np.repeat(missing_cols.values, len(forecast_p)), 'model_id': np.nan, }, index=None if len(p_full) > 1 else [0], ) upload = pd.concat([upload, missing_rows]) X = fill_median( (summarize_series(df_train).transpose()).merge( upload, left_index=True, right_on="series_id" ) ) X.set_index("series_id", inplace=True) # .drop(columns=['series_id'], inplace=True) to_predict = X[X['model_id'].isna()].drop(columns=['model_id']) X = X[~X['model_id'].isna()] Y = X['model_id'] Xf = X.drop(columns=['model_id']) # from sklearn.linear_model import RidgeClassifier # from sklearn.naive_bayes import GaussianNB from sklearn.ensemble import RandomForestClassifier clf = RandomForestClassifier() clf.fit(Xf, Y) predicted = clf.predict(to_predict) result = pd.concat( [to_predict.reset_index(drop=False), pd.Series(predicted, name="model_id")], axis=1, ) cols_needed = ['model_id', 'series_id', 'forecast_period'] final = pd.concat( [X.reset_index(drop=False)[cols_needed], result[cols_needed]], sort=True, axis=0 ) final['forecast_period'] = final['forecast_period'].astype(str) final = final.pivot(values="model_id", columns="series_id", index="forecast_period") try: final = final[df_train.columns] if final.isna().to_numpy().sum() > 0: raise KeyError("NaN in mosaic generalization") except KeyError as e: raise ValueError( f"mosaic_classifier failed to generalize for all columns: {repr(e)}" ) return final def generalize_horizontal( df_train, known_matches: dict, available_models: list, full_models: list = None ): """generalize a horizontal model trained on a subset of all series Args: df_train (pd.DataFrame): time series data known_matches (dict): series:model dictionary for some to all series available_models (dict): list of models actually available full_models (dict): models that are available for every single series """ org_idx = df_train.columns org_list = org_idx.tolist() # remove any unnecessary series known_matches = {ser: mod for ser, mod in known_matches.items() if ser in org_list} # here split for mosaic or horizontal if mosaic_or_horizontal(known_matches) == "mosaic": # make it a dataframe mosaicy = pd.DataFrame.from_dict(known_matches) # remove unavailable models mosaicy = pd.DataFrame(mosaicy[mosaicy.isin(available_models)]) # so we can fill some missing by just using a forward fill, should be good enough mosaicy.fillna(method='ffill', limit=5, inplace=True) mosaicy.fillna(method='bfill', limit=5, inplace=True) if mosaicy.isna().any().any() or mosaicy.shape[1] != df_train.shape[1]: if full_models is not None: k2 = pd.DataFrame(mosaicy[mosaicy.isin(full_models)]) else: k2 = mosaicy.copy() final = mosaic_classifier(df_train, known=k2) return final.to_dict() else: return mosaicy.to_dict() else: # remove any unavailable models k = {ser: mod for ser, mod in known_matches.items() if mod in available_models} # check if any series are missing from model list if not k: raise ValueError("Horizontal template has no models matching this data!") # test if generalization is needed if len(set(org_list) - set(list(k.keys()))) > 0: # filter down to only models available for all # print(f"Models not available: {[ser for ser, mod in known_matches.items() if mod not in available_models]}") # print(f"Series not available: {[ser for ser in df_train.columns if ser not in list(known_matches.keys())]}") if full_models is not None: k2 = {ser: mod for ser, mod in k.items() if mod in full_models} else: k2 = k.copy() all_series_part = horizontal_classifier(df_train, k2) # since this only has "full", overwrite with known that includes more all_series = {**all_series_part, **k} else: all_series = known_matches return all_series def HorizontalEnsemble( ensemble_params, forecasts_list, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime, prediction_interval, df_train=None, prematched_series: dict = None, ): """Generate forecast for per_series ensembling.""" startTime = datetime.datetime.now() # this is meant to fill in any failures available_models = [mod for mod, fcs in forecasts.items() if fcs.shape[0] > 0] train_size = df_train.shape # print(f"running inner generalization with training size: {train_size}") full_models = [ mod for mod, fcs in forecasts.items() if fcs.shape[1] == train_size[1] ] if not full_models: print("No full models available for horizontal generalization!") full_models = available_models # hope it doesn't need to fill # print(f"FULLMODEL {len(full_models)}: {full_models}") if prematched_series is None: prematched_series = ensemble_params['series'] all_series = generalize_horizontal( df_train, prematched_series, available_models, full_models ) # print(f"ALLSERIES {len(all_series.keys())}: {all_series}") org_idx = df_train.columns forecast_df, u_forecast_df, l_forecast_df = ( pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), ) for series, mod_id in all_series.items(): try: c_fore = forecasts[mod_id][series] forecast_df = pd.concat([forecast_df, c_fore], axis=1) except Exception as e: print(f"Horizontal ensemble unable to add model {mod_id} {repr(e)}") # upper c_fore = upper_forecasts[mod_id][series] u_forecast_df = pd.concat([u_forecast_df, c_fore], axis=1) # lower c_fore = lower_forecasts[mod_id][series] l_forecast_df = pd.concat([l_forecast_df, c_fore], axis=1) # make sure columns align to original forecast_df = forecast_df.reindex(columns=org_idx) u_forecast_df = u_forecast_df.reindex(columns=org_idx) l_forecast_df = l_forecast_df.reindex(columns=org_idx) # combine runtimes try: ens_runtime = sum(list(forecasts_runtime.values()), datetime.timedelta()) except Exception: ens_runtime = datetime.timedelta(0) ens_result = PredictionObject( model_name="Ensemble", forecast_length=len(forecast_df.index), forecast_index=forecast_df.index, forecast_columns=forecast_df.columns, lower_forecast=l_forecast_df, forecast=forecast_df, upper_forecast=u_forecast_df, prediction_interval=prediction_interval, predict_runtime=datetime.datetime.now() - startTime, fit_runtime=ens_runtime, model_parameters=ensemble_params, ) return ens_result def HDistEnsemble( ensemble_params, forecasts_list, forecasts, lower_forecasts, upper_forecasts, forecasts_runtime, prediction_interval, ): """Generate forecast for per_series per distance ensembling.""" # handle that the inputs are now dictionaries forecasts = list(forecasts.values()) lower_forecasts = list(lower_forecasts.values()) upper_forecasts = list(upper_forecasts.values()) forecasts_runtime = list(forecasts_runtime.values()) id_list = list(ensemble_params['models'].keys()) mod_dic = {x: idx for idx, x in enumerate(forecasts_list) if x in id_list} forecast_length = forecasts[0].shape[0] dist_n = int(np.ceil(ensemble_params['dis_frac'] * forecast_length)) dist_last = forecast_length - dist_n forecast_df, u_forecast_df, l_forecast_df = ( pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), ) for series, mod_id in ensemble_params['series1'].items(): l_idx = mod_dic[mod_id] try: c_fore = forecasts[l_idx][series] forecast_df = pd.concat([forecast_df, c_fore], axis=1) except Exception as e: repr(e) print(forecasts[l_idx].columns) print(forecasts[l_idx].head()) # upper c_fore = upper_forecasts[l_idx][series] u_forecast_df = pd.concat([u_forecast_df, c_fore], axis=1) # lower c_fore = lower_forecasts[l_idx][series] l_forecast_df = pd.concat([l_forecast_df, c_fore], axis=1) forecast_df2, u_forecast_df2, l_forecast_df2 = ( pd.DataFrame(), pd.DataFrame(), pd.DataFrame(), ) for series, mod_id in ensemble_params['series2'].items(): l_idx = mod_dic[mod_id] try: c_fore = forecasts[l_idx][series] forecast_df2 = pd.concat([forecast_df2, c_fore], axis=1) except Exception as e: repr(e) print(forecasts[l_idx].columns) print(forecasts[l_idx].head()) # upper c_fore = upper_forecasts[l_idx][series] u_forecast_df2 =
pd.concat([u_forecast_df2, c_fore], axis=1)
pandas.concat
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Fri Sep 14 12:46:24 2018 @author: nmei """ import os working_dir = '' import pandas as pd pd.options.mode.chained_assignment = None from glob import glob import seaborn as sns from scipy import stats import numpy as np from statsmodels.formula.api import ols#,mixedlm from statsmodels.stats.anova import anova_lm from utils import eta_squared,omega_squared,resample_ttest,MCPConverter,post_processing from itertools import combinations sns.set_style('whitegrid') sns.set_context('poster') saving_dir = '../figures/' df_dir = '../results/for_spss' if not os.path.exists(df_dir): os.mkdir(df_dir) def thresholding(value): if value < 0.001: return "***" elif value < 0.01: return "**" elif value < 0.05: return "*" else: return "ns" def preparation(c): df_temp = {} for ((model,window,feature),df_sub) in c.groupby(['Models','Window','Attributes']): if 'Tree' in model: df_temp['{}_win{}_{}'.format(model,window,feature)] = df_sub['Values'].values df_temp = pd.DataFrame(df_temp) return df_temp """ Take the exponential of each of the coefficients to generate the odds ratios. This tells you how a 1 unit increase or decrease in a variable affects the odds of being high POS. """ if __name__ == '__main__': ########################################################################################################################################## pos_w = glob('../results/experiment_score/Pos_6*.csv') pos = pd.concat([pd.read_csv(f) for f in pos_w]) pos.to_csv('../results/Pos_6_features.csv',index=False) att_w = glob('../results/experiment_score/att_6*.csv') att = pd.concat([pd.read_csv(f) for f in att_w]) att.to_csv('../results/ATT_6_features.csv',index=False) df = pos.copy() ######################### compared against chance level ############### df = df[(0<df['window']) & (df['window']<5)] results = dict( model=[], window=[], pval=[], t=[], df=[], ) for (model,window),df_sub in df.groupby(['model','window']): df_sub = df_sub.sort_values('sub') t,pval = stats.ttest_1samp(df_sub['score'].values,0.5,) results['model'].append(model) results['window'].append(window) results['pval'].append(pval) results['t'].append(t) results['df'].append(len(df_sub)-1) results = pd.DataFrame(results) temp = [] for model, df_sub in results.groupby('model'): idx_sort = np.argsort(df_sub['pval']) for name in results.columns: df_sub[name] = df_sub[name].values[idx_sort] convert = MCPConverter(pvals=df_sub['pval'].values) df_pvals = convert.adjust_many() df_sub['ps_corrected'] = df_pvals['bonferroni'].values temp.append(df_sub) results = pd.concat(temp) results.sort_values(['model','window']).to_csv('../results/Pos_ttest_6_features (scipy).csv',index=False) ########################################################################## id_vars = ['model', 'score', 'sub', 'window',] value_vars =[ 'correct', 'awareness', 'confidence', 'RT_correct', 'RT_awareness', 'RT_confidence', ] df_post = post_processing(df,id_vars,value_vars) # c = df_post.groupby(['Subjects','Models','Window','Attributes']).mean().reset_index() c = df_post[df_post['Window']<5] df_temp = preparation(c) writer = pd.ExcelWriter(os.path.join(df_dir,'pos,6 features,feature importance.xlsx')) df_temp.to_excel(writer,'sheet1',index=False);writer.save() df_temp.to_csv(os.path.join(df_dir,'pos,6 features,feature importance.csv'),index=False) ###### ####### ######### df = att.copy() ######################### compared against chance level ############### df = df[(0<df['window']) & (df['window']<5)] results = dict( model=[], window=[], pval=[], t=[], df=[], ) for (model,window),df_sub in df.groupby(['model','window']): df_sub = df_sub.sort_values('sub') t,pval = stats.ttest_1samp(df_sub['score'].values,0.5,) results['model'].append(model) results['window'].append(window) results['pval'].append(pval) results['t'].append(t) results['df'].append(len(df_sub)-1) results = pd.DataFrame(results) temp = [] for model, df_sub in results.groupby('model'): idx_sort = np.argsort(df_sub['pval']) for name in results.columns: df_sub[name] = df_sub[name].values[idx_sort] convert = MCPConverter(pvals=df_sub['pval'].values) df_pvals = convert.adjust_many() df_sub['ps_corrected'] = df_pvals['bonferroni'].values temp.append(df_sub) results =
pd.concat(temp)
pandas.concat
# -*- coding: utf-8 -*- """Provide unified interfaces for optimization solutions for concentrations. Based on solution implementations in :mod:`cobra.core.solution` """ from cobra.util.solver import check_solver_status from numpy import array, exp, nan from optlang.interface import OPTIMAL from pandas import DataFrame, Series, option_context from mass.core.mass_configuration import MassConfiguration from mass.util.util import ( _check_kwargs, apply_decimal_precision, get_public_attributes_and_methods, ) MASSCONFIGURATION = MassConfiguration() class ConcSolution: """A unified interface to a :class:`.ConcSolver` optimization solution. Notes ----- The :class:`.ConcSolution` is meant to be constructed by :func:`get_concentration_solution` please look at that function to fully understand the :class:`ConcSolution` class. Attributes ---------- objective_value : float The (optimal) value for the objective function. status : str The solver status related to the solution. concentrations : pandas.Series Contains the metabolite concentrations which are the primal values of metabolite variables. concentration_reduced_costs : pandas.Series Contains metabolite reduced costs, which are the dual values of metabolites variables. Keqs : pandas.Series Contains the reaction equilibrium constant values, which are primal values of Keq variables. Keq_reduced_costs : pandas.Series Contains reaction equilibrium constant reduced costs, which are the dual values of Keq variables. shadow_prices : pandas.Series Contains reaction shadow prices (dual values of constraints). """ def __init__( self, objective_value, status, concentrations, Keqs, concentration_reduced_costs=None, Keq_reduced_costs=None, shadow_prices=None, ): """Initialize the ConcSolution.""" super(ConcSolution, self).__init__() # For solver objective value and status self.objective_value = objective_value self.status = status # For solver variables self.concentrations = concentrations self.Keqs = Keqs # For variable reduced costs self.concentration_reduced_costs = concentration_reduced_costs self.Keq_reduced_costs = Keq_reduced_costs # For constraint shadow prices self.shadow_prices = shadow_prices def concentrations_to_frame(self): """Get a :class:`pandas.DataFrame` of concs. and reduced costs.""" return DataFrame( { "concentrations": self.concentrations, "reduced_costs": self.concentration_reduced_costs, } ) def Keqs_to_frame(self): """Get a :class:`pandas.DataFrame` of Keqs and reduced costs.""" return DataFrame({"Keqs": self.Keqs, "reduced_costs": self.Keq_reduced_costs}) def to_frame(self): """Get a :class:`pandas.DataFrame` of variables and reduced costs.""" return DataFrame( { "variables": self.concentrations.append(self.Keqs), "reduced_costs": self.concentration_reduced_costs.append( self.Keq_reduced_costs ), } ) def _repr_html_(self): """HTML representation of the overview for the ConcSolution. Warnings -------- This method is intended for internal use only. """ if self.status == OPTIMAL: with option_context("display.max_rows", 10): html = ( "<strong><em>Optimal</em> solution with objective " "value {:.3f}</strong><br>{}".format( self.objective_value, self.to_frame()._repr_html_() ) ) else: html = "<strong><em>{}</em> solution</strong>".format(self.status) return html def __repr__(self): """Set string representation of the solution instance. Warnings -------- This method is intended for internal use only. """ if self.status != OPTIMAL: return "<Solution {0:s} at 0x{1:x}>".format(self.status, id(self)) return "<Solution {0:.3f} at 0x{1:x}>".format(self.objective_value, id(self)) def __getitem__(self, variable): """Return the value of a metabolite concentration or reaction Keq. Parameters ---------- variable : str A variable ID for a variable in the solution. Warnings -------- This method is intended for internal use only. """ try: return self.concentrations[str(variable)] except KeyError: pass try: return self.Keqs[str(variable)] except KeyError as e: raise ValueError( "{0!r} is not a str ID of a ConcSolution variable.".format(str(e)) ) def __dir__(self): """Override default dir() implementation to list only public items. Warnings -------- This method is intended for internal use only. """ return get_public_attributes_and_methods(self) get_primal_by_id = __getitem__ def get_concentration_solution( concentration_solver, metabolites=None, reactions=None, raise_error=False, **kwargs ): """Generate a solution representation of a :class:`.ConcSolver` state. Parameters --------- concentration_solver : ConcSolver The :class:`.ConcSolver` containing the mathematical problem solved. metabolites : list An iterable of :class:`.MassMetabolite` objects. Uses :attr:`.ConcSolver.included_metabolites` by default. reactions : list An iterable of :class:`.MassReaction` objects. Uses :attr:`.ConcSolver.included_reactions` by default. raise_error : bool Whether to raise an OptimizationError if solver status is not optimal. **kwargs decimal_precision : ``bool`` indicating whether to apply the :attr:`~.MassBaseConfiguration.decimal_precision` attribute of the :class:`.MassConfiguration` to the solution values. Default is ``False``. Returns ------- ConcSolution The solution of the optimization as a :class:`ConcSolution` object. """ kwargs = _check_kwargs( { "decimal_precision": False, }, kwargs, ) check_solver_status(concentration_solver.solver.status, raise_error=raise_error) # Get included metabolites and reactions metabolites = concentration_solver._get_included_metabolites(metabolites) reactions = concentration_solver._get_included_reactions(reactions) # Get variable IDs, metabolites, and reactions for Keqs and constraints metabolites = [m.id for m in metabolites if m.id in concentration_solver.variables] Keq_ids = [ r.Keq_str for r in reactions if r.Keq_str in concentration_solver.variables ] reactions = [r.id for r in reactions if r.id in concentration_solver.constraints] # Get metabolite and Keq primal values concs = array([concentration_solver.solver.primal_values[m] for m in metabolites]) Keqs = array([concentration_solver.solver.primal_values[Keq] for Keq in Keq_ids]) if concentration_solver.solver.is_integer: # Fill irrelevant arrays with nan reduced_concs = array([nan] * len(metabolites)) reduced_Keqs = array([nan] * len(Keq_ids)) shadow = array([nan] * len(reactions)) else: # Get reduced cost values and shadow prices reduced_concs = array( [concentration_solver.solver.reduced_costs[m] for m in metabolites] ) reduced_Keqs = array( [concentration_solver.solver.reduced_costs[Keq] for Keq in Keq_ids] ) shadow = array( [concentration_solver.solver.shadow_prices[r] for r in reactions] ) def transform_values(arr, **kwargs): """Transform array from logs to linear space and round if desired.""" if kwargs.get("decimal_precision"): arr = apply_decimal_precision(arr, MASSCONFIGURATION.decimal_precision) return arr objective_value = transform_values( exp(concentration_solver.solver.objective.value), **kwargs ) concs = transform_values(exp(concs), **kwargs) Keqs = transform_values(exp(Keqs), **kwargs) reduced_concs = transform_values(reduced_concs, **kwargs) reduced_Keqs = transform_values(reduced_Keqs, **kwargs) shadow = transform_values(shadow, **kwargs) return ConcSolution( objective_value, concentration_solver.solver.status, Series(concs, metabolites, name="concentrations"), Series(Keqs, Keq_ids, name="Keqs"), Series(reduced_concs, metabolites, name="concentration_reduced_costs"), Series(reduced_Keqs, Keq_ids, name="Keq_reduced_costs"),
Series(shadow, reactions, name="shadow_prices")
pandas.Series
# Copyright 2015 Novo Nordisk Foundation Center for Biosustainability, DTU. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This module contains algorithms based on linear programming techniques, including mixed-integer linear programming """ from __future__ import print_function import logging import warnings import numpy from IProgress.progressbar import ProgressBar from IProgress.widgets import Bar, Percentage from pandas import DataFrame from sympy import Add import cobra from cobra.util import fix_objective_as_constraint from cobra.exceptions import OptimizationError from cobra.flux_analysis import find_essential_reactions from cameo import config from cameo import ui from cameo.core.model_dual import convert_to_dual from cameo.core.strain_design import StrainDesignMethodResult, StrainDesignMethod, StrainDesign from cameo.core.target import ReactionKnockoutTarget from cameo.core.utils import get_reaction_for from cameo.flux_analysis.analysis import phenotypic_phase_plane, flux_variability_analysis from cameo.flux_analysis.simulation import fba from cameo.flux_analysis.structural import find_coupled_reactions_nullspace from cameo.util import reduce_reaction_set, decompose_reaction_groups from cameo.visualization.plotting import plotter logger = logging.getLogger(__name__) __all__ = ["OptKnock"] class OptKnock(StrainDesignMethod): """ OptKnock. OptKnock solves a bi-level optimization problem, finding the set of knockouts that allows maximal target production under optimal growth. Parameters ---------- model : cobra.Model A model to be used for finding optimal knockouts. Always set a non-zero lower bound on biomass reaction before using OptKnock. exclude_reactions : iterable of str or Reaction objects Reactions that will not be knocked out. Excluding reactions can give more realistic results and decrease running time. Essential reactions and exchanges are always excluded. remove_blocked : boolean (default True) If True, reactions that cannot carry flux (determined by FVA) will be removed from the model. This reduces running time significantly. fraction_of_optimum : If not None, this value will be used to constrain the inner objective (e.g. growth) to a fraction of the optimal inner objective value. If inner objective is not constrained manually this argument should be used. (Default: None) exclude_non_gene_reactions : If True (default), reactions that are not associated with genes will not be knocked out. This results in more practically relevant solutions as well as shorter running times. use_nullspace_simplification: Boolean (default True) Use a basis for the nullspace to find groups of reactions whose fluxes are multiples of each other. From each of these groups only 1 reaction will be included as a possible knockout Examples -------- >>> from cameo import models >>> from cameo.strain_design.deterministic import OptKnock >>> model = models.bigg.e_coli_core >>> model.reactions.Biomass_Ecoli_core_w_GAM.lower_bound = 0.1 >>> model.solver = "gurobi" # Using gurobi or cplex is recommended >>> optknock = OptKnock(model) >>> result = optknock.run(k=2, target="EX_ac_e", max_results=3) """ def __init__(self, model, exclude_reactions=None, remove_blocked=True, fraction_of_optimum=0.1, exclude_non_gene_reactions=True, use_nullspace_simplification=True, *args, **kwargs): super(OptKnock, self).__init__(*args, **kwargs) self._model = model.copy() self._original_model = model if "gurobi" in config.solvers: logger.info("Changing solver to Gurobi and tweaking some parameters.") if "gurobi_interface" not in model.solver.interface.__name__: model.solver = "gurobi" # The tolerances are set to the minimum value. This gives maximum precision. problem = model.solver.problem problem.params.NodeMethod = 1 # primal simplex node relaxation problem.params.FeasibilityTol = 1e-9 problem.params.OptimalityTol = 1e-3 problem.params.IntFeasTol = 1e-9 problem.params.MIPgapAbs = 1e-9 problem.params.MIPgap = 1e-9 elif "cplex" in config.solvers: logger.debug("Changing solver to cplex and tweaking some parameters.") if "cplex_interface" not in self._model.solver.interface.__name__: self._model.solver = "cplex" problem = self._model.solver.problem problem.parameters.mip.strategy.startalgorithm.set(1) problem.parameters.simplex.tolerances.feasibility.set(1e-8) problem.parameters.simplex.tolerances.optimality.set(1e-8) problem.parameters.mip.tolerances.integrality.set(1e-8) problem.parameters.mip.tolerances.absmipgap.set(1e-8) problem.parameters.mip.tolerances.mipgap.set(1e-8) else: warnings.warn("You are trying to run OptKnock with %s. This might not end well." % self._model.solver.interface.__name__.split(".")[-1]) if fraction_of_optimum is not None: fix_objective_as_constraint(self._model, fraction=fraction_of_optimum) if remove_blocked: self._remove_blocked_reactions() if exclude_reactions: # Convert exclude_reactions to reaction ID's exclude_reactions = [ r.id if isinstance(r, cobra.core.Reaction) else r for r in exclude_reactions ] for r_id in exclude_reactions: if r_id not in self._model.reactions: raise ValueError("Excluded reaction {} is not in the model".format(r_id)) else: exclude_reactions = [] if exclude_non_gene_reactions: exclude_reactions += [r.id for r in self._model.reactions if not r.genes] self._build_problem(exclude_reactions, use_nullspace_simplification) def _remove_blocked_reactions(self): fva_res = flux_variability_analysis(self._model, fraction_of_optimum=0) # FIXME: Iterate over the index only (reaction identifiers). blocked = [ self._model.reactions.get_by_id(reaction) for reaction, row in fva_res.data_frame.iterrows() if (round(row["lower_bound"], config.ndecimals) == round( row["upper_bound"], config.ndecimals) == 0) ] self._model.remove_reactions(blocked) def _reduce_to_nullspace(self, reactions): self.reaction_groups = find_coupled_reactions_nullspace(self._model) reaction_groups_keys = [set(group) for group in self.reaction_groups] reduced_reactions = reduce_reaction_set(reactions, reaction_groups_keys) return reduced_reactions def _build_problem(self, exclude_reactions, use_nullspace_simplification): logger.debug("Starting to formulate OptKnock problem") self.essential_reactions = find_essential_reactions(self._model, processes=1).union(self._model.boundary) if exclude_reactions: self.exclude_reactions = set.union( self.essential_reactions, set(self._model.reactions.get_by_id(r) for r in exclude_reactions) ) reactions = set(self._model.reactions) - self.exclude_reactions if use_nullspace_simplification: reactions = self._reduce_to_nullspace(reactions) else: self.reaction_groups = None self._make_dual() self._combine_primal_and_dual() logger.debug("Primal and dual successfully combined") y_vars = {} constrained_dual_vars = set() for reaction in reactions: if reaction not in self.exclude_reactions and reaction.lower_bound <= 0 <= reaction.upper_bound: y_var, constrained_vars = self._add_knockout_constraints(reaction) y_vars[y_var] = reaction constrained_dual_vars.update(constrained_vars) self._y_vars = y_vars primal_objective = self._model.solver.objective dual_objective = self._model.solver.interface.Objective.clone( self._dual_problem.objective, model=self._model.solver) reduced_expression = Add(*((c * v) for v, c in dual_objective.expression.as_coefficients_dict().items() if v not in constrained_dual_vars)) dual_objective = self._model.solver.interface.Objective(reduced_expression, direction=dual_objective.direction) optimality_constraint = self._model.solver.interface.Constraint( primal_objective.expression - dual_objective.expression, lb=0, ub=0, name="inner_optimality") self._model.solver.add(optimality_constraint) logger.debug("Inner optimality constrained") logger.debug("Adding constraint for number of knockouts") knockout_number_constraint = self._model.solver.interface.Constraint( Add(*y_vars), lb=len(y_vars), ub=len(y_vars) ) self._model.solver.add(knockout_number_constraint) self._number_of_knockouts_constraint = knockout_number_constraint def _make_dual(self): dual_problem = convert_to_dual(self._model.solver) self._dual_problem = dual_problem logger.debug("Dual problem successfully created") def _combine_primal_and_dual(self): primal_problem = self._model.solver dual_problem = self._dual_problem for var in dual_problem.variables: var = primal_problem.interface.Variable.clone(var) primal_problem.add(var) for const in dual_problem.constraints: const = primal_problem.interface.Constraint.clone(const, model=primal_problem) primal_problem.add(const) def _add_knockout_constraints(self, reaction): interface = self._model.solver.interface y_var = interface.Variable("y_" + reaction.id, type="binary") self._model.solver.add(interface.Constraint(reaction.flux_expression - 1000 * y_var, ub=0)) self._model.solver.add(interface.Constraint(reaction.flux_expression + 1000 * y_var, lb=0)) constrained_vars = [] if reaction.upper_bound != 0: dual_forward_ub = self._model.solver.variables["dual_" + reaction.forward_variable.name + "_ub"] self._model.solver.add(interface.Constraint(dual_forward_ub - 1000 * (1 - y_var), ub=0)) constrained_vars.append(dual_forward_ub) if reaction.lower_bound != 0: dual_reverse_ub = self._model.solver.variables["dual_" + reaction.reverse_variable.name + "_ub"] self._model.solver.add(interface.Constraint(dual_reverse_ub - 1000 * (1 - y_var), ub=0)) constrained_vars.append(dual_reverse_ub) return y_var, constrained_vars def run(self, max_knockouts=5, biomass=None, target=None, max_results=1, *args, **kwargs): """ Perform the OptKnock simulation Parameters ---------- target: str, Metabolite or Reaction The design target biomass: str, Metabolite or Reaction The biomass definition in the model max_knockouts: int Max number of knockouts allowed max_results: int Max number of different designs to return if found Returns ------- OptKnockResult """ # TODO: why not required arguments? if biomass is None or target is None: raise ValueError('missing biomass and/or target reaction') target = get_reaction_for(self._model, target, add=False) biomass = get_reaction_for(self._model, biomass, add=False) knockout_list = [] fluxes_list = [] production_list = [] biomass_list = [] loader_id = ui.loading() with self._model: self._model.objective = target.id self._number_of_knockouts_constraint.lb = self._number_of_knockouts_constraint.ub - max_knockouts count = 0 while count < max_results: try: solution = self._model.optimize(raise_error=True) except OptimizationError as e: logger.debug("Problem could not be solved. Terminating and returning " + str(count) + " solutions") logger.debug(str(e)) break knockouts = tuple(reaction for y, reaction in self._y_vars.items() if round(y.primal, 3) == 0) assert len(knockouts) <= max_knockouts if self.reaction_groups: combinations = decompose_reaction_groups(self.reaction_groups, knockouts) for kos in combinations: knockout_list.append({r.id for r in kos}) fluxes_list.append(solution.fluxes) production_list.append(solution.objective_value) biomass_list.append(solution.fluxes[biomass.id]) else: knockout_list.append({r.id for r in knockouts}) fluxes_list.append(solution.fluxes) production_list.append(solution.objective_value) biomass_list.append(solution.fluxes[biomass.id]) # Add an integer cut y_vars_to_cut = [y for y in self._y_vars if round(y.primal, 3) == 0] integer_cut = self._model.solver.interface.Constraint(Add(*y_vars_to_cut), lb=1, name="integer_cut_" + str(count)) if len(knockouts) < max_knockouts: self._number_of_knockouts_constraint.lb = self._number_of_knockouts_constraint.ub - len(knockouts) self._model.add_cons_vars(integer_cut) count += 1 ui.stop_loader(loader_id) return OptKnockResult(self._original_model, knockout_list, fluxes_list, production_list, biomass_list, target.id, biomass) class RobustKnock(StrainDesignMethod): pass class OptKnockResult(StrainDesignMethodResult): __method_name__ = "OptKnock" def __init__(self, model, knockouts, fluxes, production_fluxes, biomass_fluxes, target, biomass, *args, **kwargs): super(OptKnockResult, self).__init__(self._generate_designs(knockouts), *args, **kwargs) self._model = model self._knockouts = knockouts self._fluxes = fluxes self._production_fluxes = production_fluxes self._biomass_fluxes = biomass_fluxes self._target = target self._biomass = biomass self._processed_knockouts = None @staticmethod def _generate_designs(knockouts): designs = [] for knockout_design in knockouts: designs.append(StrainDesign([ReactionKnockoutTarget(ko for ko in knockout_design)])) return designs def _process_knockouts(self): progress = ProgressBar(maxval=len(self._knockouts), widgets=["Processing solutions: ", Bar(), Percentage()]) self._processed_knockouts = DataFrame(columns=["reactions", "size", self._target, "biomass", "fva_min", "fva_max"]) for i, knockouts in progress(enumerate(self._knockouts)): try: with self._model: [self._model.reactions.get_by_id(ko).knock_out() for ko in knockouts] fva = flux_variability_analysis(self._model, fraction_of_optimum=0.99, reactions=[self.target]) self._processed_knockouts.loc[i] = [knockouts, len(knockouts), self.production[i], self.biomass[i], fva.lower_bound(self.target), fva.upper_bound(self.target)] except OptimizationError: self._processed_knockouts.loc[i] = [numpy.nan for _ in self._processed_knockouts.columns] @property def knockouts(self): return self._knockouts @property def fluxes(self): return self._fluxes @property def production(self): return self._production_fluxes @property def biomass(self): return self._biomass_fluxes @property def target(self): return self._target def display_on_map(self, index=0, map_name=None, palette="YlGnBu"): with self._model: for ko in self.data_frame.loc[index, "reactions"]: self._model.reactions.get_by_id(ko).knock_out() fluxes = fba(self._model) fluxes.display_on_map(map_name=map_name, palette=palette) def plot(self, index=0, grid=None, width=None, height=None, title=None, palette=None, **kwargs): wt_production = phenotypic_phase_plane(self._model, objective=self._target, variables=[self._biomass.id]) with self._model: for ko in self.data_frame.loc[index, "reactions"]: self._model.reactions.get_by_id(ko).knock_out() mt_production = phenotypic_phase_plane(self._model, objective=self._target, variables=[self._biomass.id]) if title is None: title = "Production Envelope" dataframe =
DataFrame(columns=["ub", "lb", "value", "strain"])
pandas.DataFrame
""" Virtual File System File system abstraction with implementations for HDFS and local files """ from abc import ABC, abstractmethod import io import json import logging import os import pickle import re import tempfile from typing import Any, Generator, Dict, List, Tuple import urllib from functools import total_ordering import numpy as np import pandas as pd import pyarrow as pa import pyarrow.parquet as pq import yaml try: import pyorc except ModuleNotFoundError: pyorc = None from lvfs.stat import Stat @total_ordering class URL(ABC): # # Create URLs # """ Parsing and transformation of string-encoded URLs """ def __init__(self, raw: str): """ Create a new URL from a string. Prefer URL.to unless you know what you're doing Accepts ------- raw : str The raw string representation of the URL, to be parsed """ self.raw: str = raw def __hash__(self): """ Support __hash__ based on the raw Returns ------- int A uniformly-distributed but deterministic integral coimage corresponding to this URL's raw string representation """ # Needed to sensibly use it as a dict key return hash(self.raw) def __eq__(self, value): """ Support __eq__ based on the raw string Accepts ------- value : URL or str The URL to compare self to """ # __ne__ delegates to __eq__ so we don't need __ne__ return self.raw == value def __lt__(self, value): """ Comparison operators work on the raw string Accepts ------- value : URL or str The URL to compare self to """ # "@total_ordering class URL" handles the other operators return self.raw < value def __repr__(self) -> str: """ Show a URL in a user-readable format """ return f"URL.to({repr(self.raw)})" @staticmethod def to(path): """ Placeholder for the actual implementation in lvfs.__init__ This implemention exists only to satisfy type checking. Accepts ------- path : URL or str URL passed through, or string to be parsed into a URL Returns ------- URL A new object of a subclass of URL, dependent on protocol """ # Totally bogus, merely to use the parameter and satisfy flake8 return URL(path) # # Parse and modify URLs # def parse(self) -> urllib.parse.ParseResult: """ Parse the raw URL into parts using urllib Returns a ParseResult. Example: >>> urllib.parse.urlparse("derk://admin@uhhuh/local/thing;xyz?key=value&key2=value2#4") ParseResult( scheme='derk', netloc='admin@uhhuh', path='/local/thing', params='xyz', query='key=value&key2=value2', fragment='4' ) """ return urllib.parse.urlparse(self.raw) @property def protocol(self) -> str: """ Get the protocol of this url, or "file" if none """ return self.parse().scheme or "file" @property def dirname(self) -> str: """ Get the path part of the parent of this URL, if it exists """ return os.path.dirname(self.parse().path) @property def basename(self) -> str: """ Get the terminus of the path """ return os.path.basename(self.parse().path) @property def host(self) -> str: """ Return the hostname, or bucket name in the case of GCS """ return self.parse().netloc.split("@", 1)[-1] @property def user(self) -> str: """ Return the username to use for authentication. Useful for HDFS. """ fields = self.parse().netloc.split("@", 1) return fields[0] if len(fields) == 2 else None def with_user(self, user: str): """ Change the username used for authentication. Useful for HDFS. Accepts ------- user : str The username to associate with this URL Returns ------- URL A new URL with the specified username and everything else the same """ p = self.parse() fields = p.netloc.split("@", 1) p = p._replace(netloc=f"{user}@{fields[-1]}" if user else fields[-1]) return URL.to(p.geturl()) @property def path(self) -> str: """ Get just the path of this URL """ return self.parse().path @property def parent(self): """ Get the parent of this URL, as a URL (as opposed to dirname, which is a str) Returns ------- URL A new URL made from the parsed components. """ # Accessing a private method -- but it seems pretty straightforward... parts = self.parse() return URL.to(parts._replace(path=os.path.dirname(parts.path)).geturl()) def join(self, suffix): """ Return a new URL with another segment appended to the path Accepts ------- suffix : str The segment to append to this URL. This does not accept URLs, only strings. Returns ------- URL A new URL with the appended segment """ if isinstance(suffix, URL): raise TypeError( "Can't join URLs. URLs are always absolute. Join a URL and a string instead." ) return URL.to(self.raw.rstrip("/") + "/" + suffix) # # Abstract methods, *to be implemented by subclasses* # @abstractmethod async def read_binary(self) -> bytes: """ Read a file to a string of bytes """ raise NotImplementedError @abstractmethod async def write_binary(self, content: bytes, overwrite: bool = True): """ Create or replace a file with a string of bytes Accepts ------- content : bytes What to fill the target file with overwrite : bool Allow overwriting an existing file. Keep in mind that not every file system supports this concept, so with the specific implementations you plan to use. """ raise NotImplementedError @abstractmethod async def ls(self, recursive: bool = False): """ Get the list of files in this directory, if it is one Returns a list of URL objects. Results are always absolute. *DO NOT `root.join(file)`* Returns ------- List[URL] All the direct children, or all the recursive children """ raise NotImplementedError @abstractmethod async def stat(self) -> Stat: """ Get basic stat results for this file """ raise NotImplementedError @abstractmethod async def mkdir(self, ignore_if_exists: bool = False): """ Create an empty directory and parent directories recursively Accepts ------- ignore_if_exists: boolean: DEPRECATED Included for backward compatibility. Existing directories are always ignored. """ raise NotImplementedError def supports_permissions(self) -> bool: """ Some implementations, like blobs, do not always support permissions, If this method returns true, the file system supports permissions """ return True async def chmod(self, mode: int): """ Modify permissions of the file so it has the desired mode """ raise NotImplementedError @abstractmethod async def unlink(self, ignore_if_missing: bool = False): """ A lower-level method for removing one file or directory, to be overridden by specific URL implementations. The recursive rm may or may not be built on this. """ raise NotImplementedError def supports_properties(self) -> bool: """ Return whether this URL supports setting key-value properties. Most filesystems do not, but this allows you to handle it programmatically, in most cases without any IO. """ return False async def properties(self) -> Dict[str, List[str]]: """ Return the key-value properties associated with this URL. This is mostly for version control style filesystems. Most filesystems do not support this. """ return NotImplementedError async def add_properties(self, **properties): """ Set a key-value property associated with this URL This is mostly for version control style filesystems. Most filesystems do not support this. """ raise NotImplementedError async def delete_properties(self, names): """ Delete key-value properties from a URL. This is mostly for version control style filesystems. Most filesystems do not support this. """ raise NotImplementedError # # Default serde implementations # async def read_pickle(self) -> Any: """ Read a pickle from a file """ return pickle.loads(await self.read_binary()) async def write_pickle(self, obj: Any): """ Write a pickle to a file """ await self.write_binary(pickle.dumps(obj)) async def read_yaml(self, **load_args) -> Any: """ Read a YAML from a file """ return yaml.safe_load(await self.read_binary(), **load_args) async def write_yaml(self, obj: Any, **dump_args): """ Write a YAML to a file """ await self.write_binary(yaml.dump(obj, **dump_args).encode()) async def read_json(self, **load_args) -> Any: """ Read a JSON from a file """ return json.loads(await self.read_binary(), **load_args) async def write_json(self, obj: Any, **dump_args): """ Write a JSON to a file """ await self.write_binary(json.dumps(obj, **dump_args).encode()) async def read_text(self) -> str: """ Decode the binary data as UTF8 """ return (await self.read_binary()).decode() async def write_text(self, text: str): """ Encode the binary data as UTF8 """ await self.write_binary(text.encode()) async def _read_file(self, parser, *, recursive: bool = False): """ Read a file using the given parser. """ shards = [] partition_parser = re.compile(r"([^/=]+=[^/=]+)") if await self.isdir(): targets = sorted(await self.ls(recursive=recursive)) else: targets = [self] for child_url in targets: try: child_bytes = await child_url.read_binary() except IsADirectoryError: # That's fine, move on continue if child_bytes: # Some files are just empty sentinels shards.append( parser(io.BytesIO(child_bytes)).assign( **dict( s.split("=") for s in partition_parser.findall(child_url.dirname) ) ) ) return pd.concat(shards) @staticmethod def _as_numpy_column(num_rows, pa_schema, pa_col, decimal_as="float"): """ Convert a pyarrow column to a numpy column lossily downcasting Decimals to float64 or int64 Parameters ---------- pa_schema: a Pyarrow schema, as taken from a Pyarrow RecordBatch pa_col: the corresponding Pyarrow column, taken from the same RecordBatch decimal_as: one of "float", "int": if "float": apply the decimal scale to get the closest possible float if "int": return an int64 array in multiples of the scale. For example: for scale=4, the float 5.1234 is 51234 as int. Returns ------- a numpy array with the resulting data Notes ----- * Decimal arrays can be NULL, but NULLs will be replaced with 0 for integers, and with NaN for floats. """ if isinstance(pa_schema.type, pa.Decimal128Type): # High precisions are not supported # Pyarrow ORC files are stored as two streams, a bit-packed PRESENT stream, # and a decimal128 stream of only the elements where PRESENT=True # We will read the buffer on 128-bit signed ints directly, and since numpy # only supports 64 bit ints we will truncate them to that. # Somehow the pa_col.buffers() could contain None value. valid_buffer = ([x for x in pa_col.buffers() if x] or [None])[0] present = np.frombuffer(valid_buffer, dtype=np.uint8) present = np.unpackbits(present, count=num_rows).astype(bool) present_ints = np.frombuffer( pa_col.buffers()[1], dtype=np.int64 )[::2][:np.count_nonzero(present)] if decimal_as == "int": ints = np.zeros(num_rows, dtype=np.int64) ints[present] = present_ints return np.ma.masked_array(ints, mask=~present) elif decimal_as == "float": floats = np.full(num_rows, np.nan) floats[present] = present_ints * 10 ** -pa_schema.type.scale return np.ma.masked_array(floats, mask=~present) elif decimal_as == "decimal": raise NotImplementedError( "Decimal passthrough is not supported in this version of LVFS" ) else: raise NotImplementedError( "Decimals must be returned as either float or int" ) elif pa_schema.type == "date32[day]": # PyArrow has a bug where it reads 32 bit date types as 64 bit date types. # As a result, reading to a numpy array will fail because it isn't a multiple of the # element size. And when using pandas, it will have either half as many elements, with # the wrong values, or one less than half. In order to work around this error, we need # to request the buffers and the reread them with the correct format. valid_buffer = ([x for x in pa_col.buffers() if x] or [None])[0] present = np.frombuffer(valid_buffer, dtype=np.uint8) present = np.unpackbits(present, count=num_rows).astype(bool) present_ints = np.frombuffer( pa_col.buffers()[1], dtype=np.int32 ).astype('datetime64[D]')[:np.count_nonzero(present)] dates = np.zeros(num_rows, dtype='datetime64[D]') dates[present] = present_ints[:num_rows] return np.ma.masked_array(dates, mask=~present) else: try: return pa_col.to_numpy() # pyarrow.Array.to_numpy() doesn't support non-primitive types # until v0.17 (zero_copy_only=False), so use to_pandas() as a temp # workaround now, but need to check the content and consistency? # If we don't need the orc support on pyarrow, maybe we don't have # to stick with v0.13 anymore? except NotImplementedError: # to_pandas() will sometimes return numpy arrays already, which dont have to_numpy() pandas_obj = pa_col.to_pandas() if hasattr(pandas_obj, "to_numpy"): return pandas_obj.to_numpy() else: return pandas_obj async def read_csv(self, *, recursive: bool = False) -> pd.DataFrame: """ Read one or many csv files - If this is a directory, read all the csv files within it. - If recursive, read all csv descended from it ad infinitum """ return await self._read_file(pd.read_csv, recursive=recursive) async def read_parquet(self, *, recursive: bool = False) -> pd.DataFrame: """ Read one or many parquet files - If this is a directory, read all the parquet files within it. - If recursive, read all parquets descended from it ad infinitum """ return await self._read_file(pd.read_parquet, recursive=recursive) async def write_parquet(self, parq: pd.DataFrame, **_opts): """ Write the given Pandas dataframe to a parquet file """ table = pa.Table.from_pandas(parq) bytefile = io.BytesIO() pq.write_table(table, bytefile) await self.write_binary(bytefile.getvalue(), overwrite=True) async def read_orc(self, *, keep_columns: List[str] = None, recursive: bool = False, int_cols: str = 'Int' ) -> pd.DataFrame: """ Read a ORC file, or if this is a directory, read all the ORC files within. Accepts: keep_columns (keyword-only): List: list of columns to read recursive (keyword-only): bool: load all ORC files recursively int_cols (keyword-only): "Int" or "int" or "float": Whether to cast int columns as Pandas Int or int or float. Returns: a single dataframe concatenated from all ORC files Notes: - Files are visited in lexicographic order (handy for ACID tables) - Integer columns are returned as Pandas nullable Int types by default to account for missing values. Since neither python nor numpy support NaN in integer types, this is an option to have a more clear representation of missing values in the output. If np.nan representation is preferred, these columns can be cast to float types by setting the int_cols option. If you are sure no missing values exist in the data, you can set int_cols to 'int' and gain more memory efficiency. - It is uncommon to have decimal columns that do not contain decimals (i.e., they only have whole numbers). Because of this and also to be memory efficient, we return decimal types as float64. """ frames = [] async for frame in self.read_orc_stripes(keep_columns=keep_columns, recursive=recursive, int_cols=int_cols): frames.append(frame) return pd.concat(frames, ignore_index=True) async def read_orc_stripes(self, *, keep_columns=None, recursive=False, int_cols='Int' ) -> Generator[pd.DataFrame, None, None]: """ Read the stripes from all the ORC files in a folder, one stripe at a time. Accepts: recursive (keyword-only): bool: load all ORC files recursively keep_columns (keyword-only): List[str]: Only read these columns int_cols (keyword-only): "Int" or "int" or "float": Whether to cast int columns as Pandas Int or int or float. Yields: dataframes, one from each ORC stripe. Notes: - Files are visited in lexicographic order (handy for ACID tables) - It reads the whole *binary* file at once, like all URL methods. - It only decompresses the file one stripe at a time (reducing memory a lot) - It *does not* deserialize the stripe automatically - This is because in situations where you need this method, you probably also have a different deserialization in mind. - *If you want dataframes, just call .to_pandas() on the results* - It's a generator, so it reads but doesn't decompress until you use it - Consider using this for: - oversized ORCs made from concatenating a table - Hive ACID tables, which need oddball parsing and explode in Pandas """ if pyorc is None: raise RuntimeError("PyORC is required to read ORC files.") files = sorted(await self.ls(recursive=recursive)) if await self.isdir() else [self] # if given as input, select specified columns to read if keep_columns: column_names = keep_columns else: column_names = None # Define a mapping from ORC types to Numpy types but map ints to floats # so we can handle NaN in Numpy arrays. Later on we will convert these # float columns back to int types but we will take advantage of Pandas # nullable int type (kudos to them for saving the day where Python and # Numpy both failed!) types_map = { 'tinyint': '<f4', 'smallint': '<f4', 'int': '<f4', 'bigint': '<f8', 'float': '<f4', 'double': '<f8', 'decimal': '<f8', 'date': '<M8[D]', 'timestamp': '<M8[ns]', 'boolean': '?' } # if the user knows they have no missing values and wants 'int' then cast # to int if int_cols == 'int': types_map = { 'tinyint': '<i1', 'smallint': '<i2', 'int': '<i4', 'bigint': '<i8', 'float': '<f4', 'double': '<f8', 'decimal': '<f8', 'date': '<M8[D]', 'timestamp': '<M8[ns]', 'boolean': '?' } # Now build a mapping for data types of int columns mapping them to # nullable int type of Pandas. Notice that all these data types have to # start with a capital 'I' (i.e., Int64 as opposed to int64) ints_map = { 'tinyint': 'Int8', 'smallint': 'Int16', 'int': 'Int32', 'bigint': 'Int64' } # Keep track of runs for reading column names and dtypes since we only need # to do this once. While in theory it is possible to write files with # different schemas and columns into the same HDFS directory, in # practice this won't happen and all files have the same schema and # columns because they belong to the same table. So we need not repeat # this part. run_count = 0 # read ORC files in the directory one at a time for orc_url in files: try: orc_bytes = await orc_url.read_binary() except IsADirectoryError: # That's fine, move on continue if orc_bytes: # read the file into an ORC Reader object orc = pyorc.Reader(fileo=io.BytesIO(orc_bytes), column_names=column_names) if not run_count: # get the selected column names from schema cols = orc.selected_schema.fields # make sure columns are in the original order cols = [y for x, y in sorted([(orc.schema.find_column_id(c), c) for c in cols])] # get the orc types of selected columns orc_types = [f[1].name for f in orc.selected_schema.fields.items()] # Build the equivalent numpy types with ints cast to float # or int (Not Int) np_types_flts = [] for _ in orc_types: # if dtype is defined in the mapping then use it if _ in types_map.keys(): np_types_flts.append(types_map[_]) # otherwise define it as object type else: np_types_flts.append(np.object) # pack cols and np_types_flts into Numpy dtypes form np_dtypes_flts = list(zip(cols, np_types_flts)) # Find the columns with int types and build a dictionary of # their names and types ints_types = dict() # if the int_cols is set to Int otherwise we don't need it # for float or int. if int_cols == 'Int': for col, orc_type in zip(cols, orc_types): if 'int' in orc_type: ints_types.update({col: ints_map[orc_type]}) # Update the run_count so we won't do this again for other # files of the same table run_count += 1 for stripe_i in orc.iter_stripes(): # Read the stripe using Numpy dtypes (these are the ones # that map ints to floats) np_cols = np.array(stripe_i.read(), dtype=np_dtypes_flts) # Convert to Pandas DataFrame but before returning, convert # those ORC int columns from float type to Pandas nullable # int type so we get NA for missing int values if int_cols == 'Int': yield
pd.DataFrame(np_cols)
pandas.DataFrame
import os import requests import json import pandas as pd import time from datetime import datetime # Make sure the environment variable is already set up bearer_token = os.environ.get("BEARER_TOKEN") def extract_public_metrics(df_tweets): ''' Pulls out the `public_metrics` object and appends this to the Pandas dataframe as separate columns. ''' if 'public_metrics' in df_tweets.columns: public_metric_columns = ['retweet_count', 'reply_count', 'like_count', 'quote_count'] for public_metric in public_metric_columns: df_tweets[public_metric] = df_tweets['public_metrics'].apply(lambda x: x[public_metric]) df_tweets = df_tweets.drop(columns=['public_metrics']) return df_tweets def extract_referenced_tweets(df_tweets): ''' Pulls out the `referenced_tweets` object and appends this to the Pandas dataframe as separate columns. ''' if 'referenced_tweets' in df_tweets.columns: df_tweets['type'] = df_tweets['referenced_tweets'].apply(lambda x: x[0]['type'] if isinstance(x, list) else None) df_tweets['referenced_tweet_id'] = df_tweets['referenced_tweets'].apply(lambda x: x[0]['id'] if isinstance(x, list) else None) df_tweets = df_tweets.drop(columns=['referenced_tweets']) return df_tweets def clean_tweets_dataframe(df_tweets): ''' Clean up dataframe object obtained from REST API JSON ''' df_tweets = extract_public_metrics(df_tweets) df_tweets = extract_referenced_tweets(df_tweets) return df_tweets def tweets_url(ids:list): tweet_fields = 'id,author_id,public_metrics,conversation_id,created_at' #,in_reply_to_user_id #,entities user_fields = 'name,username,profile_image_url' expansions = 'author_id,referenced_tweets.id,in_reply_to_user_id,referenced_tweets.id.author_id' url = f"https://api.twitter.com/2/tweets?ids={','.join(ids)}"+\ f"&tweet.fields={tweet_fields}"+\ f"&user.fields={user_fields}"+\ f"&expansions={expansions}" return url def tweet_url(tweet_id:str): ''' Pulls data for an individual tweet. You can adjust ids to include a single Tweets or add to up to 100 comma-separated IDs ''' tweet_fields = "tweet.fields=lang,author_id" ids = "ids="+tweet_id url = "https://api.twitter.com/2/tweets?{}&{}".format(ids, tweet_fields) return url def search_url(query:str, max_results:int=100, start_time=None, end_time=None) -> str: ''' Generates endpoint for Twitter REST API: GET /2/tweets/search/recent Time format must be in RFC 3339 UTC timestamp eg `2022-01-04T00:00:00.000Z` ''' tweet_fields = 'id,author_id,public_metrics,conversation_id,created_at' #,in_reply_to_user_id #,entities user_fields = 'name,username,profile_image_url' expansions = 'author_id,referenced_tweets.id,in_reply_to_user_id,referenced_tweets.id.author_id' url = f"https://api.twitter.com/2/tweets/search/recent"+\ f"?query={query} -is:reply -is:quote"+\ f"&max_results={max_results}"+\ f"&tweet.fields={tweet_fields}"+\ f"&user.fields={user_fields}"+\ f"&expansions={expansions}" if start_time is not None: url+=f"&start_time={start_time}" if start_time is not None: url+=f"&end_time={end_time}" return url def replies_to_user_url(user_id:str, max_results:int=100) -> str: ''' Generates endpoint for Twitter REST API: GET /2/tweets/search/recent Gets all replies to an individual user_id ''' tweet_fields = 'id,author_id,public_metrics' user_fields = 'name,username,profile_image_url' expansions = 'author_id,referenced_tweets.id,in_reply_to_user_id,referenced_tweets.id.author_id' url = f"https://api.twitter.com/2/tweets/search/recent?query=to%3A{user_id}%20OR%20retweets_of%3A{user_id}"+\ f"&max_results={max_results}"+\ f"&tweet.fields={tweet_fields}"+\ f"&user.fields={user_fields}"+\ f"&expansions={expansions}" return url def liking_users_url(tweet_id): ''' ''' url = f"https://api.twitter.com/2/tweets/{tweet_id}/liking_users" return url def retweeting_users_url(tweet_id): url = f"https://api.twitter.com/2/tweets/{tweet_id}/retweeted_by" return url def user_url(user_id): url = f"https://api.twitter.com/2/users/{user_id}" return url def get_conversation_url(conversation_id, max_results=100): ''' Get all comments and replies related to this tweet ''' tweet_fields = 'id,author_id,public_metrics,conversation_id,created_at' #,in_reply_to_user_id #,entities user_fields = 'name,username,profile_image_url' expansions = 'author_id,referenced_tweets.id,in_reply_to_user_id,referenced_tweets.id.author_id' url = f"https://api.twitter.com/2/tweets/search/recent"+\ f"?query=conversation_id:{conversation_id}"+\ f"&max_results={max_results}"+\ f"&tweet.fields={tweet_fields}"+\ f"&user.fields={user_fields}"+\ f"&expansions={expansions}" return url def bearer_oauth(r): ''' Method required by bearer token authentication. ''' r.headers['Authorization'] = f"Bearer {bearer_token}" return r def connect_to_endpoint(url, wait_on_timeout=True): response = requests.request("GET", url, auth=bearer_oauth) epochtime = response.headers['x-rate-limit-reset'] rate_limit_reset_time = datetime.fromtimestamp(int(epochtime)) rate_limit_remaining = response.headers['x-rate-limit-remaining'] print(f"{response.status_code}\tx-rate-limit-remaining: {rate_limit_remaining}\tx-rate-limit-reset: {rate_limit_reset_time}") # If the REST API limit is reached, we can sleep until the limit is reset and then continue if response.status_code == 429 and wait_on_timeout == True: rate_limit_reset_time = datetime.fromtimestamp(int(epochtime)) time_difference = rate_limit_reset_time-datetime.now() print(f"Rate limit resets at {rate_limit_reset_time}. Sleeping for {time_difference.seconds} seconds...") time.sleep(time_difference.seconds+10) print(datetime.now()) response = requests.request("GET", url, auth=bearer_oauth) if response.status_code != 200: raise Exception( "Request returned an error: {} {}".format( response.status_code, response.text ) ) return response.json() def day_to_time(day:str) -> str: ''' Convert `dd-mon-yyyy` format to UTC timestamp. Used to generate Twitter API url. ''' if day is not None: time = datetime.strptime(day,'%d-%b-%Y').isoformat() + "Z" else: time = None return time def search_and_paginate(query:str, num_results:int=100, wait_on_timeout=True, start_day=None, end_day=None): ''' Calls the Twitter REST API /2/tweets/search/recent and paginates results :return: Tweets as a Pandas dataframe. ''' results_each_call = 100 # Must be RFC 3339 UTC timestamp start_time = day_to_time(start_day) end_time = day_to_time(end_day) url = search_url(query, results_each_call,start_time,end_time) json_response = connect_to_endpoint(url, wait_on_timeout) df_tweets = pd.DataFrame(json_response['data']) df_users = pd.DataFrame(json_response['includes']['users']) # As maximum results for each call is 100, more REST API calls may need to be made to collect # more results. while 'next_token' in json_response['meta'] and len(df_tweets) < num_results: pagination_token = json_response['meta']['next_token'] json_response = connect_to_endpoint(f'{url}&next_token={pagination_token}', wait_on_timeout) df_tweets = df_tweets.append(pd.DataFrame(json_response['data']),ignore_index=True) df_users = df_users.append(pd.DataFrame(json_response['includes']['users']),ignore_index=True) df_tweets = clean_tweets_dataframe(df_tweets) return df_tweets, df_users def get_original_tweets(df_tweets, df_users): ''' If the retweeted tweet is not in the original list, grab this as well and append it to the Pandas dataframe. Can probably do one call for multiple `conversation_id`s ''' df_referenced_tweets = pd.DataFrame() df_referenced_users = pd.DataFrame() # Get tweets that reference tweets not in the list ids=df_tweets[(~df_tweets['referenced_tweet_id'].isin(df_tweets['id'])) & (df_tweets['type']=='retweeted')]['referenced_tweet_id'].tolist() #drop duplicates ids = list(dict.fromkeys(ids)) # As a maximum of 100 tweets can be called, list needs to be split into chunks chunks = [ids[x:x+100] for x in range(0, len(ids), 100)] for chunk in chunks: url = tweets_url(chunk) json_response = connect_to_endpoint(url) df_referenced_tweets = df_referenced_tweets.append(
pd.DataFrame(json_response['data'])
pandas.DataFrame
# Este arquivo contém as funções usadas para ajustar as curvas PV # e outras funções úteis ############################################################### BIBLIOTECAS: import numpy as np # para fazer contas e mexer com matrizes import pandas as pd # para montar DataFrames (tabelas de bancos de dados) from pathlib import Path # para trabalhar com diretorios e arquivos import pickle # para gravar e ler dados import matplotlib.pyplot as plt # para gráficos import seaborn as sns # para gráficos com DataFrames from scipy.optimize import curve_fit # para ajuste das curvas dos modelos import math # para erf() from scipy.interpolate import interp1d # para interpolar os pontos PV ############################################################### MODELOS: # função usada para fitar o modelo PV sigmoide (doente) # b b # V(x) = a + ---------------------- = a + ------------------------ # 1 + exp(-(x/d) + (c/d) 1 + exp(-x/d).exp(c/d) # # lim (x-> inf) V(x) = a + b def sigmoidvenegas1(x, a, b, c, d): return a + b/(1 + np.exp(-(x-c)/d)) ########## paiva def sigmoidpaiva(x,TLC,k1,k2): return TLC/(1+(k1*np.exp(-k2*x))) # modificação nossa: incluindo offset def sigmoidpaivaoffset1(x,TLC,k1,k2,offset): return TLC/(1+(k1*np.exp(-k2*x))) + offset # baseado no artigo original do paiva1975, e incluindo offset: def sigmoidpaivaoffset(x,TLC,k1,k2,offset): return TLC/(1+(k1*TLC*np.exp(-k2*x))) + offset ######### venegas2 def sigmoidvenegas2(x,TLC,B,k,c,d): return (TLC-(B*np.exp(-k*x)))/(1 + np.exp(-(x-c)/d)) # modificação nossa: incluindo offset def sigmoidvenegas2offset(x,TLC,B,k,c,d,offset): return (TLC-(B*np.exp(-k*x)))/(1 + np.exp(-(x-c)/d)) + offset # sinal original: incorreto, pois aqui quando P -> c, V -> infty def sigmoidvenegas2original(x,TLC,B,k,c,d): return (TLC-(B*np.exp(-k*x)))/(1 - np.exp(-(x-c)/d)) ######### murphy e engel def sigmoidmurphy(x,VM,Vm,k1,k2,k3): ### CUIDADO: P = f(V) !!! return ( k1/(VM-x) ) + ( k2/(Vm-x) ) + k3 # modificação nossa: incluindo offset ######### murphy e engel def sigmoidmurphyoffset(x,TLC,offset,k1,k2,k3): ### CUIDADO: P = f(V) !!! return ( k1/((TLC+offset)-x) ) + ( k2/(offset-x) ) + k3 ######### recruit_unit # Modelo exponencial simples de curva PV pulmonar (Salazar 1964) # Volume = Vmax*(1-e^(-K*Paw)) # Paw = pressão na via aérea # K = 'constante de tempo' da exponencial def expsalazar(x,Vo,K): return Vo*(1-np.exp(-K*x)) # modelo de unidades recrutadas com erf() # ajustando a função para uma entrada array (para curve_fit) def meu_erf_vec(Paw,mi,sigma): saida_lst = [] for x_in in Paw: x = (x_in-mi)/(sigma*1.5) merf = math.erf(x) saida_lst.append((merf/2)+0.5) return np.array(saida_lst) # modelo proposto pelo grupo (nós) def sigmoid_recruit_units(Paw,K,Vmax,mi,sigma,offset): Vmax_recrutado = Vmax*meu_erf_vec(Paw,mi,sigma) V = Vmax_recrutado*(1-np.exp(-K*Paw)) + offset return V ############################################################### FUNÇÕES: ''' Carrega os arquivos .pickle das subpastas da pasta './porquinhos/' e retorna um DataFrame com os dados. As manobras C contém apenas 4 passos, e as D, apenas 5 passos. ''' def carrega_pickles(folder = 'porquinhos'): dataframes_lst = [] # lista de dataframe: Cada elemento da lista corresponde a um dataframe de um porco/manobra/dados PV for file_name in Path(folder).rglob('*.pickle'): print(f"\rLendo {file_name.name}\t\t\t") with open(file_name, "rb") as file: # abre o arquivo.pickle porquinho = pickle.load(file) for manobra in porquinho: #Para cada manobra if manobra == "D": # Posso fazer 3,4,5 passos n_steps = 5 elif manobra == "C": # Posso fazer 3,4 passos n_steps = 4 elif manobra == "B": # Posso fazer 3 passos n_steps = 3 # Formato os dados de entrada format_data = [] for pi, pe, wi, we in zip(porquinho[manobra]["p_i"], porquinho[manobra]["p_e"], porquinho[manobra]["w_i"], porquinho[manobra]["w_e"]): format_data.extend([pi,wi,pe,we]) format_data = np.array(format_data).reshape(-1,2) # monta matriz de N linhas e 2 colunas ########################################################## caso = [] caso.append(porquinho.name) caso.append(manobra) caso.append(format_data) caso.append(n_steps) casodf = pd.DataFrame(caso, index = ['Animal', 'Manobra', 'Dados', 'n_steps']).T dataframes_lst.append(casodf) # Junta todos os dataframes da lista em um único DataFrame: dadosdf = pd.concat(dataframes_lst, ignore_index=True) # Extrai os dados de pressão e volume dos dados raw dos arquivos pickle: pv_lst = [] for idx,caso in dadosdf.iterrows(): pv = [] ps,vs = Data2PV(caso.Dados) pv.append(ps) pv.append(vs) pvdf = pd.DataFrame([pv], columns = ['Pressoes', 'Volumes']) pv_lst.append(pvdf) pvdf_all = pd.concat(pv_lst, ignore_index=True) dadosdf_completo = pd.concat((dadosdf,pvdf_all),axis=1) # inclui uma coluna para volume esperado... dadosdf_completo["volume_esperado"] = 0 return dadosdf_completo ''' Retorna os vetores de pressão e volume a partir dos dados raw disponíveis nos pickles ''' def Data2PV(data): data2 = data[0::2, :] pressures = data2[:,0] volumes = data2[:,1] return pressures,volumes def encontra_volumes_limites_Murphy(parameters, modelo=sigmoidmurphy, pmax=100, pmin=0): ### no modelo de Murphy, P = f(V) v_max = 1000 v_min = 0 # encontra limite superior: for v in range(1,10000): p = modelo(v,*parameters) if p > pmax: v_max = v break # encontra limite superior: for v in range(1,-10000,-1): p = sigmoidmurphy(v,*parameters) if p < pmin: v_min = v break return int(v_min),int(v_max) # metodos : lm, dogbox, trf def testa_modelo(df, modelo, meu_p0 = [], metodo = 'lm', n_colunas = 4, texto = '', TLC_index = 0, meus_bounds = [], n_points_interp=0, debug=True, invert_PV = False): numero_de_casos = len(df) fig = plt.figure(figsize=(25,5*numero_de_casos/n_colunas)) erro_vec = [] n_fitted = 0 for caso_teste in range(numero_de_casos): p_in = df.iloc[caso_teste].Pressoes v_in = df.iloc[caso_teste].Volumes # interpola pontos (se n_points_interp==0, a função não interpola) p, v = interpola_PV(p_in,v_in,n_points_interp) plt.subplot(int(numero_de_casos/n_colunas)+1,n_colunas,caso_teste+1) fig.tight_layout() if (n_points_interp > 0): plt.scatter(p,v,label='interp',c='k',marker='x') plt.scatter(p_in,v_in,label='raw') try: if (invert_PV == False): ################################### V = f(P) if (meu_p0 == []): # sem p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo) else: # com bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo, bounds=meus_bounds) else: # com p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo, p0 = meu_p0) else: # com bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo, p0 = meu_p0, bounds=meus_bounds) else: ###################################################### P = f(V) if (meu_p0 == []): # sem p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo) else: # com bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo, bounds=meus_bounds) else: # com p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo, p0 = meu_p0) else: # com bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo, p0 = meu_p0, bounds=meus_bounds) if debug: textop = "" for p in parameters: if ( np.abs(p) > 1 ): textop = textop + f'{p:7.1f}' + ' ' else: textop = textop + f'{p:.3f}' + ' ' print(f'Testando caso {caso_teste}: {df.iloc[caso_teste].Animal}: [{textop}]') if (invert_PV == False): ################################### V = f(P) meu_p = range(1,100) meu_v = modelo(meu_p,*parameters) else: ###################################################### P = f(V) v_min,v_max = encontra_volumes_limites_Murphy(parameters,modelo=modelo) meu_v = np.asarray(range(v_min,v_max)) meu_p = modelo(meu_v,*parameters) plt.plot(meu_p,meu_v,'r',label='fit') n_fitted = n_fitted + 1 if ( df.iloc[caso_teste]["volume_esperado"] == 0 ): plt.title(f'Case: {df.iloc[caso_teste].Animal}. TLC = {parameters[TLC_index]:.0f} mL') else: v_esperado = df.iloc[caso_teste]["volume_esperado"] if (modelo.__name__ == 'sigmoidmurphy'): TLC = parameters[0] - parameters[1] else: TLC = parameters[TLC_index] erro = 100*(TLC-v_esperado)/v_esperado erro_vec.append(erro) plt.title(f'Case: {df.iloc[caso_teste].Animal}. TLC = {TLC:.0f} mL. Error: {erro:.1f}%') except Exception as e: print(f'\tCaso {caso_teste} ({df.iloc[caso_teste].Animal}) deu erro...') plt.title(f'Case: {df.iloc[caso_teste].Animal}. Error fitting.') #except: # print('erro') # pass plt.xlabel('Pressure [cmH2O]') plt.ylabel('Volume [mL]') plt.legend() fig.suptitle(f'PV Graph. Model: {modelo.__name__}. {texto}', fontsize=16, y=1.05) plt.show() if ( len(erro_vec) > 0 ): erro_medio = np.mean(np.abs(erro_vec)) erro_norm = np.linalg.norm(erro_vec) else: erro_medio = -1 erro_norm = -1 if debug: print(f'Norma(erro): {erro_norm:.1f}. Erro médio: {erro_medio:.2f}%. Ajustados: {n_fitted}.') return erro_norm, erro_medio, n_fitted # o mesmo que a função anterior, mas não mostra gráficos ou mensagens... para uso dentro de loops... # metodos : lm, dogbox, trf def testa_modelo_loop(df, modelo, meu_p0 = [], metodo = 'lm', TLC_index = 0, meus_bounds = [], n_points_interp=0, invert_PV = False): numero_de_casos = len(df) erro_vec = [] n_fitted = 0 for caso_teste in range(numero_de_casos): p_in = df.iloc[caso_teste].Pressoes v_in = df.iloc[caso_teste].Volumes # interpola pontos (se n_points_interp==0, a função não interpola) p, v = interpola_PV(p_in,v_in,n_points_interp) try: if (invert_PV == False): ################################### V = f(P) if (meu_p0 == []): # sem p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo) else: # com bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo, bounds=meus_bounds) else: # com p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo, p0 = meu_p0) else: # com bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo, p0 = meu_p0, bounds=meus_bounds) else: ###################################################### P = f(V) if (meu_p0 == []): # sem p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo) else: # com bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo, bounds=meus_bounds) else: # com p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo, p0 = meu_p0) else: # com bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo, p0 = meu_p0, bounds=meus_bounds) if ( df.iloc[caso_teste]["volume_esperado"] == 0 ): pass else: v_esperado = df.iloc[caso_teste]["volume_esperado"] if (modelo.__name__ == 'sigmoidmurphy'): TLC = parameters[0] - parameters[1] else: TLC = parameters[TLC_index] erro = 100*(TLC-v_esperado)/v_esperado erro_vec.append(erro) n_fitted = n_fitted + 1 if ( (metodo=='lm') & (parameters[TLC_index] > 6000) ): # não fitou... n_fitted = n_fitted - 1 except Exception as e: pass if ( len(erro_vec) > 0 ): erro_medio = np.mean(np.abs(erro_vec)) erro_norm = np.linalg.norm(erro_vec) else: erro_medio = -1 erro_norm = -1 return erro_norm, erro_medio, n_fitted # o mesmo que a função anterior, mas solta resultado por caso individualmente # metodos : lm, dogbox, trf def testa_modelo_indiv(df, modelo, meu_p0 = [], metodo = 'lm', TLC_index = 0, meus_bounds = [], n_points_interp=0, limite_vol_max = 6000, limite_vol_min = 100, erro_factor_limit = 70, invert_PV = False): numero_de_casos = len(df) dfresult_lst = [] for caso_teste in range(numero_de_casos): p_in = df.iloc[caso_teste].Pressoes v_in = df.iloc[caso_teste].Volumes # interpola pontos (se n_points_interp==0, a função não interpola) p, v = interpola_PV(p_in,v_in,n_points_interp) flag_fitted = False erro = 0 parameters = [] erro_fit = 0 erro_factor = 0 tlc_eit = 0 try: if (invert_PV == False): ################################### V = f(P) if (meu_p0 == []): # sem p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo) else: # com bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo, bounds=meus_bounds) else: # com p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo, p0 = meu_p0) else: # com bounds parameters, pcov = curve_fit(modelo, p, v, method=metodo, p0 = meu_p0, bounds=meus_bounds) else: ###################################################### P = f(V) if (meu_p0 == []): # sem p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo) else: # com bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo, bounds=meus_bounds) else: # com p0 if (meus_bounds == []): # sem bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo, p0 = meu_p0) else: # com bounds parameters, pcov = curve_fit(modelo, v, p, method=metodo, p0 = meu_p0, bounds=meus_bounds) if (modelo.__name__ == 'sigmoidmurphy'): TLC = parameters[0] - parameters[1] else: TLC = parameters[TLC_index] tlc_eit = TLC # Calcula erro if ( df.iloc[caso_teste]["volume_esperado"] == 0 ): pass else: v_esperado = df.iloc[caso_teste]["volume_esperado"] erro = 100*(TLC-v_esperado)/v_esperado # Calcula erro do fit if (invert_PV == False): ################################### V = f(P) v_fit = modelo(p_in,*parameters) erro_fit = np.linalg.norm(v_fit-v_in) erro_factor = erro_fit/np.power(len(v_in),0.5) else: ###################################################### P = f(V) p_fit = modelo(v_in,*parameters) erro_fit = np.linalg.norm(p_fit-p_in) erro_factor = (erro_fit/np.power(len(v_in),0.5))*(( max(v_in)-min(v_in) )/( max(p_in)-min(p_in) )) # Verifica se fitou errado -> não fitou if ( limite_vol_min <= TLC <= limite_vol_max ): # fitou alguma coisa coerente... flag_fitted = True if ( erro_factor > erro_factor_limit ): flag_fitted = False except Exception as e: pass index = [] caso = [] index.append('Animal') caso.append(df.iloc[caso_teste].Animal) index.append('Maneuver') caso.append(df.iloc[caso_teste].Manobra) index.append('n_steps') caso.append(df.iloc[caso_teste].n_steps) index.append('Pressures') caso.append(df.iloc[caso_teste].Pressoes) index.append('Volumes') caso.append(df.iloc[caso_teste].Volumes) index.append('Model') caso.append(modelo.__name__) index.append('Method') caso.append(metodo) index.append('TLC_index') caso.append(TLC_index) index.append('TLC_eit') caso.append(tlc_eit) index.append('N_points_interp') caso.append(n_points_interp) index.append('p0') caso.append(meu_p0) index.append('bounds') caso.append(meus_bounds) index.append('fitted') caso.append(flag_fitted) index.append('parameters') caso.append(parameters) index.append('Vol_CT') caso.append(df.iloc[caso_teste]["volume_esperado"]) index.append('error') caso.append(erro) index.append('fit error') caso.append(erro_fit) index.append('error factor') caso.append(erro_factor) index.append('Raw data') caso.append(df.iloc[caso_teste].Dados) casodf = pd.DataFrame(caso, index).T dfresult_lst.append(casodf) dfresult = pd.concat(dfresult_lst, ignore_index=True) # garante que algumas colunas serão tratadas como float dfresult[['Vol_CT', 'error']] = dfresult[['Vol_CT', 'error']].astype(float) return dfresult # interpola vetores PV # n_points = número de pontos intermediários def interpola_PV(pressoes,volumes,n_points=0): if len(pressoes)<3: kind = "linear" elif len(pressoes)==3: kind = "quadratic" else: kind = "cubic" interp_pressures = np.linspace(pressoes[0], pressoes[-1], (len(pressoes)*(n_points+1))-n_points, endpoint=True) interp_func = interp1d(pressoes, volumes, kind=kind) interp_volumes = interp_func(interp_pressures) return interp_pressures, interp_volumes # Classe usada para dados dos modelos usados na função testa_varios class dados_modelos: model_function = '' TLC_index = '' p0 = '' bounds = '' invert_PV = False def testa_varios_indiv(dadosdf, modelos, metodos = ('lm','trf','dogbox'), vec_interp = [0, 1, 2, 10, 20]): df_lst = [] for mod in modelos: print(f'Rodando {mod.model_function.__name__}') for n_points_interp in vec_interp: for metodo in metodos: if (metodo == 'lm'): # 'lm' não aceita bounds dfresult = testa_modelo_indiv(dadosdf, mod.model_function, metodo = metodo, meu_p0 = mod.p0, TLC_index=mod.TLC_index, n_points_interp=n_points_interp, invert_PV=mod.invert_PV) else: dfresult = testa_modelo_indiv(dadosdf, mod.model_function, metodo = metodo, meu_p0 = mod.p0, TLC_index=mod.TLC_index, meus_bounds=mod.bounds, n_points_interp=n_points_interp, invert_PV=mod.invert_PV) df_lst.append(dfresult) dadosdf =
pd.concat(df_lst, ignore_index=True)
pandas.concat
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas(
pd.DataFrame({"a": ary})
pandas.DataFrame
""" Functions used to query the PVlive api """ import logging from concurrent import futures from datetime import datetime, timedelta from typing import Optional import pandas as pd import pytz from pvlive_api import PVLive from tqdm import tqdm from nowcasting_dataset.data_sources.gsp.eso import get_list_of_gsp_ids logger = logging.getLogger(__name__) CHUNK_DURATION = timedelta(days=30) def load_pv_gsp_raw_data_from_pvlive( start: datetime, end: datetime, number_of_gsp: int = None, normalize_data: bool = True ) -> pd.DataFrame: """ Load raw pv gsp data from pvlive. Note that each gsp is loaded separately. Also the data is loaded in 30 day chunks. Args: start: the start date for gsp data to load end: the end date for gsp data to load number_of_gsp: The number of gsp to load. Note that on 2021-09-01 there were 338 to load. normalize_data: Option to normalize the generation according to installed capacity Returns: Data frame of time series of gsp data. Shows PV data for each GSP from {start} to {end} """ # get a lit of gsp ids gsp_ids = get_list_of_gsp_ids(maximum_number_of_gsp=number_of_gsp) # setup pv Live class, although here we are getting historic data pvl = PVLive() # set the first chunk of data, note that 30 day chunks are used except if the end time is # smaller than that first_start_chunk = start first_end_chunk = min([first_start_chunk + CHUNK_DURATION, end]) gsp_data_df = [] logger.debug(f"Will be getting data for {len(gsp_ids)} gsp ids") # loop over gsp ids # limit the total number of concurrent tasks to be 4, so that we don't hit the pvlive api # too much future_tasks = [] with futures.ThreadPoolExecutor(max_workers=4) as executor: for gsp_id in gsp_ids: # set the first chunk start and end times start_chunk = first_start_chunk end_chunk = first_end_chunk # loop over 30 days chunks (nice to see progress instead of waiting a long time for # one command - this might not be the fastest) while start_chunk <= end: logger.debug(f"Getting data for gsp id {gsp_id} from {start_chunk} to {end_chunk}") task = executor.submit( pvl.between, start=start_chunk, end=end_chunk, entity_type="gsp", entity_id=gsp_id, extra_fields="installedcapacity_mwp", dataframe=True, ) future_tasks.append(task) # add 30 days to the chunk, to get the next chunk start_chunk = start_chunk + CHUNK_DURATION end_chunk = end_chunk + CHUNK_DURATION if end_chunk > end: end_chunk = end logger.debug("Getting results") # Collect results from each thread. for task in tqdm(future_tasks): one_chunk_one_gsp_gsp_data_df = task.result() if normalize_data: one_chunk_one_gsp_gsp_data_df["generation_mw"] = ( one_chunk_one_gsp_gsp_data_df["generation_mw"] / one_chunk_one_gsp_gsp_data_df["installedcapacity_mwp"] ) # append to longer list gsp_data_df.append(one_chunk_one_gsp_gsp_data_df) # join together gsp data gsp_data_df =
pd.concat(gsp_data_df)
pandas.concat
import requests from xls_functions import is_number, concat, format_date_time, evalfunc_str, is_in, now, uuid import json import requests import time import os import ast import pandas as pd from copy import deepcopy import re from gen_funcs import * #-------------------------------------------------------------------------------------------------------------------------------- # sim control functions #-------------------------------------------------------------------------------------------------------------------------------- # form string into json query def json_query(string): dict1= {'query':string} # form dictionary json_query = json.dumps(dict1) # convert dictionary into json return json_query # api requests def api_query(string,api_key): api_key = str(api_key) json_qry = json_query(string) # convert string into json data api_url ='https://new.simcontrol.co.za/graphql/' headers = {'Content-Type': 'application/json', 'simcontrol-api-key': api_key} api_qry = requests.post(url = api_url, headers = headers, data = json_qry) # api_qry return api_qry.json() # update internal database def append_json_db(filepath,data): incentive_db = read_json_file(filepath) # read t[he internal db incentive_db.append(data) # append current recharge data to internal db in json file write_to_json(filepath, incentive_db) # write to the internal db # metadata for a specific recharge def recharge_data(api_key, reference): # form query string string = concat('{ adhocRecharges(first: 1, reference: \"',reference,'\") { edges { node {id msisdn network { name } productType product { label } price status succeededAt created failureType reference} } } }') data = api_query(string,api_key)['data']['adhocRecharges']['edges'] if len(data) != 0: data = data[0]['node'] data['network'] = data['network']['name'] return data # status of recharge def recharge_status(api_key, reference): status = recharge_data(api_key, reference)['status'] return status # simcontrol balance def sim_control_balance(api_key): # check the remaining account balance string = "{ account { name balance } }" bal_json = api_query(string,api_key) return bal_json['data']['account'][0]['balance'] # list of mobile network operators def sim_control_networks(api_key): string = "{ networks {id name } }" api_resp = api_query(string,api_key) mno = api_resp['data']['networks'] # API response #create a dcitionary of the available networks networks = {} for i in range(len(mno)): networks[mno[i]['name'].lower()] = mno[i]['id'] return networks # format contact for simcontrol def simcontact(msisdn): msisdn = str(msisdn) #print('\nMSISDN: %s'%msisdn) if is_number(msisdn): msisdn = str(int(float(msisdn))) #print('\nMSISDN: %s'%msisdn) if len(msisdn)==11 and '.' in msisdn and msisdn.index('.')==9: idx = msisdn.index('.') sub_1 = msisdn[0:9] msisdn = msisdn[-1] + sub_1 contact = remove_specialchar(msisdn) # remove special characters # format contact if contact[0] =='0' and len(contact) == 10: return concat('+27',contact[1:len(contact)]) elif contact[0:2] == '27' and len(contact[2:len(contact)])==9: return concat('+',contact) elif len(contact)== 9 and contact[0]!= '0': return concat('+27', contact) else: return concat(msisdn,' is not recognised as a South African mobile number.') #count the number of recharges per contact def recharge_count(contact,api_key, prodType = 'airtime', status = 'success', r_idx = 100, startDate = '', endDate=''): # create query string if startDate == '' or endDate == '': q_string = concat('{ adhocRecharges( first: ',r_idx,', msisdn: \"',simcontact(contact),'\", productType: \"',prodType.upper(),'\", status: \"',status.upper(),'\") { edges { node {id msisdn network { name } productType product { label } price status succeededAt created failureType reference} } } }') else: # format startDate and endDate fmt = '%Y-%m-%dT%H:%M:%S' startDate = format_date_time(str(startDate),fmt) endDate = format_date_time(str(endDate),fmt) q_string = concat('{ adhocRecharges( first: ',r_idx,', msisdn: \"',simcontact(contact),'\", productType: \"',prodType.upper(),'\", status: \"',status.upper(),'\", created_Gte:\"',startDate,'\" created_Lt:\"',endDate,'\") { edges { node {id msisdn network { name } productType product { label } price status succeededAt created reference } } } }') # prequest the 1st 100 recharges fot the msisdn q_res = api_query(q_string,api_key) # perform api_query #print(q_res) #count number of successful recharges recharges = str(q_res).count(simcontact(contact)) return recharges # Define 'airtime' function to send airtime to msisidn and return metadata def airtime(api_key, msisdn, network, amount, ref=None): if ref == None: ref = str(uuid()) if msisdn != 'nan' and network != 'nan' and amount != 'nan': # a. Determine the network ID for a given network name try: mno_id = sim_control_networks(api_key)[network.lower()] #retrieve network ID except: mno_id = 'TmV0d29ya05vZGU6MTM=' # b. form query_string and query simcontrol API string = concat('mutation { rechargeSim(msisdn: \"',simcontact(msisdn),'\", networkId: \"',mno_id,'\", airtimeAmount:',amount,', reference: \"',ref, '\") { rechargeId message}}') recharge = api_query(string,api_key) # perform api_query print('\nAIRTIME REQ: \n%s'%recharge) # c. request recharge data data_recharge = [recharge_data(reference=ref,api_key=api_key)] # get metadata data of recharge return pd.DataFrame(data_recharge) # recharge failed recharges def recharge_failed(api_key, msisdn, ref=None, startDate = None, endDate= str(now()), recharge_limit = 1, project = None, prodType = 'airtime'): # a. obtain history of recharges for the given msisdn if endDate != None and startDate != None: df_rec = msisdn_history(api_key, msisdn, startDate = startDate, prodType = prodType) else: df_rec = msisdn_history(api_key, msisdn, prodType = prodType) if str(df_rec) != 'None': print('prodType: ', prodType,'\t MSISDN:',msisdn, '\t HISTORY: ',len(df_rec)) # b. obtain successful and failed recharges if project != None: s_rec = df_rec[df_rec['reference'].str.contains(project) & df_rec['status'].str.contains('SUCCESS')] # records of successful recharges in the given project f_rec = df_rec[df_rec['reference'].str.contains(project) & df_rec['status'].str.contains('FAILED')] # records of FAILED recharges in the given project else: s_rec = df_rec[df_rec['status'].str.contains('SUCCESS')] # records of successful recharges f_rec = df_rec[df_rec['status'].str.contains('FAILED')] # records of failed recharges if len(s_rec) < recharge_limit and len(f_rec) >0 and len(f_rec) <= 1: # recharge msisdn if f_rec.loc[0,'productType'] == 'AIRTIME': recharge = airtime(api_key, msisdn, network = f_rec.loc[0,'network']['name'] , amount = f_rec.loc[0,'price'], ref= concat(f_rec.loc[0,'reference'],'_FINALTRIAL')) return recharge else: recharge = buyProd(api_key, msisdn, network = f_rec.loc[0,'network']['name'] , prodID = f_rec.loc[0,'product']['id'], ref= concat(f_rec.loc[0,'reference'],'_FINALTRIAL')) return recharge else: return None # format dates to suit simcontrol def sim_dateformat( startDate = None, endDate = None, fmt = '%Y-%m-%dT%H:%M:%S' ): if startDate != None and endDate != None: startDate = format_date_time(str(startDate),fmt) endDate = format_date_time(str(endDate),fmt) return {'startDate': startDate, 'endDate' : endDate} else: return None # convert simcontrol's dictionary to DataFrame def simdict_to_DataFrame(simdict): rec_lst = [] for rec in simdict: rec = rec['node'] rec_lst.append(rec) return
pd.DataFrame(rec_lst)
pandas.DataFrame
import requests import pandas as pd import json def load_data(): stations = [{'name': '<NAME>' , 'id': 97280}, {'name': '<NAME>' , 'id': 97100}] df = pd.DataFrame() for station in stations: station_url = "https://opendata-download-metobs.smhi.se/api/version/latest/parameter/14/station/{0}/period/latest-months/data.json".format(station['id']) r = requests.get(url = station_url) data = r.json() station_df = pd.DataFrame(data['value']) station_df['date'] = pd.to_datetime(station_df['date'], unit='ms') station_df = station_df.set_index('date') station_df.index = pd.to_datetime(station_df.index) station_df.columns =
pd.MultiIndex.from_product([[station['name']], station_df.columns], names=['station', 'data'])
pandas.MultiIndex.from_product
""" After training with p1_training_inverse_model.py, run this for p1 Then run p1_make_vids.py to generate the videos """ import torch import logging import torch.nn as nn from dataset import ObjPushDataset from model_learners import InverseModel from torch.utils.data import Dataset, DataLoader from push_env import PushingEnv import numpy as np import pandas as pd device = "cuda" if torch.cuda.is_available() else "cpu" logger = logging.getLogger(__name__) logging.basicConfig() logger.setLevel(logging.INFO) ##### HYPERPARAMETERS ###### start_state_dims = 2 next_state_dims = 2 action_dims = 4 nn_layer_1_size = 64 nn_layer_2_size = 32 criterion = nn.MSELoss() lr = 8e-4 seed = 0 num_epochs = 140 bsize = 512 num_pushes = 10 ############################ def main(): logger.info("Instantiating model and importing weights") # instantiate forward model and import pretrained weights inv_model = InverseModel(start_state_dims=start_state_dims, next_state_dims=next_state_dims, action_dims=action_dims, latent_var_1=nn_layer_1_size, latent_var_2=nn_layer_2_size, criterion=criterion, lr=lr, seed=seed) inv_model.load_state_dict(torch.load("invmodel_learned_params.pt")) # Load in data logger.info("Importing test data") test_dir = 'push_dataset/test' # only want 1 push each time, so set batch_size to 1 test_loader = DataLoader(ObjPushDataset(test_dir), batch_size=1, shuffle=True) env = PushingEnv() errors = [] true_pushes = [] pred_pushes = [] logger.info("Running loop") for i, (start_state, goal_state, true_action) in enumerate(test_loader): logger.info(f'Iteration #{i}') # Convert inputs to floats start_state = start_state.float() goal_state = goal_state.float() true_action = true_action.float() # Use inverse model to predict action given the start and goal states combined_input = torch.cat((start_state, goal_state), dim=1) pred_action = inv_model(combined_input) # Switch output from tensors to numpy for easy use later start_state = start_state.data.numpy()[0] goal_state = goal_state.data.numpy()[0] true_action = true_action.data.numpy()[0] pred_action = pred_action.data.numpy()[0] start_x, start_y, end_x, end_y = pred_action _, end_state = env.execute_push(start_x, start_y, end_x, end_y) end_state = np.array(end_state) # Calculate errors action_error = np.linalg.norm(true_action - pred_action) state_error = np.linalg.norm(goal_state - end_state) # Keep the results errors.append(dict(action_error=action_error, state_error=state_error)) true_pushes.append(dict(obj_x=start_state[0], obj_y=start_state[1], start_push_x=true_action[0], start_push_y=true_action[1], end_push_x=true_action[2], end_push_y=true_action[3])) pred_pushes.append(dict(obj_x=start_state[0], obj_y=start_state[1], start_push_x=pred_action[0], start_push_y=pred_action[1], end_push_x=pred_action[2], end_push_y=pred_action[3])) if i > num_pushes - 1: break pd.DataFrame(errors).to_csv("results/P1/inverse_model_errors.csv")
pd.DataFrame(true_pushes)
pandas.DataFrame
# coding=utf-8 # Copyright 2018-2020 EVA # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pandas as pd import numpy as np from eva.expression.abstract_expression import AbstractExpression, \ ExpressionType, \ ExpressionReturnType from eva.models.storage.batch import Batch class ComparisonExpression(AbstractExpression): def __init__(self, exp_type: ExpressionType, left: AbstractExpression, right: AbstractExpression): children = [] if left is not None: children.append(left) if right is not None: children.append(right) super().__init__(exp_type, rtype=ExpressionReturnType.BOOLEAN, children=children) def evaluate(self, *args, **kwargs): # cast in to numpy array lvalues = self.get_child(0).evaluate(*args, **kwargs).frames.values rvalues = self.get_child(1).evaluate(*args, **kwargs).frames.values if len(lvalues) != len(rvalues): if len(lvalues) == 1: lvalues = np.repeat(lvalues, len(rvalues), axis=0) elif len(rvalues) == 1: rvalues = np.repeat(rvalues, len(lvalues), axis=0) else: raise Exception( "Left and Right batch does not have equal elements") if self.etype == ExpressionType.COMPARE_EQUAL: return Batch(pd.DataFrame(lvalues == rvalues)) elif self.etype == ExpressionType.COMPARE_GREATER: return Batch(pd.DataFrame(lvalues > rvalues)) elif self.etype == ExpressionType.COMPARE_LESSER: return Batch(pd.DataFrame(lvalues < rvalues)) elif self.etype == ExpressionType.COMPARE_GEQ: return Batch(pd.DataFrame(lvalues >= rvalues)) elif self.etype == ExpressionType.COMPARE_LEQ: return Batch(pd.DataFrame(lvalues <= rvalues)) elif self.etype == ExpressionType.COMPARE_NEQ: return Batch(pd.DataFrame(lvalues != rvalues)) elif self.etype == ExpressionType.COMPARE_CONTAINS: res = [[all(x in p for x in q) for p, q in zip(left, right)] for left, right in zip(lvalues, rvalues)] return Batch(pd.DataFrame(res)) elif self.etype == ExpressionType.COMPARE_IS_CONTAINED: res = [[all(x in q for x in p) for p, q in zip(left, right)] for left, right in zip(lvalues, rvalues)] return Batch(
pd.DataFrame(res)
pandas.DataFrame