prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
# -*- coding: utf-8 -*- import pandas as pd import numpy as np from datetime import datetime, timedelta from functools import reduce import pickle import os import pymssql from virgo import market startDate_default = '20060101' endDate_default = (datetime.now() + timedelta(days=-1)).strftime('%Y%m%d') # endDate_default = datetime.now().strftime('%Y%m%d') indexTickerUnivSR_default = np.array(['000300.SH', '000016.SH', '000905.SH']) indexTickerNameUnivSR_default = np.array(['沪深300', '上证50', '中证500']) # Global val conn243 = pymssql.connect(server='192.168.1.243', user="yuman.hu", password="<PASSWORD>") conn247 = pymssql.connect(server='192.168.1.247', user="yuman.hu", password="<PASSWORD>") # daily data download class dailyQuant(object): def __init__(self, startDate=startDate_default, endDate=endDate_default, indexTickerUnivSR=indexTickerUnivSR_default, indexTickerNameUnivSR=indexTickerNameUnivSR_default): self.startDate = startDate self.endDate = endDate self.rawData_path = '../data/rawData/' self.fundamentalData_path = '../data/fundamentalData/' self.indexTickerUnivSR = indexTickerUnivSR self.indexTickerNameUnivSR = indexTickerNameUnivSR self.tradingDateV, self.timeSeries = self.get_dateData() self.tickerUnivSR, self.stockTickerUnivSR, self.tickerNameUnivSR, self.stockTickerNameUnivSR, self.tickerUnivTypeR = self.get_tickerData() def get_dateData(self): sql = ''' SELECT [tradingday] FROM [Group_General].[dbo].[TradingDayList] where tradingday>='20060101' order by tradingday asc ''' dateSV = pd.read_sql(sql, conn247) tradingdays = dateSV.tradingday.unique() tradingDateV = np.array([x.replace('-', '') for x in tradingdays]) timeSeries = pd.Series(pd.to_datetime(tradingDateV)) pd.Series(tradingDateV).to_csv(self.rawData_path+ 'tradingDateV.csv', index=False) return tradingDateV, timeSeries def get_tickerData(self): # and B.[SecuAbbr] not like '%%ST%%' # where ChangeDate>='%s' sql = ''' SELECT A.[ChangeDate],A.[ChangeType],B.[SecuCode],B.[SecuMarket],B.[SecuAbbr] FROM [JYDB].[dbo].[LC_ListStatus] A inner join [JYDB].[dbo].SecuMain B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and B.SecuCategory=1 order by SecuCode asc ''' dataV = pd.read_sql(sql, conn243) flagMarket = dataV.SecuMarket == 83 dataV['SecuCode'][flagMarket] = dataV['SecuCode'].map(lambda x: x + '.SH') dataV['SecuCode'][~flagMarket] = dataV['SecuCode'].map(lambda x: x + '.SZ') # dataV.ChangeDate = pd.Series([x.strftime('%Y%m%d') for x in dataV.ChangeDate.values]) dataV.ChangeDate = dataV.ChangeDate.map(lambda x: x.strftime('%Y%m%d')) flagV = np.full(len(dataV), True) flagList = [] for i in range(len(dataV)): if dataV.iat[i, 1] == 4: if dataV.iat[i, 0] < self.tradingDateV[0]: flagList.append(dataV.iat[i, 2]) for i in range(len(dataV)): if dataV.iat[i, 2] in flagList: flagV[i] = False dataV = dataV[flagV] stockTickerUnivSR = dataV.SecuCode.unique() tickerUnivSR = np.append(self.indexTickerUnivSR, stockTickerUnivSR) stockTickerNameUnivSR = dataV.SecuAbbr.unique() tickerNameUnivSR = np.append(self.indexTickerNameUnivSR, stockTickerNameUnivSR) tickerUnivTypeR = np.append(np.full(len(self.indexTickerUnivSR), 3), np.ones(len(dataV))) pd.DataFrame(self.indexTickerUnivSR).T.to_csv(self.rawData_path+'indexTickerUnivSR.csv', header=False, index=False) pd.DataFrame(stockTickerUnivSR).T.to_csv(self.rawData_path+'stockTickerUnivSR.csv', header=False, index=False) pd.DataFrame(tickerUnivSR).T.to_csv(self.rawData_path+'tickerUnivSR.csv', header=False, index=False) pd.DataFrame(self.indexTickerNameUnivSR).T.to_csv(self.rawData_path+'indexTickerNameUnivSR.csv', header=False, index=False) pd.DataFrame(stockTickerNameUnivSR).T.to_csv(self.rawData_path+'stockTickerNameUnivSR.csv', header=False, index=False) pd.DataFrame(tickerNameUnivSR).T.to_csv(self.rawData_path+'tickerNameUnivSR.csv', header=False, index=False) pd.DataFrame(tickerUnivTypeR).T.to_csv(self.rawData_path+'tickerUnivTypeR.csv', header=False, index=False) return tickerUnivSR, stockTickerUnivSR, tickerNameUnivSR, stockTickerNameUnivSR, tickerUnivTypeR def __tradingData(self,tradingDay): sql = ''' SELECT A.[TradingDay], B.[SecuMarket], B.[SecuCode], A.[PrevClosePrice], A.[OpenPrice],A.[HighPrice],A.[LowPrice],A.[ClosePrice], A.[TurnoverVolume],A.[TurnoverValue] FROM [JYDB].[dbo].[QT_DailyQuote] A inner join [JYDB].[dbo].[SecuMain] B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and B.SecuCategory=1 where A.tradingday='%s' ''' % tradingDay dataStock = pd.read_sql_query(sql, conn243) sql = ''' SELECT A.[TradingDay], B.[SecuMarket], B.[SecuCode], A.[PrevClosePrice], A.[OpenPrice],A.[HighPrice],A.[LowPrice],A.[ClosePrice], A.[TurnoverVolume],A.[TurnoverValue] FROM [JYDB].[dbo].[QT_IndexQuote] A inner join [JYDB].[dbo].[SecuMain] B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and (B.SecuCode = '000300' or B.SecuCode = '000016' or B.SecuCode = '000905') and B.SecuCategory=4 where A.tradingday='%s' ''' % tradingDay dataIndex = pd.read_sql_query(sql, conn243) dataV = pd.concat([dataIndex,dataStock]) sql = ''' SELECT [TradingDay], [SecuCode], [StockReturns] FROM [Group_General].[dbo].[DailyQuote] where tradingday='%s' ''' % tradingDay dataStock = pd.read_sql_query(sql, conn247) sql = ''' SELECT A.[TradingDay], B.[SecuCode], A.[ChangePCT] FROM [JYDB].[dbo].[QT_IndexQuote] A inner join [JYDB].[dbo].[SecuMain] B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and (B.SecuCode = '000300' or B.SecuCode = '000016' or B.SecuCode = '000905') and B.SecuCategory=4 where A.tradingday='%s' ''' % tradingDay dataIndex = pd.read_sql_query(sql, conn243) dataIndex.ChangePCT = dataIndex.ChangePCT / 100 dataIndex = dataIndex.rename({'ChangePCT': 'StockReturns'}, axis='columns') dataR = pd.concat([dataIndex, dataStock]) data = pd.merge(dataV,dataR) flagMarket = data.SecuMarket==83 data['SecuCode'][flagMarket] = data['SecuCode'].map(lambda x: x + '.SH') data['SecuCode'][~flagMarket] = data['SecuCode'].map(lambda x: x + '.SZ') data.TradingDay = data.TradingDay.map(lambda x: x.strftime('%Y%m%d')) preCloseM = pd.DataFrame(pd.pivot_table(data,values='PrevClosePrice',index='TradingDay',columns='SecuCode'),index=[str(tradingDay)],columns=self.tickerUnivSR) openM = pd.DataFrame(pd.pivot_table(data,values='OpenPrice',index='TradingDay',columns='SecuCode'),index=[str(tradingDay)],columns=self.tickerUnivSR) highM = pd.DataFrame(pd.pivot_table(data,values='HighPrice',index='TradingDay',columns='SecuCode'),index=[str(tradingDay)],columns=self.tickerUnivSR) lowM =pd.DataFrame(pd.pivot_table(data,values='LowPrice',index='TradingDay',columns='SecuCode'),index=[str(tradingDay)],columns=self.tickerUnivSR) closeM = pd.DataFrame(pd.pivot_table(data,values='ClosePrice',index='TradingDay',columns='SecuCode'),index=[str(tradingDay)],columns=self.tickerUnivSR) volumeM = pd.DataFrame(pd.pivot_table(data,values='TurnoverVolume',index='TradingDay',columns='SecuCode'),index=[str(tradingDay)],columns=self.tickerUnivSR) amountM = pd.DataFrame(pd.pivot_table(data,values='TurnoverValue',index='TradingDay',columns='SecuCode'),index=[str(tradingDay)],columns=self.tickerUnivSR) retM = pd.DataFrame(pd.pivot_table(data,values='StockReturns',index='TradingDay',columns='SecuCode'),index=[str(tradingDay)], columns=self.tickerUnivSR) sql = ''' SELECT A.[ExDiviDate], B.[SecuMarket], B.[SecuCode], A.[AdjustingFactor] FROM [JYDB].[dbo].[QT_AdjustingFactor] A inner join [JYDB].[dbo].[SecuMain] B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and B.SecuCategory=1 ''' dataAF = pd.read_sql_query(sql, conn243) dataAF = dataAF.rename({'ExDiviDate':'TradingDay'},axis=1) flagMarket = dataAF.SecuMarket == 83 dataAF['SecuCode'][flagMarket] = dataAF['SecuCode'].map(lambda x: x + '.SH') dataAF['SecuCode'][~flagMarket] = dataAF['SecuCode'].map(lambda x: x + '.SZ') dataAF.TradingDay = dataAF.TradingDay.map(lambda x: x.strftime('%Y%m%d')) adjFactorM = pd.pivot_table(dataAF, values='AdjustingFactor', index='TradingDay', columns='SecuCode') adjFactorM.fillna(method='pad', inplace=True) adjFactorM = pd.DataFrame(adjFactorM ,index=self.tradingDateV, columns=self.tickerUnivSR) adjFactorM.fillna(method='pad', inplace=True) adjFactorM =pd.DataFrame(adjFactorM ,index=[str(tradingDay)]) sql = ''' SELECT A.[ChangeDate],A.[ChangeType],B.[SecuCode],B.[SecuMarket] FROM [JYDB].[dbo].[LC_ListStatus] A inner join [JYDB].[dbo].SecuMain B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and B.SecuCategory=1 where (A.ChangeType = 1 or A.ChangeType = 4) ''' dataStock = pd.read_sql_query(sql, conn243) sql = ''' SELECT A.[PubDate],B.[SecuCode],B.[SecuMarket] FROM [JYDB].[dbo].[LC_IndexBasicInfo] A inner join [JYDB].[dbo].[SecuMain] B on A.[IndexCode]=B.[InnerCode] and B.SecuMarket in (83,90) and (B.SecuCode = '000300' or B.SecuCode = '000016' or B.SecuCode = '000905') and B.SecuCategory=4 ''' dataIndex = pd.read_sql_query(sql, conn243) dataIndex['ChangeType'] = 1 dataIndex = dataIndex.rename({'PubDate': 'ChangeDate'}, axis='columns') dataV = pd.concat([dataIndex, dataStock]) flagMarket = dataV.SecuMarket == 83 dataV['SecuCode'][flagMarket] = dataV['SecuCode'].map(lambda x: x + '.SH') dataV['SecuCode'][~flagMarket] = dataV['SecuCode'].map(lambda x: x + '.SZ') # dataV.ChangeDate = pd.Series([x.strftime('%Y%m%d') for x in dataV.ChangeDate.values]) dataV.ChangeDate = dataV.ChangeDate.map(lambda x: x.strftime('%Y%m%d')) listedM = pd.pivot_table(dataV, values='ChangeType', index='ChangeDate', columns='SecuCode') dateTotal = np.union1d(listedM.index.values, [str(tradingDay)]) listedM = pd.DataFrame(listedM, index=dateTotal, columns=self.tickerUnivSR) listedM[listedM == 4] = 0 listedM.fillna(method='pad', inplace=True) listedM = pd.DataFrame(listedM,index= [str(tradingDay)]) listedM = listedM.fillna(0) sql = ''' SELECT A.[SuspendDate],A.[ResumptionDate],A.[SuspendTime], A.[ResumptionTime], B.[SecuCode],B.[SecuMarket] FROM [JYDB].[dbo].[LC_SuspendResumption] A inner join [JYDB].[dbo].[SecuMain] B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and B.SecuCategory=1 where A.[SuspendDate] = '%s' '''%tradingDay if tradingDay == self.tradingDateV[0]: sql = sql.replace('A.[SuspendDate] = ','A.[SuspendDate] <= ') dataSusp = pd.read_sql_query(sql, conn243) flagMarket = dataSusp.SecuMarket == 83 dataSusp['SecuCode'][flagMarket] = dataSusp['SecuCode'].map(lambda x: x + '.SH') dataSusp['SecuCode'][~flagMarket] = dataSusp['SecuCode'].map(lambda x: x + '.SZ') dataSusp.SuspendDate = dataSusp.SuspendDate.map(lambda x: x.strftime('%Y%m%d')) dataSusp['flag'] = 1 startFlag = pd.pivot_table(dataSusp, values='flag',index='SuspendDate', columns='SecuCode') try: startFlag = pd.DataFrame(startFlag, index=[str(tradingDay)], columns=self.tickerUnivSR) except: startFlag = pd.DataFrame(index=[str(tradingDay)], columns=self.tickerUnivSR) endFlag = pd.DataFrame(index=[str(tradingDay)], columns=self.tickerUnivSR) amount = amountM.fillna(0) flag = (amount == 0) endFlag[startFlag == 1] = 1 endFlag[flag] = 1 suspM = endFlag.fillna(0) suspM[(listedM==0)] = 1 else: dataSusp = pd.read_sql_query(sql, conn243) flagMarket = dataSusp.SecuMarket == 83 dataSusp['SecuCode'][flagMarket] = dataSusp['SecuCode'].map(lambda x: x + '.SH') dataSusp['SecuCode'][~flagMarket] = dataSusp['SecuCode'].map(lambda x: x + '.SZ') dataSusp.SuspendDate = dataSusp.SuspendDate.map(lambda x: x.strftime('%Y%m%d')) file2 = open('../data/rawData/{}.pkl'.format(self.tradingDateV[self.tradingDateV.tolist().index(tradingDay)-1]), 'rb') suspPre = pickle.load(file2)['suspM'] file2.close() dataSusp['flag'] = 1 startFlag = pd.pivot_table(dataSusp, values='flag',index='SuspendDate', columns='SecuCode') try: startFlag = pd.DataFrame(startFlag, index=[str(tradingDay)], columns=self.tickerUnivSR) except: startFlag = pd.DataFrame(index=[str(tradingDay)], columns=self.tickerUnivSR) endFlag = pd.DataFrame(index=[str(tradingDay)], columns=self.tickerUnivSR) amount = amountM.fillna(0) flag = (amount == 0) endFlag[startFlag == 1] = 1 endFlag[~flag] = 0 suspM = pd.concat([suspPre,endFlag]).fillna(method='pad') suspM = pd.DataFrame(suspM,index=[str(tradingDay)]) suspM[(listedM==0)] = 1 sql=''' SELECT A.[SpecialTradeTime],A.[SpecialTradeType],B.[SecuCode],B.[SecuMarket] FROM [JYDB].[dbo].[LC_SpecialTrade] A inner join [JYDB].[dbo].[SecuMain] B on A.[InnerCode]=B.[InnerCode] and B.SecuMarket in (83,90) and B.SecuCategory=1 where (A.[SpecialTradeType]=1 or A.[SpecialTradeType] = 2 or A.[SpecialTradeType] = 5 or A.[SpecialTradeType] = 6) and A.[SpecialTradeTime] = '%s' '''% tradingDay if tradingDay == self.tradingDateV[0]: sql = sql.replace('A.[SpecialTradeTime] = ','A.[SpecialTradeTime] <= ') dataV =
pd.read_sql_query(sql, conn243)
pandas.read_sql_query
import pandas as pd import numpy as np import pickle from .utils import * def predNextDays(optmod_name, opt_mod, var_name, pred_days): pred = (opt_mod[optmod_name]['mod_data'][var_name])[opt_mod[optmod_name]['i_start'] + opt_mod[optmod_name]['period'] -1 :opt_mod[optmod_name]['i_start'] + opt_mod[optmod_name]['period']+pred_days] print("Mod: %s \t Next days: %s: \t %s" %(optmod_name, var_name, str([int(x) for x in pred]))) print("Mod: %s \t Variation: %s: \t %s" %(optmod_name, var_name, str([int(x) for x in (pred[1:len(pred)] - pred[0:len(pred)-1])]))) class ModelStats: def __init__(self, model, act_data, pred_days = 10): self.model = model self.act_data = act_data self.data = pd.DataFrame(self.calcData()) self.data.set_index("date", inplace=True) def printKpi(self, date, kpi_name, title, num_format = 'd', bperc = False): var_uff = "uff_" + kpi_name var_mod = "mod_" + kpi_name if "uff_" + kpi_name in self.data.columns.tolist(): #print(("%30s: %7" + num_format + " vs %7" + num_format + " (%5" + num_format + " vs %5" + num_format + "), errore: %" + num_format + "") %( print(("%30s: %7s vs %7s (%5s vs %5s), errore: %s") %( title, format_number(self.data[var_uff][np.datetime64(date, 'D')], bperc = bperc), format_number(self.data[var_mod][np.datetime64(date, 'D')], bperc = bperc), format_number(self.data[var_uff][np.datetime64(date, 'D')] - self.data[var_uff][np.datetime64(date, 'D') - np.timedelta64(1, 'D')], bperc = bperc), format_number(self.data[var_mod][np.datetime64(date, 'D')] - self.data[var_mod][np.datetime64(date, 'D') - np.timedelta64(1, 'D')], bperc = bperc), format_number(self.data[var_uff][np.datetime64(date, 'D')] - self.data[var_mod][np.datetime64(date, 'D')], bperc = bperc) )) else: #print(("%30s: %7" + num_format + " (%5" + num_format + ")") %( print(("%30s: %7s (%5s)") %( title, format_number(self.data[var_mod][np.datetime64(date, 'D')], bperc = bperc), format_number(self.data[var_mod][np.datetime64(date, 'D')] - self.data[var_mod][np.datetime64(date, 'D') - np.timedelta64(1, 'D')], bperc = bperc) )) def printKpis(self, date): self.printKpi(date, 'Igc_cum', "Tot Infected") self.printKpi(date, 'Igc', "Currently Infected") self.printKpi(date, 'Igci_t', "Currently in Int. Care") self.printKpi(date, 'Gc_cum', "Tot Recovered") self.printKpi(date, 'M_cum', "Tot Dead") print() self.printKpi(date, 'Igc_cum_pinc', "% Increase, Infected", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_Gc_Igc', "% Mortality Rate", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_M_Igc', "% Known Recovery Rate", num_format=".3f", bperc = True) print() self.printKpi(date, 'ratio_Gccum_Igccum', "% Recovered / Tot", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_Mcum_Igccum', "% Dead / Tot", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_Igci_Igc', "% Intensive Care", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_Igcn_Igc', "% Non Intensive Care", num_format=".3f", bperc = True) self.printKpi(date, 'ratio_I_Igc', "% Total Infected / Known Infected", num_format=".3f", bperc = True) self.printKpi(date, 'R0_t', "R0", num_format=".3f") print() print() print("*** 7 days ahead predictions ***") self.printPredict(date, 'Igc_cum', "Tot Infettati", pred_step = 7, bperc = False) print() self.printPredict(date, 'Igc', "Attualmente Infetti", pred_step = 7, bperc = False) print() self.printPredict(date, 'Igci_t', "Attualmente in Intensiva", pred_step = 7, bperc = False) print() self.printPredict(date, 'Gc_cum', "Tot Guariti", pred_step = 7, bperc = False) print() self.printPredict(date, 'M_cum', "Tot Morti", pred_step = 7, bperc = False) def printPredict(self, curr_date, kpi_name, title, pred_step = 7, bperc = False): var_mod = "mod_" + kpi_name data = self.data[var_mod][np.datetime64(curr_date, 'D') : np.datetime64(np.datetime64(curr_date, 'D') + np.timedelta64(pred_step, 'D'))] data_delta = pd.Series(data).diff(1) data_str = "[" for val in data: data_str = " " + data_str + " {:7s}".format(format_number(val)) + " " data_str = data_str + "]" data_delta_str = "[" for val in data_delta: #data_delta_str = " " + data_delta_str + " {:7s}".format(format_number(val)) + " " #print(val) #if math.isfinite(val): data_delta_str = " " + data_delta_str + " {:7s}".format(str(format_number(val))) + " " #else: # data_delta_str = " " + data_delta_str + " {:7s}".format("0") + " " data_delta_str = data_delta_str + "]" print(("%30s: %60s") %( title, data_str )) print(("%30s: %60s") %( "Var.", data_delta_str )) def calcData(self): def calcDataVar(data): istart = self.model['i_start'] #iend = istart + len(data) mod_len = len(self.model['mod_data']['dat_Igc']) #return [np.NaN for i in range (0, istart)] + data.tolist() + [np.NaN for i in range(istart + len(data) -1, mod_len-1)] return [np.NaN for i in range (0, istart)] + data.tolist()[self.act_data.i_start:] + [np.NaN for i in range(istart + len(data[self.act_data.i_start:]) -1, mod_len-1)] def calcDataVarDate(data): istart = self.model['i_start'] mod_len = len(self.model['mod_data']['dat_Igc']) #first_date = data[0] - np.timedelta64(istart, 'D') first_date = data[self.act_data.i_start] - np.timedelta64(istart, 'D') return [np.datetime64(first_date + np.timedelta64(i, 'D'), 'D') for i in range (0, mod_len)] uff_Igci_t = calcDataVar(self.act_data.dat_Igci_t) uff_Igcn_t = calcDataVar(self.act_data.dat_Igcn_t) uff_Igc = calcDataVar(self.act_data.dat_Igc) uff_Igc_cum = calcDataVar(self.act_data.dat_Igc_cum) uff_Gc_cum = calcDataVar(self.act_data.dat_Gc_cum) uff_M_cum = calcDataVar(self.act_data.dat_M_cum) uff_Gc = [np.NaN] + np.diff(uff_Gc_cum).tolist() uff_M = [np.NaN] + np.diff(uff_M_cum).tolist() uff_Igc_cum_pinc = (pd.Series(uff_Igc_cum)/pd.Series(uff_Igc_cum).shift(1)) - 1 uff_ratio_Gc_Igc = (pd.Series(uff_Gc)/pd.Series(uff_Igc).shift(1)) uff_ratio_M_Igc = (pd.Series(uff_M)/pd.Series(uff_Igc).shift(1)) uff_ratio_Gccum_Igccum = (np.array(uff_Gc_cum)/np.array(uff_Igc_cum)).tolist() uff_ratio_Mcum_Igccum = (np.array(uff_M_cum)/np.array(uff_Igc_cum)).tolist() uff_ratio_Igci_Igc = (np.array(uff_Igci_t)/np.array(uff_Igc)).tolist() uff_ratio_Igcn_Igc = (np.array(uff_Igcn_t)/np.array(uff_Igc)).tolist() mod_Igci_t = self.model['mod_data']['dat_Igci_t'] mod_Igcn_t = self.model['mod_data']['dat_Igcn_t'] mod_Ias_t = self.model['mod_data']['dat_Ias_t'] mod_Igs_t = self.model['mod'].Igs_t mod_Igc = self.model['mod_data']['dat_Igc'] mod_Igc_cum = self.model['mod_data']['dat_Igc_cum'] mod_I = self.model['mod_data']['dat_I'] #mod_NIs_t = self.model['mod_data']['dat_NIs'] mod_G = self.model['mod_data']['dat_G'] mod_Gc = self.model['mod_data']['dat_Gc'] mod_M = self.model['mod_data']['dat_M'] mod_G_cum = self.model['mod_data']['dat_G_cum'] mod_Gc_cum = self.model['mod_data']['dat_Gc_cum'] mod_M_cum = self.model['mod_data']['dat_M_cum'] mod_Popi_t = self.model['mod_data']['dat_Popi_t'] mod_R0_t = self.model['mod_data']['dat_R0_t'] mod_Igc_cum_pinc = (
pd.Series(mod_Igc_cum)
pandas.Series
""" Quantilization functions and related stuff """ from functools import partial import numpy as np from pandas._libs.lib import infer_dtype from pandas.core.dtypes.common import ( ensure_int64, is_categorical_dtype, is_datetime64_dtype, is_datetime64tz_dtype, is_datetime_or_timedelta_dtype, is_integer, is_scalar, is_timedelta64_dtype) from pandas.core.dtypes.missing import isna from pandas import ( Categorical, Index, Interval, IntervalIndex, Series, Timedelta, Timestamp, to_datetime, to_timedelta) import pandas.core.algorithms as algos import pandas.core.nanops as nanops def cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False, duplicates='raise'): """ Bin values into discrete intervals. Use `cut` when you need to segment and sort data values into bins. This function is also useful for going from a continuous variable to a categorical variable. For example, `cut` could convert ages to groups of age ranges. Supports binning into an equal number of bins, or a pre-specified array of bins. Parameters ---------- x : array-like The input array to be binned. Must be 1-dimensional. bins : int, sequence of scalars, or pandas.IntervalIndex The criteria to bin by. * int : Defines the number of equal-width bins in the range of `x`. The range of `x` is extended by .1% on each side to include the minimum and maximum values of `x`. * sequence of scalars : Defines the bin edges allowing for non-uniform width. No extension of the range of `x` is done. * IntervalIndex : Defines the exact bins to be used. right : bool, default True Indicates whether `bins` includes the rightmost edge or not. If ``right == True`` (the default), then the `bins` ``[1, 2, 3, 4]`` indicate (1,2], (2,3], (3,4]. This argument is ignored when `bins` is an IntervalIndex. labels : array or bool, optional Specifies the labels for the returned bins. Must be the same length as the resulting bins. If False, returns only integer indicators of the bins. This affects the type of the output container (see below). This argument is ignored when `bins` is an IntervalIndex. retbins : bool, default False Whether to return the bins or not. Useful when bins is provided as a scalar. precision : int, default 3 The precision at which to store and display the bins labels. include_lowest : bool, default False Whether the first interval should be left-inclusive or not. duplicates : {default 'raise', 'drop'}, optional If bin edges are not unique, raise ValueError or drop non-uniques. .. versionadded:: 0.23.0 Returns ------- out : pandas.Categorical, Series, or ndarray An array-like object representing the respective bin for each value of `x`. The type depends on the value of `labels`. * True (default) : returns a Series for Series `x` or a pandas.Categorical for all other inputs. The values stored within are Interval dtype. * sequence of scalars : returns a Series for Series `x` or a pandas.Categorical for all other inputs. The values stored within are whatever the type in the sequence is. * False : returns an ndarray of integers. bins : numpy.ndarray or IntervalIndex. The computed or specified bins. Only returned when `retbins=True`. For scalar or sequence `bins`, this is an ndarray with the computed bins. If set `duplicates=drop`, `bins` will drop non-unique bin. For an IntervalIndex `bins`, this is equal to `bins`. See Also -------- qcut : Discretize variable into equal-sized buckets based on rank or based on sample quantiles. pandas.Categorical : Array type for storing data that come from a fixed set of values. Series : One-dimensional array with axis labels (including time series). pandas.IntervalIndex : Immutable Index implementing an ordered, sliceable set. Notes ----- Any NA values will be NA in the result. Out of bounds values will be NA in the resulting Series or pandas.Categorical object. Examples -------- Discretize into three equal-sized bins. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3) ... # doctest: +ELLIPSIS [(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ... >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), 3, retbins=True) ... # doctest: +ELLIPSIS ([(0.994, 3.0], (5.0, 7.0], (3.0, 5.0], (3.0, 5.0], (5.0, 7.0], ... Categories (3, interval[float64]): [(0.994, 3.0] < (3.0, 5.0] ... array([0.994, 3. , 5. , 7. ])) Discovers the same bins, but assign them specific labels. Notice that the returned Categorical's categories are `labels` and is ordered. >>> pd.cut(np.array([1, 7, 5, 4, 6, 3]), ... 3, labels=["bad", "medium", "good"]) [bad, good, medium, medium, good, bad] Categories (3, object): [bad < medium < good] ``labels=False`` implies you just want the bins back. >>> pd.cut([0, 1, 1, 2], bins=4, labels=False) array([0, 1, 1, 3]) Passing a Series as an input returns a Series with categorical dtype: >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, 3) ... # doctest: +ELLIPSIS a (1.992, 4.667] b (1.992, 4.667] c (4.667, 7.333] d (7.333, 10.0] e (7.333, 10.0] dtype: category Categories (3, interval[float64]): [(1.992, 4.667] < (4.667, ... Passing a Series as an input returns a Series with mapping value. It is used to map numerically to intervals based on bins. >>> s = pd.Series(np.array([2, 4, 6, 8, 10]), ... index=['a', 'b', 'c', 'd', 'e']) >>> pd.cut(s, [0, 2, 4, 6, 8, 10], labels=False, retbins=True, right=False) ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 4.0 dtype: float64, array([0, 2, 4, 6, 8])) Use `drop` optional when bins is not unique >>> pd.cut(s, [0, 2, 4, 6, 10, 10], labels=False, retbins=True, ... right=False, duplicates='drop') ... # doctest: +ELLIPSIS (a 0.0 b 1.0 c 2.0 d 3.0 e 3.0 dtype: float64, array([0, 2, 4, 6, 8])) Passing an IntervalIndex for `bins` results in those categories exactly. Notice that values not covered by the IntervalIndex are set to NaN. 0 is to the left of the first bin (which is closed on the right), and 1.5 falls between two bins. >>> bins = pd.IntervalIndex.from_tuples([(0, 1), (2, 3), (4, 5)]) >>> pd.cut([0, 0.5, 1.5, 2.5, 4.5], bins) [NaN, (0, 1], NaN, (2, 3], (4, 5]] Categories (3, interval[int64]): [(0, 1] < (2, 3] < (4, 5]] """ # NOTE: this binning code is changed a bit from histogram for var(x) == 0 # for handling the cut for datetime and timedelta objects x_is_series, series_index, name, x = _preprocess_for_cut(x) x, dtype = _coerce_to_type(x) if not np.iterable(bins): if is_scalar(bins) and bins < 1: raise ValueError("`bins` should be a positive integer.") try: # for array-like sz = x.size except AttributeError: x = np.asarray(x) sz = x.size if sz == 0: raise ValueError('Cannot cut empty array') rng = (nanops.nanmin(x), nanops.nanmax(x)) mn, mx = [mi + 0.0 for mi in rng] if mn == mx: # adjust end points before binning mn -= .001 * abs(mn) if mn != 0 else .001 mx += .001 * abs(mx) if mx != 0 else .001 bins = np.linspace(mn, mx, bins + 1, endpoint=True) else: # adjust end points after binning bins = np.linspace(mn, mx, bins + 1, endpoint=True) adj = (mx - mn) * 0.001 # 0.1% of the range if right: bins[0] -= adj else: bins[-1] += adj elif isinstance(bins, IntervalIndex): pass else: bins = np.asarray(bins) bins = _convert_bin_to_numeric_type(bins, dtype) if (np.diff(bins) < 0).any(): raise ValueError('bins must increase monotonically.') fac, bins = _bins_to_cuts(x, bins, right=right, labels=labels, precision=precision, include_lowest=include_lowest, dtype=dtype, duplicates=duplicates) return _postprocess_for_cut(fac, bins, retbins, x_is_series, series_index, name, dtype) def qcut(x, q, labels=None, retbins=False, precision=3, duplicates='raise'): """ Quantile-based discretization function. Discretize variable into equal-sized buckets based on rank or based on sample quantiles. For example 1000 values for 10 quantiles would produce a Categorical object indicating quantile membership for each data point. Parameters ---------- x : 1d ndarray or Series q : integer or array of quantiles Number of quantiles. 10 for deciles, 4 for quartiles, etc. Alternately array of quantiles, e.g. [0, .25, .5, .75, 1.] for quartiles labels : array or boolean, default None Used as labels for the resulting bins. Must be of the same length as the resulting bins. If False, return only integer indicators of the bins. retbins : bool, optional Whether to return the (bins, labels) or not. Can be useful if bins is given as a scalar. precision : int, optional The precision at which to store and display the bins labels duplicates : {default 'raise', 'drop'}, optional If bin edges are not unique, raise ValueError or drop non-uniques. .. versionadded:: 0.20.0 Returns ------- out : Categorical or Series or array of integers if labels is False The return type (Categorical or Series) depends on the input: a Series of type category if input is a Series else Categorical. Bins are represented as categories when categorical data is returned. bins : ndarray of floats Returned only if `retbins` is True. Notes ----- Out of bounds values will be NA in the resulting Categorical object Examples -------- >>> pd.qcut(range(5), 4) ... # doctest: +ELLIPSIS [(-0.001, 1.0], (-0.001, 1.0], (1.0, 2.0], (2.0, 3.0], (3.0, 4.0]] Categories (4, interval[float64]): [(-0.001, 1.0] < (1.0, 2.0] ... >>> pd.qcut(range(5), 3, labels=["good", "medium", "bad"]) ... # doctest: +SKIP [good, good, medium, bad, bad] Categories (3, object): [good < medium < bad] >>> pd.qcut(range(5), 4, labels=False) array([0, 0, 1, 2, 3]) """ x_is_series, series_index, name, x = _preprocess_for_cut(x) x, dtype = _coerce_to_type(x) if is_integer(q): quantiles = np.linspace(0, 1, q + 1) else: quantiles = q bins = algos.quantile(x, quantiles) fac, bins = _bins_to_cuts(x, bins, labels=labels, precision=precision, include_lowest=True, dtype=dtype, duplicates=duplicates) return _postprocess_for_cut(fac, bins, retbins, x_is_series, series_index, name, dtype) def _bins_to_cuts(x, bins, right=True, labels=None, precision=3, include_lowest=False, dtype=None, duplicates='raise'): if duplicates not in ['raise', 'drop']: raise ValueError("invalid value for 'duplicates' parameter, " "valid options are: raise, drop") if isinstance(bins, IntervalIndex): # we have a fast-path here ids = bins.get_indexer(x) result = algos.take_nd(bins, ids) result = Categorical(result, categories=bins, ordered=True) return result, bins unique_bins = algos.unique(bins) if len(unique_bins) < len(bins) and len(bins) != 2: if duplicates == 'raise': raise ValueError("Bin edges must be unique: {bins!r}.\nYou " "can drop duplicate edges by setting " "the 'duplicates' kwarg".format(bins=bins)) else: bins = unique_bins side = 'left' if right else 'right' ids = ensure_int64(bins.searchsorted(x, side=side)) if include_lowest: ids[x == bins[0]] = 1 na_mask = isna(x) | (ids == len(bins)) | (ids == 0) has_nas = na_mask.any() if labels is not False: if labels is None: labels = _format_labels(bins, precision, right=right, include_lowest=include_lowest, dtype=dtype) else: if len(labels) != len(bins) - 1: raise ValueError('Bin labels must be one fewer than ' 'the number of bin edges') if not is_categorical_dtype(labels): labels = Categorical(labels, categories=labels, ordered=True) np.putmask(ids, na_mask, 0) result = algos.take_nd(labels, ids - 1) else: result = ids - 1 if has_nas: result = result.astype(np.float64) np.putmask(result, na_mask, np.nan) return result, bins def _trim_zeros(x): while len(x) > 1 and x[-1] == '0': x = x[:-1] if len(x) > 1 and x[-1] == '.': x = x[:-1] return x def _coerce_to_type(x): """ if the passed data is of datetime/timedelta type, this method converts it to numeric so that cut method can handle it """ dtype = None if is_datetime64tz_dtype(x): dtype = x.dtype elif is_datetime64_dtype(x): x = to_datetime(x) dtype = np.datetime64 elif is_timedelta64_dtype(x): x = to_timedelta(x) dtype = np.timedelta64 if dtype is not None: # GH 19768: force NaT to NaN during integer conversion x = np.where(x.notna(), x.view(np.int64), np.nan) return x, dtype def _convert_bin_to_numeric_type(bins, dtype): """ if the passed bin is of datetime/timedelta type, this method converts it to integer Parameters ---------- bins : list-like of bins dtype : dtype of data Raises ------ ValueError if bins are not of a compat dtype to dtype """ bins_dtype = infer_dtype(bins) if is_timedelta64_dtype(dtype): if bins_dtype in ['timedelta', 'timedelta64']: bins =
to_timedelta(bins)
pandas.to_timedelta
# Long Author List formatting tool # <NAME> (<EMAIL> 2020) # Usage: python3 lal.py # Input: lal_data2.txt with one author per row and up to 5 affiliations # <First>;<Last>;<Email>;<Group1>;<Group2>;<Group3>;<Group4>;<Group5> # Example: Heiko;Goelzer;<EMAIL>;IMAU,UU;ULB;nil;nil;nil # Use 'nil','nan','0' or '-' to fill unused affiliations # Output: lal_inout2.txt when saving the modified listing, can be used as # input the next time # Parsed: lal_parsed.txt when parsed to insert in a manuscript # Selected lines and selected blocks can be rearranged by dragging, sorted by last name and deleted. # 'Save' will write the updated list to a file that can be reused later # 'Parse' will write formatted output that can be copy-pasted import tkinter as tk; # Listbox for ordering class ReorderableListbox(tk.Listbox): """ A Tkinter listbox with drag & drop reordering of lines """ def __init__(self, master, **kw): kw['selectmode'] = tk.EXTENDED tk.Listbox.__init__(self, master, kw) self.bind('<Button-1>', self.setCurrent) self.bind('<Control-1>', self.toggleSelection) self.bind('<B1-Motion>', self.shiftSelection) self.bind('<Leave>', self.onLeave) self.bind('<Enter>', self.onEnter) self.selectionClicked = False self.left = False self.unlockShifting() self.ctrlClicked = False def orderChangedEventHandler(self): pass def onLeave(self, event): # prevents changing selection when dragging # already selected items beyond the edge of the listbox if self.selectionClicked: self.left = True return 'break' def onEnter(self, event): #TODO self.left = False def setCurrent(self, event): self.ctrlClicked = False i = self.nearest(event.y) self.selectionClicked = self.selection_includes(i) if (self.selectionClicked): return 'break' def toggleSelection(self, event): self.ctrlClicked = True def moveElement(self, source, target): if not self.ctrlClicked: element = self.get(source) self.delete(source) self.insert(target, element) def unlockShifting(self): self.shifting = False def lockShifting(self): # prevent moving processes from disturbing each other # and prevent scrolling too fast # when dragged to the top/bottom of visible area self.shifting = True def shiftSelection(self, event): if self.ctrlClicked: return selection = self.curselection() if not self.selectionClicked or len(selection) == 0: return selectionRange = range(min(selection), max(selection)) currentIndex = self.nearest(event.y) if self.shifting: return 'break' lineHeight = 12 bottomY = self.winfo_height() if event.y >= bottomY - lineHeight: self.lockShifting() self.see(self.nearest(bottomY - lineHeight) + 1) self.master.after(500, self.unlockShifting) if event.y <= lineHeight: self.lockShifting() self.see(self.nearest(lineHeight) - 1) self.master.after(500, self.unlockShifting) if currentIndex < min(selection): self.lockShifting() notInSelectionIndex = 0 for i in selectionRange[::-1]: if not self.selection_includes(i): self.moveElement(i, max(selection)-notInSelectionIndex) notInSelectionIndex += 1 currentIndex = min(selection)-1 self.moveElement(currentIndex, currentIndex + len(selection)) self.orderChangedEventHandler() elif currentIndex > max(selection): self.lockShifting() notInSelectionIndex = 0 for i in selectionRange: if not self.selection_includes(i): self.moveElement(i, min(selection)+notInSelectionIndex) notInSelectionIndex += 1 currentIndex = max(selection)+1 self.moveElement(currentIndex, currentIndex - len(selection)) self.orderChangedEventHandler() self.unlockShifting() return 'break' def deleteSelection(self): # delete selected items if len(self.curselection()) == 0: return self.delete(min(self.curselection()),max(self.curselection())) def sortAll(self): # sort all items alphabetically temp_list = list(self.get(0, tk.END)) temp_list.sort(key=str.lower) # delete contents of present listbox self.delete(0, tk.END) # load listbox with sorted data for item in temp_list: self.insert(tk.END, item) def sortSelection(self): # sort selected items alphabetically if len(self.curselection()) == 0: return mmax = max(self.curselection()) mmin = min(self.curselection()) temp_list = list(self.get(mmin,mmax)) #print(temp_list) # Sort reverse because pushed back in reverse order temp_list.sort(key=str.lower,reverse=True) # delete contents of present listbox self.delete(mmin,mmax) # load listbox with sorted data for item in temp_list: self.insert(mmin, item) def save(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout = pd.DataFrame() for item in temp_list: items = item.split(",") matchl = (df["LastName"].isin([items[0]])) matchf = (df["FirstName"].isin([items[1]])) matche = (df["Email"].isin([items[2]])) dfout = dfout.append(df[matchf & matchl]) dfout.to_csv('lal_inout2.txt', sep=';', header=None, index=None) print("File saved!") def parse_word(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout = pd.DataFrame() for item in temp_list: items = item.split(",") matchl = (df["LastName"].isin([items[0]])) matchf = (df["FirstName"].isin([items[1]])) dfout = dfout.append(df[matchf & matchl]) # parse first = dfout["FirstName"] last = dfout["LastName"] grp = dfout[["Group1","Group2","Group3","Group4","Group5"]] unique_groups = [] group_ids = [] k = 0 # collect unique groups and indices for i in range(0,dfout.shape[0]): groups = [] # loop through max 5 groups for j in range(0,5): # Exclude some common dummy place holders if (grp.iloc[i,j] not in ['nil','nan','0','-']): if (grp.iloc[i,j] not in unique_groups): unique_groups.append(grp.iloc[i,j]) k = k + 1 groups.append(k) else: ix = unique_groups.index(grp.iloc[i,j])+1 groups.append(ix) # Add author group ids group_ids.append(groups) #print(group_ids) #print(unique_groups) # Compose text with open("lal_parsed_word.txt", "w") as text_file: # write out names for i in range(0,dfout.shape[0]): print(first.iloc[i].strip(), end =" ", file=text_file) print(last.iloc[i].strip(), end ="", file=text_file) for j in range(0,len(group_ids[i])): if j < len(group_ids[i])-1: print(str(group_ids[i][j]), end =",", file=text_file) else: print(str(group_ids[i][j]), end ="", file=text_file) #print(" ", end ="", file=text_file) if (i < dfout.shape[0]-1): # comma and space before next name print(", ", end ="", file=text_file) # Add some space between names and affiliations print("\n\n", file=text_file) # Write out affiliations for i in range(0,len(unique_groups)): print("(", end ="", file=text_file) print(str(i+1), end ="", file=text_file) print(")", end =" ", file=text_file) print(unique_groups[i], end ="\n", file=text_file) print("File lal_parsed_word.txt written") # Parse tex \author and \affil def parse_tex(self,df): # save current list temp_list = list(self.get(0, tk.END)) # create output df dfout =
pd.DataFrame()
pandas.DataFrame
import datetime from datetime import timedelta from distutils.version import LooseVersion from io import BytesIO import os import re from warnings import catch_warnings, simplefilter import numpy as np import pytest from pandas.compat import is_platform_little_endian, is_platform_windows import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_categorical_dtype import pandas as pd from pandas import ( Categorical, CategoricalIndex, DataFrame, DatetimeIndex, Index, Int64Index, MultiIndex, RangeIndex, Series, Timestamp, bdate_range, concat, date_range, isna, timedelta_range, ) from pandas.tests.io.pytables.common import ( _maybe_remove, create_tempfile, ensure_clean_path, ensure_clean_store, safe_close, safe_remove, tables, ) import pandas.util.testing as tm from pandas.io.pytables import ( ClosedFileError, HDFStore, PossibleDataLossError, Term, read_hdf, ) from pandas.io import pytables as pytables # noqa: E402 isort:skip from pandas.io.pytables import TableIterator # noqa: E402 isort:skip _default_compressor = "blosc" ignore_natural_naming_warning = pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) @pytest.mark.single class TestHDFStore: def test_format_kwarg_in_constructor(self, setup_path): # GH 13291 with ensure_clean_path(setup_path) as path: with pytest.raises(ValueError): HDFStore(path, format="table") def test_context(self, setup_path): path = create_tempfile(setup_path) try: with HDFStore(path) as tbl: raise ValueError("blah") except ValueError: pass finally: safe_remove(path) try: with HDFStore(path) as tbl: tbl["a"] = tm.makeDataFrame() with HDFStore(path) as tbl: assert len(tbl) == 1 assert type(tbl["a"]) == DataFrame finally: safe_remove(path) def test_conv_read_write(self, setup_path): path = create_tempfile(setup_path) try: def roundtrip(key, obj, **kwargs): obj.to_hdf(path, key, **kwargs) return read_hdf(path, key) o = tm.makeTimeSeries() tm.assert_series_equal(o, roundtrip("series", o)) o = tm.makeStringSeries() tm.assert_series_equal(o, roundtrip("string_series", o)) o = tm.makeDataFrame() tm.assert_frame_equal(o, roundtrip("frame", o)) # table df = DataFrame(dict(A=range(5), B=range(5))) df.to_hdf(path, "table", append=True) result = read_hdf(path, "table", where=["index>2"]) tm.assert_frame_equal(df[df.index > 2], result) finally: safe_remove(path) def test_long_strings(self, setup_path): # GH6166 df = DataFrame( {"a": tm.rands_array(100, size=10)}, index=tm.rands_array(100, size=10) ) with ensure_clean_store(setup_path) as store: store.append("df", df, data_columns=["a"]) result = store.select("df") tm.assert_frame_equal(df, result) def test_api(self, setup_path): # GH4584 # API issue when to_hdf doesn't accept append AND format args with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.iloc[:10].to_hdf(path, "df", append=True) df.iloc[10:].to_hdf(path, "df", append=True, format="table") tm.assert_frame_equal(read_hdf(path, "df"), df) # append to False df.iloc[:10].to_hdf(path, "df", append=False, format="table") df.iloc[10:].to_hdf(path, "df", append=True) tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() df.to_hdf(path, "df", append=False, format="fixed") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False, format="f") tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df", append=False) tm.assert_frame_equal(read_hdf(path, "df"), df) df.to_hdf(path, "df") tm.assert_frame_equal(read_hdf(path, "df"), df) with ensure_clean_store(setup_path) as store: path = store._path df = tm.makeDataFrame() _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=True, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # append to False _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) # formats _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format="table") tm.assert_frame_equal(store.select("df"), df) _maybe_remove(store, "df") store.append("df", df.iloc[:10], append=False, format="table") store.append("df", df.iloc[10:], append=True, format=None) tm.assert_frame_equal(store.select("df"), df) with ensure_clean_path(setup_path) as path: # Invalid. df = tm.makeDataFrame() with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="f") with pytest.raises(ValueError): df.to_hdf(path, "df", append=True, format="fixed") with pytest.raises(TypeError): df.to_hdf(path, "df", append=True, format="foo") with pytest.raises(TypeError): df.to_hdf(path, "df", append=False, format="bar") # File path doesn't exist path = "" with pytest.raises(FileNotFoundError): read_hdf(path, "df") def test_api_default_format(self, setup_path): # default_format option with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") _maybe_remove(store, "df") store.put("df", df) assert not store.get_storer("df").is_table with pytest.raises(ValueError): store.append("df2", df) pd.set_option("io.hdf.default_format", "table") _maybe_remove(store, "df") store.put("df", df) assert store.get_storer("df").is_table _maybe_remove(store, "df2") store.append("df2", df) assert store.get_storer("df").is_table pd.set_option("io.hdf.default_format", None) with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() pd.set_option("io.hdf.default_format", "fixed") df.to_hdf(path, "df") with HDFStore(path) as store: assert not store.get_storer("df").is_table with pytest.raises(ValueError): df.to_hdf(path, "df2", append=True) pd.set_option("io.hdf.default_format", "table") df.to_hdf(path, "df3") with HDFStore(path) as store: assert store.get_storer("df3").is_table df.to_hdf(path, "df4", append=True) with HDFStore(path) as store: assert store.get_storer("df4").is_table pd.set_option("io.hdf.default_format", None) def test_keys(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() assert len(store) == 3 expected = {"/a", "/b", "/c"} assert set(store.keys()) == expected assert set(store) == expected def test_keys_ignore_hdf_softlink(self, setup_path): # GH 20523 # Puts a softlink into HDF file and rereads with ensure_clean_store(setup_path) as store: df = DataFrame(dict(A=range(5), B=range(5))) store.put("df", df) assert store.keys() == ["/df"] store._handle.create_soft_link(store._handle.root, "symlink", "df") # Should ignore the softlink assert store.keys() == ["/df"] def test_iter_empty(self, setup_path): with ensure_clean_store(setup_path) as store: # GH 12221 assert list(store) == [] def test_repr(self, setup_path): with ensure_clean_store(setup_path) as store: repr(store) store.info() store["a"] = tm.makeTimeSeries() store["b"] = tm.makeStringSeries() store["c"] = tm.makeDataFrame() df = tm.makeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store["df"] = df # make a random group in hdf space store._handle.create_group(store._handle.root, "bah") assert store.filename in repr(store) assert store.filename in str(store) store.info() # storers with ensure_clean_store(setup_path) as store: df = tm.makeDataFrame() store.append("df", df) s = store.get_storer("df") repr(s) str(s) @ignore_natural_naming_warning def test_contains(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() store["foo/bar"] = tm.makeDataFrame() assert "a" in store assert "b" in store assert "c" not in store assert "foo/bar" in store assert "/foo/bar" in store assert "/foo/b" not in store assert "bar" not in store # gh-2694: tables.NaturalNameWarning with catch_warnings(record=True): store["node())"] = tm.makeDataFrame() assert "node())" in store def test_versioning(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store["b"] = tm.makeDataFrame() df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) assert store.root.a._v_attrs.pandas_version == "0.15.2" assert store.root.b._v_attrs.pandas_version == "0.15.2" assert store.root.df1._v_attrs.pandas_version == "0.15.2" # write a file and wipe its versioning _maybe_remove(store, "df2") store.append("df2", df) # this is an error because its table_type is appendable, but no # version info store.get_node("df2")._v_attrs.pandas_version = None with pytest.raises(Exception): store.select("df2") def test_mode(self, setup_path): df = tm.makeTimeDataFrame() def check(mode): with ensure_clean_path(setup_path) as path: # constructor if mode in ["r", "r+"]: with pytest.raises(IOError): HDFStore(path, mode=mode) else: store = HDFStore(path, mode=mode) assert store._handle.mode == mode store.close() with ensure_clean_path(setup_path) as path: # context if mode in ["r", "r+"]: with pytest.raises(IOError): with HDFStore(path, mode=mode) as store: # noqa pass else: with HDFStore(path, mode=mode) as store: assert store._handle.mode == mode with ensure_clean_path(setup_path) as path: # conv write if mode in ["r", "r+"]: with pytest.raises(IOError): df.to_hdf(path, "df", mode=mode) df.to_hdf(path, "df", mode="w") else: df.to_hdf(path, "df", mode=mode) # conv read if mode in ["w"]: with pytest.raises(ValueError): read_hdf(path, "df", mode=mode) else: result = read_hdf(path, "df", mode=mode) tm.assert_frame_equal(result, df) def check_default_mode(): # read_hdf uses default mode with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", mode="w") result = read_hdf(path, "df") tm.assert_frame_equal(result, df) check("r") check("r+") check("a") check("w") check_default_mode() def test_reopen_handle(self, setup_path): with ensure_clean_path(setup_path) as path: store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # invalid mode change with pytest.raises(PossibleDataLossError): store.open("w") store.close() assert not store.is_open # truncation ok here store.open("w") assert store.is_open assert len(store) == 0 store.close() assert not store.is_open store = HDFStore(path, mode="a") store["a"] = tm.makeTimeSeries() # reopen as read store.open("r") assert store.is_open assert len(store) == 1 assert store._mode == "r" store.close() assert not store.is_open # reopen as append store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open # reopen as append (again) store.open("a") assert store.is_open assert len(store) == 1 assert store._mode == "a" store.close() assert not store.is_open def test_open_args(self, setup_path): with ensure_clean_path(setup_path) as path: df = tm.makeDataFrame() # create an in memory store store = HDFStore( path, mode="a", driver="H5FD_CORE", driver_core_backing_store=0 ) store["df"] = df store.append("df2", df) tm.assert_frame_equal(store["df"], df) tm.assert_frame_equal(store["df2"], df) store.close() # the file should not have actually been written assert not os.path.exists(path) def test_flush(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() store.flush() store.flush(fsync=True) def test_get(self, setup_path): with ensure_clean_store(setup_path) as store: store["a"] = tm.makeTimeSeries() left = store.get("a") right = store["a"] tm.assert_series_equal(left, right) left = store.get("/a") right = store["/a"] tm.assert_series_equal(left, right) with pytest.raises(KeyError, match="'No object named b in the file'"): store.get("b") @pytest.mark.parametrize( "where, expected", [ ( "/", { "": ({"first_group", "second_group"}, set()), "/first_group": (set(), {"df1", "df2"}), "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ( "/second_group", { "/second_group": ({"third_group"}, {"df3", "s1"}), "/second_group/third_group": (set(), {"df4"}), }, ), ], ) def test_walk(self, where, expected, setup_path): # GH10143 objs = { "df1": pd.DataFrame([1, 2, 3]), "df2": pd.DataFrame([4, 5, 6]), "df3": pd.DataFrame([6, 7, 8]), "df4": pd.DataFrame([9, 10, 11]), "s1": pd.Series([10, 9, 8]), # Next 3 items aren't pandas objects and should be ignored "a1": np.array([[1, 2, 3], [4, 5, 6]]), "tb1": np.array([(1, 2, 3), (4, 5, 6)], dtype="i,i,i"), "tb2": np.array([(7, 8, 9), (10, 11, 12)], dtype="i,i,i"), } with ensure_clean_store("walk_groups.hdf", mode="w") as store: store.put("/first_group/df1", objs["df1"]) store.put("/first_group/df2", objs["df2"]) store.put("/second_group/df3", objs["df3"]) store.put("/second_group/s1", objs["s1"]) store.put("/second_group/third_group/df4", objs["df4"]) # Create non-pandas objects store._handle.create_array("/first_group", "a1", objs["a1"]) store._handle.create_table("/first_group", "tb1", obj=objs["tb1"]) store._handle.create_table("/second_group", "tb2", obj=objs["tb2"]) assert len(list(store.walk(where=where))) == len(expected) for path, groups, leaves in store.walk(where=where): assert path in expected expected_groups, expected_frames = expected[path] assert expected_groups == set(groups) assert expected_frames == set(leaves) for leaf in leaves: frame_path = "/".join([path, leaf]) obj = store.get(frame_path) if "df" in leaf: tm.assert_frame_equal(obj, objs[leaf]) else: tm.assert_series_equal(obj, objs[leaf]) def test_getattr(self, setup_path): with ensure_clean_store(setup_path) as store: s = tm.makeTimeSeries() store["a"] = s # test attribute access result = store.a tm.assert_series_equal(result, s) result = getattr(store, "a") tm.assert_series_equal(result, s) df = tm.makeTimeDataFrame() store["df"] = df result = store.df tm.assert_frame_equal(result, df) # errors for x in ["d", "mode", "path", "handle", "complib"]: with pytest.raises(AttributeError): getattr(store, x) # not stores for x in ["mode", "path", "handle", "complib"]: getattr(store, "_{x}".format(x=x)) def test_put(self, setup_path): with ensure_clean_store(setup_path) as store: ts = tm.makeTimeSeries() df = tm.makeTimeDataFrame() store["a"] = ts store["b"] = df[:10] store["foo/bar/bah"] = df[:10] store["foo"] = df[:10] store["/foo"] = df[:10] store.put("c", df[:10], format="table") # not OK, not a table with pytest.raises(ValueError): store.put("b", df[10:], append=True) # node does not currently exist, test _is_table_type returns False # in this case _maybe_remove(store, "f") with pytest.raises(ValueError): store.put("f", df[10:], append=True) # can't put to a table (use append instead) with pytest.raises(ValueError): store.put("c", df[10:], append=True) # overwrite table store.put("c", df[:10], format="table", append=False) tm.assert_frame_equal(df[:10], store["c"]) def test_put_string_index(self, setup_path): with ensure_clean_store(setup_path) as store: index = Index( ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(20), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) # mixed length index = Index( ["abcdefghijklmnopqrstuvwxyz1234567890"] + ["I am a very long string index: {i}".format(i=i) for i in range(20)] ) s = Series(np.arange(21), index=index) df = DataFrame({"A": s, "B": s}) store["a"] = s tm.assert_series_equal(store["a"], s) store["b"] = df tm.assert_frame_equal(store["b"], df) def test_put_compression(self, setup_path): with ensure_clean_store(setup_path) as store: df = tm.makeTimeDataFrame() store.put("c", df, format="table", complib="zlib") tm.assert_frame_equal(store["c"], df) # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="zlib") @td.skip_if_windows_python_3 def test_put_compression_blosc(self, setup_path): df = tm.makeTimeDataFrame() with ensure_clean_store(setup_path) as store: # can't compress if format='fixed' with pytest.raises(ValueError): store.put("b", df, format="fixed", complib="blosc") store.put("c", df, format="table", complib="blosc") tm.assert_frame_equal(store["c"], df) def test_complibs_default_settings(self, setup_path): # GH15943 df = tm.makeDataFrame() # Set complevel and check if complib is automatically set to # default value with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complevel=9) result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "zlib" # Set complib and check to see if compression is disabled with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df", complib="zlib") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if not setting complib or complevel results in no compression with ensure_clean_path(setup_path) as tmpfile: df.to_hdf(tmpfile, "df") result = pd.read_hdf(tmpfile, "df") tm.assert_frame_equal(result, df) with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None # Check if file-defaults can be overridden on a per table basis with ensure_clean_path(setup_path) as tmpfile: store = pd.HDFStore(tmpfile) store.append("dfc", df, complevel=9, complib="blosc") store.append("df", df) store.close() with tables.open_file(tmpfile, mode="r") as h5file: for node in h5file.walk_nodes(where="/df", classname="Leaf"): assert node.filters.complevel == 0 assert node.filters.complib is None for node in h5file.walk_nodes(where="/dfc", classname="Leaf"): assert node.filters.complevel == 9 assert node.filters.complib == "blosc" def test_complibs(self, setup_path): # GH14478 df = tm.makeDataFrame() # Building list of all complibs and complevels tuples all_complibs = tables.filters.all_complibs # Remove lzo if its not available on this platform if not tables.which_lib_version("lzo"): all_complibs.remove("lzo") # Remove bzip2 if its not available on this platform if not tables.which_lib_version("bzip2"): all_complibs.remove("bzip2") all_levels = range(0, 10) all_tests = [(lib, lvl) for lib in all_complibs for lvl in all_levels] for (lib, lvl) in all_tests: with ensure_clean_path(setup_path) as tmpfile: gname = "foo" # Write and read file to see if data is consistent df.to_hdf(tmpfile, gname, complib=lib, complevel=lvl) result = pd.read_hdf(tmpfile, gname) tm.assert_frame_equal(result, df) # Open file and check metadata # for correct amount of compression h5table = tables.open_file(tmpfile, mode="r") for node in h5table.walk_nodes(where="/" + gname, classname="Leaf"): assert node.filters.complevel == lvl if lvl == 0: assert node.filters.complib is None else: assert node.filters.complib == lib h5table.close() def test_put_integer(self, setup_path): # non-date, non-string index df = DataFrame(np.random.randn(50, 100)) self._check_roundtrip(df, tm.assert_frame_equal, setup_path) @td.xfail_non_writeable def test_put_mixed_type(self, setup_path): df = tm.makeTimeDataFrame() df["obj1"] = "foo" df["obj2"] = "bar" df["bool1"] = df["A"] > 0 df["bool2"] = df["B"] > 0 df["bool3"] = True df["int1"] = 1 df["int2"] = 2 df["timestamp1"] = Timestamp("20010102") df["timestamp2"] = Timestamp("20010103") df["datetime1"] = datetime.datetime(2001, 1, 2, 0, 0) df["datetime2"] = datetime.datetime(2001, 1, 3, 0, 0) df.loc[3:6, ["obj1"]] = np.nan df = df._consolidate()._convert(datetime=True) with ensure_clean_store(setup_path) as store: _maybe_remove(store, "df") # PerformanceWarning with catch_warnings(record=True): simplefilter("ignore", pd.errors.PerformanceWarning) store.put("df", df) expected = store.get("df") tm.assert_frame_equal(expected, df) @pytest.mark.filterwarnings( "ignore:object name:tables.exceptions.NaturalNameWarning" ) def test_append(self, setup_path): with ensure_clean_store(setup_path) as store: # this is allowed by almost always don't want to do it # tables.NaturalNameWarning): with catch_warnings(record=True): df = tm.makeTimeDataFrame() _maybe_remove(store, "df1") store.append("df1", df[:10]) store.append("df1", df[10:]) tm.assert_frame_equal(store["df1"], df) _maybe_remove(store, "df2") store.put("df2", df[:10], format="table") store.append("df2", df[10:]) tm.assert_frame_equal(store["df2"], df) _maybe_remove(store, "df3") store.append("/df3", df[:10]) store.append("/df3", df[10:]) tm.assert_frame_equal(store["df3"], df) # this is allowed by almost always don't want to do it # tables.NaturalNameWarning _maybe_remove(store, "/df3 foo") store.append("/df3 foo", df[:10]) store.append("/df3 foo", df[10:]) tm.assert_frame_equal(store["df3 foo"], df) # dtype issues - mizxed type in a single object column df = DataFrame(data=[[1, 2], [0, 1], [1, 2], [0, 0]]) df["mixed_column"] = "testing" df.loc[2, "mixed_column"] = np.nan _maybe_remove(store, "df") store.append("df", df) tm.assert_frame_equal(store["df"], df) # uints - test storage of uints uint_data = DataFrame( { "u08": Series( np.random.randint(0, high=255, size=5), dtype=np.uint8 ), "u16": Series( np.random.randint(0, high=65535, size=5), dtype=np.uint16 ), "u32": Series( np.random.randint(0, high=2 ** 30, size=5), dtype=np.uint32 ), "u64": Series( [2 ** 58, 2 ** 59, 2 ** 60, 2 ** 61, 2 ** 62], dtype=np.uint64, ), }, index=np.arange(5), ) _maybe_remove(store, "uints") store.append("uints", uint_data) tm.assert_frame_equal(store["uints"], uint_data) # uints - test storage of uints in indexable columns _maybe_remove(store, "uints") # 64-bit indices not yet supported store.append("uints", uint_data, data_columns=["u08", "u16", "u32"]) tm.assert_frame_equal(store["uints"], uint_data) def test_append_series(self, setup_path): with ensure_clean_store(setup_path) as store: # basic ss = tm.makeStringSeries() ts = tm.makeTimeSeries() ns = Series(np.arange(100)) store.append("ss", ss) result = store["ss"] tm.assert_series_equal(result, ss) assert result.name is None store.append("ts", ts) result = store["ts"] tm.assert_series_equal(result, ts) assert result.name is None ns.name = "foo" store.append("ns", ns) result = store["ns"] tm.assert_series_equal(result, ns) assert result.name == ns.name # select on the values expected = ns[ns > 60] result = store.select("ns", "foo>60") tm.assert_series_equal(result, expected) # select on the index and values expected = ns[(ns > 70) & (ns.index < 90)] result = store.select("ns", "foo>70 and index<90") tm.assert_series_equal(result, expected) # multi-index mi = DataFrame(np.random.randn(5, 1), columns=["A"]) mi["B"] = np.arange(len(mi)) mi["C"] = "foo" mi.loc[3:5, "C"] = "bar" mi.set_index(["C", "B"], inplace=True) s = mi.stack() s.index = s.index.droplevel(2) store.append("mi", s) tm.assert_series_equal(store["mi"], s) def test_store_index_types(self, setup_path): # GH5386 # test storing various index types with ensure_clean_store(setup_path) as store: def check(format, index): df = DataFrame(np.random.randn(10, 2), columns=list("AB")) df.index = index(len(df)) _maybe_remove(store, "df") store.put("df", df, format=format) tm.assert_frame_equal(df, store["df"]) for index in [ tm.makeFloatIndex, tm.makeStringIndex, tm.makeIntIndex, tm.makeDateIndex, ]: check("table", index) check("fixed", index) # period index currently broken for table # seee GH7796 FIXME check("fixed", tm.makePeriodIndex) # check('table',tm.makePeriodIndex) # unicode index = tm.makeUnicodeIndex check("table", index) check("fixed", index) @pytest.mark.skipif( not
is_platform_little_endian()
pandas.compat.is_platform_little_endian
import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.patches as patches # TODO: import only necessary tensorflow functions import tensorflow as tf import tensorflow_datasets as tfds from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay,\ roc_curve, roc_auc_score, classification_report, accuracy_score, precision_score, recall_score # TODO: Add docstrings # Loads the Patch Camelyon dataset def load_pcam(data_dir=None): pcam, pcam_info = tfds.load("patch_camelyon", with_info=True, data_dir=data_dir) print(pcam_info) return pcam, pcam_info # Converts images to prepare them for modelling def convert_sample(sample): # Credit: <NAME> image, label = sample['image'], sample['label'] image = tf.image.convert_image_dtype(image, tf.float32) label = tf.one_hot(label, 2, dtype=tf.float32) return image, label # Alternative to convert_sample which also converts images to grayscale def convert_sample_grayscale(sample): image, label = sample['image'], sample['label'] image = tf.image.rgb_to_grayscale(image, name=None) image = tf.image.convert_image_dtype(image, tf.float32) label = tf.one_hot(label, 2, dtype=tf.float32) return image, label # Substitute for ImageDataGenerator which gets along with the TensorFlow Dataset object def build_pipelines(pcam, grayscale=False): # Uses the grayscale version of convert_sample if grayscale: train_pipeline = pcam['train'].map(convert_sample_grayscale, num_parallel_calls=8).shuffle(1024).repeat().batch(64).prefetch(2) valid_pipeline = pcam['validation'].map(convert_sample_grayscale, num_parallel_calls=8).repeat().batch(128).prefetch(2) test_pipeline = pcam['test'].map(convert_sample_grayscale, num_parallel_calls=8).batch(128).prefetch(2) # Uses the normal version of convert_sample else: # Credit: <NAME> train_pipeline = pcam['train'].map(convert_sample, num_parallel_calls=8).shuffle(1024).repeat().batch(64).prefetch(2) valid_pipeline = pcam['validation'].map(convert_sample, num_parallel_calls=8).repeat().batch(128).prefetch(2) test_pipeline = pcam['test'].map(convert_sample, num_parallel_calls=8).batch(128).prefetch(2) return train_pipeline, valid_pipeline, test_pipeline # Export the training history to a .csv file def save_history(hist_df, filepath): # Sample filepath: 'data/models/history/cnn1_history.csv' hist_csv_file = filepath with open(hist_csv_file, mode='w') as f: hist_df.to_csv(f) # Loads model training history .csv into a pandas dataframe def load_history(filepath): # Sample filepath: 'data/models/history/cnn1_history.csv' hist_df = pd.read_csv(filepath, index_col=0) return hist_df # Plot the training accuracy and loss from training history def plot_history(hist_df, figsize=(10,4), title=None, save=False, filepath=None): # Create subplots plt.subplots(1, 2, figsize=figsize) # Creates a title for the whole plot plt.suptitle(title, fontsize=24) # Plot accuracies for train and validation sets plt.subplot(1, 2, 1) plt.plot(hist_df['accuracy'], label='Train', marker='o') plt.plot(hist_df['val_accuracy'], label='Validation', marker='o') plt.title('Training and Validation Accuracy', size=20) plt.xlabel('Epoch', size=16) plt.ylabel('Accuracy', size=16) plt.legend() # Plot losses plt.subplot(1, 2, 2) plt.plot(hist_df['loss'], label='Train', marker='o') plt.plot(hist_df['val_loss'], label='Validation', marker='o') plt.title('Training and Validation Loss', size=20) plt.xlabel('Epoch', size=16) plt.ylabel('Loss', size=16) plt.legend() # This ensures the subplots do not overlap plt.tight_layout() if save: # Sample filepath: 'data/plots/cnn1_acc_loss_plot.png' plt.savefig(filepath) # Show the subplots plt.show() # Plot the confusion matrix for a model def plot_cf_matrix(y_true, y_pred, normalize=True, save=False, filepath=None): cf_matrix = confusion_matrix(y_true, y_pred) # Turns the values in the confusion matrix into percentages if normalize: cf_matrix = cf_matrix / cf_matrix.sum(axis=1) ConfusionMatrixDisplay(cf_matrix, display_labels=['Healthy (0)', 'Cancer (1)']).plot() if save: # Sample filepath: 'data/plots/cnn1_cf_matrix.png' plt.savefig(filepath) plt.show() # Plot the ROC curve and calculate AUC def plot_roc_curve(y_true, y_proba, save=False, filepath=None): if y_proba.shape[1] == 2: # y_proba is still one-hot encoded, so grab only the class 1 probabilities y_proba = np.array([i[1] for i in y_proba]) fprs, tprs, thresholds = roc_curve(y_true, y_proba) roc_auc = roc_auc_score(y_true, y_proba) plt.figure(figsize=(8, 6)) plt.plot(fprs, tprs, color='darkorange', lw=2, label='AUC = %0.2f' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlabel('False Positive Rate (FPR)', size=16) plt.ylabel('True Positive Rate (TPR)', size=16) plt.title('ROC Curve for Cancer Detection', size=20) plt.legend(loc="best") if save: # Sample filepath: 'data/plots/cnn1_roc.png' plt.savefig(filepath) plt.show() print(f'Area under curve (AUC):{roc_auc}') # Create a list of ground truth labels from a specified data split def generate_y_true(pcam, split='test'): # Initialize iterator so it starts from the beginning iterator = pcam[split].__iter__() # Create an empty list to store the labels y_true = [] if split == 'train': # There are 262144 images in the training set for i in range(262144): y_true.append(int(iterator.get_next()['label'])) else: # There are 32768 images in the validation and test sets for i in range(32768): y_true.append(int(iterator.get_next()['label'])) return np.array(y_true) # Get predictions as probabilities from a trained model def generate_y_proba(model, test_pipeline, class_1=False, save=False, filepath=None): y_proba = model.predict(test_pipeline) if class_1: # Return just the class_1 predictions rather than one-hot encoded predictions y_proba = np.array([i[1] for i in y_proba]) # Save y_proba to a .csv file to load later without training the model if save: y_proba_df = pd.DataFrame(y_proba) # Sample filepath: 'data/models/cnn1_y_proba.csv' y_proba_csv_file = filepath with open(y_proba_csv_file, mode='w') as f: y_proba_df.to_csv(f) return y_proba # Load y_proba from a .csv file def load_y_proba(filepath): # Sample filepath: 'data/models/cnn1_y_proba.csv' y_proba =
pd.read_csv(filepath, index_col=0)
pandas.read_csv
import pickle import matplotlib.pyplot as plt import numpy as np import pandas import seaborn as sns from AnalysisTools import * tb_Parent = './results/scalars' doScalarsPlots(dataParent=tb_Parent, regenerate=True) evalPath = "./results/evalSubs.pickle" lapsPath = "./results/evalSubsLaps.pickle" perModelSubPath = "./results//perModelSub.pickle" redoLapsPickle = False if redoLapsPickle: with open(evalPath, 'rb') as f: allSubs = pickle.load(f) justLaps = [] for test in allSubs: pdAux = useJustLaps(allSubs[test]) subID = test[:6] modelType = test[7:] pdAux['SubID'] = subID pdAux['Model'] = modelType justLaps.append(pdAux.copy()) justLaps = pandas.concat(justLaps) justLaps['Error'] = justLaps['gt'] - justLaps['pred'] justLaps['Abs_Error'] = np.abs(justLaps['gt'] - justLaps['pred']) justLaps['Square_Error'] = np.power(justLaps['gt'] - justLaps['pred'], 2) justLaps.reset_index(inplace=True, drop=True) with open(lapsPath, 'wb') as f: pickle.dump(justLaps, f) else: with open(lapsPath, 'rb') as f: justLaps = pickle.load(f) subs = justLaps['SubID'].unique() modelTypes = justLaps['Model'].unique() redoPerModelSub = False if redoPerModelSub: perModelSubsData = [] perModelSubsDataTraj = [] for subID in subs: for model in modelTypes: m = np.logical_and(justLaps['Model'] == model, justLaps['SubID'] == subID) s1 = justLaps.where(m).dropna() rets = calculateErrors(s1) pdAux = pandas.DataFrame(columns=['meanError', 'meanAbsError', 'rms', 'lags_meanError', 'lags_meanAbsError', 'lags_rms', 'false_positive', 'false_negative'], index=[model + subID]) pdAuxTraj = pandas.DataFrame() if rets[0] is not np.nan: # save the data errorDF, falsePos, falseNeg, lagError, predsMean = rets pdAux[['meanError', 'meanAbsError', 'rms']] = errorDF.mean().values pdAux[['lags_meanError', 'lags_meanAbsError', 'lags_rms']] = lagError.mean().values pdAux['false_positive'] = falsePos pdAux['false_negative'] = falseNeg pdAuxTraj['Values'] = predsMean pdAuxTraj['Time'] = np.arange(predsMean.shape[0]) pdAuxTraj['SubID'] = subID pdAuxTraj['Model'] = model else: errorDF, falsePos, falseNeg, lagError, predsMean = rets pdAux[['meanError', 'meanAbsError', 'rms']] = 1 pdAux[['lags_meanError', 'lags_meanAbsError', 'lags_rms']] = 1 pdAux['false_positive'] = falsePos pdAux['false_negative'] = falseNeg pdAux['SubID'] = subID pdAux['Model'] = model perModelSubsData.append(pdAux.copy()) perModelSubsDataTraj.append(pdAuxTraj.copy()) perModelSubsData = pandas.concat(perModelSubsData) perModelSubsDataTraj = pandas.concat(perModelSubsDataTraj) perModelSubsDataDict = {'scalars': perModelSubsData, 'Traj': perModelSubsDataTraj} with open(perModelSubPath, 'wb') as f: pickle.dump(perModelSubsDataDict, f) else: with open(perModelSubPath, 'rb') as f: perModelSubsDataDict = pickle.load(f) perModelSubsData = perModelSubsDataDict['scalars'] perModelSubsDataTraj = perModelSubsDataDict['Traj'] perModelSubsDataTraj2 = perModelSubsDataTraj.copy() perModelSubsDataTraj2['Time'] /= 400 sns.lineplot(x='Time', y='Values', hue='Model', data=perModelSubsDataTraj2) plt.title('Mean cycle per Model') plt.xlabel('Gait Cycle Percentage') plt.ylabel('Gait Cycle Prediction') falsePredPD = [] for fType in ['false_positive', 'false_negative']: falsePredPDaux = pandas.DataFrame() falsePredPDaux[['Error', 'SubID', 'Model']] = perModelSubsData[[fType, 'SubID', 'Model']] falsePredPDaux['Type'] = fType falsePredPD.append(falsePredPDaux.copy()) falsePredPD = pandas.concat(falsePredPD) data = falsePredPD.where(falsePredPD['Type'] == 'false_positive') ax = sns.boxplot(x='Model', y='Error', data=data) plt.title('False Positive Heel Strike Identification') plt.ylabel('Frequency [%]') plt.tight_layout() significance = [[0, 1], [0, 2], [0, 3], [0, 4]] maxHeight = 0.1 minHeight = 0.03 for j, ((c1, c2), h) in enumerate(zip(significance, np.linspace(minHeight, maxHeight, len(significance)))): addSignificanceLevel(ax, c1, c2, data, '*', 'Error', offsetPercentage=h) plt.tight_layout() data = falsePredPD.where(falsePredPD['Type']=='false_negative') ax = sns.boxplot(x='Model', y='Error', data=data) plt.title('False Negative Heel Strike Identification') plt.ylabel('Frequency [%]') plt.tight_layout() significance = [[3, 4], [2, 3], [1, 2], [1, 3]] maxHeight = 0.1 minHeight = 0.03 for j, ((c1, c2), h) in enumerate(zip(significance, np.linspace(minHeight, maxHeight, len(significance)))): addSignificanceLevel(ax, c1, c2, data, '*', 'Error', offsetPercentage=h) plt.tight_layout() lagsPD = [] for fType in ['meanError', 'meanAbsError', 'rms']: falsePredPDaux = pandas.DataFrame() falsePredPDaux[['Error', 'SubID', 'Model']] = perModelSubsData[['lags_' + fType, 'SubID', 'Model']] falsePredPDaux['Type'] = fType lagsPD.append(falsePredPDaux.copy()) lagsPD = pandas.concat(lagsPD) perModelSubsData['lags_rms'] = perModelSubsData['lags_rms'].astype(np.float) ax = sns.boxplot(x='Model', y='lags_rms', data=perModelSubsData) plt.title('Event ID lag') plt.ylabel('Delay [ms]') significance = [[1, 3], [1, 4]] maxHeight = 0.1 minHeight = 0.03 for j, ((c1, c2), h) in enumerate(zip(significance, np.linspace(minHeight, maxHeight, len(significance)))): addSignificanceLevel(ax, c1, c2, perModelSubsData, '*', 'lags_rms', offsetPercentage=h) plt.tight_layout() errsPD = [] for fType in ['meanError', 'meanAbsError', 'rms']: falsePredPDaux =
pandas.DataFrame()
pandas.DataFrame
import pandas as pd team_dict = pd.read_csv('/content/gdrive/My Drive/Data Science/Cartola/times_ids.csv') dict_2014 = {'Atleta': 'atleta_id','Rodada':'rodada','Clube':'clube_id', 'Posicao':'atleta_posicao_id','Pontos':'pontuacao', 'PontosMedia':'pontuacao_media','Preco':'preco', 'PrecoVariacao':'preco_variacao'} dict_2015 = {"Rodada":'rodada',"ClubeID":'clube_id',"AtletaID":'atleta_id', "Pontos":'pontuacao',"PontosMedia":'pontuacao_media',"Preco":'preco', "PrecoVariacao":'preco_variacao'} dict_2016 = {"Rodada":'rodada',"ClubeID":'clube_id',"AtletaID":'atleta_id', "Pontos":'pontuacao',"PontosMedia":'pontuacao_media',"Preco":'preco', "PrecoVariacao":'preco_variacao'} dict_2017 = {'atletas.apelido':'atleta_apelido','atletas.atleta_id':'atleta_id', 'atletas.clube.id.full.name':'clube_nome','atletas.clube_id':'clube_id', 'atletas.media_num':'pontuacao_media','atletas.nome':'atleta_nome', 'atletas.pontos_num':'pontuacao','atletas.posicao_id':'posicao', 'atletas.preco_num':'preco','Rodada':'rodada','atletas.variacao_num':'preco_variacao'} dict_2018 = {"atletas.nome":'atleta_nome',"atletas.slug":'atleta_slug', "atletas.apelido":'atleta_apelido',"atletas.atleta_id":'atleta_id', "atletas.rodada_id":'rodada',"atletas.clube_id":'clube_id', "atletas.posicao_id":'posicao',"atletas.pontos_num":'pontuacao', "atletas.preco_num":'preco',"atletas.variacao_num":'preco_variacao', "atletas.media_num":'pontuacao_media',"atletas.clube.id.full.name":'clube_nome'} def get_round(round, year=2018): data = pd.read_csv('/content/gdrive/My Drive/Data Science/Cartola/' + str(year) + '/rodada-' + str(round) + '.csv') return data scouts_2018 = pd.DataFrame() all_rounds = [] for i in range(1, 39): all_rounds.append(get_round(i)) scouts_2018 = pd.concat(all_rounds, ignore_index=True, sort=False) scouts_2014 = pd.read_csv('/content/gdrive/My Drive/Data Science/Cartola/2014/2014_scouts_raw.csv') scouts_2015 = pd.read_csv('/content/gdrive/My Drive/Data Science/Cartola/2015/2015_scouts_raw.csv') scouts_2016 = pd.read_csv('/content/gdrive/My Drive/Data Science/Cartola/2016/2016_scouts_raw.csv') scouts_2017 = pd.read_csv('/content/gdrive/My Drive/Data Science/Cartola/2017/2017_scouts_raw.csv') players_2016 = pd.read_csv('/content/gdrive/My Drive/Data Science/Cartola/2016/2016_jogadores.csv') players_2015 =
pd.read_csv('/content/gdrive/My Drive/Data Science/Cartola/2015/2015_jogadores.csv')
pandas.read_csv
# -*- coding: utf-8 -*- import numpy as np import pytest from pandas.compat import lrange, lzip, range import pandas as pd from pandas import Index, MultiIndex, Series import pandas.util.testing as tm def test_equals(idx): assert idx.equals(idx) assert idx.equals(idx.copy()) assert idx.equals(idx.astype(object)) assert not idx.equals(list(idx)) assert not idx.equals(np.array(idx)) same_values = Index(idx, dtype=object) assert idx.equals(same_values) assert same_values.equals(idx) if idx.nlevels == 1: # do not test MultiIndex assert not idx.equals(pd.Series(idx)) def test_equals_op(idx): # GH9947, GH10637 index_a = idx n = len(index_a) index_b = index_a[0:-1] index_c = index_a[0:-1].append(index_a[-2:-1]) index_d = index_a[0:1] with pytest.raises(ValueError, match="Lengths must match"): index_a == index_b expected1 = np.array([True] * n) expected2 = np.array([True] * (n - 1) + [False]) tm.assert_numpy_array_equal(index_a == index_a, expected1) tm.assert_numpy_array_equal(index_a == index_c, expected2) # test comparisons with numpy arrays array_a = np.array(index_a) array_b = np.array(index_a[0:-1]) array_c = np.array(index_a[0:-1].append(index_a[-2:-1])) array_d = np.array(index_a[0:1]) with pytest.raises(ValueError, match="Lengths must match"): index_a == array_b tm.assert_numpy_array_equal(index_a == array_a, expected1) tm.assert_numpy_array_equal(index_a == array_c, expected2) # test comparisons with Series series_a = Series(array_a) series_b = Series(array_b) series_c = Series(array_c) series_d = Series(array_d) with pytest.raises(ValueError, match="Lengths must match"): index_a == series_b tm.assert_numpy_array_equal(index_a == series_a, expected1) tm.assert_numpy_array_equal(index_a == series_c, expected2) # cases where length is 1 for one of them with pytest.raises(ValueError, match="Lengths must match"): index_a == index_d with pytest.raises(ValueError, match="Lengths must match"): index_a == series_d with pytest.raises(ValueError, match="Lengths must match"): index_a == array_d msg = "Can only compare identically-labeled Series objects" with pytest.raises(ValueError, match=msg): series_a == series_d with pytest.raises(ValueError, match="Lengths must match"): series_a == array_d # comparing with a scalar should broadcast; note that we are excluding # MultiIndex because in this case each item in the index is a tuple of # length 2, and therefore is considered an array of length 2 in the # comparison instead of a scalar if not isinstance(index_a, MultiIndex): expected3 = np.array([False] * (len(index_a) - 2) + [True, False]) # assuming the 2nd to last item is unique in the data item = index_a[-2] tm.assert_numpy_array_equal(index_a == item, expected3) tm.assert_series_equal(series_a == item, Series(expected3)) def test_equals_multi(idx): assert idx.equals(idx) assert not idx.equals(idx.values) assert idx.equals(Index(idx.values)) assert idx.equal_levels(idx) assert not idx.equals(idx[:-1]) assert not idx.equals(idx[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], codes=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], codes=index.codes[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_codes = np.array([0, 0, 1, 2, 2, 3]) minor_codes = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]) assert not idx.equals(index) assert not idx.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_codes = np.array([0, 0, 2, 2, 3, 3]) minor_codes = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], codes=[major_codes, minor_codes]) assert not idx.equals(index) def test_identical(idx): mi = idx.copy() mi2 = idx.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_equals_operator(idx): # GH9785 assert (idx == idx).all() def test_equals_missing_values(): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_is_(): mi = MultiIndex.from_tuples(lzip(
range(10)
pandas.compat.range
"""dynamic user-input-responsive part of mood, and mood graphs""" from datetime import datetime import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() from scipy.signal import lsim, lti from scipy.signal.ltisys import StateSpaceContinuous from tqdm.autonotebook import tqdm from IPython.display import display from persistence.response_cache import ( ResponseCache, UserInputIdentifier, ) from feels.mood import ( random_mood_at_pst_datetime, logit_diff_to_pos_sent, pos_sent_to_logit_diff, ) from util.past import MILESTONE_TIMES from util.times import now_pst, fromtimestamp_pst MOOD_IMAGE_DIR = "data/mood_images/" STEP_SEC = 30 * 1 TAU_SEC = 3600 * 12 TAU_SEC_2ND = 60 * 60 WEIGHTED_AVG_START_TIME = pd.Timestamp("2021-01-04 09:10:00") WEIGHTED_AVG_P75_WEIGHT = 0.5 RESPONSE_SCALE_BASE = 0.15 # 0.1 # 0.2 #0.5 DETERMINER_CENTER = -3.1 # -2.4 # -1.5 #-2 DETERMINER_CENTER_UPDATES = { pd.Timestamp("2020-08-20 01:00:00"): -2.4, pd.Timestamp("2020-08-25 14:00:00"): -2.0, pd.Timestamp("2020-08-31 09:15:00"): -2.4, pd.Timestamp("2020-09-16 06:00:00"): -2.1, pd.Timestamp("2020-10-28 17:00:00"): -2.4, pd.Timestamp("2020-11-04 11:00:00"): -2.78, pd.Timestamp("2020-11-13 19:00:00"): -2.7, pd.Timestamp("2020-11-15 07:30:00"): -2.6, pd.Timestamp("2020-12-04 07:00:00"): -2.5, pd.Timestamp("2020-12-10 08:35:00"): -2.35, pd.Timestamp("2020-12-10 23:45:00"): -2.0, pd.Timestamp("2020-12-18 15:35:00"): -2.2, pd.Timestamp("2020-12-21 15:25:00"): -2.3, WEIGHTED_AVG_START_TIME: 0.0, pd.Timestamp("2021-02-08 09:25:00"): -0.25, pd.Timestamp("2021-02-14 17:55:00"): -0.125, pd.Timestamp("2021-02-15 17:25:00"): 0, pd.Timestamp("2021-02-16 17:45:00"): 0.5, pd.Timestamp("2021-02-17 12:45:00"): 0, pd.Timestamp("2021-02-26 17:30:00"): 0.5, pd.Timestamp("2021-02-27 16:05:00"): 0., pd.Timestamp("2021-03-15 09:55:00"): -0.2, pd.Timestamp("2021-03-15 19:50:00"): -0.4, pd.Timestamp("2021-03-20 06:55:00"): 0., pd.Timestamp("2021-03-24 22:40:00"): -0.3, pd.Timestamp("2021-03-31 12:25:00"): -0.5, pd.Timestamp("2021-04-09 07:10:00"): -0.25, pd.Timestamp("2021-05-05 17:00:00"): 0., pd.Timestamp("2021-05-07 18:15:00"): -0.25, pd.Timestamp("2021-05-12 07:50:00"): 0., pd.Timestamp("2021-05-22 09:50:00"): -0.125, pd.Timestamp("2021-05-23 07:15:00"): -0.25, pd.Timestamp("2021-06-05 12:05:00"): -0.5, pd.Timestamp("2021-06-07 22:35:00"): -0.3, pd.Timestamp("2021-06-08 13:15:00"): 0., pd.Timestamp("2021-06-14 06:55:00"): -0.25, pd.Timestamp("2021-06-15 18:08:00"): 0., pd.Timestamp("2021-06-16 13:00:00"): 0.125, pd.Timestamp("2021-06-26 07:35:00"): 0.25, pd.Timestamp("2021-06-30 08:40:00"): 0., pd.Timestamp("2021-08-06 00:45:00"): -0.125, pd.Timestamp("2021-09-21 08:25:00"): 0., pd.Timestamp("2021-09-22 17:45:00"): -0.075, pd.Timestamp("2021-10-24 12:15:00"): -0., pd.Timestamp("2021-10-24 08:40:00"): 0.125, pd.Timestamp("2021-10-25 17:55:00"): 0.25, pd.Timestamp("2021-10-28 22:40:00"): 0.125, pd.Timestamp("2021-10-31 18:10:00"): 0.05, pd.Timestamp("2021-11-02 20:40:00"): 0., pd.Timestamp("2021-11-15 19:20:00"): 0.05, pd.Timestamp("2021-11-17 09:10:00"): 0.1, pd.Timestamp("2021-11-19 14:50:00"): 0., pd.Timestamp("2021-12-24 14:45:00"): 0.1, pd.Timestamp("2021-12-30 09:55:00"): 0.05, } DETERMINER_MULTIPLIER_UPDATES = { pd.Timestamp("2020-08-25 17:00:00"): 0.1 / RESPONSE_SCALE_BASE, pd.Timestamp("2020-10-21 21:15:00"): 0.075 / RESPONSE_SCALE_BASE, pd.Timestamp("2020-11-16 10:45:00"): 0.0667 / RESPONSE_SCALE_BASE,
pd.Timestamp("2020-11-25 11:30:00")
pandas.Timestamp
import numpy as np import pytest import pandas.util._test_decorators as td from pandas import ( DataFrame, NaT, Series, Timestamp, date_range, period_range, ) import pandas._testing as tm class TestDataFrameValues: @td.skip_array_manager_invalid_test def test_values(self, float_frame): float_frame.values[:, 0] = 5.0 assert (float_frame.values[:, 0] == 5).all() def test_more_values(self, float_string_frame): values = float_string_frame.values assert values.shape[1] == len(float_string_frame.columns) def test_values_mixed_dtypes(self, float_frame, float_string_frame): frame = float_frame arr = frame.values frame_cols = frame.columns for i, row in enumerate(arr): for j, value in enumerate(row): col = frame_cols[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type arr = float_string_frame[["foo", "A"]].values assert arr[0, 0] == "bar" df = DataFrame({"complex": [1j, 2j, 3j], "real": [1, 2, 3]}) arr = df.values assert arr[0, 0] == 1j def test_values_duplicates(self): df = DataFrame( [[1, 2, "a", "b"], [1, 2, "a", "b"]], columns=["one", "one", "two", "two"] ) result = df.values expected = np.array([[1, 2, "a", "b"], [1, 2, "a", "b"]], dtype=object) tm.assert_numpy_array_equal(result, expected) def test_values_with_duplicate_columns(self): df = DataFrame([[1, 2.5], [3, 4.5]], index=[1, 2], columns=["x", "x"]) result = df.values expected = np.array([[1, 2.5], [3, 4.5]]) assert (result == expected).all().all() @pytest.mark.parametrize("constructor", [date_range, period_range]) def test_values_casts_datetimelike_to_object(self, constructor): series = Series(constructor("2000-01-01", periods=10, freq="D")) expected = series.astype("object") df = DataFrame({"a": series, "b": np.random.randn(len(series))}) result = df.values.squeeze() assert (result[:, 0] == expected.values).all() df = DataFrame({"a": series, "b": ["foo"] * len(series)}) result = df.values.squeeze() assert (result[:, 0] == expected.values).all() def test_frame_values_with_tz(self): tz = "US/Central" df = DataFrame({"A": date_range("2000", periods=4, tz=tz)}) result = df.values expected = np.array( [ [Timestamp("2000-01-01", tz=tz)], [Timestamp("2000-01-02", tz=tz)], [Timestamp("2000-01-03", tz=tz)], [Timestamp("2000-01-04", tz=tz)], ] ) tm.assert_numpy_array_equal(result, expected) # two columns, homogeneous df["B"] = df["A"] result = df.values expected = np.concatenate([expected, expected], axis=1) tm.assert_numpy_array_equal(result, expected) # three columns, heterogeneous est = "US/Eastern" df["C"] = df["A"].dt.tz_convert(est) new = np.array( [ [Timestamp("2000-01-01T01:00:00", tz=est)], [Timestamp("2000-01-02T01:00:00", tz=est)], [Timestamp("2000-01-03T01:00:00", tz=est)], [Timestamp("2000-01-04T01:00:00", tz=est)], ] ) expected = np.concatenate([expected, new], axis=1) result = df.values tm.assert_numpy_array_equal(result, expected) def test_interleave_with_tzaware(self, timezone_frame): # interleave with object result = timezone_frame.assign(D="foo").values expected = np.array( [ [ Timestamp("2013-01-01 00:00:00"), Timestamp("2013-01-02 00:00:00"), Timestamp("2013-01-03 00:00:00"), ], [ Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"), NaT, Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"), ], [ Timestamp("2013-01-01 00:00:00+0100", tz="CET"), NaT, Timestamp("2013-01-03 00:00:00+0100", tz="CET"), ], ["foo", "foo", "foo"], ], dtype=object, ).T tm.assert_numpy_array_equal(result, expected) # interleave with only datetime64[ns] result = timezone_frame.values expected = np.array( [ [ Timestamp("2013-01-01 00:00:00"), Timestamp("2013-01-02 00:00:00"), Timestamp("2013-01-03 00:00:00"), ], [ Timestamp("2013-01-01 00:00:00-0500", tz="US/Eastern"), NaT, Timestamp("2013-01-03 00:00:00-0500", tz="US/Eastern"), ], [ Timestamp("2013-01-01 00:00:00+0100", tz="CET"), NaT, Timestamp("2013-01-03 00:00:00+0100", tz="CET"), ], ], dtype=object, ).T tm.assert_numpy_array_equal(result, expected) def test_values_interleave_non_unique_cols(self): df = DataFrame( [[Timestamp("20130101"), 3.5], [
Timestamp("20130102")
pandas.Timestamp
# ---------------------------------------------------------------------------- # Copyright (c) 2016-2021, QIIME 2 development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file LICENSE, distributed with this software. # ---------------------------------------------------------------------------- import unittest import pandas as pd import pandas.util.testing as pdt import qiime2 from q2_taxa import collapse, filter_table, filter_seqs class CollapseTests(unittest.TestCase): def assert_index_equal(self, a, b): # this method is derived from scikit-bio 0.5.1 pdt.assert_index_equal(a, b, exact=True, check_names=True, check_exact=True) def assert_data_frame_almost_equal(self, left, right): # this method is derived from scikit-bio 0.5.1 pdt.assert_frame_equal(left, right, check_dtype=True, check_index_type=True, check_column_type=True, check_frame_type=True, check_less_precise=False, check_names=True, by_blocks=False, check_exact=False) self.assert_index_equal(left.index, right.index) def test_collapse(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat2']) actual = collapse(table, taxonomy, 1) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 2) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 3) expected = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b;c', 'a;b;d']) self.assert_data_frame_almost_equal(actual, expected) def test_collapse_missing_level(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b', 'a; b; d'], index=['feat1', 'feat2']) actual = collapse(table, taxonomy, 1) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 2) expected = pd.DataFrame([[4.0], [2.0], [17.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b']) self.assert_data_frame_almost_equal(actual, expected) actual = collapse(table, taxonomy, 3) expected = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['a;b;__', 'a;b;d']) self.assert_data_frame_almost_equal(actual, expected) def test_collapse_bad_level(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat2']) with self.assertRaisesRegex(ValueError, 'of 42 is larger'): collapse(table, taxonomy, 42) with self.assertRaisesRegex(ValueError, 'of 0 is too low'): collapse(table, taxonomy, 0) def test_collapse_missing_table_ids_in_taxonomy(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = pd.Series(['a; b; c', 'a; b; d'], index=['feat1', 'feat3']) with self.assertRaisesRegex(ValueError, 'missing.*feat2'): collapse(table, taxonomy, 1) class FilterTable(unittest.TestCase): def test_filter_no_filters(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'At least one'): filter_table(table, taxonomy) def test_alt_delimiter(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # include with delimiter obs = filter_table(table, taxonomy, include='<EMAIL>', query_delimiter='@peanut@') pdt.assert_frame_equal(obs, table, check_like=True) # exclude with delimiter obs = filter_table(table, taxonomy, exclude='<EMAIL>', query_delimiter='@peanut@') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) def test_filter_table_unknown_mode(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'Unknown mode'): filter_table(table, taxonomy, include='bb', mode='not-a-mode') def test_filter_table_include(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='bb') pdt.assert_frame_equal(obs, table, check_like=True) obs = filter_table(table, taxonomy, include='cc,ee') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, include='cc') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='aa; bb; cc') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, include='dd') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='dd ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, include='aa; bb; dd ee') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='peanut!') def test_filter_table_include_exact_match(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='aa; bb; cc,aa; bb; dd ee', mode='exact') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, include='aa; bb; cc', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, include='aa; bb; dd ee', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='bb', mode='exact') def test_filter_table_exclude(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, exclude='ab') pdt.assert_frame_equal(obs, table, check_like=True) obs = filter_table(table, taxonomy, exclude='xx') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, exclude='dd') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='dd ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa') with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa; bb') def test_filter_table_exclude_exact_match(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, exclude='peanut!', mode='exact') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; dd ee,aa', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only obs = filter_table(table, taxonomy, exclude='aa; bb; cc', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) obs = filter_table(table, taxonomy, exclude='aa; bb; cc,aa', mode='exact') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, exclude='aa; bb; cc,aa; bb; dd ee', mode='exact') def test_filter_table_include_exclude(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='aa', exclude='peanut!') pdt.assert_frame_equal(obs, table, check_like=True) # keep feat1 only - feat2 dropped at exclusion step obs = filter_table(table, taxonomy, include='aa', exclude='ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat1 only - feat2 dropped at inclusion step obs = filter_table(table, taxonomy, include='cc', exclude='ee') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only - feat1 dropped at exclusion step obs = filter_table(table, taxonomy, include='aa', exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat2 only - feat1 dropped at inclusion step obs = filter_table(table, taxonomy, include='ee', exclude='cc') exp = pd.DataFrame([[2.0], [1.0], [8.0], [4.0]], index=['A', 'B', 'C', 'D'], columns=['feat2']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep no features - all dropped at exclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='aa', exclude='bb', mode='exact') # keep no features - one dropped at inclusion, one dropped at exclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='cc', exclude='cc', mode='exact') # keep no features - all dropped at inclusion with self.assertRaisesRegex(ValueError, expected_regex='empty table'): obs = filter_table(table, taxonomy, include='peanut', exclude='bb', mode='exact') def test_filter_table_underscores_escaped(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep feat1 only - underscore not treated as a wild card obs = filter_table(table, taxonomy, include='cc,d_') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) # keep feat1 only - underscore in query matches underscore in # taxonomy annotation taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; c_', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) obs = filter_table(table, taxonomy, include='c_') exp = pd.DataFrame([[2.0], [1.0], [9.0]], index=['A', 'B', 'C'], columns=['feat1']) pdt.assert_frame_equal(obs, exp, check_like=True) def test_all_features_with_frequency_greater_than_zero_get_filtered(self): table = pd.DataFrame([[2.0, 0.0], [1.0, 0.0], [9.0, 0.0], [1.0, 0.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # empty - feat2, which is matched by the include term, has a frequency # of zero in all samples, so all samples end up dropped from the table with self.assertRaisesRegex(ValueError, expected_regex='greater than zero'): filter_table(table, taxonomy, include='dd') def test_extra_taxon_ignored(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee', 'aa; bb; cc'], index=pd.Index(['feat1', 'feat2', 'feat3'], name='id'), columns=['Taxon'])) # keep both features obs = filter_table(table, taxonomy, include='bb') pdt.assert_frame_equal(obs, table, check_like=True) def test_missing_taxon_errors(self): table = pd.DataFrame([[2.0, 2.0], [1.0, 1.0], [9.0, 8.0], [0.0, 4.0]], index=['A', 'B', 'C', 'D'], columns=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc'], index=pd.Index(['feat1'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, expected_regex='All.*feat2'): filter_table(table, taxonomy, include='bb') class FilterSeqs(unittest.TestCase): def test_filter_no_filters(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'At least one'): filter_seqs(seqs, taxonomy) def test_alt_delimiter(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # include with delimiter obs = filter_seqs(seqs, taxonomy, include='cc<EMAIL>', query_delimiter='@peanut@') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # exclude with delimiter obs = filter_seqs(seqs, taxonomy, exclude='ww<EMAIL>', query_delimiter='@peanut@') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) def test_filter_seqs_unknown_mode(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) with self.assertRaisesRegex(ValueError, 'Unknown mode'): filter_seqs(seqs, taxonomy, include='bb', mode='not-a-mode') def test_filter_seqs_include(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, include='bb') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='cc,ee') exp = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat1 only obs = filter_seqs(seqs, taxonomy, include='cc') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='aa; bb; cc') exp = pd.Series(['ACGT'], index=['feat1']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep feat2 only obs = filter_seqs(seqs, taxonomy, include='dd') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='ee') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='dd ee') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) obs = filter_seqs(seqs, taxonomy, include='aa; bb; dd ee') exp = pd.Series(['ACCC'], index=['feat2']) obs.sort_values(inplace=True) exp.sort_values(inplace=True) pdt.assert_series_equal(obs, exp) # keep no features with self.assertRaisesRegex(ValueError, expected_regex='empty collection'): obs = filter_seqs(seqs, taxonomy, include='peanut!') def test_filter_seqs_include_exact_match(self): seqs = pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2']) taxonomy = qiime2.Metadata( pd.DataFrame(['aa; bb; cc', 'aa; bb; dd ee'], index=pd.Index(['feat1', 'feat2'], name='id'), columns=['Taxon'])) # keep both features obs = filter_seqs(seqs, taxonomy, include='aa; bb; cc,aa; bb; dd ee', mode='exact') exp =
pd.Series(['ACGT', 'ACCC'], index=['feat1', 'feat2'])
pandas.Series
# -*- coding: utf-8 -*- """Code snippets without context. SPDX-FileCopyrightText: 2016-2019 <NAME> <<EMAIL>> SPDX-License-Identifier: MIT """ __copyright__ = "<NAME> <<EMAIL>>" __license__ = "MIT" # Python libraries import os import calendar # External libraries import pandas as pd import geopandas as gpd try: from matplotlib import pyplot as plt except ImportError: plt = None from shapely.geometry import Point # internal modules import reegis.config as cfg def lat_lon2point(df): """Create shapely point object of latitude and longitude.""" return Point(df['lon'], df['lat']) def geo_csv_from_shp(shapefile, outfile, id_col, tmp_file='tmp.csv'): tmp = gpd.read_file(shapefile) tmp.to_csv(tmp_file) tmp = pd.read_csv(tmp_file) new = pd.DataFrame() new['gid'] = tmp[id_col] # # Special column manipulations # new['gid'] = new['gid'].apply(lambda x: x.replace('ü', 'ü')) # new['region'] = new['gid'].apply(lambda x: x.split('_')[1]) # new['state'] = new['gid'].apply(lambda x: x.split('_')[0]) new['geom'] = tmp['geometry'] new.set_index('gid', inplace=True) new.to_csv(outfile) os.remove(tmp_file) def energy_balance2repo(): chiba = '/home/uwe/chiba/' source_path = 'Promotion/Statstik/Energiebilanzen/Endenergiebilanz' csv_path = cfg.get('paths', 'static_sources') filenames = ['energybalance_DE_2012_to_2014.xlsx', 'energybalance_states_2012_to_2014.xlsx', 'sum_table_fuel_groups.xlsx', 'sum_table_sectors.xlsx'] for filename in filenames: if 'sum' in filename: idx = [0, 1] else: idx = [0, 1, 2] excelfile = os.path.join(chiba, source_path, filename) csvfile = os.path.join(csv_path, filename.replace('.xlsx', '.csv')) excel2csv(excelfile, csvfile, index_col=idx) def excel2csv(excel_file, csv_file, **kwargs): df = pd.read_excel(excel_file, **kwargs) df.to_csv(csv_file) def sorter(): b_path = '/home/uwe/express/reegis/data/feedin/solar/' lg_path = b_path + 'M_LG290G3__I_ABB_MICRO_025_US208/' sf_path = b_path + 'M_SF160S___I_ABB_MICRO_025_US208/' pattern = "{0}_feedin_coastdat_de_normalised_solar.h5" full = os.path.join(b_path, pattern) full_new_lg = os.path.join(lg_path, pattern) full_new_sf = os.path.join(sf_path, pattern) for year in range(1999, 2015): if os.path.isfile(full.format(year)): print(full.format(year)) print(year, calendar.isleap(year)) if calendar.isleap(year): n = 8784 else: n = 8760 f = pd.HDFStore(full.format(year), mode='r') new_lg = pd.HDFStore(full_new_lg.format(year), mode='w') new_sf = pd.HDFStore(full_new_sf.format(year), mode='w') for key in f.keys(): ls_lg = list() ls_sf = list() for col in f[key].columns: if 'LG' in col: ls_lg.append(col) elif 'SF' in col: ls_sf.append(col) else: print(col) print('Oh noo!') exit(0) new_lg[key] = f[key][ls_lg][:n] new_sf[key] = f[key][ls_sf][:n] f.close() new_lg.close() new_sf.close() def plz2ireg(): geopath = '/home/uwe/git_local/reegis-hp/reegis_hp/de21/data/geometries/' geofile = 'postcode_polygons.csv' plzgeo = pd.read_csv(os.path.join(geopath, geofile), index_col='zip_code', squeeze=True) iregpath = '/home/uwe/' iregfile = 'plzIreg.csv' plzireg = pd.read_csv(os.path.join(iregpath, iregfile), index_col='plz', squeeze=True) plzireg = plzireg.groupby(plzireg.index).first() ireggeo = pd.DataFrame(pd.concat([plzgeo, plzireg], axis=1)) ireggeo.to_csv(os.path.join(iregpath, 'ireg_geo.csv')) ireggeo = ireggeo[ireggeo['geom'].notnull()] # ireggeo['geom'] = geoplot.postgis2shapely(ireggeo.geom) geoireg = gpd.GeoDataFrame(ireggeo, crs='epsg:4326', geometry='geom') geoireg.to_file(os.path.join(iregpath, 'ireg_geo.shp')) # import plots # plots.plot_geocsv('/home/uwe/ireg_geo.csv', [0], labels=False) exit(0) def testerich(): spath = '/home/uwe/chiba/Promotion/Kraftwerke und Speicher/' sfile = 'Pumpspeicher_in_Deutschland.csv' storage = pd.read_csv(os.path.join(spath, sfile), header=[0, 1]) storage.sort_index(1, inplace=True) print(storage) print(storage['ZFES', 'energy'].sum()) print(storage['Wikipedia', 'energy'].sum()) def decode_wiki_geo_string(gstr): replist = [('°', ';'), ('′', ';'), ('″', ';'), ('N.', ''), ('O', ''), ('\xa0', ''), (' ', '')] if isinstance(gstr, str): for rep in replist: gstr = gstr.replace(rep[0], rep[1]) gstr = gstr.split(';') lat = float(gstr[0]) + float(gstr[1]) / 60 + float(gstr[2]) / 3600 lon = float(gstr[3]) + float(gstr[4]) / 60 + float(gstr[5]) / 3600 else: lat = None lon = None return lat, lon def offshore(): spath = '/home/uwe/chiba/Promotion/Kraftwerke und Speicher/' sfile = 'offshore_windparks_prepared.csv' offsh = pd.read_csv(os.path.join(spath, sfile), header=[0, 1], index_col=[0]) print(offsh) # offsh['Wikipedia', 'geom'] = offsh['Wikipedia', 'geom_str'].apply( # decode_wiki_geo_string) # offsh[[('Wikipedia', 'latitude'), ('Wikipedia', 'longitude')]] = offsh[ # 'Wikipedia', 'geom'].apply(pd.Series) # offsh.to_csv(os.path.join(spath, 'offshore_windparks_prepared.csv')) def bmwe(): spath = '/home/uwe/chiba/Promotion/Kraftwerke und Speicher/' sfile1 = 'installation_bmwe.csv' sfile2 = 'strom_bmwe.csv' # sfile3 = 'hydro.csv' inst = pd.read_csv(os.path.join(spath, sfile1), index_col=[0]).astype( float) strom = pd.read_csv(os.path.join(spath, sfile2), index_col=[0]).astype( float) # hydro = pd.read_csv(os.path.join(spath, sfile3), index_col=[0], # squeeze=True).astype(float) cols = pd.MultiIndex(levels=[[], []], labels=[[], []], names=['type', 'value']) df = pd.DataFrame(index=inst.index, columns=cols) for col in inst.columns: df[col, 'capacity'] = inst[col] df[col, 'energy'] = strom[col] df.to_csv('/home/uwe/git_local/reegis-hp/reegis_hp/de21/data/static/' 'energy_capacity_bmwi_readme.csv') def prices(): # from matplotlib import pyplot as plt spath = '/home/uwe/git_local/reegis-hp/reegis_hp/de21/data/static/' sfile = 'commodity_sources_prices.csv' price = pd.read_csv(os.path.join(spath, sfile), index_col=[0], header=[0, 1]) print(price) price['Erdgas'].plot() plt.show() def load_energiebilanzen(): spath = '/home/uwe/chiba/Promotion/Energiebilanzen/2014/' # sfile = 'Energiebilanz RheinlandPfalz 2014.xlsx' sfile = 'Energiebilanz BadenWuerttemberg2014.xls' filename = os.path.join(spath, sfile) header = pd.read_excel(filename, 0, index=[0, 1, 2, 3, 4], header=None ).iloc[:3, 5:].ffill(axis=1) eb = pd.read_excel(filename, 0, skiprows=3, index_col=[0, 1, 2, 3, 4], skip_footer=2) eb.columns = pd.MultiIndex.from_arrays(header.values) # print(eb) # print(eb.loc[pd.IndexSlice[ # 'ENDENERGIEVERBRAUCH', # :, # :, # 84]].transpose()) eb.sort_index(0, inplace=True) eb.sort_index(1, inplace=True) # print(eb.loc[(slice(None), slice(None), slice(None), 84), 'Braunkohlen']) # print(eb.columns) def create_small_data_sets(): fn = '/home/uwe/express/reegis/data/powerplants/opsd/renewable_power_plants_DE.csv' pp =
pd.read_csv(fn)
pandas.read_csv
from datetime import datetime import re import unittest import nose from nose.tools import assert_equal import numpy as np from pandas.tslib import iNaT from pandas import Series, DataFrame, date_range, DatetimeIndex, Timestamp from pandas import compat from pandas.compat import range, long, lrange, lmap, u from pandas.core.common import notnull, isnull import pandas.core.common as com import pandas.util.testing as tm import pandas.core.config as cf _multiprocess_can_split_ = True def test_mut_exclusive(): msg = "mutually exclusive arguments: '[ab]' and '[ab]'" with tm.assertRaisesRegexp(TypeError, msg): com._mut_exclusive(a=1, b=2) assert com._mut_exclusive(a=1, b=None) == 1 assert com._mut_exclusive(major=None, major_axis=None) is None def test_is_sequence(): is_seq = com._is_sequence assert(is_seq((1, 2))) assert(is_seq([1, 2])) assert(not is_seq("abcd")) assert(not is_seq(u("abcd"))) assert(not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert(not is_seq(A())) def test_notnull(): assert notnull(1.) assert not notnull(None) assert not notnull(np.NaN) with cf.option_context("mode.use_inf_as_null", False): assert notnull(np.inf) assert notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.all() with cf.option_context("mode.use_inf_as_null", True): assert not notnull(np.inf) assert not notnull(-np.inf) arr = np.array([1.5, np.inf, 3.5, -np.inf]) result = notnull(arr) assert result.sum() == 2 with cf.option_context("mode.use_inf_as_null", False): float_series = Series(np.random.randn(5)) obj_series = Series(np.random.randn(5), dtype=object) assert(isinstance(notnull(float_series), Series)) assert(isinstance(notnull(obj_series), Series)) def test_isnull(): assert not isnull(1.) assert isnull(None) assert isnull(np.NaN) assert not isnull(np.inf) assert not isnull(-np.inf) float_series = Series(np.random.randn(5)) obj_series = Series(np.random.randn(5), dtype=object) assert(isinstance(isnull(float_series), Series)) assert(isinstance(isnull(obj_series), Series)) # call on DataFrame df = DataFrame(np.random.randn(10, 5)) df['foo'] = 'bar' result = isnull(df) expected = result.apply(isnull) tm.assert_frame_equal(result, expected) def test_isnull_tuples(): result = isnull((1, 2)) exp = np.array([False, False]) assert(np.array_equal(result, exp)) result = isnull([(False,)]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = isnull([(1,), (2,)]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = isnull(('foo', 'bar')) assert(not result.any()) result = isnull((u('foo'), u('bar'))) assert(not result.any()) def test_isnull_lists(): result = isnull([[False]]) exp = np.array([[False]]) assert(np.array_equal(result, exp)) result = isnull([[1], [2]]) exp = np.array([[False], [False]]) assert(np.array_equal(result, exp)) # list of strings / unicode result = isnull(['foo', 'bar']) assert(not result.any()) result = isnull([u('foo'), u('bar')]) assert(not result.any()) def test_isnull_datetime(): assert (not isnull(datetime.now())) assert notnull(datetime.now()) idx = date_range('1/1/1990', periods=20) assert(notnull(idx).all()) idx = np.asarray(idx) idx[0] = iNaT idx = DatetimeIndex(idx) mask = isnull(idx) assert(mask[0]) assert(not mask[1:].any()) def test_datetimeindex_from_empty_datetime64_array(): for unit in [ 'ms', 'us', 'ns' ]: idx = DatetimeIndex(np.array([], dtype='datetime64[%s]' % unit)) assert(len(idx) == 0) def test_nan_to_nat_conversions(): df = DataFrame(dict({ 'A' : np.asarray(lrange(10),dtype='float64'), 'B' : Timestamp('20010101') })) df.iloc[3:6,:] = np.nan result = df.loc[4,'B'].value assert(result == iNaT) s = df['B'].copy() s._data = s._data.setitem(tuple([slice(8,9)]),np.nan) assert(isnull(s[8])) # numpy < 1.7.0 is wrong from distutils.version import LooseVersion if LooseVersion(np.__version__) >= '1.7.0': assert(s[8].value == np.datetime64('NaT').astype(np.int64)) def test_any_none(): assert(com._any_none(1, 2, 3, None)) assert(not com._any_none(1, 2, 3, 4)) def test_all_not_none(): assert(com._all_not_none(1, 2, 3, 4)) assert(not com._all_not_none(1, 2, 3, None)) assert(not com._all_not_none(None, None, None, None)) def test_repr_binary_type(): import string letters = string.ascii_letters btype = compat.binary_type try: raw = btype(letters, encoding=cf.get_option('display.encoding')) except TypeError: raw = btype(letters) b = compat.text_type(compat.bytes_to_str(raw)) res = com.pprint_thing(b, quote_strings=True) assert_equal(res, repr(b)) res = com.pprint_thing(b, quote_strings=False) assert_equal(res, b) def test_rands(): r = com.rands(10) assert(len(r) == 10) def test_adjoin(): data = [['a', 'b', 'c'], ['dd', 'ee', 'ff'], ['ggg', 'hhh', 'iii']] expected = 'a dd ggg\nb ee hhh\nc ff iii' adjoined = com.adjoin(2, *data) assert(adjoined == expected) def test_iterpairs(): data = [1, 2, 3, 4] expected = [(1, 2), (2, 3), (3, 4)] result = list(com.iterpairs(data)) assert(result == expected) def test_split_ranges(): def _bin(x, width): "return int(x) as a base2 string of given width" return ''.join(str((x >> i) & 1) for i in range(width - 1, -1, -1)) def test_locs(mask): nfalse = sum(np.array(mask) == 0) remaining = 0 for s, e in com.split_ranges(mask): remaining += e - s assert 0 not in mask[s:e] # make sure the total items covered by the ranges are a complete cover assert remaining + nfalse == len(mask) # exhaustively test all possible mask sequences of length 8 ncols = 8 for i in range(2 ** ncols): cols = lmap(int, list(_bin(i, ncols))) # count up in base2 mask = [cols[i] == 1 for i in range(len(cols))] test_locs(mask) # base cases test_locs([]) test_locs([0]) test_locs([1]) def test_indent(): s = 'a b c\nd e f' result = com.indent(s, spaces=6) assert(result == ' a b c\n d e f') def test_banner(): ban = com.banner('hi') assert(ban == ('%s\nhi\n%s' % ('=' * 80, '=' * 80))) def test_map_indices_py(): data = [4, 3, 2, 1] expected = {4: 0, 3: 1, 2: 2, 1: 3} result = com.map_indices_py(data) assert(result == expected) def test_union(): a = [1, 2, 3] b = [4, 5, 6] union = sorted(com.union(a, b)) assert((a + b) == union) def test_difference(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.difference(b, a)) assert([4, 5, 6] == inter) def test_intersection(): a = [1, 2, 3] b = [1, 2, 3, 4, 5, 6] inter = sorted(com.intersection(a, b)) assert(a == inter) def test_groupby(): values = ['foo', 'bar', 'baz', 'baz2', 'qux', 'foo3'] expected = {'f': ['foo', 'foo3'], 'b': ['bar', 'baz', 'baz2'], 'q': ['qux']} grouped = com.groupby(values, lambda x: x[0]) for k, v in grouped: assert v == expected[k] def test_is_list_like(): passes = ([], [1], (1,), (1, 2), {'a': 1}, set([1, 'a']), Series([1]), Series([]), Series(['a']).str) fails = (1, '2', object()) for p in passes: assert com.is_list_like(p) for f in fails: assert not com.is_list_like(f) def test_ensure_int32(): values = np.arange(10, dtype=np.int32) result = com._ensure_int32(values) assert(result.dtype == np.int32) values = np.arange(10, dtype=np.int64) result = com._ensure_int32(values) assert(result.dtype == np.int32) def test_ensure_platform_int(): # verify that when we create certain types of indices # they remain the correct type under platform conversions from pandas.core.index import Int64Index # int64 x = Int64Index([1, 2, 3], dtype='int64') assert(x.dtype == np.int64) pi = com._ensure_platform_int(x) assert(pi.dtype == np.int_) # int32 x = Int64Index([1, 2, 3], dtype='int32') assert(x.dtype == np.int32) pi = com._ensure_platform_int(x) assert(pi.dtype == np.int_) # TODO: fix this broken test # def test_console_encode(): # """ # On Python 2, if sys.stdin.encoding is None (IPython with zmq frontend) # common.console_encode should encode things as utf-8. # """ # if compat.PY3: # raise nose.SkipTest # with tm.stdin_encoding(encoding=None): # result = com.console_encode(u"\u05d0") # expected = u"\u05d0".encode('utf-8') # assert (result == expected) def test_is_re(): passes = re.compile('ad'), fails = 'x', 2, 3, object() for p in passes: assert com.is_re(p) for f in fails: assert not com.is_re(f) def test_is_recompilable(): passes = (r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')) fails = 1, [], object() for p in passes: assert com.is_re_compilable(p) for f in fails: assert not com.is_re_compilable(f) class TestTake(unittest.TestCase): # standard incompatible fill error fill_error = re.compile("Incompatible type for fill_value") _multiprocess_can_split_ = True def test_1d_with_out(self): def _test_dtype(dtype, can_hold_na): data = np.random.randint(0, 2, 4).astype(dtype) indexer = [2, 1, 0, 1] out = np.empty(4, dtype=dtype) com.take_1d(data, indexer, out=out) expected = data.take(indexer) tm.assert_almost_equal(out, expected) indexer = [2, 1, 0, -1] out = np.empty(4, dtype=dtype) if can_hold_na: com.take_1d(data, indexer, out=out) expected = data.take(indexer) expected[3] = np.nan tm.assert_almost_equal(out, expected) else: with tm.assertRaisesRegexp(TypeError, self.fill_error): com.take_1d(data, indexer, out=out) # no exception o/w data.take(indexer, out=out) _test_dtype(np.float64, True) _test_dtype(np.float32, True) _test_dtype(np.uint64, False) _test_dtype(np.uint32, False) _test_dtype(np.uint16, False) _test_dtype(np.uint8, False) _test_dtype(np.int64, False) _test_dtype(np.int32, False) _test_dtype(np.int16, False) _test_dtype(np.int8, False) _test_dtype(np.object_, True) _test_dtype(np.bool, False) def test_1d_fill_nonna(self): def _test_dtype(dtype, fill_value, out_dtype): data = np.random.randint(0, 2, 4).astype(dtype) indexer = [2, 1, 0, -1] result = com.take_1d(data, indexer, fill_value=fill_value) assert((result[[0, 1, 2]] == data[[2, 1, 0]]).all()) assert(result[3] == fill_value) assert(result.dtype == out_dtype) indexer = [2, 1, 0, 1] result = com.take_1d(data, indexer, fill_value=fill_value) assert((result[[0, 1, 2, 3]] == data[indexer]).all()) assert(result.dtype == dtype) _test_dtype(np.int8, np.int16(127), np.int8) _test_dtype(np.int8, np.int16(128), np.int16) _test_dtype(np.int32, 1, np.int32) _test_dtype(np.int32, 2.0, np.float64) _test_dtype(np.int32, 3.0 + 4.0j, np.complex128) _test_dtype(np.int32, True, np.object_) _test_dtype(np.int32, '', np.object_) _test_dtype(np.float64, 1, np.float64) _test_dtype(np.float64, 2.0, np.float64) _test_dtype(np.float64, 3.0 + 4.0j, np.complex128) _test_dtype(np.float64, True, np.object_) _test_dtype(np.float64, '', np.object_) _test_dtype(np.complex128, 1, np.complex128) _test_dtype(np.complex128, 2.0, np.complex128) _test_dtype(np.complex128, 3.0 + 4.0j, np.complex128) _test_dtype(np.complex128, True, np.object_) _test_dtype(np.complex128, '', np.object_) _test_dtype(np.bool_, 1, np.object_) _test_dtype(np.bool_, 2.0, np.object_) _test_dtype(np.bool_, 3.0 + 4.0j, np.object_) _test_dtype(np.bool_, True, np.bool_) _test_dtype(np.bool_, '', np.object_) def test_2d_with_out(self): def _test_dtype(dtype, can_hold_na): data = np.random.randint(0, 2, (5, 3)).astype(dtype) indexer = [2, 1, 0, 1] out0 = np.empty((4, 3), dtype=dtype) out1 = np.empty((5, 4), dtype=dtype) com.take_nd(data, indexer, out=out0, axis=0) com.take_nd(data, indexer, out=out1, axis=1) expected0 = data.take(indexer, axis=0) expected1 = data.take(indexer, axis=1) tm.assert_almost_equal(out0, expected0) tm.assert_almost_equal(out1, expected1) indexer = [2, 1, 0, -1] out0 = np.empty((4, 3), dtype=dtype) out1 = np.empty((5, 4), dtype=dtype) if can_hold_na: com.take_nd(data, indexer, out=out0, axis=0) com.take_nd(data, indexer, out=out1, axis=1) expected0 = data.take(indexer, axis=0) expected1 = data.take(indexer, axis=1) expected0[3, :] = np.nan expected1[:, 3] = np.nan tm.assert_almost_equal(out0, expected0) tm.assert_almost_equal(out1, expected1) else: for i, out in enumerate([out0, out1]): with tm.assertRaisesRegexp(TypeError, self.fill_error): com.take_nd(data, indexer, out=out, axis=i) # no exception o/w data.take(indexer, out=out, axis=i) _test_dtype(np.float64, True) _test_dtype(np.float32, True) _test_dtype(np.uint64, False) _test_dtype(np.uint32, False) _test_dtype(np.uint16, False) _test_dtype(np.uint8, False) _test_dtype(np.int64, False) _test_dtype(np.int32, False) _test_dtype(np.int16, False) _test_dtype(np.int8, False) _test_dtype(np.object_, True) _test_dtype(np.bool, False) def test_2d_fill_nonna(self): def _test_dtype(dtype, fill_value, out_dtype): data = np.random.randint(0, 2, (5, 3)).astype(dtype) indexer = [2, 1, 0, -1] result = com.take_nd(data, indexer, axis=0, fill_value=fill_value) assert((result[[0, 1, 2], :] == data[[2, 1, 0], :]).all()) assert((result[3, :] == fill_value).all()) assert(result.dtype == out_dtype) result = com.take_nd(data, indexer, axis=1, fill_value=fill_value) assert((result[:, [0, 1, 2]] == data[:, [2, 1, 0]]).all()) assert((result[:, 3] == fill_value).all()) assert(result.dtype == out_dtype) indexer = [2, 1, 0, 1] result = com.take_nd(data, indexer, axis=0, fill_value=fill_value) assert((result[[0, 1, 2, 3], :] == data[indexer, :]).all()) assert(result.dtype == dtype) result = com.take_nd(data, indexer, axis=1, fill_value=fill_value) assert((result[:, [0, 1, 2, 3]] == data[:, indexer]).all()) assert(result.dtype == dtype) _test_dtype(np.int8, np.int16(127), np.int8) _test_dtype(np.int8, np.int16(128), np.int16) _test_dtype(np.int32, 1, np.int32) _test_dtype(np.int32, 2.0, np.float64) _test_dtype(np.int32, 3.0 + 4.0j, np.complex128) _test_dtype(np.int32, True, np.object_) _test_dtype(np.int32, '', np.object_) _test_dtype(np.float64, 1, np.float64) _test_dtype(np.float64, 2.0, np.float64) _test_dtype(np.float64, 3.0 + 4.0j, np.complex128) _test_dtype(np.float64, True, np.object_) _test_dtype(np.float64, '', np.object_) _test_dtype(np.complex128, 1, np.complex128) _test_dtype(np.complex128, 2.0, np.complex128) _test_dtype(np.complex128, 3.0 + 4.0j, np.complex128) _test_dtype(np.complex128, True, np.object_) _test_dtype(np.complex128, '', np.object_) _test_dtype(np.bool_, 1, np.object_) _test_dtype(np.bool_, 2.0, np.object_) _test_dtype(np.bool_, 3.0 + 4.0j, np.object_) _test_dtype(np.bool_, True, np.bool_) _test_dtype(np.bool_, '', np.object_) def test_3d_with_out(self): def _test_dtype(dtype, can_hold_na): data = np.random.randint(0, 2, (5, 4, 3)).astype(dtype) indexer = [2, 1, 0, 1] out0 = np.empty((4, 4, 3), dtype=dtype) out1 = np.empty((5, 4, 3), dtype=dtype) out2 = np.empty((5, 4, 4), dtype=dtype) com.take_nd(data, indexer, out=out0, axis=0) com.take_nd(data, indexer, out=out1, axis=1) com.take_nd(data, indexer, out=out2, axis=2) expected0 = data.take(indexer, axis=0) expected1 = data.take(indexer, axis=1) expected2 = data.take(indexer, axis=2) tm.assert_almost_equal(out0, expected0) tm.assert_almost_equal(out1, expected1) tm.assert_almost_equal(out2, expected2) indexer = [2, 1, 0, -1] out0 = np.empty((4, 4, 3), dtype=dtype) out1 = np.empty((5, 4, 3), dtype=dtype) out2 = np.empty((5, 4, 4), dtype=dtype) if can_hold_na: com.take_nd(data, indexer, out=out0, axis=0) com.take_nd(data, indexer, out=out1, axis=1) com.take_nd(data, indexer, out=out2, axis=2) expected0 = data.take(indexer, axis=0) expected1 = data.take(indexer, axis=1) expected2 = data.take(indexer, axis=2) expected0[3, :, :] = np.nan expected1[:, 3, :] = np.nan expected2[:, :, 3] = np.nan tm.assert_almost_equal(out0, expected0) tm.assert_almost_equal(out1, expected1) tm.assert_almost_equal(out2, expected2) else: for i, out in enumerate([out0, out1, out2]): with tm.assertRaisesRegexp(TypeError, self.fill_error):
com.take_nd(data, indexer, out=out, axis=i)
pandas.core.common.take_nd
import streamlit as st import pandas as pd import numpy as np import sklearn.neighbors import pydeck as pdk import seaborn as sns from util import config from util import mapping from util import trip_data @st.cache(suppress_st_warning=True) def load_data(): st.write('Loading data...') trips = pd.read_feather(config.PROCESSED_DATA_PATH + 'trips_scaled.feather') trips.set_index('rte_id', inplace=True) gridpts_at_rte_500 =
pd.read_feather(config.PROCESSED_DATA_PATH + 'gridpts_at_rte_500.feather')
pandas.read_feather
import requests import datetime import numpy as np import pandas as pd today_dt = datetime.date.today() today = today_dt.strftime('%Y-%m-%d') OURWORLDINDATA = "https://covid.ourworldindata.org/data/owid-covid-data.csv" REPO_DATA = ( 'https://raw.githubusercontent.com/' 'mauforonda/covid19-bolivia/master/data.json' ) def fetch_from_ourworldindata(iso_code=None): response = requests.get(OURWORLDINDATA) with open('ourworldindata.csv', 'w+') as f: f.write(response.text) with open(f'data/ourworldindata_{today}.csv', 'w+') as f: f.write(response.text) df = pd.read_csv('ourworldindata.csv') return df def fetch_from_covid19_bolivia_repo(): response = requests.get(REPO_DATA) data = response.json() rows = [] for item in data['confirmados']: row = {'fecha': item['fecha']} row.update(item['dep']) rows.append(row) cities = [ 'la_paz', 'cochabamba', 'santa_cruz', 'oruro', 'potosí', 'tarija', 'chuquisaca', 'beni', 'pando' ] df = pd.DataFrame(rows) df['total'] = df[cities].sum(axis=1) filtered = df[(['fecha', 'total'] + cities)] filtered.columns = ['ds', 'y'] + cities return filtered def get_data(source='ourworldindata'): if source == 'ourworldindata': filtered = fetch_from_ourworldindata() elif source == 'github': return fetch_from_covid19_bolivia_repo() elif filtered == 'boliviasegura': url = 'https://boliviasegura.agetic.gob.bo/wp-content/json/api.php' filtered = requests.get(url).json() filtered.to_csv(f'data/{source}.csv', index=False) filtered.to_csv(f'data/{source}_{today}.csv', index=False) filtered.sort_values(by='ds', inplace=True) return filtered def get_population(): population = pd.read_csv('data/population.csv') population = population[population['Year'] == '2019'].sort_values(['Population'], ascending=False) population = population[pd.notna(population['Code'])] return population def get_full_data(source='ourworldindata', force=False): if force: df = fetch_from_ourworldindata() else: df = pd.read_csv(f'{source}.csv') df = df[df['iso_code'] != 'OWID_WRL'] df = df[
pd.notnull(df['iso_code'])
pandas.notnull
# Imports from flask import render_template, redirect, request, session, url_for, Flask, g from dotenv import load_dotenv from pathlib import Path import yfinance as yf import datetime as d import pynance as pn import pandas as pd import requests import glob import json import os import io from sendmail import send_mail, send_buy, send_sell from models import users, contactus, stock # Import environment variables load_dotenv() key_id = os.getenv("KEY_ID") key_secret = os.getenv("KEY_SECRET") # Initialize Payment Session request_payment = requests.Session() request_payment.auth = (key_id, key_secret) payment_data = json.load(open("payment_data.json")) # Path to database path = "app.db" # To pass data from one page to another class state: ... s = state() # App configuration templates_path = os.path.abspath("./templates") app = Flask(__name__, template_folder=templates_path) app.secret_key = "somekey" app.config["SEND_FILE_MAX_AGE_DEFAULT"] = 0 # Create tables users.create_user(path) contactus.create_tbl(path) stock.make_tbl(path) def get_current_price(symbol: str) -> float: """Gets current closing price of stock using Ticker method Args: symbol: Stock Symbol Returns: float: Closing Stock price """ ticker = yf.Ticker(symbol) todays_data = ticker.history(period="1d") return float(todays_data["Close"][0]) def get_current_stock_price(symbol: str) -> float: """Gets current closing price of stock (Substitute for init function error) Args: symbol: Stock Symbol Returns: float: Closing Stock price """ data = pn.data.get(symbol, start=None, end=None) return float(data["Close"][0]) class Currency_Conversion: """ API Class for currency conversion """ rates = {} def __init__(self, url): data = requests.get(url).json() self.rates = data["rates"] def convert(self, from_currency, to_currency, amount) -> float: """Converts one currency to another Args: from_currency: Currency to be converted from to_cuurency: Currency to be converted to amount: amount to be converted Returns: float: Converted amount """ initial_amount = amount if from_currency != "EUR": amount = amount / self.rates[from_currency] amount = round(amount * self.rates[to_currency], 2) return amount # List of stock symbols from URL containing NASDAQ listings url = "https://pkgstore.datahub.io/core/nasdaq-listings/nasdaq-listed_csv/data/7665719fb51081ba0bd834fde71ce822/nasdaq-listed_csv.csv" data = requests.get(url).content df_data = pd.read_csv(io.StringIO(data.decode("utf-8"))) symbols = df_data["Symbol"].to_list() @app.before_request def security(): """ Sets current user (g.user) to none and checks if the user is in session If in session then email is fetched and g.user is updated to that email """ g.user = None if "user_email" in session: emails = users.getemail(path) try: useremail = [ email for email in emails if email[0] == session["user_email"] ][0] g.user = useremail except Exception as e: print("Failed") @app.route("/", methods=["GET", "POST"]) def home(): """ Login Page """ session.pop("user_email", None) flag = True # Store input if a post request is made if request.method == "POST": name = request.form["name"] email = request.form["email"] password = request.form["password"] repeat_password = request.form["rpassword"] if password and not repeat_password: if users.check_user_exist(path, email): if users.check_hash(path, password, email): session["user_email"] = email return redirect("/index") else: flag = False return render_template( "login.html", error="Incorrect Email or Password" ) else: return render_template("login.html", error="User Doesnt Exist") if password and repeat_password: if not users.check_user_exist(path, email): if password == repeat_password: password = users.hash_pwd(password) users.insert(path, "user", (email, name, password, 0)) session["user_email"] = email return render_template( "login.html", error="Sign Up Complete - Login" ) else: return render_template( "login.html", error="Password & Retyped Password Not Same" ) else: return render_template( "login.html", error="This User Already Exists! Try Again" ) if not name and not password and email: if users.check_user_exist(path, email): reset_password(path, email) return render_template( "login.html", error="We have sent you a link to reset your password. Check your mailbox", ) else: return render_template( "login.html", error="This Email Doesnt Exist - Please Sign Up" ) if flag: return render_template("login.html") @app.route("/index", methods=["GET", "POST"]) def index(): """ Home Page """ if g.user: return render_template("index.html") return redirect("/") def reset_password(path: str, email: str): """ Sends mail for resetting password to user """ send_mail(path, email) @app.route("/reset", methods=["GET", "POST"]) def reset(): """ Reset Password Page """ if request.method == "POST": pwd = request.form["<PASSWORD>"] repeat_pwd = request.form["rnpassword"] ver_code = request.form["vcode"] try: ver_code = int(ver_code) except: raise TypeError if pwd and repeat_pwd and ver_code: if pwd == repeat_pwd: if users.check_code(path, ver_code): pwd = users.hash_pwd(pwd) users.reset_pwd(path, pwd, ver_code) users.reset_code(path, ver_code) return redirect("/") else: return render_template( "reset.html", error="Incorrect Verification Code" ) else: return render_template( "reset.html", error="Password & Retyped Password Not Same" ) return render_template("reset.html") @app.route("/inv", methods=["GET", "POST"]) def inv(): """ Analysis Page - displays historical stock data """ if g.user: if request.method == "POST": stock_id = request.form["stocksym"] stock_id = stock_id.upper() if stock_id in symbols: df_stock = yf.download(stock_id, start="1950-01-01", period="1d") else: return render_template( "inv.html", error="Incorrect Stock Symbol. Please Enter Valid Symbol", ) df_stock.drop("Adj Close", axis="columns", inplace=True) df_stock.reset_index(inplace=True) df_stock["Date"] =
pd.to_datetime(df_stock["Date"])
pandas.to_datetime
"""This module contains code for binding together the clustering and fnotching tools to create the final catalog files. When run as a script from command-line, it requires to launch a local ipcontroller for the parallel processing. If you execute this locally, you can create one with `ipcluster start -n <no>`, with <no> the number of cores you want to provide to the parallel processing routines. """ import argparse import itertools import logging import string import pandas as pd from ipyparallel import Client from ipyparallel.util import interactive from tqdm import tqdm from nbtools import execute_in_parallel from . import fnotching, io, metadata as p4meta from .projection import TileCalculator, create_RED45_mosaic, xy_to_hirise, XY2LATLON LOGGER = logging.getLogger(__name__) # logging.basicConfig(format='%(levelname)s: %(message)s', level=logging.INFO) def fan_id_generator(): for newid in itertools.product(string.digits + 'abcdef', repeat=6): yield 'F' + ''.join(newid) def blotch_id_generator(): for newid in itertools.product(string.digits + 'abcdef', repeat=6): yield 'B' + ''.join(newid) def add_marking_ids(path, fan_id, blotch_id): """Add marking_ids for catalog to cluster results. Parameters ---------- path : str, pathlib.Path Path to L1A image_id clustering result directory fan_id, blotch_id : generator Generator for marking_id """ image_id = path.parent.name for kind, id_ in zip(['fans', 'blotches'], [fan_id, blotch_id]): fname = str(path / f"{image_id}_L1A_{kind}.csv") try: df = pd.read_csv(fname) except FileNotFoundError: continue else: marking_ids = [] for _ in range(df.shape[0]): marking_ids.append(next(id_)) df['marking_id'] = marking_ids df.to_csv(fname, index=False) def get_L1A_paths(obsid, savefolder): pm = io.PathManager(obsid=obsid, datapath=savefolder) paths = pm.get_obsid_paths('L1A') return paths def cluster_obsid(obsid=None, savedir=None, imgid=None): """Cluster all image_ids for given obsid (=image_name). Parameters ---------- obsid : str HiRISE obsid (= Planet four image_name) savedir : str or pathlib.Path Top directory path where the catalog will be stored. Will create folder if it does not exist yet. imgid : str, optional Convenience parameter: If `obsid` is not given and therefore is None, this `image_id` can be used to receive the respective `obsid` from the TileID class. """ # import here to support parallel execution from planet4 import dbscan, markings # parameter checks if obsid is None and imgid is not None: obsid = markings.TileID(imgid).image_name elif obsid is None and imgid is None: raise ValueError("Provide either obsid or imgid.") # cluster dbscanner = dbscan.DBScanner(savedir=savedir) dbscanner.cluster_image_name(obsid) def fnotch_obsid(obsid=None, savedir=None, fnotch_via_obsid=False, imgid=None): """ fnotch_via_obsid: bool, optional Switch to control if fnotching happens per image_id or per obsid """ from planet4 import fnotching # fnotching / combining ambiguous cluster results # fnotch across all the HiRISE image # does not work yet correctly! Needs to scale for n_classifications if fnotch_via_obsid is True: fnotching.fnotch_obsid(obsid, savedir=savedir) fnotching.apply_cut_obsid(obsid, savedir=savedir) else: # default case: Fnotch for each image_id separately. fnotching.fnotch_image_ids(obsid, savedir=savedir) fnotching.apply_cut(obsid, savedir=savedir) return obsid def cluster_obsid_parallel(args): "Create argument tuples for cluster_obsid, for parallel usage." obsid, savedir = args return cluster_obsid(obsid, savedir) def fnotch_obsid_parallel(args): "Create argument tuples for cluster_obsid, for parallel usage." obsid, savedir = args return fnotch_obsid(obsid, savedir) class ReleaseManager: """Class to manage releases and find relevant files. Parameters ---------- version : str Version string for this catalog. Same as datapath in other P4 code. obsids : iterable, optional Iterable of obsids that should be used for catalog file. Default is to use the full list of the default database, which is Seasons 2 and 3 at this point. overwrite : bool, optional Switch to control if already existing result folders for an obsid should be overwritten. Default: False """ DROP_FOR_TILE_COORDS = ['xy_hirise', 'SampleResolution', 'LineResolution', 'PositiveWest360Longitude', 'Line', 'Sample'] FAN_COLUMNS_AS_PUBLISHED = [ 'marking_id', 'angle', 'distance', 'tile_id', 'image_x', 'image_y', 'n_votes', 'obsid', 'spread', 'version', 'vote_ratio', 'x', 'y', 'x_angle', 'y_angle', 'l_s', 'map_scale', 'north_azimuth', 'BodyFixedCoordinateX', 'BodyFixedCoordinateY', 'BodyFixedCoordinateZ', 'PlanetocentricLatitude', 'PlanetographicLatitude', 'Longitude' ] BLOTCH_COLUMNS_AS_PUBLISHED = [ 'marking_id', 'angle', 'tile_id', 'image_x', 'image_y', 'n_votes', 'obsid', 'radius_1', 'radius_2', 'vote_ratio', 'x', 'y', 'x_angle', 'y_angle', 'l_s', 'map_scale', 'north_azimuth', 'BodyFixedCoordinateX', 'BodyFixedCoordinateY', 'BodyFixedCoordinateZ', 'PlanetocentricLatitude', 'PlanetographicLatitude', 'Longitude' ] def __init__(self, version, obsids=None, overwrite=False): self.catalog = f'P4_catalog_{version}' self.overwrite = overwrite self._obsids = obsids @property def savefolder(self): "Path to catalog folder" return io.data_root / self.catalog @property def metadata_path(self): "Path to catalog metadata file." return self.savefolder / f"{self.catalog}_metadata.csv" @property def tile_coords_path(self): "Path to catalog tile coordinates file." return self.savefolder / f"{self.catalog}_tile_coords.csv" @property def tile_coords_path_final(self): "Path to final catalog tile coordinates file." return self.savefolder / f"{self.catalog}_tile_coords_final.csv" @property def obsids(self): """Return list of obsids for catalog production. If ._obsids is None, get default full obsids list for current default P4 database. """ if self._obsids is None: db = io.DBManager() self._obsids = db.obsids return self._obsids @obsids.setter def obsids(self, values): self._obsids = values @property def fan_file(self): "Return path to fan catalog file." try: return next(self.savefolder.glob("*_fan.csv")) except StopIteration: print(f"No file found. Looking at {self.savefolder}.") @property def blotch_file(self): "Return path to blotch catalog file." try: return next(self.savefolder.glob("*_blotch.csv")) except StopIteration: print(f"No file found. Looking at {self.savefolder}.") @property def fan_merged(self): return self.fan_file.parent / f"{self.fan_file.stem}_meta_merged.csv" @property def blotch_merged(self): return self.blotch_file.parent / f"{self.blotch_file.stem}_meta_merged.csv" def read_fan_file(self): return pd.read_csv(self.fan_merged) def read_blotch_file(self): return pd.read_csv(self.blotch_merged) def check_for_todo(self): bucket = [] for obsid in self.obsids: pm = io.PathManager(obsid=obsid, datapath=self.savefolder) path = pm.obsid_results_savefolder / obsid if path.exists() and self.overwrite is False: continue else: bucket.append(obsid) self.todo = bucket def get_parallel_args(self): return [(i, self.catalog) for i in self.todo] def get_no_of_tiles_per_obsid(self): db = io.DBManager() all_data = db.get_all() return all_data.groupby('image_name').image_id.nunique() @property def EDRINDEX_meta_path(self): return self.savefolder / f"{self.catalog}_EDRINDEX_metadata.csv" def calc_metadata(self): if not self.EDRINDEX_meta_path.exists(): NAs = p4meta.get_north_azimuths_from_SPICE(self.obsids) edrindex = pd.read_hdf("/Volumes/Data/hirise/EDRCUMINDEX.hdf") p4_edr = edrindex[edrindex.OBSERVATION_ID.isin(self.obsids)].query( 'CCD_NAME=="RED4"').drop_duplicates(subset='OBSERVATION_ID') p4_edr = p4_edr.set_index('OBSERVATION_ID').join( NAs.set_index('OBSERVATION_ID')) p4_edr = p4_edr.join(self.get_no_of_tiles_per_obsid()) p4_edr.rename(dict(image_id="# of tiles"), axis=1, inplace=True) p4_edr['map_scale'] = 0.25 * p4_edr.BINNING p4_edr.reset_index(inplace=True) p4_edr.to_csv(self.EDRINDEX_meta_path) else: p4_edr = pd.read_csv(self.EDRINDEX_meta_path) cols = ['OBSERVATION_ID', 'IMAGE_CENTER_LATITUDE', 'IMAGE_CENTER_LONGITUDE', 'SOLAR_LONGITUDE', 'START_TIME', 'map_scale', 'north_azimuth', '# of tiles'] metadata = p4_edr[cols] metadata.to_csv(self.metadata_path, index=False, float_format="%.7f") LOGGER.info("Wrote %s", str(self.metadata_path)) def calc_tile_coordinates(self): edrpath = io.get_ground_projection_root() cubepaths = [edrpath / obsid / f"{obsid}_mosaic_RED45.cub" for obsid in self.obsids] todo = [] for cubepath in cubepaths: tc = TileCalculator(cubepath, read_data=False) if not tc.campt_results_path.exists(): todo.append(cubepath) def get_tile_coords(cubepath): from planet4.projection import TileCalculator tilecalc = TileCalculator(cubepath) tilecalc.calc_tile_coords() if not len(todo) == 0: results = execute_in_parallel(get_tile_coords, todo) bucket = [] for cubepath in tqdm(cubepaths): tc = TileCalculator(cubepath, read_data=False) bucket.append(tc.tile_coords_df) coords = pd.concat(bucket, ignore_index=True, sort=False) coords.to_csv(self.tile_coords_path, index=False, float_format="%.7f") LOGGER.info("Wrote %s", str(self.tile_coords_path)) @property def COLS_TO_MERGE(self): return ['obsid', 'image_x', 'image_y', 'BodyFixedCoordinateX', 'BodyFixedCoordinateY', 'BodyFixedCoordinateZ', 'PlanetocentricLatitude', 'PlanetographicLatitude', 'PositiveEast360Longitude'] def merge_fnotch_results(self, fans, blotches): """Average multiple objects from fnotching into one. Because fnotching can compare the same object with more than one, it can appear more than once with different `vote_ratio` values in the results. We merge them here into one, simply averaging the vote_ratio. This increases the value of the `vote_ratio` number as it now has been created by several comparisons. It only occurs for 0.5 % of fans though. """ out = [] for df in [fans, blotches]: averaged = df.groupby('marking_id').mean() tmp = df.drop_duplicates( subset='marking_id').set_index('marking_id') averaged = averaged.join( tmp[['image_id', 'obsid']], how='inner') out.append(averaged.reset_index()) return out def merge_all(self): # read in data files fans = pd.read_csv(self.fan_file) blotches = pd.read_csv(self.blotch_file) meta = pd.read_csv(self.metadata_path, dtype='str') tile_coords = pd.read_csv(self.tile_coords_path, dtype='str') # average multiple fnotch results fans, blotches = self.merge_fnotch_results(fans, blotches) # merge meta cols_to_merge = ['OBSERVATION_ID', 'SOLAR_LONGITUDE', 'north_azimuth', 'map_scale'] fans = fans.merge(meta[cols_to_merge], left_on='obsid', right_on='OBSERVATION_ID') blotches = blotches.merge( meta[cols_to_merge], left_on='obsid', right_on='OBSERVATION_ID') # drop unnecessary columns tile_coords.drop(self.DROP_FOR_TILE_COORDS, axis=1, inplace=True) # save cleaned tile_coords tile_coords.rename({'image_id': 'tile_id'}, axis=1, inplace=True) tile_coords.to_csv(self.tile_coords_path_final, index=False, float_format='%.7f') # merge campt results into catalog files fans, blotches = self.merge_campt_results(fans, blotches) # write out fans catalog fans.vote_ratio.fillna(1, inplace=True) fans.version = fans.version.astype('int') fans.rename( {'image_id': 'tile_id', 'SOLAR_LONGITUDE': 'l_s', 'PositiveEast360Longitude': 'Longitude'}, axis=1, inplace=True) fans[self.FAN_COLUMNS_AS_PUBLISHED].to_csv( self.fan_merged, index=False) LOGGER.info("Wrote %s", str(self.fan_merged)) # write out blotches catalog blotches.vote_ratio.fillna(1, inplace=True) blotches.rename( {'image_id': 'tile_id', 'SOLAR_LONGITUDE': 'l_s', 'PositiveEast360Longitude': 'Longitude'}, axis=1, inplace=True) blotches[self.BLOTCH_COLUMNS_AS_PUBLISHED].to_csv( self.blotch_merged, index=False) LOGGER.info("Wrote %s", str(self.blotch_merged)) def calc_marking_coordinates(self): fans =
pd.read_csv(self.fan_file)
pandas.read_csv
# Written by i3s import os import numpy as np from sklearn.preprocessing import OneHotEncoder import pandas as pd import seaborn as sns import time from sklearn.model_selection import KFold from matplotlib import pyplot as plt from sklearn.svm import SVC from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.cross_decomposition import PLSRegression from sklearn.linear_model import LogisticRegression, Lasso from sklearn.neighbors import KNeighborsClassifier from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score, roc_auc_score from sklearn.decomposition import PCA from sklearn.model_selection import GridSearchCV from sklearn import metrics def proj_l1ball(y, eta): """ Note that the y should be better 1D or after some element-wise operation, the results will turn to be un predictable. This function will automatically reshape the y as (m,), where m is the y.size, or the y.shape[0]*y.shape[1]. """ if type(y) is not np.ndarray: y = np.array(y) if y.ndim > 1: y = np.reshape(y, (-1,)) return np.maximum( np.absolute(y) - np.amax( [ np.amax( (np.cumsum(np.sort(np.absolute(y), axis=0)[::-1], axis=0) - eta) / (np.arange(y.shape[0]) + 1) ), 0, ] ), 0, ) * np.sign(y) def centroids(XW, Y, k): Y = np.reshape(Y, -1) d = XW.shape[1] mu = np.zeros((k, d)) """ since in python the index starts from 0 not from 1, here the Y==i will be change to Y==(i+1) Or the values in Y need to be changed """ for i in range(k): C = XW[Y == (i + 1), :] mu[i, :] = np.mean(C, axis=0) return mu def class2indicator(y, k): if len(y.shape) > 1: # Either throw exception or transform y, here the latter is chosen. # Note that a list object has no attribute 'flatten()' as np.array do, # We use x = np.reshape(y,-1) instead of x = y.flatten() in case of # the type of 'list' of argument y y = np.reshape(y, -1) n = len(y) Y = np.zeros((n, k)) # dtype=float by default """ since in python the index starts from 0 not from 1, here the y==i in matlab will be change to y==(i+1) """ for i in range(k): Y[:, i] = y == (i + 1) return Y def nb_Genes(w): # Return the number of selected genes from the matrix (numpy.ndarray) w d = w.shape[0] ind_genes = np.zeros((d, 1)) for i in range(d): if np.linalg.norm(w[i, :]) > 0: ind_genes[i] = 1 indGene_w = np.where(ind_genes == 1)[0] nbG = int(np.sum(ind_genes)) return nbG, indGene_w def select_feature_w(w, featurenames): k = w.shape[1] d = w.shape[0] lst_features = [] lst_norm = [] for i in range(k): s_tmp = w[:, i] # the i-th column f_tmp = np.abs(s_tmp) # the absolute values of this column ind = np.argsort(f_tmp)[ ::-1 ] # the indices of the sorted abs column (descending order) f_tmp = np.sort(f_tmp)[::-1] # the sorted abs column (descending order) nonzero_inds = np.nonzero(f_tmp)[0] # the nonzero indices lst_f = [] lst_n = [] if len(nonzero_inds) > 0: nozero_ind = nonzero_inds[-1] # choose the last nonzero index if nozero_ind == 0: lst_f.append(featurenames[ind[0]]) lst_n.append(s_tmp[ind[0]]) else: for j in range(nozero_ind + 1): lst_f.append(featurenames[ind[j]]) lst_n = s_tmp[ind[0 : (nozero_ind + 1)]] lst_features.append(lst_f) lst_norm.append(lst_n) n_cols_f = len(lst_features) n_rows_f = max(map(len, lst_features)) # maxmum subset length n_cols_n = len(lst_norm) n_rows_n = max(map(len, lst_norm)) for i in range(n_cols_f): ft = np.array(lst_features[i]) ft.resize(n_rows_f, refcheck=False) nt = np.array(lst_norm[i]) nt.resize(n_rows_n, refcheck=False) if i == 0: features = ft normW = nt continue features = np.vstack((features, ft)) normW = np.vstack((normW, nt)) features = features.T normW = normW.T return features, normW def compute_accuracy(idxR, idx, k): """ # =============================== #----- INPUT # idxR : real labels # idx : estimated labels # k : number of class #----- OUTPUT # ACC_glob : global accuracy # tab_acc : accuracy per class # =============================== """ # Note that Python native sum function works better on list than on numpy.array # while numpy.sum function works better on numpy.array than on list. # So it will choose numpy.array as the default type for idxR and idx if type(idxR) is not np.array: idxR = np.array(idxR) if type(idx) is not np.array: idx = np.array(idx) if idxR.ndim == 2 and 1 not in idxR.shape: idxR = np.reshape(idxR, (-1, 1)) if idx.ndim == 1: idx = np.reshape(idx, idxR.shape) # Global accuracy y = np.sum(idxR == idx) ACC_glob = y / len(idxR) # Accuracy per class tab_acc = np.zeros((1, k)) """ since in python the index starts from 0 not from 1, here the idx(ind)==j in matlab will be change to idx[ind]==(j+1) """ for j in range(k): ind = np.where(idxR == (j + 1))[0] if len(ind) == 0: tab_acc[0, j] = 0.0 else: tab_acc[0, j] = int(np.sum(idx[ind] == (j + 1))) / len(ind) return ACC_glob, tab_acc def predict_L1(Xtest, W, mu): # Chambolle_Predict k = mu.shape[0] m = Xtest.shape[0] Ytest = np.zeros((m, 1)) for i in range(m): distmu = np.zeros((1, k)) XWi = np.matmul(Xtest[i, :], W) for j in range(k): distmu[0, j] = np.linalg.norm(XWi - mu[j, :], 1) # print(distmu) # sns.kdeplot(np.array(distmu), shade=True, bw=0.1) Ytest[i] = np.argmin(distmu) + 1 # Since in Python the index starts from 0 return Ytest # function to compute the \rho value def predict_L1_molecule(Xtest, W, mu): # Chambolle_Predict k = mu.shape[0] m = Xtest.shape[0] Ytest = np.zeros((m, 1)) confidence = np.zeros((m, 1)) for i in range(m): distmu = np.zeros((1, k)) XWi = np.matmul(Xtest[i, :], W) for j in range(k): distmu[0, j] = np.linalg.norm(XWi - mu[j, :], 1) Ytest[i] = np.argmin(distmu) + 1 # Since in Python the index starts from 0 confidence[i] = (distmu[0, 1] - distmu[0, 0]) / (distmu[0, 1] + distmu[0, 0]) return Ytest, confidence # =============================Plot functions================================================= # function to plot the distribution of \rho def rhoHist(rho, n_equal_bins): """ # =============================== #----- INPUT # rho : df_confidence # n_equal_bins : the number of histogram bins # #----- OUTPUT # plt.show() # =============================== """ # The leftmost and rightmost bin edges first_edge, last_edge = rho.min(), rho.max() bin_edges = np.linspace( start=first_edge, stop=last_edge, num=n_equal_bins + 1, endpoint=True ) _ = plt.hist(rho, bins=bin_edges) plt.title("Histogram of confidence score") plt.show() def pd_plot(X, Yr, W, flag=None): plt.figure() X_transform = np.dot(X, W) # cluster 1 index1 = np.where(Yr == 1) X_1 = X_transform[index1[0], :] c1 = np.mean(X_1, axis=0) # plt.scatter(X_1[:,0],X_1[:,8],c='b', label='cluster1') # cluster 2 index2 = np.where(Yr == 2) X_2 = X_transform[index2[0], :] c2 = np.mean(X_2, axis=0) if flag == True: plt.scatter(c1[0], c1[1], c="y", s=100, marker="*", label="center1") plt.scatter(c2[0], c2[1], c="c", s=100, marker="*", label="center2") plt.plot(X_1[:, 0], X_1[:, 1], "ob", label="cluster1") plt.plot(X_2[:, 0], X_2[:, 1], "^r", label="cluster2") plt.title("Primal_Dual") plt.legend() plt.show() def pca_plot(X, Yr, W, flag=None): plt.figure() # if flag==True: # X=np.dot(X,W) pca = PCA(n_components=2) X_pca = pca.fit_transform(X) X_norm = X_pca # cluster 1 index1 = np.where(Yr == 1) X_1 = X_norm[index1[0], :] c1 = np.mean(X_1, axis=0) # plt.scatter(X_1[:,0],X_1[:,8],c='b', label='cluster1') # cluster 2 index2 = np.where(Yr == 2) X_2 = X_norm[index2[0], :] c2 = np.mean(X_2, axis=0) # plt.scatter(X_2[:,0],X_2[:,8],c='g',label='cluster2') if flag == True: plt.scatter(c1[0], c1[1], c="y", s=100, marker="*", label="center1") plt.scatter(c2[0], c2[1], c="c", s=100, marker="*", label="center2") plt.plot(X_1[:, 0], X_1[:, 1], "ob", label="cluster1") plt.plot(X_2[:, 0], X_2[:, 1], "^r", label="cluster2") plt.title("PCA") plt.legend() plt.show() def Predrejection(df_confidence, eps, num_eps): """ # ===================================================================== # It calculates the false rate according to the value of epsilon # #----- INPUT # df_confidence : dataframe which contains predicted label, # original label and rho # eps : the threshold # num_eps : the number of epsilon that can be tested #----- OUTPUT # FalseRate : An array that contains the falserate according to epsilon # ===================================================================== """ Yr = np.array(df_confidence["Yoriginal"]) Yr[np.where(Yr == 2)] = -1 Ypre = np.array(df_confidence["Ypred"]) Ypre[np.where(Ypre == 2)] = -1 rho = df_confidence["rho"] epsList = np.arange(0, eps, eps / num_eps) falseRate = [] rejectSample = [] for epsilon in epsList: index = np.where((-epsilon < rho) & (rho < epsilon)) Yr[index] = 0 Ypre[index] = 0 Ydiff = Yr - Ypre rejectRate = len(index[0]) / len(Yr) error = len(np.where(Ydiff != 0)[0]) / len(Yr) falseRate.append(error) rejectSample.append(rejectRate) plt.figure() plt.plot(epsList, falseRate) plt.xlabel("Confidence score prediction") plt.ylabel("FN+FP (ratio)") # plot the number of rejected samples plt.figure() plt.plot(epsList, rejectSample) plt.xlabel("Confidence score prediction") plt.ylabel(" Reject samples (ratio) ") return np.array(falseRate) # ============================================================================== def predict_FISTA(Xtest, W, mu): # Chambolle_Predict k = mu.shape[0] m = Xtest.shape[0] Ytest = np.zeros((m, 1)) for i in range(m): distmu = np.zeros((1, k)) XWi = np.matmul(Xtest[i, :], W) for j in range(k): distmu[0, j] = np.linalg.norm(XWi - mu[j, :], 2) Ytest[i] = np.argmin(distmu) + 1 # Since in Python the index starts from 0 return Ytest def normest(X, tol=1.0e-6, maxiter=100): # import necessary modules import scipy.sparse import numpy as np import warnings if scipy.sparse.issparse(X): x = np.array(np.sum(np.abs(X), axis=0)) x = np.reshape(x, max(x.shape)) elif type(X) == np.matrix: x = np.sum(np.abs(np.asarray(X)), axis=0) x = np.reshape(x, max(x.shape)) else: x = np.sum(np.abs(X), axis=0) norm_e = np.linalg.norm(x) if norm_e == 0: return norm_e x = x / norm_e norm_e0 = 0 count = 0 while np.abs(norm_e - norm_e0) > tol * norm_e: norm_e0 = norm_e Xx = np.matmul(X, x) if np.count_nonzero(Xx) == 0: Xx = np.random.rand(Xx.shape[0]) x = np.matmul(X.T, Xx) normx = np.linalg.norm(x) norm_e = normx / np.linalg.norm(Xx) x = x / normx count += 1 if count > maxiter: warnings.warn( "Normest::NotConverge:the number of iterations exceeds {} times.\nThe error is {}, the tolerance is {}".format( maxiter, np.abs(norm_e - norm_e0), tol ), RuntimeWarning, ) break return norm_e def merge_topGene_norm(topGenes, normW, clusternames): """ # ===================================================================== # It merge the two output from function select_features_w into a new # pandas.DataFrame whose columns will be the elements in clusternames # and each of the column will have two subcolumns: topGenes and weight # #----- INPUT # topGenes : ndarray of top Genes chosen by select_features_w # normW : normWeight of each genes given by select_features_w # clusternames : A list of the names of each class. #----- OUTPUT # df_res : A DataFrame with each colum the first subcolumn the genes # and second subcolumn their norm of weight # ===================================================================== """ if topGenes.shape != normW.shape: raise ValueError("The dimension of the two input should be the same") m, n = topGenes.shape nbC = len(clusternames) res = np.dstack((topGenes, normW)) res = res.reshape(m, 2 * n) lst_col = [] for i in range(nbC): lst_col.append((clusternames[i], "topGenes")) lst_col.append((clusternames[i], "Weights")) df_res = pd.DataFrame(res, columns=lst_col) df_res.columns = pd.MultiIndex.from_tuples( df_res.columns, names=["CluserNames", "Attributes"] ) return df_res def merge_topGene_norm_acc( topGenes, normW, clusternames, acctest, nbr_features=30, saveres=False, file_tag=None, outputPath="../results/", ): """ # =============================================================================================== \n # Based on the function merge_topGebe_norm, replace the column name for \n # normW by the accuracy \n #----- INPUT \n # topGenes (ndarray or DataFrame) : Top Genes chosen by select_features_w \n # normW (ndarray or DataFrame) : The normWeight of each genes given by select_features_w \n # clusternames (list or array) : A list of the names of each class \n # acctest (list or array) : The list of the test accuracy \n # saveres (optional, boolean) : True if we want to save the result to local \n # file_tag (optional, string) : A file tag which will be the prefix of the file name \n # outputPath (optional, string) : The output Path of the file \n # ----- OUTPUT \n # df_res : A DataFrame with each colum the first subcolumn the genes \n # and second subcolumn their norm of weight \n # =============================================================================================== \n """ if type(topGenes) is pd.DataFrame: topGenes = topGenes.values if type(normW) is pd.DataFrame: normW = normW.values if topGenes.shape != normW.shape: raise ValueError("The dimension of the two input should be the same") m, n = topGenes.shape nbC = len(clusternames) res = np.dstack((topGenes, normW)) res = res.reshape(m, 2 * n) lst_col = [] acctest_mean = acctest.values.tolist()[4] for i in range(nbC): lst_col.append((clusternames[i], "topGenes")) astr = str(acctest_mean[i]) lst_col.append((astr, "Weights")) df_res = pd.DataFrame(res[0:nbr_features, :], columns=lst_col) df_res.columns = pd.MultiIndex.from_tuples( df_res.columns, names=["CluserNames", "Attributes"] ) if saveres: df_res.to_csv( "{}{}_Heatmap of Acc_normW_Topgenes.csv".format(outputPath, file_tag), sep=";", ) return df_res def compare_2topGenes( topGenes1, topGenes2, normW1=None, normW2=None, lst_col=None, nbr_limit=30, printOut=False, ): """ #======================================================================================= # Compare column by column the elements between to topGenes, it choose for # each column first "nbr" elements to check. # The two topGenes should be in same size of columns # ----- INPUT # topGenes1, topGenes2 (DataFrame) : Two topGenes to be compared # normW1, normW2 (DataFrame,optional): Two matrix of weights correspondent. Default: None # lst_col (list, optional) : If given, only the chosen column will be compared. Default: None # nbr_limit (scalar, optional) : Number of the lines to be compared. Default: 30 # printOut (boolean, optional) : If True, the comparison result will be shown on screen. Default: False # ----- OUTPUT # out (string) : It returns a string of the comparing result as output. #======================================================================================= """ import pandas as pd import numpy as np if type(topGenes1) != type(topGenes2): raise ValueError("The two topGenes to be compared should be of the same type.") if type(topGenes1) is not pd.DataFrame: col = ["C" + str(i) for i in topGenes1.shape[1]] topGenes1 = pd.DataFrame(topGenes1, columns=col) topGenes2 = pd.DataFrame(topGenes2, columns=col) out = [] out.append("Comparing the two TopGenes:\n") # After the benchmark, the appended list and then converted to whole string seems to be the least consuming list_name = list(topGenes1.columns) if lst_col is not None: list_name = [list_name[ind] for ind in lst_col] for name in list_name: out.append( "{0:{fill}{align}40}\n".format(" Class %s " % name, fill="=", align="^") ) col_1 = np.array(topGenes1[[name]], dtype=str) col_2 = np.array(topGenes2[[name]], dtype=str) # Here np.nozero will return a tuple of 2 array corresponding the first # and the second dimension while the value of second dimension will # always be 0. So the first dimension's last location+1 will be the length # of nonzero arrays and that it's just the location of the first zero # element length_nonzero_1 = np.nonzero(col_1)[0][-1] + 1 length_nonzero_2 = np.nonzero(col_2)[0][-1] + 1 # np.nonzero will not detect '0.0' as zero type if all(col_1 == "0.0"): length_nonzero_1 = 0 if all(col_2 == "0.0"): length_nonzero_2 = 0 length_min = min(length_nonzero_1, length_nonzero_2) # Check if at least one of the classes contains only zero and avoid the error if length_min == 0 and length_nonzero_1 == length_nonzero_2: out.append( "* Warning: No feature is selected for both two class\n Skipped for this class" ) continue elif length_min == 0 and length_nonzero_1 > 0: out.append( "* Warning: No feature is selected for this class in TopGenes2\n" ) out.append( "* All {} elements are included only in topGenes1:\n".format( min(length_nonzero_1, nbr_limit) ) ) for k in range(min(length_nonzero_1, nbr_limit)): if normW1 is None: out.append(" (%s)\n" % (str(col_1[k, 0]))) else: out.append( " (%s, %s)\n" % (str(col_1[k, 0]), normW1[[name]].iloc[k, 0]) ) continue elif length_min == 0 and length_nonzero_2 > 0: out.append( "* Warning: No feature is selected for this class in TopGenes1\n" ) out.append( "* All {} elements are included only in topGenes2:\n".format( min(length_nonzero_2, nbr_limit) ) ) for k in range(min(length_nonzero_2, nbr_limit)): if normW2 is None: out.append(" (%s)\n" % (str(col_2[k, 0]))) else: out.append( " (%s, %s)\n" % (str(col_2[k, 0]), normW2[[name]].iloc[k, 0]) ) continue if length_min < nbr_limit: length = length_min out.append( "* Warning: In this column, the 1st topGenes has {} nozero elements\n* while the 2nd one has {} nonzero elements\n".format( length_nonzero_1, length_nonzero_2 ) ) out.append("* So only first %d elements are compared\n\n" % length_min) else: length = nbr_limit set_1 = col_1[0:length] set_2 = col_2[0:length] set_common = np.intersect1d(set_1, set_2) # Have in common set_o1 = np.setdiff1d(set_1, set_2) # Exclusively in topGenes1 set_o2 = np.setdiff1d(set_2, set_1) # Exclusively in topGenes2 lc = len(set_common) # print exclusively in topGenes1 out.append( "Included exclusively in first topGenes: {} elements in total.\n".format( length - lc ) ) if length - lc > 0: if normW1 is None: out.append("Details:(Name)\n") else: out.append("Details:(Name,Weight)\n") idx_i, idx_j = np.where(topGenes1[[name]].isin(set_o1)) for i, j in zip(idx_i, idx_j): if normW1 is None: out.append(" (%s)\n" % str(set_1[i, j])) else: out.append( " (%s, %s)\n" % (str(set_1[i, j]), str(normW1[[name]].iloc[i, j])) ) out.append("\nNumber of elements in common:{}\n".format(lc)) # print exclusively in topGenes1 out.append( "\nIncluded exclusively in second topGenes: {} elements in total.\n".format( length - lc ) ) if length - lc > 0: if normW2 is None: out.append("Details:(Name)\n") else: out.append("Details:(Name,Weight)\n") idx_i, idx_j = np.where(topGenes2[[name]].isin(set_o2)) for i, j in zip(idx_i, idx_j): if normW2 is None: out.append(" (%s)\n" % str(set_2[i, j])) else: out.append( " (%s, %s)\n" % (str(set_2[i, j]), str(normW2[[name]].iloc[i, j])) ) out.append("{:-<40}\n".format("")) out = "".join(out) if printOut == True: print(out) return out def heatmap_classification( Ytest, YR, clusternames, rotate=45, draw_fig=False, save_fig=False, func_tag=None, outputPath="../results/", ): """ #===================================================== # It takes the predicted labels (Ytest), true labels (YR) # and a list of the names of clusters (clusternames) # as input and provide the heatmap matrix as the output #===================================================== """ k = len(np.unique(YR)) # If we need to automatically find a k Heatmap_matrix = np.zeros((k, k)) for i in np.arange(k) + 1: for j in np.arange(k) + 1: a = np.where( Ytest[YR == i] == j, 1, 0 ).sum() # number Ytest ==j where YR==i b = np.where(YR == i, 1, 0).sum() Heatmap_matrix[i - 1, j - 1] = a / b # Plotting if draw_fig == True: plt.figure(figsize=(10, 6)) annot = False if k > 10: annot = False if clusternames is not None: axes = sns.heatmap( Heatmap_matrix, cmap="jet", annot=annot, fmt=".2f", xticklabels=clusternames, yticklabels=clusternames, ) else: axes = sns.heatmap(Heatmap_matrix, cmap="jet", annot=annot, fmt=".2f") axes.set_xlabel("Predicted true positive", fontsize=14) axes.set_ylabel("Ground true", fontsize=14) axes.tick_params(labelsize=7) plt.xticks(rotation=rotate) axes.set_title("Heatmap of confusion Matrix", fontsize=14) plt.tight_layout() if save_fig == True: plt.savefig( "{}{}_Heatmap_of_confusion_Matrix.png".format(outputPath, func_tag) ) return Heatmap_matrix def heatmap_normW( normW, clusternames=None, nbr_l=10, rotate=45, draw_fig=False, save_fig=False, func_tag=None, outputPath="../results/", ): """ #===================================================== # It takes the predicted labels (Ytest), true labels (YR) # and the number of clusters (k) as input and provide the # heatmap matrix as the output #===================================================== """ A = np.abs(normW) AN = A / A[0, :] if normW.shape[0] < nbr_l: nbr_l = normW.shape[0] ANR = AN[0:nbr_l, :] annot = False if draw_fig == True: plt.figure(figsize=(10, 6)) # axes2=sns.heatmap(ANR,cmap='jet',annot=annot,fmt='.3f') if clusternames is None: axes2 = sns.heatmap( ANR, cmap="jet", annot=annot, fmt=".3f", yticklabels=np.linspace(1, nbr_l, num=nbr_l, endpoint=True, dtype=int), ) else: axes2 = sns.heatmap( ANR, cmap="jet", annot=annot, fmt=".3f", xticklabels=clusternames, yticklabels=np.linspace(1, nbr_l, num=nbr_l, endpoint=True, dtype=int), ) plt.xticks(rotation=rotate) axes2.set_ylabel("Features", fontsize=14) axes2.set_xlabel("Clusters", fontsize=14) axes2.tick_params(labelsize=7) axes2.set_title("Heatmap of Matrix W", fontsize=14) plt.tight_layout() if save_fig == True: plt.savefig("{}{}_Heatmap_of_signature.png".format(outputPath, func_tag)) return ANR def drop_cells_with_ID(X, Y, ID, n_fold): """ # ==================================================================== # This function will detect whether the size of the first dimension of # X is divisible by n_fold. If not, it will remove the n_diff rows from # the biggest class(with the largest size in Y) where n_diff=len(Y)%n_fold # # ---- Input # X : The data # Y : The label # n_fold : The number of fold # --- Output # X_new, Y_new : The new data and the new label # ===================================================================== """ m, d = X.shape if m % n_fold == 0: return X, Y, ID n_diff = m % n_fold # choose in the biggest class to delete # Find the biggest class lst_count = [] for i in np.unique(Y): lst_count.append(np.where(Y == i, 1, 0).sum()) ind_max = np.unique(Y)[np.argmax(lst_count)] lst_inds = np.where(Y == ind_max)[0] # Delete n_diff elements in the biggest class lst_del = np.random.choice(lst_inds, n_diff) X_new = np.delete(X, lst_del, 0) Y_new = np.delete(Y, lst_del, 0) ID_new = np.delete(ID, lst_del, 0) return X_new, Y_new, ID_new def drop_cells(X, Y, n_fold): """ # ==================================================================== # This function will detect whether the size of the first dimension of # X is divisible by n_fold. If not, it will remove the n_diff rows from # the biggest class(with the largest size in Y) where n_diff=len(Y)%n_fold # # ---- Input # X : The data # Y : The label # n_fold : The number of fold # --- Output # X_new, Y_new : The new data and the new label # ===================================================================== """ m, d = X.shape if m % n_fold == 0: return X, Y n_diff = m % n_fold # choose in the biggest class to delete # Find the biggest class lst_count = [] for i in np.unique(Y): lst_count.append(np.where(Y == i, 1, 0).sum()) ind_max = np.unique(Y)[np.argmax(lst_count)] lst_inds = np.where(Y == ind_max)[0] # Delete n_diff elements in the biggest class lst_del = np.random.choice(lst_inds, n_diff) X_new = np.delete(X, lst_del, 0) Y_new = np.delete(Y, lst_del, 0) return X_new, Y_new # ===================== Algorithms ======================================= def FISTA_Primal(X, YR, k, param): """ # ==================================================================== # ---- Input # X : The data # YR : The label. Note that this should be an 2D array. # k : The number of class # niter : The number of iterations # gamma : The hyper parameter gamma # eta : The eta to calculate the projection on l1 ball # * isEpsilon is not used in the original file in Matlab # --- Output # w : The projection matrix # mu : The centers # nbGenes_fin : The number of genes of the final step # loss : The loss for each iteration # ==================================================================== """ # === Check the validness of param and the initialization of the params === if type(param) is not dict: raise TypeError("Wrong type of input argument param", type(param)) lst_params = ["niter", "eta", "gamma"] # necessary params if any(x not in param.keys() for x in lst_params): raise ValueError( "Missing parameter in param.\n Need {}.\n Got {} ".format( lst_params, list(param.keys()) ) ) niter = param["niter"] eta = param["eta"] gamma = param["gamma"] n, d = X.shape # === With class2indicator(): # Y = class2indicator(YR,k) # === With Onehotencoder: Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() loss = np.zeros(niter) XtX = np.matmul(X.T, X) XtY = np.matmul(X.T, Y) w_old = np.ones((d, k)) w_loc = w_old t_old = 1 for i in range(niter): grad_w = np.matmul(XtX, w_loc) - XtY # gradient step V = w_loc - gamma * grad_w V = np.reshape(V, d * k) # Projection on the l1 ball V = proj_l1ball(V, eta) # Reshape back w_new = np.reshape(V, (d, k)) # Chambolle method t_new = (i + 6) / 4 # or i+6 since pyhton starts from 0 ? w_loc_new = w_new + ((t_old - 1) / t_new) * (w_new - w_old) w_old = w_new w_loc = w_loc_new t_old = t_new loss[i] = np.linalg.norm(Y - np.matmul(X, w_loc), "fro") ** 2 # end iteratons w = w_loc mu = centroids(np.matmul(X, w), YR, k) nbGenes_fin = nb_Genes(w)[0] loss = loss / loss[0] return w, mu, nbGenes_fin, loss def primal_dual_L1N(X, YR, k, param): """ # ==================================================================== # ---- Input # X : The data # YR : The label. Note that this should be an 2D array. # k : The number of class # param : A type dict paramter which must have keys: # 'niter', 'eta', 'tau', 'rho','sigma', 'beta', 'tau2' and 'delta' # Normally speaking: # (The default value for beta is 0.25.) # (IF not given, the value of the 'tau2' will be calculated by # tau2 = 0.25*(1/(np.sqrt(m)*normY)). Note that this normY is # the 2-norm of the OneHotEncode of the YR given.) # (Default value of the 'delta' is 1.0) # --- Output # w : The projection matrix of size (d,k) # mu : The centers of classes # nbGenes_fin : The number of genes of the final result # loss : The loss for each iteration # Z : The dual matrix of size (m,k) # ===================================================================== """ m, d = X.shape Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() # normY = np.linalg.norm(Y,2) # === Check the validness of param and the initialization of the params === if type(param) is not dict: raise TypeError("Wrong type of input argument param", type(param)) lst_params = [ "niter", "eta", "tau", "rho", "sigma", "delta", "tau2", "beta", ] # necessary params if any(x not in param.keys() for x in lst_params): raise ValueError( "Missing parameter in param.\n Need {}.\n Got {} ".format( lst_params, list(param.keys()) ) ) niter = param["niter"] eta = param["eta"] tau = param["tau"] rho = param["rho"] sigma = param["sigma"] delta = param["delta"] tau2 = param["tau2"] # beta = param['beta'] # === END check block === # Initialization w_old = np.ones((d, k)) Z_old = np.ones((m, k)) mu_old = np.eye(k, k) Ik = np.eye(k, k) loss = np.zeros(niter) # Main Block for i in range(niter): V = w_old + tau * np.matmul(X.T, Z_old) # Reshape V = np.reshape(V, d * k) V = proj_l1ball(V, eta) V[np.where(np.abs(V) < 0.001)] = 0 # Reshape back w_new = np.reshape(V, (d, k)) # no gamma here # w_new = w_new + gamma*(w_new - w_old) => w = 2 * w_new - w_old mu_new = (mu_old + rho * tau2 * Ik - tau2 * np.matmul(Y.T, Z_old)) / ( 1 + tau2 * rho ) # mu = mu_new + gamma*(mu_new - mu_old) => mu = 2 * mu_new - mu_old Z = (Z_old + sigma * (np.matmul(Y, mu) - np.matmul(X, w))) / (1 + sigma * delta) Z_new = np.maximum(np.minimum(Z, 1), -1) mu_old = mu_new w_old = w_new Z_old = Z_new loss[i] = np.linalg.norm( np.matmul(Y, mu_new) - np.matmul(X, w_new), 1 ) + 0.5 * (np.linalg.norm(Ik - mu_new, "fro") ** 2) # End loop Z = Z_old w = w_new mu = mu_new nbGenes_fin = nb_Genes(w)[0] loss = loss / loss[0] return w, mu, nbGenes_fin, loss, Z def primal_dual_Nuclear(X, YR, k, param): """ # ==================================================================== # ---- Input # X : The data # YR : The label. Note that this should be an 2D array. # k : The number of class # param : A type dict paramter which must have keys: # 'niter', 'eta_star', 'tau', 'rho','sigma', 'tau2','delta' # and 'gamma' # Normally speaking: # (The default value for beta is 0.25.) # (IF not given, the value of the 'tau2' will be calculated by # tau2 = 0.25*(1/(np.sqrt(m)*normY)). Note that this normY is # the 2-norm of the OneHotEncode of the YR given.) # (Default value of the 'delta' is 1.0) # --- Output # w : The projection matrix of size (d,k) # mu : The centers of classes # nbGenes_fin : The number of genes of the final result # loss : The loss for each iteration # Z : The dual matrix of size (m,k) # ===================================================================== """ m, d = X.shape Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() # === Check the validness of param and the initialization of the params === if type(param) is not dict: raise TypeError("Wrong type of input argument param", type(param)) lst_params = [ "niter", "eta_star", "tau", "rho", "sigma", "tau2", "beta", ] # necessary params if any(x not in param.keys() for x in lst_params): raise ValueError( "Missing parameter in param.\n Need {}.\n Got {} ".format( lst_params, list(param.keys()) ) ) niter = param["niter"] eta_star = param["eta_star"] delta = param["delta"] tau = param["tau"] rho = param["rho"] sigma = param["sigma"] tau2 = param["tau2"] # === END check block === # Initialization w_old = np.ones((d, k)) Z_old = np.ones((m, k)) mu_old = np.eye(k, k) Ik = np.eye(k, k) loss = np.zeros(niter) # Main Block for i in range(niter): V = w_old + tau * np.matmul(X.T, Z_old) # Nuclear constraint L, S0, R = np.linalg.svd(V, full_matrices=False) norm_nuclear = S0.sum() vs1 = proj_l1ball(S0.reshape((-1,)), eta_star) S1 = vs1.reshape(S0.shape) w = np.matmul(L, S1[..., None] * R) w = 2 * w - w_old mu_new = (mu_old + rho * tau2 * Ik - tau2 * np.matmul(Y.T, Z_old)) / ( 1 + tau2 * rho ) mu = 2 * mu_new - mu_old Z = (Z_old + sigma * (np.matmul(Y, mu) - np.matmul(X, w))) / (1 + sigma * delta) Z_new = np.maximum(np.minimum(Z, 1), -1) mu_old = mu_new w_old = w Z_old = Z_new loss[i] = np.linalg.norm(np.matmul(Y, mu_new) - np.matmul(X, w), 1) + 0.5 * ( np.linalg.norm(Ik - mu_new, "fro") ** 2 ) # End loop Z = Z_old mu = mu_new nbGenes_fin, _ = nb_Genes(w) loss = loss / loss[0] return w, mu, nbGenes_fin, loss, Z # ================================== Part 2 ==================================== # ===================== Base Launch functions (scripts) ======================== def basic_run_eta( func_algo, func_predict, X, YR, k, genenames=None, clusternames=None, niter=30, rho=1, tau=4, beta=0.25, delta=1.0, eta=None, eta_star=None, gamma=1, nfold=4, rng=1, showres=True, keepfig=False, saveres=False, outputPath="../results/", ): """ # ===================================================================== # Basic function to launch the algorithm of some specific parameters. # - Input: # - func_algo (necessary) : The function of the algorithm # - func_predict (necessary) : The function to predict # - X (necessary) : The data # - YR (necessary) : The labels for the data # - k (necessary) : The number of the clusters # # - genenames (optional) : The names of the features of the data # if not given, it will be # ['Gene 1','Gene 2',...] # # - clusternames (optional) : The clusternames of the data # if not given, it will be # ['Class 1', 'Class 2',...] # # - niter (optional) : The number of iterations # # - rho, tau, beta, delta, : The hyper-parameters for the algo # eta, gamma, etc (optional) # # - nfold (optional) : The number of the folds of the cross validation # # - rng (optional) : The seed to control the random funcion # # - showres (optional) : Boolean value. True if we want to show # the results, plot the figures etc. # # - saveres (optional) : Boolean value. True to save the results # # - outputPath (optional) : String value. The output path. # # - Output: # - mu : The centroids # - nbm : Number of genes # - accG : Global accuracy # - loss : Loss for each iterations # - W_mean : Mean weight matrix for all folds # - timeElapsed : Time elapsed for one fold # - (And the tables) : df_topGenes, df_normW, df_topG_normW, # df_topGenes_mean, df_normW_mean, # df_topG_normW_mean, df_acctest # ====================================================================== """ np.random.seed(rng) # reproducible if not os.path.exists(outputPath): # make the directory if it does not exist os.makedirs(outputPath) n, d = X.shape # parameter checking if genenames is None: genenames = ["Gene {}".format(i + 1) for i in range(d)] if clusternames is None: clusternames = ["Class {}".format(i + 1) for i in range(k)] # Normalize the mean of datas (Deprecated) # m = np.mean(X,axis=0) # X = X-m # normX = normest(X) # X = X/normX # YR = np.array(YR).reshape(-1,1) if YR.ndim == 1: # In case that OneHotEncoder get 1D array and raise a TypeError YR = YR.reshape(-1, 1) Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() normY = normest(Y) normY2 = normY ** 2 # Dropping the cells randomly if the n%d is not zero # For more details please see instructions in drop_cells X, YR = drop_cells(X, YR, nfold) param = {} param["niter"] = niter param["rho"] = rho param["tau"] = tau tau2 = beta * (1 / (np.sqrt(n) * normY)) param["tau2"] = tau2 eps = 1 / (1 + tau2 * rho * 0.25) sigma = 1.0 / (tau + (tau2 * eps * normY2)) # Converge until 2.6 for L1Nel param["sigma"] = sigma param["delta"] = delta param["beta"] = beta param["eta"] = eta param["eta_star"] = eta_star param["gamma"] = gamma # Initialization nbG = np.zeros(nfold, dtype=int) # Number of genes for each fold accuracy_train = np.zeros((nfold, k + 1)) accuracy_test = np.zeros((nfold, k + 1)) W0 = np.zeros((d, k, nfold)) # w in each fold mu0 = np.zeros((k, k, nfold)) W_mean = np.zeros((d, k)) # Z0 = np.zeros((int((nfold-1)*n/nfold),k,nfold)) # Z_mean = np.zeros((int((nfold-1)*n/nfold),k)) loss_iter0 = np.zeros((nfold, niter)) # loss for each iteration of each fold # W_mean stores w for each eta, where w is the mean of W0 along its third axis nbG = np.zeros(nfold) # Parameters printing print("\nStarts trainning for") print("{:>6}:{:<6}".format("niter", niter)) if "fista" in func_algo.__name__.lower(): print("{:>6}:{:<6}".format("eta", eta)) print("{:>6}:{:<6}".format("gamma", delta)) elif "or" in func_algo.__name__.lower(): print("{:>6}:{:<6}".format("eta", eta)) print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) print("{:>6}:{:<6}".format("delta", delta)) print("{:>6}:{:<6}".format("gamma", delta)) elif "_l2" in func_algo.__name__.lower(): print("{:>6}:{:<6}".format("eta", eta)) print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) elif "nuclear" in func_algo.__name__.lower(): print("{:>6}:{:<6}".format("eta_star", eta_star)) print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) print("{:>6}:{:<6}".format("delta", delta)) else: print("{:>6}:{:<6}".format("eta", eta)) print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) print("{:>6}:{:<6}".format("delta", delta)) Y_PDS = np.zeros(YR.shape) meanclassi = np.zeros(nfold) kf = KFold(n_splits=nfold, random_state=rng, shuffle=True) w_all, mu_all, nbGenes_all, loss_all = func_algo(X, YR, k, param)[0:4] for i, (train_ind, test_ind) in enumerate(kf.split(YR)): print("{:-<30}".format("")) print("{message:^6} {f1} / {f2}".format(message="fold", f1=i + 1, f2=nfold)) print("-> {} classification...".format(func_algo.__name__)) # ========== Training ========= Xtrain = X[train_ind] Xtest = X[test_ind] Ytrain = YR[train_ind] Ytest = YR[test_ind] startTime = time.perf_counter() w, mu, nbGenes, loss = func_algo(Xtrain, Ytrain, k, param)[0:4] endTime = time.perf_counter() timeElapsed = endTime - startTime print("-> Completed.\n-> Time Elapsed:{:.4}s".format(timeElapsed)) W0[:, :, i] = w mu0[:, :, i] = mu # Z0[:,:,i] = Z loss_iter0[i, :] = loss # ========== Accuracy ========= Ytrain_pred = func_predict(Xtrain, w, mu) Ytest_pred = func_predict(Xtest, w, mu) accuracy_train[i, 0], accuracy_train[i, 1 : k + 1] = compute_accuracy( Ytrain, Ytrain_pred, k ) accuracy_test[i, 0], accuracy_test[i, 1 : k + 1] = compute_accuracy( Ytest, Ytest_pred, k ) meanclassi[i] = np.mean(accuracy_test[i, 1 : k + 1]) nbG[i] = nbGenes Y_PDS[test_ind] = Ytest_pred print("{:-<30}".format("")) # end kfold loop nbm = int(nbG.mean()) accG = np.mean(accuracy_test[:, 0], axis=0) Meanclass = meanclassi.mean() W_mean = np.mean(W0, axis=2) mu_mean = np.mean(mu0, axis=2) # Z_mean= np.mean(Z0,axis=2) normfro = np.linalg.norm(w, "fro") print("Training step ends.\n") # Class size Ctab = [] size_class = np.zeros(k) # Size of each class (real) size_class_est = np.zeros(k) # Size of each class (estimated) for j in range(k): size_class[j] = (YR == (j + 1)).sum() size_class_est[j] = (Y_PDS == (j + 1)).sum() Ctab.append("Class {}".format(j + 1)) df_szclass = pd.DataFrame(size_class, index=Ctab, columns=["Class Size"]) df_szclass_est = pd.DataFrame(size_class_est, index=Ctab, columns=["Class Size"]) # Data accuracy accuracy_train = np.vstack((accuracy_train, np.mean(accuracy_train, axis=0))) accuracy_test = np.vstack((accuracy_test, np.mean(accuracy_test, axis=0))) ind_df = [] for i_fold in range(nfold): ind_df.append("Fold {}".format(i_fold + 1)) ind_df.append("Mean") columns = ["Global"] if clusternames is None: columns += Ctab else: columns += clusternames df_accTrain = pd.DataFrame(accuracy_train, index=ind_df, columns=columns) df_acctest = pd.DataFrame(accuracy_test, index=ind_df, columns=columns) # Feature selection print("Selecting features from whole dataset...", end="") w, mu, nbGenes, loss = func_algo(X, YR, k, param)[0:4] topGenes, normW = select_feature_w(w, genenames) topGenes_mean, normW_mean = select_feature_w(W_mean, genenames) # Mean of each fold df_topGenes_mean = pd.DataFrame(topGenes_mean, columns=clusternames) df_normW_mean = pd.DataFrame(normW_mean, columns=clusternames) df_topG_normW_mean = merge_topGene_norm(topGenes_mean, normW_mean, clusternames) # All data df_topGenes = pd.DataFrame(topGenes, columns=clusternames) df_normW = pd.DataFrame(normW, columns=clusternames) df_topG_normW = merge_topGene_norm(topGenes, normW, clusternames) print("Completed.\n") # Two heatmaps M_heatmap_classification = heatmap_classification( Y_PDS, YR, clusternames, rotate=60 ) M_heatmap_signature = heatmap_normW(normW, clusternames, nbr_l=30, rotate=60) # Results if showres == True: print("Size class (real):") print(df_szclass) print("\nSize class (estimated):") print(df_szclass_est) print("\nAccuracy Train") print(df_accTrain) print("\nAccuracy Test") print(df_acctest) if keepfig == False: plt.close("all") fig_lossIter = plt.figure(figsize=(8, 6)) plt.plot(np.arange(niter, dtype=int) + 1, loss) msg_eta = "$\eta$:%d" % eta if eta is not None else "" msg_etaS = "$\eta*$:%d" % eta_star if eta_star is not None else "" plt.title( "loss for each iteration {} {}\n ({})".format( msg_eta, msg_etaS, func_algo.__name__ ), fontsize=18, ) plt.ylabel("Loss", fontsize=18) plt.xlabel("Iteration", fontsize=18) plt.xticks(np.linspace(1, niter, num=6, endpoint=True, dtype=int)) plt.xlim(left=1, right=niter) plt.ylim((0, 1)) # Saving Result if saveres == True: # define two nametags nametag_eta = "_eta-%d" % eta if eta is not None else "" nametag_etaS = "_etaStar-%d" % eta_star if eta_star is not None else "" # save loss filename_loss = "loss_{}_beta-{}_delta-{}{}{}_niter-{}.txt".format( func_algo.__name__, beta, delta, nametag_eta, nametag_etaS, niter ) np.savetxt(outputPath + filename_loss, loss) # define function name tag for two heatmaps func_tag = func_algo.__name__ + nametag_eta + nametag_etaS # Save heatmaps filename_heat = "{}{}_Heatmap_of_confusion_Matrix.npy".format( outputPath, func_tag ) np.save(filename_heat, M_heatmap_classification) filename_heat = "{}{}_Heatmap_of_signature_Matrix.npy".format( outputPath, func_tag ) np.save(filename_heat, M_heatmap_signature) df_acctest.to_csv( "{}{}{}{}_AccuracyTest.csv".format( outputPath, func_algo.__name__, nametag_eta, nametag_etaS ), sep=";", ) df_topG_normW.to_csv( "{}{}{}{}_TopGenesAndNormW.csv".format( outputPath, func_algo.__name__, nametag_eta, nametag_etaS ), sep=";", ) # Other possiblilities to save # fig_lossIter.savefig('{}{}{}{}_niter-{}_loss_iters.png'.format(outputPath,func_algo.__name__,nametag_eta,nametag_etaS,niter)) # All data # df_topGenes.to_csv('{}{}_TopGenes.csv'.format(outputPath,func_algo.__name__),sep=';') # df_normW.to_csv('{}{}_NormW.csv'.format(outputPath,func_algo.__name__),sep=';') # Mean of each fold # df_topGenes_mean.to_csv('{}{}_TopGenes_mean.csv'.format(outputPath,func_algo.__name__),sep=';') # df_normW_mean.to_csv('{}{}_NormW_mean.csv'.format(outputPath,func_algo.__name__),sep=';') # df_topG_normW_mean.to_csv('{}{}_TopGenesAndNormW_mean.csv'.format(outputPath,func_algo.__name__),sep=';') return ( mu_mean, nbm, accG, loss, W_mean, timeElapsed, df_topGenes, df_normW, df_topG_normW, df_topGenes_mean, df_normW_mean, df_topG_normW_mean, df_acctest, w_all, ) # ===================== ======================================================== def getPredLabel(Ypred): for i in range(Ypred.shape[0]): if Ypred[i] > 1.5: Ypred[i] = 2 if Ypred[i] <= 1.5: Ypred[i] = 1 return Ypred # =====================Functions used to compare different algorithms======================================================== def getCoefs(alg, model): if alg == "RF": coef = model.feature_importances_ if alg == "svm": coef = model.coef_.transpose() if alg == "plsda": coef = model.coef_ return coef # =====================Functions used to compute the ranked features and their weights======================= def TopGenbinary(w, feature_names): n = len(w) difference = np.zeros(n) for i in range(n): difference[i] = w[i][0] - w[i][1] df1 = pd.DataFrame(feature_names, columns=["pd"]) df1["weights"] = difference # =====Sort the difference based on the absolute value========= df1["sort_helper"] = df1["weights"].abs() df2 = df1.sort_values(by="sort_helper", ascending=False).drop("sort_helper", axis=1) # ==== end_sort============= return df2 def rankFeatureHelper(alg, coef, feature_names): df1 = pd.DataFrame(feature_names, columns=[alg]) df1["weights"] = coef df1["sort_helper"] = df1["weights"].abs() df2 = df1.sort_values(by="sort_helper", ascending=False).drop("sort_helper", axis=1) return df2 def rankFeatures(X, Yr, algList, feature_names): # flag=0 featureList = [] for alg in algList: if alg == "svm": clf = SVC(probability=True, kernel="linear") model = clf.fit(X, Yr.ravel()) coef = model.coef_.transpose() df_rankFeature = rankFeatureHelper(alg, coef, feature_names) featureList.append(df_rankFeature) if alg == "RF": clf = RandomForestClassifier(n_estimators=400, random_state=10, max_depth=3) model = clf.fit(X, Yr.ravel()) coef = model.feature_importances_ df_rankFeature = rankFeatureHelper(alg, coef, feature_names) featureList.append(df_rankFeature) if alg == "plsda": clf = PLSRegression(n_components=4, scale=False) model = clf.fit(X, Yr.ravel()) coef = model.coef_ df_rankFeature = rankFeatureHelper(alg, coef, feature_names) featureList.append(df_rankFeature) # if flag == 0: # df_rankFeature = TopGenbinary(coef, feature_names) # flag =1 # else: # df_feature = TopGenbinary(coef, feature_names) # df_rankFeature return featureList # ===============================Compute the \rho============================== def basic_run_eta_molecule( X, YR, ID, k, genenames=None, clusternames=None, niter=30, rho=1, tau=4, beta=0.25, delta=1.0, eta=500, gamma=1, nfold=4, random_seed=1, ): """ # ===================================================================== # This function is used to compute the df_confidence # Basic function to launch the algorithm of some specific parameters. # - Input: # The function of the algorithm: primal_dual_L1N # The function to predict: predict_L1_molecule # - X (necessary) : The data # - YR (necessary) : The labels for the data # - k (necessary) : The number of the clusters # # - genenames (optional) : The names of the features of the data # if not given, it will be # ['Gene 1','Gene 2',...] # # - clusternames (optional) : The clusternames of the data # if not given, it will be # ['Class 1', 'Class 2',...] # # - niter (optional) : The number of iterations # # - rho, tau, beta, delta, : The hyper-parameters for the algo # eta, gamma (optional) # # - nfold (optional) : The number of the folds of the cross validation # # - rng (optional) : The seed to control the random funcion # # - Output: # - Yprediction : list of Predicted labels # ====================================================================== """ np.random.seed(random_seed) # reproducible n, d = X.shape # parameter checking if genenames is None: genenames = ["Gene {}".format(i + 1) for i in range(d)] if clusternames is None: clusternames = ["Class {}".format(i + 1) for i in range(k)] if YR.ndim == 1: # In case that OneHotEncoder get 1D array and raise a TypeError YR = YR.reshape(-1, 1) Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() normY = normest(Y) normY2 = normY ** 2 # Dropping the cells randomly if the n%d is not zero # See more details in drop_cells X, YR, Ident = drop_cells_with_ID(X, YR, ID, nfold) dico = dict(list(enumerate(Ident))) ref = pd.DataFrame.from_dict(dico, orient="index") param = {} param["niter"] = niter param["rho"] = rho param["tau"] = tau tau2 = beta * (1 / (np.sqrt(n) * normY)) param["tau2"] = tau2 eps = 1 / (1 + tau2 * rho * 0.25) sigma = 1.0 / (tau + (tau2 * eps * normY2)) # Converge until 2.6 for L1Nel param["sigma"] = sigma param["delta"] = delta param["beta"] = beta param["eta"] = eta param["gamma"] = gamma # Initialization nbG = np.zeros(nfold, dtype=int) # Number of genes for each fold W0 = np.zeros((d, k, nfold)) # w in each fold mu0 = np.zeros((k, k, nfold)) # Z0 = np.zeros((int((nfold-1)*n/nfold),k,nfold)) # Z_mean = np.zeros((int((nfold-1)*n/nfold),k)) loss_iter0 = np.zeros((nfold, niter)) # loss for each iteration of each fold # W_mean stores w for each eta, where w is the mean of W0 along its third axis nbG = np.zeros(nfold) # Parameters printing print("\nStarts trainning for") print("{:>6}:{:<6}".format("niter", niter)) print("{:>6}:{:<6}".format("eta", eta)) if "fista" in primal_dual_L1N.__name__.lower(): print("{:>6}:{:<6}".format("gamma", delta)) elif "or" in primal_dual_L1N.__name__.lower(): print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) print("{:>6}:{:<6}".format("delta", delta)) print("{:>6}:{:<6}".format("gamma", delta)) elif "_l2" in primal_dual_L1N.__name__.lower(): print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) else: print("{:>6}:{:<6}".format("rho", rho)) print("{:>6}:{:<6}".format("tau", tau)) print("{:>6}:{:<6}".format("beta", beta)) print("{:>6}:{:<6}".format("tau_mu", tau2)) print("{:>6}:{:<6}".format("sigma", sigma)) print("{:>6}:{:<6}".format("delta", delta)) Yprediction = [] Confidence = [] # accuracy_train = np.zeros((nfold,k+1)) # accuracy_test = np.zeros((nfold,k+1)) ID = [] Ident = [] kf = KFold(n_splits=nfold, random_state=random_seed, shuffle=True) w_all, mu_all, nbGenes_all, loss_all = primal_dual_L1N(X, YR, k, param)[0:4] for i, (train_ind, test_ind) in enumerate(kf.split(YR)): print("{:-<30}".format("")) print("{message:^6} {f1} / {f2}".format(message="fold", f1=i + 1, f2=nfold)) print("-> {} classification...".format(primal_dual_L1N.__name__)) # ========== Training ========= dico = dico Xtrain = X[train_ind] Ytrain = YR[train_ind] Xtest = X[test_ind] startTime = time.perf_counter() w, mu, nbGenes, loss = primal_dual_L1N(Xtrain, Ytrain, k, param)[0:4] endTime = time.perf_counter() timeElapsed = endTime - startTime print("-> Completed.\n-> Time Elapsed:{:.4}s".format(timeElapsed)) W0[:, :, i] = w mu0[:, :, i] = mu loss_iter0[i, :] = loss # ========== Prediction ========= Ypred, conf = predict_L1_molecule(Xtest, w, mu) Yprediction.append(Ypred) Confidence.append(conf) ID.append(test_ind) Ident.append(ref.iloc[test_ind]) nbG[i] = nbGenes print("{:-<30}".format("")) # end kfold loop return Yprediction, Confidence, ID, Ident, YR, ref # ===================== Base Launch functions (scripts) ======================== def basic_run_eta_compare( func_algo, func_predict, X, YR, k, alglist, genenames=None, clusternames=None, niter=30, rho=1, tau=4, beta=0.25, delta=1.0, eta=None, eta_star=None, gamma=1, nfold=4, rng=1, showres=False, keepfig=False, saveres=False, outputPath="../results/", ): """ # ===================================================================== # Basic function to launch the algorithm of some specific parameters. # - Input: # - func_algo (necessary) : The function of the algorithm # - func_predict (necessary) : The function to predict # - X (necessary) : The data # - YR (necessary) : The labels for the data # - k (necessary) : The number of the clusters # # - genenames (optional) : The names of the features of the data # if not given, it will be # ['Gene 1','Gene 2',...] # # - clusternames (optional) : The clusternames of the data # if not given, it will be # ['Class 1', 'Class 2',...] # # - niter (optional) : The number of iterations # # - rho, tau, beta, delta, : The hyper-parameters for the algo # eta, gamma, etc (optional) # # - nfold (optional) : The number of the folds of the cross validation # # - rng (optional) : The seed to control the random funcion # # - showres (optional) : Boolean value. True if we want to show # the results, plot the figures etc. # # - saveres (optional) : Boolean value. True to save the results # # - alglist (optional) : The seed to control the random funcion # # - outputPath (optional) : String value. The output path. # # # - Output: # - mu : The centroids # - nbm : Number of genes # - accG : Global accuracy # - loss : Loss for each iterations # - W_mean : Mean weight matrix for all folds # - timeElapsed : Time elapsed for one fold # - (And the tables) : df_topGenes, df_normW, df_topG_normW, # df_topGenes_mean, df_normW_mean, # df_topG_normW_mean, df_acctest # ====================================================================== """ np.random.seed(rng) # reproducible if not os.path.exists(outputPath): # make the directory if it does not exist os.makedirs(outputPath) n, d = X.shape # parameter checking if genenames is None: genenames = ["Gene {}".format(i + 1) for i in range(d)] if clusternames is None: clusternames = ["Class {}".format(i + 1) for i in range(k)] # Normalize the mean of datas (Deprecated) # m = np.mean(X,axis=0) # X = X-m # normX = normest(X) # X = X/normX # YR = np.array(YR).reshape(-1,1) if YR.ndim == 1: # In case that OneHotEncoder get 1D array and raise a TypeError YR = YR.reshape(-1, 1) Y = OneHotEncoder(categories="auto").fit_transform(YR).toarray() normY = normest(Y) normY2 = normY ** 2 # Dropping the cells randomly if the n%d is not zero # For more details please see instructions in drop_cells X, YR = drop_cells(X, YR, nfold) param = {} param["niter"] = niter param["rho"] = rho param["tau"] = tau tau2 = beta * (1 / (np.sqrt(n) * normY)) param["tau2"] = tau2 eps = 1 / (1 + tau2 * rho * 0.25) sigma = 1.0 / (tau + (tau2 * eps * normY2)) # Converge until 2.6 for L1Nel param["sigma"] = sigma param["delta"] = delta param["beta"] = beta param["eta"] = eta param["eta_star"] = eta_star param["gamma"] = gamma # Initialization nbG = np.zeros(nfold, dtype=int) # Number of genes for each fold accuracy_train = np.zeros((nfold, k + 1)) accuracy_test = np.zeros((nfold, k + 1)) auc_train = np.zeros((nfold)) auc_test = np.zeros((nfold)) sil_train = np.zeros((nfold)) W0 = np.zeros((d, k, nfold)) # w in each fold mu0 = np.zeros((k, k, nfold)) W_mean = np.zeros((d, k)) # Z0 = np.zeros((int((nfold-1)*n/nfold),k,nfold)) # Z_mean = np.zeros((int((nfold-1)*n/nfold),k)) loss_iter0 = np.zeros((nfold, niter)) # loss for each iteration of each fold # W_mean stores w for each eta, where w is the mean of W0 along its third axis nbG = np.zeros(nfold) # Parameters printing # print('\nStarts trainning for') # print('{:>6}:{:<6}'.format('niter',niter)) Y_PDS = np.zeros(YR.shape) meanclassi = np.zeros(nfold) kf = KFold(n_splits=nfold, random_state=rng, shuffle=True) numalg = len(alglist) accuracy_train_comp = np.zeros((nfold, numalg)) accuracy_test_comp = np.zeros((nfold, numalg)) AUC_train_comp = np.zeros((nfold, numalg * 4)) AUC_test_comp = np.zeros((nfold, numalg * 4)) timeElapsedMatrix = np.zeros((nfold, numalg + 1)) w_all, mu_all, nbGenes_all, loss_all = func_algo(X, YR, k, param)[0:4] # 4-flod cross validation for i, (train_ind, test_ind) in enumerate(kf.split(YR)): print("{:-<30}".format("")) print("{message:^6} {f1} / {f2}".format(message="fold", f1=i + 1, f2=nfold)) # ========== Training ========= Xtrain = X[train_ind] Xtest = X[test_ind] Ytrain = YR[train_ind] Ytest = YR[test_ind] Ytr = pd.get_dummies(Ytrain.ravel()).values.T.T Yte = pd.get_dummies(Ytest.ravel()) startTime = time.perf_counter() w, mu, nbGenes, loss = func_algo(Xtrain, Ytrain, k, param)[0:4] endTime = time.perf_counter() timeElapsed = endTime - startTime timeElapsedMatrix[i][numalg] = timeElapsed print("-> Time Elapsed:{:.4}s".format(timeElapsed)) W0[:, :, i] = w mu0[:, :, i] = mu # Z0[:,:,i] = Z loss_iter0[i, :] = loss # ========== Accuracy ========= Ytrain_pred = func_predict(Xtrain, w, mu) Ytest_pred = func_predict(Xtest, w, mu) accuracy_train[i, 0], accuracy_train[i, 1 : k + 1] = compute_accuracy( Ytrain, Ytrain_pred, k ) accuracy_test[i, 0], accuracy_test[i, 1 : k + 1] = compute_accuracy( Ytest, Ytest_pred, k ) if ( np.unique(Ytest).shape[0] == 2 and np.unique(Ytest_pred.astype("int64")).shape[0] == 2 ): auc_test[i] = roc_auc_score(Ytest_pred.astype("int64"), Ytest) auc_train[i] = roc_auc_score(Ytrain_pred.astype("int64"), Ytrain) meanclassi[i] = np.mean(accuracy_test[i, 1 : k + 1]) nbG[i] = nbGenes Y_PDS[test_ind] = Ytest_pred # start loop of other algorithms' comparison for j in range(numalg): alg = alglist[j] if alg == "svm": tuned_parameters = [ {"kernel": ["rbf"], "gamma": [1e-3, 1e-4], "C": [1, 10, 100, 1000]}, {"kernel": ["linear"], "C": [1, 10, 100, 1000]}, ] clf = GridSearchCV(SVC(), tuned_parameters) # clf = SVC(probability=True,kernel='linear') if alg == "RF": clf = RandomForestClassifier( n_estimators=400, random_state=10, max_depth=3 ) if alg == "plsda": clf = PLSRegression(n_components=4, scale=False) # build the model startTime = time.perf_counter() # clf = OneVsRestClassifier(clf) model = clf.fit(Xtrain, Ytrain.ravel()) # model = clf.fit(X,Ytr) # if (alg == 'svm'): # print(clf.best_params_) endTime = time.perf_counter() timeElapsedMatrix[i][j] = endTime - startTime if k > 2: Ypred_test = np.around( model.predict(Xtest) ).ravel() # getPredLabel(model.predict(Xtest)) Ypred_train = np.around( model.predict(Xtrain) ).ravel() # getPredLabel(model.predict(Xtrain)) else: Ypred_test = getPredLabel(model.predict(Xtest)) Ypred_train = getPredLabel(model.predict(Xtrain)) accuracy_test_comp[i][j] = accuracy_score(Ypred_test.astype("int64"), Ytest) accuracy_train_comp[i][j] = accuracy_score( Ypred_train.astype("int64"), Ytrain ) # print("sil = ", metrics.silhouette_score(model.x_scores_, Ypred_train) ) if alg == "plsda": sil_train[i] = metrics.silhouette_score(model.x_scores_, Ypred_train) if ( np.unique(Ytest).shape[0] == 2 and np.unique(Ypred_test.astype("int64")).shape[0] == 2 ): AUC_test_comp[i][j * 4] = roc_auc_score( Ypred_test.astype("int64"), Ytest ) AUC_train_comp[i][j * 4] = roc_auc_score( Ypred_train.astype("int64"), Ytrain ) # F1 precision recal AUC_train_comp[i][ j * 4 + 1 : j * 4 + 4 ] = metrics.precision_recall_fscore_support( Ytrain, Ypred_train.astype("int64"), average="macro" )[ :-1 ] AUC_test_comp[i][ j * 4 + 1 : j * 4 + 4 ] = metrics.precision_recall_fscore_support( Ytest, Ypred_test.astype("int64"), average="macro" )[ :-1 ] # end kfold loop nbm = int(nbG.mean()) accG = np.mean(accuracy_test[:, 0], axis=0) Meanclass = meanclassi.mean() W_mean = np.mean(W0, axis=2) mu_mean = np.mean(mu0, axis=2) # Z_mean= np.mean(Z0,axis=2) normfro = np.linalg.norm(w, "fro") # Class size Ctab = [] size_class = np.zeros(k) # Size of each class (real) size_class_est = np.zeros(k) # Size of each class (estimated) for j in range(k): size_class[j] = (YR == (j + 1)).sum() size_class_est[j] = (Y_PDS == (j + 1)).sum() Ctab.append("Class {}".format(j + 1)) df_szclass = pd.DataFrame(size_class, index=Ctab, columns=["Class Size"]) df_szclass_est = pd.DataFrame(size_class_est, index=Ctab, columns=["Class Size"]) # Data accuracy accuracy_train = np.vstack((accuracy_train, np.mean(accuracy_train, axis=0))) accuracy_test = np.vstack((accuracy_test, np.mean(accuracy_test, axis=0))) # auc_train = np.vstack((auc_train,np.mean(auc_train,axis=0))) # auc_test = np.vstack((auc_test,np.mean(auc_test,axis=0))) ind_df = [] for i_fold in range(nfold): ind_df.append("Fold {}".format(i_fold + 1)) ind_df.append("Mean") columns = ["Global"] if clusternames is None: columns += Ctab else: columns += clusternames df_accTrain = pd.DataFrame(accuracy_train, index=ind_df, columns=columns) df_acctest = pd.DataFrame(accuracy_test, index=ind_df, columns=columns) # Data accuracy1 ind_df_comp = [] for i_fold in range(nfold): ind_df_comp.append("Fold {}".format(i_fold + 1)) df_comp = pd.DataFrame(accuracy_test_comp, index=ind_df_comp, columns=alglist) df_comp.loc["Mean"] = df_comp.mean() df_comp["pd"] = df_acctest["Global"] colauc = [] for met in alglist: colauc.append(met + " AUC") colauc.append(met + " Precision") colauc.append(met + " Recall") colauc.append(met + " F1 score") df_compauc = pd.DataFrame(AUC_test_comp, index=ind_df_comp, columns=colauc) df_compauc["pd"] = auc_test df_compauc["sil_plsda"] = sil_train df_compauc.loc["Mean"] = df_compauc.mean() alglen = len(alglist) alglist1 = [] for i in range(alglen): alglist1.append(alglist[i]) alglist1.append("pd") df_timeElapsed = pd.DataFrame( timeElapsedMatrix, index=ind_df_comp, columns=alglist1 ) df_timeElapsed.loc["Mean"] = df_timeElapsed.mean() # Feature selection print("Selecting features from whole dataset...", end="") w, mu, nbGenes, loss = func_algo(X, YR, k, param)[0:4] topGenes, normW = select_feature_w(w, genenames) topGenes_mean, normW_mean = select_feature_w(W_mean, genenames) # Mean of each fold df_topGenes_mean = pd.DataFrame(topGenes_mean, columns=clusternames) df_normW_mean = pd.DataFrame(normW_mean, columns=clusternames) df_topG_normW_mean = merge_topGene_norm(topGenes_mean, normW_mean, clusternames) # All data df_topGenes = pd.DataFrame(topGenes, columns=clusternames) df_normW = pd.DataFrame(normW, columns=clusternames) df_topG_normW = merge_topGene_norm(topGenes, normW, clusternames) print("Completed.\n") # Two heatmaps # M_heatmap_classification = heatmap_classification(Y_PDS,YR,clusternames,rotate=60) # M_heatmap_signature = heatmap_normW(normW,clusternames,nbr_l=30,rotate=60) # Results if showres == True: print("Size class (real):") print(df_szclass) print("\nSize class (estimated):") print(df_szclass_est) print("\nAccuracy Train") print(df_accTrain) print("\nAccuracy Test") print(df_acctest) if keepfig == False: plt.close("all") fig_lossIter = plt.figure(figsize=(8, 6)) plt.plot(np.arange(niter, dtype=int) + 1, loss) msg_eta = "$\eta$:%d" % eta if eta is not None else "" msg_etaS = "$\eta*$:%d" % eta_star if eta_star is not None else "" plt.title( "loss for each iteration {} {}\n ({})".format( msg_eta, msg_etaS, func_algo.__name__ ), fontsize=18, ) plt.ylabel("Loss", fontsize=18) plt.xlabel("Iteration", fontsize=18) plt.xticks(np.linspace(1, niter, num=6, endpoint=True, dtype=int)) plt.xlim(left=1, right=niter) plt.ylim((0, 1)) # Saving Result if saveres == True: # define two nametags nametag_eta = "_eta-%d" % eta if eta is not None else "" nametag_etaS = "_etaStar-%d" % eta_star if eta_star is not None else "" # save loss # filename_loss = 'loss_{}_beta-{}_delta-{}{}{}_niter-{}.txt'.format(func_algo.__name__,beta,delta, nametag_eta,nametag_etaS,niter) # np.savetxt(outputPath + filename_loss,loss) # define function name tag for two heatmaps # func_tag = func_algo.__name__ + nametag_eta + nametag_etaS # Save heatmaps # filename_heat = '{}{}_Heatmap_of_confusion_Matrix.npy'.format(outputPath,func_tag) # np.save(filename_heat,M_heatmap_classification) # filename_heat = '{}{}_Heatmap_of_signature_Matrix.npy'.format(outputPath,func_tag) # np.save(filename_heat,M_heatmap_signature) df_acctest.to_csv( "{}{}{}{}_AccuracyTest.csv".format( outputPath, func_algo.__name__, nametag_eta, nametag_etaS ), sep=";", ) df_topG_normW.to_csv( "{}{}{}{}_TopGenesAndNormW.csv".format( outputPath, func_algo.__name__, nametag_eta, nametag_etaS ), sep=";", ) # Other possiblilities to save # fig_lossIter.savefig('{}{}{}{}_niter-{}_loss_iters.png'.format(outputPath,func_algo.__name__,nametag_eta,nametag_etaS,niter)) # All data # df_topGenes.to_csv('{}{}_TopGenes.csv'.format(outputPath,func_algo.__name__),sep=';') # df_normW.to_csv('{}{}_NormW.csv'.format(outputPath,func_algo.__name__),sep=';') # Mean of each fold # df_topGenes_mean.to_csv('{}{}_TopGenes_mean.csv'.format(outputPath,func_algo.__name__),sep=';') # df_normW_mean.to_csv('{}{}_NormW_mean.csv'.format(outputPath,func_algo.__name__),sep=';') # df_topG_normW_mean.to_csv('{}{}_TopGenesAndNormW_mean.csv'.format(outputPath,func_algo.__name__),sep=';') return ( mu_mean, nbm, accG, loss, W_mean, timeElapsed, df_topGenes, df_normW, df_topG_normW, df_topGenes_mean, df_normW_mean, df_topG_normW_mean, df_acctest, df_comp, df_timeElapsed, w_all, df_compauc, ) import warnings def readData(filename): DATADIR = "datas/" # df_X = pd.read_csv(DATADIR+'LUNG.csv',delimiter=';', decimal=",",header=0,encoding="ISO-8859-1", low_memory=False) df_X = pd.read_csv( DATADIR + str(filename), delimiter=";", decimal=",", header=0, encoding="ISO-8859-1", low_memory=False, ) # df_X = pd.read_csv(DATADIR+'COVID.csv',delimiter=';', decimal=",",header=0,encoding="ISO-8859-1", low_memory=False) df_names = df_X["Name"] feature_names = df_names[1:].values.astype(str) X = df_X.iloc[1:, 1:].values.astype(float).transpose() Yr = df_X.iloc[0, 1:].values.astype(float) nbr_clusters = len(np.unique(Yr)) feature_names = df_names.values.astype(str)[1:] label_name = df_names for index, label in enumerate( label_name ): # convert string labels to numero (0,1,2....) with warnings.catch_warnings(): warnings.simplefilter(action="ignore", category=FutureWarning) Yr = np.where(Yr == label, index, Yr) Yr = Yr.astype(np.int64) return X, Yr, nbr_clusters, feature_names def basic_run_other( X, YR, k, alglist, genenames=None, clusternames=None, nfold=4, rng=6, doTopGenes=False, ): np.random.seed(rng) # reproducible n, d = X.shape # n is never used # parameter checking if genenames is None: genenames = ["Gene {}".format(i + 1) for i in range(d)] if clusternames is None: clusternames = ["Class {}".format(i + 1) for i in range(k)] if YR.ndim == 1: # In case that OneHotEncoder get 1D array and raise a TypeError YR = YR.reshape(-1, 1) # Dropping the cells randomly if the n%d is not zero # For more details please see instructions in drop_cells X, YR = drop_cells(X, YR, nfold) # Initialization sil_train = np.zeros((nfold)) kf = KFold(n_splits=nfold, random_state=rng, shuffle=True) numalg = len(alglist) accuracy_train_comp = np.zeros((nfold, numalg)) accuracy_test_comp = np.zeros((nfold, numalg)) AUC_train_comp = np.zeros((nfold, numalg * 4)) AUC_test_comp = np.zeros((nfold, numalg * 4)) timeElapsedMatrix = np.zeros((nfold, numalg)) top_features_list = [] # 4-flod cross validation for i, (train_ind, test_ind) in enumerate(kf.split(YR)): print("{:-<30}".format("")) print("{message:^6} {f1} / {f2}".format(message="fold", f1=i + 1, f2=nfold)) # ========== Training ========= Xtrain = X[train_ind] Xtest = X[test_ind] Ytrain = YR[train_ind] Ytest = YR[test_ind] # start loop of other algorithms' comparison for j, alg in enumerate(alglist): get_features = lambda m: None if alg == "svm": tuned_parameters = [ {"kernel": ["linear"], "C": [1, 10, 100, 1000]}, ] clf = GridSearchCV(SVC(), tuned_parameters) get_features = lambda m: m.best_estimator_.coef_.transpose() if alg == "RF": clf = RandomForestClassifier( n_estimators=400, random_state=10, max_depth=3 ) get_features = lambda m: m.feature_importances_ if alg == "plsda": clf = PLSRegression(n_components=4, scale=False) get_features = lambda m: m.coef_ if alg == "logreg": clf = LogisticRegression(C=10) get_features = lambda m: m.coef_.transpose() if alg == "NN": clf = KNeighborsClassifier(n_neighbors=50) if alg == "GaussianNB": clf = GaussianNB(var_smoothing=1e-9) # var smoothing to be tuned if alg == "Adaboost": clf = AdaBoostClassifier(n_estimators=100) # parameters to be tuned get_features = lambda m: m.feature_importances_ if alg == "Lasso": lasso = Lasso(random_state=0, max_iter=10000) alphas = np.logspace(-4, -0.5, 20) tuned_parameters = [{"alpha": alphas}] n_folds = 5 clf = GridSearchCV(lasso, tuned_parameters, cv=n_folds) get_features = lambda m: m.best_estimator_.coef_ # build the model startTime = time.perf_counter() model = clf.fit(Xtrain, Ytrain.ravel()) endTime = time.perf_counter() timeElapsedMatrix[i][j] = endTime - startTime if k > 2: Ypred_test = np.around( model.predict(Xtest) ).ravel() # getPredLabel(model.predict(Xtest)) Ypred_train = np.around( model.predict(Xtrain) ).ravel() # getPredLabel(model.predict(Xtrain)) else: Ypred_test = getPredLabel(model.predict(Xtest)).ravel() Ypred_train = getPredLabel(model.predict(Xtrain)).ravel() accuracy_test_comp[i][j] = accuracy_score(Ypred_test.astype("int64"), Ytest) accuracy_train_comp[i][j] = accuracy_score( Ypred_train.astype("int64"), Ytrain ) if alg == "plsda": sil_train[i] = metrics.silhouette_score(model.x_scores_, Ypred_train) if ( np.unique(Ytest).shape[0] == 2 and np.unique(Ypred_test.astype("int64")).shape[0] == 2 ): AUC_test_comp[i][j * 4] = roc_auc_score( Ypred_test.astype("int64"), Ytest ) AUC_train_comp[i][j * 4] = roc_auc_score( Ypred_train.astype("int64"), Ytrain ) # F1 precision recall # Note: for some models, these are not defined # (for example, the Lasso) # In those cases, the undefined scores are set to 0, # And no warning is raised # Cf. the zero_division=0 parameter. AUC_train_comp[i][ j * 4 + 1 : j * 4 + 4 ] = metrics.precision_recall_fscore_support( Ytrain, Ypred_train.astype("int64"), average="macro", zero_division=0 )[ :-1 ] AUC_test_comp[i][ j * 4 + 1 : j * 4 + 4 ] = metrics.precision_recall_fscore_support( Ytest, Ypred_test.astype("int64"), average="macro", zero_division=0 )[ :-1 ] # get the topgenes from the first fold if i == 0 and doTopGenes: coef = get_features(clf) if coef is not None: df_rankFeature = rankFeatureHelper(alg, coef, genenames) else: df_rankFeature = rankFeatureHelper( alg, [0] * len(genenames), genenames ) top_features_list.append(df_rankFeature) # Data accuracy1 ind_df_comp = [] for i_fold in range(nfold): ind_df_comp.append("Fold {}".format(i_fold + 1)) df_comp = pd.DataFrame(accuracy_test_comp, index=ind_df_comp, columns=alglist) df_comp.loc["Mean"] = df_comp.mean() colauc = [] for met in alglist: colauc.append(met + " AUC") colauc.append(met + " Precision") colauc.append(met + " Recall") colauc.append(met + " F1 score") df_compauc = pd.DataFrame(AUC_test_comp, index=ind_df_comp, columns=colauc) df_compauc["sil_plsda"] = sil_train df_compauc.loc["Mean"] = df_compauc.mean() alglen = len(alglist) alglist1 = [] for i in range(alglen): alglist1.append(alglist[i]) df_timeElapsed = pd.DataFrame( timeElapsedMatrix, index=ind_df_comp, columns=alglist1 ) df_timeElapsed.loc["Mean"] = df_timeElapsed.mean() return df_comp, df_timeElapsed, df_compauc, top_features_list def basic_run_tabeta( func_algo, func_predict, X, YR, k, genenames=None, clusternames=None, niter=30, rho=1, tau=1.5, beta=0.25, delta=1.0, tabeta=[100, 200, 400], gamma=1, nfold=4, rng=1, showres=True, saveres=False, keepfig=False, outputPath="../results/", ): """ It shares the same input as function basic_run_eta except that the eta is replaced by tabeta. It has also all the output of that of the basic_run_eta but it has its own 5 more output: nbm_etas,accG_etas,loss_iter,W_mean_etas,timeElapsed_etas Note : For now the funciton will save the output, show the figures and save the results for only the last experiment, i.e. only for the last eta. This mechanism will be changed in the future update. """ n_etas = len(tabeta) n, d = X.shape # W_mean_etas stores w for each eta, where w is the mean of W0 along its third axis W_mean_etas = np.zeros((d, k, n_etas)) loss_iter = np.zeros((n_etas, niter)) # loss for each iteration of each eta nbm_etas = np.zeros(n_etas, dtype=int) accG_etas = np.zeros(n_etas) timeElapsed_etas = np.zeros(n_etas) for i, eta in enumerate(tabeta): if i == (n_etas - 1): ( mu, nbm, accG, loss, W_mean, timeElapsed, topGenes, normW, topGenes_normW, topGenes_mean, normW_mean, topGenes_normW_mean, acctest, ) = basic_run_eta( func_algo, func_predict, X, YR, k, genenames, clusternames, eta=eta, niter=niter, rho=rho, tau=tau, beta=beta, delta=delta, gamma=gamma, nfold=nfold, rng=rng, showres=True, saveres=saveres, keepfig=keepfig, outputPath=outputPath, ) else: nbm, accG, loss, W_mean, timeElapsed = basic_run_eta( func_algo, func_predict, X, YR, k, genenames, clusternames, eta=eta, niter=niter, rho=rho, tau=tau, beta=beta, delta=delta, gamma=gamma, nfold=nfold, rng=rng, showres=False, saveres=False, outputPath=outputPath, )[1:6] nbm_etas[i] = nbm accG_etas[i] = accG loss_iter[i, :] = loss W_mean_etas[:, :, i] = W_mean timeElapsed_etas[i] = timeElapsed if showres == True: file_tag = func_algo.__name__ fig_avn = plt.figure(figsize=(8, 6)) plt.plot(nbm_etas, accG_etas, "bo-", linewidth=3) plt.title( "Figure: Accuracy VS Number of genes \n({})".format(file_tag), fontsize=16 ) plt.ylabel("Accuracy", fontsize=16) plt.xlabel("Number of genes", fontsize=16) plt.xlim([min(nbm_etas), max(nbm_etas)]) # if saveres == True: # fig_avn.savefig('{}{}_AccVSNbG.png'.format(outputPath,file_tag)) nbm_etas = pd.DataFrame(nbm_etas, index=tabeta) accG_etas = pd.DataFrame(accG_etas, index=tabeta) loss_iter = pd.DataFrame( loss_iter, index=tabeta, columns=np.linspace(1, niter, niter, endpoint=True, dtype=int), ).transpose() timeElapsed_etas = pd.DataFrame(timeElapsed_etas, index=tabeta) if saveres: nbm_etas.to_csv( "{}{}_Num_Features.csv".format(outputPath, func_algo.__name__), sep=";" ) accG_etas.to_csv( "{}{}_Acc_tabEta.csv".format(outputPath, func_algo.__name__), sep=";" ) return ( mu, nbm, accG, loss, W_mean, timeElapsed, topGenes, normW, topGenes_normW, topGenes_mean, normW_mean, topGenes_normW_mean, acctest, nbm_etas, accG_etas, loss_iter, W_mean_etas, timeElapsed_etas, ) # ================================== Part 3 ==================================== # ===================== Exact algos =========================== def run_FISTA_eta( X, YR, k, genenames=None, clusternames=None, niter=30, eta=500, beta=0.25, delta=1.0, gamma=1.0, nfold=4, showres=False, saveres=False, keepfig=False, outputPath="../results/", ): return basic_run_eta( FISTA_Primal, predict_FISTA, X, YR, k, genenames, clusternames, niter=niter, nfold=nfold, beta=beta, delta=delta, eta=eta, gamma=gamma, showres=showres, saveres=saveres, keepfig=keepfig, outputPath=outputPath, ) def run_primal_dual_L1N_eta( X, YR, k, genenames=None, clusternames=None, niter=30, rho=1, tau=1.5, beta=0.25, delta=1.0, eta=500, nfold=4, random_seed=1, showres=True, saveres=False, keepfig=False, outputPath="../results/", ): return basic_run_eta( primal_dual_L1N, predict_L1, X, YR, k, genenames, clusternames, niter=niter, beta=beta, delta=delta, eta=eta, rho=rho, tau=tau, nfold=nfold, rng=random_seed, showres=showres, saveres=saveres, keepfig=keepfig, outputPath=outputPath, ) def run_primal_dual_L1N_eta_compare( X, YR, k, alglist, genenames=None, clusternames=None, niter=30, rho=1, tau=1.5, beta=0.25, delta=1.0, eta=500, nfold=4, random_seed=1, showres=False, saveres=False, keepfig=False, outputPath="../results/", ): return basic_run_eta_compare( primal_dual_L1N, predict_L1, X, YR, k, alglist, genenames, clusternames, niter=niter, beta=beta, delta=delta, eta=eta, rho=rho, tau=tau, nfold=nfold, rng=random_seed, showres=showres, saveres=saveres, keepfig=keepfig, outputPath=outputPath, ) def run_primal_dual_Nuclear_eta( X, YR, k, genenames=None, clusternames=None, niter=30, rho=1, tau=1.5, beta=0.25, delta=1.0, eta_star=500, nfold=4, random_seed=1, showres=True, saveres=False, keepfig=False, outputPath="../results/", ): return basic_run_eta( primal_dual_Nuclear, predict_L1, X, YR, k, genenames, clusternames, niter=niter, beta=beta, delta=delta, eta_star=eta_star, rho=rho, tau=tau, nfold=nfold, rng=random_seed, showres=showres, saveres=saveres, keepfig=keepfig, outputPath=outputPath, ) def run_FISTA_tabeta( X, YR, k, genenames=None, clusternames=None, niter=30, tabeta=[100, 200, 300, 400, 500], gamma=1.0, nfold=4, random_seed=1, showres=True, saveres=False, keepfig=False, outputPath="../results/", ): return basic_run_tabeta( FISTA_Primal, predict_FISTA, X, YR, k, genenames, clusternames, niter=niter, tabeta=tabeta, gamma=gamma, nfold=nfold, rng=random_seed, showres=showres, saveres=saveres, keepfig=keepfig, outputPath=outputPath, ) def run_primal_dual_L1N_tabeta( X, YR, k, genenames=None, clusternames=None, niter=30, rho=1, tau=4, beta=0.25, nfold=4, delta=1.0, random_seed=1, tabeta=[10, 20, 50, 75, 100, 200, 300], showres=True, keepfig=False, saveres=False, outputPath="../results/", ): return basic_run_tabeta( primal_dual_L1N, predict_L1, X, YR, k, genenames=genenames, clusternames=clusternames, niter=niter, tabeta=tabeta, rho=rho, tau=tau, beta=beta, nfold=nfold, delta=delta, rng=random_seed, showres=showres, saveres=saveres, keepfig=keepfig, outputPath=outputPath, ) def run_primal_dual_Nuclear_tabEtastar( X, YR, k, genenames=None, clusternames=None, niter=30, rho=1, tau=1.5, beta=0.25, delta=1.0, tabEtastar=[100, 200, 400], gamma=1, nfold=4, rng=1, showres=True, saveres=False, keepfig=False, outputPath="../results/", ): """ It shares the same input as function basic_run_eta except that the eta is replaced by tabeta. It has also all the output of that of the basic_run_eta but it has its own 5 more output: nbm_etas,accG_etas,loss_iter,W_mean_etas,timeElapsed_etas Note : For now the funciton will save the output, show the figures and save the results for only the last experiment, i.e. only for the last eta. This mechanism will be changed in the future update. """ n_etas = len(tabEtastar) n, d = X.shape # W_mean_etas stores w for each eta, where w is the mean of W0 along its third axis W_mean_etas = np.zeros((d, k, n_etas)) loss_iter = np.zeros((n_etas, niter)) # loss for each iteration of each eta nbm_etas = np.zeros(n_etas, dtype=int) accG_etas = np.zeros(n_etas) timeElapsed_etas = np.zeros(n_etas) for i, eta in enumerate(tabEtastar): if i == (n_etas - 1): ( mu, nbm, accG, loss, W_mean, timeElapsed, topGenes, normW, topGenes_normW, topGenes_mean, normW_mean, topGenes_normW_mean, acctest, ) = basic_run_eta( primal_dual_Nuclear, predict_L1, X, YR, k, genenames, clusternames, eta_star=eta, niter=niter, rho=rho, tau=tau, beta=beta, delta=delta, gamma=gamma, nfold=nfold, rng=rng, showres=True, saveres=saveres, keepfig=keepfig, outputPath=outputPath, ) else: mu, nbm, accG, loss, W_mean, timeElapsed = basic_run_eta( primal_dual_Nuclear, predict_L1, X, YR, k, genenames, clusternames, eta_star=eta, niter=niter, rho=rho, tau=tau, beta=beta, delta=delta, gamma=gamma, nfold=nfold, rng=rng, showres=False, saveres=False, outputPath=outputPath, )[0:6] accG_etas[i] = accG loss_iter[i, :] = loss W_mean_etas[:, :, i] = W_mean timeElapsed_etas[i] = timeElapsed accG_etas =
pd.DataFrame(accG_etas, index=tabEtastar)
pandas.DataFrame
import os import collections import unittest import pytest import pytz import numpy as np import pandas as pd import statsmodels.formula.api as smf import pvlib from .context import capdata as pvc data = np.arange(0, 1300, 54.167) index = pd.date_range(start='1/1/2017', freq='H', periods=24) df = pd.DataFrame(data=data, index=index, columns=['poa']) # capdata = pvc.CapData('capdata') # capdata.df = df """ Run all tests from project root: 'python -m tests.test_CapData' Run individual tests: 'python -m unittest tests.test_CapData.Class.Method' -m flag imports unittest as module rather than running as script Run tests using pytest use the following from project root. To run a class of tests pytest tests/test_CapData.py::TestCapDataEmpty To run a specific test: pytest tests/test_CapData.py::TestCapDataEmpty::test_capdata_empty """ test_files = ['test1.csv', 'test2.csv', 'test3.CSV', 'test4.txt', 'pvsyst.csv', 'pvsyst_data.csv'] class TestUpdateSummary: """Test the update_summary wrapper and functions used within.""" def test_round_kwarg_floats(self): """Tests round kwarg_floats.""" kwarg_dict = {'ref_val': 763.4536140499999, 't1': 2, 'inplace': True} rounded_kwarg_dict_3 = {'ref_val': 763.454, 't1': 2, 'inplace': True} assert pvc.round_kwarg_floats(kwarg_dict) == rounded_kwarg_dict_3 rounded_kwarg_dict_4 = {'ref_val': 763.4536, 't1': 2, 'inplace': True} assert pvc.round_kwarg_floats(kwarg_dict, 4) == rounded_kwarg_dict_4 def test_tstamp_kwarg_to_strings(self): """Tests coversion of kwarg values from timestamp to strings.""" start_datetime = pd.to_datetime('10/10/1990 00:00') kwarg_dict = {'start': start_datetime, 't1': 2} kwarg_dict_str_dates = {'start': '1990-10-10 00:00', 't1': 2} assert pvc.tstamp_kwarg_to_strings(kwarg_dict) == kwarg_dict_str_dates class TestTopLevelFuncs(unittest.TestCase): def test_perc_wrap(self): """Test percent wrap function.""" rng = np.arange(1, 100, 1) rng_cpy = rng.copy() df = pd.DataFrame({'vals': rng}) df_cpy = df.copy() bool_array = [] for val in rng: np_perc = np.percentile(rng, val, interpolation='nearest') wrap_perc = df.agg(pvc.perc_wrap(val)).values[0] bool_array.append(np_perc == wrap_perc) self.assertTrue(all(bool_array), 'np.percentile wrapper gives different value than np perc') self.assertTrue(all(df == df_cpy), 'perc_wrap function modified input df') def test_filter_irr(self): rng = np.arange(0, 1000) df = pd.DataFrame(np.array([rng, rng+100, rng+200]).T, columns = ['weather_station irr poa W/m^2', 'col_1', 'col_2']) df_flt = pvc.filter_irr(df, 'weather_station irr poa W/m^2', 50, 100) self.assertEqual(df_flt.shape[0], 51, 'Incorrect number of rows returned from filter.') self.assertEqual(df_flt.shape[1], 3, 'Incorrect number of columns returned from filter.') self.assertEqual(df_flt.columns[0], 'weather_station irr poa W/m^2', 'Filter column name inadverdently modified by method.') self.assertEqual(df_flt.iloc[0, 0], 50, 'Minimum value in returned data in filter column is' 'not equal to low argument.') self.assertEqual(df_flt.iloc[-1, 0], 100, 'Maximum value in returned data in filter column is' 'not equal to high argument.') def test_fit_model(self): """ Test fit model func which wraps statsmodels ols.fit for dataframe. """ rng = np.random.RandomState(1) x = 50 * abs(rng.rand(50)) y = 2 * x - 5 + 5 * rng.randn(50) df = pd.DataFrame({'x': x, 'y': y}) fml = 'y ~ x - 1' passed_ind_vars = fml.split('~')[1].split()[::2] try: passed_ind_vars.remove('1') except ValueError: pass reg = pvc.fit_model(df, fml=fml) for var in passed_ind_vars: self.assertIn(var, reg.params.index, '{} ind variable in formula argument not in model' 'parameters'.format(var)) def test_predict(self): x = np.arange(0, 50) y1 = x y2 = x * 2 y3 = x * 10 dfs = [pd.DataFrame({'x': x, 'y': y1}), pd.DataFrame({'x': x, 'y': y2}), pd.DataFrame({'x': x, 'y': y3})] reg_lst = [] for df in dfs: reg_lst.append(pvc.fit_model(df, fml='y ~ x')) reg_ser = pd.Series(reg_lst) for regs in [reg_lst, reg_ser]: preds = pvc.predict(regs, pd.DataFrame({'x': [10, 10, 10]})) self.assertAlmostEqual(preds.iloc[0], 10, 7, 'Pred for x = y wrong.') self.assertAlmostEqual(preds.iloc[1], 20, 7, 'Pred for x = y * 2 wrong.') self.assertAlmostEqual(preds.iloc[2], 100, 7, 'Pred for x = y * 10 wrong.') self.assertEqual(3, preds.shape[0], 'Each of the three input' 'regressions should have a' 'prediction') def test_pred_summary(self): """Test aggregation of reporting conditions and predicted results.""" """ grpby -> df of regressions regs -> series of predicted values df of reg parameters """ pvsyst = pvc.CapData('pvsyst') pvsyst.load_data(path='./tests/data/', load_pvsyst=True) df_regs = pvsyst.data.loc[:, ['E_Grid', 'GlobInc', 'TAmb', 'WindVel']] df_regs_day = df_regs.query('GlobInc > 0') grps = df_regs_day.groupby(pd.Grouper(freq='M', label='right')) ones = np.ones(12) irr_rc = ones * 500 temp_rc = ones * 20 w_vel = ones rcs = pd.DataFrame({'GlobInc': irr_rc, 'TAmb': temp_rc, 'WindVel': w_vel}) results = pvc.pred_summary(grps, rcs, 0.05, fml='E_Grid ~ GlobInc +' 'I(GlobInc * GlobInc) +' 'I(GlobInc * TAmb) +' 'I(GlobInc * WindVel) - 1') self.assertEqual(results.shape[0], 12, 'Not all months in results.') self.assertEqual(results.shape[1], 10, 'Not all cols in results.') self.assertIsInstance(results.index, pd.core.indexes.datetimes.DatetimeIndex, 'Index is not pandas DatetimeIndex') col_length = len(results.columns.values) col_set_length = len(set(results.columns.values)) self.assertEqual(col_set_length, col_length, 'There is a duplicate column name in the results df.') pt_qty_exp = [341, 330, 392, 390, 403, 406, 456, 386, 390, 346, 331, 341] gaur_cap_exp = [3089550.4039329495, 3103610.4635679387, 3107035.251399103, 3090681.1145782764, 3058186.270209293, 3059784.2309170915, 3088294.50827525, 3087081.0026879036, 3075251.990424683, 3093287.331878834, 3097089.7852036236, 3084318.093294242] for i, mnth in enumerate(results.index): self.assertLess(results.loc[mnth, 'guaranteedCap'], results.loc[mnth, 'PredCap'], 'Gauranteed capacity is greater than predicted in' 'month {}'.format(mnth)) self.assertGreater(results.loc[mnth, 'guaranteedCap'], 0, 'Gauranteed capacity is less than 0 in' 'month {}'.format(mnth)) self.assertAlmostEqual(results.loc[mnth, 'guaranteedCap'], gaur_cap_exp[i], 7, 'Gauranted capacity not equal to expected' 'value in {}'.format(mnth)) self.assertEqual(results.loc[mnth, 'pt_qty'], pt_qty_exp[i], 'Point quantity not equal to expected values in' '{}'.format(mnth)) def test_perc_bounds_perc(self): bounds = pvc.perc_bounds(20) self.assertEqual(bounds[0], 0.8, '{} for 20 perc is not 0.8'.format(bounds[0])) self.assertEqual(bounds[1], 1.2, '{} for 20 perc is not 1.2'.format(bounds[1])) def test_perc_bounds_tuple(self): bounds = pvc.perc_bounds((15, 40)) self.assertEqual(bounds[0], 0.85, '{} for 15 perc is not 0.85'.format(bounds[0])) self.assertEqual(bounds[1], 1.4, '{} for 40 perc is not 1.4'.format(bounds[1])) def test_filter_grps(self): pvsyst = pvc.CapData('pvsyst') pvsyst.load_data(path='./tests/data/', fname='pvsyst_example_HourlyRes_2.CSV', load_pvsyst=True) pvsyst.set_regression_cols(power='real_pwr--', poa='irr-poa-', t_amb='temp-amb-', w_vel='wind--') pvsyst.filter_irr(200, 800) pvsyst.rep_cond(freq='MS') grps = pvsyst.data_filtered.groupby(pd.Grouper(freq='MS', label='left')) poa_col = pvsyst.column_groups[pvsyst.regression_cols['poa']][0] grps_flt = pvc.filter_grps(grps, pvsyst.rc, poa_col, 0.8, 1.2) self.assertIsInstance(grps_flt, pd.core.groupby.generic.DataFrameGroupBy, 'Returned object is not a dataframe groupby.') self.assertEqual(grps.ngroups, grps_flt.ngroups, 'Returned groubpy does not have the same number of\ groups as passed groupby.') cnts_before_flt = grps.count()[poa_col] cnts_after_flt = grps_flt.count()[poa_col] less_than = all(cnts_after_flt < cnts_before_flt) self.assertTrue(less_than, 'Points were not removed for each group.') def test_perc_difference(self): result = pvc.perc_difference(9, 10) self.assertAlmostEqual(result, 0.105263158) result = pvc.perc_difference(10, 9) self.assertAlmostEqual(result, 0.105263158) result = pvc.perc_difference(10, 10) self.assertAlmostEqual(result, 0) result = pvc.perc_difference(0, 0) self.assertAlmostEqual(result, 0) def test_check_all_perc_diff_comb(self): ser =
pd.Series([10.1, 10.2])
pandas.Series
# -*- coding: utf-8 -*- """ Created on Fri Jan 7 10:38:13 2022 @author: aoust """ import numpy as np import pandas import matplotlib.pyplot as plt import scipy.stats d_3_12 = pandas.read_csv("../output/output_heur3_1.200000.csv",sep = ";",header=2) d_3_12["Instance name "] = d_3_12["Instance name "] + "_3channels" d_6_12 = pandas.read_csv("../output/output_heur6_1.200000.csv",sep = ";",header=2) d_6_12["Instance name "] = d_6_12["Instance name "] + "_6channels" d12 = pandas.concat([d_3_12,d_6_12]) d_3_15 = pandas.read_csv("../output/output_heur3_1.500000.csv",sep = ";",header=2) d_3_15["Instance name "] = d_3_15["Instance name "] + "_3channels" d_6_15 = pandas.read_csv("../output/output_heur6_1.500000.csv",sep = ";",header=2) d_6_15["Instance name "] = d_6_15["Instance name "] + "_6channels" d15 = pandas.concat([d_3_15,d_6_15]) d_3_2 = pandas.read_csv("../output/output_heur3_2.000000.csv",sep = ";",header=2) d_3_2["Instance name "] = d_3_2["Instance name "] + "_3channels" d_6_2 = pandas.read_csv("../output/output_heur6_2.000000.csv",sep = ";",header=2) d_6_2["Instance name "] = d_6_2["Instance name "] + "_6channels" d2 = pandas.concat([d_3_2,d_6_2]) d_3_3 = pandas.read_csv("../output/output_heur3_3.000000.csv",sep = ";",header=2) d_3_3["Instance name "] = d_3_3["Instance name "] + "_3channels" d_6_3 = pandas.read_csv("../output/output_heur6_3.000000.csv",sep = ";",header=2) d_6_3["Instance name "] = d_6_3["Instance name "] + "_6channels" d3 = pandas.concat([d_3_3,d_6_3]) d_3_4 = pandas.read_csv("../output/output_heur3_4.000000.csv",sep = ";",header=2) d_3_4["Instance name "] = d_3_4["Instance name "] + "_3channels" d_6_4 = pandas.read_csv("../output/output_heur6_4.000000.csv",sep = ";",header=2) d_6_4["Instance name "] = d_6_4["Instance name "] + "_6channels" d4 =
pandas.concat([d_3_4,d_6_4])
pandas.concat
import pandas as pd import os base_dir = os.path.abspath(os.path.dirname(__file__)) df = pd.read_csv(os.path.join(base_dir, 'Hotel_Reviews.csv')) df =
pd.concat([df['Negative_Review'], df['Positive_Review']], ignore_index=True)
pandas.concat
import pandas as pd class Feature(object): def __init__(self, name, variable_type, transform): self.name = name self.variable_type = variable_type self.transform = transform def apply_features_to_markets(features, markets_data): def apply_features_to_market(features, market): # get the new data series by computing the features. features_series = list(map(lambda f: f.transform(market['data']), features)) feature_names = [f.name for f in features] features_df =
pd.concat(features_series, axis=1, keys=feature_names)
pandas.concat
import pandas as pd import matplotlib.pyplot as plt import kmertools as kt transitions_path = '/Users/simonelongo/Documents/QuinlanLabFiles/kmer_data/results/kp_21oct2019/bp_counts_per3mer.csv' counts_path = '/Users/simonelongo/Documents/QuinlanLabFiles/kmer_data/data/ref_genome_kmer_freq.csv' counts =
pd.read_csv(counts_path, index_col=0)
pandas.read_csv
import pytest from cellrank.tl._colors import _map_names_and_colors, _create_categorical_colors import numpy as np import pandas as pd from pandas.api.types import is_categorical_dtype from matplotlib.colors import is_color_like class TestColors: def test_create_categorical_colors_too_many_colors(self): with pytest.raises(ValueError): _create_categorical_colors(1000) def test_create_categorical_colors_no_categories(self): c = _create_categorical_colors(0) assert c == [] def test_create_categorical_colors_neg_categories(self): with pytest.raises(RuntimeError): _create_categorical_colors(-1) def test_create_categorical_colors_normal_run(self): colors = _create_categorical_colors(62) assert len(colors) == 62 assert all(map(lambda c: isinstance(c, str), colors)) assert all(map(lambda c: is_color_like(c), colors)) class TestMappingColors: def test_mapping_colors_not_categorical(self): query = pd.Series(["foo", "bar", "baz"], dtype="str") reference = pd.Series(["foo", np.nan, "bar", "baz"], dtype="category") with pytest.raises(TypeError): _map_names_and_colors(reference, query) def test_mapping_colors_invalid_size(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", np.nan, "bar", "baz"], dtype="category") with pytest.raises(ValueError): _map_names_and_colors(reference, query) def test_mapping_colors_different_index(self): query = pd.Series(["foo", "bar", "baz"], dtype="category", index=[2, 3, 4]) reference = pd.Series(["foo", "bar", "baz"], dtype="category", index=[1, 2, 3]) with pytest.raises(ValueError): _map_names_and_colors(reference, query) def test_mapping_colors_invalid_colors(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") with pytest.raises(ValueError): _map_names_and_colors( reference, query, colors_reference=["red", "green", "foo"] ) def test_mapping_colors_too_few_colors(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") with pytest.raises(ValueError): _map_names_and_colors(reference, query, colors_reference=["red", "green"]) def test_mapping_colors_simple_1(self): x = pd.Series(["a", "b", np.nan, "b", np.nan]).astype("category") y = pd.Series(["b", np.nan, np.nan, "d", "a"]).astype("category") expected = pd.Series(["a_1", "a_2", "b"]) expected_index = pd.Index(["a", "b", "d"]) res = _map_names_and_colors(x, y) assert isinstance(res, pd.Series) np.testing.assert_array_equal(res.values, expected.values) np.testing.assert_array_equal(res.index.values, expected_index.values) def test_mapping_colors_simple_2(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") res = _map_names_and_colors(reference, query) assert isinstance(res, pd.Series) assert len(res) == 3 assert is_categorical_dtype(res) def test_mapping_colors_simple_colors(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") res, c = _map_names_and_colors( reference, query, colors_reference=["red", "green", "blue"] ) assert isinstance(res, pd.Series) assert len(res) == 3 assert is_categorical_dtype(res) assert isinstance(c, list) assert c == ["#ff0000", "#008000", "#0000ff"] def test_mapping_colors_too_many_colors(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") res, c = _map_names_and_colors( reference, query, colors_reference=["red", "green", "blue", "black"] ) assert isinstance(res, pd.Series) assert len(res) == 3 assert is_categorical_dtype(res) assert isinstance(c, list) assert c == ["#ff0000", "#008000", "#0000ff"] def test_mapping_colors_different_color_representation(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") res, c = _map_names_and_colors( reference, query, colors_reference=[(1, 0, 0), "green", (0, 0, 1, 0)] ) assert isinstance(res, pd.Series) assert len(res) == 3 assert is_categorical_dtype(res) assert isinstance(c, list) assert c == ["#ff0000", "#008000", "#0000ff"] def test_mapping_colors_non_unique_colors(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") res, c = _map_names_and_colors( reference, query, colors_reference=["red", "red", "red"] ) assert isinstance(res, pd.Series) assert len(res) == 3 assert is_categorical_dtype(res) assert isinstance(c, list) assert c == ["#ff0000", "#ff0000", "#ff0000"] def test_mapping_colors_same_reference(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "foo", "foo"], dtype="category") r, c = _map_names_and_colors( reference, query, colors_reference=["red", "red", "red"] ) assert list(r.index) == ["bar", "baz", "foo"] assert list(r.values) == ["foo_1", "foo_2", "foo_3"] assert c == ["#b20000", "#d13200", "#f07300"] def test_mapping_colors_diff_query_reference(self): query = pd.Series(["bar", "bar", "bar"], dtype="category") reference = pd.Series(["foo", "foo", "foo"], dtype="category") r, c = _map_names_and_colors( reference, query, colors_reference=["red", "red", "red"] ) assert list(r.index) == ["bar"] assert list(r.values) == ["foo"] assert c == ["#ff0000"] def test_mapping_colors_empty(self): query = pd.Series([], dtype="category") reference = pd.Series([], dtype="category") r = _map_names_and_colors(reference, query) assert isinstance(r, pd.Series) assert is_categorical_dtype(r) def test_mapping_colors_empty_with_color(self): query = pd.Series([], dtype="category") reference = pd.Series([], dtype="category") r, c = _map_names_and_colors(reference, query, colors_reference=[]) assert isinstance(r, pd.Series) assert is_categorical_dtype(r) assert isinstance(c, list) assert len(c) == 0 def test_mapping_colors_negative_en_cutoff(self): query = pd.Series(["foo", "bar", "baz"], dtype="category") reference = pd.Series(["foo", "bar", "baz"], dtype="category") with pytest.raises(ValueError): _map_names_and_colors(reference, query, en_cutoff=-1) def test_mapping_colors_0_en_cutoff(self): query =
pd.Series(["bar", "bar", "bar"], dtype="category")
pandas.Series
""" Module contains tools for processing files into DataFrames or other objects """ from collections import abc, defaultdict import csv import datetime from io import StringIO import itertools import re import sys from textwrap import fill from typing import ( Any, Dict, Iterable, Iterator, List, Optional, Sequence, Set, Type, cast, ) import warnings import numpy as np import pandas._libs.lib as lib import pandas._libs.ops as libops import pandas._libs.parsers as parsers from pandas._libs.parsers import STR_NA_VALUES from pandas._libs.tslibs import parsing from pandas._typing import FilePathOrBuffer, StorageOptions, Union from pandas.errors import ( AbstractMethodError, EmptyDataError, ParserError, ParserWarning, ) from pandas.util._decorators import Appender from pandas.core.dtypes.cast import astype_nansafe from pandas.core.dtypes.common import ( ensure_object, ensure_str, is_bool_dtype, is_categorical_dtype, is_dict_like, is_dtype_equal, is_extension_array_dtype, is_file_like, is_float, is_integer, is_integer_dtype, is_list_like, is_object_dtype, is_scalar, is_string_dtype, pandas_dtype, ) from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.dtypes.missing import isna from pandas.core import algorithms, generic from pandas.core.arrays import Categorical from pandas.core.frame import DataFrame from pandas.core.indexes.api import ( Index, MultiIndex, RangeIndex, ensure_index_from_sequences, ) from pandas.core.series import Series from pandas.core.tools import datetimes as tools from pandas.io.common import IOHandles, get_handle, validate_header_arg from pandas.io.date_converters import generic_parser # BOM character (byte order mark) # This exists at the beginning of a file to indicate endianness # of a file (stream). Unfortunately, this marker screws up parsing, # so we need to remove it if we see it. _BOM = "\ufeff" _doc_read_csv_and_table = ( r""" {summary} Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the online docs for `IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: file://localhost/path/to/table.csv. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. sep : str, default {_default_sep} Delimiter to use. If sep is None, the C engine cannot automatically detect the separator, but the Python parsing engine can, meaning the latter will be used and automatically detect the separator by Python's builtin sniffer tool, ``csv.Sniffer``. In addition, separators longer than 1 character and different from ``'\s+'`` will be interpreted as regular expressions and will also force the use of the Python parsing engine. Note that regex delimiters are prone to ignoring quoted data. Regex example: ``'\r\t'``. delimiter : str, default ``None`` Alias for sep. header : int, list of int, default 'infer' Row number(s) to use as the column names, and the start of the data. Default behavior is to infer the column names: if no names are passed the behavior is identical to ``header=0`` and column names are inferred from the first line of the file, if column names are passed explicitly then the behavior is identical to ``header=None``. Explicitly pass ``header=0`` to be able to replace existing names. The header can be a list of integers that specify row locations for a multi-index on the columns e.g. [0,1,3]. Intervening rows that are not specified will be skipped (e.g. 2 in this example is skipped). Note that this parameter ignores commented lines and empty lines if ``skip_blank_lines=True``, so ``header=0`` denotes the first line of data rather than the first line of the file. names : array-like, optional List of column names to use. If the file contains a header row, then you should explicitly pass ``header=0`` to override the column names. Duplicates in this list are not allowed. index_col : int, str, sequence of int / str, or False, default ``None`` Column(s) to use as the row labels of the ``DataFrame``, either given as string name or column index. If a sequence of int / str is given, a MultiIndex is used. Note: ``index_col=False`` can be used to force pandas to *not* use the first column as the index, e.g. when you have a malformed file with delimiters at the end of each line. usecols : list-like or callable, optional Return a subset of the columns. If list-like, all elements must either be positional (i.e. integer indices into the document columns) or strings that correspond to column names provided either by the user in `names` or inferred from the document header row(s). For example, a valid list-like `usecols` parameter would be ``[0, 1, 2]`` or ``['foo', 'bar', 'baz']``. Element order is ignored, so ``usecols=[0, 1]`` is the same as ``[1, 0]``. To instantiate a DataFrame from ``data`` with element order preserved use ``pd.read_csv(data, usecols=['foo', 'bar'])[['foo', 'bar']]`` for columns in ``['foo', 'bar']`` order or ``pd.read_csv(data, usecols=['foo', 'bar'])[['bar', 'foo']]`` for ``['bar', 'foo']`` order. If callable, the callable function will be evaluated against the column names, returning names where the callable function evaluates to True. An example of a valid callable argument would be ``lambda x: x.upper() in ['AAA', 'BBB', 'DDD']``. Using this parameter results in much faster parsing time and lower memory usage. squeeze : bool, default False If the parsed data only contains one column then return a Series. prefix : str, optional Prefix to add to column numbers when no header, e.g. 'X' for X0, X1, ... mangle_dupe_cols : bool, default True Duplicate columns will be specified as 'X', 'X.1', ...'X.N', rather than 'X'...'X'. Passing in False will cause data to be overwritten if there are duplicate names in the columns. dtype : Type name or dict of column -> type, optional Data type for data or columns. E.g. {{'a': np.float64, 'b': np.int32, 'c': 'Int64'}} Use `str` or `object` together with suitable `na_values` settings to preserve and not interpret dtype. If converters are specified, they will be applied INSTEAD of dtype conversion. engine : {{'c', 'python'}}, optional Parser engine to use. The C engine is faster while the python engine is currently more feature-complete. converters : dict, optional Dict of functions for converting values in certain columns. Keys can either be integers or column labels. true_values : list, optional Values to consider as True. false_values : list, optional Values to consider as False. skipinitialspace : bool, default False Skip spaces after delimiter. skiprows : list-like, int or callable, optional Line numbers to skip (0-indexed) or number of lines to skip (int) at the start of the file. If callable, the callable function will be evaluated against the row indices, returning True if the row should be skipped and False otherwise. An example of a valid callable argument would be ``lambda x: x in [0, 2]``. skipfooter : int, default 0 Number of lines at bottom of file to skip (Unsupported with engine='c'). nrows : int, optional Number of rows of file to read. Useful for reading pieces of large files. na_values : scalar, str, list-like, or dict, optional Additional strings to recognize as NA/NaN. If dict passed, specific per-column NA values. By default the following values are interpreted as NaN: '""" + fill("', '".join(sorted(STR_NA_VALUES)), 70, subsequent_indent=" ") + """'. keep_default_na : bool, default True Whether or not to include the default NaN values when parsing the data. Depending on whether `na_values` is passed in, the behavior is as follows: * If `keep_default_na` is True, and `na_values` are specified, `na_values` is appended to the default NaN values used for parsing. * If `keep_default_na` is True, and `na_values` are not specified, only the default NaN values are used for parsing. * If `keep_default_na` is False, and `na_values` are specified, only the NaN values specified `na_values` are used for parsing. * If `keep_default_na` is False, and `na_values` are not specified, no strings will be parsed as NaN. Note that if `na_filter` is passed in as False, the `keep_default_na` and `na_values` parameters will be ignored. na_filter : bool, default True Detect missing value markers (empty strings and the value of na_values). In data without any NAs, passing na_filter=False can improve the performance of reading a large file. verbose : bool, default False Indicate number of NA values placed in non-numeric columns. skip_blank_lines : bool, default True If True, skip over blank lines rather than interpreting as NaN values. parse_dates : bool or list of int or names or list of lists or dict, \ default False The behavior is as follows: * boolean. If True -> try parsing the index. * list of int or names. e.g. If [1, 2, 3] -> try parsing columns 1, 2, 3 each as a separate date column. * list of lists. e.g. If [[1, 3]] -> combine columns 1 and 3 and parse as a single date column. * dict, e.g. {{'foo' : [1, 3]}} -> parse columns 1, 3 as date and call result 'foo' If a column or index cannot be represented as an array of datetimes, say because of an unparsable value or a mixture of timezones, the column or index will be returned unaltered as an object data type. For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_csv``. To parse an index or column with a mixture of timezones, specify ``date_parser`` to be a partially-applied :func:`pandas.to_datetime` with ``utc=True``. See :ref:`io.csv.mixed_timezones` for more. Note: A fast-path exists for iso8601-formatted dates. infer_datetime_format : bool, default False If True and `parse_dates` is enabled, pandas will attempt to infer the format of the datetime strings in the columns, and if it can be inferred, switch to a faster method of parsing them. In some cases this can increase the parsing speed by 5-10x. keep_date_col : bool, default False If True and `parse_dates` specifies combining multiple columns then keep the original columns. date_parser : function, optional Function to use for converting a sequence of string columns to an array of datetime instances. The default uses ``dateutil.parser.parser`` to do the conversion. Pandas will try to call `date_parser` in three different ways, advancing to the next if an exception occurs: 1) Pass one or more arrays (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the string values from the columns defined by `parse_dates` into a single array and pass that; and 3) call `date_parser` once for each row using one or more strings (corresponding to the columns defined by `parse_dates`) as arguments. dayfirst : bool, default False DD/MM format dates, international and European format. cache_dates : bool, default True If True, use a cache of unique, converted dates to apply the datetime conversion. May produce significant speed-up when parsing duplicate date strings, especially ones with timezone offsets. .. versionadded:: 0.25.0 iterator : bool, default False Return TextFileReader object for iteration or getting chunks with ``get_chunk()``. .. versionchanged:: 1.2 ``TextFileReader`` is a context manager. chunksize : int, optional Return TextFileReader object for iteration. See the `IO Tools docs <https://pandas.pydata.org/pandas-docs/stable/io.html#io-chunking>`_ for more information on ``iterator`` and ``chunksize``. .. versionchanged:: 1.2 ``TextFileReader`` is a context manager. compression : {{'infer', 'gzip', 'bz2', 'zip', 'xz', None}}, default 'infer' For on-the-fly decompression of on-disk data. If 'infer' and `filepath_or_buffer` is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise no decompression). If using 'zip', the ZIP file must contain only one data file to be read in. Set to None for no decompression. thousands : str, optional Thousands separator. decimal : str, default '.' Character to recognize as decimal point (e.g. use ',' for European data). lineterminator : str (length 1), optional Character to break file into lines. Only valid with C parser. quotechar : str (length 1), optional The character used to denote the start and end of a quoted item. Quoted items can include the delimiter and it will be ignored. quoting : int or csv.QUOTE_* instance, default 0 Control field quoting behavior per ``csv.QUOTE_*`` constants. Use one of QUOTE_MINIMAL (0), QUOTE_ALL (1), QUOTE_NONNUMERIC (2) or QUOTE_NONE (3). doublequote : bool, default ``True`` When quotechar is specified and quoting is not ``QUOTE_NONE``, indicate whether or not to interpret two consecutive quotechar elements INSIDE a field as a single ``quotechar`` element. escapechar : str (length 1), optional One-character string used to escape other characters. comment : str, optional Indicates remainder of line should not be parsed. If found at the beginning of a line, the line will be ignored altogether. This parameter must be a single character. Like empty lines (as long as ``skip_blank_lines=True``), fully commented lines are ignored by the parameter `header` but not by `skiprows`. For example, if ``comment='#'``, parsing ``#empty\\na,b,c\\n1,2,3`` with ``header=0`` will result in 'a,b,c' being treated as the header. encoding : str, optional Encoding to use for UTF when reading/writing (ex. 'utf-8'). `List of Python standard encodings <https://docs.python.org/3/library/codecs.html#standard-encodings>`_ . dialect : str or csv.Dialect, optional If provided, this parameter will override values (default or not) for the following parameters: `delimiter`, `doublequote`, `escapechar`, `skipinitialspace`, `quotechar`, and `quoting`. If it is necessary to override values, a ParserWarning will be issued. See csv.Dialect documentation for more details. error_bad_lines : bool, default True Lines with too many fields (e.g. a csv line with too many commas) will by default cause an exception to be raised, and no DataFrame will be returned. If False, then these "bad lines" will dropped from the DataFrame that is returned. warn_bad_lines : bool, default True If error_bad_lines is False, and warn_bad_lines is True, a warning for each "bad line" will be output. delim_whitespace : bool, default False Specifies whether or not whitespace (e.g. ``' '`` or ``'\t'``) will be used as the sep. Equivalent to setting ``sep='\\s+'``. If this option is set to True, nothing should be passed in for the ``delimiter`` parameter. low_memory : bool, default True Internally process the file in chunks, resulting in lower memory use while parsing, but possibly mixed type inference. To ensure no mixed types either set False, or specify the type with the `dtype` parameter. Note that the entire file is read into a single DataFrame regardless, use the `chunksize` or `iterator` parameter to return the data in chunks. (Only valid with C parser). memory_map : bool, default False If a filepath is provided for `filepath_or_buffer`, map the file object directly onto memory and access the data directly from there. Using this option can improve performance because there is no longer any I/O overhead. float_precision : str, optional Specifies which converter the C engine should use for floating-point values. The options are ``None`` or 'high' for the ordinary converter, 'legacy' for the original lower precision pandas converter, and 'round_trip' for the round-trip converter. .. versionchanged:: 1.2 {storage_options} .. versionadded:: 1.2 Returns ------- DataFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. read_fwf : Read a table of fixed-width formatted lines into DataFrame. Examples -------- >>> pd.{func_name}('data.csv') # doctest: +SKIP """ ) def validate_integer(name, val, min_val=0): """ Checks whether the 'name' parameter for parsing is either an integer OR float that can SAFELY be cast to an integer without losing accuracy. Raises a ValueError if that is not the case. Parameters ---------- name : string Parameter name (used for error reporting) val : int or float The value to check min_val : int Minimum allowed value (val < min_val will result in a ValueError) """ msg = f"'{name:s}' must be an integer >={min_val:d}" if val is not None: if is_float(val): if int(val) != val: raise ValueError(msg) val = int(val) elif not (is_integer(val) and val >= min_val): raise ValueError(msg) return val def _validate_names(names): """ Raise ValueError if the `names` parameter contains duplicates or has an invalid data type. Parameters ---------- names : array-like or None An array containing a list of the names used for the output DataFrame. Raises ------ ValueError If names are not unique or are not ordered (e.g. set). """ if names is not None: if len(names) != len(set(names)): raise ValueError("Duplicate names are not allowed.") if not ( is_list_like(names, allow_sets=False) or isinstance(names, abc.KeysView) ): raise ValueError("Names should be an ordered collection.") def _read(filepath_or_buffer: FilePathOrBuffer, kwds): """Generic reader of line files.""" if kwds.get("date_parser", None) is not None: if isinstance(kwds["parse_dates"], bool): kwds["parse_dates"] = True # Extract some of the arguments (pass chunksize on). iterator = kwds.get("iterator", False) chunksize = validate_integer("chunksize", kwds.get("chunksize", None), 1) nrows = kwds.get("nrows", None) # Check for duplicates in names. _validate_names(kwds.get("names", None)) # Create the parser. parser = TextFileReader(filepath_or_buffer, **kwds) if chunksize or iterator: return parser with parser: return parser.read(nrows) _parser_defaults = { "delimiter": None, "escapechar": None, "quotechar": '"', "quoting": csv.QUOTE_MINIMAL, "doublequote": True, "skipinitialspace": False, "lineterminator": None, "header": "infer", "index_col": None, "names": None, "prefix": None, "skiprows": None, "skipfooter": 0, "nrows": None, "na_values": None, "keep_default_na": True, "true_values": None, "false_values": None, "converters": None, "dtype": None, "cache_dates": True, "thousands": None, "comment": None, "decimal": ".", # 'engine': 'c', "parse_dates": False, "keep_date_col": False, "dayfirst": False, "date_parser": None, "usecols": None, # 'iterator': False, "chunksize": None, "verbose": False, "encoding": None, "squeeze": False, "compression": None, "mangle_dupe_cols": True, "infer_datetime_format": False, "skip_blank_lines": True, } _c_parser_defaults = { "delim_whitespace": False, "na_filter": True, "low_memory": True, "memory_map": False, "error_bad_lines": True, "warn_bad_lines": True, "float_precision": None, } _fwf_defaults = {"colspecs": "infer", "infer_nrows": 100, "widths": None} _c_unsupported = {"skipfooter"} _python_unsupported = {"low_memory", "float_precision"} _deprecated_defaults: Dict[str, Any] = {} _deprecated_args: Set[str] = set() @Appender( _doc_read_csv_and_table.format( func_name="read_csv", summary="Read a comma-separated values (csv) file into DataFrame.", _default_sep="','", storage_options=generic._shared_docs["storage_options"], ) ) def read_csv( filepath_or_buffer: FilePathOrBuffer, sep=lib.no_default, delimiter=None, # Column and Index Locations and Names header="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression="infer", thousands=None, decimal: str = ".", lineterminator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, # Error Handling error_bad_lines=True, warn_bad_lines=True, # Internal delim_whitespace=False, low_memory=_c_parser_defaults["low_memory"], memory_map=False, float_precision=None, storage_options: StorageOptions = None, ): kwds = locals() del kwds["filepath_or_buffer"] del kwds["sep"] kwds_defaults = _refine_defaults_read( dialect, delimiter, delim_whitespace, engine, sep, defaults={"delimiter": ","} ) kwds.update(kwds_defaults) return _read(filepath_or_buffer, kwds) @Appender( _doc_read_csv_and_table.format( func_name="read_table", summary="Read general delimited file into DataFrame.", _default_sep=r"'\\t' (tab-stop)", storage_options=generic._shared_docs["storage_options"], ) ) def read_table( filepath_or_buffer: FilePathOrBuffer, sep=lib.no_default, delimiter=None, # Column and Index Locations and Names header="infer", names=None, index_col=None, usecols=None, squeeze=False, prefix=None, mangle_dupe_cols=True, # General Parsing Configuration dtype=None, engine=None, converters=None, true_values=None, false_values=None, skipinitialspace=False, skiprows=None, skipfooter=0, nrows=None, # NA and Missing Data Handling na_values=None, keep_default_na=True, na_filter=True, verbose=False, skip_blank_lines=True, # Datetime Handling parse_dates=False, infer_datetime_format=False, keep_date_col=False, date_parser=None, dayfirst=False, cache_dates=True, # Iteration iterator=False, chunksize=None, # Quoting, Compression, and File Format compression="infer", thousands=None, decimal: str = ".", lineterminator=None, quotechar='"', quoting=csv.QUOTE_MINIMAL, doublequote=True, escapechar=None, comment=None, encoding=None, dialect=None, # Error Handling error_bad_lines=True, warn_bad_lines=True, # Internal delim_whitespace=False, low_memory=_c_parser_defaults["low_memory"], memory_map=False, float_precision=None, ): kwds = locals() del kwds["filepath_or_buffer"] del kwds["sep"] kwds_defaults = _refine_defaults_read( dialect, delimiter, delim_whitespace, engine, sep, defaults={"delimiter": "\t"} ) kwds.update(kwds_defaults) return _read(filepath_or_buffer, kwds) def read_fwf( filepath_or_buffer: FilePathOrBuffer, colspecs="infer", widths=None, infer_nrows=100, **kwds, ): r""" Read a table of fixed-width formatted lines into DataFrame. Also supports optionally iterating or breaking of the file into chunks. Additional help can be found in the `online docs for IO Tools <https://pandas.pydata.org/pandas-docs/stable/user_guide/io.html>`_. Parameters ---------- filepath_or_buffer : str, path object or file-like object Any valid string path is acceptable. The string could be a URL. Valid URL schemes include http, ftp, s3, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.csv``. If you want to pass in a path object, pandas accepts any ``os.PathLike``. By file-like object, we refer to objects with a ``read()`` method, such as a file handle (e.g. via builtin ``open`` function) or ``StringIO``. colspecs : list of tuple (int, int) or 'infer'. optional A list of tuples giving the extents of the fixed-width fields of each line as half-open intervals (i.e., [from, to[ ). String value 'infer' can be used to instruct the parser to try detecting the column specifications from the first 100 rows of the data which are not being skipped via skiprows (default='infer'). widths : list of int, optional A list of field widths which can be used instead of 'colspecs' if the intervals are contiguous. infer_nrows : int, default 100 The number of rows to consider when letting the parser determine the `colspecs`. .. versionadded:: 0.24.0 **kwds : optional Optional keyword arguments can be passed to ``TextFileReader``. Returns ------- DataFrame or TextParser A comma-separated values (csv) file is returned as two-dimensional data structure with labeled axes. See Also -------- DataFrame.to_csv : Write DataFrame to a comma-separated values (csv) file. read_csv : Read a comma-separated values (csv) file into DataFrame. Examples -------- >>> pd.read_fwf('data.csv') # doctest: +SKIP """ # Check input arguments. if colspecs is None and widths is None: raise ValueError("Must specify either colspecs or widths") elif colspecs not in (None, "infer") and widths is not None: raise ValueError("You must specify only one of 'widths' and 'colspecs'") # Compute 'colspecs' from 'widths', if specified. if widths is not None: colspecs, col = [], 0 for w in widths: colspecs.append((col, col + w)) col += w kwds["colspecs"] = colspecs kwds["infer_nrows"] = infer_nrows kwds["engine"] = "python-fwf" return _read(filepath_or_buffer, kwds) class TextFileReader(abc.Iterator): """ Passed dialect overrides any of the related parser options """ def __init__(self, f, engine=None, **kwds): self.f = f if engine is not None: engine_specified = True else: engine = "python" engine_specified = False self.engine = engine self._engine_specified = kwds.get("engine_specified", engine_specified) _validate_skipfooter(kwds) dialect = _extract_dialect(kwds) if dialect is not None: kwds = _merge_with_dialect_properties(dialect, kwds) if kwds.get("header", "infer") == "infer": kwds["header"] = 0 if kwds.get("names") is None else None self.orig_options = kwds # miscellanea self._currow = 0 options = self._get_options_with_defaults(engine) options["storage_options"] = kwds.get("storage_options", None) self.chunksize = options.pop("chunksize", None) self.nrows = options.pop("nrows", None) self.squeeze = options.pop("squeeze", False) self._check_file_or_buffer(f, engine) self.options, self.engine = self._clean_options(options, engine) if "has_index_names" in kwds: self.options["has_index_names"] = kwds["has_index_names"] self._engine = self._make_engine(self.engine) def close(self): self._engine.close() def _get_options_with_defaults(self, engine): kwds = self.orig_options options = {} for argname, default in _parser_defaults.items(): value = kwds.get(argname, default) # see gh-12935 if argname == "mangle_dupe_cols" and not value: raise ValueError("Setting mangle_dupe_cols=False is not supported yet") else: options[argname] = value for argname, default in _c_parser_defaults.items(): if argname in kwds: value = kwds[argname] if engine != "c" and value != default: if "python" in engine and argname not in _python_unsupported: pass elif value == _deprecated_defaults.get(argname, default): pass else: raise ValueError( f"The {repr(argname)} option is not supported with the " f"{repr(engine)} engine" ) else: value = _deprecated_defaults.get(argname, default) options[argname] = value if engine == "python-fwf": # pandas\io\parsers.py:907: error: Incompatible types in assignment # (expression has type "object", variable has type "Union[int, str, # None]") [assignment] for argname, default in _fwf_defaults.items(): # type: ignore[assignment] options[argname] = kwds.get(argname, default) return options def _check_file_or_buffer(self, f, engine): # see gh-16530 if is_file_like(f) and engine != "c" and not hasattr(f, "__next__"): # The C engine doesn't need the file-like to have the "__next__" # attribute. However, the Python engine explicitly calls # "__next__(...)" when iterating through such an object, meaning it # needs to have that attribute raise ValueError( "The 'python' engine cannot iterate through this file buffer." ) def _clean_options(self, options, engine): result = options.copy() fallback_reason = None # C engine not supported yet if engine == "c": if options["skipfooter"] > 0: fallback_reason = "the 'c' engine does not support skipfooter" engine = "python" sep = options["delimiter"] delim_whitespace = options["delim_whitespace"] if sep is None and not delim_whitespace: if engine == "c": fallback_reason = ( "the 'c' engine does not support " "sep=None with delim_whitespace=False" ) engine = "python" elif sep is not None and len(sep) > 1: if engine == "c" and sep == r"\s+": result["delim_whitespace"] = True del result["delimiter"] elif engine not in ("python", "python-fwf"): # wait until regex engine integrated fallback_reason = ( "the 'c' engine does not support " "regex separators (separators > 1 char and " r"different from '\s+' are interpreted as regex)" ) engine = "python" elif delim_whitespace: if "python" in engine: result["delimiter"] = r"\s+" elif sep is not None: encodeable = True encoding = sys.getfilesystemencoding() or "utf-8" try: if len(sep.encode(encoding)) > 1: encodeable = False except UnicodeDecodeError: encodeable = False if not encodeable and engine not in ("python", "python-fwf"): fallback_reason = ( f"the separator encoded in {encoding} " "is > 1 char long, and the 'c' engine " "does not support such separators" ) engine = "python" quotechar = options["quotechar"] if quotechar is not None and isinstance(quotechar, (str, bytes)): if ( len(quotechar) == 1 and ord(quotechar) > 127 and engine not in ("python", "python-fwf") ): fallback_reason = ( "ord(quotechar) > 127, meaning the " "quotechar is larger than one byte, " "and the 'c' engine does not support such quotechars" ) engine = "python" if fallback_reason and self._engine_specified: raise ValueError(fallback_reason) if engine == "c": for arg in _c_unsupported: del result[arg] if "python" in engine: for arg in _python_unsupported: if fallback_reason and result[arg] != _c_parser_defaults[arg]: raise ValueError( "Falling back to the 'python' engine because " f"{fallback_reason}, but this causes {repr(arg)} to be " "ignored as it is not supported by the 'python' engine." ) del result[arg] if fallback_reason: warnings.warn( ( "Falling back to the 'python' engine because " f"{fallback_reason}; you can avoid this warning by specifying " "engine='python'." ), ParserWarning, stacklevel=5, ) index_col = options["index_col"] names = options["names"] converters = options["converters"] na_values = options["na_values"] skiprows = options["skiprows"] validate_header_arg(options["header"]) for arg in _deprecated_args: parser_default = _c_parser_defaults[arg] depr_default = _deprecated_defaults[arg] if result.get(arg, depr_default) != depr_default: msg = ( f"The {arg} argument has been deprecated and will be " "removed in a future version.\n\n" ) warnings.warn(msg, FutureWarning, stacklevel=2) else: result[arg] = parser_default if index_col is True: raise ValueError("The value of index_col couldn't be 'True'") if _is_index_col(index_col): if not isinstance(index_col, (list, tuple, np.ndarray)): index_col = [index_col] result["index_col"] = index_col names = list(names) if names is not None else names # type conversion-related if converters is not None: if not isinstance(converters, dict): raise TypeError( "Type converters must be a dict or subclass, " f"input was a {type(converters).__name__}" ) else: converters = {} # Converting values to NA keep_default_na = options["keep_default_na"] na_values, na_fvalues = _clean_na_values(na_values, keep_default_na) # handle skiprows; this is internally handled by the # c-engine, so only need for python parsers if engine != "c": if is_integer(skiprows): skiprows = list(range(skiprows)) if skiprows is None: skiprows = set() elif not callable(skiprows): skiprows = set(skiprows) # put stuff back result["names"] = names result["converters"] = converters result["na_values"] = na_values result["na_fvalues"] = na_fvalues result["skiprows"] = skiprows return result, engine def __next__(self): try: return self.get_chunk() except StopIteration: self.close() raise def _make_engine(self, engine="c"): mapping: Dict[str, Type[ParserBase]] = { "c": CParserWrapper, "python": PythonParser, "python-fwf": FixedWidthFieldParser, } if engine not in mapping: raise ValueError( f"Unknown engine: {engine} (valid options are {mapping.keys()})" ) # error: Too many arguments for "ParserBase" return mapping[engine](self.f, **self.options) # type: ignore[call-arg] def _failover_to_python(self): raise AbstractMethodError(self) def read(self, nrows=None): nrows = validate_integer("nrows", nrows) index, columns, col_dict = self._engine.read(nrows) if index is None: if col_dict: # Any column is actually fine: new_rows = len(next(iter(col_dict.values()))) index = RangeIndex(self._currow, self._currow + new_rows) else: new_rows = 0 else: new_rows = len(index) df = DataFrame(col_dict, columns=columns, index=index) self._currow += new_rows if self.squeeze and len(df.columns) == 1: return df[df.columns[0]].copy() return df def get_chunk(self, size=None): if size is None: size = self.chunksize if self.nrows is not None: if self._currow >= self.nrows: raise StopIteration size = min(size, self.nrows - self._currow) return self.read(nrows=size) def __enter__(self): return self def __exit__(self, exc_type, exc_value, traceback): self.close() def _is_index_col(col): return col is not None and col is not False def _is_potential_multi_index( columns, index_col: Optional[Union[bool, Sequence[int]]] = None ): """ Check whether or not the `columns` parameter could be converted into a MultiIndex. Parameters ---------- columns : array-like Object which may or may not be convertible into a MultiIndex index_col : None, bool or list, optional Column or columns to use as the (possibly hierarchical) index Returns ------- boolean : Whether or not columns could become a MultiIndex """ if index_col is None or isinstance(index_col, bool): index_col = [] return ( len(columns) and not isinstance(columns, MultiIndex) and all(isinstance(c, tuple) for c in columns if c not in list(index_col)) ) def _evaluate_usecols(usecols, names): """ Check whether or not the 'usecols' parameter is a callable. If so, enumerates the 'names' parameter and returns a set of indices for each entry in 'names' that evaluates to True. If not a callable, returns 'usecols'. """ if callable(usecols): return {i for i, name in enumerate(names) if usecols(name)} return usecols def _validate_usecols_names(usecols, names): """ Validates that all usecols are present in a given list of names. If not, raise a ValueError that shows what usecols are missing. Parameters ---------- usecols : iterable of usecols The columns to validate are present in names. names : iterable of names The column names to check against. Returns ------- usecols : iterable of usecols The `usecols` parameter if the validation succeeds. Raises ------ ValueError : Columns were missing. Error message will list them. """ missing = [c for c in usecols if c not in names] if len(missing) > 0: raise ValueError( f"Usecols do not match columns, columns expected but not found: {missing}" ) return usecols def _validate_skipfooter_arg(skipfooter): """ Validate the 'skipfooter' parameter. Checks whether 'skipfooter' is a non-negative integer. Raises a ValueError if that is not the case. Parameters ---------- skipfooter : non-negative integer The number of rows to skip at the end of the file. Returns ------- validated_skipfooter : non-negative integer The original input if the validation succeeds. Raises ------ ValueError : 'skipfooter' was not a non-negative integer. """ if not is_integer(skipfooter): raise ValueError("skipfooter must be an integer") if skipfooter < 0: raise ValueError("skipfooter cannot be negative") return skipfooter def _validate_usecols_arg(usecols): """ Validate the 'usecols' parameter. Checks whether or not the 'usecols' parameter contains all integers (column selection by index), strings (column by name) or is a callable. Raises a ValueError if that is not the case. Parameters ---------- usecols : list-like, callable, or None List of columns to use when parsing or a callable that can be used to filter a list of table columns. Returns ------- usecols_tuple : tuple A tuple of (verified_usecols, usecols_dtype). 'verified_usecols' is either a set if an array-like is passed in or 'usecols' if a callable or None is passed in. 'usecols_dtype` is the inferred dtype of 'usecols' if an array-like is passed in or None if a callable or None is passed in. """ msg = ( "'usecols' must either be list-like of all strings, all unicode, " "all integers or a callable." ) if usecols is not None: if callable(usecols): return usecols, None if not is_list_like(usecols): # see gh-20529 # # Ensure it is iterable container but not string. raise ValueError(msg) usecols_dtype = lib.infer_dtype(usecols, skipna=False) if usecols_dtype not in ("empty", "integer", "string"): raise ValueError(msg) usecols = set(usecols) return usecols, usecols_dtype return usecols, None def _validate_parse_dates_arg(parse_dates): """ Check whether or not the 'parse_dates' parameter is a non-boolean scalar. Raises a ValueError if that is the case. """ msg = ( "Only booleans, lists, and dictionaries are accepted " "for the 'parse_dates' parameter" ) if parse_dates is not None: if is_scalar(parse_dates): if not lib.is_bool(parse_dates): raise TypeError(msg) elif not isinstance(parse_dates, (list, dict)): raise TypeError(msg) return parse_dates class ParserBase: def __init__(self, kwds): self.names = kwds.get("names") self.orig_names: Optional[List] = None self.prefix = kwds.pop("prefix", None) self.index_col = kwds.get("index_col", None) self.unnamed_cols: Set = set() self.index_names: Optional[List] = None self.col_names = None self.parse_dates = _validate_parse_dates_arg(kwds.pop("parse_dates", False)) self.date_parser = kwds.pop("date_parser", None) self.dayfirst = kwds.pop("dayfirst", False) self.keep_date_col = kwds.pop("keep_date_col", False) self.na_values = kwds.get("na_values") self.na_fvalues = kwds.get("na_fvalues") self.na_filter = kwds.get("na_filter", False) self.keep_default_na = kwds.get("keep_default_na", True) self.true_values = kwds.get("true_values") self.false_values = kwds.get("false_values") self.mangle_dupe_cols = kwds.get("mangle_dupe_cols", True) self.infer_datetime_format = kwds.pop("infer_datetime_format", False) self.cache_dates = kwds.pop("cache_dates", True) self._date_conv = _make_date_converter( date_parser=self.date_parser, dayfirst=self.dayfirst, infer_datetime_format=self.infer_datetime_format, cache_dates=self.cache_dates, ) # validate header options for mi self.header = kwds.get("header") if isinstance(self.header, (list, tuple, np.ndarray)): if not all(map(is_integer, self.header)): raise ValueError("header must be integer or list of integers") if any(i < 0 for i in self.header): raise ValueError( "cannot specify multi-index header with negative integers" ) if kwds.get("usecols"): raise ValueError( "cannot specify usecols when specifying a multi-index header" ) if kwds.get("names"): raise ValueError( "cannot specify names when specifying a multi-index header" ) # validate index_col that only contains integers if self.index_col is not None: is_sequence = isinstance(self.index_col, (list, tuple, np.ndarray)) if not ( is_sequence and all(map(is_integer, self.index_col)) or is_integer(self.index_col) ): raise ValueError( "index_col must only contain row numbers " "when specifying a multi-index header" ) elif self.header is not None: # GH 27394 if self.prefix is not None: raise ValueError( "Argument prefix must be None if argument header is not None" ) # GH 16338 elif not is_integer(self.header): raise ValueError("header must be integer or list of integers") # GH 27779 elif self.header < 0: raise ValueError( "Passing negative integer to header is invalid. " "For no header, use header=None instead" ) self._name_processed = False self._first_chunk = True self.handles: Optional[IOHandles] = None def _open_handles(self, src: FilePathOrBuffer, kwds: Dict[str, Any]) -> None: """ Let the readers open IOHanldes after they are done with their potential raises. """ self.handles = get_handle( src, "r", encoding=kwds.get("encoding", None), compression=kwds.get("compression", None), memory_map=kwds.get("memory_map", False), storage_options=kwds.get("storage_options", None), ) def _validate_parse_dates_presence(self, columns: List[str]) -> None: """ Check if parse_dates are in columns. If user has provided names for parse_dates, check if those columns are available. Parameters ---------- columns : list List of names of the dataframe. Raises ------ ValueError If column to parse_date is not in dataframe. """ cols_needed: Iterable if is_dict_like(self.parse_dates): cols_needed = itertools.chain(*self.parse_dates.values()) elif is_list_like(self.parse_dates): # a column in parse_dates could be represented # ColReference = Union[int, str] # DateGroups = List[ColReference] # ParseDates = Union[DateGroups, List[DateGroups], # Dict[ColReference, DateGroups]] cols_needed = itertools.chain.from_iterable( col if is_list_like(col) else [col] for col in self.parse_dates ) else: cols_needed = [] # get only columns that are references using names (str), not by index missing_cols = ", ".join( sorted( { col for col in cols_needed if isinstance(col, str) and col not in columns } ) ) if missing_cols: raise ValueError( f"Missing column provided to 'parse_dates': '{missing_cols}'" ) def close(self): if self.handles is not None: self.handles.close() @property def _has_complex_date_col(self): return isinstance(self.parse_dates, dict) or ( isinstance(self.parse_dates, list) and len(self.parse_dates) > 0 and isinstance(self.parse_dates[0], list) ) def _should_parse_dates(self, i): if isinstance(self.parse_dates, bool): return self.parse_dates else: if self.index_names is not None: name = self.index_names[i] else: name = None j = self.index_col[i] if is_scalar(self.parse_dates): return (j == self.parse_dates) or ( name is not None and name == self.parse_dates ) else: return (j in self.parse_dates) or ( name is not None and name in self.parse_dates ) def _extract_multi_indexer_columns( self, header, index_names, col_names, passed_names=False ): """ extract and return the names, index_names, col_names header is a list-of-lists returned from the parsers """ if len(header) < 2: return header[0], index_names, col_names, passed_names # the names are the tuples of the header that are not the index cols # 0 is the name of the index, assuming index_col is a list of column # numbers ic = self.index_col if ic is None: ic = [] if not isinstance(ic, (list, tuple, np.ndarray)): ic = [ic] sic = set(ic) # clean the index_names index_names = header.pop(-1) index_names, names, index_col = _clean_index_names( index_names, self.index_col, self.unnamed_cols ) # extract the columns field_count = len(header[0]) def extract(r): return tuple(r[i] for i in range(field_count) if i not in sic) columns = list(zip(*(extract(r) for r in header))) names = ic + columns # If we find unnamed columns all in a single # level, then our header was too long. for n in range(len(columns[0])): if all(ensure_str(col[n]) in self.unnamed_cols for col in columns): header = ",".join(str(x) for x in self.header) raise ParserError( f"Passed header=[{header}] are too many rows " "for this multi_index of columns" ) # Clean the column names (if we have an index_col). if len(ic): col_names = [ r[0] if ((r[0] is not None) and r[0] not in self.unnamed_cols) else None for r in header ] else: col_names = [None] * len(header) passed_names = True return names, index_names, col_names, passed_names def _maybe_dedup_names(self, names): # see gh-7160 and gh-9424: this helps to provide # immediate alleviation of the duplicate names # issue and appears to be satisfactory to users, # but ultimately, not needing to butcher the names # would be nice! if self.mangle_dupe_cols: names = list(names) # so we can index # pandas\io\parsers.py:1559: error: Need type annotation for # 'counts' [var-annotated] counts = defaultdict(int) # type: ignore[var-annotated] is_potential_mi = _is_potential_multi_index(names, self.index_col) for i, col in enumerate(names): cur_count = counts[col] while cur_count > 0: counts[col] = cur_count + 1 if is_potential_mi: col = col[:-1] + (f"{col[-1]}.{cur_count}",) else: col = f"{col}.{cur_count}" cur_count = counts[col] names[i] = col counts[col] = cur_count + 1 return names def _maybe_make_multi_index_columns(self, columns, col_names=None): # possibly create a column mi here if _is_potential_multi_index(columns): columns = MultiIndex.from_tuples(columns, names=col_names) return columns def _make_index(self, data, alldata, columns, indexnamerow=False): if not _is_index_col(self.index_col) or not self.index_col: index = None elif not self._has_complex_date_col: index = self._get_simple_index(alldata, columns) index = self._agg_index(index) elif self._has_complex_date_col: if not self._name_processed: (self.index_names, _, self.index_col) = _clean_index_names( list(columns), self.index_col, self.unnamed_cols ) self._name_processed = True index = self._get_complex_date_index(data, columns) index = self._agg_index(index, try_parse_dates=False) # add names for the index if indexnamerow: coffset = len(indexnamerow) - len(columns) # pandas\io\parsers.py:1604: error: Item "None" of "Optional[Any]" # has no attribute "set_names" [union-attr] index = index.set_names(indexnamerow[:coffset]) # type: ignore[union-attr] # maybe create a mi on the columns columns = self._maybe_make_multi_index_columns(columns, self.col_names) return index, columns _implicit_index = False def _get_simple_index(self, data, columns): def ix(col): if not isinstance(col, str): return col raise ValueError(f"Index {col} invalid") to_remove = [] index = [] for idx in self.index_col: i = ix(idx) to_remove.append(i) index.append(data[i]) # remove index items from content and columns, don't pop in # loop for i in sorted(to_remove, reverse=True): data.pop(i) if not self._implicit_index: columns.pop(i) return index def _get_complex_date_index(self, data, col_names): def _get_name(icol): if isinstance(icol, str): return icol if col_names is None: raise ValueError(f"Must supply column order to use {icol!s} as index") for i, c in enumerate(col_names): if i == icol: return c to_remove = [] index = [] for idx in self.index_col: name = _get_name(idx) to_remove.append(name) index.append(data[name]) # remove index items from content and columns, don't pop in # loop for c in sorted(to_remove, reverse=True): data.pop(c) col_names.remove(c) return index def _agg_index(self, index, try_parse_dates=True) -> Index: arrays = [] for i, arr in enumerate(index): if try_parse_dates and self._should_parse_dates(i): arr = self._date_conv(arr) if self.na_filter: col_na_values = self.na_values col_na_fvalues = self.na_fvalues else: col_na_values = set() col_na_fvalues = set() if isinstance(self.na_values, dict): # pandas\io\parsers.py:1678: error: Value of type # "Optional[Any]" is not indexable [index] col_name = self.index_names[i] # type: ignore[index] if col_name is not None: col_na_values, col_na_fvalues = _get_na_values( col_name, self.na_values, self.na_fvalues, self.keep_default_na ) arr, _ = self._infer_types(arr, col_na_values | col_na_fvalues) arrays.append(arr) names = self.index_names index = ensure_index_from_sequences(arrays, names) return index def _convert_to_ndarrays( self, dct, na_values, na_fvalues, verbose=False, converters=None, dtypes=None ): result = {} for c, values in dct.items(): conv_f = None if converters is None else converters.get(c, None) if isinstance(dtypes, dict): cast_type = dtypes.get(c, None) else: # single dtype or None cast_type = dtypes if self.na_filter: col_na_values, col_na_fvalues = _get_na_values( c, na_values, na_fvalues, self.keep_default_na ) else: col_na_values, col_na_fvalues = set(), set() if conv_f is not None: # conv_f applied to data before inference if cast_type is not None: warnings.warn( ( "Both a converter and dtype were specified " f"for column {c} - only the converter will be used" ), ParserWarning, stacklevel=7, ) try: values = lib.map_infer(values, conv_f) except ValueError: mask = algorithms.isin(values, list(na_values)).view(np.uint8) values = lib.map_infer_mask(values, conv_f, mask) cvals, na_count = self._infer_types( values, set(col_na_values) | col_na_fvalues, try_num_bool=False ) else: is_ea = is_extension_array_dtype(cast_type) is_str_or_ea_dtype = is_ea or is_string_dtype(cast_type) # skip inference if specified dtype is object # or casting to an EA try_num_bool = not (cast_type and is_str_or_ea_dtype) # general type inference and conversion cvals, na_count = self._infer_types( values, set(col_na_values) | col_na_fvalues, try_num_bool ) # type specified in dtype param or cast_type is an EA if cast_type and ( not is_dtype_equal(cvals, cast_type) or is_extension_array_dtype(cast_type) ): if not is_ea and na_count > 0: try: if is_bool_dtype(cast_type): raise ValueError( f"Bool column has NA values in column {c}" ) except (AttributeError, TypeError): # invalid input to is_bool_dtype pass cvals = self._cast_types(cvals, cast_type, c) result[c] = cvals if verbose and na_count: print(f"Filled {na_count} NA values in column {c!s}") return result def _infer_types(self, values, na_values, try_num_bool=True): """ Infer types of values, possibly casting Parameters ---------- values : ndarray na_values : set try_num_bool : bool, default try try to cast values to numeric (first preference) or boolean Returns ------- converted : ndarray na_count : int """ na_count = 0 if issubclass(values.dtype.type, (np.number, np.bool_)): mask = algorithms.isin(values, list(na_values)) na_count = mask.sum() if na_count > 0: if is_integer_dtype(values): values = values.astype(np.float64) np.putmask(values, mask, np.nan) return values, na_count if try_num_bool and is_object_dtype(values.dtype): # exclude e.g DatetimeIndex here try: result = lib.maybe_convert_numeric(values, na_values, False) except (ValueError, TypeError): # e.g. encountering datetime string gets ValueError # TypeError can be raised in floatify result = values na_count = parsers.sanitize_objects(result, na_values, False) else: na_count = isna(result).sum() else: result = values if values.dtype == np.object_: na_count =
parsers.sanitize_objects(values, na_values, False)
pandas._libs.parsers.sanitize_objects
from adjustText import adjust_text import copy import csv import matplotlib import matplotlib.patheffects as PathEffects import matplotlib.pyplot as plt import networkx as nx import numpy as np import os import pandas as pd import pickle import scipy.cluster.hierarchy as SciPyClus import scipy.stats as scs from singscore.singscore import * import sys class PathDir: dirCurrent = os.path.dirname(sys.argv[0]) dirBaseGit = os.path.dirname(os.path.normpath(dirCurrent)) pathOutFolder = dirBaseGit for strFolder in ['figures']: pathOutFolder = os.path.join(pathOutFolder, strFolder) pathProcRNAData = dirBaseGit for strFolder in ['preproc', 'rnaseq']: pathProcRNAData = os.path.join(pathProcRNAData, strFolder) pathRefData = dirBaseGit for strFolder in ['preproc', 'ref']: pathRefData = os.path.join(pathRefData, strFolder) pathPublicData = dirBaseGit for strFolder in ['preproc', 'public_data']: pathPublicData = os.path.join(pathPublicData, strFolder) class Process: listLinesForDisp = ['MDA-MB-231', 'SUM159'] listLines = [strLine.replace('-','') for strLine in listLinesForDisp] listDiffExprFiles = [ f'voom-limma_{strLine}_GAll-EVC_diffExpr.csv' for strLine in listLines] listOfListsConds = [['NTC', 'NTC', 'NTC', 'EVC', 'EVC', 'EVC', 'g4', 'g4', 'g4', 'gAll', 'gAll', 'gAll'], ['NTC', 'NTC', 'NTC', 'EVC', 'EVC', 'EVC', 'g4', 'g4', 'g4', 'gAll', 'gAll', 'gAll']] def quant_data(flagResult=False): strQuantFile = 'Waryah_Oct2017_ZEB1-epiCRISPR_QuantGeneLevel_lengthScaledTPM.csv' dfData = pd.read_table(os.path.join(PathDir.pathProcRNAData, strQuantFile), sep=',', header=0, index_col=0) return dfData def diff_expr_data(flagResult=False): listDFToMerge = [] for iFile in range(len(Process.listDiffExprFiles)): strFileName = Process.listDiffExprFiles[iFile] # strCond = strFileName.split('.csv')[0] strCellLine = strFileName.split('_GAll-EVC_diffExpr.csv')[0].split('voom-limma_')[1] dfIn = pd.read_csv(os.path.join(PathDir.pathProcRNAData, strFileName), sep=',', header=0, index_col=0) if iFile == 0: dfIn.drop(labels=['t', 'P.Value'], axis=1, inplace=True) else: dfIn.drop(labels=['AveExpr', 't', 'P.Value'], axis=1, inplace=True) arrayHasNullStats = dfIn['adj.P.Val'].isnull().astype(bool) arrayHasNullDiffExpr = dfIn['logFC'].isnull().astype(bool) arrayAdjPVals = dfIn['adj.P.Val'].values.astype(float) arrayLogFC = dfIn['logFC'].values.astype(float) arrayAdjPVals[np.where(arrayHasNullStats)[0]] = 1.0 arrayLogFC[np.where(arrayHasNullDiffExpr)[0]] = 0.0 dfIn['adj.P.Val'] = pd.Series(arrayAdjPVals, index=dfIn.index.tolist()) dfIn['logFC'] = pd.Series(arrayLogFC, index=dfIn.index.tolist()) listColumns = dfIn.columns.tolist() dictColToRename = {} for strCol in listColumns: if np.bitwise_or(strCol == 'external_gene_name', strCol == 'AveExpr'): dictColToRename[strCol] = strCol else: dictColToRename[strCol] = strCellLine + ':' + strCol dfIn.rename(columns=dictColToRename, inplace=True) listDFToMerge.append(dfIn) dfMerged = pd.concat(listDFToMerge, axis=1, sort=True) return dfMerged def tcga_scores(flagResult=False, dfIn=pd.DataFrame(), flagPerformExtraction=False): strTempFileName = 'TCGA-BRCA-EpiMesScores.tsv' pathOut = os.path.join(PathDir.pathOutFolder, 'figure_5') if not os.path.exists(os.path.join(pathOut, strTempFileName)): flagPerformExtraction = True if flagPerformExtraction: listTCGAGenes = dfIn.index.tolist() listTCGASamples = dfIn.columns.tolist() numSamples = len(listTCGASamples) dictEpiMesCellLine = Process.tan2012_tissue_genes() listEpiTissueGenes = dictEpiMesCellLine['epi_genes'] listMesTissueGenes = dictEpiMesCellLine['mes_genes'] # create lists of the cell line/tissue epithelial/mesenchymal gene lists for scoring listOutputEpiTissueGenesMatched = [strGene for strGene in listTCGAGenes if strGene.split('|')[0] in listEpiTissueGenes] listOutputMesTissueGenesMatched = [strGene for strGene in listTCGAGenes if strGene.split('|')[0] in listMesTissueGenes] dfScoresOut = pd.DataFrame( {'Epithelial Score':np.zeros(numSamples, dtype=float), 'Mesenchymal Score':np.zeros(numSamples, dtype=float)}, index=listTCGASamples) for iSample in range(numSamples): print('Patient ' + '{}'.format(iSample)) strSample = listTCGASamples[iSample] dfScore = score(up_gene=listOutputEpiTissueGenesMatched, sample=dfIn[[strSample]]) dfScoresOut.loc[strSample,'Epithelial Score'] = \ dfScore['total_score'].values.astype(float)[0] dfScore = score(up_gene=listOutputMesTissueGenesMatched, sample=dfIn[[strSample]]) dfScoresOut.loc[strSample,'Mesenchymal Score'] = \ dfScore['total_score'].values.astype(float)[0] dfScoresOut.to_csv(os.path.join(pathOut, strTempFileName), sep='\t') else: dfScoresOut = pd.read_table(os.path.join(pathOut, strTempFileName), sep='\t', index_col=0, header=0) return dfScoresOut def tcga_brca(flagResult=False, flagPerformExtraction=False): strPanCanRNASeqFile = 'EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv' strTempFileName = 'TCGA_BrCa_PreProc_RNA.pickle' if not os.path.exists(os.path.join(PathDir.pathPublicData, strTempFileName)): flagPerformExtraction = True if flagPerformExtraction: # extract the TCGA pan-cancer patient metadata dfMeta = pd.read_excel( os.path.join(PathDir.pathPublicData, 'TCGA-CDR-SupplementalTableS1.xlsx'), header=0, index_col=0, sheet_name='TCGA-CDR') dfMeta.set_index('bcr_patient_barcode', inplace=True) # identify patients which are flagged as the breast cancer cohort listBRCAPatients = dfMeta[dfMeta['type']=='BRCA'].index.tolist() dfTCGAPanCanSamples = pd.read_table( os.path.join(PathDir.pathPublicData, strPanCanRNASeqFile), sep='\t', header=None, index_col=None, nrows=1) listTCGAPanCanColumns = dfTCGAPanCanSamples.iloc[0,:].tolist() listTCGAPanCanSamples = listTCGAPanCanColumns[1:] # extract primary tumour (index 01) samples from the full sample list listBRCASamples = [strSample for strSample in listTCGAPanCanSamples if np.bitwise_and(strSample[0:len('TCGA-NN-NNNN')] in listBRCAPatients, strSample[13:15]=='01')] # # # # # # # # # # # # # # # # # # # # # # extract the TCGA pan-cancer RNA-seq data #take this subset dfTCGABrCa = pd.read_table( os.path.join(PathDir.pathPublicData, strPanCanRNASeqFile), sep='\t', header=0, index_col=0, usecols=[listTCGAPanCanColumns[0]]+listBRCASamples) dfTCGABrCa.to_pickle(os.path.join(PathDir.pathPublicData, strTempFileName)) else: dfTCGABrCa = pd.read_pickle(os.path.join(PathDir.pathPublicData, strTempFileName)) return dfTCGABrCa def ccle_brca(flagResult=False, flagPerformExtraction=False): strTempFile = 'CCLE_BRCA_RNA_Abund.tsv' if not os.path.exists(os.path.join(PathDir.pathPublicData, strTempFile)): flagPerformExtraction = True if flagPerformExtraction: #https://ndownloader.figshare.com/files/35020903 dfMetaData = pd.read_table(os.path.join(PathDir.pathPublicData, 'sample_info.csv'), sep=',', index_col=0, header=0) listBRCALinesACH = dfMetaData[dfMetaData['primary_disease'] == 'Breast Cancer'].index.tolist() dictACHToCCLE = dict(zip(listBRCALinesACH, dfMetaData['CCLE_Name'].reindex(listBRCALinesACH).values.tolist())) #https://ndownloader.figshare.com/files/34989919 dfCCLE = pd.read_table(os.path.join(PathDir.pathPublicData, 'CCLE_expression.csv'), sep=',', index_col=0, header=0) dfBrCa = dfCCLE.reindex(listBRCALinesACH).copy(deep=True) dfBrCa.rename( index=dict(zip(listBRCALinesACH,[dictACHToCCLE[strLine] for strLine in listBRCALinesACH])), inplace=True) dfBrCa.to_csv(os.path.join(PathDir.pathPublicData, strTempFile), sep='\t') else: dfBrCa = pd.read_table(os.path.join(PathDir.pathPublicData, strTempFile), sep='\t', index_col=0) return dfBrCa def ccle_scores(flagResult=False, flagPerformExtraction=False, dfIn=
pd.DataFrame()
pandas.DataFrame
from datetime import datetime, time, timedelta from pandas.compat import range import sys import os import nose import numpy as np from pandas import Index, DatetimeIndex, Timestamp, Series, date_range, period_range import pandas.tseries.frequencies as frequencies from pandas.tseries.tools import to_datetime import pandas.tseries.offsets as offsets from pandas.tseries.period import PeriodIndex import pandas.compat as compat from pandas.compat import is_platform_windows import pandas.util.testing as tm from pandas import Timedelta def test_to_offset_multiple(): freqstr = '2h30min' freqstr2 = '2h 30min' result = frequencies.to_offset(freqstr) assert(result == frequencies.to_offset(freqstr2)) expected = offsets.Minute(150) assert(result == expected) freqstr = '2h30min15s' result = frequencies.to_offset(freqstr) expected = offsets.Second(150 * 60 + 15) assert(result == expected) freqstr = '2h 60min' result = frequencies.to_offset(freqstr) expected = offsets.Hour(3) assert(result == expected) freqstr = '15l500u' result = frequencies.to_offset(freqstr) expected = offsets.Micro(15500) assert(result == expected) freqstr = '10s75L' result = frequencies.to_offset(freqstr) expected = offsets.Milli(10075) assert(result == expected) freqstr = '2800N' result = frequencies.to_offset(freqstr) expected = offsets.Nano(2800) assert(result == expected) # malformed try: frequencies.to_offset('2h20m') except ValueError: pass else: assert(False) def test_to_offset_negative(): freqstr = '-1S' result = frequencies.to_offset(freqstr) assert(result.n == -1) freqstr = '-5min10s' result = frequencies.to_offset(freqstr) assert(result.n == -310) def test_to_offset_leading_zero(): freqstr = '00H 00T 01S' result = frequencies.to_offset(freqstr) assert(result.n == 1) freqstr = '-00H 03T 14S' result = frequencies.to_offset(freqstr) assert(result.n == -194) def test_to_offset_pd_timedelta(): # Tests for #9064 td = Timedelta(days=1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(86401) assert(expected==result) td = Timedelta(days=-1, seconds=1) result = frequencies.to_offset(td) expected = offsets.Second(-86399) assert(expected==result) td = Timedelta(hours=1, minutes=10) result = frequencies.to_offset(td) expected = offsets.Minute(70) assert(expected==result) td = Timedelta(hours=1, minutes=-10) result = frequencies.to_offset(td) expected = offsets.Minute(50) assert(expected==result) td = Timedelta(weeks=1) result = frequencies.to_offset(td) expected = offsets.Day(7) assert(expected==result) td1 = Timedelta(hours=1) result1 = frequencies.to_offset(td1) result2 = frequencies.to_offset('60min') assert(result1 == result2) td = Timedelta(microseconds=1) result = frequencies.to_offset(td) expected = offsets.Micro(1) assert(expected == result) td = Timedelta(microseconds=0) tm.assertRaises(ValueError, lambda: frequencies.to_offset(td)) def test_anchored_shortcuts(): result = frequencies.to_offset('W') expected = frequencies.to_offset('W-SUN') assert(result == expected) result1 = frequencies.to_offset('Q') result2 = frequencies.to_offset('Q-DEC') expected = offsets.QuarterEnd(startingMonth=12) assert(result1 == expected) assert(result2 == expected) result1 = frequencies.to_offset('Q-MAY') expected = offsets.QuarterEnd(startingMonth=5) assert(result1 == expected) def test_get_rule_month(): result = frequencies._get_rule_month('W') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.Week()) assert(result == 'DEC') result = frequencies._get_rule_month('D') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.Day()) assert(result == 'DEC') result = frequencies._get_rule_month('Q') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.QuarterEnd(startingMonth=12)) print(result == 'DEC') result = frequencies._get_rule_month('Q-JAN') assert(result == 'JAN') result = frequencies._get_rule_month(offsets.QuarterEnd(startingMonth=1)) assert(result == 'JAN') result = frequencies._get_rule_month('A-DEC') assert(result == 'DEC') result = frequencies._get_rule_month(offsets.YearEnd()) assert(result == 'DEC') result = frequencies._get_rule_month('A-MAY') assert(result == 'MAY') result = frequencies._get_rule_month(offsets.YearEnd(month=5)) assert(result == 'MAY') class TestFrequencyCode(tm.TestCase): def test_freq_code(self): self.assertEqual(frequencies.get_freq('A'), 1000) self.assertEqual(frequencies.get_freq('3A'), 1000) self.assertEqual(frequencies.get_freq('-1A'), 1000) self.assertEqual(frequencies.get_freq('W'), 4000) self.assertEqual(frequencies.get_freq('W-MON'), 4001) self.assertEqual(frequencies.get_freq('W-FRI'), 4005) for freqstr, code in compat.iteritems(frequencies._period_code_map): result = frequencies.get_freq(freqstr) self.assertEqual(result, code) result = frequencies.get_freq_group(freqstr) self.assertEqual(result, code // 1000 * 1000) result = frequencies.get_freq_group(code) self.assertEqual(result, code // 1000 * 1000) def test_freq_group(self): self.assertEqual(frequencies.get_freq_group('A'), 1000) self.assertEqual(frequencies.get_freq_group('3A'), 1000) self.assertEqual(frequencies.get_freq_group('-1A'), 1000) self.assertEqual(frequencies.get_freq_group('A-JAN'), 1000) self.assertEqual(frequencies.get_freq_group('A-MAY'), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd()), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd(month=1)), 1000) self.assertEqual(frequencies.get_freq_group(offsets.YearEnd(month=5)), 1000) self.assertEqual(frequencies.get_freq_group('W'), 4000) self.assertEqual(frequencies.get_freq_group('W-MON'), 4000) self.assertEqual(frequencies.get_freq_group('W-FRI'), 4000) self.assertEqual(frequencies.get_freq_group(offsets.Week()), 4000) self.assertEqual(frequencies.get_freq_group(offsets.Week(weekday=1)), 4000) self.assertEqual(frequencies.get_freq_group(offsets.Week(weekday=5)), 4000) def test_get_to_timestamp_base(self): tsb = frequencies.get_to_timestamp_base self.assertEqual(tsb(frequencies.get_freq_code('D')[0]), frequencies.get_freq_code('D')[0]) self.assertEqual(tsb(frequencies.get_freq_code('W')[0]), frequencies.get_freq_code('D')[0]) self.assertEqual(tsb(frequencies.get_freq_code('M')[0]), frequencies.get_freq_code('D')[0]) self.assertEqual(tsb(frequencies.get_freq_code('S')[0]), frequencies.get_freq_code('S')[0]) self.assertEqual(tsb(frequencies.get_freq_code('T')[0]), frequencies.get_freq_code('S')[0]) self.assertEqual(tsb(frequencies.get_freq_code('H')[0]), frequencies.get_freq_code('S')[0]) def test_freq_to_reso(self): Reso = frequencies.Resolution self.assertEqual(Reso.get_str_from_freq('A'), 'year') self.assertEqual(Reso.get_str_from_freq('Q'), 'quarter') self.assertEqual(Reso.get_str_from_freq('M'), 'month') self.assertEqual(Reso.get_str_from_freq('D'), 'day') self.assertEqual(Reso.get_str_from_freq('H'), 'hour') self.assertEqual(Reso.get_str_from_freq('T'), 'minute') self.assertEqual(Reso.get_str_from_freq('S'), 'second') self.assertEqual(Reso.get_str_from_freq('L'), 'millisecond') self.assertEqual(Reso.get_str_from_freq('U'), 'microsecond') self.assertEqual(Reso.get_str_from_freq('N'), 'nanosecond') for freq in ['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U', 'N']: # check roundtrip result = Reso.get_freq(Reso.get_str_from_freq(freq)) self.assertEqual(freq, result) for freq in ['D', 'H', 'T', 'S', 'L', 'U']: result = Reso.get_freq(Reso.get_str(Reso.get_reso_from_freq(freq))) self.assertEqual(freq, result) def test_get_freq_code(self): # freqstr self.assertEqual(frequencies.get_freq_code('A'), (frequencies.get_freq('A'), 1)) self.assertEqual(frequencies.get_freq_code('3D'), (frequencies.get_freq('D'), 3)) self.assertEqual(frequencies.get_freq_code('-2M'), (frequencies.get_freq('M'), -2)) # tuple self.assertEqual(frequencies.get_freq_code(('D', 1)), (frequencies.get_freq('D'), 1)) self.assertEqual(frequencies.get_freq_code(('A', 3)), (frequencies.get_freq('A'), 3)) self.assertEqual(frequencies.get_freq_code(('M', -2)), (frequencies.get_freq('M'), -2)) # numeric tuple self.assertEqual(frequencies.get_freq_code((1000, 1)), (1000, 1)) # offsets self.assertEqual(frequencies.get_freq_code(offsets.Day()), (frequencies.get_freq('D'), 1)) self.assertEqual(frequencies.get_freq_code(offsets.Day(3)), (frequencies.get_freq('D'), 3)) self.assertEqual(frequencies.get_freq_code(offsets.Day(-2)), (frequencies.get_freq('D'), -2)) self.assertEqual(frequencies.get_freq_code(offsets.MonthEnd()), (frequencies.get_freq('M'), 1)) self.assertEqual(frequencies.get_freq_code(offsets.MonthEnd(3)), (frequencies.get_freq('M'), 3)) self.assertEqual(frequencies.get_freq_code(offsets.MonthEnd(-2)), (frequencies.get_freq('M'), -2)) self.assertEqual(frequencies.get_freq_code(offsets.Week()), (frequencies.get_freq('W'), 1)) self.assertEqual(frequencies.get_freq_code(offsets.Week(3)), (frequencies.get_freq('W'), 3)) self.assertEqual(frequencies.get_freq_code(offsets.Week(-2)), (frequencies.get_freq('W'), -2)) # monday is weekday=0 self.assertEqual(frequencies.get_freq_code(offsets.Week(weekday=1)), (frequencies.get_freq('W-TUE'), 1)) self.assertEqual(frequencies.get_freq_code(offsets.Week(3, weekday=0)), (frequencies.get_freq('W-MON'), 3)) self.assertEqual(frequencies.get_freq_code(offsets.Week(-2, weekday=4)), (frequencies.get_freq('W-FRI'), -2)) _dti = DatetimeIndex class TestFrequencyInference(tm.TestCase): def test_raise_if_period_index(self): index = PeriodIndex(start="1/1/1990", periods=20, freq="M") self.assertRaises(TypeError, frequencies.infer_freq, index) def test_raise_if_too_few(self): index = _dti(['12/31/1998', '1/3/1999']) self.assertRaises(ValueError, frequencies.infer_freq, index) def test_business_daily(self): index = _dti(['12/31/1998', '1/3/1999', '1/4/1999']) self.assertEqual(frequencies.infer_freq(index), 'B') def test_day(self): self._check_tick(timedelta(1), 'D') def test_day_corner(self): index = _dti(['1/1/2000', '1/2/2000', '1/3/2000']) self.assertEqual(frequencies.infer_freq(index), 'D') def test_non_datetimeindex(self): dates = to_datetime(['1/1/2000', '1/2/2000', '1/3/2000']) self.assertEqual(frequencies.infer_freq(dates), 'D') def test_hour(self): self._check_tick(timedelta(hours=1), 'H') def test_minute(self): self._check_tick(timedelta(minutes=1), 'T') def test_second(self): self._check_tick(timedelta(seconds=1), 'S') def test_millisecond(self): self._check_tick(timedelta(microseconds=1000), 'L') def test_microsecond(self): self._check_tick(timedelta(microseconds=1), 'U') def test_nanosecond(self): self._check_tick(np.timedelta64(1, 'ns'), 'N') def _check_tick(self, base_delta, code): b = Timestamp(datetime.now()) for i in range(1, 5): inc = base_delta * i index = _dti([b + inc * j for j in range(3)]) if i > 1: exp_freq = '%d%s' % (i, code) else: exp_freq = code self.assertEqual(frequencies.infer_freq(index), exp_freq) index = _dti([b + base_delta * 7] + [b + base_delta * j for j in range(3)]) self.assertIsNone(frequencies.infer_freq(index)) index = _dti([b + base_delta * j for j in range(3)] + [b + base_delta * 7]) self.assertIsNone(frequencies.infer_freq(index)) def test_weekly(self): days = ['MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT', 'SUN'] for day in days: self._check_generated_range('1/1/2000', 'W-%s' % day) def test_week_of_month(self): days = ['MON', 'TUE', 'WED', 'THU', 'FRI', 'SAT', 'SUN'] for day in days: for i in range(1, 5): self._check_generated_range('1/1/2000', 'WOM-%d%s' % (i, day)) def test_fifth_week_of_month(self): # Only supports freq up to WOM-4. See #9425 func = lambda: date_range('2014-01-01', freq='WOM-5MON') self.assertRaises(ValueError, func) def test_fifth_week_of_month_infer(self): # Only attempts to infer up to WOM-4. See #9425 index = DatetimeIndex(["2014-03-31", "2014-06-30", "2015-03-30"]) assert frequencies.infer_freq(index) is None def test_week_of_month_fake(self): #All of these dates are on same day of week and are 4 or 5 weeks apart index = DatetimeIndex(["2013-08-27","2013-10-01","2013-10-29","2013-11-26"]) assert frequencies.infer_freq(index) != 'WOM-4TUE' def test_monthly(self): self._check_generated_range('1/1/2000', 'M') def test_monthly_ambiguous(self): rng = _dti(['1/31/2000', '2/29/2000', '3/31/2000']) self.assertEqual(rng.inferred_freq, 'M') def test_business_monthly(self): self._check_generated_range('1/1/2000', 'BM') def test_business_start_monthly(self): self._check_generated_range('1/1/2000', 'BMS') def test_quarterly(self): for month in ['JAN', 'FEB', 'MAR']: self._check_generated_range('1/1/2000', 'Q-%s' % month) def test_annual(self): for month in MONTHS: self._check_generated_range('1/1/2000', 'A-%s' % month) def test_business_annual(self): for month in MONTHS: self._check_generated_range('1/1/2000', 'BA-%s' % month) def test_annual_ambiguous(self): rng = _dti(['1/31/2000', '1/31/2001', '1/31/2002']) self.assertEqual(rng.inferred_freq, 'A-JAN') def _check_generated_range(self, start, freq): freq = freq.upper() gen = date_range(start, periods=7, freq=freq) index = _dti(gen.values) if not freq.startswith('Q-'): self.assertEqual(frequencies.infer_freq(index), gen.freqstr) else: inf_freq = frequencies.infer_freq(index) self.assertTrue((inf_freq == 'Q-DEC' and gen.freqstr in ('Q', 'Q-DEC', 'Q-SEP', 'Q-JUN', 'Q-MAR')) or (inf_freq == 'Q-NOV' and gen.freqstr in ('Q-NOV', 'Q-AUG', 'Q-MAY', 'Q-FEB')) or (inf_freq == 'Q-OCT' and gen.freqstr in ('Q-OCT', 'Q-JUL', 'Q-APR', 'Q-JAN'))) gen = date_range(start, periods=5, freq=freq) index = _dti(gen.values) if not freq.startswith('Q-'): self.assertEqual(frequencies.infer_freq(index), gen.freqstr) else: inf_freq = frequencies.infer_freq(index) self.assertTrue((inf_freq == 'Q-DEC' and gen.freqstr in ('Q', 'Q-DEC', 'Q-SEP', 'Q-JUN', 'Q-MAR')) or (inf_freq == 'Q-NOV' and gen.freqstr in ('Q-NOV', 'Q-AUG', 'Q-MAY', 'Q-FEB')) or (inf_freq == 'Q-OCT' and gen.freqstr in ('Q-OCT', 'Q-JUL', 'Q-APR', 'Q-JAN'))) def test_infer_freq(self): rng = period_range('1959Q2', '2009Q3', freq='Q') rng = Index(rng.to_timestamp('D', how='e').asobject) self.assertEqual(rng.inferred_freq, 'Q-DEC') rng = period_range('1959Q2', '2009Q3', freq='Q-NOV') rng = Index(rng.to_timestamp('D', how='e').asobject) self.assertEqual(rng.inferred_freq, 'Q-NOV') rng = period_range('1959Q2', '2009Q3', freq='Q-OCT') rng = Index(rng.to_timestamp('D', how='e').asobject) self.assertEqual(rng.inferred_freq, 'Q-OCT') def test_infer_freq_tz(self): freqs = {'AS-JAN': ['2009-01-01', '2010-01-01', '2011-01-01', '2012-01-01'], 'Q-OCT': ['2009-01-31', '2009-04-30', '2009-07-31', '2009-10-31'], 'M': ['2010-11-30', '2010-12-31', '2011-01-31', '2011-02-28'], 'W-SAT': ['2010-12-25', '2011-01-01', '2011-01-08', '2011-01-15'], 'D': ['2011-01-01', '2011-01-02', '2011-01-03', '2011-01-04'], 'H': ['2011-12-31 22:00', '2011-12-31 23:00', '2012-01-01 00:00', '2012-01-01 01:00'] } # GH 7310 for tz in [None, 'Australia/Sydney', 'Asia/Tokyo', 'Europe/Paris', 'US/Pacific', 'US/Eastern']: for expected, dates in compat.iteritems(freqs): idx = DatetimeIndex(dates, tz=tz) self.assertEqual(idx.inferred_freq, expected) def test_infer_freq_tz_transition(self): # Tests for #8772 date_pairs = [['2013-11-02', '2013-11-5'], #Fall DST ['2014-03-08', '2014-03-11'], #Spring DST ['2014-01-01', '2014-01-03']] #Regular Time freqs = ['3H', '10T', '3601S', '3600001L', '3600000001U', '3600000000001N'] for tz in [None, 'Australia/Sydney', 'Asia/Tokyo', 'Europe/Paris', 'US/Pacific', 'US/Eastern']: for date_pair in date_pairs: for freq in freqs: idx = date_range(date_pair[0], date_pair[1], freq=freq, tz=tz) self.assertEqual(idx.inferred_freq, freq) index = date_range("2013-11-03", periods=5, freq="3H").tz_localize("America/Chicago") self.assertIsNone(index.inferred_freq) def test_infer_freq_businesshour(self): # GH 7905 idx = DatetimeIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00', '2014-07-01 14:00']) # hourly freq in a day must result in 'H' self.assertEqual(idx.inferred_freq, 'H') idx = DatetimeIndex(['2014-07-01 09:00', '2014-07-01 10:00', '2014-07-01 11:00', '2014-07-01 12:00', '2014-07-01 13:00', '2014-07-01 14:00', '2014-07-01 15:00', '2014-07-01 16:00', '2014-07-02 09:00', '2014-07-02 10:00', '2014-07-02 11:00']) self.assertEqual(idx.inferred_freq, 'BH') idx = DatetimeIndex(['2014-07-04 09:00', '2014-07-04 10:00', '2014-07-04 11:00', '2014-07-04 12:00', '2014-07-04 13:00', '2014-07-04 14:00', '2014-07-04 15:00', '2014-07-04 16:00', '2014-07-07 09:00', '2014-07-07 10:00', '2014-07-07 11:00']) self.assertEqual(idx.inferred_freq, 'BH') idx = DatetimeIndex(['2014-07-04 09:00', '2014-07-04 10:00', '2014-07-04 11:00', '2014-07-04 12:00', '2014-07-04 13:00', '2014-07-04 14:00', '2014-07-04 15:00', '2014-07-04 16:00', '2014-07-07 09:00', '2014-07-07 10:00', '2014-07-07 11:00', '2014-07-07 12:00', '2014-07-07 13:00', '2014-07-07 14:00', '2014-07-07 15:00', '2014-07-07 16:00', '2014-07-08 09:00', '2014-07-08 10:00', '2014-07-08 11:00', '2014-07-08 12:00', '2014-07-08 13:00', '2014-07-08 14:00', '2014-07-08 15:00', '2014-07-08 16:00']) self.assertEqual(idx.inferred_freq, 'BH') def test_not_monotonic(self): rng = _dti(['1/31/2000', '1/31/2001', '1/31/2002']) rng = rng[::-1] self.assertEqual(rng.inferred_freq, '-1A-JAN') def test_non_datetimeindex(self): rng = _dti(['1/31/2000', '1/31/2001', '1/31/2002']) vals = rng.to_pydatetime() result = frequencies.infer_freq(vals) self.assertEqual(result, rng.inferred_freq) def test_invalid_index_types(self): # test all index types for i in [ tm.makeIntIndex(10), tm.makeFloatIndex(10), tm.makePeriodIndex(10) ]: self.assertRaises(TypeError, lambda : frequencies.infer_freq(i)) # GH 10822 # odd error message on conversions to datetime for unicode if not is_platform_windows(): for i in [ tm.makeStringIndex(10), tm.makeUnicodeIndex(10) ]: self.assertRaises(ValueError, lambda : frequencies.infer_freq(i)) def test_string_datetimelike_compat(self): # GH 6463 expected = frequencies.infer_freq(['2004-01', '2004-02', '2004-03', '2004-04']) result = frequencies.infer_freq(Index(['2004-01', '2004-02', '2004-03', '2004-04'])) self.assertEqual(result,expected) def test_series(self): # GH6407 # inferring series # invalid type of Series for s in [ Series(np.arange(10)), Series(np.arange(10.))]: self.assertRaises(TypeError, lambda : frequencies.infer_freq(s)) # a non-convertible string self.assertRaises(ValueError, lambda : frequencies.infer_freq(Series(['foo','bar']))) # cannot infer on PeriodIndex for freq in [None, 'L']: s = Series(period_range('2013',periods=10,freq=freq)) self.assertRaises(TypeError, lambda : frequencies.infer_freq(s)) for freq in ['Y']: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): s = Series(period_range('2013',periods=10,freq=freq)) self.assertRaises(TypeError, lambda : frequencies.infer_freq(s)) # DateTimeIndex for freq in ['M', 'L', 'S']: s = Series(date_range('20130101',periods=10,freq=freq)) inferred = frequencies.infer_freq(s) self.assertEqual(inferred,freq) s = Series(date_range('20130101','20130110')) inferred = frequencies.infer_freq(s) self.assertEqual(inferred,'D') def test_legacy_offset_warnings(self): for k, v in compat.iteritems(frequencies._rule_aliases): with tm.assert_produces_warning(FutureWarning): result = frequencies.get_offset(k) exp = frequencies.get_offset(v) self.assertEqual(result, exp) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): idx = date_range('2011-01-01', periods=5, freq=k) exp = date_range('2011-01-01', periods=5, freq=v) self.assert_index_equal(idx, exp) MONTHS = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC'] def test_is_superperiod_subperiod(): assert(frequencies.is_superperiod(offsets.YearEnd(), offsets.MonthEnd())) assert(frequencies.is_subperiod(offsets.MonthEnd(), offsets.YearEnd())) assert(frequencies.is_superperiod(offsets.Hour(), offsets.Minute())) assert(frequencies.is_subperiod(offsets.Minute(), offsets.Hour())) assert(frequencies.is_superperiod(offsets.Second(), offsets.Milli())) assert(frequencies.is_subperiod(offsets.Milli(), offsets.Second())) assert(frequencies.is_superperiod(offsets.Milli(),
offsets.Micro()
pandas.tseries.offsets.Micro
import pytest import pandas.util._test_decorators as td import pandas as pd import pandas._testing as tm arrays = [
pd.array([1, 2, 3, None], dtype=dtype)
pandas.array
# -*- coding: utf-8 -*- """carpriceprediction.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1yHxqpV_thjXvv6gs4Ya5ZY_KF6PDiYyx """ from google.colab import drive drive.mount('/content/drive') import pandas as pd data =
pd.read_csv('/car data.csv')
pandas.read_csv
import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd import scipy as sc import pickle import os from . import preprocess from scipy.sparse import vstack, csr_matrix, csc_matrix, lil_matrix from sklearn.metrics.pairwise import cosine_similarity from sklearn.preprocessing import normalize from . import builders class Dataset(object): @staticmethod def load(): train = pd.read_csv('data/train_final.csv', delimiter='\t') playlists = pd.read_csv('data/playlists_final.csv', delimiter='\t') target_playlists = pd.read_csv('data/target_playlists.csv', delimiter='\t') target_tracks = pd.read_csv('data/target_tracks.csv', delimiter = '\t') tracks = pd.read_csv('data/tracks_final.csv', delimiter='\t') return Dataset(train, tracks, playlists, target_tracks, target_playlists) def __init__(self, train, tracks, playlists, target_tracks, target_playlists): self.train = train self.tracks = tracks self.playlists = playlists self.target_tracks = target_tracks self.target_playlists = target_playlists def _normalize_train_dataset(self): self.track_to_num = pd.Series(self.tracks.index) self.track_to_num.index = self.tracks['track_id_tmp'] self.playlist_to_num =
pd.Series(self.playlists.index)
pandas.Series
import numpy as np import pandas as pd from bach import Series, DataFrame from bach.operations.cut import CutOperation, QCutOperation from sql_models.util import quote_identifier from tests.functional.bach.test_data_and_utils import assert_equals_data PD_TESTING_SETTINGS = { 'check_dtype': False, 'check_exact': False, 'atol': 1e-3, } def compare_boundaries(expected: pd.Series, result: Series) -> None: for exp, res in zip(expected.to_numpy(), result.to_numpy()): if not isinstance(exp, pd.Interval): assert res is None or np.isnan(res) continue np.testing.assert_almost_equal(exp.left, float(res.left), decimal=2) np.testing.assert_almost_equal(exp.right, float(res.right), decimal=2) if exp.closed_left: assert res.closed_left if exp.closed_right: assert res.closed_right def test_cut_operation_pandas(engine) -> None: p_series = pd.Series(range(100), name='a') series = DataFrame.from_pandas(engine=engine, df=p_series.to_frame(), convert_objects=True).a expected = pd.cut(p_series, bins=10) result = CutOperation(series=series, bins=10)() compare_boundaries(expected, result) expected_wo_right = pd.cut(p_series, bins=10, right=False) result_wo_right = CutOperation(series, bins=10, right=False)() compare_boundaries(expected_wo_right, result_wo_right) def test_cut_operation_bach(engine) -> None: p_series = pd.Series(range(100), name='a') series = DataFrame.from_pandas(engine=engine, df=p_series.to_frame(), convert_objects=True).a ranges = [ pd.Interval(0, 9.9, closed='both'), pd.Interval(9.9, 19.8, closed='right'), pd.Interval(19.8, 29.7, closed='right'), pd.Interval(29.7, 39.6, closed='right'), pd.Interval(39.6, 49.5, closed='right'), pd.Interval(49.5, 59.4, closed='right'), pd.Interval(59.4, 69.3, closed='right'), pd.Interval(69.3, 79.2, closed='right'), pd.Interval(79.2, 89.1, closed='right'), pd.Interval(89.1, 99, closed='right'), ] expected = pd.Series({num: ranges[int(num / 10)] for num in range(100)}) result = CutOperation(series=series, bins=10, method='bach')().sort_index() compare_boundaries(expected, result) ranges_wo_right = [ pd.Interval(0, 9.9, closed='left'), pd.Interval(9.9, 19.8, closed='left'), pd.Interval(19.8, 29.7, closed='left'), pd.Interval(29.7, 39.6, closed='left'), pd.Interval(39.6, 49.5, closed='left'), pd.Interval(49.5, 59.4, closed='left'), pd.Interval(59.4, 69.3, closed='left'),
pd.Interval(69.3, 79.2, closed='left')
pandas.Interval
"""This script is designed to perform statistics of demographic information """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import pearsonr,spearmanr,kendalltau import sys sys.path.append(r'D:\My_Codes\LC_Machine_Learning\lc_rsfmri_tools\lc_rsfmri_tools_python') import os from eslearn.utils.lc_read_write_mat import read_mat, write_mat #%% ----------------------------------Our center 550---------------------------------- uid_path_550 = r'D:\WorkStation_2018\SZ_classification\Scale\selected_550.txt' scale_path_550 = r'D:\WorkStation_2018\SZ_classification\Scale\10-24大表.xlsx' headmotion_file = r'D:\WorkStation_2018\SZ_classification\Scale\头动参数_1322.xlsx' scale_data_550 = pd.read_excel(scale_path_550) uid_550 = pd.read_csv(uid_path_550, header=None) scale_selected_550 = pd.merge(uid_550, scale_data_550, left_on=0, right_on='folder', how='inner') describe_bprs_550 = scale_selected_550.groupby('诊断')['BPRS_Total'].describe() describe_age_550 = scale_selected_550.groupby('诊断')['年龄'].describe() describe_duration_550 = scale_selected_550.groupby('诊断')['病程月'].describe() describe_durgnaive_550 = scale_selected_550.groupby('诊断')['用药'].value_counts() describe_sex_550 = scale_selected_550.groupby('诊断')['性别'].value_counts() # Demographic demographic_info_dataset1 = scale_selected_550[['folder', '诊断', '年龄', '性别', '病程月']] headmotion = pd.read_excel(headmotion_file) headmotion = headmotion[['Subject ID','mean FD_Power']] demographic_info_dataset1 = pd.merge(demographic_info_dataset1, headmotion, left_on='folder', right_on='Subject ID', how='inner') demographic_info_dataset1 = demographic_info_dataset1.drop(columns=['Subject ID']) site_dataset1 = pd.DataFrame(np.zeros([len(demographic_info_dataset1),1])) site_dataset1.columns = ['site'] demographic_dataset1_all = pd.concat([demographic_info_dataset1 , site_dataset1], axis=1) demographic_dataset1_all.columns = ['ID','Diagnosis', 'Age', 'Sex', 'Duration', 'MeanFD', 'Site'] demographic_dataset1 = demographic_dataset1_all[['ID','Diagnosis', 'Age', 'Sex', 'MeanFD', 'Site']] demographic_dataset1['Diagnosis'] = np.int32(demographic_dataset1['Diagnosis'] == 3) # Duration and age demographic_duration_dataset1 = demographic_dataset1_all[['Duration', 'Age']].dropna() np.corrcoef(demographic_duration_dataset1['Duration'], demographic_duration_dataset1['Age']) pearsonr(demographic_duration_dataset1['Duraton'], demographic_duration_dataset1['Age']) #%% ----------------------------------BeiJing 206---------------------------------- uid_path_206 = r'D:\WorkStation_2018\SZ_classification\Scale\北大精分人口学及其它资料\SZ_NC_108_100.xlsx' scale_path_206 = r'D:\WorkStation_2018\SZ_classification\Scale\北大精分人口学及其它资料\SZ_NC_108_100-WF.csv' headmotion_file_206 = r'D:\WorkStation_2018\SZ_classification\Scale\北大精分人口学及其它资料\parameters\FD_power' uid_to_remove = ['SZ010109','SZ010009'] scale_data_206 = pd.read_csv(scale_path_206) scale_data_206 = scale_data_206.drop(np.array(scale_data_206.index)[scale_data_206['ID'].isin(uid_to_remove)]) scale_data_206['PANSStotal1'] = np.array([np.float64(duration) if duration.strip() !='' else 0 for duration in scale_data_206['PANSStotal1'].values]) Pscore = pd.DataFrame(scale_data_206[['P1', 'P2', 'P3', 'P4', 'P4', 'P5', 'P6', 'P7']].iloc[:106,:], dtype = np.float64) Pscore = np.sum(Pscore, axis=1).describe() Nscore = pd.DataFrame(scale_data_206[['N1', 'N2', 'N3', 'N4', 'N4', 'N5', 'N6', 'N7']].iloc[:106,:], dtype=np.float64) Nscore = np.sum(Nscore, axis=1).describe() Gscore = pd.DataFrame(scale_data_206[['G1', 'G2', 'G3', 'G4', 'G4', 'G5', 'G6', 'G7', 'G8', 'G9', 'G10', 'G11', 'G12', 'G13', 'G14', 'G15', 'G16']].iloc[:106,:]) Gscore = np.array(Gscore) for i, itemi in enumerate(Gscore): for j, itemj in enumerate(itemi): print(itemj) if itemj.strip() != '': Gscore[i,j] = np.float64(itemj) else: Gscore[i, j] = np.nan Gscore = pd.DataFrame(Gscore) Gscore = np.sum(Gscore, axis=1).describe() describe_panasstotol_206 = scale_data_206.groupby('group')['PANSStotal1'].describe() describe_age_206 = scale_data_206.groupby('group')['age'].describe() scale_data_206['duration'] = np.array([np.float64(duration) if duration.strip() !='' else 0 for duration in scale_data_206['duration'].values]) describe_duration_206 = scale_data_206.groupby('group')['duration'].describe() describe_sex_206 = scale_data_206.groupby('group')['sex'].value_counts() # Demographic uid = pd.DataFrame(scale_data_206['ID']) uid['ID'] = uid['ID'].str.replace('NC','10'); uid['ID'] = uid['ID'].str.replace('SZ','20'); uid = pd.DataFrame(uid, dtype=np.int32) demographic_info_dataset2 = scale_data_206[['group','age', 'sex']] demographic_info_dataset2 = pd.concat([uid, demographic_info_dataset2], axis=1) headmotion_name_dataset2 = os.listdir(headmotion_file_206) headmotion_file_path_dataset2 = [os.path.join(headmotion_file_206, name) for name in headmotion_name_dataset2] meanfd = [] for i, file in enumerate(headmotion_file_path_dataset2): fd = np.loadtxt(file) meanfd.append(np.mean(fd)) meanfd_dataset2 = pd.DataFrame(meanfd) headmotion_name_dataset2 =
pd.Series(headmotion_name_dataset2)
pandas.Series
import requests from collections import Counter import pandas as pd def get_data(study_id): response = requests.get( "https://ega-archive.org/metadata/v2/samples?queryBy=study&queryId={}&limit=0".format(study_id) ) if response.status_code != 200: print("Study {} got error code {}".format(study_id, response.status_code)) return [] return response.json()['response']["result"] def get_study_info(study_id): data = get_data(study_id) counts = Counter(list(map(lambda x: x['gender'], data))) if len(data) > 0: year = data[0]['creationTime'][:4] else: year = "-1" #Transform it to a dict row = dict(counts) row['date'] = year row['identifier'] = study_id row['total'] = len(data) row['database'] = 'EGA' return row def get_study_list(filename): with open(filename) as fi: study_list = list(fi.readlines()) study_list = list(map(lambda x: x.strip(), study_list)) return study_list def main(load_file=None, skip_first=0, skip_numbers = []): """ Reads Studies from EGA and counts the `gender` values for the data for each study. It outputs a final CSV summarizing the counts of `gender` for each study. It also produces a lot of backup files in case there is a problem do not start again. params: ------- load_file: name of the last backup file to load. skip_first: how many studies it will skip. skip_numbers: list of the number of the study that will not collect data from. """ study_list = get_study_list("../EGA_studies_list.txt") rows = [] counter = 0 if load_file != None: rows = pd.read_csv(load_file,sep=';').to_dict('records') for s in study_list: counter+=1 # skip the first n studies if counter < skip_first: continue # Skip the specified numbers if counter in skip_numbers: continue print("getting study {} - {}".format(counter, s)) rows.append(get_study_info(s)) if counter%10 == 0:
pd.DataFrame(rows)
pandas.DataFrame
import json from django.http import HttpResponse from .models import ( Invoice, Seller, Receiver, ) from .serializers import ( InvoiceSerializer, SellerSerializer, ReceiverSerializer, ) import re from django.views import View from django.http import Http404 import pandas as pd import datetime as dt def get_object_invoice(pk): try: return Invoice.objects.get(pk=pk) except Invoice.DoesNotExist: raise Http404 def get_object_seller(pk): try: return Seller.objects.get(pk=pk) except Seller.DoesNotExist: raise Http404 def get_object_receiver(pk): try: return Receiver.objects.get(pk=pk) except Receiver.DoesNotExist: raise Http404 class InvoiceShowDelete(View): def get(self, request, pk): invoice = get_object_invoice(pk) serializer = InvoiceSerializer(invoice) return HttpResponse(json.dumps(serializer.data), status=200) def delete(self, request, pk): invoice = get_object_invoice(pk) invoice.delete() return HttpResponse(status=204) class InvoiceCreateList(View): def get(self, request): invoices = Invoice.objects.all() serializer = InvoiceSerializer(invoices, many=True) return HttpResponse(json.dumps(serializer.data)) def post(self, request): dict_invoice = {} dict_seller = {} dict_receiver = {} json_dict = None if request.body: json_dict = json.loads(request.body) elif request.POST: json_dict = request.POST # access_key, uf_code_seller, cnpj_seller, number access_key = json_dict['main_access_key'].replace(' ', '') uf_code_seller = access_key[0:2] cnpj_seller = access_key[6:20] number = access_key[25:34] dict_invoice['access_key'] = access_key dict_invoice['number'] = number dict_seller['uf_code'] = uf_code_seller dict_seller['cnpj'] = cnpj_seller # cpf_cnpj_receiver cpf_cnpj_receiver = json_dict['sender_cnpj_cpf'] cpf_cnpj_receiver = re.search( r'\d{11}|\d{14}|\d{3}\.\d{3}\.\d{3}\-\d{2}|\d{2}\.\d{3}\.\d{3}\/\d{4}\-\d{2}', cpf_cnpj_receiver, re.M | re.I ) cpf_cnpj_receiver = str(cpf_cnpj_receiver.group()) cpf_cnpj_receiver = cpf_cnpj_receiver.replace('-', '') cpf_cnpj_receiver = cpf_cnpj_receiver.replace('.', '') cpf_cnpj_receiver = cpf_cnpj_receiver.replace('/', '') cpf_cnpj_receiver = cpf_cnpj_receiver.replace(' ', '') dict_receiver['cpf_cnpj'] = cpf_cnpj_receiver # operation_nature dict_invoice['operation_nature'] = json_dict['main_nature_operation'] # authorization_protocol dict_invoice['authorization_protocol'] = json_dict['main_protocol_authorization_use'] # state_registration dict_invoice['state_registration'] = json_dict['main_state_registration'] # emission_date emission_date = json_dict['sender_emission_date'] emission_date = re.search(r'\d{2}\/\d{2}\/\d{4}', emission_date, re.M | re.I) emission_date = str(emission_date.group()) emission_date = emission_date.split('/') emission_date = emission_date[2] + '-' + emission_date[1] + '-' + emission_date[0] dict_invoice['emission_date'] = emission_date # entry_exit_datetime entry_exit_datetime = json_dict['sender_out_input_date'] entry_exit_datetime = entry_exit_datetime.split('/') time = json_dict['sender_output_time'] u = entry_exit_datetime[2] + '-' + entry_exit_datetime[1] + '-' + entry_exit_datetime[0] + 'T' + time entry_exit_datetime = u dict_invoice['entry_exit_datetime'] = entry_exit_datetime # total_products_value total_products_value = json_dict['tax_total_cost_products'] total_products_value = total_products_value.replace('.', '') total_products_value = total_products_value.replace(',', '.') dict_invoice['total_products_value'] = float(total_products_value) # total_invoice_value total_invoice_value = json_dict['tax_cost_total_note'] total_invoice_value = total_invoice_value.replace('.', '') total_invoice_value = total_invoice_value.replace(',', '.') dict_invoice['total_invoice_value'] = float(total_invoice_value) # basis_calculation_icms basis_calculation_icms = json_dict['tax_icms_basis'] basis_calculation_icms = basis_calculation_icms.replace('.', '') basis_calculation_icms = basis_calculation_icms.replace(',', '.') dict_invoice['basis_calculation_icms'] = float(basis_calculation_icms) # freight_value freight_value = json_dict['tax_cost_freight'] freight_value = freight_value.replace('.', '') freight_value = freight_value.replace(',', '.') dict_invoice['freight_value'] = float(freight_value) # insurance_value insurance_value = json_dict['tax_cost_insurance'] insurance_value = insurance_value.replace('.', '') insurance_value = insurance_value.replace(',', '.') dict_invoice['insurance_value'] = float(insurance_value) # icms_value icms_value = json_dict['tax_cost_icms'] icms_value = icms_value.replace('.', '') icms_value = icms_value.replace(',', '.') dict_invoice['icms_value'] = float(icms_value) # discount_value discount_value = json_dict['tax_discount'] discount_value = discount_value.replace('.', '') discount_value = discount_value.replace(',', '.') dict_invoice['discount_value'] = float(discount_value) # basis_calculation_icms_st basis_calculation_icms_st = json_dict['tax_icms_basis_st'] basis_calculation_icms_st = basis_calculation_icms_st.replace('.', '') basis_calculation_icms_st = basis_calculation_icms_st.replace(',', '.') dict_invoice['basis_calculation_icms_st'] = float(basis_calculation_icms_st) # icms_value_st icms_value_st = json_dict['tax_cost_icms_replacement'] icms_value_st = icms_value_st.replace('.', '') icms_value_st = icms_value_st.replace(',', '.') dict_invoice['icms_value_st'] = float(icms_value_st) # other_expenditure other_expenditure = json_dict['tax_other_expenditure'] other_expenditure = other_expenditure.replace('.', '') other_expenditure = other_expenditure.replace(',', '.') dict_invoice['other_expenditure'] = float(other_expenditure) # ipi_value ipi_value = json_dict['tax_cost_ipi'] ipi_value = ipi_value.replace('.', '') ipi_value = ipi_value.replace(',', '.') dict_invoice['ipi_value'] = float(ipi_value) # receiver dict_receiver['name'] = json_dict['sender_name_social'] dict_receiver['address'] = json_dict['sender_address'] dict_receiver['neighborhood'] = json_dict['sender_neighborhood_district'] dict_receiver['cep'] = json_dict['sender_cep'].replace('-', '') dict_receiver['county'] = json_dict['sender_county'] dict_receiver['uf'] = json_dict['sender_uf'] dict_receiver['phone'] = json_dict['sender_phone_fax'] # ------------------------ if Receiver.objects.filter(cpf_cnpj=cpf_cnpj_receiver).count() == 1: receiver = Receiver.objects.get(cpf_cnpj=cpf_cnpj_receiver) dict_invoice['receiver'] = receiver.pk else: receiver_serializer = ReceiverSerializer(data=dict_receiver) if receiver_serializer.is_valid(): receiver_serializer.save() else: return HttpResponse( json.dumps([ receiver_serializer.errors, ]), status=400 ) dict_invoice['receiver'] = receiver_serializer.data['id'] if Seller.objects.filter(cnpj=cnpj_seller).count() == 1: seller = Seller.objects.get(cnpj=cnpj_seller) dict_invoice['seller'] = seller.pk else: seller_serializer = SellerSerializer(data=dict_seller) if seller_serializer.is_valid(): seller_serializer.save() else: return HttpResponse( json.dumps([ seller_serializer.errors, ]), status=400 ) dict_invoice['seller'] = seller_serializer.data['id'] invoice_serializer = InvoiceSerializer(data=dict_invoice) if invoice_serializer.is_valid(): invoice_serializer.save() else: return HttpResponse( json.dumps( invoice_serializer.errors ), status=400 ) return HttpResponse( json.dumps([ invoice_serializer.data, ]), status=200 ) def sellerShow(request, pk): if request.method == 'GET': seller = get_object_seller(pk) serializer = SellerSerializer(seller) return HttpResponse(json.dumps(serializer.data), status=200) return HttpResponse(status=400) def receiverShow(request, pk): if request.method == 'GET': receiver = get_object_receiver(pk) serializer = ReceiverSerializer(receiver) return HttpResponse(json.dumps(serializer.data), status=200) return HttpResponse(status=400) def sellerList(request): if request.method == 'GET': seller = Seller.objects.all() serializer = SellerSerializer(seller, many=True) return HttpResponse(json.dumps(serializer.data)) return HttpResponse(status=400) def receiverList(request): if request.method == 'GET': receiver = Receiver.objects.all() serializer = ReceiverSerializer(receiver, many=True) return HttpResponse(json.dumps(serializer.data)) return HttpResponse(status=400) def chart_total_value_per_time(request): if request.method == 'GET': invoices = Invoice.objects.all() date = [] total = [] for invoice in invoices: date.append(invoice.emission_date) total.append(invoice.total_invoice_value) df = pd.DataFrame({'date': date, 'total': total}) df = df.sort_values(by='date') sf = df.groupby('date')['total'].sum() df = pd.DataFrame({'date': sf.index, 'total': sf.values}) df['date'] = pd.to_datetime(df['date']).apply(lambda x: x.strftime('%d/%m/%Y')) df['total'] = pd.to_numeric(df['total'].apply(lambda x: round(x, 2))) data = df.to_dict('list') df = pd.DataFrame({'dateM': date, 'totalM': total}) df = df.sort_values(by='dateM') df['dateM'] = pd.to_datetime(df['dateM']).apply(lambda x: x.strftime('%Y-%m')) sf = df.groupby('dateM')['totalM'].sum() df = pd.DataFrame({'dateM': sf.index, 'totalM': sf.values}) df['dateM'] =
pd.to_datetime(df['dateM'])
pandas.to_datetime
############################## ## Import requirements ## NOTE: Must do sudo pip install XlsxWriter import pandas as pd import numpy as np import matplotlib.pyplot as plt import random import xlsxwriter ############################## ## Generator - Create list with the identifier def identifier(num): identifier = [] identifier = [i+1 for i in xrange(num)] return identifier ## Generator - Create a list of random genders def genderrecord(num): genderrecord = [] for i in range (num): gender = ['Male','Female'] genderchoice = random.choice(gender) genderrecord.append(genderchoice) i = i + 1 return genderrecord ## Corruptor - Request information on the number of corruptions to make def gender_corrupting_perc(num): corruptper= float(raw_input ("What percentage of records would you like to corrupt?")) records_for_corruption = num corrupt_amount = int(round((corruptper /100) * num,0)) if (corruptper >=1) and (corrupt_amount == 0): corrupt_amount = 1 return corrupt_amount ## Corruptor - Replace values with "." def missing_corrupt_func(copydf, newdf, corrupt_amount): remove = np.random.choice(range(len(copydf)), corrupt_amount, replace=False) j = 0 for j in range(len(remove)): place = remove[j] newdf[place] = "." j = j+1 return newdf ######################################## ## Asking users how many records to generate and creating index number = int(raw_input ("How many records would you like to generate?")) identifier = identifier(number) ## Creating random genders genderrecord = genderrecord (number) ## Storing genders and index into a dataframe record = pd.DataFrame( {"Identifier" : identifier, "Gender" : genderrecord }) ## Printing "Clean" file to excel writer =
pd.ExcelWriter('CleanData', engine='xlsxwriter')
pandas.ExcelWriter
import sys import os sys.path.append(os.path.join(os.path.dirname(__file__),'..')) import numpy as np import pandas as pd import configparser from Conf.loadconf import * import DB.db_connects as dbconn df_test = pd.DataFrame() df_train =
pd.DataFrame()
pandas.DataFrame
import pyaniasetools as aat import pyanitools as ant import hdnntools as hdt import pandas as pd import sys import numpy as np import re import os import matplotlib.pyplot as plt import matplotlib as mpl from matplotlib.colors import LogNorm import matplotlib.cm as cm from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid1.inset_locator import mark_inset from matplotlib.backends.backend_pdf import PdfPages #import seaborn as sns pd.options.display.float_format = '{:.2f}'.format # ---------------------------------- # Plot force histogram # ---------------------------------- def plot_corr_dist_axes(ax, Xp, Xa, cmap, labelx, labely, plabel, vmin=0, vmax=0, inset=True): Fmx = Xa.max() Fmn = Xa.min() # Plot ground truth line ax.plot([Fmn, Fmx], [Fmn, Fmx], '--', c='red', linewidth=3) # Set labels ax.set_xlabel(labelx, fontsize=26) ax.set_ylabel(labely, fontsize=26) # Plot 2d Histogram if vmin == 0 and vmax ==0: bins = ax.hist2d(Xp, Xa, bins=200, norm=LogNorm(), range=[[Fmn, Fmx], [Fmn, Fmx]], cmap=cmap) else: bins = ax.hist2d(Xp, Xa, bins=200, norm=LogNorm(), range=[[Fmn, Fmx], [Fmn, Fmx]], cmap=cmap, vmin=vmin, vmax=vmax) # Build color bar #cbaxes = fig.add_axes([0.91, 0.1, 0.03, 0.8]) # Annotate with label ax.text(0.25*((Fmx-Fmn))+Fmn, 0.06*((Fmx-Fmn))+Fmn, plabel, fontsize=26) # Annotate with errors PMAE = hdt.calculatemeanabserror(Xa, Xp) PRMS = hdt.calculaterootmeansqrerror(Xa, Xp) ax.text(0.6*((Fmx-Fmn))+Fmn, 0.2*((Fmx-Fmn))+Fmn, 'MAE='+"{:.3f}".format(PMAE)+'\nRMSE='+"{:.3f}".format(PRMS), fontsize=30, bbox={'facecolor': 'white', 'alpha': 0.5, 'pad': 5}) if inset: axins = zoomed_inset_axes(ax, 2., loc=2) # zoom = 6 sz = 0.1*(Fmx-Fmn) axins.hist2d(Xp, Xa, bins=50, range=[[Xa.mean() - sz, Xa.mean() + sz], [Xp.mean() - sz, Xp.mean() + sz]], norm=LogNorm(), cmap=cmap) axins.plot([Xp.mean() - sz, Xp.mean() + sz], [Xp.mean() - sz, Xp.mean() + sz], '--', c='r', linewidth=3) # sub region of the original image x1, x2, y1, y2 = Xa.mean() - sz, Xa.mean() + sz, Xp.mean() - sz, Xp.mean() + sz axins.set_xlim(x1, x2) axins.set_ylim(y1, y2) axins.yaxis.tick_right() mark_inset(ax, axins, loc1=1, loc2=3, fc="none", ec="1.5") plt.xticks(visible=True) plt.yticks(visible=True) return bins def add_inset_histogram(Xa, Xp, pos, ylim, xlim): Ferr = Xa - Xp std = np.std(Ferr) men = np.mean(Ferr) axh = plt.axes(pos) axh.hist(Ferr, bins=75, range=[men - 4 * std, men + 4 * std], normed=False) axh.set_ylim(ylim) axh.set_xlim(xlim) #axh.set_title('Difference distribution') # ---------------------------------- # Plot force histogram # ---------------------------------- def plot_corr_dist(Xa, Xp, inset=True, xlabel='$F_{dft}$' + r' $(kcal \times mol^{-1} \times \AA^{-1})$', ylabel='$F_{dft}$' + r' $(kcal \times mol^{-1} \times \AA^{-1})$', figsize=[13,10], cmap=mpl.cm.viridis): Fmx = Xa.max() Fmn = Xa.min() label_size = 14 mpl.rcParams['xtick.labelsize'] = label_size mpl.rcParams['ytick.labelsize'] = label_size fig, ax = plt.subplots(figsize=figsize) # Plot ground truth line ax.plot([Fmn, Fmx], [Fmn, Fmx], '--', c='r', linewidth=3) # Set labels ax.set_xlabel(xlabel, fontsize=22) ax.set_ylabel(ylabel, fontsize=22) #cmap = mpl.cm.viridis #cmap = mpl.cm.brg # Plot 2d Histogram bins = ax.hist2d(Xa, Xp, bins=200, norm=LogNorm(), range= [[Xa.min(), Xa.max()], [Xp.min(), Xp.max()]], cmap=cmap) # Build color bar #cbaxes = fig.add_axes([0.91, 0.1, 0.03, 0.8]) cb1 = fig.colorbar(bins[-1], cmap=cmap) cb1.set_label('Count', fontsize=16) # Annotate with errors PMAE = hdt.calculatemeanabserror(Xa, Xp) PRMS = hdt.calculaterootmeansqrerror(Xa, Xp) ax.text(0.75*((Fmx-Fmn))+Fmn, 0.43*((Fmx-Fmn))+Fmn, 'MAE='+"{:.3f}".format(PMAE)+'\nRMSE='+"{:.3f}".format(PRMS), fontsize=20, bbox={'facecolor': 'white', 'alpha': 0.5, 'pad': 5}) if inset: axins = zoomed_inset_axes(ax, 2.2, loc=2) # zoom = 6 sz = 6 axins.hist2d(Xa, Xp,bins=50, range=[[Fmn/sz, Fmx/sz], [Fmn/sz, Fmx/sz]], norm=LogNorm(), cmap=cmap) axins.plot([Xa.min(), Xa.max()], [Xa.min(), Xa.max()], '--', c='r', linewidth=3) # sub region of the original image x1, x2, y1, y2 = Fmn/sz, Fmx/sz, Fmn/sz, Fmx/sz axins.set_xlim(x1, x2) axins.set_ylim(y1, y2) axins.yaxis.tick_right() plt.xticks(visible=True) plt.yticks(visible=True) mark_inset(ax, axins, loc1=1, loc2=3, fc="none", ec="0.5") Ferr = Xa - Xp std = np.std(Ferr) men = np.mean(Ferr) axh = plt.axes([.49, .16, .235, .235]) axh.hist(Ferr, bins=75, range=[men-4*std, men+4*std], normed=True) axh.set_title('Difference distribution') #plt.draw() plt.show() class generate_ensemble_data(aat.anicrossvalidationconformer): '''Constructor''' def __init__(self, networks, tsfiles, gpu=0): super().__init__(networks['cns'], networks['sae'], networks['nnf'], networks['nts'], gpu ) self.tsfiles = tsfiles self.Nn = networks['nts'] '''Stat generator''' def generate_stats(self, maxe=sys.float_info.max, forces=True, grad=False): self.tdata = dict() for key in self.tsfiles.keys(): print(' -Working on',key,'...') cdata = dict({'Eani': [], 'Edft': [], 'Erel': [], 'Fani': [], 'Fdft': [], 'dEani': [], 'dEdft': [], 'Na': [], 'Na2': [],}) for file in self.tsfiles[key]: print(key,file) adl = ant.anidataloader(file) for i, data in enumerate(adl): #if i > 5: # break if data['coordinates'].shape[0] != 0: Eani, Fani, sig = self.compute_energyandforce_conformations(np.array(data['coordinates'],dtype=np.float64), data['species'], ensemble=False) midx = np.where( data['energies'] - data['energies'].min() < maxe/hdt.hatokcal )[0] Eani = Eani[:,midx] Edft = data['energies'][midx] Erel = (data['energies'] - data['energies'].min())[midx] Fani = Fani[:,midx,:,:] if forces: if grad: Fdft = -data['forces'][midx] else: Fdft = data['forces'][midx] else: Fdft = 0.0*data['coordinates'][midx] #Eestd = np.std(Eani, axis=0)/np.sqrt(len(data['species'])) Eeani = np.mean(Eani, axis=0).reshape(1,-1) Feani = np.mean(Fani, axis=0).flatten().reshape(1,-1) Fani = Fani.reshape(Fani.shape[0],-1) Eani = np.vstack([Eani, Eeani]) Fani = np.vstack([Fani, Feani]) Edft = hdt.hatokcal * Edft Fdft = hdt.hatokcal * Fdft.flatten() cdata['Na'].append(np.full(Edft.size, len(data['species']), dtype=np.int32)) cdata['Eani'].append(Eani) cdata['Edft'].append(Edft) cdata['Erel'].append(Erel) cdata['Fani'].append(Fani) cdata['Fdft'].append(Fdft) #cdata['Frmse'].append(np.sqrt(np.mean((Fani-Fdft).reshape(Fdft.shape[0], -1)**2, axis=1))) #cdata['Frmae'].append(np.sqrt(np.mean(np.abs((Fani - Fdft).reshape(Fdft.shape[0], -1)), axis=1))) cdata['dEani'].append(hdt.calculateKdmat(self.Nn+1, Eani)) cdata['dEdft'].append(hdt.calculatedmat(Edft)) cdata['Na2'].append(np.full(cdata['dEdft'][-1].size, len(data['species']), dtype=np.int32)) #cdata['Erani'].append(Eani-Eani.min()) #cdata['Erdft'].append(Edft-Edft.min()) for k in ['Na', 'Na2', 'Edft', 'Fdft', 'dEdft', 'Erel']: cdata[k] = np.concatenate(cdata[k]) for k in ['Eani', 'Fani', 'dEani']: cdata[k] = np.hstack(cdata[k]) self.tdata.update({key: cdata}) ''' Generate total errors ''' def store_data(self, filename): if os.path.exists(filename): os.remove(filename) dpack = ant.datapacker(filename) for k in self.tdata.keys(): dpack.store_data(k,**(self.tdata[k])) dpack.cleanup() names = ['E$_\mathrm{MAE}$$\mu$', 'E$_\mathrm{MAE}$$\sigma$', 'E$_\mathrm{RMS}$$\mu$', 'E$_\mathrm{RMS}$$\sigma$', '$\Delta$E$_\mathrm{MAE}$$\mu$', '$\Delta$E$_\mathrm{MAE}$$\sigma$', '$\Delta$E$_\mathrm{RMS}$$\mu$', '$\Delta$E$_\mathrm{RMS}$$\sigma$', 'F$_\mathrm{MAE}$$\mu$', 'F$_\mathrm{MAE}$$\sigma$', 'F$_\mathrm{RMS}$$\mu$', 'F$_\mathrm{RMS}$$\sigma$', ] class evaluate_ensemble_data(aat.anicrossvalidationconformer): '''Constructor''' def __init__(self, datafile): self.fdata = dict() for df in datafile: adl = ant.anidataloader(df) tdata = dict() for data in adl: tdata.update({data['path'].split('/')[-1] : data}) adl.cleanup() self.fdata[df.split('tsdata_')[-1].split('.h5')[0]] = tdata ''' Generate total errors ''' def generate_fullset_errors(self, ntkey, tslist): #idx = np.nonzero(self.fdata[ntkey][tskey]['Erdft']) #tskeys = self.fdata[ntkey].keys() if not tslist: tskeys = self.fdata[ntkey].keys() else: tskeys = tslist Nn = self.fdata[ntkey][list(tskeys)[0]]['Eani'].shape[0]-1 #print(self.fdata[ntkey][tskey]['Fdft'].shape) return {names[0]: hdt.calculatemeanabserror( np.concatenate([self.fdata[ntkey][tskey]['Eani'][Nn,:] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys])), names[1]: np.std(hdt.calculatemeanabserror( np.hstack([self.fdata[ntkey][tskey]['Eani'][0:Nn,:] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys]), axis=1)), names[2]: hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['Eani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys])), names[3]: np.std(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['Eani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys]), axis=1)), names[4]: hdt.calculatemeanabserror( np.concatenate([self.fdata[ntkey][tskey]['dEani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys])), names[5]: np.std(hdt.calculatemeanabserror( np.hstack([self.fdata[ntkey][tskey]['dEani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys]), axis=1)), names[6]: hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['dEani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys])), names[7]: np.std(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['dEani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys]), axis=1)), names[8]: hdt.calculatemeanabserror( np.concatenate([self.fdata[ntkey][tskey]['Fani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys])), names[9]: np.std(hdt.calculatemeanabserror( np.hstack([self.fdata[ntkey][tskey]['Fani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys]), axis=1)), names[10]: hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['Fani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys])), names[11]: np.std(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['Fani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys]), axis=1)), #'FMAEm': hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Fani'][Nn,:], self.fdata[ntkey][tskey]['Fdft']), #'FMAEs': np.std(hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Fani'][0:Nn,:], self.fdata[ntkey][tskey]['Fdft'], axis=1)), #'FRMSm': hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Fani'][Nn,:], self.fdata[ntkey][tskey]['Fdft']), #'FRMSs': np.std(hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Fani'][0:Nn, :],self.fdata[ntkey][tskey]['Fdft'], axis=1)), #'dEMAE': hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['dEani'], self.fdata[ntkey][tskey]['dEdft']), #'dERMS': hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['dEani'], self.fdata[ntkey][tskey]['dEdft']), #'ERMAE': hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Erani'][idx], self.fdata[ntkey][tskey]['Erdft'][idx]), #'ERRMS': hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Erani'][idx], self.fdata[ntkey][tskey]['rdft'][idx]), } ''' Generate total errors ''' def get_range_stats(self, tslist, dkey): #idx = np.nonzero(self.fdata[ntkey][tskey]['Erdft']) ntkey = list(self.fdata.keys())[0] if not tslist: tskeys = self.fdata[ntkey].keys() else: tskeys = tslist Nn = self.fdata[ntkey][list(tskeys)[0]][dkey].shape[0]-1 return np.concatenate([self.fdata[ntkey][tskey][dkey] for tskey in tskeys]) ''' Generate total errors ''' def generate_fullset_peratom_errors(self, ntkey, tslist): #idx = np.nonzero(self.fdata[ntkey][tskey]['Erdft']) if not tslist: tskeys = self.fdata[ntkey].keys() else: tskeys = tslist Nn = self.fdata[ntkey][list(tskeys)[0]]['Eani'].shape[0]-1 #print(self.fdata[ntkey]['GDB07to09']['Eani'][Nn,:]) #print(self.fdata[ntkey]['GDB07to09']['Na']) #print(self.fdata[ntkey]['GDB07to09']['Eani'][Nn,:]/self.fdata[ntkey]['GDB07to09']['Na']) return {names[0]: 1000*hdt.calculatemeanabserror( np.concatenate([self.fdata[ntkey][tskey]['Eani'][Nn,:]/self.fdata[ntkey][tskey]['Na'] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Edft']/self.fdata[ntkey][tskey]['Na'] for tskey in tskeys])), names[2]: 1000*hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['Eani'][Nn, :]/self.fdata[ntkey][tskey]['Na'] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Edft']/self.fdata[ntkey][tskey]['Na'] for tskey in tskeys])), names[4]: 1000*hdt.calculatemeanabserror( np.concatenate([self.fdata[ntkey][tskey]['dEani'][Nn, :] / self.fdata[ntkey][tskey]['Na2'] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['dEdft'] / self.fdata[ntkey][tskey]['Na2'] for tskey in tskeys])), names[6]: 1000*hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['dEani'][Nn, :] / self.fdata[ntkey][tskey]['Na2'] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['dEdft'] / self.fdata[ntkey][tskey]['Na2'] for tskey in tskeys])), } ''' Generate total errors ''' def generate_fullset_mean_errors(self, ntkey): #idx = np.nonzero(self.fdata[ntkey][tskey]['Erdft']) tskeys = self.fdata[ntkey].keys() Nn = self.fdata[ntkey][list(tskeys)[0]]['Eani'].shape[0]-1 return {names[2]+'E': hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['Eani'][Nn,:] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys])), names[2]+'M': np.mean(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['Eani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys]),axis=1)), names[6]+'E': hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['dEani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys])), names[6]+'M': np.mean(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['dEani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['dEdft'] for tskey in tskeys]),axis=1)), names[10]+'E': hdt.calculaterootmeansqrerror( np.concatenate([self.fdata[ntkey][tskey]['Fani'][Nn, :] for tskey in tskeys]), np.concatenate([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys])), names[10]+'M': np.mean(hdt.calculaterootmeansqrerror( np.hstack([self.fdata[ntkey][tskey]['Fani'][0:Nn, :] for tskey in tskeys]), np.hstack([self.fdata[ntkey][tskey]['Fdft'] for tskey in tskeys]),axis=1)), } ''' Generate total errors ''' def generate_total_errors(self, ntkey, tskey): #idx = np.nonzero(self.fdata[ntkey][tskey]['Erdft']) Nn = self.fdata[ntkey][tskey]['Eani'].shape[0]-1 return {names[0]: hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Eani'][Nn,:], self.fdata[ntkey][tskey]['Edft']), names[1]: np.std(hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Eani'][0:Nn,:], self.fdata[ntkey][tskey]['Edft'], axis=1)), names[2]: hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Eani'][Nn,:], self.fdata[ntkey][tskey]['Edft']), names[3]: np.std(hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Eani'][0:Nn,:], self.fdata[ntkey][tskey]['Edft'], axis=1)), names[4]: hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['dEani'][Nn,:], self.fdata[ntkey][tskey]['dEdft']), names[5]: np.std(hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['dEani'][0:Nn,:], self.fdata[ntkey][tskey]['dEdft'], axis=1)), names[6]: hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['dEani'][Nn,:], self.fdata[ntkey][tskey]['dEdft']), names[7]: np.std(hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['dEani'][0:Nn,:], self.fdata[ntkey][tskey]['dEdft'], axis=1)), names[8]: hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Fani'][Nn,:], self.fdata[ntkey][tskey]['Fdft']), names[9]: np.std(hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Fani'][0:Nn,:], self.fdata[ntkey][tskey]['Fdft'], axis=1)), names[10]: hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Fani'][Nn,:], self.fdata[ntkey][tskey]['Fdft']), names[11]: np.std(hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Fani'][0:Nn, :],self.fdata[ntkey][tskey]['Fdft'], axis=1)), #'dEMAE': hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['dEani'], self.fdata[ntkey][tskey]['dEdft']), #'dERMS': hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['dEani'], self.fdata[ntkey][tskey]['dEdft']), #'ERMAE': hdt.calculatemeanabserror(self.fdata[ntkey][tskey]['Erani'][idx], self.fdata[ntkey][tskey]['Erdft'][idx]), #'ERRMS': hdt.calculaterootmeansqrerror(self.fdata[ntkey][tskey]['Erani'][idx], self.fdata[ntkey][tskey]['rdft'][idx]), } def determine_min_error_by_sigma(self, ntkey, minerror, percent, tskeys = ['GDB07to09'], figsize=(15.0, 12.0), labelx='', labely='', xyrange=(0.0,10.0,0.0,10.0), storepath='', cmap=mpl.cm.viridis): #tskeys = self.fdata[ntkey].keys() mpl.rcParams['xtick.labelsize'] = 18 mpl.rcParams['ytick.labelsize'] = 18 Nn = self.fdata[ntkey][list(tskeys)[0]]['Eani'].shape[0]-1 Eani = np.hstack([self.fdata[ntkey][tskey]['Eani'][0:Nn, :] for tskey in tskeys]) Eanimu = np.hstack([self.fdata[ntkey][tskey]['Eani'][Nn, :] for tskey in tskeys]) #Eani = np.hstack([self.fdata[ntkey][tskey]['Eani'][Nn, :] for tskey in tskeys]) Edft = np.concatenate([self.fdata[ntkey][tskey]['Edft'] for tskey in tskeys]) #print(Eani.shape, Edft.shape, ) #print(np.max(Eerr.shape, axis=0)) Sani = np.concatenate([np.std(self.fdata[ntkey][tskey]['Eani'][0:Nn, :], axis=0) for tskey in tskeys]) Na = np.concatenate([self.fdata[ntkey][tskey]['Na'] for tskey in tskeys]) #print(Sani.shape, Na.shape) Sani = Sani / np.sqrt(Na) Eerr = np.max(np.abs(Eani - Edft),axis=0) / np.sqrt(Na) #Eerr = np.abs(np.mean(Eani,axis=0) - Edft) / np.sqrt(Na) #Eerr = np.abs(Eani - Edft) / np.sqrt(Na) #print(Eerr) #print(Sani) Nmax = np.where(Eerr > minerror)[0].size perc = 0 dS = Sani.max() step = 0 while perc < percent: S = dS - step*0.001 Sidx = np.where(Sani > S) step += 1 perc = 100.0*np.where(Eerr[Sidx] > minerror)[0].size/(Nmax+1.0E-7) #print(step,perc,S,Sidx) #print('Step:',step, 'S:',S,' -Perc over:',perc,'Total',100.0*Sidx[0].size/Edft.size) #dE = np.max(Eerr, axis=0) / np.sqrt(Na) #print(Eerr.shape,Eerr) So = np.where(Sani > S) Su = np.where(Sani <= S) print('RMSE Over: ', hdt.calculaterootmeansqrerror(Eanimu[So],Edft[So])) print('RMSE Under: ', hdt.calculaterootmeansqrerror(Eanimu[Su],Edft[Su])) fig, ax = plt.subplots(figsize=figsize) poa = np.where(Eerr[So] > minerror)[0].size / So[0].size pob = np.where(Eerr > minerror)[0].size / Eerr.size ax.text(0.57*(xyrange[1]), 0.04*(xyrange[3]), 'Total Captured: ' + str(int(100.0 * Sidx[0].size / Edft.size)) + '%' + '\n' + r'($\mathrm{\mathcal{E}>}$'+ "{:.1f}".format(minerror) + r'$\mathrm{) \forall \rho}$: ' + str(int(100*pob)) + '%' + '\n' + r'($\mathrm{\mathcal{E}>}$'+ "{:.1f}".format(minerror) + r'$\mathrm{) \forall \rho >}$' + "{:.2f}".format(S) + ': ' + str(int(100*poa)) + '%' + '\n' + r'$\mathrm{E}$ RMSE ($\mathrm{\rho>}$'+ "{:.2f}".format(S) + r'$\mathrm{)}$: ' + "{:.1f}".format(hdt.calculaterootmeansqrerror(Eanimu[So],Edft[So])) + '\n' + r'$\mathrm{E}$ RMSE ($\mathrm{\rho\leq}$' + "{:.2f}".format(S) + r'$\mathrm{)}$: ' + "{:.1f}".format(hdt.calculaterootmeansqrerror(Eanimu[Su], Edft[Su])), bbox={'facecolor':'grey', 'alpha':0.5, 'pad':10}, fontsize=18) plt.axvline(x=S,linestyle='--',color='r',linewidth=5, label=r"$\mathrm{\rho=}$"+"{:.2f}".format(S) + ' is the value that captures\n'+ str(int(percent)) + '% of errors over ' + r"$\mathrm{\mathcal{E}=}$" + "{:.1f}".format(minerror)) #) # Set labels ax.set_xlabel(labelx, fontsize=24) ax.set_ylabel(labely, fontsize=24) # Plot 2d Histogram bins = ax.hist2d(Sani, Eerr, bins=400, norm=LogNorm(), range=[[xyrange[0], xyrange[1]], [xyrange[2], xyrange[3]]], cmap=cmap) # Build color bar # cbaxes = fig.add_axes([0.91, 0.1, 0.03, 0.8]) cb1 = fig.colorbar(bins[-1], cmap=cmap) cb1.set_label('Count', fontsize=20) cb1.ax.tick_params(labelsize=18) plt.legend(loc='upper center',fontsize=18) if storepath: pp = PdfPages(storepath) pp.savefig(fig) pp.close() else: plt.show() def get_net_keys(self): return self.fdata.keys() def get_totalerror_table(self, tslist = []): errors = dict() for k in self.fdata.keys(): errors[k] = pd.Series(self.generate_fullset_errors(k, tslist)) pd.set_option('expand_frame_repr', False) edat = pd.DataFrame(errors).transpose() return edat def get_totalerrorperatom_table(self, tslist = []): errors = dict() for k in self.fdata.keys(): errors[k] = pd.Series(self.generate_fullset_peratom_errors(k, tslist))
pd.set_option('expand_frame_repr', False)
pandas.set_option
from django.shortcuts import render, get_object_or_404, redirect from django.views.generic import TemplateView import pandas as pd from core.models import * from django.contrib.auth.decorators import login_required from django.utils.decorators import method_decorator import datetime def make_all_client(): qs = list(ClientModel.objects.values_list('name__name', 'task__task', 'subtask__subtask', 'time_spent')) df = pd.DataFrame(qs, columns=['name', 'task', 'subtask', 'time_spent']) df.to_csv('stuff/all.csv', sep=';', index=None) class AllClientsPageView(TemplateView): template_name = 'all_clients.html' @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super().dispatch(*args, **kwargs) def get_context_data(self, **kwargs): context = super(AllClientsPageView, self).get_context_data(**kwargs) make_all_client() all_clients = pd.read_csv('stuff/all.csv', sep=';') all_clients = all_clients.groupby(['name', 'task', 'subtask']).sum().sum(level=['name', 'task', 'subtask']).fillna(0).reset_index() all_clients['time_spent'] = pd.to_timedelta(all_clients.time_spent, unit='m') context.update({'df': all_clients.values}) return context def make_all_employee(): qs = list(ClientModel.objects.values_list('dec_name', 'time_spent', 'date_added')) df = pd.DataFrame(qs, columns=['dec_name', 'time_spent', 'date_added']) df.date_added = df.date_added.values.astype('M8[D]') df.to_csv('stuff/employees.csv', sep=';', index=None) class EmployeeTabPageView(TemplateView): template_name = 'employee_tab.html' @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super().dispatch(*args, **kwargs) def get_context_data(self, **kwargs): context = super(EmployeeTabPageView, self).get_context_data(**kwargs) make_all_employee() today = datetime.date.today() employees = pd.read_csv('stuff/employees.csv', sep=';') employees = employees.groupby(['dec_name', 'date_added']).sum().sum(level=['dec_name', 'date_added']).fillna(0).reset_index() employees['time_spent'] = pd.to_datetime(employees.time_spent, unit='m').dt.strftime('%H:%M') date_split = employees['date_added'].str.split('-') employees['date_added'] = date_split.str[-1] + '/' + date_split.str[1] + '/' + date_split.str[0] context.update({'df': employees.values}) return context class SumOfClientView(TemplateView): template_name = 'clientsum.html' @method_decorator(login_required) def dispatch(self, *args, **kwargs): return super().dispatch(*args, **kwargs) def get_context_data(self, **kwargs): context = super(SumOfClientView, self).get_context_data(**kwargs) make_all_client() all_clients =
pd.read_csv('stuff/all.csv', sep=';')
pandas.read_csv
#!/usr/bin/env python3 # @Author : <NAME> # @FileName : meth_stats_tool.py # @Software : NANOME project # @Organization : JAX Li Lab # @Website : https://github.com/TheJacksonLaboratory/nanome """ Tool for pre-processing results """ import argparse import glob import gzip import sys from collections import defaultdict from multiprocessing import Pool import h5py import numpy as np import pandas as pd from Bio import SeqIO from ont_fast5_api.fast5_interface import get_fast5_file from tqdm import tqdm from nanocompare.eval_common import load_tombo_df, load_deepmod_df, get_dna_base_from_reference, \ load_sam_as_strand_info_df, load_nanopolish_df from nanocompare.global_config import * from nanocompare.global_settings import humanChrSet def add_strand_info_for_nanopolish( nanopolish_fn='/projects/li-lab/yang/results/12-09/K562.nanopolish/K562.methylation_calls.tsv', sam_fn='/projects/li-lab/yang/results/12-09/K562.nanopolish/K562.sam'): """ No need for new nanopolish output Combine the nanopolish output tsv results with strand-info from SAM files. This will add last column as strand-info. This is due to original nanopolish output results contain no strand-info, we are going to solve this problem. Return results columns are: [(0, 'chromosome'), (1, 'start'), (2, 'end'), (3, 'read_name'), (4, 'log_lik_ratio'), (5, 'log_lik_methylated'), (6, 'log_lik_unmethylated'), (7, 'num_calling_strands'), (8, 'num_cpgs'), (9, 'sequence'), (10, 'strand-info')] :param nanopolish_fn: nanopolish file name :param sam_fn: SAM file name for strand-info :return: """ if args.i is not None: nanopolish_fn = args.i if args.ibam is not None: sam_fn = args.ibam df2 = load_sam_as_strand_info_df(infn=sam_fn) df1 = load_nanopolish_df(infn=nanopolish_fn) df = df1.merge(df2, left_on='read_name', right_on='read-name', how='left') df = df.drop('read-name', axis=1) logger.info(df) logger.info(list(enumerate(df.columns))) if len(df1) != len(df): raise Exception( "We found the read-name of Nanopolish results is not mapped all to SAM/BAM file, please check if the BAM file is used for Nanopolish") # df = df.iloc[:, [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]] outfn = os.path.join(pic_base_dir, f'{os.path.splitext(os.path.basename(nanopolish_fn))[0]}-nanopolish-strand-info.tsv') df.to_csv(outfn, sep='\t', index=False) logger.info(f'save to {outfn}') return df def sanity_check_get_dna_seq(chrstr): """ Check 0-based start, input as 'chr1:123' :param chrstr: :return: """ chr, start = chrstr.strip().split(':') start = int(start) show_arrow = ''.join(['~'] * 5 + ['↑'] + ['~'] * 5) ret = get_dna_base_from_reference(chr, start, ref_fasta=ref_fasta) logger.info(f'chr={chr}, start={start}\nSEQ={ret}\nPOS={show_arrow}') def filter_noncg_sites_ref_seq(df, tagname, ntask=1, ttask=1, num_seq=5, chr_col=0, start_col=1, strand_col=5, toolname='tombo'): """ Filter out rows that are non-CG patterns in Tombo results, reference sequence is based on BAM files from SAM to BAM (with index) script is as follows: samtools view -S -b K562.sam > K562.bam samtools sort -o K562.sorted.bam K562.bam samtools index K562.sorted.bam :param tombo_fn: :param sam_fn: :return: """ chrs = df.iloc[:, chr_col].unique() chrs = np.sort(chrs) logger.info(chrs) logger.info(len(chrs)) all_list = list(range(len(df))) cpg_pattern_index = subset_of_list(all_list, ntask, ttask) # sel_chrs = subset_of_list(chrs, ntask, ttask) # logger.info(sel_chrs) # df = df[df[0].isin(sel_chrs)] df = df.iloc[cpg_pattern_index, :] logger.info(df) rep_chr = df.iloc[0, chr_col] seq_col = [] cpg_pattern_index = [] print_first = True for index, row in tqdm(df.iterrows()): if print_first: logger.info(f"index={index}, row={row}") print_first = False chr = row[chr_col] start = int(row[start_col]) strand_info = row[strand_col] # ret = get_dna_sequence_from_samfile(chr, start, start + num_seq, samfile) # may return None, if no sequence at all reads ret = get_dna_base_from_reference(chr, start, num_seq=num_seq, ref_fasta=ref_fasta) seq_col.append(ret) if toolname == 'tombo': if ret[5:7] == 'CG': cpg_pattern_index.append(index) elif toolname == 'deepmod': if strand_info == '+': if ret[5:7] == 'CG': cpg_pattern_index.append(index) elif strand_info == '-': if ret[4:6] == 'CG': cpg_pattern_index.append(index) # TODO: using ret if it is CG pattern, or will remove later # logger.info(f'chr={chr}, start={start}, strand={strand_info}, ret={ret}') # if index > 10000: # break df['sequence'] = seq_col logger.debug(f'before filter:{len(df)}, after non-CG filter:{len(cpg_pattern_index)}') df = df.loc[cpg_pattern_index, :] # tagname is like 'K562.tombo.perReadsStats.combine' # then outfn is like 'K562.tombo.perReadsStats.combine-with-seq-info-n300-t001-chr1.tsv' outfn = os.path.join(args.o, f'{tagname}-with-seq-info-n{ntask}-t{ttask:03d}-{rep_chr}.tsv') df.to_csv(outfn, sep='\t', header=False, index=False) logger.info(f"save to {outfn}") def filter_noncg_sites_ref_seq_mpi(df, tagname, ntask=1, ttask=1, num_dna_seq=5, chr_col=0, start_col=1, strand_col=5, toolname='tombo', print_first=False): """ MPI version invoke like: res = p.apply_async(testFunc, args=(2, 4), kwds={'calcY': False}) or pool.apply_async(test, (t,), dict(arg2=5)) Filter out rows that are non-CG patterns in Tombo results, reference sequence is based on BAM files :param tombo_fn: :param sam_fn: :return: """ rep_chr = df.iloc[0, chr_col] seq_col = [] only_cpg_pattern_index = [] for index, row in df.iterrows(): if print_first: logger.info(f"index={index}, row={row}") print_first = False chr = row[chr_col] start = int(row[start_col]) strand_info = row[strand_col] ret = get_dna_base_from_reference(chr, start, num_seq=num_dna_seq, ref_fasta=ref_fasta) seq_col.append(ret) if toolname == 'tombo': if ret[5:7] == 'CG': only_cpg_pattern_index.append(index) elif toolname in ['deepmod', 'deepmod-read-level']: if strand_info == '+': if ret[5:7] == 'CG': only_cpg_pattern_index.append(index) elif strand_info == '-': if ret[4:6] == 'CG': only_cpg_pattern_index.append(index) df['sequence'] = seq_col # logger.debug(f'Subprocess [{ttask}:{ntask}] finished, before filter:{len(df)}, after non-CG filter:{len(only_cpg_pattern_index)}') df = df.loc[only_cpg_pattern_index, :] # tagname is like 'K562.tombo.perReadsStats.combine' # then outfn is like 'K562.tombo.perReadsStats.combine-with-seq-info-n300-t001-chr1.tsv' # outfn = os.path.join(args.o, f'{tagname}-with-seq-info-n{ntask}-t{ttask:03d}-{rep_chr}.tsv') # df.to_csv(outfn, sep='\t', header=False, index=False) # logger.info(f"save to {outfn}") logger.info(f"Finished of subprocess {ttask}:{ntask}") return df def filter_noncg_sites_for_tombo( tombo_fn='/projects/li-lab/yang/workspace/nano-compare/data/tools-call-data/K562/K562.tombo_perReadsStats.bed', sam_fn='/projects/li-lab/yang/results/12-09/K562.nanopolish/K562.sorted.bam', ntask=1, ttask=1, num_seq=5): if args.i is not None: tombo_fn = args.i df = load_tombo_df(infn=tombo_fn) basefn = os.path.basename(tombo_fn) basename = os.path.splitext(basefn)[0] filter_noncg_sites_ref_seq(df=df, tagname=basename, ntask=ntask, ttask=ttask, num_seq=num_seq) def convert_bismark_add_strand_and_seq(indf, outfn, report_num=None): """ Check start pointer, if point to CG's C, it is positive strand, or else, it is reverse strand Note: input file is 1-based start, we also output to a 1-based format that is compatable to our Bismark import functions. :param indf: :param outf: :param report_num: :return: """ logger.debug(f'Start add strand and seq to bismark cov file, total len={len(indf)}') outf = gzip.open(outfn, 'wt') for index, row in tqdm(indf.iterrows()): # if report_num and index % report_num == 0: # logger.debug(f'processed index={index}') chr = row['chr'] start = int(row['start']) # Keep raw 1-based format of bismark results ret = get_dna_base_from_reference(chr, start - 1, ref_fasta=ref_fasta) if ret[5] == 'C': # strand is + strand = '+' elif ret[5] == 'G': strand = '-' else: raise Exception(f'We can not identify this bg-truth file with non-CG results, such as row={row}') outstr = '\t'.join([chr, str(start), strand, str(row['mcount']), str(row['ccount']), ret[4:7]]) outf.write(f'{outstr}\n') outf.close() logger.info(f'save to {outfn}') logger.debug(f'Finish add strand info task') def convert_bismark_cov_to_gw_format(df): """ Save adding strand info and dna seq format, which is in same format of Bismark Genome-wide output files :param df: :return: """ basefn = os.path.basename(args.i) basename = os.path.splitext(basefn)[0] outfn = os.path.join(args.o, f'{basename}.convert.add.strand.tsv.gz') convert_bismark_add_strand_and_seq(df, outfn) def filter_noncg_sites_mpi(df, ntask=300, toolname='tombo'): """ MPI version of filter out non-CG patterns :return: """ basefn = os.path.basename(args.i) basename = os.path.splitext(basefn)[0] all_list = list(range(len(df))) # Store each sub-process return results df_list = [] with Pool(processes=args.processors) as pool: for epoch in range(ntask): cpg_pattern_index = subset_of_list(all_list, ntask, epoch + 1) seldf = df.iloc[cpg_pattern_index, :] if toolname == 'tombo': df_list.append(pool.apply_async(filter_noncg_sites_ref_seq_mpi, (seldf, basename, ntask, epoch + 1))) elif toolname == 'deepmod': df_list.append(pool.apply_async(filter_noncg_sites_ref_seq_mpi, (seldf, basename, ntask, epoch + 1), dict(chr_col=0, start_col=1, strand_col=5, toolname='deepmod'))) elif toolname == 'deepmod-read-level': df_list.append(pool.apply_async(filter_noncg_sites_ref_seq_mpi, (seldf, basename, ntask, epoch + 1), dict(chr_col=0, start_col=1, strand_col=5, toolname='deepmod-read-level'))) else: raise Exception(f"{toolname} is no valid.") pool.close() pool.join() # Combine df logger.debug("Start to combine all results") df_list = [df1.get() for df1 in df_list] retdf = pd.concat(df_list) logger.debug(retdf) ## Note: original input=K562.tombo.perReadsStats.combine.tsv ## output=K562.tombo.perReadsStatsOnlyCpG.combine.tsv if toolname == 'tombo': basefn = basefn.replace("perReadsStats", "perReadsStatsOnlyCG").replace("combined", "combine") elif toolname == 'deepmod': ## Example: HL60.deepmod.C.combined.tsv basefn = basefn.replace(".C.", ".C_OnlyCG.").replace("combined", "combine") else: raise Exception(f"{toolname} is no valid.") outfn = os.path.join(args.o, f'{basefn}') retdf.to_csv(outfn, sep='\t', index=False, header=False) logger.debug(f"Save to {outfn}") def filter_noncg_sites_for_deepmod( deepmod_fn='/projects/li-lab/yang/workspace/nano-compare/data/tools-call-data/K562/K562.deepmod_combined.bed', sam_fn='/projects/li-lab/yang/results/12-09/K562.nanopolish/K562.sorted.bam', ntask=1, ttask=1, num_seq=5): if args.i is not None: deepmod_fn = args.i df = load_deepmod_df(infn=deepmod_fn) basefn = os.path.basename(deepmod_fn) basename = os.path.splitext(basefn)[0] filter_noncg_sites_ref_seq(df=df, tagname=basename, ntask=ntask, ttask=ttask, num_seq=num_seq, chr_col=0, start_col=1, strand_col=5, toolname='deepmod') def subset_of_list(alist, n, t): """ Subset of a list for multi-processing n=1 to 100 t=1 to N return subset list of alist :param alist: :param n: :param t: :return: """ if t < 1 or t > n: raise Exception(f't={t} is not accept, must be 1-N (include)') if n > len(alist): # if n is bigger than all list, return only 1 for t<=len if t <= len(alist): return [alist[t - 1]] else: return None m = int(len(alist) / n) # each task of a section of list start_index = int((t - 1) * m) if t == n: sublist = alist[start_index:] else: sublist = alist[start_index:start_index + m] # logger.debug(f'n={n}, t={t}, section={m}, index={start_index}:{start_index + m}') return sublist def get_f5_readid_map(flist): f5_readid_map = defaultdict(str) for fn in flist: basename = os.path.basename(fn) with get_fast5_file(fn, mode="r") as f5: # if len(f5.get_reads()) >= 2: # raise Exception(f'We can only deal with one read in fast5, but fn={fn}, contains {len(f5.get_reads())} multiple reads') for read in f5.get_reads(): f5_readid_map[basename] = str(read.read_id) return f5_readid_map def build_map_fast5_to_readid_mp( basedir='/fastscratch/liuya/nanocompare/K562-Runs/K562-DeepMod-N50/K562-DeepMod-N50-basecall', ntask=300): patfn = os.path.join(basedir, '**', '*.fast5') fast5_flist = glob.glob(patfn, recursive=True) logger.info(f'Total fast5 files: {len(fast5_flist)}') ret_list = [] with Pool(processes=args.processors) as pool: for epoch in range(ntask): subflist = subset_of_list(fast5_flist, ntask, epoch + 1) ret_list.append(pool.apply_async(get_f5_readid_map, (subflist,))) pool.close() pool.join() logger.debug('Finish fast5 to read-id mapping') f5_readid_map = defaultdict(str) for ret in ret_list: f5_readid_map.update(ret.get()) # for fn in fast5_flist[:]: # # logger.debug(fn) # basename = os.path.basename(fn) # # with get_fast5_file(fn, mode="r") as f5: # for read in f5.get_reads(): # # logger.debug(read.read_id) # f5_readid_map[basename] = str(read.read_id) return f5_readid_map def process_pred_detail_f5file(fn, f5_readid_map): """ For each deepmod prediction results file, we analyze a df result of read-level results :param fn: :param f5_readid_map: :return: """ f5_pred_key = '/pred/pred_0/predetail' dflist = [] with h5py.File(fn, 'r') as mr: # m_pred = mr[f5_pred_key].value # logger.debug(m_pred) for name in mr['/pred']: # logger.debug(name) pred_num_key = f'/pred/{name}' f5file = os.path.basename(mr[pred_num_key].attrs['f5file']) mapped_chr = mr[pred_num_key].attrs['mapped_chr'] mapped_strand = mr[pred_num_key].attrs['mapped_strand'] # logger.debug(f'{pred_num_key}: chr={mapped_chr}, strand={mapped_strand}, f5file={f5file}') pred_detail_key = f'{pred_num_key}/predetail' # m_pred = mr[pred_detail_key].value m_pred = mr[pred_detail_key][()] m_pred = np.array(m_pred, dtype=[('refbase', 'U1'), ('readbase', 'U1'), ('refbasei', np.uint64), ('readbasei', np.uint64), ('mod_pred', np.int)]) dataset = [] for mi in range(len(m_pred)): if m_pred['refbase'][mi] not in ['C']: continue if m_pred['refbase'][mi] in ['-', 'N', 'n']: continue # if m_pred['readbase'][mi] == '-': # continue # Filter non-CG patterns results ret = get_dna_base_from_reference(mapped_chr, int(m_pred['refbasei'][mi]), ref_fasta=ref_fasta) if mapped_strand == '+': if ret[5:7] != 'CG': continue elif mapped_strand == '-': if ret[4:6] != 'CG': continue if -0.1 < m_pred['mod_pred'][mi] - 1 < 0.1: meth_indicator = 1 else: meth_indicator = 0 # sp_options['4NA'][m_pred['refbase'][mi]][(cur_chr, cur_strand, int(m_pred['refbasei'][mi]) )][0] += 1 ret = {'start': int(m_pred['refbasei'][mi]), 'pred': meth_indicator, 'base': m_pred['refbase'][mi], 'sequence': ret} dataset.append(ret) df = pd.DataFrame(dataset) if len(df) < 1: continue df['chr'] = str(mapped_chr) df['end'] = df['start'] + 1 df['strand'] = str(mapped_strand) df['read-id'] = f5_readid_map[f5file] df = df[['chr', 'start', 'end', 'read-id', 'base', 'strand', 'sequence', 'pred']] # logger.info(df) dflist.append(df) sumdf = pd.concat(dflist) # logger.debug(f'Process pred detail file {fn} finished, total reads={len(sumdf)}.') return sumdf def extract_deepmod_read_level_results_mp( basecallDir='/fastscratch/liuya/nanocompare/K562-Runs/K562-DeepMod-N50/K562-DeepMod-N50-basecall', methcallDir='/fastscratch/liuya/nanocompare/K562-Runs/K562-DeepMod-N50/K562-DeepMod-N50-methcall', ntask=50): f5_readid_map = build_map_fast5_to_readid_mp(basedir=basecallDir, ntask=ntask) # logger.debug(f5_readid_map) # dirname = '/fastscratch/liuya/nanocompare/K562-Runs/K562-DeepMod-N50/K562-DeepMod-N50-methcall/**/rnn.pred.detail.fast5.*' dirname = os.path.join(methcallDir, '**', 'rnn.pred.detail.fast5.*') fast5_flist = glob.glob(dirname, recursive=True) logger.info(f'Total deepmod fast5 files:{len(fast5_flist)}') dflist = [] with Pool(processes=args.processors) as pool: for fn in fast5_flist[:]: # df = process_pred_detail_f5file(fn, f5_readid_map) dflist.append(pool.apply_async(process_pred_detail_f5file, (fn, f5_readid_map,))) # logger.debug(df) # logger.debug(df.iloc[1, :]) # logger.debug(fn) # pass pool.close() pool.join() dflist = [df.get() for df in dflist] sumdf = pd.concat(dflist) logger.debug('Finish get df from deepmod fast5 predetail files') cpgDict = defaultdict(lambda: [0, 0]) # 0:cov, 1:meth-cov for index, row in sumdf.iterrows(): chr = row['chr'] start = row['start'] strand = row['strand'] basekey = (chr, start, strand) cpgDict[basekey][0] += 1 if row['pred'] == 1: cpgDict[basekey][1] += 1 logger.debug(f'CpG sites={len(cpgDict)}') dataset = [] for site in cpgDict: ret = {'chr': site[0], 'start': site[1], 'end': site[1] + 1, 'base': 'C', 'cap-cov': cpgDict[site][0], 'strand': site[2], 'no-use1': '', 'start1': site[1], 'end1': site[1] + 1, 'no-use2': '0,0,0', 'cov': cpgDict[site][0], 'meth-freq': int(100 * cpgDict[site][1] / cpgDict[site][0]), 'meth-cov': cpgDict[site][1]} dataset.append(ret) beddf = pd.DataFrame(dataset) beddf = beddf[ ['chr', 'start', 'end', 'base', 'cap-cov', 'strand', 'no-use1', 'start1', 'end1', 'no-use2', 'cov', 'meth-freq', 'meth-cov']] logger.debug('Finish bed df, extract all DONE.') return sumdf, beddf def parse_arguments(): """ :return: """ parser = argparse.ArgumentParser(description='Multi-task') parser.add_argument("cmd", help="name of command: compute, combine, or gen-pixel-info") parser.add_argument('-n', type=int, help="the total number of tasks (1-27)", default=1) parser.add_argument('-t', type=int, help="the current task id (1-N)", default=1) parser.add_argument('-i', type=str, help="input file", default=None) parser.add_argument('-o', type=str, help="output dir or file", default=pic_base_dir) parser.add_argument('--o2', type=str, help="second output dir or file", default=None) parser.add_argument('--ibam', type=str, help="input bam/sam file", default=None) parser.add_argument('--basecallDir', type=str, help="basecallDir dir name", default=None) parser.add_argument('--methcallDir', type=str, help="methcallDir dir name", default=None) parser.add_argument('--processors', type=int, help="Number of processors", default=8) parser.add_argument('--mpi', action='store_true') parser.add_argument('--chrs', nargs='+', help='all chrs need to check', default=[]) return parser.parse_args() def output_bed_by_bin(bin_id): num_bins = 5 density_col = 4 output_cols = [0, 1, 2] bin_value = int(bin_id / num_bins * 100 + 1e-5) logger.info(f"start with bin_id={bin_id}, bin_value={bin_value}") ndf = df[df[density_col] == bin_value] ndf = ndf.iloc[:, output_cols] logger.info(f"start to save, df={len(df):,}, ndf={len(ndf):,}, for bin_value={bin_value}") outfn = os.path.join(args.o, f"hg38.gc5Base.bin{bin_value}.bed.gz") ndf.to_csv(outfn, sep='\t', header=False, index=False) logger.info(f"save to {outfn}") def output_bed_by_bin2(infn, num_bins): inf = gzip.open(infn, 'rt') outf_list = [] for bin_id in range(0, num_bins + 1): bin_value = int(bin_id / num_bins * 100 + 1e-5) outf_list.append(gzip.open(os.path.join(args.o, f"hg38.gc5Base.bin{bin_value}.bed.gz"), 'wt')) for row in tqdm(inf): tmp = row.strip().split("\t") density_col = 4 bin_value = int(float(tmp[density_col]) + 1e-5) bin_id = bin_value // 20 if bin_id not in range(0, num_bins + 1): logger.error(f"Error found: bin_value={bin_value}, bin_id={bin_id}, for row={row}") raise Exception(f"Error found: bin_value={bin_value}, bin_id={bin_id}, for row={row}") outf_list[bin_id].write(f"{tmp[0]}\t{tmp[1]}\t{tmp[2]}\n") [outf.close for outf in outf_list] logger.info("Finished bin bed for gc density") def save_tss_bed_for_5hmc(infn, outfn): logger.info(f"open infn={infn}") df = pd.read_csv(infn, sep='\t', header=None) logger.debug(df) df = df.iloc[:, [0, 1, 2, 4, 7]] df.columns = ['chr', 'start', 'end', '5hmc_level', 'strand'] df['n1'] = '.' df['start'] = df['start'].astype(int) - 1 df['end'] = df['end'].astype(int) - 1 df['5hmc_level'] = df['5hmc_level'].astype(float) df = df[['chr', 'start', 'end', '5hmc_level', 'n1', 'strand']] logger.info(f"df['5hmc_level'] = {df['5hmc_level'].describe()}") logger.info(f"len(df['5hmc_level'] >= 1.0) = {(df.loc[:, '5hmc_level'] >= 1.0 - 1e-3).sum()}") df.to_csv(outfn, sep='\t', header=False, index=False) logger.info(f"save to {outfn}") pass if __name__ == '__main__': set_log_debug_level() args = parse_arguments() logger.debug(args) ref_fasta = None if args.cmd in ['tombo-add-seq', 'deepmod-add-seq', 'deepmod-read-level', 'sanity-check-seq', 'bismark-convert']: # These command will use reference genome ref_fn = '/projects/li-lab/Ziwei/Nanopore/data/reference/hg38.fa' ref_fasta = SeqIO.to_dict(SeqIO.parse(open(ref_fn), 'fasta')) if args.cmd == 'tombo-add-seq': if args.mpi: logger.debug('in mpi mode') import multiprocessing logger.debug( "There are %d CPUs on this machine by multiprocessing.cpu_count()" % multiprocessing.cpu_count()) df = load_tombo_df(infn=args.i) filter_noncg_sites_mpi(df) else: filter_noncg_sites_for_tombo(ntask=args.n, ttask=args.t) elif args.cmd == 'deepmod-add-seq': if args.mpi: logger.debug('in mpi mode') import multiprocessing logger.debug( "There are %d CPUs on this machine by multiprocessing.cpu_count()" % multiprocessing.cpu_count()) df = load_deepmod_df(infn=args.i) filter_noncg_sites_mpi(df, toolname='deepmod') else: filter_noncg_sites_for_deepmod(ntask=args.n, ttask=args.t) elif args.cmd == 'nanopolish-add-strand': add_strand_info_for_nanopolish() elif args.cmd == 'sanity-check-seq': ## bash meth_stats_tool.sh sanity-check-seq --chrs chr4:10164 chr4:10298 for chrstr in args.chrs: # logger.info(chrstr) sanity_check_get_dna_seq(chrstr) elif args.cmd == 'deepmod-read-level': ### Running bash: """ sbatch meth_stats_tool_mpi.sh deepmod-read-level --basecallDir /fastscratch/liuya/nanocompare/K562-Runs/K562-DeepMod-N50/K562-DeepMod-N50-basecall --methcallDir /fastscratch/liuya/nanocompare/K562-Runs/K562-DeepMod-N50/K562-DeepMod-N50-methcall -o /fastscratch/liuya/nanocompare/deepmod-read-level1.tsv --o2 /fastscratch/liuya/nanocompare/deepmod-read-level1-extract-output.bed """ sumdf, beddf = extract_deepmod_read_level_results_mp(basecallDir=args.basecallDir, methcallDir=args.methcallDir) logger.info(sumdf) logger.info(sumdf.iloc[1, :]) logger.info(sumdf['chr'].unique()) # outfn = os.path.join('/fastscratch/liuya/nanocompare/', 'deepmod-read-level.tsv') # Save read level results outfn = args.o sumdf.to_csv(outfn, sep='\t', index=False, header=False) logger.info(f'save to {outfn}') if args.o2: # Save CpG base level results bed file for cluster module use outfn = args.o2 beddf.to_csv(outfn, sep=' ', index=False, header=False) logger.info(f'save to {outfn}') elif args.cmd == 'bismark-convert': # Convert non-strand info bismark to strand ## bash meth_stats_tool.sh bismark-convert -i /pod/2/li-lab/Ziwei/Nanopore_methyl_compare/result/APL_BSseq/APL-bs_R1_val_1_bismark_bt2_pe.deduplicated.sorted.bed ## sbatch meth_stats_tool.sh bismark-convert -i /pod/2/li-lab/Ziwei/Nanopore_methyl_compare/result/APL_BSseq/APL-bs_R1_val_1_bismark_bt2_pe.deduplicated.sorted.bed df = pd.read_csv(args.i, sep='\t', header=None) if len(df.columns) != 6: raise Exception(f"Can no recognize input file format for infn={args.i}, df={df}") df.columns = ['chr', 'start', 'end', 'freq100', 'mcount', 'ccount'] logger.debug(df) convert_bismark_cov_to_gw_format(df) elif args.cmd == 'gc-density-bed': # sbatch meth_stats_tool.sh gc-density-bed infn = "/projects/li-lab/yang/workspace/nano-compare/data/genome-annotation/hg38.gc5Base.bed.gz" output_bed_by_bin2(infn, num_bins=5) if True: sys.exit(0) df = pd.read_csv(infn, sep='\t', header=None) df.iloc[:, 4] = df.iloc[:, 4].astype(int) logger.debug(df) bin_list = list(range(1, 6)) os.makedirs(args.o, exist_ok=True) with Pool(processes=args.processors) as pool: pool.map(output_bed_by_bin, bin_list) elif args.cmd == 'repetitive-bed': # sbatch meth_stats_tool.sh repetitive-bed # bash meth_stats_tool.sh repetitive-bed infn = "/projects/li-lab/yang/results/2021-07-01/hg38.repetitive.bed.gz" df =
pd.read_csv(infn, sep='\t')
pandas.read_csv
from functools import reduce import numpy as np import pandas as pd import pyprind from .enums import * class Backtest: """Backtest runner class.""" def __init__(self, allocation, initial_capital=1_000_000, shares_per_contract=100): assets = ('stocks', 'options', 'cash') total_allocation = sum(allocation.get(a, 0.0) for a in assets) self.allocation = {} for asset in assets: self.allocation[asset] = allocation.get(asset, 0.0) / total_allocation self.initial_capital = initial_capital self.stop_if_broke = True self.shares_per_contract = shares_per_contract self._stocks = [] self._options_strategy = None self._stocks_data = None self._options_data = None @property def stocks(self): return self._stocks @stocks.setter def stocks(self, stocks): assert np.isclose(sum(stock.percentage for stock in stocks), 1.0, atol=0.000001), 'Stock percentages must sum to 1.0' self._stocks = list(stocks) return self @property def options_strategy(self): return self._options_strategy @options_strategy.setter def options_strategy(self, strat): self._options_strategy = strat @property def stocks_data(self): return self._stocks_data @stocks_data.setter def stocks_data(self, data): self._stocks_schema = data.schema self._stocks_data = data @property def options_data(self): return self._options_data @options_data.setter def options_data(self, data): self._options_schema = data.schema self._options_data = data def run(self, rebalance_freq=0, monthly=False, sma_days=None): """Runs the backtest and returns a `pd.DataFrame` of the orders executed (`self.trade_log`) Args: rebalance_freq (int, optional): Determines the frequency of portfolio rebalances. Defaults to 0. monthly (bool, optional): Iterates through data monthly rather than daily. Defaults to False. Returns: pd.DataFrame: Log of the trades executed. """ assert self._stocks_data, 'Stock data not set' assert all(stock.symbol in self._stocks_data['symbol'].values for stock in self._stocks), 'Ensure all stocks in portfolio are present in the data' assert self._options_data, 'Options data not set' assert self._options_strategy, 'Options Strategy not set' assert self._options_data.schema == self._options_strategy.schema option_dates = self._options_data['date'].unique() stock_dates = self.stocks_data['date'].unique() assert np.array_equal(stock_dates, option_dates), 'Stock and options dates do not match (check that TZ are equal)' self._initialize_inventories() self.current_cash = self.initial_capital self.trade_log = pd.DataFrame() self.balance = pd.DataFrame({ 'total capital': self.current_cash, 'cash': self.current_cash }, index=[self.stocks_data.start_date - pd.Timedelta(1, unit='day')]) if sma_days: self.stocks_data.sma(sma_days) dates = pd.DataFrame(self.options_data._data[['quotedate', 'volume']]).drop_duplicates('quotedate').set_index('quotedate') rebalancing_days = pd.to_datetime( dates.groupby(pd.Grouper(freq=str(rebalance_freq) + 'BMS')).apply(lambda x: x.index.min()).values) if rebalance_freq else [] data_iterator = self._data_iterator(monthly) bar = pyprind.ProgBar(len(stock_dates), bar_char='█') for date, stocks, options in data_iterator: if (date in rebalancing_days): previous_rb_date = rebalancing_days[rebalancing_days.get_loc(date) - 1] if rebalancing_days.get_loc(date) != 0 else date self._update_balance(previous_rb_date, date) self._rebalance_portfolio(date, stocks, options, sma_days) bar.update() # Update balance for the period between the last rebalancing day and the last day self._update_balance(rebalancing_days[-1], self.stocks_data.end_date) self.balance['options capital'] = self.balance['calls capital'] + self.balance['puts capital'] self.balance['stocks capital'] = sum(self.balance[stock.symbol] for stock in self._stocks) self.balance['stocks capital'].iloc[0] = 0 self.balance['options capital'].iloc[0] = 0 self.balance[ 'total capital'] = self.balance['cash'] + self.balance['stocks capital'] + self.balance['options capital'] self.balance['% change'] = self.balance['total capital'].pct_change() self.balance['accumulated return'] = (1.0 + self.balance['% change']).cumprod() return self.trade_log def _initialize_inventories(self): """Initialize empty stocks and options inventories.""" columns = pd.MultiIndex.from_product( [[l.name for l in self._options_strategy.legs], ['contract', 'underlying', 'expiration', 'type', 'strike', 'cost', 'order']]) totals = pd.MultiIndex.from_product([['totals'], ['cost', 'qty', 'date']]) self._options_inventory = pd.DataFrame(columns=columns.append(totals)) self._stocks_inventory = pd.DataFrame(columns=['symbol', 'price', 'qty']) def _data_iterator(self, monthly): """Returns combined iterator for stock and options data. Each step, it produces a tuple like the following: (date, stocks, options) Returns: generator: Daily/monthly iterator over `self._stocks_data` and `self.options_data`. """ if monthly: it = zip(self._stocks_data.iter_months(), self._options_data.iter_months()) else: it = zip(self._stocks_data.iter_dates(), self._options_data.iter_dates()) return ((date, stocks, options) for (date, stocks), (_, options) in it) def _rebalance_portfolio(self, date, stocks, options, sma_days): """Reabalances the portfolio according to `self.allocation` weights. Args: date (pd.Timestamp): Current date. stocks (pd.DataFrame): Stocks data for the current date. options (pd.DataFrame): Options data for the current date. sma_days (int): SMA window size """ self._execute_option_exits(date, options) stock_capital = self._current_stock_capital(stocks) options_capital = self._current_options_capital(options) total_capital = self.current_cash + stock_capital + options_capital # buy stocks stocks_allocation = self.allocation['stocks'] * total_capital self._stocks_inventory = pd.DataFrame(columns=['symbol', 'price', 'qty']) # We simulate a sell of the stock positions and then a rebuy. # This would **not** work if we added transaction fees. self.current_cash = stocks_allocation + total_capital * self.allocation['cash'] self._buy_stocks(stocks, stocks_allocation, sma_days) # exit/enter contracts options_allocation = self.allocation['options'] * total_capital if options_allocation >= options_capital: self._execute_option_entries(date, options, options_allocation - options_capital) else: to_sell = options_capital - options_allocation current_options = self._get_current_option_quotes(options) self._sell_some_options(date, to_sell, current_options) def _sell_some_options(self, date, to_sell, current_options): sold = 0 total_costs = sum([current_options[i]['cost'] for i in range(len(current_options))]) for (exit_cost, (row_index, inventory_row)) in zip(total_costs, self._options_inventory.iterrows()): if (to_sell - sold > -exit_cost) and (to_sell - sold) > 0: qty_to_sell = (to_sell - sold) // exit_cost if -qty_to_sell <= inventory_row['totals']['qty']: qty_to_sell = (to_sell - sold) // exit_cost else: if qty_to_sell != 0: qty_to_sell = -inventory_row['totals']['qty'] if qty_to_sell != 0: trade_log_append = self._options_inventory.loc[row_index].copy() trade_log_append['totals', 'qty'] = -qty_to_sell trade_log_append['totals', 'date'] = date trade_log_append['totals', 'cost'] = exit_cost for i, leg in enumerate(self._options_strategy.legs): trade_log_append[leg.name, 'order'] = ~trade_log_append[leg.name, 'order'] trade_log_append[leg.name, 'cost'] = current_options[i].loc[row_index]['cost'] self.trade_log = self.trade_log.append(trade_log_append, ignore_index=True) self._options_inventory.at[row_index, ('totals', 'date')] = date self._options_inventory.at[row_index, ('totals', 'qty')] += qty_to_sell sold += (qty_to_sell * exit_cost) self.current_cash += sold - to_sell def _current_stock_capital(self, stocks): """Return the current value of the stocks inventory. Args: stocks (pd.DataFrame): Stocks data for the current time step. Returns: float: Total capital in stocks. """ current_stocks = self._stocks_inventory.merge(stocks, how='left', left_on='symbol', right_on=self._stocks_schema['symbol']) return (current_stocks[self._stocks_schema['adjClose']] * current_stocks['qty']).sum() def _current_options_capital(self, options): options_value = self._get_current_option_quotes(options) values_by_row = [0] * len(options_value[0]) if len(options_value[0]) != 0: for i in range(len(self._options_strategy.legs)): values_by_row += options_value[i]['cost'].values total = -sum(values_by_row * self._options_inventory['totals']['qty'].values) else: total = 0 return total def _buy_stocks(self, stocks, allocation, sma_days): """Buys stocks according to their given weight, optionally using an SMA entry filter. Updates `self._stocks_inventory` and `self.current_cash`. Args: stocks (pd.DataFrame): Stocks data for the current time step. allocation (float): Total capital allocation for stocks. sma_days (int): SMA window. """ stock_symbols = [stock.symbol for stock in self.stocks] query = '{} in {}'.format(self._stocks_schema['symbol'], stock_symbols) inventory_stocks = stocks.query(query) stock_percentages = np.array([stock.percentage for stock in self.stocks]) stock_prices = inventory_stocks[self._stocks_schema['adjClose']] if sma_days: qty = np.where(inventory_stocks['sma'] < stock_prices, (allocation * stock_percentages) // stock_prices, 0) else: qty = (allocation * stock_percentages) // stock_prices self.current_cash -= np.sum(stock_prices * qty) self._stocks_inventory =
pd.DataFrame({'symbol': stock_symbols, 'price': stock_prices, 'qty': qty})
pandas.DataFrame
from django.shortcuts import render from django.http import HttpResponse from django.conf import settings from rest_framework import permissions from rest_framework.views import APIView from rest_framework.response import Response import requests import json from django.views.decorators.csrf import csrf_exempt # from rest_framework.decorators import api_view,renderer_classes, from django.http import JsonResponse from django.views.decorators.http import require_POST from rest_framework.decorators import api_view,schema import os,subprocess,pathlib from string import ascii_uppercase from random import choice import pandas as pd import skimage from multiprocessing import Lock, Process lockForModelLoad = None def create_lockForModel(): global lockForModelLoad lockForModelLoad = Lock() # from SwaggerSchema.schemas import (loadModelSwagger, # predictTestDataSwagger, # unloadModelSwagger, # ) from trainModel import kerasUtilities from trainModel.mergeTrainingV2 import PMMLMODELSTORAGE from trainModel.mergeTrainingV2 import NewModelOperations kerasUtilities = kerasUtilities.KerasUtilities() global PMMLMODELSTORAGE class Scoring: def getListOfModelinMemory(): global PMMLMODELSTORAGE # print ('PMMLMODELSTORAGE',PMMLMODELSTORAGE) moreDetails=[] for j in PMMLMODELSTORAGE: temp_dict={} temp_dict['modelName']=j try: temp_dict['inputShape']=PMMLMODELSTORAGE[j]['inputShape'] except: pass # temp_dict['predClasses']=[str(cl) for cl in PMMLMODELSTORAGE[j]['predClasses']] try: temp_dict['status']=PMMLMODELSTORAGE[j]['status'] except: pass moreDetails.append(temp_dict) # print ('>>>',temp_dict) return JsonResponse(moreDetails, safe=False,status=200) def loadModelfile(self,filpath, idforData=None): # print ('>>>>>',filpath) global PMMLMODELSTORAGE # filpath=requests.POST.get('filePath') # print ('>>>>>>> filepath',filpath) # filpath=filpath.replace('.pmml','') keyOfGlobalMemory,messNotice,modelType=kerasUtilities.loadPMMLmodel(filpath,idforData) # print ('>>>>>>> messnotice',messNotice) if messNotice=='Success': # modelDetails={j:PMMLMODELSTORAGE[j] for j in PMMLMODELSTORAGE} # print ('>>>>>>>>>>>>>>>>>>>>>',PMMLMODELSTORAGE ) # modelDetails={'inputShape':modelDetails[keyOfGlobalMemory]['inputShape'], # 'predClasses':modelDetails[keyOfGlobalMemory]['predClasses'], # 'status':modelDetails[keyOfGlobalMemory]['status'],} data_details={'message':'Model loaded successfully','keytoModel':keyOfGlobalMemory}#,'modelDetails':modelDetails} statusCode = 200 # print('PMMLMODELSTORAGE',PMMLMODELSTORAGE) # return JsonResponse(data_details) # elif (messNotice=='Success') & (modelType=='sklearnM'): # # print ('>>>>>') # # modelDetails={j:PMMLMODELSTORAGE[j] for j in PMMLMODELSTORAGE} # data_details={'message':'Model loaded successfully','keytoModel':keyOfGlobalMemory} elif messNotice=='Failure': data_details={'message':'Model loading failed, please contact Admin','keytoModel':None} statusCode = 500 return JsonResponse(data_details,status= statusCode) def removeModelfromMemory(self,modelName): # print('>>>>>>>>>>>>>>>>came here') global PMMLMODELSTORAGE # modelname=param modelName=modelName.replace('.pmml','') # print('modelname ',modelname) try: messNotice=kerasUtilities.deleteLoadedModelfromMemory(modelName) data_details={'message':'Model unloaded successfully, now it will not be available for predictions.'} statusCode = 200 except: data_details={'message':'Not able to locate, make sure the model was loaded'} statusCode = 500 print(data_details) return JsonResponse(data_details,status= statusCode) def predicttestdata(self,filpath,modelName,jsonData=None): # print('Came Step 1') def checkValInPMMLSTO(pmmlstorage,valtoCheck): try: val=pmmlstorage[valtoCheck] except: val=None return val def checkExtensionOfFile(fP): return pathlib.Path(fP).suffix global PMMLMODELSTORAGE pmmlstoragepointer=modelName # print ('>>>>',pmmlstoragepointer) # print('.,.,.,.',PMMLMODELSTORAGE) # print('filepath>>>>>>>>>>>>>>>',filpath) pmmlstoragepointer=pmmlstoragepointer.replace('.pmml','') pmmlObj=PMMLMODELSTORAGE[pmmlstoragepointer] modelType=checkValInPMMLSTO(pmmlObj,'modelType') preProcessScript=checkValInPMMLSTO(pmmlObj,'preProcessScript') postProcessScript=checkValInPMMLSTO(pmmlObj,'postProcessScript') scriptOutput=checkValInPMMLSTO(pmmlObj,'scriptOutput') # print('Came Step 2',modelType,scriptOutput) # print ('preProcessScript',preProcessScript,'postProcessScript',postProcessScript) if filpath and (modelType != 'MRCNN'): print ('Came here in Image classfication') extenFile=checkExtensionOfFile(filpath) PMMLMODELSTORAGE[pmmlstoragepointer]['extenFile']=extenFile import pandas as pd if (preProcessScript == None) & (postProcessScript == None): if extenFile in ['.jpg','.JPG','.png','.PNG']: outputModel=kerasUtilities.predictImagedata(pmmlstoragepointer,filpath) resulFile=outputModel elif os.path.isdir(filpath): numFiles=os.listdir(filpath+'/test') if len(numFiles) > 100: tempRunMemory=kerasUtilities.predictFolderDataInBatch(pmmlstoragepointer,filpath,len(numFiles)) tempRunMemory['inTask']=True return JsonResponse(tempRunMemory,status=200) else: resulFile=kerasUtilities.predictFolderdata(pmmlstoragepointer,filpath) elif extenFile in ['.json']: data=json.load(open(filpath,'r')) testData=pd.DataFrame([data]) resulFile=kerasUtilities.predictFiledata(pmmlstoragepointer,testData,modelType) else: testData=pd.read_csv(filpath) resulFile=kerasUtilities.predictFiledata(pmmlstoragepointer,testData,modelType) elif (preProcessScript != None) & (postProcessScript == None): if scriptOutput in ['IMAGE','DATA']: if modelType=='kerasM': # print ('>>>>>>>>>>>>>>>>',scriptOutput) resulFile=kerasUtilities.predictCustomCodedata(pmmlstoragepointer,filpath,scriptOutput) if resulFile.__class__.__name__ == 'dict': resulFile['inTask']=True return JsonResponse(resulFile,status=200) else: pass elif (preProcessScript != None) & (postProcessScript != None): # print('Came Step 3') if scriptOutput in ['IMAGE','DATA']: if modelType=='kerasM': # print ('>>>>>>>>>>>>>>>>>',scriptOutput) resulFile=kerasUtilities.predictDataWithPostScript(pmmlstoragepointer,filpath,scriptOutput) if resulFile.__class__.__name__ == 'dict': resulFile['inTask']=True return JsonResponse(resulFile,status=200) elif (preProcessScript == None) & (postProcessScript != None): # print('Came Step 4') # if scriptOutput in ['IMAGE','DATA']: if modelType=='kerasM': print ('>>>>>>>>>>>>>>>>>',scriptOutput) resulFile=kerasUtilities.predictDataWithOnlyPostScript(pmmlstoragepointer,filpath,extenFile) elif filpath and (modelType == 'MRCNN'): # print ('Came to MRCNN model >>>>>>') extenFile=checkExtensionOfFile(filpath) if extenFile in ['.jpg','.JPG','.png','.PNG']: resulFile=kerasUtilities.detectObject(filpath, modelName) else: import pandas as pd testData=pd.DataFrame([jsonData]) PMMLMODELSTORAGE[pmmlstoragepointer]['extenFile']='.json' resulFile=kerasUtilities.predictFiledata(pmmlstoragepointer,testData,modelType) data_details={'result':resulFile} return JsonResponse(data_details,status=202) def predicttestdataReturnJson(self,filpath,modelName,jsonData=None): # print('Came Step 1') def checkValInPMMLSTO(pmmlstorage,valtoCheck): try: val=pmmlstorage[valtoCheck] except: val=None return val def checkExtensionOfFile(fP): return pathlib.Path(fP).suffix global PMMLMODELSTORAGE pmmlstoragepointer=modelName # print ('>>>>',pmmlstoragepointer) # print('.,.,.,.',PMMLMODELSTORAGE) # print('filepath>>>>>>>>>>>>>>>',filpath) pmmlstoragepointer=pmmlstoragepointer.replace('.pmml','') pmmlObj=PMMLMODELSTORAGE[pmmlstoragepointer] modelType=checkValInPMMLSTO(pmmlObj,'modelType') preProcessScript=checkValInPMMLSTO(pmmlObj,'preProcessScript') postProcessScript=checkValInPMMLSTO(pmmlObj,'postProcessScript') scriptOutput=checkValInPMMLSTO(pmmlObj,'scriptOutput') # print('Came Step 2',modelType,scriptOutput) # print ('preProcessScript',preProcessScript,'postProcessScript',postProcessScript) if filpath and (modelType != 'MRCNN'): extenFile=checkExtensionOfFile(filpath) PMMLMODELSTORAGE[pmmlstoragepointer]['extenFile']=extenFile import pandas as pd if (preProcessScript == None) & (postProcessScript == None): if extenFile in ['.jpg','.JPG','.png','.PNG']: outputModel=kerasUtilities.predictImagedata(pmmlstoragepointer,filpath) resulFile=outputModel elif os.path.isdir(filpath): numFiles=os.listdir(filpath+'/test') if len(numFiles) > 100: tempRunMemory=kerasUtilities.predictFolderDataInBatch(pmmlstoragepointer,filpath,len(numFiles)) tempRunMemory['inTask']=True return JsonResponse(tempRunMemory,status=200) else: resulFile=kerasUtilities.predictFolderdata(pmmlstoragepointer,filpath) elif extenFile in ['.json']: data=json.load(open(filpath,'r')) testData=pd.DataFrame([data]) resulFile=kerasUtilities.predictFiledata(pmmlstoragepointer,testData,modelType) else: testData=pd.read_csv(filpath) resulFile=kerasUtilities.predictFiledata(pmmlstoragepointer,testData,modelType) elif (preProcessScript != None) & (postProcessScript == None): if scriptOutput in ['IMAGE','DATA']: if modelType=='kerasM': # print ('>>>>>>>>>>>>>>>>',scriptOutput) resulFile=kerasUtilities.predictCustomCodedata(pmmlstoragepointer,filpath,scriptOutput) if resulFile.__class__.__name__ == 'dict': resulFile['inTask']=True return JsonResponse(resulFile,status=200) else: pass elif (preProcessScript != None) & (postProcessScript != None): # print('Came Step 3') if scriptOutput in ['IMAGE','DATA']: if modelType=='kerasM': # print ('>>>>>>>>>>>>>>>>>',scriptOutput) resulFile=kerasUtilities.predictDataWithPostScript(pmmlstoragepointer,filpath,scriptOutput) if resulFile.__class__.__name__ == 'dict': resulFile['inTask']=True return JsonResponse(resulFile,status=200) elif (preProcessScript == None) & (postProcessScript != None): # print('Came Step 4') # if scriptOutput in ['IMAGE','DATA']: if modelType=='kerasM': print ('>>>>>>>>>>>>>>>>>',scriptOutput) resulFile=kerasUtilities.predictDataWithOnlyPostScript(pmmlstoragepointer,filpath,extenFile) elif filpath and (modelType == 'MRCNN'): # print ('Came to MRCNN model >>>>>>') extenFile=checkExtensionOfFile(filpath) if extenFile in ['.jpg','.JPG','.png','.PNG']: resulFile=kerasUtilities.detectObject(filpath, modelName) else: import pandas as pd testData=
pd.DataFrame([jsonData])
pandas.DataFrame
''' <NAME> https://www.quantopian.com/posts/turtle-trading-strategy#:~:text=Turtle%20trading%20is%20a%20well,of%20rules%20is%20more%20intricate.&text=This%20is%20a%20pretty%20fundamental%20strategy%20and%20it%20seems%20to%20work%20well. https://bigpicture.typepad.com/comments/files/turtlerules.pdf https://github.com/myquant/strategy/blob/master/Turtle/info.md https://zhuanlan.zhihu.com/p/161882477 trend following entry: price > 20 day High add: for every 0.5 ATR, up to 3 times stop: < 2 ATR stop: < 10 day Low It makes investments in units: one price unit is one ATR; one size unit is 1% of asset / ATR. ''' import os import numpy as np import pandas as pd from datetime import datetime import backtrader as bt from IPython.core.display import display, HTML # set browser full width display(HTML("<style>.container { width:100% !important; }</style>")) class Turtle(bt.Strategy): params = ( ('long_window', 20), ('short_window', 10), ('printlog', False), # comma is required ) def __init__(self): self.order = None self.buyprice = 0.0 self.buycomm = 0.0 self.bar_executed = 0 self.val_start = 0.0 self.buy_count = 0 self.don_high = bt.indicators.Highest(self.data.high(-1), period=self.params.long_window) self.don_low = bt.indicators.Lowest(self.data.low(-1), period=self.params.short_window) # https://en.wikipedia.org/wiki/Average_true_range self.TR = bt.indicators.Max((self.data.high(0) - self.data.low(0)), \ abs(self.data.close(-1) - self.data.high(0)), \ abs(self.data.close(-1) - self.data.low(0))) self.ATR = bt.indicators.SimpleMovingAverage(self.TR, period=14) self.buy_signal = bt.ind.CrossOver(self.data.close(0), self.don_high) self.sell_signal = bt.ind.CrossOver(self.data.close(0), self.don_low) def log(self, txt, dt=None, doprint=False): ''' Logging function fot this strategy''' if self.params.printlog or doprint: dt = dt or self.datas[0].datetime.date(0) print('%s, %s' % (dt.isoformat(), txt)) def start(self): self.val_start = self.broker.get_cash() # keep the starting cash def notify_trade(self, trade): if not trade.isclosed: return self.log('OPERATION PROFIT, GROSS %.2f, NET %.2f' % (trade.pnl, trade.pnlcomm)) def notify_order(self, order): if order.status in [order.Submitted, order.Accepted]: # Buy/Sell order submitted/accepted to/by broker - Nothing to do return # Check if an order has been completed # Attention: broker could reject order if not enough cash if order.status in [order.Completed]: # order.Partial if order.isbuy(): self.log( 'BUY EXECUTED, Price: %.2f, Size: %.0f, Cost: %.2f, Comm %.2f, RemSize: %.0f, RemCash: %.2f' % (order.executed.price, order.executed.size, order.executed.value, order.executed.comm, order.executed.remsize, self.broker.get_cash())) self.buyprice = order.executed.price self.buycomm = order.executed.comm else: # Sell self.log('SELL EXECUTED, Price: %.2f, Size: %.0f, Cost: %.2f, Comm %.2f, RemSize: %.0f, RemCash: %.2f' % (order.executed.price, order.executed.size, order.executed.value, order.executed.comm, order.executed.remsize, self.broker.get_cash())) self.bar_executed = len(self) elif order.status in [order.Canceled, order.Expired, order.Margin, order.Rejected]: self.log('Order Failed') self.order = None def next(self): # Simply log the closing price of the series from the reference # self.log('Close, %.2f' % self.data.close[0]) if self.order: return # Long if self.buy_signal > 0 and self.buy_count == 0: # one unit is 1% of total risk asset target_size = int(self.broker.getvalue() * 0.01 / self.ATR[0]) self.order = self.order_target_size(target=target_size) self.log(f'LONG ORDER SENT, price: {self.data.close[0]:.2f}, don_high: {self.don_high[0]:.2f}') self.buy_count = 1 # add; This is for futures; may go beyond notional; leverage is set to 4 elif self.data.close > self.buyprice + 0.5 * self.ATR[0] and self.buy_count > 0 and self.buy_count <= 3: target_size = int(self.broker.getvalue() * 0.01 / self.ATR[0]) target_size += self.getposition(self.datas[0]).size # on top of current size self.order = self.order_target_size(target=target_size) self.log(f'ADD LONG ORDER SENT, add time: {self.buy_count}, price: {self.data.close[0]:.2f}, don_high: {self.don_high[0]:.2f}') self.buy_count += 1 # flat elif self.sell_signal < 0 and self.buy_count > 0: self.order = self.order_target_size(target=0) self.log(f'FLAT ORDER SENT, price: {self.data.close[0]:.2f}, don_low: {self.don_low[0]:.2f}') self.buy_count = 0 # flat, stop loss elif self.data.close < (self.buyprice - 2 * self.ATR[0]) and self.buy_count > 0: self.order = self.order_target_size(target=0) self.log(f'FLAT ORDER SENT, price: {self.data.close[0]:.2f}, {self.buyprice:.2f}, 2ATR: {2 * self.ATR[0]:.2f}') self.buy_count = 0 def stop(self): # calculate the actual returns print(self.analyzers) roi = (self.broker.get_value() / self.val_start) - 1.0 self.log('ROI: {:.2f}%'.format(100.0 * roi)) self.log('(Turtle Ending Value %.2f' % self.broker.getvalue(), doprint=True) if __name__ == '__main__': param_opt = False perf_eval = True benchmark = 'SPX' cerebro = bt.Cerebro() datapath = os.path.join('../data/', 'SPX.csv') # Create a Data Feed data = bt.feeds.YahooFinanceCSVData( dataname=datapath, fromdate=datetime(2010, 1, 1), todate=datetime(2019, 12, 31), reverse=False) # Add the Data Feed to Cerebro cerebro.adddata(data) # Set our desired cash start cerebro.broker.setcash(100000.0) # Add a FixedSize sizer according to the stake # cerebro.addsizer(bt.sizers.FixedSize, stake=10) # PercentSizer will flat position first; overwrite if not desired. # cerebro.addsizer(bt.sizers.PercentSizerInt, percents=95) # Set the commission - 0.1% ... divide by 100 to remove the % cerebro.broker.setcommission(commission=0.001, leverage=10) # Print out the starting conditions print('Starting Portfolio Value: %.2f' % cerebro.broker.getvalue()) # Add a strategy cerebro.addstrategy(Turtle, printlog=True) # Add Analyzer cerebro.addanalyzer(bt.analyzers.SharpeRatio, _name='SharpeRatio') cerebro.addanalyzer(bt.analyzers.DrawDown, _name='DrawDown') cerebro.addanalyzer(bt.analyzers.PyFolio, _name='pyfolio') # Run over everything results = cerebro.run() # Print out the final result strat = results[0] print('Final Portfolio Value: %.2f, Sharpe Ratio: %.2f, DrawDown: %.2f, MoneyDown %.2f' % (cerebro.broker.getvalue(), strat.analyzers.SharpeRatio.get_analysis()['sharperatio'], strat.analyzers.DrawDown.get_analysis()['drawdown'], strat.analyzers.DrawDown.get_analysis()['moneydown'])) if perf_eval: import matplotlib.pyplot as plt cerebro.plot(style='candlestick') plt.show() pyfoliozer = strat.analyzers.getbyname('pyfolio') returns, positions, transactions, gross_lev = pyfoliozer.get_pf_items() print('-------------- RETURNS ----------------') print(returns) print('-------------- POSITIONS ----------------') print(positions) print('-------------- TRANSACTIONS ----------------') print(transactions) print('-------------- GROSS LEVERAGE ----------------') print(gross_lev) import empyrical as ep import pyfolio as pf bm_ret = None if benchmark: datapath = os.path.join('../data/', f'{benchmark}.csv') bm = pd.read_csv(datapath, index_col=0) bm_ret = bm['Adj Close'].pct_change().dropna() bm_ret.index =
pd.to_datetime(bm_ret.index)
pandas.to_datetime
__author__ = 'Martin' import pandas as pd import numpy as np from scipy import stats from sklearn import cross_validation from sklearn import ensemble def is_transformer(cls): return hasattr(cls, '__dageva_type') and cls.__dageva_type == 'transformer' def is_predictor(cls): return hasattr(cls, '__dageva_type') and cls.__dageva_type == 'predictor' def make_transformer(cls): """ Adds Transformer to the bases of the cls class, useful in order to distinguish between transformers and predictors. :param cls: The class to turn into a Transformer :return: A class equivalent to cls, but with Transformer among its bases """ cls.__dageva_type = 'transformer' return cls def make_predictor(cls): """ Adds Predictor to the bases of the cls class, useful in order to distinguish between transformers and predictors. :param cls: The class to turn into a Predictor :return: A class equivalent to cls, but with Predictor among its bases """ cls.__dageva_type = 'predictor' return cls class KMeansSplitter: def __init__(self, k): from sklearn import cluster self.kmeans = cluster.KMeans(n_clusters=k) self.sorted_outputs = None self.weight_idx = [] def fit(self, x, y, sample_weight=None): self.kmeans.fit(x, y) preds = self.kmeans.predict(x) out = [] for i in range(self.kmeans.n_clusters): idx = [n for n in range(len(preds)) if preds[n] == i] self.weight_idx.append(idx) if isinstance(x, pd.DataFrame): out.append(x.iloc[idx]) else: out.append(x[idx]) mins = [len(x.index) for x in out] self.sorted_outputs = list(np.argsort(mins)) self.weight_idx = [self.weight_idx[i] for i in self.sorted_outputs] return self def transform(self, x): preds = self.kmeans.predict(x) out = [] for i in range(self.kmeans.n_clusters): idx = [n for n in range(len(preds)) if preds[n] == i] if isinstance(x, pd.DataFrame): out.append(x.iloc[idx]) else: out.append(x[idx]) return [out[i] for i in self.sorted_outputs] class ConstantModel: def __init__(self, cls): self.cls = cls def fit(self, x, y): return self def predict(self, x): return pd.Series(np.array([self.cls]*len(x)), index=x.index) class Aggregator: def aggregate(self, x, y): pass class Voter(Aggregator): def fit(self, x, y): return self def union_aggregate(self, x, y): f_list, t_list = x, y f_frame, t_frame = pd.DataFrame(), pd.Series() for i in range(len(t_list)): fl = f_list[i] assert isinstance(fl, pd.DataFrame) if fl.columns.dtype == np.dtype('int64'): cols = map(lambda z: str(id(fl)) + '_' + str(z), fl.columns) fl.columns = cols t_frame = t_frame.append(t_list[i]) f_frame = f_frame.append(f_list[i]) f_frame.sort_index(inplace=True) t_frame = t_frame.sort_index() return f_frame, t_frame def aggregate(self, x, y): if not all([x[0].index.equals(xi.index) for xi in x]): return self.union_aggregate(x, y) res = pd.DataFrame(index=y[0].index) for i in range(len(y)): res["p"+str(i)] = y[i] modes = res.apply(lambda row: stats.mode(row, axis=None)[0][0], axis=1) if modes.empty: return x[0], pd.Series() return x[0], pd.Series(modes, index=y[0].index) class Workflow: def __init__(self, dag=None): self.dag = dag self.sample_weight = None self.classes_ = None def fit(self, X, y, sample_weight=None): import eval #TODO: Refactor to remove circular imports self.models = eval.train_dag(self.dag, train_data=(X, y), sample_weight=sample_weight) self.classes_ = np.unique(y) return self def predict(self, X): import eval #TODO: Refactor to remove circular imports return np.array(eval.test_dag(self.dag, self.models, test_data=(X, None))) def transform(self, X): import eval return eval.test_dag(self.dag, self.models, test_data=(X, None), output='feats_only') def get_params(self, deep=False): return {'dag': self.dag} def set_params(self, **params): if 'sample_weight' in params: self.sample_weight = params['sample_weight'] class Stacker(Aggregator): def __init__(self, sub_dags=None, initial_dag=None): self.sub_dags = sub_dags self.initial_dag = initial_dag def fit(self, X, y, sample_weight=None): import eval preds = [[] for _ in self.sub_dags] for train_idx, test_idx in cross_validation.StratifiedKFold(y, n_folds=5): tr_X, tr_y = X.iloc[train_idx], y.iloc[train_idx] tst_X, tst_y = X.iloc[test_idx], y.iloc[test_idx] wf_init = Workflow(self.initial_dag) wf_init.fit(tr_X, tr_y, sample_weight=sample_weight) preproc_X, preproc_y = eval.test_dag(self.initial_dag, wf_init.models, test_data=(tr_X, tr_y), output='all') pp_tst_X = wf_init.transform(tst_X) if pp_tst_X.empty: continue for i, dag in enumerate(self.sub_dags): wf = Workflow(dag) wf.fit(preproc_X, preproc_y) res = wf.predict(pp_tst_X) preds[i].append(pd.DataFrame(res, index=pp_tst_X.index)) preds = [pd.concat(ps) for ps in preds] self.train =
pd.concat(preds, axis=1)
pandas.concat
import os import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np import pandas as pd import zigzag from matplotlib.finance import candlestick2_ohlc fpath = os.path.dirname(os.path.abspath(__file__)) fpath += '/data/ingest_data/' load_file_name = 'binance_btc_usdt_4h.csv' write_up_down_file_name = 'action_binance_btc_usdt_4h.csv' chart_data = pd.read_csv(fpath + load_file_name, thousands=',', header=None) chart_data.columns = ['date', 'open', 'high', 'low', 'close', 'volume'] chart_data['date'] = pd.to_datetime(chart_data['date']) chart_data = chart_data[(chart_data['date'] >= '2017-11-01') & (chart_data['date'] <= '2018-02-01')] high_low = [] trend = 0 open_a = chart_data.open.values close_a = chart_data.close.values low_a = chart_data.low.values high_a = chart_data.high.values ohlcv4_a = (open_a + close_a + low_a + high_a) / 4 for i in range(len(chart_data.date)): open = open_a[i] close = close_a[i] low = low_a[i] high = high_a[i] if i == 0: high_low.append(high if open < close else low) continue high_low.append(max(ohlcv4_a[i], ohlcv4_a[i - 1])) X = np.array(high_low) pivots = zigzag.peak_valley_pivots(X, 0.02, -0.01) """ 위 변곡점: 1 아래 변곡점: -1 나머지: 0 swsong 위 꼭지점은 -1 아래 꼭지점은 1 번갈아 나오면 0점. """ hold_count = 1 left_hold_range = 0.15 right_hold_range = 0.01 # action = 'B', 'S', 'H' actions = [] last_action = None last_action_price = None last_action_index = 0 highest_price = 0 lowest_price = 0 prev_pivot_index = 0 tmp_pivot = None current_hold_count = hold_count def get_next_pivot_index(index, hold_count): next_index = None for i in range(index + hold_count, len(pivots)): if pivots[i] != 0: next_index = i break return next_index for index in range(len(pivots)): price = close_a[index] pivot = pivots[index] act = None if last_action is None: # 처음엔 상태가 없으므로 매수 act = 'B' tmp_pivot = 1 elif pivot != 0 or current_hold_count > 0: # 홀드봉이 있을 경우. # pivot 0 아닌 경우 act = 'H' current_hold_count -= 1 if pivot != 0: tmp_pivot = pivot prev_pivot_index = index if current_hold_count <= 0: current_hold_count = hold_count else: next_pivot_index = get_next_pivot_index(index, 1) if next_pivot_index is None: act = 'H' else: print('--------------------------------------------') print('date: {}'.format(chart_data['date'].values[index])) total_count = next_pivot_index - prev_pivot_index current_count = index - prev_pivot_index act = 'H' if tmp_pivot == -1: is_left_hold_action = (total_count - current_count) / total_count < left_hold_range is_right_hold_action = abs(lowest_price - price) / price < right_hold_range print('매수') print('left: {}, right: {}'.format(is_left_hold_action, is_right_hold_action)) if is_left_hold_action or is_right_hold_action: act = 'H' else: act = 'B' if tmp_pivot == 1: is_left_hold_action = (total_count - current_count) / total_count < left_hold_range is_right_hold_action = (highest_price - price) / price < right_hold_range print('매도') print('left: {}, right: {}'.format(is_left_hold_action, is_right_hold_action)) if is_left_hold_action or is_right_hold_action: act = 'H' else: act = 'S' print('act: {}, trends: {}'.format(act, tmp_pivot)) print('price: {}, lowest: {}, lowest: {}'.format(price, lowest_price, lowest_price)) print('--------------------------------------------') if highest_price < price: highest_price = price if lowest_price > price: lowest_price = price if act != 'H': last_action = act last_action_price = price last_action_index = index highest_price = price lowest_price = price actions.append(act) actions = np.array(actions) fake_data = zip(range(len(actions)), chart_data.date, actions) act_data =
pd.DataFrame([data for num, *data in fake_data], columns=['date', 'action'])
pandas.DataFrame
import numpy as np import numpy.testing as npt import pandas as pd from stumpy import aamped from dask.distributed import Client, LocalCluster import pytest import warnings import naive @pytest.fixture(scope="module") def dask_cluster(): cluster = LocalCluster(n_workers=2, threads_per_worker=2) yield cluster cluster.close() test_data = [ ( np.array([9, 8100, -60, 7], dtype=np.float64), np.array([584, -11, 23, 79, 1001, 0, -19], dtype=np.float64), ), ( np.random.uniform(-1000, 1000, [8]).astype(np.float64), np.random.uniform(-1000, 1000, [64]).astype(np.float64), ), ] window_size = [8, 16, 32] def test_aamp_int_input(dask_cluster): with pytest.raises(TypeError): with Client(dask_cluster) as dask_client: aamped(dask_client, np.arange(10), 5) @pytest.mark.filterwarnings("ignore:numpy.dtype size changed") @pytest.mark.filterwarnings("ignore:numpy.ufunc size changed") @pytest.mark.filterwarnings("ignore:numpy.ndarray size changed") @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") @pytest.mark.parametrize("T_A, T_B", test_data) def test_aamped_self_join(T_A, T_B, dask_cluster): with Client(dask_cluster) as dask_client: m = 3 ref_mp = naive.aamp(T_B, m) comp_mp = aamped(dask_client, T_B, m) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) @pytest.mark.filterwarnings("ignore:numpy.dtype size changed") @pytest.mark.filterwarnings("ignore:numpy.ufunc size changed") @pytest.mark.filterwarnings("ignore:numpy.ndarray size changed") @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") @pytest.mark.parametrize("T_A, T_B", test_data) def test_aamped_self_join_df(T_A, T_B, dask_cluster): with Client(dask_cluster) as dask_client: m = 3 ref_mp = naive.aamp(T_B, m) comp_mp = aamped(dask_client, pd.Series(T_B), m) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) @pytest.mark.filterwarnings("ignore:numpy.dtype size changed") @pytest.mark.filterwarnings("ignore:numpy.ufunc size changed") @pytest.mark.filterwarnings("ignore:numpy.ndarray size changed") @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("m", window_size) def test_aamped_self_join_larger_window(T_A, T_B, m, dask_cluster): with Client(dask_cluster) as dask_client: if len(T_B) > m: ref_mp = naive.aamp(T_B, m) comp_mp = aamped(dask_client, T_B, m) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) @pytest.mark.filterwarnings("ignore:numpy.dtype size changed") @pytest.mark.filterwarnings("ignore:numpy.ufunc size changed") @pytest.mark.filterwarnings("ignore:numpy.ndarray size changed") @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") @pytest.mark.parametrize("T_A, T_B", test_data) @pytest.mark.parametrize("m", window_size) def test_aamped_self_join_larger_window_df(T_A, T_B, m, dask_cluster): with Client(dask_cluster) as dask_client: if len(T_B) > m: ref_mp = naive.aamp(T_B, m) comp_mp = aamped(dask_client, pd.Series(T_B), m) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) @pytest.mark.filterwarnings("ignore:numpy.dtype size changed") @pytest.mark.filterwarnings("ignore:numpy.ufunc size changed") @pytest.mark.filterwarnings("ignore:numpy.ndarray size changed") @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") @pytest.mark.parametrize("T_A, T_B", test_data) def test_aamped_A_B_join(T_A, T_B, dask_cluster): with Client(dask_cluster) as dask_client: m = 3 ref_mp = naive.aamp(T_A, m, T_B=T_B) comp_mp = aamped(dask_client, T_A, m, T_B, ignore_trivial=False) naive.replace_inf(ref_mp) naive.replace_inf(comp_mp) npt.assert_almost_equal(ref_mp, comp_mp) @pytest.mark.filterwarnings("ignore:numpy.dtype size changed") @pytest.mark.filterwarnings("ignore:numpy.ufunc size changed") @pytest.mark.filterwarnings("ignore:numpy.ndarray size changed") @pytest.mark.filterwarnings("ignore:\\s+Port 8787 is already in use:UserWarning") @pytest.mark.parametrize("T_A, T_B", test_data) def test_aamped_A_B_join_df(T_A, T_B, dask_cluster): with Client(dask_cluster) as dask_client: m = 3 ref_mp = naive.aamp(T_A, m, T_B=T_B) comp_mp = aamped( dask_client,
pd.Series(T_A)
pandas.Series
import pytest import tubular.testing.test_data as d import tubular.testing.helpers as h import tubular from tubular.numeric import LogTransformer import numpy as np import pandas as pd import re class TestInit(object): """Tests for LogTransformer.init().""" def test_arguments(self): """Test that init has expected arguments.""" h.test_function_arguments( func=LogTransformer.__init__, expected_arguments=["self", "columns", "base", "add_1", "drop", "suffix"], expected_default_values=(None, False, True, "log"), ) def test_base_type_error(self): """Test that an exception is raised if base is non-numeric.""" with pytest.raises( ValueError, match=re.escape("base should be numeric or None"), ): LogTransformer( columns=["a"], base="a", new_column_name="b", ) def test_base_not_strictly_positive_error(self): """Test that an exception is raised if base is not strictly positive.""" with pytest.raises( ValueError, match=re.escape("base should be strictly positive"), ): LogTransformer( columns=["a"], base=0, new_column_name="b", ) def test_class_methods(self): """Test that LogTransformer has transform method.""" x = LogTransformer(columns="a") h.test_object_method(obj=x, expected_method="transform", msg="transform") def test_inheritance(self): """Test that LogTransformer inherits from BaseTransformer.""" x = LogTransformer(columns="a") h.assert_inheritance(x, tubular.base.BaseTransformer) def test_super_init_called(self, mocker): """Test that init calls BaseTransformer.init.""" expected_call_args = { 0: { "args": (), "kwargs": {"columns": ["a", "b"], "verbose": True, "copy": True}, } } with h.assert_function_call( mocker, tubular.base.BaseTransformer, "__init__", expected_call_args ): LogTransformer( columns=["a", "b"], add_1=True, drop=True, suffix="_new", verbose=True, copy=True, ) def test_impute_values_set_to_attribute(self): """Test that the value passed for impute_value is saved in an attribute of the same name.""" x = LogTransformer( columns=["a", "b"], base=1, add_1=True, drop=False, suffix="new", verbose=True, copy=True, ) expected_attributes = {"base": 1, "add_1": True, "drop": False, "suffix": "new"} h.test_object_attributes( obj=x, expected_attributes=expected_attributes, msg="Attributes for LogTransformer set in init", ) class TestTransform(object): """Tests for LogTransformer.transform().""" def expected_df_1(): """Expected output of test_expected_output_1.""" df = d.create_df_3() df["a_new_col"] = np.log(df["a"]) df["b_new_col"] = np.log(df["b"]) df.drop(columns=["a", "b"], inplace=True) return df def expected_df_2(): """Expected output of test_expected_output_2.""" df = d.create_df_3() df["a_new_col"] = np.log(df["a"] + 1) df["b_new_col"] = np.log(df["b"] + 1) df.drop(columns=["a", "b"], inplace=True) return df def expected_df_3(): """Expected output of test_expected_output_3.""" df = d.create_df_3() df["a_new_col"] = np.log(df["a"]) df["b_new_col"] = np.log(df["b"]) return df def expected_df_4(): """Expected output of test_expected_output_4.""" df = d.create_df_3() df["a_new_col"] = np.log(df["a"] + 1) df["b_new_col"] = np.log(df["b"] + 1) return df def expected_df_5(): """Expected output of test_expected_output_5.""" df = d.create_df_4() df["a_new_col"] = np.log(df["a"] + 1) / np.log(5) return df def expected_df_6(): """Expected output of test_expected_output_6.""" df = d.create_df_4() df["a_new_col"] = np.log(df["a"]) / np.log(7) df.drop("a", axis=1, inplace=True) return df def test_arguments(self): """Test that transform has expected arguments.""" h.test_function_arguments( func=LogTransformer.transform, expected_arguments=["self", "X"] ) def test_super_transform_called(self, mocker): """Test that BaseTransformer.transform called.""" df = d.create_df_3() x = LogTransformer(columns=["a", "b"]) expected_call_args = {0: {"args": (d.create_df_3(),), "kwargs": {}}} with h.assert_function_call( mocker, tubular.base.BaseTransformer, "transform", expected_call_args, return_value=d.create_df_3(), ): x.transform(df) def test_error_with_non_numeric_columns(self): """Test an exception is raised if transform is applied to non-numeric columns.""" df = d.create_df_5() x = LogTransformer(columns=["a", "b", "c"]) with pytest.raises( TypeError, match=r"The following columns are not numeric in X; \['b', 'c'\]" ): x.transform(df) @pytest.mark.parametrize( "df, expected", h.row_by_row_params(d.create_df_3(), expected_df_1()) + h.index_preserved_params(d.create_df_3(), expected_df_1()), ) def test_expected_output_1(self, df, expected): """Test that transform is giving the expected output when not adding one and dropping original columns.""" x1 = LogTransformer( columns=["a", "b"], add_1=False, drop=True, suffix="new_col" ) df_transformed = x1.transform(df) h.assert_equal_dispatch( expected=expected, actual=df_transformed, msg="LogTransformer transform not adding 1 and dropping original columns", ) @pytest.mark.parametrize( "df, expected", h.row_by_row_params(d.create_df_3(), expected_df_2()) + h.index_preserved_params(d.create_df_3(), expected_df_2()), ) def test_expected_output_2(self, df, expected): """Test that transform is giving the expected output when adding one and dropping original columns.""" x1 = LogTransformer(columns=["a", "b"], add_1=True, drop=True, suffix="new_col") df_transformed = x1.transform(df) h.assert_equal_dispatch( expected=expected, actual=df_transformed, msg="LogTransformer transform adding 1 and dropping original columns", ) @pytest.mark.parametrize( "df, expected", h.row_by_row_params(d.create_df_3(), expected_df_3()) + h.index_preserved_params(d.create_df_3(), expected_df_3()), ) def test_expected_output_3(self, df, expected): """Test that transform is giving the expected output when not adding one and not dropping original columns.""" x1 = LogTransformer( columns=["a", "b"], add_1=False, drop=False, suffix="new_col" ) df_transformed = x1.transform(df) h.assert_equal_dispatch( expected=expected, actual=df_transformed, msg="LogTransformer transform not adding 1 and dropping original columns", ) @pytest.mark.parametrize( "df, expected", h.row_by_row_params(d.create_df_3(), expected_df_4()) + h.index_preserved_params(d.create_df_3(), expected_df_4()), ) def test_expected_output_4(self, df, expected): """Test that transform is giving the expected output when adding one and not dropping original columns.""" x1 = LogTransformer( columns=["a", "b"], add_1=True, drop=False, suffix="new_col" ) df_transformed = x1.transform(df) h.assert_equal_dispatch( expected=expected, actual=df_transformed, msg="LogTransformer transform not adding 1 and dropping original columns", ) @pytest.mark.parametrize( "df, expected", h.row_by_row_params(d.create_df_4(), expected_df_5()) + h.index_preserved_params(d.create_df_4(), expected_df_5()), ) def test_expected_output_5(self, df, expected): """Test that transform is giving the expected output when adding one and not dropping original columns and using base.""" x1 = LogTransformer( columns=["a"], base=5, add_1=True, drop=False, suffix="new_col" ) df_transformed = x1.transform(df) h.assert_equal_dispatch( expected=expected, actual=df_transformed, msg="LogTransformer transform not adding 1 and dropping original columns", ) @pytest.mark.parametrize( "df, expected", h.row_by_row_params(d.create_df_4(), expected_df_6()) + h.index_preserved_params(d.create_df_4(), expected_df_6()), ) def test_expected_output_6(self, df, expected): """Test that transform is giving the expected output when not adding one and dropping original columns and using base.""" x1 = LogTransformer( columns=["a"], base=7, add_1=False, drop=True, suffix="new_col" ) df_transformed = x1.transform(df) h.assert_equal_dispatch( expected=expected, actual=df_transformed, msg="LogTransformer transform should be using base, not adding 1, and not dropping original columns", ) @pytest.mark.parametrize( "df, columns, add_1, extra_exception_text", ( [pd.DataFrame({"a": [1, 2, 0]}), ["a"], False, ""], [pd.DataFrame({"a": [1, 2, 0], "b": [1, 2, 3]}), ["a", "b"], False, ""], [pd.DataFrame({"a": [1, 2, -1]}), ["a"], True, r" \(after adding 1\)"], [ pd.DataFrame({"a": [1, 2, -1], "b": [1, 2, 3]}), ["a", "b"], True, r" \(after adding 1\)", ], [pd.DataFrame({"b": [1, 2, -0.001]}), ["b"], False, ""], [
pd.DataFrame({"b": [1, 2, -0.001], "a": [1, 2, 3]})
pandas.DataFrame
# -*- coding: utf-8 -*- import re import warnings from datetime import timedelta from itertools import product import pytest import numpy as np import pandas as pd from pandas import (CategoricalIndex, DataFrame, Index, MultiIndex, compat, date_range, period_range) from pandas.compat import PY3, long, lrange, lzip, range, u, PYPY from pandas.errors import PerformanceWarning, UnsortedIndexError from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.core.indexes.base import InvalidIndexError from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas._libs.tslib import Timestamp import pandas.util.testing as tm from pandas.util.testing import assert_almost_equal, assert_copy from .common import Base class TestMultiIndex(Base): _holder = MultiIndex _compat_props = ['shape', 'ndim', 'size'] def setup_method(self, method): major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) self.index_names = ['first', 'second'] self.indices = dict(index=MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels ], names=self.index_names, verify_integrity=False)) self.setup_indices() def create_index(self): return self.index def test_can_hold_identifiers(self): idx = self.create_index() key = idx[0] assert idx._can_hold_identifiers_and_holds_name(key) is True def test_boolean_context_compat2(self): # boolean context compat # GH7897 i1 = MultiIndex.from_tuples([('A', 1), ('A', 2)]) i2 = MultiIndex.from_tuples([('A', 1), ('A', 3)]) common = i1.intersection(i2) def f(): if common: pass tm.assert_raises_regex(ValueError, 'The truth value of a', f) def test_labels_dtypes(self): # GH 8456 i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) assert i.labels[0].dtype == 'int8' assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(40)]) assert i.labels[1].dtype == 'int8' i = MultiIndex.from_product([['a'], range(400)]) assert i.labels[1].dtype == 'int16' i = MultiIndex.from_product([['a'], range(40000)]) assert i.labels[1].dtype == 'int32' i = pd.MultiIndex.from_product([['a'], range(1000)]) assert (i.labels[0] >= 0).all() assert (i.labels[1] >= 0).all() def test_where(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) def f(): i.where(True) pytest.raises(NotImplementedError, f) def test_where_array_like(self): i = MultiIndex.from_tuples([('A', 1), ('A', 2)]) klasses = [list, tuple, np.array, pd.Series] cond = [False, True] for klass in klasses: def f(): return i.where(klass(cond)) pytest.raises(NotImplementedError, f) def test_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(m.repeat(reps), expected) with tm.assert_produces_warning(FutureWarning): result = m.repeat(n=reps) tm.assert_index_equal(result, expected) def test_numpy_repeat(self): reps = 2 numbers = [1, 2, 3] names = np.array(['foo', 'bar']) m = MultiIndex.from_product([ numbers, names], names=names) expected = MultiIndex.from_product([ numbers, names.repeat(reps)], names=names) tm.assert_index_equal(np.repeat(m, reps), expected) msg = "the 'axis' parameter is not supported" tm.assert_raises_regex( ValueError, msg, np.repeat, m, reps, axis=1) def test_set_name_methods(self): # so long as these are synonyms, we don't need to test set_names assert self.index.rename == self.index.set_names new_names = [name + "SUFFIX" for name in self.index_names] ind = self.index.set_names(new_names) assert self.index.names == self.index_names assert ind.names == new_names with tm.assert_raises_regex(ValueError, "^Length"): ind.set_names(new_names + new_names) new_names2 = [name + "SUFFIX2" for name in new_names] res = ind.set_names(new_names2, inplace=True) assert res is None assert ind.names == new_names2 # set names for specific level (# GH7792) ind = self.index.set_names(new_names[0], level=0) assert self.index.names == self.index_names assert ind.names == [new_names[0], self.index_names[1]] res = ind.set_names(new_names2[0], level=0, inplace=True) assert res is None assert ind.names == [new_names2[0], self.index_names[1]] # set names for multiple levels ind = self.index.set_names(new_names, level=[0, 1]) assert self.index.names == self.index_names assert ind.names == new_names res = ind.set_names(new_names2, level=[0, 1], inplace=True) assert res is None assert ind.names == new_names2 @pytest.mark.parametrize('inplace', [True, False]) def test_set_names_with_nlevel_1(self, inplace): # GH 21149 # Ensure that .set_names for MultiIndex with # nlevels == 1 does not raise any errors expected = pd.MultiIndex(levels=[[0, 1]], labels=[[0, 1]], names=['first']) m = pd.MultiIndex.from_product([[0, 1]]) result = m.set_names('first', level=0, inplace=inplace) if inplace: result = m tm.assert_index_equal(result, expected) def test_set_levels_labels_directly(self): # setting levels/labels directly raises AttributeError levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] with pytest.raises(AttributeError): self.index.levels = new_levels with pytest.raises(AttributeError): self.index.labels = new_labels def test_set_levels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. levels = self.index.levels new_levels = [[lev + 'a' for lev in level] for level in levels] def assert_matching(actual, expected, check_dtype=False): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp) tm.assert_numpy_array_equal(act, exp, check_dtype=check_dtype) # level changing [w/o mutation] ind2 = self.index.set_levels(new_levels) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) # level changing specific level [w/o mutation] ind2 = self.index.set_levels(new_levels[0], level=0) assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.set_levels(new_levels[1], level=1) assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/o mutation] ind2 = self.index.set_levels(new_levels, level=[0, 1]) assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # level changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [new_levels[0], levels[1]]) assert_matching(self.index.levels, levels) ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.levels, [levels[0], new_levels[1]]) assert_matching(self.index.levels, levels) # level changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_levels(new_levels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.levels, new_levels) assert_matching(self.index.levels, levels) # illegal level changing should not change levels # GH 13754 original_index = self.index.copy() for inplace in [True, False]: with tm.assert_raises_regex(ValueError, "^On"): self.index.set_levels(['c'], level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(ValueError, "^On"): self.index.set_labels([0, 1, 2, 3, 4, 5], level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Levels"): self.index.set_levels('c', level=0, inplace=inplace) assert_matching(self.index.levels, original_index.levels, check_dtype=True) with tm.assert_raises_regex(TypeError, "^Labels"): self.index.set_labels(1, level=0, inplace=inplace) assert_matching(self.index.labels, original_index.labels, check_dtype=True) def test_set_labels(self): # side note - you probably wouldn't want to use levels and labels # directly like this - but it is possible. labels = self.index.labels major_labels, minor_labels = labels major_labels = [(x + 1) % 3 for x in major_labels] minor_labels = [(x + 1) % 1 for x in minor_labels] new_labels = [major_labels, minor_labels] def assert_matching(actual, expected): # avoid specifying internal representation # as much as possible assert len(actual) == len(expected) for act, exp in zip(actual, expected): act = np.asarray(act) exp = np.asarray(exp, dtype=np.int8) tm.assert_numpy_array_equal(act, exp) # label changing [w/o mutation] ind2 = self.index.set_labels(new_labels) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) # label changing specific level [w/o mutation] ind2 = self.index.set_labels(new_labels[0], level=0) assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.set_labels(new_labels[1], level=1) assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/o mutation] ind2 = self.index.set_labels(new_labels, level=[0, 1]) assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing specific level [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[0], level=0, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [new_labels[0], labels[1]]) assert_matching(self.index.labels, labels) ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels[1], level=1, inplace=True) assert inplace_return is None assert_matching(ind2.labels, [labels[0], new_labels[1]]) assert_matching(self.index.labels, labels) # label changing multiple levels [w/ mutation] ind2 = self.index.copy() inplace_return = ind2.set_labels(new_labels, level=[0, 1], inplace=True) assert inplace_return is None assert_matching(ind2.labels, new_labels) assert_matching(self.index.labels, labels) # label changing for levels of different magnitude of categories ind = pd.MultiIndex.from_tuples([(0, i) for i in range(130)]) new_labels = range(129, -1, -1) expected = pd.MultiIndex.from_tuples( [(0, i) for i in new_labels]) # [w/o mutation] result = ind.set_labels(labels=new_labels, level=1) assert result.equals(expected) # [w/ mutation] result = ind.copy() result.set_labels(labels=new_labels, level=1, inplace=True) assert result.equals(expected) def test_set_levels_labels_names_bad_input(self): levels, labels = self.index.levels, self.index.labels names = self.index.names with tm.assert_raises_regex(ValueError, 'Length of levels'): self.index.set_levels([levels[0]]) with tm.assert_raises_regex(ValueError, 'Length of labels'): self.index.set_labels([labels[0]]) with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names([names[0]]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0]) # shouldn't scalar data error, instead should demand list-like with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_names(names[0]) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_levels(levels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_levels(levels, level=0) # should have equal lengths with tm.assert_raises_regex(TypeError, 'list of lists-like'): self.index.set_labels(labels[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'list-like'): self.index.set_labels(labels, level=0) # should have equal lengths with tm.assert_raises_regex(ValueError, 'Length of names'): self.index.set_names(names[0], level=[0, 1]) with tm.assert_raises_regex(TypeError, 'string'): self.index.set_names(names, level=0) def test_set_levels_categorical(self): # GH13854 index = MultiIndex.from_arrays([list("xyzx"), [0, 1, 2, 3]]) for ordered in [False, True]: cidx = CategoricalIndex(list("bac"), ordered=ordered) result = index.set_levels(cidx, 0) expected = MultiIndex(levels=[cidx, [0, 1, 2, 3]], labels=index.labels) tm.assert_index_equal(result, expected) result_lvl = result.get_level_values(0) expected_lvl = CategoricalIndex(list("bacb"), categories=cidx.categories, ordered=cidx.ordered) tm.assert_index_equal(result_lvl, expected_lvl) def test_metadata_immutable(self): levels, labels = self.index.levels, self.index.labels # shouldn't be able to set at either the top level or base level mutable_regex = re.compile('does not support mutable operations') with tm.assert_raises_regex(TypeError, mutable_regex): levels[0] = levels[0] with tm.assert_raises_regex(TypeError, mutable_regex): levels[0][0] = levels[0][0] # ditto for labels with tm.assert_raises_regex(TypeError, mutable_regex): labels[0] = labels[0] with tm.assert_raises_regex(TypeError, mutable_regex): labels[0][0] = labels[0][0] # and for names names = self.index.names with tm.assert_raises_regex(TypeError, mutable_regex): names[0] = names[0] def test_inplace_mutation_resets_values(self): levels = [['a', 'b', 'c'], [4]] levels2 = [[1, 2, 3], ['a']] labels = [[0, 1, 0, 2, 2, 0], [0, 0, 0, 0, 0, 0]] mi1 = MultiIndex(levels=levels, labels=labels) mi2 = MultiIndex(levels=levels2, labels=labels) vals = mi1.values.copy() vals2 = mi2.values.copy() assert mi1._tuples is not None # Make sure level setting works new_vals = mi1.set_levels(levels2).values tm.assert_almost_equal(vals2, new_vals) # Non-inplace doesn't kill _tuples [implementation detail] tm.assert_almost_equal(mi1._tuples, vals) # ...and values is still same too tm.assert_almost_equal(mi1.values, vals) # Inplace should kill _tuples mi1.set_levels(levels2, inplace=True) tm.assert_almost_equal(mi1.values, vals2) # Make sure label setting works too labels2 = [[0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0]] exp_values = np.empty((6,), dtype=object) exp_values[:] = [(long(1), 'a')] * 6 # Must be 1d array of tuples assert exp_values.shape == (6,) new_values = mi2.set_labels(labels2).values # Not inplace shouldn't change tm.assert_almost_equal(mi2._tuples, vals2) # Should have correct values tm.assert_almost_equal(exp_values, new_values) # ...and again setting inplace should kill _tuples, etc mi2.set_labels(labels2, inplace=True) tm.assert_almost_equal(mi2.values, new_values) def test_copy_in_constructor(self): levels = np.array(["a", "b", "c"]) labels = np.array([1, 1, 2, 0, 0, 1, 1]) val = labels[0] mi = MultiIndex(levels=[levels, levels], labels=[labels, labels], copy=True) assert mi.labels[0][0] == val labels[0] = 15 assert mi.labels[0][0] == val val = levels[0] levels[0] = "PANDA" assert mi.levels[0][0] == val def test_set_value_keeps_names(self): # motivating example from #3742 lev1 = ['hans', 'hans', 'hans', 'grethe', 'grethe', 'grethe'] lev2 = ['1', '2', '3'] * 2 idx = pd.MultiIndex.from_arrays([lev1, lev2], names=['Name', 'Number']) df = pd.DataFrame( np.random.randn(6, 4), columns=['one', 'two', 'three', 'four'], index=idx) df = df.sort_index() assert df._is_copy is None assert df.index.names == ('Name', 'Number') df.at[('grethe', '4'), 'one'] = 99.34 assert df._is_copy is None assert df.index.names == ('Name', 'Number') def test_copy_names(self): # Check that adding a "names" parameter to the copy is honored # GH14302 multi_idx = pd.Index([(1, 2), (3, 4)], names=['MyName1', 'MyName2']) multi_idx1 = multi_idx.copy() assert multi_idx.equals(multi_idx1) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx1.names == ['MyName1', 'MyName2'] multi_idx2 = multi_idx.copy(names=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx2) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx2.names == ['NewName1', 'NewName2'] multi_idx3 = multi_idx.copy(name=['NewName1', 'NewName2']) assert multi_idx.equals(multi_idx3) assert multi_idx.names == ['MyName1', 'MyName2'] assert multi_idx3.names == ['NewName1', 'NewName2'] def test_names(self): # names are assigned in setup names = self.index_names level_names = [level.name for level in self.index.levels] assert names == level_names # setting bad names on existing index = self.index tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", list(index.names) + ["third"]) tm.assert_raises_regex(ValueError, "^Length of names", setattr, index, "names", []) # initializing with bad names (should always be equivalent) major_axis, minor_axis = self.index.levels major_labels, minor_labels = self.index.labels tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first']) tm.assert_raises_regex(ValueError, "^Length of names", MultiIndex, levels=[major_axis, minor_axis], labels=[major_labels, minor_labels], names=['first', 'second', 'third']) # names are assigned index.names = ["a", "b"] ind_names = list(index.names) level_names = [level.name for level in index.levels] assert ind_names == level_names def test_astype(self): expected = self.index.copy() actual = self.index.astype('O') assert_copy(actual.levels, expected.levels) assert_copy(actual.labels, expected.labels) self.check_level_names(actual, expected.names) with tm.assert_raises_regex(TypeError, "^Setting.*dtype.*object"): self.index.astype(np.dtype(int)) @pytest.mark.parametrize('ordered', [True, False]) def test_astype_category(self, ordered): # GH 18630 msg = '> 1 ndim Categorical are not supported at this time' with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype(CategoricalDtype(ordered=ordered)) if ordered is False: # dtype='category' defaults to ordered=False, so only test once with tm.assert_raises_regex(NotImplementedError, msg): self.index.astype('category') def test_constructor_single_level(self): result = MultiIndex(levels=[['foo', 'bar', 'baz', 'qux']], labels=[[0, 1, 2, 3]], names=['first']) assert isinstance(result, MultiIndex) expected = Index(['foo', 'bar', 'baz', 'qux'], name='first') tm.assert_index_equal(result.levels[0], expected) assert result.names == ['first'] def test_constructor_no_levels(self): tm.assert_raises_regex(ValueError, "non-zero number " "of levels/labels", MultiIndex, levels=[], labels=[]) both_re = re.compile('Must pass both levels and labels') with tm.assert_raises_regex(TypeError, both_re): MultiIndex(levels=[]) with tm.assert_raises_regex(TypeError, both_re): MultiIndex(labels=[]) def test_constructor_mismatched_label_levels(self): labels = [np.array([1]), np.array([2]), np.array([3])] levels = ["a"] tm.assert_raises_regex(ValueError, "Length of levels and labels " "must be the same", MultiIndex, levels=levels, labels=labels) length_error = re.compile('>= length of level') label_error = re.compile(r'Unequal label lengths: \[4, 2\]') # important to check that it's looking at the right thing. with tm.assert_raises_regex(ValueError, length_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 1, 2, 3], [0, 3, 4, 1]]) with tm.assert_raises_regex(ValueError, label_error): MultiIndex(levels=[['a'], ['b']], labels=[[0, 0, 0, 0], [0, 0]]) # external API with tm.assert_raises_regex(ValueError, length_error): self.index.copy().set_levels([['a'], ['b']]) with tm.assert_raises_regex(ValueError, label_error): self.index.copy().set_labels([[0, 0, 0, 0], [0, 0]]) def test_constructor_nonhashable_names(self): # GH 20527 levels = [[1, 2], [u'one', u'two']] labels = [[0, 0, 1, 1], [0, 1, 0, 1]] names = ((['foo'], ['bar'])) message = "MultiIndex.name must be a hashable type" tm.assert_raises_regex(TypeError, message, MultiIndex, levels=levels, labels=labels, names=names) # With .rename() mi = MultiIndex(levels=[[1, 2], [u'one', u'two']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=('foo', 'bar')) renamed = [['foor'], ['barr']] tm.assert_raises_regex(TypeError, message, mi.rename, names=renamed) # With .set_names() tm.assert_raises_regex(TypeError, message, mi.set_names, names=renamed) @pytest.mark.parametrize('names', [['a', 'b', 'a'], ['1', '1', '2'], ['1', 'a', '1']]) def test_duplicate_level_names(self, names): # GH18872 pytest.raises(ValueError, pd.MultiIndex.from_product, [[0, 1]] * 3, names=names) # With .rename() mi = pd.MultiIndex.from_product([[0, 1]] * 3) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names) # With .rename(., level=) mi.rename(names[0], level=1, inplace=True) tm.assert_raises_regex(ValueError, "Duplicated level name:", mi.rename, names[:2], level=[0, 2]) def assert_multiindex_copied(self, copy, original): # Levels should be (at least, shallow copied) tm.assert_copy(copy.levels, original.levels) tm.assert_almost_equal(copy.labels, original.labels) # Labels doesn't matter which way copied tm.assert_almost_equal(copy.labels, original.labels) assert copy.labels is not original.labels # Names doesn't matter which way copied assert copy.names == original.names assert copy.names is not original.names # Sort order should be copied assert copy.sortorder == original.sortorder def test_copy(self): i_copy = self.index.copy() self.assert_multiindex_copied(i_copy, self.index) def test_shallow_copy(self): i_copy = self.index._shallow_copy() self.assert_multiindex_copied(i_copy, self.index) def test_view(self): i_view = self.index.view() self.assert_multiindex_copied(i_view, self.index) def check_level_names(self, index, names): assert [level.name for level in index.levels] == list(names) def test_changing_names(self): # names should be applied to levels level_names = [level.name for level in self.index.levels] self.check_level_names(self.index, self.index.names) view = self.index.view() copy = self.index.copy() shallow_copy = self.index._shallow_copy() # changing names should change level names on object new_names = [name + "a" for name in self.index.names] self.index.names = new_names self.check_level_names(self.index, new_names) # but not on copies self.check_level_names(view, level_names) self.check_level_names(copy, level_names) self.check_level_names(shallow_copy, level_names) # and copies shouldn't change original shallow_copy.names = [name + "c" for name in shallow_copy.names] self.check_level_names(self.index, new_names) def test_get_level_number_integer(self): self.index.names = [1, 0] assert self.index._get_level_number(1) == 0 assert self.index._get_level_number(0) == 1 pytest.raises(IndexError, self.index._get_level_number, 2) tm.assert_raises_regex(KeyError, 'Level fourth not found', self.index._get_level_number, 'fourth') def test_from_arrays(self): arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # list of arrays as input result = MultiIndex.from_arrays(arrays, names=self.index.names) tm.assert_index_equal(result, self.index) # infer correctly result = MultiIndex.from_arrays([[pd.NaT, Timestamp('20130101')], ['a', 'b']]) assert result.levels[0].equals(Index([Timestamp('20130101')])) assert result.levels[1].equals(Index(['a', 'b'])) def test_from_arrays_iterator(self): # GH 18434 arrays = [] for lev, lab in zip(self.index.levels, self.index.labels): arrays.append(np.asarray(lev).take(lab)) # iterator as input result = MultiIndex.from_arrays(iter(arrays), names=self.index.names) tm.assert_index_equal(result, self.index) # invalid iterator input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of array-likes."): MultiIndex.from_arrays(0) def test_from_arrays_index_series_datetimetz(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3, tz='Asia/Tokyo') result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_timedelta(self): idx1 = pd.timedelta_range('1 days', freq='D', periods=3) idx2 = pd.timedelta_range('2 hours', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_period(self): idx1 = pd.period_range('2011-01-01', freq='D', periods=3) idx2 = pd.period_range('2015-01-01', freq='H', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result, result2) def test_from_arrays_index_datetimelike_mixed(self): idx1 = pd.date_range('2015-01-01 10:00', freq='D', periods=3, tz='US/Eastern') idx2 = pd.date_range('2015-01-01 10:00', freq='H', periods=3) idx3 = pd.timedelta_range('1 days', freq='D', periods=3) idx4 = pd.period_range('2011-01-01', freq='D', periods=3) result = pd.MultiIndex.from_arrays([idx1, idx2, idx3, idx4]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) tm.assert_index_equal(result.get_level_values(2), idx3) tm.assert_index_equal(result.get_level_values(3), idx4) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2), pd.Series(idx3), pd.Series(idx4)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) tm.assert_index_equal(result2.get_level_values(2), idx3) tm.assert_index_equal(result2.get_level_values(3), idx4) tm.assert_index_equal(result, result2) def test_from_arrays_index_series_categorical(self): # GH13743 idx1 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=False) idx2 = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=True) result = pd.MultiIndex.from_arrays([idx1, idx2]) tm.assert_index_equal(result.get_level_values(0), idx1) tm.assert_index_equal(result.get_level_values(1), idx2) result2 = pd.MultiIndex.from_arrays([pd.Series(idx1), pd.Series(idx2)]) tm.assert_index_equal(result2.get_level_values(0), idx1) tm.assert_index_equal(result2.get_level_values(1), idx2) result3 = pd.MultiIndex.from_arrays([idx1.values, idx2.values]) tm.assert_index_equal(result3.get_level_values(0), idx1) tm.assert_index_equal(result3.get_level_values(1), idx2) def test_from_arrays_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_arrays(arrays=[]) # 1 level result = MultiIndex.from_arrays(arrays=[[]], names=['A']) assert isinstance(result, MultiIndex) expected = Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # N levels for N in [2, 3]: arrays = [[]] * N names = list('ABC')[:N] result = MultiIndex.from_arrays(arrays=arrays, names=names) expected = MultiIndex(levels=[[]] * N, labels=[[]] * N, names=names) tm.assert_index_equal(result, expected) def test_from_arrays_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_arrays, arrays=i) def test_from_arrays_different_lengths(self): # see gh-13599 idx1 = [1, 2, 3] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [] idx2 = ['a', 'b'] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) idx1 = [1, 2, 3] idx2 = [] tm.assert_raises_regex(ValueError, '^all arrays must ' 'be same length$', MultiIndex.from_arrays, [idx1, idx2]) def test_from_product(self): first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] result = MultiIndex.from_product([first, second], names=names) tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) tm.assert_index_equal(result, expected) def test_from_product_iterator(self): # GH 18434 first = ['foo', 'bar', 'buz'] second = ['a', 'b', 'c'] names = ['first', 'second'] tuples = [('foo', 'a'), ('foo', 'b'), ('foo', 'c'), ('bar', 'a'), ('bar', 'b'), ('bar', 'c'), ('buz', 'a'), ('buz', 'b'), ('buz', 'c')] expected = MultiIndex.from_tuples(tuples, names=names) # iterator as input result = MultiIndex.from_product(iter([first, second]), names=names) tm.assert_index_equal(result, expected) # Invalid non-iterable input with tm.assert_raises_regex( TypeError, "Input must be a list / sequence of iterables."): MultiIndex.from_product(0) def test_from_product_empty(self): # 0 levels with tm.assert_raises_regex( ValueError, "Must pass non-zero number of levels/labels"): MultiIndex.from_product([]) # 1 level result = MultiIndex.from_product([[]], names=['A']) expected = pd.Index([], name='A') tm.assert_index_equal(result.levels[0], expected) # 2 levels l1 = [[], ['foo', 'bar', 'baz'], []] l2 = [[], [], ['a', 'b', 'c']] names = ['A', 'B'] for first, second in zip(l1, l2): result = MultiIndex.from_product([first, second], names=names) expected = MultiIndex(levels=[first, second], labels=[[], []], names=names) tm.assert_index_equal(result, expected) # GH12258 names = ['A', 'B', 'C'] for N in range(4): lvl2 = lrange(N) result = MultiIndex.from_product([[], lvl2, []], names=names) expected = MultiIndex(levels=[[], lvl2, []], labels=[[], [], []], names=names) tm.assert_index_equal(result, expected) def test_from_product_invalid_input(self): invalid_inputs = [1, [1], [1, 2], [[1], 2], 'a', ['a'], ['a', 'b'], [['a'], 'b']] for i in invalid_inputs: pytest.raises(TypeError, MultiIndex.from_product, iterables=i) def test_from_product_datetimeindex(self): dt_index = date_range('2000-01-01', periods=2) mi = pd.MultiIndex.from_product([[1, 2], dt_index]) etalon = construct_1d_object_array_from_listlike([(1, pd.Timestamp( '2000-01-01')), (1, pd.Timestamp('2000-01-02')), (2, pd.Timestamp( '2000-01-01')), (2, pd.Timestamp('2000-01-02'))]) tm.assert_numpy_array_equal(mi.values, etalon) def test_from_product_index_series_categorical(self): # GH13743 first = ['foo', 'bar'] for ordered in [False, True]: idx = pd.CategoricalIndex(list("abcaab"), categories=list("bac"), ordered=ordered) expected = pd.CategoricalIndex(list("abcaab") + list("abcaab"), categories=list("bac"), ordered=ordered) for arr in [idx, pd.Series(idx), idx.values]: result = pd.MultiIndex.from_product([first, arr]) tm.assert_index_equal(result.get_level_values(1), expected) def test_values_boxed(self): tuples = [(1, pd.Timestamp('2000-01-01')), (2, pd.NaT), (3, pd.Timestamp('2000-01-03')), (1, pd.Timestamp('2000-01-04')), (2, pd.Timestamp('2000-01-02')), (3, pd.Timestamp('2000-01-03'))] result = pd.MultiIndex.from_tuples(tuples) expected = construct_1d_object_array_from_listlike(tuples) tm.assert_numpy_array_equal(result.values, expected) # Check that code branches for boxed values produce identical results tm.assert_numpy_array_equal(result.values[:4], result[:4].values) def test_values_multiindex_datetimeindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(10 ** 18, 10 ** 18 + 5) naive = pd.DatetimeIndex(ints) aware = pd.DatetimeIndex(ints, tz='US/Central') idx = pd.MultiIndex.from_arrays([naive, aware]) result = idx.values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware) # n_lev > n_lab result = idx[:2].values outer = pd.DatetimeIndex([x[0] for x in result]) tm.assert_index_equal(outer, naive[:2]) inner = pd.DatetimeIndex([x[1] for x in result]) tm.assert_index_equal(inner, aware[:2]) def test_values_multiindex_periodindex(self): # Test to ensure we hit the boxing / nobox part of MI.values ints = np.arange(2007, 2012) pidx = pd.PeriodIndex(ints, freq='D') idx = pd.MultiIndex.from_arrays([ints, pidx]) result = idx.values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints)) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx) # n_lev > n_lab result = idx[:2].values outer = pd.Int64Index([x[0] for x in result]) tm.assert_index_equal(outer, pd.Int64Index(ints[:2])) inner = pd.PeriodIndex([x[1] for x in result]) tm.assert_index_equal(inner, pidx[:2]) def test_append(self): result = self.index[:3].append(self.index[3:]) assert result.equals(self.index) foos = [self.index[:1], self.index[1:3], self.index[3:]] result = foos[0].append(foos[1:]) assert result.equals(self.index) # empty result = self.index.append([]) assert result.equals(self.index) def test_append_mixed_dtypes(self): # GH 13660 dti = date_range('2011-01-01', freq='M', periods=3, ) dti_tz = date_range('2011-01-01', freq='M', periods=3, tz='US/Eastern') pi = period_range('2011-01', freq='M', periods=3) mi = MultiIndex.from_arrays([[1, 2, 3], [1.1, np.nan, 3.3], ['a', 'b', 'c'], dti, dti_tz, pi]) assert mi.nlevels == 6 res = mi.append(mi) exp = MultiIndex.from_arrays([[1, 2, 3, 1, 2, 3], [1.1, np.nan, 3.3, 1.1, np.nan, 3.3], ['a', 'b', 'c', 'a', 'b', 'c'], dti.append(dti), dti_tz.append(dti_tz), pi.append(pi)]) tm.assert_index_equal(res, exp) other = MultiIndex.from_arrays([['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z'], ['x', 'y', 'z']]) res = mi.append(other) exp = MultiIndex.from_arrays([[1, 2, 3, 'x', 'y', 'z'], [1.1, np.nan, 3.3, 'x', 'y', 'z'], ['a', 'b', 'c', 'x', 'y', 'z'], dti.append(pd.Index(['x', 'y', 'z'])), dti_tz.append(pd.Index(['x', 'y', 'z'])), pi.append(pd.Index(['x', 'y', 'z']))]) tm.assert_index_equal(res, exp) def test_get_level_values(self): result = self.index.get_level_values(0) expected = Index(['foo', 'foo', 'bar', 'baz', 'qux', 'qux'], name='first') tm.assert_index_equal(result, expected) assert result.name == 'first' result = self.index.get_level_values('first') expected = self.index.get_level_values(0) tm.assert_index_equal(result, expected) # GH 10460 index = MultiIndex( levels=[CategoricalIndex(['A', 'B']), CategoricalIndex([1, 2, 3])], labels=[np.array([0, 0, 0, 1, 1, 1]), np.array([0, 1, 2, 0, 1, 2])]) exp = CategoricalIndex(['A', 'A', 'A', 'B', 'B', 'B']) tm.assert_index_equal(index.get_level_values(0), exp) exp = CategoricalIndex([1, 2, 3, 1, 2, 3]) tm.assert_index_equal(index.get_level_values(1), exp) def test_get_level_values_int_with_na(self): # GH 17924 arrays = [['a', 'b', 'b'], [1, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([1, np.nan, 2]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], [np.nan, np.nan, 2]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = Index([np.nan, np.nan, 2]) tm.assert_index_equal(result, expected) def test_get_level_values_na(self): arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan]) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1]) tm.assert_index_equal(result, expected) arrays = [['a', 'b', 'b'], pd.DatetimeIndex([0, 1, pd.NaT])] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(1) expected = pd.DatetimeIndex([0, 1, pd.NaT]) tm.assert_index_equal(result, expected) arrays = [[], []] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([], dtype=object) tm.assert_index_equal(result, expected) def test_get_level_values_all_na(self): # GH 17924 when level entirely consists of nan arrays = [[np.nan, np.nan, np.nan], ['a', np.nan, 1]] index = pd.MultiIndex.from_arrays(arrays) result = index.get_level_values(0) expected = pd.Index([np.nan, np.nan, np.nan], dtype=np.float64) tm.assert_index_equal(result, expected) result = index.get_level_values(1) expected = pd.Index(['a', np.nan, 1], dtype=object) tm.assert_index_equal(result, expected) def test_reorder_levels(self): # this blows up tm.assert_raises_regex(IndexError, '^Too many levels', self.index.reorder_levels, [2, 1, 0]) def test_nlevels(self): assert self.index.nlevels == 2 def test_iter(self): result = list(self.index) expected = [('foo', 'one'), ('foo', 'two'), ('bar', 'one'), ('baz', 'two'), ('qux', 'one'), ('qux', 'two')] assert result == expected def test_legacy_pickle(self): if PY3: pytest.skip("testing for legacy pickles not " "support on py3") path = tm.get_data_path('multiindex_v1.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_legacy_v2_unpickle(self): # 0.7.3 -> 0.8.0 format manage path = tm.get_data_path('mindex_073.pickle') obj = pd.read_pickle(path) obj2 = MultiIndex.from_tuples(obj.values) assert obj.equals(obj2) res = obj.get_indexer(obj) exp = np.arange(len(obj), dtype=np.intp) assert_almost_equal(res, exp) res = obj.get_indexer(obj2[::-1]) exp = obj.get_indexer(obj[::-1]) exp2 = obj2.get_indexer(obj2[::-1]) assert_almost_equal(res, exp) assert_almost_equal(exp, exp2) def test_roundtrip_pickle_with_tz(self): # GH 8367 # round-trip of timezone index = MultiIndex.from_product( [[1, 2], ['a', 'b'], date_range('20130101', periods=3, tz='US/Eastern') ], names=['one', 'two', 'three']) unpickled = tm.round_trip_pickle(index) assert index.equal_levels(unpickled) def test_from_tuples_index_values(self): result = MultiIndex.from_tuples(self.index) assert (result.values == self.index.values).all() def test_contains(self): assert ('foo', 'two') in self.index assert ('bar', 'two') not in self.index assert None not in self.index def test_contains_top_level(self): midx = MultiIndex.from_product([['A', 'B'], [1, 2]]) assert 'A' in midx assert 'A' not in midx._engine def test_contains_with_nat(self): # MI with a NaT mi = MultiIndex(levels=[['C'], pd.date_range('2012-01-01', periods=5)], labels=[[0, 0, 0, 0, 0, 0], [-1, 0, 1, 2, 3, 4]], names=[None, 'B']) assert ('C', pd.Timestamp('2012-01-01')) in mi for val in mi.values: assert val in mi def test_is_all_dates(self): assert not self.index.is_all_dates def test_is_numeric(self): # MultiIndex is never numeric assert not self.index.is_numeric() def test_getitem(self): # scalar assert self.index[2] == ('bar', 'one') # slice result = self.index[2:5] expected = self.index[[2, 3, 4]] assert result.equals(expected) # boolean result = self.index[[True, False, True, False, True, True]] result2 = self.index[np.array([True, False, True, False, True, True])] expected = self.index[[0, 2, 4, 5]] assert result.equals(expected) assert result2.equals(expected) def test_getitem_group_select(self): sorted_idx, _ = self.index.sortlevel(0) assert sorted_idx.get_loc('baz') == slice(3, 4) assert sorted_idx.get_loc('foo') == slice(0, 2) def test_get_loc(self): assert self.index.get_loc(('foo', 'two')) == 1 assert self.index.get_loc(('baz', 'two')) == 3 pytest.raises(KeyError, self.index.get_loc, ('bar', 'two')) pytest.raises(KeyError, self.index.get_loc, 'quux') pytest.raises(NotImplementedError, self.index.get_loc, 'foo', method='nearest') # 3 levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) pytest.raises(KeyError, index.get_loc, (1, 1)) assert index.get_loc((2, 0)) == slice(3, 5) def test_get_loc_duplicates(self): index = Index([2, 2, 2, 2]) result = index.get_loc(2) expected = slice(0, 4) assert result == expected # pytest.raises(Exception, index.get_loc, 2) index = Index(['c', 'a', 'a', 'b', 'b']) rs = index.get_loc('c') xp = 0 assert rs == xp def test_get_value_duplicates(self): index = MultiIndex(levels=[['D', 'B', 'C'], [0, 26, 27, 37, 57, 67, 75, 82]], labels=[[0, 0, 0, 1, 2, 2, 2, 2, 2, 2], [1, 3, 4, 6, 0, 2, 2, 3, 5, 7]], names=['tag', 'day']) assert index.get_loc('D') == slice(0, 3) with pytest.raises(KeyError): index._engine.get_value(np.array([]), 'D') def test_get_loc_level(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) loc, new_index = index.get_loc_level((0, 1)) expected = slice(1, 2) exp_index = index[expected].droplevel(0).droplevel(0) assert loc == expected assert new_index.equals(exp_index) loc, new_index = index.get_loc_level((0, 1, 0)) expected = 1 assert loc == expected assert new_index is None pytest.raises(KeyError, index.get_loc_level, (2, 2)) index = MultiIndex(levels=[[2000], lrange(4)], labels=[np.array( [0, 0, 0, 0]), np.array([0, 1, 2, 3])]) result, new_index = index.get_loc_level((2000, slice(None, None))) expected = slice(None, None) assert result == expected assert new_index.equals(index.droplevel(0)) @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('null_val', [np.nan, pd.NaT, None]) def test_get_loc_nan(self, level, null_val): # GH 18485 : NaN in MultiIndex levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] levels[level] = np.array([0, null_val], dtype=type(null_val)) key[level] = null_val idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_missing_nan(self): # GH 8569 idx = MultiIndex.from_arrays([[1.0, 2.0], [3.0, 4.0]]) assert isinstance(idx.get_loc(1), slice) pytest.raises(KeyError, idx.get_loc, 3) pytest.raises(KeyError, idx.get_loc, np.nan) pytest.raises(KeyError, idx.get_loc, [np.nan]) @pytest.mark.parametrize('dtype1', [int, float, bool, str]) @pytest.mark.parametrize('dtype2', [int, float, bool, str]) def test_get_loc_multiple_dtypes(self, dtype1, dtype2): # GH 18520 levels = [np.array([0, 1]).astype(dtype1), np.array([0, 1]).astype(dtype2)] idx = pd.MultiIndex.from_product(levels) assert idx.get_loc(idx[2]) == 2 @pytest.mark.parametrize('level', [0, 1]) @pytest.mark.parametrize('dtypes', [[int, float], [float, int]]) def test_get_loc_implicit_cast(self, level, dtypes): # GH 18818, GH 15994 : as flat index, cast int to float and vice-versa levels = [['a', 'b'], ['c', 'd']] key = ['b', 'd'] lev_dtype, key_dtype = dtypes levels[level] = np.array([0, 1], dtype=lev_dtype) key[level] = key_dtype(1) idx = MultiIndex.from_product(levels) assert idx.get_loc(tuple(key)) == 3 def test_get_loc_cast_bool(self): # GH 19086 : int is casted to bool, but not vice-versa levels = [[False, True], np.arange(2, dtype='int64')] idx = MultiIndex.from_product(levels) assert idx.get_loc((0, 1)) == 1 assert idx.get_loc((1, 0)) == 2 pytest.raises(KeyError, idx.get_loc, (False, True)) pytest.raises(KeyError, idx.get_loc, (True, False)) def test_slice_locs(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index slob = slice(*idx.slice_locs(df.index[5], df.index[15])) sliced = stacked[slob] expected = df[5:16].stack() tm.assert_almost_equal(sliced.values, expected.values) slob = slice(*idx.slice_locs(df.index[5] + timedelta(seconds=30), df.index[15] - timedelta(seconds=30))) sliced = stacked[slob] expected = df[6:15].stack() tm.assert_almost_equal(sliced.values, expected.values) def test_slice_locs_with_type_mismatch(self): df = tm.makeTimeDataFrame() stacked = df.stack() idx = stacked.index tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, (1, 3)) tm.assert_raises_regex(TypeError, '^Level type mismatch', idx.slice_locs, df.index[5] + timedelta( seconds=30), (5, 2)) df = tm.makeCustomDataframe(5, 5) stacked = df.stack() idx = stacked.index with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(timedelta(seconds=30)) # TODO: Try creating a UnicodeDecodeError in exception message with tm.assert_raises_regex(TypeError, '^Level type mismatch'): idx.slice_locs(df.index[1], (16, "a")) def test_slice_locs_not_sorted(self): index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) tm.assert_raises_regex(KeyError, "[Kk]ey length.*greater than " "MultiIndex lexsort depth", index.slice_locs, (1, 0, 1), (2, 1, 0)) # works sorted_index, _ = index.sortlevel(0) # should there be a test case here??? sorted_index.slice_locs((1, 0, 1), (2, 1, 0)) def test_slice_locs_partial(self): sorted_idx, _ = self.index.sortlevel(0) result = sorted_idx.slice_locs(('foo', 'two'), ('qux', 'one')) assert result == (1, 5) result = sorted_idx.slice_locs(None, ('qux', 'one')) assert result == (0, 5) result = sorted_idx.slice_locs(('foo', 'two'), None) assert result == (1, len(sorted_idx)) result = sorted_idx.slice_locs('bar', 'baz') assert result == (2, 4) def test_slice_locs_not_contained(self): # some searchsorted action index = MultiIndex(levels=[[0, 2, 4, 6], [0, 2, 4]], labels=[[0, 0, 0, 1, 1, 2, 3, 3, 3], [0, 1, 2, 1, 2, 2, 0, 1, 2]], sortorder=0) result = index.slice_locs((1, 0), (5, 2)) assert result == (3, 6) result = index.slice_locs(1, 5) assert result == (3, 6) result = index.slice_locs((2, 2), (5, 2)) assert result == (3, 6) result = index.slice_locs(2, 5) assert result == (3, 6) result = index.slice_locs((1, 0), (6, 3)) assert result == (3, 8) result = index.slice_locs(-1, 10) assert result == (0, len(index)) def test_consistency(self): # need to construct an overflow major_axis = lrange(70000) minor_axis = lrange(10) major_labels = np.arange(70000) minor_labels = np.repeat(lrange(10), 7000) # the fact that is works means it's consistent index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) # inconsistent major_labels = np.array([0, 0, 1, 1, 1, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not index.is_unique def test_truncate(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) result = index.truncate(before=1) assert 'foo' not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(after=1) assert 2 not in result.levels[0] assert 1 in result.levels[0] result = index.truncate(before=1, after=2) assert len(result.levels[0]) == 2 # after < before pytest.raises(ValueError, index.truncate, 3, 1) def test_get_indexer(self): major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3, 3], dtype=np.intp) minor_labels = np.array([0, 1, 0, 0, 1, 0, 1], dtype=np.intp) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) idx1 = index[:5] idx2 = index[[1, 3, 5]] r1 = idx1.get_indexer(idx2) assert_almost_equal(r1, np.array([1, 3, -1], dtype=np.intp)) r1 = idx2.get_indexer(idx1, method='pad') e1 = np.array([-1, 0, 0, 1, 1], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='pad') assert_almost_equal(r2, e1[::-1]) rffill1 = idx2.get_indexer(idx1, method='ffill') assert_almost_equal(r1, rffill1) r1 = idx2.get_indexer(idx1, method='backfill') e1 = np.array([0, 0, 1, 1, 2], dtype=np.intp) assert_almost_equal(r1, e1) r2 = idx2.get_indexer(idx1[::-1], method='backfill') assert_almost_equal(r2, e1[::-1]) rbfill1 = idx2.get_indexer(idx1, method='bfill') assert_almost_equal(r1, rbfill1) # pass non-MultiIndex r1 = idx1.get_indexer(idx2.values) rexp1 = idx1.get_indexer(idx2) assert_almost_equal(r1, rexp1) r1 = idx1.get_indexer([1, 2, 3]) assert (r1 == [-1, -1, -1]).all() # create index with duplicates idx1 = Index(lrange(10) + lrange(10)) idx2 = Index(lrange(20)) msg = "Reindexing only valid with uniquely valued Index objects" with tm.assert_raises_regex(InvalidIndexError, msg): idx1.get_indexer(idx2) def test_get_indexer_nearest(self): midx = MultiIndex.from_tuples([('a', 1), ('b', 2)]) with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='nearest') with pytest.raises(NotImplementedError): midx.get_indexer(['a'], method='pad', tolerance=2) def test_hash_collisions(self): # non-smoke test that we don't get hash collisions index = MultiIndex.from_product([np.arange(1000), np.arange(1000)], names=['one', 'two']) result = index.get_indexer(index.values) tm.assert_numpy_array_equal(result, np.arange( len(index), dtype='intp')) for i in [0, 1, len(index) - 2, len(index) - 1]: result = index.get_loc(index[i]) assert result == i def test_format(self): self.index.format() self.index[:0].format() def test_format_integer_names(self): index = MultiIndex(levels=[[0, 1], [0, 1]], labels=[[0, 0, 1, 1], [0, 1, 0, 1]], names=[0, 1]) index.format(names=True) def test_format_sparse_display(self): index = MultiIndex(levels=[[0, 1], [0, 1], [0, 1], [0]], labels=[[0, 0, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0]]) result = index.format() assert result[3] == '1 0 0 0' def test_format_sparse_config(self): warn_filters = warnings.filters warnings.filterwarnings('ignore', category=FutureWarning, module=".*format") # GH1538 pd.set_option('display.multi_sparse', False) result = self.index.format() assert result[1] == 'foo two' tm.reset_display_options() warnings.filters = warn_filters def test_to_frame(self): tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples) result = index.to_frame(index=False) expected = DataFrame(tuples) tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) tuples = [(1, 'one'), (1, 'two'), (2, 'one'), (2, 'two')] index = MultiIndex.from_tuples(tuples, names=['first', 'second']) result = index.to_frame(index=False) expected = DataFrame(tuples) expected.columns = ['first', 'second'] tm.assert_frame_equal(result, expected) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame(index=False) expected = DataFrame( {0: np.repeat(np.arange(5, dtype='int64'), 3), 1: np.tile(pd.date_range('20130101', periods=3), 5)}) tm.assert_frame_equal(result, expected) index = MultiIndex.from_product([range(5), pd.date_range('20130101', periods=3)]) result = index.to_frame() expected.index = index tm.assert_frame_equal(result, expected) def test_to_hierarchical(self): index = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) result = index.to_hierarchical(3) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1], [0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # K > 1 result = index.to_hierarchical(3, 2) expected = MultiIndex(levels=[[1, 2], ['one', 'two']], labels=[[0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1], [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]]) tm.assert_index_equal(result, expected) assert result.names == index.names # non-sorted index = MultiIndex.from_tuples([(2, 'c'), (1, 'b'), (2, 'a'), (2, 'b')], names=['N1', 'N2']) result = index.to_hierarchical(2) expected = MultiIndex.from_tuples([(2, 'c'), (2, 'c'), (1, 'b'), (1, 'b'), (2, 'a'), (2, 'a'), (2, 'b'), (2, 'b')], names=['N1', 'N2']) tm.assert_index_equal(result, expected) assert result.names == index.names def test_bounds(self): self.index._bounds def test_equals_multi(self): assert self.index.equals(self.index) assert not self.index.equals(self.index.values) assert self.index.equals(Index(self.index.values)) assert self.index.equal_levels(self.index) assert not self.index.equals(self.index[:-1]) assert not self.index.equals(self.index[-1]) # different number of levels index = MultiIndex(levels=[Index(lrange(4)), Index(lrange(4)), Index( lrange(4))], labels=[np.array([0, 0, 1, 2, 2, 2, 3, 3]), np.array( [0, 1, 0, 0, 0, 1, 0, 1]), np.array([1, 0, 1, 1, 0, 0, 1, 0])]) index2 = MultiIndex(levels=index.levels[:-1], labels=index.labels[:-1]) assert not index.equals(index2) assert not index.equal_levels(index2) # levels are different major_axis = Index(lrange(4)) minor_axis = Index(lrange(2)) major_labels = np.array([0, 0, 1, 2, 2, 3]) minor_labels = np.array([0, 1, 0, 0, 1, 0]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) assert not self.index.equal_levels(index) # some of the labels are different major_axis = Index(['foo', 'bar', 'baz', 'qux']) minor_axis = Index(['one', 'two']) major_labels = np.array([0, 0, 2, 2, 3, 3]) minor_labels = np.array([0, 1, 0, 1, 0, 1]) index = MultiIndex(levels=[major_axis, minor_axis], labels=[major_labels, minor_labels]) assert not self.index.equals(index) def test_equals_missing_values(self): # make sure take is not using -1 i = pd.MultiIndex.from_tuples([(0, pd.NaT), (0, pd.Timestamp('20130101'))]) result = i[0:1].equals(i[0]) assert not result result = i[1:2].equals(i[1]) assert not result def test_identical(self): mi = self.index.copy() mi2 = self.index.copy() assert mi.identical(mi2) mi = mi.set_names(['new1', 'new2']) assert mi.equals(mi2) assert not mi.identical(mi2) mi2 = mi2.set_names(['new1', 'new2']) assert mi.identical(mi2) mi3 = Index(mi.tolist(), names=mi.names) mi4 = Index(mi.tolist(), names=mi.names, tupleize_cols=False) assert mi.identical(mi3) assert not mi.identical(mi4) assert mi.equals(mi4) def test_is_(self): mi = MultiIndex.from_tuples(lzip(range(10), range(10))) assert mi.is_(mi) assert mi.is_(mi.view()) assert mi.is_(mi.view().view().view().view()) mi2 = mi.view() # names are metadata, they don't change id mi2.names = ["A", "B"] assert mi2.is_(mi) assert mi.is_(mi2) assert mi.is_(mi.set_names(["C", "D"])) mi2 = mi.view() mi2.set_names(["E", "F"], inplace=True) assert mi.is_(mi2) # levels are inherent properties, they change identity mi3 = mi2.set_levels([lrange(10), lrange(10)]) assert not mi3.is_(mi2) # shouldn't change assert mi2.is_(mi) mi4 = mi3.view() # GH 17464 - Remove duplicate MultiIndex levels mi4.set_levels([lrange(10), lrange(10)], inplace=True) assert not mi4.is_(mi3) mi5 = mi.view() mi5.set_levels(mi5.levels, inplace=True) assert not mi5.is_(mi) def test_union(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_union = piece1 | piece2 tups = sorted(self.index.values) expected = MultiIndex.from_tuples(tups) assert the_union.equals(expected) # corner case, pass self or empty thing: the_union = self.index.union(self.index) assert the_union is self.index the_union = self.index.union(self.index[:0]) assert the_union is self.index # won't work in python 3 # tuples = self.index.values # result = self.index[:4] | tuples[4:] # assert result.equals(tuples) # not valid for python 3 # def test_union_with_regular_index(self): # other = Index(['A', 'B', 'C']) # result = other.union(self.index) # assert ('foo', 'one') in result # assert 'B' in result # result2 = self.index.union(other) # assert result.equals(result2) def test_intersection(self): piece1 = self.index[:5][::-1] piece2 = self.index[3:] the_int = piece1 & piece2 tups = sorted(self.index[3:5].values) expected = MultiIndex.from_tuples(tups) assert the_int.equals(expected) # corner case, pass self the_int = self.index.intersection(self.index) assert the_int is self.index # empty intersection: disjoint empty = self.index[:2] & self.index[2:] expected = self.index[:0] assert empty.equals(expected) # can't do in python 3 # tuples = self.index.values # result = self.index & tuples # assert result.equals(tuples) def test_sub(self): first = self.index # - now raises (previously was set op difference) with pytest.raises(TypeError): first - self.index[-3:] with pytest.raises(TypeError): self.index[-3:] - first with pytest.raises(TypeError): self.index[-3:] - first.tolist() with pytest.raises(TypeError): first.tolist() - self.index[-3:] def test_difference(self): first = self.index result = first.difference(self.index[-3:]) expected = MultiIndex.from_tuples(sorted(self.index[:-3].values), sortorder=0, names=self.index.names) assert isinstance(result, MultiIndex) assert result.equals(expected) assert result.names == self.index.names # empty difference: reflexive result = self.index.difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: superset result = self.index[-3:].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # empty difference: degenerate result = self.index[:0].difference(self.index) expected = self.index[:0] assert result.equals(expected) assert result.names == self.index.names # names not the same chunklet = self.index[-3:] chunklet.names = ['foo', 'baz'] result = first.difference(chunklet) assert result.names == (None, None) # empty, but non-equal result = self.index.difference(self.index.sortlevel(1)[0]) assert len(result) == 0 # raise Exception called with non-MultiIndex result = first.difference(first.values) assert result.equals(first[:0]) # name from empty array result = first.difference([]) assert first.equals(result) assert first.names == result.names # name from non-empty array result = first.difference([('foo', 'one')]) expected = pd.MultiIndex.from_tuples([('bar', 'one'), ('baz', 'two'), ( 'foo', 'two'), ('qux', 'one'), ('qux', 'two')]) expected.names = first.names assert first.names == result.names tm.assert_raises_regex(TypeError, "other must be a MultiIndex " "or a list of tuples", first.difference, [1, 2, 3, 4, 5]) def test_from_tuples(self): tm.assert_raises_regex(TypeError, 'Cannot infer number of levels ' 'from empty list', MultiIndex.from_tuples, []) expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) # input tuples result = MultiIndex.from_tuples(((1, 2), (3, 4)), names=['a', 'b']) tm.assert_index_equal(result, expected) def test_from_tuples_iterator(self): # GH 18434 # input iterator for tuples expected = MultiIndex(levels=[[1, 3], [2, 4]], labels=[[0, 1], [0, 1]], names=['a', 'b']) result = MultiIndex.from_tuples(zip([1, 3], [2, 4]), names=['a', 'b']) tm.assert_index_equal(result, expected) # input non-iterables with tm.assert_raises_regex( TypeError, 'Input must be a list / sequence of tuple-likes.'): MultiIndex.from_tuples(0) def test_from_tuples_empty(self): # GH 16777 result = MultiIndex.from_tuples([], names=['a', 'b']) expected = MultiIndex.from_arrays(arrays=[[], []], names=['a', 'b']) tm.assert_index_equal(result, expected) def test_argsort(self): result = self.index.argsort() expected = self.index.values.argsort()
tm.assert_numpy_array_equal(result, expected)
pandas.util.testing.assert_numpy_array_equal
# ============================================================================ # getting fundamental data from financialmodelingprep.com # Author - <NAME> # Please report bugs/issues in the Q&A section # ============================================================================= import requests import pandas as pd link = "https://financialmodelingprep.com/api/v3" tickers = ["AXP"] #list of tickerList whose financial data needs to be extracted financial_dir = {} for ticker in tickers: try: #getting balance sheet data temp_dir = {} url = link+"/financials/balance-sheet-statement/"+ticker page = requests.get(url) fin_dir = page.json() for key,value in fin_dir["financials"][0].items(): temp_dir[key] = value #getting income statement data url = link+"/financials/income-statement/"+ticker page = requests.get(url) fin_dir = page.json() for key,value in fin_dir["financials"][0].items(): if key not in temp_dir.keys(): temp_dir[key] = value #getting cashflow statement data url = link+"/financials/cash-flow-statement/"+ticker page = requests.get(url) fin_dir = page.json() for key,value in fin_dir["financials"][0].items(): if key not in temp_dir.keys(): temp_dir[key] = value #getting EV data url = link+"/enterprise-value/"+ticker page = requests.get(url) fin_dir = page.json() for key,value in fin_dir["enterpriseValues"][0].items(): if key not in temp_dir.keys(): temp_dir[key] = value #getting key statistic data url = link+"/company-key-metrics/"+ticker page = requests.get(url) fin_dir = page.json() for key,value in fin_dir["metrics"][0].items(): if key not in temp_dir.keys(): temp_dir[key] = value #combining all extracted information with the corresponding ticker financial_dir[ticker] = temp_dir except: print("Problem scraping data for ",ticker) #storing information in pandas dataframe combined_financials =
pd.DataFrame(financial_dir)
pandas.DataFrame
import pandas as pd def format_date_hours(df: pd.DataFrame) -> pd.DataFrame: """ Format time and remove data points outside the 6-hourly scheme. Parameters ---------- df : pd.DataFrame The tracks DataFrame. Return ------- df_temp : pd.DataFrame A copy of df with a proper datetime column, in format %Y-%m-%d, with hours 06:00, 12:00, 18:00, 00:00 only. """ df_temp = df.copy() df_temp['Date'] = df_temp['Date'].astype(str) df_temp['Date'] = df_temp['Date'].map(lambda x: x[:4] + '-' + x[4:6] + '-' + x[6:]) df_temp['Hour'] = df_temp['Hour'].map(lambda x: x[1:3] + ':' + x[3:]) df_temp['Time'] = df_temp['Hour'] + ' ' + df_temp['Date'] df_temp['Time'] = df_temp['Time'].map(lambda x: pd.to_datetime(x)) # Extraction of the 6-hourly scheme hours = ['06:00', '12:00', '18:00', '00:00'] filt = df_temp.Hour.map(lambda x: x in hours) df_temp = df_temp.loc[filt] df_temp.reset_index(drop=True, inplace=True) # Reality Check if set(df_temp.Hour.unique()) != set(hours): raise ValueError('The extraction of the 6-hourly scheme failed.') df_temp.drop(columns=['Date', 'Hour'], inplace=True) return df_temp def fill_radii(df: pd.DataFrame) -> pd.DataFrame: """ Remove some missing values from radii columns of `df`. By definition a low (resp. med, high) `wind radius` is the maximal distance from the center of the hurricane where winds stronger than 34 (resp. 50, 64) knots were observed. We use this definition to fill some missing values. E.g. if the `Max_Speed`is lower than 34 knots, all radii have to be 0. Parameters ---------- df : pd.DataFrame The tracks DataFrame. Return ------- df_temp : pd.DataFrame A copy of df with partially completed missing values for the radii columns. """ df_temp = df.copy() # We extract the names of the columns corresponding to radii rad_cols = [col for col in df_temp.columns if 'Rad' in col] speeds = [0, 34, 50, 64] # For each of the three speeds relevant to wind radii, we create a dictionary setting some radii to 0. # For speeds lower than 34, all radii are set to 0. dict_low = {col: 0.0 for col in rad_cols} # For speeds lower than 50, greater than 34, medium and high radii are set to 0. dict_med = {col: 0.0 for col in rad_cols[4:]} # For speeds lower than 64, greater than 50, high radii are set to 0. dict_high = {col: 0.0 for col in rad_cols[8:]} dicts = [dict_low, dict_med, dict_high] for i in range(len(speeds) - 1): filt = (df_temp.Max_Speed > speeds[i]) & (df_temp.Max_Speed <= speeds[i + 1]) df_temp.loc[filt] = df_temp.loc[filt].fillna(dicts[i]) return df_temp def format_lon_lat(df: pd.DataFrame) -> pd.DataFrame: """ Format longitude and latitude values from strings to integers. Longitudes as strings are given in a format `mI` where m is a number and I is either `W` (west) or `E` (east) with respect to the Greenwich meridian. West coordinates are meant to be negative and east are positive. Latitudes as strings are given in a format `mI` where m is a number and I is either `N` (north) or `S` (south) with respect to the equator. South coordinates are meant to be negative and north are positive. Parameters ---------- df : pd.DataFrame The tracks DataFrame. Return ------- df_temp : pd.DataFrame A copy of df with proper longitudes and latitudes. """ df_temp = df.copy() df_temp.Longitude = df_temp.Longitude.map(lambda x: -1*float(x[:-1]) if x[-1] == 'W' else float(x[:-1])) df_temp.Latitude = df_temp.Latitude.map(lambda x: -1*float(x[:-1]) if x[-1] == 'S' else float(x[:-1])) return df_temp def cleaning_pipeline(files_dir: str, track_name: str = 'df_tracks.csv', new_name: str = 'df_tracks_after_1970', year: int = 1970): """ Cleans the data from df_tracks and saves the data with year >= `year`into a separate DataFrame. Parameters ---------- files_dir: str Path to the directory which contains the df_tracks DataFrame. track_name: str Name of the file containing df_tracks. new_name: str Name to use for saving the filtered data. year: int The year to use as a lower bound Return ------ """ tracks_path = files_dir + track_name # Necessary to set the dtype of Hour column, otherwise pandas infers int which yields errors df_tracks =
pd.read_csv(tracks_path, header=0, index_col=0, dtype={'Hour': str})
pandas.read_csv
import random import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DataFrame, NaT, Timestamp, date_range, ) import pandas._testing as tm class TestDataFrameSortValues: def test_sort_values(self): frame = DataFrame( [[1, 1, 2], [3, 1, 0], [4, 5, 6]], index=[1, 2, 3], columns=list("ABC") ) # by column (axis=0) sorted_df = frame.sort_values(by="A") indexer = frame["A"].argsort().values expected = frame.loc[frame.index[indexer]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by="A", ascending=False) indexer = indexer[::-1] expected = frame.loc[frame.index[indexer]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by="A", ascending=False) tm.assert_frame_equal(sorted_df, expected) # GH4839 sorted_df = frame.sort_values(by=["A"], ascending=[False]) tm.assert_frame_equal(sorted_df, expected) # multiple bys sorted_df = frame.sort_values(by=["B", "C"]) expected = frame.loc[[2, 1, 3]] tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=["B", "C"], ascending=False) tm.assert_frame_equal(sorted_df, expected[::-1]) sorted_df = frame.sort_values(by=["B", "A"], ascending=[True, False]) tm.assert_frame_equal(sorted_df, expected) msg = "No axis named 2 for object type DataFrame" with pytest.raises(ValueError, match=msg): frame.sort_values(by=["A", "B"], axis=2, inplace=True) # by row (axis=1): GH#10806 sorted_df = frame.sort_values(by=3, axis=1) expected = frame tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=3, axis=1, ascending=False) expected = frame.reindex(columns=["C", "B", "A"]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 2], axis="columns") expected = frame.reindex(columns=["B", "A", "C"]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=[True, False]) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.sort_values(by=[1, 3], axis=1, ascending=False) expected = frame.reindex(columns=["C", "B", "A"]) tm.assert_frame_equal(sorted_df, expected) msg = r"Length of ascending \(5\) != length of by \(2\)" with pytest.raises(ValueError, match=msg): frame.sort_values(by=["A", "B"], axis=0, ascending=[True] * 5) def test_sort_values_by_empty_list(self): # https://github.com/pandas-dev/pandas/issues/40258 expected = DataFrame({"a": [1, 4, 2, 5, 3, 6]}) result = expected.sort_values(by=[]) tm.assert_frame_equal(result, expected) assert result is not expected def test_sort_values_inplace(self): frame = DataFrame( np.random.randn(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"] ) sorted_df = frame.copy() return_value = sorted_df.sort_values(by="A", inplace=True) assert return_value is None expected = frame.sort_values(by="A") tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values(by=1, axis=1, inplace=True) assert return_value is None expected = frame.sort_values(by=1, axis=1) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values(by="A", ascending=False, inplace=True) assert return_value is None expected = frame.sort_values(by="A", ascending=False) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values( by=["A", "B"], ascending=False, inplace=True ) assert return_value is None expected = frame.sort_values(by=["A", "B"], ascending=False) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_multicolumn(self): A = np.arange(5).repeat(20) B = np.tile(np.arange(5), 20) random.shuffle(A) random.shuffle(B) frame = DataFrame({"A": A, "B": B, "C": np.random.randn(100)}) result = frame.sort_values(by=["A", "B"]) indexer = np.lexsort((frame["B"], frame["A"])) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) result = frame.sort_values(by=["A", "B"], ascending=False) indexer = np.lexsort( (frame["B"].rank(ascending=False), frame["A"].rank(ascending=False)) ) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) result = frame.sort_values(by=["B", "A"]) indexer = np.lexsort((frame["A"], frame["B"])) expected = frame.take(indexer) tm.assert_frame_equal(result, expected) def test_sort_values_multicolumn_uint64(self): # GH#9918 # uint64 multicolumn sort df = DataFrame( { "a": pd.Series([18446637057563306014, 1162265347240853609]), "b": pd.Series([1, 2]), } ) df["a"] = df["a"].astype(np.uint64) result = df.sort_values(["a", "b"]) expected = DataFrame( { "a": pd.Series([18446637057563306014, 1162265347240853609]), "b": pd.Series([1, 2]), }, index=pd.Index([1, 0]), ) tm.assert_frame_equal(result, expected) def test_sort_values_nan(self): # GH#3917 df = DataFrame( {"A": [1, 2, np.nan, 1, 6, 8, 4], "B": [9, np.nan, 5, 2, 5, 4, 5]} ) # sort one column only expected = DataFrame( {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 9, 2, np.nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5], ) sorted_df = df.sort_values(["A"], na_position="first") tm.assert_frame_equal(sorted_df, expected) expected = DataFrame( {"A": [np.nan, 8, 6, 4, 2, 1, 1], "B": [5, 4, 5, 5, np.nan, 9, 2]}, index=[2, 5, 4, 6, 1, 0, 3], ) sorted_df = df.sort_values(["A"], na_position="first", ascending=False) tm.assert_frame_equal(sorted_df, expected) expected = df.reindex(columns=["B", "A"]) sorted_df = df.sort_values(by=1, axis=1, na_position="first") tm.assert_frame_equal(sorted_df, expected) # na_position='last', order expected = DataFrame( {"A": [1, 1, 2, 4, 6, 8, np.nan], "B": [2, 9, np.nan, 5, 5, 4, 5]}, index=[3, 0, 1, 6, 4, 5, 2], ) sorted_df = df.sort_values(["A", "B"]) tm.assert_frame_equal(sorted_df, expected) # na_position='first', order expected = DataFrame( {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 2, 9, np.nan, 5, 5, 4]}, index=[2, 3, 0, 1, 6, 4, 5], ) sorted_df = df.sort_values(["A", "B"], na_position="first") tm.assert_frame_equal(sorted_df, expected) # na_position='first', not order expected = DataFrame( {"A": [np.nan, 1, 1, 2, 4, 6, 8], "B": [5, 9, 2, np.nan, 5, 5, 4]}, index=[2, 0, 3, 1, 6, 4, 5], ) sorted_df = df.sort_values(["A", "B"], ascending=[1, 0], na_position="first") tm.assert_frame_equal(sorted_df, expected) # na_position='last', not order expected = DataFrame( {"A": [8, 6, 4, 2, 1, 1, np.nan], "B": [4, 5, 5, np.nan, 2, 9, 5]}, index=[5, 4, 6, 1, 3, 0, 2], ) sorted_df = df.sort_values(["A", "B"], ascending=[0, 1], na_position="last") tm.assert_frame_equal(sorted_df, expected) def test_sort_values_stable_descending_sort(self): # GH#6399 df = DataFrame( [[2, "first"], [2, "second"], [1, "a"], [1, "b"]], columns=["sort_col", "order"], ) sorted_df = df.sort_values(by="sort_col", kind="mergesort", ascending=False) tm.assert_frame_equal(df, sorted_df) @pytest.mark.parametrize( "expected_idx_non_na, ascending", [ [ [3, 4, 5, 0, 1, 8, 6, 9, 7, 10, 13, 14], [True, True], ], [ [0, 3, 4, 5, 1, 8, 6, 7, 10, 13, 14, 9], [True, False], ], [ [9, 7, 10, 13, 14, 6, 8, 1, 3, 4, 5, 0], [False, True], ], [ [7, 10, 13, 14, 9, 6, 8, 1, 0, 3, 4, 5], [False, False], ], ], ) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_sort_values_stable_multicolumn_sort( self, expected_idx_non_na, ascending, na_position ): # GH#38426 Clarify sort_values with mult. columns / labels is stable df = DataFrame( { "A": [1, 2, np.nan, 1, 1, 1, 6, 8, 4, 8, 8, np.nan, np.nan, 8, 8], "B": [9, np.nan, 5, 2, 2, 2, 5, 4, 5, 3, 4, np.nan, np.nan, 4, 4], } ) # All rows with NaN in col "B" only have unique values in "A", therefore, # only the rows with NaNs in "A" have to be treated individually: expected_idx = ( [11, 12, 2] + expected_idx_non_na if na_position == "first" else expected_idx_non_na + [2, 11, 12] ) expected = df.take(expected_idx) sorted_df = df.sort_values( ["A", "B"], ascending=ascending, na_position=na_position ) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_stable_categorial(self): # GH#16793 df = DataFrame({"x": Categorical(np.repeat([1, 2, 3, 4], 5), ordered=True)}) expected = df.copy() sorted_df = df.sort_values("x", kind="mergesort") tm.assert_frame_equal(sorted_df, expected) def test_sort_values_datetimes(self): # GH#3461, argsort / lexsort differences for a datetime column df = DataFrame( ["a", "a", "a", "b", "c", "d", "e", "f", "g"], columns=["A"], index=date_range("20130101", periods=9), ) dts = [ Timestamp(x) for x in [ "2004-02-11", "2004-01-21", "2004-01-26", "2005-09-20", "2010-10-04", "2009-05-12", "2008-11-12", "2010-09-28", "2010-09-28", ] ] df["B"] = dts[::2] + dts[1::2] df["C"] = 2.0 df["A1"] = 3.0 df1 = df.sort_values(by="A") df2 = df.sort_values(by=["A"]) tm.assert_frame_equal(df1, df2) df1 = df.sort_values(by="B") df2 = df.sort_values(by=["B"]) tm.assert_frame_equal(df1, df2) df1 = df.sort_values(by="B") df2 = df.sort_values(by=["C", "B"]) tm.assert_frame_equal(df1, df2) def test_sort_values_frame_column_inplace_sort_exception(self, float_frame): s = float_frame["A"] with pytest.raises(ValueError, match="This Series is a view"): s.sort_values(inplace=True) cp = s.copy() cp.sort_values() # it works! def test_sort_values_nat_values_in_int_column(self): # GH#14922: "sorting with large float and multiple columns incorrect" # cause was that the int64 value NaT was considered as "na". Which is # only correct for datetime64 columns. int_values = (2, int(NaT.value)) float_values = (2.0, -1.797693e308) df = DataFrame( {"int": int_values, "float": float_values}, columns=["int", "float"] ) df_reversed = DataFrame( {"int": int_values[::-1], "float": float_values[::-1]}, columns=["int", "float"], index=[1, 0], ) # NaT is not a "na" for int64 columns, so na_position must not # influence the result: df_sorted = df.sort_values(["int", "float"], na_position="last") tm.assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["int", "float"], na_position="first") tm.assert_frame_equal(df_sorted, df_reversed) # reverse sorting order df_sorted = df.sort_values(["int", "float"], ascending=False) tm.assert_frame_equal(df_sorted, df) # and now check if NaT is still considered as "na" for datetime64 # columns: df = DataFrame( {"datetime": [Timestamp("2016-01-01"), NaT], "float": float_values}, columns=["datetime", "float"], ) df_reversed = DataFrame( {"datetime": [NaT, Timestamp("2016-01-01")], "float": float_values[::-1]}, columns=["datetime", "float"], index=[1, 0], ) df_sorted = df.sort_values(["datetime", "float"], na_position="first") tm.assert_frame_equal(df_sorted, df_reversed) df_sorted = df.sort_values(["datetime", "float"], na_position="last") tm.assert_frame_equal(df_sorted, df) # Ascending should not affect the results. df_sorted = df.sort_values(["datetime", "float"], ascending=False) tm.assert_frame_equal(df_sorted, df) def test_sort_nat(self): # GH 16836 d1 = [Timestamp(x) for x in ["2016-01-01", "2015-01-01", np.nan, "2016-01-01"]] d2 = [ Timestamp(x) for x in ["2017-01-01", "2014-01-01", "2016-01-01", "2015-01-01"] ] df = DataFrame({"a": d1, "b": d2}, index=[0, 1, 2, 3]) d3 = [Timestamp(x) for x in ["2015-01-01", "2016-01-01", "2016-01-01", np.nan]] d4 = [ Timestamp(x) for x in ["2014-01-01", "2015-01-01", "2017-01-01", "2016-01-01"] ] expected = DataFrame({"a": d3, "b": d4}, index=[1, 3, 0, 2]) sorted_df = df.sort_values(by=["a", "b"]) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_na_position_with_categories(self): # GH#22556 # Positioning missing value properly when column is Categorical. categories = ["A", "B", "C"] category_indices = [0, 2, 4] list_of_nans = [np.nan, np.nan] na_indices = [1, 3] na_position_first = "first" na_position_last = "last" column_name = "c" reversed_categories = sorted(categories, reverse=True) reversed_category_indices = sorted(category_indices, reverse=True) reversed_na_indices = sorted(na_indices) df = DataFrame( { column_name: Categorical( ["A", np.nan, "B", np.nan, "C"], categories=categories, ordered=True ) } ) # sort ascending with na first result = df.sort_values( by=column_name, ascending=True, na_position=na_position_first ) expected = DataFrame( { column_name: Categorical( list_of_nans + categories, categories=categories, ordered=True ) }, index=na_indices + category_indices, ) tm.assert_frame_equal(result, expected) # sort ascending with na last result = df.sort_values( by=column_name, ascending=True, na_position=na_position_last ) expected = DataFrame( { column_name: Categorical( categories + list_of_nans, categories=categories, ordered=True ) }, index=category_indices + na_indices, ) tm.assert_frame_equal(result, expected) # sort descending with na first result = df.sort_values( by=column_name, ascending=False, na_position=na_position_first ) expected = DataFrame( { column_name: Categorical( list_of_nans + reversed_categories, categories=categories, ordered=True, ) }, index=reversed_na_indices + reversed_category_indices, ) tm.assert_frame_equal(result, expected) # sort descending with na last result = df.sort_values( by=column_name, ascending=False, na_position=na_position_last ) expected = DataFrame( { column_name: Categorical( reversed_categories + list_of_nans, categories=categories, ordered=True, ) }, index=reversed_category_indices + reversed_na_indices, ) tm.assert_frame_equal(result, expected) def test_sort_values_nat(self): # GH#16836 d1 = [Timestamp(x) for x in ["2016-01-01", "2015-01-01", np.nan, "2016-01-01"]] d2 = [ Timestamp(x) for x in ["2017-01-01", "2014-01-01", "2016-01-01", "2015-01-01"] ] df = DataFrame({"a": d1, "b": d2}, index=[0, 1, 2, 3]) d3 = [Timestamp(x) for x in ["2015-01-01", "2016-01-01", "2016-01-01", np.nan]] d4 = [ Timestamp(x) for x in ["2014-01-01", "2015-01-01", "2017-01-01", "2016-01-01"] ] expected = DataFrame({"a": d3, "b": d4}, index=[1, 3, 0, 2]) sorted_df = df.sort_values(by=["a", "b"]) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_na_position_with_categories_raises(self): df = DataFrame( { "c": Categorical( ["A", np.nan, "B", np.nan, "C"], categories=["A", "B", "C"], ordered=True, ) } ) with pytest.raises(ValueError, match="invalid na_position: bad_position"): df.sort_values(by="c", ascending=False, na_position="bad_position") @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize( "original_dict, sorted_dict, ignore_index, output_index", [ ({"A": [1, 2, 3]}, {"A": [3, 2, 1]}, True, [0, 1, 2]), ({"A": [1, 2, 3]}, {"A": [3, 2, 1]}, False, [2, 1, 0]), ( {"A": [1, 2, 3], "B": [2, 3, 4]}, {"A": [3, 2, 1], "B": [4, 3, 2]}, True, [0, 1, 2], ), ( {"A": [1, 2, 3], "B": [2, 3, 4]}, {"A": [3, 2, 1], "B": [4, 3, 2]}, False, [2, 1, 0], ), ], ) def test_sort_values_ignore_index( self, inplace, original_dict, sorted_dict, ignore_index, output_index ): # GH 30114 df = DataFrame(original_dict) expected = DataFrame(sorted_dict, index=output_index) kwargs = {"ignore_index": ignore_index, "inplace": inplace} if inplace: result_df = df.copy() result_df.sort_values("A", ascending=False, **kwargs) else: result_df = df.sort_values("A", ascending=False, **kwargs) tm.assert_frame_equal(result_df, expected) tm.assert_frame_equal(df, DataFrame(original_dict)) def test_sort_values_nat_na_position_default(self): # GH 13230 expected = DataFrame( { "A": [1, 2, 3, 4, 4], "date": pd.DatetimeIndex( [ "2010-01-01 09:00:00", "2010-01-01 09:00:01", "2010-01-01 09:00:02", "2010-01-01 09:00:03", "NaT", ] ), } ) result = expected.sort_values(["A", "date"]) tm.assert_frame_equal(result, expected) def test_sort_values_item_cache(self, using_array_manager): # previous behavior incorrect retained an invalid _item_cache entry df = DataFrame(np.random.randn(4, 3), columns=["A", "B", "C"]) df["D"] = df["A"] * 2 ser = df["A"] if not using_array_manager: assert len(df._mgr.blocks) == 2 df.sort_values(by="A") ser.values[0] = 99 assert df.iloc[0, 0] == df["A"][0] def test_sort_values_reshaping(self): # GH 39426 values = list(range(21)) expected = DataFrame([values], columns=values) df = expected.sort_values(expected.index[0], axis=1, ignore_index=True) tm.assert_frame_equal(df, expected) class TestDataFrameSortKey: # test key sorting (issue 27237) def test_sort_values_inplace_key(self, sort_by_key): frame = DataFrame( np.random.randn(4, 4), index=[1, 2, 3, 4], columns=["A", "B", "C", "D"] ) sorted_df = frame.copy() return_value = sorted_df.sort_values(by="A", inplace=True, key=sort_by_key) assert return_value is None expected = frame.sort_values(by="A", key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values( by=1, axis=1, inplace=True, key=sort_by_key ) assert return_value is None expected = frame.sort_values(by=1, axis=1, key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() return_value = sorted_df.sort_values( by="A", ascending=False, inplace=True, key=sort_by_key ) assert return_value is None expected = frame.sort_values(by="A", ascending=False, key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) sorted_df = frame.copy() sorted_df.sort_values( by=["A", "B"], ascending=False, inplace=True, key=sort_by_key ) expected = frame.sort_values(by=["A", "B"], ascending=False, key=sort_by_key) tm.assert_frame_equal(sorted_df, expected) def test_sort_values_key(self): df = DataFrame(np.array([0, 5, np.nan, 3, 2, np.nan])) result = df.sort_values(0) expected = df.iloc[[0, 4, 3, 1, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(0, key=lambda x: x + 5) expected = df.iloc[[0, 4, 3, 1, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(0, key=lambda x: -x, ascending=False) expected = df.iloc[[0, 4, 3, 1, 2, 5]] tm.assert_frame_equal(result, expected) def test_sort_values_by_key(self): df = DataFrame( { "a": np.array([0, 3, np.nan, 3, 2, np.nan]), "b": np.array([0, 2, np.nan, 5, 2, np.nan]), } ) result = df.sort_values("a", key=lambda x: -x) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a", "b"], key=lambda x: -x) expected = df.iloc[[3, 1, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a", "b"], key=lambda x: -x, ascending=False) expected = df.iloc[[0, 4, 1, 3, 2, 5]] tm.assert_frame_equal(result, expected) def test_sort_values_by_key_by_name(self): df = DataFrame( { "a": np.array([0, 3, np.nan, 3, 2, np.nan]), "b": np.array([0, 2, np.nan, 5, 2, np.nan]), } ) def key(col): if col.name == "a": return -col else: return col result = df.sort_values(by="a", key=key) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a"], key=key) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by="b", key=key) expected = df.iloc[[0, 1, 4, 3, 2, 5]] tm.assert_frame_equal(result, expected) result = df.sort_values(by=["a", "b"], key=key) expected = df.iloc[[1, 3, 4, 0, 2, 5]] tm.assert_frame_equal(result, expected) def test_sort_values_key_string(self): df = DataFrame(np.array([["hello", "goodbye"], ["hello", "Hello"]])) result = df.sort_values(1) expected = df[::-1]
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
from statistics import * from pandas.core.algorithms import factorize from scipy.stats import gmean from sklearn import preprocessing from sklearn.neighbors import LocalOutlierFactor from ycimpute.imputer import knnimput, EM import pandas as pd import numpy as np import researchpy as rp pd.options.mode.chained_assignment = None class DataScienceKit(): def __init__(self) -> None: pass class MeasurementUnits(): def __init__(self): self.data_operations = DataScienceKit.DataOperations() self.exploratory_data_analysis = DataScienceKit.ExploratoryDataAnalysis() # Arithmetic Mean # numeric_col: Numeric DataFrame Column def arithmetic_mean(self, dataset, numerical_column_name): if(self.exploratory_data_analysis.is_numerical(dataset, numerical_column_name)): if(self.data_operations.there_any_NaN_values_column(dataset, numerical_column_name) != True): return mean(dataset[numerical_column_name]) else: return ValueError(f'NaN Value Error: There is missing (NaN) data in {numerical_column_name} ') else: return ValueError(f'Variable Type Error: {numerical_column_name} is not a Numerical Variable ') # Geometric Mean # numerical_col: Numeric DataFrame Column def geometric_mean(self, dataset, numerical_column_name): if(self.exploratory_data_analysis.is_numerical(dataset, numerical_column_name)): if(self.data_operations.there_any_NaN_values_column(dataset, numerical_column_name) != True): return gmean(dataset[numerical_column_name]) else: return ValueError(f'NaN Value Error: There is missing (NaN) data in {numerical_column_name} ') else: return ValueError(f'Variable Type Error: {numerical_column_name} is not a Numerical Variable ') # Harmonic Mean # numeric_col: Numeric DataFrame Column def harmonic_mean(self, dataset, numerical_column_name): if(self.exploratory_data_analysis.is_numerical(dataset, numerical_column_name)): if(self.data_operations.there_any_NaN_values_column(dataset, numerical_column_name) != True): return harmonic_mean(dataset[numerical_column_name]) else: return ValueError(f'NaN Value Error: There is missing (NaN) data in {numerical_column_name} ') else: return ValueError(f'Variable Type Error: {numerical_column_name} is not a Numerical Variable ') # Median # numeric_col: Numeric DataFrame Column # median_type: 1: Median, 2: Median Low, 3: Median High, 4: Median Grouped def median(self, dataset, numerical_column_name, median_type=1, interpolation=1): if(median_type == 1): return median(dataset[numerical_column_name]) elif(median_type == 2): return median_low(dataset[numerical_column_name]) elif(median_type == 3): return median_high(dataset[numerical_column_name]) elif(median_type == 4): if(self.exploratory_data_analysis.is_numerical(dataset, numerical_column_name)): if(self.data_operations.there_any_NaN_values_column(dataset, numerical_column_name) != True): return median_grouped(dataset[numerical_column_name], interval=interpolation) else: return ValueError(f'NaN Value Error: There is missing (NaN) data in {numerical_column_name} ') else: return ValueError(f'Variable Type Error: {numerical_column_name} is not a Numerical Variable') else: return ValueError("Invalid Median Type: Takes a value between 1 and 4") # Mode # numeric_col: Numeric DataFrame Column # mode_type: 1: Mode, 2: Count Mode Value def mode(self, dataset, numerical_column_name, mode_type=1): if(mode_type == 1): return mode(dataset[numerical_column_name]) elif(mode_type == 2): return dataset[numerical_column_name].count(mode(dataset[numerical_column_name])) else: return ValueError("Invalid Mode Type: Takes a value between 1 and 2") # Variance # numeric_col: Numeric DataFrame Column # mean_data: If the mean value of the numeric column is not given as a parameter, None should remain def variance(self, dataset, numerical_column_name): if(self.exploratory_data_analysis.is_numerical(dataset, numerical_column_name)): if(self.data_operations.there_any_NaN_values_column(dataset, numerical_column_name) != True): return variance(dataset[numerical_column_name]) else: return ValueError(f'NaN Value Error: There is missing (NaN) data in {numerical_column_name} ') else: return ValueError(f'Variable Type Error: {numerical_column_name} is not a Numerical Variable ') # Standart Deviation # numeric_col: Numeric DataFrame Column def standart_deviation(self, dataset, numerical_column_name): if(self.exploratory_data_analysis.is_numerical(dataset, numerical_column_name)): if(self.data_operations.there_any_NaN_values_column(dataset, numerical_column_name) != True): return stdev(dataset[numerical_column_name]) else: return ValueError(f'NaN Value Error: There is missing (NaN) data in {numerical_column_name} ') else: return ValueError(f'Variable Type Error: {numerical_column_name} is not a Numerical Variable ') # Minimum Value # numeric_col: Numeric DataFrame Column def minimum_value(self, dataset, numerical_column_name): return min(dataset[numerical_column_name]) # Maximum Value # numeric_col: Numeric DataFrame Column def maximum_value(self, dataset, numerical_column_name): return max(dataset[numerical_column_name]) # Kurtosis # data_matrix: Numeric DataFrame Columns data_matrix = [dataset['number'], dataset['distance']] def kurtosis(self, data_matrix): df = pd.DataFrame(data=data_matrix) return df.kurt(axis=1) # Skew # data_matrix: Numeric DataFrame Columns data_matrix = [dataset['number'], dataset['distance']] def skewnewss(self, data_matrix): df =
pd.DataFrame(data=data_matrix)
pandas.DataFrame
# -*- coding: utf-8 -*- # ################# # This script takes as an input the data from Saunois et al. (2020), # imported in csv format from the original Global_Methane_Budget_2000_2017_v2.0_full.xlsx # file, and returns a csv file with CH4 flux data for 2017 and 2008-2017. # Data is provided for both the Top-Down (TD) and Bottom-Up (BU) estimates. # # Last updated: Jan 2021 # Author: <NAME> # ################# import numpy as np import pandas as pd periods = ['2017', '2008_2017'] for period in periods: ######### Get Bottom Up global data ######### data_BU = pd.read_csv('../source/global_BU_'+period+'_clean.csv', header=0) # Drop spurious row data_BU = data_BU.drop([0], axis=0) # Rename columns data_BU['Sink/source type'] = data_BU['Emission totals'] data_BU.loc[data_BU['Sink/source type'] == 'Wetland','Sink/source type'] = 'Wetlands' data_BU['Original data source'] = data_BU['Regions'] data_BU['Value (Tg CH4 yr-1)'] = round(data_BU['GLOBAL'], 0).astype(int) #data_BU['Units'] = 'Tg CH4 yr-1' data_BU['Estimate type'] = 'Bottom-up' data_BU = data_BU[['Sink/source type', 'Estimate type','Original data source', 'Value (Tg CH4 yr-1)']].copy() # Report maximum and minimum values for flux_type in data_BU['Sink/source type'].unique(): # Get flux type data_BU_chunk = data_BU[ data_BU['Sink/source type'] == flux_type].copy() # Get max data_BU = data_BU.append( data_BU_chunk[ data_BU_chunk['Value (Tg CH4 yr-1)'] == data_BU_chunk['Value (Tg CH4 yr-1)'].max()].drop_duplicates( subset=['Value (Tg CH4 yr-1)']), ignore_index=True ) data_BU.loc[len(data_BU.index)-1, 'Original data source'] = 'Ensemble max' # Get min data_BU = data_BU.append( data_BU_chunk[ data_BU_chunk['Value (Tg CH4 yr-1)'] == data_BU_chunk['Value (Tg CH4 yr-1)'].min()].drop_duplicates( subset=['Value (Tg CH4 yr-1)']), ignore_index=True ) data_BU.loc[len(data_BU.index)-1, 'Original data source'] = 'Ensemble min' ######### Get Top Down global data ######### data_TD = pd.read_csv('../source/global_TD_'+period+'_clean.csv', header=0) # # Drop spurious row data_TD = data_TD.drop([0], axis=0) # Rename columns data_TD['Sink/source type'] = data_TD['Emission totals'] data_TD['Original data source'] = data_TD['Regions'] data_TD['Value (Tg CH4 yr-1)'] = round(data_TD['GLOBAL'], 0).astype(int) #data_TD['Units'] = 'Tg CH4 yr-1' data_TD['Estimate type'] = 'Top-down' data_TD = data_TD[['Sink/source type', 'Estimate type','Original data source', 'Value (Tg CH4 yr-1)']].copy() # Report maximum and minimum values for flux_type in data_TD['Sink/source type'].unique(): # Get flux type data_TD_chunk = data_TD[ data_TD['Sink/source type'] == flux_type].copy() # Get max data_TD = data_TD.append( data_TD_chunk[ data_TD_chunk['Value (Tg CH4 yr-1)'] == data_TD_chunk['Value (Tg CH4 yr-1)'].max()].drop_duplicates( subset=['Value (Tg CH4 yr-1)']), ignore_index=True ) data_TD.loc[len(data_TD.index)-1, 'Original data source'] = 'Ensemble max' # Get min data_TD = data_TD.append( data_TD_chunk[ data_TD_chunk['Value (Tg CH4 yr-1)'] == data_TD_chunk['Value (Tg CH4 yr-1)'].min()].drop_duplicates( subset=['Value (Tg CH4 yr-1)']), ignore_index=True ) data_TD.loc[len(data_TD.index)-1, 'Original data source'] = 'Ensemble min' # # Concatenate TD and BU data, order total =
pd.concat([data_TD,data_BU], axis=0, ignore_index=True)
pandas.concat
from keras.models import model_from_json from os import path import sys, json, time # lstm autoencoder predict sequence from pandas import DataFrame, Series import numpy as np from numpy import array from sklearn.preprocessing import OneHotEncoder, LabelEncoder,minmax_scale # Get Directory BASE_DIR = path.dirname(path.dirname(path.abspath(__file__))) # Read input data print('Reading Input Data') # Model Build output model_path=path.join(BASE_DIR, 'data/model_build_outputs/model3.json') with open(model_path, newline='') as in_file: model_build_out = json.load(in_file) # Prediction Routes (Model Apply input) prediction_routes_path = path.join(BASE_DIR, 'data/model_apply_inputs/new_route_data.json') with open(prediction_routes_path, newline='') as in_file: prediction_routes = json.load(in_file) X_allR,route_stopsapp,route_highscore,Y_allR,predseq,predseq2,outputallR = [],[],[],[],[],[],[] ####_______________________________________________ ## specify number of routes route_data_sample = {k: prediction_routes[k] for k, _ in zip(prediction_routes,range(100))} route_data_subsample_HS = {k: prediction_routes[k] for k, _ in zip(route_data_sample,range(100))} print(len(route_data_subsample_HS)) for krml,vrml in prediction_routes.items(): route_stopsml = prediction_routes[krml]['stops'] route_stopsapp.append(route_stopsml) lenm = len(route_stopsml) print(lenm) max_len = 222 print(max_len) for kr,vr in prediction_routes.items(): route_stops = prediction_routes[kr]['stops'] dic = {d for d, vd in route_stops.items() if vd['type'] == 'Station'} depot = list(dic)[0] index = list(route_stops.keys()).index(depot) stops_list = [{**value, **{'id':key}} for key, value in route_stops.items()] stops_list.insert(0, stops_list.pop(index)) lbl_encode = LabelEncoder() stops_list_id = lbl_encode.fit_transform([i['id'] for i in stops_list]) stops_list_zone = lbl_encode.fit_transform([i['zone_id'] for i in stops_list]) stops_list_lat = [i['lat'] for i in stops_list] stops_list_lng = [i['lng']*-1 for i in stops_list] stops_list_features = list(zip(stops_list_id,stops_list_lat,stops_list_lng)) stops_list_featuresnew = list(zip(stops_list_zone,stops_list_lat,stops_list_lng)) df =
DataFrame(stops_list_features)
pandas.DataFrame
#!/usr/bin/env python import rospy from std_msgs.msg import Empty import os import csv import time import pandas as pd import matplotlib matplotlib.use('Agg') #import matplotlib.pyplot as plt #import sys class Plots: def __init__(self, path, param): self.path = path self.param = param rospy.Subscriber("/csv/end", Empty, self.Plot) self.restart_pub = rospy.Publisher('/restart', Empty, queue_size=1) rospy.spin() def Plot(self, data): odometry = pd.read_csv(os.path.join(self.path,'odometry.csv')) odometry.rename(columns={'X': r'$x$', 'Y': r'$y$', 'Z': r'$z$', 'Roll': r'$\phi$', 'Pitch': r'$\theta$', 'Yaw': r'$\psi$'}, inplace = True) odometry_gt = pd.read_csv(os.path.join(self.path,'odometry_gt.csv')) odometry_gt.rename(columns={'X': r'$x$', 'Y': r'$y$', 'Z': r'$z$', 'Roll': r'$\phi$', 'Pitch': r'$\theta$', 'Yaw': r'$\psi$'}, inplace = True) reference = pd.read_csv(os.path.join(self.path,'reference.csv')) reference.rename(columns={'X': r'$x$', 'Y': r'$y$', 'Z': r'$z$', 'Roll': r'$\phi$', 'Pitch': r'$\theta$', 'Yaw': r'$\psi$'}, inplace = True) referenceGamma = pd.read_csv(os.path.join(self.path,'referenceGamma.csv')) referenceGamma.rename(columns={'X': r'$x$', 'Y': r'$y$', 'Z': r'$z$', 'Roll': r'$\phi$', 'Pitch': r'$\theta$', 'Yaw': r'$\psi$'}, inplace = True) ''' odometry_df = odometry.loc[:, ['Tiempo',r'$x$',r'$y$',r'$z$',r'$\phi$',r'$\theta$',r'$\psi$']] odometry_gt_df = odometry_gt.loc[:, ['Tiempo',r'$x$',r'$y$',r'$z$',r'$\phi$',r'$\theta$',r'$\psi$']] reference_df = reference.loc[:, ['Tiempo',r'$x$',r'$y$',r'$z$',r'$\phi$',r'$\theta$',r'$\psi$']] referenceGamma_df = referenceGamma.loc[:, ['Tiempo',r'$x$',r'$y$',r'$z$',r'$\phi$',r'$\theta$',r'$\psi$']] ''' odometry_df = odometry.loc[:, ['Tiempo',r'$x$',r'$y$',r'$z$',r'$\psi$']] odometry_gt_df = odometry_gt.loc[:, ['Tiempo',r'$x$',r'$y$',r'$z$',r'$\psi$']] reference_df = reference.loc[:, ['Tiempo',r'$x$',r'$y$',r'$z$',r'$\psi$']] referenceGamma_df = referenceGamma.loc[:, ['Tiempo',r'$x$',r'$y$',r'$z$',r'$\psi$']] odometry_df.plot(x=0,grid=True,title='Odometry').get_figure().savefig(os.path.join(self.path,'odometry.png')) odometry_gt_df.plot(x=0,grid=True,title='Odometry_GT').get_figure().savefig(os.path.join(self.path,'odometry_gt.png')) reference_df.plot(x=0,grid=True,title='Reference').get_figure().savefig(os.path.join(self.path,'reference.png')) referenceGamma_df.plot(x=0,grid=True,title='Reference_Gamma').get_figure().savefig(os.path.join(self.path,'referenceGamma.png')) errors = {} #cambios= {} #for ax in [r'x',r'y',r'z',r'\phi',r'\theta',r'\psi']: for ax in [r'x',r'y',r'z',r'\psi']: ax_orig = r'$' + ax + r'$' ax_odom = r'$' + ax + r'_{odom}$' ax_gt = r'$' + ax + r'_{gt}$' ax_ref = r'$' + ax + r'_{ref}$' ax_gamma = r'$' + ax + r'_{gamma}$' ax_err = r'$e_{' + ax + r'}$' odometry_ = odometry_df.loc[:,['Tiempo',ax_orig]] odometry_.rename(columns={ax_orig: ax_odom},inplace = True) odometry_gt_ = odometry_gt_df.loc[:,['Tiempo',ax_orig]] odometry_gt_.rename(columns={ax_orig: ax_gt},inplace = True) reference_ = reference_df.loc[:,['Tiempo',ax_orig]] reference_.rename(columns={ax_orig: ax_ref},inplace = True) referenceGamma_ = referenceGamma_df.loc[:,['Tiempo',ax_orig]] referenceGamma_.rename(columns={ax_orig: ax_gamma},inplace = True) df = pd.merge(odometry_, odometry_gt_, on='Tiempo', how='inner') df =
pd.merge(df, reference_, on='Tiempo', how='inner')
pandas.merge
#Flask is a pythonic and minimalistic web framework, a perfect candidate for this task from flask import Flask from flask import request from flask import jsonify app = Flask(__name__) #Due to running the front-end and back-end on two different adresses/ports, we need CORS from flask_cors import CORS, cross_origin cors = CORS(app) app.config['CORS_HEADERS'] = 'Content-Type' #Pandas is a high-performance data manipulation tool import json import pandas as pd users = json.load(open('data.json')) users = pd.DataFrame(users) #Cleaning the data is necessary for healthy perfomance users = users.dropna(subset = ['id', 'firstName']) users = users.fillna("(private)") #Getting the column names, for later usage cols = [col for col in users] #Helper functions def to_dict_array(data): return [dict(row[1]) for row in data.iterrows()] def get_user(id): return to_dict_array(users[users["id"]==int(id)])[0] def top(n): return to_dict_array(users.head(n)) #Greeting message @app.route("/") def welcome(): return "<h3>Welcome to the Business Network Backend!</h3>" #Allowing real-time search of users based on their names or gender @app.route("/search") @cross_origin() def search(): query = request.args.get('query') if query == None: return jsonify(top(12)) elif query == "male": return jsonify(to_dict_array(users[users["gender"]=="male"].head(15))) elif query == "female": return jsonify(to_dict_array(users[users["gender"]=="female"].head(15))) else: return jsonify(to_dict_array(users[(users["firstName"] + users["surname"]).str.lower().str.contains(query.lower())])) #Returning the data about a singe user based on his ID @app.route("/user") @cross_origin() def user(): id = request.args.get('id') return jsonify(get_user(id)) #Searching user's fist and second level connections @app.route("/friends") def friends(): id = request.args.get('id') level = request.args.get('level') user = get_user(id) friends = users[users["id"].isin(user['friends'])] return_data = "" if(level == "1"): return_data = to_dict_array(friends) elif(level == "2"): f_two =
pd.DataFrame()
pandas.DataFrame
"""unit test for loanpy.sanity.py (2.0 BETA) for pytest 7.1.1""" from collections import OrderedDict from datetime import datetime from os import remove from pathlib import Path from time import struct_time from unittest.mock import call, patch from numpy import nan from pandas import DataFrame, Series, read_csv from pandas.testing import assert_frame_equal, assert_series_equal from pytest import raises from loanpy.sanity import ( ArgumentsAlreadyTested, cache, check_cache, eval_adapt, eval_recon, eval_all, eval_one, get_crossval_data, get_dist, get_nse4df, get_noncrossval_sc, get_tpr_fpr_opt, loop_thru_data, make_stat, plot_roc, postprocess, postprocess2, phonotactics_predicted, write_to_cache) from loanpy import sanity def test_cache(): """Is cache read and written to correctly?""" with patch("loanpy.sanity.check_cache") as check_cache_mock: check_cache_mock.return_value = None with patch("loanpy.sanity.write_to_cache") as write_to_cache_mock: write_to_cache_mock.return_value = None @cache def mockfunc(*args, **kwargs): return 1, 2, 3, 4 # without kwarg assert mockfunc(path2cache=4) is None check_cache_mock.assert_called_with(4, {'path2cache': 4}) write_to_cache_mock.assert_called_with( 4, {'path2cache': 4}, 2, 3, 4) # with kwarg assert mockfunc(4, 5, 6, path2cache=7) is None check_cache_mock.assert_called_with(7, { 'path2cache': 7, 'forms_csv': 4, 'tgt_lg': 5, 'src_lg': 6}) write_to_cache_mock.assert_called_with(7, { 'path2cache': 7, 'forms_csv': 4, 'tgt_lg': 5, 'src_lg': 6}, 2, 3, 4) def test_eval_all(): """Is the main function doing its job in evaluating etymological data?""" class AdrcMonkey: def __init__(self): self.dfety = 12345 adrc_monkey = AdrcMonkey() # patch all functions. wrapper counts as part of eval_all with patch("loanpy.sanity.check_cache") as check_cache_mock: check_cache_mock.return_value = "cc" with patch("loanpy.sanity.write_to_cache") as write_to_cache_mock: write_to_cache_mock.return_value = "w2c" with patch("loanpy.sanity.time", side_effect=[5, 5]) as time_mock: with patch("loanpy.sanity.Adrc") as adrc_mock: adrc_mock.return_value = AdrcMonkey with patch("loanpy.sanity.loop_thru_data" ) as loop_thru_data_mock: loop_thru_data_mock.return_value = "ld" with patch("loanpy.sanity.postprocess" ) as postprocess_mock: postprocess_mock.return_value = adrc_monkey with patch("loanpy.sanity.postprocess2" ) as postprocess2_mock: postprocess2_mock.return_value = 987 # stat assert eval_all(9, 9, 9) == (12345, 987, 5, 5) # assert calls check_cache_mock.assert_not_called() write_to_cache_mock.assert_not_called() time_mock.assert_has_calls([], []) adrc_mock.assert_called_with( forms_csv=9, source_language=9, target_language=9, mode='adapt', most_frequent_phonotactics=9999999, phonotactic_inventory=None, connector=None, scdictbase=None, vfb=None) loop_thru_data_mock.assert_called_with( AdrcMonkey, False, False, False, False, 1, 1, 100, 49, False, [ 10, 50, 100, 500, 1000], 'adapt', False, True) postprocess_mock.assert_called_with("ld") postprocess2_mock.assert_called_with( adrc_monkey, [10, 50, 100, 500, 1000], "adapt", None) del AdrcMonkey, adrc_monkey def test_loop_thru_data(): """Is cross-validation called and loop run?""" # set up expected output df_exp = DataFrame({ "guesses": [1], "best_guess": [2], "workflow_step0": [3], "workflow_step1": [4] }) dfforms_mock = DataFrame({ "Source_Form": ["apple", "banana", "cherry"], "Target_Form": ["Apfel", "Banane", "Kirsche"] }) out1_eval_one = {"best_guess": "abc", "guesses": 1} out2_eval_one = {"best_guess": "def", "guesses": 2} out3_eval_one = {"best_guess": "ghi", "guesses": 3} class AdrcMonkey: def __init__(self): self.forms_target_language = ["Apfel", "Banane", "Kirsche"] self.dfety = dfforms_mock def tqdm_mock(iterable): tqdm_mock.called_with = iterable return iterable tqdm_real, sanity.tqdm = sanity.tqdm, tqdm_mock adrc_monkey = AdrcMonkey() idxlist = iter([0, 1, 2]) forms = iter(["Apfel", "Banane", "Kirsche"]) # first patch is not called by default with patch("loanpy.sanity.get_noncrossval_sc") as get_noncrossval_sc_mock: with patch("loanpy.sanity.get_crossval_data", side_effect=[adrc_monkey] * 3) as get_crossval_data_mock: adrc_monkey.idx_of_popped_word = next(idxlist) adrc_monkey.popped_word = next(forms) with patch("loanpy.sanity.eval_one", side_effect=[out1_eval_one, out2_eval_one, out3_eval_one] ) as eval_one_mock: with patch("loanpy.sanity.DataFrame") as DataFrame_mock: DataFrame_mock.return_value = "dfoutmock" with patch("loanpy.sanity.concat") as concat_mock: concat_mock.return_value = df_exp assert loop_thru_data( adrc_monkey, 1, 1, 100, 49, False, False, False, False, False, [10, 50, 100, 500, 1000], 'adapt', False, True) == adrc_monkey # assert dfety was plugged in with good col names assert_frame_equal(adrc_monkey.dfety, df_exp) # assert calls # assert 1st patch not called get_noncrossval_sc_mock.assert_not_called() get_crossval_data_mock.assert_has_calls([ call(adrc_monkey, 0, False), call(adrc_monkey, 1, False), call(adrc_monkey, 2, False) ]) eval_one_mock.assert_has_calls([ call("Apfel", adrc_monkey, "apple", 1, 1, 100, 49, False, False, False, False, False, [10, 50, 100, 500, 1000], 'adapt'), call("Banane", adrc_monkey, "banana", 1, 1, 100, 49, False, False, False, False, False, [10, 50, 100, 500, 1000], 'adapt'), call("Kirsche", adrc_monkey, "cherry", 1, 1, 100, 49, False, False, False, False, False, [10, 50, 100, 500, 1000], 'adapt') ]) DataFrame_mock.assert_called_with({'best_guess': ['abc', 'def', 'ghi'], 'guesses': [1, 2, 3]}) concat_mock.assert_called_with([dfforms_mock, "dfoutmock"], axis=1) assert isinstance(tqdm_mock.called_with, enumerate) # tear down sanity.tqdm.called_with = None # 2nd assertion: loop with crossval=True # fresh instance (old got modified) adrc_monkey = AdrcMonkey() with patch("loanpy.sanity.get_noncrossval_sc") as get_noncrossval_sc_mock: get_noncrossval_sc_mock.return_value = adrc_monkey with patch("loanpy.sanity.get_crossval_data" ) as get_crossval_data_mock: with patch("loanpy.sanity.eval_one", side_effect=[out1_eval_one, out2_eval_one, out3_eval_one] ) as eval_one_mock: with patch("loanpy.sanity.DataFrame") as DataFrame_mock: DataFrame_mock.return_value = "dfoutmock" with patch("loanpy.sanity.concat") as concat_mock: concat_mock.return_value = DataFrame( [(1, 2, 3, 4)], columns=['guesses', 'best_guess', 'workflow_step0', 'workflow_step1']) assert loop_thru_data( adrc_monkey, 1, 1, 100, 49, False, False, False, False, False, [10, 50, 100, 500, 1000], 'adapt', False, False) == adrc_monkey print(adrc_monkey.dfety) assert_frame_equal(adrc_monkey.dfety, df_exp) # assert calls # assert 1st patch not called get_crossval_data_mock.assert_not_called() get_noncrossval_sc_mock.assert_called_with(adrc_monkey, False) eval_one_mock.assert_has_calls([ call("Apfel", adrc_monkey, "apple", 1, 1, 100, 49, False, False, False, False, False, [10, 50, 100, 500, 1000], 'adapt'), call("Banane", adrc_monkey, "banana", 1, 1, 100, 49, False, False, False, False, False, [10, 50, 100, 500, 1000], 'adapt'), call("Kirsche", adrc_monkey, "cherry", 1, 1, 100, 49, False, False, False, False, False, [10, 50, 100, 500, 1000], 'adapt') ]) DataFrame_mock.assert_called_with({'best_guess': ['abc', 'def', 'ghi'], 'guesses': [1, 2, 3]}) concat_mock.assert_called_with([dfforms_mock, "dfoutmock"], axis=1) assert isinstance(tqdm_mock.called_with, enumerate) # tear down sanity.tqdm = tqdm_real del adrc_monkey, AdrcMonkey, tqdm_real, tqdm_mock, dfforms_mock, df_exp def test_eval_one(): """Are eval_adapt, eval_recon called and their results evaluated?""" class AdrcMonkey: pass adrc_monkey = AdrcMonkey() # test when target is hit in first round with patch("loanpy.sanity.eval_adapt") as eval_adapt_mock: with patch("loanpy.sanity.eval_recon") as eval_recon_mock: eval_adapt_mock.return_value = { "guesses": 123, "best_guess": "bla"} assert eval_one("apple", "Apfel", adrc_monkey, False, False, False, False, 1, 1, 100, 49, False, [10, 50, 100, 500, 1000], 'adapt' ) == {"guesses": 123, "best_guess": "bla"} # assert correct args were passed on to eval_adapt eval_adapt_mock.assert_called_with( "apple", "Apfel", adrc_monkey, 10, False, False, False, False, 1, 1, 100, 49, False) # assert eval_recon was not called eval_recon_mock.assert_not_called() # test when target is hit in 2nd round with patch("loanpy.sanity.eval_adapt", side_effect=[ {"guesses": float("inf"), "best_guess": "bli"}, {"guesses": 123, "best_guess": "bla"}]) as eval_adapt_mock: with patch("loanpy.sanity.eval_recon") as eval_recon_mock: assert eval_one("apple", "Apfel", adrc_monkey, False, False, False, False, 1, 1, 100, 49, False, [10, 50, 100, 500, 1000], 'adapt' ) == {"guesses": 123, "best_guess": "bla"} # eval_adapt called twice eval_adapt_mock.assert_has_calls([ call("apple", "Apfel", adrc_monkey, 10, False, False, False, False, 1, 1, 100, 49, False), call("apple", "Apfel", adrc_monkey, 50, False, False, False, False, 1, 1, 100, 49, False)]) # assert eval_recon was not called eval_recon_mock.assert_not_called() # test when target is hit in 3rd round with patch("loanpy.sanity.eval_adapt", side_effect=[ {"guesses": float("inf"), "best_guess": "bli"}, {"guesses": float("inf"), "best_guess": "bla"}, {"guesses": 123, "best_guess": "blu"}] ) as eval_adapt_mock: assert eval_one("apple", "Apfel", adrc_monkey, False, False, False, False, 1, 1, 100, 49, False, [10, 50, 100, 500, 1000], 'adapt' ) == {"guesses": 123, "best_guess": "blu"} # eval_adapt called 3 times eval_adapt_mock.assert_has_calls([ call("apple", "Apfel", adrc_monkey, 10, False, False, False, False, 1, 1, 100, 49, False), call("apple", "Apfel", adrc_monkey, 50, False, False, False, False, 1, 1, 100, 49, False), call("apple", "Apfel", adrc_monkey, 100, False, False, False, False, 1, 1, 100, 49, False)]) # assert eval_recon was not called eval_recon_mock.assert_not_called() # test when target is not hit with patch("loanpy.sanity.eval_adapt") as eval_adapt_mock: eval_adapt_mock.return_value = {"guesses": float("inf"), "best_guess": "bla"} with patch("loanpy.sanity.eval_recon") as eval_recon_mock: assert eval_one("apple", "Apfel", adrc_monkey, False, False, False, False, 1, 1, 100, 49, False, [10, 50, 100, 500, 1000], 'adapt' ) == {"guesses": float("inf"), "best_guess": "bla"} # assert eval_adapt called as many times as guesslist is long eval_adapt_mock.assert_has_calls([ call("apple", "Apfel", adrc_monkey, 10, False, False, False, False, 1, 1, 100, 49, False), call("apple", "Apfel", adrc_monkey, 50, False, False, False, False, 1, 1, 100, 49, False), call("apple", "Apfel", adrc_monkey, 100, False, False, False, False, 1, 1, 100, 49, False), call("apple", "Apfel", adrc_monkey, 500, False, False, False, False, 1, 1, 100, 49, False), call("apple", "Apfel", adrc_monkey, 1000, False, False, False, False, 1, 1, 100, 49, False) ]) # assert eval_recon was not called eval_recon_mock.assert_not_called() # test if reconstruct is called when mode=="reconstruct" with patch("loanpy.sanity.eval_recon") as eval_recon_mock: eval_recon_mock.return_value = {"guesses": float("inf"), "best_guess": "bla"} with patch("loanpy.sanity.eval_adapt") as eval_adapt_mock: assert eval_one("apple", "Apfel", adrc_monkey, False, False, False, False, 1, 1, 100, 49, False, [10, 50, 100, 500, 1000], 'reconstruct' ) == {"guesses": float("inf"), "best_guess": "bla"} # eval eval_recon called as many times as guesslist is long eval_recon_mock.assert_has_calls([ call("apple", "Apfel", adrc_monkey, 10, False, False, False, False, 1, 1, 100, 49, False), call("apple", "Apfel", adrc_monkey, 50, False, False, False, False, 1, 1, 100, 49, False), call("apple", "Apfel", adrc_monkey, 100, False, False, False, False, 1, 1, 100, 49, False), call("apple", "Apfel", adrc_monkey, 500, False, False, False, False, 1, 1, 100, 49, False), call("apple", "Apfel", adrc_monkey, 1000, False, False, False, False, 1, 1, 100, 49, False) ]) # assert eval_adapt not called eval_adapt_mock.assert_not_called() del adrc_monkey, AdrcMonkey def test_eval_adapt(): """Is result of loanpy.Adrc.adrc.adapt evaluated?""" class AdrcMonkey: def __init__(self, adapt_returns=None, adapt_raises=None): self.workflow = {"step1": "ya", "step2": "ye", "step3": "yu"} self.adapt_returns = adapt_returns self.adapt_raises = adapt_raises self.adapt_called_with = [] def adapt(self, *args): # the patch. This is being run. self.adapt_called_with.append([self, *args]) if self.adapt_raises is not None: raise self.adapt_raises() return self.adapt_returns adrc_monkey = AdrcMonkey(adapt_raises=KeyError) sanity.Adrc, real_Adrc = AdrcMonkey, sanity.Adrc # check if keyerror is handled correctly (no prediction possible) with patch("loanpy.sanity.get_howmany") as get_howmany_mock: get_howmany_mock.return_value = (1, 2, 3) # assert with show_workflow=False assert eval_adapt( "Apfel", adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, False) == { 'best_guess': 'KeyError', 'guesses': float("inf")} get_howmany_mock.assert_called_with(10, 1, 1) # assert call assert adrc_monkey.adapt_called_with[0] == [ adrc_monkey, "apple", 1, 2, 3, 100, 49, False, False, False, False, False] # assert with show_workflow=True assert eval_adapt( "Apfel", adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, True) == { "best_guess": "KeyError", "guesses": float("inf"), "step1": "ya", "step2": "ye", "step3": "yu"} get_howmany_mock.assert_called_with(10, 1, 1) assert adrc_monkey.adapt_called_with[1] == [ adrc_monkey, "apple", 1, 2, 3, 100, 49, False, False, False, False, True] # check if valueerror is handled correctly (wrong predictions made) adrc_monkey = AdrcMonkey(adapt_returns="yamdelavasa, 2nd_g, 3rd_g") with patch("loanpy.sanity.get_howmany") as get_howmany_mock: get_howmany_mock.return_value = (1, 2, 3) assert eval_adapt("Apfel", adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, False) == { # "didn't hit target but this was best guess" "guesses": float("inf"), "best_guess": "yamdelavasa"} get_howmany_mock.assert_called_with(10, 1, 1) assert adrc_monkey.adapt_called_with[0] == [ adrc_monkey, "apple", 1, 2, 3, 100, 49, False, False, False, False, False] # assert with show_workflow=True assert eval_adapt( "Apfel", adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, True) == { "guesses": float("inf"), "best_guess": "yamdelavasa", "step1": "ya", "step2": "ye", "step3": "yu"} get_howmany_mock.assert_called_with(10, 1, 1) assert adrc_monkey.adapt_called_with[1] == [ adrc_monkey, "apple", 1, 2, 3, 100, 49, False, False, False, False, True] # -check if no error is handled correctly (right prediction made) adrc_monkey = AdrcMonkey(adapt_returns="yamdelavasa, def, Apfel") with patch("loanpy.sanity.get_howmany") as get_howmany_mock: get_howmany_mock.return_value = (1, 2, 3) assert eval_adapt( "Apfel", adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, False) == { 'best_guess': 'Apfel', 'guesses': 3} # hit the target, so: best guess = target (even if not on index 0!) get_howmany_mock.assert_called_with(10, 1, 1) assert adrc_monkey.adapt_called_with[0] == [ adrc_monkey, "apple", 1, 2, 3, 100, 49, False, False, False, False, False] # assert with show_workflow=True assert eval_adapt( "Apfel", adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, True) == { 'best_guess': 'Apfel', 'guesses': 3, 'step1': 'ya', 'step2': 'ye', 'step3': 'yu'} get_howmany_mock.assert_called_with(10, 1, 1) assert adrc_monkey.adapt_called_with[1] == [ adrc_monkey, "apple", 1, 2, 3, 100, 49, False, False, False, False, True] # tear down sanity.Adrc = real_Adrc del AdrcMonkey, adrc_monkey, real_Adrc def test_eval_recon(): """Is result of loanpy.adrc.Adrc.reconstruct evaluated?""" # set up class AdrcMonkey: def __init__(self, reconstruct_returns): self.reconstruct_returns = reconstruct_returns self.reconstruct_called_with = [] def reconstruct(self, *args): # the patch. This is being run. self.reconstruct_called_with.append([self, *args]) return self.reconstruct_returns # plug in class sanity.Adrc, real_Adrc = AdrcMonkey, sanity.Adrc # 1: target not hit, keyerror (else condition) adrc_monkey = AdrcMonkey("#a, b c# not old") assert eval_recon( "Apfel", adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, False) == { 'best_guess': '#a, b c# not old', 'guesses': float("inf")} # assert call (source and target gets flipped!) assert adrc_monkey.reconstruct_called_with[0] == [ adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, False] # target not hit, short regex (capital "A" missing) adrc_monkey = AdrcMonkey("(a)(p)(p|f)(e)?(l)(e)?") assert eval_recon( "Apfel", adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, False) == { 'best_guess': '(a)(p)(p|f)(e)?(l)(e)?', 'guesses': float("inf")} # assert call assert adrc_monkey.reconstruct_called_with[0] == [ adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, False] # target not hit, long regex (capital "A" missing) adrc_monkey = AdrcMonkey("^Appele$|^Appel$") assert eval_recon( "Apfel", adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, False) == { 'best_guess': 'Appele', 'guesses': float("inf")} # assert call assert adrc_monkey.reconstruct_called_with[0] == [ adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, False] # 2: target hit with short regex adrc_monkey = AdrcMonkey("(a|A)(p)(p|f)(e)?(l)(e)?") assert eval_recon( "Apfel", adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, False) == { 'best_guess': '(a|A)(p)(p|f)(e)?(l)(e)?', 'guesses': 10} # 3: target hit with long regex adrc_monkey = AdrcMonkey( # correct solution on index nr 5 "^Appele$|^Appel$|^Apple$|^Appl$|^Apfele$|^Apfel$|^Apfle$|^Apfl$") assert eval_recon( "Apfel", adrc_monkey, "apple", 10, 1, 1, 100, 49, False, False, False, False, False) == { 'best_guess': 'Apfel', 'guesses': 6} # tear down sanity.Adrc = real_Adrc del adrc_monkey, real_Adrc, AdrcMonkey def test_get_noncrossval_sc(): """Are non-crossvalidated sound correspondences extracted and assigned?""" # set up class AdrcMonkey: def __init__(self): self.get_sound_corresp_called_with = [] def get_sound_corresp(self, *args): self.get_sound_corresp_called_with.append([*args]) return [1, 2, 3, 4, 5, 6] # test with writesc=False adrc_monkey = AdrcMonkey() get_noncrossval_sc(adrc_monkey, False) assert adrc_monkey.__dict__ == { 'get_sound_corresp_called_with': [[False]], 'scdict': 1, 'scdict_phonotactics': 4, 'sedict': 2} # test with writesc=Path adrc_monkey, path = AdrcMonkey(), Path() get_noncrossval_sc(adrc_monkey, path) assert adrc_monkey.__dict__ == { 'get_sound_corresp_called_with': [[path]], 'scdict': 1, 'scdict_phonotactics': 4, 'sedict': 2} del adrc_monkey, AdrcMonkey def test_get_crossval_data(): """check if correct row is dropped from df for cross-validation""" # set up mock class for input and instantiate it class AdrcMonkey: def __init__(self): self.forms_target_language = ["apple", "banana", "cherry"] self.get_sound_corresp_called_with = [] self.dfety = DataFrame({"Target_Form": ["apple", "banana", "cherry"], "color": ["green", "yellow", "red"]}) def get_sound_corresp(self, *args): self.get_sound_corresp_called_with.append([*args]) return [{"d1": "scdict"}, {"d2": "sedict"}, {}, {"d3": "scdict_phonotactics"}, {}, {}] def get_inventories(self, *args): return ({"a", "p", "l", "e", "b", "n", "c", "h", "r", "y"}, {"a", "pp", "l", "e", "b", "n", "ch", "rr", "y"}, {"VCCVC", "CVCVCV", "CCVCCV"}) adrc_monkey = AdrcMonkey() # set up actual output as variable adrc_obj_out = get_crossval_data(adrc_monkey, 1, None) # assert scdict and scdict_phonotactics were correctly plugged into # adrc_class assert adrc_obj_out.scdict == {"d1": "scdict"} assert adrc_obj_out.sedict == {"d2": "sedict"} assert adrc_obj_out.scdict_phonotactics == {"d3": "scdict_phonotactics"} assert adrc_obj_out.forms_target_language == ["apple", "cherry"] assert adrc_monkey.get_sound_corresp_called_with == [[None]] # tear down del AdrcMonkey, adrc_monkey, adrc_obj_out def test_postprocess(): """Is result of loanpy.sanity.loop_thru_data postprocessed correctly?""" # patch functions with patch("loanpy.sanity.get_nse4df", side_effect=["out1_getnse4df", "out2_getnse4df"]) as get_nse4df_mock: with patch( "loanpy.sanity.phonotactics_\ predicted") as phonotactics_predicted_mock: phonotactics_predicted_mock.return_value = "out_phonotacticspred" with patch("loanpy.sanity.get_dist") as get_dist_mock: get_dist_mock.return_value = "out_getldnld" # assert return value assert postprocess("in1") == "out_getldnld" # assert calls get_dist_mock.assert_called_with("out_phonotacticspred", "best_guess") phonotactics_predicted_mock.assert_called_with("out2_getnse4df") get_nse4df_mock.assert_has_calls( [call('in1', 'Target_Form'), call('out1_getnse4df', 'best_guess')] ) # test with show_workflow=False # patch functions with patch("loanpy.sanity.get_nse4df", side_effect=["out1_getnse4df", "out2_getnse4df"]) as get_nse4df_mock: with patch("loanpy.\ sanity.phonotactics_predicted") as phonotactics_predicted_mock: phonotactics_predicted_mock.return_value = "out_phonotacticspred" with patch("loanpy.sanity.get_dist") as get_dist_mock: get_dist_mock.return_value = "out_getldnld" # assert return value assert postprocess("in1") == "out_getldnld" # assert calls get_dist_mock.assert_called_with("out_phonotacticspred", "best_guess") phonotactics_predicted_mock.assert_called_with( "out2_getnse4df") # only called if show_workflow is True get_nse4df_mock.assert_has_calls( [call('in1', 'Target_Form'), call('out1_getnse4df', 'best_guess')] ) def test_postprocess2(): """Is result of loanpy.sanity.postprocess postprocessed correctly?""" # set up df_exp = DataFrame({"guesses": [1, 2, 3]}) class AdrcMonkey: def __init__(self): self.dfety = df_exp adrc_monkey = AdrcMonkey() # patch functions with patch("loanpy.sanity.get_tpr_fpr_opt") as get_tpr_fpr_opt_mock: get_tpr_fpr_opt_mock.return_value = ("x", "y", (7, 8, 9)) with patch("loanpy.sanity.make_stat") as make_stat_mock: make_stat_mock.return_value = "out_stat" assert postprocess2(adrc_monkey, [4, 5, 6], None) == "out_stat" # assert calls assert_series_equal(get_tpr_fpr_opt_mock.call_args_list[0][0][0], Series([1, 2, 3], name="guesses")) assert get_tpr_fpr_opt_mock.call_args_list[0][0][1] == [4, 5, 6] assert get_tpr_fpr_opt_mock.call_args_list[0][0][2] == 3 make_stat_mock.assert_called_with(9, 8, 6, 3) # test with write=Path() path2out = Path(__file__).parent / "postprocess2.csv" # patch functions with patch("loanpy.sanity.get_tpr_fpr_opt") as get_tpr_fpr_opt_mock: get_tpr_fpr_opt_mock.return_value = ("x", "y", (7, 8, 9)) with patch("loanpy.sanity.make_stat") as make_stat_mock: make_stat_mock.return_value = "out_stat" with patch("loanpy.sanity.plot_roc") as plot_roc_mock: plot_roc_mock.return_value = None assert postprocess2( adrc_monkey, [4, 5, 6], "adapt.csv", path2out) == "out_stat" # assert output was written assert_frame_equal(
read_csv(path2out)
pandas.read_csv
# -*- coding: utf-8 -*- # -*- python 3 -*- # -*- <NAME> -*- # Import packages import re import numpy as np import pandas as pd import os ##for directory import sys import pprint '''general function for easy use of python''' def splitAndCombine(gene, rxn, sep0, moveDuplicate=False): ## one rxn has several genes, this function was used to splite the genes ## used for the dataframe data gene = gene.fillna('NA') # fill the NaN with 'NA' gene0 = gene.tolist() rxn0 = rxn.tolist() s1 = list() s2 = list() for i in range(len(gene0)): s1 = s1 + [rxn0[i]] * len(gene0[i].split(sep0)) s2 = s2 + gene0[i].split(sep0) df0 = pd.DataFrame({'V1': s1, 'V2': s2} ) if moveDuplicate == True: df00 = df0.drop_duplicates() else: df00 = df0 return df00 def getSimilarTarget(rxn_yeast0,rxn_newGPR0,ss): from fuzzywuzzy import fuzz from fuzzywuzzy import process rxn_yeast1 = np.array(rxn_yeast0) # np.ndarray() rxn_yeast2 = rxn_yeast1.tolist() rxn_yeast3 = pd.Series((v[0] for v in rxn_yeast2)) rxn_newGPR1 = np.array(rxn_newGPR0) # np.ndarray() rxn_newGPR2 = rxn_newGPR1.tolist() rxn_newGPR3 = pd.Series((v[0] for v in rxn_newGPR2)) similarTarget = [None] * ss for i in range(ss): similarTarget[i] = process.extract(rxn_newGPR3[i], rxn_yeast3, limit=2) return similarTarget ''' #example newMet = pd.read_excel('new metabolite for check.xlsx') newMet0 = newMet[['name_unify']] gemMet = pd.read_excel('unique metabolite in yeastGEM.xlsx') gemMet0 = gemMet[['Description_simple']] ss0 = len(newMet0) similarTarget0 = getSimilarTarget(gemMet0,newMet0,ss=ss0) ''' def singleMapping (description, item1, item2, dataframe=True): """get the single description of from item1 for item2 based on mapping""" #description = w #item1 = v #item2 = testData # used for the list data if dataframe: description = description.tolist() item1 = item1.tolist() item2 = item2.tolist() else: pass index = [None]*len(item2) result = [None]*len(item2) tt = [None]*len(item2) for i in range(len(item2)): if item2[i] in item1: index[i] = item1.index(item2[i]) result[i] = description[index[i]] else: index[i] = None result[i] = None return result ''' w=['a','b','c'] v=[1,2,3] s=[3,1,2,4] singleMapping(w,v,s,dataframe=False) ''' def multiMapping (description, item1, item2, dataframe=True, sep=";", removeDuplicates=True): """get multiple description of from item1 for item2 based on mapping""" #description = w #item1 = v #item2 = testData #used for the list data if dataframe: description = description.tolist() item1 = item1.tolist() item2 = item2.tolist() else: pass result = [None]*len(item2) for i in range(len(item2)): if item2[i] in item1: index0 = [description[index] for index in range(len(item1)) if item1[index] == item2[i]] if removeDuplicates: index1 = pd.unique(index0).tolist() else: index1 = index0 result[i] = sep.join(str(e) for e in index1) #string cat else: result[i] = None return result ''' # example data to test all the above function df1 = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, 'B' : ['A', 'B', 'C'] * 4, 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2} ) df2 = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, 'B' : ['A', 'B', 'C'] * 4, 'D' : np.random.randn(12)}) df2['C'] = singleMapping(df1['C'], df1['A'], df2['A']) df2['C'] = multiMapping(df1['C'], df1['A'], df2['A']) ''' def updateOneColumn(df1, df2, key0, value0): """ using dataframe df2 to update the df1 :param df1: :param df2: :param key0: the common column name, a string, used for the mapping :param value0: the column in df2 used to update the df1 :return: example df10 = pd.DataFrame({'A': ['a', 'b', 'c'], 'B': ['x', 'y', 'z']}) df20 = pd.DataFrame({'A':['c','b'], 'B': ['e', 'd']}) updateOneColumn(df10,df20,key0='A',value0='B') """ df10 = df1.copy() df11 = df1.copy() df10[value0] = multiMapping(df2[value0], df2[key0], df10[key0]) for i, x in df10.iterrows(): print(x[value0]) if x[value0] is None: df11[value0][i] = df11[value0][i] else: df11[value0][i] = df10[value0][i] return df11[value0] def RemoveDuplicated(s1): """ example: s1=['a // a', 'b // a', None, 'non'] """ s2=list() for x in s1: print(x) if x =='non': s2.append('') elif x is None: s2.append('') else: if "//" in x: s0= x.split(' // ') s0 = [x.strip() for x in s0] s01= list(set(s0)) if len(s01)==1: s2.append(s01[0]) else: s2.append(' // '.join(s01)) else: s2.append(x) return s2 def nz(value): ''' Convert None to string else return value. ''' if value == None: return 'none' return value def AutoUpdate(description1, para1, description2, para2): # using the description1 in para1 to update the description2 in para2 description1 = description1.tolist() para1 = para1.tolist() description2 = description2.tolist() para2 = para2.tolist() ss = [None]*len(para2) for i in range(len(para2)): if para2[i] in para1: ss[i] = para1.index(para2[i]) else: ss[i] = None for i in range(len(para2)): if ss[i] != None: description2[i] = description1[ss[i]] else: description2[i] = description2[i] return description2 ''' # example data to test the followed function df1 = pd.DataFrame({'A' : ['one', 'one', 'two', 'three'] * 3, 'B' : ['A', 'B', 'C'] * 4, 'C' : ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2} ) df2 = df1.iloc[[1,2]] df2['C'] = ['good','good'] df1['C'] = AutoUpdate(df2['C'],df2['A'],df1['C'],df1['A']) ''' def calculateFrequency(list0, item0): ''' This function is used to calculate the frequency occured in a list and turn the frequency list into a dataframe :param list0: ['a','b','a'] :param item0: :return: a dataframe with two columns ''' summary = pd.Series(list0).value_counts() summary = summary.to_frame(name='number') summary.index.name = item0 summary.reset_index(inplace=True) return summary """function for model part""" from cobra.manipulation import remove_genes def getStrainGEMrxn(s0, geneMatrix0, templateGEM, templateGene): ''' This function is used to produce the strain specific model based on panYeast and gene existence matrix from 1011 yeast strain genome sequence project :param s0: strain name 'BFC' :param geneMatrix0: dataframe contains the gene existence matrix for each strain. geneMatrix = pd.read_csv('../data/geneMatrix0 of 1011 yeast strains.txt', sep="\t") :templateGEM: :templateGene: :return: the rxn list for each new reaction3 ''' s1 = ['geneID', s0] geneList = geneMatrix0.loc[:, s1] gene_exist = singleMapping(geneList.loc[:, s0].tolist(), geneList.loc[:, 'geneID'].tolist(), templateGene, dataframe=False) gene_exist = [0 if v is None else v for v in gene_exist] gene_remove = [x for x, y in zip(templateGene, gene_exist) if y < 1] newModel = templateGEM.copy() # for i in range(len(gene_remove)): # print(i) # remove_genes(newModel, [gene_remove[i]], remove_reactions=True) remove_genes(newModel, gene_remove, remove_reactions=True) rxn = [] for x in newModel.reactions: rxn.append(x.id) return rxn def getStrainGEM(s0, geneMatrix0, templateGEM, templateGene): ''' This function is used to produce the strain specific model based on panYeast and gene existence matrix from 1011 yeast strain genome sequence project :param s0: strain name 'BFC' :param geneMatrix0: dataframe contains the gene existence matrix for each strain. geneMatrix = pd.read_csv('../data/geneMatrix0 of 1011 yeast strains.txt', sep="\t") :templateGEM: :templateGene: :return: the rxn list for each new reaction3 ''' s1 = ['geneID', s0] geneList = geneMatrix0.loc[:, s1] gene_exist = singleMapping(geneList.loc[:, s0].tolist(), geneList.loc[:, 'geneID'].tolist(), templateGene, dataframe=False) gene_exist = [0 if v is None else v for v in gene_exist] gene_remove = [x for x, y in zip(templateGene, gene_exist) if y < 1] newModel = templateGEM.copy() # for i in range(len(gene_remove)): # print(i) # remove_genes(newModel, [gene_remove[i]], remove_reactions=True) remove_genes(newModel, gene_remove, remove_reactions=True) return newModel def getRemoveGeneList(s0, geneMatrix0, templateGEM, templateGene): ''' This function is used to produce the strain specific model based on panYeast and gene existence matrix from 1011 yeast strain genome sequence project :param s0: strain name 'BFC' :param geneMatrix0: dataframe contains the gene existence matrix for each strain. geneMatrix = pd.read_csv('../data/geneMatrix0 of 1011 yeast strains.txt', sep="\t") :templateGEM: :templateGene: :return: the gene list removed from each strain specific model ''' s1 = ['geneID', s0] geneList = geneMatrix0.loc[:, s1] gene_exist = singleMapping(geneList.loc[:, s0].tolist(), geneList.loc[:, 'geneID'].tolist(), templateGene, dataframe=False) gene_exist = [0 if v is None else v for v in gene_exist] gene_remove = [x for x, y in zip(templateGene, gene_exist) if y < 1] newModel = templateGEM.copy() # for i in range(len(gene_remove)): # print(i) # remove_genes(newModel, [gene_remove[i]], remove_reactions=True) remove_genes(newModel, gene_remove, remove_reactions=True) gene = [] for x in newModel.genes: gene.append(x.id) gene_remove_from_model = list(set(templateGene)-set(gene)) return gene_remove_from_model def updateGPR(gpr0, nameMapping): ''' This function is used to update the gpr reaction only with 'or' relation. It is used to replace the old gene name using the new gene name. Also it did not remove the duplicated value. :param: gpr0 :nameMapping: a dataframe contains the mapping relation between the old and new gene name, has two columns-'geneID', 'panID' :return: gpr with the replaced new gene name ''' #this function is mainly used to update the gene relation with 'or' s1 = gpr0 s2 = s1.split(' ') s3 = singleMapping(nameMapping['panID'].tolist(),nameMapping['geneID'].tolist(),s2, dataframe=False) for i, x in enumerate(s3): if x is None: s3[i]=s2[i] else: s3[i] = s3[i] s4 = ' '.join(s3) return s4 def getCompartment(rxn): """ This function is used to obtain the compartment information from reaction of yeastGEM :param rxn: example acetyl-CoA[m] + L-glutamate[m] -> coenzyme A[m] + H+[m] + N-acetyl-L-glutamate[m]' :return: """ cp1 = ['[c]','[ce]','[e]','[er]','[erm]','[g]','[gm]','[lp]','[m]','[mm]','[n]','[p]','[v]','[vm]'] cp2 = ['cytoplasm','cell envelope','extracellular','endoplasmic reticulum','endoplasmic reticulum membrane','Golgi','Golgi membrane','lipid particle', 'mitochondrion','mitochondrial membrane','nucleus','peroxisome','vacuole','vacuolar membrane'] cp = [None]*len(cp1) for i in range(len(cp1)): if cp1[i] in rxn: cp[i] = cp2[i] else: cp[i] = None cp1 = [x for i,x in enumerate(cp) if x is not None] cp0 = ';'.join(str(e) for e in cp1) return cp0 def getCommonCompartment(c1,c2, sep0=";"): '''this function could get the common part between string c1 and c2 for example, c1="a;b", c2="a;c" ''' if c1 is None: c10 = 'NONE' else: c10 = c1.split(sep0) c10 = [x.strip() for x in c10] if c2 is None: c20 = 'NONE' else: c20 = c2.split(sep0) c20 = [x.strip() for x in c20] c3 = list(set(c10).intersection(c20)) c4 = sep0.join(str(e) for e in c3) return c4 def getRXNgeneMapping(rxn0, gpr0): '''this function is used to split the GPR; input, for example rxn0=['r1','g2'] gpr0=['a or c','a and b'] output, each rxn related with each gene''' s1 = rxn0 s2 = gpr0 s2 = s2.str.replace('and','@') s2 = s2.str.replace('or','@') s2 = s2.str.replace('\\( ','') s2 = s2.str.replace('\\(\\( ','') s2 = s2.str.replace('\\(', '') s2 = s2.str.replace('\\(\\(', '') s2 = s2.str.replace(' \\)','') s2 = s2.str.replace(' \\)\\) ','') s2 = s2.str.replace('\\)', '') s2 = s2.str.replace('\\)\\) ', '') s3 = splitAndCombine(s2,s1,sep0="@") s3['V2'] = s3['V2'].str.strip() s3.columns = ['rxnID', 'gene'] return s3 def getRXNmetaboliteMapping(rxn0, met0): '''this function is used to split the equation of metabolites; used to produce the dataframe format of GEM using cobrapy input, for example rxn0=['r1','g2'] gpr0=['a => c','a => b'] output, each rxn related with each gene''' met_annotation = pd.read_excel('/Users/luho/PycharmProjects/model/cobrapy/result/met_yeastGEM.xlsx') s1 = rxn0 s2 = met0 s3 = splitAndCombine(s2,s1,sep0=" ") s3['V2'] = s3['V2'].str.strip() s3.columns = ['rxnID', 'met'] s3['met_name'] = singleMapping(met_annotation['description'],met_annotation['m_name'],s3['met']) for i, x in s3.iterrows(): if s3['met_name'][i] is None: s3['met_name'][i] = s3['met'][i] else: s3['met_name'][i] = s3['met_name'][i] return s3 def correctSomeWrongFormat(model0): """ This function is used to correct some wrong format when read yeastGEM model from cobratoolbox """ # Correct metabolite ids: for met in model0.metabolites: met.id = met.id.replace('__93__', '') met._id = met._id.replace('__91__', '_') print(met.id) for reaction in model0.reactions: reaction.gene_reaction_rule = reaction.gene_reaction_rule.replace('__45__', '-') print(reaction.gene_reaction_rule) for gene in model0.genes: gene.id = gene.id.replace('__45__', '-') return model0 def produceMetaboliteList(model0): #produce the dataframe for the metabolites from yeastGEM met_list = [None] * len(model0.metabolites) met_dataframe = pd.DataFrame({'m_name': met_list, 'description': met_list, 'formula': met_list, 'charge': met_list, 'chebi': met_list, 'kegg': met_list, 'MNXID': met_list}) for i, met in enumerate(model0.metabolites): print(i) met_dataframe['m_name'][i] = met.id met_dataframe['description'][i] = met.name met_dataframe['formula'][i] = met.formula met_dataframe['charge'][i] = met.charge key = list(met.annotation.keys()) if 'chebi' in key: met_dataframe['chebi'][i] = met.annotation['chebi'] else: met_dataframe['chebi'][i] = None if 'kegg.compound' in key: met_dataframe['kegg'][i] = met.annotation['kegg.compound'] else: met_dataframe['kegg'][i] = None if 'metanetx.chemical' in key: met_dataframe['MNXID'][i] = met.annotation['metanetx.chemical'] else: met_dataframe['MNXID'][i] = None #s2 = met_dataframe['m_name'].str.split('_', expand=True) #met_dataframe['description'] = met_dataframe['description'].str.replace('\s\[', '@') #s3 = met_dataframe['description'].str.split('@', expand=True) #met_dataframe['description'] = s3.iloc[:, 0] + '[' + s2.iloc[:, 2] + ']' return met_dataframe def produceGeneList(model0): #produce the gene list from GEM genelist = [] for i in model0.genes: print(i) genelist.append(i.id) return genelist def produceRxnList(model0): #produce the dataframe for the rxn from yeastGEM reaction_list =[None]*len(model0.reactions) gem_dataframe = pd.DataFrame({'name':reaction_list, 'equation':reaction_list, 'GPR':reaction_list, 'rxnID':reaction_list, 'formula':reaction_list }) for i, reaction in enumerate(model0.reactions): print(i) gem_dataframe['name'][i] = reaction.name gem_dataframe['equation'][i] = reaction.reaction gem_dataframe['GPR'][i] = reaction.gene_reaction_rule gem_dataframe['rxnID'][i] = reaction.id gem_dataframe['ID'] = ['R'+ str(i) for i in range(0, len(model0.reactions))] gem_dataframe['GPR'] = gem_dataframe['GPR'].str.replace('__45__', '-') #replace the metabolite name in gem_dataframe s0 = getRXNmetaboliteMapping(gem_dataframe['rxnID'], gem_dataframe['equation']) gem_dataframe['formula'] = multiMapping(s0['met_name'],s0['rxnID'],gem_dataframe['rxnID'],removeDuplicates=False) gem_dataframe['formula'] = gem_dataframe['formula'].str.replace(";", " ") return gem_dataframe def exchange(s1, subystem): """ this function is used to define the exchange reaction s1=['a --> b','a <=> c', 'H+ [extracellular] + L-citrulline [extracellular] <=> H+ [cytoplasm] L-citrulline [cytoplasm]', ' a--> '] subsystem = ['a','a','b',''] """ for i, x in enumerate(s1): print(i) if ' --> ' in x: x0 = x.split(' --> ') if len(x0[1]) >=1: #subystem.append('General') # exchange subystem[i] = subystem[i] else: subystem[i] ='Exchange reaction' #exchange print(subystem[i]) if ' <=> ' in x: x0 = x.split(' <=> ') if len(x0[1]) >=1: #subystem.append('General') # exchange subystem[i] = subystem[i] else: subystem[i] ='Exchange reaction' #exchange print(subystem[i]) else: subystem[i] = subystem[i] return subystem def exchange_ecYeast(s1, subystem): """ this function is used to define the exchange reaction s1=['a --> b','a <=> c', 'H+ [extracellular] + L-citrulline [extracellular] <=> H+ [cytoplasm] L-citrulline [cytoplasm]', ' a--> '] subsystem = ['a','a','b',''] """ for i, x in enumerate(s1): print(i) if ' --> ' in x: x0 = x.split(' --> ') if len(x0[1]) >=1 and len(x0[0]) >=1: #subystem.append('General') # exchange subystem[i] = subystem[i] else: subystem[i] ='Exchange reaction' #exchange print(subystem[i]) if ' <=> ' in x: x0 = x.split(' <=> ') if len(x0[1]) >=1 and len(x0[0]) >=1: #subystem.append('General') # exchange subystem[i] = subystem[i] else: subystem[i] ='Exchange reaction' #exchange print(subystem[i]) else: subystem[i] = subystem[i] return subystem #SLIME rxn def SLIME(rxnName, subsystem): """ if the rxnName contains the SLIME, classify the reaction into SLIME reaction """ for i,x in enumerate(rxnName): if 'SLIME' in x: subsystem[i] = 'SLIME reaction' print(subsystem[i]) else: subsystem[i] = subsystem[i] return subsystem def transport(s1, subsysem): """ this function is used to define the transport reaction #example s1 =['2-methylbutyl acetate [cytoplasm] --> 2-methylbutyl acetate [extracellular]', 'H+ [extracellular] + phosphoenolpyruvate [extracellular] <=> H+ [cytoplasm] + phosphoenolpyruvate [cytoplasm]'] subsysem = ['a','b'] :param s1: :param subsysem: :return: """ for i, x0 in enumerate(s1): x1 = re.findall(r"\[([A-Za-z0-9_\s]+)\]", x0) x0 = x0.replace('(','[') x0 = x0.replace(')',']') x2 = re.sub(r"\[([A-Za-z0-9_\s+]+)\]", '', x0) if "<=>" in x2: x3 = x2.split("<=>") elif "<->" in x2: #bigg database format x3 = x2.split("<->") else: x3 = x2.split("-->") x3 = [x.strip() for x in x3] x1=pd.unique(x1).tolist() #remove the duplicated if '+' in x3[0]: x30=x3[0].split('+') else: x30=x3[0] x30=[x.strip() for x in x30] x30 = [x for x in x30 if x != ''] if '+' in x3[1]: x31 = x3[1].split('+') else: x31=x3[1] x31 = [x.strip() for x in x31] x31 = [x for x in x31 if x != ''] if set(x30) == set(x31): subsysem[i] ='Transport' + '['+', '.join(x1)+']' print(subsysem[i]) elif set(x30)-set(['ATP','H2O']) == set(x31) - set(['ADP','phosphate','H']): subsysem[i] = 'Transport' + '[' + ', '.join(x1) + ']' print(subsysem[i]) else: subsysem[i] = subsysem[i] return subsysem def findRemoveRxnBasedOnGene(rxnRemovedGene, rxnAllGene): '''this function is used to remove rxn based on the removed gene list if the all genes in a reaction were in the removed gene list, then this reaction was removed''' #x0 = gem_dataframe['removed_gene'].tolist() #y0 = gem_dataframe['all_gene'].tolist() x0=rxnRemovedGene.tolist() y0=rxnAllGene.tolist() removed_rxn = list() for x,y in zip(x0,y0): if x is None: removed_rxn.append('NO') else: if len(x) ==len(y): removed_rxn.append('YES') else: removed_rxn.append('NO') return removed_rxn def saveExcel(infile, outfile): ''' function to save the dataframe into xlsx format :param infile: :param outfile: :return: ''' writer =
pd.ExcelWriter(outfile)
pandas.ExcelWriter
import streamlit as st import pandas as pd import database as db import numpy as np from modeling import allocation # setup & connection with database connection = db.Connection() data_salas1 = connection.query("SELECT * FROM cenario1_salas") data_salas1 = pd.DataFrame(data_salas1, columns=['id_sala','numero_cadeiras','acessivel','qualidade'] ) data_turmas1 = connection.query("SELECT * FROM cenario1_turmas") data_turmas1 = pd.DataFrame(data_turmas1, columns=['disciplina','professor','dias_horario','numero_alunos','curso','período','acessibilidade','qualidade'] ) data_salas2 = connection.query("SELECT * FROM cenario2_salas") data_salas2 = pd.DataFrame(data_salas2, columns=['id_sala','numero_cadeiras','acessivel','qualidade'] ) data_turmas2 = connection.query("SELECT * FROM cenario2_turmas") data_turmas2 =
pd.DataFrame(data_turmas2, columns=['disciplina','professor','dias_horario','numero_alunos','curso','período','acessibilidade','qualidade'] )
pandas.DataFrame
""" Created on Oct 7, 2013 @author: mmendez """ import pandas as pd import os def group(config_file, group_and_comparisons, group_id): header = [] genes_counts = [] group = [group for group in group_and_comparisons['group_definitions'] if group_id == group['id']][0] for dataset in config_file['datasets']: df = pd.read_csv(dataset['summary'], sep='\t') df = df[(df.robustness == 10) & (df.accuracy > .9) & ((df.cl1 == group_id) | (df.cl2 == group_id))] header.append([dataset['name'], df.id.value_counts().size]) gene_count = list(df.gene.value_counts().iteritems()) genes_counts.append(gene_count) df = pd.DataFrame(genes_counts).T group = {'id': group['id'], 'name': group['name'], 'print_id': group['print_id'], 'print_name': group['print_name'], 'header': header, 'rows': df.applymap(lambda x: ('', '') if pd.isnull(x) else x).values.tolist(), } return group def group_list(config_file, group_and_comparisons): datasets = [] for dataset in config_file['datasets']: df =
pd.read_csv(dataset['summary'], sep='\t')
pandas.read_csv
from natsort import natsorted import pandas as pd import numpy as np import seaborn as sns import matplotlib as mpl import matplotlib.pyplot as plt from scipy.stats import spearmanr def load_TargetScan(gene): # Load TargetScan predictions for gene return set(open("data/TargetScan_{}.txt".format(gene)).read().strip().split("\n")) def load_paired_tables(path): # Open isomiR / mRNA TCGA tables and select paired samples df_isomiR = pd.read_csv("{}/isomiR_normal.tsv".format(path), sep="\t", index_col=0) df_mRNA = pd.read_csv("{}/mRNA_normal.tsv".format(path), sep="\t", index_col=0) paired_samples = natsorted(list(set(df_isomiR.columns).intersection(df_mRNA.columns))) df_isomiR = df_isomiR[paired_samples] df_mRNA = df_mRNA[paired_samples] return df_isomiR, df_mRNA def load_tables_for_organ(organ): # Merge all TCGA samples for specified organ global organs_projects, isomiR_thr_quantile dfs_isomiR, dfs_mRNA = [], [] for project in organs_projects[organ]: df_isomiR, df_mRNA = load_paired_tables("data/TCGA/{}".format(project)) # Select highly expressed isomiR's medians = df_isomiR.median(axis=1) isomiR_thr = np.quantile(medians[medians > 0], isomiR_thr_quantile) df_isomiR = df_isomiR.loc[ df_isomiR.median(axis=1) >= isomiR_thr ] dfs_isomiR.append(df_isomiR) dfs_mRNA.append(df_mRNA) common_isomiRs = set.intersection(*[set(df_isomiR.index) for df_isomiR in dfs_isomiR]) dfs_isomiR = [df_isomiR.loc[common_isomiRs] for df_isomiR in dfs_isomiR] df_isomiR = pd.concat(dfs_isomiR, axis=1) df_mRNA = pd.concat(dfs_mRNA, axis=1) return df_isomiR, df_mRNA def show_gene_in_organs(gene, ax, lab): # Draw boxplot and export statistical summary to the table (S1 Table) matrix = [] for organ in organs_projects: df_isomiR, df_mRNA = load_tables_for_organ(organ) for e in df_mRNA.loc[gene].tolist(): matrix.append([organ, e]) coln = gene + ", log(FPKM-UQ)" df = pd.DataFrame(matrix, columns=["Organ", coln]) medians = df.groupby("Organ").median() order = medians.sort_values(coln, ascending=False).index cmap = sns.color_palette("Blues") table = [["Organ", "Minimum", "Q1", "Q2", "Q3", "Maximum", "Mean", "Standard deviation"]] for o in order: x = df.loc[df.Organ == o][coln] table.append([o, np.min(x), np.quantile(x, 0.25), np.quantile(x, 0.5), np.quantile(x, 0.75), np.max(x), np.mean(x), np.std(x)]) print("\n".join(["\t".join(list(map(str, row))) for row in table]), file=open("tables/S1_{}.tsv".format(gene), "w")) #mpl.rcParams["figure.figsize"] = 4, 5 p = sns.boxplot(x="Organ", y=coln, data=df, order=order, color=cmap[3], saturation=1, ax=ax) p.set_xticklabels(p.get_xticklabels(), rotation=45, ha="right") p.set_xlabel("") ax.set_title(lab, loc="left", fontdict={"fontsize": "xx-large", "fontweight": "bold"}) def get_regulators_of_genes(genes): # Correlation analysis on miRNA -> gene interactions global R_thr # Load TargetScan and the list of intronic sense miRNAs db_regulators = {gene: load_TargetScan(gene) for gene in genes} df =
pd.read_csv("data/intronic_sense_miRNA.tsv", sep="\t", header=None)
pandas.read_csv
""" Code to manage results of many simulations together. """ import pandas as pd from tctx.networks.turtle_data import DEFAULT_ACT_BINS from tctx.util import sim import os.path import logging from pathlib import Path import json from tqdm.auto import tqdm as pbar import datetime import h5py import numpy as np import re BASE_FOLDER = Path('/gpfs/gjor/personal/riquelmej/dev/tctx/data/interim') # TODO find a way to get rid of these LIST_LIKE_COLS = [ r'.*forced_times.*', r'.*input_targeted_times.*', r'.*input_pulsepacket_pulse_times.*', r'.*voltage_measure.*', r'foll_gids', ] def get_col_names(name): """ We store results for each simulation in indexed files. Every simulation will indicate its results with a path and an idx property. Returns the pair of column names for the given type of results. Eg: "spikes" -> ("spikes_path", "spikes_idx") """ return f'{name}_path', f'{name}_idx' def _get_multi_store_cols(store_names): """return a list of columns that represent the given store names""" import itertools return list(itertools.chain(*[get_col_names(name) for name in store_names])) def _hdf5_table_exists(path, key) -> bool: """ Check if table was saved and it's not empty """ with h5py.File(path, 'r') as f: if key in f.keys(): # Empty DataFrames store an axis0 and axis1 of length 1, but no data blocks. # This is very tied into pytables implementation, but it saves us having to load the dataframe. return len(f[key].keys()) > 2 else: return False class CatMangler: """ because categories are nice to work with interactively but are a pain to save to HDF5 by default we save and load data as ints this object makes it easy to convert between the two """ def __init__(self): self.category_types = { 'layer': pd.CategoricalDtype(categories=['L1', 'L2', 'L3'], ordered=False), 'con_type':
pd.CategoricalDtype(categories=['e2e', 'e2i', 'i2e', 'i2i'], ordered=False)
pandas.CategoricalDtype
# -*- coding: utf-8 -*- """ Tests dtype specification during parsing for all of the parsers defined in parsers.py """ import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from pandas import DataFrame, Series, Index, MultiIndex, Categorical from pandas.compat import StringIO from pandas.core.dtypes.dtypes import CategoricalDtype from pandas.errors import ParserWarning class DtypeTests(object): def test_passing_dtype(self): # see gh-6607 df = DataFrame(np.random.rand(5, 2).round(4), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # see gh-3795: passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) expected = df.astype(str) tm.assert_frame_equal(result, expected) # for parsing, interpret object as str result = self.read_csv(path, dtype=object, index_col=0) tm.assert_frame_equal(result, expected) # we expect all object columns, so need to # convert to test for equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype pytest.raises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # see gh-12048: empty frame actual = self.read_csv(StringIO('A,B'), dtype=str) expected = DataFrame({'A': [], 'B': []}, index=[], dtype=str) tm.assert_frame_equal(actual, expected) def test_pass_dtype(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}) assert result['one'].dtype == 'u1' assert result['two'].dtype == 'object' def test_categorical_dtype(self): # GH 10153 data = """a,b,c 1,a,3.4 1,a,3.4 2,b,4.5""" expected = pd.DataFrame({'a': Categorical(['1', '1', '2']), 'b': Categorical(['a', 'a', 'b']), 'c': Categorical(['3.4', '3.4', '4.5'])}) actual = self.read_csv(StringIO(data), dtype='category') tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype=CategoricalDtype()) tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype={'a': 'category', 'b': 'category', 'c': CategoricalDtype()}) tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype={'b': 'category'}) expected = pd.DataFrame({'a': [1, 1, 2], 'b': Categorical(['a', 'a', 'b']), 'c': [3.4, 3.4, 4.5]}) tm.assert_frame_equal(actual, expected) actual = self.read_csv(StringIO(data), dtype={1: 'category'}) tm.assert_frame_equal(actual, expected) # unsorted data = """a,b,c 1,b,3.4 1,b,3.4 2,a,4.5""" expected = pd.DataFrame({'a': Categorical(['1', '1', '2']), 'b': Categorical(['b', 'b', 'a']), 'c': Categorical(['3.4', '3.4', '4.5'])}) actual = self.read_csv(StringIO(data), dtype='category') tm.assert_frame_equal(actual, expected) # missing data = """a,b,c 1,b,3.4 1,nan,3.4 2,a,4.5""" expected = pd.DataFrame({'a': Categorical(['1', '1', '2']), 'b': Categorical(['b', np.nan, 'a']), 'c': Categorical(['3.4', '3.4', '4.5'])}) actual = self.read_csv(StringIO(data), dtype='category') tm.assert_frame_equal(actual, expected) @pytest.mark.slow def test_categorical_dtype_high_cardinality_numeric(self): # GH 18186 data = np.sort([str(i) for i in range(524289)]) expected = DataFrame({'a': Categorical(data, ordered=True)}) actual = self.read_csv(StringIO('a\n' + '\n'.join(data)), dtype='category') actual["a"] = actual["a"].cat.reorder_categories( np.sort(actual.a.cat.categories), ordered=True) tm.assert_frame_equal(actual, expected) def test_categorical_dtype_encoding(self): # GH 10153 pth = tm.get_data_path('unicode_series.csv') encoding = 'latin-1' expected = self.read_csv(pth, header=None, encoding=encoding) expected[1] = Categorical(expected[1]) actual = self.read_csv(pth, header=None, encoding=encoding, dtype={1: 'category'}) tm.assert_frame_equal(actual, expected) pth = tm.get_data_path('utf16_ex.txt') encoding = 'utf-16' expected = self.read_table(pth, encoding=encoding) expected = expected.apply(Categorical) actual = self.read_table(pth, encoding=encoding, dtype='category') tm.assert_frame_equal(actual, expected) def test_categorical_dtype_chunksize(self): # GH 10153 data = """a,b 1,a 1,b 1,b 2,c""" expecteds = [pd.DataFrame({'a': [1, 1], 'b': Categorical(['a', 'b'])}), pd.DataFrame({'a': [1, 2], 'b': Categorical(['b', 'c'])}, index=[2, 3])] actuals = self.read_csv(StringIO(data), dtype={'b': 'category'}, chunksize=2) for actual, expected in zip(actuals, expecteds): tm.assert_frame_equal(actual, expected) @pytest.mark.parametrize('ordered', [False, True]) @pytest.mark.parametrize('categories', [ ['a', 'b', 'c'], ['a', 'c', 'b'], ['a', 'b', 'c', 'd'], ['c', 'b', 'a'], ]) def test_categorical_categoricaldtype(self, categories, ordered): data = """a,b 1,a 1,b 1,b 2,c""" expected = pd.DataFrame({ "a": [1, 1, 1, 2], "b": Categorical(['a', 'b', 'b', 'c'], categories=categories, ordered=ordered) }) dtype = {"b": CategoricalDtype(categories=categories, ordered=ordered)} result = self.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_categoricaldtype_unsorted(self): data = """a,b 1,a 1,b 1,b 2,c""" dtype = CategoricalDtype(['c', 'b', 'a']) expected = pd.DataFrame({ 'a': [1, 1, 1, 2], 'b': Categorical(['a', 'b', 'b', 'c'], categories=['c', 'b', 'a']) }) result = self.read_csv(StringIO(data), dtype={'b': dtype}) tm.assert_frame_equal(result, expected) def test_categoricaldtype_coerces_numeric(self): dtype = {'b': CategoricalDtype([1, 2, 3])} data = "b\n1\n1\n2\n3" expected = pd.DataFrame({'b': Categorical([1, 1, 2, 3])}) result = self.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categoricaldtype_coerces_datetime(self): dtype = { 'b': CategoricalDtype(pd.date_range('2017', '2019', freq='AS')) } data = "b\n2017-01-01\n2018-01-01\n2019-01-01" expected = pd.DataFrame({'b': Categorical(dtype['b'].categories)}) result = self.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) dtype = { 'b': CategoricalDtype([pd.Timestamp("2014")]) } data = "b\n2014-01-01\n2014-01-01T00:00:00" expected = pd.DataFrame({'b': Categorical([pd.Timestamp('2014')] * 2)}) result = self.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categoricaldtype_coerces_timedelta(self): dtype = {'b': CategoricalDtype(pd.to_timedelta(['1H', '2H', '3H']))} data = "b\n1H\n2H\n3H" expected = pd.DataFrame({'b': Categorical(dtype['b'].categories)}) result = self.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categoricaldtype_unexpected_categories(self): dtype = {'b': CategoricalDtype(['a', 'b', 'd', 'e'])} data = "b\nd\na\nc\nd" # Unexpected c expected = pd.DataFrame({"b": Categorical(list('dacd'), dtype=dtype['b'])}) result = self.read_csv(StringIO(data), dtype=dtype) tm.assert_frame_equal(result, expected) def test_categorical_categoricaldtype_chunksize(self): # GH 10153 data = """a,b 1,a 1,b 1,b 2,c""" cats = ['a', 'b', 'c'] expecteds = [pd.DataFrame({'a': [1, 1], 'b': Categorical(['a', 'b'], categories=cats)}), pd.DataFrame({'a': [1, 2], 'b': Categorical(['b', 'c'], categories=cats)}, index=[2, 3])] dtype = CategoricalDtype(cats) actuals = self.read_csv(StringIO(data), dtype={'b': dtype}, chunksize=2) for actual, expected in zip(actuals, expecteds): tm.assert_frame_equal(actual, expected) def test_empty_pass_dtype(self): data = 'one,two' result = self.read_csv(StringIO(data), dtype={'one': 'u1'}) expected = DataFrame({'one': np.empty(0, dtype='u1'), 'two': np.empty(0, dtype=np.object)}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_index_pass_dtype(self): data = 'one,two' result = self.read_csv(StringIO(data), index_col=['one'], dtype={'one': 'u1', 1: 'f'}) expected = DataFrame({'two': np.empty(0, dtype='f')}, index=Index([], dtype='u1', name='one')) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_multiindex_pass_dtype(self): data = 'one,two,three' result = self.read_csv(StringIO(data), index_col=['one', 'two'], dtype={'one': 'u1', 1: 'f8'}) exp_idx = MultiIndex.from_arrays([np.empty(0, dtype='u1'), np.empty(0, dtype='O')], names=['one', 'two']) expected = DataFrame( {'three': np.empty(0, dtype=np.object)}, index=exp_idx) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_mangled_column_pass_dtype_by_names(self): data = 'one,one' result = self.read_csv(StringIO(data), dtype={ 'one': 'u1', 'one.1': 'f'}) expected = DataFrame( {'one': np.empty(0, dtype='u1'), 'one.1': np.empty(0, dtype='f')}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_mangled_column_pass_dtype_by_indexes(self): data = 'one,one' result = self.read_csv(StringIO(data), dtype={0: 'u1', 1: 'f'}) expected = DataFrame( {'one': np.empty(0, dtype='u1'), 'one.1': np.empty(0, dtype='f')}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_dup_column_pass_dtype_by_indexes(self): # see gh-9424 expected = pd.concat([Series([], name='one', dtype='u1'),
Series([], name='one.1', dtype='f')
pandas.Series
#!/usr/bin/env python # coding: utf-8 # In[14]: import xgboost as xgb import numpy as np import pandas as pd train = pd.read_csv("./pytrain.csv", index_col = 0) test = pd.read_csv(" ./pytest.csv", index_col = 0) # In[15]: X = np.array(train.ix[:,0:311]) y = np.array(train['SalePrice']) test = np.array(test) # In[3]: from sklearn.model_selection import KFold from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler dtrain = xgb.DMatrix(X, label = y) params = {"max_depth":2, "eta":0.1} XGB = xgb.cv(params, dtrain, num_boost_round=500, early_stopping_rounds=100) # In[5]: XGB.loc[100:,["test-rmse-mean", "train-rmse-mean"]].plot() # can find accuray about 0.125 # In[12]: XGBOOST = xgb.XGBRegressor(n_estimators=360, max_depth=2, learning_rate=0.1) #the params were tuned using xgb.cv XGBOOST.fit(X, y) predict = np.expm1(XGBOOST.predict(test)) # In[10]: from sklearn.model_selection import KFold from sklearn.pipeline import make_pipeline from sklearn.preprocessing import RobustScaler predict = 1 + np.zeros(1459) kf = KFold(n_splits=20,random_state=666,shuffle=True) test_errors = [] for train_index, test_index in kf.split(X): Xtrain, Xtest = X[train_index], X[test_index] ytrain, ytest = y[train_index], y[test_index] XGBOOST = make_pipeline(RobustScaler(), xgb.XGBRegressor(n_estimators=360, max_depth=2, learning_rate=0.125)) #the params were tuned using xgb.cv XGBOOST.fit(Xtrain, ytrain) pred = XGBOOST.predict(test) predict = predict * pred xpre = XGBOOST.predict(Xtest) test_errors.append(np.square(xpre - ytest).mean() ** 0.5) predict = np.expm1(predict ** (1/20)) print(np.mean(test_errors)) # In[17]: from pandas.core.frame import DataFrame result =
DataFrame(predict)
pandas.core.frame.DataFrame
""" Contains utilities and functions that are commonly used in the figure creation files. """ import sys from logging import basicConfig, INFO, info from time import time from string import ascii_lowercase from matplotlib import gridspec, pyplot as plt from matplotlib.patches import Ellipse import matplotlib.cm as cm from matplotlib import rcParams import matplotlib.ticker as mticker from scipy.stats import multivariate_normal import seaborn as sns import pandas as pds import numpy as np import svgutils.transform as st from ..sampling import sampleSpec, cellPopulations from valentbind import polyc, polyfc import matplotlib matplotlib.use('AGG') fdir = './output/' rcParams['pcolor.shading'] = 'auto' rcParams['svg.fonttype'] = 'none' LR, HR = 1.5, 6.5 def getSetup(figsize, gridd): """ Establish figure set-up with subplots. """ sns.set(style="whitegrid", font_scale=0.7, color_codes=True, palette="colorblind", rc={"grid.linestyle": "dotted", "axes.linewidth": 0.6}) # Setup plotting space and grid f = plt.figure(figsize=figsize, constrained_layout=True) gs1 = gridspec.GridSpec(*gridd, figure=f) # Get list of axis objects ax = list() for x in range(gridd[0] * gridd[1]): ax.append(f.add_subplot(gs1[x])) return (ax, f) def subplotLabel(axs, indices=False): """ Place subplot labels on figure. """ if not indices: for ii, ax in enumerate(axs): ax.text(-0.2, 1.25, ascii_lowercase[ii], transform=ax.transAxes, fontsize=16, fontweight="bold", va="top") else: for jj, index in enumerate(indices): axs[index].text(-0.2, 1.25, ascii_lowercase[jj], transform=axs[index].transAxes, fontsize=16, fontweight="bold", va="top") def setFontSize(ax, fsize, xsci=[], ysci=[], nolegend=[]): for i, subax in enumerate(ax): subax.tick_params(axis="x", labelsize=fsize - 1) subax.tick_params(axis="y", labelsize=fsize - 1) subax.set_xlabel(subax.get_xlabel(), fontsize=fsize) subax.set_ylabel(subax.get_ylabel(), fontsize=fsize) subax.set_title(subax.get_title(), fontsize=fsize) if subax.get_legend() is not None and i not in nolegend: subax.legend(prop={'size': fsize - 1}) if i in xsci: subax.set_xscale('log') if i in ysci: subax.set_yscale('log') def overlayCartoon(figFile, cartoonFile, x, y, scalee=1, scale_x=1, scale_y=1): """ Add cartoon to a figure file. """ # Overlay Figure cartoons template = st.fromfile(figFile) cartoon = st.fromfile(cartoonFile).getroot() cartoon.moveto(x, y, scale_x=scalee * scale_x, scale_y=scalee * scale_y) template.append(cartoon) template.save(figFile) def genFigure(): basicConfig(format='%(levelname)s:%(message)s', level=INFO) start = time() nameOut = 'figure' + sys.argv[1] exec('from .' + nameOut + ' import makeFigure', globals()) ff = makeFigure() ff.savefig(fdir + nameOut + '.svg', dpi=ff.dpi, bbox_inches='tight', pad_inches=0) if sys.argv[1] == '1': # Overlay Figure 1 cartoon overlayCartoon(fdir + 'figure1.svg', './selecv/graphics/figure_1a.svg', 10, 15, scalee=0.02, scale_x=0.45, scale_y=0.45) overlayCartoon(fdir + 'figure1.svg', './selecv/graphics/figure_1b.svg', 0, 280, scalee=0.24, scale_x=1, scale_y=1) if sys.argv[1] == '2': overlayCartoon(fdir + 'figure2.svg', './selecv/graphics/figure_2a.svg', 10, 0, scalee=0.18, scale_x=1, scale_y=1) if sys.argv[1] == '3': overlayCartoon(fdir + 'figure3.svg', './selecv/graphics/figure_3a.svg', 30, 0, scalee=0.22, scale_x=1, scale_y=1) if sys.argv[1] == '4': overlayCartoon(fdir + 'figure4.svg', './selecv/graphics/figure_4a.svg', 10, 0, scalee=0.18, scale_x=1, scale_y=1) info('%s is done after %s seconds.', nameOut, time() - start) def sampleReceptors(df, nsample=100): """ Generate samples in each sample space """ Populations = df.Population.unique() sampledf = pds.DataFrame(columns=["Population", "Receptor_1", "Receptor_2"]) for population in Populations: populationdf = df[df["Population"] == population] RtotMeans = np.array([populationdf.Receptor_1.to_numpy(), populationdf.Receptor_2.to_numpy()]).flatten() RtotCovs = populationdf.Covariance_Matrix.to_numpy()[0] pop = np.power(10.0, multivariate_normal.rvs(mean=RtotMeans, cov=RtotCovs, size=nsample)) popdf = pds.DataFrame({"Population": population, "Receptor_1": pop[:, 0], "Receptor_2": pop[:, 1]}) sampledf = sampledf.append(popdf) return sampledf def getFuncDict(): """Directs key word to given function""" FuncDict = {"Aff": affHeatMap, "Valency": ValencyPlot, "Mix": MixPlot} return FuncDict def popCompare(ax, popList, scanKey, Kav, L0=1e-9, KxStar=1e-10, f=1): """Takes in populations and parameters to scan over and creates line plot""" funcDict = getFuncDict() Title = popList[0] + " to " + popList[1] for ii, pop in enumerate(popList): if ii >= 2: Title += "/" + pop Title = Title + " binding ratio" funcDict[scanKey](ax, popList, Kav, L0, KxStar, f, Title) def affHeatMap(ax, names, Kav, L0, KxStar, f, Title, Cbar=True): "Makes a heatmap comparing binding ratios of populations at a range of binding affinities" npoints = 3 ticks = np.full([npoints], None) affScan = np.logspace(Kav[0], Kav[1], npoints) ticks[0], ticks[-1] = "${}$".format(int(10**(9 - Kav[0]))), "${}$".format(int(10**(9 - Kav[1]))) sampMeans = np.zeros(npoints) ratioDF =
pds.DataFrame(columns=affScan, index=affScan)
pandas.DataFrame
import pandas as pd import numpy as np import glob, os from collections import defaultdict from copy import deepcopy from tsfeatures import tsfeatures from natsort import natsort_keygen, natsorted from .analysis import evaluate_prediction_owa from sklearn.preprocessing import LabelEncoder PIETER_TEST = False seas_dict = {'Hourly': {'seasonality': 24, 'input_size': 24, 'output_size': 48, 'freq': 'H', 'tail_inputs': 0}, 'Daily': {'seasonality': 7, 'input_size': 7, 'output_size': 14, 'freq': 'D', 'tail_inputs': 0}, 'Weekly': {'seasonality': 52, 'input_size': 52, 'output_size': 13, 'freq': 'W', 'tail_inputs': 0}, 'Monthly': {'seasonality': 12, 'input_size': 12, 'output_size':18, 'freq': 'M', 'tail_inputs': 0}, 'Quarterly': {'seasonality': 4, 'input_size': 4, 'output_size': 8, 'freq': 'Q', 'tail_inputs': 0}, 'Yearly': {'seasonality': 1, 'input_size': 4, 'output_size': 6, 'freq': 'D', 'tail_inputs': 0}} FREQ_TO_INT = {'H': 24, 'D': 1, 'M': 12, 'Q': 4, 'W':1, 'Y': 1} def extract_meta_features(seas_dict, dataset_name, y_train_df, y_test_df): tail_inputs = seas_dict[dataset_name]['tail_inputs'] if tail_inputs > 0: y_train_df = y_train_df.groupby('unique_id').tail(tail_inputs) meta_features = tsfeatures(y_train_df, FREQ_TO_INT[seas_dict[dataset_name]['freq']]) # Sort unique_ids naturally/alphanumerically so we can concatenate later meta_features = meta_features.sort_values( by="unique_id", key=natsort_keygen() ) #Drop all nan columns, make other nans = zeros meta_features = meta_features.dropna(axis=1, how='all').fillna(0).add_prefix('mf_') meta_features = meta_features.rename(columns={"mf_unique_id": "unique_id"}) #Repeat features for every point of forecast horizon # (The same reference series' statistics were present for each point.) meta_features = meta_features.loc[meta_features.index.repeat(seas_dict[dataset_name]['output_size'])] y_test_df = pd.concat([y_test_df, meta_features.drop('unique_id', axis=1).reset_index(drop=True)], axis=1) return y_train_df, y_test_df def compute_model_errors(seas_dict, base_model_names, dataset_name, y_train_df, y_test_df): print("Calculating model errors") errors_train_df = pd.DataFrame({'unique_id': natsorted(y_test_df.unique_id.unique())}).set_index('unique_id') for mdl in base_model_names: if mdl != 'mdl_naive2': train_set_mdl = y_test_df.rename(columns={mdl: "y_hat"}) predictions_df = train_set_mdl[['unique_id', 'y_hat', 'ds']] model_owa, _, _ = evaluate_prediction_owa(predictions_df=predictions_df, y_train_df=y_train_df, y_test_df=train_set_mdl, naive2_seasonality=seas_dict[dataset_name]['seasonality'], return_averages=False) errors_train_df['OWA_'+ mdl] = model_owa errors_train_df = errors_train_df.loc[errors_train_df.index.repeat(seas_dict[dataset_name]['output_size'])] y_test_df = pd.concat([y_test_df, errors_train_df.reset_index(drop=True)], axis=1) return y_test_df def m4_parser(dataset_name, data_directory, forecast_directory, load_existing_dataframes=True): """ Transform M4 data into a panel. Parameters ---------- dataset_name: str Frequency of the data. Example: 'Yearly'. directory: str Custom directory where data will be saved. num_obs: int Number of time series to return. """ # Load previously computed dataframes if load_existing_dataframes and os.path.isfile(data_directory + "/Preprocessed/" + dataset_name + '_X_train_df.csv'): X_train_df = pd.read_csv(data_directory + "/Preprocessed/" + dataset_name + '_X_train_df.csv') y_train_df = pd.read_csv(data_directory + "/Preprocessed/" + dataset_name + '_y_train_df.csv') X_test_df = pd.read_csv(data_directory + "/Preprocessed/" + dataset_name + '_X_test_df.csv') y_test_df = pd.read_csv(data_directory + "/Preprocessed/" + dataset_name + '_y_test_df.csv') return X_train_df, y_train_df, X_test_df, y_test_df print("Processing data") train_directory = data_directory + "/Train/" test_directory = data_directory + "/Test/" freq = seas_dict[dataset_name]['freq'] m4_info = pd.read_csv(data_directory+'/M4-info.csv', usecols=['M4id','category']) m4_info = m4_info[m4_info['M4id'].str.startswith(dataset_name[0])].reset_index(drop=True) # Train data train_path='{}{}-train.csv'.format(train_directory, dataset_name) train_df = pd.read_csv(train_path) train_df = train_df.rename(columns={'V1':'unique_id'}) train_df = pd.wide_to_long(train_df, stubnames=["V"], i="unique_id", j="ds").reset_index() train_df = train_df.rename(columns={'V':'y'}) train_df = train_df.dropna() train_df['split'] = 'train' train_df['ds'] = train_df['ds']-1 # Get len of series per unique_id len_series = train_df.groupby('unique_id').agg({'ds': 'max'}).reset_index() len_series.columns = ['unique_id', 'len_serie'] # Test data test_path='{}{}-test.csv'.format(test_directory, dataset_name) test_df = pd.read_csv(test_path) test_df = test_df.rename(columns={'V1':'unique_id'}) test_df = pd.wide_to_long(test_df, stubnames=["V"], i="unique_id", j="ds").reset_index() test_df = test_df.rename(columns={'V':'y'}) test_df = test_df.dropna() test_df['split'] = 'test' test_df = test_df.merge(len_series, on='unique_id') test_df['ds'] = test_df['ds'] + test_df['len_serie'] - 1 test_df = test_df[['unique_id','ds','y','split']] df = pd.concat((train_df,test_df)).reset_index(drop=True) df = df.sort_values(by=['unique_id', 'ds'], key=natsort_keygen()).reset_index(drop=True) # Create column with dates with freq of dataset len_series = df.groupby('unique_id').agg({'ds': 'max'}).reset_index() len_series = len_series.sort_values(by=['unique_id'], key=natsort_keygen()) dates = [] for i in range(len(len_series)): len_serie = len_series.iloc[i,1] ranges =
pd.date_range(start='1970/01/01', periods=len_serie, freq=freq)
pandas.date_range
''' Python Client for generic Biothings API services ''' from __future__ import print_function import os import sys import platform import time import warnings from itertools import islice import requests import logging from .utils import str_types try: from collections.abc import Iterable except ImportError: from collections import Iterable try: from pandas import DataFrame, json_normalize df_avail = True except ImportError: df_avail = False try: import requests_cache caching_avail = True except ImportError: caching_avail = False __version__ = '0.2.5' # setting up the logging logger _DEBUG_ = logging.DEBUG logger = logging.getLogger("biothings_client") logger.setLevel(_DEBUG_) # creating the handler to output to stdout console_handler = logging.StreamHandler(sys.stdout) console_handler.setLevel(_DEBUG_) # setting up the logging formatter # this formatter contains time, but will use without time for now # formatter = logging.Formatter("[%(levelname)s %(asctime)s %(name)s:%(lineno)s] - %(message)s ") formatter = logging.Formatter("%(levelname)-8s [%(name)s:%(lineno)s] - %(message)s") console_handler.setFormatter(formatter) logger.addHandler(console_handler) class ScanError(Exception): # for errors in scan search type pass def alwayslist(value): '''If input value if not a list/tuple type, return it as a single value list. Example: >>> x = 'abc' >>> for xx in alwayslist(x): ... print xx >>> x = ['abc', 'def'] >>> for xx in alwayslist(x): ... print xx ''' if isinstance(value, (list, tuple)): return value else: return [value] def safe_str(s, encoding='utf-8'): '''Perform proper encoding if input is an unicode string.''' try: _s = str(s) except UnicodeEncodeError: _s = s.encode(encoding) return _s def list_itemcnt(li): '''Return number of occurrence for each type of item in the input list.''' x = {} for item in li: if item in x: x[item] += 1 else: x[item] = 1 return [(i, x[i]) for i in x] def iter_n(iterable, n, with_cnt=False): ''' Iterate an iterator by chunks (of n) if with_cnt is True, return (chunk, cnt) each time ''' it = iter(iterable) if with_cnt: cnt = 0 while True: chunk = tuple(islice(it, n)) if not chunk: return if with_cnt: cnt += len(chunk) yield (chunk, cnt) else: yield chunk class BiothingClient(object): '''This is the client for a biothing web service.''' def __init__(self, url=None): if url is None: url = self._default_url self.url = url if self.url[-1] == '/': self.url = self.url[:-1] self.max_query = self._max_query # delay and step attributes are for batch queries. self.delay = self._delay # delay is ignored when requests made from cache. self.step = self._step self.scroll_size = self._scroll_size # raise requests.exceptions.HTTPError for status_code > 400 # but not for 404 on getvariant # set to False to surpress the exceptions. self.raise_for_status = True self.default_user_agent = ("{package_header}/{client_version} (" "python:{python_version} " "requests:{requests_version}" ")").format(**{ 'package_header': self._pkg_user_agent_header, 'client_version': __version__, 'python_version': platform.python_version(), 'requests_version': requests.__version__ }) self._cached = False @staticmethod def _dataframe(obj, dataframe, df_index=True): '''Converts object to DataFrame (pandas)''' if not df_avail: # print("Error: pandas module must be installed for as_dataframe option.") logger.error("Error: pandas module must be installed for as_dataframe option.") return # if dataframe not in ["by_source", "normal"]: if dataframe not in [1, 2]: raise ValueError( "dataframe must be either 1 (using json_normalize) or 2 (using DataFrame.from_dict") if 'hits' in obj: if dataframe == 1: df =
json_normalize(obj['hits'])
pandas.json_normalize
import pandas as pd import numpy as np import pytest import unittest import datetime import sys import context from fastbt.utils import * def equation(a,b,c,x,y): return a*x**2 + b*y + c def test_multiargs_simple(): seq = pd.Series([equation(1,2,3,4,y) for y in range(20, 30)]).sort_index() seq.index = range(20,30) constants = {'a':1, 'b':2, 'c':3, 'x':4} variables = {'y': range(20, 30)} par = multi_args(equation, constants=constants, variables=variables).sort_index() # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert (x,) == y def test_multiargs_product(): seq = [] for x in range(0,10): for y in range(10,15): seq.append(equation(1,2,3,x,y)) index = pd.MultiIndex.from_product([range(0, 10), range(10, 15)]) seq = pd.Series(seq) seq.index = index seq = seq.sort_index() constants = {'a':1, 'b':2, 'c':3} variables = {'x': range(0, 10), 'y': range(10,15)} par = multi_args(equation, constants=constants, variables=variables, isProduct=True).sort_index() # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert x == y def test_multiargs_max_limit(): seq = [] for x in range(0,100): for y in range(100, 150): seq.append(equation(1,2,3,x,y)) index = pd.MultiIndex.from_product([range(0, 100), range(100, 150)]) seq = pd.Series(seq) seq.index = index seq = seq.sort_index() constants = {'a':1, 'b':2, 'c':3} variables = {'x': range(0, 100), 'y': range(100,150)} par = multi_args(equation, constants=constants, variables=variables, isProduct=True).sort_index() assert len(par) == 1000 assert len(seq) == 5000 # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert x == y @pytest.mark.parametrize("maxLimit", [2000, 3000, 5000, 10000]) def test_multiargs_max_limit_adjust(maxLimit): seq = [] for x in range(0,100): for y in range(100, 150): seq.append(equation(1,2,3,x,y)) index = pd.MultiIndex.from_product([range(0, 100), range(100, 150)]) seq = pd.Series(seq) seq.index = index seq = seq.sort_index() constants = {'a':1, 'b':2, 'c':3} variables = {'x': range(0, 100), 'y': range(100,150)} par = multi_args(equation, constants=constants, variables=variables, isProduct=True, maxLimit=maxLimit).sort_index() assert len(par) == min(maxLimit, 5000) assert len(seq) == 5000 # Check both values and indexes for x,y in zip(seq, par): assert x == y for x,y in zip (seq.index, par.index): assert x == y def test_tick(): assert tick(112.71) == 112.7 assert tick(112.73) == 112.75 assert tick(1054.85, tick_size=0.1) == 1054.8 assert tick(1054.851, tick_size=0.1) == 1054.9 assert tick(104.73, 1) == 105 assert tick(103.2856, 0.01) == 103.29 assert tick(0.007814, 0.001) == 0.008 assert tick(0.00003562, 0.000001) == 0.000036 assert tick(0.000035617, 0.00000002) == 0.00003562 def test_tick_series(): s =
pd.Series([100.43, 200.32, 300.32])
pandas.Series
# -*- coding: utf-8 -*- """ Created on Mon Nov 25 10:11:28 2019 @author: yazdsous """ import numpy as np import pyodbc import pandas as pd import datetime #conn = pyodbc.connect('Driver={SQL Server};' # 'Server=DSQL23CAP;' # 'Database=Regulatory_Untrusted;' # 'Trusted_Connection=yes;') conn0 = pyodbc.connect('Driver={SQL Server};' 'Server=Hosaka\Sqlp2;' 'Database=Eforms;' 'Trusted_Connection=yes;') conn1 = pyodbc.connect('Driver={SQL Server};' 'Server=ndb-a1;' 'Database=Core;' 'Trusted_Connection=yes;') ############################################################################### #This function accepts the filigid of the application + the pyodbc object #joins the Form and FormField tables from Eform DB (on FormId) and returns the #corresponding dataframe with formId, Name, FilingIdm, ASPFieldIdName, and #ASPFiledIdValue #Output: A tuple with (Dataframe, FormId) ############################################################################### def formfields_by_filingId(filingid:str, conn0) -> pd.DataFrame: query = "SELECT f.[FormId]\ ,f.[AddedOn]\ ,[Name]\ ,[FilingId]\ ,[ASPFieldIdName]\ ,[ASPFieldIdValue]\ FROM [Eforms].[dbo].[Form] f\ JOIN [FormField] ff\ ON f.FormId = ff.FormId\ WHERE FilingId IS NOT NULL AND [FilingId] = \'{}\'\ ORDER BY ff.FormId DESC".format(filingid) df_filingid = pd.read_sql(query,conn0) return df_filingid, df_filingid.FormId[0] ############################################################################### ############################################################################### #This function accepts the FormId of the application + the pyodbc object #and extracts the contact information filled by the applicant. #Output: A dataframe with the information corresponding to each contact type #for the application (with the FormId passed as the argument) ############################################################################### def contact_info(filingid:str, conn0) -> pd.DataFrame: query = "SELECT [ContactId]\ ,ct.Name Contact_Type\ ,ct.ContactTypeId\ ,[FormId]\ ,[FirstName]\ ,[LastName]\ ,[Salutation]\ ,[Title]\ ,[Organization]\ ,[Email]\ ,Country.Name Country\ ,Province.Name Province\ ,[Address]\ ,[City]\ ,[PostalCode]\ ,[PhoneNumber]\ ,[PhoneExt]\ ,[FaxNumber]\ FROM [Eforms].[dbo].[Contact] c\ JOIN ContactType ct\ ON c.ContactTypeId = ct.ContactTypeId\ JOIN Country\ ON Country.CountryId = c.CountryId\ JOIN Province\ ON Province.ProvinceId = c.ProvinceId WHERE FormId = (SELECT FormId FROM [Eforms].[dbo].[Form] WHERE FilingId = \'{}\')".format(filingid) df_fid = pd.read_sql(query,conn0) return df_fid ############################################################################### ############################################################################### #Input: FilingId of the application + the pyodbc object #Output: A dataframe with the information in CORE corresponding to the apps #joins of CORE tables and filtering by the FilingId ############################################################################### def rts_by_filingid(filingid:str, conn1) -> pd.DataFrame: query = "SELECT f.[FileId], f.[FileNumber],f.[RecordsTitle],f.[RecordsDescription],\ a.[ActivityId],a.[EnglishTitle],a.[FrenchTitle],a.[Description] ActivityDescription,\ a.[ApplicationDate],a.[ReceivedDate],a.[ExpectedCompletionDate],a.[InternalProjectFlag],\ a.[StatusId],a.[CompletedDate],a.[DeactivationDate] ActivityDeactivationDate,\ a.[LegacyProjectXKey],a.[LetterForCommentFlag],a.[LetterForCommentExpireDate],\ a.[BusinessUnitId],a.[FederalLandId],a.[DecisionOnCompleteness],a.[EnglishProjectShortName],\ a.[FrenchProjectShortName],a.[FrenchDescription] FrenchDescriptionOfActivity,\ aa.[ActivityAttachmentId] ,aa.[LivelinkCompoundDocumentId],\ be.[BoardEventId] ,be.[NextTimeToBoard] ,be.[PurposeId],be.[Description],\ be.[PrimaryContactId],be.[SecondaryContactId] ,\ di.[DecisionItemId],di.[DecisionItemStatusId],di.[RegulatoryInstrumentNumber],\ di.[IssuedDate],di.[EffectiveDate],di.[ExpireDate],di.[SunsetDate],\ di.[IssuedToNonRegulatedCompanyFlag],di.[LetterOnly],di.[Comments],di.[AddedBy],\ di.[AddedOn],di.[ModifiedBy],di.[ModifiedOn],di.[WalkaroundFolderId],\ di.[BoardDecisionDate],di.[ReasonForCancelling],di.[GicApproval],di.[SentToMinisterDate],\ di.[MinisterToPrivyCouncilOfficeDate],di.[PrivyCouncilOfficeApprovalNumber],\ di.[PrivyCouncilOfficeApprovalDate],di.[RegulatoryOfficerAssignedId],di.[IsNGLLicence],\ di.[FrenchComments],fc.[FileCompanyId] ,fc.[CompanyId],\ c.[CompanyId] CompanyIdC,c.[CompanyCode] ,c.[LegalName],c.[DeactivationDate],c.[IsGroup1]\ FROM [File] f\ JOIN [Activity] a\ ON f.FileId = a.FileId\ JOIN [ActivityAttachment] aa\ ON a.ActivityId = aa.ActivityId\ FULL JOIN [BoardEvent] be\ ON be.ActivityId = a.ActivityId\ FULL JOIN [DecisionItem] di\ ON be.BoardEventId = di.BoardEventId\ JOIN [FileCompany] fc \ ON fc.FileId = a.FileId\ JOIN [Company] c\ ON c.CompanyId = fc.CompanyId\ WHERE aa.LivelinkCompoundDocumentId = \'{}\'".format(filingid) df_filingid = pd.read_sql(query,conn1) return df_filingid, df_filingid.shape[0] ############################################################################### ############################################################################### #A DATAFRAME is passed as the argument to this function. Input Dataframe is the #output of function formfileds_by_filingId(...) #Output: Commodity type (one commodity or a multiple commodities, depending on # the application) and whether it is export or in the case of gas applications #it is export or both ############################################################################### def application_type(df:pd.DataFrame) -> str: try: #GAS app_name = df.Name[0] df_fields = df.loc[:,['ASPFieldIdName','ASPFieldIdValue']] if app_name == 's15ab_ShrtTrmNtrlGs_ImprtExprt': gas_import = df_fields.loc[df_fields['ASPFieldIdName'] == 'chkbx_s15ab_ShrtTrmNtrlGs_ImprtExprt_Athrztns_ImportOrder','ASPFieldIdValue'].values[0] gas_export = df_fields.loc[df_fields['ASPFieldIdName'] == 'chkbx_s15ab_ShrtTrmNtrlGs_ImprtExprt_Athrztns_ExportOrder','ASPFieldIdValue'].values[0] if all(map((lambda value: value == 'True'), (gas_import,gas_export))): return 'gas','gas_export_import' elif gas_import == 'False' and gas_export == 'True': return 'gas','gas_export' elif gas_import == 'True' and gas_export == 'False': return 'gas','gas_import' #NGL elif app_name == 's22_ShrtTrmNgl_Exprt': propane_export = df_fields.loc[df_fields['ASPFieldIdName'] == 'chkbx_s22_ShrtTrmNgl_Exprt_Athrztns_ProductType_Propane','ASPFieldIdValue'].values[0] butanes_export = df_fields.loc[df_fields['ASPFieldIdName'] == 'chkbx_s22_ShrtTrmNgl_Exprt_Athrztns_ProductType_Butanes','ASPFieldIdValue'].values[0] if all(map((lambda value: value == 'True'), (propane_export,butanes_export))): return 'ngl','propane_butanes_export' elif propane_export == 'False' and butanes_export == 'True': return 'ngl','butanes_export' elif propane_export == 'True' and butanes_export == 'False': return 'ngl','propane_export' #OIL elif app_name == 's28_ShrtTrmLghtHvCrdRfnd_Exprt': light_heavy_crude_export = df_fields.loc[df_fields['ASPFieldIdName'] == 'chkbx_s28_ShrtTrmLghtHvCrdRfnd_Exprt_Athrztns_HeavyCrude','ASPFieldIdValue'].values[0] refined_products_export = df_fields.loc[df_fields['ASPFieldIdName'] == 'chkbx_s28_ShrtTrmLghtHvCrdRfnd_Exprt_Athrztns_RefinedProducts','ASPFieldIdValue'].values[0] if all(map((lambda value: value == 'True'), (light_heavy_crude_export,refined_products_export))): return 'oil','lightheavycrude_refinedproducts_export' elif light_heavy_crude_export == 'False' and refined_products_export == 'True': return 'oil','lightheavycrude_export' elif light_heavy_crude_export == 'True' and refined_products_export == 'False': return 'oil','refinedproducts_export' elif app_name == 's28_ShrtTrmHvCrd_Exprt': return 'oil','heavycrude_export' else: return 'this is not a gas, ngl, or oil order' except ValueError: return 'Value' except TypeError: return 'Type' ############################################################################### # NOTE: ############################################################################### #GasType -> 1 -> Natural Gas #GasType -> 2 -> Natural Gas, in the form of Liquefied Natural Gas #GasType -> 3 -> Natural Gas, in the form of Compressed Natural Gas ############################################################################### #Input: Commodity name in english #Output: Commodity name in French ############################################################################### def comm_type_english_french(df:pd.DataFrame) -> list: try: if application_type(df)[0] == 'gas': gas_en,gas_fr = str(),str() gas_type = df.loc[df['ASPFieldIdName'] == 'rbl_s15ab_ShrtTrmNtrlGs_ImprtExprt_Athrztns_ExportOrder_GasType','ASPFieldIdValue'].values[0] if gas_type == '2': gas_en = 'natural gas, in the form of Liquefied Natural Gas' gas_fr = 'gaz, sous la forme de gaz naturel liquéfié seulement' elif gas_type == '3': gas_en = 'natural gas, in the form of compressed natural gas' gas_fr = 'gaz, sous la forme de gaz naturel comprimé' return gas_en , gas_fr if application_type(df)[0] == 'oil': oil_en,oil_fr = str(),str() oil_type = application_type(df)[1] if oil_type == 'lightheavycrude_refinedproducts_export': oil_en = 'light and heavy crude oil and pefined petroleum products' oil_fr = 'pétrole brut léger et lourd et produits pétroliers raffinés' elif oil_type == 'lightheavycrude_export': oil_en = 'light and heavy crude oil' oil_fr = 'pétrole brut léger et lourd' elif oil_type == 'refinedproducts_export': oil_en = 'refined petroleum products' oil_fr = 'produits pétroliers raffinés' elif oil_type == 'heavycrude_export': oil_en = 'heavy crude oil' oil_fr = 'pétrole brut lourd' return oil_en , oil_fr if application_type(df)[0] == 'ngl': ngl_en,ngl_fr = str(),str() return ngl_en , ngl_fr else: return ('other comms....') exit except ValueError: return 'Value' except TypeError: return 'Type' #************************************************************************************************** # input: month of the year in English in full version # output: French months # This function converts English months to French #************************************************************************************************** def month_to_french(month): fr_months = ['janvier','février','mars','avril','mai','juin','juillet','août','septembre','octobre','novembre','décembre'] switcher = { "January": fr_months[0], "February": fr_months[1], "March": fr_months[2], "April": fr_months[3], "May": fr_months[4], "June": fr_months[5], "July": fr_months[6], "August": fr_months[7], "September": fr_months[8], "October": fr_months[9], "November": fr_months[10], "December": fr_months[11], } # get() method of dictionary data type returns # value of passed argument if it is present # in dictionary otherwise second argument will # be assigned as default value of passed argument return switcher.get(month, "nothing") #************************************************************************************************** # input: Date in the form of XX Month(English) XXXX # output: French version # This function converts English date to French #************************************************************************************************** def date_french(date_en:str)-> str: try: return(date_en.split()[0]) + ' '+ month_to_french(date_en.split()[1]) + ' ' + str(date_en.split()[2]) except ValueError: return 'Value' except TypeError: return 'Type' except: return 'Wrong date format' #************************************************************************************************** #Skip the Weekends #refernce: https://stackoverflow.com/questions/12691551/add-n-business-days-to-a-given-date-ignoring-holidays-and-weekends-in-python/23352801 #************************************************************************************************** def add_business_days(from_date, ndays): business_days_to_add = abs(ndays) current_date = from_date sign = ndays/abs(ndays) while business_days_to_add > 0: current_date += datetime.timedelta(sign * 1) weekday = current_date.weekday() if weekday >= 5: # sunday = 6 continue business_days_to_add -= 1 return current_date ############################################################################### #Input: index[0] of output tuple function formfileds_by_filingId(...) #Output: Order start and end date ############################################################################### def commence_end_order_gas(ctype:str, df:pd.DataFrame) -> list: export_order_commence_date = str() export_order_termination_date = str() import_order_commence_date =str() import_order_termination_date = str() export_order_commence_date_fr = str() export_order_termination_date_fr = str() import_order_commence_date_fr = str() import_order_termination_date_fr = str() dt = df.AddedOn[0].date() application_date = dt.strftime("%d %B %Y") try: if ctype[0] == 'gas': #For a period of two years less one day commencing upon approval of the Board if df.loc[df['ASPFieldIdName'] == 'rbl_s15ab_ShrtTrmNtrlGs_ImprtExprt_Athrztns_ExportOrder_TimeFrame','ASPFieldIdValue'].values[0] == '1': #commences the day after application received date ex_order_commence_date = add_business_days(pd.to_datetime(application_date),2) export_order_commence_date = ex_order_commence_date.strftime("%d %B %Y") export_order_commence_date_fr = date_french(export_order_commence_date) if len(export_order_commence_date.split()) == 3 else 'NULL' ex_order_termination_date = ex_order_commence_date +
pd.DateOffset(years=2)
pandas.DateOffset
#!/usr/bin/env python # coding: utf-8 import datetime import matplotlib.pyplot as plt import numpy as np import pandas as pd import pytz import random # Date and Time # ============= print(datetime.datetime(2000, 1, 1)) print(datetime.datetime.strptime("2000/1/1", "%Y/%m/%d")) print(datetime.datetime(2000, 1, 1, 0, 0).strftime("%Y%m%d")) # to_datetime # =========== print(pd.to_datetime("4th of July")) print(pd.to_datetime("13.01.2000")) print(pd.to_datetime("7/8/2000")) print(pd.to_datetime("7/8/2000", dayfirst=True)) print(issubclass(pd.Timestamp, datetime.datetime)) ts = pd.to_datetime(946684800000000000) print(ts.year, ts.month, ts.day, ts.weekday()) index = [pd.Timestamp("2000-01-01"), pd.Timestamp("2000-01-02"), pd.Timestamp("2000-01-03")] ts = pd.Series(np.random.randn(len(index)), index=index) print(ts) print(ts.index) ts = pd.Series(np.random.randn(len(index)), index=["2000-01-01", "2000-01-02", "2000-01-03"]) print(ts.index) index = pd.to_datetime(["2000-01-01", "2000-01-02", "2000-01-03"]) ts = pd.Series(np.random.randn(len(index)), index=index) print(ts.index) print(pd.date_range(start="2000-01-01", periods=3, freq='H')) print(pd.date_range(start="2000-01-01", periods=3, freq='T')) print(pd.date_range(start="2000-01-01", periods=3, freq='S')) print(pd.date_range(start="2000-01-01", periods=3, freq='B')) print(pd.date_range(start="2000-01-01", periods=5, freq='1D1h1min10s')) print(pd.date_range(start="2000-01-01", periods=5, freq='12BH')) bh = pd.tseries.offsets.BusinessHour(start='07:00', end='22:00') print(bh) print(pd.date_range(start="2000-01-01", periods=5, freq=12 * bh)) print(pd.date_range(start="2000-01-01", periods=5, freq='W-FRI')) print(pd.date_range(start="2000-01-01", periods=5, freq='WOM-2TUE')) s = pd.date_range(start="2000-01-01", periods=10, freq='BAS-JAN') t =
pd.date_range(start="2000-01-01", periods=10, freq='A-FEB')
pandas.date_range
# -*- coding: utf-8 -*- """ Created on Thu Feb 12 2016 @author: Hector Class to load and store configurations read from run, trajectory or validation files """ import os import numpy as _np import pandas as _pd import natsort as _ns import glob as _glob def _hyp_split(x, listing): param_value = x.strip().rstrip('"').replace("'", "").split('=') pname = param_value[0].replace("__", "") if pname not in listing: listing.append(pname) return param_value[1] def _validate_config_columns(x, past_names): split_str = x.split(':') name_l0 = split_str[0] name_l1 = split_str[-1] if name_l1 in past_names and name_l1 != 'choice': name_l1 = name_l1 + '_' + split_str[1] past_names.append(name_l1) return name_l0, name_l1 def _validate_choice_names(x): split_str = x.split(':') name = split_str[-1] if name == 'choice': return split_str[0] elif(split_str[0] == 'regressor' or split_str[0] == 'classifier' or split_str[0] == 'preprocessor'): return name + '_' + split_str[1] else: return name DEBUG = False class ConfigReader: def __init__(self, data_dir=None, dataset=None): self.runs_df = None self.bests_df = None self.trajectories_df = None self.dataset = dataset self.data_dir = data_dir self.full_config = False def load_run_configs(self, data_dir=None, dataset=None, preprocessor='no_preprocessing', full_config=False): """ Loads all configurations run by SMAC, with validation error response :param data_dir: Directory of where SMAC files live :param dataset: In this case, the dataset used to train the model :param preprocessor: Preprocessing method used in the data. None means all :param full_config: Whether to return also the configuration of the preprocessor, imputation and one-hot-encoding :return: pandas.DataFrame with the every performance (training errors) and the feed neural network configurations run by SMAC """ if data_dir is None and self.data_dir is None: raise ValueError('Location of information not given') elif self.data_dir is not None: data_dir = self.data_dir if dataset is None: if self.dataset is None: raise ValueError('Dataset not given') else: dataset = self.dataset run_filename = "runs_and_results-SHUTDOWN*" state_seed = "state-run*" if preprocessor == 'all': scenario_dir = os.path.join(data_dir, dataset, '*', dataset, state_seed, run_filename) elif preprocessor is not None: scenario_dir = os.path.join(data_dir, dataset, preprocessor, dataset, state_seed, run_filename) else: scenario_dir = os.path.join(data_dir, dataset, state_seed, run_filename) dirs = _ns.natsorted(_glob.glob(scenario_dir)) if len(dirs) == 0: raise ValueError('No runs_and_results files found.') seeds_names = ['runs_' + itseeds.split('state-run')[-1].split('/')[0] for itseeds in dirs] all_runs = [] all_best = [] runs_by_seed = [] for fnames in dirs: try: run_res, best_run = self.load_run_by_file(fnames, full_config=full_config) all_runs.append(run_res) all_best.append(best_run) runs_by_seed.append(run_res.shape[0]) except IndexError: print('CRASH in: ' + os.path.split(fnames)[1]) # Treat each seed as independent runs runs_all_df = _pd.concat(all_runs, axis=0) runs_all_df = runs_all_df.reset_index().drop('index', axis=1) # Try to convert to numeric type runs_all_df = runs_all_df.apply(_pd.to_numeric, errors='ignore') # Best config each run best_all_df = _pd.concat(all_best, axis=1) best_all_df = best_all_df.apply(_pd.to_numeric, errors='ignore') best_all_df.columns = seeds_names self.runs_df = runs_all_df.copy() self.bests_df = best_all_df.T.copy() return runs_all_df.copy(), best_all_df.T.copy() @staticmethod def load_run_by_file(fname, full_config=False): """ Loads one single configuration file run by SMAC, with validation error response :param fname: filename to load :param full_config: Whether to return also the configuration of the preprocessor, imputation and one-hot-encoding :return: pandas.DataFrame with configuration and validation error """ run_cols = ['config_id', 'response', 'runtime', 'smac_iter', 'cum_runtime', 'run_result'] try: run_df = _pd.read_csv(fname, delimiter=",", usecols=[1, 3, 7, 11, 12, 13], skipinitialspace=False, header=None, skiprows=1) except OSError: raise OSError('file %s does not exist. Please check path' % fname) run_df.columns = run_cols run_df.sort_values(by='response', axis=0, ascending=False, na_position='first', inplace=True) run_df.drop_duplicates('config_id', keep='last', inplace=True) base_dir = os.path.dirname(fname) # TODO: Add checks to wheter one is using a non runs_results file config_run_match = fname.rsplit('runs_and_results-')[1].rsplit('.')[0] config_filename = "paramstrings-" + config_run_match + "*" if DEBUG: print(config_filename) try: confname = _glob.glob(os.path.join(base_dir, config_filename))[0] except IndexError: raise IndexError("There is no parameter configuration file") config_df = _pd.read_csv(confname, engine='python', delimiter=",|:\s", header=None) # Get the values of configuration parameters names = [] config_df.iloc[:, 1:] = config_df.iloc[:, 1:].apply(lambda x: x.apply(_hyp_split, args=(names,))) # Almost everything that goes from the second(:) is eliminated from names # list(map()) because python3 filtered_names = list(map(lambda X: X.split(':')[-1], filter(lambda Z: Z.split(':')[0] != 'classifier', names))) classifier_names = list(map(lambda Y: Y.split(':')[-1], names)) # Name column and remove not-classifier parameters config_df.columns = ['config_id'] + classifier_names if not full_config: # Delete classifier:choice parameter configuration_df = config_df.drop(filtered_names, axis=1) run_config_df = _pd.merge(run_df, configuration_df, on='config_id') else: run_config_df = _pd.merge(run_df, config_df, on='config_id') # Filter configurations over the error to have a better fit run_config_df = run_config_df[run_config_df['response'] > 0.0] run_config_df = run_config_df[run_config_df['response'] < 1.0] best_config_response = run_config_df.ix[run_config_df['response'].idxmin()] # run_config_df = run_config_df.query('response > 0 and response < 1.0') return run_config_df.copy(), best_config_response.copy() @staticmethod def load_trajectory_by_file(fname, full_config=False): """ :param fname: filename to load :param full_config: Whether to return also the configuration of the preprocessor, imputation and one-hot-encoding :return: pandas.DataFrame with filtered columns """ traj_cols = ['cpu_time', 'performance', 'wallclock_time', 'incumbentID', 'autoconfig_time'] rm_quote = lambda z: z.strip('" ') try: traj_res = _pd.read_csv(fname, delimiter=",", skipinitialspace=False, converters={5: rm_quote}, header=None, skiprows=1) except OSError: print('file %s does not exist. Please check path' % fname) names = [] traj_res.iloc[:, 1] = _pd.to_numeric(traj_res.iloc[:, 1], errors='coerce') # Get the values of configuration parameters traj_res.iloc[:, 5:-1] = traj_res.iloc[:, 5:-1].apply(lambda x: x.apply(_hyp_split, args=(names,))) # TODO: Improve unnecesary columns droping using filter() if full_config: smac_cols = [tuple([a]+[b]) for a, b in zip(['smac']*len(traj_cols), traj_cols)] from operator import itemgetter full_parameter_names = map(lambda y: itemgetter(0, -1)(y.split(':')), names) params_inx = _pd.MultiIndex.from_tuples(smac_cols + list(full_parameter_names) + [('smac', 'expected')]) traj_res.columns = params_inx traj_res.performance = _pd.to_numeric(traj_res['smac']['performance'], errors='coerce') traj_res.sort_values(by=('smac', 'performance'), axis=0, ascending=False, na_position='first', inplace=True) traj_res.drop_duplicates(('smac', 'incumbentID'), keep='last', inplace=True) class_df = traj_res.drop(('smac', 'expected'), axis=1) else: classifier_names = list(map(_validate_choice_names, names)) traj_res.columns = traj_cols + classifier_names + ['expected'] # Drop duplicated configuration and leave the best X-validation error traj_res.performance = _pd.to_numeric(traj_res['performance'], errors='coerce') traj_res.sort_values(by='performance', axis=0, ascending=False, na_position='first', inplace=True) traj_res.drop_duplicates('incumbentID', keep='last', inplace=True) # Drop "unnecessary" columns cols_to_drop = ['incumbentID', 'autoconfig_time', 'strategy', 'minimum_fraction', 'rescaling', 'expected'] class_df = traj_res.drop(cols_to_drop, axis=1) return class_df.copy() def load_trajectories(self, data_dir=None, dataset=None, preprocessor=None, full_config=False): """ :param data_dir: Directory of where SMAC files live :param dataset: Dataset used to train the model :param preprocessor: Preprocessing method used in the data. :param full_config: Whether to return also the configuration of the preprocessor, imputation and one-hot-encoding :return: pandas.DataFrame with the performance (training errors) and the feed neural network configurations given by the detailed trajectory files """ if data_dir is None: if self.data_dir is None: raise ValueError('Location of experiments not given') else: data_dir = self.data_dir if dataset is None: if self.dataset is not None: dataset = self.dataset else: raise ValueError('Dataset not given') # Could be done with find-like method, but no traj_filename = "detailed-traj-run-*.csv" preprocessors_list = ["Densifier", "TruncatedSVD", "ExtraTreesPreprocessorClassification", "FastICA", "FeatureAgglomeration", "KernelPCA", "RandomKitchenSinks", "LibLinear_Preprocessor", "NoPreprocessing", "Nystroem", "PCA", "PolynomialFeatures", "RandomTreesEmbedding", "SelectPercentileClassification", "SelectRates"] if preprocessor == 'all': scenario_dir = [os.path.join(data_dir, dataset, p, dataset, traj_filename) for p in preprocessors_list] dirs = [] [dirs.extend(_glob.glob(p)) for p in scenario_dir] dirs = _ns.natsorted(dirs) elif preprocessor is not None: scenario_dir = os.path.join(data_dir, dataset, preprocessor, dataset, traj_filename) dirs = _ns.natsorted(_glob.glob(scenario_dir)) else: scenario_dir = os.path.join(data_dir, dataset, traj_filename) dirs = _ns.natsorted(_glob.glob(scenario_dir)) if len(dirs) == 0: raise ValueError("Not file found in %s" % scenario_dir) seeds = ['seed_' + itseeds.split('-')[-1].split('.')[0] for itseeds in dirs] all_trajs = [] runs_by_seed = [] for fnames in dirs: try: run_res = self.load_trajectory_by_file(fnames, full_config=full_config) all_trajs.append(run_res) runs_by_seed.append(run_res.shape[0]) except IndexError: print('CRASH in: ' + os.path.split(fnames)[1]) if preprocessor != 'all': trajectories_df = _pd.concat(all_trajs, axis=0, keys=seeds) drop_col = 'level_1' else: trajectories_df = _pd.concat(all_trajs, axis=0) drop_col = 'index' if full_config: trajectories_df = (trajectories_df.reset_index(). drop(drop_col, axis=1, level=0)) else: trajectories_df = trajectories_df.reset_index().drop(drop_col, axis=1) if preprocessor != 'all': trajectories_df.rename(columns={'level_0': 'run'}, inplace=True) # Try to convert to numeric type trajectories_df = trajectories_df.apply(_pd.to_numeric, errors='ignore') self.trajectories_df = trajectories_df.copy() return trajectories_df.copy() @staticmethod def load_validation_by_file(fname, load_config=False): traj_cols = ['time', 'train_performance', 'test_performance'] cols_to_load = [0, 1, 2] if load_config: cols_to_load += [4] traj_cols += ['config_ID'] try: traj_res = _pd.read_csv(fname, delimiter=",", usecols=cols_to_load, header=None, skiprows=1) except OSError: print('file %s does not exist. Please check path' % fname) smac_cols = zip(['smac']*len(traj_cols), traj_cols) traj_res.columns = _pd.MultiIndex.from_tuples(smac_cols) traj_res = traj_res.apply(_pd.to_numeric, errors='coerce') if load_config: config_name = fname.replace('Results', 'CallStrings') if not os.path.isfile(config_name): print("Configuration file does not exists. Returning trajectory only") return traj_res.copy() rm_quote = lambda z: z.strip('-').replace("'", "").replace("__", "") try: config_res = _pd.read_csv(config_name, delimiter=",", usecols=[0, 1], header=0, skiprows=0, skipinitialspace=False, converters={1: rm_quote}) config_res.columns = ['config_ID', 'configuration'] except OSError: raise OSError('file %s does not exists. Please check path' % config_name) configuration_series = config_res.configuration.str.split('\s-(?=[a-z])', expand=True) all_configs = [] for _, row in configuration_series.iterrows(): all_configs.append(row.dropna().str.split(' ', expand=True).set_index(0).T) from operator import itemgetter configs_df = _pd.concat(all_configs).reset_index(drop=True) configuration_cols = map(lambda X: itemgetter(0, -1)(X.split(':')), configs_df.columns.values) configs_cols = _pd.MultiIndex.from_tuples([('smac', 'config_ID')] + configuration_cols) clean_names = [] if not configs_cols.is_unique: from functools import partial parfunc = partial(_validate_config_columns, past_names=clean_names) configuration_cols = map(parfunc, configs_df.columns.values) configs_cols =
_pd.MultiIndex.from_tuples([('smac', 'config_ID')] + configuration_cols)
pandas.MultiIndex.from_tuples
import os import pickle import sys import joblib import pandas as pd import pytest from dask.datasets import timeseries pytest.importorskip("dask_ml") def check_trained_model(c, model_name=None): if model_name is None: sql = """ SELECT * FROM PREDICT( MODEL my_model, SELECT x, y FROM timeseries ) """ else: sql = f""" SELECT * FROM PREDICT( MODEL {model_name}, SELECT x, y FROM timeseries ) """ result_df = c.sql(sql).compute() assert "target" in result_df.columns assert len(result_df["target"]) > 0 @pytest.fixture() def training_df(c): df = timeseries(freq="1d").reset_index(drop=True) c.create_table("timeseries", df, persist=True) return training_df def test_training_and_prediction(c, training_df): c.sql( """ CREATE MODEL my_model WITH ( model_class = 'sklearn.ensemble.GradientBoostingClassifier', wrap_predict = True, target_column = 'target' ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) check_trained_model(c) def test_clustering_and_prediction(c, training_df): c.sql( """ CREATE MODEL my_model WITH ( model_class = 'dask_ml.cluster.KMeans' ) AS ( SELECT x, y FROM timeseries LIMIT 100 ) """ ) check_trained_model(c) def test_iterative_and_prediction(c, training_df): c.sql( """ CREATE MODEL my_model WITH ( model_class = 'sklearn.linear_model.SGDClassifier', wrap_fit = True, target_column = 'target', fit_kwargs = ( classes = ARRAY [0, 1] ) ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) check_trained_model(c) def test_show_models(c, training_df): c.sql( """ CREATE MODEL my_model1 WITH ( model_class = 'sklearn.ensemble.GradientBoostingClassifier', wrap_predict = True, target_column = 'target' ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) c.sql( """ CREATE MODEL my_model2 WITH ( model_class = 'dask_ml.cluster.KMeans' ) AS ( SELECT x, y FROM timeseries LIMIT 100 ) """ ) c.sql( """ CREATE MODEL my_model3 WITH ( model_class = 'sklearn.linear_model.SGDClassifier', wrap_fit = True, target_column = 'target', fit_kwargs = ( classes = ARRAY [0, 1] ) ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) expected = pd.DataFrame(["my_model1", "my_model2", "my_model3"], columns=["Models"]) result: pd.DataFrame = c.sql("SHOW MODELS").compute() # test pd.testing.assert_frame_equal(expected, result) def test_wrong_training_or_prediction(c, training_df): with pytest.raises(KeyError): c.sql( """ SELECT * FROM PREDICT( MODEL my_model, SELECT x, y FROM timeseries ) """ ) with pytest.raises(ValueError): c.sql( """ CREATE MODEL my_model WITH ( target_column = 'target' ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) with pytest.raises(ValueError): c.sql( """ CREATE MODEL my_model WITH ( model_class = 'that.is.not.a.python.class', target_column = 'target' ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) def test_correct_argument_passing(c, training_df): c.sql( """ CREATE MODEL my_model WITH ( model_class = 'mock.MagicMock', target_column = 'target', fit_kwargs = ( first_arg = 3, second_arg = ARRAY [ 1, 2 ], third_arg = MAP [ 'a', 1 ], forth_arg = MULTISET [ 1, 1, 2, 3 ] ) ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) mocked_model, columns = c.schema[c.schema_name].models["my_model"] assert list(columns) == ["x", "y"] fit_function = mocked_model.fit fit_function.assert_called_once() call_kwargs = fit_function.call_args.kwargs assert call_kwargs == dict( first_arg=3, second_arg=[1, 2], third_arg={"a": 1}, forth_arg=set([1, 2, 3]) ) def test_replace_and_error(c, training_df): c.sql( """ CREATE MODEL my_model WITH ( model_class = 'mock.MagicMock', target_column = 'target' ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) first_mock, _ = c.schema[c.schema_name].models["my_model"] with pytest.raises(RuntimeError): c.sql( """ CREATE MODEL my_model WITH ( model_class = 'mock.MagicMock', target_column = 'target' ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) c.sql( """ CREATE MODEL IF NOT EXISTS my_model WITH ( model_class = 'mock.MagicMock', target_column = 'target' ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) assert c.schema[c.schema_name].models["my_model"][0] == first_mock c.sql( """ CREATE OR REPLACE MODEL my_model WITH ( model_class = 'mock.MagicMock', target_column = 'target' ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) assert c.schema[c.schema_name].models["my_model"][0] != first_mock second_mock, _ = c.schema[c.schema_name].models["my_model"] c.sql("DROP MODEL my_model") c.sql( """ CREATE MODEL IF NOT EXISTS my_model WITH ( model_class = 'mock.MagicMock', target_column = 'target' ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) assert c.schema[c.schema_name].models["my_model"][0] != second_mock def test_drop_model(c, training_df): with pytest.raises(RuntimeError): c.sql("DROP MODEL my_model") c.sql("DROP MODEL IF EXISTS my_model") c.sql( """ CREATE MODEL IF NOT EXISTS my_model WITH ( model_class = 'mock.MagicMock', target_column = 'target' ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) c.sql("DROP MODEL IF EXISTS my_model") assert "my_model" not in c.schema[c.schema_name].models def test_describe_model(c, training_df): c.sql( """ CREATE MODEL ex_describe_model WITH ( model_class = 'sklearn.ensemble.GradientBoostingClassifier', wrap_predict = True, target_column = 'target' ) AS ( SELECT x, y, x*y > 0 AS target FROM timeseries LIMIT 100 ) """ ) model, training_columns = c.schema[c.schema_name].models["ex_describe_model"] expected_dict = model.get_params() expected_dict["training_columns"] = training_columns.tolist() # hack for converting model class into string expected_series = ( pd.DataFrame.from_dict(expected_dict, orient="index", columns=["Params"])[ "Params" ] .apply(lambda x: str(x)) .sort_index() ) # test result = ( c.sql("DESCRIBE MODEL ex_describe_model") .compute()["Params"] .apply(lambda x: str(x)) )
pd.testing.assert_series_equal(expected_series, result)
pandas.testing.assert_series_equal
#!/usr/bin/env python import os from collections import namedtuple import numpy as np import pandas as pd from scipy.io import mmread import igraph as ig import schpf import scipy.sparse as sp from scipy.sparse import csr_matrix, coo_matrix from scipy.stats import hypergeom from scipy.spatial.distance import squareform #from sklearn.decomposition.nmf import non_negative_factorization #from sklearn.cluster import KMeans from sklearn import metrics from sklearn.metrics import silhouette_score from sklearn.utils import sparsefuncs import sklearn from fastcluster import linkage from scipy.cluster.hierarchy import leaves_list import umap import loompy from tqdm import tqdm import matplotlib as mpl from matplotlib.backends.backend_pdf import PdfPages from matplotlib import pyplot as plt plt.rcParams['pdf.fonttype'] = 42 plt.rcParams['ps.fonttype'] =42 import seaborn as sns from mpl_toolkits.mplot3d import Axes3D from matplotlib import gridspec import plotly.express as px import plotly.io as pio import time import itertools import joblib import glob from copy import deepcopy def mean_cellscore_fraction(cell_scores, ntop_factors=1): """ Get number of cells with a percentage of their total scores on a small number of factors Parameters ---------- cell_scores : ndarray (ncells, nfactors) array of cell scores ntop_factors : int, optional (Default: 1) number of factors that can count towards domance Returns ------- mean_cellscore_fraction : float The mean fraction of cells' scores that are contained within their top `ntop_factors` highest scoring factors """ totals = np.sum(cell_scores, axis=1) ntop_scores = np.sort(cell_scores,axis=1)[:, -ntop_factors:] domsum = np.sum(ntop_scores, axis=1) domfrac = domsum/totals return np.mean(domfrac) def mean_cellscore_fraction_list(cell_scores): """ Make a list of the mean dominant fraction at all possible numbers of ntop_factors """ return [mean_cellscore_fraction(cell_scores, i+1) for i in range(cell_scores.shape[1])] def max_pairwise(gene_scores, ntop=200, second_greatest=False): """ Get the maximum pairwise overlap of top genes Parameters ---------- gene_scores : ndarray (ngenes, nfactors) array of gene scores ntop : int (optional, default 200) Number of top genes to consider in each factor second_greatest : bool, optional Return the second greatest pairwise overlap of top genes Returns ------- max_pairwise : int The maximum pairwise overlap of the `ntop` highest scoring genes in each factors p : float Hypergeometric p value of max_pairwise, where the number of genes is the population size, `ntop` is the number of potential successes and the number of draws, and max_pairwise is the number of successes. """ tops = np.argsort(gene_scores, axis=0)[-ntop:] max_pairwise, last_max = 0, 0 for i in range(tops.shape[1]): for j in range(tops.shape[1]): if i >= j: continue overlap = len(np.intersect1d(tops[:,i], tops[:,j])) if overlap > max_pairwise: last_max = max_pairwise max_pairwise = overlap elif overlap > last_max: last_max = overlap overlap = last_max if second_greatest else max_pairwise p = hypergeom.pmf(k=overlap, M=gene_scores.shape[0], N=ntop, n=ntop) \ + hypergeom.sf(k=overlap, M=gene_scores.shape[0], N=ntop, n=ntop) Overlap = namedtuple('Overlap', ['overlap', 'p']) return Overlap(overlap, p) def max_pairwise_table(gene_scores, ntop_list=[50,100,150,200,250,300]): """ Get the maximum pairwise overlap at Parameters ---------- gene_scores : ndarray (ngenes, nfactors) array of gene scores ntop_list : list, optional List of values of ntop to evaluate Returns ------- df : DataFrame """ max_overlap, p_max, max2_overlap, p_max2 = [],[],[],[] for ntop in ntop_list: o = max_pairwise(gene_scores, ntop, False) max_overlap.append( o.overlap ) p_max.append( o.p ) o2 = max_pairwise(gene_scores, ntop, True) max2_overlap.append( o2.overlap ) p_max2.append( o2.p ) df = pd.DataFrame({'ntop' : ntop_list, 'max_overlap' : max_overlap, 'p_max' : p_max, 'max2_overlap' : max2_overlap, 'p_max2' : p_max2}) return df def split_coo_rows(X, split_indices): """Split a coo matrix into two Parameters ---------- X : coo_matrix Matrix to split into two by row split_indices : ndarray Indices to use for the split. Returns ------- a : coo_matrix rows from X specified in split_indices b : coo_matrix rows from X *not* specified in split_indices """ a_indices = split_indices b_indices = np.setdiff1d(np.arange(X.shape[0]), split_indices) X_csr = X.tocsr() a = X_csr[a_indices, :].tocoo() b = X_csr[b_indices, :].tocoo() return a, b def collapse_coo_rows(coo): """Collapse the empty rows of a coo_matrix Parameters ---------- coo : coo_matrix Input coo_matrix which may have empty rows Returns ------- collapsed_coo : coo_matrix coo with row indices adjusted to removed empty rows collapsed_indices : ndarray Indices of the returned rows in the original input matrix """ nz_idx = np.where(coo.getnnz(1) > 0)[0] return coo.tocsr()[nz_idx].tocoo(), nz_idx def insert_coo_rows(a, b, b_indices): """Insert rows from b into a at specified row indeces Parameters ---------- a : sparse matrix b : sparse matrix b_indices : ndarray Indices in final matrix where b's rows should be. np.max(`b_indices`) must be a valid row index in the merged matrix with shape[0] = a.shape[0] + b.shape[0]. Must me ordered and unique. Returns ------- ab : coo_matrix with rows re-indexed to have rows from b """ # check arguments if a.shape[1] != b.shape[1]: msg = 'a.shape[1] must equal b.shape[1], received a with shape' msg += ' {} and b with shape {}'.format(a.shape, b.shape) raise ValueError(msg) if np.max(b_indices) >= a.shape[0] + b.shape[0]: msg = 'Invalid row indices {} for array with '.format(b_indices) msg += 'a.shape[0] + b.shape[0] = {} '.format(a.shape[0]) msg += '+ {} = {}'.format(b.shape[0], a.shape[0]+b.shape[0]) raise ValueError(msg) if not np.all(np.diff(b_indices) > 0): msg = '`b_indices` must be ordered without repeats. Received ' msg += '{}'.format(b_indices) raise ValueError(msg) out_shape = (a.shape[0] + b.shape[0], a.shape[1]) a = a.tocsr() b = b.tocsr() a_row, b_row = 0, 0 data, indices, indptr = [], [], [0] for ab_row in range(out_shape[0]): if b_row < len(b_indices) and ab_row == b_indices[b_row]: my_row = b[b_row, :] b_row += 1 else: my_row = a[a_row, :] a_row += 1 data.append(my_row.data) indices.append(my_row.indices) indptr.append(indptr[-1] + my_row.indptr[1]) ab = csr_matrix( (np.hstack(data), np.hstack(indices), np.array(indptr)), out_shape).tocoo() return ab def minibatch_ix_generator(ncells, batchsize): assert ncells >= batchsize # allow equalitiy for testing ixs = np.arange(ncells) np.random.shuffle(ixs) start = 0 while True: stop = start + batchsize if stop > ncells: stop = stop % ncells res = np.hstack([ixs[start:ncells], ixs[0:stop]]) else: res = ixs[start:stop] start = stop % ncells # need mod for case where ncells=batchsize yield res def get_param_dfs(model): eta_shp = pd.Series(np.ravel(model.eta.vi_shape), name=model.name) eta_rte = pd.Series(np.ravel(model.eta.vi_rate), name=model.name) beta_shp = pd.DataFrame(model.beta.vi_shape.T) beta_shp.index = model.name + ':' + (beta_shp.index + 1).astype(str) beta_rte = pd.DataFrame(model.beta.vi_rate.T, index=beta_shp.index) return eta_shp, eta_rte, beta_shp, beta_rte def get_spectra(models): eta_shp, eta_rte, beta_shp, beta_rte = zip(*[get_param_dfs(m) for m in models]) return pd.concat(eta_shp, axis=1).T,
pd.concat(eta_rte,axis=1)
pandas.concat
##################################################################################################### # PARETO was produced under the DOE Produced Water Application for Beneficial Reuse Environmental # Impact and Treatment Optimization (PARETO), and is copyright (c) 2021 by the software owners: The # Regents of the University of California, through Lawrence Berkeley National Laboratory, et al. All # rights reserved. # # NOTICE. This Software was developed under funding from the U.S. Department of Energy and the # U.S. Government consequently retains certain rights. As such, the U.S. Government has been granted # for itself and others acting on its behalf a paid-up, nonexclusive, irrevocable, worldwide license # in the Software to reproduce, distribute copies to the public, prepare derivative works, and perform # publicly and display publicly, and to permit other to do so. ##################################################################################################### """ Authors: PARETO Team """ from pareto.operational_water_management.operational_produced_water_optimization_model import ( ProdTank, ) from pyomo.environ import Var import plotly.graph_objects as go import plotly.express as px import pandas as pd from enum import Enum class PrintValues(Enum): Detailed = 0 Nominal = 1 Essential = 2 def generate_report(model, is_print=[], fname=None): """ This method identifies the type of model: [strategic, operational], create a printing list based on is_print, and creates a dictionary that contains headers for all the variables that will be included in an Excel report. IMPORTANT: If an indexed variable is added or removed from a model, the printing lists and headers should be updated accrodingly. """ # Printing model sets, parameters, constraints, variable values printing_list = [] if model.type == "strategic": if len(is_print) == 0: printing_list = [] else: # PrintValues.Detailed: Slacks values included, Same as "All" if is_print[0].value == 0: printing_list = [ "v_F_Piped", "v_F_Trucked", "v_F_Sourced", "v_F_PadStorageIn", "v_F_ReuseDestination", "v_X_Capacity", "v_T_Capacity", "v_F_Capacity", "v_D_Capacity", "v_F_DisposalDestination", "v_F_PadStorageOut", "v_C_Piped", "v_C_Trucked", "v_C_Sourced", "v_C_Disposal", "v_C_Reuse", "v_L_Storage", "vb_y_Pipeline", "vb_y_Disposal", "vb_y_Storage", "vb_y_Treatment", "vb_y_FLow", "v_F_Overview", "v_S_FracDemand", "v_S_Production", "v_S_Flowback", "v_S_PipelineCapacity", "v_S_StorageCapacity", "v_S_DisposalCapacity", "v_S_TreatmentCapacity", "v_S_ReuseCapacity", "v_Q", ] # PrintValues.Nominal: Essential + Trucked water + Piped Water + Sourced water + vb_y_pipeline + vb_y_disposal + vb_y_storage + etc. elif is_print[0].value == 1: printing_list = [ "v_F_Piped", "v_F_Trucked", "v_F_Sourced", "v_C_Piped", "v_C_Trucked", "v_C_Sourced", "vb_y_Pipeline", "vb_y_Disposal", "vb_y_Storage", "vb_y_Flow", "vb_y_Treatment", "v_F_Overview", ] # PrintValues.Essential: Just message about slacks, "Check detailed results", Overview, Economics, KPIs elif is_print[0].value == 2: printing_list = ["v_F_Overview"] else: raise Exception("Report {0} not supported".format(is_print)) headers = { "v_F_Overview_dict": [("Variable Name", "Documentation", "Total")], "v_F_Piped_dict": [("Origin", "destination", "Time", "Piped water")], "v_C_Piped_dict": [("Origin", "Destination", "Time", "Cost piping")], "v_F_Trucked_dict": [("Origin", "Destination", "Time", "Trucked water")], "v_C_Trucked_dict": [("Origin", "Destination", "Time", "Cost trucking")], "v_F_Sourced_dict": [ ("Fresh water source", "Completion pad", "Time", "Sourced water") ], "v_C_Sourced_dict": [ ("Fresh water source", "Completion pad", "Time", "Cost sourced water") ], "v_F_PadStorageIn_dict": [("Completion pad", "Time", "StorageIn")], "v_F_PadStorageOut_dict": [("Completion pad", "Time", "StorageOut")], "v_C_Disposal_dict": [("Disposal site", "Time", "Cost of disposal")], "v_C_Treatment_dict": [("Treatment site", "Time", "Cost of Treatment")], "v_C_Reuse_dict": [("Completion pad", "Time", "Cost of reuse")], "v_C_Storage_dict": [("Storage Site", "Time", "Cost of Storage")], "v_R_Storage_dict": [ ("Storage Site", "Time", "Credit of Retrieving Produced Water") ], "v_L_Storage_dict": [("Storage site", "Time", "Storage Levels")], "v_L_PadStorage_dict": [("Completion pad", "Time", "Storage Levels")], "vb_y_Pipeline_dict": [ ("Origin", "Destination", "Pipeline Diameter", "Pipeline Installation") ], "vb_y_Disposal_dict": [("Disposal Site", "Injection Capacity", "Disposal")], "vb_y_Storage_dict": [ ("Storage Site", "Storage Capacity", "Storage Expansion") ], "vb_y_Flow_dict": [("Origin", "Destination", "Time", "Flow")], "vb_y_Treatment_dict": [ ("Treatment Site", "Treatment Capacity", "Treatment Expansion") ], "v_D_Capacity_dict": [("Disposal Site", "Disposal Site Capacity")], "v_T_Capacity_dict": [("Treatment Site", "Treatment Capacity")], "v_X_Capacity_dict": [("Storage Site", "Storage Site Capacity")], "v_F_Capacity_dict": [("Origin", "Destination", "Flow Capacity")], "v_S_FracDemand_dict": [("Completion pad", "Time", "Slack FracDemand")], "v_S_Production_dict": [("Production pad", "Time", "Slack Production")], "v_S_Flowback_dict": [("Completion pad", "Time", "Slack Flowback")], "v_S_PipelineCapacity_dict": [ ("Origin", "Destination", "Slack Pipeline Capacity") ], "v_S_StorageCapacity_dict": [("Storage site", "Slack Storage Capacity")], "v_S_DisposalCapacity_dict": [("Storage site", "Slack Disposal Capacity")], "v_S_TreatmentCapacity_dict": [ ("Treatment site", "Slack Treatment Capacity") ], "v_S_ReuseCapacity_dict": [("Reuse site", "Slack Reuse Capacity")], "v_F_ReuseDestination_dict": [ ("Completion Pad", "Time", "Total Deliveries to Completion Pad") ], "v_F_DisposalDestination_dict": [ ("Disposal Site", "Time", "Total Deliveries to Disposal Site") ], "quality.v_Q_dict": [ ("Location", "Water Component", "Time", "Water Quality") ], "v_F_UnusedTreatedWater_dict": [ ("Treatment site", "Time", "Treatment Waste Water") ], "v_F_CompletionsWater_dict": [ ("Pads", "Time", "Deliveries to completions not stored") ], "v_F_CompletionsDestination_dict": [ ("Pads", "Time", "Total deliveries to completions pads") ], } # Defining KPIs for strategic model model.reuse_WaterKPI = Var(doc="Reuse Fraction Produced Water [%]") if model.p_beta_TotalProd.value and model.v_F_TotalReused.value: reuseWater_value = ( (model.v_F_TotalReused.value) / (model.p_beta_TotalProd.value) * 100 ) else: reuseWater_value = 0 model.reuse_WaterKPI.value = reuseWater_value model.disposal_WaterKPI = Var(doc="Disposal Fraction Produced Water [%]") if model.v_F_TotalDisposed.value and model.p_beta_TotalProd.value: disposalWater_value = ( (model.v_F_TotalDisposed.value) / (model.p_beta_TotalProd.value) * 100 ) else: disposalWater_value = 0 model.disposal_WaterKPI.value = disposalWater_value model.fresh_CompletionsDemandKPI = Var( doc="Fresh Fraction Completions Demand [%]" ) if model.v_F_TotalSourced.value and model.p_gamma_TotalDemand.value: freshDemand_value = ( (model.v_F_TotalSourced.value) / (model.p_gamma_TotalDemand.value) * 100 ) else: freshDemand_value = 0 model.fresh_CompletionsDemandKPI.value = freshDemand_value model.reuse_CompletionsDemandKPI = Var( doc="Reuse Fraction Completions Demand [%]" ) if model.v_F_TotalReused.value and model.p_gamma_TotalDemand.value: reuseDemand_value = ( (model.v_F_TotalReused.value) / (model.p_gamma_TotalDemand.value) * 100 ) else: reuseDemand_value = 0 model.reuse_CompletionsDemandKPI.value = reuseDemand_value elif model.type == "operational": if len(is_print) == 0: printing_list = [] else: # PrintValues.Detailed: Slacks values included, Same as "All" if is_print[0].value == 0: printing_list = [ "v_F_Piped", "v_F_Trucked", "v_F_Sourced", "v_F_PadStorageIn", "v_L_ProdTank", "v_F_PadStorageOut", "v_C_Piped", "v_C_Trucked", "v_C_Sourced", "v_C_Disposal", "v_C_Reuse", "v_L_Storage", "vb_y_Pipeline", "vb_y_Disposal", "vb_y_Storage", "vb_y_Truck", "v_F_Drain", "v_B_Production", "vb_y_FLow", "v_F_Overview", "v_L_PadStorage", "v_C_Treatment", "v_C_Storage", "v_R_Storage", "v_S_FracDemand", "v_S_Production", "v_S_Flowback", "v_S_PipelineCapacity", "v_S_StorageCapacity", "v_S_DisposalCapacity", "v_S_TreatmentCapacity", "v_S_ReuseCapacity", "v_D_Capacity", "v_X_Capacity", "v_F_Capacity", ] # PrintValues.Nominal: Essential + Trucked water + Piped Water + Sourced water + vb_y_pipeline + vb_y_disposal + vb_y_storage elif is_print[0].value == 1: printing_list = [ "v_F_Piped", "v_F_Trucked", "v_F_Sourced", "v_C_Piped", "v_C_Trucked", "v_C_Sourced", "vb_y_Pipeline", "vb_y_Disposal", "vb_y_Storage", "vb_y_Flow", "vb_y_Truck", "vb_z_PadStorage", "v_F_Overview", ] # PrintValues.Essential: Just message about slacks, "Check detailed results", Overview, Economics, KPIs elif is_print[0].value == 2: printing_list = ["v_F_Overview"] else: raise Exception("Report {0} not supported".format(is_print)) headers = { "v_F_Overview_dict": [("Variable Name", "Documentation", "Total")], "v_F_Piped_dict": [("Origin", "Destination", "Time", "Piped water")], "v_C_Piped_dict": [("Origin", "Destination", "Time", "Cost piping")], "v_F_Trucked_dict": [("Origin", "Destination", "Time", "Trucked water")], "v_C_Trucked_dict": [("Origin", "Destination", "Time", "Cost trucking")], "v_F_Sourced_dict": [ ("Fresh water source", "Completion pad", "Time", "Sourced water") ], "v_C_Sourced_dict": [ ("Fresh water source", "Completion pad", "Time", "Cost sourced water") ], "v_F_PadStorageIn_dict": [("Completion pad", "Time", "StorageIn")], "v_F_PadStorageOut_dict": [("Completion pad", "Time", "StorageOut")], "v_C_Disposal_dict": [("Disposal site", "Time", "Cost of disposal")], "v_C_Treatment_dict": [("Treatment site", "Time", "Cost of Treatment")], "v_C_Reuse_dict": [("Completion pad", "Time", "Cost of reuse")], "v_C_Storage_dict": [("Storage Site", "Time", "Cost of Storage")], "v_R_Storage_dict": [ ("Storage Site", "Time", "Credit of Retrieving Produced Water") ], "v_L_Storage_dict": [("Storage site", "Time", "Storage Levels")], "v_L_PadStorage_dict": [("Completion pad", "Time", "Storage Levels")], "vb_y_Pipeline_dict": [ ("Origin", "Destination", "Pipeline Diameter", "Pipeline Installation") ], "vb_y_Disposal_dict": [("Disposal Site", "Injection Capacity", "Disposal")], "vb_y_Storage_dict": [ ("Storage Site", "Storage Capacity", "Storage Expansion") ], "vb_z_PadStorage_dict": [("Completions Pad", "Time", "Storage Use")], "vb_y_Flow_dict": [("Origin", "Destination", "Time", "Flow")], "vb_y_Truck_dict": [("Origin", "Destination", "Time", "Truck")], "v_D_Capacity_dict": [("Disposal Site", "Disposal Site Capacity")], "v_X_Capacity_dict": [("Storage Site", "Storage Site Capacity")], "v_F_Capacity_dict": [("Origin", "Destination", "Flow Capacity")], "v_S_FracDemand_dict": [("Completion pad", "Time", "Slack FracDemand")], "v_S_Production_dict": [("Production pad", "Time", "Slack Production")], "v_S_Flowback_dict": [("Completion pad", "Time", "Slack Flowback")], "v_S_PipelineCapacity_dict": [ ("Origin", "Destination", "Slack Pipeline Capacity") ], "v_S_StorageCapacity_dict": [("Storage site", "Slack Storage Capacity")], "v_S_DisposalCapacity_dict": [("Storage site", "Slack Disposal Capacity")], "v_S_TreatmentCapacity_dict": [ ("Treatment site", "Slack Treatment Capacity") ], "v_S_ReuseCapacity_dict": [("Reuse site", "Slack Reuse Capacity")], "v_F_ReuseDestination_dict": [ ("Completion Pad", "Time", "Total Deliveries to Completion Pad") ], "v_F_DisposalDestination_dict": [ ("Disposal Site", "Time", "Total Deliveries to Disposal Site") ], "v_F_TreatmentDestination_dict": [ ("Disposal Site", "Time", "Total Deliveries to Disposal Site") ], "v_B_Production_dict": [ ("Pads", "Time", "Produced Water For Transport From Pad") ], "v_Q_dict": [("Location", "Water Component", "Time", "Water Quality")], "v_F_UnusedTreatedWater_dict": [ ("Treatment site", "Time", "Treatment Waste Water") ], } # Detect if the model has equalized or individual production tanks if model.config.production_tanks == ProdTank.equalized: headers.update( {"v_L_ProdTank_dict": [("Pads", "Time", "Production Tank Water Level")]} ) headers.update( { "v_F_Drain_dict": [ ("Pads", "Time", "Produced Water Drained From Production Tank") ] } ) elif model.config.production_tanks == ProdTank.individual: headers.update( { "v_L_ProdTank_dict": [ ("Pads", "Tank", "Time", "Production Tank Water Level") ] } ) headers.update( { "v_F_Drain_dict": [ ( "Pads", "Tank", "Time", "Produced Water Drained From Production Tank", ) ] } ) else: raise Exception( "Tank Type {0} is not supported".format(model.config.production_tanks) ) else: raise Exception("Model type {0} is not supported".format(model.type)) # Loop through all the variables in the model for variable in model.component_objects(Var): if variable._data is not None: # Loop through the indices of a variable. "i" is a tuple of indices for i in variable._data: var_value = variable._data[i].value if i is None: # Create the overview report with variables that are not indexed, e.g.: # total piped water, total trucked water, total fresh water, etc. headers["v_F_Overview_dict"].append( (variable.name, variable.doc, var_value) ) # if a variable contains only one index, then "i" is recognized as a string and not a tupel, # in that case, "i" is redefined by adding a comma so that it becomes a tuple elif i is not None and isinstance(i, str): i = (i,) if i is not None and var_value is not None and var_value > 0: headers[str(variable.name) + "_dict"].append((*i, var_value)) if model.v_C_Slack.value is not None and model.v_C_Slack.value > 0: print("!!!ATTENTION!!! One or several slack variables have been triggered!") # Loop for printing information on the command prompt for i in list(headers.items())[1:]: dict_name = i[0][: -len("_dict")] if dict_name in printing_list: print("\n", "=" * 10, dict_name.upper(), "=" * 10) print(i[1][0]) for j in i[1][1:]: print("{0}{1} = {2}".format(dict_name, j[:-1], j[-1])) # Loop for printing Overview Information on the command prompt for i in list(headers.items())[:1]: dict_name = i[0][: -len("_dict")] if dict_name in printing_list: print("\n", "=" * 10, dict_name.upper(), "=" * 10) # print(i[1][1][0]) for j in i[1][1:]: if not j[0]: # Conditional that checks if a blank line should be added print() elif not j[ 1 ]: # Conditional that checks if the header for a section should be added print(j[0].upper()) else: print("{0} = {1}".format(j[1], j[2])) # Printing warning if "proprietary_data" is True if len(printing_list) > 0 and model.proprietary_data is True: print( "\n**********************************************************************" ) print(" WARNING: This report contains Proprietary Data ") print("**********************************************************************") # Adding a footnote to the each dictionary indicating if the report contains Prorpietary Data if model.proprietary_data is True: for report in headers: if len(headers[report]) > 1: headers[report].append(("PROPRIETARY DATA",)) # Creating the Excel report if fname is None: fname = "PARETO_report.xlsx" with pd.ExcelWriter(fname) as writer: for i in headers: df = pd.DataFrame(headers[i][1:], columns=headers[i][0]) df.fillna("") df.to_excel(writer, sheet_name=i[: -len("_dict")], index=False, startrow=1) return model, headers def plot_sankey(input_data={}, args=None): """ This method receives data in the form of 3 seperate lists (origin, destination, value lists), generate_report dictionary output format, or get_data dictionary output format. It then places this data into 4 lists of unique elements so that proper indexes can be assigned for each list so that the elements will correspond with each other based off of the indexes. These lists are then passed into the outlet_flow method which gives an output which is passed into the method to generate the sankey diagram. """ # Suppress SettingWithCopyWarning because of false positives pd.options.mode.chained_assignment = None label = [] check_list = ["source", "destination", "value"] if all(x in input_data.keys() for x in check_list): input_data["type_of_data"] = "Labels" elif "pareto_var" in input_data.keys(): input_data["type_of_data"] = None variable = input_data["pareto_var"] else: raise Exception( "Input data is not valid. Either provide source, destination, value, or a pareto_var assigned to the key pareto_var" ) # Taking in the lists and assigning them to list variables to be used in the method if input_data["type_of_data"] == "Labels": source = input_data["source"] destination = input_data["destination"] value = input_data["value"] # Checking if a source and destination are the same and giving the destination a new name for uniqueness for n in range(len(source)): if source[n] == destination[n]: destination[n] = "{0}{1}".format(destination[n], "_TILDE") elif input_data["type_of_data"] is None and isinstance(variable, list): source = [] destination = [] value = [] temp_variable = [] temp_variable.append(variable[0]) # Searching for the keyword "PROPRIETARY DATA" if "PROPRIETARY DATA" in variable[-1]: variable.pop() # Deleting zero values for i in variable[1:]: if i[-1] > 0: temp_variable.append(i) variable = temp_variable # # Calling handle_time method handles user input for specific time_periods and if the variable is indexed by time variable_updated = handle_time(variable, input_data) # Loop through dictionaries to be included in sankey diagrams for i in variable_updated[1:]: source.append(i[0]) # Add sources, values, and destinations to lists value.append(i[-1]) if i[0] == i[1]: destination.append( "{0}{1}".format(i[1], "_TILDE") ) # Add onto duplicate names so that they can be given a unique index else: destination.append(i[1]) elif input_data["type_of_data"] is None and isinstance(variable, dict): source = [] destination = [] value = [] formatted_list = [] temp_variable = {} # Deleting zero values for key, val in variable.items(): if val > 0: temp_variable.update({key: val}) variable = temp_variable # Calling handle_time method handles user input for specific time_periods and if the variable is indexed by time variable_updated = handle_time(variable, input_data) # Formatting data into a list of tuples for v in variable_updated: formatted_list.append((*v, variable_updated[v])) if "PROPRIETARY DATA" in formatted_list[-1]: formatted_list.pop() # Adding sources, destinations, and values to respective lists from tuples for i in formatted_list: source.append(i[0]) value.append(i[-1]) if i[0] == i[1]: destination.append( "{0}{1}".format(i[1], "_TILDE") ) # Add onto duplicate names so that they can be given a unique index else: destination.append(i[1]) else: raise Exception( "Type of data {0} is not supported. Available options are Labels, get_data format, and generate_report format".format( type(variable) ) ) # Combine locations and cut out duplicates while maintaining same order total_labels = source + destination label = sorted(set(total_labels), key=total_labels.index) for s in source: for l in label: if s == l: s_index = label.index(l) for n, k in enumerate(source): if k == s: source[n] = s_index for d in destination: for l in label: if d == l: d_index = label.index(l) for m, j in enumerate(destination): if j == d: destination[m] = d_index # Remove added string from affected names before passing them into sankey method for t, x in enumerate(label): if x.endswith("_TILDE"): label[t] = x[: -len("_TILDE")] sum_dict = {"source": source, "destination": destination, "value": value} sum_df = pd.DataFrame(sum_dict) # Finding duplicates in dataframe and dropping them df_dup = sum_df[sum_df.duplicated(subset=["source", "destination"], keep=False)] df_dup = df_dup.drop_duplicates(subset=["source", "destination"], keep="first") # Looping through dataframe and summing the total values of each node and assigning it to its instance for index, row in df_dup.iterrows(): new_value = 0 new_value = sum_df.loc[ (sum_df["source"] == row["source"]) & (sum_df["destination"] == row["destination"]), "value", ].sum() sum_df.at[index, "value"] = new_value df_updated = sum_df.drop_duplicates(subset=["source", "destination"], keep="first") source = df_updated["source"].to_list() destination = df_updated["destination"].to_list() value = df_updated["value"].to_list() updated_label = outlet_flow(source, destination, label, value) generate_sankey(source, destination, value, updated_label, args) def handle_time(variable, input_data): """ The handle_time method checks if a variable is indexed by time and checks if a user has passed in certain time periods they would like to use for the data. It then appends those rows of data with the specified time value to a new list which is returned in the plot_sankey method. """ # Checks the type of data that is passed in and if it is indexed by time indexed_by_time = False if isinstance(variable, list): time_var = [] for i in variable[:1]: i = [j.title() for j in i] if "Time" in i: indexed_by_time = True if indexed_by_time == True: if ( "time_period" in input_data.keys() ): # Checks if user passes in specific time periods they want used in the diagram, if none passed in then it returns original list for y in variable[1:]: if y[-2] in input_data["time_period"]: time_var.append((y)) if len(time_var) == 0: raise Exception( "The time period the user provided does not exist in the data" ) else: return time_var else: return variable else: return variable else: time_var = {} if "labels" in input_data: for i in input_data["labels"]: i = [j.title() for j in i] if "Time" in i: indexed_by_time = True if indexed_by_time == True: if ( "time_period" in input_data.keys() ): # Checks if user passes in specific time periods they want used in the diagram, if none passed in then it returns original dictionary for key, y in variable.items(): if key[-1] in input_data["time_period"]: time_var.update({key: y}) if len(time_var) == 0: raise Exception( "The time period the user provided does not exist in the data" ) else: return time_var else: return variable else: return variable else: raise Exception("User must provide labels when using Get_data format.") def outlet_flow(source=[], destination=[], label=[], value=[]): """ The outlet_flow method receives source, destination, label, and value lists and sums the total value for each label. This value is then added to the label string and updated label lists so that it can be displayed on each node as "label:value". This updated label list is output to be used in the generate_sankey method. """ # Loop through each list finding where labels match sources and destination and totaling/rounding their values to be used in updated label list for x, l in enumerate(label): output = 0 v_count = [] for s, g in enumerate(source): if g == x: v_count.append(s) if len(v_count) == 0: for d, h in enumerate(destination): if h == x: v_count.append(d) for v in v_count: output = output + float(value[v]) rounded_output = round(output, 0) integer_output = int(rounded_output) value_length = len(str(integer_output)) if value_length >= 4 and value_length <= 7: integer_output = str(int(integer_output / 1000)) + "k" elif value_length >= 8: integer_output = str(int(integer_output / 1000000)) + "M" label[x] = "{0}:{1}".format(l, integer_output) return label def generate_sankey(source=[], destination=[], value=[], label=[], args=None): """ This method receives the final lists for source, destination, value, and labels to be used in generating the plotly sankey diagram. It also receives arguments that determine font size and plot titles. It outputs the sankey diagram in an html format that is automatically opened in a browser. """ format_checklist = ["jpg", "jpeg", "pdf", "png", "svg"] figure_output = "" # Checking arguments and assigning appropriate values if args is None: font_size = 20 plot_title = "Sankey Diagram" elif args["font_size"] is None: font_size = 20 elif args["plot_title"] is None: plot_title = "Sankey Diagram" elif args["output_file"] is None: figure_output = "first_sankey.html" else: font_size = args["font_size"] plot_title = args["plot_title"] figure_output = args["output_file"] # Creating links and nodes based on the passed in lists to be used as the data for generating the sankey diagram link = dict(source=source, target=destination, value=value) node = dict(label=label, pad=30, thickness=15, line=dict(color="black", width=0.5)) data = go.Sankey(link=link, node=node) # Assigning sankey diagram to fig variable fig = go.Figure(data) # Updating the layout of the sankey and formatting based on user passed in arguments fig.update_layout( title_font_size=font_size * 2, title_text=plot_title, title_x=0.5, font_size=font_size, ) if ".html" in figure_output: fig.write_html(figure_output, auto_open=False) elif any(x in figure_output for x in format_checklist): fig.write_image(figure_output, height=850, width=1800) else: exception_string = "" for x in format_checklist: exception_string = exception_string + ", " + x raise Exception( "The file format provided is not supported. Please use either html{}.".format( exception_string ) ) def plot_bars(input_data, args): """ This method creates a bar chart based on a user passed in dictionary or list that is created from the get_data or generate_report methods. The dictionary or list is assigned to the key 'pareto_var' of the input_data dictionary and the method then determines the type of variable and proceeds accordingly. These variables are checked if they are indexed by time, if true then an animated bar chart is created, if false then a static bar chart is created. In addition to the input_data dictionary, another dictionary named 'args' is passed in containing arguments for customizing the bar chart. The args dictionary keys are 'plot_title', 'y_axis', 'group_by', and 'labels' which is only required if the variable is of get_data format(dictionary). The 'y_axis' key is optional and accepts the value 'log' which will take the logarithm of the y axis. If 'y_axis' is not passed in then the axis will default to linear. The 'group_by' key accepts a value that is equal to a column name of the variable data, this will specify which column to use for the x axis. Finally, the 'labels' key accepts a tuple of labels to be assigned to the get_data format(list) variable since no labels are provided from the get_data method. """ # Suppress SettingWithCopyWarning because of false positives pd.options.mode.chained_assignment = None y_range = [] tick_text = [] time_list = [] indexed_by_time = False date_time = False print_data = False format_checklist = ["jpg", "jpeg", "pdf", "png", "svg"] figure_output = "" if "output_file" not in args.keys() or args["output_file"] is None: figure_output = "first_bar.html" else: figure_output = args["output_file"] # Check for variable data and throw exception if no data is provided if "pareto_var" in input_data.keys(): variable = input_data["pareto_var"] else: raise Exception( "Input data is not valid. Provide a pareto_var assigned to the key pareto_var" ) # Give group_by and plot_title a value of None/"" if it is not provided if "group_by" not in args.keys(): args["group_by"] = None # Assign print_data to the user passed in value if "print_data" in args.keys(): print_data = args["print_data"] if args["plot_title"] == "" or args["group_by"] is None: plot_title = "" else: plot_title = args["plot_title"] # Check if log was passed in as an option for the y axis and create a boolean for it if "y_axis" not in args.keys(): log_y = False yaxis_type = "linear" elif args["y_axis"] == "log": log_y = True yaxis_type = "log" else: raise Warning("Y axis type {} is not supported".format(args["y_axis"])) # Check the type of variable passed in and assign labels/Check for time indexing if isinstance(variable, list): for i in variable[:1]: i = [j.title() for j in i] if args["group_by"] == "" or args["group_by"] is None: x_title = i[0] y_title = i[-1] if "Time" in i: indexed_by_time = True time = "Time" elif args["group_by"].title() in i: # add default group_by as first column y_title = i[-1] x_title = args["group_by"].title() if "Time" in i: indexed_by_time = True time = "Time" formatted_variable = variable[1:] elif isinstance(variable, dict): formatted_list = [] for v in variable: formatted_list.append((*v, variable[v])) if input_data["labels"] is not None: for i in input_data["labels"]: i = [j.title() for j in i] x_title = i[0] y_title = i[-1] if "Time" in i: indexed_by_time = True time = "Time" else: raise Exception("User must provide labels when using Get_data format.") formatted_variable = formatted_list else: raise Exception( "Type of data {0} is not supported. Valid data formats are list and dictionary".format( type(variable) ) ) if indexed_by_time: # Create dataframes for use in the method df = pd.DataFrame(columns=i) df_bar = df[[x_title, time, y_title]] df_new = pd.DataFrame(formatted_variable, columns=i) df_new = df_new.round(0) df_modified = df_new[[x_title, time, y_title]] char_checklist = ["/", "-"] removed_char = "" if any(x in df_modified[time][0] for x in char_checklist): df_modified[time] = pd.to_datetime(df_modified[time]).dt.date date_time = True else: removed_char = df_modified[time][0][:1] df_modified[time] = df_modified[time].apply(lambda x: x.strip(removed_char)) df_modified[time] = df_modified[time].apply(lambda x: pd.to_numeric(x)) for d, y in df_modified.iterrows(): time_list.append(y[time]) time_loop = set(time_list) time_loop = sorted(time_loop) # Loop through time list and give any nodes without a value for that time a 0 for ind, x in df_modified.iterrows(): time_value = df_modified.loc[df_modified[x_title] == x[x_title], time] for t in time_loop: if t not in time_value.values: df_modified.loc[len(df_modified.index)] = [x[x_title], t, 1e-10] # Take the sums of flows from nodes to destinations that have the same time period and locations df_dup = df_modified[df_modified.duplicated(subset=[x_title, time], keep=False)] df_dup = df_dup.drop_duplicates(subset=[x_title, time], keep="first") for index, row in df_dup.iterrows(): new_value = 0 new_value = df_modified.loc[ (df_modified[x_title] == row[x_title]) & (df_modified[time] == row[time]), y_title, ].sum() df_modified.at[index, y_title] = new_value df_bar = df_modified.drop_duplicates(subset=[x_title, time], keep="first") # Get all y values and then calculate the max for the y axis range for a, b in df_bar.iterrows(): y_range.append(b[y_title]) tick_text.append(b[x_title]) for y, x in enumerate(y_range): y_range[y] = float(x) max_y = max(y_range) # Sort by time and x values df_time_sort = df_bar.sort_values(by=[time, x_title]) # If time is of type datetime, convert to string for figure processing if date_time: df_time_sort[time] = df_time_sort[time].apply(lambda x: str(x)) else: df_time_sort[time] = df_time_sort[time].apply( lambda x: removed_char + str(x) ) # Create bar chart with provided data and parameters fig = px.bar( df_time_sort, x=x_title, y=y_title, color=x_title, animation_frame=time, range_y=[1, max_y * 1.02], title=plot_title, log_y=log_y, ) fig.update_layout( font_color="#fff", paper_bgcolor="#333", plot_bgcolor="#ccc", ) # Update animation settings fig.layout.updatemenus[0].buttons[0].args[1]["frame"]["duration"] = 200 fig.layout.updatemenus[0].buttons[0].args[1]["frame"]["redraw"] = False fig.layout.updatemenus[0].buttons[0].args[1]["transition"]["duration"] = 1000 fig.layout.updatemenus[0].buttons[0].args[1]["transition"]["easing"] = "linear" if print_data: # Printing dataframe that is used in bar chart with pd.option_context( "display.max_rows", None, "display.max_columns", None, "display.precision", 1, ): print(df_time_sort) # Write the figure to html format and open in the browser if ".html" in figure_output: fig.write_html(figure_output, auto_open=False, auto_play=False) elif any(x in figure_output for x in format_checklist): fig.write_image(figure_output, height=850, width=1800) else: exception_string = "" for x in format_checklist: exception_string = exception_string + ", " + x raise Exception( "The file format provided is not supported. Please use either html{}.".format( exception_string ) ) else: # Create dataframe for use in the method df_new = pd.DataFrame(formatted_variable, columns=i) # Take the sums of flows from nodes to destinations that have the same locations df_modified = df_new[df_new.duplicated(subset=[x_title], keep=False)] for index, row in df_modified.iterrows(): new_value = 0 new_value = df_modified.loc[ df_modified[x_title] == row[x_title], y_title ].sum() df_new.at[index, y_title] = new_value df_new_updated = df_new.drop_duplicates(subset=[x_title], keep="first") # Get all values and then calculate the max for the y axis range for a, b in df_new_updated.iterrows(): y_range.append(b[y_title]) for y, x in enumerate(y_range): y_range[y] = float(x) max_y = max(y_range) # Create bar chart with provided data and parameters fig = px.bar( df_new_updated, x=x_title, y=y_title, range_y=[0, max_y * 1.02], color=x_title, title=plot_title, text=y_title, ) fig.update_layout( font_color="#fff", paper_bgcolor="#333", plot_bgcolor="#ccc", yaxis_type=yaxis_type, ) if print_data: # Printing dataframe that is used in bar chart with pd.option_context( "display.max_rows", None, "display.max_columns", None, "display.precision", 1, ): print(df_new_updated) if ".html" in figure_output: fig.write_html(figure_output, auto_open=False) elif any(x in figure_output for x in format_checklist): fig.write_image(figure_output, height=850, width=1800) else: exception_string = "" for x in format_checklist: exception_string = exception_string + ", " + x raise Exception( "The file format provided is not supported. Please use either html{}.".format( exception_string ) ) def plot_scatter(input_data, args): """ The plot_scatter method creates a scatter plot based on two variables that are assigned to x and y, and a dictionary of arguments including labels, size specifications, group by and chart title. The variables that are passed in can be of type list (generate_report format) and of type dictionary (get_data format). Labels and size arguments are then interpreted/assigned appropriately to create the scatter plots. This method will produce two different kinds of scatter plots depending on if the variables are indexed by time or not. If they are indexed by time, an animated plot will be created, if they are not indexed by time, a static plot will be created. Before the manipulation and framing of this data is completed, missing values in the datasets are detected and mitigated by giving them a value of 0 if none is provided. The size argument is then sorted out either by calculating the ratio that the user provided as 'y/x' or 'x/y', or taking the variable that was provided for the size argument and assigning those size values to their respective rows. Once these data modifications are completed, the scatter plot is created with the data and arguments that are provided. """ # Suppress SettingWithCopyWarning because of false positives pd.options.mode.chained_assignment = None y_range = [] x_range = [] time_list = [] category_list = [] indexed_by_time = False provided_size = False is_list = False is_dict = False s_variable = None date_time = False print_data = False group_by_category = False category_variable = None size = "Size" format_checklist = ["jpg", "jpeg", "pdf", "png", "svg"] figure_output = "" # Checks if output_file has been passed in as a user argument if "output_file" not in args.keys() or args["output_file"] is None: figure_output = "first_scatter_plot.html" else: figure_output = args["output_file"] # Assigns boolean variable to True if labels have been provided in the arguments check_list = ["labels_x", "labels_y"] if all(x in input_data.keys() for x in check_list): has_labels = True else: has_labels = False # Assign print_data to the user passed in value if "print_data" in args.keys(): print_data = args["print_data"] # Checking for size argument and checking the type if "size" in input_data.keys(): s_variable = input_data["size"] provided_size = True if isinstance(s_variable, list): is_list = True elif isinstance(s_variable, dict): is_dict = True # Check if group by category argument was provided if "group_by_category" in args.keys(): if isinstance(args["group_by_category"], bool): group_by_category = args["group_by_category"] elif isinstance(args["group_by_category"], dict): category_variable = args["group_by_category"] for c in category_variable: category_list.append((c, category_variable[c])) df_category = pd.DataFrame(category_list, columns=["Node", "Category"]) elif isinstance(args["group_by_category"], list): category_variable = args["group_by_category"][1:] df_category = pd.DataFrame(category_variable, columns=["Node", "Category"]) else: raise Exception( 'Invalid type for argument "group_by_category". Must be of type boolean, list variable or dictionary variable.' ) variable_x = input_data["pareto_var_x"] variable_y = input_data["pareto_var_y"] if isinstance(variable_x, list) and isinstance(variable_y, list): for i, g in zip(variable_x[:1], variable_y[:1]): i = [j.title() for j in i] g = [l.title() for l in g] x_title = i[-1] y_title = g[-1] if args["group_by"] is not None: col_1 = args["group_by"] else: col_1 = i[0] if "Time" in i and "Time" in g: indexed_by_time = True time = "Time" elif "Time" not in i and "Time" not in g: indexed_by_time = False else: raise Exception( "Cannot create scatter plot unless BOTH variables are/are not indexed by time" ) formatted_variable_x = variable_x[1:] formatted_variable_y = variable_y[1:] # If size is provided in the form of a list, grab labels for size and check if indexed by time compared to x and y variables if provided_size and is_list: for s in s_variable[:1]: s = [s.title() for j in s] s_title = s[-1] if indexed_by_time and "Time" not in s: raise Exception( "Both x and y variables are indexed by time. Size variable must also be indexed by time to create scatter plot." ) s_variable = s_variable[1:] elif isinstance(variable_x, dict) and isinstance(variable_y, dict): formatted_list_x = [] formatted_list_y = [] v_tuples = [] # Get a list of tuples which are the keys from both variables, Example => ('N01','N05','T01') for t in variable_x: v_tuples.append(t) for u in variable_y: v_tuples.append(u) v_tuples = list(set(v_tuples)) # Use list of tuples to find any missing rows and assign value of 0 for tup in v_tuples: if tup not in variable_x: variable_x[tup] = 0 if tup not in variable_y: variable_y[tup] = 0 for l, k in zip(variable_x, variable_y): formatted_list_x.append((*l, variable_x[l])) formatted_list_y.append((*k, variable_y[k])) if has_labels: for i in input_data["labels_x"]: i = [j.title() for j in i] x_title = i[-1] for g in input_data["labels_y"]: g = [r.title() for r in g] y_title = g[-1] if args["group_by"] is not None: col_1 = args["group_by"] else: col_1 = i[0] if "Time" in i and "Time" in g: indexed_by_time = True time = "Time" elif "Time" not in i and "Time" not in g: indexed_by_time = False else: raise Exception( "Cannot create scatter plot unless BOTH variables are/are not indexed by time" ) else: raise Exception( "User must provide labels for both x and y when using Get_data format." ) formatted_variable_x = formatted_list_x formatted_variable_y = formatted_list_y # If size is provided in the form of a dictionary, grab labels for size and check if indexed by time compared to x and y variables if provided_size and is_dict: size_list = [] for v in s_variable: size_list.append((*v, s_variable[v])) s_variable = size_list if "labels_size" in input_data.keys(): for s in input_data["labels_size"]: s = [k.title() for k in s] s_title = s[-1] if indexed_by_time and "Time" not in s: raise Exception( "Both x and y variables are indexed by time. Size variable must also be indexed by time to create scatter plot." ) else: raise Exception("User must provide labels for the size variable ") else: raise Exception( "Type of data {0} or {1} is not supported. Available options are list and dictionary. Both variables must be the same type of data.".format( type(variable_x), type(variable_y) ) ) if indexed_by_time: # Creating dataframe based on the passed in variable and rounding the values df_new_x = pd.DataFrame(formatted_variable_x, columns=i) df_new_x = df_new_x.round(0) df_modified_x = df_new_x[[col_1, time, x_title]] df_new_y = pd.DataFrame(formatted_variable_y, columns=g) df_new_y = df_new_y.round(0) df_modified_y = df_new_y[[col_1, time, y_title]] # Check if time period is in datetime format or in letter number format char_checklist = ["/", "-"] removed_char = "" if any(x in df_modified_x[time][0] for x in char_checklist): df_modified_x[time] = pd.to_datetime(df_modified_x[time]).dt.date df_modified_y[time] = pd.to_datetime(df_modified_y[time]).dt.date date_time = True else: removed_char = df_modified_x[time][0][:1] df_modified_x[time] = df_modified_x[time].apply( lambda x: x.strip(removed_char) ) df_modified_y[time] = df_modified_y[time].apply( lambda x: x.strip(removed_char) ) df_modified_x[time] = df_modified_x[time].apply(lambda x:
pd.to_numeric(x)
pandas.to_numeric
#!/usr/bin/python # encoding: utf-8 """ @author: Ian @file: Estimator.py @time: 2019-09-05 15:14 """ def data_split(df, mode='train_val', shuffle=False, stratify=None, random_state=14): """ :param df: :param mode: :param shuffle: :param stratify: :param random_state: :return: """ from sklearn.model_selection import train_test_split if df.shape[0] > 100000: test_size = 0.05 elif df.shape[0] > 50000: test_size = 0.075 elif df.shape[0] > 10000: test_size = 0.1 else: test_size = 0.25 print(f'sample sum: {df.shape[0]}, test_size: {test_size}') if stratify is not None: df_train, df_test, stratify, _ = train_test_split(df, stratify, test_size=test_size, shuffle=shuffle, stratify=stratify, random_state=random_state) else: df_train, df_test = train_test_split(df, test_size=test_size, shuffle=shuffle, stratify=stratify, random_state=random_state) if mode == 'train_val': return df_train, df_test elif mode == 'train_val_test': df_train, df_val = train_test_split(df_train, test_size=test_size, shuffle=shuffle, stratify=stratify, random_state=random_state) return df_train, df_val, df_test class DataProcessor: def __init__(self, features=None, labels=None, cat_cols=None, split=None, random_state=14): self._features = features self._labels = labels self._cat_cols = cat_cols from sklearn.model_selection import train_test_split self._features_train, self._features_val, self._labels_train, self._labels_val = train_test_split(features, labels, test_size=split, random_state=random_state, stratify=labels) def cv_input_fn(self): return self._features, self._labels, self._cat_cols def train_input_fn(self): return self._features_train, self._labels_train, self._cat_cols def eval_input_fn(self): return self._features_val, self._labels_val, self._cat_cols def test_input_fn(self, features, batch_size=None): pass class FastTextDataProcessor(DataProcessor): def __init__(self, features=None, labels=None, split=0.1, random_state=14): """ 注意:这里的输入都是没有经过分词处理的短句 :param features: Series :param labels: Series :param cat_cols: :param split: :param random_state: """ super().__init__(features=features, labels=labels, split=split, random_state=random_state) def train_input_fn(self, dest_train_file_path='data_gen/trainset.txt'): """ :param dest_train_file_path: :return: """ train_set = self._features_train.map(lambda x: ' '.join(list(x))) + ' __label__' + self._labels_train.map( str) + '\n' with open(dest_train_file_path, 'w', encoding='utf8') as f: f.writelines(train_set.tolist()) return train_set def eval_input_fn(self, dest_val_file_path='data_gen/valset.txt'): val_set = self._features_val.map(lambda x: ' '.join(list(x))) + ' __label__' + self._labels_val.map( str) + '\n' with open(dest_val_file_path, 'w', encoding='utf8') as f: f.writelines(val_set.tolist()) return val_set @classmethod def test_input_fn(self, features): """ :param features: Series :return: """ return features.map(lambda x: ' '.join(list(x))) class Estimator(object): """Base Estimator class. 参考 https://github.com/tensorflow/estimator/blob/master/tensorflow_estimator/python/estimator/estimator.py """ def __init__(self, params: dict=None, data_processor: DataProcessor=None): """ Constructs an `Estimator` instance. :param params: :param data_processor: """ self._params = params self._data_processor = data_processor def model_fn(self): return "" def train(self, steps=None): """ :param steps: Number of steps for which to train the model. :return: """ pass def evaluate(self, steps=None): """ Evaluates the model given evaluation data `input_fn`. For each step, calls `input_fn`, which returns one batch of data. :param steps: :param hooks: :param checkpoint_path: :param name: :return: """ pass def test(self, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True): """ Yields predictions for given features. :param predict_keys: :param hooks: :param checkpoint_path: :param yield_single_examples: :return: """ pass def baseline(self): """ 一个使用默认参数的模型工作流:[cv,] train, val, test :return: """ pass def save_model(self): pass def load_model(self): pass class ClsEstimator(Estimator): """Classifier Estimator class. """ def __init__(self, params: dict=None, data_processor: DataProcessor=None, model_path: str=None): """ Constructs an `Estimator` instance. :param params: :param data_processor: :param model_path: 模型的路径 """ self._params = params self._data_processor = data_processor self._model_path = model_path def model_fn(self): raise NotImplementedError() def train(self, steps=None): """ :param steps: Number of steps for which to train the model. :return: """ raise NotImplementedError() def evaluate(self, steps=None): """ Evaluates the model given evaluation data `input_fn`. For each step, calls `input_fn`, which returns one batch of data. :param steps: :param hooks: :param checkpoint_path: :param name: :return: """ raise NotImplementedError() def train_eval(self): """ train & evaluate :return: """ pass def cross_val(self): """ :return: """ raise NotImplementedError() def test(self, predict_keys=None, hooks=None, checkpoint_path=None, yield_single_examples=True): """ Yields predictions for given features. :param predict_keys: :param hooks: :param checkpoint_path: :param yield_single_examples: :return: """ raise NotImplementedError() def explain(self): """模型解释""" raise NotImplementedError() class CatBoostClsEstimator(ClsEstimator): def __init__(self, params=None, data_processor=None, model_path=None): """ :param params: params = { 'iterations': iterations, # learning_rate: 0.1, # 'custom_metric': 'AUC', 'custom_metric': custom_metric, 'loss_function': 'CrossEntropy' } """ super().__init__(params=params, data_processor=data_processor, model_path=model_path) if self._model_path: self.load_model(self._model_path) else: self._model = self.model_fn() def model_fn(self): from catboost import CatBoostClassifier return CatBoostClassifier(**self._params) if self._params else CatBoostClassifier() def train(self, plot=True, verbose=True, show_features_importance=True, init_model=None): """ :param plot: :param verbose: :param show_features_importance: :param init_model: CatBoost class or string, [default=None] Continue training starting from the existing model. If this parameter is a string, load initial model from the path specified by this string. :return: """ from catboost import Pool import pandas as pd features, labels, cat_cols = self._data_processor.train_input_fn() train_data = Pool(data=features, label=labels, cat_features=cat_cols) self._model.fit(train_data, plot=plot, verbose=verbose) if show_features_importance: df_features_importance = pd.DataFrame({'name': self._model.feature_names_, 'value': self._model.feature_importances_}) df_features_importance = df_features_importance.sort_values('value', ascending=False) df_features_importance.reset_index(drop=True, inplace=True) print(df_features_importance.head(5)) import matplotlib.pyplot as plt fea_ = df_features_importance.sort_values('value')[df_features_importance.value > 0].value fea_name = df_features_importance.sort_values('value')[df_features_importance.value > 0].name plt.figure(figsize=(10, 20)) plt.barh(fea_name, fea_, height=0.5) plt.show() return df_features_importance def evaluate(self, df_val=None, y_val=None, cat_cols=None): from sklearn.metrics import classification_report from catboost import Pool import pandas as pd if not df_val: df_val, y_val, cat_cols = self._data_processor.eval_input_fn() test_data = Pool(data=df_val, cat_features=cat_cols) r = self._model.predict(test_data) print(pd.Series(r).value_counts()) print(classification_report(y_val, r)) dfr = pd.DataFrame(y_val) dfr.columns = ['true_label'] y_test_hat = self._model.predict_proba(test_data)[:, 1] dfr['score'] = y_test_hat dfr['predict_label'] = r dfr = dfr.sort_values('score', ascending=False) dfr['order'] = range(1, dfr.shape[0] + 1) print(dfr[dfr.true_label == 1]) return dfr def train_eval(self, plot=True, verbose=True, show_features_importance=True, init_model=None, use_best_model: bool=True, early_stopping_rounds: int=None): """ :param plot: :param verbose: :param show_features_importance: :param init_model: CatBoost class or string, [default=None] Continue training starting from the existing model. If this parameter is a string, load initial model from the path specified by this string. :param use_best_model: :param early_stopping_rounds: :return: """ from catboost import Pool import pandas as pd features, labels, cat_cols = self._data_processor.train_input_fn() train_data = Pool(data=features, label=labels, cat_features=cat_cols) df_val, y_val, cat_cols = self._data_processor.eval_input_fn() val_data = Pool(data=df_val, label=y_val, cat_features=cat_cols) self._model.fit(train_data, eval_set=val_data, plot=plot, verbose=verbose) if show_features_importance: df_features_importance = pd.DataFrame({'name': self._model.feature_names_, 'value': self._model.feature_importances_}) df_features_importance = df_features_importance.sort_values('value', ascending=False) df_features_importance.reset_index(drop=True, inplace=True) print(df_features_importance.head(5)) import matplotlib.pyplot as plt fea_ = df_features_importance.sort_values('value')[df_features_importance.value > 0].value fea_name = df_features_importance.sort_values('value')[df_features_importance.value > 0].name plt.figure(figsize=(10, 20)) plt.barh(fea_name, fea_, height=0.5) plt.show() return df_features_importance def cross_val(self, nfold=3, shuffle=True, stratified=None, plot=True, partition_random_seed: int=14): """ :param nfold: :param shuffle: :param stratified: :param plot: :param partition_random_seed: :return: cv results : pandas.core.frame.DataFrame with cross-validation results columns are: test-error-mean test-error-std train-error-mean train-error-std """ from catboost import Pool, cv import numpy as np features, labels, cat_cols = self._data_processor.cv_input_fn() cv_data = Pool(data=features, label=labels, cat_features=cat_cols) cv_result = cv(cv_data, self._params, nfold=nfold, shuffle=shuffle, stratified=stratified, plot=plot, partition_random_seed=partition_random_seed) print('Best validation {} score: {:.2f}±{:.2f} on step {}'.format( self._params['custom_metric'], np.max(cv_result[f'test-{self._params["custom_metric"]}-mean']), cv_result[f'test-{self._params["custom_metric"]}-std'][np.argmax(cv_result[f'test-{self._params["custom_metric"]}-mean'])], np.argmax(cv_result[f'test-{self._params["custom_metric"]}-mean']) )) print('Precise validation {} score: {}'.format(self._params['custom_metric'], np.max(cv_result[f'test-{self._params["custom_metric"]}-mean']))) return cv_result def baseline(self): import numpy as np cv_result = self.cross_val() self._params.update({ 'iterations': np.argmax(cv_result[f'test-{self._params["custom_metric"]}-mean']), }) print(self._params) df_features_importance = self.train_eval() dfr = self.evaluate() return df_features_importance, dfr def test(self, df_test=None, cat_cols=None, explain=True): from catboost import Pool import pandas as pd if df_test is None: df_test, cat_cols = self._data_processor.test_input_fn() test_data = Pool(data=df_test, cat_features=cat_cols) dfr = pd.DataFrame(df_test.index) y_test_hat = self._model.predict_proba(test_data)[:, 1] dfr['score'] = y_test_hat dfr['test_label'] = self._model.predict(test_data) s = dfr['test_label'].value_counts() print(s) print(f'su sample num:{s.loc[1] if 1 in s else 0}') if explain: rr = self.explain(df_test, cat_cols, dfr) return dfr, rr return dfr def explain(self, df_test, cat_cols, dfr): """模型解释""" from catboost import Pool import pandas as pd test_data = Pool(data=df_test, cat_features=cat_cols) shap_values = self._model.get_feature_importance(test_data, type='ShapValues') dfs = pd.DataFrame(shap_values[:, :-1], columns=df_test.columns, index=df_test.index) dfs_T = dfs.T ss = [] for i in range(dfs_T.shape[1]): ss.append(dfs_T.iloc[:, i].copy().sort_values(ascending=False).iloc[:5]) count = 0 rr = [] for line in dfr[dfr.test_label == 1].itertuples(): rr.append({"id": line[0], "SCORE": round(line.score, 2), "EXPLAIN": ','.join( [f'{i[0]}:{round(i[1], 2)}' for i in list(zip(ss[count].index, ss[count].values))])}) count += 1 print(rr) return rr def save_model(self, model_path): """ :param model_path: 'catboost_model.dump' :return: """ self._model.save_model(model_path) def load_model(self, model_path): self._model = self.model_fn().load_model(model_path) class XGBoostClsEstimator(ClsEstimator): def __init__(self, params=None, data_processor=None, model_path=None): """ :param params: params = { max_depth: 3, learning_rate: 0.1, n_estimators: 1000, objective: 'binary:logistic', booster: 'gbtree', n_jobs: 1, } """ super().__init__(params=params, data_processor=data_processor, model_path=model_path) if self._model_path: self.load_model(self._model_path) else: self._model = self.model_fn() def model_fn(self): from xgboost import XGBClassifier return XGBClassifier(**self._params) if self._params else XGBClassifier() def train(self, plot=True, verbose=True, show_features_importance=True, init_model=None): """ :param plot: :param verbose: :param show_features_importance: :param init_model: CatBoost class or string, [default=None] Continue training starting from the existing model. If this parameter is a string, load initial model from the path specified by this string. :return: """ from catboost import Pool import pandas as pd features, labels, cat_cols = self._data_processor.train_input_fn() train_data = Pool(data=features, label=labels, cat_features=cat_cols) self._model.fit(train_data, plot=plot, verbose=verbose) if show_features_importance: df_features_importance = pd.DataFrame({'name': self._model.feature_names_, 'value': self._model.feature_importances_}) df_features_importance = df_features_importance.sort_values('value', ascending=False) df_features_importance.reset_index(drop=True, inplace=True) print(df_features_importance.head(5)) import matplotlib.pyplot as plt fea_ = df_features_importance.sort_values('value')[df_features_importance.value > 0].value fea_name = df_features_importance.sort_values('value')[df_features_importance.value > 0].name plt.figure(figsize=(10, 20)) plt.barh(fea_name, fea_, height=0.5) plt.show() return df_features_importance def evaluate(self, df_val=None, y_val=None, cat_cols=None): from sklearn.metrics import classification_report from catboost import Pool import pandas as pd if not df_val: df_val, y_val, cat_cols = self._data_processor.eval_input_fn() test_data = Pool(data=df_val, cat_features=cat_cols) r = self._model.predict(test_data) print(pd.Series(r).value_counts()) print(classification_report(y_val, r)) dfr =
pd.DataFrame(y_val)
pandas.DataFrame
import mysql.connector import pandas as pd import re import numpy as np import csv class sqlData: df = None percent_critical = 0 percent_high = 0 percent_medium = 0 percent_low = 0 total = 0 def __init__(self): self.sql_df = pd.DataFrame() self.total = len(self.sql_df) * len(self.sql_df.columns) def search_dicts(self, key, list_of_dicts): for item in list_of_dicts: if key in item.keys(): return item def get_level(self, level, low, medium, high, critical, score, matched_vals): if score == critical: level = 'CRITICAL' self.percent_critical += len(matched_vals) if score >= high and score < critical: level = 'HIGH' self.percent_high += len(matched_vals) if score >= medium and score < high: level = 'MEDIUM' self.percent_medium += len(matched_vals) if score <= low: level = 'LOW' self.percent_low += len(matched_vals) return level #connect to database def sqldb_to_df(self, db, scores, rules_dict): host = db[0] user = db[1] # password = db[2] password = "" database = db[2] table = db[3] mydb = mysql.connector.connect( host=host, user=user, password=password, database=database ) mycursor = mydb.cursor() # access column information mycursor.execute("SELECT * FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = N'" + table + "'") # e.g. pi col_schema_result = mycursor.fetchall() # fetchall() method fetches all rows from the last execute statement col_count = 0 match_count = 0 for col_schema_line in col_schema_result: #print(col_schema_line) col_count += 1 for rule in rules_dict: ### if rule in col_schema_line: #print(rule, "located at column ", col_count) mycursor.execute("SELECT " + rule + " FROM " + table) if match_count == 0: data = {rule: pd.Series(mycursor.fetchall())} else: data[rule] = pd.Series(mycursor.fetchall()) match_count += 1 for key in data.keys(): for i in range(len(data[key])): if len(data[key][i]) == 1: data[key][i] = data[key][i][0] string = str(data[key][i]) data[key][i] = string self.sql_df =
pd.DataFrame(data)
pandas.DataFrame
################################################################################ # The contents of this file are Teradata Public Content and have been released # to the Public Domain. # <NAME> & <NAME> - April 2020 - v.1.1 # Copyright (c) 2020 by Teradata # Licensed under BSD; see "license.txt" file in the bundle root folder. # ################################################################################ # R and Python TechBytes Demo - Part 5: Python in-nodes with SCRIPT # ------------------------------------------------------------------------------ # File: stoRFFitMM.py # ------------------------------------------------------------------------------ # The R and Python TechBytes Demo comprises of 5 parts: # Part 1 consists of only a Powerpoint overview of R and Python in Vantage # Part 2 demonstrates the Teradata R package tdplyr for clients # Part 3 demonstrates the Teradata Python package teradataml for clients # Part 4 demonstrates using R in-nodes with the SCRIPT and ExecR Table Operators # Part 5 demonstrates using Python in-nodes with the SCRIPT Table Operator ################################################################################ # # This TechBytes demo utilizes a use case to predict the propensity of a # financial services customer base to open a credit card account. # # The present file is the Python model fitting script to be used with the SCRIPT # table operator, as described in the following use case 2 of the present demo # Part 5: # # 2) Fitting and scoring multiple models # # We utilize the statecode variable as a partition to built a Random # Forest model for every state. This is done by using SCRIPT Table Operator # to run a model fitting script with a PARTITION BY statecode in the query. # This creates a model for each of the CA, NY, TX, IL, AZ, OH and Other # state codes, and perists the model in the database via CREATE TABLE AS # statement. # Then we run a scoring script via the SCRIPT Table Operator against # these persisted Random Forest models to score the entire data set. # # For this use case, we build an analytic data set nearly identical to the # one in the teradataml demo (Part 3), with one change as indicated by item # (d) below. This is so we can demonstrate the in-database capability of # simultaneously building many models. # 60% of the analytic data set rows are sampled to create a training # subset. The remaining 40% is used to create a testing/scoring dataset. # The train and test/score datasets are used in the SCRIPT operations. ################################################################################ # File Changelog # v.1.0 2019-10-29 First release # v.1.1 2020-04-02 Added change log; no code changes in present file ################################################################################ import sys import numpy as np import pandas as pd from sklearn.ensemble import RandomForestClassifier import pickle import base64 ### ### Read input ### delimiter = '\t' inputData = [] for line in sys.stdin.read().splitlines(): line = line.split(delimiter) inputData.append(line) ### ### If no data received, gracefully exit rather than producing an error later. ### if not inputData: sys.exit() ### ### Set up input DataFrame according to input schema ### # Know your data: You must know in advance the number and data types of the # incoming columns from the database! # For numeric columns, the database sends in floats in scientific format with a # blank space when the exponential is positive; e.g., 1.0 is sent as 1.000E 000. # The following input data read deals with any such blank spaces in numbers. columns = ['cust_id', 'tot_income', 'tot_age', 'tot_cust_years', 'tot_children', 'female_ind', 'single_ind', 'married_ind', 'separated_ind', 'statecode', 'ck_acct_ind', 'sv_acct_ind', 'cc_acct_ind', 'ck_avg_bal', 'sv_avg_bal', 'cc_avg_bal', 'ck_avg_tran_amt', 'sv_avg_tran_amt', 'cc_avg_tran_amt', 'q1_trans_cnt', 'q2_trans_cnt', 'q3_trans_cnt', 'q4_trans_cnt', 'SAMPLE_ID'] df = pd.DataFrame(inputData, columns=columns) del inputData df['cust_id'] = pd.to_numeric(df['cust_id']) df['tot_income'] = df['tot_income'].apply(lambda x: "".join(x.split())) df['tot_income'] = pd.to_numeric(df['tot_income']) df['tot_age'] = pd.to_numeric(df['tot_age']) df['tot_cust_years'] = pd.to_numeric(df['tot_cust_years']) df['tot_children'] =
pd.to_numeric(df['tot_children'])
pandas.to_numeric
import pathlib import pandas as pd from pathlib import Path from my_module import compressor from my_module import text_formatter as tf import re from sklearn.model_selection import train_test_split from typing import List def gen_model_resource(sentences: List[str], labels: List[str]): x_train, x_test, y_train, y_test = train_test_split( sentences, labels, test_size=0.1, stratify=labels, random_state=0) pd.DataFrame({'y_train': y_train, 'x_train': x_train} ).to_csv('train_data.csv', index=False) pd.DataFrame({'y_test': y_test, 'x_test': x_test} ).to_csv('test_data.csv', index=False) def aggregate_by_rate(review_path: Path, freq: str = 'M') -> pd.DataFrame: ''' 任意の期間ごとに各評価のレビュー数を集計します ''' # Read DataFrame. df = pd.read_csv(review_path) # Delete 'comments' colum. df.drop(columns=['comments', 'votes'], inplace=True) # Convert 'dates' colum into DateTime type df['dates'] = pd.to_datetime(df['dates']) # Set index to 'dates' coulum. df.set_index('dates', inplace=True) # Aggregate review by any period. df = df.groupby(pd.Grouper(freq=freq)) # Generate template. df_result = pd.DataFrame(columns=range(1, 6)) for period, group in df: # 評価ごとにレビュー数を集計.インデックスを昇順にソート.行と列の入れ替え group = group.apply(pd.value_counts).sort_index().T # Rename Index to Period. group = group.rename(index={'rates': period}) # Merge DataFrame. df_result = pd.concat([df_result, group]) # Replace Nan in DataFrame with 0. df_result.fillna(0, inplace=True) # Formats DateTimeIndex to '%y-%m-%d'and converts it to String type. df_result.index = df_result.index.strftime('%y-%m-%d') # Insert total colum. df_result[15] = df_result.sum(axis=1).astype('int64') # Reduce memory usage for pandas DataFrame. df_result = compressor.reduce_mem_usage(df_result) # Return return df_result # 任意の分割数で分割 # print((np.array_split(df['rates'].values, 3))) def fmt_reviews(review_path: Path): ''' レビューCSVから日付、レート、コメントを抽出してCSVへ出力します。 ''' # フォーマットしたファイルのパスをセット formatted_file_path = review_path.with_name(f'f{review_path.name}') # CSVを分割読込み df = pd.read_csv(review_path) # 処理に使用する列を抽出 df = df[['dates', 'comments', 'rates', 'votes']] # 英文のレビューを削除 pattern = r'[a-zA-Z0-9\W_]*$' repatter = re.compile(pattern) drop_index = df.index[df['comments'].str.match(repatter)] df.drop(drop_index, inplace=True) # コメントを整形 df['comments'] = df['comments'].apply(tf.fmt_comments) # 日付をdatetime形式へ変換 df['dates'] = df['dates'].apply(tf.convert_datetime_date) # 評価の数値を抽出 df['rates'] = df['rates'].apply(tf.extract_rate) # 投票数を抽出 df.fillna({'votes': 0}, inplace=True) df['votes'] = df['votes'].apply(tf.extract_vote).astype('int8') # 日付をインデックスへセット df.set_index('dates', inplace=True) df.to_csv(formatted_file_path) def fmt_labeled_review(review_path: Path): # ラベルを付与したCSVの出力先 labeled_file_path = review_path.with_name( f'{review_path.stem}_labeled.csv') # CSVの読み込み df = pd.read_csv(review_path) # 必要な情報以外を削除 df = df[['comments', 'rates']] # ラベルを付与 df['label'] = df['rates'].apply(lambda x: f'__label__{x}') df = df[['label', 'comments']] # CSVへ出力 df.to_csv(labeled_file_path, index=False) def fmt_labeled_review2(review_path: Path): def add_label(rate: int): if rate == 4: return '__label__1' elif rate <= 2: return '__label__0' # ラベルを付与したCSVの出力先 labeled_file_path = review_path.with_name( f'{review_path.stem}_labeled2.csv') # CSVの読み込み df = pd.read_csv(review_path) # 必要な情報以外を削除 df = df[['comments', 'rates']] df = df[df['rates'].isin([1, 2, 4])] # ラベルを付与 df['label'] = df['rates'].apply(add_label) df = df[['label', 'comments']] # CSVへ出力 df.to_csv(labeled_file_path, index=False) def fmt_labeled_sent(sent_path: Path, boundary: float = 0.2): # ラベルを付与したCSVの出力先 labeled_file_path = sent_path.with_name( f'{sent_path.stem}_labeled.csv') # CSVの読み込み df = pd.read_csv(sent_path) # 列を抽出 df = df[['content', 'score']] # 無極性の行を削除 df = df[df['score'] != 0] # 極性値の絶対値が境界値未満の行を削除 df = df[abs(df['score']) >= boundary] # スコアをラベリング df['score'] = df['score'].apply(lambda x: 1 if x > 0 else 0) # ラベルを付与 df['label'] = df['score'].apply(lambda x: f'__label__{x}') # 列を抽出 df = df[['label', 'content']] # CSVへ出力 df.to_csv(labeled_file_path, index=False) def split_review_by_sent(path: Path): df =
pd.read_csv(path)
pandas.read_csv
#!/usr/bin/env python3 import os import pickle as pkl import pandas as pd import shutil import subprocess from collections import defaultdict import pkg_resources from datetime import datetime import tarfile import gc from camaptools.MLP import load_models from camaptools.EnhancedFutures import EnhancedProcessPoolExecutor from camaptools.utils import OUTPUT_FOLDER class Peptides(object): def __init__(self, genome, context=162, workers=0, executor=None): self.output_folder = OUTPUT_FOLDER self.genome = genome assert 'GRCh' in genome or 'GRCm' in genome self.out_dir = os.path.join(self.output_folder, 'allPeptides_%s' % self.genome) self.species = 'Human' if 'GRCh' in genome else 'Mouse' self.context = context # detect pickle peptide files pepfiles = [os.path.join(self.out_dir, f) for f in os.listdir(self.out_dir) if f[:8] == 'peptides'] self.pepfiles = pepfiles self.workers = workers self.executor = EnhancedProcessPoolExecutor if executor is None else executor def annotate(self, overwrite=False, algorithms=None, parameters=None): self.model_names, self.models = load_models(self.context, algorithms, parameters) self.overwrite = overwrite with self.executor(max_workers=self.workers, use_threads=True) as ex: counts = sum(list(ex.map(self._annotate, self.pepfiles))) pfile = os.path.join(self.out_dir, 'info.pkl') info = pkl.load(open(pfile, 'rb')) edited = False if 'pyTorchVersion' not in info: edited = True info['pyTorchVersion'] = pkg_resources.get_distribution("torch").version if 'CAMAPModels' not in info: edited = True info['modelANN'] = self.model_names if 'numberPeptideContexts' not in info: edited = True info['numberPeptideContexts'] = counts if edited: info['date'] = datetime.now() self._keep_a_copy(pfile) pkl.dump(info, open(pfile, 'wb')) def _annotate(self, pfile, chunk_size=10000): """ Assumes sequences are never modified, will always run the same number of models on all sequence chunks. Assumes context size is the same for all models. """ print(pfile) models = self.models def run_models(): counter_ix, s_list = seqs.keys(), seqs.values() c, m, p = list(jobs)[0] any_model = models[c][m][p][0] s_embeds = any_model._get_embeds(s_list) for c, m, p in jobs: for i in counter_ix: seq_scores[i][(m, c, p)] = [] for model in models[c][m][p]: scores = model.get_score(s_embeds) for i, s in zip(counter_ix, scores): seq_scores[i][(m, c, p)].append(float(s[1])) pepdict = pkl.load(open(pfile, 'rb')) seq_scores = {} seq_ids = {} seqs = {} jobs = set() counter = 0 for pep, gene_dict in pepdict.items(): gene_dict = gene_dict['genes'] for gene_name, entries in gene_dict.items(): for entry_i, entry in enumerate(entries): seq = entry['sequenceContext'] if '!GA' not in seq: counter += 1 seq_ids[counter] = (pep, gene_name, entry_i) seq_scores[counter] = {} seqs[counter] = seq if self.overwrite: del entry['CAMAPScore'] for context in models: for method in models[context]: for params in models[context][method]: if 'CAMAPScore' not in entry: entry['CAMAPScore'] = {} if method not in entry['CAMAPScore']: entry['CAMAPScore'][method] = {} if context not in entry['CAMAPScore'][method]: entry['CAMAPScore'][method][context] = {} if params not in entry['CAMAPScore'][method][context]: entry['CAMAPScore'][method][context][params] = [] jobs.add((context, method, params)) if len(seqs) == chunk_size: run_models() # will get jobs and seqs values from the outer scope jobs = set() seqs = {} gc.collect() #if counter >= 1000: # break if jobs: run_models() # Fill dictionnary edited = False for counter_ix in seq_scores: pep, gene_name, entry_i = seq_ids[counter_ix] for (m, c, p), scores in seq_scores[counter_ix].items(): pepdict[pep]['genes'][gene_name][entry_i]['CAMAPScore'][m][c][p] = scores edited = True if edited: self._keep_a_copy(pfile) pkl.dump(pepdict, open(pfile, 'wb')) return counter def merge_netmhc(self, overwrite=False): self.overwrite = overwrite self.columns_to_keep = ['Peptide', 'nM', 'Rank'] netmhc_folder = 'NetMHCpan-4.0a' nmpan_out = os.path.join(self.out_dir, netmhc_folder) nmpan_pred_dir = os.path.join(nmpan_out, 'predictions') if not os.path.exists(nmpan_out): if os.path.exists(nmpan_out + '.tar.gz'): sys.stdout.write('Predictions folder already compressed. Uncompress if you want to rerun analysis.\n') return else: sys.stderr.write('ERROR: Predictions folder not found.\n') sys.exit(1) # Prepare jobs job_dct = defaultdict(lambda: [[], []]) for fn_allele in os.listdir(nmpan_pred_dir): pinit, plen = fn_allele.split('.')[:2] pfile = os.path.join(self.out_dir, 'peptides_%s%s.pkl' % (pinit, plen)) if fn_allele.split('.')[3] == 'tsv': job_dct[pfile][0].append(os.path.join(nmpan_pred_dir, fn_allele)) elif fn_allele.split('.')[3] == 'NP': job_dct[pfile][1].append(os.path.join(nmpan_pred_dir, fn_allele)) # Run jobs with self.executor(max_workers=self.workers, use_threads=False) as ex: allele_sets = ex.map(self._merge_netmhc, tuple(job_dct.keys()), *zip(*job_dct.values())) exit_code = self._tar_compress(nmpan_out) # run while peptide files are being filled # Update info file alleles = set() for al in allele_sets: alleles.update(al) pfile = os.path.join(self.out_dir, 'info.pkl') info = pkl.load(open(pfile, 'rb')) edited = False if 'allelesNetMHC' not in info: info['NetMHCVersion'] = set([netmhc_folder]) edited = True if 'allelesNetMHC' not in info: info['allelesNetMHC'] = alleles edited = True if edited: info['date'] = datetime.now() self._keep_a_copy(pfile) pkl.dump(info, open(pfile, 'wb')) # Delete NetMHC folder if compression was successful if exit_code: print('WARNING: tar compression failed for some reason') else: shutil.rmtree(nmpan_out) def _merge_netmhc(self, pfile, netmhc_ba_out_list, netmhc_np_out_list): print(pfile) pepdict = pkl.load(open(pfile, 'rb')) edited = False alleles = set() def concat(file_list): dfs = [] for fn in file_list: with open(fn, 'r') as f: allele = f.readline().strip().replace(':', '') temp_df = pd.read_csv(f, sep='\t', header=0, usecols=self.columns_to_keep, index_col=0) temp_df.columns = pd.MultiIndex.from_product([[allele], temp_df.columns]) dfs.append(temp_df) df = pd.concat(dfs, axis=1, sort=False, copy=False) return df ba_df = concat(netmhc_ba_out_list) np_df = concat(netmhc_np_out_list) np_df = np_df.drop('nM', axis=1, level=1) np_df.columns = np_df.columns.set_levels(np_df.columns.levels[1] + '_NP', level=1, verify_integrity=False) df_full =
pd.concat([ba_df, np_df], axis=1, sort=False, copy=False)
pandas.concat
import pandas_ta as ta import pandas as pd import settings from datetime import datetime as dt def AddStrategy(df): df = df.drop_duplicates(subset=['open_time']) df['open_time'] = pd.to_datetime(df['open_time'], unit='s') df.set_index(
pd.DatetimeIndex(df["open_time"])
pandas.DatetimeIndex
#--- # title: Zen Markdown Demo # author: Dr. <NAME> # date: CURRENT_DATE # output: # format: pdf # latex: # header: \usepackage{booktabs} #--- ## with class # %%{run=true, echo=true} class test: def __init__(self): print("hi") def test(self): print("hi") t = test() t.test() #``` # %%{run=true, echo=true, render=false} import numpy as np import matplotlib.pyplot as plt #``` ## Lax example # $$ \begin{pmatrix} # x^2 + y^2 &= 1 \\ # y &= \sqrt{1 - x^2} # \end{pmatrix}$$ # %%{run=true, echo=true, render=true} import matplotlib.pyplot as plt import numpy as np xpoints = np.array([1, 8]) ypoints = np.array([3, 10]) print(xpoints) print(ypoints) #``` # Matplot lib example # %%{run=true, echo=true, render=true} plt.plot(xpoints, ypoints, 'o') #``` # %%{run=true, echo=true, render=true} d = {'col1': [1, 2], 'col2': [3, 4]} df = pd.DataFrame(data=d) df.to_markdown() # #``` # %%{run=true, echo=true, render=true} import pandas as pd d = {'col1': [1, 2], 'col2': [3, 4]} df =
pd.DataFrame(data=d)
pandas.DataFrame
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import mars.dataframe as md import mars.tensor as mt from mars.tests.core import TestBase class Test(TestBase): def setUp(self): super().setUp() self.ctx, self.executor = self._create_test_context() def testDataFrameInitializer(self): # from tensor raw = np.random.rand(100, 10) tensor = mt.tensor(raw, chunk_size=7) r = md.DataFrame(tensor) result = self.executor.execute_dataframe(r, concat=True)[0] pd.testing.assert_frame_equal(result, pd.DataFrame(raw)) r = md.DataFrame(tensor, chunk_size=13) result = self.executor.execute_dataframe(r, concat=True)[0] pd.testing.assert_frame_equal(result, pd.DataFrame(raw)) # from Mars dataframe raw = pd.DataFrame(np.random.rand(100, 10), columns=list('ABCDEFGHIJ')) df = md.DataFrame(raw, chunk_size=15) * 2 r = md.DataFrame(df, num_partitions=11) results = self.executor.execute_dataframe(r) self.assertEqual(len(results), 10) pd.testing.assert_frame_equal(pd.concat(results), raw * 2) # from tileable dict raw_dict = { 'C': np.random.choice(['u', 'v', 'w'], size=(100,)), 'A': pd.Series(np.random.rand(100)), 'B': np.random.randint(0, 10, size=(100,)), } m_dict = raw_dict.copy() m_dict['A'] = md.Series(m_dict['A']) m_dict['B'] = mt.tensor(m_dict['B']) r = md.DataFrame(m_dict, columns=list('ABC')) result = self.executor.execute_dataframe(r, concat=True)[0] pd.testing.assert_frame_equal(result, pd.DataFrame(raw_dict, columns=list('ABC'))) # from raw pandas initializer raw = pd.DataFrame(np.random.rand(100, 10), columns=list('ABCDEFGHIJ')) r = md.DataFrame(raw, num_partitions=10) results = self.executor.execute_dataframe(r) self.assertEqual(len(results), 10) pd.testing.assert_frame_equal(pd.concat(results), raw) def testSeriesInitializer(self): # from tensor raw = np.random.rand(100) tensor = mt.tensor(raw, chunk_size=7) r = md.Series(tensor) result = self.executor.execute_dataframe(r, concat=True)[0] pd.testing.assert_series_equal(result, pd.Series(raw)) r = md.Series(tensor, chunk_size=13) result = self.executor.execute_dataframe(r, concat=True)[0] pd.testing.assert_series_equal(result, pd.Series(raw)) # from index raw = np.arange(100) np.random.shuffle(raw) raw = pd.Index(raw, name='idx_name') idx = md.Index(raw, chunk_size=7) r = md.Series(idx) result = self.executor.execute_dataframe(r, concat=True)[0] pd.testing.assert_series_equal(result, pd.Series(raw)) # from Mars series raw = pd.Series(np.random.rand(100), name='series_name') ms = md.Series(raw, chunk_size=15) * 2 r = md.Series(ms, num_partitions=11) results = self.executor.execute_dataframe(r) self.assertEqual(len(results), 10) pd.testing.assert_series_equal(pd.concat(results), raw * 2) # from raw pandas initializer raw = pd.Series(np.random.rand(100), name='series_name') r = md.Series(raw, num_partitions=10) results = self.executor.execute_dataframe(r) self.assertEqual(len(results), 10) pd.testing.assert_series_equal(pd.concat(results), raw) def testIndexInitializer(self): def _concat_idx(results): s_results = [pd.Series(idx) for idx in results] return pd.Index(pd.concat(s_results)) # from tensor raw = np.arange(100) np.random.shuffle(raw) tensor = mt.tensor(raw) r = md.Index(tensor, chunk_size=7) result = self.executor.execute_dataframe(r, concat=True)[0] pd.testing.assert_index_equal(result,
pd.Index(raw)
pandas.Index
from datetime import datetime, timedelta import json import re import arrow import pandas as pd import requests from import_data.helpers import end_of_month from import_data import googlefit_parse_utils from import_data.garmin.parse import user_map_to_timeseries WEEKS_BEFORE_SICK = 3 WEEKS_AFTER_SICK = 2 def oura_parser(oura_object, event_start, event_end=False): if not event_end: event_end = event_start oura = json.loads(requests.get(oura_object["download_url"]).content) start_date = arrow.get(event_start).floor("day") end_date = arrow.get(event_end).ceil("day") period_start = start_date.shift(weeks=WEEKS_BEFORE_SICK * -1) period_end = end_date.shift(weeks=WEEKS_AFTER_SICK) returned_hr_data = [] returned_temp_data = [] returned_respiratory_rate_data = [] # p is start_date! if "sleep" in oura.keys(): for entry in oura["sleep"]: sdate = arrow.get(entry["summary_date"]) # Use this data if it falls within our target window. if sdate >= period_start and sdate <= period_end: record_time = arrow.get(entry["bedtime_start"]) temperature_delta = entry.get("temperature_delta", 0) respiratory_rate = entry.get("breath_average", 0) hr = entry.get("hr_lowest", 0) returned_temp_data.append( { "timestamp": sdate.format("YYYY-MM-DD"), "data": { "temperature_delta": temperature_delta, "respiratory_rate": respiratory_rate, "heart_rate": hr }, } ) for hr in entry["hr_5min"]: if int(hr) != 0: returned_hr_data.append( { "timestamp": record_time.isoformat(), "data": {"heart_rate": hr}, } ) record_time = record_time.shift(minutes=+5) return returned_hr_data, returned_temp_data else: return None, None def fitbit_parser(fitbit_info, event_start, event_end=None): if not event_end: event_end = event_start fitbit_data = json.loads(requests.get(fitbit_info["download_url"]).content) start_date = arrow.get(event_start) end_date = arrow.get(event_end) period_start = start_date.shift(weeks=WEEKS_BEFORE_SICK * -1) period_end = end_date.shift(weeks=WEEKS_AFTER_SICK) returned_fitbit_data = [] for month in fitbit_data["heart"]: for entry in fitbit_data["heart"][month]["activities-heart"]: sdate = arrow.get(entry["dateTime"]) if sdate >= period_start and sdate <= period_end: returned_fitbit_data.append( { "timestamp": entry["dateTime"], "data": { "heart_rate": entry["value"].get("restingHeartRate", "-") }, } ) return returned_fitbit_data def apple_health_parser(apple_health_info, event_start, event_end=None): if not event_end: event_end = event_start apple_health_data = requests.get(apple_health_info["download_url"]).text apple_health_data = apple_health_data.split("\n") start_date = arrow.get(event_start) end_date = arrow.get(event_end) period_start = start_date.shift(weeks=WEEKS_BEFORE_SICK * -1) period_end = end_date.shift(weeks=WEEKS_AFTER_SICK) returned_apple_data = [] for entry in apple_health_data: if entry.endswith("R"): entry = entry.split(",") sdate = arrow.get(entry[1]) if sdate >= period_start and sdate <= period_end: returned_apple_data.append( {"timestamp": entry[1], "data": {"heart_rate": entry[0]}} ) returned_apple_data.reverse() # invert list as CSV is newest to oldest return returned_apple_data def googlefit_to_qf(json_data, min_date, max_date): res = [] data = json_data df, _ = googlefit_parse_utils.get_dataframe_with_all(data) if df is None: return res # we can have multiple sources of heart rate data. will get the one with the most data per day ds_with_most_data = None max_data_points = 0 for col_name in df.columns: # the col_name should be of the format heart_rate.bpm.INT # named this way by the parsing functionality in get_dataframe_with_all if "heart_rate" not in col_name: continue data_points = len(df[col_name].dropna()) if data_points > max_data_points: max_data_points = data_points ds_with_most_data = col_name if ds_with_most_data is None: return None series = df[ds_with_most_data].dropna() for ts, value in zip(series.index, series.values): ts = ts.to_pydatetime() if ts < min_date or ts > max_date: continue rec = {"timestamp": ts.isoformat(), "data": {"heart_rate": value}} res.append(rec) return res def googlefit_parser(googlefit_files_info, event_start, event_end=None): print(event_start) if event_end is None: event_end = event_start event_start = datetime( event_start.year, event_start.month, event_start.day, 0, 0, 0 ) event_end = datetime(event_end.year, event_end.month, event_end.day, 23, 59, 59) min_date = event_start - timedelta(days=21) max_date = event_end + timedelta(days=14) returned_googlefit_data = [] for info in googlefit_files_info: basename = info["basename"] # googlefit_2018-12.json start_month = datetime.strptime(basename, "googlefit_%Y-%m.json") end_month = end_of_month(start_month) # file doesn't contain relevant data for our range, skip if min_date > end_month: continue if max_date < start_month: continue print("looking at {}".format(basename)) googlefit_json = json.loads(requests.get(info["download_url"]).content) data_in_qf_format = googlefit_to_qf(googlefit_json, min_date, max_date) if data_in_qf_format: returned_googlefit_data += data_in_qf_format return returned_googlefit_data def garmin_parser(garmin_file_info, event_start, event_end=None): print(event_start) if event_end is None: event_end = event_start event_start = datetime( event_start.year, event_start.month, event_start.day, 0, 0, 0 ) event_end = datetime(event_end.year, event_end.month, event_end.day, 23, 59, 59) min_date = event_start - timedelta(days=21) max_date = event_end + timedelta(days=14) print(garmin_file_info) garmin_json = json.loads(requests.get(garmin_file_info["download_url"]).content) data_in_qf_format = garmin_to_qf(garmin_json, min_date, max_date) return data_in_qf_format def garmin_to_qf(json_data, min_date, max_date): res = [] data = json_data series = user_map_to_timeseries(data) for dt, value in zip(series.index, series.values): if dt < min_date or dt > max_date: continue rec = {"timestamp": dt.isoformat(), "data": {"heart_rate": int(value)}} res.append(rec) return res def fitbit_intraday_parser( fitbit_data, fitbit_intraday_files, event_start, event_end=None ): """ Return intraday heartrate data for sleep periods in target period. """ if not event_end: event_end = event_start fitbit_data = requests.get(fitbit_data["download_url"]).json() start_date = arrow.get(event_start) end_date = arrow.get(event_end) period_start = start_date.shift(weeks=WEEKS_BEFORE_SICK * -1) period_end = end_date.shift(weeks=WEEKS_AFTER_SICK) fitbit_sleep_data = {"start_times": [], "minutes": [], "periods": {}} returned_fitbit_data = {} # Calculate and store sleep periods in target time period. for year in fitbit_data["sleep-start-time"]: for entry in fitbit_data["sleep-start-time"][year]["sleep-startTime"]: sdate = arrow.get(entry["dateTime"]) if sdate >= period_start and sdate <= period_end: fitbit_sleep_data["start_times"].append(entry) for year in fitbit_data["sleep-minutes"]: for entry in fitbit_data["sleep-minutes"][year]["sleep-minutesAsleep"]: sdate = arrow.get(entry["dateTime"]) if sdate >= period_start and sdate <= period_end: fitbit_sleep_data["minutes"].append(entry) for entry in fitbit_sleep_data["start_times"]: if entry.get("value", None): fitbit_sleep_data["periods"][entry["dateTime"]] = { "start": arrow.get(entry["dateTime"] + " " + entry["value"]) } for entry in fitbit_sleep_data["minutes"]: sleep_entry = fitbit_sleep_data["periods"].get(entry["dateTime"], None) if sleep_entry: sleep_entry["end"] = sleep_entry["start"].shift(minutes=int(entry["value"])) # Get all potentially needed heartrate data. hr_data = [] for file_info in fitbit_intraday_files: try: yearmonth = re.search( "fitbit-intraday-(.*?)\.json", file_info["basename"] ).groups()[0] yearmonth = arrow.get(yearmonth) if yearmonth.floor( "month" ) <= period_end and period_start <= yearmonth.ceil("month"): data = json.loads(requests.get(file_info["download_url"]).content) hr_data = hr_data + data["activities-heart-intraday"] except AttributeError: continue # load into dataframe rows = [] for hr_point in hr_data: hr_date = hr_point["date"] for hr_datapoint in hr_point["dataset"]: rows.append((hr_date + " " + hr_datapoint["time"], hr_datapoint["value"])) hr_dataframe =
pd.DataFrame(rows, columns=["timestamp", "heart_rate"])
pandas.DataFrame
import streamlit as st import pandas as pd import numpy as np import pickle from sklearn.ensemble import RandomForestClassifier st.write(""" # Penguin Prediction App This app predicts the **Palmer Penguins** species! """) st.sidebar.header("User Input Features") st.sidebar.markdown(""" [Example CSV input File](https://raw.githubusercontent.com/dataprofessor/data/master/penguins_example.csv) """) upload_file = st.sidebar.file_uploader("Upload your input csv file", type = ['csv']) if upload_file is not None: input_df =
pd.read_csv(upload_file)
pandas.read_csv
import os import pickle import sys from pathlib import Path from typing import Union import matplotlib.pyplot as plt import numpy as np import pandas as pd from thoipapy.utils import convert_truelike_to_bool, convert_falselike_to_bool import thoipapy def fig_plot_BOcurve_mult_train_datasets(s): """Plot the BO-curve for multiple training datasets. Takes the datasets listed in settings under "train_datasets" and "test_datasets" and plots the BO-curve of each combination in a single figure. The Area Under the BO Curve for a sample size of 0 to 10 (AUBOC) is shown in the legend. Currently plots both the new and old performance method. NEW METHOD ---------- Performance = overlap between experiment and predicted MINUS the overlap expected in random selections OLD METHOD ---------- Performance = overlap between experiment and predicted DIVIDED BY the overlap expected in random selections Parameters ---------- s : dict Settings dictionary for figures. """ # plt.rcParams.update({'font.size': 7}) test_set_list, train_set_list = thoipapy.utils.get_test_and_train_set_lists(s) test_dataset_str = "-".join([str(n) for n in test_set_list]) train_dataset_str = "-".join([str(n) for n in train_set_list]) mult_testname = "testsets({})_trainsets({})".format(test_dataset_str, train_dataset_str) sys.stdout.write(mult_testname) mult_THOIPA_dir = os.path.join(s["data_dir"], "results", "compare_testset_trainset", "summaries", mult_testname) thoipapy.utils.make_sure_path_exists(mult_THOIPA_dir) plot_BOcurve(s, train_set_list, test_set_list, mult_THOIPA_dir, mult_testname) plot_BOcurve(s, train_set_list, test_set_list, mult_THOIPA_dir, mult_testname, sheet_name="df_o_over_r", suffix="_BO_curve_old_method") def plot_BOcurve(s, train_set_list, test_set_list, mult_THOIPA_dir, mult_testname, sheet_name="df_o_minus_r", suffix="_BO_curve"): """ Separate function allowing a toggle of the OLD or NEW performance methods Parameters ---------- s : dict Settings dictionary for figures. train_set_list : list List of training datasets in selection E.g. ["set02", "set04"] test_set_list : list List of test datasets in selection E.g. ["set03", "set31"] mult_THOIPA_dir : str Path to folder containing results for multiple THOIPA comparisons. mult_testname : str String denoting this combination of test and training datasets E.g. testsets(2)_trainsets(2) sheet_name : str Excel sheet_name This is the toggle deciding whether the OLD or NEW performance measure is used Default = new method ("df_o_minus_r"), where the overlap MINUS random_overlap is used suffix : str Suffix for figure E.g. "" or "_old_method_o_over_r" """ BO_curve_png = os.path.join(mult_THOIPA_dir, "{}{}.png".format(mult_testname, suffix)) figsize = np.array([3.42, 3.42]) * 2 # DOUBLE the real size, due to problems on Bo computer with fontsizes fig, ax = plt.subplots(figsize=figsize) for train_set in train_set_list: trainsetname = "set{:02d}".format(int(train_set)) for test_set in test_set_list: testsetname = "set{:02d}".format(int(test_set)) # /media/mark/sindy/m_data/THOIPA_data/results/Bo_Curve/Testset03_Trainset01.THOIPA.validation/bocurve_data.xlsx bocurve_data_xlsx = os.path.join(s["data_dir"], "results", "compare_testset_trainset", "data", "Test{}_Train{}.THOIPA".format(testsetname, trainsetname), "data", "bocurve_data.xlsx") df = pd.read_excel(bocurve_data_xlsx, sheet_name=sheet_name, index_col=0) df["mean_"] = df.mean(axis=1) # apply cutoff (e.g. 5 residues for AUBOC5) auboc_ser = df["mean_"].iloc[:s["n_residues_AUBOC_validation"]] # use the composite trapezoidal rule to get the area under the curve # https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.trapz.html AUBOC = np.trapz(y=auboc_ser, x=auboc_ser.index) df["mean_"].plot(ax=ax, label="Test{}_Train{}(AUBOC={:0.1f})".format(testsetname, trainsetname, AUBOC)) ax.set_xlabel("sample size") ax.set_ylabel("performance\n(observed overlap - random overlap)") ax.set_xticks(range(1, df.shape[0] + 1)) ax.set_xticklabels(df.index) ax.legend() fig.tight_layout() fig.savefig(BO_curve_png, dpi=240) # fig.savefig(thoipapy.utils.pdf_subpath(BO_curve_png)) sys.stdout.write("\nfig_plot_BO_curve_mult_train_datasets finished ({})".format(BO_curve_png)) def compare_selected_predictors(s, logging): """Plot the BO-curve for multiple prediction methods Takes the datasets listed in settings under the "selected_predictors" tab (e.g. ["Testset03_Trainset04.THOIPA","Testset03.LIPS"]) and plots the BO-curves in a single figure. The Area Under the BO Curve for a sample size of 0 to 10 (AUBOC) is shown in the legend. Currently plots both the new and old performance method. Performance is measured with the NEW METHOD: Performance = overlap between experiment and predicted MINUS the overlap expected in random selections Parameters ---------- s : dict Settings dictionary for figures. """ # if s["set_number"] != s["test_datasets"]: # raise Exception("set_number and test_datasets are not identical in settings file. This is recommended for test/train validation.") # plt.rcParams.update({'font.size': 7}) logging.info("\n--------------- starting compare_selected_predictors ---------------\n") BO_curve_png: Union[Path, str] = Path(s["data_dir"]) / f"results/{s['setname']}/blindvalidation/compare_selected_predictors_BO_curve.png" AUBOC_bar_png: Union[Path, str] = Path(s["data_dir"]) / f"results/{s['setname']}/blindvalidation/compare_selected_predictors_AUBOC_barchart.png" ROC_png: Union[Path, str] = Path(s["data_dir"]) / f"results/{s['setname']}/blindvalidation/compare_selected_predictors_ROC.png" thoipapy.utils.make_sure_path_exists(BO_curve_png, isfile=True) figsize = np.array([3.42, 3.42]) * 2 # DOUBLE the real size, due to problems on Bo computer with fontsizes fig, ax = plt.subplots(figsize=figsize) predictors_df = pd.read_excel(s["settings_path"], sheet_name="selected_predictors") predictors_df["include"] = predictors_df["include"].apply(convert_truelike_to_bool, convert_nontrue=False) predictors_df["include"] = predictors_df["include"].apply(convert_falselike_to_bool) predictors_df = predictors_df.loc[predictors_df.include == True] predictor_list = predictors_df.predictor.tolist() area_under_curve_dict = {} # create an empty dataframe to keep the pycharm IDE happy df = pd.DataFrame() for predictor_name in predictor_list: bocurve_data_xlsx: Union[Path, str] = Path(s["data_dir"]) / f"results/{s['setname']}/crossvalidation/data/{s['setname']}_thoipa_loo_bo_curve_data.xlsx" if not os.path.isfile(bocurve_data_xlsx): raise FileNotFoundError("bocurve_data_xlsx does not exist ({}). Try running run_testset_trainset_validation".format(bocurve_data_xlsx)) df = pd.read_excel(bocurve_data_xlsx, sheet_name="df_o_minus_r", index_col=0) df["mean_"] = df.mean(axis=1) # apply cutoff (e.g. 5 residues for AUBOC5) auboc_ser = df["mean_"].iloc[:s["n_residues_AUBOC_validation"]] # use the composite trapezoidal rule to get the area under the curve # https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.trapz.html AUBOC = np.trapz(y=auboc_ser, x=auboc_ser.index) area_under_curve_dict[predictor_name] = AUBOC df["mean_"].plot(ax=ax, label="{}(AUBOC={:0.1f})".format(predictor_name, AUBOC)) ax.set_xlabel("sample size") ax.set_ylabel("performance\n(observed overlap - random overlap)") ax.set_xticks(range(1, df.shape[0] + 1)) ax.set_xticklabels(df.index) ax.legend() fig.tight_layout() fig.savefig(BO_curve_png, dpi=240) # fig.savefig(thoipapy.utils.pdf_subpath(BO_curve_png)) plt.close("all") AUBOC_ser = pd.Series(area_under_curve_dict).sort_index() figsize = np.array([3.42, 3.42]) * 2 # DOUBLE the real size, due to problems on Bo computer with fontsizes fig, ax = plt.subplots(figsize=figsize) AUBOC_ser.plot(ax=ax, kind="bar") ax.set_ylabel("performance (AUBOC)") fig.tight_layout() fig.savefig(AUBOC_bar_png, dpi=240) # fig.savefig(thoipapy.utils.pdf_subpath(AUBOC_bar_png)) plt.close("all") figsize = np.array([3.42, 3.42]) * 2 # DOUBLE the real size, due to problems on Bo computer with fontsizes fig, ax = plt.subplots(figsize=figsize) for predictor_name in predictor_list: # "D:\data_thoipapy\results\compare_testset_trainset\data\Testset03_Trainset04.THOIPA\Testset03_Trainset04.THOIPA.ROC_data.pkl" # ROC_pkl = os.path.join(s["data_dir"], "results", "compare_testset_trainset", "data", predictor_name, "data", "{}.ROC_data.pkl".format(predictor_name)) testsetname = "set{:02d}".format(int(s['test_datasets'])) ROC_pkl = Path(s["data_dir"]) / "results" / testsetname / f"blindvalidation/{predictor_name}/ROC_data.pkl" if os.path.isfile(ROC_pkl): with open(ROC_pkl, "rb") as f: ROC_out_dict = pickle.load(f) ax.plot(ROC_out_dict["false_positive_rate_mean"], ROC_out_dict["true_positive_rate_mean"], label='{} ({:0.2f})'.format(predictor_name, ROC_out_dict["mean_roc_auc"]), lw=1.5) else: sys.stdout.write("\nPICKLE WITH ROC DATA NOT FOUND : {}".format(ROC_pkl)) continue ax.plot([0, 1], [0, 1], '--', color=(0.6, 0.6, 0.6), label='random') ax.set_xlim([-0.05, 1.05]) ax.set_ylim([-0.05, 1.05]) ax.set_xlabel("False positive rate") ax.set_ylabel("True positive rate") ax.legend(loc="lower right") fig.tight_layout() fig.savefig(ROC_png, dpi=240) # fig.savefig(thoipapy.utils.pdf_subpath(ROC_png)) sys.stdout.write("\nBO_curve_png ({})\n".format(BO_curve_png)) logging.info("\n--------------- finished compare_selected_predictors ---------------\n") def combine_BOcurve_files_hardlinked(s): Train04_Test01_BoCurve_file = r"D:\THOIPA_data\results\Bo_Curve\Trainset04_Testset01.bocurve.csv" df41 = pd.read_csv(Train04_Test01_BoCurve_file, index_col=0) df41_ratio = df41[df41.parameters == "observed_overlap"].drop("parameters", axis=1).mean(axis=1) / df41[df41.parameters == "random_overlap"].drop("parameters", axis=1).mean(axis=1) df41_ratio_df = df41_ratio.to_frame(name="Tr4Te1Ratio") df41_LIPS_ratio = df41[df41.parameters == "LIPS_observed_overlap"].drop("parameters", axis=1).mean(axis=1) / df41[df41.parameters == "random_overlap"].drop("parameters", axis=1).mean(axis=1) df41_LIPS_ratio_df = df41_LIPS_ratio.to_frame(name="Tr4Te1LIPSRatio") Train04_Test02_BoCurve_file = r"D:\THOIPA_data\results\Bo_Curve\Trainset04_Testset02.bocurve.csv" df42 = pd.read_csv(Train04_Test02_BoCurve_file, index_col=0) df42_ratio = df42[df42.parameters == "observed_overlap"].drop("parameters", axis=1).mean(axis=1) / df42[df42.parameters == "random_overlap"].drop("parameters", axis=1).mean(axis=1) df42_ratio_df = df42_ratio.to_frame(name="Tra4Tes2Ratio") df42_LIPS_ratio = df42[df42.parameters == "LIPS_observed_overlap"].drop("parameters", axis=1).mean(axis=1) / df42[df42.parameters == "random_overlap"].drop("parameters", axis=1).mean(axis=1) df42_LIPS_ratio_df = df42_LIPS_ratio.to_frame(name="Tr4Te2LIPSRatio") Train04_Test03_BoCurve_file = r"D:\THOIPA_data\results\Bo_Curve\Trainset04_Testset03.bocurve.csv" df43 = pd.read_csv(Train04_Test03_BoCurve_file, index_col=0) df43_ratio = df43[df43.parameters == "observed_overlap"].drop("parameters", axis=1).mean(axis=1) / df43[df43.parameters == "random_overlap"].drop("parameters", axis=1).mean(axis=1) df43_ratio_df = df43_ratio.to_frame(name="Tra4Tes3Ratio") df43_LIPS_ratio = df43[df43.parameters == "LIPS_observed_overlap"].drop("parameters", axis=1).mean(axis=1) / df43[df43.parameters == "random_overlap"].drop("parameters", axis=1).mean(axis=1) df43_LIPS_ratio_df = df43_LIPS_ratio.to_frame(name="Tr4Te3LIPSRatio") Train02_Test01_BoCurve_file = r"D:\THOIPA_data\results\Bo_Curve\Trainset02_Testset01.bocurve.csv" df21 = pd.read_csv(Train02_Test01_BoCurve_file, index_col=0) df21_ratio = df21[df21.parameters == "observed_overlap"].drop("parameters", axis=1).mean(axis=1) / df21[df21.parameters == "random_overlap"].drop("parameters", axis=1).mean(axis=1) df21_ratio_df = df21_ratio.to_frame(name="Tra2Te1Ratio") Train02_Test02_BoCurve_file = r"D:\THOIPA_data\results\Bo_Curve\Trainset02_Testset02.bocurve.csv" df22 = pd.read_csv(Train02_Test02_BoCurve_file, index_col=0) df22_ratio = df22[df22.parameters == "observed_overlap"].drop("parameters", axis=1).mean(axis=1) / df22[df22.parameters == "random_overlap"].drop("parameters", axis=1).mean(axis=1) df22_ratio_df = df22_ratio.to_frame(name="Tra2Tes2Ratio") Train02_Test03_BoCurve_file = r"D:\THOIPA_data\results\Bo_Curve\Trainset02_Testset03.bocurve.csv" df23 =
pd.read_csv(Train02_Test03_BoCurve_file, index_col=0)
pandas.read_csv
from collections import OrderedDict import contextlib from datetime import datetime, time from functools import partial import os from urllib.error import URLError import warnings import numpy as np import pytest import pandas.util._test_decorators as td import pandas as pd from pandas import DataFrame, Index, MultiIndex, Series import pandas.util.testing as tm @contextlib.contextmanager def ignore_xlrd_time_clock_warning(): """ Context manager to ignore warnings raised by the xlrd library, regarding the deprecation of `time.clock` in Python 3.7. """ with warnings.catch_warnings(): warnings.filterwarnings( action="ignore", message="time.clock has been deprecated", category=DeprecationWarning, ) yield read_ext_params = [".xls", ".xlsx", ".xlsm", ".ods"] engine_params = [ # Add any engines to test here # When defusedxml is installed it triggers deprecation warnings for # xlrd and openpyxl, so catch those here pytest.param( "xlrd", marks=[ td.skip_if_no("xlrd"), pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"), ], ), pytest.param( "openpyxl", marks=[ td.skip_if_no("openpyxl"), pytest.mark.filterwarnings("ignore:.*html argument"), ], ), pytest.param( None, marks=[ td.skip_if_no("xlrd"), pytest.mark.filterwarnings("ignore:.*(tree\\.iter|html argument)"), ], ), pytest.param("odf", marks=td.skip_if_no("odf")), ] def _is_valid_engine_ext_pair(engine, read_ext: str) -> bool: """ Filter out invalid (engine, ext) pairs instead of skipping, as that produces 500+ pytest.skips. """ engine = engine.values[0] if engine == "openpyxl" and read_ext == ".xls": return False if engine == "odf" and read_ext != ".ods": return False if read_ext == ".ods" and engine != "odf": return False return True def _transfer_marks(engine, read_ext): """ engine gives us a pytest.param objec with some marks, read_ext is just a string. We need to generate a new pytest.param inheriting the marks. """ values = engine.values + (read_ext,) new_param = pytest.param(values, marks=engine.marks) return new_param @pytest.fixture( autouse=True, params=[ _transfer_marks(eng, ext) for eng in engine_params for ext in read_ext_params if _is_valid_engine_ext_pair(eng, ext) ], ) def engine_and_read_ext(request): """ Fixture for Excel reader engine and read_ext, only including valid pairs. """ return request.param @pytest.fixture def engine(engine_and_read_ext): engine, read_ext = engine_and_read_ext return engine @pytest.fixture def read_ext(engine_and_read_ext): engine, read_ext = engine_and_read_ext return read_ext class TestReaders: @pytest.fixture(autouse=True) def cd_and_set_engine(self, engine, datapath, monkeypatch): """ Change directory and set engine for read_excel calls. """ func = partial(pd.read_excel, engine=engine) monkeypatch.chdir(datapath("io", "data", "excel")) monkeypatch.setattr(pd, "read_excel", func) def test_usecols_int(self, read_ext, df_ref): df_ref = df_ref.reindex(columns=["A", "B", "C"]) # usecols as int msg = "Passing an integer for `usecols`" with pytest.raises(ValueError, match=msg): with ignore_xlrd_time_clock_warning(): pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols=3) # usecols as int with pytest.raises(ValueError, match=msg): with ignore_xlrd_time_clock_warning(): pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=3 ) def test_usecols_list(self, read_ext, df_ref): df_ref = df_ref.reindex(columns=["B", "C"]) df1 = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols=[0, 2, 3] ) df2 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols=[0, 2, 3] ) # TODO add index to xls file) tm.assert_frame_equal(df1, df_ref, check_names=False) tm.assert_frame_equal(df2, df_ref, check_names=False) def test_usecols_str(self, read_ext, df_ref): df1 = df_ref.reindex(columns=["A", "B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A:D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A:D" ) # TODO add index to xls, read xls ignores index name ? tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) df1 = df_ref.reindex(columns=["B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C,D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C,D" ) # TODO add index to xls file tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) df1 = df_ref.reindex(columns=["B", "C"]) df2 = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0, usecols="A,C:D") df3 = pd.read_excel( "test1" + read_ext, "Sheet2", skiprows=[1], index_col=0, usecols="A,C:D" ) tm.assert_frame_equal(df2, df1, check_names=False) tm.assert_frame_equal(df3, df1, check_names=False) @pytest.mark.parametrize( "usecols", [[0, 1, 3], [0, 3, 1], [1, 0, 3], [1, 3, 0], [3, 0, 1], [3, 1, 0]] ) def test_usecols_diff_positional_int_columns_order(self, read_ext, usecols, df_ref): expected = df_ref[["A", "C"]] result = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols=usecols ) tm.assert_frame_equal(result, expected, check_names=False) @pytest.mark.parametrize("usecols", [["B", "D"], ["D", "B"]]) def test_usecols_diff_positional_str_columns_order(self, read_ext, usecols, df_ref): expected = df_ref[["B", "D"]] expected.index = range(len(expected)) result = pd.read_excel("test1" + read_ext, "Sheet1", usecols=usecols) tm.assert_frame_equal(result, expected, check_names=False) def test_read_excel_without_slicing(self, read_ext, df_ref): expected = df_ref result = pd.read_excel("test1" + read_ext, "Sheet1", index_col=0) tm.assert_frame_equal(result, expected, check_names=False) def test_usecols_excel_range_str(self, read_ext, df_ref): expected = df_ref[["C", "D"]] result = pd.read_excel( "test1" + read_ext, "Sheet1", index_col=0, usecols="A,D:E" ) tm.assert_frame_equal(result, expected, check_names=False) def test_usecols_excel_range_str_invalid(self, read_ext): msg = "Invalid column name: E1" with pytest.raises(ValueError, match=msg): pd.read_excel("test1" + read_ext, "Sheet1", usecols="D:E1") def test_index_col_label_error(self, read_ext): msg = "list indices must be integers.*, not str" with pytest.raises(TypeError, match=msg): pd.read_excel( "test1" + read_ext, "Sheet1", index_col=["A"], usecols=["A", "C"] ) def test_index_col_empty(self, read_ext): # see gh-9208 result = pd.read_excel("test1" + read_ext, "Sheet3", index_col=["A", "B", "C"]) expected = DataFrame( columns=["D", "E", "F"], index=
MultiIndex(levels=[[]] * 3, codes=[[]] * 3, names=["A", "B", "C"])
pandas.MultiIndex
import argparse from tqdm import trange import requests import os import sys import csv import pandas as pd from time import sleep from datetime import datetime # URLs to make api calls BASE_URL = "https://metamon-api.radiocaca.com/usm-api" TOKEN_URL = f"{BASE_URL}/login" LIST_MONSTER_URL = f"{BASE_URL}/getWalletPropertyBySymbol" CHANGE_FIGHTER_URL = f"{BASE_URL}/isFightMonster" START_FIGHT_URL = f"{BASE_URL}/startBattle" LIST_BATTLER_URL = f"{BASE_URL}/getBattelObjects" WALLET_PROPERTY_LIST = f"{BASE_URL}/getWalletPropertyList" LVL_UP_URL = f"{BASE_URL}/updateMonster" MINT_EGG_URL = f"{BASE_URL}/composeMonsterEgg" CHECK_BAG_URL = f"{BASE_URL}/checkBag" def datetime_now(): return datetime.now().strftime("%m/%d/%Y %H:%M:%S") def post_formdata(payload, url="", headers=None): """Method to send request to game""" files = [] if headers is None: headers = {} for _ in range(5): try: # Add delay to avoid error from too many requests per second sleep(1.1) response = requests.request("POST", url, headers=headers, data=payload, files=files) return response.json() except: continue return {} def get_battler_score(monster): """ Get opponent's power score""" return monster["sca"] def picker_battler(monsters_list): """ Picking opponent """ battlers = list(filter(lambda m: m["rarity"] == "N", monsters_list)) if len(battlers) == 0: battlers = list(filter(lambda m: m["rarity"] == "R", monsters_list)) battler = battlers[0] score_min = get_battler_score(battler) for i in range(1, len(battlers)): score = get_battler_score(battlers[i]) if score < score_min: battler = battlers[i] score_min = score return battler def pick_battle_level(level=1): # pick highest league for given level if 21 <= level <= 40: return 2 if 41 <= level <= 60: return 3 return 1 class MetamonPlayer: def __init__(self, address, sign, msg="LogIn", auto_lvl_up=False, output_stats=False): self.no_enough_money = False self.output_stats = output_stats self.total_bp_num = 0 self.total_success = 0 self.total_fail = 0 self.mtm_stats_df = [] self.token = None self.address = address self.sign = sign self.msg = msg self.auto_lvl_up = auto_lvl_up def init_token(self): """Obtain token for game session to perform battles and other actions""" payload = {"address": self.address, "sign": self.sign, "msg": self.msg, "network": "1", "clientType": "MetaMask"} response = post_formdata(payload, TOKEN_URL) if response.get("code") != "SUCCESS": sys.stderr.write("Login failed, token is not initialized. Terminating\n") sys.exit(-1) self.token = response.get("data").get("accessToken") def change_fighter(self, monster_id): """Switch to next metamon if you have few""" payload = { "metamonId": monster_id, "address": self.address, } post_formdata(payload, CHANGE_FIGHTER_URL) def list_battlers(self, monster_id, front=1): """Obtain list of opponents""" payload = { "address": self.address, "metamonId": monster_id, "front": front, } headers = { "accessToken": self.token, } response = post_formdata(payload, LIST_BATTLER_URL, headers) return response.get("data", {}).get("objects") def start_fight(self, my_monster, target_monster_id, loop_count=1): """ Main method to initiate battles (as many as monster has energy for)""" success = 0 fail = 0 total_bp_fragment_num = 0 mtm_stats = [] my_monster_id = my_monster.get("id") my_monster_token_id = my_monster.get("tokenId") my_level = my_monster.get("level") my_power = my_monster.get("sca") battle_level = pick_battle_level(my_level) tbar = trange(loop_count) tbar.set_description(f"Fighting with {my_monster_token_id}...") for _ in tbar: payload = { "monsterA": my_monster_id, "monsterB": target_monster_id, "address": self.address, "battleLevel": battle_level, } headers = { "accessToken": self.token, } response = post_formdata(payload, START_FIGHT_URL, headers) code = response.get("code") if code == "BATTLE_NOPAY": self.no_enough_money = True break data = response.get("data", {}) if data is None: print(f"Metamon {my_monster_id} cannot fight skipping...") break fight_result = data.get("challengeResult", False) bp_fragment_num = data.get("bpFragmentNum", 10) if self.auto_lvl_up: # Try to lvl up res = post_formdata({"nftId": my_monster_id, "address": self.address}, LVL_UP_URL, headers) code = res.get("code") if code == "SUCCESS": tbar.set_description(f"LVL UP successful! Continue fighting with {my_monster_token_id}...") my_level += 1 # Update league level if new level is 21 or 41 battle_level = pick_battle_level(my_level) self.total_bp_num += bp_fragment_num total_bp_fragment_num += bp_fragment_num if fight_result: success += 1 self.total_success += 1 else: fail += 1 self.total_fail += 1 mtm_stats.append({ "My metamon id": my_monster_token_id, "League lvl": battle_level, "Total battles": loop_count, "My metamon power": my_power, "My metamon level": my_level, "Victories": success, "Defeats": fail, "Total egg shards": total_bp_fragment_num, "Timestamp": datetime_now() }) mtm_stats_df = pd.DataFrame(mtm_stats) print(mtm_stats_df) self.mtm_stats_df.append(mtm_stats_df) def get_wallet_properties(self): """ Obtain list of metamons on the wallet""" data = [] payload = {"address": self.address} headers = { "accesstoken": self.token, } response = post_formdata(payload, WALLET_PROPERTY_LIST, headers) mtms = response.get("data", {}).get("metamonList", []) if len(mtms) > 0: data.extend(mtms) data = sorted(data, key=lambda metamon: metamon['id']) else: if 'code' in response and response['code'] == 'FAIL': print(response['message']) return data def list_monsters(self): """ Obtain list of metamons on the wallet (deprecated)""" payload = {"address": self.address, "page": 1, "pageSize": 60, "payType": -6} headers = {"accessToken": self.token} response = post_formdata(payload, LIST_MONSTER_URL, headers) monsters = response.get("data", {}).get("data", {}) return monsters def battle(self, w_name=None): """ Main method to run all battles for the day""" if w_name is None: w_name = self.address summary_file_name = f"{w_name}_summary.tsv" mtm_stats_file_name = f"{w_name}_stats.tsv" self.init_token() wallet_monsters = self.get_wallet_properties() print(f"Monsters total: {len(wallet_monsters)}") available_monsters = [ monster for monster in wallet_monsters if (monster.get("level") < 60 or monster.get("allowReset") == True) and monster.get("tear") > 0 ] level60_monsters = [ monster for monster in wallet_monsters if monster.get("level") >= 60 ] stats_l = [] print(f"Available Monsters : {len(available_monsters)}") print(f"Level 60 Monsters : {len(level60_monsters)}") for monster in available_monsters: monster_id = monster.get("id") tear = monster.get("tear") level = monster.get("level") exp = monster.get("exp") if int(exp) >= 600 or (int(level) >= 60 and int(exp) >= 395): print(f"Monster {monster_id} cannot fight due to " f"exp overflow. Skipping...") continue battlers = self.list_battlers(monster_id) battler = picker_battler(battlers) target_monster_id = battler.get("id") self.change_fighter(monster_id) self.start_fight(monster, target_monster_id, loop_count=tear) if self.no_enough_money: print("Not enough u-RACA") break total_count = self.total_success + self.total_fail success_percent = .0 if total_count > 0: success_percent = (self.total_success / total_count) * 100 if total_count <= 0: print("No battles to record") return stats_l.append({ "Victories": self.total_success, "Defeats": self.total_fail, "Win Rate": f"{success_percent:.2f}%", "Total Egg Shards": self.total_bp_num, "Datetime": datetime_now() }) stats_df = pd.DataFrame(stats_l) print(stats_df) if os.path.exists(summary_file_name) and self.output_stats: back_fn = f"{summary_file_name}.bak" os.rename(summary_file_name, back_fn) tmp_df =
pd.read_csv(back_fn, sep="\t", dtype="str")
pandas.read_csv
import numpy as np import pandas as pd import pytest from pandas.util import hash_pandas_object import dask.dataframe as dd from dask.dataframe import _compat from dask.dataframe._compat import tm from dask.dataframe.utils import assert_eq @pytest.mark.parametrize( "obj", [ pd.Series([1, 2, 3]), pd.Series([1.0, 1.5, 3.2]), pd.Series([1.0, 1.5, 3.2], index=[1.5, 1.1, 3.3]), pd.Series(["a", "b", "c"]), pd.Series([True, False, True]), pd.Index([1, 2, 3]), pd.Index([True, False, True]), pd.DataFrame({"x": ["a", "b", "c"], "y": [1, 2, 3]}), _compat.makeMissingDataframe(), _compat.makeMixedDataFrame(), _compat.makeTimeDataFrame(), _compat.makeTimeSeries(), _compat.makeTimedeltaIndex(), ], ) def test_hash_pandas_object(obj): a = hash_pandas_object(obj) b = hash_pandas_object(obj) if isinstance(a, np.ndarray): np.testing.assert_equal(a, b) else: assert_eq(a, b) def test_categorical_consistency(): # Check that categoricals hash consistent with their values, not codes # This should work for categoricals of any dtype for s1 in [ pd.Series(["a", "b", "c", "d"]), pd.Series([1000, 2000, 3000, 4000]), pd.Series(pd.date_range(0, periods=4)), ]: s2 = s1.astype("category").cat.set_categories(s1) s3 = s2.cat.set_categories(list(reversed(s1))) for categorize in [True, False]: # These should all hash identically h1 = hash_pandas_object(s1, categorize=categorize) h2 = hash_pandas_object(s2, categorize=categorize) h3 =
hash_pandas_object(s3, categorize=categorize)
pandas.util.hash_pandas_object
# Copyright (c) 2020 Civic Knowledge. This file is licensed under the terms of the # MIT license included in this distribution as LICENSE import logging import re from collections import defaultdict, deque from pathlib import Path from time import time import pandas as pd from synpums.util import * '' _logger = logging.getLogger(__name__) def sample_to_sum(N, df, col, weights): """Sample a number of records from a dataset, then return the smallest set of rows at the front of the dataset where the weight sums to more than N""" t = df.sample(n=N, weights=weights, replace=True) # Get the number of records that sum to N. arg = t[col].cumsum().sub(N).abs().astype(int).argmin() return t.iloc[:arg + 1] def rms(s): """Root mean square""" return np.sqrt(np.sum(np.square(s))) def vector_walk_callback(puma_task, tract_task, data, memo): pass def make_acs_target_df(acs, columns, geoid): t = acs.loc[geoid] target_map = {c + '_m90': c for c in columns if "WGTP" not in columns} target_df = pd.DataFrame({ 'est': t[target_map.values()], 'm90': t[target_map.keys()].rename(target_map) }) target_df['est_min'] = target_df.est - target_df.m90 target_df['est_max'] = target_df.est + target_df.m90 target_df.loc[target_df.est_min < 0, 'est_min'] = 0 return target_df.astype('Int64') def geoid_path(geoid): from pathlib import Path from geoid.acs import AcsGeoid go = AcsGeoid.parse(geoid) try: return Path(f"{go.level}/{go.stusab}/{go.county:03d}/{str(go)}.csv") except AttributeError: return Path(f"{go.level}/{go.stusab}/{str(go)}.csv") class AllocationTask(object): """Represents the allocation process to one tract""" def __init__(self, region_geoid, puma_geoid, acs_ref, hh_ref, cache_dir): self.region_geoid = region_geoid self.puma_geoid = puma_geoid self.acs_ref = acs_ref self.hh_ref = hh_ref self.cache_dir = cache_dir self.sample_pop = None self.sample_weights = None self.unallocated_weights = None # Initialized to the puma weights, gets decremented self.target_marginals = None self.allocated_weights = None self.household_count = None self.population_count = None self.gq_count = None self.gq_cols = None self.sex_age_cols = None self.hh_size_cols = None self.hh_race_type_cols = None self.hh_eth_type_cols = None self.hh_income_cols = None self._init = False self.running_allocated_marginals = None # A version of the sample_pop constructed by map_cp, added as an instance var so # the probabilities can be manipulated during the vector walk. self.cp_df = None self.cp_prob = None @property def row(self): from geoid.acs import AcsGeoid tract = AcsGeoid.parse(self.region_geoid) return [tract.state, tract.stusab, tract.county, self.region_geoid, self.puma_geoid, str(self.acs_ref), str(self.hh_ref)] def init(self, use_sample_weights=False, puma_weights=None): """Load all of the data, just before running the allocation""" if isinstance(self.hh_ref, pd.DataFrame): hh_source = self.hh_ref else: hh_source = pd.read_csv(self.hh_ref, index_col='SERIALNO', low_memory=False) \ .drop(columns=['geoid'], errors='ignore').astype('Int64') if isinstance(self.acs_ref, pd.DataFrame): acs = self.acs_ref else: acs = pd.read_csv(self.acs_ref, index_col='geoid', low_memory=False) # These are only for debugging. #self.hh_source = hh_source #self.tract_acs = acs return self._do_init(hh_source, acs, puma_weights=puma_weights) def _do_init(self, hh_source, acs, puma_weights=None): self.serialno = hh_source.index # Col 0 is the WGTP column w_cols = [c for c in hh_source.columns if "WGTP" in c] not_w_cols = [c for c in hh_source.columns if "WGTP" not in c] # Not actually a sample pop --- populations are supposed to be unweighted self.sample_pop = hh_source[['WGTP'] + not_w_cols].iloc[:, 1:].reset_index(drop=True).astype(int) # Shouldn't this be: # self.sample_pop = hh_source[not_w_cols].reset_index(drop=True).astype(int) self.sample_weights = hh_source.iloc[:, 0].reset_index(drop=True).astype(int) assert self.sample_pop.shape[0] == self.sample_weights.shape[0] not_w_cols = [c for c in hh_source.columns if "WGTP" not in c] self.target_marginals = make_acs_target_df(acs, not_w_cols, self.region_geoid) self.household_count = acs.loc[self.region_geoid].b11016_001 self.population_count = acs.loc[self.region_geoid].b01003_001 self.gq_count = acs.loc[self.region_geoid].b26001_001 self.total_count = self.household_count + self.gq_count self.allocated_weights = np.zeros(len(self.sample_pop)) self.unallocated_weights = puma_weights if puma_weights is not None else self.sample_weights.copy() self.running_allocated_marginals = pd.Series(0, index=self.target_marginals.index) # Sample pop, normalized to unit length to speed up cosine similarity self.sample_pop_norm = vectors_normalize(self.sample_pop.values) # Column sets self.gq_cols = ['b26001_001'] self.sex_age_cols = [c for c in hh_source.columns if c.startswith('b01001')] self.hh_size_cols = [c for c in hh_source.columns if c.startswith('b11016')] p = re.compile(r'b11001[^hi]_') self.hh_race_type_cols = [c for c in hh_source.columns if p.match(c)] p = re.compile(r'b11001[hi]_') self.hh_eth_type_cols = [c for c in hh_source.columns if p.match(c)] p = re.compile(r'b19025') self.hh_income_cols = [c for c in hh_source.columns if p.match(c)] # We will use this identity in the numpy version of step_scjhedule # assert all((self.cp.index / 2).astype(int) == self['index']) self.rng = np.random.default_rng() self.make_cp(self.sample_pop) self._init = True return acs def make_cp(self, sp): """Make a version of the sample population with two records for each row, one the negative of the one before it. This is used to generate rows that can be used in the vector walk.""" self.cp = pd.concat([sp, sp]).sort_index().reset_index() self.cp.insert(1, 'sign', 1) self.cp.insert(2, 'select_weight', 0) self.cp.iloc[0::2, 1:] = self.cp.iloc[0::2, 1:] * -1 # flip sign on the marginal counts self.update_cp() return self.cp def update_cp(self): self.cp.loc[0::2, 'select_weight'] = self.allocated_weights.tolist() self.cp.loc[1::2, 'select_weight'] = self.unallocated_weights.tolist() def set_cp_prob(self, cp_prob): pass @property def path(self): return Path(self.cache_dir).joinpath(geoid_path(str(self.region_geoid))).resolve() @property def pums(self): """Return the PUMS household and personal records for this PUMA""" from .pums import build_pums_dfp_dfh from geoid.acs import Puma puma = Puma.parse(self.puma_geoid) dfp, dfh = build_pums_dfp_dfh(puma.stusab, year=2018, release=5) return dfp, dfh def get_saved_frame(self): if self.path.exists(): return pd.read_csv(self.path.resolve(), low_memory=False) else: return None @property def results_frame(self): return pd.DataFrame({ 'geoid': self.region_geoid, 'serialno': self.serialno, 'weight': self.allocated_weights }) def save_frame(self): self.path.parent.mkdir(parents=True, exist_ok=True) df = pd.DataFrame({ 'serialno': self.serialno, 'weight': self.allocated_weights }) df = df[df.weight > 0] df.to_csv(self.path, index=False) def load_frame(self): df =
pd.read_csv(self.path, low_memory=False)
pandas.read_csv
# License: BSD_3_clause # # Copyright (c) 2015, <NAME>, <NAME>, <NAME> # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in # the documentation and/or other materials provided with the # distribution. # # Neither the name of the Technical University of Denmark (DTU) # nor the names of its contributors may be used to endorse or # promote products derived from this software without specific # prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import os import sys import pandas as pd import numpy as np from datetime import datetime, time import gc import math import random class expando: pass #Function needed to define distances between nodes from longitudes and latitudes def distance_from_long_lat(lat1, long1, lat2, long2): # Convert latitude and longitude to spherical coordinates in radians. degrees_to_radians = math.pi/180.0 # phi = 90 - latitude phi1 = (90.0 - lat1)*degrees_to_radians phi2 = (90.0 - lat2)*degrees_to_radians # theta = longitude theta1 = long1*degrees_to_radians theta2 = long2*degrees_to_radians # Compute spherical distance from spherical coordinates. # For two locations in spherical coordinates (1, theta, phi) and (1, theta', phi') # cosine( arc length ) = sin phi sin phi' cos(theta-theta') + cos phi cos phi' # distance = rho * arc length cos = (math.sin(phi1)*math.sin(phi2)*math.cos(theta1 - theta2) + math.cos(phi1)*math.cos(phi2)) if cos>1:#numerical approximations can bring to a number slightly >1 cos=1 arc = math.acos( cos ) # Remember to multiply arc by the radius of the earth # in your favorite set of units to get length. R_earth = 6371 #km arc = arc * R_earth return arc class dataReader: def __init__(self, countries,max_number_loc,renewable_type,data_type,start_time, end_time,fore_start_time,fore_end_time,nbr_leadTimes,folder_location): self._set_attributes(countries,max_number_loc,renewable_type,data_type,start_time, end_time,fore_start_time,fore_end_time,nbr_leadTimes,folder_location) self._check_countries() self._load_observations() self._tod_observations() self._load_forecasts() self._get_distances() print('Data has been imported!') pass #Function that stores all inputs as attributes of the output def _set_attributes(self, countries,max_number_loc,renewable_type,data_type,start_time, end_time,fore_start_time,fore_end_time,nbr_leadTimes,folder_location): self.attributes = expando() self.attributes.renew_type = renewable_type self.attributes.data_type = data_type self.attributes.folder_loc = folder_location self.attributes.start_time = start_time self.attributes.end_time = end_time self.attributes.fore_start_time = fore_start_time self.attributes.fore_end_time = fore_end_time self.attributes.nbr_leadT = nbr_leadTimes self.attributes.countries = countries self.attributes.max_number_loc = max_number_loc self.metadata = expando() pass #Function that check input countries and display an error message if they #don't correspond. Returns the available countries and indices from nodes def _check_countries(self): self.metadata.network_nodes = pd.read_csv(self.attributes.folder_loc+'/Metadata/network_nodes.csv', sep=',') available_countries = set(self.metadata.network_nodes.country) countries = self.attributes.countries if bool(countries-available_countries.intersection(countries)): print(', '.join(countries-available_countries.intersection(countries)) + \ ' are not in the country list. ' + 'See in:' + ', '.join(available_countries)) self.attributes.countries = list(available_countries.intersection(countries)) ix_net_nodes_bool = np.in1d(self.metadata.network_nodes.country, self.attributes.countries) self.metadata.ix_nodes = np.where(ix_net_nodes_bool)[0]+1 if self.attributes.max_number_loc != None and len(self.metadata.ix_nodes)>self.attributes.max_number_loc: self.metadata.ix_nodes = np.sort(random.sample(list(self.metadata.ix_nodes), self.attributes.max_number_loc)) print('The number of nodes selected was higher than the maximum number of locations (' +\ str(self.attributes.max_number_loc) + ') and therefore reduced.') pass #Function that loads observations and stores them in the 'obs' attribute of output def _load_observations(self): filename = self.attributes.folder_loc + '/Nodal_TS/' + self.attributes.renew_type + \ '_signal_' + self.attributes.data_type + '.csv' data_observations_aux = pd.read_csv(filename, sep=',') #Getting observations of training period ix_time_bool = np.in1d(data_observations_aux.Time, [self.attributes.start_time,self.attributes.end_time]) ix_time = np.where(ix_time_bool)[0] if len(ix_time) == 1: sys.exit('Training period contains only one element.'+ \ 'There must be an error in the definition of starting/ending dates.'+\ 'Check day, month and year selected. Remember that data are available hourly only.') ix_net_nodes = np.append(0, self.metadata.ix_nodes) data_observations = data_observations_aux.ix[ix_time[0]:ix_time[len(ix_time)-1], ix_net_nodes] data_observations.Time = pd.to_datetime(data_observations.Time) del ix_time_bool, ix_time #Getting observations of testing period ix_time_bool = np.in1d(data_observations_aux.Time, [self.attributes.fore_start_time,self.attributes.fore_end_time]) ix_time = np.where(ix_time_bool)[0] data_observations_cf = data_observations_aux.ix[ix_time[0]:ix_time[len(ix_time)-1], ix_net_nodes] data_observations_cf.Time = pd.to_datetime(data_observations_cf.Time) #Define colnames with locations new_col_names = [None] * len(data_observations.columns) new_col_names[0] = 'Time' for icol, col_name in enumerate(data_observations.columns[1:], start=1): new_col_names[icol] = 'id_' + col_name self.metadata.id_nodes = new_col_names[1:] data_observations.columns = new_col_names data_observations_cf.columns = new_col_names data_observations.reset_index(drop=True, inplace=True) data_observations_cf.reset_index(drop=True, inplace=True) del data_observations_aux, filename self.obs = data_observations self.current_fore = expando() self.current_fore.obs = data_observations_cf pass #Function that defines the time of day horizon of predictions/observations #Dataset contains only hourly information but it can be adapted for other #markets def _tod_observations(self): #Assumption of an hourly day discretisation, to be adapted better if #intraday market or other kinds are to be considered time_of_day = [time(ih,0,0,0) for ih in range(24)] tod_name = [None] * len(time_of_day) #defining the repartition in day for later climatology application for index,itime in enumerate(time_of_day): if itime.hour<10: h_name= '0' + str(itime.hour) else: h_name = str(itime.hour) if itime.minute<10: min_name= '0' + str(itime.minute) else: min_name = str(itime.minute) tod_name[index] = 'h_'+ h_name + '_' + min_name self.metadata.tod = time_of_day self.metadata.tod_label = tod_name pass #Function that loads predictions and stores them in the 'fore' attribute of output def _load_forecasts(self): #Define lead times labels forecast_ahead = [None] * self.attributes.nbr_leadT for leadT in range(1,self.attributes.nbr_leadT+1): if leadT<10: nb_name= '0' + str(leadT) else: nb_name = str(leadT) forecast_ahead[leadT-1] = 'leadT_' + nb_name self.metadata.fore_leadT = forecast_ahead #loading of forecasts data under data_forecasts data_forecasts = expando() data_forecasts_cf = expando() empty_df = pd.DataFrame(columns=self.obs.columns) for leadT_name in self.metadata.fore_leadT: setattr(data_forecasts, leadT_name, empty_df) setattr(data_forecasts_cf, leadT_name, empty_df) for iforecast in os.listdir(self.attributes.folder_loc + '/Nodal_FC/'): iforecast_asDate = datetime(int(iforecast[:4]), int(iforecast[4:6]), int(iforecast[6:8]), int(iforecast[8:]),0,0) iforecast_asDate = iforecast_asDate.strftime("%Y-%m-%d %H:%M:%S") if iforecast_asDate>=self.attributes.start_time and iforecast_asDate<=self.attributes.end_time: filename = self.attributes.folder_loc + '/Nodal_FC/' + iforecast + \ '/' + self.attributes.renew_type + '_forecast.csv' data_forecasts_aux =
pd.read_csv(filename, sep=',')
pandas.read_csv
import numpy as np import pandas as pd import re import math from typing import Union def get_all_entity(tuples: list) -> list: entities = [] for _tuple in tuples: if _tuple[1] in ["类型", "产地", "生产时间(s)"]: if not "公式" in _tuple[0]: entities.append(_tuple[0]) else: entities.append(_tuple[0]) entities.append(_tuple[-1]) return list(set(entities)) def get_category_list(tuples:list) -> list: category_list = [] entity_list = [] for _tuple in tuples: if _tuple[1] == "类型": category_list.append(_tuple) entity_list.append(_tuple[0]) return category_list, entity_list class DysonTuples: def __init__(self, txt_path:str, extra_resources:list) -> None: self.txt_path = txt_path self.extra_resources = extra_resources self.dyson_tuples = self.read_tuples_txt(txt_path) self._all_formulas = self.get_all_formulas() self._all_formulas_dict = {} self._all_raw_products = self.get_all_raw_products(self.dyson_tuples) for formula in self._all_formulas: if formula in ["X射线裂解公式",'重氢公式(2)']: continue self._all_formulas_dict[formula] = self.get_formula_dict(formula) self.remove_special_formula() self._all_products_formulas_dict = self.get_all_products_formulas_dict(self._all_formulas_dict) self._all_products_formulas_dict["氢"].remove("反物质公式") self._all_products_formulas_dict["氢"].remove("等离子精炼公式") def check_extra_resources(self): for resource in self.extra_resources: extra_resources = ["硫酸","光栅石","分型硅石","单级磁石","刺笋结晶","金伯利矿石","可燃冰"] if resource not in extra_resources: raise ValueError("extra_resource must in {}, but {} received".format(extra_resources, resource)) def read_tuples_txt(self, txt_path: str) -> list: with open(txt_path, encoding="utf-8") as f: contents = f.readlines() tuples = [] for content in contents: head, rel, tail = re.split("\t|\n", content)[:-1] tuples.append((head, rel, tail)) return tuples def get_all_products_formulas_dict(self, formulas_dict:dict) -> dict: product_formula_dict = {} for formula in formulas_dict.keys(): products = list(formulas_dict[formula]['产物'].keys()) for _product in products: if _product not in product_formula_dict.keys(): product_formula_dict[_product] = [formula] else: product_formula_dict[_product].append(formula) return product_formula_dict def get_all_raw_products(self, tuples:list) -> list: raw_products = [] for _tuple in tuples: if _tuple[2] == "原料": raw_products.append(_tuple[0]) return raw_products def get_all_formulas(self) -> list: formulas = [] for _tuple in self.dyson_tuples: if _tuple[-1] == "生产公式": formulas.append(_tuple[0]) return list(set(formulas)) def get_formula_dict(self, formula:str) -> dict: temp_list = [] for _tuple in self.dyson_tuples: if formula in _tuple: temp_list.append(_tuple) formula_dict = self._get_formula_dict_from_list(formula, temp_list) return formula_dict def _get_formula_dict_from_list(self, formula:str, formula_list:list) -> dict: temp_dict = {'名称': formula,'原料':{},'产物':{}} for _tuple in formula_list: try: count = int(_tuple[1]) if _tuple[0] == formula: temp_dict['产物'][_tuple[-1]] = count else: temp_dict['原料'][_tuple[0]] = count except: try: temp_dict[_tuple[1]] = int(_tuple[-1]) except: temp_dict[_tuple[1]] = _tuple[-1] return temp_dict def find_method(self, target_product:str) -> list: ''' count: nums/s ''' methods = [] for _tuple in self.dyson_tuples: if _tuple[-1] == target_product: methods.append(_tuple[0]) return methods def remove_special_formula(self): self.all_raw_products.append("硅石") self.all_formulas_dict.pop("石材公式") if "硫酸" in self.extra_resources: self.all_formulas_dict.pop("硫酸公式") self.all_raw_products.append("硫酸") if "光栅石" in self.extra_resources: self.all_formulas_dict.pop("光子合并器公式") self.all_formulas_dict.pop("卡西米尔晶体公式") else: self.all_formulas_dict.pop("光子合并器公式(高效)") self.all_formulas_dict.pop("卡西米尔晶体公式(高效)") if "分型硅石" in self.extra_resources: self.all_formulas_dict.pop("晶格硅公式") else: self.all_formulas_dict.pop("晶格硅公式(高效)") if "单级磁石" in self.extra_resources: self.all_formulas_dict.pop("粒子容器公式") else: self.all_formulas_dict.pop("粒子容器公式(高效)") if "刺笋结晶" in self.extra_resources: self.all_formulas_dict.pop("碳纳米管公式") else: self.all_formulas_dict.pop("碳纳米管公式(高效)") if "金伯利矿石" in self.extra_resources: self.all_formulas_dict.pop("金刚石公式") else: self.all_formulas_dict.pop("金刚石公式(高效)") if "可燃冰" in self.extra_resources: self.all_formulas_dict.pop("石墨烯公式") else: self.all_formulas_dict.pop("石墨烯公式(高效)") @property def all_formulas(self): return self._all_formulas @property def all_formulas_dict(self): return self._all_formulas_dict @property def all_raw_products(self): return self._all_raw_products @property def all_products_formulas_dict(self): return self._all_products_formulas_dict class DysonTuplesAnalysis(DysonTuples): def __init__(self, txt_path, extra_resources:list) -> None: super(DysonTuplesAnalysis, self).__init__(txt_path, extra_resources) def __call__(self, target_product:str, count:float, filter_station_num:int=np.inf): plan_list = [] all_list = self._analysis_method(target_product, count, plan_list) for i in range(len(all_list)): # all_list[i] = self.analysis_result(all_list[i], filter_station_num) all_list[i] = self.analysis_result_pivot_table(all_list[i]) return all_list def analysis_result_pivot_table(self, plan_list:list): plan_dict = {"公式":[],"产地":[],"数量":[]} extra_dict = {"额外产物":[],"数量/s":[]} for _plan in plan_list: plan_dict["公式"].append(_plan["公式"]) plan_dict["产地"].append(_plan["产地"]) plan_dict["数量"].append(_plan["数量"]) if "额外产物" in _plan.keys(): for _extra_product in _plan["额外产物"]: product_name = list(_extra_product.keys())[0] extra_dict["额外产物"].append(product_name) extra_dict["数量/s"].append(_extra_product[product_name]) plan_df = pd.DataFrame(plan_dict) plan_pt = pd.pivot_table(plan_df,index=["公式","产地"],values=["数量"],aggfunc=np.sum) extra_df =
pd.DataFrame(extra_dict)
pandas.DataFrame
__author__ = 'lucabasa' __version__ = '1.0' __status__ = 'development' import numpy as np import pandas as pd from utilities import read_data import feature_eng as fe import feature_selection as fs import model_selection as ms from sklearn.model_selection import KFold from sklearn.metrics import mean_squared_error agg_loc = 'processed_data/' agg_name = 'total_aggregation_with_FE_0219.csv' save_loc = 'results/stack_n_blend/' model_list = {'lightGBM': ms.lightgbm_train, 'XGB': ms.xgb_train, 'lightGMBrf': ms.lightgbm_rf, 'RF': ms.rf_train, 'extra': ms.extratrees_train} sel_list = {'only_hist': fs.sel_hist, 'only_new': fs.sel_new, 'only_money': fs.sel_money, 'only_counts': fs.sel_counts, 'no_money': fs.sel_nomoney, 'full': fs.sel_all} def stack(): train = pd.read_csv('results/stack_n_blend/oof_predictions.csv') del train['Unnamed: 0'] test = pd.read_csv('results/stack_n_blend/all_predictions.csv') target = train['target'] id_to_sub = test.card_id kfolds = KFold(5, shuffle=True, random_state=42) predictions, cv_score, feat_imp, oof = ms.rf_train(train, test, target, kfolds) print(f'random forest:\t {cv_score}') sub_df = pd.DataFrame({"card_id":id_to_sub.values}) sub_df['target'] = predictions sub_df.to_csv('stack_rf.csv', index=False) feat_imp.to_csv('stack_rf_featimp.csv', index=False) predictions, cv_score, feat_imp, oof = ms.extratrees_train(train, test, target, kfolds) print(f'Extra trees:\t {cv_score}') sub_df = pd.DataFrame({"card_id":id_to_sub.values}) sub_df['target'] = predictions sub_df.to_csv('stack_extratrees.csv', index=False) feat_imp.to_csv('stack_extratrees_featimp.csv', index=False) predictions, cv_score, feat_imp, oof = ms.lightgbm_train(train, test, target, kfolds) print(f'lightGBM:\t {cv_score}') sub_df = pd.DataFrame({"card_id":id_to_sub.values}) sub_df['target'] = predictions sub_df.to_csv(save_loc + 'stack_lightgbm.csv', index=False) feat_imp.to_csv(save_loc + 'stack_lightgbm_featimp.csv', index=False) def blend(): train = pd.read_csv('results/stack_n_blend/oof_predictions.csv') del train['Unnamed: 0'] test = pd.read_csv('results/stack_n_blend/all_predictions.csv') target = train['target'] id_to_sub = test.card_id kfolds = KFold(5, shuffle=True, random_state=42) del train['target'] train['oof_score'] = train.mean(axis=1) print('Full blend: ', mean_squared_error(train.oof_score, target)**0.5) del train['oof_score'] scores = pd.read_csv('results/stack_n_blend/single_cvscores.csv') scores = scores.rename(columns={'Unnamed: 0': 'models'}) for num in np.arange(1, 15): best_blends = scores.sort_values(by='CV_score').head(num).models.values train['oof_score'] = train[best_blends].mean(axis=1) print(f'Best {num} blends: ', mean_squared_error(train.oof_score, target)**0.5) del train['oof_score'] tot_score = scores.CV_score.sum() for model in scores.models.unique(): train[model] = train[model] * (scores[scores.models == model].CV_score.values[0] / tot_score) train['oof_score'] = train.sum(axis=1) print('Weighted blend: ', mean_squared_error(train.oof_score, target)**0.5) def single_model(): train = read_data('raw_data/train.csv') test = read_data('raw_data/test.csv') df_tr = pd.read_csv(agg_loc + agg_name) train = pd.merge(train, df_tr, on='card_id', how='left').fillna(0) test = pd.merge(test, df_tr, on='card_id', how='left').fillna(0) del df_tr train = fe.combine_categs(train) test = fe.combine_categs(test) kfolds = KFold(5, shuffle=True, random_state=42) results = {} for_second_level = pd.DataFrame({'target': train['target']}) for model in model_list.keys(): to_train = model_list.get(model) for selection in sel_list: to_select = sel_list.get(selection) print(f'{model}_{selection}') df_train = train.copy() df_test = test.copy() target = df_train['target'] id_to_sub = df_test['card_id'] del df_train['target'] del df_train['card_id'] del df_test['card_id'] df_train, df_test = to_select(df_train, df_test) predictions, cv_score, feat_imp, oof = to_train(df_train, df_test, target, kfolds) results[model + '_' + selection] = cv_score for_second_level[model + '_' + selection] = oof sub_df = pd.DataFrame({"card_id":id_to_sub.values}) sub_df["target"] = predictions sub_df.to_csv(save_loc + model + '_' + selection + '.csv', index=False) feat_imp.to_csv(save_loc + model + '_' + selection + "_featimp.csv", index=False) for_second_level.to_csv(save_loc + 'oof_predictions.csv') print(f'{model}_{selection}:\t {cv_score}') print('_'*40) print('_'*40) print('\n') final = pd.DataFrame.from_dict(results, orient='index', columns=['CV_score']) final.to_csv(save_loc + 'single_cvscores.csv') for_second_level.to_csv(save_loc + 'oof_predictions.csv') def stack_with_features(): train = read_data('raw_data/train.csv') test = read_data('raw_data/test.csv') df_tr = pd.read_csv(agg_loc + agg_name) train = pd.merge(train, df_tr, on='card_id', how='left').fillna(0) test = pd.merge(test, df_tr, on='card_id', how='left').fillna(0) del df_tr train = fe.combine_categs(train) test = fe.combine_categs(test) train = train[['card_id', 'target'] + [col for col in train.columns if 'purchase' in col or 'month' in col]] test = test[['card_id'] + [col for col in train.columns if 'purchase' in col or 'month' in col]] print(train.columns) stacked =
pd.read_csv('results/stack_n_blend/oof_predictions.csv')
pandas.read_csv
import os import io import random import json import pandas as pd def create_eval_files(): #test_file = 'data/rest_e2e/devset_e2e.csv' test_file = 'data/rest_e2e/testset_e2e.csv' #num_instances = 547 # for devset_e2e.csv num_instances = 630 # for testset_e2e.csv num_samples = 40 prediction_files = os.listdir('eval/predictions') header = ['sample #', 'MR'] data = [] # generate random sample of indexes sample_idxs = random.sample(range(0, num_instances), num_samples) data.append(sample_idxs) # map the filenames onto random numbers file_idxs_random = [i for i in range(len(prediction_files))] random.shuffle(file_idxs_random) files_dict = {} for i, filename in enumerate(prediction_files): files_dict[file_idxs_random[i]] = filename # store the file index map into a file to be used as a key with open('eval/file_map.json', 'w') as f_file_map: json.dump(files_dict, f_file_map, indent=4, sort_keys=True) # sample the MRs data_frame_test =
pd.read_csv(test_file, header=0, encoding='utf8')
pandas.read_csv
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Mar 10 14:24:15 2022 @author: shshyam """ from importlib.resources import path import h5py import boto3 from botocore.handlers import disable_signing from os import walk import os import pandas as pd from geopy import distance from geopy import Point import gcsfs import numpy as np fs=gcsfs.GCSFileSystem(project="sevir-project-bdia",token="cloud_storage_creds.json") def searchincache(lat,long,distlimit): print('In Search cache function') cache_file=fs.open("gs://sevir-data-2/sevir_cache.csv",'rb') cache = pd.read_csv(cache_file) myloc=Point(lat,long) cache['distance']=cache.apply(lambda row: distancer(row,myloc), axis=1) cache=cache[cache["distance"] < int(distlimit)] if cache.empty: return 'N',None,None else: cache=cache.sort_values(by='distance') fileloc=cache.iloc[0]['image_location'] timestamp=cache.iloc[0]['timestamp'] print("Searched and found:",lat,":",long,":",fileloc) return 'Y',timestamp,fileloc def searchgeocoordinates(approxlat,approxlong,distlimit): print('In search GeoCoordinates function') catalog =
pd.read_csv("https://raw.githubusercontent.com/MIT-AI-Accelerator/eie-sevir/master/CATALOG.csv")
pandas.read_csv
import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd from app.db.psql import db, session from app.models.etf import EtfFundFlow, \ get_etf_fund_flows, \ get_sector_tickers def create_flow_data(tickers, start, end): ## Using convention for return identification: ## Simple returns denoted with capital R ## log returns identified by lowercase r etf_fund_flows = get_etf_fund_flows(tickers, start, end) etf_fund_flows['daily_R'] = etf_fund_flows['nav'].groupby(level='ticker').pct_change() etf_fund_flows['daily_r'] = np.log(etf_fund_flows['nav']).groupby(level=0).diff() etf_fund_flows['flow'] = np.log(etf_fund_flows['shares_outstanding']).groupby(level=0).diff() etf_fund_flows['mktcap'] = etf_fund_flows['nav'] * etf_fund_flows['shares_outstanding'] etf_fund_flows.dropna(inplace=True) return etf_fund_flows def calc_etf_return(df): avg_daily_r = df['daily_r'].mean() annual_ret_log = avg_daily_r * 252 annual_ret_simple = np.exp(annual_ret_log) - 1 return annual_ret_simple * 100 def calc_investor_return(df): flows = df['flow'] * (df['mktcap'] / df['mktcap'].iloc[0]) flows.iloc[0] = 1 basis = flows.cumsum() avg_daily_r = (df['daily_r'] * basis / basis.mean()).mean() annual_ret_log = avg_daily_r * 252 annual_ret_simple = np.exp(annual_ret_log) - 1 return annual_ret_simple * 100 def compare_annual(df): tickers = df.index.get_level_values(0).unique().tolist() out =
pd.DataFrame()
pandas.DataFrame
import os import pandas as pd def get_lst_images(file_path): """ Reads in all files from file path into a list. INPUT file_path: specified file path containing the images. OUTPUT List of image strings """ return [i for i in os.listdir(file_path) if i != '.DS_Store'] if __name__ == '__main__': data =
pd.read_csv("../data/Data_Entry_2017.csv")
pandas.read_csv
import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.generic import ABCIndexClass import pandas as pd import pandas._testing as tm from pandas.api.types import is_float, is_float_dtype, is_integer, is_scalar from pandas.core.arrays import IntegerArray, integer_array from pandas.core.arrays.integer import ( Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ) from pandas.tests.extension.base import BaseOpsUtil def make_data(): return list(range(8)) + [np.nan] + list(range(10, 98)) + [np.nan] + [99, 100] @pytest.fixture( params=[ Int8Dtype, Int16Dtype, Int32Dtype, Int64Dtype, UInt8Dtype, UInt16Dtype, UInt32Dtype, UInt64Dtype, ] ) def dtype(request): return request.param() @pytest.fixture def data(dtype): return integer_array(make_data(), dtype=dtype) @pytest.fixture def data_missing(dtype): return integer_array([np.nan, 1], dtype=dtype) @pytest.fixture(params=["data", "data_missing"]) def all_data(request, data, data_missing): """Parametrized fixture giving 'data' and 'data_missing'""" if request.param == "data": return data elif request.param == "data_missing": return data_missing def test_dtypes(dtype): # smoke tests on auto dtype construction if dtype.is_signed_integer: assert np.dtype(dtype.type).kind == "i" else: assert np.dtype(dtype.type).kind == "u" assert dtype.name is not None @pytest.mark.parametrize( "dtype, expected", [ (Int8Dtype(), "Int8Dtype()"), (Int16Dtype(), "Int16Dtype()"), (Int32Dtype(), "Int32Dtype()"), (Int64Dtype(), "Int64Dtype()"), (UInt8Dtype(), "UInt8Dtype()"), (UInt16Dtype(), "UInt16Dtype()"), (
UInt32Dtype()
pandas.core.arrays.integer.UInt32Dtype
""" Library of standardized plotting functions for basic plot formats """ import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas as pd from scipy.interpolate import interp1d from scipy.signal import welch # Standard field labels standard_fieldlabels = {'wspd': r'Wind speed [m/s]', 'wdir': r'Wind direction $[^\circ]$', 'u': r'u [m/s]', 'v': r'v [m/s]', 'w': r'Vertical wind speed [m/s]', 'theta': r'$\theta$ [K]', 'thetav': r'$\theta_v$ [K]', 'uu': r'$\langle u^\prime u^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'vv': r'$\langle v^\prime v^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'ww': r'$\langle w^\prime w^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'uv': r'$\langle u^\prime v^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'uw': r'$\langle u^\prime w^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'vw': r'$\langle v^\prime w^\prime \rangle \;[\mathrm{m^2/s^2}]$', 'tw': r'$\langle w^\prime \theta^\prime \rangle \;[\mathrm{Km/s}]$', 'TI': r'TI $[-]$', 'TKE': r'TKE $[\mathrm{m^2/s^2}]$', } # Standard field labels for frequency spectra standard_spectrumlabels = {'u': r'$E_{uu}\;[\mathrm{m^2/s}]$', 'v': r'$E_{vv}\;[\mathrm{m^2/s}]$', 'w': r'$E_{ww}\;[\mathrm{m^2/s}]$', 'theta': r'$E_{\theta\theta}\;[\mathrm{K^2 s}]$', 'thetav': r'$E_{\theta\theta}\;[\mathrm{K^2 s}]$', 'wspd': r'$E_{UU}\;[\mathrm{m^2/s}]$', } # Default color cycle default_colors = plt.rcParams['axes.prop_cycle'].by_key()['color'] # Supported dimensions and associated names dimension_names = { 'time': ['time','Time','datetime'], 'height': ['height','heights','z'], 'frequency': ['frequency','f',] } # Show debug information debug = False def plot_timeheight(datasets, fields=None, fig=None,ax=None, colorschemes={}, fieldlimits=None, heightlimits=None, timelimits=None, fieldlabels={}, labelsubplots=False, showcolorbars=True, fieldorder='C', ncols=1, subfigsize=(12,4), plot_local_time=False, local_time_offset=0, datasetkwargs={}, **kwargs ): """ Plot time-height contours for different datasets and fields Usage ===== datasets : pandas.DataFrame or dict Dataset(s). If more than one set, datasets should be a dictionary with entries <dataset_name>: dataset fields : str, list, 'all' (or None) Fieldname(s) corresponding to particular column(s) of the datasets. fields can be None if input are MultiIndex Series. 'all' means all fields will be plotted (in this case all datasets should have the same fields) fig : figure handle Custom figure handle. Should be specified together with ax ax : axes handle, or list or numpy ndarray with axes handles Customand axes handle(s). Size of ax should equal ndatasets*nfields colorschemes : str or dict Name of colorschemes. If only one field is plotted, colorschemes can be a string. Otherwise, it should be a dictionary with entries <fieldname>: name_of_colorschemes Missing colorschemess are set to 'viridis' fieldlimits : list or tuple, or dict Value range for the various fields. If only one field is plotted, fieldlimits can be a list or tuple. Otherwise, it should be a dictionary with entries <fieldname>: fieldlimit. Missing fieldlimits are set automatically heightlimits : list or tuple Height axis limits timelimits : list or tuple Time axis limits fieldlabels : str or dict Custom field labels. If only one field is plotted, fieldlabels can be a string. Otherwise it should be a dictionary with entries <fieldname>: fieldlabel labelsubplots : bool Label subplots as (a), (b), (c), ... showcolorbars : bool Show colorbar per subplot fieldorder : 'C' or 'F' Index ordering for assigning fields and datasets to axes grid (row by row). Fields is considered the first axis, so 'C' means fields change slowest, 'F' means fields change fastest. ncols : int Number of columns in axes grid, must be a true divisor of total number of axes. subfigsize : list or tuple Standard size of subfigures plot_local_time : bool Plot dual x axes with both UTC time and local time local_time_offset : float Local time offset from UTC datasetkwargs : dict Dataset-specific options that are passed on to the actual plotting function. These options overwrite general options specified through **kwargs. The argument should be a dictionary with entries <dataset_name>: {**kwargs} **kwargs : other keyword arguments Options that are passed on to the actual plotting function. Note that these options should be the same for all datasets and fields and can not be used to set dataset or field specific limits, colorschemess, norms, etc. Example uses include setting shading, rasterized, etc. """ args = PlottingInput( datasets=datasets, fields=fields, fieldlimits=fieldlimits, fieldlabels=fieldlabels, colorschemes=colorschemes, fieldorder=fieldorder ) args.set_missing_fieldlimits() nfields = len(args.fields) ndatasets = len(args.datasets) ntotal = nfields * ndatasets # Concatenate custom and standard field labels # (custom field labels overwrite standard fields labels if existent) args.fieldlabels = {**standard_fieldlabels, **args.fieldlabels} fig, ax, nrows, ncols = _create_subplots_if_needed( ntotal, ncols, sharex=True, sharey=True, subfigsize=subfigsize, hspace=0.2, fig=fig, ax=ax ) # Create flattened view of axes axv = np.asarray(ax).reshape(-1) # Initialise list of colorbars cbars = [] # Loop over datasets, fields and times for i, dfname in enumerate(args.datasets): df = args.datasets[dfname] heightvalues = _get_dim_values(df,'height') timevalues = _get_dim_values(df,'time') assert(heightvalues is not None), 'timeheight plot needs a height axis' assert(timevalues is not None), 'timeheight plot needs a time axis' if isinstance(timevalues, pd.DatetimeIndex): # If plot local time, shift timevalues if plot_local_time: timevalues = timevalues + pd.to_timedelta(local_time_offset,'h') # Convert to days since 0001-01-01 00:00 UTC, plus one numerical_timevalues = mdates.date2num(timevalues.values) else: if isinstance(timevalues, pd.TimedeltaIndex): timevalues = timevalues.total_seconds() # Timevalues is already a numerical array numerical_timevalues = timevalues # Create time-height mesh grid tst = _get_staggered_grid(numerical_timevalues) zst = _get_staggered_grid(heightvalues) Ts,Zs = np.meshgrid(tst,zst,indexing='xy') # Create list with available fields only available_fields = _get_available_fieldnames(df,args.fields) # Pivot all fields in a dataset at once df_pivot = _get_pivot_table(df,'height',available_fields) for j, field in enumerate(args.fields): # If available_fields is [None,], fieldname is unimportant if available_fields == [None]: pass # Else, check if field is available elif not field in available_fields: print('Warning: field "'+field+'" not available in dataset '+dfname) continue # Store plotting options in dictionary plotting_properties = { 'vmin': args.fieldlimits[field][0], 'vmax': args.fieldlimits[field][1], 'cmap': args.cmap[field] } # Index of axis corresponding to dataset i and field j if args.fieldorder=='C': axi = i*nfields + j else: axi = j*ndatasets + i # Extract data from dataframe fieldvalues = _get_pivoted_field(df_pivot,field) # Gather label, color, general options and dataset-specific options # (highest priority to dataset-specific options, then general options) try: plotting_properties = {**plotting_properties,**kwargs,**datasetkwargs[dfname]} except KeyError: plotting_properties = {**plotting_properties,**kwargs} # Plot data im = axv[axi].pcolormesh(Ts,Zs,fieldvalues.T,**plotting_properties) # Colorbar mark up if showcolorbars: cbar = fig.colorbar(im,ax=axv[axi],shrink=1.0) # Set field label if known try: cbar.set_label(args.fieldlabels[field]) except KeyError: pass # Save colorbar cbars.append(cbar) # Set title if more than one dataset if ndatasets>1: axv[axi].set_title(dfname,fontsize=16) # Format time axis if isinstance(timevalues, (pd.DatetimeIndex, pd.TimedeltaIndex)): ax2 = _format_time_axis(fig,axv[(nrows-1)*ncols:],plot_local_time,local_time_offset,timelimits) else: ax2 = None # Set time limits if specified if not timelimits is None: axv[-1].set_xlim(timelimits) # Set time label for axi in axv[(nrows-1)*ncols:]: axi.set_xlabel('time [s]') if not heightlimits is None: axv[-1].set_ylim(heightlimits) # Add y labels for r in range(nrows): axv[r*ncols].set_ylabel(r'Height [m]') # Align time, height and color labels _align_labels(fig,axv,nrows,ncols) if showcolorbars: _align_labels(fig,[cb.ax for cb in cbars],nrows,ncols) # Number sub figures as a, b, c, ... if labelsubplots: for i,axi in enumerate(axv): axi.text(-0.14,1.0,'('+chr(i+97)+')',transform=axi.transAxes,size=16) # Return cbar instead of array if ntotal==1 if len(cbars)==1: cbars=cbars[0] if plot_local_time and ax2 is not None: return fig, ax, ax2, cbars else: return fig, ax, cbars def plot_timehistory_at_height(datasets, fields=None, heights=None, fig=None,ax=None, fieldlimits=None, timelimits=None, fieldlabels={}, cmap=None, stack_by_datasets=None, labelsubplots=False, showlegend=None, ncols=1, subfigsize=(12,3), plot_local_time=False, local_time_offset=0, datasetkwargs={}, **kwargs ): """ Plot time history at specified height(s) for various dataset(s) and/or field(s). By default, data for multiple datasets or multiple heights are stacked in a single subplot. When multiple datasets and multiple heights are specified together, heights are stacked in a subplot per field and per dataset. Usage ===== datasets : pandas.DataFrame or dict Dataset(s). If more than one set, datasets should be a dictionary with entries <dataset_name>: dataset fields : str, list, 'all' (or None) Fieldname(s) corresponding to particular column(s) of the datasets. fields can be None if input are Series. 'all' means all fields will be plotted (in this case all datasets should have the same fields) heights : float, list, 'all' (or None) Height(s) for which time history is plotted. heights can be None if all datasets combined have no more than one height value. 'all' means the time history for all heights in the datasets will be plotted (in this case all datasets should have the same heights) fig : figure handle Custom figure handle. Should be specified together with ax ax : axes handle, or list or numpy ndarray with axes handles Customand axes handle(s). Size of ax should equal nfields * (ndatasets or nheights) fieldlimits : list or tuple, or dict Value range for the various fields. If only one field is plotted, fieldlimits can be a list or tuple. Otherwise, it should be a dictionary with entries <fieldname>: fieldlimit. Missing fieldlimits are set automatically timelimits : list or tuple Time axis limits fieldlabels : str or dict Custom field labels. If only one field is plotted, fieldlabels can be a string. Otherwise it should be a dictionary with entries <fieldname>: fieldlabel cmap : str Colormap used when stacking heights stack_by_datasets : bool (or None) Flag to specify what is plotted ("stacked") together per subfigure. If True, stack datasets together, otherwise stack by heights. If None, stack_by_datasets will be set based on the number of heights and datasets. labelsubplots : bool Label subplots as (a), (b), (c), ... showlegend : bool (or None) Label different plots and show legend. If None, showlegend is set to True if legend will have more than one entry, otherwise it is set to False. ncols : int Number of columns in axes grid, must be a true divisor of total number of axes. subfigsize : list or tuple Standard size of subfigures plot_local_time : bool Plot dual x axes with both UTC time and local time local_time_offset : float Local time offset from UTC datasetkwargs : dict Dataset-specific options that are passed on to the actual plotting function. These options overwrite general options specified through **kwargs. The argument should be a dictionary with entries <dataset_name>: {**kwargs} **kwargs : other keyword arguments Options that are passed on to the actual plotting function. Note that these options should be the same for all datasets, fields and heights, and they can not be used to set dataset, field or height specific colors, limits, etc. Example uses include setting linestyle/width, marker, etc. """ # Avoid FutureWarning concerning the use of an implicitly registered # datetime converter for a matplotlib plotting method. The converter # was registered by pandas on import. Future versions of pandas will # require explicit registration of matplotlib converters, as done here. from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() args = PlottingInput( datasets=datasets, fields=fields, heights=heights, fieldlimits=fieldlimits, fieldlabels=fieldlabels, ) nfields = len(args.fields) nheights = len(args.heights) ndatasets = len(args.datasets) # Concatenate custom and standard field labels # (custom field labels overwrite standard fields labels if existent) args.fieldlabels = {**standard_fieldlabels, **args.fieldlabels} # Set up subplot grid if stack_by_datasets is None: if nheights>1: stack_by_datasets = False else: stack_by_datasets = True if stack_by_datasets: ntotal = nfields*nheights else: ntotal = nfields*ndatasets fig, ax, nrows, ncols = _create_subplots_if_needed( ntotal, ncols, sharex=True, subfigsize=subfigsize, hspace=0.2, fig=fig, ax=ax ) # Create flattened view of axes axv = np.asarray(ax).reshape(-1) # Set showlegend if not specified if showlegend is None: if (stack_by_datasets and ndatasets>1) or (not stack_by_datasets and nheights>1): showlegend = True else: showlegend = False # Loop over datasets and fields for i,dfname in enumerate(args.datasets): df = args.datasets[dfname] timevalues = _get_dim_values(df,'time',default_idx=True) assert(timevalues is not None), 'timehistory plot needs a time axis' heightvalues = _get_dim_values(df,'height') if isinstance(timevalues, pd.TimedeltaIndex): timevalues = timevalues.total_seconds() # If plot local time, shift timevalues if plot_local_time and isinstance(timevalues, (pd.DatetimeIndex, pd.TimedeltaIndex)): timevalues = timevalues + pd.to_timedelta(local_time_offset,'h') # Create list with available fields only available_fields = _get_available_fieldnames(df,args.fields) # If any of the requested heights is not available, # pivot the dataframe to allow interpolation. # Pivot all fields in a dataset at once to reduce computation time if (not heightvalues is None) and (not all([h in heightvalues for h in args.heights])): df_pivot = _get_pivot_table(df,'height',available_fields) pivoted = True if debug: print('Pivoting '+dfname) else: pivoted = False for j, field in enumerate(args.fields): # If available_fields is [None,], fieldname is unimportant if available_fields == [None]: pass # Else, check if field is available elif not field in available_fields: print('Warning: field "'+field+'" not available in dataset '+dfname) continue for k, height in enumerate(args.heights): # Store plotting options in dictionary # Set default linestyle to '-' and no markers plotting_properties = { 'linestyle':'-', 'marker':None, } # Axis order, label and title depend on value of stack_by_datasets if stack_by_datasets: # Index of axis corresponding to field j and height k axi = k*nfields + j # Use datasetname as label if showlegend: plotting_properties['label'] = dfname # Set title if multiple heights are compared if nheights>1: axv[axi].set_title('z = {:.1f} m'.format(height),fontsize=16) # Set colors plotting_properties['color'] = default_colors[i % len(default_colors)] else: # Index of axis corresponding to field j and dataset i axi = i*nfields + j # Use height as label if showlegend: plotting_properties['label'] = 'z = {:.1f} m'.format(height) # Set title if multiple datasets are compared if ndatasets>1: axv[axi].set_title(dfname,fontsize=16) # Set colors if cmap is not None: cmap = mpl.cm.get_cmap(cmap) plotting_properties['color'] = cmap(k/(nheights-1)) else: plotting_properties['color'] = default_colors[k % len(default_colors)] # Extract data from dataframe if pivoted: signal = interp1d(heightvalues,_get_pivoted_field(df_pivot,field).values,axis=-1,fill_value="extrapolate")(height) else: slice_z = _get_slice(df,height,'height') signal = _get_field(slice_z,field).values # Gather label, color, general options and dataset-specific options # (highest priority to dataset-specific options, then general options) try: plotting_properties = {**plotting_properties,**kwargs,**datasetkwargs[dfname]} except KeyError: plotting_properties = {**plotting_properties,**kwargs} # Plot data axv[axi].plot(timevalues,signal,**plotting_properties) # Set field label if known try: axv[axi].set_ylabel(args.fieldlabels[field]) except KeyError: pass # Set field limits if specified try: axv[axi].set_ylim(args.fieldlimits[field]) except KeyError: pass # Set axis grid for axi in axv: axi.xaxis.grid(True,which='minor') axi.yaxis.grid(True) # Format time axis if isinstance(timevalues, (pd.DatetimeIndex, pd.TimedeltaIndex)): ax2 = _format_time_axis(fig,axv[(nrows-1)*ncols:],plot_local_time,local_time_offset,timelimits) else: ax2 = None # Set time limits if specified if not timelimits is None: axv[-1].set_xlim(timelimits) # Set time label for axi in axv[(nrows-1)*ncols:]: axi.set_xlabel('time [s]') # Number sub figures as a, b, c, ... if labelsubplots: for i,axi in enumerate(axv): axi.text(-0.14,1.0,'('+chr(i+97)+')',transform=axi.transAxes,size=16) # Add legend if showlegend: leg = _format_legend(axv,index=ncols-1) # Align labels _align_labels(fig,axv,nrows,ncols) if plot_local_time and ax2 is not None: return fig, ax, ax2 else: return fig, ax def plot_profile(datasets, fields=None, times=None, fig=None,ax=None, fieldlimits=None, heightlimits=None, fieldlabels={}, cmap=None, stack_by_datasets=None, labelsubplots=False, showlegend=None, fieldorder='C', ncols=None, subfigsize=(4,5), datasetkwargs={}, **kwargs ): """ Plot vertical profile at specified time(s) for various dataset(s) and/or field(s). By default, data for multiple datasets or multiple times are stacked in a single subplot. When multiple datasets and multiple times are specified together, times are stacked in a subplot per field and per dataset. Usage ===== datasets : pandas.DataFrame or dict Dataset(s). If more than one set, datasets should be a dictionary with entries <dataset_name>: dataset fields : str, list, 'all' (or None) Fieldname(s) corresponding to particular column(s) of the datasets. fields can be None if input are Series. 'all' means all fields will be plotted (in this case all datasets should have the same fields) times : str, int, float, list (or None) Time(s) for which vertical profiles are plotted, specified as either datetime strings or numerical values (seconds, e.g., simulation time). times can be None if all datasets combined have no more than one time value. fig : figure handle Custom figure handle. Should be specified together with ax ax : axes handle, or list or numpy ndarray with axes handles Customand axes handle(s). Size of ax should equal nfields * (ndatasets or ntimes) fieldlimits : list or tuple, or dict Value range for the various fields. If only one field is plotted, fieldlimits can be a list or tuple. Otherwise, it should be a dictionary with entries <fieldname>: fieldlimit. Missing fieldlimits are set automatically heightlimits : list or tuple Height axis limits fieldlabels : str or dict Custom field labels. If only one field is plotted, fieldlabels can be a string. Otherwise it should be a dictionary with entries <fieldname>: fieldlabel cmap : str Colormap used when stacking times stack_by_datasets : bool (or None) Flag to specify what is plotted ("stacked") together per subfigure. If True, stack datasets together, otherwise stack by times. If None, stack_by_datasets will be set based on the number of times and datasets. labelsubplots : bool Label subplots as (a), (b), (c), ... showlegend : bool (or None) Label different plots and show legend. If None, showlegend is set to True if legend will have more than one entry, otherwise it is set to False. fieldorder : 'C' or 'F' Index ordering for assigning fields and datasets/times (depending on stack_by_datasets) to axes grid (row by row). Fields is considered the first axis, so 'C' means fields change slowest, 'F' means fields change fastest. ncols : int Number of columns in axes grid, must be a true divisor of total number of axes. subfigsize : list or tuple Standard size of subfigures datasetkwargs : dict Dataset-specific options that are passed on to the actual plotting function. These options overwrite general options specified through **kwargs. The argument should be a dictionary with entries <dataset_name>: {**kwargs} **kwargs : other keyword arguments Options that are passed on to the actual plotting function. Note that these options should be the same for all datasets, fields and times, and they can not be used to set dataset, field or time specific colors, limits, etc. Example uses include setting linestyle/width, marker, etc. """ args = PlottingInput( datasets=datasets, fields=fields, times=times, fieldlimits=fieldlimits, fieldlabels=fieldlabels, fieldorder=fieldorder, ) nfields = len(args.fields) ntimes = len(args.times) ndatasets = len(args.datasets) # Concatenate custom and standard field labels # (custom field labels overwrite standard fields labels if existent) args.fieldlabels = {**standard_fieldlabels, **args.fieldlabels} # Set up subplot grid if stack_by_datasets is None: if ntimes>1: stack_by_datasets = False else: stack_by_datasets = True if stack_by_datasets: ntotal = nfields * ntimes else: ntotal = nfields * ndatasets fig, ax, nrows, ncols = _create_subplots_if_needed( ntotal, ncols, default_ncols=int(ntotal/nfields), fieldorder=args.fieldorder, avoid_single_column=True, sharey=True, subfigsize=subfigsize, hspace=0.4, fig=fig, ax=ax, ) # Create flattened view of axes axv = np.asarray(ax).reshape(-1) # Set showlegend if not specified if showlegend is None: if (stack_by_datasets and ndatasets>1) or (not stack_by_datasets and ntimes>1): showlegend = True else: showlegend = False # Loop over datasets, fields and times for i, dfname in enumerate(args.datasets): df = args.datasets[dfname] heightvalues = _get_dim_values(df,'height',default_idx=True) assert(heightvalues is not None), 'profile plot needs a height axis' timevalues = _get_dim_values(df,'time') # Create list with available fields only available_fields = _get_available_fieldnames(df,args.fields) # Pivot all fields in a dataset at once if not timevalues is None: df_pivot = _get_pivot_table(df,'height',available_fields) for j, field in enumerate(args.fields): # If available_fields is [None,], fieldname is unimportant if available_fields == [None]: pass # Else, check if field is available elif not field in available_fields: print('Warning: field "'+field+'" not available in dataset '+dfname) continue for k, time in enumerate(args.times): plotting_properties = {} # Axis order, label and title depend on value of stack_by_datasets if stack_by_datasets: # Index of axis corresponding to field j and time k if args.fieldorder == 'C': axi = j*ntimes + k else: axi = k*nfields + j # Use datasetname as label if showlegend: plotting_properties['label'] = dfname # Set title if multiple times are compared if ntimes>1: if isinstance(time, (int,float,np.number)): tstr = '{:g} s'.format(time) else: tstr = pd.to_datetime(time).strftime('%Y-%m-%d %H%M UTC') axv[axi].set_title(tstr, fontsize=16) # Set color plotting_properties['color'] = default_colors[i % len(default_colors)] else: # Index of axis corresponding to field j and dataset i if args.fieldorder == 'C': axi = j*ndatasets + i else: axi = i*nfields + j # Use time as label if showlegend: if isinstance(time, (int,float,np.number)): plotting_properties['label'] = '{:g} s'.format(time) else: plotting_properties['label'] =
pd.to_datetime(time)
pandas.to_datetime
from sklearn.metrics import * from tqdm import tqdm import pandas as pd import time from .models import * from .databunch import DataBunch from .encoders import * ##################################### BestSingleModel ################################################ class BestSingleModel(XGBoost): """ Trying to find which model work best on our data Args: params (dict or None): parameters for model. If None default params are fetched. """ def _make_model(self, model_name, databunch=None, model_param=None, wrapper_params=None,): ''' Make new model and choose model library from 'model_name' ''' if databunch is None: databunch=self._data model = all_models[model_name]( databunch=databunch, cv = self._cv, score_cv_folds = self._score_cv_folds, opt_lvl=self._opt_lvl, metric=self.metric, combined_score_opt=self._combined_score_opt, metric_round=self._metric_round, model_param=model_param, wrapper_params=wrapper_params, gpu=self._gpu, random_state=self._random_state, type_of_estimator=self.type_of_estimator ) return(model) def _opt_model(self, trial): ''' now we can choose models in optimization ''' model_name = trial.suggest_categorical('model_name', self.models_names) model = self._make_model(model_name,) model.model_param = model.get_model_opt_params(trial=trial, model=model, opt_lvl=model._opt_lvl, metric_name=model.metric.__name__, ) return(model) def opt(self, timeout=1000, early_stoping=100, cold_start=100, direction='maximize', opt_lvl=3, cv=None, score_cv_folds=None, auto_parameters=True, models_names=None, #list models_names for opt feature_selection=True, verbose=1, ): ''' Custom opt func whis list:models_names now we can choose models in optimization ''' if cold_start is not None: self._cold_start = cold_start if self.direction is None: self.direction = direction if opt_lvl is not None: self._opt_lvl = opt_lvl if cv is not None: self._cv = cv if score_cv_folds is not None: self._score_cv_folds = score_cv_folds if auto_parameters is not None: self._auto_parameters = auto_parameters if models_names is None: self.models_names = all_models.keys() else: self.models_names = models_names # Opt history = self._opt_core( timeout, early_stoping, feature_selection, verbose) return(history) def _predict_preproc_model(self, model_cfg, model,): """ custom function for predict, now we can choose model library """ model = self._make_model(model_cfg['model_name'], databunch=self._data) model.model_param = model_cfg['model_param'] model.wrapper_params = model_cfg['wrapper_params'] return(model) class BestSingleModelClassifier(BestSingleModel): type_of_estimator='classifier' class BestSingleModelRegressor(BestSingleModel): type_of_estimator='regression' ##################################### ModelsReview ################################################ class ModelsReview(BestSingleModel): """ ModelsReview... """ __name__ = 'ModelsReview' def fit(self, models_names=None, verbose=1, ): """ Fit models (in list models_names) whis default params """ history_fits = pd.DataFrame() if models_names is None: self.models_names = all_models.keys() else: self.models_names = models_names if verbose > 0: disable_tqdm = False else: disable_tqdm = True for model_name in tqdm(self.models_names, disable=disable_tqdm): # Model model_tmp = all_models[model_name](databunch=self._data, cv=self._cv, score_cv_folds = self._cv, metric=self.metric, direction=self.direction, metric_round=self._metric_round, combined_score_opt=self._combined_score_opt, gpu=self._gpu, random_state=self._random_state, type_of_estimator=self.type_of_estimator) # fit config = model_tmp.fit() history_fits = history_fits.append(config, ignore_index=True) model_tmp = None self.history_trials_dataframe = history_fits return(history_fits) def opt(self, timeout=1000, early_stoping=100, auto_parameters=False, feature_selection=True, direction=None, verbose=1, models_names=None, ): if direction is not None: self.direction = direction if self.direction is None: raise Exception('Need direction for optimaze!') if models_names is None: self.models_names = all_models.keys() else: self.models_names = models_names self.history_trials_dataframe =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import ahocorasick import math import os import re import sys import shutil import glob import xlsxwriter import subprocess from functools import partial from itertools import product, combinations from subprocess import DEVNULL from multiprocessing import Pool from threading import Timer import random import pandas as pd import tqdm import primer3 from Bio import SeqIO, Seq from Bio.Alphabet import IUPAC from Bio.SeqRecord import SeqRecord __author__ = "<NAME>" __copyright__ = "Copyright 2019, <NAME>" __license__ = "MIT" __maintainer__ = "<NAME>" __version__ = "1.0" __email__ = "<EMAIL>" __status__ = "Production" class PRIMeval: def __init__(self, run_id, max_primer_mismatches, max_probe_mismatches, max_product_size, cross_check, probes_only, method, dimer_check, primerMonovalentCations, primerDivalentCations, primerDNTPs, primerConcentration, primerAnnealingTemp, probeMonovalentCations, probeDivalentCations, probeDNTPs, probeConcentration, probeAnnealingTemp, prebuilt = ""): # parameters self.run_id = run_id self.max_primer_mismatches = int(max_primer_mismatches) self.max_probe_mismatches = int(max_probe_mismatches) self.max_product_size = int(max_product_size) self.max_mismatches = max(max_primer_mismatches, max_probe_mismatches) if self.max_mismatches == 0: self.l, self.e, self.qcov, self.perciden = 5, 10, 100, 100 elif self.max_mismatches == 1: self.l, self.e, self.qcov, self.perciden = 5, 40, 90, 90 elif self.max_mismatches == 2: self.l, self.e, self.qcov, self.perciden = 5, 70, 85, 85 else: self.l, self.e, self.qcov, self.perciden = 5, 100, 80, 80 self.prebuilt = str(prebuilt) self.bowtie_dbs = ["list_of_prebuilt_dbs_in_prebuilt_folder"] self.bowtie_runs = [] self.blast_db_name = "user_db" self.bowtie_index_name = "bindex" self.num_threads = 48 self.method = method if dimer_check == "True": self.dimer_check = True else: self.dimer_check = False if cross_check == "True": self.same_package = False else: self.same_package = True if probes_only == "True": self.probes_only = True else: self.probes_only = False # Cross dimer check self.primer_monovalent_cations = str(primerMonovalentCations) self.primer_divalent_cations = str(primerDivalentCations) self.primer_dntps = str(primerDNTPs) self.primer_annealing_oligo = str(primerConcentration) self.primer_annealing_temp = str(primerAnnealingTemp) self.probe_monovalent_cations = str(probeMonovalentCations) self.probe_divalent_cations = str(probeDivalentCations) self.probe_dntps = str(probeDNTPs) self.probe_annealing_oligo = str(probeConcentration) self.probe_annealing_temp = str(probeAnnealingTemp) self.cross_dimer_dfs = [] self.cross_dimer_dfs_dg = [] self.hairpin_dfs = [] # Aho-Corasick Automaton self.aho = ahocorasick.Automaton() # folders self.base_folder = os.getcwd() + "/" self.run_folder = self.base_folder + "runs/" + str(self.run_id) + "/" self.input_folder = self.run_folder + "input/" self.output_folder = self.run_folder + "output/" self.tmp_folder = self.run_folder + "tmp/" self.input_contigs = self.run_folder + "input/contigs/" self.primer_input_folder = self.run_folder + "input/primers/" self.probes_input_folder = self.run_folder + "input/probes/" self.blast_db_folder = self.run_folder + "tmp/blastdb/" self.prebuilt_genomes = self.base_folder + "prebuilt/genomes/" self.prebuilt_bowtie = self.base_folder + "prebuilt/bowtie/" # files self.output_contigs = self.run_folder + "tmp/merged_contigs.fasta" self.blast_output_tmp_file = self.run_folder + "tmp/blast_tmp_results.txt" self.blast_output_file = self.run_folder + "tmp/blast_results.txt" self.bowtie_output_tmp_file = self.run_folder + "tmp/bowtie_tmp_results.txt" self.bowtie_output_file = self.run_folder + "tmp/bowtie_results.txt" self.bowtie_index_folder = self.run_folder + "tmp/bowtie_index_folder/" self.oligo_file = self.run_folder + "output/oligos.fasta" self.results_all = self.run_folder + "output/results.csv" self.results_wob = self.run_folder + "output/results_wobbled.csv" self.results_dimers = self.run_folder + "output/results_dimers.xlsx" # settings self.blastdb_cmd = "/path/to/makeblastdb" self.bowtie_build_cmd = "/path/to/bowtie-build" self.blast_cmd = "/path/to/blastn" self.bowtie_cmd = "/path/to/bowtie" self.faidx_cmd = "/path/to/samtools faidx " self.pd_col_hits = ["Sequence", "Type", "Name", "Package", "StartPos", "EndPos", "MismatchesTotal", "Strand", "HitSequence", "Tm", "dG"] self.pd_col_results = ["Sequence", "Contig", "Primer1", "Primer2", "Probe", "Primer1Package", "Primer2Package", "ProbePackage", "StartPos1", "EndPos1", "StartPos2", "EndPos2", "StartPos3", "EndPos3", "Primer1Tm", "Primer2Tm", "ProbeTm", "Primer1dG", "Primer2dG", "ProbedG", "ProductSize", "ProductTm", "NoMismatchesLeft", "NoMismatchesRight", "NoMismatchesProbe", "MismatchesLeft", "MismatchesRight", "MismatchesProbe", "Comment", "Product"] self.blast_txt_params = "\"6 qseqid sseqid nident qlen length mismatch qstart qend sstart sseq sstrand " \ "send\"" self.blast_txt_fields = ["qseqid", "sseqid", "nident", "qlen", "length", "mismatch", "qstart", "qend", "sstart", "sseq", "sstrand", "send"] # return list of all possible sequences given an ambiguous DNA input def _extend_ambiguous_dna(self, seq): d = Seq.IUPAC.IUPACData.ambiguous_dna_values return list(map("".join, product(*map(d.get, seq)))) def _get_sequence(self, contig_file, wanted_contig, start, end, strand=1): try: command = self.faidx_cmd + contig_file + " '" + wanted_contig + ":" + str(start) + "-" + str(end) + "'" call = subprocess.check_output(command, shell=True, stderr=subprocess.DEVNULL).decode().split("\n", 1)[1] except: try: contig_file = self.prebuilt_genomes + wanted_contig.split("__contigname__", 1)[0] + ".fasta" command = self.faidx_cmd + contig_file + " '" + wanted_contig + ":" + str(start) + "-" + str(end) + "'" call = subprocess.check_output(command, shell=True, stderr=subprocess.DEVNULL).decode().split("\n", 1)[1] except: sys.exit("Failed retrieving: " + command) call = re.sub("\n|\r", "", call) sequence = Seq.Seq(call) if strand == 1: return sequence.upper() else: return sequence.reverse_complement().upper() # Get a visual representation of mismatches between two sequences def _mismatch_visualization(self, seq_a, seq_b): seq_a, seq_b = seq_a.upper(), seq_b.upper() mismatches = "" if (len(seq_a) - len(seq_b) != 0): return "Error" for pos in range(0, len(seq_a)): if seq_a[pos] != seq_b[pos]: mismatches += "(" + seq_a[pos] + "/" + seq_b[pos] + ")" else: mismatches += "=" return mismatches def _prepare_folders(self): if os.path.exists(self.output_folder): shutil.rmtree(self.output_folder) if os.path.exists(self.tmp_folder): shutil.rmtree(self.tmp_folder) # Create output and tmp folders if not os.path.exists(self.output_folder): os.makedirs(self.output_folder) if not os.path.exists(self.tmp_folder): os.makedirs(self.tmp_folder) if not os.path.exists(self.bowtie_index_folder): os.makedirs(self.bowtie_index_folder) def _clean_up_folders(self): # if os.path.exists(self.input_folder): # shutil.rmtree(self.input_folder) if os.path.exists(self.tmp_folder): shutil.rmtree(self.tmp_folder) # Rename primer and probes, create new sequences without IUPAC codes and save in file # Used for dimer check: self.packages, packages, package, oligo_name def _import_oligos(self, folder, oligotype): packages = {} primer_records = [] allowed_chars = "[^0-9a-zA-Z()'_\+-]+" for file in os.listdir(folder): if file.endswith(".fasta"): package = file.rsplit(".fasta", 1)[0] packages[package] = {} sequences = SeqIO.parse(open(folder + file), "fasta") for fasta in sequences: m = re.search("[M,R,W,S,Y,K,V,H,D,B,N]", str(fasta.seq)) if m: sequence_mutations = self._extend_ambiguous_dna(str(fasta.seq)) mutation_count = 0 for mutation in sequence_mutations: mutation_count += 1 oligo_name = re.sub(allowed_chars, "_", fasta.description) + "_mut" + str(mutation_count) packages[package][oligo_name] = str(mutation) if oligotype == "probe": rec = SeqRecord(Seq.Seq(mutation, IUPAC), id=package + "^" + re.sub(allowed_chars, "_", fasta.description) + "_mut" + str( mutation_count) + "_probe", description="") else: rec = SeqRecord(Seq.Seq(mutation, IUPAC), id=package + "^" + re.sub(allowed_chars, "_", fasta.description) + "_mut" + str( mutation_count), description="") primer_records.append(rec) else: oligo_name = re.sub(allowed_chars, "_", fasta.description) packages[package][oligo_name] = str(fasta.seq) if oligotype == "probe": rec = SeqRecord(fasta.seq, id=package + "^" + re.sub(allowed_chars, "_", fasta.description) + "_probe", description="") else: rec = SeqRecord(fasta.seq, id=package + "^" + re.sub(allowed_chars, "_", fasta.description), description="") primer_records.append(rec) output_handle = open(self.oligo_file, "a") SeqIO.write(primer_records, output_handle, "fasta") output_handle.close() if oligotype == "primer": self.primer_packages = packages else: self.probe_packages = packages # Rename and merge contigs def _import_contigs(self): seq_records = [] for file in os.listdir(self.input_contigs): # CHANGE: other file endings should also be possible (see with Django upload permitted filenames) if file.endswith(".fasta"): base_contig_name = file.replace(".fasta", "") for entry in SeqIO.parse(self.input_contigs + file, "fasta"): my_new_id = base_contig_name + "__contigname__" + entry.id seq_records.append(SeqRecord(entry.seq, id=my_new_id, description="")) output_handle = open(self.output_contigs, "w") SeqIO.write(seq_records, output_handle, "fasta") output_handle.close() command = self.faidx_cmd + self.output_contigs subprocess.call(command, shell=True) def _import_sequences(self): if self.probes_only == False: self._import_oligos(self.primer_input_folder, "primer") self._import_oligos(self.probes_input_folder, "probe") self._import_contigs() def _create_blast_db(self): command = self.blastdb_cmd + " -in " + self.output_contigs + " -dbtype nucl -out " + self.blast_db_folder + self.blast_db_name subprocess.call(command, shell=True) def _create_bowtie_index(self): command = self.bowtie_build_cmd + " --threads " + str( self.num_threads) + " -f " + self.output_contigs + " " + self.bowtie_index_folder + self.bowtie_index_name subprocess.call(command, shell=True) def _blast_call(self): command = self.blast_cmd + " -db " + self.blast_db_folder + self.blast_db_name + " -query " + self.oligo_file + " -out " + \ self.blast_output_tmp_file + " -outfmt " + self.blast_txt_params + " -num_threads " + str( self.num_threads) + " -evalue 200000 " \ "-qcov_hsp_perc " + str(self.qcov) + " -perc_identity " + str(self.perciden) + " -max_target_seqs 2000000 -word_size 4 -ungapped" subprocess.call(command, shell=True) with open(self.blast_output_file, "a") as out_file: with open(self.blast_output_tmp_file) as in_file: out_file.write(in_file.read()) def _bowtie_call(self, index_folder = "", index_name = ""): mismatches = self.max_primer_mismatches if self.max_primer_mismatches >= self.max_probe_mismatches else self.max_probe_mismatches if index_folder == "" and index_name == "": if os.path.getsize(self.output_contigs) == 0: return index_folder = self.bowtie_index_folder index_name = self.bowtie_index_name command = self.bowtie_cmd + " -f -a -p " + str(self.num_threads) + " -n " + str( mismatches) + " -l " + str(self.l) + " -e " + str(self.e) + " " + index_folder + index_name + " " + self.oligo_file + " " + self.bowtie_output_tmp_file subprocess.call(command, shell=True) with open(self.bowtie_output_file, "a") as out_file: with open(self.bowtie_output_tmp_file) as in_file: out_file.write(in_file.read()) def _specificity_calls(self): for db in self.bowtie_runs: self._bowtie_call(self.prebuilt_bowtie, db) def _multiprocess_convert_bowtie_to_blast(self): # in case no hits are returned try: df = pd.read_csv(self.bowtie_output_file, sep="\t", header=None) except pd.errors.EmptyDataError: df = pd.DataFrame(columns = ["", "", "", "", "", "", "", "", "", "", "", ""]) split_df = self.splitDataFrameIntoChunks(df) func = partial(self._convert_bowtie_to_blast) with Pool(self.num_threads) as p: multiprocessing_results = list(tqdm.tqdm(p.imap(func, split_df), total=len(split_df))) self.df_bowtie = pd.DataFrame( columns=["qseqid", "sseqid", "nident", "qlen", "length", "mismatch", "qstart", "qend", "sstart", "sseq", "sstrand", "send"]) self.df_bowtie = pd.concat(multiprocessing_results, ignore_index=True) def _convert_bowtie_to_blast(self, df): df_bowtie = pd.DataFrame( columns=["qseqid", "sseqid", "nident", "qlen", "length", "mismatch", "qstart", "qend", "sstart", "sseq", "sstrand", "send"]) for index, line in df.iterrows(): mismatch = str(line[7]).count(":") if line[0].endswith("_probe") and mismatch > self.max_probe_mismatches: continue if not line[0].endswith("_probe") and mismatch > self.max_primer_mismatches: continue sstrand = "plus" if line[1] == "+" else "minus" qseqid = line[0] sseqid = line[2] qlen = len(line[4]) length = qlen qstart = 1 qend = qlen sstart = int(line[3]) + 1 send = sstart + qlen - 1 nident = qlen - mismatch if sstrand == "minus": temp_swap = sstart sstart = send send = temp_swap if mismatch == 0: sseq = str(Seq.Seq(line[4]).reverse_complement()) else: sseq = self._resolve_bowtie_mismtches(line[4], line[7], -1) else: if mismatch == 0: sseq = line[4] else: sseq = self._resolve_bowtie_mismtches(line[4], line[7], 1) df_bowtie.loc[len(df_bowtie)] = [str(qseqid), str(sseqid), str(nident), str(qlen), str(length), str(mismatch), str(qstart), str(qend), str(sstart), str(sseq), str(sstrand), str(send)] return df_bowtie def _resolve_bowtie_mismtches(self, sequence, mismatches, strand): sequence = Seq.Seq(sequence) if strand == 1 else Seq.Seq(sequence).reverse_complement() mismatches = mismatches.split(",") for mismatch in mismatches: position, base = mismatch.split(":", 1) position = int(position) base = base[0] if strand == 1 else Seq.Seq(base[0]).reverse_complement() sequence = sequence[:position] + base + sequence[position+1:] return str(sequence) def _split_output(self): if self.method == "blast": # in case no hits are returned try: df_blast = pd.read_csv(self.blast_output_file, sep="\t", header=None) except pd.errors.EmptyDataError: df_blast = pd.DataFrame(columns = ["", "", "", "", "", "", "", "", "", "", "", ""]) self.df_blast_split = self.splitDataFrameIntoChunks(df_blast) if self.method == "bowtie": self.df_bowtie_split = self.splitDataFrameIntoChunks(self.df_bowtie) if self.method == "aho-corasick": self.df_aho_split = self.splitDataFrameIntoChunks(self.df_aho) def splitDataFrameIntoChunks(self, df): chunkSize = math.ceil(len(df) / self.num_threads) if chunkSize == 0: chunkSize = 1 listOfDf = list() numberChunks = len(df) // chunkSize + 1 for i in range(numberChunks): listOfDf.append(df[i * chunkSize:(i + 1) * chunkSize]) return listOfDf def _multiprocess_split_files(self): if self.method == "blast": input_files = self.df_blast_split if self.method == "bowtie": input_files = self.df_bowtie_split if self.method == "aho-corasick": input_files = self.df_aho_split func = partial(self._parse_blastlike_results_df) with Pool(self.num_threads) as p: multiprocessing_results = list(tqdm.tqdm(p.imap(func, input_files), total=len(input_files))) self.hits = pd.concat(multiprocessing_results, ignore_index=True) hits_output = self.hits.copy() if len(hits_output.index) > 0: hits_output[['Sequence', 'Contig']] = hits_output['Sequence'].str.split("__contigname__", 1, expand=True) hits_output = hits_output[ ['Sequence', 'Contig', 'Type', 'Name', 'Package', 'StartPos', 'EndPos', 'MismatchesTotal', 'Strand', 'HitSequence', 'Tm', 'dG']] tmp = hits_output['Name'].str.rsplit("_probe", 1, expand = True) hits_output['Name'] = tmp[0] hits_output.to_csv(self.output_folder + "all_hits.csv", index=False, sep=";") def _process_probes_only(self): probes_df = self.hits[(self.hits['Type'] == "Probe")] if len(probes_df.index) > 0: oligos_full_sequences = SeqIO.index(self.oligo_file, "fasta") probes_df = probes_df.drop(columns = ['Type', 'Strand']) probes_df = probes_df.rename(columns = {'Name': 'Probe', 'Package': 'ProbePackage', 'MismatchesTotal': 'NoMismatchesProbe'}) probes_df[['Sequence', 'Contig']] = probes_df['Sequence'].str.split("__contigname__", 1, expand = True) probes_df['MismatchesProbe'] = probes_df.apply(lambda x: self._mismatch_visualization(oligos_full_sequences[x['ProbePackage'] + "^" + x['Probe']].seq, x['HitSequence']), axis=1) probes_df = probes_df[['Sequence', 'Contig', 'Probe', 'ProbePackage', 'StartPos', 'EndPos', 'NoMismatchesProbe', 'MismatchesProbe', 'HitSequence', 'Tm' ,'dG']] tmp = probes_df['Probe'].str.rsplit("_probe", 1, expand = True) probes_df['Probe'] = tmp[0] probes_df.to_csv(self.results_all, index=False, sep=";") # parse wobbled primers subset = probes_df[probes_df['Probe'].str.contains("_mut")] subset_r = subset.replace(['_mut([0-9])+'], [''], regex=True) # hits without mutations unique = probes_df.merge(subset, indicator=True, how="outer") unique = unique[unique['_merge'] == 'left_only'] unique = unique.drop("_merge", axis=1) results2 =
pd.DataFrame(columns=['Sequence', 'Contig', 'Probe', 'ProbePackage', 'StartPos', 'EndPos', 'NoMismatchesProbe', 'MismatchesProbe', 'HitSequence', 'Tm', 'dG'])
pandas.DataFrame