prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
'''Some helper functions for PyTorch, including: - get_mean_and_std: calculate the mean and std value of dataset. - msr_init: net parameter initialization. - progress_bar: progress bar mimic xlua.progress. ''' from __future__ import print_function, absolute_import import errno import time import numpy as np import matplotlib import torch.nn as nn import torch.nn.init as init matplotlib.use('Agg') import matplotlib.pyplot as plt import os import datetime import pandas as pd import torch.nn.parallel from sklearn.utils import shuffle from sklearn.model_selection import StratifiedKFold from torch.autograd import Variable from torch.utils.data import TensorDataset from torchvision.transforms import * import nnmodels as nnmodels from os import listdir import sys # __all__ = ['Logger', 'LoggerMonitor', 'savefig'] # __all__ = ['get_mean_and_std', 'init_params', 'mkdir_p', 'AverageMeter', 'accuracy'] def print_log(print_string, log): print("{}".format(print_string)) log.write('{}\n'.format(print_string)) log.flush() def savefig(fname, dpi=None): dpi = 500 if dpi == None else dpi plt.savefig(fname, dpi=dpi) def plot_overlap(logger, names=None): names = logger.names if names == None else names numbers = logger.numbers for _, name in enumerate(names): x = np.arange(len(numbers[name])) if name in ['Train Acc.', 'Valid Acc.']: plt.plot(x, 100 - np.asarray(numbers[name], dtype='float')) else: plt.plot(x, np.asarray(numbers[name])) return [logger.title + '(' + name + ')' for name in names] class Logger(object): '''Save training process to log file with simple plot function.''' def __init__(self, fpath, title=None, resume=False): self.file = None self.resume = resume self.title = '' if title == None else title if fpath is not None: if resume: self.file = open(fpath, 'r') name = self.file.readline() self.names = name.rstrip().split('\t') self.numbers = {} for _, name in enumerate(self.names): self.numbers[name] = [] for numbers in self.file: numbers = numbers.rstrip().split('\t') for i in range(0, len(numbers)): self.numbers[self.names[i]].append(numbers[i]) self.file.close() self.file = open(fpath, 'a') else: self.file = open(fpath, 'w') def set_names(self, names): if self.resume: pass # initialize numbers as empty list self.numbers = {} self.names = names for _, name in enumerate(self.names): self.file.write(name) self.file.write('\t') self.numbers[name] = [] self.file.write('\n') self.file.flush() def append(self, numbers): assert len(self.names) == len(numbers), 'Numbers do not match names' for index, num in enumerate(numbers): self.file.write("{0:.6f}".format(num)) self.file.write('\t') self.numbers[self.names[index]].append(num) self.file.write('\n') self.file.flush() def plot(self, names=None): names = self.names if names == None else names numbers = self.numbers for _, name in enumerate(names): x = np.arange(len(numbers[name])) plt.plot(x, np.asarray(numbers[name])) plt.legend([self.title + '(' + name + ')' for name in names]) plt.grid(True) def close(self): if self.file is not None: self.file.close() class LoggerMonitor(object): '''Load and visualize multiple logs.''' def __init__(self, paths): '''paths is a distionary with {name:filepath} pair''' self.loggers = [] for title, path in paths.items(): logger = Logger(path, title=title, resume=True) self.loggers.append(logger) def plot(self, names=None): plt.figure() plt.plot() legend_text = [] for logger in self.loggers: legend_text += plot_overlap(logger, names) legend_text = ['WRN-28-10+Ours (error 17.65%)', 'WRN-28-10 (error 18.68%)'] plt.legend(legend_text, loc=0) plt.ylabel('test error (%)') plt.xlabel('epoch') plt.grid(True) def time_string(): ISOTIMEFORMAT = '%Y-%m-%d %X' string = '[{}]'.format(time.strftime(ISOTIMEFORMAT, time.gmtime(time.time()))) return string def get_mean_and_std(dataset): '''Compute the mean and std value of dataset.''' dataloader = trainloader = torch.utils.data.DataLoader(dataset, batch_size=1, shuffle=True, num_workers=2) mean = torch.zeros(3) std = torch.zeros(3) print('==> Computing mean and std..') for inputs, targets in dataloader: for i in range(3): mean[i] += inputs[:, i, :, :].mean() std[i] += inputs[:, i, :, :].std() mean.div_(len(dataset)) std.div_(len(dataset)) return mean, std def init_params(net): '''Init layer parameters.''' for m in net.modules(): if isinstance(m, nn.Conv2d): init.kaiming_normal(m.weight, mode='fan_out') if m.bias: init.constant(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): init.constant(m.weight, 1) init.constant(m.bias, 0) elif isinstance(m, nn.Linear): init.normal(m.weight, std=1e-3) if m.bias: init.constant(m.bias, 0) def mkdir_p(path): '''make dir if not exist''' try: os.makedirs(path) except OSError as exc: # Python >2.5 if exc.errno == errno.EEXIST and os.path.isdir(path): pass else: raise class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count class TrainningValidationSplitDataset(torch.utils.data.Dataset): def __init__(self, full_ds, offset, length): self.full_ds = full_ds self.offset = offset self.length = length assert len(full_ds) >= offset + length, Exception("Parent Dataset not long enough") super(TrainningValidationSplitDataset, self).__init__() def __len__(self): return self.length def __getitem__(self, i): return self.full_ds[i + self.offset] def trainTestSplit(dataset, val_share): val_offset = int(len(dataset) * (1 - val_share)) # print("Offest:" + str(val_offset)) return TrainningValidationSplitDataset(dataset, 0, val_offset), TrainningValidationSplitDataset(dataset, val_offset, len(dataset) - val_offset) def createNewDir(BASE_FOLDER): parquet_dir = os.path.join(BASE_FOLDER, datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S')) os.makedirs(parquet_dir) return parquet_dir def savePred(df_pred, local_model, val_score, train_score, save_path): pre = save_path + '/' + '/pth/' if not os.path.isdir(pre): os.makedirs(pre) fName = pre + str(val_score) + '_' + str(train_score) torch.save(local_model.state_dict(), fName + '_cnn.pth') csv_path = str(fName + '_submission.csv') df_pred.to_csv(csv_path, columns=('id', 'is_iceberg'), index=None) print(csv_path) def MinMaxBestBaseStacking(input_folder, best_base, output_path): sub_base = pd.read_csv(best_base) all_files = os.listdir(input_folder) # Read and concatenate submissions outs = [pd.read_csv(os.path.join(input_folder, f), index_col=0) for f in all_files] concat_sub = pd.concat(outs, axis=1) cols = list(map(lambda x: "is_iceberg_" + str(x), range(len(concat_sub.columns)))) concat_sub.columns = cols concat_sub.reset_index(inplace=True) # get the data fields ready for stacking concat_sub['is_iceberg_max'] = concat_sub.iloc[:, 1:6].max(axis=1) concat_sub['is_iceberg_min'] = concat_sub.iloc[:, 1:6].min(axis=1) concat_sub['is_iceberg_mean'] = concat_sub.iloc[:, 1:6].mean(axis=1) concat_sub['is_iceberg_median'] = concat_sub.iloc[:, 1:6].median(axis=1) # set up cutoff threshold for lower and upper bounds, easy to twist cutoff_lo = 0.67 cutoff_hi = 0.33 concat_sub['is_iceberg_base'] = sub_base['is_iceberg'] concat_sub['is_iceberg'] = np.where(np.all(concat_sub.iloc[:, 1:6] > cutoff_lo, axis=1), concat_sub['is_iceberg_max'], np.where(np.all(concat_sub.iloc[:, 1:6] < cutoff_hi, axis=1), concat_sub['is_iceberg_min'], concat_sub['is_iceberg_base'])) concat_sub[['id', 'is_iceberg']].to_csv(output_path, index=False, float_format='%.12f') def ensembleVer2(input_folder, output_path): print('Out:' + output_path) csv_files = [f for f in os.listdir(input_folder) if f.endswith('.csv')] model_scores = [] for i, csv in enumerate(csv_files): df = pd.read_csv(os.path.join(input_folder, csv), index_col=0) if i == 0: index = df.index else: assert index.equals(df.index), "Indices of one or more files do not match!" model_scores.append(df) print("Read %d files. Averaging..." % len(model_scores)) # print(model_scores) concat_scores = pd.concat(model_scores) print(concat_scores.head()) concat_scores['is_iceberg'] = concat_scores['is_iceberg'].astype(np.float32) averaged_scores = concat_scores.groupby(level=0).mean() assert averaged_scores.shape[0] == len(list(index)), "Something went wrong when concatenating/averaging!" averaged_scores = averaged_scores.reindex(index) stacked_1 = pd.read_csv('statoil-submission-template.csv') # for the header print(stacked_1.shape) sub = pd.DataFrame() sub['id'] = stacked_1['id'] sub['is_iceberg'] = np.exp(np.mean( [ averaged_scores['is_iceberg'].apply(lambda x: np.log(x)) ], axis=0)) print(sub.shape) sub.to_csv(output_path, index=False, float_format='%.9f') print("Averaged scores saved to %s" % output_path) # Convert the np arrays into the correct dimention and type # Note that BCEloss requires Float in X as well as in y def XnumpyToTensor(x_data_np, args): x_data_np = np.array(x_data_np, dtype=np.float32) if args.use_cuda: X_tensor = (torch.from_numpy(x_data_np).cuda()) # Note the conversion for pytorch else: X_tensor = (torch.from_numpy(x_data_np)) # Note the conversion for pytorch return X_tensor # Convert the np arrays into the correct dimention and type # Note that BCEloss requires Float in X as well as in y def YnumpyToTensor(y_data_np, args): y_data_np = y_data_np.reshape((y_data_np.shape[0], 1)) # Must be reshaped for PyTorch! if args.use_cuda: # Y = Variable(torch.from_numpy(y_data_np).type(torch.LongTensor).cuda()) Y_tensor = (torch.from_numpy(y_data_np)).type(torch.FloatTensor).cuda() # BCEloss requires Float else: # Y = Variable(torch.squeeze (torch.from_numpy(y_data_np).type(torch.LongTensor))) # Y_tensor = (torch.from_numpy(y_data_np)).type(torch.FloatTensor) # BCEloss requires Float return Y_tensor class RecorderMeter(object): """Computes and stores the minimum loss value and its epoch index""" def __init__(self, total_epoch): self.reset(total_epoch) def reset(self, total_epoch): assert total_epoch > 0 self.total_epoch = total_epoch self.current_epoch = 0 self.epoch_losses = np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val] self.epoch_losses = self.epoch_losses - 1 self.epoch_accuracy = np.zeros((self.total_epoch, 2), dtype=np.float32) # [epoch, train/val] self.epoch_accuracy = self.epoch_accuracy def update(self, idx, train_loss, train_acc, val_loss, val_acc): assert idx >= 0 and idx < self.total_epoch, 'total_epoch : {} , but update with the {} index'.format( self.total_epoch, idx) self.epoch_losses[idx, 0] = train_loss self.epoch_losses[idx, 1] = val_loss self.epoch_accuracy[idx, 0] = train_acc self.epoch_accuracy[idx, 1] = val_acc self.current_epoch = idx + 1 return self.max_accuracy(False) == val_acc def max_accuracy(self, istrain): if self.current_epoch <= 0: return 0 if istrain: return self.epoch_accuracy[:self.current_epoch, 0].max() else: return self.epoch_accuracy[:self.current_epoch, 1].max() def plot_curve(self, save_path, args, model): title = 'PyTorch-Ensembler:' + str((type(model).__name__)).upper() + ',LR:' + str(args.lr) + ',DataSet:' + str(args.dataset).upper() + ',' + '\n'\ + ',Params: %.2fM' % (sum(p.numel() for p in model.parameters()) / 1000000.0) + ',Seed: %.2f' % args.manualSeed + \ ",Torch: {}".format(torch.__version__) + ", Batch:{}".format(args.batch_size) dpi = 80 width, height = 1200, 800 legend_fontsize = 14 scale_distance = 48.8 figsize = width / float(dpi), height / float(dpi) fig = plt.figure(figsize=figsize) x_axis = np.array([i for i in range(self.total_epoch)]) # epochs y_axis = np.zeros(self.total_epoch) plt.xlim(0, self.total_epoch) plt.ylim(0, 1.0) interval_y = 0.05 / 3.0 interval_x = 1 plt.xticks(np.arange(0, self.total_epoch + interval_x, interval_x)) plt.yticks(np.arange(0, 1.0 + interval_y, interval_y)) plt.grid() plt.title(title, fontsize=18) plt.xlabel('EPOCH', fontsize=16) plt.ylabel('LOSS/ACC', fontsize=16) y_axis[:] = self.epoch_accuracy[:, 0] / 100.0 plt.plot(x_axis, y_axis, color='g', linestyle='-', label='tr-accuracy/100', lw=2) plt.legend(loc=4, fontsize=legend_fontsize) y_axis[:] = self.epoch_accuracy[:, 1] / 100.0 plt.plot(x_axis, y_axis, color='y', linestyle='-', label='val-accuracy/100', lw=2) plt.legend(loc=4, fontsize=legend_fontsize) y_axis[:] = self.epoch_losses[:, 0] plt.plot(x_axis, y_axis, color='r', linestyle=':', label='tr-loss', lw=2) plt.legend(loc=4, fontsize=legend_fontsize) y_axis[:] = self.epoch_losses[:, 1] plt.plot(x_axis, y_axis, color='b', linestyle=':', label='val-loss', lw=4) plt.legend(loc=4, fontsize=legend_fontsize) if save_path is not None: fig.savefig(save_path, dpi=dpi, bbox_inches='tight') # print('---- save figure {} into {}'.format(title, save_path)) plt.close(fig) def set_optimizer_lr(optimizer, lr): # callback to set the learning rate in an optimizer, without rebuilding the whole optimizer for param_group in optimizer.param_groups: param_group['lr'] = lr return optimizer import math # https://github.com/gngdb/pytorch-cifar-sgdr/blob/master/main.py def sgdr(period, batch_idx): # returns normalised anytime sgdr schedule given period and batch_idx # best performing settings reported in paper are T_0 = 10, T_mult=2 # so always use T_mult=2 batch_idx = float(batch_idx) restart_period = period while batch_idx / restart_period > 1.: batch_idx = batch_idx - restart_period restart_period = restart_period * 2. radians = math.pi * (batch_idx / restart_period) return 0.5 * (1.0 + math.cos(radians)) # def adjust_learning_rate(optimizer, epoch): # global lr # """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" # lr = lr * (0.01 ** (epoch // 10)) # for param_group in optimizer.state_dict()['param_groups']: # param_group['lr'] = lr def adjust_learning_rate(optimizer, epoch, args): """Sets the learning rate to the initial LR decayed by 10 after 20 and 40 and 60 epochs""" # global lr lr = args.lr * (0.5 ** (epoch // 33)) * (0.5 ** (epoch // 20)) * (0.5 ** (epoch // 55)) print ('adjust_learning_rate: {} '.format(lr)) for param_group in optimizer.param_groups: param_group['lr'] = lr def fixSeed(args): random.seed(args.manualSeed) np.random.seed(args.manualSeed) torch.manual_seed(args.manualSeed) if args.use_cuda: torch.cuda.manual_seed(args.manualSeed) torch.cuda.manual_seed_all(args.manualSeed) def getStatoilTrainValLoaders(args,n_folds=5,current_fold=0): fixSeed(args) local_data = pd.read_json(args.data_path + '/train.json') skf = StratifiedKFold(n_splits=n_folds,random_state=2018) x=local_data['id'].values y=local_data['is_iceberg'].values for i,(train_ind,val_ind) in enumerate(skf.split(X=x,y=y)): if i<current_fold: pass else: tr_data = local_data.iloc[train_ind,:] val_data = local_data.iloc[val_ind,:] break # local_data = shuffle(local_data) # otherwise same validation set each time! # local_data = local_data.reindex(np.random.permutation(local_data.index)) tr_data['band_1'] = tr_data['band_1'].apply(lambda x: np.array(x).reshape(75, 75)) tr_data['band_2'] = tr_data['band_2'].apply(lambda x: np.array(x).reshape(75, 75)) tr_data['inc_angle'] = pd.to_numeric(tr_data['inc_angle'], errors='coerce') tr_data['inc_angle'].fillna(0, inplace=True) val_data['band_1'] = val_data['band_1'].apply(lambda x: np.array(x).reshape(75, 75)) val_data['band_2'] = val_data['band_2'].apply(lambda x: np.array(x).reshape(75, 75)) val_data['inc_angle'] = pd.to_numeric(val_data['inc_angle'], errors='coerce') val_data['inc_angle'].fillna(0, inplace=True) band_1_tr = np.concatenate([im for im in tr_data['band_1']]).reshape(-1, 75, 75) band_2_tr = np.concatenate([im for im in tr_data['band_2']]).reshape(-1, 75, 75) #band_3_tr = (band_1_tr+band_2_tr)/2 local_full_img_tr = np.stack([band_1_tr, band_2_tr], axis=1)#,band_3_tr], axis=1) band_1_val = np.concatenate([im for im in val_data['band_1']]).reshape(-1, 75, 75) band_2_val = np.concatenate([im for im in val_data['band_2']]).reshape(-1, 75, 75) #band_3_val = (band_1_val+band_2_val)/2 local_full_img_val = np.stack([band_1_val, band_2_val], axis=1)#,band_3_val], axis=1) train_imgs = XnumpyToTensor(local_full_img_tr, args) train_targets = YnumpyToTensor(tr_data['is_iceberg'].values, args) dset_train = TensorDataset(train_imgs, train_targets) val_imgs = XnumpyToTensor(local_full_img_val, args) val_targets = YnumpyToTensor(val_data['is_iceberg'].values, args) dset_val = TensorDataset(val_imgs, val_targets) # local_train_ds, local_val_ds = trainTestSplit(dset_train, args.validationRatio) local_train_ds, local_val_ds = dset_train, dset_val local_train_loader = torch.utils.data.DataLoader(local_train_ds, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) local_val_loader = torch.utils.data.DataLoader(local_val_ds, batch_size=args.batch_size, shuffle=False, num_workers=args.workers) return local_train_loader, local_val_loader, local_train_ds, local_val_ds def selectModel(args, m): model = None print("==> Creating model '{}'".format(m)) if m.startswith('senet'): # block, n_size=1, num_classes=1, num_rgb=2, base=32 model = nnmodels.senetXX_generic(args.num_classes, args.imgDim, args.base_factor) # model = nnmodels.senet32_RG_1_classes(args.num_classes, args.imgDim) args.batch_size = 4 args.batch_size = 4 args.epochs = 250 args.lr = 0.0007 # do not change !!! optimal for the Statoil data set if m.startswith('densenet'): model = nnmodels.densnetXX_generic(args.num_classes, args.imgDim) args.batch_size = 32 args.batch_size = 32 args.epochs = 30 args.lr = 0.05 if m.startswith('minidensenet'): model = nnmodels.minidensnetXX_generic(args.num_classes, args.imgDim) args.batch_size = 32 args.batch_size = 32 args.epochs = 35 args.lr = 0.005 * 2 if m.startswith('vggnet'): model = nnmodels.vggnetXX_generic(args.num_classes, args.imgDim) args.batch_size = 64 args.batch_size = 64 args.epochs = 88 args.lr = 0.0005 if m.startswith('resnext'): model = nnmodels.resnetxtXX_generic(args.num_classes, args.imgDim) args.batch_size = 16 args.batch_size = 16 args.epochs = 66 args.lr = 0.0005 if m.startswith('lenet'): model = nnmodels.lenetXX_generic(args.num_classes, args.imgDim) args.batch_size = 64 args.batch_size = 64 args.epochs = 88 if m.startswith('wrn'): model = nnmodels.wrnXX_generic(args.num_classes, args.imgDim) args.batch_size = 16 args.batch_size = 16 args.epochs = 34 args.lr = 0.0005*2 if m.startswith('simple'): model = nnmodels.simpleXX_generic(args.num_classes, args.imgDim) args.batch_size = 256 args.batch_size = 256 args.epochs = 120 # if m.startswith('unet'): # model = nnmodels.unetXX_generic(args.num_classes, args.imgDim) # args.batch_size = 64 # args.batch_size = 64 # args.epochs = 50 # if m.startswith('link'): # model = nnmodels.linknetXX_generic(args.num_classes, args.imgDim) # args.batch_size = 64 # args.batch_size = 64 # args.epochs = 50 return model def BinaryInferenceOofAndTest(local_model,args,n_folds = 5,current_fold=0): if args.use_cuda: local_model.cuda() local_model.eval() df_test_set = pd.read_json(args.data_path + '/test.json') df_test_set['band_1'] = df_test_set['band_1'].apply(lambda x: np.array(x).reshape(75, 75)) df_test_set['band_2'] = df_test_set['band_2'].apply(lambda x: np.array(x).reshape(75, 75)) df_test_set['inc_angle'] = pd.to_numeric(df_test_set['inc_angle'], errors='coerce') # df_test_set.head(3) print(df_test_set.shape) columns = ['id', 'is_iceberg'] df_pred_test = pd.DataFrame(data=np.zeros((0, len(columns))), columns=columns) # df_pred.id.astype(int) for index, row in df_test_set.iterrows(): rwo_no_id = row.drop('id') band_1_test = (rwo_no_id['band_1']).reshape(-1, 75, 75) band_2_test = (rwo_no_id['band_2']).reshape(-1, 75, 75) # band_3_test = (band_1_test + band_2_test) / 2 full_img_test = np.stack([band_1_test, band_2_test], axis=1) x_data_np = np.array(full_img_test, dtype=np.float32) if args.use_cuda: X_tensor_test = Variable(torch.from_numpy(x_data_np).cuda()) # Note the conversion for pytorch else: X_tensor_test = Variable(torch.from_numpy(x_data_np)) # Note the conversion for pytorch # X_tensor_test=X_tensor_test.view(1, trainX.shape[1]) # does not work with 1d tensors predicted_val = (local_model(X_tensor_test).data).float() # probabilities p_test = predicted_val.cpu().numpy().item() # otherwise we get an array, we need a single float df_pred_test = df_pred_test.append({'id': row['id'], 'is_iceberg': p_test}, ignore_index=True) df_val_set = pd.read_json(args.data_path + '/train.json') skf = StratifiedKFold(n_splits=n_folds,random_state=2018) x=df_val_set['id'].values y=df_val_set['is_iceberg'].values columns = ['id', 'is_iceberg'] for i,(train_ind,val_ind) in enumerate(skf.split(X=x,y=y)): if i<current_fold: pass else: ids_and_labels = df_val_set.iloc[val_ind,[2,4]] df_val_set = df_val_set.iloc[val_ind,:] break df_val_set['band_1'] = df_val_set['band_1'].apply(lambda x: np.array(x).reshape(75, 75)) df_val_set['band_2'] = df_val_set['band_2'].apply(lambda x: np.array(x).reshape(75, 75)) df_val_set['inc_angle'] = pd.to_numeric(df_val_set['inc_angle'], errors='coerce') # df_test_set.head(3) print(df_val_set.shape) columns = ['id', 'is_iceberg'] df_pred_val = pd.DataFrame(data=np.zeros((0, len(columns))), columns=columns) # df_pred.id.astype(int) for index, row in df_val_set.iterrows(): rwo_no_id = row.drop('id') band_1_test = (rwo_no_id['band_1']).reshape(-1, 75, 75) band_2_test = (rwo_no_id['band_2']).reshape(-1, 75, 75) # band_3_test = (band_1_test + band_2_test) / 2 full_img_test = np.stack([band_1_test, band_2_test], axis=1) x_data_np = np.array(full_img_test, dtype=np.float32) if args.use_cuda: X_tensor_test = Variable(torch.from_numpy(x_data_np).cuda()) # Note the conversion for pytorch else: X_tensor_test = Variable(torch.from_numpy(x_data_np)) # Note the conversion for pytorch # X_tensor_test=X_tensor_test.view(1, trainX.shape[1]) # does not work with 1d tensors predicted_val = (local_model(X_tensor_test).data).float() # probabilities p_test = predicted_val.cpu().numpy().item() # otherwise we get an array, we need a single float df_pred_val = df_pred_val.append({'id': row['id'], 'is_iceberg': p_test}, ignore_index=True) return df_pred_val, df_pred_test, ids_and_labels def BinaryInference(local_model, args): if args.use_cuda: local_model.cuda() local_model.eval() df_test_set = pd.read_json(args.data_path + '/test.json') df_test_set['band_1'] = df_test_set['band_1'].apply(lambda x: np.array(x).reshape(75, 75)) df_test_set['band_2'] = df_test_set['band_2'].apply(lambda x: np.array(x).reshape(75, 75)) df_test_set['inc_angle'] =
pd.to_numeric(df_test_set['inc_angle'], errors='coerce')
pandas.to_numeric
import numpy as np import pandas as pd import pandas.util.testing as tm import pytest import pandas_datareader.data as web pytestmark = pytest.mark.stable class TestEcondb(object): def test_get_cdh_e_fos(self): # EUROSTAT # Employed doctorate holders in non managerial and non professional # occupations by fields of science (%) df = web.DataReader( "dataset=CDH_E_FOS&GEO=NO,PL,PT,RU&FOS07=FOS1&Y_GRAD=TOTAL", "econdb", start=pd.Timestamp("2005-01-01"), end=
pd.Timestamp("2010-01-01")
pandas.Timestamp
import numpy as np #import matplotlib.pyplot as plt import pandas as pd import os import math #import beeswarm as bs import sys import time import pydna import itertools as it import datetime import dnaplotlib as dpl import matplotlib.pyplot as plt import matplotlib.transforms as mtransforms import matplotlib.patches as mpatch from matplotlib.patches import FancyBboxPatch from pydna.dseq import Dseq from pydna.dseqrecord import Dseqrecord from pydna.assembly import Assembly as pydAssembly from Bio.Restriction import BsaI from Bio.Restriction import BbsI from Bio.Restriction import AarI from Bio.Restriction import Esp3I from copy import deepcopy as dc import ipywidgets as widgets from collections import defaultdict from IPython.display import FileLink, FileLinks import warnings import re def incrementString(s): """regular expression search! I forget exactly why this is needed""" m = re.search(r'\d+$', s) if(m): return s[:m.start()]+str(int(m.group())+1) else: return s+str(0) #the following makes a few data members for handling restriction enzymes enzymelist = [BsaI,BbsI,AarI,Esp3I] enzymes = {str(a):a for a in enzymelist} enlist = [str(a) for a in enzymelist]+["gibson"] #the following defines the overhangs in our library! ENDDICT = { \ "GGAG":"A", \ "TACT":"B", \ "AATG":"C", \ "AGGT":"D", \ "GCTT":"E", \ "CGCT":"F", \ "TGCC":"G", \ "ACTA":"H", \ "TAGA":"sc3",\ "CATTACTCGCATCCATTCTCAGGCTGTCTCGTCTCGTCTC" : "1",\ "GCTGGGAGTTCGTAGACGGAAACAAACGCAGAATCCAAGC" : "2",\ "GCACTGAAGGTCCTCAATCGCACTGGAAACATCAAGGTCG" : "3",\ "CTGACCTCCTGCCAGCAATAGTAAGACAACACGCAAAGTC" : "4",\ "GAGCCAACTCCCTTTACAACCTCACTCAAGTCCGTTAGAG" : "5",\ "CTCGTTCGCTGCCACCTAAGAATACTCTACGGTCACATAC" : "6",\ "CAAGACGCTGGCTCTGACATTTCCGCTACTGAACTACTCG" : "7",\ "CCTCGTCTCAACCAAAGCAATCAACCCATCAACCACCTGG" : "8",\ "GTTCCTTATCATCTGGCGAATCGGACCCACAAGAGCACTG" : "9",\ "CCAGGATACATAGATTACCACAACTCCGAGCCCTTCCACC" : "X",\ } #have a dictionary of the reverse complement too rcENDDICT = {str(Dseq(a).rc()):ENDDICT[a] for a in ENDDICT} prevplate = None selenzyme = "gibson" #which enzyme to assemble everything with chewnt = 40 frags = [] #fragments in the reaction #the following lists the components in each well, in uL. I think this is outdated #as of 4/25/19 gga = \ [["component","volume"], #["buffer10x",0.4], #["ATP10mM",0.4], #["BsaI", 0.2], #["ligase",0.2], ["NEBbuffer",0.4], ["NEBenzyme",0.2], ["water",1.4], ["dnasln",1], ] gibassy = \ [["component","volume"], ["GGAMM",1], ["dnasln",1]] ggaPD = pd.DataFrame(gga[1:],columns=gga[0]) #this just turns it into a data frame gibassyPD = pd.DataFrame(gibassy[1:],columns=gibassy[0]) ggaFm = 6.0 ggavecGm = 6.0 gibFm = 6.0 gibvecFm = 6.0 partsFm = ggaFm #default is gga vectorFm = ggavecGm source = "384PP_AQ_BP" ptypedict = { "ASSGGA04":"384PP_PLUS_AQ_BP", "ASSGIB01":"384LDV_PLUS_AQ_BP", "ASSGIB02":"384PP_AQ_BP"} waterwell = "P1" #in your source plate, include one well that is just full of water. #dnaPath = os.path.join(".","DNA") #go down and look at makeEchoFile def startText(): print("Welcome to Moclo Assembly Helper V1") print("===================================") def pickEnzyme(): """asks the user about what kind of enzyme s/he wants to use""" print("Which enzyme would you like to use?") for el in range(len(enlist)): print("[{}] {}".format(el,enlist[el])) print() userpick = int(input("type the number of your favorite! ")) selenzyme = enlist[userpick].lower() print("===================================") return selenzyme def findExpts(path): """gets a list of files/folders present in a path""" walkr = os.walk(path) dirlist = [a for a in walkr] expts = [] #print(dirlist) #for folder in dirlist[1:]: folder = ['.'] for fle in dirlist[0][2]: if(fle[-3:]=='csv'): try: fline = open(os.path.join(folder[0],fle),'r').readline().split(',') if("promoter" in fline): expts+=[(os.path.join(folder[0],fle),fle[:-4])] except IOError: pass if(fle[-4:]=='xlsx'): try: xl_file = pd.read_excel(os.path.join(folder[0],fle),None) dfs = {sheet_name: xl_file.parse(sheet_name) for sheet_name in xl_file.sheet_names} #print(dfs.keys() if(dfs["Sheet1"].columns[0] == "promoter"): expts+=[(os.path.join(folder[0],fle),fle[:-5])] except (IOError,KeyError) as e: pass return sorted(expts)[::-1] def findPartsLists(path): """gets a list of files/folders present in a path""" walkr = os.walk(path) dirlist = [a for a in walkr] #print dirlist expts = [] for fle in dirlist[0][2]: #print fle if(fle[-4:]=='xlsx'): try: xl_file = pd.read_excel(os.path.join(path,fle),None) dfs = {sheet_name: xl_file.parse(sheet_name) for sheet_name in xl_file.sheet_names} #print(dfs.keys() if("parts" in list(dfs.keys())[0]): expts+=[(os.path.join(path,fle),fle[:-4])] except IOError: pass return sorted(expts)[::-1] def pickPartsList(): """user interface for picking a list of parts to use. This list must contain the concentration of each part as well as the 384 well location of each part at minimum, but better to have more stuff. Check my example file.""" print("Searching for compatible parts lists...") pllist = findPartsLists(os.path.join(".","partslist")) pickedlist = '' if(len(pllist) <=0): print("could not find any parts lists :(. Make sure they are in a \ seperate folder called 'partslist' in the same directory as this script") else: print("OK! I found") print() for el in range(len(pllist)): print("[{}] {}".format(el,pllist[el][1])) print() if(len(pllist)==1): pickedlist = pllist[0][0] print("picked the only one in the list!") else: userpick = int(input("type the number of your favorite! ")) pickedlist = pllist[userpick][0] openlist = pd.read_excel(pickedlist,None) print("===================================") return openlist def pickAssembly(): """user interface for defining assemblies to build""" #manual = raw_input("would you like to manually enter the parts to assemble? (y/n)") manual = "n" if(manual == "n"): print("searching for compatible input files...") time.sleep(1) pllist = findExpts(".") #print pllist pickedlist = '' if(len(pllist) <=0): print("could not find any assembly files") else: print("OK! I found") print() for el in range(len(pllist)): print("[{}] {}".format(el,pllist[el][1])) print() if(len(pllist)==1): pickedlist = pllist[0][0] print("picked the only one in the list!") else: userpick = int(input("type the number of your favorite! ")) pickedlist = pllist[userpick][0] openlist = pd.read_csv(pickedlist) print("===================================") return openlist,pickedlist else: print("sorry I haven't implemented this yet") pickAssembly() return pd.read_csv(aslist),aslist def echoline(swell,dwell,tvol,sptype = source,spname = "Source[1]",\ dpname = "Destination[1]",platebc="",partid="",partname=""): #if(platebc!=""): # sptype = ptypedict[platebc] return "{},{},{},{},{},{},,,{},{},{}\n".format(spname,platebc,sptype,swell,\ partid,partname,dpname,dwell,tvol) def echoSinglePart(partDF,partname,partfm,dwell,printstuff=True,enzyme=enzymes["BsaI"]): """calculates how much of a single part to put in for a number of fm.""" try: pwell = partDF[partDF.part==partname].well.iloc[0] except IndexError: raise ValueError("Couldn't find the right part named '"+\ partname+"'! Are you sure you're using the right parts list?") return None, None, None pDseq = makeDseqFromDF(partname,partDF,enzyme=enzyme) pconc = partDF[partDF.part==partname]["conc (nM)"] #concentration of said part, in the source plate if(len(pconc)<=0): #in this case we could not find the part! raise ValueError("Part "+part+" had an invalid concentration!"+\ " Are you sure you're using the right parts list?") pconc = pconc.iloc[0] pplate = partDF[partDF.part==partname]["platebc"].iloc[0] platet = partDF[partDF.part==partname]["platetype"].iloc[0] e1,e2 = echoPipet(partfm,pconc,pwell,dwell,sourceplate=pplate,sptype=platet,\ partname=partname,printstuff=printstuff) return e1,e2,pDseq,pplate,platet def echoPipet(partFm,partConc,sourcewell,destwell,sourceplate=None,\ partname="",sptype=None,printstuff=True): """does the calculation to convert femtomoles to volumes, and returns the finished echo line""" pvol = (partFm/partConc)*1000 evol = int(pvol) if(evol <= 25):#im not sure what happens when the echo would round to 0. #better safe than sorry and put in one droplet. evol = 25 if(sourceplate==None): if(printstuff): print("===> transfer from {} to {}, {} nl".format(sourcewell,destwell,evol)) echostring = echoline(sourcewell,destwell,evol,partname=partname) else: if(printstuff): print("===> transfer from {}, plate {} to {}, {} nl".format(sourcewell,sourceplate,destwell,evol)) echostring = echoline(sourcewell,destwell,evol,spname =sourceplate,\ sptype= sptype,platebc = sourceplate,partname=partname) return echostring, evol def makeDseqFromDF(part,partslist,col = "part",enzyme=enzymes["BsaI"]): """looks up the part named "part" in the column specified as col, and converts it into a pydna object. this program will check if an input sequence is a valid part. This involves checking a couple of things: 1) are there only two restriction cut sites? 2) does it have the proper overhangs? 3) after being cut, does it produce one part with bsai sites and one part without? """ pseq = partslist[partslist[col] == part].sequence.iloc[0].lower() pcirc = partslist[partslist[col] == part].circular.iloc[0] p5pover = int(partslist[partslist[col] == part]["5pend"].iloc[0]) p3pover = int(partslist[partslist[col] == part]["3pend"].iloc[0]) povhg = int(p5pover) pseqRC = str(Dseq(pseq).rc()).lower() if(p5pover > 0): pseq = pseq[p5pover:] elif(p5pover<0): pseqRC = pseqRC[:p5pover] if(p3pover <0): pseq = pseq[:p3pover] elif(p3pover >0): pseqRC = pseqRC[p5pover:] pDseq = Dseq(pseq,pseqRC,ovhg=povhg) #this defines a dsdna linear sequence if(pcirc): #this makes the sequence circular, if we have to pDseq = pDseq.looped() if(enzyme != None): numzymes = len(enzyme.search(pDseq,linear=not pcirc))##\ #len(enzyme.search(pDseq.rc(),linear=pcirc)) if(numzymes < 2 and pcirc): warnings.warn("Be careful! sequence {} has only {} {} site"\ .format(part,numzymes,str(enzyme))) elif(numzymes>=2): try: testcut = pDseq.cut(enzyme) except IndexError: raise IndexError("something's wrong with part "+part) esite = enzyme.site.lower() esiterc = str(Dseq(enzyme.site).rc()).lower() if(numzymes > 2): warnings.warn("{} has {} extra {} site{}!!"\ .format(part,numzymes-2,str(enzyme),'s'*((numzymes-2)>1))) insert = [] backbone = [] for a in testcut: fpend = a.five_prime_end() tpend = a.three_prime_end() if((a.find(esite)>-1) or (a.find(esiterc)>-1)): #in this case the fragment we are looking at is the 'backbone' backbone+=[a] else: #we didn't find any site sequences. this must be the insert! insert+=[a] if((not fpend[0]=='blunt') and \ (not ((fpend[1].upper() in ENDDICT) or \ (fpend[1].upper() in rcENDDICT)))): warnings.warn("{} has non-standard overhang {}"\ .format(part,fpend[1].upper())) if((not tpend[0]=='blunt') and \ (not ((tpend[1].upper() in ENDDICT) or \ (tpend[1].upper() in rcENDDICT)))): warnings.warn("{} has non-standard overhang {}"\ .format(part,tpend[1].upper())) if(len(insert)==0): raise ValueError("{} does not produce any fragments with no cut site!".format(part)) if(len(insert)>1): warnings.warn("{} produces {} fragments with no cut site".format(part,len(insert))) if(len(backbone)>1): dontwarn = False if(not pcirc and len(backbone)==2): #in this case we started with a linear thing and so we expect it #to make two 'backbones' dontwarn = True if(not dontwarn): warnings.warn("{} produces {} fragments with cut sites".format(part,len(backbone))) return pDseq def bluntLeft(DSseq): """returns true if the left hand side of DSseq is blunt""" if(type(DSseq)==Dseqrecord): DSseq = DSseq.seq isblunt = (DSseq.five_prime_end()[0]=='blunt')&DSseq.linear return(isblunt) def bluntRight(DSseq): """returns true if the right hand side of DSseq is blunt""" if(type(DSseq)==Dseqrecord): DSseq = DSseq.seq isblunt = (DSseq.three_prime_end()[0]=='blunt')&DSseq.linear return(isblunt) def isNewDseq(newpart,partlist): """checks to see if newpart is contained within partlist, returns true if it isn't""" new = True if(type(newpart)==Dseqrecord): newdseqpart = newpart.seq #seqnewpart = str(newpart).upper() newcirc = newpart.circular #dsequid = (newpart.seq).seguid() #print("dsequid is "+str(dsequid)) #dsnewpart = Dseqrecord(newpart) #rcnewpart = newpart.rc() newseguid = newdseqpart.seguid() #print("newseguid is "+str(newseguid)) cseguid = None if(newcirc and type(newpart)==Dseqrecord): cseguid = newpart.cseguid() for part in partlist: if(type(part == Dseqrecord)): dseqpart = part.seq partseguid = dseqpart.seguid() if(newseguid==partseguid): new=False break #if(len(part) != len(newpart)): #continue #dspart = Dseqrecord(part) if(newcirc and part.circular): if(type(part) == Dseqrecord and cseguid != None): comparid = part.cseguid() if(comparid == cseguid): new=False break #if(seqnewpart in (str(part.seq).upper()*3)): # new=False # break #elif(seqnewpart in (str(part.seq.rc()).upper()*3)): # new=False # break #elif(part == newpart or part == rcnewpart): #new=False #break return new def allCombDseq(partslist,resultlist = []): '''recursively finds all possible paths through the partslist''' if(len(partslist)==1): #if there's only one part, then "all possible paths" is only one return partslist else: #result is the final output result = [] for p in range(len(partslist)): newplist = dc(partslist) #basically the idea is to take the first part, #and stick it to the front of every other possible assembly part = newplist.pop(p) #this is the recursive part prevresult = allCombDseq(newplist) partstoadd = [] freezult = dc(result) #for z in prevresult: for b in prevresult: #maybe some of the other assemblies #we came up with in the recursive step #are the same as assemblies we will come up #with in this step. For that reason we may #want to cull them by not adding them #to the "parts to add" list if(isNewDseq(b,freezult)): partstoadd+=[b] #try to join the given part to everything else if((not bluntRight(part)) and (not bluntLeft(b)) and part.linear and b.linear): #this means we don't allow blunt ligations! We also don't allow #ligations between a linear and a circular part. Makes sense right? #since that would never work anyway newpart = None try: #maybe we should try flipping one of these? newpart= part+b except TypeError: #this happens if the parts don't have the right sticky ends. #we can also try rotating 'part' around pass try: #part b is not blunt on the left so this is OK, #since blunt and not-blunt won't ligate newpart = part.rc()+b except TypeError: pass if(newpart == None): #if the part is still None then it won't ligate forwards #or backwards. Skip! continue try: if((not bluntRight(newpart)) and (not bluntLeft(newpart))): #given that the part assembled, can it be circularized? newpart = newpart.looped() #this thing will return TypeError if it can't be #looped except TypeError: #this happens if the part can't be circularized pass if(isNewDseq(newpart,result)): #this checks if the sequence we just made #already exists. this can happen for example if we #make the same circular assembly but starting from #a different spot around the circle result+=[newpart] result+=partstoadd return result def pushDict(Dic,key,value): """adds a value to a dictionary, whether it has a key or not""" try: pval = Dic[key] except KeyError: if(type(value)==list or type(value)==tuple): value = tuple(value) pval = () elif(type(value)==str): pval = "" elif(type(value)==int): pval = 0 elif(type(value)==float): pval = 0.0 Dic[key] =pval + value def findFilesDict(path=".",teststr = "promoter"): """gets a list of files/folders present in a path""" walkr = os.walk(path) dirlist = [a for a in walkr] expts = {} #print(dirlist) #for folder in dirlist[1:]: folder = [path] #print(dirlist) for fle in dirlist[0][2]: if(fle[-3:]=='csv'): try: #print('{}\\{}'.format(folder[0],fle)) fline = open(os.path.join(folder[0],fle),'r').readline().split(',') if(teststr in fline): expts[fle[:-4]]=os.path.join(folder[0],fle) except IOError: pass if(fle[-4:]=='xlsx'): try: xl_file = pd.read_excel(os.path.join(folder[0],fle)) #dfs = {sheet_name: xl_file.parse(sheet_name) # for sheet_name in xl_file.sheet_names} #print(dfs.keys() #print(xl_file.columns) if(teststr in xl_file.columns): #print("found") expts[fle[:-5]]=os.path.join(folder[0],fle) except (IOError,KeyError) as e: pass return expts def findPartsListsDict(path,teststr = "parts_1"): """gets a list of files/folders present in a path""" walkr = os.walk(path) dirlist = [a for a in walkr] #print(dirlist[0][2]) expts = {} for fle in dirlist[0][2]: #print fle if((fle[-4:]=='xlsx') or (fle[-4:]=='xlsm')): try: dfs = pd.read_excel(os.path.join(path,fle),None) #dfs = {sheet_name: xl_file.parse(sheet_name) # for sheet_name in xl_file.sheet_names} #print(dfs) #print(dfs.keys()) if(teststr in list(dfs.keys())[0]): expts[fle[:-5]] = os.path.join(path,fle) except IOError: pass return expts def findDNAPaths(startNode,nodeDict,edgeDict): """given a start, a dictionary of nodes, and a dictionary of edges, find all complete paths for a DNA molecule Complete is defined as: producing a molecule with all blunt edges, or producing a circular molecule.""" #we assemble the DNA sequences from left to right. nnode = dc(nodeDict) noderight = nnode[startNode][1] #the right-hand overhang of the node in question. del nnode[startNode] destinations = edgeDict[noderight] #this could contain only one entry, the starting node seqs = [] #haven't found any complete paths yet nopaths = True candidateSeqs = [] if(noderight != "blunt"): #blunt cannot go on for destination in destinations: #go through the list of destinations and see if we can go forward if(destination[1]==0): #this node links to something else if(destination[0] in nnode): #we havent visited it yet nopaths = False newpaths = findDNAPaths(destination[0],nnode,edgeDict) #find all paths from there! for path in newpaths: candidateSeqs+=[[startNode]+path] if(nopaths): #if we dont find any paths, call it good candidateSeqs+=[[startNode]] #print("canseqs is {}".format(candidateSeqs)) return candidateSeqs def getOverhang(Dnaseq,side="left"): """extracts the overhang in the DNA sequence, either on the left or right sides. If the dna sequence is blunt, then the returned overhang is called 'blunt'""" def appendPart(part,pind,edgeDict,nodeDict): """this function appends a part to a dictionary of edges (overhangs), and nodes(middle sequence) for running DPallcombDseq. part is a DseqRecord of a DNA part that's been cut by an enzyme. pind is the index of that part in the parts list edgedict is a dictionary of edges that says which nodes they are connected to. nodedict is a dictionary of nodes that says which edges they have.""" Lend = "" Rend = "" Ltype,Lseq = part.five_prime_end() Rtype,Rseq = part.three_prime_end() if(Ltype == "blunt"): Lend = "blunt" #if the end is blunt append nothing edgeDict[Lend].append([pind,0]) #pushDict(edgeDict,Lend,((pind,0),)) else: if(Ltype == "3'"): #if we have a 3' overhang, then add that sequence Lend = str(Dseq(Lseq).rc()).lower() else: #otherwise, it must be a 5' overhang since we handled the #blunt condition above. Lend = str(Lseq).lower() edgeDict[Lend].append([pind,0]) if(Rtype == "blunt"): #same thing for the right side Rend = "blunt" edgeDict[Rend].append([pind,1]) else: if(Rtype == "5'"): Rend = str(Dseq(Rseq).rc()).lower() else: Rend = str(Rseq).lower() edgeDict[Rend].append([pind,1]) nodeDict[pind] = (Lend,Rend) def annotateScar(part, end='3prime'): plen = len(part) if(end=='3prime'): ovhg = part.seq.three_prime_end() loc1 = plen-len(ovhg[1]) loc2 = plen else: ovhg = part.seq.five_prime_end() loc1 = 0 loc2 = len(ovhg[1]) oseq = str(ovhg[1]).upper() scarname = "?" floc = int(loc1) sloc = int(loc2) dir = 1 #scardir = "fwd" if((oseq in ENDDICT.keys()) or (oseq in rcENDDICT.keys())): #either direction for now... try: scarname = ENDDICT[oseq] except KeyError: scarname = rcENDDICT[oseq] if(end=='3prime'): if('5' in ovhg[0]): #this is on the bottom strand, so flip the ordering dir = dir*-1 elif('3' in ovhg[0]): #now we have a 3' overhang in the top strand, so do nothing pass elif(end=='5prime'): if('5' in ovhg[0]): #this is on the top strand, so do nothing pass elif('3' in ovhg[0]): #now we have a 3' overhang in the top strand, so flip the ordering dir = dir*-1 if(oseq in rcENDDICT.keys()): #so if we found the reverse complement in fact, then reverse everything #again dir = dir*-1 if(dir==-1): floc = int(loc2) sloc = int(loc1) #oseq = str(Dseq(oseq).rc()) part.add_feature(floc,sloc,label=scarname,type="Scar") def DPallCombDseq(partslist): '''Finds all paths through the partsist using a graph type of approach. First a graph is constructed from all possible overhang interactions, then the program makes paths from every part to a logical conclusion in the graph, then it backtracks and actually assembles the DNA.''' #actually, we need to produce a graph which describes the parts FIRST #then, starting from any part, traverse the graph in every possible path and store #the paths which are "valid" i.e., produce blunt ended or circular products. edgeDict = defaultdict(lambda : []) #dictionary of all edges in the partslist! nodeDict = {}#defaultdict(lambda : []) partDict = {}#defaultdict(lambda : []) pind = 0 import time rcpartslist = [] number_of_parts = len(partslist) for part in partslist: #this next part appends the part to the list of nodes and edges appendPart(part,pind,edgeDict,nodeDict) appendPart(part.rc(),pind+number_of_parts,edgeDict,nodeDict) rcpartslist+=[part.rc()] pind+=1 partslist+=rcpartslist paths = [] for pind in list(nodeDict.keys()): #find good paths through the graph starting from every part paths += findDNAPaths(pind,nodeDict,edgeDict) goodpaths = [] part1time = 0 part2time = 0 for path in paths: #here we are looking at the first and last parts #to see if they are blunt fpart = path[0] rpart = path[-1] npart = False accpart = Dseqrecord(partslist[fpart]) if(nodeDict[fpart][0]=="blunt" and nodeDict[rpart][1]=="blunt"): #this means we have a blunt ended path! good npart = True plen = len(accpart) #accpart.add_feature(0,3,label="?",type="scar") #accpart.add_feature(plen-4,plen,label="?",type="scar") for pind in path[1:]: #this traces back the path #we want to add features as we go representing the cloning #scars. These scars could be gibson or golden gate in nature #SCARANNOT ''' ovhg = accpart.seq.three_prime_end() oseq = ovhg[1] plen = len(accpart) if("5" in ovhg[0]): #ideally we take note of what type of overhang it is #but for now i'll just take the top strand sequence oseq = str(Dseq(oseq).rc()) accpart.add_feature(plen-len(oseq),plen,label="?",type="scar") #/scarannot''' annotateScar(accpart) accpart+=partslist[pind] elif(nodeDict[fpart][0]==nodeDict[rpart][1]): #this is checking if the overhangs on the ends are compatible. #if true, then create a circular piece of DNA! npart = True #this means we have a circular part! also good! #accpart = partslist[fpart] for pind in path[1:]: #SCARANNOT ''' ovhg = accpart.seq.three_prime_end() oseq = ovhg[1] plen = len(accpart) if("5" in ovhg[0]): #ideally we take note of what type of overhang it is #but for now i'll just take the top strand sequence oseq = str(Dseq(oseq).rc()) accpart.add_feature(plen-len(oseq),plen,label="?",type="scar") #/scarannot''' annotateScar(accpart) accpart+=partslist[pind] #SCARANNOT ''' ovhg = accpart.seq.three_prime_end() oseq = ovhg[1] plen = len(accpart) if("5" in ovhg[0]): #ideally we take note of what type of overhang it is #but for now i'll just take the top strand sequence oseq = str(Dseq(oseq).rc()) accpart.add_feature(plen-len(oseq),plen,label="?",type="scar") #/scarannot''' annotateScar(accpart) accpart=accpart.looped() if(npart): #this checks if the part we think is good already exists #in the list if(isNewDseq(accpart,goodpaths)): goodpaths+=[accpart] #part2time+=time.time()-stime #dtime = time.time()-stime #stime = time.time() #print("done tracing back paths, took "+str(dtime)) #print("first half took " + str(part1time)) #print("second half took " + str(part2time)) return goodpaths def chewback(seqtochew,chewamt,end="fiveprime"): """chews back the amount mentioned, from the end mentioned.""" wat = seqtochew.watson cri = seqtochew.crick if(len(seqtochew) > chewamt*2+1): if(end=="fiveprime"): cwat = wat[chewamt:] ccri = cri[chewamt:] else: cwat = wat[:-chewamt] ccri = cri[:-chewamt] newseq = Dseq(cwat,ccri,ovhg = chewamt) return newseq else: return None def makeEchoFile(parts,aslist,gga=ggaPD,partsFm=partsFm,source=source,\ output = "output.csv",selenzyme=selenzyme,fname="recentassembly",\ protocolsDF=None,sepfiles=True,sepfilename="outputLDV.csv",\ printstuff=True,progbar=None,mypath=".",annotateDF=None): """makes an echo csv using the given list of assemblies and source plate of parts.. inputs: parts: dataframe of what's in the source plate aslist: dataframe of what we need to assemble gga: a short dictionary indicating what volume of all the components go into the reaction mix partsFm: how many femtomoles of each part to use source: the name of the source plate. like "384PP_AQ_BP or something output: the name of the output file selenzyme: the enzyme we are going to use for assembly. everything is assembled with the same enzyme! actually this does nothing because the enzyme is taken from the aslist thing anyway fname: this is the name of the folder to save the successfully assembled dna files into protocolsDF: a dataframe containing a descriptor for different possible protocols. For instance it would say how much DNA volume and concentration we need for GGA or gibson.""" #this is the boilerplate columns list dnaPath = os.path.join(mypath,"DNA") outfile = "Source Plate Name,Source Plate Barcode,Source Plate Type,Source Well,\ Sample ID,Sample Name,Sample Group,Sample Comment,Destination Plate Name,\ Destination Well,Transfer Volume\n" f1init = len(outfile) outfile2 = "Source Plate Name,Source Plate Barcode,Source Plate Type,Source Well,\ Sample ID,Sample Name,Sample Group,Sample Comment,Destination Plate Name,\ Destination Well,Transfer Volume\n" f2init = len(outfile2) #this iterates through rows in the assembly list file. Each row #defines an assembly, with the columns representing what parts go in. #this may not be ideal but it's fairly human readable and we only do #four parts + vector for each assembly. _,fname = os.path.split(fname) if("." in fname): fname = fname[:fname.index(".")] #the following is for making a spreadsheet style sequence list for #performing further assemblies prodSeqSpread = "well,part,description,type,left,right,conc (nM),date,numvalue,sequence,circular,5pend,3pend,length\n" prevplate = None prevtype = None maxprog = float(len(aslist)) for assnum in range(len(aslist)): #this goes row by row if(progbar != None): progbar.value=float(assnum+1)/maxprog assembly = aslist[assnum:assnum+1] #cuts out one row of dataframe dwell = assembly.targwell[assembly.targwell.index[0]] #well where assembly will happen #print("pick enzyme") #print(assembly) enzyme=None #if we are doing Gibson assembly, then the restriction enzyme is undefined try: selenzyme = assembly.enzyme[assembly.enzyme.index[0]] #if the user forgot to define an enzyme assume it is BsaI. That's the most common one we use except KeyError: selenzyme = "BsaI" if(protocolsDF!=None): cprt_temp = "gga" if(selenzyme == "gibson"): cprt_temp = "gibson" #iloc[0] is used in case there are multiple parts with the same #name. Only the first one is used in that case. curprot = {"dnasln": protocolsDF[(protocolsDF.protocol==cprt_temp)&\ (protocolsDF.component == "dnasln")].amount.iloc[0]} partsFm = curprot[curprot.component==partfm].amount.iloc[0] vectorFm = curprot[curprot.component==vectorfm].amount.iloc[0] else: curprot = ggaPD partsFm = ggaFm vectorFm = ggavecGm if(selenzyme == "gibson"): #for gibson assembly the protocol is different curprot = gibassyPD partsFm = gibFm vectorFm = gibvecFm water = float(curprot[curprot.component=="dnasln"].volume)*1000 #total amount of water, to start with if(printstuff): print("assembling with "+selenzyme) aind = assembly.index[0] #necessary for dataframes probably because I'm dumb frags = [] if(not selenzyme == "gibson"): enzyme = enzymes[selenzyme] esite = enzyme.site.lower() esiterc = str(Dseq(enzyme.site).rc()).lower() for col in assembly: if(col=="targwell"):#since every row is terminated by the "target well", #we'll take this opportunity to put in the water if(int(water) <25): #echo gets mad if you tell it to pipet significantly less than 25 nl water = 25 ewat = int(water) #the echo automatically rounds to the nearest 25, #so it's not really necessary to round here. #dsrfrags = [Dseqrecord(a) for a in frags] #x = pydAssembly(dsrfrags,limit = 4) #print(frags) #print(len(frags)) allprod= [] nefrags = [] cutfrags = [] if(selenzyme != "gibson"): enzyme = enzymes[selenzyme] for frag in frags: if(selenzyme == "gibson"): if(len(frag)>chewnt*2+1): nefrags += [chewback(frag,chewnt)] else: raise ValueError("part with sequence "+frag+" is too "+\ "short for gibson! (<= 80 nt)") else: newpcs = frag.cut(enzyme) if(len(newpcs) == 0): newpcs+=[frag] for pcs in newpcs: if(pcs.find(esite)+pcs.find(esiterc)==-2): nefrags+=[pcs] allprod = DPallCombDseq(nefrags) if(printstuff): print("found {} possible products".format(len(allprod))) goodprod = [] newpath = os.path.join(dnaPath,fname) if(printstuff): print("saving in folder {}".format(newpath)) Cname = "" try: #this part gathers the "name" column to create the output sequence Cname = assembly.name[assembly.name.index[0]] except KeyError: Cname = "" if(Cname == "" or str(Cname) == "nan"): Cname = "well"+dwell if(printstuff): print("Parts in construct {}".format(Cname)) if not os.path.exists(newpath): if(printstuff): print("made dirs!") os.makedirs(newpath) num = 0 for prod in allprod: Cnamenum = Cname #filename = Cname+".gbk" if(len(allprod) > 1): #filename = Cname+"_"+str(num)+".gbk" #wout = open(os.path.join(newpath,filename),"w") Cnamenum = Cname+"_"+str(num) else: pass #wout = open(os.path.join(newpath,filename),"w") if((bluntLeft(prod) and bluntRight(prod)) or (prod.circular)): num+=1 goodprod+=[prod] #topo = ["linear","circular"][int(prod.circular)] booltopo = ["FALSE","TRUE"][int(prod.circular)] #wout.write("\r\n>Construct"+str(num)+"_"+topo) un_prod = "_".join(Cnamenum.split()) #wout.write("LOCUS {} {} bp ds-DNA {} SYN 01-JAN-0001\n".format(un_prod,len(prod),topo)) #wout.write("ORIGIN\n") #wout.write(str(prod)+"\n//") now = datetime.datetime.now() nowdate = "{}/{}/{}".format(now.month,now.day,now.year) prod.name = Cnamenum plt.figure(figsize=(8,1)) ax = plt.gca() drawConstruct(ax,prod,annotateDF=annotateDF) plt.show() prod.write(os.path.join(newpath,Cnamenum+".gbk")) prodSeqSpread += "{},{},assembled with {},,,,30,{},,{},{},{},{},{}\n".format(\ dwell,un_prod, selenzyme,nowdate,prod.seq,booltopo,0,0,len(prod)) #wout.close() assembend = ["y","ies"][int(len(goodprod)>1)] if(printstuff): print("Detected {} possible assembl{}".format(len(goodprod),assembend)) frags = [] if(water <=0): print("WARNING!!!! water <=0 in well {}".format(dwell)) else: #print("water from {} to {}, {} nl".format(waterwell,dwell,ewat)) if(prevplate == None): #print("normalwater") #im not convinced this ever gets triggered #but just in case, i guess we can find the first water well waterrows=parts[parts.part=="water"] if(len(waterrows)==0): raise KeyError("no water wells indicated!") #print(waterrows) waterrow = waterrows.iloc[0] waterwell = waterrow.well platetype= waterrow.platetype curplatebc = waterrow.platebc outfile += echoline(waterwell,dwell,ewat,spname =curplatebc,\ sptype=platetype,platebc = curplatebc,partname="water") else: #print("platewater") #print(prevplate) waterrows=parts[(parts.part=="water") & (parts.platebc==prevplate)] if(len(waterrows)==0): raise KeyError("no water wells indicated!") #print(waterrows) waterrow = waterrows.iloc[0] waterwell = waterrow.well watline = echoline(waterwell,dwell,ewat,spname =prevplate,\ sptype=prevtype,platebc = prevplate,partname="water") if("LDV" in prevtype): outfile2+=watline else: outfile += watline #add water to the well! if(printstuff): print("") elif(col in ["comment","enzyme","name"]):#skip this column! pass else: #this is the part name from the "assembly" file part = assembly[col][aind] if(str(part) == 'nan'): #this means we skip this part, because the name is empty if(printstuff): print("skip one!") else: #shouldnt need to define "part" again?? #part = assembly[col][aind] #this is the name of the part! #parts[parts.part==assembly[col][aind]].well.iloc[0] evol = 0 if(':' in str(part)): #this means we have multiple parts to mix! subparts = part.split(':') t_partsFm = partsFm/len(subparts) t_vecFm = vectorFm/len(subparts) for subpart in subparts: useFm = t_partsFm if(col == "vector"): #use the vector at lower concentration!! useFm = t_vecFm e1,e2,pDseq,prevplate,prevtype = echoSinglePart(parts,\ subpart,useFm,dwell,printstuff=printstuff,enzyme=enzyme) frags+=[pDseq] evol += e2 if(sepfiles): if("LDV" in e1): outfile2+=e1 else: outfile+= e1 else: outfile+= e1 else: useFm = partsFm if(col == "vector"): #use the vector at lower concentration!! useFm = vectorFm e1,e2,pDseq,prevplate,prevtype = echoSinglePart(parts,\ part,useFm,dwell,printstuff=printstuff,enzyme=enzyme) frags+=[pDseq] evol += e2 if(sepfiles): if("LDV" in e1): outfile2+=e1 else: outfile+= e1 else: outfile+= e1 water=water-evol pspread = open(os.path.join(newpath,fname+".csv"),"w") pspread.write(prodSeqSpread) pspread.close() seqdispDF = pd.read_csv(os.path.join(newpath,fname+".csv"),usecols=["well","part","circular","length"]) display(seqdispDF) display(FileLink(os.path.join(newpath,fname+".csv"))) if(len(outfile)>f1init): ofle = open(output,"w") ofle.write(outfile) ofle.close() display(FileLink(output)) if(sepfiles and (len(outfile2) > f2init)): if(printstuff): print("wrote LDV steps in {}".format(sepfilename)) ofle2 = open(sepfilename,"w") ofle2.write(outfile2) ofle2.close() display(FileLink(sepfilename)) outitems = [] class assemblyFileMaker(): def __init__(self,mypath=".",partsdf = None): self.p = partsdf self.holdup=False self.ddlay = widgets.Layout(width='75px',height='30px') self.eblay = widgets.Layout(width='50px',height='30px') self.lsblay = widgets.Layout(width='140px',height='30px') self.sblay = widgets.Layout(width='100px',height='30px') self.rsblay = widgets.Layout(width='60px',height='30px') self.Vboxlay = widgets.Layout(width='130px',height='67px') self.textlay = widgets.Layout(width='200px',height='30px') self.PlateLetters="ABCDEFGHIJKLMNOP" self.PlateNumbers=(1,2,3,4,5,6,7,8,9,10,11,12,\ 13,14,15,16,17,18,19,20,21,22,23,24) self.PlateRowsCols=(16,24) self.mypath = mypath if(type(self.p)==pd.DataFrame): self.parts={"google doc":"google doc"} else: self.parts = findPartsListsDict(os.path.join(self.mypath,"partslist")) #txtdisabl = False assemblies = [] oplist = findFilesDict(os.path.join(mypath,"assemblies")) #parts = findPartsListsDict(os.path.join(mypath,"partslist")) self.loadFIleList = widgets.Dropdown( options=oplist, #value=2, layout=self.lsblay, description='', ) self.loadbut = widgets.Button( description='Load', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' layout=self.rsblay, tooltip='Click to load an existing file', ) self.listEverything = widgets.Checkbox( value=False, description='List all parts', disabled=False ) self.fname1 = widgets.Text( value="untitled", placeholder = "type something", description='Assembly File Name:', layout=self.textlay, disabled=False ) self.DestWell = widgets.Text( value="A1", placeholder = "type something", description='Dest Well:', layout=self.Vboxlay, disabled=True ) self.AddCols = widgets.IntText( value=0, placeholder = "type something", description='Extra Cols:', layout=self.Vboxlay, #disabled=True ) self.drop2 = widgets.Dropdown( options=self.parts, width=100, #value=2, description='parts list:', layout=self.textlay, ) #print(self.drop2.style.keys) self.but = widgets.Button( description='New...', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' layout=self.sblay, tooltip='Click to start adding assemblies', #icon='check' ) self.finbut = widgets.Button( description='Save!', disabled=True, button_style='warning',#, 'danger' or '' layout=self.sblay, tooltip='Finish and Save', #icon='check' ) self.but.on_click(self.on_button_clicked) self.finbut.on_click(self.finishAndSave) self.loadbut.on_click(self.loadFile_clicked) self.listEverything.observe(self.on_listEverything_changed,names='value') self.cbox = widgets.HBox([ widgets.VBox([self.fname1,widgets.HBox([self.loadFIleList,self.loadbut]),self.listEverything]),\ widgets.VBox([self.drop2,widgets.HBox([self.DestWell,self.AddCols])]),\ widgets.VBox([self.but,self.finbut],layout=self.Vboxlay)]) display(self.cbox) def add_row(self,b): thisrow = int(b.tooltip[4:]) self.addWidgetRow(labonly=False,copyrow=thisrow) outcols = [widgets.VBox(a) for a in self.outitems ] self.bigSheet.children=outcols #b.disabled=True #print(b) def remove_row(self,b): thisrow = int(b.tooltip[4:]) #outcolnum=0 cleared = False for colnum in list(range(len(self.outitems))[:-3])\ +[len(self.outitems)-2]: pvalue = self.outitems[colnum][thisrow].value if(pvalue != ""): cleared = True self.outitems[colnum][thisrow].value = "" if(cleared): return for colnum in range(len(self.outitems)): self.outitems[colnum]=self.outitems[colnum][:thisrow]+\ self.outitems[colnum][thisrow+1:] #outcolnum +=1 newbutcol = [] newrow = 0 for a in self.outitems[-1]: #print(a) try: a.children[0].tooltip = "row "+str(newrow) a.children[1].tooltip = "row "+str(newrow) if(len(self.outitems[0])<=2): a.children[1].disabled=True else: a.children[1].disabled=False except AttributeError: pass newrow +=1 outcols = [widgets.VBox(a) for a in self.outitems ] self.bigSheet.children=outcols #print(b) def generateOptionsList(self,df,colname,prevval=None,listmode=0): """come up with a list of options given a column name. This contains a ton of specific code""" oplist = [] if(listmode == 1 and colname != "enzyme"): oplist = sorted(list(df.part))+[""] else: if("vector" in colname): oplist = sorted(list(df[(df.type=="UNS")|\ (df.type=="vector")].part))+[""] elif(colname=="enzyme"): oplist =enlist if(prevval == ""): prevval = enlist[0] else: oplist = sorted(list(df[df.type==colname].part))+[""] if(not (prevval in oplist)): oplist+=[prevval] return oplist,prevval def on_listEverything_changed(self,change): """this triggers when you change the value of "listEverything". Here we want to change the values in the drop down to correspond to either (a) surrounding parts or (b) the appropriate category """ self.updatePartOptions(None) """ typewewant = type(widgets.Dropdown()) #this means we checked the box. Now change drop box's options for col in self.outitems: for item in col: if(type(item)==typewewant): oplist,pval = self.generateOptionsList(self.p,\ col[0].value,item.value,change['new']) item.options=oplist item.value=pval #""" def loadFile_clicked(self,b): """loads a file from memory, instead of making a brand new one!""" self.on_button_clicked(b,loadFile=self.loadFIleList.value) def on_button_clicked(self,b,loadFile=None): """start making the assembly! THis part loads the first row of parts drop downs and populates them with options!""" #txtdisabl = True b.disabled=True self.but.disabled = True self.drop2.disabled = True self.finbut.disabled = False self.DestWell.disabled = False self.AddCols.disabled = True self.loadFIleList.disabled=True self.loadbut.disabled=True if(loadFile!=None): #this should read the file self.fname1.value=os.path.splitext(os.path.split(loadFile)[1])[0] ftoload = pd.read_csv(loadFile).fillna('') try: ftoload = ftoload.drop('comment',axis=1) except (ValueError,KeyError) as e: #if this happens then 'comment' was already not there. great! pass self.AddCols.value=len(ftoload.columns)-9 if(not(type(self.p)==pd.DataFrame)): dfs = pd.read_excel(self.drop2.value,None) sheetlist = list(dfs.keys()) self.p = pd.DataFrame.append(dfs["parts_1"],dfs["Gibson"]) self.collabels = ["vector1","promoter","UTR","CDS","Terminator","vector2","enzyme","name",""] if(self.AddCols.value>0): newclabeld = self.collabels for x in range(self.AddCols.value): newclabeld=newclabeld[:-4]+["newcol"+str(x+1)]+newclabeld[-4:] self.collabels = newclabeld self.outitems = [] self.addWidgetRow(labonly=True) if(loadFile==None): self.addWidgetRow(labonly=False) else: #print(loadFile) findex = ftoload.index first = True for findex in ftoload.index: dfrow = ftoload.iloc[findex] currow = list(dfrow) if(first): self.DestWell.value=dfrow.targwell #extracols = #startpos = first=False currow = list(dfrow.drop(['targwell','name','enzyme']))\ +[dfrow.enzyme]+[dfrow["name"]] self.addWidgetRow(labonly=False,copyrow=currow) #self.updatePartOptions() #readindex = ftoload.index() outcols = [widgets.VBox(a) for a in self.outitems ] self.bigSheet=widgets.HBox(outcols) display(self.bigSheet) def updatePartOptions(self,b=None): """update the options available to each drop down, according to what values are chosen in the other drop downs. For example, only allow parts which are compatible""" if(self.holdup): return self.holdup=True maxcols = len(self.outitems)-3 for colnum in range(maxcols): for itemnum in range(len(self.outitems[colnum]))[1:]: curitem = self.outitems[colnum][itemnum] leftitem = 0 rightitem = 0 if(colnum == 0): leftitem = maxcols-1 else: leftitem = colnum-1 if(colnum == maxcols-1): rightitem = 0 else: rightitem=colnum+1 leftoverhang = "" rightoverhang = "" leftvalue = self.outitems[leftitem][itemnum].value rightvalue = self.outitems[rightitem][itemnum].value logiclist = np.array([True]*len(self.p)) if(leftvalue!=""): try: leftoverhang=self.p[self.p.part == leftvalue].right.iloc[0] except IndexError: #this means we didn't find the part! raise ValueError("part {} has incorrect right overhang!".format(leftvalue)) if((self.outitems[-3][itemnum].value!='gibson') \ and ('UNS' in leftoverhang)): pass else: logiclist &= (self.p.left==leftoverhang) #print(leftoverhang) if(rightvalue!=""): try: rightoverhang=self.p[self.p.part == rightvalue].left.iloc[0] except IndexError: raise ValueError("part {} has incorrect right overhang!".format(rightvalue)) if((self.outitems[-3][itemnum].value!='gibson') \ and ('UNS' in rightoverhang)): pass else: logiclist &= (self.p.right==rightoverhang) #print(rightoverhang) #print("this part wants {} and {}".format(leftoverhang,rightoverhang)) self.holdup=True prevval = curitem.value oplist,newval = self.generateOptionsList(self.p[logiclist],\ self.outitems[colnum][0].value,\ prevval,self.listEverything.value) curitem.options = oplist curitem.value = newval self.holdup=False def incrementWellPos(self,position): """increments a 384 well plate location such as A1 to the next logical position, going left to right, top to bottom""" poslet = self.PlateLetters.index(position[0]) posnum = int(position[1:]) newposlet = poslet newposnum = posnum+1 if(newposnum > self.PlateRowsCols[1]): newposnum-=self.PlateRowsCols[1] newposlet+=1 newposition = self.PlateLetters[newposlet]+str(newposnum) return newposition def finishAndSave(self,b): outfiletext = ",".join(self.collabels[:-1]+["targwell"])+"\n" outfname = self.fname1.value+".csv" startPos = self.DestWell.value curpos = startPos for i in range(len(self.outitems[0]))[1:]: outlst = [] for nam,col in zip(self.collabels,self.outitems): if(nam != ""): outlst+=[col[i].value] outlst+=[curpos] curpos = self.incrementWellPos(curpos) outfiletext+=",".join(outlst)+"\n" with open(os.path.join(self.mypath,"assemblies",outfname),"w") as outfle: outfle.write(outfiletext) assemfpath = os.path.join(self.mypath,"assemblies",outfname) #print("wrote {}".format()) display(FileLink(assemfpath)) display(pd.read_csv(os.path.join(self.mypath,"assemblies",outfname))) #b.disabled=True def addWidgetRow(self,labonly=True,copyrow=None): outcolnum=0 for col in self.collabels: if(labonly): interwidg = widgets.Label(col) else: if(col=="name"): newname = "" #print(copyrow) if(type(copyrow)==list): newname = copyrow[outcolnum] elif(type(copyrow)==int): oldname = self.outitems[outcolnum][copyrow].value newname = incrementString(oldname) interwidg = widgets.Text(\ layout=self.ddlay,\ value=str(newname)) elif(col==""): but1 = widgets.Button(\ description='+', button_style='success', tooltip='row '+str(len(self.outitems[0])-1), layout=self.eblay ) but2 = widgets.Button(\ description='-', button_style='danger', tooltip='row '+str(len(self.outitems[0])-1), layout=self.eblay, #disabled=disbut ) but1.on_click(self.add_row) but2.on_click(self.remove_row) interwidg =widgets.HBox([but1,but2]) else: oplist = [] prevval = "" if(type(copyrow)==int): prevval = self.outitems[outcolnum][copyrow].value elif(type(copyrow)==list): prevval = copyrow[outcolnum] oplist, prevval = self.generateOptionsList(self.p,col,\ prevval,self.listEverything.value) #print(oplist) #print("value is") #print(prevval) interwidg = widgets.Dropdown(\ options=oplist,\ value=prevval,\ layout=self.ddlay) interwidg.observe(self.updatePartOptions,names='value') try: self.outitems[outcolnum]+=[interwidg] except IndexError: self.outitems+=[[interwidg]] outcolnum +=1 self.updatePartOptions() for a in self.outitems[-1]: try: if(len(self.outitems[0])<=2): a.children[1].disabled=True else: a.children[1].disabled=False except AttributeError: pass def make_assembly_file(mypath=".",externalDF = None): """this function will assist the user with making assembly .csv files!""" x=assemblyFileMaker(mypath=mypath,partsdf=externalDF) def process_assembly_file(mypath=".",printstuff=True,partsdf=None,annotateDF=None): oplist = findFilesDict(os.path.join(mypath,"assemblies")) if(type(partsdf)==pd.DataFrame): parts = {"google doc":"google doc"} else: parts = findPartsListsDict(os.path.join(mypath,"partslist")) drop1 = widgets.Dropdown( options=oplist, #value=2, description='Assembly:', ) drop2 = widgets.Dropdown( options=parts, #value=2, description='parts list:', ) but = widgets.Button( description='Select', disabled=False, button_style='', # 'success', 'info', 'warning', 'danger' or '' tooltip='Click me', #icon='check' ) #button = widgets.Button(description="Click Me!") #display(button) #print(oplist) def on_button_clicked(b): pbar = widgets.FloatProgress( min=0, max=1.0 ) display(pbar) if(drop1.value[-4:]=="xlsx" or drop1.value[-3:]=="xls"): x=pd.read_excel(drop1.value) else: x=pd.read_csv(drop1.value) if(type(partsdf)==pd.DataFrame): p = partsdf else: dfs = pd.read_excel(drop2.value,None) #print(drop1.value) sheetlist = list(dfs.keys()) p =
pd.DataFrame.append(dfs["parts_1"],dfs["Gibson"])
pandas.DataFrame.append
from pandas import Series class Evaluator: series: Series def __init__(self, series: Series): self.series = series self.unique_series = [value for value in self.series.dropna().unique()] def series_match(self, pattern: str): return Series(self.unique_series).astype(str).str.match(pattern).eq(True).all() def series_contains(self, pattern: str): return
Series(self.unique_series)
pandas.Series
import os import pandas as pd import pytest from pandas.testing import assert_frame_equal from .. import read_sql @pytest.fixture(scope="module") # type: ignore def postgres_url() -> str: conn = os.environ["POSTGRES_URL"] return conn @pytest.fixture(scope="module") # type: ignore def postgres_url_tls() -> str: conn = os.environ["POSTGRES_URL_TLS"] return conn @pytest.fixture(scope="module") # type: ignore def postgres_rootcert() -> str: cert = os.environ["POSTGRES_ROOTCERT"] return cert @pytest.mark.xfail def test_on_non_select(postgres_url: str) -> None: query = "CREATE TABLE non_select(id INTEGER NOT NULL)" df = read_sql(postgres_url, query) def test_aggregation(postgres_url: str) -> None: query = "SELECT test_bool, SUM(test_float) FROM test_table GROUP BY test_bool" df = read_sql(postgres_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "sum": pd.Series([10.9, 5.2, -10.0], dtype="float64"), }, ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation(postgres_url: str) -> None: query = ( "SELECT test_bool, SUM(test_int) AS test_int FROM test_table GROUP BY test_bool" ) df = read_sql(postgres_url, query, partition_on="test_int", partition_num=2) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), "test_int": pd.Series([4, 5, 1315], dtype="Int64"), }, ) assert_frame_equal(df, expected, check_names=True) def test_aggregation2(postgres_url: str) -> None: query = "select DISTINCT(test_bool) from test_table" df = read_sql(postgres_url, query) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([None, False, True], dtype="boolean"), }, ) assert_frame_equal(df, expected, check_names=True) def test_partition_on_aggregation2(postgres_url: str) -> None: query = "select MAX(test_int), MIN(test_int) from test_table" df = read_sql(postgres_url, query, partition_on="max", partition_num=2) expected = pd.DataFrame( index=range(1), data={ "max": pd.Series([1314], dtype="Int64"), "min": pd.Series([0], dtype="Int64"), }, ) assert_frame_equal(df, expected, check_names=True) def test_udf(postgres_url: str) -> None: query = "select increment(test_int) as test_int from test_table ORDER BY test_int" df = read_sql(postgres_url, query, partition_on="test_int", partition_num=2) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 3, 4, 5, 1315], dtype="Int64"), }, ) df = df.sort_values("test_int").reset_index(drop=True) assert_frame_equal(df, expected, check_names=True) def test_manual_partition(postgres_url: str) -> None: queries = [ "SELECT * FROM test_table WHERE test_int < 2", "SELECT * FROM test_table WHERE test_int >= 2", ] df = read_sql(postgres_url, query=queries) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 0, 2, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, 5, None, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "a", "str2", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 3.1, 2.2, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, None, False, False, None, True], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_without_partition(postgres_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql(postgres_url, query) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "a", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_partition(postgres_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql( postgres_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "a", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_partition_without_partition_range(postgres_url: str) -> None: query = "SELECT * FROM test_table where test_float > 3" df = read_sql( postgres_url, query, partition_on="test_int", partition_num=3, ) expected = pd.DataFrame( index=range(2), data={ "test_int": pd.Series([0, 4], dtype="Int64"), "test_nullint": pd.Series([5, 9], dtype="Int64"), "test_str": pd.Series(["a", "c"], dtype="object"), "test_float": pd.Series([3.1, 7.8], dtype="float64"), "test_bool": pd.Series([None, None], dtype="boolean"), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_partition_and_selection(postgres_url: str) -> None: query = "SELECT * FROM test_table WHERE 1 = 3 OR 2 = 2" df = read_sql( postgres_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "a", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_partition_and_projection(postgres_url: str) -> None: query = "SELECT test_int, test_float, test_str FROM test_table" df = read_sql( postgres_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(6), data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="Int64"), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_str": pd.Series( ["str1", "str2", "a", "b", "c", None], dtype="object" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_partition_and_join(postgres_url: str) -> None: query = "SELECT T.test_int, T.test_bool, S.test_language FROM test_table T INNER JOIN test_str S ON T.test_int = S.id" df = read_sql( postgres_url, query, partition_on="test_int", partition_range=(0, 2000), partition_num=3, ) expected = pd.DataFrame( index=range(5), data={ "test_int": pd.Series([0, 1, 2, 3, 4], dtype="Int64"), "test_bool": pd.Series([None, True, False, False, None], dtype="boolean"), "test_language": pd.Series( ["English", "中文", "日本語", "русский", "Emoji"], dtype="object" ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_partition_and_spja(postgres_url: str) -> None: query = "select test_bool, AVG(test_float) as avg, SUM(test_int) as sum from test_table as a, test_str as b where a.test_int = b.id AND test_nullint is not NULL GROUP BY test_bool ORDER BY sum" df = read_sql(postgres_url, query, partition_on="sum", partition_num=2) expected = pd.DataFrame( index=range(3), data={ "test_bool": pd.Series([True, False, None], dtype="boolean"), "avg": pd.Series([None, 3, 5.45], dtype="float64"), "sum": pd.Series([1, 3, 4], dtype="Int64"), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_on_utf8(postgres_url: str) -> None: query = "SELECT * FROM test_str" df = read_sql(postgres_url, query) expected = pd.DataFrame( index=range(9), data={ "id": pd.Series([0, 1, 2, 3, 4, 5, 6, 7, 8], dtype="Int64"), "test_language": pd.Series( [ "English", "中文", "日本語", "русский", "Emoji", "Latin1", "Extra", "Mixed", "", ], dtype="object", ), "test_hello": pd.Series( [ "Hello", "你好", "こんにちは", "Здра́вствуйте", "😁😂😜", "¥§¤®ð", "y̆", "Ha好ち😁ðy̆", None, ], dtype="object", ), }, ) assert_frame_equal(df, expected, check_names=True) def test_read_sql_with_index_col(postgres_url: str) -> None: query = "SELECT * FROM test_table" df = read_sql(postgres_url, query, index_col="test_int") expected = pd.DataFrame( data={ "test_int": pd.Series([1, 2, 0, 3, 4, 1314], dtype="Int64"), "test_nullint": pd.Series([3, None, 5, 7, 9, 2], dtype="Int64"), "test_str": pd.Series( ["str1", "str2", "a", "b", "c", None], dtype="object" ), "test_float": pd.Series([None, 2.2, 3.1, 3, 7.8, -10], dtype="float64"), "test_bool": pd.Series( [True, False, None, False, None, True], dtype="boolean" ), }, ) expected.set_index("test_int", inplace=True) assert_frame_equal(df, expected, check_names=True) def test_types_binary(postgres_url: str) -> None: query = "SELECT test_date, test_timestamp, test_timestamptz, test_int16, test_int64, test_float32, test_numeric, test_bpchar, test_char, test_varchar, test_uuid, test_time, test_json, test_jsonb, test_bytea, test_enum, test_f4array, test_f8array, test_narray, test_i2array, test_i4array, test_i8array FROM test_types" df = read_sql(postgres_url, query, partition_on="test_int16", partition_num=3) expected = pd.DataFrame( index=range(4), data={ "test_date": pd.Series( ["1970-01-01", "2000-02-28", "2038-01-18", None], dtype="datetime64[ns]" ), "test_timestamp": pd.Series( [ "1970-01-01 00:00:01", "2000-02-28 12:00:10", "2038-01-18 23:59:59", None, ], dtype="datetime64[ns]", ), "test_timestamptz": pd.Series( [ "1970-01-01 00:00:01", "2000-02-28 16:00:10", "2038-01-18 15:59:59", None, ], dtype="datetime64[ns]", ), "test_int16": pd.Series([0, 1, 2, 3], dtype="Int64"), "test_int64": pd.Series( [-9223372036854775808, 0, 9223372036854775807, None], dtype="Int64" ), "test_float32": pd.Series( [None, 3.1415926535, 2.71, -1e-37], dtype="float64" ), "test_numeric": pd.Series([None, 521.34, 999.99, 0.00], dtype="float64"), "test_bpchar": pd.Series(["a ", "bb ", "ccc ", None], dtype="object"), "test_char": pd.Series(["a", "b", None, "d"], dtype="object"), "test_varchar": pd.Series([None, "bb", "c", "defghijklm"], dtype="object"), "test_uuid": pd.Series( [ "86b494cc-96b2-11eb-9298-3e22fbb9fe9d", "86b49b84-96b2-11eb-9298-3e22fbb9fe9d", "86b49c42-96b2-11eb-9298-3e22fbb9fe9d", None, ], dtype="object", ), "test_time": pd.Series( ["08:12:40", None, "23:00:10", "18:30:00"], dtype="object" ), "test_json": pd.Series( [ '{"customer":"<NAME>","items":{"product":"Beer","qty":6}}', '{"customer":"<NAME>","items":{"product":"Diaper","qty":24}}', '{"customer":"<NAME>","items":{"product":"Toy Car","qty":1}}', None, ], dtype="object", ), "test_jsonb": pd.Series( [ '{"qty":6,"product":"Beer"}', '{"qty":24,"product":"Diaper"}', '{"qty":1,"product":"Toy Car"}', None, ], dtype="object", ), "test_bytea": pd.Series( [ None, b"\xd0\x97\xd0\xb4\xd1\x80\xd0\xb0\xcc\x81\xd0\xb2\xd1\x81\xd1\x82\xd0\xb2\xd1\x83\xd0\xb9\xd1\x82\xd0\xb5", b"", b"\xf0\x9f\x98\x9c", ], dtype="object", ), "test_enum": pd.Series( ["happy", "very happy", "ecstatic", None], dtype="object" ), "test_f4array": pd.Series( [[], None, [123.123], [-1e-37, 1e37]], dtype="object" ), "test_f8array": pd.Series( [[], None, [-1e-307, 1e308], [0.000234, -12.987654321]], dtype="object" ), "test_narray": pd.Series( [[], None, [521.34], [0.12, 333.33, 22.22]], dtype="object" ), "test_i2array": pd.Series( [[-1, 0, 1], [], [-32768, 32767], None], dtype="object" ), "test_i4array": pd.Series( [[-1, 0, 1123], [], [-2147483648, 2147483647], None], dtype="object" ), "test_i8array": pd.Series( [[-9223372036854775808, 9223372036854775807], [], [0], None], dtype="object", ), }, ) assert_frame_equal(df, expected, check_names=True) def test_types_csv(postgres_url: str) -> None: query = "SELECT test_date, test_timestamp, test_timestamptz, test_int16, test_int64, test_float32, test_numeric, test_bpchar, test_char, test_varchar, test_uuid, test_time, test_json, test_jsonb, test_bytea, test_enum::text, test_f4array, test_f8array, test_narray, test_i2array, test_i4array, test_i8array FROM test_types" df = read_sql( postgres_url, query, protocol="csv", partition_on="test_int16", partition_num=2 ) expected = pd.DataFrame( index=range(4), data={ "test_date": pd.Series( ["1970-01-01", "2000-02-28", "2038-01-18", None], dtype="datetime64[ns]" ), "test_timestamp": pd.Series( [ "1970-01-01 00:00:01", "2000-02-28 12:00:10", "2038-01-18 23:59:59", None, ], dtype="datetime64[ns]", ), "test_timestamptz": pd.Series( [ "1970-01-01 00:00:01", "2000-02-28 16:00:10", "2038-01-18 15:59:59", None, ], dtype="datetime64[ns]", ), "test_int16":
pd.Series([0, 1, 2, 3], dtype="Int64")
pandas.Series
from collections import defaultdict import os from pathlib import Path import joblib import numpy as np import pandas as pd import torch from .transforms.util import get_transforms from .engine.voc_assayer import VOCAssayer from .datasets import VOCDetection from .utils.general import make_save_path def assay(csv_file, net_name, number_nets_to_train, epochs_list, batch_size, restore_path, test_results_save_path, configfile, random_seed, root=None, num_classes=2, pad_size=500, embedding_n_out=512, loss_func='CE', method='transfer', mode='classify', num_workers=4, data_parallel=False): """assay behavior of models trained with Pascal VOC Detection set Parameters ---------- csv_file : str name of .csv file containing prepared data sets. Generated by searchnets.data.split function. net_name : str name of convolutional neural net architecture to train. One of {'alexnet', 'VGG16', 'CORnet_Z', 'CORnet_S'} number_nets_to_train : int number of training "replicates" epochs_list : list of training epochs. Replicates will be trained for each value in this list. Can also just be one value, but a list is useful if you want to test whether effects depend on number of training epochs. batch_size : int number of samples in a batch of training data restore_path : str path to directory where checkpoints and train models were saved test_results_save_path : str path to directory where results from measuring accuracy on test set should be saved configfile : str filename of config.ini file. Used (without .ini extension) as name for output file that is saved in test_results_save_path. random_seed : int to seed random number generator root : str path to dataset root. Used with VOCDetection dataset to specify where VOC data was downloaded to. num_classes : int number of classes. Default is 2 (target present, target absent). pad_size : int size to which images in PascalVOC / Visual Search Difficulty dataset should be padded. Images are padded by making an array of zeros and randomly placing the image within it so that the entire image is still within the boundaries of (pad size x pad size). Default value is specified by searchnets.transforms.functional.VSD_PAD_SIZE. Argument has no effect if the dataset_type is not 'VOC'. Used to determine transforms to use at test time. loss_func : str type of loss function to use. One of {'CE', 'BCE'}. Default is 'CE', the standard cross-entropy loss. Used to determine transforms to use at test time. num_workers : int number of workers used by torch.DataLoaders. Default is 4. data_parallel : bool if True, use torch.nn.dataparallel to train network on multiple GPUs. Default is False. method : str training method. One of {'initialize', 'transfer'}. 'initialize' means randomly initialize all weights and train the networks "from scratch". 'transfer' means perform transfer learning, using weights pre-trained on imagenet. Default is 'transfer'. mode : str training mode. One of {'classify', 'detect'}. 'classify' is standard image classification. 'detect' trains to detect whether specified target is present or absent. Default is 'classify'. embedding_n_out : int for DetectNet, number of output features from input embedding. I.e., the output size of the linear layer that accepts the one hot vector querying whether a specific class is present as input. Default is 512. Returns ------- None saves .npz output file with following keys: arrays_per_model_dict : dict where keys are paths to model and values are array of predictions made by that model for test set """ if mode == 'detect' and loss_func != 'BCE': print( f"when mode is 'detect', loss_func must be 'BCE', but was {loss_func}. Setting to 'BCE." ) loss_func = 'BCE' if random_seed: np.random.seed(random_seed) # for shuffling in batch_generator torch.manual_seed(random_seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False if torch.cuda.is_available(): device = torch.device('cuda') else: device = torch.device('cpu') for epochs in epochs_list: print(f'assaying behavior on test set for {net_name} model trained for {epochs} epochs') # ------ initialize variables to hold outputs from all training replicates ------------------------------------ # ---- for VSD save results.gz **and** a .csv, because we have multiple metrics, # and because csv files are better anyway assay_records = defaultdict(list) # records gets turned into pandas DataFrame, then saved as .csv # these will be lists of DataFrames, one for each training replicate df_lists = defaultdict(list) arrays_per_model = {} # inputs/outputs of model, where key is restore path, and value is dict of arrays for net_number in range(1, number_nets_to_train + 1): transform, target_transform = get_transforms('VSD', loss_func, pad_size) testset = VOCDetection(root=root, csv_file=csv_file, image_set='trainval', split='test', download=True, transform=transform, target_transform=target_transform) restore_path_this_net = make_save_path(restore_path, net_name, net_number, epochs) print(f'Loading model from {restore_path_this_net}') assayer = VOCAssayer.from_config(net_name=net_name, num_classes=num_classes, loss_func=loss_func, testset=testset, mode=mode, embedding_n_out=embedding_n_out, restore_path=restore_path_this_net, batch_size=batch_size, device=device, num_workers=num_workers, data_parallel=data_parallel) results = assayer.assay() # --- add columns to image + trial dataframes before appending to list for key in ('images_df', 'trials_df'): df = results[key] df['net_name'] = net_name df['replicate'] = net_number df['mode'] = mode df['method'] = method df['loss_func'] = loss_func df['restore_path'] = restore_path_this_net df_lists[key].append(df) # ---- add columns + metrics to our 'results across replicates' records for that data frame assay_records['net_name'].append(net_name) assay_records['replicate'].append(net_number) assay_records['mode'].append(mode) assay_records['method'].append(method) assay_records['loss_func'].append(loss_func) assay_records['restore_path'] = restore_path_this_net for metric in ['acc', 'd_prime']: assay_records[metric].append(results[metric]) results_str = ', '.join( [f'{key}: {results[key]:7.3f}' for key in ['acc', 'd_prime']] ) print(f'assay results: {results_str}') arrays_per_model[restore_path_this_net] = results['arrays'] # ---- create results dict, save to results.gz file if not os.path.isdir(test_results_save_path): os.makedirs(test_results_save_path) results_fname_stem = str(Path(configfile).stem) # remove .ini extension arrays_fname = os.path.join(test_results_save_path, f'{results_fname_stem}_trained_{epochs}_epochs_assay_arrays.gz') joblib.dump(arrays_per_model, arrays_fname) summary_csv_fname = os.path.join(test_results_save_path, f'{results_fname_stem}_trained_{epochs}_epochs_assay_results.csv') results_df = pd.DataFrame.from_records(assay_records) results_df.to_csv(summary_csv_fname, index=False) for key, df_list in df_lists.items(): csv_fname = f"{results_fname_stem}_trained_{epochs}_epochs_assay_{key.replace('_df', '')}.csv" csv_path = os.path.join(test_results_save_path, csv_fname) df =
pd.concat(df_list)
pandas.concat
#!/usr/bin/env python """Local and remote asteroid name resolution.""" import asyncio import re import warnings import aiohttp import nest_asyncio import numpy as np import pandas as pd from rich.progress import Progress import rocks # Run asyncio nested for jupyter notebooks, GUIs, ... nest_asyncio.apply() def identify(id_, return_id=False, local=True, progress=False): """Resolve names and numbers of one or more minor bodies using identifiers. Parameters ---------- id_ : str, int, float, list, range, set, np.ndarray, pd.Series One or more identifying names or numbers to resolve. return_id : bool Return the SsODNet ID of the asteroid as third member of the tuple. Default is False. local : bool Try resolving the name locally first. Default is True. progress : bool Show progress bar. Default is False. Returns ------- tuple, list of tuple : (str, int, str), (None, np.nan, None) List containing len(id_) tuples. Each tuple contains the asteroid's name, number, and the SsODNet ID if return_id=True. If the resolution failed, the values are None for name and SsODNet and np.nan for the number. If a single identifier is resolved, a tuple is returned. Notes ----- Name resolution is first attempted locally, then remotely via quaero. If the asteroid is unnumbered, its number is np.nan. """ # ------ # Verify input if isinstance(id_, (str, int, float)): id_ = [id_] elif isinstance(id_, pd.Series): id_ = id_.to_list() elif isinstance(id_, np.ndarray): id_ = id_.tolist() elif isinstance(id_, (set, range)): id_ = list(id_) elif id_ is None: warnings.warn(f"Received id_ of type {type(id_)}.") return (None, np.nan) if not return_id else (None, np.nan, None) # type: ignore elif not isinstance(id_, (list, np.ndarray)): raise TypeError( f"Received id_ of type {type(id_)}, expected one of: " f"str, int, float, list, set, range, np.ndarray, pd.Series" ) if not id_: warnings.warn("Received empty list of identifiers.") return (None, np.nan) if not return_id else (None, np.nan, None) # type: ignore # ------ # For a single name, try local lookup right away, async process has overhead if len(id_) == 1: success, (name, number, ssodnet_id) = _local_lookup(id_[0]) if success: if not return_id: return (name, number) else: return (name, number, ssodnet_id) # ------ # Run asynchronous event loop for name resolution with Progress(disable=not progress) as progress_bar: task = progress_bar.add_task("Identifying rocks", total=len(id_)) # type: ignore loop = asyncio.get_event_loop() results = loop.run_until_complete(_identify(id_, local, progress_bar, task)) # ------ # Check if any failed due to 502 and rerun them idx_failed = [ i for i, result in enumerate(results) if result == (None, None, None) ] if idx_failed: results = np.array(results) results[idx_failed] = loop.run_until_complete( _identify(np.array(id_)[idx_failed], local, progress_bar, task) ) results = results.tolist() # ------ # Verify the output format if not return_id: results = [r[:2] for r in results] if len(id_) == 1: # type: ignore results = results[0] return results # type: ignore async def _identify(id_, local, progress_bar, task): """Establish the asynchronous HTTP session and launch the name resolution.""" async with aiohttp.ClientSession(timeout=aiohttp.ClientTimeout()) as session: tasks = [ asyncio.ensure_future(_resolve(i, session, local, progress_bar, task)) for i in id_ ] results = await asyncio.gather(*tasks) return results async def _resolve(id_, session, local, progress_bar, task): """Resolve the identifier locally or remotely.""" if
pd.isnull(id_)
pandas.isnull
import pandas as pd import xarray as xr import re import numpy as np import datetime as dt class AWS: '''This class represents an Automatic Weather Station and its time series''' def __init__(self, name, code, lat, lon, elev): self.name = name self.code = code self.lat = lat self.lon = lon self.elev = elev self.atmvar = dict() def add_atmvar(self, name, time_series_dataarray): self.atmvar[name] = time_series_dataarray class AWSWriter: '''This class is responsible for saving a group of AWS as a .csv file''' pass class AWSWiscReader: '''This class reads an AWS from a .txt file from wisc data''' def read_aws(self, filepath): aws = self.read_metadata(filepath) da = self.read_time_series(filepath) aws.add_atmvar('T2m', da) return aws def read_metadata(self, filepath): with open(filepath) as f: firstline = f.readline().rstrip() first_match_obj = re.match( r'Year: (.*) Month: (.*) ID: (.*) ARGOS: (.*) Name: (.*)', firstline) secondline = f.readline().rstrip() second_match_obj = re.match( r'Lat: (.*) Lon: (.*) Elev: (.*)', secondline) return AWS( first_match_obj.group(5).strip(), first_match_obj.group(3).strip(), second_match_obj.group(1).strip(), second_match_obj.group(2).strip(), second_match_obj.group(3).strip(), ) def read_time_series(self, filepath): df =
pd.read_csv(filepath, skiprows=2, header=None, sep='\s+', na_values=444.0)
pandas.read_csv
# -*- coding: utf-8 -*- """ml_package_code.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1slXIOwuXRSfAQpsAAsGs1DIkqMU3hHYZ """ import pandas as pd import numpy as np from sklearn.model_selection import train_test_split from keras.utils import to_categorical from sklearn.impute import SimpleImputer from keras.models import Sequential from keras.layers import Dense import seaborn as sns import matplotlib.pyplot as plt def read_dataset(param): y_var = param[1] path = param[0] ind = param[2] if ind ==' ': df = pd.read_csv(path) y = df[y_var] x = df.drop(columns=y_var) print(df.head()) return df,x,y else: df = pd.read_csv(path,index_col=ind) y = df[y_var] x = df.drop(columns=y_var) print(df.head()) return df,x,y def one_hot(x,y,cat=False,exc=False,onlyoutcome=False,onlyx=False): if cat =='~': for j in x.columns: onehot = pd.get_dummies(x[j],prefix=j) x = x.drop(columns=[j]) x = pd.concat([x,onehot],axis=1) y = pd.get_dummies(y) return x,y elif exc == True: col = x.columns col1 = list(col) for i in cat: col1.remove(i) for j in col1: onehot = pd.get_dummies(x[j],prefix=j) x = x.drop(columns=[j]) x = pd.concat([x,onehot],axis=1) y = pd.get_dummies(y) return x,y elif onlyoutcome == True: y = pd.get_dummies(y) return y elif onlyx == True: for j in x.columns: onehot = pd.get_dummies(x[j],prefix=j) x = x.drop(columns=[j]) x = pd.concat([x,onehot],axis=1) return x else: print('----') for i in cat: onehot = pd.get_dummies(x[i],prefix=i) x = x.drop(columns=[i]) x = pd.concat([x,onehot],axis=1) y =
pd.get_dummies(y)
pandas.get_dummies
"""Performs growth and exchange analysis for several models.""" from cobra.util.solver import interface_to_str, OptimizationError from micom import load_pickle from micom.annotation import annotate_metabolites_from_exchanges from micom.logger import logger from micom.media import minimal_medium from micom.workflows.core import workflow, GrowthResults from micom.workflows.media import process_medium from os import path import pandas as pd DIRECTION = pd.Series(["import", "export"], index=[0, 1]) ARGS = { "none": {"fluxes": True, "pfba": False}, "minimal imports": {"fluxes": False, "pfba": False}, "pFBA": {"fluxes": True, "pfba": True}, } def _growth(args): p, tradeoff, medium, weights, strategy, atol, rtol, presolve = args com = load_pickle(p) if atol is None: atol = com.solver.configuration.tolerances.feasibility if rtol is None: rtol = com.solver.configuration.tolerances.feasibility if presolve: # looks stupid but that here is to respect the preset # and there is an auto setting that we want to respect com.solver.configuration.presolve = presolve if "glpk" in interface_to_str(com.solver.interface): logger.error( "Community models were not built with a QP-capable solver. " "This means that you did not install CPLEX or Gurobi. " "If you did install one of the two please file a bug report " "at https://github.com/micom-dev/micom/issues." ) return None ex_ids = [r.id for r in com.exchanges] logger.info( "%d/%d import reactions found in model.", medium.index.isin(ex_ids).sum(), len(medium), ) com.medium = medium[medium.index.isin(ex_ids)] # Get growth rates args = ARGS[strategy].copy() args["atol"] = atol args["rtol"] = rtol args["fraction"] = tradeoff try: sol = com.cooperative_tradeoff(**args) rates = sol.members rates["taxon"] = rates.index rates["tradeoff"] = tradeoff rates["sample_id"] = com.id except Exception: logger.error( "Could not solve cooperative tradeoff for %s. " "This can often be fixed by enabling `presolve`, choosing more " "permissive atol and rtol arguments, or by checking that medium " "fluxes are > atol." % com.id ) return None if strategy == "minimal imports": # Get the minimal medium and the solution at the same time med = minimal_medium( com, exchanges=None, community_growth=sol.growth_rate, min_growth=rates.growth_rate.drop("medium"), solution=True, weights=weights, atol=atol, rtol=rtol, ) if med is None: logger.error( "The minimal medium optimization failed for %s. " "This can often be fixed by enabling `presolve`, choosing more " "permissive atol and rtol arguments, or by checking that medium " "fluxes are > atol." % com.id ) return None sol = med["solution"] exs = list({r.global_id for r in com.internal_exchanges + com.exchanges}) fluxes = sol.fluxes.loc[:, exs].copy() fluxes["sample_id"] = com.id fluxes["tolerance"] = atol anns = annotate_metabolites_from_exchanges(com) return {"growth": rates, "exchanges": fluxes, "annotations": anns} def grow( manifest, model_folder, medium, tradeoff, threads=1, weights=None, strategy="minimal imports", atol=None, rtol=None, presolve=False, ): """Simulate growth for a set of community models. Note ---- The strategy `mimimal imports` can become unstable for common carbon sources since it will add in infeasible imports that are very small but import some high-C molecules. If you use it check that only components from your medium have been used and molecules that should be essential are indeed consumed. Parameters ---------- manifest : pandas.DataFrame The manifest as returned by the `build` workflow. model_folder : str The folder in which to find the files mentioned in the manifest. medium : pandas.DataFrame A growth medium. Must have columns "reaction" and "flux" denoting exchange reactions and their respective maximum flux. tradeoff : float in (0.0, 1.0] A tradeoff value. Can be chosen by running the `tradeoff` workflow or by experince. Tradeoff values of 0.5 for metagenomcis data and 0.3 for 16S data seem to work well. threads : int >=1 The number of parallel workers to use when building models. As a rule of thumb you will need around 1GB of RAM for each thread. strategy : str Computational strategy used to reduce the flux space. Default "pFBA" uses parsimonious FBA, "minimal imports" used the solution with the smallest total mass import from the environment, and "none" returns an arbitrary feasible flux distribution. weights : str Only used during the calculaton of the minimal import rates. Will scale the fluxes by a weight factor. Can either be "mass" which will scale by molecular mass, a single element which will scale by the elemental content (for instance "C" to scale by carbon content). If None every metabolite will receive the same weight. Will be ignored if `minimize_components` is True. atol : float Absolute tolerance for the growth rates. If None will use the solver tolerance. rtol : float Relative tolerqance for the growth rates. If None will use the solver tolerance. presolve : bool Whether to use the presolver/scaling. Can improve numerical accuracy in some cases. Returns ------- GrowthResults A named tuple containing the growth rates and exchange fluxes for all samples/models. """ if strategy not in ARGS: raise ValueError( "`%s` is not a valid strategy. Must be one of %s!" % (strategy, ", ".join(ARGS)) ) samples = manifest.sample_id.unique() paths = { s: path.join(model_folder, manifest[manifest.sample_id == s].file.iloc[0]) for s in samples } medium = process_medium(medium, samples) args = [ [ p, tradeoff, medium.flux[medium.sample_id == s], weights, strategy, atol, rtol, presolve, ] for s, p in paths.items() ] results = workflow(_growth, args, threads) if all([r is None for r in results]): raise OptimizationError( "All numerical optimizations failed. This indicates a problem " "with the solver or numerical instabilities. Check that you have " "CPLEX or Gurobi installed. You may also increase the abundance " "cutoff to create simpler models." ) growth =
pd.concat(r["growth"] for r in results if r is not None)
pandas.concat
# import libraries import glob import os from collections import OrderedDict from pathlib import Path import cv2 import face_recognition import numpy as np import pandas as pd from PIL import Image from tqdm import tqdm def wget_video( name, url, cmd="youtube-dl --continue --write-auto-sub --get-thumbnail --write-all-thumbnails --get-description --all-subs -o {} {}", dir_out=None, ): """ Fetch video from youtube :param dir_out: directory to save to - if directory does not exist, then sets to save in current directory, :param name: identifier to name video with :param url: youtube URL to download as MP4 :param cmd: command line call (Note, str.format() assumes 2 placeholders :return: True if successfully downloaded; else, return False. """ if not Path(dir_out).is_dir(): dir_out = "" try: if not glob.glob(dir_out + name + "/*.mp4") + glob.glob( dir_out + name + "/*.mkv" ): os.system(cmd.format(dir_out + name, url)) return True finally: print(name) return False def encode_face_files(imfiles): images = OrderedDict({impath: cv2.imread(impath)[:, :, ::-1] for impath in imfiles}) encodings = {} for impath, image in images.items(): try: encodings[impath] = face_recognition.face_encodings(image)[0] except Exception as e: print(f"Error encoding {impath} {e.message}") return encodings def read_family_member_list(f_csv): df = pd.read_csv(f_csv) # df['last'] = df["surname"].apply(lambda x: x.split('.')[0]) df["ref"] = df["firstname"] + "_" + df["surname"] df = df.loc[df.video.notna()] df.reset_index(inplace=True) del df["index"] return df def fetch_videos(df, dir_out=None): df.apply(lambda x: wget_video(x["ref"], x["video"], dir_out=dir_out), axis=1) def encode_mids(d_mid, f_encodings=None, save_pickle=False): if f_encodings and Path(f_encodings).is_file(): encodings = pd.read_pickle(f_encodings) else: impaths = glob.glob(f"{d_mid}/*.jpg") encodings = encode_face_files(impaths) if save_pickle: f_encodings = f"{d_mid}/encodings.pkl"
pd.to_pickle(encodings, f_encodings)
pandas.to_pickle
#!/usr/bin/python # coding:utf8 # return all stocks information include price and voloum, excluding ST and risk notification stocks import pandas as pd import easyquotation def get_prices(): quotation = easyquotation.use('qq') stocks_info = quotation.all return stocks_info def stockFilter(stock): head = stock[:1] return head == "0" or head == "3" or head == "6" def select(): stocks_info = get_prices() df = pd.DataFrame(stocks_info).T print(df.columns) to_drop = list(df.columns) for i in range(1,6): to_drop.remove("ask" + str(i)) to_drop.remove("bid" + str(i)) to_drop.remove("close") to_drop.remove("turnover") to_drop.remove("unknown") to_drop.remove("涨停价") to_drop.remove("涨跌(%)") to_drop.remove("跌停价") to_drop.remove("总市值") df = df.drop(
pd.Index(to_drop)
pandas.Index
from repofish.database import get_available_modules, load_module from repofish.github import search_code import pickle import time import pandas access_token = "<PASSWORD>" # Read in list of Github repos repos_file = "/scratch/PI/russpold/data/PUBMED/repos/repos_github_pandas_df.pkl" repos = pickle.load(open(repos_file,"rb")) # Get available modules modules = get_available_modules() # An example of running locally # repos 9935 matches =
pandas.DataFrame()
pandas.DataFrame
# Import requirements; Note sqlalchemy import re import numpy as np import pandas as pd from sqlalchemy import create_engine import sys def load_data(messages_filepath, categories_filepath): ''' Description: Load/Extract data from CSV file to a pandas.DataFrame Arg: file path of the CSV file Return: Returns DataFrame/data-matrix ''' df_messages = pd.read_csv(messages_filepath) df_categories =
pd.read_csv(categories_filepath)
pandas.read_csv
#!/usr/bin/python import importlib # Add page files here import Grapher import MainPage import NewPredictionPage import AddModelPage import DevToolsPage import DNNPage from pathlib import Path import tkinter as tk from tkinter import ttk import pandas import os import Model LARGE_FONT = ("Verdana", 12, "bold") SMALL_FONT = ("Verdana", 10) datafolder = Path("Data/Tickers") # Base of the user interface; calls pages to be used from frames. class UserInterface(tk.Tk): # Easier for reading def __init__(self, *args, **kwargs): #======================= Creating the window ===================== super().__init__(*args, **kwargs) #tk.Tk.iconbitmap(self, default = "Zoltar_Icon.ico") tk.Tk.wm_title(self, "Zoltar") # Container = window seen container = tk.Frame(self) container.pack(side = "top", fill = "both", expand = True) container.grid_rowconfigure(0, weight = 1) container.grid_rowconfigure(1, weight = 1) container.grid_columnconfigure(0, weight = 3) # Weights the graph to be larger container.grid_columnconfigure(1, weight = 1) # Frame configuration: loop runs through right-side frames self.frames = {} # Add all right-side frames to this loop for F in (MainPage.MainWindow, NewPredictionPage.NewPredictionWindow, AddModelPage.AddModelWindow, DevToolsPage.DevToolsWindow): frame = F(container, self) self.frames[F] = frame frame.grid(row = 0, column = 1, sticky = "nsew") frame = DNNPage.DNNWindow(container, self) self.frames[DNNPage.DNNWindow] = frame frame.grid(row = 1, column = 1, sticky = "nsew") # Only 1 Left-side frame, but same function as loop frame = Grapher.GrapherWindow(container, self) self.frames[Grapher.GrapherWindow] = frame frame.grid(row = 0, rowspan = 2, column = 0, sticky = "nsew") self.showFrame(MainPage.MainWindow) # Initial page to show #====================== Data Handling Methods ====================== # Needs list: report available csv, append Model Results, get stock name, # Get CSV from Stock name def saveNewPrediction(self): #============================== Collecting Variables =============================== frame = self.frames[NewPredictionPage.NewPredictionWindow] stockNames = frame.getCurrentlySelectedStocks() startDate = frame.getStartDate() endDate = frame.getEndDate() predictionName = frame.getName() predictionWindow = frame.getPredictionWindow() print("someting") print(predictionWindow) path = "Data" + os.sep + "Saved_Stock_Data" + os.sep + predictionName + ".csv" #=============================== Generating File ================================== allData =
pandas.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd import pmdarima as pm from json import dumps, loads from numpy.linalg import inv from datetime import timedelta from sympy import Symbol, Poly, solve_poly_system from statsmodels.tsa.arima_model import ARIMA from statsmodels.tsa.statespace.tools import diff def process(file, ext, log, H, C, Y, toggle, P, D, Q): if ext == '.csv': df = pd.read_csv(file) else: df = pd.read_excel(file) df = df[df.columns[0]] if log == 'true': df = np.log(df).replace(-np.inf, 0) Zt = df.to_json(orient='values') t = dumps([x for x in range(len(df))]) if toggle == 'on': _, Zh, th, Zh_l, Zh_u, summary = forecast(df, H) else: _, Zh, th, Zh_l, Zh_u, summary = forecastARIMA(df, H, P, D, Q) Zh_res = restricted_forecast( Zh, H, C, Y, summary['order'], summary['params']) data = {'Z': Zt, 't': t, 'Zh': Zh, 'th': th, 'Zh_l': Zh_l, 'Zh_u': Zh_u, 'Zh_res': Zh_res, 'summary': dumps(summary)} return dumps(data) def forecast(df, H): model = pm.auto_arima(df.values[:], start_p=2, start_q=2, test='adf', # use adftest to find optimal 'd' max_p=5, max_q=5, # maximum p and q m=1, # frequency of series d=None, # let model determine 'd' seasonal=False, # No Seasonality start_P=0, D=0, trend=None, with_intercept=False, trace=False, error_action='ignore', suppress_warnings=True, stepwise=True) # Forecast n_periods = H fc, confint = model.predict(n_periods=n_periods, return_conf_int=True) index_of_fc = pd.RangeIndex(start=df.index.stop, stop=df.index.stop + H) th = dumps([x for x in range(len(df), len(df)+H)]) # index_of_fc = pd.PeriodIndex((pd.to_datetime(df.values[:,0]) + H*timedelta(weeks=12))[-H:],freq='Q') fc_series = pd.Series(fc, index=index_of_fc).to_json(orient='values') lower_series = pd.Series( confint[:, 0], index=index_of_fc).to_json(orient='values') upper_series = pd.Series( confint[:, 1], index=index_of_fc).to_json(orient='values') model_params = model.to_dict() summary = {'order': model_params['order'], 'params': model_params['params'].tolist( ), 'summary': model.summary().as_html()} try: pred = model.predict(df.index.stop, df.index.stop + H - 1, typ='linear').tolist() except Exception: pred = model.predict(df.index.stop, df.index.stop + H - 1).tolist() pred_series = pd.Series(pred).to_json(orient='values') return pred_series, fc_series, th, lower_series, upper_series, summary def forecastARIMA(df, H, P, D, Q): order = (P, D, Q) model = ARIMA(df.values[:], order=order).fit(trend='nc') # Forecast n_periods = H fc, se, confint = model.forecast(n_periods) index_of_fc = pd.RangeIndex(start=df.index.stop, stop=df.index.stop+H) th = dumps([x for x in range(len(df), len(df)+H)]) # index_of_fc = pd.PeriodIndex((pd.to_datetime(df.values[:,0]) + H*timedelta(weeks=12))[-H:],freq='Q') fc_series = pd.Series(fc, index=index_of_fc).to_json(orient='values') lower_series = pd.Series( confint[:, 0], index=index_of_fc).to_json(orient='values') upper_series = pd.Series( confint[:, 1], index=index_of_fc).to_json(orient='values') summary = {'order': order, 'params': list(model.arparams)+list(model.maparams), 'summary': model.summary().as_html()} try: pred = model.predict(df.index.stop, df.index.stop + H - 1, typ='linear').tolist() except Exception: pred = model.predict(df.index.stop, df.index.stop + H - 1).tolist() pred_series =
pd.Series(pred)
pandas.Series
import numpy as np import pandas as pd import pytest from etna.datasets import TSDataset from etna.metrics import R2 from etna.models import LinearMultiSegmentModel from etna.transforms import MeanSegmentEncoderTransform from etna.transforms import SegmentEncoderTransform @pytest.fixture def dummy_df() -> pd.DataFrame: df_1 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-06-01", "2021-07-01", freq="1d")}) df_2 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-06-01", "2021-07-01", freq="1d")}) df_1["segment"] = "Moscow" df_1["target"] = 1 df_2["segment"] = "Omsk" df_2["target"] = 2 classic_df = pd.concat([df_1, df_2], ignore_index=True) df = classic_df.pivot(index="timestamp", columns="segment") df = df.reorder_levels([1, 0], axis=1) df = df.sort_index(axis=1) df.columns.names = ["segment", "feature"] return df def test_dummy(dummy_df): transform = SegmentEncoderTransform() transformed_df = transform.fit_transform(dummy_df) assert ( len(transformed_df.loc[:, pd.IndexSlice[:, "regressor_segment_code"]].columns) == 2 ), "Number of columns not the same as segments" assert len(dummy_df) == len(transformed_df), "Row missing" @pytest.fixture def simple_df() -> pd.DataFrame: df_1 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-06-01", "2021-06-07", freq="D")}) df_2 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-06-01", "2021-06-07", freq="D")}) df_1["segment"] = "Moscow" df_1["target"] = [1.0, 2.0, 3.0, 4.0, 5.0, np.NAN, np.NAN] df_1["exog"] = [6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0] df_2["segment"] = "Omsk" df_2["target"] = [10.0, 20.0, 30.0, 40.0, 50.0, np.NAN, np.NAN] df_2["exog"] = [60.0, 70.0, 80.0, 90.0, 100.0, 110.0, 120.0] classic_df = pd.concat([df_1, df_2], ignore_index=True) df = TSDataset.to_dataset(classic_df) return df @pytest.fixture def transformed_simple_df() -> pd.DataFrame: df_1 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-06-01", "2021-06-07", freq="D")}) df_2 = pd.DataFrame.from_dict({"timestamp": pd.date_range("2021-06-01", "2021-06-07", freq="D")}) df_1["segment"] = "Moscow" df_1["target"] = [1.0, 2.0, 3.0, 4.0, 5.0, np.NAN, np.NAN] df_1["exog"] = [6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0] df_1["regressor_segment_mean"] = [0, 1, 1.5, 2, 2.5, 3, 3] df_2["segment"] = "Omsk" df_2["target"] = [10.0, 20.0, 30.0, 40.0, 50.0, np.NAN, np.NAN] df_2["exog"] = [60.0, 70.0, 80.0, 90.0, 100.0, 110.0, 120.0] df_2["regressor_segment_mean"] = [0.0, 10.0, 15.0, 20.0, 25.0, 30, 30] classic_df =
pd.concat([df_1, df_2], ignore_index=True)
pandas.concat
"""This file contains functions and tests to calculate the stylized facts""" import pandas as pd import numpy as np from math import isclose from stockmarket.functions import div0 # return autocorrelation close to zero after lag 1 # calculate returns def calculate_close(orderbook_transaction_price_history): closing_prices = [] for day in orderbook_transaction_price_history: closing_prices.append(day[-1]) close = pd.Series(closing_prices).pct_change() return close def calculate_returns(orderbook_transaction_price_history): """Return the returns""" closing_prices = [] for day in orderbook_transaction_price_history: closing_prices.append(day[-1]) returns = pd.Series(closing_prices).pct_change() return returns[1:] # Test 1 def zero_autocorrelation(returns, lags): """returns wether average autocorrelation is much different from zero""" autocorr_returns = [returns.autocorr(lag=lag) for lag in range(lags)] # if mean autocorrelation are between -0.1 and 0.1 average_autocorrelation = np.mean(autocorr_returns[1:]) if (average_autocorrelation < 0.1) and (average_autocorrelation > -0.1): return True, average_autocorrelation else: return False, np.inf # # Test 2 # def fat_tails(returns): # results = powerlaw.Fit(returns) # alpha = results.power_law.alpha # #print(alpha) # if (alpha < 5) and (alpha > 3): # return True, alpha # else: # return False, np.inf def fat_tails_kurtosis(returns): series_returns = pd.Series(returns) kurt = series_returns.kurtosis() if kurt > 4: return True, kurt else: return False, np.inf # Test 3 def clustered_volatility(returns, lags): absolute_returns = returns.abs() autocorr_abs_returns = [absolute_returns.autocorr(lag=lag) for lag in range(lags)] average_autocorrelation = np.mean(autocorr_abs_returns[1:]) #print(average_autocorrelation) if (average_autocorrelation < 0.1) and (average_autocorrelation > -0.1): return False, np.inf else: return True, average_autocorrelation # Test 4 def long_memory(returns, hurst_function, lag1, lag2): h = hurst_function(returns, lag1, lag2) #print('h = ', h) return not isclose(0.5, h, abs_tol=(10 ** -1 / 2)), h # functions to calculate stylized facts def autocorrelation_returns(returns, lags): """ Calculate the average autocorrelation in a returns time series :param returns: time series of returns :param lags: the lags over which the autocorrelation is to be calculated :return: average autocorrelation """ returns =
pd.Series(returns)
pandas.Series
import os import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import tensorflow as tf from keras.models import Sequential from keras.layers import LSTM,Dense,Dropout from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.optimizers import Adam from sklearn.preprocessing import MinMaxScaler from statistics import mean from numpy import newaxis import csv import argparse # Arguments epochs = 100 batch_size = 32 past_day = 5 future_day = 1 # 以收盤價為train, 以開盤價為target label def split_dataset(df, past_day, future_day): X, Y = [], [] for i in range(len(df) - future_day - past_day): X.append(np.array(df[i:i+past_day, 0])) Y.append(np.array(df[i+past_day:i+past_day+future_day, 0])) return np.array(X), np.array(Y) def build_model(shape): model = Sequential() model.add(LSTM(64, input_shape=(shape[1], shape[2]), return_sequences=True)) model.add(Dropout(0.2)) model.add(LSTM(64, return_sequences=True)) model.add(Dropout(0.2)) model.add(Dense(1)) return model def plotting(input1, input2, title, legend, x_label=None, y_label=None, grid=True, figsize=(20, 8)): plt.figure(figsize=figsize) plt.plot(input1) plt.plot(input2) plt.title(title) plt.legend(legend) plt.xlabel(x_label) plt.ylabel(y_label) plt.grid(grid) plt.show() def calculate_revenue(size, nu): # 1: buy # 0: hold # -1: short/sell # size = x_test.shape[0] - 1 status = 0 flag = 0 revenue = 0 with open('output.csv', mode='w') as csv_file: writer = csv.writer(csv_file) for i in range(size): if (status == 1): if (nu[i+1]<nu[i]): writer.writerow(['-1']) status = 0 revenue = revenue+nu[i] else: writer.writerow(['0']) elif (status == 0): if (nu[i+1]>nu[i]): writer.writerow(['1']) status = 1 revenue = revenue-nu[i] elif (nu[i+1]<nu[i]): writer.writerow(['-1']) status = -1 revenue = revenue+nu[i] else: writer.writerow(['0']) else : if (nu[i+1]>nu[i]): writer.writerow(['1']) status = 0 revenue = revenue-nu[i] else: writer.writerow(['0']) if (status==1) : revenue = revenue + nu[size] elif (status==-1) : revenue = revenue - nu[size] return revenue if __name__ == "__main__": # Main Arguments main_path = ''; parser = argparse.ArgumentParser() parser.add_argument("--training", default="dataset/training.csv", help="input training data file name") parser.add_argument("--testing", default="dataset/testing.csv", help="input testing data file name") parser.add_argument("--output", default="output.csv", help="output file name") args = parser.parse_args() train_df = pd.read_csv(args.training, header=None) test_df = pd.read_csv(args.testing, header=None) train_df.drop([1,2,3], inplace=True, axis=1) test_df.drop([1,2,3], inplace=True, axis=1) test_df = pd.DataFrame(np.insert(test_df.to_numpy(), 0, train_df.to_numpy()[-(past_day+1):], axis=0)) train_df = pd.DataFrame(train_df.to_numpy()[:-(past_day+1)]) # Scaling sc = MinMaxScaler(feature_range=(-1, 1)) scaled_train_df = sc.fit_transform(train_df) scaled_test_df = sc.transform(test_df) # Generate training data and label x_train, y_train = split_dataset(scaled_train_df, past_day, future_day) x_test, y_test = split_dataset(scaled_test_df, past_day, future_day) # Plotting Original Open and Close Price of testing.csv plotting(x_test[:,-1], y_test, 'Price', ['close price','open price']) # Reshape the data into (Samples, Timestep, Features) x_train = x_train.reshape(x_train.shape[0], x_train.shape[1], 1) x_test = x_test.reshape(x_test.shape[0], x_test.shape[1], 1) # Build model model = build_model(x_train.shape) model.summary() # Compile and Fit reduce_lr = tf.keras.callbacks.LearningRateScheduler(lambda x: 1e-3 * 0.9 ** x) early_stopping = EarlyStopping(monitor='loss', patience=10, verbose=1, mode='auto') model.compile(optimizer=Adam(), loss='mean_squared_error') history = model.fit(x_train, y_train, epochs=epochs, batch_size=batch_size,validation_data=(x_test, y_test), shuffle=False, callbacks=[reduce_lr, early_stopping]) model.save('model.h5') # Plotting Model Loss plotting(input1=history.history['loss'], input2=history.history['val_loss'], title='Model Loss', legend=['Train','Valid'], x_label='Epochs', y_label='Loss') # Start Predicting predicted = model.predict(x_test) predict = sc.inverse_transform(predicted.reshape(predicted.shape[0], predicted.shape[1])) # 將預測data前移三天,並利用預測結果預測剩餘最後三天的股票 last = np.array([x_test[-1, 1:], x_test[-1, 2:], x_test[-1, 3:]], dtype=object) # print(last) # print(np.array(predicted[newaxis, -2, -1])) last[0] = np.array(np.concatenate((np.array(last[0]), np.array(predicted[newaxis, -3, -1])))) last[1] = np.concatenate((last[1], predicted[newaxis, -3, -1])) last[1] = np.array(np.concatenate((last[1], predicted[newaxis, -2, -1]))) last[2] = np.concatenate((last[2], predicted[newaxis, -3, -1])) last[2] = np.concatenate((last[2], predicted[newaxis, -2, -1])) last[2] = np.array(np.concatenate((last[2], predicted[newaxis, -1, -1]))) last[0] = pd.DataFrame(last[0]) last[1] = pd.DataFrame(last[1]) last[2] =
pd.DataFrame(last[2])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Jul 16 14:41:52 2017 @author: mazeller """ #Imports import pandas as pd import numpy as np import sklearn import matplotlib.pyplot as plt from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import VotingRegressor from sklearn.datasets import make_regression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import AdaBoostRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.neural_network import MLPRegressor from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error, explained_variance_score from sklearn.model_selection import GridSearchCV from sklearn.model_selection import cross_val_score class featureRegression: def __init__(self, fileTrainingSet): """Creates features from alignments and antigenic distances""" self.__fileTrainingSet = fileTrainingSet self.__loadTrainingSet() def __loadTrainingSet(self): df =
pd.read_csv(self.__fileTrainingSet, header=0, index_col=[0])
pandas.read_csv
# -*- coding: utf-8 -*- import pytest import numpy as np import pandas as pd import pandas.util.testing as tm from validada.slicers import iloc import validada.functions.raising as ck import validada.decorators.raising as dc import datetime as dt def _add_one(df): return df + 1 def _safe_add_one(df): return df.fillna(0.0) + 1 def _noop(df): return df def test_is_in_index(): dr = pd.date_range(start='2015-01-01', periods=6, freq='D') df = pd.DataFrame(data = list(range(6)), index=dr) d = dt.date(2015,1,3) result = ck.has_in_index(df, obj=d) tm.assert_frame_equal(df, result) result = dc.has_in_index(obj=d)(_add_one)(df)
tm.assert_frame_equal(result, df + 1)
pandas.util.testing.assert_frame_equal
from cProfile import label from operator import index from turtle import color import numpy as np import pandas as pd import matplotlib.pyplot as plt #Pandas ile verileri okuduk AAPL = pd.read_csv("AAPL.csv") #print(AAPL.head()) #30 Günlük hareketli ortalama SMA30 = pd.DataFrame() #Yeni dataset oluşturduk SMA30 ['Deger'] = AAPL['Close'].rolling(window=20).mean() #Günlerin son 30 günlük ortalamasını aldık #30 Günlük hareketli ortalama SMA100 = pd.DataFrame() SMA100 ['Deger'] = AAPL['Close'].rolling(window=200).mean() #Günlerin son 100 günlük ortalamasını aldık #Verilerin hepsini bir veri setine topladık veriseti =
pd.DataFrame()
pandas.DataFrame
class Pywedge_Charts(): ''' Makes 8 different types of interactive Charts with interactive axis selection widgets in a single line of code for the given dataset. Different types of Charts viz, 1. Scatter Plot 2. Pie Chart 3. Bar Plot 4. Violin Plot 5. Box Plot 6. Distribution Plot 7. Histogram 8. Correlation Plot Inputs: 1. Dataframe 2. c = any redundant column to be removed (like ID column etc., at present supports a single column removal, subsequent version will provision multiple column removal requirements) 3. y = target column name as a string Returns: Charts widget ''' def __init__(self, train, c, y, manual=True): self.train = train self.c = c self.y = y self.X = self.train.drop(self.y,1) self.manual = manual def make_charts(self): import pandas as pd import ipywidgets as widgets import plotly.express as px import plotly.figure_factory as ff import plotly.offline as pyo from ipywidgets import HBox, VBox, Button from ipywidgets import interact, interact_manual, interactive import plotly.graph_objects as go from plotly.offline import iplot header = widgets.HTML(value="<h2>Pywedge Make_Charts </h2>") display(header) if len(self.train) > 500: from sklearn.model_selection import train_test_split test_size = 500/len(self.train) if self.c!=None: data = self.X.drop(self.c,1) else: data = self.X target = self.train[self.y] X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=test_size, random_state=1) train_mc = pd.concat([X_test, y_test], axis=1) else: train_mc = self.train train_numeric = train_mc.select_dtypes('number') train_cat = train_mc.select_dtypes(exclude='number') out1 = widgets.Output() out2 = widgets.Output() out3 = widgets.Output() out4 = widgets.Output() out5 = widgets.Output() out6 = widgets.Output() out7 = widgets.Output() out8 = widgets.Output() out8 = widgets.Output() tab = widgets.Tab(children = [out1, out2, out3, out4, out5, out6, out7, out8]) tab.set_title(0, 'Scatter Plot') tab.set_title(1, 'Pie Chart') tab.set_title(2, 'Bar Plot') tab.set_title(3, 'Violin Plot') tab.set_title(4, 'Box Plot') tab.set_title(5, 'Distribution Plot') tab.set_title(6, 'Histogram') tab.set_title(7, 'Correlation plot') display(tab) with out1: header = widgets.HTML(value="<h1>Scatter Plots </h1>") display(header) x = widgets.Dropdown(options=list(train_mc.select_dtypes('number').columns)) def scatter_plot(X_Axis=list(train_mc.select_dtypes('number').columns), Y_Axis=list(train_mc.select_dtypes('number').columns)[1:], Color=list(train_mc.select_dtypes('number').columns)): fig = go.FigureWidget(data=go.Scatter(x=train_mc[X_Axis], y=train_mc[Y_Axis], mode='markers', text=list(train_cat), marker_color=train_mc[Color])) fig.update_layout(title=f'{Y_Axis.title()} vs {X_Axis.title()}', xaxis_title=f'{X_Axis.title()}', yaxis_title=f'{Y_Axis.title()}', autosize=False,width=600,height=600) fig.show() widgets.interact_manual.opts['manual_name'] = 'Make_Chart' one = interactive(scatter_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(scatter_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(scatter_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(scatter_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out2: header = widgets.HTML(value="<h1>Pie Charts </h1>") display(header) def pie_chart(Labels=list(train_mc.select_dtypes(exclude='number').columns), Values=list(train_mc.select_dtypes('number').columns)[0:]): fig = go.FigureWidget(data=[go.Pie(labels=train_mc[Labels], values=train_mc[Values])]) fig.update_layout(title=f'{Values.title()} vs {Labels.title()}', autosize=False,width=500,height=500) fig.show() one = interactive(pie_chart, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(pie_chart, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(pie_chart, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(pie_chart, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out3: header = widgets.HTML(value="<h1>Bar Plots </h1>") display(header) def bar_plot(X_Axis=list(train_mc.select_dtypes(exclude='number').columns), Y_Axis=list(train_mc.select_dtypes('number').columns)[1:], Color=list(train_mc.select_dtypes(exclude='number').columns)): fig1 = px.bar(train_mc, x=train_mc[X_Axis], y=train_mc[Y_Axis], color=train_mc[Color]) fig1.update_layout(barmode='group', title=f'{X_Axis.title()} vs {Y_Axis.title()}', xaxis_title=f'{X_Axis.title()}', yaxis_title=f'{Y_Axis.title()}', autosize=False,width=600,height=600) fig1.show() one = interactive(bar_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(bar_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(bar_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(bar_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out4: header = widgets.HTML(value="<h1>Violin Plots </h1>") display(header) def viol_plot(X_Axis=list(train_mc.select_dtypes('number').columns), Y_Axis=list(train_mc.select_dtypes('number').columns)[1:], Color=list(train_mc.select_dtypes(exclude='number').columns)): fig2 = px.violin(train_mc, X_Axis, Y_Axis, Color, box=True, hover_data=train_mc.columns) fig2.update_layout(title=f'{X_Axis.title()} vs {Y_Axis.title()}', xaxis_title=f'{X_Axis.title()}', autosize=False,width=600,height=600) fig2.show() one = interactive(viol_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(viol_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(viol_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(viol_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out5: header = widgets.HTML(value="<h1>Box Plots </h1>") display(header) def box_plot(X_Axis=list(train_mc.select_dtypes(exclude='number').columns), Y_Axis=list(train_mc.select_dtypes('number').columns)[0:], Color=list(train_mc.select_dtypes(exclude='number').columns)): fig4 = px.box(train_mc, x=X_Axis, y=Y_Axis, color=Color, points="all") fig4.update_layout(barmode='group', title=f'{X_Axis.title()} vs {Y_Axis.title()}', xaxis_title=f'{X_Axis.title()}', yaxis_title=f'{Y_Axis.title()}', autosize=False,width=600,height=600) fig4.show() one = interactive(box_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(box_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(box_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(box_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out6: header = widgets.HTML(value="<h1>Distribution Plots </h1>") display(header) def dist_plot(X_Axis=list(train_mc.select_dtypes('number').columns), Y_Axis=list(train_mc.select_dtypes('number').columns)[1:], Color=list(train_mc.select_dtypes(exclude='number').columns)): fig2 = px.histogram(train_mc, X_Axis, Y_Axis, Color, marginal='violin', hover_data=train_mc.columns) fig2.update_layout(title=f'{X_Axis.title()} vs {Y_Axis.title()}', xaxis_title=f'{X_Axis.title()}', autosize=False,width=600,height=600) fig2.show() one = interactive(dist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(dist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(dist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(dist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out7: header = widgets.HTML(value="<h1>Histogram </h1>") display(header) def hist_plot(X_Axis=list(train_mc.columns)): fig2 = px.histogram(train_mc, X_Axis) fig2.update_layout(title=f'{X_Axis.title()}', xaxis_title=f'{X_Axis.title()}', autosize=False,width=600,height=600) fig2.show() one = interactive(hist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(hist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(hist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(hist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out8: header = widgets.HTML(value="<h1>Correlation Plots </h1>") display(header) import plotly.figure_factory as ff corrs = train_mc.corr() colorscale = ['Greys', 'Greens', 'Bluered', 'RdBu', 'Reds', 'Blues', 'Picnic', 'Rainbow', 'Portland', 'Jet', 'Hot', 'Blackbody', 'Earth', 'Electric', 'Viridis', 'Cividis'] @interact_manual def plot_corrs(colorscale=colorscale): figure = ff.create_annotated_heatmap(z = corrs.round(2).values, x =list(corrs.columns), y=list(corrs.index), colorscale=colorscale, annotation_text=corrs.round(2).values) iplot(figure) class baseline_model(): ''' Cleans the raw dataframe to fed into ML models and runs various baseline models. Following data pre_processing will be carried out, 1) segregating numeric & categorical columns 2) missing values imputation for numeric & categorical columns 3) standardization 4) feature importance 5) SMOTE 6) baseline model Inputs: 1) train = train dataframe 2) test = stand out test dataframe (without target column) 2) c = any redundant column to be removed (like ID column etc., at present supports a single column removal, subsequent version will provision multiple column removal requirements) 3) y = target column name as a string 4) type = Classification / Regression Returns: 1) Various classification/regressions models & model performances 2) new_X (cleaned feature columns in dataframe) 3) new_y (cleaned target column in dataframe) 4) new_test (cleaned stand out test dataframe ''' def __init__(self, train, test, c, y, type="Classification"): self.train = train self.test = test self.c = c self.y = y self.type = type self.X = train.drop(self.y,1) def classification_summary(self): import ipywidgets as widgets from ipywidgets import HBox, VBox, Button from IPython.display import display, Markdown, clear_output header = widgets.HTML(value="<h2>Pywedge Baseline Models </h2>") display(header) out1 = widgets.Output() out2 = widgets.Output() tab = widgets.Tab(children = [out1, out2]) tab.set_title(0,'Baseline Models') tab.set_title(1, 'Predict Baseline Model') display(tab) with out1: import ipywidgets as widgets from ipywidgets import HBox, VBox, Button from IPython.display import display, Markdown, clear_output header = widgets.HTML(value="<h2>Pre_processing </h2>") display(header) import pandas as pd cat_info = widgets.Dropdown( options = [('cat_codes', '1'), ('get_dummies', '2')], value = '1', description = 'Select categorical conversion', style = {'description_width': 'initial'}, disabled=False) std_scr = widgets.Dropdown( options = [('StandardScalar', '1'), ('RobustScalar', '2'), ('MinMaxScalar', '3'), ('No Standardization', 'n')], value = 'n', description = 'Select Standardization methods', style = {'description_width': 'initial'}, disabled=False) apply_smote = widgets.Dropdown( options = [('Yes', 'y'), ('No', 'n')], value = 'y', description = 'Do you want to apply SMOTE?', style = {'description_width': 'initial'}, disabled=False) pp_class = widgets.VBox([cat_info, std_scr, apply_smote]) pp_reg = widgets.VBox([cat_info, std_scr]) if self.type == 'Classification': display(pp_class) else: display(pp_reg) test_size = widgets.BoundedFloatText( value=0.20, min=0.05, max=0.5, step=0.05, description='Text Size %', disabled=False) display(test_size) button_1 = widgets.Button(description = 'Run Baseline models') out = widgets.Output() def on_button_clicked(_): with out: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') if self.type=="Classification": if apply_smote.value == 'y': from imblearn.over_sampling import SMOTE import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings('ignore', 'FutureWarning') sm = SMOTE(random_state=42, n_jobs=-1) new_X_cols = self.new_X.columns new_y_cols = self.new_y.columns self.new_X, self.new_y= sm.fit_resample(self.new_X, self.new_y) self.new_X = pd.DataFrame(self.new_X, columns=new_X_cols) self.new_y= pd.DataFrame(self.new_y, columns=new_y_cols) print('> Oversampling using SMOTE completed') else: print('> No oversampling done') print('\nStarting classification_summary...') print('TOP 10 FEATURE IMPORTANCE - USING ADABOOST CLASSIFIER') from sklearn.ensemble import AdaBoostClassifier import pandas as pd import warnings warnings.filterwarnings('ignore') ab = AdaBoostClassifier().fit(self.new_X, self.new_y) print(pd.Series(ab.feature_importances_, index=self.new_X.columns).sort_values(ascending=False).head(10)) from sklearn.model_selection import train_test_split self.X_train, self.X_test, self.y_train, self.y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=test_size.value, random_state=1) from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.svm import LinearSVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier, HistGradientBoostingClassifier from catboost import CatBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.linear_model import LogisticRegression import xgboost as xgb from sklearn.metrics import accuracy_score, f1_score from sklearn.metrics import roc_auc_score import warnings warnings.filterwarnings('ignore') from tqdm.notebook import trange, tqdm classifiers = { "Logistic" : LogisticRegression(n_jobs=-1), "KNN(3)" : KNeighborsClassifier(3, n_jobs=-1), "Decision Tree": DecisionTreeClassifier(max_depth=7), "Random Forest": RandomForestClassifier(max_depth=7, n_estimators=10, max_features=4, n_jobs=-1), "AdaBoost" : AdaBoostClassifier(), "GB Classifier": GradientBoostingClassifier(), "ExtraTree Cls": ExtraTreesClassifier(n_jobs=-1), "Hist GB Cls" : HistGradientBoostingClassifier(), "MLP Cls." : MLPClassifier(alpha=1), "XGBoost" : xgb.XGBClassifier(max_depth=4, n_estimators=10, learning_rate=0.1, n_jobs=-1), "CatBoost" : CatBoostClassifier(silent=True), "Naive Bayes" : GaussianNB(), "QDA" : QuadraticDiscriminantAnalysis(), "Linear SVC" : LinearSVC(), } from time import time k = 14 head = list(classifiers.items())[:k] for name, classifier in tqdm(head): start = time() classifier.fit(self.X_train, self.y_train) train_time = time() - start start = time() predictions = classifier.predict(self.X_test) predict_time = time()-start acc_score= (accuracy_score(self.y_test,predictions)) roc_score= (roc_auc_score(self.y_test,predictions)) f1_macro= (f1_score(self.y_test, predictions, average='macro')) print("{:<15}| acc_score = {:.3f} | roc_score = {:,.3f} | f1_score(macro) = {:,.3f} | Train time = {:,.3f}s | Pred. time = {:,.3f}s".format(name, acc_score, roc_score, f1_macro, train_time, predict_time)) button_1.on_click(on_button_clicked) a = widgets.VBox([button_1, out]) display(a) with out2: base_model = widgets.Dropdown( options=['Logistic Regression', 'KNN', 'Decision Tree', 'Random Forest', 'MLP Classifier', 'AdaBoost', 'CatBoost', 'GB Classifier', 'ExtraTree Cls', 'Hist GB Cls' ], value='Logistic Regression', description='Choose Base Model: ', style = {'description_width': 'initial'}, disabled=False) display(base_model) button_2 = widgets.Button(description = 'Predict Baseline models') out2 = widgets.Output() def on_pred_button_clicked(_): with out2: from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier, HistGradientBoostingClassifier from catboost import CatBoostClassifier from sklearn.linear_model import LogisticRegression import xgboost as xgb clear_output() print(base_model.value) if base_model.value == 'Logistic Regression': classifier = LogisticRegression(max_iter=1000, n_jobs=-1) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('> Prediction completed. \n> Use dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'KNN': classifier = KNeighborsClassifier(3, n_jobs=-1) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'Decision Tree': classifier = DecisionTreeClassifier(max_depth=7) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'Random Forest': classifier = RandomForestClassifier(max_depth=7, n_estimators=10, max_features=4, n_jobs=-1) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'MLP Classifier': classifier = MLPClassifier(alpha=1) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'AdaBoost': classifier = AdaBoostClassifier() classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'CatBoost': classifier = CatBoostClassifier(silent=True) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'GB Classifier': classifier = GradientBoostingClassifier() classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) self.predict_proba_baseline = classifier.predict_proba(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline (for predictions) & blm.predict_proba_baseline (for predict_proba), where blm is pywedge_baseline_model class object') if base_model.value == 'ExtraTree Cls': classifier = ExtraTreesClassifier(n_jobs=-1) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) self.predict_proba_baseline = classifier.predict_proba(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline (for predictions) & blm.predict_proba_baseline (for predict_proba), where blm is pywedge_baseline_model class object') if base_model.value == 'Hist GB Cls': classifier = HistGradientBoostingClassifier() classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) self.predict_proba_baseline = classifier.predict_proba(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline (for predictions) & blm.predict_proba_baseline (for predict_proba), where blm is pywedge_baseline_model class object') button_2.on_click(on_pred_button_clicked) b = widgets.VBox([button_2, out2]) display(b) def Regression_summary(self): import ipywidgets as widgets from ipywidgets import HBox, VBox, Button from IPython.display import display, Markdown, clear_output header = widgets.HTML(value="<h2>Pywedge Baseline Models </h2>") display(header) out1 = widgets.Output() out2 = widgets.Output() tab = widgets.Tab(children = [out1, out2]) tab.set_title(0,'Baseline Models') tab.set_title(1, 'Predict Baseline Model') display(tab) with out1: import ipywidgets as widgets from ipywidgets import HBox, VBox, Button from IPython.display import display, Markdown, clear_output header = widgets.HTML(value="<h2>Pre_processing </h2>") display(header) import pandas as pd cat_info = widgets.Dropdown( options = [('cat_codes', '1'), ('get_dummies', '2')], value = '1', description = 'Select categorical conversion', style = {'description_width': 'initial'}, disabled=False) std_scr = widgets.Dropdown( options = [('StandardScalar', '1'), ('RobustScalar', '2'), ('MinMaxScalar', '3'), ('No Standardization', 'n')], value = 'n', description = 'Select Standardization methods', style = {'description_width': 'initial'}, disabled=False) apply_smote = widgets.Dropdown( options = [('Yes', 'y'), ('No', 'n')], value = 'y', description = 'Do you want to apply SMOTE?', style = {'description_width': 'initial'}, disabled=False) pp_class = widgets.VBox([cat_info, std_scr, apply_smote]) pp_reg = widgets.VBox([cat_info, std_scr]) if self.type == 'Classification': display(pp_class) else: display(pp_reg) test_size = widgets.BoundedFloatText( value=0.20, min=0.05, max=0.5, step=0.05, description='Text Size %', disabled=False) display(test_size) button_1 = widgets.Button(description = 'Run Baseline models') out = widgets.Output() def on_button_clicked(_): with out: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') print('Starting regression summary...') print('TOP 10 FEATURE IMPORTANCE TABLE') from sklearn.ensemble import AdaBoostRegressor import pandas as pd import warnings warnings.filterwarnings('ignore') ab = AdaBoostRegressor().fit(self.new_X, self.new_y) print(pd.Series(ab.feature_importances_, index=self.new_X.columns).sort_values(ascending=False).head(10)) from sklearn.model_selection import train_test_split self.X_train, self.X_test, self.y_train, self.y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=test_size.value, random_state=1) from time import time from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from sklearn.svm import LinearSVR from sklearn.linear_model import Lasso, Ridge from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import r2_score from sklearn.tree import DecisionTreeRegressor from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, AdaBoostRegressor, ExtraTreesRegressor, HistGradientBoostingRegressor from catboost import CatBoostRegressor from sklearn.neural_network import MLPRegressor import xgboost as xgb from math import sqrt from tqdm.notebook import trange, tqdm import warnings warnings.filterwarnings('ignore') print('--------------------------LINEAR MODELS---------------------------------') lin_regressors = { 'Linear Reg' : LinearRegression(n_jobs=-1), 'KNN' : KNeighborsRegressor(n_jobs=-1), 'LinearSVR' : LinearSVR(), 'Lasso' : Lasso(), 'Ridge' : Ridge(), } from time import time k = 10 head = list(lin_regressors.items())[:k] for name, lin_regressors in tqdm(head): start = time() lin_regressors.fit(self.X_train, self.y_train) train_time = time() - start start = time() predictions = lin_regressors.predict(self.X_test) predict_time = time()-start exp_var = explained_variance_score(self.y_test, predictions) mae = mean_absolute_error(self.y_test, predictions) rmse = sqrt(mean_absolute_error(self.y_test, predictions)) r2 = r2_score(self.y_test, predictions) print("{:<15}| exp_var = {:.3f} | mae = {:,.3f} | rmse = {:,.3f} | r2 = {:,.3f} | Train time = {:,.3f}s | Pred. time = {:,.3f}s".format(name, exp_var, mae, rmse, r2, train_time, predict_time)) print('------------------------NON LINEAR MODELS----------------------------------') print('---------------------THIS MIGHT TAKE A WHILE-------------------------------') non_lin_regressors = { #'SVR' : SVR(), 'Decision Tree' : DecisionTreeRegressor(max_depth=5), 'Random Forest' : RandomForestRegressor(max_depth=10, n_jobs=-1), 'GB Regressor' : GradientBoostingRegressor(n_estimators=200), 'CB Regressor' : CatBoostRegressor(silent=True), 'ADAB Regressor': AdaBoostRegressor(), 'MLP Regressor' : MLPRegressor(), 'XGB Regressor' : xgb.XGBRegressor(n_jobs=-1), 'Extra tree Reg': ExtraTreesRegressor(n_jobs=-1), 'Hist GB Reg' : HistGradientBoostingRegressor() } from time import time k = 10 head = list(non_lin_regressors.items())[:k] for name, non_lin_regressors in tqdm(head): start = time() non_lin_regressors.fit(self.X_train, self.y_train) train_time = time() - start start = time() predictions = non_lin_regressors.predict(self.X_test) predict_time = time()-start exp_var = explained_variance_score(self.y_test, predictions) mae = mean_absolute_error(self.y_test, predictions) rmse = sqrt(mean_absolute_error(self.y_test, predictions)) r2 = r2_score(self.y_test, predictions) print("{:<15}| exp_var = {:.3f} | mae = {:,.3f} | rmse = {:,.3f} | r2 = {:,.3f} | Train time = {:,.3f}s | Pred. time = {:,.3f}s".format(name, exp_var, mae, rmse, r2, train_time, predict_time)) button_1.on_click(on_button_clicked) a = widgets.VBox([button_1, out]) display(a) with out2: base_model = widgets.Dropdown( options=['Linear Regression', 'KNN', 'Decision Tree', 'Random Forest', 'MLP Regressor', 'AdaBoost', 'Grad-Boost''CatBoost'], value='Linear Regression', description='Choose Base Model: ', style = {'description_width': 'initial'}, disabled=False) display(base_model) button_2 = widgets.Button(description = 'Predict Baseline models') out2 = widgets.Output() def on_pred_button_clicked(_): with out2: from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, AdaBoostRegressor from catboost import CatBoostRegressor from sklearn.neural_network import MLPRegressor import xgboost as xgb clear_output() print(base_model.value) if base_model.value == 'Linear Regression': regressor = LinearRegression() regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'KNN': regressor = KNeighborsRegressor() regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'Decision Tree': regressor = DecisionTreeRegressor(max_depth=5) regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'Random Forest': regressor = RandomForestRegressor(max_depth=10) regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'MLP Regressor': regressor = MLPRegressor() regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'AdaBoost': regressor = AdaBoostRegressor() regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'Grad-Boost': regressor = GradientBoostingRegressor(n_estimators=200) regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'CatBoost': regressor = CatBoostRegressor(silent=True) regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') button_2.on_click(on_pred_button_clicked) b = widgets.VBox([button_2, out2]) display(b) class Pywedge_HP(): ''' Creates interative widget based Hyperparameter selection tool for both Classification & Regression. For Classification, following baseline estimators are covered in Gridsearch & Randomized search options 1) Logistic Regression 2) Decision Tree 3) Random Forest 4) KNN Classifier For Regression, following baseline estimators are covered in Gridsearch & Randomized search options 1) Linear Regression 2) Decision Tree Regressor 3) Random Forest Regressor 4) KNN Regressor Inputs: 1) train = train dataframe 2) test = stand out test dataframe (without target column) 3) c = any redundant column to be removed (like ID column etc., at present supports a single column removal, subsequent version will provision multiple column removal requirements) 4) y = target column name as a string Ouputs: 1) Hyperparameter tuning results 2) Prediction on standout test dataset ''' def __init__(self, train, test, c, y, tracking=False): self.train = train self.test = test self.c = c self.y = y self.X = train.drop(self.y,1) self.tracking = tracking def HP_Tune_Classification(self): from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, ExtraTreesClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV, RandomizedSearchCV import ipywidgets as widgets from ipywidgets import HBox, VBox, Button, Label from ipywidgets import interact_manual, interactive, interact import logging from IPython.display import display, Markdown, clear_output import warnings warnings.filterwarnings('ignore') header_1 = widgets.HTML(value="<h2>Pywedge HP_Tune</h2>") display(header_1) out1 = widgets.Output() out2 = widgets.Output() out3 = widgets.Output() tab = widgets.Tab(children = [out1, out2, out3]) tab.set_title(0, 'Input') tab.set_title(1, 'Output') tab.set_title(2, 'Helper Page') display(tab) with out1: header = widgets.HTML(value="<h3>Base Estimator</h3>") display(header) import pandas as pd cat_info = widgets.Dropdown( options = [('cat_codes', '1'), ('get_dummies', '2')], value = '1', description = 'Select categorical conversion', style = {'description_width': 'initial'}, disabled=False) std_scr = widgets.Dropdown( options = [('StandardScalar', '1'), ('RobustScalar', '2'), ('MinMaxScalar', '3'), ('No Standardization', 'n')], value = 'n', description = 'Select Standardization methods', style = {'description_width': 'initial'}, disabled=False) apply_smote = widgets.Dropdown( options = [('Yes', 'y'), ('No', 'n')], value = 'y', description = 'Do you want to apply SMOTE?', style = {'description_width': 'initial'}, disabled=False) pp_class = widgets.HBox([cat_info, std_scr, apply_smote]) header_2 = widgets.HTML(value="<h3>Pre_processing </h3>") base_estimator = widgets.Dropdown( options=['Logistic Regression', 'Decision Tree', 'Random Forest','AdaBoost', 'ExtraTree Classifier', 'KNN Classifier'], value='Logistic Regression', description='Choose Base Estimator: ', style = {'description_width': 'initial'}, disabled=False) display(base_estimator) button = widgets.Button(description='Select Base Estimator') out = widgets.Output() # Logistic Regression Hyperparameters _Start penalty_L = widgets.SelectMultiple( options = ['l1', 'l2', 'elasticnet', 'none'], value = ['none'], rows = 4, description = 'Penalty', disabled = False) dual_L = widgets.SelectMultiple( options = [True, False], value = [False], rows = 2, description = 'Dual', disabled = False) tol_L = widgets.Text( value='0.0001', placeholder='enter any float value', description='Tolerence (tol)', style = {'description_width': 'initial'}, disabled=False) g = widgets.HBox([penalty_L, dual_L, tol_L]) C_L = widgets.Text( value='1.0', placeholder='enter any float value', description='C', disabled=False) fit_intercept_L = widgets.SelectMultiple( options = [True, False], value = [False], rows = 2, description = 'Fit_intercept', disabled = False) intercept_scaling_L = widgets.Text( value='1.0', placeholder='enter any float value', description='Intercept_scaling', style = {'description_width': 'initial'}, disabled=False) h = widgets.HBox([C_L, fit_intercept_L, intercept_scaling_L]) class_weight_L = widgets.SelectMultiple( options = ['balanced', 'None'], value = ['None'], rows = 2, description = 'Class_weight', disabled = False) random_state_L = widgets.Text( value='0', placeholder='enter any integer value', description='Random_state', style = {'description_width': 'initial'}, disabled=False) solver_L = widgets.SelectMultiple( options = ['newton-cg', 'lbfgs', 'sag', 'saga'], value = ['lbfgs'], rows = 4, description = 'Solver', disabled = False) i= widgets.HBox([class_weight_L, random_state_L, solver_L]) max_iter_L = widgets.Text( value='100', placeholder='enter any integer value', description='Max_Iterations', style = {'description_width': 'initial'}, disabled=False) verbose_L = widgets.Text( value='0', placeholder='enter any integer value', description='Verbose', disabled=False) warm_state_L = widgets.SelectMultiple( options = [True, False], value = [False], rows = 2, description = 'Warm_State', disabled = False) j= widgets.HBox([max_iter_L, verbose_L, warm_state_L]) L1_Ratio_L = widgets.Text( value='None', placeholder='enter any integer value', description='L1_Ratio', style = {'description_width': 'initial'}, disabled=False) k = widgets.HBox([L1_Ratio_L]) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_L = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_L = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) scoring_L = widgets.Dropdown( options = ['accuracy', 'f1', 'roc_auc', 'balanced_accuracy'], value = 'accuracy', rows = 4, description = 'Scoring', disabled = False) l = widgets.HBox([search_param_L, cv_L, scoring_L]) n_iter_L = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_jobs_L = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_jobs_L, n_iter_L, n_iter_text]) null = widgets.HTML('<br></br>') button_2 = widgets.Button(description='Submit HP_Tune') out_res = widgets.Output() def on_out_res_clicked(_): with out_res: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') if apply_smote.value == 'y': from imblearn.over_sampling import SMOTE import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings('ignore', 'FutureWarning') sm = SMOTE(random_state=42, n_jobs=-1) new_X_cols = self.new_X.columns new_y_cols = self.new_y.columns self.new_X, self.new_y= sm.fit_resample(self.new_X, self.new_y) self.new_X = pd.DataFrame(self.new_X, columns=new_X_cols) self.new_y= pd.DataFrame(self.new_y, columns=new_y_cols) print('> Oversampling using SMOTE completed') else: print('> No oversampling done') param_grid = {'penalty': list(penalty_L.value), 'dual': list(dual_L.value), 'tol': [float(item) for item in tol_L.value.split(',')], 'C' : [float(item) for item in C_L.value.split(',')], 'fit_intercept' : list(fit_intercept_L.value), 'intercept_scaling' : [float(item) for item in intercept_scaling_L.value.split(',')], 'class_weight' : list(class_weight_L.value), 'random_state' : [int(item) for item in random_state_L.value.split(',')], 'solver' : list(solver_L.value), 'max_iter' : [float(item) for item in max_iter_L.value.split(',')], # 'multi_class' : list(multiclass.value), 'verbose' : [float(item) for item in verbose_L.value.split(',')], # 'n_jobs' : [float(item) for item in n_jobs.value.split(',')] } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() warnings.filterwarnings("ignore") estimator = LogisticRegression() if search_param_L.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_L.value), scoring = scoring_L.value) if search_param_L.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_iter = int(n_iter_L.value), n_jobs = int(n_jobs_L.value), scoring = scoring_L.value) with mlflow.start_run() as run: warnings.filterwarnings("ignore") self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) mlflow.log_param("acc_score", acc_score) mlflow.log_param("roc_score", roc_score) mlflow.log_param("f1_macro", f1_macro) mlflow.log_param("Best Estimator", self.classifier.best_estimator_) if self.tracking == False: estimator = LogisticRegression() if search_param_L.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value), scoring = scoring_L.value) if search_param_L.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_iter = int(n_iter_L.value), scoring = scoring_L.value) self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score from ipywidgets import interact, interactive X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.classifier.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.classifier.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("acc_score = {:.3f} | roc_score = {:,.3f} | f1_score(macro) = {:,.3f}".format(acc_score, roc_score, f1_macro)) Pred = widgets.HTML(value='<h3><em>Predictions on stand_out test data</em></h3>') print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_2.on_click(on_out_res_clicked) b = widgets.VBox([button_2, out_res]) h1 = widgets.HTML('<h3>Select Logistic Regression Hyperparameters</h3>') aa = widgets.VBox([header_2, pp_class, h1, g,h,i,j,k, h5, l, m, null, b]) # Logistic Regression Hyperpameter - Ends # Decision Tree Hyperparameter - Starts criterion_D = widgets.SelectMultiple( options = ['gini', 'entropy'], value = ['gini'], description = 'Criterion', rows = 2, disabled = False) splitter_D = widgets.SelectMultiple( options = ['best', 'random'], value = ['best'], rows = 2, description = 'Splitter', disabled = False) max_depth_D = widgets.Text( value='5', placeholder='enter any integer value', description='Max_Depth', disabled=False) min_samples_split_D = widgets.Text( value='2', placeholder='enter any integer value', description='min_samples_split', style = {'description_width': 'initial'}, disabled=False) min_samples_leaf_D = widgets.Text( value='1', placeholder='enter any integer value', description='min_samples_leaf', style = {'description_width': 'initial'}, disabled=False) min_weight_fraction_D = widgets.Text( value='0.0', placeholder='enter any float value', description='min_weight_fraction', style = {'description_width': 'initial'}, disabled=False) max_features_D = widgets.SelectMultiple( options = ['auto', 'sqrt', 'log2'], value = ['auto'], description = 'Max_Features', style = {'description_width': 'initial'}, rows = 3, disabled = False) random_state_D = widgets.Text( value='0', placeholder='enter any integer value', description='Random_state', disabled=False) max_leaf_nodes_D = widgets.Text( value='2', placeholder='enter any integer value', description='Max_leaf_nodes', style = {'description_width': 'initial'}, disabled=False) min_impurity_decrease_D = widgets.Text( value='0.0', placeholder='enter any float value', description='Min_impurity_decrease', style = {'description_width': 'initial'}, disabled=False) class_weight_D = widgets.SelectMultiple( options = ['balanced', 'None'], value = ['balanced'], rows = 2, description = 'Class_weight', style = {'description_width': 'initial'}, disabled = False) ccp_alpha_D = widgets.Text( value='0.0', placeholder='enter any non-negative float value', description='ccp_alpha', disabled=False) first_row = widgets.HBox([criterion_D, splitter_D, max_features_D]) second_row = widgets.HBox([min_samples_split_D, min_weight_fraction_D, max_depth_D]) third_row = widgets.HBox([random_state_D, max_leaf_nodes_D, min_impurity_decrease_D]) fourth_row = widgets.HBox([ccp_alpha_D, class_weight_D, min_samples_leaf_D]) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_D = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_D = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) scoring_D = widgets.Dropdown( options = ['accuracy', 'f1', 'roc_auc', 'balanced_accuracy'], value = 'accuracy', rows = 4, description = 'Scoring', disabled = False) l = widgets.HBox([search_param_D, cv_D, scoring_D]) n_iter_D = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_jobs_D = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_jobs_D, n_iter_D, n_iter_text]) button_3 = widgets.Button(description='Submit HP_Tune') out_res_DT = widgets.Output() def on_out_res_clicked_DT(_): with out_res_DT: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') if apply_smote.value == 'y': from imblearn.over_sampling import SMOTE import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings('ignore', 'FutureWarning') sm = SMOTE(random_state=42, n_jobs=-1) new_X_cols = self.new_X.columns new_y_cols = self.new_y.columns self.new_X, self.new_y= sm.fit_resample(self.new_X, self.new_y) self.new_X = pd.DataFrame(self.new_X, columns=new_X_cols) self.new_y= pd.DataFrame(self.new_y, columns=new_y_cols) print('> Oversampling using SMOTE completed') else: print('> No oversampling done') # print(criterion_D.value) param_grid = {'criterion': list(criterion_D.value), 'splitter': list(splitter_D.value), 'max_depth': [int(item) for item in max_depth_D.value.split(',')], 'min_samples_split' : [int(item) for item in min_samples_split_D.value.split(',')], 'min_samples_leaf' : [int(item) for item in min_samples_leaf_D.value.split(',')], # 'min_weight_fraction' : [float(item) for item in min_weight_fraction.value.split(',')], 'max_features' : list(max_features_D.value), 'random_state' : [int(item) for item in random_state_D.value.split(',')], 'max_leaf_nodes' : [int(item) for item in max_leaf_nodes_D.value.split(',')], 'min_impurity_decrease' : [float(item) for item in min_impurity_decrease_D.value.split(',')], 'ccp_alpha' : [float(item) for item in ccp_alpha_D.value.split(',')], 'class_weight' : list(class_weight_D.value) } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() warnings.filterwarnings("ignore") estimator = DecisionTreeClassifier() if search_param_D.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_D.value), n_jobs = int(n_jobs_D.value), scoring = scoring_D.value) if search_param_D.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_D.value), n_jobs = int(n_jobs_D.value), n_iter = int(n_iter_D.value), scoring = scoring_D.value) with mlflow.start_run() as run: warnings.filterwarnings("ignore", category=Warning) self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) mlflow.log_param("acc_score", acc_score) mlflow.log_param("roc_score", roc_score) mlflow.log_param("f1_macro", f1_macro) mlflow.log_param("Best Estimator", self.classifier.best_estimator_) if self.tracking == False: estimator = DecisionTreeClassifier() if search_param_D.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, n_jobs = int(n_jobs_D.value), cv = int(cv_D.value), scoring = scoring_D.value) if search_param_D.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_D.value), n_jobs = int(n_jobs_D.value), n_iter = int(n_iter_D.value), scoring = scoring_D.value) self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.classifier.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.classifier.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("acc_score = {:.3f} | roc_score = {:,.3f} | f1_score(macro) = {:,.3f}".format(acc_score, roc_score, f1_macro)) print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_2.on_click(on_out_res_clicked) button_3.on_click(on_out_res_clicked_DT) b = widgets.VBox([button_3, out_res_DT]) h1 = widgets.HTML('<h3>Select Decision Tree Hyperparameters</h3>') frame = widgets.VBox([header_2, pp_class, h1, first_row, second_row, third_row, fourth_row, h5, l, m, b]) # Decision Tree Hyperparameter Ends # Random Forest Hyperparameter Starts n_estimators_R = widgets.Text( value='100', placeholder='enter any integer value', description='n_estimators', disabled=False) criterion_R = widgets.SelectMultiple( options = ['gini', 'entropy'], value = ['gini'], rows = 2, description = 'Criterion', disabled = False) max_depth_R = widgets.Text( value='5', placeholder='enter any integer value', description='Max_Depth', disabled=False) min_samples_split_R = widgets.Text( value='2', placeholder='enter any integer value', description='min_samples_split', style = {'description_width': 'initial'}, disabled=False) min_samples_leaf_R = widgets.Text( value='1', placeholder='enter any integer value', description='min_samples_leaf', style = {'description_width': 'initial'}, disabled=False) min_weight_fraction_leaf_R = widgets.Text( value='0.0', placeholder='enter any float value', description='min_weight_fraction', style = {'description_width': 'initial'}, disabled=False) max_features_R = widgets.SelectMultiple( options = ['auto', 'sqrt', 'log2'], value = ['auto'], description = 'Max_Features', style = {'description_width': 'initial'}, rows = 3, disabled = False) random_state_R = widgets.Text( value='0', placeholder='enter any integer value', description='Random_state', style = {'description_width': 'initial'}, disabled=False) max_leaf_nodes_R = widgets.Text( value='2', placeholder='enter any integer value', description='Max_leaf_nodes', style = {'description_width': 'initial'}, disabled=False) min_impurity_decrease_R = widgets.Text( value='0.0', placeholder='enter any float value', description='Min_impurity_decrease', style = {'description_width': 'initial'}, disabled=False) bootstrap_R = widgets.SelectMultiple( options = [True, False], value = [False], description = 'Bootstrap', rows = 2, disabled = False) oob_score_R = widgets.SelectMultiple( options = [True, False], value = [False], description = 'oob_score', rows = 2, disabled = False) verbose_R = widgets.Text( value='0', placeholder='enter any integer value', description='Verbose', disabled=False) warm_state_R = widgets.SelectMultiple( options = [True, False], value = [False], description = 'Warm_State', style = {'description_width': 'initial'}, rows = 2, disabled = False) class_weight_R = widgets.SelectMultiple( options = ['balanced', 'balanced_subsample', 'None'], value = ['balanced'], description = 'Class_weight', rows = 3, style = {'description_width': 'initial'}, disabled = False) ccp_alpha_R = widgets.Text( value='0.0', placeholder='enter any non-negative float value', description='ccp_alpha', disabled=False) max_samples_R = widgets.Text( value='2', placeholder='enter any float value', description='max_samples', style = {'description_width': 'initial'}, disabled=False) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_R = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_R = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) scoring_R = widgets.Dropdown( options = ['accuracy', 'f1', 'roc_auc', 'balanced_accuracy'], value = 'accuracy', rows = 4, description = 'Scoring', disabled = False) l = widgets.HBox([search_param_R, cv_R, scoring_R]) n_jobs_R = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) n_iter_R = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_jobs_R, n_iter_R, n_iter_text]) first_row = widgets.HBox([n_estimators_R, criterion_R, max_depth_R]) second_row = widgets.HBox([min_samples_split_R, min_samples_leaf_R, min_weight_fraction_leaf_R]) third_row = widgets.HBox([max_features_R, max_leaf_nodes_R, min_impurity_decrease_R]) fourth_row = widgets.HBox([max_samples_R, bootstrap_R, oob_score_R]) fifth_row = widgets.HBox([warm_state_R, random_state_R, verbose_R]) sixth_row = widgets.HBox([class_weight_R, ccp_alpha_R]) button_4 = widgets.Button(description='Submit RF GridSearchCV') out_res_RF = widgets.Output() def on_out_res_clicked_RF(_): with out_res_RF: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') if apply_smote.value == 'y': from imblearn.over_sampling import SMOTE import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings('ignore', 'FutureWarning') sm = SMOTE(random_state=42, n_jobs=-1) new_X_cols = self.new_X.columns new_y_cols = self.new_y.columns self.new_X, self.new_y= sm.fit_resample(self.new_X, self.new_y) self.new_X = pd.DataFrame(self.new_X, columns=new_X_cols) self.new_y= pd.DataFrame(self.new_y, columns=new_y_cols) print('> Oversampling using SMOTE completed') else: print('> No oversampling done') param_grid = {'n_estimators' : [int(item) for item in n_estimators_R.value.split(',')], 'criterion': list(criterion_R.value), 'max_depth': [int(item) for item in max_depth_R.value.split(',')], 'min_samples_split' : [int(item) for item in min_samples_split_R.value.split(',')], 'min_samples_leaf' : [int(item) for item in min_samples_leaf_R.value.split(',')], 'min_weight_fraction_leaf' : [float(item) for item in min_weight_fraction_leaf_R.value.split(',')], 'max_features' : list(max_features_R.value), 'random_state' : [int(item) for item in random_state_R.value.split(',')], 'max_leaf_nodes' : [int(item) for item in max_leaf_nodes_R.value.split(',')], 'min_impurity_decrease' : [float(item) for item in min_impurity_decrease_R.value.split(',')], 'bootstrap' : list(bootstrap_R.value), 'oob_score' : list(oob_score_R.value), 'verbose' : [int(item) for item in verbose_R.value.split(',')], 'class_weight' : list(class_weight_R.value), 'ccp_alpha' : [float(item) for item in ccp_alpha_R.value.split(',')], 'max_samples' : [int(item) for item in max_samples_R.value.split(',')] } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() estimator = RandomForestClassifier() if search_param_R.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_R.value), scoring = scoring_L.value) if search_param_R.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_R.value), n_iter = int(n_iter_L.value), scoring = scoring_L.value) with mlflow.start_run() as run: self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) mlflow.log_param("acc_score", acc_score) mlflow.log_param("roc_score", roc_score) mlflow.log_param("f1_macro", f1_macro) mlflow.log_param("Best Estimator", self.classifier.best_estimator_) if self.tracking == False: estimator = RandomForestClassifier() if search_param_R.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, n_jobs = int(n_jobs_R.value), cv = int(cv_L.value), scoring = scoring_L.value) if search_param_R.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_R.value), n_iter = int(n_iter_L.value), scoring = scoring_L.value) self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.classifier.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.classifier.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("acc_score = {:.3f} | roc_score = {:,.3f} | f1_score(macro) = {:,.3f}".format(acc_score, roc_score, f1_macro)) print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_4.on_click(on_out_res_clicked_RF) b = widgets.VBox([button_4, out_res_RF]) h1 = widgets.HTML('<h3>Select Random Forest Hyperparameters</h3>') frame_RF = widgets.VBox([header_2, pp_class, h1, first_row, second_row, third_row, fourth_row, fifth_row, sixth_row, h5, l, m, b]) # Random Forest Hyperparameter ends # KNN Classifier Hyperparameter Starts n_neighbors_k = widgets.Text( value='5', placeholder='enter any integer value', description='n_neighbors', disabled=False) weights_k = widgets.SelectMultiple( options = ['uniform', 'distance'], value = ['uniform'], rows = 2, description = 'Weights', disabled = False) algorithm_k = widgets.SelectMultiple( options = ['auto', 'ball_tree', 'kd_tree', 'brute'], value = ['auto'], rows = 4, description = 'Algorithm', disabled = False) leaf_size_k = widgets.Text( value='30', placeholder='enter any integer value', description='Leaf_Size', disabled=False) p_k = widgets.Text( value='2', placeholder='enter any integer value', description='p (Power param)', disabled=False) metric_k = widgets.SelectMultiple( options = ['euclidean', 'manhattan', 'chebyshev', 'minkowski'], value = ['minkowski'], rows = 4, description = 'Metric', disabled = False) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_K = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_K = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) scoring_K = widgets.Dropdown( options = ['accuracy', 'f1', 'roc_auc', 'balanced_accuracy'], value = 'accuracy', rows = 4, description = 'Scoring', disabled = False) l = widgets.HBox([search_param_K, cv_K, scoring_K]) n_iter_K = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_jobs_K = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_iter_K, n_iter_text]) first_row = widgets.HBox([n_neighbors_k, weights_k, algorithm_k]) second_row = widgets.HBox([leaf_size_k, p_k, metric_k]) button_5 = widgets.Button(description='Submit RF GridSearchCV') out_res_K = widgets.Output() def on_out_res_clicked_K(_): with out_res_K: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y =
pd.get_dummies(self.new_y,drop_first=True)
pandas.get_dummies
import os import numpy as np import pandas as pd import matplotlib.pyplot as plt col_index=['c1', 'c2', 'c3'] df=pd.DataFrame([[11,12,13],[21,22,23],[31,32,33]], columns=col_index) ef=pd.DataFrame([[1100,1200,1300],[2100,2200,2300],[3100,3200,3300]], columns=col_index) concat=pd.concat([df, ef], axis=1) concat.reset_index() print(concat) df=pd.DataFrame([[11,12,13],[21,22,23],[31,32,33]], columns=col_index, index=[1, 2, 3]) ef=pd.DataFrame([[1100,1200,1300],[2100,2200,2300],[3100,3200,3300]], columns=col_index, index=[2, 3, 4]) concat=pd.concat([df, ef]) concat.reset_index() print(concat) datafile='earthquakes.csv' #useful if you want the directory this script is in if '__file__' in dir(): path, _=os.path.split(__file__) else: path=os.getcwd() filename=os.path.join(path, datafile) df=
pd.read_csv(filename, parse_dates=[0])
pandas.read_csv
from mrjob.job import MRJob from mrjob.protocol import PickleProtocol # # mongo clients libs from pymongo import MongoClient, ASCENDING, DESCENDING from bson.objectid import ObjectId # # Generic imports import glob import pandas as pd import numpy as np from scipy.stats import percentileofscore from json import load from datetime import datetime, timedelta from time import mktime from dateutil.relativedelta import relativedelta import ast import re import bee_data_cleaning as dc from bee_dataframes import create_dataframes from edinet_models.edinet_models import baseline_calc_pyemis_old, baseline_calc_pyemis_new, monthly_calc class MRJob_align(MRJob): INTERNAL_PROTOCOL = PickleProtocol def mapper_init(self): fn = glob.glob('*.json') self.config = load(open(fn[0])) self.mongo = MongoClient(self.config['mongodb']['host'], self.config['mongodb']['port']) self.mongo[self.config['mongodb']['db']].authenticate( self.config['mongodb']['username'], self.config['mongodb']['password'] ) self.devices = self.config['devices'] self.task_id = self.config['task_id'] def reducer_init(self): # recover json configuration uploaded with script fn = glob.glob('*.json') self.config = load(open(fn[0])) self.mongo = MongoClient(self.config['mongodb']['host'], self.config['mongodb']['port']) self.mongo[self.config['mongodb']['db']].authenticate( self.config['mongodb']['username'], self.config['mongodb']['password'] ) self.company = self.config['company'] self.devices = self.config['devices'] self.stations = self.config['stations'] self.task_id = self.config['task_id'] def mapper(self, _, doc): #we don't have value -> input protocol pickleValue which means no key is read # emits modelling_units as key # emits deviceId, consumption, ts try: ret = doc.split('\t') modelling_units = self.devices[str(ret[0])] d = { 'deviceid': ret[0], 'date': datetime.fromtimestamp(float(ret[1])), 'energyType': ret[4] } except Exception as e: pass try: d['value'] = float(ret[2]) except: d['value'] = None try: d['accumulated'] = float(ret[3]) except: d['accumulated'] = None for modelling_unit in modelling_units: yield modelling_unit, d def reducer(self, key, values): # obtain the needed info from the key modelling_unit, multipliers, model = key.split('~') multipliers = ast.literal_eval(multipliers) #string to dict multiplier = {} for i in multipliers: multiplier[i['deviceId']] = i['multiplier'] # create dataframe from values list v = [] for i in values: v.append(i) df = pd.DataFrame.from_records(v, index='date', columns=['value','accumulated','date','deviceid','energyType']) df = df.sort_index() # meter replacement mongo_modellingUnits = self.mongo[self.config['mongodb']['db']][ self.config['mongodb']['modelling_units_collection']] df = create_dataframes.meter_replacement(modelling_unit, self.company, df, mongo_modellingUnits) # regexp to identify hourly data mongo_building = self.mongo[self.config['mongodb']['db']][ self.config['mongodb']['building_collection']] mongo_reporting = self.mongo[self.config['mongodb']['db']][ self.config['mongodb']['reporting_collection']] # get station station = self.stations[str(df.deviceid[0])] # apply the multiplier over each deviceId value and sum all the values grouped = df.groupby('deviceid') # Detectem si l'edifici te dades horaries. try: # nomes ho fem per gas i electricitat de moment. modelling_unit_item = mongo_modellingUnits.find_one( {"modellingUnitId": modelling_unit, "companyId": self.company}) valid_type = False # edificis greame if "energyType" in modelling_unit_item: if modelling_unit_item["energyType"] in ["electricityConsumption", "gasConsumption", "heatConsumption"]: valid_type = True # edificis eloi if "label" in modelling_unit_item: if modelling_unit_item["label"] in ["electricityConsumption", "gasConsumption"]: valid_type = True except Exception as e: print(e) # si el tipus es correcte, hem d aconseguir el buildingId. buildingId = None if valid_type: # mirem si el podem aconseguir directament (edificis eloi) building_item = mongo_building.find_one({"modellingUnits": modelling_unit, "companyId": self.company}) if building_item and "buildingId" in building_item: buildingId = building_item['buildingId'] else: # Sino, ho mirem al reporting unit (edificis greame) reporting_item = mongo_reporting.find_one( {"modelling_Units": modelling_unit, "companyId": self.company}) if reporting_item and "buildingId" in reporting_item: buildingId = reporting_item['buildingId'] # si el buildingId es None no cal fer res. if buildingId: # Comparem per cada device, energy type si hi ha dades horaries o no # pero nomes ho mirem per les ultimes 12 setmanes # com que podem tenir dades de diferents taules, agafem el maxim del df per tenir l'ultim timestamp # i li restem 12 setmanes, despres fem un filtre per obtenir nomes dades a partir d'alli last_date = max(df.index) weeks12 = timedelta(days=7 * 12) starting_date = last_date - weeks12 hourly_data_device = False for name, group in grouped: if hourly_data_device: break energy_type_grouped = group.groupby('energyType') for energy_type, energy_type_group in energy_type_grouped: group_new = energy_type_group.reset_index().drop_duplicates(subset='date', keep='last').set_index( 'date').sort_index() group_new = group_new[starting_date:] freq = create_dataframes.calculate_frequency(group_new) # si no hi ha freq(nomes hi ha un timestamp o cap) ignora el device i ves al seguent if not freq: continue day_delta = timedelta(hours=1) if freq <= day_delta: # Si hi han dades horaries, amb un frequencia mes petita que 1 dia en aquest modelling unit # ho marquem i acabem amb el bucle hourly_data_device = True break # Guardem a mongo el resultat per aquest device i energytype mongo_building.update( {"buildingId": buildingId, "companyId": self.company}, {"$set": {"hourlyDataDevice.{}".format(modelling_unit): hourly_data_device}}, upsert=False, ) # Finalment, agafem el nou recurs de building i mirem si hi ha cap dispositiu amb dades horaries. building_doc = mongo_building.find_one({"buildingId": buildingId, "companyId": self.company}) if building_doc['hourlyDataDevice']: mongo_building.update( {"buildingId": buildingId, "companyId": self.company}, {"$set": {"hourlyData": any(building_doc['hourlyDataDevice'].values())}}, upsert=False, ) mongo = self.mongo[self.config['mongodb']['db']][self.config['mongodb']['collection']] mongo_weather = self.mongo[self.config['mongodb']['db']][ self.config['mongodb']['weather_collection']] # get station temperatures list station_doc = mongo_weather.find_one({'stationId': station},{'values': True, 'timestamps': True, }) # if not station, finish. if not station_doc: return # create temperature dataframe temps = [] for ts, t in zip(station_doc['timestamps'], station_doc['values']): val = {'date': ts, 'temperature': t} temps.append(val) tdf =
pd.DataFrame.from_records(temps, index='date', columns=['temperature', 'date'])
pandas.DataFrame.from_records
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']}) tm.assert_frame_equal(df, expected) data = """\ a,b,c,d 0,NA,1,5 """ xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0]) xp.index.name = 'a' df = self.read_csv(StringIO(data), na_values={}, index_col=0) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2]) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c']) tm.assert_frame_equal(df, xp) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pydata/pandas/master/' 'pandas/io/tests/data/salary.table') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @slow def test_file(self): # FILE if sys.version_info[:2] < (2, 6): raise nose.SkipTest("file:// not supported with Python < 2.6") dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems raise nose.SkipTest("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_parse_tz_aware(self): import pytz # #1693 data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5") # it works result = read_csv(data, index_col=0, parse_dates=True) stamp = result.index[0] self.assertEqual(stamp.minute, 39) try: self.assertIs(result.index.tz, pytz.utc) except AssertionError: # hello Yaroslav arr = result.index.to_pydatetime() result = tools.to_datetime(arr, utc=True)[0] self.assertEqual(stamp.minute, result.minute) self.assertEqual(stamp.hour, result.hour) self.assertEqual(stamp.day, result.day) def test_multiple_date_cols_index(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col='nominal') tm.assert_frame_equal(xp.set_index('nominal'), df) df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col=0) tm.assert_frame_equal(df2, df) df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0) tm.assert_frame_equal(df3, df, check_names=False) def test_multiple_date_cols_chunked(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={ 'nominal': [1, 2]}, index_col='nominal') reader = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal', chunksize=2) chunks = list(reader) self.assertNotIn('nominalTime', df) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_multiple_date_col_named_components(self): xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal') colspec = {'nominal': ['date', 'nominalTime']} df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec, index_col='nominal') tm.assert_frame_equal(df, xp) def test_multiple_date_col_multiple_index(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col=['nominal', 'ID']) xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}) tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df) def test_comment(self): data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) df = self.read_table(StringIO(data), sep=',', comment='#', na_values=['NaN']) tm.assert_almost_equal(df.values, expected) def test_bool_na_values(self): data = """A,B,C True,False,True NA,True,False False,NA,True""" result = self.read_csv(StringIO(data)) expected = DataFrame({'A': np.array([True, nan, False], dtype=object), 'B': np.array([False, True, nan], dtype=object), 'C': [True, False, True]}) tm.assert_frame_equal(result, expected) def test_nonexistent_path(self): # don't segfault pls #2428 path = '%s.csv' % tm.rands(10) self.assertRaises(Exception, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) self.assertTrue(result['D'].isnull()[1:].all()) def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) self.assertTrue(pd.isnull(result.ix[0, 29])) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') self.assertEqual(len(result), 50) if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') self.assertEqual(len(result), 50) def test_converters_corner_with_nas(self): # skip aberration observed on Win64 Python 3.2.2 if hash(np.int64(-1)) != -2: raise nose.SkipTest("skipping because of windows hash on Python" " 3.2.2") csv = """id,score,days 1,2,12 2,2-5, 3,,14+ 4,6-12,2""" def convert_days(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_days_sentinel(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_score(x): x = x.strip() if not x: return np.nan if x.find('-') > 0: valmin, valmax = lmap(int, x.split('-')) val = 0.5 * (valmin + valmax) else: val = float(x) return val fh = StringIO(csv) result = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days}, na_values=['', None]) self.assertTrue(pd.isnull(result['days'][1])) fh = StringIO(csv) result2 = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days_sentinel}, na_values=['', None]) tm.assert_frame_equal(result, result2) def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') self.assertEqual(got, expected) def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') self.assertEqual(result['SEARCH_TERM'][2], 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals serie') self.assertTrue(np.array_equal(result.columns, ['SEARCH_TERM', 'ACTUAL_URL'])) def test_header_names_backward_compat(self): # #2539 data = '1,2,3\n4,5,6' result = self.read_csv(StringIO(data), names=['a', 'b', 'c']) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) tm.assert_frame_equal(result, expected) data2 = 'foo,bar,baz\n' + data result = self.read_csv(StringIO(data2), names=['a', 'b', 'c'], header=0) tm.assert_frame_equal(result, expected) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) self.assertTrue(np.array_equal(result['Numbers'], expected['Numbers'])) def test_usecols_index_col_conflict(self): # Issue 4201 Test that index_col as integer reflects usecols data = """SecId,Time,Price,P2,P3 10000,2013-5-11,100,10,1 500,2013-5-12,101,11,1 """ expected = DataFrame({'Price': [100, 101]}, index=[ datetime(2013, 5, 11), datetime(2013, 5, 12)]) expected.index.name = 'Time' df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) expected = DataFrame( {'P3': [1, 1], 'Price': (100, 101), 'P2': (10, 11)}) expected = expected.set_index(['Price', 'P2']) df = self.read_csv(StringIO(data), usecols=[ 'Price', 'P2', 'P3'], parse_dates=True, index_col=['Price', 'P2']) tm.assert_frame_equal(expected, df) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. self.assertTrue(type(df.a[0]) is np.float64) self.assertEqual(df.a.dtype, np.float) def test_warn_if_chunks_have_mismatched_type(self): # See test in TestCParserLowMemory. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(1, 2)) result2 = self.read_csv(StringIO(data), usecols=('b', 'c')) exp = self.read_csv(StringIO(data)) self.assertEqual(len(result.columns), 2) self.assertTrue((result['b'] == exp['b']).all()) self.assertTrue((result['c'] == exp['c']).all()) tm.assert_frame_equal(result, result2) result = self.read_csv(StringIO(data), usecols=[1, 2], header=0, names=['foo', 'bar']) expected = self.read_csv(StringIO(data), usecols=[1, 2]) expected.columns = ['foo', 'bar'] tm.assert_frame_equal(result, expected) data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), names=['b', 'c'], header=None, usecols=[1, 2]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['b', 'c']] tm.assert_frame_equal(result, expected) result2 = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None, usecols=['b', 'c']) tm.assert_frame_equal(result2, result) # 5766 result = self.read_csv(StringIO(data), names=['a', 'b'], header=None, usecols=[0, 1]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['a', 'b']] tm.assert_frame_equal(result, expected) # length conflict, passed names and usecols disagree self.assertRaises(ValueError, self.read_csv, StringIO(data), names=['a', 'b'], usecols=[1], header=None) def test_integer_overflow_bug(self): # #2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') self.assertTrue(result[0].dtype == np.float64) result = self.read_csv(StringIO(data), header=None, sep='\s+') self.assertTrue(result[0].dtype == np.float64) def test_catch_too_many_names(self): # Issue 5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" tm.assertRaises(Exception, read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # GH 6607, GH 3374 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep='\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_nrows_and_chunksize_raises_notimplemented(self): data = 'a b c' self.assertRaises(NotImplementedError, self.read_csv, StringIO(data), nrows=10, chunksize=5) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # GH 10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) self.assertEqual(len(result), 2) # GH 9735 chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = pd.read_csv(StringIO(chunk1 + chunk2), header=None) expected = pd.DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # GH 10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_emtpy_with_multiindex(self): # GH 10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_index_col_scenarios(self): data = 'x,y,z' # None, no index index_col, expected = None, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # False, no index index_col, expected = False, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, first column index_col, expected = 0, DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, not first column index_col, expected = 1, DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, first column index_col, expected = 'x', DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, not the first column index_col, expected = 'y', DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # list of int index_col, expected = [0, 1], DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str index_col = ['x', 'y'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of int, reversed sequence index_col = [1, 0] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str, reversed sequence index_col = ['y', 'x'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) def test_empty_with_index_col_false(self): # GH 10413 data = 'x,y' result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame([], columns=['x', 'y']) tm.assert_frame_equal(result, expected) def test_float_parser(self): # GH 9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = pd.DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" result = self.read_csv(StringIO(data)) self.assertTrue(result['ID'].dtype == object) self.assertRaises((OverflowError, pandas.parser.OverflowError), self.read_csv, StringIO(data), converters={'ID': np.int64}) # Just inside int64 range: parse as integer i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([x]) tm.assert_frame_equal(result, expected) # Just outside int64 range: parse as string too_big = i_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([str(x)]) tm.assert_frame_equal(result, expected) def test_empty_with_nrows_chunksize(self): # GH 9535 expected = pd.DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) result = pd.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) result = next( iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) def test_eof_states(self): # GH 10728 and 10548 # With skip_blank_lines = True expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) # GH 10728 # WHITESPACE_LINE data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # GH 10548 # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # EAT_CRNL_NOP data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # EAT_COMMENT data = 'a,b,c\n4,5,6#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # SKIP_LINE data = 'a,b,c\n4,5,6\nskipme' result = self.read_csv(StringIO(data), skiprows=[2]) tm.assert_frame_equal(result, expected) # With skip_blank_lines = False # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv( StringIO(data), comment='#', skip_blank_lines=False) expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # IN_FIELD data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [['4', 5, 6], [' ', None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # EAT_CRNL data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [[4, 5, 6], [None, None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # Should produce exceptions # ESCAPED_CHAR data = "a,b,c\n4,5,6\n\\" self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # ESCAPE_IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"\\' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') class TestPythonParser(ParserTests, tm.TestCase): def test_negative_skipfooter_raises(self): text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ with tm.assertRaisesRegexp(ValueError, 'skip footer cannot be negative'): df = self.read_csv(StringIO(text), skipfooter=-1) def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_table(*args, **kwds) def test_sniff_delimiter(self): text = """index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data = self.read_csv(StringIO(text), index_col=0, sep=None) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) data2 = self.read_csv(StringIO(text), index_col=0, delimiter='|') tm.assert_frame_equal(data, data2) text = """ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data3 = self.read_csv(StringIO(text), index_col=0, sep=None, skiprows=2) tm.assert_frame_equal(data, data3) text = u("""ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """).encode('utf-8') s = BytesIO(text) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') data4 = self.read_csv(s, index_col=0, sep=None, skiprows=2, encoding='utf-8') tm.assert_frame_equal(data, data4) def test_regex_separator(self): data = """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """ df = self.read_table(StringIO(data), sep='\s+') expected = self.read_csv(StringIO(re.sub('[ ]+', ',', data)), index_col=0) self.assertIsNone(expected.index.name) tm.assert_frame_equal(df, expected) def test_1000_fwf(self): data = """ 1 2,334.0 5 10 13 10. """ expected = [[1, 2334., 5], [10, 13, 10]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (3, 11), (12, 16)], thousands=',') tm.assert_almost_equal(df.values, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_comment_fwf(self): data = """ 1 2. 4 #hello world 5 NaN 10.0 """ expected = [[1, 2., 4], [5, np.nan, 10.]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (4, 9), (9, 25)], comment='#') tm.assert_almost_equal(df.values, expected) def test_fwf(self): data_expected = """\ 2011,58,360.242940,149.910199,11950.7 2011,59,444.953632,166.985655,11788.4 2011,60,364.136849,183.628767,11806.2 2011,61,413.836124,184.375703,11916.8 2011,62,502.953953,173.237159,12468.3 """ expected = self.read_csv(StringIO(data_expected), header=None) data1 = """\ 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] df = read_fwf(StringIO(data1), colspecs=colspecs, header=None) tm.assert_frame_equal(df, expected) data2 = """\ 2011 58 360.242940 149.910199 11950.7 2011 59 444.953632 166.985655 11788.4 2011 60 364.136849 183.628767 11806.2 2011 61 413.836124 184.375703 11916.8 2011 62 502.953953 173.237159 12468.3 """ df = read_fwf(StringIO(data2), widths=[5, 5, 13, 13, 7], header=None) tm.assert_frame_equal(df, expected) # From <NAME>: apparently some non-space filler characters can # be seen, this is supported by specifying the 'delimiter' character: # http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html data3 = """\ 201158~~~~360.242940~~~149.910199~~~11950.7 201159~~~~444.953632~~~166.985655~~~11788.4 201160~~~~364.136849~~~183.628767~~~11806.2 201161~~~~413.836124~~~184.375703~~~11916.8 201162~~~~502.953953~~~173.237159~~~12468.3 """ df = read_fwf( StringIO(data3), colspecs=colspecs, delimiter='~', header=None) tm.assert_frame_equal(df, expected) with tm.assertRaisesRegexp(ValueError, "must specify only one of"): read_fwf(StringIO(data3), colspecs=colspecs, widths=[6, 10, 10, 7]) with tm.assertRaisesRegexp(ValueError, "Must specify either"): read_fwf(StringIO(data3), colspecs=None, widths=None) def test_fwf_colspecs_is_list_or_tuple(self): with tm.assertRaisesRegexp(TypeError, 'column specifications must be a list or ' 'tuple.+'): pd.io.parsers.FixedWidthReader(StringIO(self.data1), {'a': 1}, ',', '#') def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples(self): with tm.assertRaisesRegexp(TypeError, 'Each column specification must be.+'): read_fwf(StringIO(self.data1), [('a', 1)]) def test_fwf_colspecs_None(self): # GH 7079 data = """\ 123456 456789 """ colspecs = [(0, 3), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, 3), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(0, None), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, None), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) def test_fwf_regression(self): # GH 3594 # turns out 'T060' is parsable as a datetime slice! tzlist = [1, 10, 20, 30, 60, 80, 100] ntz = len(tzlist) tcolspecs = [16] + [8] * ntz tcolnames = ['SST'] + ["T%03d" % z for z in tzlist[1:]] data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192 2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869 2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657 2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379 2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039 """ df = read_fwf(StringIO(data), index_col=0, header=None, names=tcolnames, widths=tcolspecs, parse_dates=True, date_parser=lambda s: datetime.strptime(s, '%Y%j%H%M%S')) for c in df.columns: res = df.loc[:, c] self.assertTrue(len(res)) def test_fwf_for_uint8(self): data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127 1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" df = read_fwf(StringIO(data), colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)], names=['time', 'pri', 'pgn', 'dst', 'src', 'data'], converters={ 'pgn': lambda x: int(x, 16), 'src': lambda x: int(x, 16), 'dst': lambda x: int(x, 16), 'data': lambda x: len(x.split(' '))}) expected = DataFrame([[1421302965.213420, 3, 61184, 23, 40, 8], [1421302964.226776, 6, 61442, None, 71, 8]], columns=["time", "pri", "pgn", "dst", "src", "data"]) expected["dst"] = expected["dst"].astype(object) tm.assert_frame_equal(df, expected) def test_fwf_compression(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest("Need gzip and bz2 to run this test") data = """1111111111 2222222222 3333333333""".strip() widths = [5, 5] names = ['one', 'two'] expected = read_fwf(StringIO(data), widths=widths, names=names) if compat.PY3: data = bytes(data, encoding='utf-8') comps = [('gzip', gzip.GzipFile), ('bz2', bz2.BZ2File)] for comp_name, compresser in comps: with tm.ensure_clean() as path: tmp = compresser(path, mode='wb') tmp.write(data) tmp.close() result = read_fwf(path, widths=widths, names=names, compression=comp_name) tm.assert_frame_equal(result, expected) def test_BytesIO_input(self): if not compat.PY3: raise nose.SkipTest( "Bytes-related test - only needs to work on Python 3") result = pd.read_fwf(BytesIO("שלום\nשלום".encode('utf8')), widths=[ 2, 2], encoding='utf8') expected = pd.DataFrame([["של", "ום"]], columns=["של", "ום"]) tm.assert_frame_equal(result, expected) data = BytesIO("שלום::1234\n562::123".encode('cp1255')) result = pd.read_table(data, sep="::", engine='python', encoding='cp1255') expected = pd.DataFrame([[562, 123]], columns=["שלום", "1234"]) tm.assert_frame_equal(result, expected) def test_verbose_import(self): text = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" buf = StringIO() sys.stdout = buf try: # it works! df = self.read_csv(StringIO(text), verbose=True) self.assertEqual( buf.getvalue(), 'Filled 3 NA values in column a\n') finally: sys.stdout = sys.__stdout__ buf = StringIO() sys.stdout = buf text = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" try: # it works! df = self.read_csv(StringIO(text), verbose=True, index_col=0) self.assertEqual( buf.getvalue(), 'Filled 1 NA values in column a\n') finally: sys.stdout = sys.__stdout__ def test_float_precision_specified(self): # Should raise an error if float_precision (C parser option) is # specified with tm.assertRaisesRegexp(ValueError, "The 'float_precision' option " "is not supported with the 'python' engine"): self.read_csv(StringIO('a,b,c\n1,2,3'), float_precision='high') def test_iteration_open_handle(self): if PY3: raise nose.SkipTest( "won't work in Python 3 {0}".format(sys.version_info)) with tm.ensure_clean() as path: with open(path, 'wb') as f: f.write('AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG') with open(path, 'rb') as f: for line in f: if 'CCC' in line: break try: read_table(f, squeeze=True, header=None, engine='c') except Exception: pass else: raise ValueError('this should not happen') result = read_table(f, squeeze=True, header=None, engine='python') expected = Series(['DDD', 'EEE', 'FFF', 'GGG'], name=0) tm.assert_series_equal(result, expected) def test_iterator(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_single_line(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_malformed(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_skip_footer(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = self.read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_decompression_regex_sep(self): # GH 6607 # This is a copy which should eventually be moved to ParserTests # when the issue with the C parser is fixed try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() data = data.replace(b',', b'::') expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='bz2') tm.assert_frame_equal(result, expected) self.assertRaises(ValueError, self.read_csv, path, compression='bz3') def test_read_table_buglet_4x_multiindex(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with multi-level index is fixed in the C parser. text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) # GH 6893 data = ' A B C\na b c\n1 3 7 0 3 6\n3 1 4 1 5 9' expected = DataFrame.from_records([(1, 3, 7, 0, 3, 6), (3, 1, 4, 1, 5, 9)], columns=list('abcABC'), index=list('abc')) actual = self.read_table(StringIO(data), sep='\s+') tm.assert_frame_equal(actual, expected) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_almost_equal(list(df.values), list(expected)) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = [[1, 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) class TestFwfColspaceSniffing(tm.TestCase): def test_full_file(self): # File with all values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 2000-01-05T00:00:00 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0.487094399463 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 2000-01-11T00:00:00 0.157160753327 34 foo''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_missing(self): # File with missing values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 34''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces(self): # File with spaces in columns test = ''' Account Name Balance CreditLimit AccountCreated 101 <NAME> 9315.45 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 <NAME> 0 17000.00 5/25/1985 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 5000.00 2/5/2007 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces_and_missing(self): # File with spaces and missing values in columsn test = ''' Account Name Balance CreditLimit AccountCreated 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 5/25/1985 761 <NAME>-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_messed_up_data(self): # Completely messed up file test = ''' Account Name Balance Credit Limit Account Created 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 761 <NAME> 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((2, 10), (15, 33), (37, 45), (49, 61), (64, 79)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_multiple_delimiters(self): test = r''' col1~~~~~col2 col3++++++++++++++++++col4 ~~22.....11.0+++foo~~~~~~~~~~<NAME> 33+++122.33\\\bar.........<NAME> ++44~~~~12.01 baz~~<NAME> ~~55 11+++foo++++<NAME>-Smith ..66++++++.03~~~bar <NAME> '''.strip('\r\n') colspecs = ((0, 4), (7, 13), (15, 19), (21, 41)) expected = read_fwf(StringIO(test), colspecs=colspecs, delimiter=' +~.\\') tm.assert_frame_equal(expected, read_fwf(StringIO(test), delimiter=' +~.\\')) def test_variable_width_unicode(self): if not compat.PY3: raise nose.SkipTest( 'Bytes-related test - only needs to work on Python 3') test = ''' שלום שלום ום שלל של ום '''.strip('\r\n') expected = pd.read_fwf(BytesIO(test.encode('utf8')), colspecs=[(0, 4), (5, 9)], header=None, encoding='utf8') tm.assert_frame_equal(expected, read_fwf(BytesIO(test.encode('utf8')), header=None, encoding='utf8')) class CParserTests(ParserTests): """ base class for CParser Testsing """ def test_buffer_overflow(self): # GH9205 # test certain malformed input files that cause buffer overflows in # tokenizer.c malfw = "1\r1\r1\r 1\r 1\r" # buffer overflow in words pointer malfs = "1\r1\r1\r 1\r 1\r11\r" # buffer overflow in stream pointer malfl = "1\r1\r1\r 1\r 1\r11\r1\r" # buffer overflow in lines pointer for malf in (malfw, malfs, malfl): try: df = self.read_table(StringIO(malf)) except Exception as cperr: self.assertIn( 'Buffer overflow caught - possible malformed input file.', str(cperr)) def test_buffer_rd_bytes(self): # GH 12098 # src->buffer can be freed twice leading to a segfault if a corrupt # gzip file is read with read_csv and the buffer is filled more than # once before gzip throws an exception data = '\x1F\x8B\x08\x00\x00\x00\x00\x00\x00\x03\xED\xC3\x41\x09' \ '\x00\x00\x08\x00\xB1\xB7\xB6\xBA\xFE\xA5\xCC\x21\x6C\xB0' \ '\xA6\x4D' + '\x55' * 267 + \ '\x7D\xF7\x00\x91\xE0\x47\x97\x14\x38\x04\x00' \ '\x1f\x8b\x08\x00VT\x97V\x00\x03\xed]\xefO' for i in range(100): try: _ = self.read_csv(StringIO(data), compression='gzip', delim_whitespace=True) except Exception as e: pass class TestCParserHighMemory(CParserTests, tm.TestCase): def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = False return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = False return read_table(*args, **kwds) def test_compact_ints(self): if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) def test_parse_dates_empty_string(self): # #2263 s = StringIO("Date, test\n2012-01-01, 1\n,2") result = self.read_csv(s, parse_dates=["Date"], na_filter=False) self.assertTrue(result['Date'].isnull()[1]) def test_usecols(self): raise nose.SkipTest( "Usecols is not supported in C High Memory engine.") def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) # check with delim_whitespace=True df = self.read_csv(StringIO(data.replace(',', ' ')), comment='#', delim_whitespace=True) tm.assert_almost_equal(df.values, expected) # check with custom line terminator df = self.read_csv(StringIO(data.replace('\n', '*')), comment='#', lineterminator='*') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_skiprows_lineterminator(self): # GH #9079 data = '\n'.join(['SMOSMANIA ThetaProbe-ML2X ', '2007/01/01 01:00 0.2140 U M ', '2007/01/01 02:00 0.2141 M O ', '2007/01/01 04:00 0.2142 D M ']) expected = pd.DataFrame([['2007/01/01', '01:00', 0.2140, 'U', 'M'], ['2007/01/01', '02:00', 0.2141, 'M', 'O'], ['2007/01/01', '04:00', 0.2142, 'D', 'M']], columns=['date', 'time', 'var', 'flag', 'oflag']) # test with the three default lineterminators LF, CR and CRLF df = self.read_csv(StringIO(data), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data.replace('\n', '\r')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data.replace('\n', '\r\n')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) def test_trailing_spaces(self): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" expected = pd.DataFrame([[1., 2., 4.], [5.1, np.nan, 10.]]) # this should ignore six lines including lines with trailing # whitespace and blank lines. issues 8661, 8679 df = self.read_csv(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) # test skipping set of rows after a row with trailing spaces, issue # #8983 expected = pd.DataFrame({"A": [1., 5.1], "B": [2., np.nan], "C": [4., 10]}) df = self.read_table(StringIO(data.replace(',', ' ')), delim_whitespace=True, skiprows=[1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_almost_equal(list(df.values), list(expected)) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = [[1, 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_passing_dtype(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the dtype argument is supported by all engines. df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) # empty frame # GH12048 actual = self.read_csv(StringIO('A,B'), dtype=str) expected = DataFrame({'A': [], 'B': []}, index=[], dtype=str) tm.assert_frame_equal(actual, expected) def test_dtype_and_names_error(self): # GH 8833 # passing both dtype and names resulting in an error reporting issue data = """ 1.0 1 2.0 2 3.0 3 """ # base cases result = self.read_csv(StringIO(data), sep='\s+', header=None) expected = DataFrame([[1.0, 1], [2.0, 2], [3.0, 3]]) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), sep='\s+', header=None, names=['a', 'b']) expected = DataFrame( [[1.0, 1], [2.0, 2], [3.0, 3]], columns=['a', 'b']) tm.assert_frame_equal(result, expected) # fallback casting result = self.read_csv(StringIO( data), sep='\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) expected = DataFrame([[1, 1], [2, 2], [3, 3]], columns=['a', 'b']) expected['a'] = expected['a'].astype(np.int32) tm.assert_frame_equal(result, expected) data = """ 1.0 1 nan 2 3.0 3 """ # fallback casting, but not castable with tm.assertRaisesRegexp(ValueError, 'cannot safely convert'): self.read_csv(StringIO(data), sep='\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) def test_fallback_to_python(self): # GH 6607 data = 'a b c\n1 2 3' # specify C engine with unsupported options (raise) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep=None, delim_whitespace=False) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep='\s') with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', skip_footer=1) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), delim_whitespace=True, skipinitialspace=True) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), lineterminator='\n', skipinitialspace=True) tm.assert_frame_equal(result, expected) class TestCParserLowMemory(CParserTests, tm.TestCase): def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = True kwds['buffer_lines'] = 2 return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = True kwds['buffer_lines'] = 2 return read_table(*args, **kwds) def test_compact_ints(self): data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.to_records(index=False).dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.to_records(index=False).dtype, ex_dtype) def test_compact_ints_as_recarray(self): if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) def test_precise_conversion(self): # GH #8002 tm._skip_if_32bit() from decimal import Decimal normal_errors = [] precise_errors = [] for num in np.linspace(1., 2., num=500): # test numbers between 1 and 2 text = 'a\n{0:.25}'.format(num) # 25 decimal digits of precision normal_val = float(self.read_csv(StringIO(text))['a'][0]) precise_val = float(self.read_csv( StringIO(text), float_precision='high')['a'][0]) roundtrip_val = float(self.read_csv( StringIO(text), float_precision='round_trip')['a'][0]) actual_val = Decimal(text[2:]) def error(val): return abs(Decimal('{0:.100}'.format(val)) - actual_val) normal_errors.append(error(normal_val)) precise_errors.append(error(precise_val)) # round-trip should match float() self.assertEqual(roundtrip_val, float(text[2:])) self.assertTrue(sum(precise_errors) <= sum(normal_errors)) self.assertTrue(max(precise_errors) <= max(normal_errors)) def test_pass_dtype(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}) self.assertEqual(result['one'].dtype, 'u1') self.assertEqual(result['two'].dtype, 'object') def test_pass_dtype_as_recarray(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}, as_recarray=True) self.assertEqual(result['one'].dtype, 'u1') self.assertEqual(result['two'].dtype, 'S1') def test_empty_pass_dtype(self): data = 'one,two' result = self.read_csv(StringIO(data), dtype={'one': 'u1'}) expected = DataFrame({'one': np.empty(0, dtype='u1'), 'two': np.empty(0, dtype=np.object)}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_index_pass_dtype(self): data = 'one,two' result = self.read_csv(StringIO(data), index_col=['one'], dtype={'one': 'u1', 1: 'f'}) expected = DataFrame({'two': np.empty(0, dtype='f')}, index=Index([], dtype='u1', name='one')) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_multiindex_pass_dtype(self): data = 'one,two,three' result = self.read_csv(StringIO(data), index_col=['one', 'two'], dtype={'one': 'u1', 1: 'f8'}) exp_idx = MultiIndex.from_arrays([np.empty(0, dtype='u1'), np.empty(0, dtype='O')], names=['one', 'two']) expected = DataFrame( {'three': np.empty(0, dtype=np.object)}, index=exp_idx) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_mangled_column_pass_dtype_by_names(self): data = 'one,one' result = self.read_csv(StringIO(data), dtype={ 'one': 'u1', 'one.1': 'f'}) expected = DataFrame( {'one': np.empty(0, dtype='u1'), 'one.1': np.empty(0, dtype='f')}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_mangled_column_pass_dtype_by_indexes(self): data = 'one,one' result = self.read_csv(StringIO(data), dtype={0: 'u1', 1: 'f'}) expected = DataFrame( {'one': np.empty(0, dtype='u1'), 'one.1': np.empty(0, dtype='f')}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_dup_column_pass_dtype_by_names(self): data = 'one,one' result = self.read_csv( StringIO(data), mangle_dupe_cols=False, dtype={'one': 'u1'}) expected = pd.concat([Series([], name='one', dtype='u1')] * 2, axis=1) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_dup_column_pass_dtype_by_indexes(self): ### FIXME in GH9424 raise nose.SkipTest( "GH 9424; known failure read_csv with duplicate columns") data = 'one,one' result = self.read_csv( StringIO(data), mangle_dupe_cols=False, dtype={0: 'u1', 1: 'f'}) expected = pd.concat([Series([], name='one', dtype='u1'), Series([], name='one', dtype='f')], axis=1) tm.assert_frame_equal(result, expected, check_index_type=False) def test_usecols_dtypes(self): data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(0, 1, 2), names=('a', 'b', 'c'), header=None, converters={'a': str}, dtype={'b': int, 'c': float}, ) result2 = self.read_csv(StringIO(data), usecols=(0, 2), names=('a', 'b', 'c'), header=None, converters={'a': str}, dtype={'b': int, 'c': float}, ) self.assertTrue((result.dtypes == [object, np.int, np.float]).all()) self.assertTrue((result2.dtypes == [object, np.float]).all()) def test_usecols_implicit_index_col(self): # #2654 data = 'a,b,c\n4,apple,bat,5.7\n8,orange,cow,10' result = self.read_csv(StringIO(data), usecols=['a', 'b']) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(result, expected) def test_usecols_with_whitespace(self): data = 'a b c\n4 apple bat 5.7\n8 orange cow 10' result = self.read_csv(StringIO(data), delim_whitespace=True, usecols=('a', 'b')) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(result, expected) def test_usecols_regex_sep(self): # #2733 data = 'a b c\n4 apple bat 5.7\n8 orange cow 10' df = self.read_csv(StringIO(data), sep='\s+', usecols=('a', 'b')) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(df, expected) def test_pure_python_failover(self): data = "a,b,c\n1,2,3#ignore this!\n4,5,6#ignorethistoo" result = self.read_csv(StringIO(data), comment='#') expected = DataFrame({'a': [1, 4], 'b': [2, 5], 'c': [3, 6]}) tm.assert_frame_equal(result, expected) def test_decompression(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, compression='gzip') tm.assert_frame_equal(result, expected) result = self.read_csv(open(path, 'rb'), compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, compression='bz2') tm.assert_frame_equal(result, expected) # result = self.read_csv(open(path, 'rb'), compression='bz2') # tm.assert_frame_equal(result, expected) self.assertRaises(ValueError, self.read_csv, path, compression='bz3') with open(path, 'rb') as fin: if compat.PY3: result = self.read_csv(fin, compression='bz2') tm.assert_frame_equal(result, expected) else: self.assertRaises(ValueError, self.read_csv, fin, compression='bz2') def test_decompression_regex_sep(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() data = data.replace(b',', b'::') expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() # GH 6607 # Test currently only valid with the python engine because of # regex sep. Temporarily copied to TestPythonParser. # Here test for ValueError when passing regex sep: with tm.assertRaisesRegexp(ValueError, 'regex sep'): # XXX result = self.read_csv(path, sep='::', compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() # GH 6607 with tm.assertRaisesRegexp(ValueError, 'regex sep'): # XXX result = self.read_csv(path, sep='::', compression='bz2') tm.assert_frame_equal(result, expected) self.assertRaises(ValueError, self.read_csv, path, compression='bz3') def test_memory_map(self): # it works! result = self.read_csv(self.csv1, memory_map=True) def test_disable_bool_parsing(self): # #2090 data = """A,B,C Yes,No,Yes No,Yes,Yes Yes,,Yes No,No,No""" result = read_csv(StringIO(data), dtype=object) self.assertTrue((result.dtypes == object).all()) result = read_csv(StringIO(data), dtype=object, na_filter=False) self.assertEqual(result['B'][2], '') def test_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" df2 = self.read_csv(StringIO(data), sep=';', decimal=',') self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_custom_lineterminator(self): data = 'a,b,c~1,2,3~4,5,6' result = self.read_csv(StringIO(data), lineterminator='~') expected = self.read_csv(StringIO(data.replace('~', '\n'))) tm.assert_frame_equal(result, expected) data2 = data.replace('~', '~~') result = self.assertRaises(ValueError, read_csv, StringIO(data2), lineterminator='~~') def test_raise_on_passed_int_dtype_with_nas(self): # #2631 data = """YEAR, DOY, a 2001,106380451,10 2001,,11 2001,106380451,67""" self.assertRaises(Exception, read_csv, StringIO(data), sep=",", skipinitialspace=True, dtype={'DOY': np.int64}) def test_na_trailing_columns(self): data = """Date,Currenncy,Symbol,Type,Units,UnitPrice,Cost,Tax 2012-03-14,USD,AAPL,BUY,1000 2012-05-12,USD,SBUX,SELL,500""" result = self.read_csv(StringIO(data)) self.assertEqual(result['Date'][1], '2012-05-12') self.assertTrue(result['UnitPrice'].isnull().all()) def test_parse_ragged_csv(self): data = """1,2,3 1,2,3,4 1,2,3,4,5 1,2 1,2,3,4""" nice_data = """1,2,3,, 1,2,3,4, 1,2,3,4,5 1,2,,, 1,2,3,4,""" result = self.read_csv(StringIO(data), header=None, names=['a', 'b', 'c', 'd', 'e']) expected = self.read_csv(StringIO(nice_data), header=None, names=['a', 'b', 'c', 'd', 'e']) tm.assert_frame_equal(result, expected) # too many columns, cause segfault if not careful data = "1,2\n3,4,5" result = self.read_csv(StringIO(data), header=None, names=lrange(50)) expected = self.read_csv(StringIO(data), header=None, names=lrange(3)).reindex(columns=lrange(50)) tm.assert_frame_equal(result, expected) def test_tokenize_CR_with_quoting(self): # #3453, this doesn't work with Python parser for some reason data = ' a,b,c\r"a,b","e,d","f,f"' result = self.read_csv(StringIO(data), header=None) expected = self.read_csv(StringIO(data.replace('\r', '\n')), header=None) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data)) expected = self.read_csv(StringIO(data.replace('\r', '\n'))) tm.assert_frame_equal(result, expected) def test_raise_on_no_columns(self): # single newline data = "\n" self.assertRaises(ValueError, self.read_csv, StringIO(data)) # test with more than a single newline data = "\n\n\n" self.assertRaises(ValueError, self.read_csv, StringIO(data)) def test_warn_if_chunks_have_mismatched_type(self): # Issue #3866 If chunks are different types and can't # be coerced using numerical types, then issue warning. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(DtypeWarning): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_invalid_c_parser_opts_with_not_c_parser(self): from pandas.io.parsers import _c_parser_defaults as c_defaults data = """1,2,3,, 1,2,3,4, 1,2,3,4,5 1,2,,, 1,2,3,4,""" engines = 'python', 'python-fwf' for default in c_defaults: for engine in engines: kwargs = {default: object()} with tm.assertRaisesRegexp(ValueError, 'The %r option is not supported ' 'with the %r engine' % (default, engine)): read_csv(StringIO(data), engine=engine, **kwargs) def test_passing_dtype(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the dtype argument is supported by all engines. df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) def test_fallback_to_python(self): # GH 6607 data = 'a b c\n1 2 3' # specify C engine with C-unsupported options (raise) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep=None, delim_whitespace=False) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep='\s') with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', skip_footer=1) def test_raise_on_sep_with_delim_whitespace(self): # GH 6607 data = 'a b c\n1 2 3' with tm.assertRaisesRegexp(ValueError, 'you can only specify one'): self.read_table(StringIO(data), sep='\s', delim_whitespace=True) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), delim_whitespace=True, skipinitialspace=True) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), lineterminator='\n', skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_bool_header_arg(self): # GH 6114 data = """\ MyColumn a b a b""" for arg in [True, False]: with tm.assertRaises(TypeError): pd.read_csv(StringIO(data), header=arg) with
tm.assertRaises(TypeError)
pandas.util.testing.assertRaises
# import pandas and numpy, and load the nls data import pandas as pd pd.set_option('display.width', 80) pd.set_option('display.max_columns', 7) pd.set_option('display.max_rows', 100) pd.options.display.float_format = '{:,.0f}'.format nls97 = pd.read_csv("data/nls97f.csv") nls97.set_index("personid", inplace=True) nls97add = pd.read_csv("data/nls97add.csv") # look at some of the nls data nls97.head() nls97.shape nls97add.head() nls97add.shape # check for unique ids nls97.originalid.nunique()==nls97.shape[0] nls97add.originalid.nunique()==nls97add.shape[0] # create some mismatched ids nls97 = nls97.sort_values('originalid') nls97add = nls97add.sort_values('originalid') nls97.iloc[0:2, -1] = nls97.iloc[0:2, -1] + 10000 nls97.originalid.head(2) nls97add.iloc[0:2, 0] = nls97add.iloc[0:2, 0] + 20000 nls97add.originalid.head(2) # use join to do a left join nlsnew = nls97.join(nls97add.set_index(['originalid'])) nlsnew.loc[nlsnew.originalid>9999, ['originalid','gender','birthyear','motherage','parentincome']] # do a left join with merge nlsnew =
pd.merge(nls97, nls97add, on=['originalid'], how="left")
pandas.merge
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Jan 23 12:15:22 2019 @author: seanselzer """ import pandas as pd import os import numpy as np import datetime import re from pathlib import Path from detector_efficiencies_2_1 import create_effdf from radecc_reader_lvl1_2_0 import slope_calculator #____________________________________________________________________________________________________________________________________________________________ def amalgam_2(eff_df, ra223_lambda, ra224_lambda, log_df, sample_volume, sample_volume_error, sample_variable, sub_sample_variable, spike_sensitivity, equilibration_time_variable, output_directory, sample_mid_time, sample_mid_date, linear_data_type, DDMMYYY_DateFormat, thstd, acstd, blank, detector_dict, detector_226_efficiencies_dict ): main_samplelist = [] print('\n---Creating sample results dataframe---\n') print(linear_data_type) if linear_data_type == False: for i in range(len(log_df[sample_variable])): sample_series = log_df[sample_variable].iloc[i] print('\n', type(sample_series), sample_series) for dirName, subdirList, fileList in os.walk(output_directory/'Read_Files'/sample_series): dirName = Path(dirName) #print(int(log_df[sub_sample_variable].iloc[i]), [int(s) for s in re.findall(r'-?\d+\.?\d*',dirName.split('/')[-1])][0],dirName.split('/')[-1]) # print ('££££££££',log_df[sub_sample_variable].iloc[i], dirName.parts) if str(log_df[sub_sample_variable].iloc[i])in dirName.parts[-1]: for file in fileList: # print (file, sample_series, log_df[sub_sample_variable].iloc[i]) main_samplelist.append(list(log_df.iloc[i])+[os.path.join(dirName, file)]) else: sample_set = list(set(log_df[sample_variable])) #print(sample_set) for i in range(len(log_df[sample_variable])): sample_series = log_df[sample_variable].iloc[i] print('\n', sample_series) for dirName, subdirList, fileList in os.walk(output_directory/'Read_Files'/sample_series): dirName = Path(dirName) print (log_df[sample_variable].iloc[i], sample_series, dirName.parts[-1].lower(), '\n', dirName) if str(log_df[sample_variable].iloc[i]) in dirName.parts[-1].lower(): for file in fileList: print (file, log_df[sample_variable].iloc[i],sample_series) main_samplelist.append(list(log_df.iloc[i])+[os.path.join(dirName, file)]) sample_array = np.array(main_samplelist) temp_df = pd.DataFrame(sample_array) temp_df.columns = log_df.columns.values.tolist()+['Filepath'] lvl1_calc_list = [] for i in range(len(temp_df[sample_variable])): lvl1_calc_list.append(slope_calculator(output_directory, detector_dict, Path(temp_df['Filepath'].iloc[i]), spike_sensitivity, equilibration_time_variable, DDMMYYY_DateFormat, thstd, acstd, blank)) lvl1_calc_df = pd.DataFrame(lvl1_calc_list, columns = ['Read_Start_Time', 'Read_End_Time', 'Slope', 'stderr_slope', 'cnt219', 'cnt219_abserr', 'cnt220', 'cnt220_abserr', 'cpm_219', 'err_219', 'cpm_220', 'err_220', 'cpm_Tot', 'err_Tot', 'y219cc', 'y219cc_err', 'y220cc', 'y220cc_err', 'corr219', 'corr219_err', 'corr220', 'corr220_err','final219', 'final220', 'Read_Runtime', 'final219_err', 'final220_err', 'cntTot_abserr', 'errslope_abs', 'Detector_Name', 'Cartridge_Type', 'Filename_Read_Interval', 'Spike_Value', 'Error_List']) lvl1_main_df = pd.concat([temp_df, lvl1_calc_df], axis=1) # print(pd.to_datetime(log_df.Date+' '+log_df[sample_mid_time], dayfirst = True)) lvl1_main_df['Mid_Sample_Datetime'] = pd.to_datetime(lvl1_main_df[sample_mid_date]+' '+lvl1_main_df[sample_mid_time], dayfirst = DDMMYYY_DateFormat) # print(lvl1_main_df['Mid_Sample_Datetime']-pd.to_datetime(log_df.Date+' '+log_df[sample_mid_time], dayfirst = True)) lvl1_main_df['Mid_Read_Datetime'] = pd.to_datetime(lvl1_main_df['Read_Start_Time'], dayfirst=DDMMYYY_DateFormat) + pd.to_timedelta(lvl1_main_df['Read_Runtime']/2, unit='m') detector_226_calibration_values_list = [] detector_226_efficiencies_list = [] for detector in lvl1_main_df.Detector_Name: if detector in detector_dict.keys(): detector_226_calibration_values_list.append(detector_dict[detector]) detector_226_efficiencies_list.append(detector_226_efficiencies_dict[detector]) else: detector_226_calibration_values_list.append(-999) detector_226_efficiencies_list.append(-999) lvl1_main_df['Detector 226 Calibration Factor'] = detector_226_calibration_values_list lvl1_main_df['Detector 226 Efficiency'] = detector_226_efficiencies_list blankcorr219 = [] blankcorr219_err =[] blankcorr220 = [] blankcorr220_err = [] dpm219 = [] dpm219_err = [] dpm219_thstdonly = [] dpm219_thstdonly_err = [] dpm220 = [] dpm220_err = [] dpm220tot = [] vdpm219 = [] vdpm219_err = [] vdpm219_thstdonly = [] vdpm219_thstdonly_err = [] vdpm220 = [] vdpm220_err = [] vdpm220tot = [] t1 = [] vdpm226 = [] vdpm226_err = [] for i in range(len(lvl1_main_df)): if lvl1_main_df['Detector_Name'][i].lower() in list(eff_df.Detector): #final219 - 219 channel blank for relevant detector blankcorr219.append(float(lvl1_main_df.final219[i] - eff_df.Average_bkg_219[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()])) #error associated with blankcorr219 correction added blankcorr219_err.append(float(np.sqrt(eff_df.Standard_Deviation_Blank_219[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()]**2 + lvl1_main_df['final219_err'][i]**2))) #final220 - 220 channel blank for relevant detector blankcorr220.append(float(lvl1_main_df.final220[i] - eff_df.Average_bkg_220[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()])) #error associated with blankcorr220 correction added blankcorr220_err.append(float(np.sqrt(eff_df.Standard_Deviation_Blank_220[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()]**2 + lvl1_main_df['final220_err'][i]**2))) #dpm219 calculation dpm219.append(float(blankcorr219[-1]/eff_df.Average_E219[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()])) #dpm219 error dpm219_err.append(float((np.sqrt((blankcorr219_err[-1]/eff_df.Average_E219[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()])**2 + ((lvl1_main_df['final219'][i]*eff_df.Standard_Deviation_E219[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()])/eff_df.Average_E219[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()]**2)**2)))) #dpm220 calculation dpm220.append(float(blankcorr220[-1]/eff_df.Average_E220[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()])) #dpm219 error dpm220_err.append(float((np.sqrt((blankcorr220_err[-1]/eff_df.Average_E220[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()])**2 + ((lvl1_main_df['final220'][i]*eff_df.Standard_Deviation_E220[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()])/eff_df.Average_E220[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()]**2)**2)))) ############################################## #dpm219_thstdonly calculation using dpm219_thstdonly.append(float(blankcorr219[-1]/eff_df.E219_from_E220[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()])) #dpm219_thstdonly error dpm219_thstdonly_err.append(float((np.sqrt((blankcorr219_err[-1]/eff_df.E219_from_E220[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()])**2 + ((lvl1_main_df['final219'][i]*eff_df.E219_from_E220_uncertainty[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()])/eff_df.E219_from_E220[eff_df.Detector == lvl1_main_df['Detector_Name'][i].lower()]**2)**2)))) ################################################ if float(lvl1_main_df[sample_volume][i]) > 0: #219 Volume corrections vdpm219.append((dpm219[-1]/float(lvl1_main_df[sample_volume][i]))*1000) #219 Volume corrections error vdpm219_err.append(np.sqrt((dpm219_err[-1]/float(lvl1_main_df[sample_volume][i]))**2 + ((dpm219[-1]*float(lvl1_main_df[sample_volume_error][i]))/(float(lvl1_main_df[sample_volume][i])**2))**2)*1000) #220 Volume corrections vdpm220.append((dpm220[-1]/float(lvl1_main_df[sample_volume][i]))*1000) #220 Volume corrections error vdpm220_err.append(np.sqrt((dpm220_err[-1]/float(lvl1_main_df[sample_volume][i]))**2 + ((dpm220[-1]*float(lvl1_main_df[sample_volume_error][i]))/(float(lvl1_main_df[sample_volume][i])**2))**2)*1000) ############################################################################### #dpm219_thstdonly Volume corrections vdpm219_thstdonly.append((dpm219_thstdonly[-1]/float(lvl1_main_df[sample_volume][i]))*1000) #dpm219_thstdonly_err Volume corrections error vdpm219_thstdonly_err.append(np.sqrt((dpm219_thstdonly_err[-1]/float(lvl1_main_df[sample_volume][i]))**2 + ((dpm219_thstdonly[-1]*float(lvl1_main_df[sample_volume_error][i]))/(float(lvl1_main_df[sample_volume][i])**2))**2)*1000) if lvl1_main_df['Slope'][i] > -999: #dpm226 calculation vdpm226.append(((lvl1_main_df['Slope'][i]/lvl1_main_df['Detector 226 Calibration Factor'][i])/float(lvl1_main_df[sample_volume][i]))*1000) vdpm226[-1] = vdpm226[-1]/float(lvl1_main_df['Detector 226 Efficiency'][i]) #dpm226_err calculation vdpm226_err.append(np.sqrt(((lvl1_main_df['stderr_slope'][i]/lvl1_main_df['Detector 226 Calibration Factor'][i])/float(lvl1_main_df[sample_volume][i]))**2 + (((lvl1_main_df['Slope'][i]/lvl1_main_df['Detector 226 Calibration Factor'][i])*float(lvl1_main_df[sample_volume_error][i]))/(float(lvl1_main_df[sample_volume][i])**2))**2)*1000) else: vdpm226.append(-999) vdpm226_err.append(-999) else: vdpm219.append(-999) vdpm219_err.append(-999) vdpm220.append(-999) vdpm220_err.append(-999) vdpm219_thstdonly.append(-999) vdpm219_thstdonly_err.append(-999) vdpm226.append(-999) vdpm226_err.append(-999) # if float(vdpm219_thstdonly[-1]) < 0 : # vdpm219_thstdonly[-1] = 0 ############################################################################### #Time difference between sampling datetime and read datetime (t1 in Garcia-Solsona) diff = pd.to_datetime(lvl1_main_df['Mid_Read_Datetime'][i]) - pd.to_datetime(lvl1_main_df['Mid_Sample_Datetime'][i]) t1.append((diff.seconds/60)+diff.days*24*60) else: print ('\n***ERROR***\nDetector name:', lvl1_main_df['Detector_Name'][i].lower(),'does not match a detector in detector_list\n') #final219 - 219 channel blank for relevant detector blankcorr219.append(-999) #error associated with blankcorr219 correction added blankcorr219_err.append(-999) #final220 - 220 channel blank for relevant detector blankcorr220.append(-999) #error associated with blankcorr220 correction added blankcorr220_err.append(-999) #dpm219 calculation dpm219.append(-999) #dpm219 error dpm219_err.append(-999) #dpm220 calculation dpm220.append(-999) #dpm219 error dpm220_err.append(-999) #219 Volume corrections vdpm219.append(-999) #219 Volume corrections error vdpm219_err.append(-999) if vdpm219[-1] < 0 : vdpm219[-1] = 0 #220 Volume corrections vdpm220.append(-999) #220 Volume corrections error vdpm220_err.append(-999) if vdpm220[-1] < 0 : vdpm220[-1] = 0 ############################################## #dpm219 calculation using dpm219_thstdonly.append(-999) #dpm219 error dpm219_thstdonly_err.append(-999) ################################################ ############################################################################### #219 Volume corrections vdpm219_thstdonly.append(-999) #219 Volume corrections error vdpm219_thstdonly_err.append(-999) if float(vdpm219_thstdonly[-1]) < 0 : vdpm219_thstdonly[-1] = 0 ############################################################################### if float(lvl1_main_df[sample_volume][i]) > 0: vdpm226.append(-999) if vdpm226[-1]<0: vdpm226[-1] = 0 vdpm226_err.append(-999) else: vdpm226.append(-999) vdpm226_err.append(-999) #Time difference between sampling datetime and read datetime (t1 in Garcia-Solsona) diff = pd.to_datetime(lvl1_main_df['Mid_Read_Datetime'][i]) -
pd.to_datetime(lvl1_main_df['Mid_Sample_Datetime'][i])
pandas.to_datetime
from timeseries_preparation.preparation import TimeseriesPreparator import pandas as pd import pytest def test_duplicate_dates(): df = pd.DataFrame( { "date": [ "2021-01-01 12:12:00", "2021-01-01 17:35:00", "2021-01-02 14:55:00", ], "id": [1, 1, 1], } ) frequency = "D" time_column_name = "date" timeseries_identifiers_names = ["id"] df[time_column_name] = pd.to_datetime(df[time_column_name]).dt.tz_localize(tz=None) preparator = TimeseriesPreparator( time_column_name=time_column_name, frequency=frequency, ) with pytest.raises(ValueError): dataframe_prepared = preparator._truncate_dates(df) def test_minutes_truncation(): df = pd.DataFrame( { "date": [ "2021-01-01 12:17:42", "2021-01-01 12:30:00", "2021-01-01 12:46:00", ], "id": [1, 1, 1], } ) frequency = "15min" time_column_name = "date" timeseries_identifiers_names = ["id"] df[time_column_name] = pd.to_datetime(df[time_column_name]).dt.tz_localize(tz=None) preparator = TimeseriesPreparator( time_column_name=time_column_name, frequency=frequency, timeseries_identifiers_names=timeseries_identifiers_names, ) dataframe_prepared = preparator._truncate_dates(df) dataframe_prepared = preparator._sort(dataframe_prepared) preparator._check_regular_frequency(dataframe_prepared) assert dataframe_prepared[time_column_name][0] == pd.Timestamp("2021-01-01 12:15:00") assert dataframe_prepared[time_column_name][2] == pd.Timestamp("2021-01-01 12:45:00") def test_hour_truncation(): df = pd.DataFrame( { "date": [ "2020-01-07 12:12:00", "2020-01-07 17:35:00", "2020-01-07 14:55:00", "2020-01-07 18:06:00", "2020-01-08 04:40:00", "2020-01-08 06:13:00", "2020-01-08 03:23:00", ], "id": [1, 1, 1, 1, 2, 2, 2], } ) frequency = "2H" time_column_name = "date" timeseries_identifiers_names = ["id"] df[time_column_name] = pd.to_datetime(df[time_column_name]).dt.tz_localize(tz=None) preparator = TimeseriesPreparator( time_column_name=time_column_name, frequency=frequency, timeseries_identifiers_names=timeseries_identifiers_names, max_timeseries_length=2, ) dataframe_prepared = preparator._truncate_dates(df) dataframe_prepared = preparator._sort(dataframe_prepared) preparator._check_regular_frequency(dataframe_prepared) dataframe_prepared = preparator._keep_last_dates(dataframe_prepared) assert dataframe_prepared[time_column_name][0] == pd.Timestamp("2020-01-07 16:00:00") assert dataframe_prepared[time_column_name][3] == pd.Timestamp("2020-01-08 06:00:00") def test_day_truncation(): df = pd.DataFrame( { "date": [ "2021-01-01 12:17:42", "2021-01-02 00:00:00", "2021-01-03 12:46:00", ], "id": [1, 1, 1], } ) frequency = "D" time_column_name = "date" timeseries_identifiers_names = ["id"] df[time_column_name] = pd.to_datetime(df[time_column_name]).dt.tz_localize(tz=None) preparator = TimeseriesPreparator( time_column_name=time_column_name, frequency=frequency, timeseries_identifiers_names=timeseries_identifiers_names, ) dataframe_prepared = preparator._truncate_dates(df) dataframe_prepared = preparator._sort(dataframe_prepared) preparator._check_regular_frequency(dataframe_prepared) assert dataframe_prepared[time_column_name][0] == pd.Timestamp("2021-01-01") assert dataframe_prepared[time_column_name][2] == pd.Timestamp("2021-01-03") def test_business_day_truncation(): df = pd.DataFrame( { "date": [ "2021-01-04 12:17:42", "2021-01-07 00:00:00", "2021-01-12 12:46:00", ], "id": [1, 1, 1], } ) frequency = "3B" time_column_name = "date" timeseries_identifiers_names = ["id"] df[time_column_name] = pd.to_datetime(df[time_column_name]).dt.tz_localize(tz=None) preparator = TimeseriesPreparator( time_column_name=time_column_name, frequency=frequency, timeseries_identifiers_names=timeseries_identifiers_names, ) dataframe_prepared = preparator._truncate_dates(df) dataframe_prepared = preparator._sort(dataframe_prepared) preparator._check_regular_frequency(dataframe_prepared) assert dataframe_prepared[time_column_name][0] == pd.Timestamp("2021-01-04") assert dataframe_prepared[time_column_name][1] == pd.Timestamp("2021-01-07") def test_week_sunday_truncation(): df = pd.DataFrame( { "date": [ "2021-01-03 12:12:00", "2021-01-05 17:35:00", "2021-01-15 14:55:00", ], "id": [1, 1, 1], } ) frequency = "W-SUN" time_column_name = "date" timeseries_identifiers_names = ["id"] df[time_column_name] = pd.to_datetime(df[time_column_name]).dt.tz_localize(tz=None) preparator = TimeseriesPreparator( time_column_name=time_column_name, frequency=frequency, timeseries_identifiers_names=timeseries_identifiers_names, max_timeseries_length=2, ) dataframe_prepared = preparator._truncate_dates(df) dataframe_prepared = preparator._sort(dataframe_prepared) preparator._check_regular_frequency(dataframe_prepared) dataframe_prepared = preparator._keep_last_dates(dataframe_prepared) assert dataframe_prepared[time_column_name][0] == pd.Timestamp("2021-01-10") assert dataframe_prepared[time_column_name][1] == pd.Timestamp("2021-01-17") def test_quarter_truncation(): df = pd.DataFrame( { "date": [ "2020-12-15", "2021-03-28", "2021-06-11", ], "id": [1, 1, 1], } ) frequency = "3M" time_column_name = "date" timeseries_identifiers_names = ["id"] df[time_column_name] = pd.to_datetime(df[time_column_name]).dt.tz_localize(tz=None) preparator = TimeseriesPreparator( time_column_name=time_column_name, frequency=frequency, timeseries_identifiers_names=timeseries_identifiers_names, ) dataframe_prepared = preparator._truncate_dates(df) dataframe_prepared = preparator._sort(dataframe_prepared) preparator._check_regular_frequency(dataframe_prepared) assert dataframe_prepared[time_column_name][0] == pd.Timestamp("2020-12-31") assert dataframe_prepared[time_column_name][2] == pd.Timestamp("2021-06-30") def test_semester_truncation(): df = pd.DataFrame( { "date": [ "2020-12-15", "2021-06-28", "2021-12-01", ], "id": [1, 1, 1], } ) frequency = "6M" time_column_name = "date" timeseries_identifiers_names = ["id"] df[time_column_name] = pd.to_datetime(df[time_column_name]).dt.tz_localize(tz=None) preparator = TimeseriesPreparator( time_column_name=time_column_name, frequency=frequency, timeseries_identifiers_names=timeseries_identifiers_names, ) dataframe_prepared = preparator._truncate_dates(df) dataframe_prepared = preparator._sort(dataframe_prepared) preparator._check_regular_frequency(dataframe_prepared) assert dataframe_prepared[time_column_name][0] == pd.Timestamp("2020-12-31") assert dataframe_prepared[time_column_name][1] == pd.Timestamp("2021-06-30") assert dataframe_prepared[time_column_name][2] == pd.Timestamp("2021-12-31") def test_year_truncation(): df = pd.DataFrame( { "date": [ "2020-12-31", "2021-12-15", "2022-12-01", ], "id": [1, 1, 1], } ) frequency = "12M" time_column_name = "date" timeseries_identifiers_names = ["id"] df[time_column_name] = pd.to_datetime(df[time_column_name]).dt.tz_localize(tz=None) preparator = TimeseriesPreparator( time_column_name=time_column_name, frequency=frequency, timeseries_identifiers_names=timeseries_identifiers_names, ) dataframe_prepared = preparator._truncate_dates(df) dataframe_prepared = preparator._sort(dataframe_prepared) preparator._check_regular_frequency(dataframe_prepared) assert dataframe_prepared[time_column_name][0] ==
pd.Timestamp("2020-12-31")
pandas.Timestamp
import datetime import os import time import pandas as pd from mainapp.app_settings import datetime_format def tell_to_stop(): f = open("mainapp/termination/stop_dir/stop_instrument_simulator.txt", 'w') f.close() def time_to_stop(stopping_dir, stopping_file): files = next(os.walk(stopping_dir))[2] if stopping_file in files: os.remove(stopping_dir + '\\' + stopping_file) return True return False def clean_up_stopping_dir(stopping_dir, stopping_file): files = next(os.walk(stopping_dir))[2] for file in files: if file == stopping_file: os.remove(stopping_dir + '\\' + stopping_file) def run(measurements_per_second=None): stopping_dir = os.getcwd() + '\\mainapp\\termination\\stop_dir' stopping_file = 'stop_instrument_simulator.txt' clean_up_stopping_dir(stopping_dir, stopping_file) wait_between_measurements = True if measurements_per_second is None: wait_between_measurements = False relative_location = "\\mainapp\\instrument_simulator\\projects\\" dir = os.getcwd() + relative_location project_name = "ObsFlow1DaysFakeTime.csv" # Setting directories projectName = project_name file = dir + projectName dir_temp = 'incoming_data' # Getting the project file df =
pd.read_csv(file, index_col=False)
pandas.read_csv
# Import packages import os import pandas as pd import scipy from scipy.optimize import curve_fit import hplib as hpl # Functions def import_heating_data(): # read in keymark data from *.txt files in /input/txt/ # save a dataframe to database_heating.csv in folder /output/ Modul = [] Manufacturer = [] Date = [] Refrigerant = [] Mass = [] Poff = [] Psb = [] Prated = [] SPLindoor = [] SPLoutdoor = [] Type = [] Climate = [] Guideline = [] T_in = [] T_out = [] P_th = [] COP = [] df = pd.DataFrame() os.chdir('../') root = os.getcwd() Scanordner = (root + '/input/txt') os.chdir(Scanordner) Scan = os.scandir(os.getcwd()) with Scan as dir1: for file in dir1: with open(file, 'r', encoding='utf-8') as f: contents = f.readlines() date = 'NaN' modul = 'NaN' prated_low = 'NaN' prated_medium = 'NaN' heatpumpType = 'NaN' refrigerant = 'NaN' splindoor_low = 'NaN' splindoor_medium = 'NaN' sploutdoor_low = 'NaN' sploutdoor_medium = 'NaN' poff = 'NaN' climate = 'NaN' NumberOfTestsPerNorm = [] NumberOfTestsPerModule = [] i = 1 # indicator for the line wich is read d = 0 # indicator if only medium Temperature is given p = 0 # -15° yes or no date = contents[1] date = date[61:] if (date == '17 Dec 2020\n'): date = '17.12.2020\n' if (date == '18 Dec 2020\n'): date = '18.12.2020\n' if (date.startswith('5 Mar 2021')): date = '05.03.2021\n' if (date.startswith('15 Feb 2021')): date = '15.02.2021\n' if (date.startswith('22 Feb 2021')): date = '22.02.2021\n' for lines in contents: i = i + 1 if (lines.startswith('Name\n') == 1): manufacturer = (contents[i]) if (manufacturer.find('(') > 0): manufacturer = manufacturer.split('(', 1)[1].split('\n')[0] if manufacturer.endswith('GmbH\n'): manufacturer = manufacturer[:-5] if manufacturer.endswith('S.p.A.\n'): manufacturer = manufacturer[:-6] if manufacturer.endswith('s.p.a.\n'): manufacturer = manufacturer[:-6] if manufacturer.endswith('S.p.A\n'): manufacturer = manufacturer[:-5] if manufacturer.endswith('S.L.U.\n'): manufacturer = manufacturer[:-6] if manufacturer.endswith('s.r.o.\n'): manufacturer = manufacturer[:-6] if manufacturer.endswith('S.A.\n'): manufacturer = manufacturer[:-4] if manufacturer.endswith('S.L.\n'): manufacturer = manufacturer[:-4] if manufacturer.endswith('B.V.\n'): manufacturer = manufacturer[:-4] if manufacturer.endswith('N.V.\n'): manufacturer = manufacturer[:-4] if manufacturer.endswith('GmbH & Co KG\n'): manufacturer = manufacturer[:-12] elif manufacturer.startswith('NIBE'): manufacturer = 'Nibe\n' elif manufacturer.startswith('Nibe'): manufacturer = 'Nibe\n' elif manufacturer.startswith('Mitsubishi'): manufacturer = 'Mitsubishi\n' elif manufacturer.startswith('Ochsner'): manufacturer = 'Ochsner\n' elif manufacturer.startswith('OCHSNER'): manufacturer = 'Ochsner\n' elif manufacturer.startswith('Viessmann'): manufacturer = 'Viessmann\n' elif (lines.endswith('Date\n') == 1): date = (contents[i]) if (date == 'basis\n'): date = contents[i - 3] date = date[14:] elif (lines.startswith('Model') == 1): modul = (contents[i - 2]) splindoor_low = 'NaN' splindoor_medium = 'NaN' sploutdoor_low = 'NaN' sploutdoor_medium = 'NaN' elif lines.endswith('Type\n'): heatpumpType = contents[i][:-1] if heatpumpType.startswith('A'): heatpumpType = 'Outdoor Air/Water' if heatpumpType.startswith('Eau glycol'): heatpumpType = 'Brine/Water' elif (lines.startswith('Sound power level indoor')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): splindoor_low = contents[i + 4][:-7] splindoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): splindoor_medium = contents[i + 4][:-7] splindoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): splindoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] else: splindoor_low = contents[i][:-7] splindoor_medium = contents[i][:-7] elif (lines.startswith('Sound power level outdoor')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): sploutdoor_low = contents[i + 4][:-7] sploutdoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): sploutdoor_medium = contents[i + 4][:-7] sploutdoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): sploutdoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] else: sploutdoor_low = contents[i][:-7] sploutdoor_medium = contents[i][:-7] elif (lines.startswith('Puissance acoustique extérieure')): b = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): sploutdoor_low = contents[i + 4][:-7] sploutdoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): sploutdoor_medium = contents[i + 4][:-7] sploutdoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): sploutdoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] else: sploutdoor_low = contents[i][:-7] sploutdoor_medium = contents[i][:-7] elif (lines.startswith('Potencia sonora de la unidad interior')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): splindoor_low = contents[i + 4][:-7] splindoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): splindoor_medium = contents[i + 4][:-7] splindoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): splindoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] else: splindoor_low = contents[i][:-7] splindoor_medium = contents[i][:-7] elif (lines.startswith('Potencia sonora de la unidad exterior')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): sploutdoor_low = contents[i + 4][:-7] sploutdoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): sploutdoor_medium = contents[i + 4][:-7] sploutdoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): sploutdoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] else: sploutdoor_low = contents[i][:-7] sploutdoor_medium = contents[i][:-7] elif (lines.startswith('Nivel de Potência sonora interior')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): splindoor_low = contents[i + 4][:-7] splindoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): splindoor_medium = contents[i + 4][:-7] splindoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): splindoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] else: splindoor_low = contents[i][:-7] splindoor_medium = contents[i][:-7] elif (lines.startswith('Nivel de Potência sonora exterior')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): sploutdoor_low = contents[i + 4][:-7] sploutdoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): sploutdoor_medium = contents[i + 4][:-7] sploutdoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): sploutdoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] else: sploutdoor_low = contents[i][:-7] sploutdoor_medium = contents[i][:-7] elif (lines.startswith('Livello di potenza acustica interna')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): splindoor_low = contents[i + 4][:-7] splindoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): splindoor_medium = contents[i + 4][:-7] splindoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): splindoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): splindoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): splindoor_medium = contents[i + 2][:-7] else: splindoor_low = contents[i][:-7] splindoor_medium = contents[i][:-7] elif (lines.startswith('Livello di potenza acustica externa')): SPL = 1 if (contents[i].startswith('Low')): if contents[i + 2].startswith('Medium'): sploutdoor_low = contents[i + 4][:-7] sploutdoor_medium = contents[i + 6][:-7] if contents[i].startswith('Medium'): sploutdoor_medium = contents[i + 4][:-7] sploutdoor_low = contents[i + 6][:-7] elif (contents[i].endswith('dB(A)\n')): if (contents[i - 3].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 3].startswith('Medium')): sploutdoor_medium = contents[i][:-7] if (contents[i - 6].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 6].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] if (contents[i - 4].startswith('Low')): sploutdoor_low = contents[i][:-7] if (contents[i - 4].startswith('Medium')): sploutdoor_medium = contents[i + 2][:-7] else: sploutdoor_low = contents[i][:-7] sploutdoor_medium = contents[i][:-7] elif (lines == 'Refrigerant\n'): if (contents[i - 3] == 'Mass Of\n'): continue refrigerant = (contents[i]) elif (lines.startswith('Mass Of') == 1): if (lines == 'Mass Of\n'): mass = contents[i + 1] elif (lines.endswith('kg\n') == 1): mass = contents[i - 2] mass = mass[20:] else: mass = contents[i] elif lines.startswith('Average'): climate = 'average' elif lines.startswith('Cold'): climate = 'cold' elif lines.startswith('Warmer Climate'): climate = 'warm' elif (lines.startswith('EN') == 1): if (p == 1): Poff.append(poff) Psb.append(psb) if (p == 2): Poff.append(poff) Poff.append(poff) Psb.append(psb) Psb.append(psb_medium) guideline = (contents[i - 2]) d = 0 # Medium or Low Content p = 0 # -15 yes or no NumberOfTestsPerNorm = [] if (contents[i - 1].startswith('Low') == 1): d = 0 continue if (contents[i - 1] == '\n'): continue if (contents[i - 1].startswith('Medium')): d = 1 else: d = 0 if lines.startswith('Prated'): prated_low = contents[i][:-4] if (contents[i + 2].endswith('kW\n')): prated_medium = contents[i + 2][:-4] elif (lines.startswith('Pdh Tj = -15°C') == 1): # check if (contents[i].endswith('Cdh\n') == 1): # wrong content continue if (contents[i] == '\n'): # no content continue else: minusfifteen_low = contents[i] P_th.append(minusfifteen_low[:-4]) T_in.append('-15') if d == 0: # first low than medium Temperatur if (climate == 'average'): T_out.append('35') elif (climate == 'cold'): T_out.append('32') elif (climate == 'warm'): T_out.append('35') if d == 1: # first medium Temperature if (climate == 'average'): T_out.append('55') elif (climate == 'cold'): T_out.append('49') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) Mass.append(mass[:-4]) Prated.append(prated_low) SPLindoor.append(splindoor_low) # SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_low) # SPLoutdoor.append(sploutdoor_medium) Guideline.append(guideline[:-1]) Climate.append(climate) Type.append(heatpumpType) if (contents[i + 2].startswith('COP')): # for PDF without medium heat continue if (contents[i + 2].startswith('Disclaimer')): # for PDF without medium heat continue if (contents[i + 2].startswith('EHPA')): # End of page if (contents[i + 8].startswith('COP')): # end of page plus no medium heat continue minusfifteen_medium = contents[i + 2] P_th.append(minusfifteen_medium[:-4]) T_in.append('-15') if (climate == 'average'): T_out.append('55') elif (climate == 'cold'): T_out.append('49') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) Mass.append(mass[:-4]) Prated.append(prated_medium) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) # SPLoutdoor.append(sploutdoor_low) SPLoutdoor.append(sploutdoor_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) elif (lines.startswith('COP Tj = -15°C')): if (contents[i] == '\n'): continue if (contents[i].startswith('EHPA')): continue COP.append(contents[i][:-1]) NumberOfTestsPerModule.append(i) p = 1 if (contents[i + 2].startswith('Pdh')): # no medium Climate continue if (contents[i + 2].startswith('Cdh')): # no medium Climate continue if (contents[i + 2].startswith('EHPA')): # no medium Climate continue COP.append(contents[i + 2][:-1]) NumberOfTestsPerModule.append(i) p = 2 elif (lines.startswith('Pdh Tj = -7°C') == 1): # check minusseven_low = contents[i] P_th.append(minusseven_low[:-4]) T_in.append('-7') if d == 0: # first low than medium Temperatur if (climate == 'average'): T_out.append('34') elif (climate == 'cold'): T_out.append('30') elif (climate == 'warm'): T_out.append('35') if d == 1: # first medium Temperature if (climate == 'average'): T_out.append('52') elif (climate == 'cold'): T_out.append('44') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) Mass.append(mass[:-4]) Prated.append(prated_low) SPLindoor.append(splindoor_low) # SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_low) # SPLoutdoor.append(sploutdoor_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) if (contents[i + 2].startswith('COP') == 1): continue else: minusseven_medium = contents[i + 2] P_th.append(minusseven_medium[:-4]) T_in.append('-7') if (climate == 'average'): T_out.append('52') elif (climate == 'cold'): T_out.append('44') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) # SPLoutdoor.append(sploutdoor_low) SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) elif (lines.startswith('COP Tj = -7°C')): COP.append(contents[i][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) if (contents[i + 2].startswith('Pdh')): # no medium Climate continue if (contents[i + 2].startswith('Cdh')): # no medium Climate continue COP.append(contents[i + 2][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) elif (lines.startswith('Pdh Tj = +2°C') == 1): if (contents[i].endswith('Cdh\n') == 1): # wrong content continue if (contents[i] == '\n'): # no content continue else: plustwo_low = contents[i] P_th.append(plustwo_low[:-4]) T_in.append('2') if d == 0: # first low than medium Temperatur if (climate == 'average'): T_out.append('30') elif (climate == 'cold'): T_out.append('27') elif (climate == 'warm'): T_out.append('35') if d == 1: # first medium Temperature if (climate == 'average'): T_out.append('42') elif (climate == 'cold'): T_out.append('37') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) SPLindoor.append(splindoor_low) # SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_low) # SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_low) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) if (contents[i + 2].startswith('COP')): # for PDF without medium heat continue if (contents[i + 2].startswith('Disclaimer')): # for PDF without medium heat continue if (contents[i + 2].startswith('EHPA')): # End of page if (contents[i + 8].startswith('COP')): # end of page plus no medium heat continue plustwo_medium = contents[i + 2] # if(plustwo_low[:-1].endswith('kW')==0):#test # print(plustwo_low[:-1]) # if(plustwo_medium[:-1].endswith('kW')==0):#test # print(file.name)#plustwo_medium[:-1] P_th.append(plustwo_medium[:-4]) T_in.append('2') if (climate == 'average'): T_out.append('42') elif (climate == 'cold'): T_out.append('37') elif (climate == 'warm'): T_out.append('55') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) # SPLoutdoor.append(sploutdoor_low) SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) elif (lines.startswith('COP Tj = +2°C')): # check if (contents[i] == '\n'): # no infos continue if (contents[i].startswith('EHPA')): # end of page print(file.name) continue if (contents[i + 2].startswith('Warmer')): # usless infos continue if (contents[i] == 'n/a\n'): # usless infos continue COP.append(contents[i][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) if (contents[i + 2].startswith('Pdh')): # no medium Climate continue if (contents[i + 2].startswith('Cdh')): # no medium Climate continue if (contents[i + 2].startswith('EHPA')): # no medium Climate continue COP.append(contents[i + 2][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) elif (lines.startswith('Pdh Tj = +7°C') == 1): if (contents[i].endswith('Cdh\n') == 1): # wrong content continue if (contents[i] == '\n'): # no content continue else: plusseven_low = contents[i] P_th.append(plusseven_low[:-4]) T_in.append('7') if d == 0: # first low than medium Temperatur if (climate == 'average'): T_out.append('27') elif (climate == 'cold'): T_out.append('25') elif (climate == 'warm'): T_out.append('31') if d == 1: # first medium Temperature if (climate == 'average'): T_out.append('36') elif (climate == 'cold'): T_out.append('32') elif (climate == 'warm'): T_out.append('46') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) SPLindoor.append(splindoor_low) # SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_low) # SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_low) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) if (contents[i + 2].startswith('COP')): # for PDF without medium heat continue if (contents[i + 2].startswith('Disclaimer')): # for PDF without medium heat continue if (contents[i + 2].startswith('EHPA')): # End of page if (contents[i + 8].startswith('COP')): # end of page plus no medium heat continue plusseven_medium = contents[i + 2] P_th.append(plusseven_medium[:-4]) T_in.append('7') if (climate == 'average'): T_out.append('36') elif (climate == 'cold'): T_out.append('32') elif (climate == 'warm'): T_out.append('46') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) # SPLoutdoor.append(sploutdoor_low) SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) elif (lines.startswith('COP Tj = +7°C')): # check if (contents[i] == '\n'): # no infos continue if (contents[i].startswith('EHPA')): # end of page continue if (contents[i + 2].startswith('Warmer')): # usless infos continue if (contents[i] == 'n/a\n'): # usless infos continue COP.append(contents[i][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) if (contents[i + 2].startswith('Pdh')): # no medium Climate continue if (contents[i + 2].startswith('Cdh')): # no medium Climate continue if (contents[i + 2].startswith('EHPA')): # no medium Climate continue COP.append(contents[i + 2][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) elif (lines.startswith('Pdh Tj = 12°C') == 1): if (contents[i].endswith('Cdh\n') == 1): # wrong content continue if (contents[i] == '\n'): # no content continue if (contents[i].startswith('EHPA Secretariat') == 1): plustwelfe_low = (contents[i - 11]) P_th.append(plustwelfe_low[:-4]) T_in.append('12') if (climate == 'average'): T_out.append('24') elif (climate == 'cold'): T_out.append('24') elif (climate == 'warm'): T_out.append('26') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) SPLindoor.append(splindoor_low) # SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_low) # SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_low) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) plustwelfe_medium = (contents[i - 9]) P_th.append(plustwelfe_medium[:-4]) T_in.append('12') if (climate == 'average'): T_out.append('30') elif (climate == 'cold'): T_out.append('28') elif (climate == 'warm'): T_out.append('34') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) # SPLoutdoor.append(sploutdoor_low) SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) else: plustwelfe_low = contents[i] P_th.append(plustwelfe_low[:-4]) T_in.append('12') if d == 0: # first low than medium Temperatur if (climate == 'average'): T_out.append('24') elif (climate == 'cold'): T_out.append('24') elif (climate == 'warm'): T_out.append('26') if d == 1: # first medium Temperature if (climate == 'average'): T_out.append('30') elif (climate == 'cold'): T_out.append('28') elif (climate == 'warm'): T_out.append('34') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) SPLindoor.append(splindoor_low) SPLoutdoor.append(sploutdoor_low) Mass.append(mass[:-4]) Prated.append(prated_low) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) if (contents[i + 2].startswith('COP')): # for PDF without medium heat continue if (contents[i + 2].startswith('Disclaimer')): # for PDF without medium heat continue if (contents[i + 2].startswith('EHPA')): # End of page if (contents[i + 8].startswith('COP')): # end of page plus no medium heat continue plustwelfe_medium = contents[i + 2] P_th.append(plustwelfe_medium[:-4]) T_in.append('12') if (climate == 'average'): T_out.append('30') elif (climate == 'cold'): T_out.append('28') elif (climate == 'warm'): T_out.append('34') Modul.append(modul[7:-1]) Manufacturer.append(manufacturer[:-1]) Date.append(date[:-1]) Refrigerant.append(refrigerant[:-1]) # SPLindoor.append(splindoor_low) SPLindoor.append(splindoor_medium) SPLoutdoor.append(sploutdoor_medium) Mass.append(mass[:-4]) Prated.append(prated_medium) Type.append(heatpumpType) Guideline.append(guideline[:-1]) Climate.append(climate) elif (lines.startswith('COP Tj = 12°C')): # check if (contents[i] == '\n'): # no infos continue if (contents[i].startswith('EHPA')): # end of page print('W') continue if (contents[i + 2].startswith('Warmer')): # usless infos continue if (contents[i] == 'n/a\n'): # usless infos continue COP.append(contents[i][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) if (contents[i + 2].startswith('Pdh')): # no medium Climate continue if (contents[i + 2].startswith('Cdh')): # no medium Climate continue if (contents[i + 2].startswith('EHPA')): # no medium Climate continue COP.append(contents[i + 2][:-1]) NumberOfTestsPerNorm.append(i) NumberOfTestsPerModule.append(i) elif (lines.startswith('Poff')): l = 0 # l shows if Poff Medium is different to Poff Low Temperature c = 2 # c is just an iterator to print every second Poff poff = contents[i][:-2] if poff.endswith(' '): poff = poff[:-1] if poff.endswith('.00'): poff = poff[:-3] second_poff = contents[i + 2][:-2] if second_poff.endswith(' '): second_poff = second_poff[:-1] if second_poff.endswith('.00'): second_poff = second_poff[:-3] if (poff != second_poff): # see if Poff Medium to Poff low if (contents[i + 2].endswith('W\n')): if (contents[i + 2] != 'W\n'): l = 1 for Tests in NumberOfTestsPerNorm: if l == 0: Poff.append(poff) if l == 1: c += 1 if c % 2 == 1: Poff.append(poff) if c % 2 == 0: Poff.append(second_poff) elif (lines.startswith('PSB')): l = 0 # l shows if Poff Medium is different to Poff Low Temperature c = 2 # c is just an iterator to print every second Poff psb = contents[i][:-2] if psb.endswith(' '): psb = psb[:-1] if psb.endswith('.00'): psb = psb[:-3] psb_medium = contents[i + 2][:-2] if psb_medium.endswith(' '): psb_medium = psb_medium[:-1] if psb_medium.endswith('.00'): psb_medium = psb_medium[:-3] if (psb != psb_medium): # see if Poff Medium to Poff low if (contents[i + 2].endswith('W\n')): if (contents[i + 2] != 'W\n'): l = 1 for Tests in NumberOfTestsPerNorm: if l == 0: Psb.append(psb) if l == 1: c += 1 if c % 2 == 1: Psb.append(psb) if c % 2 == 0: Psb.append(psb_medium) if p == 1: Poff.append(poff) Psb.append(psb) if p == 2: Poff.append(poff) Poff.append(second_poff) Psb.append(psb) Psb.append(psb_medium) df['Manufacturer'] = Manufacturer df['Model'] = Modul df['Date'] = Date df['Date'] =
pd.to_datetime(df['Date'], format='%d.%m.%Y')
pandas.to_datetime
import pandas as pd # FIXME: Not realistic as would like to adjust positions everyday def trade_summary(df_input, security_name, position_name): """ For static positions only, i.e. at any time a fixed unit of positions are live. i.e. if on day 0, 100 unit is bought, the unit will be kept at 100 throughout live signal Take a dataframe with timestamp index, security, and security_pos (position) and calculate PnL trade by trade. """ df = df_input.copy() df["long_short"] = (df[position_name] > 0) * 1 - (df[position_name] < 0) * 1 trade_detail = [] def update_trade(_trade_count, _position, _open_date, _open_price, _close_date, _close_price): trade_detail.append({"trade": _trade_count, "position": _position, "open_date": _open_date, "open_price": _open_price, "close_date": _close_date, "close_price": _close_price, "realized_pnl": _position * (_close_price - open_price)}) trade_count = 0 long_short = 0 for i, data_slice in enumerate(df.iterrows()): s = data_slice[1] # Slice if i > 0 and s.long_short != df.iloc[i - 1].long_short: if long_short != 0: close_price, close_date = s[security_name], s.name update_trade(trade_count, position, open_date, open_price, close_date, close_price) long_short = 0 if s.long_short != 0: open_price = s[security_name] position = s[position_name] open_date = s.name # date/time from index trade_count += 1 long_short = s.long_short if s.long_short != long_short: close_price, close_date = s[security_name], s.name close_date = s.name update_trade(trade_count, position, open_date, open_price, close_date, close_price) trade_summary_df = pd.DataFrame(trade_detail) # Merge realized PnL onto original time_series. TODO: Can consider returning only one single series trade_time_series = trade_summary_df[["close_date", "realized_pnl"]] trade_time_series = trade_time_series.set_index("close_date") trade_time_series.index.name = df_input.index.name # TODO: AMEND DATETIME FORMAT WHEN NECESSARY trade_time_series.index = pd.to_datetime(trade_time_series.index, format="%d/%m/%Y") trade_time_series =
pd.concat([trade_time_series, df], axis=1)
pandas.concat
# ! /usr/bin/env python3 # -*- coding: utf-8 -*- # AUTHOR: <NAME>, EMBL # converter.py # To further usage, use manual supplied together with CLEMSite import numpy as np from sklearn.manifold import TSNE import pylab as Plot import pandas as pd import glob from os import listdir from os.path import isfile, join import os, shutil import seaborn as sns from tqdm import tqdm import matplotlib.patches as mpatches import holoviews as hv from holoviews import streams hv.extension('bokeh') import cv2 import time from skimage import data, exposure, img_as_float ############################################## LOADING DATA ############################################ ### Set here treatment names _treatments = ["COPB2", "WDR75", "DNM1", "COPG1", "C1S", "DENND4C", "IPO8", "SRSF1", "Neg9", "FAM177B", "ACTR3", "PTBP1", "DNM1", "NT5C", "PTBP1", "ARHGAP44", "Neg9", "ACTR3", "SRSF1", "C1S", "IPO8", "WDR75", "NT5C", "FAM177B", "COPB1", "ARHGAP44", "Neg9", "GPT", "KIF11", "GPT", "DENND4C", "AURKB"] _features = ['Metadata_BaseFileName', 'FileName_ColorImage', 'Location_Center_X', 'Location_Center_Y', 'Mean_Golgi_AreaShape_Center_X', 'Mean_Golgi_AreaShape_Center_Y', 'Mean_Nuclei_AreaShape_Solidity', 'Metadata_U', 'Metadata_V', 'Metadata_X', 'Metadata_Y', 'ImageQuality_PowerLogLogSlope_Dna', 'Intensity_IntegratedIntensity_GolgiBGCorr', 'Mean_Nuclei_Math_CV', 'Math_Blobness', 'Math_Diffuseness', 'Children_Golgi_Count', 'Mean_MaxAreaGolgi_AreaShape_FormFactor'] treatment_column = 'Gene' treatment_index = 'Metadata_Y' numerics = ['int16', 'int32', 'int64', 'float16', 'float32', 'float64'] ######################################################################################################## def loadData(regenerate_crops=True, no_treatments=False, subfolder=None): """ regenerate_crops = rewrites crops. Put it to false to save computation time if you are reloading the data from a previous selection. no_treatment = if no treatments and there is a full population of cells. """ data_folder = os.getcwd() if subfolder: data_folder = os.path.join(data_folder, subfolder) df = pd.DataFrame() dft = getDataTables(data_folder, not no_treatments) dft = cropImages(data_folder, dft, subfolder =subfolder, regenerate_crops=True) df = pd.concat([df, dft], ignore_index=True) print("-- DATA on " + data_folder + " LOADED --") return df def getDataTables(dirSample, treatment=True): """ dirSample : directory where info from CellProfiler was stored. --cp is the folder and it has to be subdivided in the folder tables and images. treatment : to split data by treatment. Follows from method loadData """ flist = glob.glob(dirSample + "\\*--cp*") flistdir = [f for f in flist if os.path.isdir(f)] if len(flistdir) == 0: raise Exception('--cp folder not found in :' + dirSample) flist2 = glob.glob(flistdir[0] + "\\*tables*") flistdir2 = [f for f in flist2 if os.path.isdir(f)] if flistdir2 is None: raise Exception('Tables folder not found :' + dirSample) return getData(flistdir2[0], treatment) def getData(mainfolder, treatment=True): all_data = all_data_in_one_table(mainfolder) all_data = all_data[_features] all_data = all_data.dropna() if treatment: for ind, el in enumerate(_treatments): all_data.loc[all_data[treatment_index] == ind, treatment_column] = el else: all_data[treatment_column] = 'UMO' # Unknown # Remove original columns return all_data def cropImages(data_sample, dft, subfolder = None, spacing=50, regenerate_crops=True, color=(25, 255, 255)): """ Searches for a folder with --cp and adds the address of the crop to the dataframe. """ # For every row, find the image flist = glob.glob(data_sample + "\\*--cp*") flistdir = [f for f in flist if os.path.isdir(f)] if len(flistdir) == 0: raise Exception('--cp folder not found in :' + data_sample) flist2 = glob.glob(flistdir[0] + "\\*images*") flistimages = [f for f in flist2 if os.path.isdir(f)] if flistimages is None: raise Exception('Images folder not found :' + data_sample) # Create a folder for crops dir_to_save = data_sample + "\\crops" try: os.makedirs(dir_to_save) except FileExistsError: if (regenerate_crops): shutil.rmtree(dir_to_save) try: # Try to recreate os.makedirs(dir_to_save, exist_ok=True) except OSError as e: # If problem is that directory still exists, wait a bit and try again if e.winerror == 183: time.sleep(0.01) else: raise dft["img_path"] = "" dft["img_name_raw"] = "" dft = dft.reset_index(drop=True) for row in tqdm(dft.itertuples()): ind = row.Index imname = dft.at[ind, 'FileName_ColorImage'] image_name = os.path.join(flistimages[0],str(imname)) crop_name = imname[:-4] + "_" + str(ind) + ".png" # Load image if os.path.exists(image_name): if regenerate_crops: img = cv2.imread(image_name) img = cv2.normalize(img, img, 30, 250, cv2.NORM_MINMAX) # autoBC(img) x = dft.at[ind, 'Location_Center_X'] y = dft.at[ind, 'Location_Center_Y'] # Crop around center of object (90 by 90 pixels, is more than enough) xmin = int(np.max([0, x - spacing])) xmax = int(np.min([img.shape[0] - 1, x + spacing])) ymin = int(np.max([0, y - spacing])) ymax = int(np.min([img.shape[1] - 1, y + spacing])) cv2.rectangle(img, (xmin, ymin), (xmax, ymax), color, 2) cv2.imwrite(os.path.join(dir_to_save,crop_name), img) dir_im = os.path.join(dir_to_save,crop_name) dft.at[ind, "img_path"] = dir_im if subfolder is not None: dft.at[ind, "img_name_raw"] = "."+ os.path.sep + subfolder+ os.path.sep + "crops"+ os.path.sep + crop_name else: dft.at[ind,"img_name_raw"] = "."+os.path.sep + "crops" + os.path.sep + crop_name else: print("NO-" + image_name) print(str(ind)) return dft def findTables(foldname, reg_expr): tables_list = [] dirs = [] dirs.append(foldname) while dirs: fname = dirs.pop() fname_t = str(fname) + "\\" + reg_expr flist = glob.glob(fname_t) if not flist: newdirs = ([f for f in glob.glob(fname + '\\*') if os.path.isdir(f)]) for el in newdirs: dirs.append(el) else: for el in flist: tables_list.append(el) return tables_list def all_data_in_one_table(folder_tables): tables_list = findTables(folder_tables, '*objects.csv*') tables_list_images = findTables(folder_tables, '*images.csv*') data_frames = [] # Only one file containing everything if len(tables_list_images) == 1 and len(tables_list) == 1: with open(tables_list[0], 'r') as myfile: data = myfile.read().replace('\"', '') with open(tables_list[0], 'w') as myfile: myfile.write(data) with open(tables_list_images[0], 'r') as myfile: data = myfile.read().replace('\"', '') with open(tables_list_images[0], 'w') as myfile: myfile.write(data) table = pd.read_csv(tables_list[0], ',') images = pd.read_csv(tables_list_images[0], ',') # merged_df = table.join(images,on='ImageNumber',rsuffix='_other') #ImageNumber merged_df = pd.merge(left=table, right=images, on=( 'ImageNumber', 'Metadata_BaseFileName', 'Metadata_U', 'Metadata_V', 'Metadata_X', 'Metadata_Y')) else: # For each file in folder tables select objects # compile the list of dataframes you want to merge tables_list = sorted(tables_list, key=str.lower) tables_list_images = sorted(tables_list_images, key=str.lower) for table_file, image_file in zip(tables_list, tables_list_images): with open(table_file, 'r') as myfile: data = myfile.read().replace('\"', '') with open(table_file, 'w') as myfile: myfile.write(data) with open(image_file, 'r') as myfile: data = myfile.read().replace('\"', '') with open(image_file, 'w') as myfile: myfile.write(data) table = pd.read_csv(table_file, ',') images = pd.read_csv(image_file, ',') # merge in big table ftable = table.merge(images) data_frames.append(ftable) merged_df = pd.concat(data_frames) return merged_df ####################################### PLOTTING ###############################################################3 from bokeh.layouts import layout import bokeh from bokeh.io import curdoc def grouped(iterable, n): "s -> (s0,s1,s2,...sn-1), (sn,sn+1,sn+2,...s2n-1), (s2n,s2n+1,s2n+2,...s3n-1), ..." return zip(*[iter(iterable)] * n) def plotQC(df, value, title, size=10, jitter=0.35, factor_reduce=0.5): df_i = df.dropna(subset=[value]) df_i = df_i.reset_index(drop=True) key_dimensions = [(value, title)] value_dimensions = [('Gene', 'Gene'), ('Metadata_X', 'Position')] macro = hv.Table(df_i, key_dimensions, value_dimensions) options = dict(color_index='Position', legend_position='left', jitter=jitter, width=1000, height=600, scaling_method='width', scaling_factor=2, size_index=2, show_grid=True, tools=['hover', 'box_select', 'lasso_select'], line_color='k', cmap='Category20', size=size, nonselection_color='lightskyblue') quality_scatter = macro.to.scatter('Gene', [title]).options(**options) sel = streams.Selection1D(source=quality_scatter) image_name = df_i.loc[0, "img_name_raw"] img = cv2.imread(image_name, 0) h, w = img.shape w = int(factor_reduce * w) h = int(factor_reduce * h) pad = int(2.2 * w) def selection_callback(index): if not index: return hv.Div("") divtext = f'<table width={pad} border=1 cellpadding=10 align=center valign=center>' for i, j in grouped(index, 2): value_s = '{:f}'.format(df_i[value][i]) value_s2 = '{:f}'.format(df_i[value][j]) divtext += '<tr>' divtext += f'<td align=center valign=center><br> {i} Value: {value_s}</br></td>' + "\n" divtext += f'<td align=center valign=center><br> {j} Value: {value_s2}</br></td>' + "\n" divtext += '</tr><tr>' divtext += f'<td align=center valign=center><img src={df_i.loc[i, "img_name_raw"]} width={w} height={h}></td>' divtext += f'<td align=center valign=center><img src={df_i.loc[j, "img_name_raw"]} width={w} height={h}></td>' divtext += '</tr>' if len(index) % 2 == 1: value_s = '{:f}'.format(df_i[value][index[-1]]) divtext += '<tr>' divtext += f'<td align=center valign=center><br> {index[-1]} Value: {value_s}</br></td>' + "\n" divtext += f'<td align=center valign=center><br> </br></td>' + "\n" divtext += '</tr><tr>' divtext += f'<td align=center valign=center><img src={df_i.loc[index[-1], "img_name_raw"]} width={w} height={h}></td>' divtext += f'<td align=center valign=center></td>' divtext += '</tr>' divtext += '</table>' return hv.Div(str(divtext)) div = hv.DynamicMap(selection_callback, streams=[sel]) hv.streams.PlotReset(source=quality_scatter, subscribers=[lambda reset: sel.event(index=[])]) return hv.Layout(quality_scatter + div).cols(1), sel def applyQC(idf, column, vmin=None, vmax=None): print("QC for " + str(column)) if vmin is None: vmin = -np.inf if vmax is None: vmax = np.inf print("Values applied :[" + str(vmin) + "," + str(vmax) + "].") print("Original number of cells:" + str(len(idf))) idf = idf.dropna(subset=[column]) idf = idf[idf[column] > vmin] idf = idf[idf[column] < vmax] print("After applying control " + column + " :" + str(len(idf))) print("---QC " + str(column) + " done.") idf = idf.reset_index(drop=True) return idf def getZscore(all_data, hue=None, column=None, remove_outliers=True): """ :param all_data: dataframe :param hue: if hue is not given, each column normalizes against itself : value - mean / std if hue is given, then data is grouped by hue and normalized by group : value - mean(of its group)/std(of its group) :param column: if column is given (hue must be given too), then the data is grouped by hue, and then grouped again by column. For example we might want to group data first by study, and then by gene. :param remove_outliers: If True, data passing 4 times std is removed. We decided to use 4 only to remove outliers that are potential numerical errors, not from the standard distribution of the data. :return: """ z_score = all_data if hue is not None: final_df = pd.DataFrame() m_indexes = list(all_data[hue].unique()) for el in m_indexes: data_calc = all_data.loc[all_data[hue] == el, :].copy() if (column is not None): m_indexes2 = list(data_calc[column].unique()) for el2 in m_indexes2: data_calc2 = data_calc.loc[data_calc[column] == el2, :].copy() calc_d = data_calc2.select_dtypes(include=numerics) for col in calc_d: if col != hue and col != column: col_zscore = col + '_zscore' data_calc2.loc[:, col_zscore] = (calc_d[col] - calc_d[col].mean()) / calc_d[col].std(ddof=0) if remove_outliers: data_calc2 = data_calc2[data_calc2[col_zscore] < 4 * data_calc2[col_zscore].std()] final_df = pd.concat([final_df, data_calc2]) else: calc_d = data_calc.select_dtypes(include=numerics) for col in calc_d: if col != hue: col_zscore = col + '_zscore' data_calc.loc[:, col_zscore] = (calc_d[col] - calc_d[col].mean()) / calc_d[col].std(ddof=0) if remove_outliers: data_calc = data_calc[data_calc[col_zscore] < 4 * data_calc[col_zscore].std()] final_df = pd.concat([final_df, data_calc]) else: for col in all_data: col_zscore = col + '_zscore' z_score[col_zscore] = (z_score[col] - z_score[col].mean()) / z_score[col].std(ddof=0) final_df = z_score return final_df def getZscoreAgainstControl(all_data, hue, control, remove_outliers=True, drop_index=True): """ :param all_data: dataframe :param remove_outliers: If True, data passing 4 times std is removed. We decided to use 4 only to remove outliers that are potential numerical errors, not from the standard distribution of the data. :return: """ final_df = pd.DataFrame() m_indexes = list(all_data[hue].unique().astype('str')) query_one = "" for el in control: if el in m_indexes: query_one = query_one + hue + "==\'" + str(el) + "\'|" else: return query_one = query_one[:-1] # remove last or df_q = all_data.query(query_one).copy() if remove_outliers: for col in all_data.select_dtypes(include=numerics): df_q = df_q[np.abs(df_q[col] - df_q[col].mean()) < np.abs(3 * df_q[col].std())] if drop_index: df_q = df_q.reset_index(drop=True) all_data = df_q.copy() eps = 1e-15 for el in m_indexes: data_calc = all_data.query(hue + "==\'" + str(el) + "\'").copy() data_calc = data_calc.reset_index(drop=drop_index) for col in data_calc.select_dtypes(include=numerics): if col != hue and col != 'index': col_zscore = col + '_zscore' data_calc[col_zscore] = (data_calc[col] - df_q[col].mean()) / (df_q[col].std(ddof=0) + eps) if remove_outliers: data_calc = data_calc[np.abs(data_calc[col_zscore]) < np.abs( data_calc[col_zscore].mean() + 3 * data_calc[col_zscore].std())] final_df = pd.concat([final_df, data_calc]) final_df = final_df.reset_index(drop=drop_index) return final_df def getZscoreAgainstControlPerColumn(all_data, hue, control, column): """ :param all_data: dataframe :param remove_outliers: If True, data passing 4 times std is removed. We decided to use 4 only to remove outliers that are potential numerical errors, not from the standard distribution of the data. :return: """ final_df = pd.DataFrame() m_indexes = list(all_data[hue].unique().astype('str')) query_one = "" for el in control: if el in m_indexes: query_one = query_one + hue + "==\'" + str(el) + "\'|" else: return query_one = query_one[:-1] # remove last or df_q = all_data.query(query_one).copy() eps = 1e-15 if hue is not None: for el in m_indexes: data_calc = all_data.query(hue + "==\'" + str(el) + "\'").copy() data_calc = data_calc.reset_index(drop=True) if (column is not None): m_indexes2 = list(data_calc[column].unique()) for el2 in m_indexes2: data_calc2 = data_calc.loc[data_calc[column] == el2, :].copy() data_calc2 = data_calc2.reset_index(drop=True) calc_d = data_calc2.select_dtypes(include=numerics) for col in calc_d: if col != hue and col != column: col_zscore = col + '_zscore' df_q2 = df_q.query(column + "==\'" + str(el2) + "\'").copy() data_calc2.loc[:, col_zscore] = (calc_d[col] - df_q2[col].mean()) / ( df_q2[col].std(ddof=0) + eps) final_df =
pd.concat([final_df, data_calc2])
pandas.concat
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import PerformanceWarning import pandas as pd from pandas import Period, PeriodIndex, Series, period_range from pandas.core import ops from pandas.core.arrays import TimedeltaArray import pandas.util.testing as tm from pandas.tseries.frequencies import to_offset # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", 2017]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != per, exp) tm.assert_equal(per != base, exp) exp = np.array([False, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > per, exp) tm.assert_equal(per < base, exp) exp = np.array([True, False, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < per, exp) tm.assert_equal(per > base, exp) exp = np.array([False, True, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= per, exp) tm.assert_equal(per <= base, exp) exp = np.array([True, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= per, exp) tm.assert_equal(per >= base, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) # TODO: could also box idx? idx = PeriodIndex(["2011-02", "2011-01", "2011-03", "2011-05"], freq=freq) exp = np.array([False, False, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == idx, exp) exp = np.array([True, True, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != idx, exp) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > idx, exp) exp = np.array([True, False, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < idx, exp) exp = np.array([False, True, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= idx, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= idx, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi_mismatched_freq_raises(self, freq, box_with_array): # GH#13200 # different base freq base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) msg = "Input has different freq=A-DEC from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="A") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="A") >= base # TODO: Could parametrize over boxes for idx? idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="A") rev_msg = ( r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=A-DEC\)" ) idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx # Different frequency msg = "Input has different freq=4M from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="4M") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="4M") >= base idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="4M") rev_msg = r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=4M\)" idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) result = idx1 > Period("2011-02", freq=freq) exp = np.array([False, False, False, True]) tm.assert_numpy_array_equal(result, exp) result = Period("2011-02", freq=freq) < idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 == Period("NaT", freq=freq) exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) == idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 != Period("NaT", freq=freq) exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) != idx1 tm.assert_numpy_array_equal(result, exp) idx2 = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq=freq) result = idx1 < idx2 exp = np.array([True, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx2 exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx2 exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx1 exp = np.array([True, True, False, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx1 exp = np.array([False, False, True, False]) tm.assert_numpy_array_equal(result, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat_mismatched_freq_raises(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) diff = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq="4M") msg = "Input has different freq=4M from Period(Array|Index)" with pytest.raises(IncompatibleFrequency, match=msg): idx1 > diff with pytest.raises(IncompatibleFrequency, match=msg): idx1 == diff # TODO: De-duplicate with test_pi_cmp_nat @pytest.mark.parametrize("dtype", [object, None]) def test_comp_nat(self, dtype): left = pd.PeriodIndex( [pd.Period("2011-01-01"), pd.NaT, pd.Period("2011-01-03")] ) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period("2011-01-03")]) if dtype is not None: left = left.astype(dtype) right = right.astype(dtype) result = left == right expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = left != right expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == right, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(left != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != left, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > left, expected) class TestPeriodSeriesComparisons: def test_cmp_series_period_series_mixed_freq(self): # GH#13200 base = Series( [ Period("2011", freq="A"), Period("2011-02", freq="M"), Period("2013", freq="A"), Period("2011-04", freq="M"), ] ) ser = Series( [ Period("2012", freq="A"), Period("2011-01", freq="M"), Period("2013", freq="A"), Period("2011-05", freq="M"), ] ) exp = Series([False, False, True, False]) tm.assert_series_equal(base == ser, exp) exp = Series([True, True, False, True]) tm.assert_series_equal(base != ser, exp) exp = Series([False, True, False, False]) tm.assert_series_equal(base > ser, exp) exp = Series([True, False, False, True]) tm.assert_series_equal(base < ser, exp) exp = Series([False, True, True, False]) tm.assert_series_equal(base >= ser, exp) exp = Series([True, False, True, True]) tm.assert_series_equal(base <= ser, exp) class TestPeriodIndexSeriesComparisonConsistency: """ Test PeriodIndex and Period Series Ops consistency """ # TODO: needs parametrization+de-duplication def _check(self, values, func, expected): # Test PeriodIndex and Period Series Ops consistency idx = pd.PeriodIndex(values) result = func(idx) # check that we don't pass an unwanted type to tm.assert_equal assert isinstance(expected, (pd.Index, np.ndarray)) tm.assert_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_comp_period(self): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.Period("2011-03", freq="M") exp = np.array([False, False, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) def test_pi_comp_period_nat(self): idx = PeriodIndex( ["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x == pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: x != pd.NaT exp = np.array([True, True, True, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x < pd.Period("2011-03", freq="M") exp = np.array([True, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT >= x exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) # ------------------------------------------------------------------ # Arithmetic class TestPeriodFrameArithmetic: def test_ops_frame_period(self): # GH#13043 df = pd.DataFrame( { "A": [pd.Period("2015-01", freq="M"), pd.Period("2015-02", freq="M")], "B": [pd.Period("2014-01", freq="M"), pd.Period("2014-02", freq="M")], } ) assert df["A"].dtype == "Period[M]" assert df["B"].dtype == "Period[M]" p = pd.Period("2015-03", freq="M") off = p.freq # dtype will be object because of original dtype exp = pd.DataFrame( { "A": np.array([2 * off, 1 * off], dtype=object), "B": np.array([14 * off, 13 * off], dtype=object), } ) tm.assert_frame_equal(p - df, exp) tm.assert_frame_equal(df - p, -1 * exp) df2 = pd.DataFrame( { "A": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], "B": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], } ) assert df2["A"].dtype == "Period[M]" assert df2["B"].dtype == "Period[M]" exp = pd.DataFrame( { "A": np.array([4 * off, 4 * off], dtype=object), "B": np.array([16 * off, 16 * off], dtype=object), } ) tm.assert_frame_equal(df2 - df, exp) tm.assert_frame_equal(df - df2, -1 * exp) class TestPeriodIndexArithmetic: # --------------------------------------------------------------- # __add__/__sub__ with PeriodIndex # PeriodIndex + other is defined for integers and timedelta-like others # PeriodIndex - other is defined for integers, timedelta-like others, # and PeriodIndex (with matching freq) def test_parr_add_iadd_parr_raises(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) # An earlier implementation of PeriodIndex addition performed # a set operation (union). This has since been changed to # raise a TypeError. See GH#14164 and GH#13077 for historical # reference. with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other def test_pi_sub_isub_pi(self): # GH#20049 # For historical reference see GH#14164, GH#13077. # PeriodIndex subtraction originally performed set difference, # then changed to raise TypeError before being implemented in GH#20049 rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) off = rng.freq expected = pd.Index([-5 * off] * 5) result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_sub_pi_with_nat(self): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = rng[1:].insert(0, pd.NaT) assert other[1:].equals(rng[1:]) result = rng - other off = rng.freq expected = pd.Index([pd.NaT, 0 * off, 0 * off, 0 * off, 0 * off]) tm.assert_index_equal(result, expected) def test_parr_sub_pi_mismatched_freq(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="H", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) with pytest.raises(IncompatibleFrequency): rng - other @pytest.mark.parametrize("n", [1, 2, 3, 4]) def test_sub_n_gt_1_ticks(self, tick_classes, n): # GH 23878 p1_d = "19910905" p2_d = "19920406" p1 = pd.PeriodIndex([p1_d], freq=tick_classes(n)) p2 = pd.PeriodIndex([p2_d], freq=tick_classes(n)) expected = pd.PeriodIndex([p2_d], freq=p2.freq.base) - pd.PeriodIndex( [p1_d], freq=p1.freq.base ) tm.assert_index_equal((p2 - p1), expected) @pytest.mark.parametrize("n", [1, 2, 3, 4]) @pytest.mark.parametrize( "offset, kwd_name", [ (pd.offsets.YearEnd, "month"), (pd.offsets.QuarterEnd, "startingMonth"), (pd.offsets.MonthEnd, None), (pd.offsets.Week, "weekday"), ], ) def test_sub_n_gt_1_offsets(self, offset, kwd_name, n): # GH 23878 kwds = {kwd_name: 3} if kwd_name is not None else {} p1_d = "19910905" p2_d = "19920406" freq = offset(n, normalize=False, **kwds) p1 = pd.PeriodIndex([p1_d], freq=freq) p2 = pd.PeriodIndex([p2_d], freq=freq) result = p2 - p1 expected = pd.PeriodIndex([p2_d], freq=freq.base) - pd.PeriodIndex( [p1_d], freq=freq.base ) tm.assert_index_equal(result, expected) # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize("other", [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub]) def test_parr_add_sub_float_raises(self, op, other, box_with_array): dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") pi = dti.to_period("D") pi = tm.box_expected(pi, box_with_array) with pytest.raises(TypeError): op(pi, other) @pytest.mark.parametrize( "other", [ # datetime scalars pd.Timestamp.now(), pd.Timestamp.now().to_pydatetime(), pd.Timestamp.now().to_datetime64(), # datetime-like arrays pd.date_range("2016-01-01", periods=3, freq="H"),
pd.date_range("2016-01-01", periods=3, tz="Europe/Brussels")
pandas.date_range
# -*- coding: utf-8 -*- """ Consensus non-negative matrix factorization (cNMF) adapted from (Kotliar, et al. 2019) """ import numpy as np import pandas as pd import os, errno import glob import shutil import datetime import uuid import itertools import yaml import subprocess import scipy.sparse as sp import warnings from scipy.spatial.distance import squareform from sklearn.decomposition import non_negative_factorization from sklearn.cluster import KMeans from sklearn.metrics import silhouette_score from sklearn.utils import sparsefuncs from sklearn.preprocessing import normalize from fastcluster import linkage from scipy.cluster.hierarchy import leaves_list import matplotlib.pyplot as plt import scanpy as sc from ._version import get_versions def save_df_to_npz(obj, filename): """ Saves numpy array to `.npz` file """ with warnings.catch_warnings(): warnings.filterwarnings("ignore") np.savez_compressed( filename, data=obj.values, index=obj.index.values, columns=obj.columns.values, ) def save_df_to_text(obj, filename): """ Saves numpy array to tab-delimited text file """ obj.to_csv(filename, sep="\t") def load_df_from_npz(filename): """ Loads numpy array from `.npz` file """ with warnings.catch_warnings(): warnings.filterwarnings("ignore") with np.load(filename, allow_pickle=True) as f: obj = pd.DataFrame(**f) return obj def check_dir_exists(path): """ Checks if directory already exists or not and creates it if it doesn't """ try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def worker_filter(iterable, worker_index, total_workers): return ( p for i, p in enumerate(iterable) if (i - worker_index) % total_workers == 0 ) def fast_euclidean(mat): D = mat.dot(mat.T) squared_norms = np.diag(D).copy() D *= -2.0 D += squared_norms.reshape((-1, 1)) D += squared_norms.reshape((1, -1)) D = np.sqrt(D) D[D < 0] = 0 return squareform(D, checks=False) def fast_ols_all_cols(X, Y): pinv = np.linalg.pinv(X) beta = np.dot(pinv, Y) return beta def fast_ols_all_cols_df(X, Y): beta = fast_ols_all_cols(X, Y) beta =
pd.DataFrame(beta, index=X.columns, columns=Y.columns)
pandas.DataFrame
import pandas as pd import numpy as np import glob import sys import re from scipy import interpolate from astropy.cosmology import Planck15 as cosmo from astropy.cosmology import z_at_value import astropy.units as u from cosmic.evolve import Evolve from cosmic.sample.initialbinarytable import InitialBinaryTable #---------------------------------------------------------------------------------- ## phsyical constants c = 2.99e10 ## speed of light in cm/s secyr = 3.154e7 ## seconds per year Myr = 1e6 ## years per Myr Msun = 1.989e33 ## grams per solar mass Lsun = 3.839e33 ## erg/sec per solar luminosity #----------------------------------------------------------------------------------- ## analytic approximation for P(omega) from Dominik et al. 2015 def P_omega(omega_values): return 0.374222*(1-omega_values)**2 + 2.04216*(1-omega_values)**4 - 2.63948*(1-omega_values)**8 + 1.222543*(1-omega_values)**10 #---------------------------------------------------------------------------------- ### Monte Carlo sampling for detections above the given SNR threshold \ def calc_detection_prob(m1, m2, z_merge): ## constants that reflect LIGO design sensitivity d_L8 = 1 ## in Gpc M_8 = 10 ## in Msun \ SNR_thresh = 8 ## approximate typical SNR from Fishbach et al. 2018 M_chirp = (m1*m2)**(3./5)/(m1+m2)**(1./5) d_C = cosmo.comoving_distance(z_merge).to(u.Gpc).value d_L = (1+z_merge)*d_C rho_0 = 8*(M_chirp*(1+z_merge)/M_8)**(5./6)*d_L8/d_L ## this is the "typical/optimal" SNR if (rho_0 < SNR_thresh): return 0 ## sample omega according to distribution for omega via inverse CDF method dist_size = 10000 sample_size = 1000 P_omega_dist = P_omega(np.linspace(0, 1, dist_size)) inv_P_omega = interpolate.interp1d(P_omega_dist, np.linspace(0, 1, dist_size), fill_value="extrapolate") omega = inv_P_omega(np.random.uniform(0, 1, sample_size)) ## find the true SNRs given sky location rho = omega*rho_0 accept_SNR_num = len(rho[np.where(rho >= SNR_thresh)]) p_det = accept_SNR_num/sample_size return p_det #-----------------------------------------------------------------------------------# def calc_flux(current_BH_mass, initial_BH_mass, mdot_BH, d_L): bolometric_correction = 0.8 where_lower_masses = current_BH_mass < np.sqrt(6)*initial_BH_mass eta_lower_masses = 1 - np.sqrt(1-(current_BH_mass/(3*initial_BH_mass))**2) eta = np.where(where_lower_masses, eta_lower_masses, 0.42) acc_rate = mdot_BH/(1-eta) ## accretion rate in Msun/year luminosity = bolometric_correction*eta*acc_rate*c**2*Msun/secyr ## accretion luminosity in erg/sec flux = luminosity/(4 * np.pi * d_L**2) ## flux in erg/s/cm^2 return flux #---------------------------------------------------------------------------------- columns=['bin_num', 'metallicity', 'merger_type', 'bin_state', 'delay_time', 'lookback_time', 'z_f', 'p_det', 'p_cosmic', 'merge_by_z0', 'ZAMS_mass_k1','ZAMS_mass_k2', 'remnant_mass_k1', 'remnant_mass_k2', 'final_k1', 'final_k2', 'BH_mass_i', 'donor_mass_i', 'donor_type', 'XRB_sep_i', 'XRB_porb_i', 'emit11', 'emit13', 'emit15', 'emit_tot', 'this_BBH', 'this_BBHm', 'this_HMXB'] df_all = pd.DataFrame(columns=columns) sampled_pop = pd.read_csv(sys.argv[1]) ## file of sampled population; file is structured like bpp array, csv format sampled_initC =
pd.read_csv(sys.argv[2])
pandas.read_csv
from scrapers import scraper_modules as sm import pandas as pd from bs4 import BeautifulSoup link = 'https://listsofjohn.com/PeakStats/select.php?R=P&sort=&P=0&S=WA' def get_a_tags(html: str): html_soup = BeautifulSoup(html, 'html.parser') table_rows = html_soup.find_all('tr') a_tags = [] for tr in table_rows: a_tag = tr.find('a') a_tags.append(a_tag) return a_tags def create_csv(): html = sm.download_html(link) list_of_a_tags = get_a_tags(html) peaks_dict = sm.create_peaks_dict(list_of_a_tags, 'a', title_retrieval_method=None) df =
pd.DataFrame(peaks_dict)
pandas.DataFrame
#!/usr/bin/python # columns axis=0 (the default) # rows axis=1 from scipy.interpolate import spline import matplotlib.pyplot as plt import matplotlib.dates as mdates import pandas as pd import numpy as np import seaborn as sns import datetime import calendar import json MOOD_INFO_FILE = "moods_info.json" MOOD_DATA_FILE = "mood.csv" # lists of column titles that belong to each year in (2020, 2021) MONTHS_2020 = ["1-20","2-20","3-20","4-20","5-20","6-20","7-20","8-20","9-20","10-20","11-20","12-20"] MONTHS_2021 = ["1-21","2-21","3-21","4-21","5-21","6-21","7-21","8-21","9-21","10-21","11-21","12-21"] BASE_DATE = datetime.date(2020, 1, 1) # maps characters from csv to moods char_mood_mapping = { "a": "happy", "b": "relaxed", "c": "neutral", "d": "anxious", "e": "sad", "f": "upset" } def read_input(): '''Read in, parse, and print input data.''' with open(MOOD_INFO_FILE) as file: mood_info = json.load(file) df = pd.read_csv(MOOD_DATA_FILE) print("raw data...\n") counts(df) return mood_info, df def counts(df): '''Collapse original df into monthly counts to summarize data.''' df_monthly_counts = df.apply(pd.value_counts) df_monthly_counts.drop(["x"], inplace=True) df_monthly_counts.rename(index=char_mood_mapping, inplace=True) print(df_monthly_counts) def get_days_and_percentages(df, mood_info): '''Calculate day counts and percentages by mood.''' total_days = df.shape[0] * df.shape[1] - (df.values == "x").sum() days = [] percents = [] for m in mood_info.keys(): num_days = (df.values == mood_info[m]["char"]).sum() days.append(num_days) percent = int(round(num_days/total_days, 2) * 100) percents.append(percent) return days, percents def total(df, mood_info): days, percents = get_days_and_percentages(df, mood_info) percents_str = [str(p) + "%" for p in percents] df_total = pd.DataFrame({'days':days,'%':percents_str}, index=list(mood_info.keys())) print("in total...\n\n", df_total.to_string(), end="\n\n") def annual(df, mood_info): '''Plot bar chart of annual mood percentages.''' # 2020 days2020, percents2020 = get_days_and_percentages(df[MONTHS_2020], mood_info) ser2020 = pd.Series(percents2020, index=list(mood_info.keys())) # 2021 days2021, percents2021 = get_days_and_percentages(df[MONTHS_2021], mood_info) ser2021 = pd.Series(percents2021, index=list(mood_info.keys())) # plot double bar: https://stackoverflow.com/questions/53228762/matplotlib-double-bar-graph-with-pandas-series annual_df =
pd.DataFrame({"2020":ser2020, "2021":ser2021})
pandas.DataFrame
import numpy as np import seaborn as sns import pandas as pd import math import matplotlib.pyplot as plt plt.rcParams.update({ "text.usetex": True, "font.family": "sans-serif", "font.sans-serif": ["Helvetica"], "text.latex.preamble": [r'\usepackage{amsfonts}'], 'font.size': 15, "xtick.labelsize": 15, # large tick labels "ytick.labelsize": 15, # large tick labels 'figure.figsize': [9, 6]} # default: 6.4 and 4.8 ) def barplot_err(x, y, yerr=None, legend_loc=0, data=None, ax=None, **kwargs): _data = [] for _i in data.index: _row = data.loc[_i] if _row[yerr] is not None: _data_i = pd.concat([data.loc[_i:_i]] * 3, ignore_index=True, sort=False) _data_i[y] = [_row[y] - _row[yerr], _row[y], _row[y] + _row[yerr]] else: _data_i = pd.concat([data.loc[_i:_i]], ignore_index=True, sort=False) _data_i[y] = _row[y] _data.append(_data_i) _data = pd.concat(_data, ignore_index=True, sort=False) _ax = sns.barplot(x=x, y=y, data=_data, ci='sd', ax=ax, **kwargs) _ax.legend(loc=legend_loc, fontsize=12) # _ax.set_yscale("log") return _ax def plotLossFunction(results_folder_path, save_pdf=False): plt.figure("Loss function") filename2 = results_folder_path + "training_history.csv" training_history = np.loadtxt(filename2, delimiter=",", skiprows=1) steps = training_history[:, 0].astype(int) loss_trj = training_history[:, 1] cpu_time = training_history[-1, 2] print("Training time %d seconds" % cpu_time) # plot the loss function plt.plot(steps, loss_trj, color='g', linewidth=2) plt.xlabel('Steps') plt.ylabel('Loss') if save_pdf: plt.savefig(results_folder_path + "loss_function.pdf", bbox_inches='tight', transparent="False", pad_inches=0) # # def plotFunctionTrajectory(results_folder_path, func_names): # plt.figure("Function Trajectory") # filename = results_folder_path + "function_value_data.csv" # filename2 = results_folder_path + "training_history.csv" # training_history = np.loadtxt(filename2, delimiter=",", skiprows=1) # steps = training_history[:, 0].astype(int) # loss_trj = training_history[:, 1] # cpu_time = training_history[-1, 2] # del training_history # print("Training time %d seconds" % cpu_time) # # function_value_data = pd.read_csv(filename, delimiter=",", # names=func_names) # # function_value_data.insert(loc=0, column="Steps", value=steps) # function_value_data.set_index("Steps") # sns.set(rc={'figure.figsize': (10, 7)}) # for f in func_names: # ax = sns.lineplot(x="Steps", y=f, data=function_value_data) # ax.set(ylabel="function values") # plt.legend(labels=func_names) def plot_validation_charts_function(results_folder_path, func_names, exact_values, save_pdf=False): filename = results_folder_path + "function_value_data.csv" function_value_data = pd.read_csv(filename, delimiter=",", names=func_names) dnn_func_values = function_value_data.tail(1).to_numpy()[0, :] del function_value_data # we first compare the mean function estimates filename = results_folder_path + "SimulationValidation.txt" function_value_data = pd.read_csv(filename, delimiter=",", names=func_names, skiprows=3) ssa_func_values_mean = function_value_data.values[0, :] ssa_func_values_std = function_value_data.values[1, :] dict1 = {"Function": func_names, "Estimate": ssa_func_values_mean, "Error": 1.96 * ssa_func_values_std, "Estimator": "SSA"} dict2 = {"Function": func_names, "Estimate": dnn_func_values, "Error": None, "Estimator": "DeepCME"} df1 = pd.DataFrame(dict1) df2 = pd.DataFrame(dict2) if exact_values is not None: dict3 = {"Function": func_names, "Estimate": np.array(exact_values), "Error": None, "Estimator": "Exact"} df3 = pd.DataFrame(dict3) df = pd.concat([df2, df1, df3]) else: filename = results_folder_path + "SimulationValidation_exact.txt" function_value_data = pd.read_csv(filename, delimiter=",", names=func_names, skiprows=3) sim_est_func_values_mean2 = function_value_data.values[0, :] sim_est_values_std2 = function_value_data.values[1, :] dict3 = {"Function": func_names, "Estimate": sim_est_func_values_mean2, "Error": 1.96 * sim_est_values_std2, "Estimator": "mNRM ($10^4$ samples)"} df3 = pd.DataFrame(dict3) df = pd.concat([df2, df1, df3]) df.set_index(np.arange(0, 3 * len(func_names)), inplace=True) plt.figure("Estimated function values") barplot_err(x="Function", y="Estimate", legend_loc=3, yerr="Error", hue="Estimator", capsize=.2, data=df) if save_pdf: plt.savefig(results_folder_path + "func_estimates.pdf", bbox_inches='tight', transparent="False", pad_inches=0) def plot_validation_charts_function_separate(results_folder_path, func_names, exact_values, save_pdf=False): filename = results_folder_path + "function_value_data.csv" function_value_data = pd.read_csv(filename, delimiter=",", names=func_names) dnn_func_values = function_value_data.tail(1).to_numpy()[0, :] print(dnn_func_values) del function_value_data # we first compare the mean function estimates filename = results_folder_path + "SimulationValidation.txt" function_value_data = pd.read_csv(filename, delimiter=",", names=func_names, skiprows=3) sim_est_func_values_mean = function_value_data.values[0, :] sim_est_values_std = function_value_data.values[1, :] dict1 = {"Function": func_names, "Estimate": sim_est_func_values_mean, "Error": 1.96 * sim_est_values_std, "Estimator": "mNRM ($10^3$ samples)"} dict2 = {"Function": func_names, "Estimate": dnn_func_values, "Error": None, "Estimator": "DeepCME"} df1 = pd.DataFrame(dict1) df2 = pd.DataFrame(dict2) if exact_values is not None: dict3 = {"Function": func_names, "Estimate": np.array(exact_values), "Error": None, "Estimator": "Exact"} df3 = pd.DataFrame(dict3) df = pd.concat([df2, df1, df3]) else: filename = results_folder_path + "SimulationValidation_exact.txt" function_value_data = pd.read_csv(filename, delimiter=",", names=func_names, skiprows=3) sim_est_func_values_mean2 = function_value_data.values[0, :] sim_est_values_std2 = function_value_data.values[1, :] dict3 = {"Function": func_names, "Estimate": sim_est_func_values_mean2, "Error": 1.96 * sim_est_values_std2, "Estimator": "mNRM ($10^4$ samples)"} df3 = pd.DataFrame(dict3) df = pd.concat([df2, df1, df3]) df.set_index(np.arange(0, 3 * len(func_names)), inplace=True) fig, axs = plt.subplots(1, len(func_names), num="Estimated function values") for i in range(len(func_names)): barplot_err(x="Function", y="Estimate", legend_loc=3, yerr="Error", hue="Estimator", capsize=.2, data=df.loc[df["Function"] == func_names[i]], ax=axs[i]) if i == 0: axs[i].set_ylabel("Function Estimate") else: axs[i].set_ylabel("") axs[i].set_title(func_names[i]) axs[i].set_xticklabels("") axs[i].set_xlabel("") if save_pdf: plt.savefig(results_folder_path + "func_estimates.pdf", bbox_inches='tight', transparent="False", pad_inches=0) def plot_validation_charts_sensitivity(results_folder_path, func_names, parameter_list, parameter_labels, exact_sens_estimates, save_pdf=False): filename1 = results_folder_path + "BPA_Sens_Values.txt" filename2 = results_folder_path + "DNN_Sens_Values.txt" filename3 = results_folder_path + "BPA_Sens_Values_exact.txt" if exact_sens_estimates is not None: sens_exact2 = pd.DataFrame(exact_sens_estimates, columns=func_names) func_names.insert(0, "Parameter") else: func_names.insert(0, "Parameter") sens_exact2 = pd.read_csv(filename3, delimiter=",", names=func_names, skiprows=3) sens_bpa2 = pd.read_csv(filename1, delimiter=",", names=func_names, skiprows=3) sens_dnn2 = pd.read_csv(filename2, delimiter=",", names=func_names, skiprows=1) if exact_sens_estimates is not None: sens_exact2.insert(0, "Parameter", sens_dnn2["Parameter"]) if parameter_list: _extended = [] for param in parameter_list: _extended.append(param + "(std.)") for param in _extended: parameter_list.append(param) sens_bpa = sens_bpa2[sens_bpa2["Parameter"].isin(parameter_list)] sens_dnn = sens_dnn2[sens_dnn2["Parameter"].isin(parameter_list)] sens_exact = sens_exact2[sens_exact2["Parameter"].isin(parameter_list)] else: sens_bpa = sens_bpa2 sens_dnn = sens_dnn2 sens_exact = sens_exact2 addl_col1 = ["BPA ($10^3$ samples)" for _ in range(len(sens_bpa.index))] addl_col2 = ["DeepCME" for _ in range(len(sens_dnn.index))] if exact_sens_estimates is not None: addl_col3 = ["Exact" for _ in range(len(sens_exact.index))] else: addl_col3 = ["BPA ($10^4$ samples)" for _ in range(len(sens_exact.index))] sens_bpa.insert(3, "Estimator", addl_col1) sens_dnn.insert(3, "Estimator", addl_col2) sens_exact.insert(3, "Estimator", addl_col3) sens_bpa_mean = sens_bpa.head(int(sens_bpa.shape[0] / 2)) sens_bpa_mean_std = sens_bpa.tail(int(sens_bpa.shape[0] / 2)) if exact_sens_estimates is None: sens_exact_mean = sens_exact.head(int(sens_exact.shape[0] / 2)) sens_exact_mean_std = sens_exact.tail(int(sens_exact.shape[0] / 2)) fig, axs = plt.subplots(1, len(func_names) - 1, num='Estimated Parameter Sensitivities for output functions') for i in range(len(func_names) - 1): # sns.barplot(data=df, x="Parameter", y=func_names[i + 1], hue="Estimator") f1 = sens_bpa_mean[["Parameter", func_names[i + 1], "Estimator"]] stds = sens_bpa_mean_std[func_names[i + 1]].to_numpy() f1.insert(2, "Error", 1.96 * stds) f2 = sens_dnn[["Parameter", func_names[i + 1], "Estimator"]] f2.insert(2, "Error", None) if exact_sens_estimates is not None: f3 = sens_exact[["Parameter", func_names[i + 1], "Estimator"]] f3.insert(2, "Error", None) df = pd.concat([f2, f1, f3]) else: f3 = sens_exact_mean[["Parameter", func_names[i + 1], "Estimator"]] stds = sens_exact_mean_std[func_names[i + 1]].to_numpy() f3.insert(2, "Error", 1.96 * stds) df =
pd.concat([f2, f1, f3])
pandas.concat
""" MIT License Copyright (c) 2021, <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------------------------------------------------ Experiment using SVM classifier ===================== This class implements our experiment using Support Vector Machine (SVM) classifier, if different classifier is required then refer to the comments in the classifier section for instructions, only few changes needed for updating the experiment Note: This experiment would need data from hypervolume calculation which can be done by using the R script (hyper_vol_usage.R) This experiment uses optional sklearnex package to provoide optimization for sklearn library running on intel processors """ import collections import sys from operator import itemgetter from sklearn.cluster import KMeans from source_code.adversaries.kpp_attack import KppAttack from source_code.adversaries.mk_attack import MkAttack from source_code.adversaries.stat_attack import StatAttack from source_code.adversaries.hyp_attack import HypVolAttack from source_code.dataset.biometric_dataset import BioDataSet import numpy as np import pandas as pd import os import seaborn as sns from joblib import dump, load import matplotlib.pyplot as plt from source_code.metrics.confusion_matrix import ConfusionMatrix from source_code.metrics.fcs import FCS from source_code.metrics.roc_curve import RocCurve from source_code.synth_data_gen.gauss_blob_generator import GaussBlob from source_code.analytics.dataoverlap_interval import OverLapInt import traceback class HypExp: def __init__(self, pop_df, attack_df, pop_classifier_path, pos_user_per_dim_ol_path, active_gr, results_save_path=None, attack_samples=1000, boot_strap_st_at=False, bs_data_path=None, bs_mul=1, hv_cut_off=0.04, gr2_per_dim_ol_path=None, std_dev_at_gr=5, clf_type=None, hyp_at_u_data=None, rand_state=None, train_data_size=0.6, train_classifiers=False, cluster_data_path=None, hyp_vol_data_path=None, num_cls=None, cv=10, random_grid_search_iter=25): self.pop_df = pop_df.copy() self.attack_df = attack_df.copy() self.active_gr = active_gr self.classifier_training = train_classifiers self.results_save_path = results_save_path self.clf_type = clf_type self.rand_state = rand_state self.attack_samples = attack_samples self.boot_strap_st_at = boot_strap_st_at self.train_data_size = train_data_size self.num_cls = num_cls self.cv = cv self.n_iter = random_grid_search_iter self.bs_mul = bs_mul self.hv_cut_off = hv_cut_off self.feat_list = None self.clf_path = pop_classifier_path self.pos_user_per_dim_ol_path = pos_user_per_dim_ol_path self.bs_data_path = bs_data_path self.gr2_per_dim_ol_path = gr2_per_dim_ol_path self.std_dev_at_gr = std_dev_at_gr self.cluster_data_path = cluster_data_path self.hyp_vol_data_path = hyp_vol_data_path # creating dictionaries for data gathering self.test_prd_dict = dict() self.test_prd_prob_dict = dict() self.test_cm_dict = dict() self.test_precision = dict() self.roc_dict = dict() self.fcs_dict = dict() self.fcs_plt = dict() self.att_prd_mk = dict() self.att_prd_prob_mk = dict() self.att_prd_kpp = dict() self.att_prd_prob_kpp = dict() self.att_prd_stat = dict() self.att_prd_prob_stat = dict() self.att_prd_hyp = dict() self.att_prd_prob_hyp = dict() # Attack Data self.attack_df_kpp = None self.attack_df_mk = None self.attack_df_stat = None if hyp_at_u_data is not None: self.attack_df_hyp = hyp_at_u_data else: self.attack_df_hyp = None # Result Data self.acc_res_full_df = None self.acc_res_df = None self.acc_per_df = None self.acc_eer_df = None self.stack_res_df = None return def run_exp(self): data_group_1 = dict() clf_dict = dict() gr2_means = self.attack_df.mean() gr2_means_fv = gr2_means.drop('user', axis=0).to_numpy().reshape(1, -1) gr2_std = self.attack_df.std() gr2_std_fv = gr2_std.drop('user', axis=0).to_numpy().reshape(1, -1) tb_data_group_1 = BioDataSet(feature_data_frame=self.pop_df, random_state=self.rand_state) tb_data_group_2 = BioDataSet(feature_data_frame=self.attack_df, random_state=self.rand_state) # Extracting users in both groups users_group_1 = tb_data_group_1.user_list users_group_2 = tb_data_group_2.user_list self.feat_list = self.pop_df.columns.drop('user').to_list() """ Generating user data """ user_g1_df_dict = dict() for user in users_group_1: data_group_1[user] = tb_data_group_1.get_data_set(user, neg_sample_sources=None, neg_test_limit=True) user_g1_df_dict[user] = self.pop_df[self.pop_df['user'] == user] if self.classifier_training is True: scoring_metric = 'precision' self.cv = 10 # specify a number for cv fold cross validation self.n_iter = 25 #number of iterations for random grid search precision_tup = list() eer_tup = list() print(f"training classifiers") if self.clf_type == 'svm': # Commnet out two lines below if not using an intel processor or sklearnex is not installed from sklearnex import patch_sklearn patch_sklearn() from classifiers.svm_classifier import SvmClassifier # Classifier training grid params, update with classifer specic hyper parameters c_range = np.unique(np.logspace(start=0.1, stop=4, num=100 + 20, dtype=int)) grid_svm = {'estimator__C': c_range, 'estimator__gamma': ['auto', 'scale']} # Update classifier on line below for using a different classifer clf_dict = {usr: SvmClassifier(pos_user=data_group_1[usr], random_state=self.rand_state) for usr in users_group_1} for usr in users_group_1: print(f'training for user {usr}') clf_name_string = f"clf_{usr}_{self.clf_type}_{self.rand_state}.joblib" clf_dict[usr].split_data(data_frame=data_group_1[usr], training_data_size=0.6) clf_dict[usr].random_train_tune_parameters(pram_dist=grid_svm, cv=self.cv, scoring_metric=scoring_metric, n_itr=self.n_iter) dump(clf_dict[usr], os.path.join(self.clf_path, clf_name_string)) elif self.clf_type == 'knn': from classifiers.knn_classifier import KnnClassifier leaf_size = list(range(1, 70)) n_neighbors = list(range(1, 50)) p = [1, 2] grid_knn = dict(leaf_size=leaf_size, n_neighbors=n_neighbors, p=p) clf_dict = {usr: KnnClassifier(pos_user=data_group_1[usr], random_state=self.rand_state, n_jobs=-1) for usr in users_group_1} for usr in users_group_1: print(f'training for user {usr}') clf_name_string = f"clf_{usr}_{self.clf_type}_{self.rand_state}.joblib" clf_dict[usr].split_data(data_frame=data_group_1[usr], training_data_size=0.6) clf_dict[usr].random_train_tune_parameters(pram_dist=grid_knn, cv=self.cv, scoring_metric=scoring_metric, n_itr=self.n_iter) dump(clf_dict[usr], os.path.join(self.clf_path, clf_name_string)) elif self.clf_type == 'rf': # Commnet out two lines below if not using an intel processor or sklearnex is not installed from classifiers.random_forest_classifier import RandomForestClassifier from sklearnex import patch_sklearn patch_sklearn() # Number of trees in random forest n_estimators = [int(x) for x in np.linspace(start=200, stop=2000, num=10)] # Number of features to consider at every split max_features = ['auto', 'sqrt'] # Maximum number of levels in tree max_depth = [int(x) for x in np.linspace(10, 110, num=11)] max_depth.append(None) # Minimum number of samples required to split a node min_samples_split = [2, 5, 10] # Minimum number of samples required at each leaf node min_samples_leaf = [1, 2, 4] # Method of selecting samples for training each tree bootstrap = [True, False] grid_rf = {'n_estimators': n_estimators, 'max_features': max_features, 'max_depth': max_depth, 'min_samples_split': min_samples_split, 'min_samples_leaf': min_samples_leaf, 'bootstrap': bootstrap} clf_dict = {usr: RandomForestClassifier(pos_user=data_group_1[usr], random_state=self.rand_state, n_jobs=-1) for usr in users_group_1} for usr in users_group_1: print(f'training for user {usr}') clf_name_string = f"clf_{usr}_{self.clf_type}_{self.rand_state}.joblib" clf_dict[usr].split_data(data_frame=data_group_1[usr], training_data_size=0.6) clf_dict[usr].random_train_tune_parameters(pram_dist=grid_rf, cv=self.cv, scoring_metric=scoring_metric, n_itr=self.n_iter) dump(clf_dict[usr], os.path.join(self.clf_path, clf_name_string)) else: print('classifier not implimented') sys.exit(1) print(f"training classifiers complete") else: """ Loading classifiers from disk """ print(f"Loading classifiers") try: clf_dict = {usr: load(os.path.join(self.clf_path, f"clf_{usr}_{self.clf_type}_{self.rand_state}.joblib")) for usr in users_group_1} except Exception(): traceback.print_exc() print(f"Loading classifiers complete") """ Calculating mean overlaps on feature level """ print(f"Calculating mean overlaps on feature level started") overlap_other_per_user_means_df = pd.DataFrame() overlap_by_other_per_user_means_df = pd.DataFrame() for pos_user in users_group_1: pos_user_per_dim_ol_path = self.pos_user_per_dim_ol_path pos_user_per_dim_ol = pd.read_csv(pos_user_per_dim_ol_path) pos_user_per_dim_ol = pos_user_per_dim_ol.drop('Unnamed: 0', axis=1) pos_user_pd_ol_others = pos_user_per_dim_ol[(pos_user_per_dim_ol['V2'] == pos_user)] pos_user_pd_ol_others_mean = pos_user_pd_ol_others.drop(['V1', 'V2'], axis=1).mean() overlap_other_per_user_means_df[pos_user] = pos_user_pd_ol_others_mean pos_user_pd_ol_by_others = pos_user_per_dim_ol[(pos_user_per_dim_ol['V1'] == pos_user)] pos_user_pd_ol_by_others_mean = \ pos_user_pd_ol_by_others.drop(['V1', 'V2'], axis=1).mean().sort_values() overlap_by_other_per_user_means_df[pos_user] = pos_user_pd_ol_by_others_mean print(f"Calculating mean overlaps on feature level complete") """ Calculating mean statistics for overlaps over entire population """ overlap_other_means = overlap_other_per_user_means_df.mean(axis=1) overlap_other_means = overlap_other_means.sort_values(ascending=True) overlap_other_range = overlap_other_per_user_means_df.max(axis=1) - overlap_other_per_user_means_df.min(axis=1) overlap_other_range = overlap_other_range.sort_values(ascending=True) overlap_by_other_means = overlap_by_other_per_user_means_df.mean(axis=1) overlap_by_other_means = overlap_by_other_means.sort_values(ascending=True) overlap_by_other_range = overlap_by_other_per_user_means_df.max( axis=1) - overlap_by_other_per_user_means_df.min(axis=1) overlap_by_other_range = overlap_by_other_range.sort_values(ascending=True) ''' Model Classification ''' print(f"Starting model classification") self.test_prd_dict = {usr: clf_dict[usr].classify() for usr in users_group_1} self.test_prd_prob_dict = {usr: clf_dict[usr].predictions_prob for usr in users_group_1} print(f"Model classification complete") """ Test set and labels extraction """ test_set = {usr: clf_dict[usr].test_data_frame.drop('labels', axis=1) for usr in users_group_1} test_labels = {usr: clf_dict[usr].test_data_frame.labels.values for usr in users_group_1} """ Confusion Matrix """ self.test_cm_dict = {usr: ConfusionMatrix() for usr in users_group_1} matrix_svm = {usr: self.test_cm_dict[usr].get_metric(true_labels=test_labels[usr], predicted_labels=self.test_prd_dict[usr]) for usr in users_group_1} self.test_precision = {usr: self.test_cm_dict[usr].tp / (self.test_cm_dict[usr].tp + self.test_cm_dict[usr].fp) for usr in users_group_1} """ ROC Curves """ self.roc_dict = {usr: RocCurve() for usr in users_group_1} roc_svm = {usr: self.roc_dict[usr].get_metric(test_set_features=test_set[usr].values, test_set_labels=test_labels[usr], classifier=clf_dict[usr].classifier, ax=None) for usr in users_group_1} """ FCS """ self.fcs_dict = {usr: FCS(classifier_name='SVM') for usr in users_group_1} self.fcs_plt = {usr: self.fcs_dict[usr].get_metric( true_labels=test_labels[usr], predicted_probs=clf_dict[usr].predictions_prob, pred_labels=clf_dict[usr].predictions) for usr in users_group_1} plt.close('all') """ Master Key Attack """ # Generating attack set mk_adv = MkAttack(data=self.attack_df, required_attack_samples=self.attack_samples) self.attack_df_mk = mk_adv.generate_attack() # Performing attack self.att_prd_mk = {usr: clf_dict[usr].classifier.predict(self.attack_df_mk.values) for usr in users_group_1} att_prd_prob_mk = {usr: clf_dict[usr].classifier.predict_proba(self.attack_df_mk.values) for usr in users_group_1} self.att_prd_prob_mk = {usr: att_prd_prob_mk[usr][:, 1] for usr in users_group_1} """ Targeted K-means++ Attack """ # Generating attack set, first point is the mean of the attack data kpp_adv = KppAttack(data=self.attack_df, required_attack_samples=self.attack_samples) self.attack_df_kpp = kpp_adv.generate_attack() # Performing attack self.att_prd_kpp = {usr: clf_dict[usr].classifier.predict(self.attack_df_kpp.values) for usr in users_group_1} att_prd_prob_kpp = {usr: clf_dict[usr].classifier.predict_proba(self.attack_df_kpp.values) for usr in users_group_1} self.att_prd_prob_kpp = {usr: att_prd_prob_kpp[usr][:, 1] for usr in users_group_1} """ Stats Attack """ stat_adv = StatAttack(data=self.attack_df, required_attack_samples=self.attack_samples, bootstrap_data_path=self.bs_data_path, run_bootstrap=self.boot_strap_st_at, bootstrap_iter=self.bs_mul * 1000) self.attack_df_stat = stat_adv.generate_attack() # Performing attack self.att_prd_stat = {usr: clf_dict[usr].classifier.predict(self.attack_df_stat.values) for usr in users_group_1} att_prd_prob_stat = {usr: clf_dict[usr].classifier.predict_proba(self.attack_df_stat.values) for usr in users_group_1} self.att_prd_prob_stat = {usr: att_prd_prob_stat[usr][:, 1] for usr in users_group_1} """ Hypervolume Attack """ if self.attack_df_hyp is None: hyp_adv = HypVolAttack(data=self.attack_df, equal_user_data=False, random_state=self.rand_state, calc_clusters=False, clusters_path=self.cluster_data_path, gr_num=1, cluster_count=self.num_cls, ol_path=self.hyp_vol_data_path, attack_samples=self.attack_samples, ol_cut_off=self.hv_cut_off, std_dev_at_gr=None) self.attack_df_hyp = hyp_adv.generate_attack() else: self.attack_df_hyp = self.attack_df_hyp # Performing attack self.att_prd_hyp = {usr: clf_dict[usr].classifier.predict( self.attack_df_hyp.drop(["cluster_number"], axis=1).values) for usr in users_group_1} att_prd_prob_hyp = {usr: clf_dict[usr].classifier.predict_proba( self.attack_df_hyp.drop(["cluster_number"], axis=1).values) for usr in users_group_1} self.att_prd_prob_hyp = {usr: att_prd_prob_hyp[usr][:, 1] for usr in users_group_1} df_hyp = pd.DataFrame.from_dict(self.att_prd_hyp) df_stat = pd.DataFrame.from_dict(self.att_prd_stat) df_kpp = pd.DataFrame.from_dict(self.att_prd_kpp) df_mk = pd.DataFrame.from_dict(self.att_prd_mk) df_prob_hyp = pd.DataFrame.from_dict(self.att_prd_prob_hyp) df_prob_stat = pd.DataFrame.from_dict(self.att_prd_prob_stat) df_prob_kpp =
pd.DataFrame.from_dict(self.att_prd_prob_kpp)
pandas.DataFrame.from_dict
import datetime import glob import logging import time from unittest.mock import patch import boto3 import botocore import pandas as pd import pytest import pytz import awswrangler as wr API_CALL = botocore.client.BaseClient._make_api_call logging.getLogger("awswrangler").setLevel(logging.DEBUG) @pytest.mark.parametrize("sanitize_columns,col", [(True, "foo_boo"), (False, "FooBoo")]) def test_sanitize_columns(path, sanitize_columns, col): df = pd.DataFrame({"FooBoo": [1, 2, 3]}) # Parquet file_path = f"{path}0.parquet" wr.s3.to_parquet(df, path=file_path, sanitize_columns=sanitize_columns) df = wr.s3.read_parquet(file_path) assert len(df.index) == 3 assert len(df.columns) == 1 assert df.columns == [col] # CSV file_path = f"{path}0.csv" wr.s3.to_csv(df, path=file_path, sanitize_columns=sanitize_columns, index=False) df = wr.s3.read_csv(file_path) assert len(df.index) == 3 assert len(df.columns) == 1 assert df.columns == [col] def test_list_by_last_modified_date(path): df = pd.DataFrame({"id": [1, 2, 3]}) path0 = f"s3://{path}0.json" path1 = f"s3://{path}1.json" begin_utc = pytz.utc.localize(datetime.datetime.utcnow()) time.sleep(5) wr.s3.to_json(df, path0) time.sleep(5) mid_utc = pytz.utc.localize(datetime.datetime.utcnow()) time.sleep(5) wr.s3.to_json(df, path1) time.sleep(5) end_utc = pytz.utc.localize(datetime.datetime.utcnow()) assert len(wr.s3.read_json(path).index) == 6 assert len(wr.s3.read_json(path, last_modified_begin=mid_utc).index) == 3 assert len(wr.s3.read_json(path, last_modified_end=mid_utc).index) == 3 with pytest.raises(wr.exceptions.NoFilesFound): wr.s3.read_json(path, last_modified_begin=end_utc) with pytest.raises(wr.exceptions.NoFilesFound): wr.s3.read_json(path, last_modified_end=begin_utc) assert len(wr.s3.read_json(path, last_modified_begin=mid_utc, last_modified_end=end_utc).index) == 3 assert len(wr.s3.read_json(path, last_modified_begin=begin_utc, last_modified_end=mid_utc).index) == 3 assert len(wr.s3.read_json(path, last_modified_begin=begin_utc, last_modified_end=end_utc).index) == 6 def test_delete_internal_error(bucket): response = { "Errors": [ { "Key": "foo/dt=2020-01-01 00%3A00%3A00/boo.txt", "Code": "InternalError", "Message": "We encountered an internal error. Please try again.", } ] } def mock_make_api_call(self, operation_name, kwarg): if operation_name == "DeleteObjects": return response return API_CALL(self, operation_name, kwarg) start = time.time() with patch("botocore.client.BaseClient._make_api_call", new=mock_make_api_call): path = f"s3://{bucket}/foo/dt=2020-01-01 00:00:00/boo.txt" with pytest.raises(wr.exceptions.ServiceApiError): wr.s3.delete_objects(path=[path]) assert 15 <= (time.time() - start) <= 25 def test_delete_error(bucket): response = {"Errors": [{"Code": "AnyNonInternalError"}]} def mock_make_api_call(self, operation_name, kwarg): if operation_name == "DeleteObjects": return response return API_CALL(self, operation_name, kwarg) with patch("botocore.client.BaseClient._make_api_call", new=mock_make_api_call): path = f"s3://{bucket}/boo/dt=2020-01-01 00:00:00/bar.txt" with pytest.raises(wr.exceptions.ServiceApiError): wr.s3.delete_objects(path=[path]) def test_s3_empty_dfs(): df = pd.DataFrame() with pytest.raises(wr.exceptions.EmptyDataFrame): wr.s3.to_parquet(df=df, path="") with pytest.raises(wr.exceptions.EmptyDataFrame): wr.s3.to_csv(df=df, path="") def test_absent_object(path): path_file = f"{path}test_absent_object" assert wr.s3.does_object_exist(path=path_file) is False assert len(wr.s3.size_objects(path=path_file)) == 0 @pytest.mark.parametrize("use_threads", [True, False]) def test_merge(path, use_threads): path1 = f"{path}test_merge/" df =
pd.DataFrame({"id": [1, 2, 3], "par": [1, 2, 3]})
pandas.DataFrame
import logging import tarfile from tempfile import TemporaryFile from typing import List, Dict import numpy as np import pandas as pd from kgx.transformer import Transformer from kgx.utils import make_path LIST_DELIMITER = '|' _column_types = { 'publications': list, 'qualifiers': list, 'category': list, 'synonym': list, 'provided_by': list, 'same_as': list, 'negated': bool, } _extension_types = { 'csv': ',', 'tsv': '\t', 'txt': '|' } _archive_mode = { 'tar': 'r', 'tar.gz': 'r:gz', 'tar.bz2': 'r:bz2' } _archive_format = { 'w': 'tar', 'w:gz': 'tar.gz', 'w:bz2': 'tar.bz2' } class PandasTransformer(Transformer): """ Transformer that parses a pandas.DataFrame, and loads nodes and edges into a networkx.MultiDiGraph """ # TODO: Support parsing and export of neo4j-import tool compatible CSVs with appropriate headers def parse(self, filename: str, input_format: str = 'csv', **kwargs) -> None: """ Parse a CSV/TSV (or plain text) file. The file can represent either nodes (nodes.csv) or edges (edges.csv) or both (data.tar), where the tar archive contains nodes.csv and edges.csv The file can also be data.tar.gz or data.tar.bz2 Parameters ---------- filename: str File to read from input_format: str The input file format ('csv', by default) kwargs: Dict Any additional arguments """ if 'delimiter' not in kwargs: # infer delimiter from file format kwargs['delimiter'] = _extension_types[input_format] if filename.endswith('.tar'): mode = _archive_mode['tar'] elif filename.endswith('.tar.gz'): mode = _archive_mode['tar.gz'] elif filename.endswith('.tar.bz2'): mode = _archive_mode['tar.bz2'] else: # file is not an archive mode = None if mode: with tarfile.open(filename, mode=mode) as tar: for member in tar.getmembers(): f = tar.extractfile(member) df = pd.read_csv(f, comment='#', **kwargs) # type: pd.DataFrame if member.name == "nodes.{}".format(input_format): self.load_nodes(df) elif member.name == "edges.{}".format(input_format): self.load_edges(df) else: raise Exception('Tar archive contains an unrecognized file: {}'.format(member.name)) else: df = pd.read_csv(filename, comment='#', dtype=str, **kwargs) # type: pd.DataFrame self.load(df) def load(self, df: pd.DataFrame) -> None: """ Load a panda.DataFrame, containing either nodes or edges, into a networkx.MultiDiGraph Parameters ---------- df : pandas.DataFrame Dataframe containing records that represent nodes or edges """ if 'subject' in df: self.load_edges(df) else: self.load_nodes(df) def load_nodes(self, df: pd.DataFrame) -> None: """ Load nodes from pandas.DataFrame into a networkx.MultiDiGraph Parameters ---------- df : pandas.DataFrame Dataframe containing records that represent nodes """ for obj in df.to_dict('record'): self.load_node(obj) def load_node(self, node: Dict) -> None: """ Load a node into a networkx.MultiDiGraph Parameters ---------- node : dict A node """ node = Transformer.validate_node(node) kwargs = PandasTransformer._build_kwargs(node.copy()) if 'id' in kwargs: n = kwargs['id'] self.graph.add_node(n, **kwargs) else: logging.info("Ignoring node with no 'id': {}".format(node)) def load_edges(self, df: pd.DataFrame) -> None: """ Load edges from pandas.DataFrame into a networkx.MultiDiGraph Parameters ---------- df : pandas.DataFrame Dataframe containing records that represent edges """ for obj in df.to_dict('record'): self.load_edge(obj) def load_edge(self, edge: Dict) -> None: """ Load an edge into a networkx.MultiDiGraph Parameters ---------- edge : dict An edge """ edge = Transformer.validate_edge(edge) kwargs = PandasTransformer._build_kwargs(edge.copy()) if 'subject' in kwargs and 'object' in kwargs: s = kwargs['subject'] o = kwargs['object'] self.graph.add_edge(s, o, **kwargs) else: logging.info("Ignoring edge with either a missing 'subject' or 'object': {}".format(kwargs)) def export_nodes(self) -> pd.DataFrame: """ Export nodes from networkx.MultiDiGraph as a pandas.DataFrame Returns ------- pandas.DataFrame A Dataframe where each record corresponds to a node from the networkx.MultiDiGraph """ rows = [] for n, data in self.graph.nodes(data=True): data = self.validate_node(data) row = PandasTransformer._build_export_row(data.copy()) row['id'] = n rows.append(row) df =
pd.DataFrame.from_records(rows)
pandas.DataFrame.from_records
""" .. _l-b-numpy-numba-ort: Compares numba, numpy, onnxruntime for simple functions ======================================================= The following benchmark is inspired from `bench_arrayexprs.py <https://github.com/numba/numba-benchmark/blob/master/benchmarks/bench_arrayexprs.py>`_. It compares :epkg:`numba`, :epkg:`numpy` and :epkg:`onnxruntime` for simple functions. As expected, :epkg:`numba` is better than the other options. .. contents:: :local: The functions +++++++++++++ """ import numpy import pandas import matplotlib.pyplot as plt from numba import jit from typing import Any import numpy as np from tqdm import tqdm from cpyquickhelper.numbers.speed_measure import measure_time from mlprodict.npy import NDArray, onnxnumpy_np from mlprodict.npy.onnx_numpy_annotation import NDArrayType import mlprodict.npy.numpy_onnx_impl as npnx # @jit(nopython=True) def sum(a, b): return a + b # @jit(nopython=True) def sq_diff(a, b): return (a - b) * (a + b) # @jit(nopython=True) def rel_diff(a, b): return (a - b) / (a + b) # @jit(nopython=True) def square(a, b): # Note this is currently slower than `a ** 2 + b`, due to how LLVM # seems to lower the power intrinsic. It's still faster than the naive # lowering as `exp(2 * log(a))`, though return a ** 2 def cube(a, b): return a ** 3 ######################################### # ONNX version # ++++++++++ # # The implementation uses the numpy API for ONNX to keep the same code. @onnxnumpy_np(signature=NDArrayType(("T:all", "T"), dtypes_out=('T',)), runtime="onnxruntime") def onnx_sum_32(a, b): return a + b @onnxnumpy_np(signature=NDArrayType(("T:all", "T"), dtypes_out=('T',)), runtime="onnxruntime") def onnx_sq_diff_32(a, b): return (a - b) * (a + b) @onnxnumpy_np(signature=NDArrayType(("T:all", "T"), dtypes_out=('T',)), runtime="onnxruntime") def onnx_rel_diff_32(a, b): return (a - b) / (a + b) @onnxnumpy_np(signature=NDArrayType(("T:all", "T"), dtypes_out=('T',)), runtime="onnxruntime") def onnx_square_32(a, b): return a ** 2 @onnxnumpy_np(signature=NDArrayType(("T:all", "T"), dtypes_out=('T',)), runtime="onnxruntime") def onnx_cube_32(a, b): return a ** 3 ################################################ # numba optimized # ++++++++++++ jitter = jit(nopython=True) nu_sum = jitter(sum) nu_sq_diff = jitter(sq_diff) nu_rel_diff = jitter(rel_diff) nu_square = jitter(square) nu_cube = jitter(cube) ####################################### # Benchmark # ++++++++ obs = [] for n in tqdm([10, 100, 1000, 10000, 100000, 1000000]): number = 100 if n < 1000000 else 10 for dtype in [numpy.float32, numpy.float64]: sample = [numpy.random.uniform(1.0, 2.0, size=n).astype(dtype) for i in range(2)] for fct1, fct2, fct3 in [ (sum, nu_sum, onnx_sum_32), (sq_diff, nu_sq_diff, onnx_sq_diff_32), (rel_diff, nu_rel_diff, onnx_rel_diff_32), (square, nu_square, onnx_square_32), (cube, nu_cube, onnx_cube_32)]: fct1(*sample) fct1(*sample) r = measure_time('fct1(a,b)', number=number, div_by_number=True, context={'fct1': fct1, 'a': sample[0], 'b': sample[1]}) r.update(dict(dtype=dtype, name='numpy', n=n, fct=fct1.__name__)) obs.append(r) fct2(*sample) fct2(*sample) r = measure_time('fct2(a,b)', number=number, div_by_number=True, context={'fct2': fct2, 'a': sample[0], 'b': sample[1]}) r.update(dict(dtype=dtype, name='numba', n=n, fct=fct1.__name__)) obs.append(r) fct3(*sample) fct3(*sample) r = measure_time('fct3(a,b)', number=number, div_by_number=True, context={'fct3': fct3, 'a': sample[0], 'b': sample[1]}) r.update(dict(dtype=dtype, name='onnx', n=n, fct=fct1.__name__)) obs.append(r) df =
pandas.DataFrame(obs)
pandas.DataFrame
# -*- coding: utf-8 -*- import pytest import numpy as np from pandas.types.dtypes import DatetimeTZDtype, PeriodDtype, CategoricalDtype from pandas.types.common import pandas_dtype, is_dtype_equal import pandas.util.testing as tm class TestPandasDtype(tm.TestCase): def test_numpy_dtype(self): for dtype in ['M8[ns]', 'm8[ns]', 'object', 'float64', 'int64']: self.assertEqual(pandas_dtype(dtype), np.dtype(dtype)) def test_numpy_string_dtype(self): # do not parse freq-like string as period dtype self.assertEqual(pandas_dtype('U'), np.dtype('U')) self.assertEqual(pandas_dtype('S'), np.dtype('S')) def test_datetimetz_dtype(self): for dtype in ['datetime64[ns, US/Eastern]', 'datetime64[ns, Asia/Tokyo]', 'datetime64[ns, UTC]']: self.assertIs(pandas_dtype(dtype), DatetimeTZDtype(dtype)) self.assertEqual(pandas_dtype(dtype), DatetimeTZDtype(dtype)) self.assertEqual(pandas_dtype(dtype), dtype) def test_categorical_dtype(self): self.assertEqual(pandas_dtype('category'), CategoricalDtype()) def test_period_dtype(self): for dtype in ['period[D]', 'period[3M]', 'period[U]', 'Period[D]', 'Period[3M]', 'Period[U]']: self.assertIs(pandas_dtype(dtype), PeriodDtype(dtype)) self.assertEqual(pandas_dtype(dtype), PeriodDtype(dtype)) self.assertEqual(pandas_dtype(dtype), dtype) dtypes = dict(datetime_tz=pandas_dtype('datetime64[ns, US/Eastern]'), datetime=
pandas_dtype('datetime64[ns]')
pandas.types.common.pandas_dtype
################## ##Script for the AI Financial Forecaster's Main Code and Trading Strategy Component from Team 1(CE903) ################## #!pip install nasdaq-data-link import Core_Infrastructure_1stHalf ##Also forms the Project Directory from Core_Infrastructure_1stHalf import historical_data_recorder from Core_Infrastructure_1stHalf import stock_market_dataset_preprocessor import Core_Infrastructure_2ndHalf from Core_Infrastructure_2ndHalf import getROC from Core_Infrastructure_2ndHalf import willR from Core_Infrastructure_2ndHalf import midPrice from Core_Infrastructure_2ndHalf import TAA_Dataset_Transformer from Core_Infrastructure_2ndHalf import TAI_Dataset_Preprocessor import Trading_Strategy_1stHalf from Trading_Strategy_1stHalf import MLP_model import Trading_Strategy_2ndHalf from Trading_Strategy_2ndHalf import modelLSTM import matplotlib.pyplot as plt import seaborn as sns import numpy as np import pandas as pd ''' ############################################### ############################################### MAIN CODE ''' if __name__ == '__main__': while 1: ''' Implementation of Stock Market Data Storage ''' dataset_source = input("Choose source of Stock Market Dataset (Device Storage/ Nasdaq API/ Yahoo Finance): ")##Needs Error Handling due to User Input if dataset_source == "Device Storage": company_ticker = input("\nProvide the Company Ticker (Use Project Directory if needed): ") Stock_Market_Dataset =
pd.read_csv("C:\Group Project\Stock Market Datasets\ %s.csv" % company_ticker)
pandas.read_csv
# encoding: utf-8 """ Classes defined in backtest module are responsible to run backtests. They follow a fix procedure, from loading data to looping through data and finally save backtest results. """ from __future__ import print_function, unicode_literals import six import abc from collections import defaultdict import numpy as np import pandas as pd import datetime as dt from jaqs.trade import common from jaqs.data.basic import Bar from jaqs.data.basic import Trade import jaqs.util as jutil from functools import reduce def generate_cash_trade_ind(symbol, amount, date, time=200000): trade_ind = Trade() trade_ind.symbol = symbol trade_ind.task_id = 0 trade_ind.entrust_no = "0" trade_ind.set_fill_info(price=0.0, size=abs(amount), date=date, time=time, no="0", trade_date=date) trade_ind2 = Trade() trade_ind2.symbol = symbol trade_ind2.task_id = 0 trade_ind2.entrust_no = "0" trade_ind2.set_fill_info(price=1.0, size=abs(amount), date=date, time=time, no="0",trade_date=date) if amount > 0: trade_ind.entrust_action = common.ORDER_ACTION.BUY trade_ind2.entrust_action = common.ORDER_ACTION.SELL else: trade_ind.entrust_action = common.ORDER_ACTION.SELL trade_ind2.entrust_action = common.ORDER_ACTION.BUY return trade_ind, trade_ind2 class BacktestInstance(six.with_metaclass(abc.ABCMeta)): """ BacktestInstance is an abstract base class. It can be derived to implement various backtest tasks. Attributes ---------- start_date : int %YY%mm%dd, start date of the backtest. end_date : int %YY%mm%dd, end date of the backtest. ctx : Context Running context of the backtest. props : dict props store configurations (settings) of the backtest. Eg: start_date. """ def __init__(self): super(BacktestInstance, self).__init__() self.start_date = 0 self.end_date = 0 self.props = None self.ctx = None self.commission_rate = 20E-4 self.POSITION_ADJUST_NO = 101010 self.POSITION_ADJUST_TIME = 200000 self.DELIST_ADJUST_NO = 202020 self.DELIST_ADJUST_TIME = 150000 def init_from_config(self, props): """ Initialize parameters values for all backtest components such as DataService, PortfolioManager, Strategy, etc. Parameters ---------- props : dict """ for name in ['start_date', 'end_date']: if name not in props: raise ValueError("{} must be provided in props.".format(name)) self.props = props self.start_date = props.get("start_date") self.end_date = props.get("end_date") self.commission_rate = props.get('commission_rate', 20E-4) if 'symbol' in props: self.ctx.init_universe(props['symbol']) elif hasattr(self.ctx, 'dataview'): self.ctx.init_universe(self.ctx.dataview.symbol) else: raise ValueError("No dataview, no symbol either.") if 'init_balance' not in props: raise ValueError("No [init_balance] provided. Please specify it in props.") for obj in ['data_api', 'trade_api', 'pm', 'strategy']: obj = getattr(self.ctx, obj) if obj is not None: obj.init_from_config(props) ''' class AlphaBacktestInstance_OLD_dataservice(BacktestInstance): def __init__(self): BacktestInstance.__init__(self) self.last_rebalance_date = 0 self.current_rebalance_date = 0 self.trade_days = None def _is_trade_date(self, start, end, date, data_server): if self.trade_days is None: df, msg = data_server.daily('000300.SH', start, end, fields="close") self.trade_days = df.loc[:, 'trade_date'].values return date in self.trade_days def go_next_rebalance_day(self): """update self.ctx.trade_date and last_date.""" if self.ctx.gateway.match_finished: next_period_day = jutil.get_next_period_day(self.ctx.trade_date, self.ctx.strategy.period, self.ctx.strategy.days_delay) # update current_date: next_period_day is a workday, but not necessarily a trade date if self.ctx.calendar.is_trade_date(next_period_day): self.ctx.trade_date = next_period_day else: self.ctx.trade_date = self.ctx.calendar.get_next_trade_date(next_period_day) self.ctx.trade_date = self.ctx.calendar.get_next_trade_date(next_period_day) # update re-balance date if self.current_rebalance_date > 0: self.last_rebalance_date = self.current_rebalance_date else: self.last_rebalance_date = self.start_date self.current_rebalance_date = self.ctx.trade_date else: # TODO here we must make sure the matching will not last to next period self.ctx.trade_date = self.ctx.calendar.get_next_trade_date(self.ctx.trade_date) self.last_date = self.ctx.calendar.get_last_trade_date(self.ctx.trade_date) def run_alpha(self): gateway = self.ctx.gateway self.ctx.trade_date = self.start_date while True: self.go_next_rebalance_day() if self.ctx.trade_date > self.end_date: break if gateway.match_finished: self.on_new_day(self.last_date) df_dic = self.ctx.strategy.get_univ_prices() # access data self.ctx.strategy.re_balance_plan_before_open(df_dic, suspensions=[]) self.on_new_day(self.ctx.trade_date) self.ctx.strategy.send_bullets() else: self.on_new_day(self.ctx.trade_date) df_dic = self.ctx.strategy.get_univ_prices() # access data trade_indications = gateway.match(df_dic, self.ctx.trade_date) for trade_ind in trade_indications: self.ctx.strategy.on_trade(trade_ind) print "Backtest done. {:d} days, {:.2e} trades in total.".format(len(self.trade_days), len(self.ctx.strategy.pm.trades)) def on_new_day(self, date): self.ctx.trade_date = date self.ctx.strategy.on_new_day(date) self.ctx.gateway.on_new_day(date) def save_results(self, folder='../output/'): import pandas as pd trades = self.ctx.strategy.pm.trades type_map = {'task_id': str, 'entrust_no': str, 'entrust_action': str, 'symbol': str, 'fill_price': float, 'fill_size': int, 'fill_date': np.integer, 'fill_time': np.integer, 'fill_no': str} # keys = trades[0].__dict__.keys() ser_list = dict() for key in type_map.keys(): v = [t.__getattribute__(key) for t in trades] ser = pd.Series(data=v, index=None, dtype=type_map[key], name=key) ser_list[key] = ser df_trades = pd.DataFrame(ser_list) df_trades.index.name = 'index' from os.path import join trades_fn = join(folder, 'trades.csv') configs_fn = join(folder, 'configs.json') fileio.create_dir(trades_fn) df_trades.to_csv(trades_fn) fileio.save_json(self.props, configs_fn) print ("Backtest results has been successfully saved to:\n" + folder) ''' class AlphaBacktestInstance(BacktestInstance): """ Backtest alpha strategy using DataView. Attributes ---------- last_date : int Last trade date before current trade date. last_rebalance_date : int Last re-balance date that we do re-balance. current_rebalance_date : int Current re-balance date that we do re-balance. univ_price_dic : dict Prices of symbols on current trade date. commission_rate : float Ratio of commission charged to turnover for each trade. """ def __init__(self): super(AlphaBacktestInstance, self).__init__() self.last_date = 0 self.last_rebalance_date = 0 self.current_rebalance_date = 0 self.univ_price_dic = {} self.tmp_univ_price_dic_map = {} def init_from_config(self, props): super(AlphaBacktestInstance, self).init_from_config(props) strategy = self.ctx.strategy # universe = props.get('universe', "") # symbol = props.get('symbol', "") # if symbol and universe or len(universe.split('.')) > 1: # if strategy.pc_method in['index_weight', 'equal_index_weight']: # raise ValueError("{} shouldn't be used if there are both symbol and universe in props", strategy.pc_method) def position_adjust(self): """ adjust happens after market close Before each re-balance day, adjust for all dividend and cash paid actions during the last period. We assume all cash will be re-invested. Since we adjust our position at next re-balance day, PnL before that may be incorrect. """ start = self.last_rebalance_date # start will be one day later end = self.current_rebalance_date # end is the same to ensure position adjusted for dividend on rebalance day df_adj = self.ctx.dataview.get_ts('_daily_adjust_factor', start_date=start, end_date=end) # FIXME: the first day should have been balanced before? df_adj = df_adj[1:] pm = self.ctx.pm # Find symbols which has adj_factor not equaling 1 tmp = df_adj[df_adj!=1].fillna(0.0).sum() adj_symbols = set(tmp[tmp!=0].index).intersection(pm.holding_securities) #for symbol in pm.holding_securities: for symbol in adj_symbols: ser = df_adj.loc[:, symbol] ser_adj = ser.dropna() for date, ratio in ser_adj.iteritems(): pos_old = pm.get_position(symbol).current_size # TODO pos will become float, original: int pos_new = pos_old * ratio pos_diff = pos_new - pos_old # must be positive if pos_diff <= 0: # TODO this is possible # raise ValueError("pos_diff <= 0") continue trade_ind = Trade() trade_ind.symbol = symbol trade_ind.task_id = self.POSITION_ADJUST_NO trade_ind.entrust_no = self.POSITION_ADJUST_NO trade_ind.entrust_action = common.ORDER_ACTION.BUY # for now only BUY trade_ind.set_fill_info(price=0.0, size=pos_diff, date=date, time=200000, no=self.POSITION_ADJUST_NO, trade_date=date) self.ctx.strategy.on_trade(trade_ind) def delist_adjust(self): df_inst = self.ctx.dataview.data_inst start = self.last_rebalance_date # start will be one day later end = self.current_rebalance_date # end is the same to ensure position adjusted for dividend on rebalance day mask = np.logical_and(df_inst['delist_date'] >= start, df_inst['delist_date'] <= end) dic_inst = df_inst.loc[mask, :].to_dict(orient='index') if not dic_inst: return pm = self.ctx.pm for symbol in pm.holding_securities.copy(): value_dic = dic_inst.get(symbol, None) if value_dic is None: continue pos = pm.get_position(symbol).current_size last_trade_date = self._get_last_trade_date(value_dic['delist_date']) last_close_price = self.ctx.dataview.get_snapshot(last_trade_date, symbol=symbol, fields='close') last_close_price = last_close_price.at[symbol, 'close'] trade_ind = Trade() trade_ind.symbol = symbol trade_ind.task_id = self.DELIST_ADJUST_NO trade_ind.entrust_no = self.DELIST_ADJUST_NO trade_ind.entrust_action = common.ORDER_ACTION.SELL # for now only BUY trade_ind.set_fill_info(price=last_close_price, size=pos, date=last_trade_date, time=150000, no=self.DELIST_ADJUST_NO, trade_date=last_trade_date) self.ctx.strategy.cash += trade_ind.fill_price * trade_ind.fill_size #self.ctx.pm.cash += trade_ind.fill_price * trade_ind.fill_size self.ctx.strategy.on_trade(trade_ind) def re_balance_plan_before_open(self): """ Do portfolio re-balance before market open (not knowing suspensions) only calculate weights. For now, we stick to the same close price when calculate market value and do re-balance. Parameters ---------- """ # Step.1 set weights of those non-index-members to zero # only filter index members when universe is defined universe_list = self.ctx.universe if self.ctx.dataview.universe: df_is_member = self.ctx.dataview.get_snapshot(self.ctx.trade_date, fields='index_member') df_is_member = df_is_member.fillna(0).astype(bool) universe_list = df_is_member[df_is_member['index_member']].index.values # Step.2 filter out those not listed or already de-listed df_inst = self.ctx.dataview.data_inst mask = np.logical_and(self.ctx.trade_date > df_inst['list_date'], self.ctx.trade_date < df_inst['delist_date']) listing_symbols = df_inst.loc[mask, :].index.values universe_list = np.intersect1d(universe_list, listing_symbols) # step.3 construct portfolio using models self.ctx.strategy.portfolio_construction(universe_list) def re_balance_plan_after_open(self): """ Do portfolio re-balance after market open. With suspensions known, we re-calculate weights and generate orders. Notes ----- Price here must not be adjusted. """ prices = {k: v['vwap'] for k, v in self.univ_price_dic.items()} # suspensions & limit_reaches: list of str suspensions = self.get_suspensions() limit_reaches = self.get_limit_reaches() all_list = reduce(lambda s1, s2: s1.union(s2), [set(suspensions), set(limit_reaches)]) # step1. weights of those suspended and limit will be remove, and weights of others will be re-normalized self.ctx.strategy.re_weight_suspension(all_list) # step2. calculate market value and cash # market value does not include those suspended market_value_float, market_value_frozen = self.ctx.pm.market_value(prices, all_list) #cash_available = self.ctx.pm.cash + market_value_float cash_available = self.ctx.strategy.cash + market_value_float cash_to_use = cash_available * self.ctx.strategy.position_ratio cash_unuse = cash_available - cash_to_use # step3. generate target positions # position of those suspended will remain the same (will not be traded) goals, cash_remain = self.ctx.strategy.generate_weights_order(self.ctx.strategy.weights, cash_to_use, prices, suspensions=all_list) self.ctx.strategy.goal_positions = goals #self.ctx.pm.cash = cash_remain + cash_unuse self.ctx.strategy.cash = cash_remain + cash_unuse #print("cash diff: ", self.ctx.pm.cash - self.ctx.strategy.cash) # self.liquidate_all() total = cash_available + market_value_frozen self.ctx.strategy.on_after_rebalance(total) self.ctx.record('total_cash', total) def run_alpha(self): print("Run alpha backtest from {0} to {1}".format(self.start_date, self.end_date)) begin_time = dt.datetime.now() tapi = self.ctx.trade_api # Keep compatible, the original test starts with next day, not start_date if self.ctx.strategy.period in ['week', 'month']: self.ctx.trade_date = self._get_first_period_day() else: self.ctx.trade_date = self._get_next_trade_date(self.start_date) self.last_date = self._get_last_trade_date(self.ctx.trade_date) self.current_rebalance_date = self.ctx.trade_date while True: print("=======new day {}".format(self.ctx.trade_date)) # match uncome orders or re-balance if tapi.match_finished: # Step1. # position adjust according to dividend, cash paid, de-list actions during the last period # two adjust must in order self.position_adjust() self.delist_adjust() # Step2. # plan re-balance before market open of the re-balance day: # use last trade date because strategy can only access data of last day self.on_new_day(self.last_date) # get index memebers, get signals, generate weights self.re_balance_plan_before_open() # Step3. # do re-balance on the re-balance day self.on_new_day(self.ctx.trade_date) # get suspensions, get up/down limits, generate goal positions and send orders. self.re_balance_plan_after_open() self.ctx.strategy.send_bullets() else: self.on_new_day(self.ctx.trade_date) # Deal with trade indications # results = gateway.match(self.univ_price_dic) results = tapi.match_and_callback(self.univ_price_dic) for trade_ind, order_status_ind in results: self.ctx.strategy.cash -= trade_ind.commission #self.ctx.pm.cash -= trade_ind.commission self.on_after_market_close() # switch trade date backtest_finish = self.go_next_rebalance_day() if backtest_finish: break used_time = (dt.datetime.now() - begin_time).total_seconds() print("Backtest done. {0:d} days, {1:.2e} trades in total. used time: {2}s". format(len(self.ctx.dataview.dates), len(self.ctx.pm.trades), used_time)) #jutil.prof_print() def on_after_market_close(self): self.ctx.trade_api.on_after_market_close() ''' def get_univ_prices(self, field_name='close'): dv = self.ctx.dataview df = dv.get_snapshot(self.ctx.trade_date, fields=field_name) res = df.to_dict(orient='index') return res ''' def _is_trade_date(self, date): if self.ctx.dataview is not None: return date in self.ctx.dataview.dates else: return self.ctx.data_api.is_trade_date(date) def _get_next_trade_date(self, date, n=1): if self.ctx.dataview is not None: dates = self.ctx.dataview.dates mask = dates > date return dates[mask][n-1] else: return self.ctx.data_api.query_next_trade_date(date, n) def _get_last_trade_date(self, date): if self.ctx.dataview is not None: dates = self.ctx.dataview.dates mask = dates < date return dates[mask][-1] else: return self.ctx.data_api.query_last_trade_date(date) def _get_first_period_day(self): current = self.start_date current_date = jutil.convert_int_to_datetime(current) period = self.ctx.strategy.period # set current date to first date of current period # set offset to first date of previous period if period == 'day': offset = pd.tseries.offsets.BDay() elif period == 'week': offset = pd.tseries.offsets.Week(weekday=0) current_date -= pd.tseries.offsets.Day(current_date.weekday()) elif period == 'month': offset = pd.tseries.offsets.BMonthBegin() current_date -= pd.tseries.offsets.Day(current_date.day - 1) else: raise NotImplementedError("Frequency as {} not support".format(period)) current_date -= offset * self.ctx.strategy.n_periods; current = jutil.convert_datetime_to_int(current_date) return self._get_next_period_day(current, self.ctx.strategy.period, n=self.ctx.strategy.n_periods, extra_offset=self.ctx.strategy.days_delay) def _get_next_period_day(self, current, period, n=1, extra_offset=0): """ Get the n'th day in next period from current day. Parameters ---------- current : int Current date in format "%Y%m%d". period : str Interval between current and next. {'day', 'week', 'month'} n : int n times period. extra_offset : int n'th business day after next period. Returns ------- nxt : int """ #while True: #for _ in range(4): current_date = jutil.convert_int_to_datetime(current) while current <= self.end_date: if period == 'day': offset = pd.tseries.offsets.BDay() # move to next business day if extra_offset < 0: raise ValueError("Wrong offset for day period") elif period == 'week': offset = pd.tseries.offsets.Week(weekday=0) # move to next Monday if extra_offset < -5 : raise ValueError("Wrong offset for week period") elif period == 'month': offset = pd.tseries.offsets.BMonthBegin() # move to first business day of next month if extra_offset < -31: raise ValueError("Wrong offset for month period") else: raise NotImplementedError("Frequency as {} not support".format(period)) offset = offset * n begin_date = current_date + offset if period == 'day': end_date = begin_date + pd.tseries.offsets.Day()*366 elif period == 'week': end_date = begin_date + pd.tseries.offsets.Day() * 6 elif period == 'month': end_date = begin_date + pd.tseries.offsets.BMonthBegin() #- pd.tseries.offsets.BDay() if extra_offset > 0 : next_date = begin_date + extra_offset * pd.tseries.offsets.BDay() if next_date >= end_date: next_date = end_date - pd.tseries.offsets.BDay() elif extra_offset < 0: next_date = end_date + extra_offset *
pd.tseries.offsets.BDay()
pandas.tseries.offsets.BDay
import datetime as dt import pandas as pd import numpy as np import re # Begin User Input Data report_date = dt.datetime(2020, 8, 31) wscf_market_value = 194719540.46 aqr_market_value = 182239774.63 delaware_market_value = 151551731.17 wellington_market_value = 149215529.22 qic_cash_market_value = 677011299.30 input_directory = 'U:/' output_directory = 'U:/' jpm_filepath = input_directory + 'CIO/#Data/input/jpm/holdings/2020/08/Priced Positions - All.csv' wscf_filepath = input_directory + 'CIO/#Data/input/lgs/holdings/unitprices/2020/08/wscf_holdings.xlsx' aqr_filepath = input_directory + 'CIO/#Data/input/lgs/holdings/unitprices/2020/08/aqr_holdings.xls' delaware_filepath = input_directory + 'CIO/#Data/input/lgs/holdings/unitprices/2020/08/delaware_holdings.xlsx' wellington_filepath = input_directory + 'CIO/#Data/input/lgs/holdings/unitprices/2020/08/wellington_holdings.xlsx' qic_cash_filepath = input_directory + 'CIO/#Data/input/lgs/holdings/unitprices/2020/07/qic_cash_holdings.xlsx' tickers_filepath = input_directory + 'CIO/#Holdings/Data/input/tickers/tickers_201909.xlsx' asx_filepath = input_directory + 'CIO/#Data/input/asx/ASX300/20200501-asx300.csv' aeq_filepath = input_directory + 'CIO/#Holdings/Data/input/exclusions/LGS Exclusions List_December 2018_AEQ_Manager Version.xlsx' ieq_filepath = input_directory + 'CIO/#Holdings/Data/input/exclusions/LGS Exclusions List_December 2018_IEQ_Manager Version.xlsx' aeq_exclusions_filepath = input_directory + 'CIO/#Holdings/Data/output/exclusions/aeq_exclusions_' + str(report_date.date()) + '.csv' ieq_exclusions_filepath = input_directory + 'CIO/#Holdings/Data/output/exclusions/ieq_exclusions_' + str(report_date.date()) + '.csv' # End User Input Data # Account Name to LGS Name dictionary australian_equity_managers_dict = { 'LGS AUSTRALIAN EQUITIES - BLACKROCK': 'BlackRock', 'LGS AUSTRALIAN EQUITIES - ECP': 'ECP', 'LGS AUSTRALIAN EQUITIES DNR CAPITAL': 'DNR', 'LGS AUSTRALIAN EQUITIES - PENDAL': 'Pendal', 'LGS AUSTRALIAN EQUITIES - SSGA': 'SSGA', 'LGS AUSTRALIAN EQUITIES - UBIQUE': 'Ubique', 'LGS AUSTRALIAN EQUITIES - WSCF': 'First Sentier', 'LGS AUSTRALIAN EQUITIES REBALANCE': 'Rebalance', 'LGS AUST EQUITIES - ALPHINITY': 'Alphinity' } international_equity_managers_dict = { 'LGS INTERNATIONAL EQUITIES - WCM': 'WCM', 'LGS INTERNATIONAL EQUITIES - AQR': 'AQR', 'LGS INTERNATIONAL EQUITIES - HERMES': 'Hermes', 'LGS INTERNATIONAL EQUITIES - IMPAX': 'Impax', 'LGS INTERNATIONAL EQUITIES - LONGVI EW': 'Longview', 'LGS INTERNATIONAL EQUITIES - LSV': 'LSV', 'LGS INTERNATIONAL EQUITIES - MFS': 'MFS', 'LGS INTERNATIONAL EQUITIES - MACQUARIE': 'Macquarie', 'LGS INTERNATIONAL EQUITIES - WELLINGTON': 'Wellington', 'LGS GLOBAL LISTED PROPERTY - RESOLUTION': 'Resolution', } # Imports JPM Mandates holdings data df_jpm = pd.read_csv( jpm_filepath, skiprows=[0, 1, 2, 3], header=0, usecols=[ 'Account Number', 'Account Name', 'Security ID', 'ISIN', 'Security Name', 'Asset Type Description', 'Price Date', 'Market Price', 'Total Units', 'Total Market Value (Local)', 'Total Market Value (Base)', 'Local Currency' ], parse_dates=['Price Date'], infer_datetime_format=True ) # Renames the columns into LGS column names df_jpm = df_jpm.rename( columns={ 'Security ID': 'SEDOL', 'Asset Type Description': 'Asset Type', 'Price Date': 'Date', 'Market Price': 'Purchase Price Local', 'Total Units': 'Quantity', 'Total Market Value (Local)': 'Market Value Local', 'Total Market Value (Base)': 'Market Value AUD', 'Local Currency': 'Currency' } ) df_jpm['Purchase Price AUD'] = df_jpm['Market Value AUD'] / df_jpm['Quantity'] # Imports WSCF holdings data df_wscf = pd.read_excel( pd.ExcelFile(wscf_filepath), sheet_name='Holdings', skiprows=[0, 1, 2, 3, 4, 5, 6, 8], header=0, usecols=[ 'Security SEDOL', 'Security ISIN', 'Security Name', 'Unit Holdings', 'Market Value (Local Currency)', 'Market Value (Base Currency)', 'Security Currency' ] ) # Renames the columns into LGS column names df_wscf = df_wscf.rename( columns={ 'Security SEDOL': 'SEDOL', 'Security ISIN': 'ISIN', 'Unit Holdings': 'Quantity', 'Market Value (Local Currency)': 'Market Value Local', 'Market Value (Base Currency)': 'Market Value AUD', 'Security Currency': 'Currency' } ) # Scales holdings by market value wscf_scaling_factor = wscf_market_value/df_wscf['Market Value AUD'].sum() df_wscf['Market Value Local'] = wscf_scaling_factor * df_wscf['Market Value Local'] df_wscf['Market Value AUD'] = wscf_scaling_factor * df_wscf['Market Value AUD'] df_wscf['Quantity'] = wscf_scaling_factor * df_wscf['Quantity'] df_wscf['Purchase Price Local'] = df_wscf['Market Value Local'] / df_wscf['Quantity'] df_wscf['Purchase Price AUD'] = df_wscf['Market Value AUD'] / df_wscf['Quantity'] df_wscf['Account Number'] = 'WSCF' df_wscf['Account Name'] = 'LGS AUSTRALIAN EQUITIES - WSCF' df_wscf['Date'] = report_date df_wscf['Asset Type'] = np.nan # Imports AQR holdings data df_aqr = pd.read_excel( pd.ExcelFile(aqr_filepath), sheet_name='Holdings', skiprows=[0, 1, 2, 3, 4, 5, 6, 7], header=0, usecols=[ 'Sedol', 'Isin', 'Investment Description', 'Asset Type', 'Price Local', 'Base Price', 'Quantity', 'MV Local', 'MV Base', 'Ccy' ] ) # Renames the columns into LGS column names df_aqr = df_aqr.rename( columns={ 'Sedol': 'SEDOL', 'Isin': 'ISIN', 'Investment Description': 'Security Name', 'Price Local': 'Purchase Price Local', 'Base Price': 'Purchase Price AUD', 'MV Local': 'Market Value Local', 'MV Base': 'Market Value AUD', 'Ccy': 'Currency' } ) # Scales holdings by market value aqr_scaling_factor = aqr_market_value/df_aqr['Market Value AUD'].sum() df_aqr['Market Value Local'] = aqr_scaling_factor * df_aqr['Market Value Local'] df_aqr['Market Value AUD'] = aqr_scaling_factor * df_aqr['Market Value AUD'] df_aqr['Quantity'] = aqr_scaling_factor * df_aqr['Quantity'] df_aqr['Account Number'] = 'AQR' df_aqr['Account Name'] = 'LGS INTERNATIONAL EQUITIES - AQR' df_aqr['Date'] = report_date # Imports Delaware holdings data df_delaware = pd.read_excel( pd.ExcelFile(delaware_filepath), sheet_name='EM SICAV holdings 7-31-2020', header=0, usecols=[ 'Security SEDOL', 'Security ISIN', 'Security Description (Short)', 'Position Date', 'Shares/Par', 'Trading Currency', 'Traded Market Value (Local)', 'Traded Market Value (AUD)' ] ) # Renames the columns into LGS column names df_delaware = df_delaware.rename( columns={ 'Security SEDOL': 'SEDOL', 'Security ISIN': 'ISIN', 'Security Description (Short)': 'Security Name', 'Position Date': 'Date', 'Shares/Par': 'Quantity', 'Trading Currency': 'Currency', 'Traded Market Value (Local)': 'Market Value Local', 'Traded Market Value (AUD)': 'Market Value AUD' } ) # Scales holdings by market value delaware_scaling_factor = delaware_market_value/df_delaware['Market Value AUD'].sum() df_delaware['Market Value Local'] = delaware_scaling_factor * df_delaware['Market Value Local'] df_delaware['Market Value AUD'] = delaware_scaling_factor * df_delaware['Market Value AUD'] df_delaware['Quantity'] = delaware_scaling_factor * df_aqr['Quantity'] df_delaware['Purchase Price Local'] = df_delaware['Market Value Local'] / df_delaware['Quantity'] df_delaware['Purchase Price AUD'] = df_delaware['Market Value AUD'] / df_delaware['Quantity'] df_delaware['Account Number'] = 'MACQUARIE' df_delaware['Account Name'] = 'LGS INTERNATIONAL EQUITIES - MACQUARIE' df_delaware['Date'] = report_date # Imports Wellington holdings data df_wellington = pd.read_excel( pd.ExcelFile(wellington_filepath), sheet_name='wellington_holdings', header=0, usecols=[ 'SEDOL', 'ISIN', 'Security', 'Shares or Par Value', 'ISO Code', 'Market Value (Local)', 'Market Value (Report Currency)' ] ) # Renames the columns into LGS column names df_wellington = df_wellington.rename( columns={ 'Security': 'Security Name', 'Shares or Par Value': 'Quantity', 'ISO Code': 'Currency', 'Market Value (Local)': 'Market Value Local', 'Market Value (Report Currency)': 'Market Value AUD' } ) # Scales holdings by market value wellington_scaling_factor = wellington_market_value/df_wellington['Market Value AUD'].sum() df_wellington['Market Value Local'] = wellington_scaling_factor * df_wellington['Market Value Local'] df_wellington['Market Value AUD'] = wellington_scaling_factor * df_wellington['Market Value AUD'] df_wellington['Quantity'] = wellington_scaling_factor * df_wellington['Quantity'] df_wellington['Purchase Price Local'] = df_wellington['Market Value Local'] / df_wellington['Quantity'] df_wellington['Purchase Price AUD'] = df_wellington['Market Value AUD'] / df_wellington['Quantity'] df_wellington['Account Number'] = 'WELLINGTON' df_wellington['Account Name'] = 'LGS INTERNATIONAL EQUITIES - WELLINGTON' df_wellington['Date'] = report_date df_qic_cash = pd.read_excel( pd.ExcelFile(qic_cash_filepath), sheet_name='Risk and Exposure', header=4, usecols=[ 'ISIN', 'Security Description', 'Security Type', 'Currency', 'Market Value %' ] ) df_qic_cash = df_qic_cash.rename( columns={ 'Security Description': 'Security Name', 'Security Type': 'Asset Type' } ) df_qic_cash['Market Value Local'] = [np.nan for i in range(0,len(df_qic_cash))] df_qic_cash['Market Value AUD'] = df_qic_cash['Market Value %'] * qic_cash_market_value df_qic_cash['Quantity'] = [np.nan for i in range(0,len(df_qic_cash))] df_qic_cash['Purchase Price Local'] = [np.nan for i in range(0,len(df_qic_cash))] df_qic_cash['Purchase Price AUD'] = [np.nan for i in range(0,len(df_qic_cash))] df_qic_cash['Account Number'] = 'QIC Cash' df_qic_cash['Account Name'] = 'LGS CASH - QIC CASH' df_qic_cash['Date'] = report_date df_qic_cash = df_qic_cash.drop(columns=['Market Value %'], axis=1) df_qic_cash = df_qic_cash[~df_qic_cash['Security Name'].isin([np.nan])].reset_index(drop=True) # Joins all the dataframes df_main = pd.concat([df_jpm, df_wscf, df_aqr, df_delaware, df_wellington], axis=0, sort=True).reset_index(drop=True) # Outputs all of the holdings df_main_all = df_main.copy() df_main_all = df_main_all.drop(['Date'], axis=1) df_main_all.to_csv(output_directory + 'CIO/#Data/output/holdings/all_holdings.csv', index=False) # <NAME> Spreadsheet df_cp = df_main_all[['Account Name', 'Security Name', 'Market Value AUD']] df_cp.to_csv(output_directory + 'CIO/#Data/output/holdings/craigpete.csv', index=False) # Selects Australian Equity and International Equity managers only JANA df_main_all_aeq = df_main_all[df_main_all['Account Name'].isin(australian_equity_managers_dict)].reset_index(drop=True) df_main_all_ieq = df_main_all[df_main_all['Account Name'].isin(international_equity_managers_dict)].reset_index(drop=True) # Writes to excel file for JANA writer =
pd.ExcelWriter(output_directory + 'CIO/#Data/output/holdings/jana/aeq_holdings.xlsx', engine='xlsxwriter')
pandas.ExcelWriter
import json import sys print(sys.executable, sys.version) import numpy as np import pandas as pd from os.path import join, abspath # for local import sys.path.append(abspath('..')) from main.config import Config from main.model import Model mapping = { 'mpii_3d': 'mpi', 'h36m_filtered': 'h36m', 'h36m': 'h36m', 'total_cap': 'TC' } def eval_per_sequence(sequences, all_kp3d_mpjpe, all_kp3d_mpjpe_aligned): # sort sequence eval_dict = {} for i, sequence in zip(range(len(sequences)), sequences): sequence = sequence.decode('utf-8') if ' 2_' in sequence or ' 3_' in sequence: # ignore camera 2 and 3 for mpii 3d continue mpjpe_tuple = tuple([all_kp3d_mpjpe_aligned[i], all_kp3d_mpjpe[i]]) if sequence not in eval_dict: eval_dict[sequence] = [mpjpe_tuple] else: eval_dict[sequence].append(mpjpe_tuple) seq_names, data = eval_dict.keys(), np.ndarray(shape=(len(eval_dict), 9), dtype=np.float32) for i, value in zip(range(len(seq_names)), eval_dict.values()): values_per_seq = np.asarray(value, dtype=np.float32) mpjpe_aligned = values_per_seq[:, 0, :] mpjpe = values_per_seq[:, 1, :] mean_mpjpe_aligned = np.mean(mpjpe_aligned) mean_mpjpe = np.mean(mpjpe) data[i, 0] = mean_mpjpe_aligned # mean_error_aligned data[i, 1] = mean_mpjpe # mean_error data[i, 2] = np.median(mpjpe_aligned) # median_error data[i, 3] = np.std(mpjpe_aligned) # standard deviation data[i, 4] = mpjpe_aligned.min() # min data[i, 5] = mpjpe_aligned.max() # max data[i, 6] = np.percentile(mpjpe_aligned, 25) # 25 percentile data[i, 7] = np.percentile(mpjpe_aligned, 50) # 50 percentile data[i, 8] = np.percentile(mpjpe_aligned, 75) # 75 percentile columns = ['Mean Aligned', 'Mean', 'Median', 'Standard Deviation', 'Min', 'Max', '25%', '50%', '75%'] df_seq =
pd.DataFrame(data, index=seq_names, columns=columns)
pandas.DataFrame
from datetime import timedelta from os import linesep import pandas as pd import pytest from pykusto import PyKustoClient, Order, Nulls, JoinKind, Distribution, BagExpansion, column_generator as col, Functions as f, Query, JoinException # noinspection PyProtectedMember from pykusto._src.type_utils import _KustoType from test.test_base import TestBase, mock_databases_response, MockKustoClient, mock_response from test.test_base import mock_table as t, mock_columns_response from test.udf import func, STRINGIFIED class TestQuery(TestBase): def test_sanity(self): # test concatenation # self.assertEqual( "mock_table | where numField > 4 | take 5 | sort by stringField asc nulls last", Query(t).where(t.numField > 4).take(5).sort_by(t.stringField, Order.ASC, Nulls.LAST).render(), ) def test_add_queries(self): query_a = Query(t).where(t.numField > 4) query_b = Query(t).take(5) query_c = Query(t).where(t.numField2 > 1).sort_by(t.stringField, Order.ASC, Nulls.LAST) query = query_a + query_b + query_c self.assertEqual( "mock_table | where numField > 4 | take 5 | where numField2 > 1 | sort by stringField asc nulls last", query.render(), ) # make sure the originals didn't change self.assertEqual( "mock_table | where numField > 4", query_a.render(), ) self.assertEqual( "mock_table | take 5", query_b.render(), ) self.assertEqual( "mock_table | where numField2 > 1 | sort by stringField asc nulls last", query_c.render(), ) def test_add_queries_with_table(self): table = PyKustoClient(MockKustoClient(columns_response=mock_columns_response([('numField', _KustoType.INT)])))['test_db']['mock_table'] query_a = Query(table).where(table.numField > 4) query_b = Query(t).take(5).take(2).sort_by(t.stringField, Order.ASC, Nulls.LAST) query = query_a + query_b self.assertEqual( "mock_table | where numField > 4 | take 5 | take 2 | sort by stringField asc nulls last", query.render(), ) # make sure the originals didn't change self.assertEqual( "mock_table | where numField > 4", query_a.render(), ) self.assertEqual( "mock_table | take 5 | take 2 | sort by stringField asc nulls last", query_b.render(), ) def test_add_queries_with_table_name(self): query_a = Query('mock_table').where(col.numField > 4) query_b = Query().take(5) query = query_a + query_b self.assertEqual( "mock_table | where numField > 4 | take 5", query.render(), ) self.assertEqual( "mock_table", query.get_table_name(), ) # make sure the originals didn't change self.assertEqual( "mock_table | where numField > 4", query_a.render(), ) self.assertEqual( "mock_table", query_a.get_table_name(), ) self.assertEqual( " | take 5", query_b.render(), ) self.assertEqual( None, query_b.get_table_name(), ) def test_pretty_render(self): query = Query('mock_table').where(col.numField > 4).take(5) self.assertEqual( "mock_table" + linesep + "| where numField > 4" + linesep + "| take 5", query.pretty_render(), ) def test_where(self): self.assertEqual( "mock_table | where numField > 4", Query(t).where(t.numField > 4).render(), ) def test_where_multiple_predicates(self): self.assertEqual( 'mock_table | where boolField and (numField > numField2) and (stringField contains "hello")', Query(t).where(t.boolField, t.numField > t.numField2, t.stringField.contains('hello')).render(), ) def test_where_no_predicates(self): self.assertEqual( 'mock_table | project numField', Query(t).where().project(t.numField).render(), ) def test_where_true_predicate(self): self.assertEqual( 'mock_table | where boolField | project numField', Query(t).where(t.boolField, True).project(t.numField).render(), ) def test_where_only_true_predicate(self): self.assertEqual( 'mock_table | project numField', Query(t).where(True).project(t.numField).render(), ) def test_where_false_predicate(self): self.assertEqual( 'mock_table | where false | project numField', Query(t).where(t.boolField, False).project(t.numField).render(), ) def test_where_not(self): self.assertEqual( "mock_table | where not(boolField)", Query(t).where(f.not_of(t.boolField)).render(), ) def test_take(self): self.assertEqual( "mock_table | take 3", Query(t).take(3).render(), ) def test_sort(self): self.assertEqual( "mock_table | sort by numField desc nulls first", Query(t).sort_by(t.numField, order=Order.DESC, nulls=Nulls.FIRST).render(), ) def test_order(self): self.assertEqual( "mock_table | sort by numField desc nulls first", Query(t).order_by(t.numField, order=Order.DESC, nulls=Nulls.FIRST).render(), ) def test_order_expression_in_arg(self): self.assertEqual( "mock_table | sort by strlen(stringField) desc nulls first", Query(t).order_by(f.strlen(t.stringField), order=Order.DESC, nulls=Nulls.FIRST).render(), ) def test_sort_multiple_cols(self): self.assertEqual( "mock_table | sort by stringField desc nulls first, numField asc nulls last", Query(t).sort_by(t.stringField, order=Order.DESC, nulls=Nulls.FIRST).then_by(t.numField, Order.ASC, Nulls.LAST).render(), ) def test_no_params_for_sort(self): self.assertEqual( "mock_table | sort by numField, stringField", Query(t).sort_by(t.numField).then_by(t.stringField).render(), ) self.assertEqual( "mock_table | sort by numField desc nulls first, stringField", Query(t).sort_by(t.numField, order=Order.DESC, nulls=Nulls.FIRST).then_by(t.stringField).render(), ) def test_top(self): self.assertEqual( "mock_table | top 3 by numField desc nulls first", Query(t).top(3, t.numField, order=Order.DESC, nulls=Nulls.FIRST).render(), ) def test_join_with_table(self): table = PyKustoClient(MockKustoClient(columns_response=mock_columns_response([('tableStringField', _KustoType.STRING), ('numField', _KustoType.INT)])))['test_db'][ 'mock_table'] self.assertEqual( 'mock_table | where numField > 4 | take 5 | join kind=inner (cluster("test_cluster.kusto.windows.net").database("test_db").table("mock_table")) ' 'on numField, $left.stringField==$right.tableStringField', ( Query(t) .where(t.numField > 4).take(5) .join(Query(table), kind=JoinKind.INNER) .on(t.numField, (t.stringField, table.tableStringField)) .render() ) ) def test_join_with_table_and_query(self): table = PyKustoClient(MockKustoClient(columns_response=mock_columns_response([ ('tableStringField', _KustoType.STRING), ('numField', _KustoType.INT) ])))['test_db']['mock_table'] self.assertEqual( 'mock_table | where numField > 4 | take 5 | join kind=inner (cluster("test_cluster.kusto.windows.net").database("test_db").table("mock_table") | where numField == 2 ' '| take 6) on numField, $left.stringField==$right.tableStringField', ( Query(t) .where(t.numField > 4) .take(5) .join(Query(table).where(table.numField == 2).take(6), kind=JoinKind.INNER) .on(t.numField, (t.stringField, table.tableStringField)) .render() ) ) def test_join_chained_on(self): mock_client = PyKustoClient( MockKustoClient( columns_response=mock_columns_response( [('tableStringField', _KustoType.STRING), ('numField', _KustoType.INT)] ) ) ) mock_table = mock_client['test_db']['mock_table'] expected_query = ( 'mock_table | where numField > 4 | take 5 | join kind=inner ' '(cluster("test_cluster.kusto.windows.net").database("test_db").table("mock_table")' ' | where numField == 2 | take 6) on numField, $left.stringField==$right.tableStringField' ) actual_query = ( Query(t) .where(t.numField > 4) .take(5) .join(Query(mock_table).where(mock_table.numField == 2).take(6), kind=JoinKind.INNER) .on(t.numField) .on((t.stringField, mock_table.tableStringField)) .render() ) self.assertEqual(expected_query, actual_query) def test_join_no_joined_table(self): self.assertRaises( JoinException("The joined query must have a table"), lambda: Query(t).where(t.numField > 4).take(5).join(Query().take(2), kind=JoinKind.INNER).on(t.numField, (t.stringField, t.stringField2)).render() ) def test_join_no_on(self): self.assertRaises( JoinException("A call to join() must be followed by a call to on()"), Query(t).where(t.numField > 4).take(5).join( Query(t).take(2), kind=JoinKind.INNER).render ) @pytest.mark.skip(reason="Re-enable once this is resoled: https://github.com/agronholm/typeguard/issues/159") def test_join_wrong_arguments_type(self): col_name_str = "numField" # noinspection PyTypeChecker self.assertRaises( JoinException( "A join argument could be a column, or a tuple of two columns corresponding to the input and join " f"tables column names. However, the join argument provided is {col_name_str} of type {type(col_name_str)}" ), lambda: ( Query(t) .where(t.numField > 4) .take(5) .join(Query(t).take(2), kind=JoinKind.INNER) .on(col_name_str) .render() ) ) def test_extend(self): self.assertEqual( "mock_table | extend sumField = numField + numField2, foo = numField3 * 4 | take 5", Query(t).extend((t.numField + t.numField2).assign_to(col.sumField), foo=t.numField3 * 4).take(5).render(), ) def test_extend_assign_to_multiple_columns(self): self.assertEqual( "mock_table | extend (newField1, newField2) = arrayField, shoo = numField * 4", Query(t).extend(t.arrayField.assign_to(col.newField1, col.newField2), shoo=t.numField * 4).render(), ) def test_extend_assign_non_array_to_multiple_columns(self): self.assertRaises( ValueError("Only arrays can be assigned to multiple columns"), lambda: t.stringField.assign_to(col.newField1, col.newField2), ) def test_extend_generate_column_name(self): self.assertEqual( "mock_table | extend numField + numField2, foo = numField3 * 4", Query(t).extend(t.numField + t.numField2, foo=t.numField3 * 4).render(), ) def test_extend_build_dynamic(self): self.assertEqual( 'mock_table | extend foo = pack("Name", stringField, "Roles", pack_array(stringField2, stringField3))', Query(t).extend(foo={'Name': t.stringField, 'Roles': [t.stringField2, t.stringField3]}).render(), ) def test_summarize(self): self.assertEqual( "mock_table | summarize count(stringField), my_count = count(stringField2)", Query(t).summarize(f.count(t.stringField), my_count=f.count(t.stringField2)).render(), ) def test_summarize_by(self): self.assertEqual( "mock_table | summarize count(stringField), my_count = count(stringField2) by boolField, bin(numField, 1), time_range = bin(dateField, time(0.0:0:10.0))", Query(t).summarize( f.count(t.stringField), my_count=f.count(t.stringField2) ).by(t.boolField, f.bin(t.numField, 1), time_range=f.bin(t.dateField, timedelta(seconds=10))).render(), ) def test_summarize_by_expression(self): self.assertEqual( "mock_table | summarize count(stringField) by tostring(mapField)", Query(t).summarize(f.count(t.stringField)).by(f.to_string(t.mapField)).render(), ) def test_mv_expand(self): self.assertEqual( "mock_table | mv-expand arrayField, arrayField2, arrayField3", Query(t).mv_expand(t.arrayField, t.arrayField2, t.arrayField3).render(), ) def test_mv_expand_assign(self): self.assertEqual( "mock_table | mv-expand expanded_field = arrayField", Query(t).mv_expand(expanded_field=t.arrayField).render(), ) def test_mv_expand_assign_to(self): self.assertEqual( "mock_table | mv-expand expanded_field = arrayField", Query(t).mv_expand(t.arrayField.assign_to(col.expanded_field)).render(), ) def test_mv_expand_assign_to_with_assign_other_params(self): self.assertEqual( "mock_table | mv-expand bagexpansion=bag with_itemindex=foo expanded_field = arrayField, expanded_field2 = arrayField2 limit 4", Query(t).mv_expand( t.arrayField.assign_to(col.expanded_field), expanded_field2=t.arrayField2, bag_expansion=BagExpansion.BAG, with_item_index=col.foo, limit=4 ).render(), ) def test_mv_expand_assign_multiple(self): self.assertEqual( "mock_table | mv-expand expanded_field = arrayField, expanded_field2 = arrayField2", Query(t).mv_expand(expanded_field=t.arrayField, expanded_field2=t.arrayField2).render(), ) def test_mv_expand_to_type(self): self.assertEqual( "mock_table | mv-expand arrayField to typeof(string), arrayField2 to typeof(int), arrayField3", Query(t).mv_expand(f.to_type(t.arrayField, _KustoType.STRING), f.to_type(t.arrayField2, _KustoType.INT), t.arrayField3).render(), ) def test_mv_expand_args(self): self.assertEqual( "mock_table | mv-expand bagexpansion=bag with_itemindex=foo arrayField, arrayField2, arrayField3 limit 4", Query(t).mv_expand(t.arrayField, t.arrayField2, t.arrayField3, bag_expansion=BagExpansion.BAG, with_item_index=col.foo, limit=4).render(), ) def test_mv_expand_no_args(self): self.assertRaises( ValueError("Please specify one or more columns for mv-expand"), Query(t).mv_expand ) def test_limit(self): self.assertEqual( "mock_table | limit 3", Query(t).limit(3).render(), ) def test_sample(self): self.assertEqual( "mock_table | sample 3", Query(t).sample(3).render(), ) def test_count(self): self.assertEqual( "mock_table | count", Query(t).count().render(), ) def test_project(self): self.assertEqual( "mock_table | project stringField, numField", Query(t).project(t.stringField, t.numField).render(), ) def test_project_with_expression(self): self.assertEqual( "mock_table | project foo = numField * 4", Query(t).project(foo=t.numField * 4).render(), ) def test_project_assign_to_multiple_columns(self): self.assertEqual( "mock_table | project (foo, bar) = arrayField", Query(t).project(t.arrayField.assign_to(col.foo, col.bar)).render(), ) def test_project_unspecified_column(self): self.assertEqual( "mock_table | project numField + numField2", Query(t).project(t.numField + t.numField2).render(), ) def test_project_away(self): self.assertEqual( "mock_table | project-away stringField, numField", Query(t).project_away(t.stringField, t.numField).render(), ) def test_project_away_wildcard(self): self.assertEqual( "mock_table | project-away stringField, b*", Query(t).project_away(t.stringField, "b*").render(), ) def test_project_rename(self): self.assertEqual( "mock_table | project-rename a = stringField, c = numField", Query(t).project_rename(a=t.stringField, c=t.numField).render(), ) def test_custom(self): self.assertEqual( "mock_table | some custom query", Query(t).custom("some custom query").render(), ) def test_distinct(self): self.assertEqual( "mock_table | distinct stringField, numField", Query(t).distinct(t.stringField, t.numField).render(), ) def test_distinct_sample(self): self.assertEqual( "mock_table | sample-distinct 5 of stringField", Query(t).distinct(t.stringField).sample(5).render(), ) def test_top_hitters(self): self.assertEqual( "mock_table | top-hitters 5 of stringField", Query(t).distinct(t.stringField).top_hitters(5).render(), ) def test_top_hitters_by(self): self.assertEqual( "mock_table | top-hitters 5 of stringField by numField", Query(t).distinct(t.stringField).top_hitters(5).by(t.numField).render(), ) def test_distinct_all(self): self.assertEqual( "mock_table | distinct *", Query(t).distinct_all().render(), ) def test_evaluate(self): self.assertEqual( "mock_table | evaluate some_plugin(numField, 3)", Query(t).evaluate('some_plugin', t.numField, 3).render(), ) def test_evaluate_with_distribution(self): self.assertEqual( "mock_table | evaluate hint.distribution=per_shard some_plugin(numField, 3)", Query(t).evaluate('some_plugin', t.numField, 3, distribution=Distribution.PER_SHARD).render(), ) def test_udf(self): # The static type checker mistakenly thinks func is not of type "FunctionType" # noinspection PyTypeChecker self.assertEqual( f"mock_table | evaluate python(typeof(*, StateZone:string), {STRINGIFIED})", Query(t).evaluate_udf(func, StateZone=_KustoType.STRING).render(), ) def test_udf_no_extend(self): # The static type checker mistakenly thinks func is not of type "FunctionType" # noinspection PyTypeChecker self.assertEqual( f"mock_table | evaluate python(typeof(StateZone:string), {STRINGIFIED})", Query(t).evaluate_udf(func, extend=False, StateZone=_KustoType.STRING).render(), ) def test_bag_unpack(self): self.assertEqual( "mock_table | evaluate bag_unpack(mapField)", Query(t).bag_unpack(t.mapField).render(), ) def test_bag_unpack_with_prefix(self): self.assertEqual( 'mock_table | evaluate bag_unpack(mapField, "bar_")', Query(t).bag_unpack(t.mapField, 'bar_').render(), ) def test_to_dataframe(self): rows = (['foo', 10], ['bar', 20], ['baz', 30]) columns = ('stringField', 'numField') client = PyKustoClient(MockKustoClient( databases_response=mock_databases_response([('test_db', [('mock_table', [('stringField', _KustoType.STRING), ('numField', _KustoType.INT)])])]), main_response=mock_response(rows, columns), )) client.wait_for_items() table = client.test_db.mock_table actual_df = Query(table).take(10).to_dataframe() expected_df =
pd.DataFrame(rows, columns=columns)
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[ ]: # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../../../input/giripujar_hr-analytics/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory import os import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import statsmodels.formula.api as sm from statsmodels.stats.outliers_influence import variance_inflation_factor from patsy import dmatrices from sklearn.preprocessing import OneHotEncoder, LabelEncoder from sklearn.model_selection import KFold from sklearn import metrics from sklearn.model_selection import train_test_split print() print(os.listdir("../../../input/giripujar_hr-analytics")) # Any results you write to the current directory are saved as output. # In[ ]: data = pd.read_csv("../../../input/giripujar_hr-analytics/HR_comma_sep.csv") # In[ ]: data.head(5) # In[ ]: data.shape # In[ ]: data.info() # In[ ]: ## Let's separate numerical and categorical vaiables into 2 dfs def sep_data(df): numerics = ['int32','float32','int64','float64'] num_data = df.select_dtypes(include=numerics) cat_data = df.select_dtypes(exclude=numerics) return num_data, cat_data num_data,cat_data = sep_data(data) # In[ ]: ## Let's create a summary of Numerical Variables def print_summary(x): return pd.Series([x.count(), x.isnull().sum(), x.mean(), x.median(), x.std(), x.var(), x.min(), x.max(), x.dropna().quantile(0.25), x.dropna().quantile(0.75), x.dropna().quantile(0.90) ], index = ["Number of Observations", "Missing Values", "Mean", "Median", "Standard Deviation", "Variance", "Minimum Value", "Maximum Value", "25th Percentile", "75th Percentile", "90th Percentile"]) numerical_summary = num_data.apply(func = print_summary) # In[ ]: numerical_summary # In[ ]: ## Separate X and Y variables y = data.loc[:,'left'] X = pd.DataFrame(data.drop(columns='left')) # In[ ]: X.info() # <font color = 'indigo' size= "12"><b><body style="background-color:lightgrey;">Below is what we should try :</b></body></font> # 1. VIF - Which variables are highly correlated # 2. Check odds ratio - to see variance in data # 3. Run a Logistic Regression model to see most impactful variables (use OneHotEncoding for Categorical Variables) # 4. Run simple Decision Trees to see the explainability of data (EDA) # 5. Check prediction power of Decision Trees # 4. Run Random Forest with: # - Grid Search # - K Fold cross validations # - SMOTE # - Regularization # - Tree Pruning & Other hyperparameter tuning # - Confusion Matrics # - ROC # - Boosting, GBM and xGBoost # In[ ]: plt.rcParams['figure.figsize'] = 16, 7.5 print() # In[ ]: ## 1. Let's run VIF to check highly correlated and hence redundant variables. features = num_data.drop(columns='left') feature_list = "+".join(features.columns) y, X = dmatrices('left~'+feature_list,num_data,return_type='dataframe') # In[ ]: vif = pd.DataFrame() vif['VIF Factor'] = [variance_inflation_factor(X.values, i) for i in range(X.shape[1])] vif['Features'] = X.columns # In[ ]: vif # ### <font color = 'green'> The above table shows that there is no variable with a 'high" Variance Inflation Factor ... So, this method suggests we should not drop any variable # In[ ]: ## 2. Log odds plot - to see variance in data for feature in num_data.columns.difference(['left']): binned = pd.cut(num_data[feature],bins=10,labels=list(range(1,11))) binned = binned.dropna() ser = num_data.groupby(binned)['left'].sum() / (num_data.groupby(binned)['left'].count() - num_data.groupby(binned)['left'].sum()) ser = np.log(ser) fig,axes = plt.subplots(figsize=(16,8)) sns.barplot(x=ser.index,y=ser) plt.ylabel('Log Odds Ratio') # ### <font color = 'blue'> The above graphs will help us bin the categorical variables better, if need be. </font> # ### <font color = 'orange'> The following block of code will be used to perform One Hot Encoding of categorical variables - It will also rename the One Hot Encoded Columns</font> # In[ ]: ## One hot encoding will be done on categorical variables - salary and department ... ## We need to first run label coding before using OneHotEncoding ohe_columns = data.select_dtypes(include='object').columns le = LabelEncoder() data_le = data.copy() for column in ohe_columns: data_le.loc[:,column] = le.fit_transform(data_le.loc[:,column]) ## One Hot Encoding method takes arrays as X, hence we need to convert features into arrays and remove headings. X = data_le.drop(columns='left').values ## This approach will create rows of arrays which need to be passed to OneHotEncoder y = data_le.loc[:,'left'] ## This does not require array - hence we are just copying and not using .values ohe = OneHotEncoder(categorical_features=[7,8]) ## This method takes index location of categorical variables in X array as input X = ohe.fit_transform(X).toarray() ## Let's convert X into Data Frame X = pd.DataFrame(X) ## Maintain columns that are unaffected by OneHotEncoding separately total_cols = data.columns cols_maintained = total_cols.drop(['Department','salary','left']) ## Column names for OneHotEncoded Columns - One by one ## 1. For Department for ind in range(data[ohe_columns[0]].value_counts().count()): a = X[X[ind] == 1].index.values.astype(int) ## For any column, check where is "1" present as a value after OneHotEncoding name_idx = a[0] ## Index of first occurance of "1" name = data.loc[a[0],ohe_columns[0]] ## Value in "Department" column in data DataFrame col_name = ohe_columns[0] + "_" + name ## Concatenate "Department_" + Value as the new column name X.rename(columns={ind:col_name},inplace=True) ## Rename the column ## 2. For Salary for ind in range(data[ohe_columns[0]].value_counts().count(),(data[ohe_columns[0]].value_counts().count() + 3)): a = X[X[ind] == 1].index.values.astype(int) ## For any column, check where is "1" present as a value after OneHotEncoding name_idx = a[0] ## Index of first occurance of "1" name = data.loc[a[0],ohe_columns[1]] ## Value in "Salary" column in data DataFrame col_name = ohe_columns[1] + "_" + name ## Concatenate "Salary_" + Value as the new column name X.rename(columns={ind:col_name},inplace=True) ## Rename the column ## 3. For columns unchanged by OneHotEncoding counter = 0 for ind in range((data[ohe_columns[0]].value_counts().count() + 3),(len(X.columns))): X.rename(columns={ind:cols_maintained[counter]},inplace=True) counter = counter + 1 # In[ ]: ## Let's run Logistic Regression now .... ## First, we need to split data into train and test ## Scenario 1 --> where all dummy classes are present .... train_X, test_X, train_y, test_y = train_test_split(X,y,test_size = 0.3,random_state = 142) model = sm.Logit(train_y,train_X) result = model.fit() # In[ ]: result.summary() # In[ ]: result.pvalues # In[ ]: ## Drop one of the dummy variables for each OneHotEncoded variable train_X_2 = train_X.drop(columns=['Department_IT','salary_high']) # In[ ]: ## Scenario 2 --> Run Logistic on Xs with dropped data - avoiding dummy variable trap model_2 = sm.Logit(train_y,train_X_2) result_2 = model_2.fit() result_2.summary() # In[ ]: result_2.pvalues # ### <font color = 'maroon'> Here, we see that by dropping one variable for every dummy one hot encoded class, suddenly a lot of variables for "Department" and "Salary" become impatful. ... Hence, it is a best practice to keep (N-1) dummy variables for every variable with N unique values </font> # In[ ]: test_X_2 = test_X.drop(columns=['Department_IT','salary_high']) ## Create a data frame with 2 columns - one has the predicted probability and the other has the actual class predict_2 = pd.DataFrame(result_2.predict(test_X_2)) predict_2.rename(columns={0:'pred_prob'},inplace=True) predict_test =
pd.concat([predict_2,test_y],axis=1)
pandas.concat
import glob import itertools import os from datetime import datetime from itertools import chain import chart_studio.plotly as py import matplotlib.pyplot as plt import missingno as msno import numpy as np import pandas as pd import plotly.graph_objects as go import seaborn as sns from sklearn.ensemble import RandomForestRegressor from sklearn.experimental import enable_iterative_imputer # noqa from sklearn.impute import IterativeImputer from sklearn.linear_model import BayesianRidge from xgboost import XGBRegressor WEEKS_YEAR = {2019: 52, 2020: 53, 2021: 12} ##################### # GENERAL FUNCTIONS # ##################### def re_assert_cod_datatypes(df): dtypes = { "COD_DPTO": "object", "COD_MUNICIPIO": "object", "SEMANA": "object", "ANO": "object", "DENGUE": "UInt16", "DENGUE GRAVE": "UInt16", "MORTALIDAD POR DENGUE": "UInt8", "CODIGOESTACION": "object", } for col in df.columns: if col in dtypes.keys(): df[col] = df[col].astype(dtypes[col]) if col == "SEMANA" or col == "COD_DPTO": df[col] = df[col].apply(lambda x: str(int(x)).zfill(2)) return df def get_sivigila_calendar(): date = pd.to_datetime("2006-01-01") week = 1 weeks = [] year = 2006 sivigila_53_years = [2008, 2014, 2020] day = 1 while year < 2022: if week == 53: if not (year in sivigila_53_years): year += 1 week = 1 elif week > 53: year += 1 week = 1 # if day == 1: # year = date.year weeks.append((date, year, week)) day += 1 if day == 8: week += 1 day = 1 date += pd.DateOffset(days=1) columns = ["FECHA", "ANO", "SEMANA"] df_weeks = pd.DataFrame(weeks, columns=columns) df_weeks = df_weeks.set_index("FECHA") df_weeks = re_assert_cod_datatypes(df_weeks) return df_weeks #################### # DENGUE FUNCTIONS # #################### def unify_column_names_dengue(columns): new_columns = [] for col in columns: if "evento" == col.lower(): new_columns.append("NOMBRE") elif "cod_e" in col.lower(): new_columns.append("COD_EVE") elif "cod_d" in col.lower(): new_columns.append("COD_DPTO") elif "cod_m" in col.lower(): new_columns.append("COD_MUNICIPIO") elif "dato" in col.lower() or "conteo" in col.lower(): new_columns.append("TOTAL_CASOS") else: new_columns.append(col.upper()) return new_columns def get_dengue_weeks_from_rutinaria(filename, codes, sheet_num, year): df = pd.read_excel(filename, sheet_name=sheet_num) df.columns = unify_column_names_dengue(list(df.columns)) df["ANO"] = year df = df[~df["COD_DPTO"].isin([0, 1])] df = df[df.COD_EVE.isin(codes)] df_pivoted = df.pivot_table( values="TOTAL_CASOS", columns="NOMBRE", index=["ANO", "COD_DPTO", "COD_MUNICIPIO", "SEMANA"], ).reset_index() return df_pivoted def read_all_rutinarias(codes=[210, 220, 580]): dfs = [] for year in range(2007, 2019): print("Doing year ", year) filename = "local/data/src_general/rutinarias_dengue/rutinaria_{}.xlsx".format( year ) df = get_dengue_weeks_from_rutinaria(filename, codes, sheet_num=3, year=year) df = re_assert_cod_datatypes(df) dfs.append(df) df = pd.concat(dfs) df.columns.name = None return re_assert_cod_datatypes(df) def get_time_series_from_municipio_subset(subset_mun, event_col_n, cod_eve, year): try: series_index = get_index_from_col_and_string( subset_mun, subset_mun.columns[event_col_n], cod_eve ) series = list(subset_mun.loc[series_index, :][6:]) except Exception as e: series = [0] * WEEKS_YEAR[year] return series def get_index_from_col_and_string(df, col, string): return df[df.loc[:, col] == string].index[0] def dataframe_from_dengue_series(series, value_name, year): cols = ["ANO", "COD_DPTO", "COD_MUNICIPIO"] + [ str(i) for i in range(1, WEEKS_YEAR[year] + 1) ] df = pd.DataFrame(series).transpose() df.columns = cols df = pd.melt( df, id_vars=["ANO", "COD_DPTO", "COD_MUNICIPIO"], var_name="SEMANA", value_name=value_name, ) return df #################### # CITIES FUNCTIONS # #################### def get_composite_city_code(x): composite_code = str(x["COD_DPTO"]).zfill(2) + str(x["COD_MUNICIPIO"]).zfill(3) x["COD_MUNICIPIO"] = composite_code return x def combine_cities_and_weeks(df_weeks, df_cities): dfs_week_city = [] for city in df_cities.iterrows(): df_week_city = df_weeks.copy() df_week_city["COD_MUNICIPIO"] = city[1][1] df_week_city["COD_DPTO"] = city[1][0] dfs_week_city.append(df_week_city) res = pd.concat(dfs_week_city, axis=0) return res def combine_cities_weeks_and_dengue(df_weeks_cities, df_dengue): den_columns = [ "ANO", "SEMANA", "COD_DPTO", "COD_MUNICIPIO", "DENGUE", "DENGUE GRAVE", "MORTALIDAD POR DENGUE", ] res = pd.merge( left=df_weeks_cities.reset_index(), right=df_dengue[den_columns], how="left", on=["ANO", "SEMANA", "COD_MUNICIPIO"], suffixes=("", "_y"), ) res = res.drop(res.filter(regex="_y$").columns.tolist(), axis=1) res = res.set_index("FECHA") return res def read_csv_IDEAM(filenames, sep=r";|,"): """ This function receives a list of .csv files downloaded from http://dhime.ideam.gov.co/atencionciudadano/ and combines information into a single pandas dataframe by keeping only the date and the relevant data column. -filenames: list of one or more filenames of .csv files. -codigo_estacion: the code of the station we are interested in. -sep: the kind of separation used for pd.read_csv, it is good to try and switch between ; and , if there is any trouble since not all files downloaded from IDEAM have the same separator. returns: a dataframe with the datetime column as it index, and the V """ dfs = [] for filename in filenames: dfs.append( pd.read_csv( filename, sep, dtype={"Calificador": "object", "Latitud": "object"}, engine="python", ) ) if len(dfs) > 0: df = pd.concat(dfs, axis=0).reset_index(drop=True) else: df = dfs[0] return df def get_variable_IDEAM(df, possible_var_names, standard_var_name, codigo_estacion=None): df = df[df["Etiqueta"].isin(possible_var_names)].reset_index(drop=True) # value_name = df.loc[0, "Etiqueta"] if codigo_estacion: df = df[(df["CodigoEstacion"] == codigo_estacion)] df = df[["CodigoEstacion", "Fecha", "Valor"]] df.columns = ["CodigoEstacion", "DATE", standard_var_name] df.index = pd.to_datetime(df["DATE"], dayfirst=False) df = df.drop_duplicates() del df["DATE"] return df def filter_entries_by_column_index_values(df, column_name, min_val=None, max_val=None): if min_val and max_val: df = df[(df[column_name] >= min_val) & (df[column_name] <= max_val)] return df elif not min_val: df = df[(df[column_name] <= max_val)] return df elif not max_val: df = df[(df[column_name] >= min_val)] return df else: return df def combine_IDEAM_stations(df_all, stations_priority): df_st = df_all[df_all["CodigoEstacion"] == stations_priority[0]] if len(df_all) == 1: return df_st for station in stations_priority[1:]: df_st_add = df_all[df_all["CodigoEstacion"] == station] df_st_add = df_st_add[(~df_st_add.index.isin(df_st.index))] df_st =
pd.concat([df_st, df_st_add])
pandas.concat
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290:
pd.Timestamp("2013-02-16 00:00:00")
pandas.Timestamp
''' example of loading FinMind api ''' from Data import Load import requests import pandas as pd url = 'http://finmindapi.servebeer.com/api/data' list_url = 'http://finmindapi.servebeer.com/api/datalist' translate_url = 'http://finmindapi.servebeer.com/api/translation' '''----------------TaiwanStockInfo----------------''' form_data = {'dataset': 'TaiwanStockInfo'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------Taiwan Stock Dividend Result----------------''' form_data = {'dataset': 'StockDividendResult'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TotalMarginPurchaseShortSale----------------''' form_data = {'dataset': 'StockDividendResult', 'stock_id': '2330', 'date': '2010-10-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockNews----------------''' form_data = {'dataset': 'TaiwanStockNews', 'date': '2019-10-10', 'stock_id': '2317'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockPrice----------------''' form_data = {'dataset': 'TaiwanStockPrice', 'stock_id': '2317', 'date': '2019-06-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockPriceMinute----------------''' form_data = {'dataset': 'TaiwanStockPriceMinute', 'stock_id': '2330', 'date': '2019-06-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------FinancialStatements----------------''' form_data = {'dataset': 'FinancialStatements', 'stock_id': '2317', 'date': '2019-01-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data = Load.transpose(data) data.head() '''----------------TaiwanCashFlowsStatement----------------''' form_data = {'dataset': 'TaiwanCashFlowsStatement', 'stock_id': '2330', 'date': '2019-06-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockStockDividend----------------''' form_data = {'dataset': 'TaiwanStockStockDividend', 'stock_id': '2317', 'date': '2018-01-01'} res = requests.post( url, verify=True, data=form_data) temp = res.json() data = pd.DataFrame(temp['data']) data.head() '''----------------TaiwanStockStockDividend----------------''' form_data = {'dataset': 'StockDividend', 'stock_id': '0050', 'date': '2015-01-02', } res = requests.post( url, verify=True, data=form_data) temp = res.json() data =
pd.DataFrame(temp['data'])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Tue Sep 15 11:01:20 2020 @author: Ray @email: <EMAIL> @wechat: RayTing0305 """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import math import string import scipy.stats as stats ''' relax a little bit test a quiz ''' sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000} obj1 = pd.Series(sdata) states = ['California', 'Ohio', 'Oregon', 'Texas'] obj2 = pd.Series(sdata, index = states) obj3 = pd.isnull(obj2) x=obj2['California'] #print(obj2['California']!=x) #print(obj2['California']==None) #print(math.isnan(obj2['California'])) #print(pd.isna(obj2['California'])) d = { '1': 'Alice', '2': 'Bob', '3': 'Rita', '4': 'Molly', '5': 'Ryan' } S = pd.Series(d) data = pd.DataFrame(np.arange(16).reshape((4, 4)), index=['Ohio', 'Colorado', 'Utah', 'New York'], columns=['one', 'two', 'three', 'four']) data1 = data.rename(mapper=lambda x:x.upper(), axis=1) #data2 = data.rename(mapper=lambda x:x.upper(), axis=1, inplace=True) #data3 = data.rename(mapper=lambda x:x.upper(), axis='column') data = {'gre score':[337, 324, 316, 322, 314], 'toefl score':[118, 107, 104, 110, 103]} df = pd.DataFrame(data, columns=['gre score', 'toefl score'], index=np.arange(1, 6, 1)) df1 = df.where(df['toefl score']>105).dropna() df2 = df[df['toefl score']>105] df3 = df.where(df['toefl score']>105) #s1 = pd.Series({1: 'Alice', 2: 'Jack', 3: 'Molly'}) #s2 = pd.Series({'Alice': 1, 'Jack': 2, 'Molly': 3}) df1 = df[df['toefl score'].gt(105)&df['toefl score'].lt(115)] df2 = df[(df['toefl score'].isin(range(106,115)))] df3 = (df['toefl score']>105)&(df['toefl score']<115) data = {'Name':['Alice', 'Jack'], 'Age':[20, 22], 'Gender':['F', 'M']} index1 = ['Mathematics', 'Sociology'] df =
pd.DataFrame(data, index=index1)
pandas.DataFrame
"""bcbio run module""" import os import re import yaml import glob from itertools import chain import pandas as pd import datetime from scilifelab.utils.misc import filtered_walk, query_yes_no, prune_option_list from scilifelab.utils.dry import dry_write, dry_backup, dry_unlink, dry_rmdir, dry_makedir from scilifelab.log import minimal_logger from scilifelab.bcbio import sort_sample_config_fastq, update_sample_config, update_pp_platform_args, merge_sample_config from scilifelab.bcbio.flowcell import Flowcell LOG = minimal_logger(__name__) # The analysis script for running the pipeline in parallell mode (on one node) PARALLELL_ANALYSIS_SCRIPT="automated_initial_analysis.py" # The analysis script for running the pipeline in distributed mode (across multiple nodes/cores) DISTRIBUTED_ANALYSIS_SCRIPT="distributed_nextgen_pipeline.py" # If True, will sanitize the run_info.yaml configuration file when running non-CASAVA analysis PROCESS_YAML = True # If True, will assign the distributed master process and workers to a separate RabbitMQ queue for each flowcell FC_SPECIFIC_AMPQ = True ## Name of merged sample output directory MERGED_SAMPLE_OUTPUT_DIR = "TOTAL" def _sample_status(x): """Find the status of a sample. Look for output files: currently only look for project-summary.csv""" if os.path.exists(os.path.join(os.path.dirname(x), "project-summary.csv")): return "PASS" else: return "FAIL" def _group_samples(flist, include_merged=False): """Group samples by sample name and flowcell This function assumes flist consists of bcbb-config.yaml files. It reads each file and extracts sample name and flowcell for subsequent grouping. Exclude MERGED_SAMPLE_OUTPUT_DIR from grouping. :param flist: list of bcbb-config.yaml files :returns: dictionary of samples grouped by name and flowcell """ sample_d = {} for f in flist: if not include_merged and os.path.dirname(f).endswith(MERGED_SAMPLE_OUTPUT_DIR): continue with open(f) as fh: conf = yaml.load(fh) if conf.get("details", [])[0].get("multiplex", []): sample_id = conf.get("details", [])[0].get("multiplex", [])[0].get("name", None) else: sample_id = conf.get("details", [])[0].get("description") if not sample_id: LOG.warn("No sample_id found in file {}; skipping".format(f)) continue if conf.get("details", [])[0].get("flowcell_id", None): fc_id = conf.get("details", [])[0].get("flowcell_id") else: fc_id = conf.get("fc_name", None) if not fc_id: LOG.warn("No flowcell_id found in file {}; skipping".format(f)) continue if not sample_id in sample_d.keys(): sample_d[sample_id] = {fc_id:f} else: sample_d[sample_id][fc_id] = f return sample_d ## FIXME: make pandas data frame of all samples, with info about lane, ## flowcell, date, barcode_id, path, sample name -> makes searching for files much easier def sample_table(flist): """Make a table from bcbb-config yaml files. :param flist: file list of config files :returns: data frame """ samples = [] for f in flist: path = os.path.dirname(f) with open(f) as fh: conf = yaml.load(fh) runinfo = conf.get("details") if conf.get("details", None) else conf for info in runinfo: lane = info.get("lane", None) fc_name = info.get("flowcell_id", None) fc_date = info.get("fc_date", None) if info.get("multiplex", None): for mp in info.get("multiplex"): barcode_id = mp.get("barcode_id", None) sample = mp.get("name", None) samples.append([sample, lane, barcode_id, fc_name, fc_date, path]) else: barcode_id = None sample = info.get("description", None) fc_name = conf.get("fc_name", None) fc_date = conf.get("fc_date", None) samples.append([sample, lane, barcode_id, fc_name, fc_date, path]) return
pd.DataFrame(samples, columns=["sample", "lane", "barcode_id", "fc_name", "fc_date", "path"])
pandas.DataFrame
import pandas as pd from surprise import KNNWithMeans, SVD, SVDpp, NMF from surprise.prediction_algorithms.slope_one import SlopeOne from settings.config import user_label, NMF_LABEL, \ SVDpp_LABEL, SVD_LABEL, SLOPE_LABEL, ITEMKNN_LABEL, USERKNN_LABEL, item_label, value_label, K_NEIGHBOR from conversions.pandas_to_models import transform_testset, user_transactions_df_to_item_mapping from conversions.suprise_and_pandas import surprise_to_pandas_get_candidates_items from settings.language_strings import LANGUAGE_USER_KNN_START, LANGUAGE_ITEM_KNN_START, \ LANGUAGE_SVD_START, LANGUAGE_SVD_STOP, LANGUAGE_SVDPP_START, LANGUAGE_SVDPP_STOP, \ LANGUAGE_NMF_START, LANGUAGE_NMF_STOP, LANGUAGE_SLOPE_ONE_START, LANGUAGE_SLOPE_ONE_STOP from posprocessing.step import postprocessing_calibration from processing.recommendation_average import users_results_mean def recommendation_and_posprocessing(user_id, user_trainset_df, user_prefs_distr_df, user_testset_df, item_mapping, instance, baseline_label): keys_list = item_mapping.keys() know_items = user_trainset_df[item_label].unique().tolist() unknow_items = set(keys_list) - set(know_items) data = {item_label: list(unknow_items)} user_testset =
pd.DataFrame.from_dict(data)
pandas.DataFrame.from_dict
# // Licensed under the Apache License, Version 2.0 (the "License"); # // you may not use this file except in compliance with the License. # // You may obtain a copy of the License at # // # // http://www.apache.org/licenses/LICENSE-2.0 # // # // Unless required by applicable law or agreed to in writing, software # // distributed under the License is distributed on an "AS IS" BASIS, # // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # // See the License for the specific language governing permissions and # // limitations under the License. import pandas as pd import numpy as np from twister2deepnet.deepnet.exception.internal import ParameterError class UtilPanda: @staticmethod def convert_numpy_to_pandas(ndarray=None): dataframe = None if not isinstance(ndarray, np.ndarray): raise ParameterError("Input is {}, but expected {}".format(type(ndarray), type(np.ndarray))) else: dataframe = pd.DataFrame(ndarray) return dataframe @staticmethod def convert_partition_to_pandas(partition=None): """ Here we convert a Parition data type into a Pandas DataFrame The content in each segment of a partition is made flatten to support 2-D nature of a Pandas DataFrame Warning: At the end usage make sure to unwrap to fit the original shape :param partition: Input is the Partition Object of Data from Pytorch Data Source :return: Pandas dataframe """ dataframe = None lst = [] if not len(partition) > 0: pass for item in partition: ## Check 2D data if len(item.shape) > 1: lst.append(item.flatten()) else: lst.append(item) lst_array = np.array(lst) print(lst_array.shape) dataframe =
pd.DataFrame(lst_array)
pandas.DataFrame
#!/usr/bin/env python3 """Machine Learning module for ADNI capstone project. This module contains functions for use with the ADNI dataset. """ if 'pd' not in globals(): import pandas as pd if 'np' not in globals(): import numpy as np if 'plt' not in globals(): import matplotlib.pyplot as plt if 'sns' not in globals(): import seaborn as sns if 'scipy.stats' not in globals(): import scipy.stats if 'StandardScaler' not in globals(): from sklearn.preprocessing import StandardScaler, MinMaxScaler if 'KNeighborsClassifier' not in globals(): from sklearn.neighbors import KNeighborsClassifier if 'SVC' not in globals(): from sklearn.svm import SVC if 'train_test_split' not in globals(): from sklearn.model_selection import train_test_split, GridSearchCV if 'MultinomialNB' not in globals(): from sklearn.naive_bayes import MultinomialNB if 'confusion_matrix' not in globals(): from sklearn.metrics import roc_auc_score, confusion_matrix, classification_report if 'RandomForestClassifier' not in globals(): from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier if 'linear_model' not in globals(): from sklearn import linear_model if 'PCA' not in globals(): from sklearn.decomposition import PCA sns.set() def get_delta_scaled(final_exam, neg_one=False): """Take the final_exam dataframe and return datasets. This function returns five numpy arrays: feature_names, X_delta_male, X_delta_female, y_delta_male, and y_delta_female. The two X arrays hold the feature data. The two y arrays hold the diagnosis group labels. The feature_names array hold a list of the features. The neg_one parameter allows you to specify -1 for the negative class (for SVM).""" # map the diagnosis group and assign to dx_group nc_idx = final_exam[final_exam.DX == final_exam.DX_bl2].index cn_mci_idx = final_exam[(final_exam.DX == 'MCI') & (final_exam.DX_bl2 == 'CN')].index mci_ad_idx = final_exam[(final_exam.DX == 'AD') & (final_exam.DX_bl2 == 'MCI')].index cn_ad_idx = final_exam[(final_exam.DX == 'AD') & (final_exam.DX_bl2 == 'CN')].index if neg_one: labels = pd.concat([pd.DataFrame({'dx_group': -1}, index=nc_idx), pd.DataFrame({'dx_group': -1}, index=cn_mci_idx), pd.DataFrame({'dx_group': 1}, index=mci_ad_idx), pd.DataFrame({'dx_group': 1}, index=cn_ad_idx) ]).sort_index() else: labels = pd.concat([pd.DataFrame({'dx_group': 0}, index=nc_idx), pd.DataFrame({'dx_group': 0}, index=cn_mci_idx), pd.DataFrame({'dx_group': 1}, index=mci_ad_idx), pd.DataFrame({'dx_group': 1}, index=cn_ad_idx) ]).sort_index() # add to the dataframe and ensure every row has a label deltas_df = final_exam.loc[labels.index] deltas_df.loc[:,'dx_group'] = labels.dx_group # convert gender to numeric column deltas_df = pd.get_dummies(deltas_df, drop_first=True, columns=['PTGENDER']) # extract the features for change in diagnosis X_delta = deltas_df.reindex(columns=['CDRSB_delta', 'ADAS11_delta', 'ADAS13_delta', 'MMSE_delta', 'RAVLT_delta', 'Hippocampus_delta', 'Ventricles_delta', 'WholeBrain_delta', 'Entorhinal_delta', 'MidTemp_delta', 'PTGENDER_Male', 'AGE']) # store the feature names feature_names = np.array(['CDRSB_delta', 'ADAS11_delta', 'ADAS13_delta', 'MMSE_delta', 'RAVLT_delta', 'Hippocampus_delta', 'Ventricles_delta', 'WholeBrain_delta', 'Entorhinal_delta', 'MidTemp_delta', 'PTGENDER_Male', 'AGE']) # standardize the data scaler = StandardScaler() Xd = scaler.fit_transform(X_delta) # extract the labels yd = np.array(deltas_df.dx_group) # return the data return feature_names, Xd, yd def plot_best_k(X_train, X_test, y_train, y_test, kmax=9): """This function will create a plot to help choose the best k for k-NN. Supply the training and test data to compare accuracy at different k values. Specifying a max k value is optional.""" # Setup arrays to store train and test accuracies # view the plot to help pick the best k to use neighbors = np.arange(1, kmax) train_accuracy = np.empty(len(neighbors)) test_accuracy = np.empty(len(neighbors)) # Loop over different values of k for i, k in enumerate(neighbors): # Setup a k-NN Classifier with k neighbors: knn knn = KNeighborsClassifier(n_neighbors=k) # Fit the classifier to the training data knn.fit(X_train, y_train) #Compute accuracy on the training set train_accuracy[i] = knn.score(X_train, y_train) #Compute accuracy on the testing set test_accuracy[i] = knn.score(X_test, y_test) if kmax < 11: s = 2 elif kmax < 21: s = 4 elif kmax < 41: s = 5 elif kmax < 101: s = 10 else: s = 20 # Generate plot _ = plt.title('k-NN: Varying Number of Neighbors') _ = plt.plot(neighbors, test_accuracy, label = 'Testing Accuracy') _ = plt.plot(neighbors, train_accuracy, label = 'Training Accuracy') _ = plt.legend() _ = plt.xlabel('Number of Neighbors') _ = plt.ylabel('Accuracy') _ = plt.xticks(np.arange(0,kmax,s)) plt.show() def plot_f1_scores(k, s, r, b, l, n): """This function accepts six dictionaries containing classification reports. This function is designed to work specifically with the six dictionaries created in the 5-Machine_Learning notebook, as the second dictionary is SVM, which uses classes of -1 and 1, whereas the other classes are 0 and 1.""" # extract the data and store in a dataframe df = pd.DataFrame({'score': [k['0']['f1-score'], k['1']['f1-score'], s['-1']['f1-score'], s['1']['f1-score'], r['0']['f1-score'], r['1']['f1-score'], b['0']['f1-score'], b['1']['f1-score'], l['0']['f1-score'], l['1']['f1-score'], n['0']['f1-score'], n['1']['f1-score']], 'model': ['KNN', 'KNN', 'SVM', 'SVM', 'Random Forest', 'Random Forest', 'AdaBoost', 'AdaBoost', 'Log Reg', 'Log Reg', 'Naive Bayes', 'Naive Bayes'], 'group': ['Non AD', 'AD', 'Non AD', 'AD', 'Non AD', 'AD', 'Non AD', 'AD', 'Non AD', 'AD', 'Non AD', 'AD']}) # create the plot ax = sns.barplot('model', 'score', hue='group', data=df) _ = plt.setp(ax.get_xticklabels(), rotation=25) _ = plt.title('F1 Scores for Each Model') _ = plt.ylabel('F1 Score') _ = plt.xlabel('Model') _ = ax.legend(loc='center left', bbox_to_anchor=(1, 0.5)) plt.show() def get_bl_data(final_exam, neg_one=False): """This function extracts the baseline data features for machine learning. Pass the final_exam dataframe, specify optional neg_one=True for SVM (sets) the non-Ad class as -1 vs 0. Returns features (X), labels (y), and feature_names. """ # map the diagnosis group and assign to dx_group non_ad_idx = final_exam[final_exam.DX != 'AD'].index ad_idx = final_exam[final_exam.DX == 'AD'].index if neg_one: labels = pd.concat([pd.DataFrame({'dx_group': -1}, index=non_ad_idx), pd.DataFrame({'dx_group': 1}, index=ad_idx) ]).sort_index() else: labels = pd.concat([pd.DataFrame({'dx_group': 0}, index=non_ad_idx), pd.DataFrame({'dx_group': 1}, index=ad_idx) ]).sort_index() # add to the dataframe and ensure every row has a label bl_df = final_exam.loc[labels.index] bl_df.loc[:,'dx_group'] = labels.dx_group # convert gender to numeric column bl_df = pd.get_dummies(bl_df, drop_first=True, columns=['PTGENDER']) # extract the baseline features X_bl = bl_df.reindex(columns=['CDRSB_bl', 'ADAS11_bl', 'ADAS13_bl', 'MMSE_bl', 'RAVLT_immediate_bl', 'Hippocampus_bl', 'Ventricles_bl', 'WholeBrain_bl', 'Entorhinal_bl', 'MidTemp_bl', 'PTGENDER_Male', 'AGE']) # store the feature names feature_names = np.array(['CDRSB_bl', 'ADAS11_bl', 'ADAS13_bl', 'MMSE_bl', 'RAVLT_immediate_bl', 'Hippocampus_bl', 'Ventricles_bl', 'WholeBrain_bl', 'Entorhinal_bl', 'MidTemp_bl', 'PTGENDER_Male', 'AGE']) # standardize the data scaler = StandardScaler() Xd = scaler.fit_transform(X_bl) # extract the labels yd = np.array(bl_df.dx_group) # return the data return feature_names, Xd, yd def run_clinical_models(final_exam, biomarkers): """This dataframe runs six machine learning models on only the clinical biomarkes. A dataframe containing summary information will be returned.""" # map the diagnosis group and assign to dx_group nc_idx = final_exam[final_exam.DX == final_exam.DX_bl2].index cn_mci_idx = final_exam[(final_exam.DX == 'MCI') & (final_exam.DX_bl2 == 'CN')].index mci_ad_idx = final_exam[(final_exam.DX == 'AD') & (final_exam.DX_bl2 == 'MCI')].index cn_ad_idx = final_exam[(final_exam.DX == 'AD') & (final_exam.DX_bl2 == 'CN')].index labels = pd.concat([pd.DataFrame({'dx_group': 0}, index=nc_idx), pd.DataFrame({'dx_group': 0}, index=cn_mci_idx), pd.DataFrame({'dx_group': 1}, index=mci_ad_idx),
pd.DataFrame({'dx_group': 1}, index=cn_ad_idx)
pandas.DataFrame
"""Network representation and utilities """ import os import geopandas import numpy as np import pandas import shapely.errors from geopandas import GeoDataFrame from shapely.geometry import ( Point, MultiPoint, LineString, GeometryCollection, shape, mapping, ) from shapely.ops import split, linemerge # workaround for geopandas >0.9 until snkit #37 and geopandas #1977 are fixed geopandas._compat.USE_PYGEOS = False # optional progress bars if "SNKIT_PROGRESS" in os.environ and os.environ["SNKIT_PROGRESS"] in ("1", "TRUE"): try: from tqdm import tqdm except ImportError: from snkit.utils import tqdm_standin as tqdm else: from snkit.utils import tqdm_standin as tqdm class Network: """A Network is composed of nodes (points in space) and edges (lines) Parameters ---------- nodes : geopandas.geodataframe.GeoDataFrame, optional edges : geopandas.geodataframe.GeoDataFrame, optional Attributes ---------- nodes : geopandas.geodataframe.GeoDataFrame edges : geopandas.geodataframe.GeoDataFrame """ def __init__(self, nodes=None, edges=None): """ """ if nodes is None: nodes = GeoDataFrame() self.nodes = nodes if edges is None: edges = GeoDataFrame() self.edges = edges def set_crs(self, crs=None, epsg=None): """Set network (node and edge) crs Parameters ---------- crs : dict or str Projection parameters as PROJ4 string or in dictionary form. epsg : int EPSG code specifying output projection """ if crs is None and epsg is None: raise ValueError( "Either crs or epsg must be provided to Network.set_crs") if epsg is not None: crs = {"init": "epsg:{}".format(epsg)} self.edges.crs = crs self.nodes.crs = crs def to_crs(self, crs=None, epsg=None): """Set network (node and edge) crs Parameters ---------- crs : dict or str Projection parameters as PROJ4 string or in dictionary form. epsg : int EPSG code specifying output projection """ if crs is None and epsg is None: raise ValueError( "Either crs or epsg must be provided to Network.set_crs") if epsg is not None: crs = {"init": "epsg:{}".format(epsg)} self.edges.to_crs(crs, inplace=True) self.nodes.to_crs(crs, inplace=True) def add_ids(network, id_col="id", edge_prefix="edge", node_prefix="node"): """Add or replace an id column with ascending ids""" nodes = network.nodes.copy() if not nodes.empty: nodes = nodes.reset_index(drop=True) edges = network.edges.copy() if not edges.empty: edges = edges.reset_index(drop=True) nodes[id_col] = ["{}_{}".format(node_prefix, i) for i in range(len(nodes))] edges[id_col] = ["{}_{}".format(edge_prefix, i) for i in range(len(edges))] return Network(nodes=nodes, edges=edges) def add_topology(network, id_col="id"): """Add or replace from_id, to_id to edges""" from_ids = [] to_ids = [] for edge in tqdm(network.edges.itertuples(), desc="topology", total=len(network.edges)): start, end = line_endpoints(edge.geometry) start_node = nearest_node(start, network.nodes) from_ids.append(start_node[id_col]) end_node = nearest_node(end, network.nodes) to_ids.append(end_node[id_col]) edges = network.edges.copy() edges["from_id"] = from_ids edges["to_id"] = to_ids return Network(nodes=network.nodes, edges=edges) def get_endpoints(network): """Get nodes for each edge endpoint""" endpoints = [] for edge in tqdm(network.edges.itertuples(), desc="endpoints", total=len(network.edges)): if edge.geometry is None: continue if edge.geometry.geometryType() == "MultiLineString": for line in edge.geometry.geoms: start, end = line_endpoints(line) endpoints.append(start) endpoints.append(end) else: start, end = line_endpoints(edge.geometry) endpoints.append(start) endpoints.append(end) # create dataframe to match the nodes geometry column name return matching_gdf_from_geoms(network.nodes, endpoints) def add_endpoints(network): """Add nodes at line endpoints""" endpoints = get_endpoints(network) nodes = concat_dedup([network.nodes, endpoints]) return Network(nodes=nodes, edges=network.edges) def round_geometries(network, precision=3): """Round coordinates of all node points and vertices of edge linestrings to some precision""" def _set_precision(geom): return set_precision(geom, precision) network.nodes.geometry = network.nodes.geometry.apply(_set_precision) network.edges.geometry = network.edges.geometry.apply(_set_precision) return network def split_multilinestrings(network): """Create multiple edges from any MultiLineString edge Ensures that edge geometries are all LineStrings, duplicates attributes over any created multi-edges. """ simple_edge_attrs = [] simple_edge_geoms = [] edges = network.edges # # Commented out idea about dealing with multi-part MultiLineStrings separately # is_multi_single_part = edges.geometry.apply(lambda geom: geom.geom_type == 'MultiLineString' and len(geom) == 1) # is_multi_multi_part = edges.geometry.apply(lambda geom: geom.geom_type == 'MultiLineString' and len(geom) > 1) # is_not_multi = edges.geometry.apply(lambda geom: geom.geom_type != 'MultiLineString') # not_multi_edges = edges[is_not_multi].copy() # multi_single_part_edges = edges[is_multi_single_part].copy() # multi_single_part_edges.geometry = multi_single_part_edges.geometry.apply(lambda geom: next(geom)) # edges = edges[is_multi_multi_part].copy() for edge in tqdm(edges.itertuples(index=False), desc="split_multi", total=len(edges)): if edge.geometry.geom_type == "MultiLineString": edge_parts = list(edge.geometry) else: edge_parts = [edge.geometry] for part in edge_parts: simple_edge_geoms.append(part) attrs = GeoDataFrame([edge] * len(edge_parts)) simple_edge_attrs.append(attrs) simple_edge_geoms = GeoDataFrame(simple_edge_geoms, columns=["geometry"]) edges = (pandas.concat(simple_edge_attrs, axis=0).reset_index(drop=True).drop("geometry", axis=1)) edges = pandas.concat([edges, simple_edge_geoms], axis=1) # edges = pandas.concat([edges, multi_single_part_edges, not_multi_edges], axis=0).reset_index(drop=True) return Network(nodes=network.nodes, edges=edges) def merge_multilinestring(geom): """Merge a MultiLineString to LineString""" try: if geom.geom_type == "MultiLineString": geom_inb = linemerge(geom) if geom_inb.is_ring: return geom # In case of linestring merge issues, we could add this to the script again # from centerline.main import Centerline # if geom_inb.geom_type == 'MultiLineString': # return linemerge(Centerline(geom.buffer(0.5))) else: return geom_inb else: return geom except: return GeometryCollection() def snap_nodes(network, threshold=None): """Move nodes (within threshold) to edges""" def snap_node(node): snap = nearest_point_on_edges(node.geometry, network.edges) distance = snap.distance(node.geometry) if threshold is not None and distance > threshold: snap = node.geometry return snap snapped_geoms = network.nodes.apply(snap_node, axis=1) geom_col = geometry_column_name(network.nodes) nodes = pandas.concat( [ network.nodes.drop(geom_col, axis=1), GeoDataFrame(snapped_geoms, columns=[geom_col]), ], axis=1, ) return Network(nodes=nodes, edges=network.edges) def split_edges_at_nodes(network, tolerance=1e-9): """Split network edges where they intersect node geometries""" split_edges = [] for edge in tqdm(network.edges.itertuples(index=False), desc="split", total=len(network.edges)): hits = nodes_intersecting(edge.geometry, network.nodes, tolerance) split_points = MultiPoint([hit.geometry for hit in hits.itertuples()]) # potentially split to multiple edges edges = split_edge_at_points(edge, split_points, tolerance) split_edges.append(edges) # combine dfs edges = pandas.concat(split_edges, axis=0) # reset index and drop edges = edges.reset_index().drop("index", axis=1) # return new network with split edges return Network(nodes=network.nodes, edges=edges) def link_nodes_to_edges_within(network, distance, condition=None, tolerance=1e-9): """Link nodes to all edges within some distance""" new_node_geoms = [] new_edge_geoms = [] for node in tqdm(network.nodes.itertuples(index=False), desc="link", total=len(network.nodes)): # for each node, find edges within edges = edges_within(node.geometry, network.edges, distance) for edge in edges.itertuples(): if condition is not None and not condition(node, edge): continue # add nodes at points-nearest point = nearest_point_on_line(node.geometry, edge.geometry) if point != node.geometry: new_node_geoms.append(point) # add edges linking line = LineString([node.geometry, point]) new_edge_geoms.append(line) new_nodes = matching_gdf_from_geoms(network.nodes, new_node_geoms) all_nodes = concat_dedup([network.nodes, new_nodes]) new_edges = matching_gdf_from_geoms(network.edges, new_edge_geoms) all_edges = concat_dedup([network.edges, new_edges]) # split edges as necessary after new node creation unsplit = Network(nodes=all_nodes, edges=all_edges) return split_edges_at_nodes(unsplit, tolerance) def link_nodes_to_nearest_edge(network, condition=None): """Link nodes to all edges within some distance""" new_node_geoms = [] new_edge_geoms = [] for node in tqdm(network.nodes.itertuples(index=False), desc="link", total=len(network.nodes)): # for each node, find edges within edge = nearest_edge(node.geometry, network.edges) if condition is not None and not condition(node, edge): continue # add nodes at points-nearest point = nearest_point_on_line(node.geometry, edge.geometry) if point != node.geometry: new_node_geoms.append(point) # add edges linking line = LineString([node.geometry, point]) new_edge_geoms.append(line) new_nodes = matching_gdf_from_geoms(network.nodes, new_node_geoms) all_nodes = concat_dedup([network.nodes, new_nodes]) new_edges = matching_gdf_from_geoms(network.edges, new_edge_geoms) all_edges = concat_dedup([network.edges, new_edges]) # split edges as necessary after new node creation unsplit = Network(nodes=all_nodes, edges=all_edges) return split_edges_at_nodes(unsplit) def merge_edges(network, id_col="id", by=None): """Merge edges that share a node with a connectivity degree of 2 Parameters ---------- network : snkit.network.Network id_col : string by : List[string], optional list of columns to use when merging an edge path - will not merge if edges have different values. """ if "degree" not in network.nodes.columns: network.nodes["degree"] = network.nodes[id_col].apply( lambda x: node_connectivity_degree(x, network)) degree2 = list(network.nodes[id_col].loc[network.nodes.degree == 2]) d2_set = set(degree2) edge_paths = [] while d2_set: if len(d2_set) % 1000 == 0: print(len(d2_set)) popped_node = d2_set.pop() node_path = set([popped_node]) candidates = set([popped_node]) while candidates: popped_cand = candidates.pop() matches = set( np.unique(network.edges[[ "from_id", "to_id" ]].loc[(network.edges.from_id == popped_cand) | (network.edges.to_id == popped_cand)].values)) matches.remove(popped_cand) matches = matches - node_path for match in matches: if match in degree2: candidates.add(match) node_path.add(match) d2_set.remove(match) else: node_path.add(match) if len(node_path) > 2: edge_paths.append( network.edges.loc[(network.edges.from_id.isin(node_path)) & (network.edges.to_id.isin(node_path))]) concat_edge_paths = [] unique_edge_ids = set() new_node_ids = set(network.nodes[id_col]) - set(degree2) for edge_path in tqdm(edge_paths, desc="merge_edge_paths"): unique_edge_ids.update(list(edge_path[id_col])) edge_path = edge_path.dissolve(by=by) edge_path_dicts = [] for edge in edge_path.itertuples(index=False): if edge.geometry.geom_type == "MultiLineString": edge_geom = linemerge(edge.geometry) if edge_geom.geom_type == "MultiLineString": edge_geoms = list(edge_geom) else: edge_geoms = [edge_geom] else: edge_geoms = [edge.geometry] for geom in edge_geoms: start, end = line_endpoints(geom) start = nearest_node(start, network.nodes) end = nearest_node(end, network.nodes) edge_path_dict = { "from_id": start[id_col], "to_id": end[id_col], "geometry": geom, } for i, col in enumerate(edge_path.columns): if col not in ("from_id", "to_id", "geometry"): edge_path_dict[col] = edge[i] edge_path_dicts.append(edge_path_dict) concat_edge_paths.append(geopandas.GeoDataFrame(edge_path_dicts)) new_node_ids.update(list(edge_path.from_id) + list(edge_path.to_id)) edges_new = network.edges.copy() edges_new = edges_new.loc[~(edges_new.id.isin(list(unique_edge_ids)))] edges_new.geometry = edges_new.geometry.apply(merge_multilinestring) edges = pandas.concat( [edges_new, pandas.concat(concat_edge_paths).reset_index()], sort=False) nodes = network.nodes.set_index(id_col).loc[list( new_node_ids)].copy().reset_index() return Network(nodes=nodes, edges=edges) def geometry_column_name(gdf): """Get geometry column name, fall back to 'geometry'""" try: geom_col = gdf.geometry.name except AttributeError: geom_col = "geometry" return geom_col def matching_gdf_from_geoms(gdf, geoms): """Create a geometry-only GeoDataFrame with column name to match an existing GeoDataFrame""" geom_col = geometry_column_name(gdf) return GeoDataFrame(geoms, columns=[geom_col]) def concat_dedup(dfs): """Concatenate a list of GeoDataFrames, dropping duplicate geometries - note: repeatedly drops indexes for deduplication to work """ cat =
pandas.concat(dfs, axis=0, sort=False)
pandas.concat
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import os from copy import deepcopy from sklearn.utils import shuffle from tqdm import tqdm ############ Make test networks ############ def make_triangonal_net(): """ Make a triangonal network. """ dict_nodes = {'x': [1,3,2], 'y': [2,2,1], 'a': [1,0,0], 'b': [0,1,0], 'c': [0,0,1]} nodes = pd.DataFrame.from_dict(dict_nodes) data_edges = [[0,1], [1,2], [2,0]] edges = pd.DataFrame(data_edges, columns=['source','target']) return nodes, edges def make_trigonal_net(): """ Make a trigonal network. """ dict_nodes = {'x': [1,3,2,0,4,2], 'y': [2,2,1,3,3,0], 'a': [1,0,0,1,0,0], 'b': [0,1,0,0,1,0], 'c': [0,0,1,0,0,1]} nodes = pd.DataFrame.from_dict(dict_nodes) data_edges = [[0,1], [1,2], [2,0], [0,3], [1,4], [2,5]] edges = pd.DataFrame(data_edges, columns=['source','target']) return nodes, edges def make_P_net(): """ Make a P-shaped network. """ dict_nodes = {'x': [0,0,0,0,1,1], 'y': [0,1,2,3,3,2], 'a': [1,0,0,0,0,0], 'b': [0,0,0,0,1,0], 'c': [0,1,1,1,0,1]} nodes = pd.DataFrame.from_dict(dict_nodes) data_edges = [[0,1], [1,2], [2,3], [3,4], [4,5], [5,2]] edges = pd.DataFrame(data_edges, columns=['source','target']) return nodes, edges def make_high_assort_net(): """ Make a highly assortative network. """ dict_nodes = {'x': np.arange(12).astype(int), 'y': np.zeros(12).astype(int), 'a': [1] * 4 + [0] * 8, 'b': [0] * 4 + [1] * 4 + [0] * 4, 'c': [0] * 8 + [1] * 4} nodes = pd.DataFrame.from_dict(dict_nodes) edges_block = np.vstack((np.arange(3), np.arange(3) +1)).T data_edges = np.vstack((edges_block, edges_block + 4, edges_block + 8)) edges = pd.DataFrame(data_edges, columns=['source','target']) return nodes, edges def make_high_disassort_net(): """ Make a highly dissassortative network. """ dict_nodes = {'x': [1,2,3,4,4,4,3,2,1,0,0,0], 'y': [0,0,0,1,2,3,4,4,4,3,2,1], 'a': [1,0,0] * 4, 'b': [0,1,0] * 4, 'c': [0,0,1] * 4} nodes = pd.DataFrame.from_dict(dict_nodes) data_edges = np.vstack((np.arange(12), np.roll(np.arange(12), -1))).T edges = pd.DataFrame(data_edges, columns=['source','target']) return nodes, edges def make_random_graph_2libs(nb_nodes=100, p_connect=0.1, attributes=['a', 'b', 'c'], multi_mod=False): import networkx as nx # initialize the network G = nx.fast_gnp_random_graph(nb_nodes, p_connect, directed=False) pos = nx.kamada_kawai_layout(G) nodes = pd.DataFrame.from_dict(pos, orient='index', columns=['x','y']) edges = pd.DataFrame(list(G.edges), columns=['source', 'target']) # set attributes if multi_mod: nodes_class = np.random.randint(0, 2, size=(nb_nodes, len(attributes))).astype(bool) nodes = nodes.join(pd.DataFrame(nodes_class, index=nodes.index, columns=attributes)) else: nodes_class = np.random.choice(attributes, nb_nodes) nodes = nodes.join(pd.DataFrame(nodes_class, index=nodes.index, columns=['nodes_class'])) nodes = nodes.join(
pd.get_dummies(nodes['nodes_class'])
pandas.get_dummies
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8":
pandas.StringDtype()
pandas.StringDtype
import pandas as pd from gurobipy import * import gurobipy as grb import matplotlib.pyplot as plt import numpy as np from ModelSetUp import * from CurrModelPara import * from Curve import * #from Main_cal_opt import find_optimal_value class RL_Kernel(): def __init__(self): #self.reward = None #self.value = None #self.action = None self.alpha = 0.8#0.2 self.date = 'March 07 2019' self.LAC_last_windows = 0#1#0 self.probabilistic = 1#0#1 self.RT_DA = 1#0#1 self.curr_time = 0 self.curr_scenario = 1 self.current_stage ='training_500' def main_function(self): self.Curr_Scenario_Cost_Total = [] self.start = 1 self.end = 2 for curr_scenario in range(self.start, self.end): self.PSH_Results = [] self.SOC_Results = [] self.curr_scenario_cost_total = 0 for i in range(0, 23): self.curr_time = i self.curr_scenario = curr_scenario self.calculate_optimal_soc() self.get_final_curve_main() self.output_psh_soc() self.output_psh_soc_main() self.output_curr_cost() def output_curr_cost(self): # output the psh and soc filename = './Output_Curve' + '/PSH_Profitmax_Rolling_Results_' + 'total' + '_' + self.date + '.csv' self.df_total.to_csv(filename) # output curr_cost filename = './Output_Curve' + '/Current_Cost_Total_Results_' + str( self.curr_scenario) + '_' + self.date + '.csv' self.df = pd.DataFrame({'Curr_Scenario_Cost_Total': self.Curr_Scenario_Cost_Total}) self.df.to_csv(filename) def output_psh_soc_main(self): # add the last one filename = './Output_Curve' + '/PSH_Profitmax_Rolling_Results_' + str( self.curr_scenario) + '_' + self.date + '.csv' if self.SOC_Results[-1] - self.e_system.parameter['EEnd'][0] > 0.1: self.PSH_Results.append( (self.SOC_Results[-1] - self.e_system.parameter['EEnd'][0]) * self.psh_system.parameter['GenEfficiency'][0]) else: self.PSH_Results.append( (self.SOC_Results[-1] - self.e_system.parameter['EEnd'][0]) / self.psh_system.parameter['PumpEfficiency'][0]) self.SOC_Results.append(self.e_system.parameter['EEnd'][0]) self.df = pd.DataFrame( {'SOC_Results_' + str(self.curr_scenario): self.SOC_Results, 'PSH_Results_' + str(self.curr_scenario): self.PSH_Results}) # df = pd.DataFrame({'PSH_Results_' + str(curr_scenario): PSH_Results}) # df.to_csv(filename) if self.curr_scenario == self.start: self.df_total = self.df else: self.df_total = pd.concat([self.df_total, self.df], axis=1) ##calculate total cost self.Curr_Scenario_Cost_Total.append(self.curr_scenario_cost_total) def output_psh_soc(self): self.SOC_Results.append(self.curr_model.optimal_soc_sum) if self.curr_model.optimal_psh_gen_sum > 1: self.PSH_Results.append(self.curr_model.optimal_psh_gen_sum) else: self.PSH_Results.append(-self.curr_model.optimal_psh_pump_sum) ##output curr cost self.curr_scenario_cost_total += self.curr_model.curr_cost # def calculate_optimal_soc(self): self.curr_model_para = CurrModelPara(self.LAC_last_windows, self.probabilistic, self.RT_DA, self.date, self.curr_time, self.curr_scenario, self.current_stage) # LAC_last_windows, probabilistic, RT_DA, date, LAC_bhour, scenario print('##############################' + 'scenario = ' + str(self.curr_scenario) + ', and curr_time = ' + str(self.curr_time) + '######################################') print('################################## psh_system set up ##################################') self.psh_system = PshSystem(self.curr_model_para) self.psh_system.set_up_parameter() print(self.psh_system.parameter) print('################################## e_system set up ##################################') self.e_system = ESystem(self.curr_model_para) self.e_system.set_up_parameter() print(self.e_system.parameter) print('################################## lmp_system set up ##################################') self.lmp = LMP(self.curr_model_para) self.lmp.set_up_parameter() #print(self.lmp.date) print('lmp_quantiles=', self.lmp.lmp_quantiles) print('lmp_scenarios=', self.lmp.lmp_scenarios) print('lmp_Nlmp_s=', self.lmp.Nlmp_s) print('################################## curve set up ##################################') self.old_curve = Curve(100, 0, 3000) self.old_curve.input_curve(self.curr_time, self.curr_scenario - 1) print(self.old_curve.segments) print('################################## ADP training model set up ##################################') model_1 = Model('DAMarket') self.curr_model = RLSetUp(self.psh_system, self.e_system, self.lmp, self.old_curve, self.curr_model_para, model_1) self.curr_model.optimization_model() self.optimal_soc_sum = self.curr_model.optimal_soc_sum self.optimal_psh_gen_sum = self.curr_model.optimal_psh_gen_sum self.optimal_psh_pump_sum = self.curr_model.optimal_psh_pump_sum print(self.curr_model.optimal_soc_sum) def calculate_new_soc(self, initial_soc): pre_model = CurrModelPara(self.LAC_last_windows, self.probabilistic, self.RT_DA, self.date, self.curr_time, self.curr_scenario, self.current_stage) # LAC_last_windows, probabilistic, RT_DA, date, LAC_bhour, scenario psh_system_2 = PshSystem(pre_model) psh_system_2.set_up_parameter() e_system_2 = ESystem(pre_model) e_system_2.set_up_parameter() e_system_2.parameter['EStart'] = initial_soc print('e_system_2.parameter is ' + str(e_system_2.parameter)) if self.curr_time != 22: # lmp, time = t+1, scenario= n self.prev_model = CurrModelPara(self.LAC_last_windows, self.probabilistic, self.RT_DA, self.date, self.curr_time + 1, self.curr_scenario, self.current_stage) self.prev_lmp = LMP(self.prev_model) self.prev_lmp.set_up_parameter() # curve, time = t+1, scenario= n-1 self.pre_curve = Curve(100, 0, 3000) self.pre_curve.input_curve(self.curr_time + 1, self.curr_scenario - 1) elif self.curr_time == 22: self.prev_model = CurrModelPara(self.LAC_last_windows, self.probabilistic, self.RT_DA, self.date, self.curr_time, self.curr_scenario, self.current_stage) self.prev_lmp = LMP(self.prev_model) self.prev_lmp.set_up_parameter() self.pre_curve = Curve(100, 0, 3000) self.pre_curve.input_curve(self.curr_time, self.curr_scenario - 1) model_1 = Model('DAMarket') #ADP_train_model_para = pre_model a = self.prev_lmp.lmp_scenarios print(a) b = self.pre_curve.point_Y print(b) pre_model = RLSetUp(psh_system_2, e_system_2, self.prev_lmp, self.pre_curve, pre_model, model_1) pre_model.optimization_model_with_input() rt = pre_model.optimal_profit return rt #after we get the current self.optimal_profit and self.optimal_soc_sum, we have to update the curve def get_final_curve_main(self): self.get_new_curve_step_1() # 基于此次最优解的model print(self.curve.segments) self.get_new_curve_step_2_curve_comb() # (1-\alpha)*old_curve + \alpha*old_curve print(self.second_curve_slope) # new curve: self.new_curve_slope self.get_new_curve_step_3_two_pts() # update the new curve with the two new points # new points: self.update_point_1 and self.update_point_2 self.curve.curve_update(self.new_curve_slope, self.update_point_1, self.update_point_2) print(self.curve.segments) self.output_curve() self.output_curve_sum() def get_new_curve_step_1(self): #how can we get each new curve_point_X self.curve = self.old_curve self.second_curve_soc = self.curve.point_X #get new curve_profit self.second_curve_profit = [] beta = 0.001 # make sure its terminal soc works self.check_soc_curve = [] #here need parallel for value in self.second_curve_soc: distance = value - float(self.e_system.parameter['EEnd']) left_cod = distance <= 0 and (abs(distance) < (23 - self.curr_time) * float(self.psh_system.parameter['PumpMax']) * (float(self.psh_system.parameter['PumpEfficiency'])-beta) ) right_cod = distance > 0 and (abs(distance) < (23 - self.curr_time) * float(self.psh_system.parameter['GenMax']) / (float(self.psh_system.parameter['GenEfficiency'])+beta) ) # left_value = (value - float(self.e_system.parameter['EEnd'])) - ( # (23 - self.curr_time) * float(self.psh_system.parameter['GenMax']) / ( # float(self.psh_system.parameter['GenEfficiency']) + beta)) # right_value = (value - float(self.e_system.parameter['EEnd'])) - ( # -(23 - self.curr_time) * float(self.psh_system.parameter['PumpMax']) * ( # float(self.psh_system.parameter['PumpEfficiency']) - beta)) if left_cod or right_cod: #if left_value < 0 and right_value > 0: point_y = self.calculate_new_soc(value) check = 1 else: #point_y = 0 point_y = -1000000 #self.calculate_pts(value) check = 0 #FIND the left and right point of using cal_new_soc self.second_curve_profit.append(point_y) self.check_soc_curve.append(check) #find the boundary point self.left = 0 self.right = len(self.check_soc_curve) - 1 for item in range(len(self.check_soc_curve)): if self.check_soc_curve[0] == 1: self.left = 0 elif item != len(self.check_soc_curve)-1 and (self.check_soc_curve[item] == 0 and self.check_soc_curve[item + 1] == 1): self.left = item + 1 elif item != len(self.check_soc_curve)-1 and (self.check_soc_curve[item] == 1 and self.check_soc_curve[item + 1] == 0): self.right = item elif item == len(self.check_soc_curve)-1 and self.check_soc_curve[item] == 1: self.right = item #get new curve_slope self.second_curve_slope = [self.old_curve.intial_slope_set] for index in range(1, len(self.second_curve_soc)): temp_slop = (self.second_curve_profit[index] - self.second_curve_profit[index - 1])/self.curve.steps self.second_curve_slope.append(temp_slop) #change the first back #self.second_curve_slope[0] = self.second_curve_slope.intial_slope_set #make sure it is convex for i in range(len(self.second_curve_slope)): if i < self.left + 1: self.second_curve_slope[i] = 10000 #self.second_curve_slope[self.left + 1] #self.old_curve.point_Y[i] = 10000 elif i == self.left: self.second_curve_slope[i] == self.second_curve_slope[self.left+1] elif i > self.right: self.second_curve_slope[i] = -10000 #self.second_curve_slope[self.right] #self.old_curve.point_Y[i] = 10000 print(self.second_curve_slope) print(self.second_curve_slope) # _cur = len(self.second_curve_slope) - i - 1 # if self.check_soc_curve[i] == 0: # if _cur != 0 and self.second_curve_slope[_cur] > self.second_curve_slope[_cur-1] and self.second_curve_slope[_cur] < self.old_curve.intial_slope_set: # self.second_curve_slope[_cur - 1] = self.second_curve_slope[_cur] # elif _cur != 0 and self.second_curve_slope[_cur] > self.second_curve_slope[_cur-1] and self.second_curve_slope[_cur] > self.old_curve.intial_slope_set: # self.second_curve_slope[_cur] = self.old_curve.intial_slope_set # self.second_curve_slope[_cur - 1] = self.old_curve.intial_slope_set def get_new_curve_step_2_curve_comb(self): #new curve combine with the old_slope self.new_curve_slope = [] for i in range(len(self.second_curve_soc)): _temp = (1 - self.alpha)*self.old_curve.point_Y[i] + self.alpha*self.second_curve_slope[i] self.new_curve_slope.append(_temp) #this is the new slope we need print(self.new_curve_slope) def get_new_curve_step_3_two_pts(self): #need find another point #be careful boundary case # get second point # get second point profit if self.optimal_soc_sum + 1 > self.curve.up_bd: self.second_point_soc_sum = self.optimal_soc_sum - 1#self.curve.steps self.second_point_profit = self.calculate_new_soc(self.second_point_soc_sum) else: self.second_point_soc_sum = self.optimal_soc_sum + 1 #self.curve.steps self.second_point_profit = self.calculate_new_soc(self.second_point_soc_sum) # get previous point profit if self.optimal_soc_sum - 1 < self.curve.up_bd: self.previous_point_soc_sum = self.optimal_soc_sum + 1 #self.curve.steps self.previous_point_profit = self.calculate_new_soc(self.previous_point_soc_sum) else: self.previous_point_soc_sum = self.optimal_soc_sum - 1 #self.curve.steps self.previous_point_profit = self.calculate_new_soc(self.previous_point_soc_sum) # shall we get the optimal at previous??? self.pre_scen_optimal_profit = self.calculate_new_soc(self.optimal_soc_sum) #calcuate self.update_point_1/2(point_x, point_curve) if self.optimal_soc_sum + 1 > self.curve.up_bd: # self.optimal_profit and self.optimal_soc_sum self.update_point_1_x = self.optimal_soc_sum self.update_point_1_y = (self.pre_scen_optimal_profit - self.previous_point_profit) #self.curve.steps # self.update_point_2_x = self.optimal_soc_sum self.update_point_2_y = (self.pre_scen_optimal_profit - self.previous_point_profit) #self.curve.steps elif self.optimal_soc_sum - 1 < self.curve.lo_bd: #self.optimal_profit and self.optimal_soc_sum self.update_point_1_x = self.optimal_soc_sum self.update_point_1_y = (self.second_point_profit - self.pre_scen_optimal_profit) #self.curve.steps ##这里写错了,到底是update前面的点,还是这个点? self.update_point_2_x = self.optimal_soc_sum self.update_point_2_y = (self.second_point_profit - self.pre_scen_optimal_profit) #self.curve.steps else: self.update_point_1_x = self.optimal_soc_sum self.update_point_1_y = (self.pre_scen_optimal_profit - self.previous_point_profit) #self.curve.steps self.update_point_2_x = self.second_point_soc_sum self.update_point_2_y = (self.second_point_profit - self.pre_scen_optimal_profit) #self.curve.steps self.update_point_1 = [self.update_point_1_x, self.update_point_1_y] self.update_point_2 = [self.update_point_2_x, self.update_point_2_y] def output_curve(self): #output the curve scenario = self.curr_scenario filename = self.e_system.e_start_folder + '/Curve_' + 'time_' + str(self.curr_model_para.LAC_bhour) + '_scenario_' + str(scenario) + '.csv' df = pd.DataFrame(self.curve.segments, columns =['soc_segment','slope']) df.to_csv(filename, index=False, header=True) def output_curve_sum(self): #input the original curr_time = self.curr_model_para.LAC_bhour scenario = self.curr_model_para.scenario if scenario == 1: filename = self.e_system.e_start_folder + '/Curve_' + 'time_' + str(curr_time) + '_scenario_' + str(scenario) + '.csv' df = pd.read_csv(filename) else: filename = self.e_system.e_start_folder + '/Curve_total_' + 'time_' + str(self.curr_model_para.LAC_bhour) + '.csv' df =
pd.read_csv(filename)
pandas.read_csv
# Imports import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator import numpy as np import io import csv import urllib.request from urllib.error import HTTPError from os.path import dirname, join from statsmodels.tsa.ar_model import AutoReg, ar_select_order from statsmodels.tsa.arima.model import ARIMA from statsmodels.tsa.holtwinters import SimpleExpSmoothing, ExponentialSmoothing from statsmodels.tsa.stattools import adfuller from com.chaquo.python import Python # A custom Exception to raise and return to the app # When an Error Exception is raised, the message will appear as # "Error: <message>" to the user # Instead of raise a particular Exception, raise an Error # with a message specific to that exception class Error(Exception): pass # Function to read in a dataset at a specified url and save it locally def read_dataset(url): # Variable to store the dataset at the specified URL dataset = None # Check if file at url has a header try: has_header = check_for_header(url) except UnicodeDecodeError: raise Error('Invalid file type. If the file is encoded, it should be encoded with utf-8. ' 'Compressed files, such as a .zip file, are not accepted.') except Exception: raise Error('An unknown error occurred when attempting to read the dataset from the URL. ' 'Please try again, or use a different URL.') # has_header could be an error message # If so, return it without proceeding if isinstance(has_header, str): return has_header # Handle exceptions when reading the dataset try: if has_header: # If there is a header, it will be inferred dataset = pd.read_csv(url, skip_blank_lines=True, encoding='utf_8') else: # If there is no header, prefix 'Column ' to each column heading dataset = pd.read_csv(url, header=None, prefix='Column ', skip_blank_lines=True, encoding='utf_8') except Exception: raise Error('An unknown error occurred when reading from the URL. ' 'Please ensure the URL is correct and try again.') finally: try: # Assert that a dataset was retrieved assert dataset is not None assert isinstance(dataset, pd.DataFrame) assert not dataset.empty except AssertionError: raise Error('The file located at the URL provided is either not a .csv, or is empty. ' 'Please try again with a different URL.') # ***Code referenced from # ***https://www.youtube.com/watch?v=sm02Q91ujfs&list=PLeOtHc_su2eXZuiqCH4pBgV6vamBbP88K&index=7 # Get the local file directory for the application files_dir = str(Python.getPlatform().getApplication().getFilesDir()) # Join 'dataset.csv' to the directory path to form the full file path file_name = join(dirname(files_dir), 'dataset.csv') # ***End reference # Save the dataset to the directory as 'dataset.csv' dataset.to_csv(file_name, index=False) # Return the path to the file return file_name # Function to generate a preview of a dataset in a matplotlib table and # return the plot as a byte array def step_one(file_name): try: # Read the local copy of the dataset dataset = pd.read_csv(file_name, skip_blank_lines=True) except FileNotFoundError: raise Error('Local copy of dataset could not be read.') # Check if it is a DataFrame if not isinstance(dataset, pd.DataFrame): raise Error('Local copy of file is not a dataset. ' 'Please try again with a different URL.') nrows = 5 # Number of rows to display ncols = len(dataset.columns) # Number of columns in the dataset # Display the first few rows as a preview ds_head = dataset.head(nrows) # Create the plot, figure size is (number of columns * 3.5 wide, number of rows high) fig, ax = plt.subplots(figsize=(ncols * 3.5, nrows)) # Plot the table ds_table = ax.table( cellText=ds_head.values, # The contents of each cell rowLabels=ds_head.index, # The label for each row (index) colLabels=ds_head.columns, # The label for each column (header) loc='center' # The location of the table in the figure ) fontsize = 40 # Font size of the table cells ds_table.set_fontsize(fontsize) # Scale the table to increase row height (column width handled below) ds_table.scale(1, 4) # Set auto column width and font size to reduce white space ds_table.auto_set_column_width(np.arange(len(ds_head.columns))) ds_table.auto_set_font_size(True) # Disable original plot axes ax.set_axis_off() # Create an IO buffer io_buff = io.BytesIO() # Save the plot to the buffer in png format plt.savefig(io_buff, format="png") # Return the contents of the buffer buffer = io_buff.getvalue() return buffer # Function to determine if a csv file has a header def check_for_header(url): # Write contents of url to a file (temp.csv) temp_filename = join(dirname(__file__), 'temp.csv') # Use urlretrieve to write the contents of the url to a file (temp.csv) try: urllib.request.urlretrieve(url, temp_filename) except HTTPError as httpe: # Check for a 404 error, otherwise return a general message if httpe.code == 404: raise Error('A file could not be found at the specified URL. ' 'Please ensure the URL is correct and try again') else: raise Error('A HTTP ' + str(httpe.code) + ' error occurred.') except UnicodeDecodeError: raise Error('Invalid file type. If the file is encoded, it should be encoded with utf-8. ' 'Compressed files, such as a .zip file, are not accepted.') # Open the local file try: with open(temp_filename) as file: # Read the first 1024 characters to determine whether the first row is consistent with # subsequent rows (i.e. string vs. integer) try: header = csv.Sniffer().has_header(file.read(2048)) except OSError: raise Error('A header could not be determined. ' 'Please try again with a different dataset.') except OSError: raise Error('An error occurred when attempting to discover a header in the dataset. ' 'Please try again with a different URL') # Return a boolean value which represents whether the dataset has a header or not return header # Function to generate a summary of the dataset def dataset_summary(file_name): try: # Read the local copy of the dataset dataset = pd.read_csv(file_name, skip_blank_lines=True) except FileNotFoundError: raise Error('Local copy of dataset could not be read.') preview_rows = 5 # Number of rows to preview nrows = dataset.shape[0] # Number of rows in the dataset ncols = dataset.shape[1] # Number of columns in the dataset # Create and return summary String summary = ('The dataset has ' + str(nrows) + ' rows and ' + str(ncols) + ' columns. ' + 'Above is a preview of the first ' + str(preview_rows) + ' rows.') return summary # Function to return the names of a dataset's columns def get_column_names(file_name): try: # Read the local copy of the dataset dataset = pd.read_csv(file_name, skip_blank_lines=True) except FileNotFoundError: raise Error('Local copy of dataset could not be read.') # Return the column names as a list return list(dataset.columns.values) # Function to generate a DataFrame using just user specified columns and save it as a file def read_model_data(file_name, xlabel='x-axis', ylabel='y-axis', first_last='', row_limit=''): try: # Read the local copy of the dataset dataset = pd.read_csv(file_name, skip_blank_lines=True) except FileNotFoundError: raise Error('Local copy of dataset could not be read.') # Check whether the user wishes to limit the number of rows if first_last != '' and row_limit != '' and row_limit is not None: rl = abs(int(row_limit)) # Depending on whether First or Last was chosen, slice the dataset accordingly if first_last == 'First': limited_dataset = dataset[:rl] else: limited_dataset = dataset[-rl:] # Create the model_data DataFrame with the limited number of rows model_data = pd.DataFrame(limited_dataset[ylabel]) model_data.index = limited_dataset[xlabel] else: # Create the model_data DataFrame with all the rows model_data = pd.DataFrame(dataset[ylabel]) model_data.index = dataset[xlabel] # ***Code referenced from # ***https://www.youtube.com/watch?v=sm02Q91ujfs&list=PLeOtHc_su2eXZuiqCH4pBgV6vamBbP88K&index=7 # Get the local file directory for the application files_dir = str(Python.getPlatform().getApplication().getFilesDir()) # Join 'model_data.csv' to the directory path to form the full file path file_name = join(dirname(files_dir), 'model_data.csv') # ***End reference # Save the dataset to the directory as 'dataset.csv' model_data.to_csv(file_name, index=True) # Return the path to the file return file_name # Function to return a dataset file as a DataFrame def get_dataframe(file_name, xlabel='x-axis', ylabel='y-label'): # Read the file dataset = pd.read_csv(file_name, skip_blank_lines=True, header=0) # Limit the columns to those set by the user dataset_df = pd.DataFrame(dataset[ylabel]) dataset_df.index = dataset[xlabel] # Return the DataFrame return dataset_df # Function to plot a Dataframe def dataframe_plot(model_data, graph_choice, xlabel='x-axis', ylabel='y-axis', title='Title of Line Graph'): # Get the number of rows in the DataFrame nrows = model_data.shape[0] # List of places to display the labels for pie charts # Display a label every 10% of the dataset's length pie_labels = [ int(nrows * 0.1), int(nrows * 0.2), int(nrows * 0.3), int(nrows * 0.4), int(nrows * 0.5), int(nrows * 0.6), int(nrows * 0.7), int(nrows * 0.8), int(nrows * 0.9), int(nrows), ] # Set the font size for every future plot plt.rcParams['font.size'] = '20' # Set the plot size to be big enough to see fig, ax = plt.subplots(figsize=(11, 16)) # Set axis labels and title ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) plt.title(title) if graph_choice != 'Horizontal Bar Chart': # Limit the number of x-ticks displayed to 10 # ***Code referenced from # ***https://www.delftstack.com/howto/matplotlib/matplotlib-set-number-of-ticks/ ax.xaxis.set_major_locator(MaxNLocator(10)) # ***End reference # Rotate the x-axis values by 45 degrees plt.xticks(rotation=45) else: # Limit the number of y-ticks displayed to 10 # ***Code referenced from # ***https://www.delftstack.com/howto/matplotlib/matplotlib-set-number-of-ticks/ ax.yaxis.set_major_locator(MaxNLocator(10)) # ***End reference # Catch incorrect data type exceptions when trying to plot data try: if graph_choice == 'Line Graph': ax.plot(model_data, linewidth=2) elif graph_choice == 'Bar Chart': ax.bar(model_data.index.values, model_data[ylabel]) elif graph_choice == 'Pie Chart': # ***Code referenced from # ***https://matplotlib.org/stable/api/_as_gen/matplotlib.axes.Axes.pie.html # ***https://matplotlib.org/stable/api/text_api.html#matplotlib.text.Text patches, texts = ax.pie(model_data[ylabel], labels=model_data.index.values, startangle=90, counterclock=False) for i, t in enumerate(texts): if i in pie_labels: t._visible = True else: t._visible = False texts[0]._visible = True # ***End reference # No labels for pie chart ax.set_xlabel('') ax.set_ylabel('') elif graph_choice == 'Horizontal Bar Chart': ax.barh(model_data.index.values, model_data[ylabel]) # Opposite labels for horizontal bar chart ax.set_xlabel(ylabel) ax.set_ylabel(xlabel) except TypeError: raise Error('Invalid column choices. The plot could not be displayed') # Display plot plt.show() # Create an IO buffer io_buff = io.BytesIO() # Save the plot to the buffer in png format plt.savefig(io_buff, format="png") # Return the contents of the buffer buffer = io_buff.getvalue() return buffer # Function to return the number of rows in the a dataset def model_rows(file_name): # Read the file model_data = pd.read_csv(file_name, skip_blank_lines=True, header=0) # Return the number of rows as a String nrows = model_data.shape[0] return str(nrows) # Function to test whether graphing the selected columns is appropriate def test_plot(file_name, graph_choice, xlabel='x-axis', ylabel='y-axis'): # Read in the dataset dataset = pd.read_csv(file_name, skip_blank_lines=True, header=0) # Set up the DataFrame according to user preference test_data = pd.DataFrame(dataset[ylabel]) test_data.index = dataset[xlabel] # Plot in a small window (will not be seen) fig, ax = plt.subplots(figsize=(1, 1)) # Catch incorrect data type exceptions when trying to plot data try: if graph_choice == 'Line Graph': ax.plot(test_data) elif graph_choice == 'Bar Chart': ax.bar(test_data.index.values, test_data[ylabel]) elif graph_choice == 'Pie Chart': ax.pie(test_data[ylabel]) elif graph_choice == 'Horizontal Bar Chart': ax.barh(test_data.index.values, test_data[ylabel]) except (TypeError, ValueError): raise Error('Unsuitable columns have been selected for graphing. Please try again.') except Exception: raise Error( 'An unknown error has occurred when attempting to plot the data. Please try again.') plt.show() # Function to replace the index of a dataset with a suitable pandas Index def replace_index(data, index_name='Index'): # If the index is made up of integers, convert to a RangeIndex if data.index.dtype == 'int64': # Assuming the data is not missing any steps index_step = data.index[1] - data.index[0] data.index = pd.RangeIndex(start=data.index[0], stop=(len(data.index) - 1) + index_step, step=index_step) else: try: # Assuming a non-integer index contains dates, attempt to convert to DatetimeIndex data.index =
pd.DatetimeIndex(data=data.index.values, freq='infer')
pandas.DatetimeIndex
import pandas as pd df_preds = pd.read_pickle("pickled_predictions4.df") print(df_preds.columns) df_mcs = pd.read_pickle("pickled_panda6.df") print(df_mcs.columns) df = pd.concat([df_preds,df_mcs], ignore_index=True) df2=
pd.DataFrame()
pandas.DataFrame
import pymongo import pandas as pd import datetime import sys from openpyxl.cell.cell import ILLEGAL_CHARACTERS_RE DBserver = pymongo.MongoClient('mongodb://localhost:27017/') DB = DBserver['ir'] collection = DB['usermsgs'] output = [] df =
pd.DataFrame(columns=['name', 'time_slot', 'mode', 'type', 'quiz_number', 'action_number'])
pandas.DataFrame
# -*- coding: utf-8 -*- from datetime import timedelta import operator from string import ascii_lowercase import warnings import numpy as np import pytest from pandas.compat import lrange import pandas.util._test_decorators as td import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, isna, notna, to_datetime, to_timedelta) import pandas.core.algorithms as algorithms import pandas.core.nanops as nanops import pandas.util.testing as tm def assert_stat_op_calc(opname, alternative, frame, has_skipna=True, check_dtype=True, check_dates=False, check_less_precise=False, skipna_alternative=None): """ Check that operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" check_dtype : bool, default True Whether the dtypes of the result of "frame.opname()" and "alternative(frame)" should be checked. check_dates : bool, default false Whether opname should be tested on a Datetime Series check_less_precise : bool, default False Whether results should only be compared approximately; passed on to tm.assert_series_equal skipna_alternative : function, default None NaN-safe version of alternative """ f = getattr(frame, opname) if check_dates: df = DataFrame({'b': date_range('1/1/2001', periods=2)}) result = getattr(df, opname)() assert isinstance(result, Series) df['a'] = lrange(len(df)) result = getattr(df, opname)() assert isinstance(result, Series) assert len(result) if has_skipna: def wrapper(x): return alternative(x.values) skipna_wrapper = tm._make_skipna_wrapper(alternative, skipna_alternative) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) # HACK: win32 tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False, check_less_precise=check_less_precise) else: skipna_wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper), check_dtype=check_dtype, check_less_precise=check_less_precise) if opname in ['sum', 'prod']: expected = frame.apply(skipna_wrapper, axis=1) tm.assert_series_equal(result1, expected, check_dtype=False, check_less_precise=check_less_precise) # check dtypes if check_dtype: lcd_dtype = frame.values.dtype assert lcd_dtype == result0.dtype assert lcd_dtype == result1.dtype # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname in ['sum', 'prod']: unit = 1 if opname == 'prod' else 0 # result for empty sum/prod expected = pd.Series(unit, index=r0.index, dtype=r0.dtype) tm.assert_series_equal(r0, expected) expected = pd.Series(unit, index=r1.index, dtype=r1.dtype) tm.assert_series_equal(r1, expected) def assert_stat_op_api(opname, float_frame, float_string_frame, has_numeric_only=False): """ Check that API for operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_numeric_only : bool, default False Whether the method "opname" has the kwarg "numeric_only" """ # make sure works on mixed-type frame getattr(float_string_frame, opname)(axis=0) getattr(float_string_frame, opname)(axis=1) if has_numeric_only: getattr(float_string_frame, opname)(axis=0, numeric_only=True) getattr(float_string_frame, opname)(axis=1, numeric_only=True) getattr(float_frame, opname)(axis=0, numeric_only=False) getattr(float_frame, opname)(axis=1, numeric_only=False) def assert_bool_op_calc(opname, alternative, frame, has_skipna=True): """ Check that bool operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame alternative : function Function that opname is tested against; i.e. "frame.opname()" should equal "alternative(frame)". frame : DataFrame The object that the tests are executed on has_skipna : bool, default True Whether the method "opname" has the kwarg "skip_na" """ f = getattr(frame, opname) if has_skipna: def skipna_wrapper(x): nona = x.dropna().values return alternative(nona) def wrapper(x): return alternative(x.values) result0 = f(axis=0, skipna=False) result1 = f(axis=1, skipna=False) tm.assert_series_equal(result0, frame.apply(wrapper)) tm.assert_series_equal(result1, frame.apply(wrapper, axis=1), check_dtype=False) # HACK: win32 else: skipna_wrapper = alternative wrapper = alternative result0 = f(axis=0) result1 = f(axis=1) tm.assert_series_equal(result0, frame.apply(skipna_wrapper)) tm.assert_series_equal(result1, frame.apply(skipna_wrapper, axis=1), check_dtype=False) # bad axis with pytest.raises(ValueError, match='No axis named 2'): f(axis=2) # all NA case if has_skipna: all_na = frame * np.NaN r0 = getattr(all_na, opname)(axis=0) r1 = getattr(all_na, opname)(axis=1) if opname == 'any': assert not r0.any() assert not r1.any() else: assert r0.all() assert r1.all() def assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=False): """ Check that API for boolean operator opname works as advertised on frame Parameters ---------- opname : string Name of the operator to test on frame float_frame : DataFrame DataFrame with columns of type float float_string_frame : DataFrame DataFrame with both float and string columns has_bool_only : bool, default False Whether the method "opname" has the kwarg "bool_only" """ # make sure op works on mixed-type frame mixed = float_string_frame mixed['_bool_'] = np.random.randn(len(mixed)) > 0.5 getattr(mixed, opname)(axis=0) getattr(mixed, opname)(axis=1) if has_bool_only: getattr(mixed, opname)(axis=0, bool_only=True) getattr(mixed, opname)(axis=1, bool_only=True) getattr(bool_frame_with_na, opname)(axis=0, bool_only=False) getattr(bool_frame_with_na, opname)(axis=1, bool_only=False) class TestDataFrameAnalytics(object): # --------------------------------------------------------------------- # Correlation and covariance @td.skip_if_no_scipy def test_corr_pearson(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'pearson') @td.skip_if_no_scipy def test_corr_kendall(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'kendall') @td.skip_if_no_scipy def test_corr_spearman(self, float_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan self._check_method(float_frame, 'spearman') def _check_method(self, frame, method='pearson'): correls = frame.corr(method=method) expected = frame['A'].corr(frame['C'], method=method) tm.assert_almost_equal(correls['A']['C'], expected) @td.skip_if_no_scipy def test_corr_non_numeric(self, float_frame, float_string_frame): float_frame['A'][:5] = np.nan float_frame['B'][5:10] = np.nan # exclude non-numeric types result = float_string_frame.corr() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].corr() tm.assert_frame_equal(result, expected) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'kendall', 'spearman']) def test_corr_nooverlap(self, meth): # nothing in common df = DataFrame({'A': [1, 1.5, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1.5, 1], 'C': [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}) rs = df.corr(meth) assert isna(rs.loc['A', 'B']) assert isna(rs.loc['B', 'A']) assert rs.loc['A', 'A'] == 1 assert rs.loc['B', 'B'] == 1 assert isna(rs.loc['C', 'C']) @td.skip_if_no_scipy @pytest.mark.parametrize('meth', ['pearson', 'spearman']) def test_corr_constant(self, meth): # constant --> all NA df = DataFrame({'A': [1, 1, 1, np.nan, np.nan, np.nan], 'B': [np.nan, np.nan, np.nan, 1, 1, 1]}) rs = df.corr(meth) assert isna(rs.values).all() def test_corr_int(self): # dtypes other than float64 #1761 df3 = DataFrame({"a": [1, 2, 3, 4], "b": [1, 2, 3, 4]}) df3.cov() df3.corr() @td.skip_if_no_scipy def test_corr_int_and_boolean(self): # when dtypes of pandas series are different # then ndarray will have dtype=object, # so it need to be properly handled df = DataFrame({"a": [True, False], "b": [1, 0]}) expected = DataFrame(np.ones((2, 2)), index=[ 'a', 'b'], columns=['a', 'b']) for meth in ['pearson', 'kendall', 'spearman']: with warnings.catch_warnings(record=True): warnings.simplefilter("ignore", RuntimeWarning) result = df.corr(meth) tm.assert_frame_equal(result, expected) def test_corr_cov_independent_index_column(self): # GH 14617 df = pd.DataFrame(np.random.randn(4 * 10).reshape(10, 4), columns=list("abcd")) for method in ['cov', 'corr']: result = getattr(df, method)() assert result.index is not result.columns assert result.index.equals(result.columns) def test_corr_invalid_method(self): # GH 22298 df = pd.DataFrame(np.random.normal(size=(10, 2))) msg = ("method must be either 'pearson', " "'spearman', 'kendall', or a callable, ") with pytest.raises(ValueError, match=msg): df.corr(method="____") def test_cov(self, float_frame, float_string_frame): # min_periods no NAs (corner case) expected = float_frame.cov() result = float_frame.cov(min_periods=len(float_frame)) tm.assert_frame_equal(expected, result) result = float_frame.cov(min_periods=len(float_frame) + 1) assert isna(result.values).all() # with NAs frame = float_frame.copy() frame['A'][:5] = np.nan frame['B'][5:10] = np.nan result = float_frame.cov(min_periods=len(float_frame) - 8) expected = float_frame.cov() expected.loc['A', 'B'] = np.nan expected.loc['B', 'A'] = np.nan # regular float_frame['A'][:5] = np.nan float_frame['B'][:10] = np.nan cov = float_frame.cov() tm.assert_almost_equal(cov['A']['C'], float_frame['A'].cov(float_frame['C'])) # exclude non-numeric types result = float_string_frame.cov() expected = float_string_frame.loc[:, ['A', 'B', 'C', 'D']].cov() tm.assert_frame_equal(result, expected) # Single column frame df = DataFrame(np.linspace(0.0, 1.0, 10)) result = df.cov() expected = DataFrame(np.cov(df.values.T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) df.loc[0] = np.nan result = df.cov() expected = DataFrame(np.cov(df.values[1:].T).reshape((1, 1)), index=df.columns, columns=df.columns) tm.assert_frame_equal(result, expected) def test_corrwith(self, datetime_frame): a = datetime_frame noise = Series(np.random.randn(len(a)), index=a.index) b = datetime_frame.add(noise, axis=0) # make sure order does not matter b = b.reindex(columns=b.columns[::-1], index=b.index[::-1][10:]) del b['B'] colcorr = a.corrwith(b, axis=0) tm.assert_almost_equal(colcorr['A'], a['A'].corr(b['A'])) rowcorr = a.corrwith(b, axis=1) tm.assert_series_equal(rowcorr, a.T.corrwith(b.T, axis=0)) dropped = a.corrwith(b, axis=0, drop=True) tm.assert_almost_equal(dropped['A'], a['A'].corr(b['A'])) assert 'B' not in dropped dropped = a.corrwith(b, axis=1, drop=True) assert a.index[-1] not in dropped.index # non time-series data index = ['a', 'b', 'c', 'd', 'e'] columns = ['one', 'two', 'three', 'four'] df1 = DataFrame(np.random.randn(5, 4), index=index, columns=columns) df2 = DataFrame(np.random.randn(4, 4), index=index[:4], columns=columns) correls = df1.corrwith(df2, axis=1) for row in index[:4]: tm.assert_almost_equal(correls[row], df1.loc[row].corr(df2.loc[row])) def test_corrwith_with_objects(self): df1 = tm.makeTimeDataFrame() df2 = tm.makeTimeDataFrame() cols = ['A', 'B', 'C', 'D'] df1['obj'] = 'foo' df2['obj'] = 'bar' result = df1.corrwith(df2) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols]) tm.assert_series_equal(result, expected) result = df1.corrwith(df2, axis=1) expected = df1.loc[:, cols].corrwith(df2.loc[:, cols], axis=1) tm.assert_series_equal(result, expected) def test_corrwith_series(self, datetime_frame): result = datetime_frame.corrwith(datetime_frame['A']) expected = datetime_frame.apply(datetime_frame['A'].corr) tm.assert_series_equal(result, expected) def test_corrwith_matches_corrcoef(self): df1 = DataFrame(np.arange(10000), columns=['a']) df2 = DataFrame(np.arange(10000) ** 2, columns=['a']) c1 = df1.corrwith(df2)['a'] c2 = np.corrcoef(df1['a'], df2['a'])[0][1] tm.assert_almost_equal(c1, c2) assert c1 < 1 def test_corrwith_mixed_dtypes(self): # GH 18570 df = pd.DataFrame({'a': [1, 4, 3, 2], 'b': [4, 6, 7, 3], 'c': ['a', 'b', 'c', 'd']}) s = pd.Series([0, 6, 7, 3]) result = df.corrwith(s) corrs = [df['a'].corr(s), df['b'].corr(s)] expected = pd.Series(data=corrs, index=['a', 'b']) tm.assert_series_equal(result, expected) def test_corrwith_index_intersection(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=True).index.sort_values() expected = df1.columns.intersection(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_index_union(self): df1 = pd.DataFrame(np.random.random(size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame(np.random.random(size=(10, 3)), columns=["a", "b", "c"]) result = df1.corrwith(df2, drop=False).index.sort_values() expected = df1.columns.union(df2.columns).sort_values() tm.assert_index_equal(result, expected) def test_corrwith_dup_cols(self): # GH 21925 df1 = pd.DataFrame(np.vstack([np.arange(10)] * 3).T) df2 = df1.copy() df2 = pd.concat((df2, df2[0]), axis=1) result = df1.corrwith(df2) expected = pd.Series(np.ones(4), index=[0, 0, 1, 2]) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_spearman(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="spearman") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) @td.skip_if_no_scipy def test_corrwith_kendall(self): # GH 21925 df = pd.DataFrame(np.random.random(size=(100, 3))) result = df.corrwith(df**2, method="kendall") expected = Series(np.ones(len(result))) tm.assert_series_equal(result, expected) # --------------------------------------------------------------------- # Describe def test_bool_describe_in_mixed_frame(self): df = DataFrame({ 'string_data': ['a', 'b', 'c', 'd', 'e'], 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], }) # Integer data are included in .describe() output, # Boolean and string data are not. result = df.describe() expected = DataFrame({'int_data': [5, 30, df.int_data.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) # Top value is a boolean value that is False result = df.describe(include=['bool']) expected = DataFrame({'bool_data': [5, 2, False, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_bool_frame(self): # GH 13891 df = pd.DataFrame({ 'bool_data_1': [False, False, True, True], 'bool_data_2': [False, True, True, True] }) result = df.describe() expected = DataFrame({'bool_data_1': [4, 2, True, 2], 'bool_data_2': [4, 2, True, 3]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True, False], 'int_data': [0, 1, 2, 3, 4] }) result = df.describe() expected = DataFrame({'int_data': [5, 2, df.int_data.std(), 0, 1, 2, 3, 4]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) tm.assert_frame_equal(result, expected) df = pd.DataFrame({ 'bool_data': [False, False, True, True], 'str_data': ['a', 'b', 'c', 'a'] }) result = df.describe() expected = DataFrame({'bool_data': [4, 2, True, 2], 'str_data': [4, 3, 'a', 2]}, index=['count', 'unique', 'top', 'freq']) tm.assert_frame_equal(result, expected) def test_describe_categorical(self): df = DataFrame({'value': np.random.randint(0, 10000, 100)}) labels = ["{0} - {1}".format(i, i + 499) for i in range(0, 10000, 500)] cat_labels = Categorical(labels, labels) df = df.sort_values(by=['value'], ascending=True) df['value_group'] = pd.cut(df.value, range(0, 10500, 500), right=False, labels=cat_labels) cat = df # Categoricals should not show up together with numerical columns result = cat.describe() assert len(result.columns) == 1 # In a frame, describe() for the cat should be the same as for string # arrays (count, unique, top, freq) cat = Categorical(["a", "b", "b", "b"], categories=['a', 'b', 'c'], ordered=True) s = Series(cat) result = s.describe() expected = Series([4, 2, "b", 3], index=['count', 'unique', 'top', 'freq']) tm.assert_series_equal(result, expected) cat = Series(Categorical(["a", "b", "c", "c"])) df3 = DataFrame({"cat": cat, "s": ["a", "b", "c", "c"]}) result = df3.describe() tm.assert_numpy_array_equal(result["cat"].values, result["s"].values) def test_describe_categorical_columns(self): # GH 11558 columns = pd.CategoricalIndex(['int1', 'int2', 'obj'], ordered=True, name='XXX') df = DataFrame({'int1': [10, 20, 30, 40, 50], 'int2': [10, 20, 30, 40, 50], 'obj': ['A', 0, None, 'X', 1]}, columns=columns) result = df.describe() exp_columns = pd.CategoricalIndex(['int1', 'int2'], categories=['int1', 'int2', 'obj'], ordered=True, name='XXX') expected = DataFrame({'int1': [5, 30, df.int1.std(), 10, 20, 30, 40, 50], 'int2': [5, 30, df.int2.std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'], columns=exp_columns) tm.assert_frame_equal(result, expected) tm.assert_categorical_equal(result.columns.values, expected.columns.values) def test_describe_datetime_columns(self): columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01', '2011-03-01'], freq='MS', tz='US/Eastern', name='XXX') df = DataFrame({0: [10, 20, 30, 40, 50], 1: [10, 20, 30, 40, 50], 2: ['A', 0, None, 'X', 1]}) df.columns = columns result = df.describe() exp_columns = pd.DatetimeIndex(['2011-01-01', '2011-02-01'], freq='MS', tz='US/Eastern', name='XXX') expected = DataFrame({0: [5, 30, df.iloc[:, 0].std(), 10, 20, 30, 40, 50], 1: [5, 30, df.iloc[:, 1].std(), 10, 20, 30, 40, 50]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) expected.columns = exp_columns tm.assert_frame_equal(result, expected) assert result.columns.freq == 'MS' assert result.columns.tz == expected.columns.tz def test_describe_timedelta_values(self): # GH 6145 t1 = pd.timedelta_range('1 days', freq='D', periods=5) t2 = pd.timedelta_range('1 hours', freq='H', periods=5) df = pd.DataFrame({'t1': t1, 't2': t2}) expected = DataFrame({'t1': [5, pd.Timedelta('3 days'), df.iloc[:, 0].std(), pd.Timedelta('1 days'), pd.Timedelta('2 days'), pd.Timedelta('3 days'), pd.Timedelta('4 days'), pd.Timedelta('5 days')], 't2': [5, pd.Timedelta('3 hours'), df.iloc[:, 1].std(), pd.Timedelta('1 hours'), pd.Timedelta('2 hours'), pd.Timedelta('3 hours'), pd.Timedelta('4 hours'), pd.Timedelta('5 hours')]}, index=['count', 'mean', 'std', 'min', '25%', '50%', '75%', 'max']) result = df.describe() tm.assert_frame_equal(result, expected) exp_repr = (" t1 t2\n" "count 5 5\n" "mean 3 days 00:00:00 0 days 03:00:00\n" "std 1 days 13:56:50.394919 0 days 01:34:52.099788\n" "min 1 days 00:00:00 0 days 01:00:00\n" "25% 2 days 00:00:00 0 days 02:00:00\n" "50% 3 days 00:00:00 0 days 03:00:00\n" "75% 4 days 00:00:00 0 days 04:00:00\n" "max 5 days 00:00:00 0 days 05:00:00") assert repr(result) == exp_repr def test_describe_tz_values(self, tz_naive_fixture): # GH 21332 tz = tz_naive_fixture s1 = Series(range(5)) start = Timestamp(2018, 1, 1) end = Timestamp(2018, 1, 5) s2 = Series(date_range(start, end, tz=tz)) df = pd.DataFrame({'s1': s1, 's2': s2}) expected = DataFrame({'s1': [5, np.nan, np.nan, np.nan, np.nan, np.nan, 2, 1.581139, 0, 1, 2, 3, 4], 's2': [5, 5, s2.value_counts().index[0], 1, start.tz_localize(tz), end.tz_localize(tz), np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]}, index=['count', 'unique', 'top', 'freq', 'first', 'last', 'mean', 'std', 'min', '25%', '50%', '75%', 'max'] ) result = df.describe(include='all') tm.assert_frame_equal(result, expected) # --------------------------------------------------------------------- # Reductions def test_stat_op_api(self, float_frame, float_string_frame): assert_stat_op_api('count', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('sum', float_frame, float_string_frame, has_numeric_only=True) assert_stat_op_api('nunique', float_frame, float_string_frame) assert_stat_op_api('mean', float_frame, float_string_frame) assert_stat_op_api('product', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) assert_stat_op_api('min', float_frame, float_string_frame) assert_stat_op_api('max', float_frame, float_string_frame) assert_stat_op_api('mad', float_frame, float_string_frame) assert_stat_op_api('var', float_frame, float_string_frame) assert_stat_op_api('std', float_frame, float_string_frame) assert_stat_op_api('sem', float_frame, float_string_frame) assert_stat_op_api('median', float_frame, float_string_frame) try: from scipy.stats import skew, kurtosis # noqa:F401 assert_stat_op_api('skew', float_frame, float_string_frame) assert_stat_op_api('kurt', float_frame, float_string_frame) except ImportError: pass def test_stat_op_calc(self, float_frame_with_na, mixed_float_frame): def count(s): return notna(s).sum() def nunique(s): return len(algorithms.unique1d(s.dropna())) def mad(x): return np.abs(x - x.mean()).mean() def var(x): return np.var(x, ddof=1) def std(x): return np.std(x, ddof=1) def sem(x): return np.std(x, ddof=1) / np.sqrt(len(x)) def skewness(x): from scipy.stats import skew # noqa:F811 if len(x) < 3: return np.nan return skew(x, bias=False) def kurt(x): from scipy.stats import kurtosis # noqa:F811 if len(x) < 4: return np.nan return kurtosis(x, bias=False) assert_stat_op_calc('nunique', nunique, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) # mixed types (with upcasting happening) assert_stat_op_calc('sum', np.sum, mixed_float_frame.astype('float32'), check_dtype=False, check_less_precise=True) assert_stat_op_calc('sum', np.sum, float_frame_with_na, skipna_alternative=np.nansum) assert_stat_op_calc('mean', np.mean, float_frame_with_na, check_dates=True) assert_stat_op_calc('product', np.prod, float_frame_with_na) assert_stat_op_calc('mad', mad, float_frame_with_na) assert_stat_op_calc('var', var, float_frame_with_na) assert_stat_op_calc('std', std, float_frame_with_na) assert_stat_op_calc('sem', sem, float_frame_with_na) assert_stat_op_calc('count', count, float_frame_with_na, has_skipna=False, check_dtype=False, check_dates=True) try: from scipy import skew, kurtosis # noqa:F401 assert_stat_op_calc('skew', skewness, float_frame_with_na) assert_stat_op_calc('kurt', kurt, float_frame_with_na) except ImportError: pass # TODO: Ensure warning isn't emitted in the first place @pytest.mark.filterwarnings("ignore:All-NaN:RuntimeWarning") def test_median(self, float_frame_with_na, int_frame): def wrapper(x): if isna(x).any(): return np.nan return np.median(x) assert_stat_op_calc('median', wrapper, float_frame_with_na, check_dates=True) assert_stat_op_calc('median', wrapper, int_frame, check_dtype=False, check_dates=True) @pytest.mark.parametrize('method', ['sum', 'mean', 'prod', 'var', 'std', 'skew', 'min', 'max']) def test_stat_operators_attempt_obj_array(self, method): # GH#676 data = { 'a': [-0.00049987540199591344, -0.0016467257772919831, 0.00067695870775883013], 'b': [-0, -0, 0.0], 'c': [0.00031111847529610595, 0.0014902627951905339, -0.00094099200035979691] } df1 = DataFrame(data, index=['foo', 'bar', 'baz'], dtype='O') df2 = DataFrame({0: [np.nan, 2], 1: [np.nan, 3], 2: [np.nan, 4]}, dtype=object) for df in [df1, df2]: assert df.values.dtype == np.object_ result = getattr(df, method)(1) expected = getattr(df.astype('f8'), method)(1) if method in ['sum', 'prod']: tm.assert_series_equal(result, expected) @pytest.mark.parametrize('op', ['mean', 'std', 'var', 'skew', 'kurt', 'sem']) def test_mixed_ops(self, op): # GH#16116 df = DataFrame({'int': [1, 2, 3, 4], 'float': [1., 2., 3., 4.], 'str': ['a', 'b', 'c', 'd']}) result = getattr(df, op)() assert len(result) == 2 with pd.option_context('use_bottleneck', False): result = getattr(df, op)() assert len(result) == 2 def test_reduce_mixed_frame(self): # GH 6806 df = DataFrame({ 'bool_data': [True, True, False, False, False], 'int_data': [10, 20, 30, 40, 50], 'string_data': ['a', 'b', 'c', 'd', 'e'], }) df.reindex(columns=['bool_data', 'int_data', 'string_data']) test = df.sum(axis=0) tm.assert_numpy_array_equal(test.values, np.array([2, 150, 'abcde'], dtype=object)) tm.assert_series_equal(test, df.T.sum(axis=1)) def test_nunique(self): df = DataFrame({'A': [1, 1, 1], 'B': [1, 2, 3], 'C': [1, np.nan, 3]}) tm.assert_series_equal(df.nunique(), Series({'A': 1, 'B': 3, 'C': 2})) tm.assert_series_equal(df.nunique(dropna=False), Series({'A': 1, 'B': 3, 'C': 3})) tm.assert_series_equal(df.nunique(axis=1), Series({0: 1, 1: 2, 2: 2})) tm.assert_series_equal(df.nunique(axis=1, dropna=False), Series({0: 1, 1: 3, 2: 2})) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_mixed_datetime_numeric(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 df = pd.DataFrame({"A": [1, 1], "B": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series([1.0], index=['A']) tm.assert_series_equal(result, expected) @pytest.mark.parametrize('tz', [None, 'UTC']) def test_mean_excludeds_datetimes(self, tz): # https://github.com/pandas-dev/pandas/issues/24752 # Our long-term desired behavior is unclear, but the behavior in # 0.24.0rc1 was buggy. df = pd.DataFrame({"A": [pd.Timestamp('2000', tz=tz)] * 2}) result = df.mean() expected = pd.Series() tm.assert_series_equal(result, expected) def test_var_std(self, datetime_frame): result = datetime_frame.std(ddof=4) expected = datetime_frame.apply(lambda x: x.std(ddof=4)) tm.assert_almost_equal(result, expected) result = datetime_frame.var(ddof=4) expected = datetime_frame.apply(lambda x: x.var(ddof=4)) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nanvar(arr, axis=0) assert not (result < 0).any() @pytest.mark.parametrize( "meth", ['sem', 'var', 'std']) def test_numeric_only_flag(self, meth): # GH 9201 df1 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a number in str format df1.loc[0, 'foo'] = '100' df2 = DataFrame(np.random.randn(5, 3), columns=['foo', 'bar', 'baz']) # set one entry to a non-number str df2.loc[0, 'foo'] = 'a' result = getattr(df1, meth)(axis=1, numeric_only=True) expected = getattr(df1[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) result = getattr(df2, meth)(axis=1, numeric_only=True) expected = getattr(df2[['bar', 'baz']], meth)(axis=1) tm.assert_series_equal(expected, result) # df1 has all numbers, df2 has a letter inside msg = r"unsupported operand type\(s\) for -: 'float' and 'str'" with pytest.raises(TypeError, match=msg): getattr(df1, meth)(axis=1, numeric_only=False) msg = "could not convert string to float: 'a'" with pytest.raises(TypeError, match=msg): getattr(df2, meth)(axis=1, numeric_only=False) def test_sem(self, datetime_frame): result = datetime_frame.sem(ddof=4) expected = datetime_frame.apply( lambda x: x.std(ddof=4) / np.sqrt(len(x))) tm.assert_almost_equal(result, expected) arr = np.repeat(np.random.random((1, 1000)), 1000, 0) result = nanops.nansem(arr, axis=0) assert not (result < 0).any() with pd.option_context('use_bottleneck', False): result = nanops.nansem(arr, axis=0) assert not (result < 0).any() @td.skip_if_no_scipy def test_kurt(self): index = MultiIndex(levels=[['bar'], ['one', 'two', 'three'], [0, 1]], codes=[[0, 0, 0, 0, 0, 0], [0, 1, 2, 0, 1, 2], [0, 1, 0, 1, 0, 1]]) df = DataFrame(np.random.randn(6, 3), index=index) kurt = df.kurt() kurt2 = df.kurt(level=0).xs('bar') tm.assert_series_equal(kurt, kurt2, check_names=False) assert kurt.name is None assert kurt2.name == 'bar' @pytest.mark.parametrize("dropna, expected", [ (True, {'A': [12], 'B': [10.0], 'C': [1.0], 'D': ['a'], 'E': Categorical(['a'], categories=['a']), 'F': to_datetime(['2000-1-2']), 'G': to_timedelta(['1 days'])}), (False, {'A': [12], 'B': [10.0], 'C': [np.nan], 'D': np.array([np.nan], dtype=object), 'E': Categorical([np.nan], categories=['a']), 'F': [pd.NaT], 'G': to_timedelta([pd.NaT])}), (True, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical(['a', np.nan, np.nan, np.nan], categories=['a']), 'L': to_datetime(['2000-1-2', 'NaT', 'NaT', 'NaT']), 'M': to_timedelta(['1 days', 'nan', 'nan', 'nan']), 'N': [0, 1, 2, 3]}), (False, {'H': [8, 9, np.nan, np.nan], 'I': [8, 9, np.nan, np.nan], 'J': [1, np.nan, np.nan, np.nan], 'K': Categorical([np.nan, 'a', np.nan, np.nan], categories=['a']), 'L': to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), 'M': to_timedelta(['nan', '1 days', 'nan', 'nan']), 'N': [0, 1, 2, 3]}) ]) def test_mode_dropna(self, dropna, expected): df = DataFrame({"A": [12, 12, 19, 11], "B": [10, 10, np.nan, 3], "C": [1, np.nan, np.nan, np.nan], "D": [np.nan, np.nan, 'a', np.nan], "E": Categorical([np.nan, np.nan, 'a', np.nan]), "F": to_datetime(['NaT', '2000-1-2', 'NaT', 'NaT']), "G": to_timedelta(['1 days', 'nan', 'nan', 'nan']), "H": [8, 8, 9, 9], "I": [9, 9, 8, 8], "J": [1, 1, np.nan, np.nan], "K": Categorical(['a', np.nan, 'a', np.nan]), "L": to_datetime(['2000-1-2', '2000-1-2', 'NaT', 'NaT']), "M": to_timedelta(['1 days', 'nan', '1 days', 'nan']), "N": np.arange(4, dtype='int64')}) result = df[sorted(list(expected.keys()))].mode(dropna=dropna) expected = DataFrame(expected) tm.assert_frame_equal(result, expected) def test_mode_sortwarning(self): # Check for the warning that is raised when the mode # results cannot be sorted df = DataFrame({"A": [np.nan, np.nan, 'a', 'a']}) expected = DataFrame({'A': ['a', np.nan]}) with tm.assert_produces_warning(UserWarning, check_stacklevel=False): result = df.mode(dropna=False) result = result.sort_values(by='A').reset_index(drop=True) tm.assert_frame_equal(result, expected) def test_operators_timedelta64(self): df = DataFrame(dict(A=date_range('2012-1-1', periods=3, freq='D'), B=date_range('2012-1-2', periods=3, freq='D'), C=Timestamp('20120101') - timedelta(minutes=5, seconds=5))) diffs = DataFrame(dict(A=df['A'] - df['C'], B=df['A'] - df['B'])) # min result = diffs.min() assert result[0] == diffs.loc[0, 'A'] assert result[1] == diffs.loc[0, 'B'] result = diffs.min(axis=1) assert (result == diffs.loc[0, 'B']).all() # max result = diffs.max() assert result[0] == diffs.loc[2, 'A'] assert result[1] == diffs.loc[2, 'B'] result = diffs.max(axis=1) assert (result == diffs['A']).all() # abs result = diffs.abs() result2 = abs(diffs) expected = DataFrame(dict(A=df['A'] - df['C'], B=df['B'] - df['A'])) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # mixed frame mixed = diffs.copy() mixed['C'] = 'foo' mixed['D'] = 1 mixed['E'] = 1. mixed['F'] = Timestamp('20130101') # results in an object array result = mixed.min() expected = Series([pd.Timedelta(timedelta(seconds=5 * 60 + 5)), pd.Timedelta(timedelta(days=-1)), 'foo', 1, 1.0, Timestamp('20130101')], index=mixed.columns) tm.assert_series_equal(result, expected) # excludes numeric result = mixed.min(axis=1) expected = Series([1, 1, 1.], index=[0, 1, 2]) tm.assert_series_equal(result, expected) # works when only those columns are selected result = mixed[['A', 'B']].min(1) expected = Series([timedelta(days=-1)] * 3) tm.assert_series_equal(result, expected) result = mixed[['A', 'B']].min() expected = Series([timedelta(seconds=5 * 60 + 5), timedelta(days=-1)], index=['A', 'B']) tm.assert_series_equal(result, expected) # GH 3106 df = DataFrame({'time': date_range('20130102', periods=5), 'time2': date_range('20130105', periods=5)}) df['off1'] = df['time2'] - df['time'] assert df['off1'].dtype == 'timedelta64[ns]' df['off2'] = df['time'] - df['time2'] df._consolidate_inplace() assert df['off1'].dtype == 'timedelta64[ns]' assert df['off2'].dtype == 'timedelta64[ns]' def test_sum_corner(self): empty_frame = DataFrame() axis0 = empty_frame.sum(0) axis1 = empty_frame.sum(1) assert isinstance(axis0, Series) assert isinstance(axis1, Series) assert len(axis0) == 0 assert len(axis1) == 0 @pytest.mark.parametrize('method, unit', [ ('sum', 0), ('prod', 1), ]) def test_sum_prod_nanops(self, method, unit): idx = ['a', 'b', 'c'] df = pd.DataFrame({"a": [unit, unit], "b": [unit, np.nan], "c": [np.nan, np.nan]}) # The default result = getattr(df, method) expected = pd.Series([unit, unit, unit], index=idx, dtype='float64') # min_count=1 result = getattr(df, method)(min_count=1) expected = pd.Series([unit, unit, np.nan], index=idx) tm.assert_series_equal(result, expected) # min_count=0 result = getattr(df, method)(min_count=0) expected = pd.Series([unit, unit, unit], index=idx, dtype='float64') tm.assert_series_equal(result, expected) result = getattr(df.iloc[1:], method)(min_count=1) expected = pd.Series([unit, np.nan, np.nan], index=idx) tm.assert_series_equal(result, expected) # min_count > 1 df = pd.DataFrame({"A": [unit] * 10, "B": [unit] * 5 + [np.nan] * 5}) result = getattr(df, method)(min_count=5) expected = pd.Series(result, index=['A', 'B']) tm.assert_series_equal(result, expected) result = getattr(df, method)(min_count=6) expected = pd.Series(result, index=['A', 'B']) tm.assert_series_equal(result, expected) def test_sum_nanops_timedelta(self): # prod isn't defined on timedeltas idx = ['a', 'b', 'c'] df = pd.DataFrame({"a": [0, 0], "b": [0, np.nan], "c": [np.nan, np.nan]}) df2 = df.apply(pd.to_timedelta) # 0 by default result = df2.sum() expected = pd.Series([0, 0, 0], dtype='m8[ns]', index=idx) tm.assert_series_equal(result, expected) # min_count=0 result = df2.sum(min_count=0) tm.assert_series_equal(result, expected) # min_count=1 result = df2.sum(min_count=1) expected = pd.Series([0, 0, np.nan], dtype='m8[ns]', index=idx) tm.assert_series_equal(result, expected) def test_sum_object(self, float_frame): values = float_frame.values.astype(int) frame = DataFrame(values, index=float_frame.index, columns=float_frame.columns) deltas = frame * timedelta(1) deltas.sum() def test_sum_bool(self, float_frame): # ensure this works, bug report bools = np.isnan(float_frame) bools.sum(1) bools.sum(0) def test_mean_corner(self, float_frame, float_string_frame): # unit test when have object data the_mean = float_string_frame.mean(axis=0) the_sum = float_string_frame.sum(axis=0, numeric_only=True) tm.assert_index_equal(the_sum.index, the_mean.index) assert len(the_mean.index) < len(float_string_frame.columns) # xs sum mixed type, just want to know it works... the_mean = float_string_frame.mean(axis=1) the_sum = float_string_frame.sum(axis=1, numeric_only=True) tm.assert_index_equal(the_sum.index, the_mean.index) # take mean of boolean column float_frame['bool'] = float_frame['A'] > 0 means = float_frame.mean(0) assert means['bool'] == float_frame['bool'].values.mean() def test_stats_mixed_type(self, float_string_frame): # don't blow up float_string_frame.std(1) float_string_frame.var(1) float_string_frame.mean(1) float_string_frame.skew(1) def test_sum_bools(self): df = DataFrame(index=lrange(1), columns=lrange(10)) bools = isna(df) assert bools.sum(axis=1)[0] == 10 # --------------------------------------------------------------------- # Cumulative Reductions - cumsum, cummax, ... def test_cumsum_corner(self): dm = DataFrame(np.arange(20).reshape(4, 5), index=lrange(4), columns=lrange(5)) # ?(wesm) result = dm.cumsum() # noqa def test_cumsum(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cumsum = datetime_frame.cumsum() expected = datetime_frame.apply(Series.cumsum) tm.assert_frame_equal(cumsum, expected) # axis = 1 cumsum = datetime_frame.cumsum(axis=1) expected = datetime_frame.apply(Series.cumsum, axis=1) tm.assert_frame_equal(cumsum, expected) # works df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) result = df.cumsum() # noqa # fix issue cumsum_xs = datetime_frame.cumsum(axis=1) assert np.shape(cumsum_xs) == np.shape(datetime_frame) def test_cumprod(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cumprod = datetime_frame.cumprod() expected = datetime_frame.apply(Series.cumprod) tm.assert_frame_equal(cumprod, expected) # axis = 1 cumprod = datetime_frame.cumprod(axis=1) expected = datetime_frame.apply(Series.cumprod, axis=1) tm.assert_frame_equal(cumprod, expected) # fix issue cumprod_xs = datetime_frame.cumprod(axis=1) assert np.shape(cumprod_xs) == np.shape(datetime_frame) # ints df = datetime_frame.fillna(0).astype(int) df.cumprod(0) df.cumprod(1) # ints32 df = datetime_frame.fillna(0).astype(np.int32) df.cumprod(0) df.cumprod(1) def test_cummin(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cummin = datetime_frame.cummin() expected = datetime_frame.apply(Series.cummin) tm.assert_frame_equal(cummin, expected) # axis = 1 cummin = datetime_frame.cummin(axis=1) expected = datetime_frame.apply(Series.cummin, axis=1) tm.assert_frame_equal(cummin, expected) # it works df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) result = df.cummin() # noqa # fix issue cummin_xs = datetime_frame.cummin(axis=1) assert np.shape(cummin_xs) == np.shape(datetime_frame) def test_cummax(self, datetime_frame): datetime_frame.loc[5:10, 0] = np.nan datetime_frame.loc[10:15, 1] = np.nan datetime_frame.loc[15:, 2] = np.nan # axis = 0 cummax = datetime_frame.cummax() expected = datetime_frame.apply(Series.cummax) tm.assert_frame_equal(cummax, expected) # axis = 1 cummax = datetime_frame.cummax(axis=1) expected = datetime_frame.apply(Series.cummax, axis=1) tm.assert_frame_equal(cummax, expected) # it works df = DataFrame({'A': np.arange(20)}, index=np.arange(20)) result = df.cummax() # noqa # fix issue cummax_xs = datetime_frame.cummax(axis=1) assert np.shape(cummax_xs) == np.shape(datetime_frame) # --------------------------------------------------------------------- # Miscellanea def test_count(self): # corner case frame = DataFrame() ct1 = frame.count(1) assert isinstance(ct1, Series) ct2 = frame.count(0) assert isinstance(ct2, Series) # GH#423 df = DataFrame(index=lrange(10)) result = df.count(1) expected = Series(0, index=df.index) tm.assert_series_equal(result, expected) df = DataFrame(columns=lrange(10)) result = df.count(0) expected = Series(0, index=df.columns) tm.assert_series_equal(result, expected) df = DataFrame() result = df.count() expected = Series(0, index=[]) tm.assert_series_equal(result, expected) def test_count_objects(self, float_string_frame): dm = DataFrame(float_string_frame._series) df = DataFrame(float_string_frame._series) tm.assert_series_equal(dm.count(), df.count()) tm.assert_series_equal(dm.count(1), df.count(1)) def test_pct_change(self): # GH#11150 pnl = DataFrame([np.arange(0, 40, 10), np.arange(0, 40, 10), np.arange(0, 40, 10)]).astype(np.float64) pnl.iat[1, 0] = np.nan pnl.iat[1, 1] = np.nan pnl.iat[2, 3] = 60 for axis in range(2): expected = pnl.ffill(axis=axis) / pnl.ffill(axis=axis).shift( axis=axis) - 1 result = pnl.pct_change(axis=axis, fill_method='pad') tm.assert_frame_equal(result, expected) # ---------------------------------------------------------------------- # Index of max / min def test_idxmin(self, float_frame, int_frame): frame = float_frame frame.loc[5:10] = np.nan frame.loc[15:20, -2:] = np.nan for skipna in [True, False]: for axis in [0, 1]: for df in [frame, int_frame]: result = df.idxmin(axis=axis, skipna=skipna) expected = df.apply(Series.idxmin, axis=axis, skipna=skipna) tm.assert_series_equal(result, expected) msg = ("No axis named 2 for object type" " <class 'pandas.core.frame.DataFrame'>") with pytest.raises(ValueError, match=msg): frame.idxmin(axis=2) def test_idxmax(self, float_frame, int_frame): frame = float_frame frame.loc[5:10] = np.nan frame.loc[15:20, -2:] = np.nan for skipna in [True, False]: for axis in [0, 1]: for df in [frame, int_frame]: result = df.idxmax(axis=axis, skipna=skipna) expected = df.apply(Series.idxmax, axis=axis, skipna=skipna) tm.assert_series_equal(result, expected) msg = ("No axis named 2 for object type" " <class 'pandas.core.frame.DataFrame'>") with pytest.raises(ValueError, match=msg): frame.idxmax(axis=2) # ---------------------------------------------------------------------- # Logical reductions @pytest.mark.parametrize('opname', ['any', 'all']) def test_any_all(self, opname, bool_frame_with_na, float_string_frame): assert_bool_op_calc(opname, getattr(np, opname), bool_frame_with_na, has_skipna=True) assert_bool_op_api(opname, bool_frame_with_na, float_string_frame, has_bool_only=True) def test_any_all_extra(self): df = DataFrame({ 'A': [True, False, False], 'B': [True, True, False], 'C': [True, True, True], }, index=['a', 'b', 'c']) result = df[['A', 'B']].any(1) expected =
Series([True, True, False], index=['a', 'b', 'c'])
pandas.Series
import requests import re import numpy as np import pandas as pd import shutil ''' Author: <NAME> Purpose: To extract the Biological Information and images for Pokemon from Bulbapedia. This is done in four parts. The first part retrieves the bio and CDN directory links. The second part of the script downloads and stores the Pokemon's image. The third part creates a vector of booleans for each Pokemon, indicating which of the 20 selected moves are learnt by that Pokemon. The final part combines all this data into one comphrensive file. ''' # Part 1 - biology and imageurl extraction # Get list of Pokemon Names df = pd.read_csv('D:/UIP/scraping/pokemonstats.csv', header=0) pokemon_names = df['Name'] # Lists to store the biological information and bulbapedia image URL for each Pokemon bio = [] imageurls = [] for i in range(802): # Handling special cases of Pokemon names with different URL structure if pokemon_names[i] == 'Nidoran-M': URL = "https://bulbapedia.bulbagarden.net/wiki/{}_(Pok%C3%A9mon)".format('Nidoran%E2%99%82') elif pokemon_names[i] == 'Nidoran-F': URL = "https://bulbapedia.bulbagarden.net/wiki/{}_(Pok%C3%A9mon)".format('Nidoran%E2%99%80') else: URL = "https://bulbapedia.bulbagarden.net/wiki/{}_(Pok%C3%A9mon)".format(pokemon_names[i]) # Getting HTML data from bulbapedia page r = requests.get(URL) # Searching for html tags with CDN directory imgloc = re.search(r'<img alt="(.*?) src="(.*?)" width="250"', r.text).group(2) # Getting CDN sub-directory with Pokemon's image details = re.search(r'thumb/(.*?).png', imgloc).group(1) imageurls.append(details) # Getting the text from the Biology section on Bulbapedia content = re.search( '<h2><span class="mw-headline" id="Biology">Biology</span></h2>(.*?)<h2><span class="mw-headline" id="In_the_anime">In the anime</span></h2>', r.text, re.DOTALL ).group(1) # Removing HTML tags and cleaning text content = re.sub(r'&#.{4};', '', content) content = re.sub(r'<a href=(.*?)>', '', content) content = re.sub(r'<(/)?(p|sup|a|b|span|I)>', '', content) content = re.sub(r'\(Japanese:(.*?)\)', '', content) content = re.sub(r'<(span) class(.*?)>', '', content) content = re.sub(r'<img (.*)/>', '', content) content = re.sub(r'<sup id(.*?)>', '', content) content = re.sub(r'<div class(.*)>(.*)</div>', '', content) content = re.sub(r'<br(.*?)/>', '', content) content = re.sub(r'<(.*)>(.*?)</(.*?)>', '', content) content = re.sub(r' \.', '.', content) # Adding Pokemon's bio to the list and notifying user of success bio.append(content) print("Completed text retrieval for {}".format(pokemon_names[i])) # Storing the biological information on a CSV file bio_data = pd.DataFrame(bio) bio_data.to_csv('D:/UIP/scraping/pokemonbio.csv') # Storing image urls on a CSV file for image retrieval in part 2 url_data = pd.DataFrame(imageurls) url_data.to_csv('D:/UIP/scraping/pokemonimgurls.csv') # Part 2 - image extraction # Get list of Pokemon Names df = pd.read_csv('D:/UIP/scraping/pokemonstats.csv', header=0) pokemon_names = df['Name'] # Get Pokemon URLs with CDN directory dfI = pd.read_csv('D:/UIP/scraping/pokemonimgurls.csv') pokemon_images = dfI['0'] for i in range(802): # Define URL depending on Pokemon name and CDN folder structure URL = 'https://cdn.bulbagarden.net/upload/{}.png'.format(pokemon_images[i]) # Stream image content from URL resp = requests.get(URL, stream=True) # Create a local file to store image contents pname = '{}.jpg'.format(pokemon_names[i]) local_image = open(pname, 'wb') # Decoding image content resp.raw.decode_content = True # Storing the stream data on local image file shutil.copyfileobj(resp.raw, local_image) # Remove the image url response object. del resp # Prints success message print('Image retrieved for {}'.format(pname)) # Part 3 - Getting data for moves learnt by Pokemon # Get list of Pokemon Names df = pd.read_csv('D:/UIP/scraping/pokemonstats.csv', header=0) pokemon_names = df['Name'] # List of moves to query for # move_list = ['Bounce', 'Flamethrower', 'Ice_Beam', 'Thunderbolt', 'Sludge_Bomb', 'Iron_Head', 'Brick_Break', 'Dragon_Pulse', 'Absorb', # 'Wing_Attack', 'Bite', 'Dazzling_Gleam', 'Confusion', 'Rock_Blast', 'Hypnosis', 'High_Jump_Kick', "Dark_Pulse", 'Mud_Shot', 'Scald', 'Bug_Bite'] move_list = ['Frost_Breath', 'Flame_Charge', 'Bug_Bite', 'Discharge', 'Metal_Claw', 'Psyshock', 'Draco_Meteor', 'Stealth_Rock', 'Magnitude', 'Foul_Play', 'Rock_Throw', 'Hex', 'Shadow_Sneak', 'Scald', 'Synthesis', 'Dazzling_Gleam', 'Wing_Attack', 'Close_Combat', 'High_Jump_Kick', 'Aurora_Veil', 'Shift_Gear'] # Array to store boolean values move_data = np.zeros((len(pokemon_names), len(move_list))) for j in range(len(move_list)): # Get Bulbapedia URL of that move URL = 'https://bulbapedia.bulbagarden.net/wiki/{}_(move)'.format(move_list[j]) r = requests.get(URL) # Get a list of all Pokemon that learn that move imgloc = re.findall( r'<td style="text-align:center;" width="26px"> <a href="/wiki/(.*?)_', r.text) # Encode the corresponding column in the move_data array as 0 or 1 for i in range(802): if pokemon_names[i] in imgloc: move_data[i, j] = 1 # Prints success message print('Done for {}'.format(move_list[j])) # Converts array to dataframe and stores as csv for future use df = pd.DataFrame(move_data, columns=move_list) df.to_csv('D:/UIP/scraping/pokemonmoves.csv') # Part 4 - Creating the complete dataset # Get list of Pokemon Names df = pd.read_csv('D:/UIP/scraping/pokemonstats.csv', header=0) pokemon_names = df['Name'] pokemon_type = df['Type1'] pokemon_typeB = df['Type2'] # Get data on biology and moves learnt dfB =
pd.read_csv('D:/UIP/scraping/pokemonbio.csv', index_col=0)
pandas.read_csv
# !/usr/bin/env python # -*- coding:utf-8 -*- """ Test the projection module """ import unittest import numpy as np import pandas as pd from numpy.polynomial import legendre from pyrotor.projection import trajectory_to_coef from pyrotor.projection import trajectories_to_coefs from pyrotor.projection import compute_weighted_coef from pyrotor.projection import coef_to_trajectory def test_trajectory_to_coef(): # Test Legendre y = pd.DataFrame({"A": [1, 2, 3, 4, 5], "B": [-4, -1, 4, 11, 20]}) basis_dimension = {"A": 3, "B": 2} basis_features = basis_dimension basis = "legendre" expected_coef = np.array([3., 2., 0., 6., 12.], dtype='float64') result = trajectory_to_coef(y, basis, basis_features, basis_dimension) np.testing.assert_almost_equal(expected_coef, result) # Test B-spline x = np.linspace(0, 1, 20) y = pd.DataFrame({"A": x, "B": x**2}) basis_features = {"knots": [.25, .5, .75], "A": 2, "B": 3} basis_dimension = {"A": 6, "B": 7} basis = "bspline" expected_coef = np.array([0., .125, .375, .625, .875, 1., 0., 0., 4.16666667e-02, 2.29166667e-01, 5.41666667e-01, 8.33333333e-01, 1.], dtype='float64') result = trajectory_to_coef(y, basis, basis_features, basis_dimension) np.testing.assert_almost_equal(expected_coef, result) def test_trajectories_to_coefs(): # Test Legendre y = [pd.DataFrame({"A": [1, 2, 3, 4, 5]}), pd.DataFrame({"A": [-4, -1, 4, 11, 20]})] basis_dimension = {"A": 2} basis_features = basis_dimension basis = "legendre" expected_coefs_traj_1 = np.array([3., 2.]) expected_coefs_traj_2 = np.array([6., 12.]) n_jobs = None result = trajectories_to_coefs(y, basis, basis_features, basis_dimension, n_jobs) result_1 = result[0] result_2 = result[1] np.testing.assert_almost_equal(result_1, expected_coefs_traj_1) np.testing.assert_almost_equal(result_2, expected_coefs_traj_2) # Test B-spline x = np.linspace(0, 1, 20) y = [
pd.DataFrame({"A": x})
pandas.DataFrame
__author__ = '<NAME>' __email__ = '<EMAIL>' ######################################## # imports ######################################## import pandas as pd ######################################## # Meta-Feature Ranker ######################################## class MetaFeatureRanker: def __init__(self, meta_feature_scores_dict: dict): # Create a DataFrame from dict self._meta_feature_scores_df =
pd.DataFrame.from_dict(meta_feature_scores_dict, orient='index')
pandas.DataFrame.from_dict
import pandas as pd import math # Loads Recipes, defines conversion calculations def RecipeLoad(): global Recipes_Tools global Recipes_Ingredients global Recipes_Details global Conversions Recipes_Tools = pd.read_excel(r'C:\Users\franc\Documents\SousChef\Recipes.xlsx', sheet_name='Recipes (Tools)') Recipes_Ingredients = pd.read_excel(r'C:\Users\franc\Documents\SousChef\Recipes.xlsx', sheet_name='Recipes (Ingredients)') Recipes_Details = pd.read_excel(r'C:\Users\franc\Documents\SousChef\Recipes.xlsx', sheet_name='Recipes (Details)') Conversions = pd.read_excel(r'C:\Users\franc\Documents\SousChef\Recipes.xlsx', sheet_name='Conversion Table') # Merges all Recipe Units with Conversion Table to provide Metric conversion figures for single quantities x = Recipes_Ingredients.merge(Conversions, how="left", left_on='Units', right_on='Units') # Uses conversion figures to create measurements for items with quantity > 1 x["Liters"] = x["Liters"].multiply(x["Quantity"]) x["Grams"] = x["Grams"].multiply(x["Quantity"]) # Create variable "Generic Type" to track what Units are being used for each item x["Generic Type"] = x["Units"] x.loc[~ pd.isna(x["Grams"]), "Generic Type"] = "Grams" x.loc[~ pd.isna(x["Liters"]), "Generic Type"] = "Liters" x["Items"] = 0 # This is ugly, but it assigns Quantity of Items to the # Measurement Value when the item is not measured in Liters or Grams x.loc[pd.isna(x["Grams"]) & pd.isna(x["Liters"]), "Items"] = x.loc[
pd.isna(x["Grams"])
pandas.isna
import random import json import math import pickle import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap from mpl_toolkits.mplot3d import Axes3D import numpy as np import pandas as pd import seaborn as sns import missingno as msno from sklearn import datasets from sklearn import model_selection from sklearn import preprocessing from sklearn import metrics from sklearn import ensemble from sklearn import svm def _plot_one_against_original_data(df_original: pd.DataFrame, df_resampled: pd.DataFrame): df_resampled_renamed = df_resampled.rename(columns={'power': 'power_resampled'}, inplace=False) ax = df_original.plot() df_resampled_renamed.plot(ax=ax) # plt.show() def resample_comparison(): dates = pd.date_range('20191204', periods=30, freq='5s') df = pd.DataFrame( {'power': np.random.randint(low=0, high=50, size=len(dates))}, index=dates ) df_resampled_mean = df.resample('6s').mean() df_resampled_nearest = df.resample('6s').nearest() df_resampled_ffill = df.resample('6s').ffill() df_resampled_bfill = df.resample('6s').bfill() df_plt, = plt.plot(df) mean_plt, = plt.plot(df_resampled_mean) nearest_plt, = plt.plot(df_resampled_nearest) bfill_plt, = plt.plot(df_resampled_bfill) ffill_plt, = plt.plot(df_resampled_ffill) plt.legend( [df_plt, mean_plt, nearest_plt, bfill_plt, ffill_plt], ['df', 'mean', 'nearest', 'bfill', 'ffill'] ) plt.show() _plot_one_against_original_data(df, df_resampled_nearest) _plot_one_against_original_data(df, df_resampled_mean) _plot_one_against_original_data(df, df_resampled_bfill) _plot_one_against_original_data(df, df_resampled_ffill) plt.show() def read_temp_sn(name: str) -> int: with open('data/additional_info.json') as f: additional_data = json.load(f) devices = additional_data['offices']['office_1']['devices'] sn_temp_mid = [d['serialNumber'] for d in devices if d['description'] == name][0] return sn_temp_mid def project_check_data(): # sn_temp_mid = read_temp_sn('temperature_middle') sn_temp_mid = read_temp_sn('radiator_1') df_temp = pd.read_csv('data/office_1_temperature_supply_points_data_2020-10-13_2020-11-02.csv') print(df_temp.info()) print(df_temp.describe()) print(df_temp.head(5)) df_temp.rename(columns={'Unnamed: 0': 'time'}, inplace=True) df_temp.rename(columns={'value': 'temp'}, inplace=True) df_temp['time'] = pd.to_datetime(df_temp['time']) df_temp.drop(columns=['unit'], inplace=True) print(df_temp.info()) df_temp = df_temp[df_temp['serialNumber'] == sn_temp_mid] print(df_temp.info()) print(df_temp.head(5)) df_temp.set_index('time', inplace=True) df_temp: pd.DataFrame # df_temp.plot(kind='scatter') plt.scatter(df_temp.index, df_temp.temp) plt.show() df_target_temp = pd.read_csv('data/office_1_targetTemperature_supply_points_data_2020-10-13_2020-11-01.csv') df_target_temp.rename(columns={'Unnamed: 0': 'time'}, inplace=True) df_target_temp.rename(columns={'value': 'target_temp'}, inplace=True) df_target_temp['time'] = pd.to_datetime(df_target_temp['time']) df_target_temp.drop(columns=['unit'], inplace=True) df_target_temp.set_index('time', inplace=True) df_valve = pd.read_csv('data/office_1_valveLevel_supply_points_data_2020-10-13_2020-11-01.csv') df_valve.rename(columns={'Unnamed: 0': 'time'}, inplace=True) df_valve.rename(columns={'value': 'valve'}, inplace=True) df_valve['time'] = pd.to_datetime(df_valve['time']) df_valve.drop(columns=['unit'], inplace=True) df_valve.set_index('time', inplace=True) df_combined = pd.concat([df_temp, df_target_temp, df_valve]) df_combined = df_combined.resample(pd.Timedelta(minutes=15)).mean().fillna(method='ffill') print(df_combined.head()) df_combined['temp_last'] = df_combined['temp'].shift(1, fill_value=20) df_combined['temp_gt'] = df_combined['temp'].shift(-1, fill_value=20.34) mask = (df_combined.index < '2020-10-27') df_train = df_combined.loc[mask] # X_train = df_train.drop(columns=['target_temp', 'temp_last', 'temp_gt']).to_numpy()[1:-1] X_train = df_train[['temp', 'valve']].to_numpy()[1:-1] print(X_train[:5]) y_train = df_train['temp_gt'].to_numpy()[1:-1] reg_rf = ensemble.RandomForestRegressor(random_state=42) reg_rf.fit(X_train, y_train) pickle.dump(reg_rf, open('reg_rf.p', 'wb')) mask = (df_combined.index > '2020-10-27') & (df_combined.index <= '2020-10-28') df_test = df_combined.loc[mask] X_test = df_test[['temp', 'valve']].to_numpy() y_predicted = reg_rf.predict(X_test) df_test['temp_predicted'] = y_predicted.tolist() y_test = df_test['temp_gt'].to_numpy()[1:-1] y_last = df_test['temp_last'].to_numpy()[1:-1] print(f'mae base: {metrics.mean_absolute_error(y_test, y_last)}') print(f'mae rf: {metrics.mean_absolute_error(y_test, y_predicted[1:-1])}') print(f'mse base: {metrics.mean_squared_error(y_test, y_last)}') print(f'mse rf: {metrics.mean_squared_error(y_test, y_predicted[1:-1])}') print(df_combined.head(5)) print(df_combined.tail(5)) df_test.drop(columns=['valve', 'temp', 'target_temp'], inplace=True) df_test.plot() plt.show() # df_temp.plot() # df_target_temp.plot() # plt.plot(df_temp.index, df_temp.temp) # plt.plot(df_target_temp.index, df_target_temp.target_temp) # plt.show() def do_magic( temperature: pd.DataFrame, target_temperature: pd.DataFrame, valve_level: pd.DataFrame, serial_number_for_prediction: str ) -> float: # print(temperature.head(5)) # print(temperature.tail(5)) return 20 def preprocess_time_to_index(d: pd.DataFrame) -> pd.DataFrame: processed_d = d.rename(columns={'Unnamed: 0': 'time'}) processed_d['time'] =
pd.to_datetime(processed_d['time'])
pandas.to_datetime
# coding: utf-8 # <NAME> <EMAIL> # # Simulate exoplanet yield from TESS # The purpose of this code is to simulate the exoplanet yield from the TESS Mission. # We do this by taking the various fields that TESS observes and, using a galaxy model, # put planets orbiting the stars and see whether we can detect that planet. from __future__ import division, print_function import numpy as np import pandas as pd import astroquery import matplotlib.pyplot as plt import glob import matplotlib matplotlib.style.use('ggplot') import occSimFuncs as occFunc from numpy.random import poisson, beta, uniform #get_ipython().magic(u'matplotlib inline') #constants msun = 1.9891E30 rsun = 695500000. G = 6.67384E-11 AU = 149597870700. # lets read our galaxt model files def add_stellar_props(df): df['isMdwarf'] = pd.Series((df.CL == 5) & (df.Typ >= 7.), name='isMdwarf' ) df['isGiant'] = pd.Series((df.CL < 5), name='isGiant' ) df['I'] = pd.Series(-1. * (df.VI - df.V), name='I') df['Teff'] = pd.Series(10**df.LTef , name='Teff') g = 10**df.logg * 0.01 df['Radius'] = pd.Series(np.sqrt(G*df.Mass*msun / g) / rsun, name='Radius') return df def make_fullfov_df(df,consts): multiple = consts['galmodarea'] / consts['simsize'] numstars = int(df.shape[0] * multiple) rows = np.random.choice(df.index.values, size=numstars) newq = df.ix[rows] return newq.set_index(np.arange(newq.shape[0])) def make_allplanets_df(df,starid_zp): df['planetRadius'] = pd.Series() df['planetPeriod'] = pd.Series() df['starID'] = pd.Series() newdf = pd.DataFrame(columns=df.columns) starID = starid_zp for thisRow in np.arange(df.shape[0]): if df.loc[thisRow,'isMdwarf']: radper = occFunc.Dressing15_select(df.loc[thisRow, 'Nplanets']) if df.loc[thisRow,'Nplanets'] == 0: continue elif df.loc[thisRow,'Nplanets'] == 1: df.loc[thisRow,'planetRadius'] = radper[0] df.loc[thisRow,'planetPeriod'] = radper[1] df.loc[thisRow,'starID'] = starID newdf = newdf.append(df.loc[thisRow]) starID +=1 elif df.loc[thisRow,'Nplanets'] >= 2: df.loc[thisRow,'starID'] = starID for p in np.arange(df.loc[thisRow,'Nplanets']): df.loc[thisRow,'planetRadius'] = radper[0][p] df.loc[thisRow,'planetPeriod'] = radper[1][p] newdf = newdf.append(df.loc[thisRow]) starID +=1 elif not df.loc[thisRow,'isMdwarf']: radper = occFunc.Fressin13_select(df.loc[thisRow, 'Nplanets']) if df.loc[thisRow,'Nplanets'] == 0: continue elif df.loc[thisRow,'Nplanets'] == 1: df.loc[thisRow,'planetRadius'] = radper[0] df.loc[thisRow,'planetPeriod'] = radper[1] df.loc[thisRow,'starID'] = starID newdf = newdf.append(df.loc[thisRow]) starID +=1 elif df.loc[thisRow,'Nplanets'] >= 2: df.loc[thisRow,'starID'] = starID for p in np.arange(df.loc[thisRow,'Nplanets']): df.loc[thisRow,'planetRadius'] = radper[0][p] df.loc[thisRow,'planetPeriod'] = radper[1][p] newdf = newdf.append(df.loc[thisRow]) starID += 1 newdf.set_index(np.arange(newdf.shape[0]), inplace=True) return newdf, starID def make_allplanets_df_vec(df,starid_zp): # lets refector the above code to make it array operations totalRows = df['Nplanets'].sum() df['planetRadius'] =
pd.Series()
pandas.Series
from genericpath import exists import warnings warnings.filterwarnings("ignore") from yahoo_fin import stock_info as si import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.stats import norm, gmean, cauchy import seaborn as sns from datetime import date, datetime, timedelta import yfinance as yf from yahooquery import Ticker import streamlit as st from finvizfinance.quote import finvizfinance from pathlib import Path from src.tools.functions import company_longName class MonteCarloCholesky(object): def __init__(self, date_report): self.report_date = date_report self.saveAdvisor = Path(f"data/advisor/{str(self.report_date)[:7]}/{self.report_date}/") if not self.saveAdvisor.exists(): self.saveAdvisor.mkdir(parents=True) def import_stock_data(self, tickers, saveName="xxx", start="2010-1-1", end=datetime.today().strftime("%Y-%m-%d"),): y = Ticker( tickers, asynchronous=True, backoff_factor=0.34, formatted=True, progress=True, validate=True, verify=False, ).history( start=start, end=end, interval='1d' ).reset_index().set_index('date') df = pd.DataFrame() for i in tickers: z = pd.DataFrame(y[y['symbol'] == i]['adjclose']) df[i] = z return df.round(2) def log_returns(self, data): return np.log(1 + data.pct_change()) def simple_returns(self, data): return (data / data.shift(1)) - 1 def drift_calc(self, data, return_type="log"): if return_type == "log": lr = self.log_returns(data) elif return_type == "simple": lr = self.simple_returns(data) u = lr.mean() var = lr.var() drift = u - (0.5 * var) try: return drift.values except: return drift def get_tickers(self, data): tickers = [i for i in data.columns] return tickers def probs_find(self, predicted, higherthan, ticker=None, on="value"): """ This function calculated the probability of a stock being above a certain threshhold, which can be defined as a value (final stock price) or return rate (percentage change) Input: 1. predicted: dataframe with all the predicted prices (days and simulations) 2. higherthan: specified threshhold to which compute the probability (ex. 0 on return will compute the probability of at least breakeven) 3. on: 'return' or 'value', the return of the stock or the final value of stock for every simulation over the time specified 4. ticker: specific ticker to compute probability for """ if ticker == None: if on == "return": predicted0 = predicted.iloc[0, 0] predicted = predicted.iloc[-1] predList = list(predicted) over = [ (i * 100) / predicted0 for i in predList if ((i - predicted0) * 100) / predicted0 >= higherthan ] less = [ (i * 100) / predicted0 for i in predList if ((i - predicted0) * 100) / predicted0 < higherthan ] elif on == "value": predicted = predicted.iloc[-1] predList = list(predicted) over = [i for i in predList if i >= higherthan] less = [i for i in predList if i < higherthan] else: st.write("'on' must be either value or return") else: if on == "return": predicted = predicted[predicted["ticker"] == ticker] predicted0 = predicted.iloc[0, 0] predicted = predicted.iloc[-1] predList = list(predicted) over = [ (i * 100) / predicted0 for i in predList if ((i - predicted0) * 100) / predicted0 >= higherthan ] less = [ (i * 100) / predicted0 for i in predList if ((i - predicted0) * 100) / predicted0 < higherthan ] elif on == "value": predicted = predicted.iloc[-1] predList = list(predicted) over = [i for i in predList if i >= higherthan] less = [i for i in predList if i < higherthan] else: st.write("'on' must be either value or return") return len(over) / (len(over) + len(less)) def montecarlo_cholesky(self,tickers,days,iterations,start="2010-1-1",show_hist=True,show_line=True,show_stats=True,): # Get tickers and number of tickers involved in this portfolio data = self.import_stock_data(tickers, "monteCarloCholesky", start=start) ticks = self.get_tickers(data) numstocks = len(ticks) # Basic information and data log_return = self.log_returns(data) # Brownian motion component: drif drift = self.drift_calc(data) stdev = self.log_returns(data).std().values # Cholesky decomposition covari = log_return.cov() chol = np.linalg.cholesky(covari) # Generate uncorralated random variables and use cholesky decomposition to correlate them uncorr_x = norm.ppf(np.random.rand(numstocks, iterations * days)) corr_x = np.dot(chol, uncorr_x) # Calculate daily return corr_2 = np.zeros_like(corr_x) for i in range(numstocks): corr_2[i] = np.exp(drift[i] + corr_x[i]) simulatedDF = [] # For every stock, calculate the returns for s in range(len(ticks)): ret_reshape = corr_2[s] ret_reshape = ret_reshape.reshape(days, iterations) price_list = np.zeros_like(ret_reshape) price_list[0] = data.iloc[-1, s] # Calculate returns for the s stock for t in range(1, days): price_list[t] = price_list[t - 1] * ret_reshape[t] # Create dataframe for this run, input the name of stock and load y = pd.DataFrame(price_list) y["ticker"] = tickers[s] cols = y.columns.tolist() cols = cols[-1:] + cols[:-1] y = y[cols] simulatedDF.append(y) # plotting if show_hist == True: x = pd.DataFrame(price_list).iloc[-1] fig, ax = plt.subplots(1, 2, figsize=(14, 4)) sns.distplot(x, ax=ax[0], axlabel="Stock Price") sns.distplot( x, hist_kws={"cumulative": True}, kde_kws={"cumulative": True}, ax=ax[1], ) plt.xlabel("Stock Price") plt.show() if show_line == True: y = pd.DataFrame(price_list[:, 0:10]).plot(figsize=(15, 6)) if show_stats == True: # Printing basic stats df = yf.download(ticks[s], period="1d") x = round(float(df["Adj Close"]), 2) d = si.get_quote_table(ticks[s]) y = d.get('1y Target Est') st.subheader(f"𝄖𝄗𝄘𝄙𝄚 {company_longName(ticks[s])} [{ticks[s]}]") st.write(f"* Forcast Days: {days}") st.write(f"* Current Value: $ {x}") st.write(f"* Analyst Average 1y Est: ${y}") st.write(f"* Expected Value: ${round(pd.DataFrame(price_list).iloc[-1].mean(),2)}") st.write(f"* Return: {round(100*(pd.DataFrame(price_list).iloc[-1].mean()-price_list[0,1])/pd.DataFrame(price_list).iloc[-1].mean(),2)}%") st.write(f"* Probability of Breakeven: {self.probs_find(pd.DataFrame(price_list), 0, on='return')}") st.write(' '*25) simulatedDF = pd.concat(simulatedDF) return simulatedDF def market_data_combination(self, tickers, data, mark_ticker="^GSPC", start="2010-1-1"): ticks = [col for col in data.columns] if mark_ticker in ticks: ann_return = np.exp(self.log_returns(data).mean() * 252).values - 1 else: market_data = self.import_stock_data(mark_ticker, "mkt_data_combo_1", start) market_rets = self.log_returns(market_data).dropna() ann_return = np.exp(market_rets.mean() * 252) data = data.merge(market_data, left_index=True, right_index=True) data.columns = [tickers[0], tickers[1], tickers[2], "^GSPC"] return data, ann_return def beta_sharpe(self,tickers,data,mark_ticker="^GSPC",start="2010-1-1",riskfree=0.025,riskpremium=0.05,): # Beta dd, mark_ret = self.market_data_combination(tickers, data, mark_ticker, start) # load data and annual returns log_ret = self.log_returns(dd) # create the logarithmic returns of the data covar = log_ret.cov() * 252 # Annualized covariance matrix covar = pd.DataFrame(covar.iloc[:-1, -1]) # Get the part of the covariance matrix that is related between the stocks and the market mrk_var = log_ret.iloc[:, -1].var() * 252 # Annualized variance of market beta = covar / mrk_var # Now we have our betas! # Add the standard deviation to the beta dataframe stdev_ret = pd.DataFrame(((log_ret.std() * 250 ** 0.5)[:-1]), columns=["STD"]) beta = beta.merge(stdev_ret, left_index=True, right_index=True) # Get tickers of all the stocks in the dataframe used tickers = self.get_tickers(dd) # Make dictionary for the annual return of each stock mark_ret = {tickers[i]: mark_ret[i] for i in range(len(tickers))} # CAPM for i, row in beta.iterrows(): beta.at[i, "CAPM"] = riskfree + ( row[mark_ticker] * (mark_ret[mark_ticker] - riskfree) ) # Sharpe for i, row in beta.iterrows(): beta.at[i, "Sharpe"] = (row["CAPM"] - riskfree) / (row["STD"]) beta.rename(columns={"^GSPC": "Beta"}, inplace=True) return beta def market_data_combination(self, data, mark_ticker="^GSPC", start="2010-1-1"): market_data = self.import_stock_data(mark_ticker, "mkt_data_combo_2", start) market_rets = self.log_returns(market_data).dropna() ann_return = np.exp(market_rets.mean() * 252).values - 1 data = data.merge(market_data, left_index=True, right_index=True) return data, ann_return def montecarlo_sharpe_optimal_portfolio(self, tickers, trials=13000, end_date=None, start_date="2020-1-1", riskfree=0.025, plot_eff=True,): if end_date == None: end_date = self.report_date # end_date = datetime.today().strftime("%Y-%m-%d") data = self.import_stock_data(tickers, "monteCarloSharpe") allWeights = np.zeros((trials, len(data.columns))) allReturns = np.zeros(trials) allVolatility = np.zeros(trials) allSharpeValues = np.zeros(trials) log_return = self.log_returns(data) for t in range(trials): weights = np.random.rand(len(data.columns)) weights = weights / np.sum(weights) allWeights[t, :] = weights allReturns[t] = np.sum((log_return.mean() * weights) * 252) allVolatility[t] = np.sqrt( np.dot(weights.T, np.dot(log_return.cov() * 252, weights)) ) allSharpeValues[t] = (allReturns[t] - riskfree) / allVolatility[t] maxsharpe = allSharpeValues.max() pointsharpe = allSharpeValues.argmax() weightSharpe = allWeights[pointsharpe] x_sharpe = allVolatility[pointsharpe] y_sharpe = allReturns[pointsharpe] maxret = allReturns.max() pointret = allReturns.argmax() weightRet = allWeights[pointret] x_ret = allVolatility[pointret] y_ret = allReturns[pointret] if plot_eff == True: st.caption('_'*25) st.subheader(f"__𝄖𝄗𝄘𝄙𝄚 Graphic Simulation Of Portfolios__") fig, ax = plt.subplots(figsize=(14, 9)) plt.scatter(allVolatility, allReturns, c=allSharpeValues, cmap="plasma") plt.colorbar(label="Sharpe Ratio") plt.xlabel("Volatility") plt.ylabel("Expected Return") plt.scatter(x_sharpe, y_sharpe, c="black") plt.scatter(x_ret, y_ret) st.pyplot(fig) optim_dic = [] for i in range(len(tickers)): optim_dic.append({"ticker": tickers[i], "Weight": weightSharpe[i] * 100}) fin =
pd.DataFrame(optim_dic)
pandas.DataFrame
import os import copy import pytest import numpy as np import pandas as pd import pyarrow as pa from pyarrow import feather as pf from pyarrow import parquet as pq from time_series_transform.io.base import io_base from time_series_transform.io.numpy import ( from_numpy, to_numpy ) from time_series_transform.io.pandas import ( from_pandas, to_pandas ) from time_series_transform.io.arrow import ( from_arrow_record_batch, from_arrow_table, to_arrow_record_batch, to_arrow_table ) from time_series_transform.transform_core_api.base import ( Time_Series_Data, Time_Series_Data_Collection ) from time_series_transform.io.parquet import ( from_parquet, to_parquet ) from time_series_transform.io.feather import ( from_feather, to_feather ) @pytest.fixture(scope = 'class') def dictList_single(): return { 'time': [1, 2], 'data': [1, 2] } @pytest.fixture(scope = 'class') def dictList_collection(): return { 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_single_expandTime(): return { 'data_1':[1], 'data_2':[2] } @pytest.fixture(scope = 'class') def expect_single_seperateLabel(): return [{ 'time': [1, 2], 'data': [1, 2] }, { 'data_label': [1, 2] }] @pytest.fixture(scope = 'class') def expect_collection_seperateLabel(): return [{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, { 'data_label':[1,2,1,2] } ] @pytest.fixture(scope = 'class') def expect_collection_expandTime(): return { 'pad': { 'data_1':[1,1], 'data_2':[2,np.nan], 'data_3':[np.nan,2], 'category':[1,2] }, 'remove': { 'data_1':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def expect_collection_expandCategory(): return { 'pad': { 'time':[1,2,3], 'data_1':[1,2,np.nan], 'data_2':[1,np.nan,2] }, 'remove': { 'time':[1], 'data_1':[1], 'data_2':[1] } } @pytest.fixture(scope = 'class') def expect_collection_expandFull(): return { 'pad': { 'data_1_1':[1], 'data_2_1':[1], 'data_1_2':[2], 'data_2_2':[np.nan], 'data_1_3':[np.nan], 'data_2_3':[2] }, 'remove': { 'data_1_1':[1], 'data_2_1':[1], } } @pytest.fixture(scope = 'class') def expect_collection_noExpand(): return { 'ignore':{ 'time': [1,2,1,3], 'data':[1,2,1,2], 'category':[1,1,2,2] }, 'pad': { 'time': [1,2,3,1,2,3], 'data':[1,2,np.nan,1,np.nan,2], 'category':[1,1,1,2,2,2] }, 'remove': { 'time': [1,1], 'data':[1,1], 'category':[1,2] } } @pytest.fixture(scope = 'class') def seq_single(): return { 'time':[1,2,3], 'data':[[1,2,3],[11,12,13],[21,22,23]] } @pytest.fixture(scope = 'class') def seq_collection(): return { 'time':[1,2,1,2], 'data':[[1,2],[1,2],[2,2],[2,2]], 'category':[1,1,2,2] } @pytest.fixture(scope = 'class') def expect_seq_collection(): return { 'data_1_1':[[1,2]], 'data_2_1':[[2,2]], 'data_1_2':[[1,2]], 'data_2_2':[[2,2]] } class Test_base_io: def test_base_io_from_single(self, dictList_single,expect_single_expandTime): ExpandTimeAns = expect_single_expandTime data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(ts, 'time', None) timeSeries = io.from_single(False) for i in timeSeries: assert timeSeries[i].tolist() == data[i] timeSeries = io.from_single(True) for i in timeSeries: assert timeSeries[i] == ExpandTimeAns[i] def test_base_io_to_single(self, dictList_single): data = dictList_single ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') io = io_base(data, 'time', None) assert io.to_single() == ts def test_base_io_from_collection_expandTime(self, dictList_collection,expect_collection_expandTime): noChange = dictList_collection expand = expect_collection_expandTime fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(False,True,'ignore') timeSeries = io.from_collection(False,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandCategory(self, dictList_collection,expect_collection_expandCategory): noChange = dictList_collection expand = expect_collection_expandCategory fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') with pytest.raises(ValueError): timeSeries = io.from_collection(True,False,'ignore') timeSeries = io.from_collection(True,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_from_collection_expandFull(self, dictList_collection,expect_collection_expandFull): noChange = dictList_collection expand = expect_collection_expandFull fullExpand = [] data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(True,True,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(True,True,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) def test_base_io_to_collection(self, dictList_collection): dataList = dictList_collection io = io_base(dataList, 'time', 'category') testData = io.to_collection() tsd = Time_Series_Data(dataList,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') assert testData== tsc def test_base_io_from_collection_no_expand(self,dictList_collection,expect_collection_noExpand): noChange = dictList_collection expand = expect_collection_noExpand data = dictList_collection ts = Time_Series_Data() ts = ts.set_time_index(data['time'], 'time') ts = ts.set_data(data['data'], 'data') ts = ts.set_data(data['category'],'category') tsc = Time_Series_Data_Collection(ts,'time','category') io = io_base(tsc, 'time', 'category') timeSeries = io.from_collection(False,False,'ignore') for i in timeSeries: np.testing.assert_array_equal(timeSeries[i],expand['ignore'][i]) timeSeries = io.from_collection(False,False,'pad') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['pad'][i]) timeSeries = io.from_collection(False,False,'remove') for i in timeSeries: np.testing.assert_equal(timeSeries[i],expand['remove'][i]) class Test_Pandas_IO: def test_from_pandas_single(self,dictList_single): data = dictList_single df = pd.DataFrame(dictList_single) tsd = Time_Series_Data(data,'time') testData = from_pandas(df,'time',None) assert tsd == testData def test_from_pandas_collection(self,dictList_collection): data = dictList_collection df = pd.DataFrame(dictList_collection) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = from_pandas(df,'time','category') assert tsc == testData def test_to_pandas_single(self,dictList_single,expect_single_expandTime): data = dictList_single df = pd.DataFrame(data) expandTime = pd.DataFrame(expect_single_expandTime) tsd = Time_Series_Data(data,'time') testData = to_pandas( tsd, expandCategory= None, expandTime=False, preprocessType= None ) pd.testing.assert_frame_equal(testData,df,check_dtype=False) testData = to_pandas( tsd, expandCategory= None, expandTime=True, preprocessType= None ) pd.testing.assert_frame_equal(testData,expandTime,check_dtype=False) def test_to_pandas_collection_expandTime(self,dictList_collection,expect_collection_expandTime): data = dictList_collection expandTime_pad = pd.DataFrame(expect_collection_expandTime['pad']) expandTime_remove = pd.DataFrame(expect_collection_expandTime['remove']) tsd = Time_Series_Data(data,'time') tsc = Time_Series_Data_Collection(tsd,'time','category') testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'pad' ) pd.testing.assert_frame_equal(testData,expandTime_pad,check_dtype=False) testData = to_pandas( tsc, expandCategory= False, expandTime=True, preprocessType= 'remove' ) pd.testing.assert_frame_equal(testData,expandTime_remove,check_dtype=False) with pytest.raises(ValueError): timeSeries = to_pandas(tsc,False,True,'ignore') def test_to_pandas_collection_expandCategory(self,dictList_collection,expect_collection_expandCategory): data = dictList_collection expandTime_pad =
pd.DataFrame(expect_collection_expandCategory['pad'])
pandas.DataFrame
# Need options to upload one to 3 files so i can do if none options # merge datasets on sch line item doing whiochever merge need it to probabily be efficent # highlight yellow if status is under review with CSAM or action sdm is Not order created on tool Not processed on LTSI tool import pandas as pd from datetime import datetime, timedelta import io import streamlit as st import numpy as np # ideas # join the all the columns then merge ? def app(): # st.set_page_config(page_title='LTSI Feedback Form') st.write(""" # LTSI Feedback ### Instructions: \n - Used when SDM feedback is in seperate files - Upload excel feedback files (up to 3) - Upload Open Orders File """) st.write("## Upload 1 to 3 Feedback Files") feedback1 = st.file_uploader("Upload Feedback File 1", type="xlsx") feedback2 = st.file_uploader("Upload Feedback File 2", type="xlsx") feedback3 = st.file_uploader("Upload Feedback File 3", type="xlsx") st.write("## Upload Open Orders File") open_orders = st.file_uploader("Upload Open Order File if feedback does not contain all open order rows", type="xlsx") if st.button("Create Feedback"): def download_file(merged): action_sdm = merged.columns[34] merged[action_sdm] = merged[action_sdm].str.lower() merged[action_sdm] = merged[action_sdm].fillna("0") merged['Status (SS)'] = np.where(merged[action_sdm].str.contains('cancel', regex=False), 'To be cancelled / reduced', merged['Status (SS)']) merged['Status (SS)'] = np.where(merged[action_sdm].str.contains('block', regex=False), 'Blocked', merged['Status (SS)']) merged[action_sdm] = merged[action_sdm].astype(str) merged[action_sdm].replace(['0', '0.0'], '', inplace=True) # Writing df to Excel Sheet buffer = io.BytesIO() with pd.ExcelWriter(buffer, engine='xlsxwriter') as writer: merged.to_excel(writer, sheet_name='Sheet1', index=False) workbook = writer.book worksheet = writer.sheets['Sheet1'] formatdict = {'num_format': 'dd/mm/yyyy'} fmt = workbook.add_format(formatdict) worksheet.set_column('K:K', None, fmt) worksheet.set_column('L:L', None, fmt) # Light yellow fill with dark yellow text. number_rows = len(merged.index) + 1 yellow_format = workbook.add_format({'bg_color': '#FFEB9C'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="Under Review with CSAM"', 'format': yellow_format}) grey_format = workbook.add_format({'bg_color': '#C0C0C0'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="To be cancelled / reduced"', 'format': grey_format}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="Under Review with C-SAM"', 'format': yellow_format}) red_format = workbook.add_format({'bg_color': '#ffc7ce'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="Blocked"', 'format': red_format}) green_format = workbook.add_format({'bg_color': '#c6efce'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="Shippable"', 'format': green_format}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AG2="Scheduled Out"', 'format': green_format}) # COL MIGHT BE AH grey_format = workbook.add_format({'bg_color': '#C0C0C0'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="To be cancelled / reduced"', 'format': grey_format}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="Under Review with CSAM"', 'format': yellow_format}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="Under Review with C-SAM"', 'format': yellow_format}) red_format = workbook.add_format({'bg_color': '#ffc7ce'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="Blocked"', 'format': red_format}) green_format = workbook.add_format({'bg_color': '#c6efce'}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="Shippable"', 'format': green_format}) worksheet.conditional_format('A2:AH%d' % (number_rows), {'type': 'formula', 'criteria': '=$AH2="Scheduled Out"', 'format': green_format}) for column in merged: column_width = max(merged[column].astype(str).map(len).max(), len(column)) col_idx = merged.columns.get_loc(column) writer.sheets['Sheet1'].set_column(col_idx, col_idx, column_width) worksheet.autofilter(0, 0, merged.shape[0], merged.shape[1]) worksheet.set_column(11, 12, 20) worksheet.set_column(12, 13, 20) worksheet.set_column(13, 14, 20) header_format = workbook.add_format({'bold': True, 'bottom': 2, 'bg_color': '#0AB2F7'}) # Write the column headers with the defined format. for col_num, value in enumerate(merged.columns.values): worksheet.write(0, col_num, value, header_format) my_format = workbook.add_format() my_format.set_align('left') worksheet.set_column('N:N', None, my_format) writer.save() today = datetime.today() d1 = today.strftime("%d/%m/%Y") st.write("Download Completed File:") st.download_button( label="Download Excel worksheets", data=buffer, file_name="LTSI_file_" + d1 + ".xlsx", mime="application/vnd.ms-excel" ) def columns_to_keep(): cols = ['sales_org', 'country', 'cust_num', 'customer_name', 'sales_dis', 'rtm', 'sd_line_item', 'order_method', 'del_blk', 'cust_req_date', 'ord_entry_date', 'cust_po_num', 'ship_num', 'ship_cust', 'ship_city', 'plant', 'material_num', 'brand', 'lob', 'project_code', 'material_desc', 'mpn_desc', 'ord_qty', 'shpd_qty', 'delivery_qty', 'remaining_qty', 'delivery_priority', 'opt_delivery_qt', 'rem_mod_opt_qt', 'sch_line_blocked_for_delv'] return cols def old_feedback_getter(df): cols = [8] col_count = 37 if df.shape[1] >= 39: while col_count < df.shape[1]: cols.append(col_count) col_count += 1 return df.iloc[:, cols] def new_feedback_getter(df): return df.iloc[:, [8, 34, 35, 36]] def open_new_feedback_merge(open, new_feedback): return open.merge(new_feedback, how="left", on="Sales Order and Line Item") def case2(feedback, open_orders): feed1 = pd.read_excel(feedback, sheet_name=0, engine="openpyxl") openOrders = pd.read_excel(open_orders, sheet_name=0, engine="openpyxl") old_feedback = old_feedback_getter(feed1) new_feedback = new_feedback_getter(feed1) open = openOrders.iloc[:, :34] combined_feedback = open.merge(new_feedback, how="left", on="Sales Order and Line Item") final = combined_feedback.merge(old_feedback, how="left", on="Sales Order and Line Item") cols = columns_to_keep() final.drop_duplicates(subset=cols, keep='first', inplace=True) download_file(final) def case3(feedback1, feedback2, open_orders): feed1 = pd.read_excel(feedback1, sheet_name=0, engine="openpyxl") feed2 = pd.read_excel(feedback2, sheet_name=0, engine="openpyxl") openOrders = pd.read_excel(open_orders, sheet_name=0, engine="openpyxl") old_feedback1 = old_feedback_getter(feed1) new_feedback1 = new_feedback_getter(feed1) old_feedback2 = old_feedback_getter(feed2) new_feedback2 = new_feedback_getter(feed2) open = openOrders.iloc[:, :34] joined_new_feedback = pd.concat([new_feedback1, new_feedback2], ignore_index=True) joined_old_feedback = pd.concat([old_feedback1, old_feedback2], ignore_index=True) combined_feedback = open.merge(joined_new_feedback, how="left", on="Sales Order and Line Item") final = combined_feedback.merge(joined_old_feedback, how="left", on="Sales Order and Line Item") cols = columns_to_keep() final.drop_duplicates(subset=cols, keep='first', inplace=True) download_file(final) def case4(feedback1, feedback2, feedback3, open_orders): feed1 = pd.read_excel(feedback1, sheet_name=0, engine="openpyxl") feed2 = pd.read_excel(feedback2, sheet_name=0, engine="openpyxl") feed3 = pd.read_excel(feedback3, sheet_name=0, engine="openpyxl") openOrders = pd.read_excel(open_orders, sheet_name=0, engine="openpyxl") old_feedback1 = old_feedback_getter(feed1) new_feedback1 = new_feedback_getter(feed1) old_feedback2 = old_feedback_getter(feed2) new_feedback2 = new_feedback_getter(feed2) old_feedback3 = old_feedback_getter(feed3) new_feedback3 = new_feedback_getter(feed3) open = openOrders.iloc[:, :34] joined_new_feedback = pd.concat([new_feedback1, new_feedback2, new_feedback3], ignore_index=True) joined_old_feedback = pd.concat([old_feedback1, old_feedback2, old_feedback3], ignore_index=True) combined_feedback = open.merge(joined_new_feedback, how="left", on="Sales Order and Line Item") final = combined_feedback.merge(joined_old_feedback, how="left", on="Sales Order and Line Item") cols = columns_to_keep() final.drop_duplicates(subset=cols, keep='first', inplace=True) download_file(final) def case5(feedback1, feedback2): feed1 = pd.read_excel(feedback1, sheet_name=0, engine="openpyxl") feed2 = pd.read_excel(feedback2, sheet_name=0, engine="openpyxl") open = feed1.iloc[:, :34] old_feedback = old_feedback_getter(feed1) # drop na new_feedback1 = new_feedback_getter(feed1) new_feedback2 = new_feedback_getter(feed2) new_feedback1 = new_feedback1[new_feedback1.iloc[:, 1].notna()] new_feedback2 = new_feedback2[new_feedback2.iloc[:, 1].notna()] joined_new_feedback = pd.concat([new_feedback1, new_feedback2], ignore_index=True) combined_feedback = open.merge(joined_new_feedback, how="left", on="Sales Order and Line Item") final = combined_feedback.merge(old_feedback, how="left", on="Sales Order and Line Item") cols = columns_to_keep() final.drop_duplicates(subset=cols, keep='first', inplace=True) download_file(final) def case6(feedback1, feedback2, feedback3): feed1 = pd.read_excel(feedback1, sheet_name=0, engine="openpyxl") feed2 = pd.read_excel(feedback2, sheet_name=0, engine="openpyxl") feed3 =
pd.read_excel(feedback3, sheet_name=0, engine="openpyxl")
pandas.read_excel
import numpy as np import scipy.stats as stat import joblib import pickle import pandas as pd def map_workclass(df): workclass_mapper = { ' State-gov': "other", ' Self-emp-not-inc': "other", ' Federal-gov': "other", ' Local-gov': "other", ' ?': "other", ' Self-emp-inc': "other", ' Without-pay': "other", ' Never-worked': "other" } df["workclass"] = df.workclass.map(workclass_mapper).fillna(df["workclass"]) return df def map_education(df): education_mapper ={' 11th': 'other', ' Masters': 'other', ' 9th': 'other', ' Assoc-acdm': 'other', ' Assoc-voc': 'other', ' 7th-8th': 'other', ' Doctorate': 'other', ' Prof-school': 'other', ' 5th-6th': 'other', ' 10th': 'other', ' 1st-4th': 'other', ' Preschool': 'other', ' 12th': 'other'} df['education'] = df['education'].map(education_mapper).fillna(df['education']) return df def map_marital_status(df): marital_status_mapper = {' Divorced': 'other', ' Married-spouse-absent': 'other', ' Separated': 'other', ' Married-AF-spouse': 'other', ' Widowed': 'other'} df['marital-status'] = df['marital-status'].map(marital_status_mapper).fillna(df['marital-status']) return df def map_occupation(df): occupation_mapper = { ' ?': 'Prof-specialty', ' Protective-serv': 'other', ' Armed-Forces': 'other', ' Priv-house-serv': 'other', ' Tech-support': 'other', ' Farming-fishing': 'other', ' Handlers-cleaners': 'other' } df['occupation'] = df['occupation'].map(occupation_mapper).fillna(df["occupation"]) return df def encode_categories(data): encoder_file="transformers/baseN_encoder.pkl" df=
pd.DataFrame(data)
pandas.DataFrame
import numpy as np import pandas as pd import pickle filename = "loading_data/load.csv" # Loading file using simple editors cols = None data = [] with open(filename) as f: for line in f.readlines(): vals = line.replace("\n","").split(",") print(vals) if cols is None: cols = vals else: data.append([float(x) for x in vals]) df =
pd.DataFrame(data,columns=cols)
pandas.DataFrame
#! /usr/bin/env python # -*- coding: utf-8 -*- """ @version: @author: zzh @file: factor_earning_expectation.py @time: 2019-9-19 """ import pandas as pd class FactorEarningExpectation(): """ 盈利预期 """ def __init__(self): __str__ = 'factor_earning_expectation' self.name = '盈利预测' self.factor_type1 = '盈利预测' self.factor_type2 = '盈利预测' self.description = '个股盈利预测因子' @staticmethod def NPFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['net_profit_fy1']): """ :name: 一致预期净利润(FY1) :desc: 一致预期净利润的未来第一年度的预测 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'net_profit_fy1': 'NPFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['net_profit_fy2']): """ :name: 一致预期净利润(FY2) :desc: 一致预期净利润的未来第二年度的预测 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'net_profit_fy2': 'NPFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['eps_fy1']): """ :name: 一致预期每股收益(FY1) :desc: 一致预期每股收益未来第一年度的预测均值 :unit: 元 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'eps_fy1': 'EPSFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['eps_fy2']): """ :name: 一致预期每股收益(FY2) :desc: 一致预期每股收益未来第二年度的预测均值 :unit: 元 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'eps_fy2': 'EPSFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['operating_revenue_fy1']): """ :name: 一致预期营业收入(FY1) :desc: 一致预期营业收入未来第一年度的预测均值 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'operating_revenue_fy1': 'OptIncFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['operating_revenue_fy2']): """ :name: 一致预期营业收入(FY2) :desc: 一致预期营业收入未来第二年度的预测均值 :unit: 元 :view_dimension: 10000 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'operating_revenue_fy2': 'OptIncFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['pe_fy1']): """ :name: 一致预期市盈率(PE)(FY1) :desc: 一致预期市盈率未来第一年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pe_fy1': 'CEPEFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['pe_fy2']): """ :name: 一致预期市盈率(PE)(FY2) :desc: 一致预期市盈率未来第二年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pe_fy2': 'CEPEFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPBFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['pb_fy1']): """ :name: 一致预期市净率(PB)(FY1) :desc: 一致预期市净率未来第一年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pb_fy1': 'CEPBFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPBFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['pb_fy2']): """ :name: 一致预期市净率(PB)(FY2) :desc: 一致预期市净率未来第二年度的预测均值 :unit: 倍 :view_dimension: 1 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'pb_fy2': 'CEPBFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEGFY1(tp_earning, factor_earning_expect, trade_date, dependencies=['peg_fy1']): """ :name: 市盈率相对盈利增长比率(FY1) :desc: 未来第一年度市盈率相对盈利增长比率 :unit: :view_dimension: 0.01 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'peg_fy1': 'CEPEGFY1'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def CEPEGFY2(tp_earning, factor_earning_expect, trade_date, dependencies=['peg_fy2']): """ :name: 市盈率相对盈利增长比率(FY2) :desc: 未来第二年度市盈率相对盈利增长比率 :unit: :view_dimension: 0.01 """ earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, dependencies] earning_expect.rename(columns={'peg_fy2': 'CEPEGFY2'}, inplace=True) factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def _change_rate(tp_earning, trade_date, pre_trade_date, colunm, factor_name): earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, colunm] earning_expect_pre = tp_earning[tp_earning['publish_date'] == pre_trade_date].loc[:, colunm] earning_expect = pd.merge(earning_expect, earning_expect_pre, on='security_code', how='left') earning_expect[factor_name] = (earning_expect[colunm + '_x'] - earning_expect[colunm + '_y']) / \ earning_expect[colunm + '_y'] earning_expect.drop(columns=[colunm + '_x', colunm + '_y'], inplace=True) return earning_expect @staticmethod def _change_value(tp_earning, trade_date, pre_trade_date, colunm, factor_name): earning_expect = tp_earning[tp_earning['publish_date'] == trade_date].loc[:, colunm] earning_expect_pre = tp_earning[tp_earning['publish_date'] == pre_trade_date].loc[:, colunm] earning_expect = pd.merge(earning_expect, earning_expect_pre, on='security_code', how='left') earning_expect[factor_name] = (earning_expect[colunm + '_x'] - earning_expect[colunm + '_y']) earning_expect.drop(columns=[colunm + '_x', colunm + '_y'], inplace=True) return earning_expect @staticmethod def NPFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_一周 :desc: 未来第一年度一致预测净利润一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[1], 'net_profit_fy1', 'NPFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_一月 :desc: 未来第一年度一致预测净利润一月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[2], 'net_profit_fy1', 'NPFY11MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY13MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_三月 :desc: 未来第一年度一致预测净利润三月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[3], 'net_profit_fy1', 'NPFY13MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY16MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化率_六月 :desc: 未来第一年度一致预测净利润六月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[4], 'net_profit_fy1', 'NPFY16MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11WChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_一周 :desc: 未来第一年度一致预测每股收益一周内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'eps_fy1', 'EPSFY11WChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_一月 :desc: 未来第一年度一致预测每股收益一月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'eps_fy1', 'EPSFY11MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY13MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_三月 :desc: 未来第一年度一致预测每股收益三月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[3], 'eps_fy1', 'EPSFY13MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY16MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化_六月 :desc: 未来第一年度一致预测每股收益六月内预测值变化 :unit: 元 :view_dimension: 1 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[4], 'eps_fy1', 'EPSFY16MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_一周 :desc: 未来第一年度一致预测每股收益一周内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'eps_fy1', 'EPSFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_一月 :desc: 未来第一年度一致预测每股收益一月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[2], 'eps_fy1', 'EPSFY11MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY13MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_三月 :desc: 未来第一年度一致预测每股收益三月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[3], 'eps_fy1', 'EPSFY13MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def EPSFY16MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY1)变化率_六月 :desc: 未来第一年度一致预测每股收益六月内预测值变化率 :unit: :view_dimension: 0.01 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_rate(tp_earning, trade_date, trade_dates[4], 'eps_fy1', 'EPSFY16MRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11WChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_一周 :desc: 未来第一年度一致预测净利润一周内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'net_profit_fy1', 'NPFY11WChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY11MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_一月 :desc: 未来第一年度一致预测净利润一月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'net_profit_fy1', 'NPFY11MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY13MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_三月 :desc: 未来第一年度一致预测净利润三月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 4: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[3], 'net_profit_fy1', 'NPFY13MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def NPFY16MChg(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY1)变化_六月 :desc: 未来第一年度一致预测净利润六月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 5: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[4], 'net_profit_fy1', 'NPFY16MChg') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def ChgNPFY1FY2(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测净利润(FY2)与一致预期净利润(FY1)的变化率 :desc: 未来第二年度一致预测净利润与未来第一年度一致预测净利润变化率 :unit: :view_dimension: 0.01 """ factor_earning_expect['ChgNPFY1FY2'] = factor_earning_expect['NPFY2'] - factor_earning_expect['NPFY1'] / abs( factor_earning_expect['NPFY1']) * 100 return factor_earning_expect @staticmethod def ChgEPSFY1FY2(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测每股收益(FY2)与一致预期每股收益(FY1)的变化率 :desc: 未来第二年度一致预测每股收益与未来第一年度一致预测每股收益变化率 :unit: :view_dimension: 0.01 """ factor_earning_expect['ChgEPSFY1FY2'] = factor_earning_expect['EPSFY2'] - factor_earning_expect['EPSFY1'] / abs( factor_earning_expect['EPSFY1']) * 100 return factor_earning_expect @staticmethod def OptIncFY11WRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_一周 :desc: 未来第一年度一致预测营业收入一周内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 2: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[1], 'operating_revenue_fy1', 'OptIncFY11WRT') factor_earning_expect = pd.merge(factor_earning_expect, earning_expect, on='security_code') return factor_earning_expect @staticmethod def OptIncFY11MRT(tp_earning, factor_earning_expect, trade_date): """ :name: 一致预测营业收入(FY1)变化_一月 :desc: 未来第一年度一致预测营业收入一月内预测值变化 :unit: 元 :view_dimension: 10000 """ trade_dates = sorted(set(tp_earning['publish_date']), reverse=True) if len(trade_dates) >= 3: earning_expect = FactorEarningExpectation._change_value(tp_earning, trade_date, trade_dates[2], 'operating_revenue_fy1', 'OptIncFY11MRT') factor_earning_expect =
pd.merge(factor_earning_expect, earning_expect, on='security_code')
pandas.merge
from yahooquery import Ticker import streamlit as st import warnings import pandas as pd import numpy as np import yfinance as yf from itertools import product import matplotlib.pyplot as plt import os # from src.tools.functions import company_longName warnings.filterwarnings("ignore") plt.style.use("seaborn-poster") sm, med, lg = 10, 15, 25 plt.rc("font", size=sm) # controls default text sizes plt.rc("axes", labelsize=med) # fontsize of the x & y labels plt.rc("axes", titlesize=med) # fontsize of the axes title plt.rc("xtick", labelsize=sm) # fontsize of the tick labels plt.rc("ytick", labelsize=sm) # fontsize of the tick labels plt.rc("legend", fontsize=med) # legend fontsize plt.rc("figure", titlesize=lg) # fontsize of the figure title plt.rc("axes", linewidth=2) # linewidth of plot lines plt.rcParams["legend.fontsize"] = "medium" legend_properties = {"weight": "bold"} plt.rcParams["figure.figsize"] = [13, 6.5] plt.rcParams["figure.dpi"] = 100 plt.rcParams["legend.shadow"] = True plt.rcParams["legend.borderpad"] = 0.9 plt.rcParams["legend.framealpha"] = 0.1 plt.rcParams["axes.facecolor"] = "white" plt.rcParams["axes.edgecolor"] = "black" plt.rcParams["legend.loc"] = "upper left" plt.rcParams["legend.frameon"] = True plt.rcParams["legend.fancybox"] = True pd.set_option("display.max_rows", 25) os.environ["NUMEXPR_MAX_THREADS"] = "24" os.environ["NUMEXPR_NUM_THREADS"] = "12" class Optimal_Double_Mavg_Crossover(object): def __init__(self, tic, sName): self.tic = tic self.sName = sName def grab_data(self, hist_per): ticker = yf.Ticker(self.tic) self.raw = ticker.history(period=hist_per) self.raw.columns = ["Open", "High", "Low", self.sName, "Volume", "Dividends", "Stock Splits", ] SMA1 = 2 SMA2 = 5 data1 = pd.DataFrame(self.raw[self.sName]) data1.columns = [self.sName] data1["SMA1"] = data1[self.sName].rolling(SMA1).mean() data1["SMA2"] = data1[self.sName].rolling(SMA2).mean() data1["Position"] = np.where(data1["SMA1"] > data1["SMA2"], 1, -1) data1["Returns"] = np.log(data1[self.sName] / data1[self.sName].shift(1)) data1["Strategy"] = data1["Position"].shift(1) * data1["Returns"] data1.round(4).tail() data1.dropna(inplace=True) np.exp(data1[["Returns", "Strategy"]].sum()) np.exp(data1[["Returns", "Strategy"]].std() * 252 ** 0.5) sma1 = range(2, 76, 2) sma2 = range(5, 202, 5) results =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Nov 13 12:29:01 2017 @author: Jones """ import pandas as pd base = pd.read_csv('credit_data.csv') base.describe() base.loc[base['age'] < 0] # apagar a coluna base.drop('age', 1, inplace=True) # apagar somente os registros com problema base.drop(base[base.age < 0].index, inplace=True) # preencher os valores manualmente # preencher os valores com a média base.mean() base['age'].mean() base['age'][base.age > 0].mean() base.loc[base.age < 0, 'age'] = 40.92 pd.isnull(base['age']) base.loc[
pd.isnull(base['age'])
pandas.isnull
#!/usr/bin/env python # coding: utf-8 # In[1]: import time import warnings warnings.filterwarnings('ignore') import pandas as pd, numpy as np import math, json, gc, random, os, sys import torch import logging import torch.nn as nn import torch.optim as optim import torch.utils.data as data from sklearn.model_selection import train_test_split from catalyst.dl import SupervisedRunner from catalyst.contrib.dl.callbacks import WandbLogger from contextlib import contextmanager from catalyst.dl.callbacks import AccuracyCallback, F1ScoreCallback, OptimizerCallback #from pytorch_memlab import profile, MemReporter device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # In[2]: def set_seed(seed: int): random.seed(seed) np.random.seed(seed) os.environ["PYTHONHASHSEED"] = str(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) # type: ignore torch.backends.cudnn.deterministic = True # type: ignore torch.backends.cudnn.benchmark = True # type: ignore # In[3]: set_seed(2020) # In[4]: test = pd.read_json('/kaggle/input/stanford-covid-vaccine/test.json', lines=True) samplesub= pd.read_csv('/kaggle/input/stanford-covid-vaccine/sample_submission.csv') # In[5]: bpp_max=[] bpp_mean =[] id = test.id.values for i in id: probability = np.load('../input/stanford-covid-vaccine'+'/bpps/%s.npy'%i) bpp_max.append(probability.max(-1).tolist()) bpp_mean.append(probability.mean(-1).tolist()) test['bpp_max']=bpp_max test['bpp_mean']=bpp_mean # In[6]: test_public=test[test['seq_length']==107] test_private=test[test['seq_length']==130] # In[7]: test_public_x=test_public.loc[:,['id','sequence','structure','predicted_loop_type','bpp_max','bpp_mean']] test_private_x=test_private.loc[:,['id','sequence','structure','predicted_loop_type','bpp_max','bpp_mean']] #CUDAに乗らないので、privateデータのサイズを小さくする。 test_private_x1,test_private_x2=train_test_split(test_private_x,test_size=0.5) # In[8]: token2int = {x:i for i, x in enumerate('().<KEY>')} def preprocess_inputs_public(df, cols=['sequence', 'structure', 'predicted_loop_type']): base_fea= np.transpose( np.array( df[cols] .applymap(lambda seq: [token2int[x] for x in seq]) .values .tolist() ), (0, 2, 1) ) bpps_max_fea = np.array(test_public_x['bpp_max'].to_list())[:,:,np.newaxis] bpps_mean_fea = np.array(test_public_x['bpp_mean'].to_list())[:,:,np.newaxis] return np.concatenate([base_fea,bpps_max_fea,bpps_mean_fea], 2) def preprocess_inputs_private1(df, cols=['sequence', 'structure', 'predicted_loop_type']): base_fea= np.transpose( np.array( df[cols] .applymap(lambda seq: [token2int[x] for x in seq]) .values .tolist() ), (0, 2, 1) ) bpps_max_fea = np.array(test_private_x1['bpp_max'].to_list())[:,:,np.newaxis] bpps_mean_fea = np.array(test_private_x1['bpp_mean'].to_list())[:,:,np.newaxis] return np.concatenate([base_fea,bpps_max_fea,bpps_mean_fea], 2) def preprocess_inputs_private2(df, cols=['sequence', 'structure', 'predicted_loop_type']): base_fea= np.transpose( np.array( df[cols] .applymap(lambda seq: [token2int[x] for x in seq]) .values .tolist() ), (0, 2, 1) ) bpps_max_fea = np.array(test_private_x2['bpp_max'].to_list())[:,:,np.newaxis] bpps_mean_fea = np.array(test_private_x2['bpp_mean'].to_list())[:,:,np.newaxis] return np.concatenate([base_fea,bpps_max_fea,bpps_mean_fea], 2) # In[9]: test_public_inputs = torch.from_numpy(preprocess_inputs_public(test_public_x)).to(device).float() test_private_inputs1 = torch.from_numpy(preprocess_inputs_private1(test_private_x1)).to(device).float() test_private_inputs2 = torch.from_numpy(preprocess_inputs_private2(test_private_x2)).to(device).float() # In[10]: #print('train_入力:{}\nvalue_入力:{}\ntrain_ラベル:{}\nvalue_ラベル:{}'.format(train_inputs.shape,val_inputs.shape,train_outputs.shape,val_outputs.shape)) # In[11]: class LSTM_model(nn.Module): def __init__( self, seq_len=107, pred_len=68, dropout=0.5, embed_dim=100, hidden_dim=1024, hidden_layers=2 ): super(LSTM_model, self).__init__() self.pred_len = pred_len self.embeding = nn.Embedding(num_embeddings=len(token2int), embedding_dim=embed_dim) self.lstm = nn.LSTM( input_size=embed_dim * 3+2, hidden_size=hidden_dim, num_layers=hidden_layers, dropout=dropout, bidirectional=True, batch_first=True, ) self.linear = nn.Linear(hidden_dim * 2, 5) def forward(self, seqs): embed = self.embeding(seqs[:,:,0:3].long()) reshaped = torch.reshape(embed, (-1, embed.shape[1], embed.shape[2] * embed.shape[3])) reshaped= torch.cat((reshaped,seqs[:,:,3:5]),2) output, hidden = self.lstm(reshaped) truncated = output[:, : self.pred_len, :] out = self.linear(truncated) return out # In[12]: class GRU_model(nn.Module): def __init__( self, seq_len=107, pred_len=68, dropout=0.5, embed_dim=100, hidden_dim=1024, hidden_layers=2 ): super(GRU_model, self).__init__() self.pred_len = pred_len self.embeding = nn.Embedding(num_embeddings=len(token2int), embedding_dim=embed_dim) self.gru = nn.GRU( input_size=embed_dim * 3+2, hidden_size=hidden_dim, num_layers=hidden_layers, dropout=dropout, bidirectional=True, batch_first=True, ) self.linear = nn.Linear(hidden_dim * 2, 5) def forward(self, seqs): embed = self.embeding(seqs[:,:,0:3].long()) reshaped = torch.reshape(embed, (-1, embed.shape[1], embed.shape[2] * embed.shape[3])) reshaped= torch.cat((reshaped,seqs[:,:,3:5]),2) output, hidden = self.gru(reshaped) truncated = output[:, : self.pred_len, :] out = self.linear(truncated) return out # In[13]: LSTM_weights_path='../input/weight11/LSTM_ver20.pth' def get_LSTM_model(seq_len=107, pred_len=68): model = LSTM_model(seq_len=seq_len, pred_len=pred_len) checkpoint = torch.load(LSTM_weights_path) model.load_state_dict(checkpoint["model_state_dict"]) device = torch.device("cuda") model.to(device) model.eval() return model # In[14]: GRU_weights_path='../input/weight11/GRU_ver8' def get_GRU_model(seq_len=107, pred_len=68): model = GRU_model(seq_len=seq_len, pred_len=pred_len) checkpoint = torch.load(GRU_weights_path) model.load_state_dict(checkpoint["model_state_dict"]) device = torch.device("cuda") model.to(device) model.eval() return model # In[15]: with torch.no_grad(): model =get_LSTM_model() prediction=model(test_public_inputs) result_public_LSTM=prediction.to('cpu').detach().numpy().copy() del prediction with torch.no_grad(): model =get_LSTM_model(seq_len=130, pred_len=91) prediction=model(test_private_inputs1) result_private1_LSTM=prediction.to('cpu').detach().numpy().copy() del prediction with torch.no_grad(): model =get_LSTM_model(seq_len=130, pred_len=91) prediction=model(test_private_inputs2) result_private2_LSTM=prediction.to('cpu').detach().numpy().copy() del prediction # In[16]: with torch.no_grad(): model =get_GRU_model() prediction=model(test_public_inputs) result_public_GRU=prediction.to('cpu').detach().numpy().copy() del prediction with torch.no_grad(): model =get_GRU_model(seq_len=130, pred_len=91) prediction=model(test_private_inputs1) result_private1_GRU=prediction.to('cpu').detach().numpy().copy() del prediction with torch.no_grad(): model =get_GRU_model(seq_len=130, pred_len=91) prediction=model(test_private_inputs2) result_private2_GRU=prediction.to('cpu').detach().numpy().copy() del prediction # In[17]: df0 = pd.DataFrame(index=range(39), columns=['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',]) df0=df0.fillna(0) # In[18]: test_public_id=test_public['id'] idlist_public=test_public_id.values.tolist() # In[19]: test_private_id1=test_private_x1['id'] idlist_private1=test_private_id1.values.tolist() idlist_private1[-5:] # In[20]: test_private_id2=test_private_x2['id'] idlist_private2=test_private_id2.values.tolist() idlist_private2[:5] # In[21]: #無理やりソートすることに testindex=samplesub.loc[:,['id_seqpos']] testindex=testindex.reset_index() # In[22]: df1 = pd.DataFrame(result_public_LSTM[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=pd.concat([df1,df0]) id=idlist_public[0] for i in range(len(df1)): df1.iloc[i,0]=id+'_{}'.format(i) for j in range (len(result_public_LSTM)-1): id = idlist_public[j+1] df2 = pd.DataFrame(result_public_LSTM[j+1]) df2.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df2.insert(0, 'id_seqpos', 0) df2=pd.concat([df2,df0]) for i in range(len(df2)): df2.iloc[i,0]=id+'_{}'.format(i) df1=pd.concat([df1,df2]) public_dataframe=df1 df1 = pd.DataFrame(result_private1_LSTM[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=pd.concat([df1,df0]) id=idlist_private1[0] for i in range(len(df1)): df1.iloc[i,0]=id+'_{}'.format(i) for j in range (len(result_private1_LSTM)-1): id = idlist_private1[j+1] df2 = pd.DataFrame(result_private1_LSTM[j+1]) df2.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df2.insert(0, 'id_seqpos', 0) df2=pd.concat([df2,df0]) for i in range(len(df2)): df2.iloc[i,0]=id+'_{}'.format(i) df1=pd.concat([df1,df2]) private_dataframe1=df1 df1 = pd.DataFrame(result_private2_LSTM[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=pd.concat([df1,df0]) id=idlist_private2[0] for i in range(len(df1)): df1.iloc[i,0]=id+'_{}'.format(i) for j in range (len(result_private2_LSTM)-1): id = idlist_private2[j+1] df2 = pd.DataFrame(result_private2_LSTM[j+1]) df2.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df2.insert(0, 'id_seqpos', 0) df2=pd.concat([df2,df0]) for i in range(len(df2)): df2.iloc[i,0]=id+'_{}'.format(i) df1=pd.concat([df1,df2]) private_dataframe2=df1 # In[23]: merged_dataframe=pd.concat([public_dataframe,private_dataframe1,private_dataframe2]) pre_submission_LSTM=pd.merge(testindex,merged_dataframe) # In[24]: pre_submission_LSTM # In[25]: df1 = pd.DataFrame(result_public_GRU[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=pd.concat([df1,df0]) id=idlist_public[0] for i in range(len(df1)): df1.iloc[i,0]=id+'_{}'.format(i) for j in range (len(result_public_GRU)-1): id = idlist_public[j+1] df2 = pd.DataFrame(result_public_GRU[j+1]) df2.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df2.insert(0, 'id_seqpos', 0) df2=pd.concat([df2,df0]) for i in range(len(df2)): df2.iloc[i,0]=id+'_{}'.format(i) df1=pd.concat([df1,df2]) public_dataframe=df1 df1 = pd.DataFrame(result_private1_GRU[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=pd.concat([df1,df0]) id=idlist_private1[0] for i in range(len(df1)): df1.iloc[i,0]=id+'_{}'.format(i) for j in range (len(result_private1_GRU)-1): id = idlist_private1[j+1] df2 = pd.DataFrame(result_private1_GRU[j+1]) df2.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df2.insert(0, 'id_seqpos', 0) df2=pd.concat([df2,df0]) for i in range(len(df2)): df2.iloc[i,0]=id+'_{}'.format(i) df1=pd.concat([df1,df2]) private_dataframe1=df1 df1 = pd.DataFrame(result_private2_GRU[0]) df1.columns = ['reactivity', 'deg_Mg_pH10', 'deg_pH10','deg_Mg_50C','deg_50C',] df1.insert(0, 'id_seqpos', 0) df1=
pd.concat([df1,df0])
pandas.concat
""" Contents: _get_lithium_EW_df get_Randich18_NGC2516 get_GalahDR3_lithium get_GalahDR3_li_EWs get_Bouvier18_pleiades_li_EWs """ import os import numpy as np, pandas as pd from numpy import array as nparr from astropy.io import fits from astropy.table import Table from astropy import units as u, constants as const from astropy.coordinates import SkyCoord from earhart.paths import DATADIR, RESULTSDIR def _get_lithium_EW_df(gaiaeso, galahdr3, EW_CUTOFF_mA=-99, use_my_GaiaESO_EWs=1): # gaiaeso and galahdr3: booleans for whether to retrieve # # Randich+18 measurements from the Gaia-ESO spectra # datapath = os.path.join(DATADIR, 'lithium', 'randich_fullfaintkinematic_xmatch_20210310.csv') if not os.path.exists(datapath): from earhart.lithium import _make_Randich18_xmatch _make_Randich18_xmatch(datapath, vs_rotators=0) gaiaeso_df = pd.read_csv(datapath) gaiaeso_li_col = 'EWLi' gaiaeso_li_errcol = 'e_EWLi' # somewhat surprisingly, the kinematic X Randich+18 NGC2516 sample has no # upper limits (and 477 reported detections). assert len(np.unique(gaiaeso_df.f_EWLi)) == 1 from earhart.lithium import get_GalahDR3_li_EWs galah_df = get_GalahDR3_li_EWs() # the gaussian fit, numerically integrated my_li_col = 'Fitted_Li_EW_mA' s_gaiaeso_df = gaiaeso_df[[gaiaeso_li_col, gaiaeso_li_errcol, 'source_id']] s_gaiaeso_df = s_gaiaeso_df.rename({gaiaeso_li_col: 'Li_EW_mA', gaiaeso_li_errcol:'Li_EW_mA_perr'}, axis='columns') s_gaiaeso_df['Li_EW_mA_merr'] = s_gaiaeso_df['Li_EW_mA_perr'] #s_gaiaeso_df['Li_provenance'] = 'Randich+18' s_galah_df = galah_df[[my_li_col, my_li_col+"_perr", my_li_col+"_merr", 'source_id']] s_galah_df = s_galah_df.rename({my_li_col: 'Li_EW_mA', my_li_col+"_perr": 'Li_EW_mA_perr', my_li_col+"_merr": 'Li_EW_mA_merr' }, axis='columns') #s_galah_df['Li_provenance'] = 'GALAHDR3+ThisWork' # # My measuremnts from the Gaia-ESO spectra # mydatapath = os.path.join(DATADIR, 'lithium', 'gaiaesodr4_fullfaintkinematic_xmatch_20210421.csv') my_gaiaeso_df = pd.read_csv(mydatapath) my_gaiaeso_df = my_gaiaeso_df.rename({my_li_col: 'Li_EW_mA', my_li_col+"_perr": 'Li_EW_mA_perr', my_li_col+"_merr": 'Li_EW_mA_merr' }, axis='columns') smy_gaiaeso_df = my_gaiaeso_df[[ 'Li_EW_mA', 'Li_EW_mA_perr', 'source_id', 'Li_EW_mA_merr' ]] if use_my_GaiaESO_EWs: s_gaiaeso_df = smy_gaiaeso_df if gaiaeso and galahdr3: df = pd.concat((s_gaiaeso_df, s_galah_df)) df = df[df.Li_EW_mA > EW_CUTOFF_mA] print(f'Gaia-ESO + GALAH: got {len(df[~pd.isnull(df.Li_EW_mA)])} finite Li EWs > {EW_CUTOFF_mA} mA') if gaiaeso and not galahdr3: df = s_gaiaeso_df df = df[df.Li_EW_mA > EW_CUTOFF_mA] print(f'Gaia-ESO: got {len(df[~pd.isnull(df.Li_EW_mA)])} finite Li EWs > {EW_CUTOFF_mA} mA') if not gaiaeso and galahdr3: df = s_galah_df df = df[df.Li_EW_mA > EW_CUTOFF_mA] print(f'GALAH: got {len(df[~pd.isnull(df.Li_EW_mA)])} finite Li EWs > {EW_CUTOFF_mA} mA') return df[df.Li_EW_mA > EW_CUTOFF_mA] def get_GalahDR3_li_EWs(verbose=1): """ Made by drivers.measure_galah_dr3_Li_EWs.py Target spectra are from the crossmatch of "fullfaint" (DR2) with the GALAH target list. """ if verbose: print("WRN! These GALAH DR3 EWs are janky for <50mA b/c of S/N.") galah_li_path = os.path.join( DATADIR, 'lithium', 'galahdr3_fullfaintkinematic_xmatch_20210310.csv' ) li_df = pd.read_csv(galah_li_path) return li_df def get_GalahDR3_lithium(verbose=1, defaultflags=0): """ Get astropy table of stellar parameter flag == 0 stars from GALAH DR3, with lithium detections or upper limits. """ # downloaded via wget, per # https://github.com/svenbuder/GALAH_DR3/blob/master/tutorials/tutorial1_dr3_main_catalog_overview.ipynb dr3path = os.path.join(DATADIR, 'lithium', 'GALAH_DR3_main_allstar_v1.fits') dr3_tab = Table.read(dr3path) if defaultflags: # stellar parameter flag qual = np.array(dr3_tab['flag_sp']) binary_repr_vec = np.vectorize(np.binary_repr) qual_binary = binary_repr_vec(qual, width=11) # 11 total flag bits: # 2^0 = 1: Gaia DR2 RUWE > 1.4 # 2^1 = 2: unreliable broadening # 2^2 = 4: low S/N # 2^3 = 8: reduction issues (wvlen soln, t-SNE reduction issues, # weird fluxes, spikes, etc. # 4 = 16: t-SNE projected emission features # 5 = 32: t-SNE projected binaries # 6 = 64: on binary sequence / PMS sequence # 7 = 128: S/N dependent high SME chi2 (bad fit) # 8 = 256: problems with Fe: line flux not between 0.03 and 1.00, # [Fe/H] unreliable, or blending suspects and SME didnt finish # 9 = 512: SME did not finish. Either a) No convergence -> nonfinite stellar # parameters. Or b) Gaussian RV fit failed. # 2^10 = 1024: MARCS grid limit reached or outside reasonable # parameter range. # Need reliable broadening, S/N, etc. # 2^1 = 2: unreliable broadening # 2^2 = 4: low S/N # 2^3 = 8: reduction issues (wvlen soln, t-SNE reduction issues, # weird fluxes, spikes, etc. # 8 = 256: problems with Fe: line flux not between 0.03 and 1.00, # [Fe/H] unreliable, or blending suspects and SME didnt finish # 9 = 512: SME did not finish. Either a) No convergence -> nonfinite stellar # parameters. Or b) Gaussian RV fit failed. # 2^10 = 1024: MARCS grid limit reached or outside reasonable # parameter range. badbits = [1,2,3] sel = np.isfinite(dr3_tab['source_id']) for bb in badbits: # zero -> one-based count here to convert bitwise flags to # python flags sel &= ~(np.array([q[bb-1] for q in qual_binary]).astype(bool)) else: sel = np.isfinite(dr3_tab['source_id']) if verbose: print(f'All stars in GALAH DR3: {len(dr3_tab)}') if defaultflags: print(f'All stars in GALAH DR3 with bitflags {repr(badbits)} not set: {len(dr3_tab[sel])}') return dr3_tab[sel] def get_Randich18_NGC2516(): hl = fits.open( os.path.join(DATADIR, 'lithium', 'Randich_2018_NGC2516_all796_entries_vizier.fits') ) t_df = Table(hl[1].data).to_pandas() return t_df def _make_Randich18_xmatch(datapath, vs_rotators=1, RADIUS=0.5): """ For every Randich+18 Gaia-ESO star with a spectrum, look for a rotator match (either the "gold" or "autorot" samples) within RADIUS arcseconds. If you find it, pull its data. If there are multiple, take the closest. """ rdf = get_Randich18_NGC2516() if vs_rotators: raise DeprecationWarning rotdir = os.path.join(DATADIR, 'rotation') rot_df = pd.read_csv( os.path.join(rotdir, 'ngc2516_rotation_periods.csv') ) comp_df = rot_df[rot_df.Tags == 'gold'] print('Comparing vs the "gold" NGC2516 rotators sample (core + halo)...') else: from earhart.helpers import _get_fullfaint_dataframes nbhd_df, core_df, halo_df, full_df, target_df = _get_fullfaint_dataframes() comp_df = full_df print(f'Comparing vs the {len(comp_df)} "fullfaint" kinematic NGC2516 rotators sample (core + halo)...') c_comp = SkyCoord(ra=nparr(comp_df.ra)*u.deg, dec=nparr(comp_df.dec)*u.deg) c_r18 = SkyCoord(ra=nparr(rdf._RA)*u.deg, dec=nparr(rdf._DE)*u.deg) cutoff_radius = RADIUS*u.arcsec has_matchs, match_idxs, match_rows = [], [], [] for ix, _c in enumerate(c_r18): if ix % 100 == 0: print(f'{ix}/{len(c_r18)}') seps = _c.separation(c_comp) if min(seps.to(u.arcsec)) < cutoff_radius: has_matchs.append(True) match_idx = np.argmin(seps) match_idxs.append(match_idx) match_rows.append(comp_df.iloc[match_idx]) else: has_matchs.append(False) has_matchs = nparr(has_matchs) left_df = rdf[has_matchs] right_df =
pd.DataFrame(match_rows)
pandas.DataFrame
""" Copyright (C) 2013-2019 Calliope contributors listed in AUTHORS. Licensed under the Apache 2.0 License (see LICENSE file). time.py ~~~~~~~ Functionality to add and process time varying parameters """ import xarray as xr import numpy as np import pandas as pd from calliope import exceptions from calliope.core.attrdict import AttrDict from calliope.core.util.tools import plugin_load from calliope.preprocess import checks from calliope.core.util.dataset import reorganise_xarray_dimensions def apply_time_clustering(model_data, model_run): """ Take a Calliope model_data post time dimension addition, prior to any time clustering, and apply relevant time clustering/masking techniques. See doi: 10.1016/j.apenergy.2017.03.051 for applications. Techniques include: - Clustering timeseries into a selected number of 'representative' days. Days with similar profiles and daily magnitude are grouped together and represented by one 'representative' day with a greater weight per time step. - Masking timeseries, leading to variable timestep length Only certain parts of the input are shown at full resolution, with other periods being clustered together into a single timestep. E.g. Keep high resolution in the week with greatest wind power variability, smooth all other timesteps to 12H - Timestep resampling Used to reduce problem size by reducing resolution of all timeseries data. E.g. resample from 1H to 6H timesteps Parameters ---------- model_data : xarray Dataset Preprocessed Calliope model_data, as produced using `calliope.preprocess.build_model_data` and found in model._model_data_original model_run : bool preprocessed model_run dictionary, as produced by Calliope.preprocess_model Returns ------- data : xarray Dataset Dataset with optimisation parameters as variables, optimisation sets as coordinates, and other information in attributes. Time dimension has been updated as per user-defined clustering techniques (from model_run) """ time_config = model_run.model["time"] data = model_data.copy(deep=True) ## # Process masking and get list of timesteps to keep at high res ## if "masks" in time_config: masks = {} # time.masks is a list of {'function': .., 'options': ..} dicts for entry in time_config.masks: entry = AttrDict(entry) mask_func = plugin_load( entry.function, builtin_module="calliope.time.masks" ) mask_kwargs = entry.get_key("options", default=AttrDict()).as_dict() masks[entry.to_yaml()] = mask_func(data, **mask_kwargs) data.attrs["masks"] = masks # Concatenate the DatetimeIndexes by using dummy Series chosen_timesteps = pd.concat( [pd.Series(0, index=m) for m in masks.values()] ).index # timesteps: a list of timesteps NOT picked by masks timesteps =
pd.Index(data.timesteps.values)
pandas.Index
""" @author: <NAME> @author: <NAME> """ import twint import pandas as pd import os import configobj config = configobj.ConfigObj('env.b') path = config['TWEETS_PATH'] ita_path = config['ITA_PATH'] eng_path = config['ENG_PATH'] fra_path = config['FRA_PATH'] bra_path = config['BRA_PATH'] ind_path = config['IND_PATH'] """ Scraping dei tweet di Narendra Modi (India) """ def create_india_csv(): c = twint.Config() username = "narendramodi" c.Username = username c.Since = '2020-01-01' c.Until = '2020-06-29' c.Limit = 3000 c.Store_csv = True c.Output = path + "tweets_india_1.csv" twint.run.Search(c) c = twint.Config() username = "narendramodi" c.Username = username c.Since = '2020-06-30' c.Until = '2021-06-09' c.Limit = 3000 c.Store_csv = True c.Output = path+"tweets_india_2.csv" twint.run.Search(c) data1 =
pd.read_csv(path + "tweets_india_1.csv")
pandas.read_csv
from numpy.ma import add import pandas as pd import numpy as np np.seterr(divide='ignore') import scipy.signal as signal import scipy.stats as stats import matplotlib.pyplot as plt import statsmodels import statsmodels.api as sm import statsmodels.formula.api as smf import statsmodels.stats.multitest as multi from scipy.optimize import curve_fit from statsmodels.sandbox.regression.predstd import wls_prediction_std from scipy.stats import percentileofscore from scipy.stats import circstd, circmean import copy import itertools from matplotlib.lines import Line2D from random import sample import os from skopt.space import Space from skopt.sampler import Lhs def periodogram_df(df, folder = '', **kwargs): names = list(df.test.unique()) names.sort() for name in names: x, y = np.array(df[df.test == name].x), np.array(df[df.test == name].y) if folder: save_to = os.path.join(folder, "per_" + name) else: save_to = "" periodogram(x,y, save_to = save_to, name=name, **kwargs) def periodogram(X, Y, per_type='per', sampling_f = '', logscale = False, name = '', save_to = '', prominent = False, max_per = 240): if per_type == 'per' or per_type == 'welch': X_u = np.unique(X) Y_u = [] for x_u in X_u: #y_u.append(np.mean(y[t == x])) Y_u.append(np.median(Y[x_u == X])) if not sampling_f: sampling_f = 1/(X[1]-X[0]) Y = Y_u if per_type == 'per': # Fourier f, Pxx_den = signal.periodogram(Y,sampling_f) elif per_type =='welch': # Welch f, Pxx_den = signal.welch(Y,sampling_f) elif per_type == 'lombscargle': # Lomb-Scargle min_per = 2 #max_per = 50 f = np.linspace(1/max_per, 1/min_per, 10) Pxx_den = signal.lombscargle(X, Y, f) else: print("Invalid option") return # significance # Refinetti et al. 2007 p_t = 0.05 N = len(Y) T = (1 - (p_t/N)**(1/(N-1))) * sum(Pxx_den) # threshold for significance if f[0] == 0: per = 1/f[1:] Pxx = Pxx_den[1:] else: per = 1/f Pxx = Pxx_den Pxx = Pxx[per <= max_per] per = per[per <= max_per] try: if logscale: plt.semilogx(per, Pxx, 'ko') plt.semilogx(per, Pxx, 'k--', linewidth=0.5) plt.semilogx([min(per), max(per)], [T, T], 'k--', linewidth=1) else: plt.plot(per, Pxx, 'ko') plt.plot(per, Pxx, 'k--', linewidth=0.5) plt.plot([min(per), max(per)], [T, T], 'k--', linewidth=1) except: print("Could not plot!") return peak_label = '' if prominent: locs, heights = signal.find_peaks(Pxx, height = T) if any(locs): heights = heights['peak_heights'] s = list(zip(heights, locs)) s.sort(reverse=True) heights, locs = zip(*s) heights = np.array(heights) locs = np.array(locs) peak_label = ', max peak=' + str(per[locs[0]]) else: locs = Pxx >= T if any(locs): heights, locs = Pxx[locs], per[locs] HL = list(zip(heights, locs)) HL.sort(reverse = True) heights, locs = zip(*HL) peak_label = ', peaks=\n' locs = locs[:11] for loc in locs[:-1]: peak_label += "{:.2f}".format(loc) + ',' peak_label += "{:.2f}".format(locs[-1]) plt.xlabel('period [hours]') plt.ylabel('PSD') plt.title(name + peak_label) if save_to: plt.savefig(save_to+'.pdf') plt.savefig(save_to+'.png') plt.close() else: plt.show() def remove_lin_comp_df(df, n_components = 0, period = 24, summary_file=""): df2 = pd.DataFrame(columns=df.columns) if summary_file: df_fit = pd.DataFrame(columns=['test', 'k', 'CI', 'p', 'q']) for test in df.test.unique(): x,y = df[df['test']==test].x,df[df['test']==test].y x,y,fit = remove_lin_comp(x,y,n_components=n_components, period=period, return_fit=True) df_tmp = pd.DataFrame(columns=df.columns) df_tmp['x'] = x df_tmp['y'] = y df_tmp['test'] = test df2 = df2.append(df_tmp, ignore_index=True) if summary_file: fit['test'] = test df_fit=df_fit.append(fit, ignore_index=True) if summary_file: df_fit.q = multi.multipletests(df_fit.p, method = 'fdr_bh')[1] if summary_file.endswith("csv"): df_fit.to_csv(summary_file, index=False) elif summary_file.endswith("xlsx"): df_fit.to_excel(summary_file, index=False) return df2 def remove_lin_comp(X, Y, n_components = 0, period = 24, return_fit=False): X = np.array(X) Y = np.array(Y) X_fit = generate_independents(X, n_components = n_components, period = period, lin_comp = True) model = sm.OLS(Y, X_fit) results = model.fit() CIs = results.conf_int() if type(CIs) != np.ndarray: CIs = CIs.values CI = CIs[1] #A = results.params[0] k = results.params[1] """ X_lin = np.zeros(X_fit.shape) X_lin[:,1] = X_fit[:,1] Y_lin = results.predict(X_lin) Y = Y-Y_lin """ #Y_fit = results.predict(X_fir) #Y = Y - Y_fit #Y = Y - A - k*X if CI[0] * CI[1] > 0: # if both CIs hve the same sign Y = Y - k*X if return_fit: fit = {} fit['k'] = results.params[1] fit['CI'] = CI fit['p'] = results.pvalues[1] return X,Y,fit """ X_fit = generate_independents(X, n_components = n_components, period = period, lin_comp = False) model = sm.OLS(Y, X_fit) results = model.fit() plt.plot(X, results.fittedvalues, color="black") """ return X, Y # prepare the independent variables def generate_independents(X, n_components = 3, period = 24, lin_comp = False, remove_lin_comp = False): if n_components == 0: X_fit = X lin_comp = True else: for i in np.arange(n_components): n = i+1 A = np.sin((X/(period/n))*np.pi*2) B = np.cos((X/(period/n))*np.pi*2) if not i: X_fit = np.column_stack((A, B)) else: X_fit = np.column_stack((X_fit, np.column_stack((A, B)))) if lin_comp and n_components: X_fit = np.column_stack((X, X_fit)) if remove_lin_comp: X_fit[:,0] = 0 X_fit = sm.add_constant(X_fit, has_constant='add') return X_fit # prepare the independent variables for limorhyde def generate_independents_compare(X1, X2, n_components1 = 3, period1 = 24, n_components2 = 3, period2 = 24, lin_comp = False, non_rhythmic=False, remove_lin_comp=False): H1 = np.zeros(X1.size) H2 = np.ones(X2.size) X = np.concatenate((X1, X2)) H_i = np.concatenate((H1, H2)) X_i = H_i * X for i in np.arange(n_components1): n = i+1 A = np.sin((X/(period1/n))*np.pi*2) B = np.cos((X/(period1/n))*np.pi*2) if not i: X_fit = np.column_stack((A, B)) else: X_fit = np.column_stack((X_fit, np.column_stack((A, B)))) if non_rhythmic: X_fit = np.column_stack((X_fit, H_i)) else: for i in np.arange(n_components2): n = i+1 A_i = H_i * np.sin((X/(period2/n))*np.pi*2) B_i = H_i * np.cos((X/(period2/n))*np.pi*2) X_fit = np.column_stack((X_fit, np.column_stack((A_i, B_i)))) X_fit = np.column_stack((X_fit, H_i)) if lin_comp: X_fit = np.column_stack((X_i, X_fit)) X_fit = np.column_stack((X, X_fit)) if remove_lin_comp: X_fit[:,0] = 0 X_fit[:,1] = 0 X_fit = sm.add_constant(X_fit, has_constant='add') return X_fit """ ***************************** * start of finding the best * ***************************** """ def get_best_fits(df_results, criterium = 'R2_adj', reverse = False, n_components = []): df_best = pd.DataFrame(columns = df_results.columns, dtype=float) names = np.unique(df_results.test) for name in names: if n_components: for n_comp in n_components: if reverse: M = df_results[(df_results.test == name) & (df_results.n_components == n_comp)][criterium].min() else: M = df_results[(df_results.test == name) & (df_results.n_components == n_comp)][criterium].max() df_best = df_best.append(df_results[(df_results.test == name) & (df_results.n_components == n_comp) & (df_results[criterium] == M)], ignore_index = True) else: M = df_results[df_results.test == name][criterium].max() df_best = df_best.append(df_results[(df_results.test == name) & (df_results[criterium] == M)], ignore_index = True) return df_best def get_best_models_population(df, df_models, n_components = [1,2,3], lin_comp = False, criterium = 'RSS', reverse = True): names = np.unique(df_models.test) df_best = pd.DataFrame(columns = df_models.columns, dtype=float) df_models = get_best_fits(df_models, criterium = criterium, reverse = reverse, n_components=n_components) for test in names: n_points = df[df.test.str.startswith(test)].x.shape[0] # razlika med get_best_models in get_best_models_population df_test_models = df_models[df_models.test == test] df_test_models = df_test_models.sort_values(by=['n_components']) i = 0 for new_row in df_test_models.iterrows(): if i == 0: best_row = new_row i = 1 else: RSS_reduced = best_row[1].RSS RSS_full = new_row[1].RSS DF_reduced = n_points - (best_row[1].n_components * 2 + 1) DF_full = n_points - (new_row[1].n_components * 2 + 1) if lin_comp: DF_reduced -= 1 DF_full -= 1 #print (test, old_row[1].n_components, new_row[1].n_components) if compare_models(RSS_reduced, RSS_full, DF_reduced, DF_full) < 0.05: best_row = new_row df_best = df_best.append(best_row[1], ignore_index=True) return df_best # compare two models according to the F-test # http://people.reed.edu/~jones/Courses/P24.pdf # https://www.graphpad.com/guides/prism/7/curve-fitting/index.htm?reg_howtheftestworks.htm def get_best_models(df, df_models, n_components = [1,2,3], lin_comp = False, criterium='p', reverse = True): names = np.unique(df_models.test) df_best = pd.DataFrame(columns = df_models.columns, dtype=float) df_models = get_best_fits(df_models, n_components = n_components, criterium=criterium, reverse = reverse) for test in names: n_points = df[df.test == test].x.shape[0] df_test_models = df_models[df_models.test == test] df_test_models = df_test_models.sort_values(by=['n_components']) i = 0 for new_row in df_test_models.iterrows(): if i == 0: best_row = new_row i = 1 else: RSS_reduced = best_row[1].RSS RSS_full = new_row[1].RSS DF_reduced = n_points - (best_row[1].n_components * 2 + 1) DF_full = n_points - (new_row[1].n_components * 2 + 1) if lin_comp: DF_reduced -= 1 DF_full -= 1 #print (test, old_row[1].n_components, new_row[1].n_components) if compare_models(RSS_reduced, RSS_full, DF_reduced, DF_full) < 0.05: best_row = new_row df_best = df_best.append(best_row[1], ignore_index=True) return df_best """ *************************** * end of finding the best * *************************** """ """ ************ * plotting * ************ """ def plot_data(df, names = [], folder = '', prefix = '', color='black'): if not names: names = np.unique(df.test) for test in names: X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) plt.plot(X,Y,'o', markersize=1, color=color) plt.title(test) #test = test.replace("$","") #fig = plt.gcf() #fig.set_size_inches(11,8) if folder: plt.savefig(os.path.join(folder, prefix+test+'.png')) plt.savefig(os.path.join(folder, prefix+test+'.pdf')) plt.close() else: plt.show() def plot_data_pairs(df, names, folder = '', prefix ='', color1='black', color2='red'): for test1, test2 in names: X1, Y1 = np.array(df[df.test == test1].x), np.array(df[df.test == test1].y) X2, Y2 = np.array(df[df.test == test2].x), np.array(df[df.test == test2].y) plt.plot(X1,Y1,'o', color=color1, markersize=1, label=test1) plt.plot(X2,Y2,'o', color=color2, markersize=1, label=test2) plt.legend() plt.title(test1 + ' vs. ' + test2) if folder: plt.savefig(os.path.join(folder,prefix+test1+'_'+test2+'.png')) plt.savefig(os.path.join(folder,prefix+test1+'_'+test2+'.pdf')) plt.close() else: plt.show() def plot_components(X, Y, n_components = 3, period = 24, name = '', save_to = ''): A = np.sin((X/period)*np.pi*2) B = np.cos((X/period)*np.pi*2) C = np.sin((X/(period/2))*np.pi*2) D = np.cos((X/(period/2))*np.pi*2) E = np.sin((X/(period/3))*np.pi*2) F = np.cos((X/(period/3))*np.pi*2) #G = np.sin((X/(period/4))*np.pi*2) #H = np.cos((X/(period/4))*np.pi*2) fig, axs = plt.subplots(n_components, 2, constrained_layout=True) fig.suptitle(name, fontsize=16) axs[0,0].plot(A, Y,'.') axs[0,0].set(xlabel = 'sin((x/'+str(period)+') * 2$\pi$)') axs[0,1].plot(B, Y,'.') axs[0,1].set(xlabel = 'cos((x/'+str(period)+') * 2$\pi$)') if n_components >= 2: axs[1,0].plot(C, Y,'.') axs[1,0].set(xlabel = 'sin((x/'+str(period/2)+') * 2$\pi$)') axs[1,1].plot(D, Y,'.') axs[1,1].set(xlabel = 'cos((x/'+str(period/2)+') * 2$\pi$)') if n_components == 3: axs[2,0].plot(E, Y,'.') axs[2,0].set(xlabel = 'sin((x/'+str(period/3)+') * 2$\pi$)') axs[2,1].plot(F, Y,'.') axs[2,1].set(xlabel = 'cos((x/'+str(period/3)+') * 2$\pi$)') if n_components == 4: axs[3,0].plot(E, Y,'.') axs[3,0].set(xlabel = 'sin((x/'+str(period/4)+') * 2$\pi$)') axs[3,1].plot(F, Y,'.') axs[3,1].set(xlabel = 'cos((x/'+str(period/4)+') * 2$\pi$)') for ax in axs.flat: ax.set(ylabel = 'y') if save_to: plt.savefig(save_to+'.pdf') plt.savefig(save_to+'.png') plt.close() else: plt.show() def plot_phases(acrs, amps, tests, period=24, colors = ("black", "red", "green", "blue"), folder = "", prefix="", legend=True, CI_acrs = [], CI_amps = [], linestyles = [], title = "", labels = []):#, plot_measurements = False, measurements=None): acrs = np.array(acrs, dtype = float) amps = np.array(amps, dtype = float) if colors and len(colors) < len(tests): colors += ("black",) * (len(tests)-len(colors)) x = np.arange(0, 2*np.pi, np.pi/4) x_labels = list(map(lambda i: 'CT ' + str(i) + " ", list((x/(2*np.pi) * period).astype(int)))) x_labels[1::2] = [""]*len(x_labels[1::2]) ampM = np.max(amps) amps /= ampM acrs = -acrs fig = plt.figure() ax = fig.add_subplot(projection='polar') ax.set_theta_offset(0.5*np.pi) ax.set_theta_direction(-1) lines = [] for i, (acr, amp, test, color) in enumerate(zip(acrs, amps, tests, colors)): """ if "LDL" in test: color = "#FF0000" elif "HDL" in test: color = "#0000FF" elif "CHOL" in test: color = "#00FF00" elif "control" in test.lower(): color = "#000000" else: color = "#0000FF" """ if linestyles: #ax.plot([acr, acr], [0, amp], label=test, color=color, linestyle = linestyles[i]) ax.annotate("", xy=(acr, amp), xytext=(0, 0), arrowprops=dict(arrowstyle="->", color=color, alpha = 0.75, linewidth=2, linestyle = linestyles[i]) ) lines.append(Line2D([0], [0], color=color, linewidth=2, linestyle=linestyles[i])) else: #ax.plot([acr, acr], [0, amp], label=test, color=color) ax.annotate("", xy=(acr, amp), xytext=(0, 0), arrowprops=dict(arrowstyle="->", color=color, alpha = 0.75, linewidth=2) ) lines.append(Line2D([0], [0], color=color, linewidth=2)) #ax.plot([acr, acr], [0, amp], label=test, color=color) #ax.annotate("", xy=(acr, amp), xytext=(0, 0), arrowprops=dict(arrowstyle="->", color=color, linewidth=2) ) if CI_acrs and CI_amps: amp_l, amp_u = np.array(CI_amps[i])/ampM amp_l = max(0, amp_l) amp_u = min(1, amp_u) acr_l, acr_u = -np.array(CI_acrs[i]) if acr_l - acr_u > 2*np.pi: plt.fill_between(np.linspace(0, np.pi*2, 1000), amp_l, amp_u, color=color, alpha=0.1) elif acr_u < acr_l: acr_l, acr_u = acr_u, acr_l plt.fill_between(np.linspace(acr_l, acr_u, 1000), amp_l, amp_u, color=color, alpha=0.1) ax.set_rmax(1) ax.set_rticks([0.5]) # Less radial ticks ax.set_yticklabels([""]) ax.set_xticks(x) ax.set_xticklabels(x_labels) ax.grid(True) ax.set_facecolor('#f0f0f0') """ for i, (acr, amp, test, color) in enumerate(zip(acrs, amps, tests, colors)): if plot_measurements: try: x,y = measurements except: df = measurements x,y=df[df.test == test].x, df[df.test == test].y plt.plot(x,y,'o',markersize=1, alpha = 0.75, color=color) """ name = "_".join(tests) #ax.set_title(name, va='bottom') if title: ax.set_title(title, va='bottom') else: ax.set_title(name, va='bottom') if legend: if labels: plt.legend(lines, labels, bbox_to_anchor=(1.0, 1), loc='upper left', borderaxespad=0., frameon=False) else: plt.legend(lines, tests, bbox_to_anchor=(1.0, 1), loc='upper left', borderaxespad=0., frameon=False) #ax.legend() if folder: plt.savefig(os.path.join(folder,prefix+name+"_phase.pdf")) plt.savefig(os.path.join(folder,prefix+name+"_phase.png")) plt.close() else: plt.show() """ ******************* * end of plotting * ******************* """ """ ***************************** * start of fitting wrappers * ***************************** """ def fit_group(df, n_components = 2, period = 24, names = "", folder = '', prefix='', **kwargs): df_results = pd.DataFrame(columns = ['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject', 'RSS', 'R2', 'R2_adj', 'log-likelihood', 'amplitude', 'acrophase', 'mesor', 'peaks', 'heights', 'troughs', 'heights2'], dtype=float) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] if not any(names): names = np.unique(df.test) for test in names: for n_comps in n_components: for per in period: if n_comps == 0: per = 100000 X, Y = np.array(df[df.test == test].x), np.array(df[df.test == test].y) if folder: save_to = os.path.join(folder,prefix+test+'_compnts='+str(n_comps) +'_per=' + str(per)) else: save_to = '' results, statistics, rhythm_param, _, _ = fit_me(X, Y, n_components = n_comps, period = per, name = test, save_to = save_to, **kwargs) try: R2, R2_adj = results.rsquared,results.rsquared_adj except: R2, R2_adj = np.nan, np.nan df_results = df_results.append({'test': test, 'period': per, 'n_components': n_comps, 'p': statistics['p'], 'p_reject': statistics['p_reject'], 'RSS': statistics['RSS'], 'R2': R2, 'R2_adj': R2_adj, 'ME': statistics['ME'], 'resid_SE': statistics['resid_SE'], 'log-likelihood': results.llf, 'amplitude': rhythm_param['amplitude'], 'acrophase': rhythm_param['acrophase'], 'mesor': rhythm_param['mesor'], 'peaks': rhythm_param['peaks'], 'heights': rhythm_param['heights'], 'troughs': rhythm_param['troughs'], 'heights2': rhythm_param['heights2'] }, ignore_index=True) if n_comps == 0: break df_results.q = multi.multipletests(df_results.p, method = 'fdr_bh')[1] df_results.q_reject = multi.multipletests(df_results.p_reject, method = 'fdr_bh')[1] return df_results def population_fit_group(df, n_components = 2, period = 24, folder = '', prefix='', names = [], **kwargs): df_results = pd.DataFrame(columns = ['test', 'period', 'n_components', 'p', 'q', 'p_reject', 'q_reject', 'RSS', 'amplitude', 'acrophase', 'mesor'], dtype=float) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] if not any(names): names = np.unique(df.test) names = list(set(list(map(lambda x:x.split('_rep')[0], names)))) names.sort() for name in set(names): for n_comps in n_components: for per in period: if n_comps == 0: per = 100000 df_pop = df[df.test.str.startswith(name)] if folder: save_to=os.path.join(folder,prefix+name+'_compnts='+str(n_comps) +'_per=' + str(per)) _, statistics, _, rhythm_params, _ = population_fit(df_pop, n_components = n_comps, period = per, save_to = save_to, **kwargs) else: _, statistics, _, rhythm_params, _ = population_fit(df_pop, n_components = n_comps, period = per, **kwargs) df_results = df_results.append({'test': name, 'period': per, 'n_components': n_comps, 'p': statistics['p'], 'p_reject': statistics['p_reject'], 'RSS': statistics['RSS'], 'ME': statistics['ME'], 'resid_SE': statistics['resid_SE'], 'amplitude': rhythm_params['amplitude'], 'acrophase': rhythm_params['acrophase'], 'mesor': rhythm_params['mesor']}, ignore_index=True) if n_comps == 0: break df_results.q = multi.multipletests(df_results.p, method = 'fdr_bh')[1] df_results.q_reject = multi.multipletests(df_results.p_reject, method = 'fdr_bh')[1] return df_results """ *************************** * end of fitting wrappers * *************************** """ """ ****************************** * start of fitting functions * ****************************** """ def population_fit(df_pop, n_components = 2, period = 24, lin_comp= False, model_type = 'lin', plot = True, plot_measurements=True, plot_individuals=True, plot_margins=True, hold = False, save_to = '', x_label='', y_label='', return_individual_params = False, params_CI = False, samples_per_param_CI=5, max_samples_CI = 1000, sampling_type = "LHS", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], color="black", **kwargs): if return_individual_params: ind_params = {} for param in parameters_to_analyse: ind_params[param] = [] params = -1 tests = df_pop.test.unique() k = len(tests) #X_test = np.linspace(0, 2*period, 1000) #X_fit_eval_params = generate_independents(X_test, n_components = n_components, period = period, lin_comp = lin_comp) #if lin_comp: # X_fit_eval_params[:,1] = 0 min_X = np.min(df_pop.x.values) max_X = np.max(df_pop.x.values) min_Y = np.min(df_pop.y.values) max_Y = np.max(df_pop.y.values) if plot: if plot_measurements: X_plot = np.linspace(min(min_X,0), 1.1*max(max_X,period), 1000) else: X_plot = np.linspace(0, 1.1*period, 1000) X_plot_fits = generate_independents(X_plot, n_components = n_components, period = period, lin_comp = lin_comp) #if lin_comp: # X_plot_fits[:,1] = 0 """ min_X = 1000 max_X = 0 min_Y = 1000 max_Y = 0 min_X_test = np.min(X_test) """ min_Y_test = 1000 max_Y_test = 0 for test in tests: x,y = np.array(df_pop[df_pop.test == test].x), np.array(df_pop[df_pop.test == test].y) """ min_X = min(min_X, np.min(x)) max_X = max(max_X, np.max(x)) min_Y = min(min_Y, np.min(y)) max_Y = max(max_Y, np.max(y)) """ results, statistics, rhythm_params, X_test, Y_test, model = fit_me(x, y, n_components = n_components, period = period, plot = False, return_model = True, lin_comp=lin_comp, **kwargs) X_fit_eval_params = generate_independents(X_test, n_components = n_components, period = period, lin_comp = lin_comp, remove_lin_comp=True) if lin_comp: X_fit_eval_params[:,1] = 0 if return_individual_params: Y_eval_params = results.predict(X_fit_eval_params) rhythm_ind_params = evaluate_rhythm_params(X_test, Y_eval_params, period=period) for param in parameters_to_analyse: ind_params[param].append(rhythm_ind_params[param]) if (plot and plot_individuals): #Y_eval_params = results.predict(X_fit_eval_params) Y_plot_fits = results.predict(X_plot_fits) if (plot and plot_individuals): if not hold: plt.plot(X_plot,Y_plot_fits,color=color, alpha=0.25, label=test) else: plt.plot(X_plot,Y_plot_fits,color=color, alpha=0.25) min_Y_test = min(min_Y_test, np.min(Y_plot_fits)) max_Y_test = max(max_Y_test, np.max(Y_plot_fits)) if plot and plot_measurements: plt.plot(x,y,'o', color=color, markersize=1) if type(params) == int: params = results.params if plot and plot_margins: #_, lowers, uppers = wls_prediction_std(results, exog=X_fit_eval_params, alpha=0.05) Y_plot_fits_all = Y_plot_fits else: params = np.vstack([params, results.params]) if plot and plot_margins: #_, l, u = wls_prediction_std(results, exog=X_fit_eval_params, alpha=0.05) #lowers = np.vstack([lowers, l]) #uppers = np.vstack([uppers, u]) Y_plot_fits_all = np.vstack([Y_plot_fits_all, Y_plot_fits]) # parameter statistics: means, variances, stadndard deviations, confidence intervals, p-values #http://reliawiki.com/index.php/Multiple_Linear_Regression_Analysis if k > 1: means = np.mean(params, axis=0) variances = np.sum((params-np.mean(params, axis=0))**2, axis = 0)/(k-1) # np.var(params, axis=0) # isto kot var z ddof=k-1 sd = variances**0.5 se = sd/((k-1)**0.5) T0 = means/se p_values = 2 * (1 - stats.t.cdf(abs(T0), k-1)) t = abs(stats.t.ppf(0.05/2,df=k-1)) lower_CI = means - ((t*sd)/((k-1)**0.5)) upper_CI = means + ((t*sd)/((k-1)**0.5)) results.initialize(model, means) else: means = params sd = np.zeros(len(params)) sd[:] = np.nan se = np.zeros(len(params)) se[:] = np.nan lower_CI = means upper_CI = means p_values = np.zeros(len(params)) p_values[:] = np.nan x,y = df_pop.x, df_pop.y xy = list(zip(x,y)) xy.sort() x,y = zip(*xy) x,y = np.array(x), np.array(y) X_fit = generate_independents(x, n_components = n_components, period = period, lin_comp = lin_comp) Y_fit = results.predict(X_fit) Y_eval_params = results.predict(X_fit_eval_params) rhythm_params = evaluate_rhythm_params(X_test, Y_eval_params, period=period) if plot: pop_name = "_".join(test.split("_")[:-1]) Y_plot_fits = results.predict(X_plot_fits) if not hold: plt.plot(X_plot,Y_plot_fits, color=color, label="population fit") else: plt.plot(X_plot,Y_plot_fits, color=color, label=pop_name) plt.legend() if x_label: plt.xlabel(x_label) else: plt.xlabel('time [h]') if y_label: plt.ylabel(y_label) else: plt.ylabel('measurements') min_Y_test = min(min_Y_test, np.min(Y_eval_params)) max_Y_test = max(max_Y_test, np.max(Y_eval_params)) if plot and plot_margins: if k == 1: _, lower, upper = wls_prediction_std(results, exog=X_plot_fits, alpha=0.05) else: #lower = np.mean(lowers, axis=0) #upper = np.mean(uppers, axis=0) var_Y = np.var(Y_plot_fits_all, axis=0, ddof = k-1) sd_Y = var_Y**0.5 lower = Y_plot_fits - ((t*sd_Y)/((k-1)**0.5)) upper = Y_plot_fits + ((t*sd_Y)/((k-1)**0.5)) plt.fill_between(X_plot, lower, upper, color=color, alpha=0.1) if plot: if plot_measurements: if model_type == 'lin': plt.axis([min(min_X,0), 1.1*max(max_X,period), 0.9*min(min_Y, min_Y_test), 1.1*max(max_Y, max_Y_test)]) else: plt.axis([min(min_X,0), max_X, 0.9*min(min_Y, min_Y_test), 1.1*max(max_Y, max_Y_test)]) else: plt.axis([0, period, min_Y_test*0.9, max_Y_test*1.1]) if plot: #pop_name = "_".join(test.split("_")[:-1]) if not hold: plt.title(pop_name + ', p-value=' + "{0:.5f}".format(statistics['p'])) if save_to: plt.savefig(save_to+'.png') plt.savefig(save_to+'.pdf') plt.close() else: plt.show() statistics = calculate_statistics(x, y, Y_fit, n_components, period, lin_comp) statistics_params = {'values': means, 'SE': se, 'CI': (lower_CI, upper_CI), 'p-values': p_values} if params_CI: population_eval_params_CI(X_test, X_fit_eval_params, results, statistics_params, rhythm_params, samples_per_param=samples_per_param_CI, max_samples = max_samples_CI, k=k, sampling_type=sampling_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, period=period) if return_individual_params: return params, statistics, statistics_params, rhythm_params, results, ind_params else: return params, statistics, statistics_params, rhythm_params, results def fit_me(X, Y, n_components = 2, period = 24, lin_comp = False, model_type = 'lin', alpha = 0, name = '', save_to = '', plot=True, plot_residuals=False, plot_measurements=True, plot_margins=True, return_model = False, color = False, plot_phase = True, hold=False, x_label = "", y_label = "", rescale_to_period=False, bootstrap=False, bootstrap_size=1000, bootstrap_type="std", params_CI = False, samples_per_param_CI=5, max_samples_CI = 1000, sampling_type="LHS", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase']): #print(lin_comp) """ ### # prepare the independent variables ### """ """ if n_components == 0: X_fit = X X_fit_test = X_test lin_comp = True else: for i in np.arange(n_components): n = i+1 A = np.sin((X/(period/n))*np.pi*2) B = np.cos((X/(period/n))*np.pi*2) A_test = np.sin((X_test/(period/n))*np.pi*2) B_test = np.cos((X_test/(period/n))*np.pi*2) if not i: X_fit = np.column_stack((A, B)) X_fit_test = np.column_stack((A_test, B_test)) else: X_fit = np.column_stack((X_fit, np.column_stack((A, B)))) X_fit_test = np.column_stack((X_fit_test, np.column_stack((A_test, B_test)))) """ X_fit = generate_independents(X, n_components=n_components, period=period, lin_comp=lin_comp) #X_fit_eval_params = X_fit_test #if lin_comp and n_components: # X_fit = np.column_stack((X, X_fit)) # X_fit_eval_params = np.column_stack((np.zeros(len(X_test)), X_fit_test)) # X_fit_test = np.column_stack((X_test, X_fit_test)) #X_fit = sm.add_constant(X_fit, has_constant='add') #X_fit_test = sm.add_constant(X_fit_test, has_constant='add') #X_fit_eval_params = sm.add_constant(X_fit_eval_params, has_constant='add') """ ### # fit ### """ if model_type == 'lin': model = sm.OLS(Y, X_fit) results = model.fit() elif model_type == 'poisson': #model = sm.GLM(Y, X_fit, family=sm.families.Poisson()) model = statsmodels.discrete.discrete_model.Poisson(Y, X_fit) results = model.fit(disp=0) elif model_type =='gen_poisson': #model = statsmodels.discrete.discrete_model.GeneralizedPoisson(Y, X_fit) model = statsmodels.discrete.discrete_model.GeneralizedPoisson(Y, X_fit, p=1) results = model.fit(disp=0) elif model_type == 'nb': # https://towardsdatascience.com/negative-binomial-regression-f99031bb25b4 # https://dius.com.au/2017/08/03/using-statsmodels-glms-to-model-beverage-consumption/#cameron # if not alpha: # train_model = sm.GLM(Y, X_fit, family=sm.families.Poisson()) # train_results = train_model.fit() # df_train = pd.DataFrame() # df_train['Y'] = Y # df_train['mu'] = train_results.mu # df_train['AUX_OLS_DEP'] = df_train.apply(lambda x: ((x['Y'] - x['mu'])**2 - x['Y']) / x['mu'], axis=1) # ols_expr = """AUX_OLS_DEP ~ mu - 1""" # aux_olsr_results = smf.ols(ols_expr, df_train).fit() # alpha=aux_olsr_results.params[0] #model = sm.GLM(Y, X_fit, family=sm.families.NegativeBinomial(alpha=alpha)) model = statsmodels.discrete.discrete_model.NegativeBinomialP(Y, X_fit, p=1) results = model.fit(disp=0) else: print("Invalid option") return if model_type =='lin': Y_fit = results.fittedvalues else: Y_fit = results.predict(X_fit) if model_type in ['lin', 'poisson', 'nb']: statistics = calculate_statistics(X, Y, Y_fit, n_components, period, lin_comp) if model_type in ['poisson', 'nb']: statistics['count'] = np.sum(Y) else: RSS = sum((Y - Y_fit)**2) p = results.llr_pvalue statistics = {'p':p, 'RSS':RSS, 'count': np.sum(Y)} #Y_test = results.predict(X_fit_test) X_test = np.linspace(0, 2*period, 1000) X_fit_test = generate_independents(X_test, n_components=n_components, period=period, lin_comp=lin_comp, remove_lin_comp = True) Y_fit_test = results.predict(X_fit_test) rhythm_params = evaluate_rhythm_params(X_test, Y_fit_test, period=period) if lin_comp: rhythm_params['lin_comp'] = results.params[1] CIs = results.conf_int() if type(CIs) != np.ndarray: rhythm_params['CI(lin_comp)'] = CIs.values[1] else: rhythm_params['CI(lin_comp)'] = CIs[1] rhythm_params['p(lin_comp)'] = results.pvalues[1] #print(rhythm_params['p(lin_comp)']) """ ### # plot ### """ if plot: if plot_measurements: min_X = np.min(X) max_X = np.max(X) else: min_X = 0 max_X = period X_plot = np.linspace(min_X, max_X, 1000) X_plot_fits = generate_independents(X_plot, n_components=n_components, period=period, lin_comp=lin_comp) Y_plot = results.predict(X_plot_fits) ### if not color: color = 'black' if plot_measurements: if not hold: plt.plot(X,Y, 'ko', markersize=1, label = 'data', color=color) else: plt.plot(X,Y, 'ko', markersize=1, color=color) if not hold: plt.plot(X_plot, Y_plot, 'k', label = 'fit', color=color) else: plt.plot(X_plot, Y_plot, 'k', label = name, color=color) # plot measurements if plot_measurements: if rescale_to_period: X = X % period if model_type == 'lin': plt.axis([min_X, max_X, 0.9*min(min(Y), min(Y_plot)), 1.1*max(max(Y), max(Y_plot))]) else: plt.axis([min_X, max_X, 0.9*min(min(Y), min(Y_plot)), 1.1*max(max(Y), max(Y_plot))]) else: plt.axis([min_X, max_X, min(Y_plot)*0.9, max(Y_plot)*1.1]) if name: plt.title(name) """ if model_type == 'lin': if name: plt.title(name + ', p-value=' + "{0:.5f}".format(statistics['p'])) else: plt.title('p-value=' + "{0:.5f}".format(statistics['p'])) else: if name: plt.title(name + ', p-value=' + '{0:.3f}'.format(statistics['p']) + ' (n='+str(statistics['count'])+ ')') else: plt.title('p-value=' + '{0:.3f}'.format(statistics['p']) + ' (n='+str(statistics['count'])+ ')') """ if x_label: plt.xlabel(x_label) else: plt.xlabel('Time [h]') if y_label: plt.ylabel(y_label) elif model_type == 'lin': plt.ylabel('Measurements') else: plt.ylabel('Count') # plot confidence intervals if plot_margins: if model_type == 'lin': _, lower, upper = wls_prediction_std(results, exog=X_plot_fits, alpha=0.05) if color: plt.fill_between(X_plot, lower, upper, color=color, alpha=0.1) else: plt.fill_between(X_plot, lower, upper, color='#888888', alpha=0.1) else: # calculate and draw plots from the combinations of parameters from the 95 % confidence intervals of assessed parameters res2 = copy.deepcopy(results) params = res2.params CIs = results.conf_int() if type(CIs) != np.ndarray: CIs = CIs.values #N = 512 N = 1024 if n_components == 1: N2 = 10 elif n_components == 2: N2 = 8 else: N2 = 10 - n_components P = np.zeros((len(params), N2)) for i, CI in enumerate(CIs): P[i,:] = np.linspace(CI[0], CI[1], N2) n_param_samples = P.shape[1]**P.shape[0] N = n_param_samples #min(max_samples_CI, n_param_samples) if n_param_samples < 10**6: params_samples = np.random.choice(n_param_samples, size=N, replace=False) else: params_samples = my_random_choice(max_val=n_param_samples, size=N) for i,idx in enumerate(params_samples): p = lazy_prod(idx, P) res2.initialize(results.model, p) Y_test_CI = res2.predict(X_plot_fits) if plot and plot_margins: if color and color != '#000000': plt.plot(X_plot, Y_test_CI, color=color, alpha=0.05) else: plt.plot(X_plot, Y_test_CI, color='#888888', alpha=0.05) if not hold: if save_to: plt.savefig(save_to+'.png') plt.savefig(save_to+'.pdf') plt.close() else: plt.show() if plot_residuals: resid = results.resid sm.qqplot(resid) plt.title(name) if save_to: plt.savefig(save_to+'_resid.pdf', bbox_inches='tight') plt.savefig(save_to+'_resid.png') plt.close() else: plt.show() if plot_phase: per = rhythm_params['period'] amp = rhythm_params['amplitude'] phase = rhythm_params['acrophase'] if save_to: folder = os.path.join(*os.path.split(save_to)[:-1]) plot_phases([phase], [amp], [name], period=per, folder=folder) else: plot_phases([phase], [amp], [name], period=per)#, plot_measurements=True, measurements=[X,Y]) if bootstrap: eval_params_bootstrap(X, X_fit, X_test, X_fit_test, Y, model_type = model_type, rhythm_params=rhythm_params, bootstrap_size=bootstrap_size, bootstrap_type=bootstrap_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, period=period) if params_CI: eval_params_CI(X_test, X_fit_test, results, rhythm_params, samples_per_param = samples_per_param_CI, max_samples = max_samples_CI, k=len(X), sampling_type=sampling_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, period=period) if return_model: return results, statistics, rhythm_params, X_test, Y_fit_test, model else: return results, statistics, rhythm_params, X_test, Y_fit_test """ **************************** * end of fitting functions * **************************** """ """ *********************** * start of assessment * *********************** """ # rhythm params def evaluate_rhythm_params(X,Y, project_acrophase=True, period=0): #plt.plot(X,Y) #plt.show() m = min(Y) M = max(Y) A = M - m MESOR = m + A/2 AMPLITUDE = abs(A/2) PHASE = 0 PHASE_LOC = 0 H = M - 0.01*M if M >= 0 else M + 0.01*M locs, heights = signal.find_peaks(Y, height = H) heights = heights['peak_heights'] if len(locs) >= 2: period2 = X[locs[1]] - X[locs[0]] period2 = int(round(period2)) else: period2 = np.nan if not period: period = period2 if len(locs) >= 1: PHASE = X[locs[0]] PHASE_LOC = locs[0] if period: ACROPHASE = phase_to_radians(PHASE, period) if project_acrophase: ACROPHASE = project_acr(ACROPHASE) else: ACROPHASE = np.nan # peaks and heights #Y = Y[X < 24] #X = X[X < 24] locs, heights = signal.find_peaks(Y, height = MESOR) heights = heights['peak_heights'] peaks = X[locs] heights = Y[locs] idxs1 = peaks <= period peaks = peaks[idxs1] heights = heights[idxs1] Y2 = M - Y locs2, heights2 = signal.find_peaks(Y2, height = MESOR-m) heights2 = heights2['peak_heights'] troughs = X[locs2] heights2 = Y[locs2] idxs2 = troughs <= period troughs = troughs[idxs2] heights2 = heights2[idxs2] # rhythm_params return {'period':period, 'amplitude':AMPLITUDE, 'acrophase':ACROPHASE, 'mesor':MESOR, 'peaks': peaks, 'heights': heights, 'troughs': troughs, 'heights2': heights2, 'max_loc': PHASE_LOC, 'period2':period2} def calculate_statistics(X, Y, Y_fit, n_components, period, lin_comp = False): # statistics according to Cornelissen (eqs (8) - (9)) MSS = sum((Y_fit - Y.mean())**2) RSS = sum((Y - Y_fit)**2) n_params = n_components * 2 + 1 if lin_comp: n_params += 1 N = Y.size F = (MSS/(n_params - 1)) / (RSS/(N - n_params)) p = 1 - stats.f.cdf(F, n_params - 1, N - n_params) #print("p-value(Cornelissen): {}".format(p)) # statistics of GOF according to Cornelissen (eqs (14) - (15)) # TODO: ali bi bilo potrebno popraviti za lumicycle - ko je več zaporednih meritev v eni časovni točki? #X_periodic = (X % period).astype(int) X_periodic = np.round_(X % period,2) X_unique = np.unique(X_periodic) n_T = len(X_unique) SSPE = 0 for x in X_unique: Y_i_avg = np.mean(Y[X_periodic == x]) SSPE += sum((Y[X_periodic == x] - Y_i_avg)**2) SSLOF = RSS-SSPE #print('RSS: ', RSS) #print('SSPE: ', SSPE) #print('SSLOF: ', SSLOF) if lin_comp: try: F = (SSLOF/(n_T-1-(2*n_components + 1)))/(SSPE/(N-n_T)) p_reject = 1 - stats.f.cdf(F, n_T-1-(2*n_components + 1), N-n_T) except: F = np.nan p_reject = np.nan else: try: F = (SSLOF/(n_T-1-2*n_components))/(SSPE/(N-n_T)) p_reject = 1 - stats.f.cdf(F, n_T-1-2*n_components, N-n_T) except: F = np.nan p_reject = np.nan # Another measure that describes goodnes of fit # How well does the curve describe the data? # signal to noise ratio # fitted curve: signal # noise: stdev_data = np.std(Y, ddof = 1) stdev_fit = np.std(Y_fit, ddof = 1) SNR = stdev_fit / stdev_data # Standard Error of residuals, margin of error # https://stats.stackexchange.com/questions/57746/what-is-residual-standard-error DoF = N - n_params resid_SE = np.sqrt(RSS/DoF) # https://scientificallysound.org/2017/05/16/independent-t-test-python/ # https://www.statisticshowto.datasciencecentral.com/probability-and-statistics/hypothesis-testing/margin-of-error/ critical_value = stats.t.ppf(1-0.025, DoF) ME = critical_value * resid_SE return {'p':p, 'p_reject':p_reject, 'SNR':SNR, 'RSS': RSS, 'resid_SE': resid_SE, 'ME': ME} """ ********************* * end of assessment * ********************* """ """ ***************************** * start of compare wrappers * ***************************** """ # compare pairs using a given number of components and period # analysis - options (from best to worst) (ADDITIONAL ANALYSIS) # - bootstrap1: independent bootstrap analysis # - CI1: independent analysis of confidence intervals of two models # - bootstrap2: bootstrap analysis of a merged model # - CI2: analysis of confidence intervals of a merged model def compare_pairs_limo(df, pairs, n_components = 3, period = 24, folder = "", prefix = "", analysis = "", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs): if analysis not in ("", "CI1", "bootstrap1", "CI2", "bootstrap2"): print("Invalid option") return columns = ['test', 'period', 'n_components', 'p', 'q', 'p params', 'q params', 'p(F test)', 'q(F test)'] if analysis: for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] df_results = pd.DataFrame(columns = columns) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] for test1, test2 in pairs: for per in period: for n_comps in n_components: if folder: save_to = os.path.join(folder,prefix + test1 + '-' + test2 + '_per=' + str(per) + '_comps=' + str(n_comps)) else: save_to = '' #pvalues, params, results = compare_pair_df_extended(df, test1, test2, n_components = n_comps, period = per, lin_comp = lin_comp, model_type = model_type, alpha=alpha, save_to = save_to, plot_measurements=plot_measurements) #p_overall, pvalues, params, _ = compare_pair_df_extended(df, test1, test2, n_components = n_comps, period = per, save_to = save_to, **kwargs) p_overall, p_params, p_F, _, _, rhythm_params = compare_pair_df_extended(df, test1, test2, n_components = n_comps, period = per, save_to = save_to, additional_analysis = analysis, parameters_to_analyse=parameters_to_analyse, parameters_angular=parameters_angular, **kwargs) d = {} d['test'] = test1 + ' vs. ' + test2 d['period'] = per d['n_components'] = n_comps d['d_amplitude'] = rhythm_params['d_amplitude'] d['d_acrophase'] = rhythm_params['d_acrophase'] d['p'] = p_overall d['p params'] = p_params d['p(F test)'] = p_F if analysis: for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan df_results = df_results.append(d, ignore_index=True) df_results['q'] = multi.multipletests(df_results['p'], method = 'fdr_bh')[1] df_results['q params'] = multi.multipletests(df_results['p params'], method = 'fdr_bh')[1] df_results['q(F test)'] = multi.multipletests(df_results['p(F test)'], method = 'fdr_bh')[1] if analysis: for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using the best models as stored in df_best_models # Basic analysis: fist analysis according to LymoRhyde (Singer:2019). Extended with the extra sum-of-squares F test that compares two nested models # compare pairs with the presumption that the same model is used in both cases # the same model: the same period and the same number of cosinor components # # analysis - options (from best to worst) # - bootstrap1: independent bootstrap analysis # - CI1: independent analysis of confidence intervals of two models # - bootstrap2: bootstrap analysis of a merged model # - CI2: analysis of confidence intervals of a merged model def compare_pairs_best_models_limo(df, df_best_models, pairs, folder = "", prefix = "", analysis = "", parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs): if analysis not in ("", "CI1", "bootstrap1", "CI2", "bootstrap2"): print("Invalid option") return columns = ['test', 'period1', 'n_components1', 'period2', 'n_components2', 'p', 'q', 'p params', 'q params', 'p(F test)', 'q(F test)'] if analysis: for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] df_results = pd.DataFrame(columns = columns) for test1, test2 in pairs: model1 = df_best_models[df_best_models["test"] == test1].iloc[0] model2 = df_best_models[df_best_models["test"] == test2].iloc[0] n_components1 = model1.n_components n_components2 = model2.n_components period1 = model1.period period2 = model2.period # if models have different number of components always start with the simpler model # model is simpler if number of components is smaller if n_components1 > n_components2: test1, test2 = test2, test1 n_components1, n_components2 = n_components2, n_components1 period1, period2 = period2, period1 if folder: save_to = os.path.join(folder, prefix + test1 + '-' + test2 + '_per1=' + str(period1) + '_comps1=' + str(n_components1) + '_per1=' + str(period2) + '_comps1=' + str(n_components2)) else: save_to = '' p_overall, p_params, p_F, params, _, rhythm_params = compare_pair_df_extended(df, test1, test2, n_components = n_components1, period = period1, n_components2 = n_components2, period2 = period2, save_to = save_to, additional_analysis = analysis, parameters_to_analyse=parameters_to_analyse, parameters_angular=parameters_angular, **kwargs) d = {} d['test'] = test1 + ' vs. ' + test2 d['period1'] = period1 d['n_components1'] = n_components1 d['period2'] = period2 d['n_components2'] = n_components2 d['d_amplitude'] = rhythm_params['d_amplitude'] d['d_acrophase'] = rhythm_params['d_acrophase'] d['p'] = p_overall d['p params'] = p_params d['p(F test)'] = p_F if analysis: for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan df_results = df_results.append(d, ignore_index=True) #d['CI(d_amplitude)'] = rhythm_params['CI(d_amplitude)'] #d['p(d_amplitude)'] = rhythm_params['p(d_amplitude)'] #d['CI(d_acrophase)'] = rhythm_params['CI(d_acrophase)'] #d['p(d_acrophase)'] = rhythm_params['p(d_acrophase)'] df_results = df_results.append(d, ignore_index=True) df_results['q'] = multi.multipletests(df_results['p'], method = 'fdr_bh')[1] df_results['q params'] = multi.multipletests(df_results['p params'], method = 'fdr_bh')[1] df_results['q(F test)'] = multi.multipletests(df_results['p(F test)'], method = 'fdr_bh')[1] if analysis: for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using a given number of components and period # analysis - options (from best to worst) # - bootstrap: independent bootstrap analysis # - CI: independent analysis of confidence intervals of two models # if you want to increase the speed specify df_results_extended in which for all analysed models confidence intervals for amplitude and acrophase are given - result of cosinor.analyse_models def diff_p_t_test_from_CI(X1, X2, CI1, CI2, DoF, angular = False): dX = X2 - X1 if angular: dX = project_acr(dX) t = abs(stats.t.ppf(0.05/2,df=DoF)) dev1 = (CI1[1] - CI1[0])/2 dev2 = (CI2[1] - CI2[0])/2 if angular: dev1 = abs(project_acr(dev1)) dev2 = abs(project_acr(dev2)) else: dev1 = abs(dev1) dev2 = abs(dev2) dev = dev1+dev2 se = (dev1 + dev2)/t CI = [dX-dev, dX+dev] T0 = dX/se p_val = 2 * (1 - stats.t.cdf(abs(T0), DoF)) return dX, p_val, CI def compare_pairs(df, pairs, n_components = 3, period = 24, analysis = "bootstrap", df_results_extended = pd.DataFrame(columns=["test"]), parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], lin_comp = False, **kwargs): if (analysis != "CI") and (analysis != "bootstrap"): print("Invalid option") return columns = ['test', 'period', 'n_components', 'p1', 'p2', 'q1', 'q2'] for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] df_results = pd.DataFrame(columns = columns) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] for test1, test2 in pairs: for per in period: for n_comps in n_components: d = {} d['test'] = test1 + ' vs. ' + test2 d['period'] = per d['n_components'] = n_comps single_params = {} if (test1 in list(df_results_extended['test'])) and (test2 in list(df_results_extended['test'])): try: res1 = dict(df_results_extended[(df_results_extended['test'] == test1) & (df_results_extended['n_components'] == n_comps) & (df_results_extended['period'] == per)].iloc[0]) res2 = dict(df_results_extended[(df_results_extended['test'] == test2) & (df_results_extended['n_components'] == n_comps) & (df_results_extended['period'] == per)].iloc[0]) single_params["test1"] = {} single_params["test2"] = {} for param in parameters_to_analyse: single_params["test1"][f'CI({param})'] = res1[f'CI({param})'] single_params["test2"][f'CI({param})'] = res2[f'CI({param})'] except: pass if analysis == "CI": rhythm_params = compare_pair_CI(df, test1, test2, n_components = n_comps, period = per, single_params=single_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, lin_comp = lin_comp, **kwargs) elif analysis == "bootstrap": rhythm_params = compare_pair_bootstrap(df, test1, test2, n_components = n_comps, period = per, single_params=single_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, lin_comp = lin_comp, **kwargs) for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan d['p1'] = rhythm_params['statistics1']['p'] d['p2'] = rhythm_params['statistics2']['p'] if lin_comp: rp1 = rhythm_params['rhythm_params1'] rp2 = rhythm_params['rhythm_params2'] d['d_lin_comp'], d['p(d_lin_comp)'], d['CI(d_lin_comp)'] = diff_p_t_test_from_CI(rp1['lin_comp'], rp2['lin_comp'], rp1['CI(lin_comp)'], rp2['CI(lin_comp)'], rhythm_params['DoF']) df_results = df_results.append(d, ignore_index=True) df_results['q1'] = multi.multipletests(df_results['p1'], method = 'fdr_bh')[1] df_results['q2'] = multi.multipletests(df_results['p2'], method = 'fdr_bh')[1] for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] if lin_comp: param = "lin_comp" df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using the best models as stored in df_best_models # each member of a pair uses its own model # analysis - options (from best to worst) # - bootstrap: independent bootstrap analysis # - CI: independent analysis of confidence intervals of two models # if you want to increase the speed specify df_results_extended in which for all analysed models confidence intervals for amplitude and acrophase are given - result of cosinor.analyse_best_models def compare_pairs_best_models(df, df_best_models, pairs, analysis = "bootstrap", df_results_extended = pd.DataFrame(columns=["test"]), parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], lin_comp=False, **kwargs): if (analysis != "CI") and (analysis != "bootstrap"): print("Invalid option") return columns = ['test', 'period1', 'n_components1', 'period2', 'n_components2', 'p1', 'p2', 'q1', 'q2'] for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] df_results = pd.DataFrame(columns = columns) for test1, test2 in pairs: model1 = df_best_models[df_best_models["test"] == test1].iloc[0] model2 = df_best_models[df_best_models["test"] == test2].iloc[0] n_components1 = model1.n_components n_components2 = model2.n_components period1 = model1.period period2 = model2.period d = {} d['test'] = test1 + ' vs. ' + test2 d['period1'] = period1 d['n_components1'] = n_components1 d['period2'] = period2 d['n_components2'] = n_components2 single_params = {} if (test1 in list(df_results_extended['test'])) and (test2 in list(df_results_extended['test'])): try: res1 = dict(df_results_extended[(df_results_extended['test'] == test1) & (df_results_extended['n_components'] == n_components1) & (df_results_extended['period'] == period1)].iloc[0]) res2 = dict(df_results_extended[(df_results_extended['test'] == test2) & (df_results_extended['n_components'] == n_components2) & (df_results_extended['period'] == period2)].iloc[0]) single_params["test1"] = {} single_params["test2"] = {} for param in parameters_to_analyse: single_params["test1"][f'CI({param})'] = res1[f'CI({param})'] single_params["test2"][f'CI({param})'] = res2[f'CI({param})'] except: pass if analysis == "CI": rhythm_params = compare_pair_CI(df, test1, test2, n_components = n_components1, period = period1, n_components2 = n_components2, period2 = period2, single_params = single_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, lin_comp = lin_comp, **kwargs) elif analysis == "bootstrap": rhythm_params = compare_pair_bootstrap(df, test1, test2, n_components = n_components1, period = period1, n_components2 = n_components2, period2 = period2, single_params = single_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, lin_comp = lin_comp, **kwargs) for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan d['p1'] = rhythm_params['statistics1']['p'] d['p2'] = rhythm_params['statistics2']['p'] if lin_comp: rp1 = rhythm_params['rhythm_params1'] rp2 = rhythm_params['rhythm_params2'] d['d_lin_comp'], d['p(d_lin_comp)'], d['CI(d_lin_comp)'] = diff_p_t_test_from_CI(rp1['lin_comp'], rp2['lin_comp'], rp1['CI(lin_comp)'], rp2['CI(lin_comp)'], rhythm_params['DoF']) df_results = df_results.append(d, ignore_index=True) df_results['q1'] = multi.multipletests(df_results['p1'], method = 'fdr_bh')[1] df_results['q2'] = multi.multipletests(df_results['p2'], method = 'fdr_bh')[1] for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] if lin_comp: param = "lin_comp" df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using a given number of components and period # analysis - options (from best to worst) # - CI: independent analysis of confidence intervals of two models # - permutation: permutation/randomisation test # if you want to increase the speed specify df_results_extended in which for all analysed models confidence intervals for amplitude and acrophase are given - result of cosinor.analyse_models_population def compare_pairs_population(df, pairs, n_components = 3, period = 24, folder = "", prefix = "", analysis = "CI", lin_comp= False, model_type = 'lin', df_results_extended = pd.DataFrame(columns=["test"]), parameters_to_analyse = ['amplitude', 'acrophase', 'mesor'], parameters_angular = ['acrophase'], **kwargs): if (analysis != "CI") and (analysis != "permutation"): print("Invalid option") return columns = ['test', 'period', 'n_components', 'p1', 'p2', 'q1', 'q2'] for param in parameters_to_analyse: #if param not in ("amplitude", "acrophase"): # these two are already included columns += [f'd_{param}'] if analysis == "CI": columns += [f'CI(d_{param})', f'p(d_{param})', f'q(d_{param})'] else: columns += [f'p(d_{param})', f'q(d_{param})'] # permutation test does not assess the confidence intervals df_results = pd.DataFrame(columns = columns) if type(period) == int: period = [period] if type(n_components) == int: n_components = [n_components] for test1, test2 in pairs: for per in period: for n_comps in n_components: df_pop1 = df[df.test.str.startswith(test1)] df_pop2 = df[df.test.str.startswith(test2)] _, statistics1, _, rhythm_params1, _ = population_fit(df_pop1, n_components = n_comps, period = per, plot = False, lin_comp = lin_comp, model_type = model_type) _, statistics2, _, rhythm_params2, _ = population_fit(df_pop2, n_components = n_comps, period = per, plot = False, lin_comp = lin_comp, model_type = model_type) d = {} d['test'] = test1 + ' vs. ' + test2 d['period'] = per d['n_components'] = n_comps d['d_amplitude'] = rhythm_params2['amplitude'] - rhythm_params1['amplitude'] d['d_acrophase'] = project_acr(rhythm_params2['acrophase'] - rhythm_params1['acrophase']) d['p1'] = statistics1['p'] d['p2'] = statistics2['p'] if analysis == "CI": single_params = {} if (test1 in list(df_results_extended['test'])) and (test2 in list(df_results_extended['test'])): try: res1 = dict(df_results_extended[(df_results_extended['test'] == test1) & (df_results_extended['n_components'] == n_comps) & (df_results_extended['period'] == per)].iloc[0]) res2 = dict(df_results_extended[(df_results_extended['test'] == test2) & (df_results_extended['n_components'] == n_comps) & (df_results_extended['period'] == per)].iloc[0]) single_params["test1"] = {} single_params["test2"] = {} for param in parameters_to_analyse: single_params["test1"][f'CI({param})'] = res1[f'CI({param})'] single_params["test2"][f'CI({param})'] = res2[f'CI({param})'] except: pass rhythm_params = compare_pair_population_CI(df, test1, test2, n_components=n_comps, period=per, lin_comp = lin_comp, model_type = model_type, single_params = single_params, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, **kwargs) for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan elif analysis == "permutation": rhythm_params = permutation_test_population_approx(df, [(test1,test2)], n_components=n_comps, period=per, plot=False, lin_comp = lin_comp, model_type = model_type, parameters_to_analyse = parameters_to_analyse, parameters_angular = parameters_angular, **kwargs) for param in parameters_to_analyse: d[f'd_{param}'] = rhythm_params[f'd_{param}'] #d[f'CI(d_{param})'] = rhythm_params[f'CI(d_{param})'] d[f'p(d_{param})'] = rhythm_params[f'p(d_{param})'] d[f'q(d_{param})'] = np.nan df_results = df_results.append(d, ignore_index=True) df_results['q1'] = multi.multipletests(df_results['p1'], method = 'fdr_bh')[1] df_results['q2'] = multi.multipletests(df_results['p2'], method = 'fdr_bh')[1] for param in parameters_to_analyse: df_results[f'q(d_{param})'] = multi.multipletests(df_results[f'p(d_{param})'], method = 'fdr_bh')[1] return df_results # compare pairs using the best models as stored in best_models # analysis - options (from best to worst) # - CI: independent analysis of confidence intervals of two models # - permutation: permutation/randomisation test # if you want to increase the speed specify df_results_extended in which for all analysed models confidence intervals for amplitude and acrophase are given - result of cosinor.analyse_best_models_population def compare_pairs_best_models_population(df, df_best_models, pairs, folder = "", prefix = "", analysis = "CI", df_results_extended =
pd.DataFrame(columns=["test"])
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Sep 25 14:26:30 2020 @author: <NAME> Program: This is a scraper to pull misdemeanor data from Travis County Clerk's office website, and shows two methods of pulling the data from the websites. It pulls three types of web pages: 1) The summary of defendants by date, 2) the defendant's details, and 3) the defendant's disposition details. Finally, the program outputs the three datasets to csv files. """ import requests import lxml.html as lh import time from bs4 import BeautifulSoup #import numpy as np import pandas as pd from datetime import timedelta, date # Lets us loop through dates def daterange(start_date, end_date): for n in range(int((end_date - start_date).days)): yield start_date + timedelta(n) ############################################################################### # Input filepaths ############################################################################### main_file = 'misdemeanors_main.csv' detail_file = 'misdemeanors_detail.csv' disp_file = 'misdemeanors_disp.csv' ############################################################################### # Gets the defendants' summaries ############################################################################### start_date = date(2016, 1, 1) end_date = date(2019, 1, 1) main_df = pd.DataFrame() for single_date in daterange(start_date, end_date): date_str = single_date.strftime("%Y-%m-%d") print(date_str) URL_sum = 'https://countyclerk.traviscountytx.gov/component/chronoconnectivity6/?cont=manager&conn=misdemeanor-data&calendar_misdemeanor_start='+ date_str+'&calendar_misdemeanor_end='+date_str+'&event=index' #Create a handle, page, to handle the contents of the website page = requests.get(URL_sum) #Store the contents of the website under doc doc = lh.fromstring(page.content) #Parse data that are stored between <tr>..</tr> of HTML tr_elements = doc.xpath('//tr') print([len(T) for T in tr_elements[:12]]) #Create empty list col=[] i=0 #For each row, store each first element (header) and an empty list for t in tr_elements[2]: i+=1 header=t.text_content() print(header) col.append((header,[])) # Since first 2 rows are not table and third row is the header, # data is stored on the second row onwards for j in range(3,len(tr_elements)): #T is our j'th row T=tr_elements[j] #If row is not of size 8, the //tr data is not from our table if len(T)!=8: break #i is the index of our column i=0 #Iterate through each element of the row for t in T.iterchildren(): data=t.text_content() #Check if row is empty if i>0: #Convert any numerical value to integers try: data=int(data) except: pass #Append the data to the empty list of the i'th column col[i][1].append(data) #Increment i for the next column i+=1 [len(C) for (title,C) in col] Dict={title:column for (title,column) in col} df=pd.DataFrame(Dict) # append to main dataframe main_df = main_df.append(df) # hopefully prevents us from looking like spam time.sleep(1) main_df.rename(columns=lambda x: x.strip(), inplace = True) main_df.rename(columns={ main_df.columns[0]: "Cause No" }, inplace = True) for column in main_df: print(column) main_df[column] = main_df[column].astype(str).map(lambda x: x.strip('\n')) main_df[column] = main_df[column].astype(str).map(lambda x: x.strip('\t')) # save to csv main_df.to_csv(main_file, index=False) ############################################################################### # Gets defendant details # The idea is to loop through the Cause Nos pulled from the scrape of the # defendants' summaries by date. ############################################################################### main_df = pd.read_csv(main_file) # initialize blank lists to add data to data frame later cause_list = [] id_list = [] name_list = [] race_list = [] gender_list = [] ethnicity_list = [] attorney_list = [] court_list = [] for index, row in main_df.iterrows(): cause = row['Cause No'] URL_details = 'https://countyclerk.traviscountytx.gov/component/chronoconnectivity6/?cont=manager&conn=misdemeanor-data&event=view&cause_number='+cause response_details = requests.get(URL_details) soup_details = BeautifulSoup(response_details.text, "html.parser") def_details = soup_details.findAll('td') # This can pull the headers for the data header = soup_details.findAll(class_ = 'ui header') # if def_details block is the correct def_detailsblock, then proceed if(str(def_details[1]) == str('<td class="collapsing right aligned"><h4 class="ui header">Cause No</h4></td>')): cause_list.append(def_details[2]) else: cause_list.append('') if(str(def_details[3]) == str('<td class="collapsing right aligned"><h4 class="ui header">Participant ID</h4></td>')): id_list.append(def_details[4]) else: id_list.append('') if(str(def_details[5]) == str('<td class="collapsing right aligned"><h4 class="ui header">Full Name</h4></td>')): name_list.append(def_details[6]) else: name_list.append('') if(str(def_details[7]) == str('<td class="collapsing right aligned"><h4 class="ui header">Race</h4></td>')): race_list.append(def_details[8]) else: race_list.append('') if(str(def_details[9]) == str('<td class="collapsing right aligned"><h4 class="ui header">Gender</h4></td>')): gender_list.append(def_details[10]) else: gender_list.append('') if(str(def_details[11]) == str('<td class="collapsing right aligned"><h4 class="ui header">Ethnicity</h4></td>')): ethnicity_list.append(def_details[12]) else: ethnicity_list.append('') if(str(def_details[13]) == str('<td class="collapsing right aligned"><h4 class="ui header">Attorney Name</h4></td>')): attorney_list.append(def_details[14]) else: attorney_list.append('') if(str(def_details[15]) == str('<td class="collapsing right aligned"><h4 class="ui header">Court Assignment</h4></td>')): court_list.append(def_details[16]) else: court_list.append('') print(cause) df_detail =
pd.DataFrame(columns = ['Cause No', 'Participant ID', 'Full Name', 'Race', 'Gender', 'Ethnicity', 'Attorney Name', 'Court Assignment'])
pandas.DataFrame
import pickle import numpy as np import pandas as pd import time from model.helper_functions import stub_withhold_split, val_test_features start_time = time.time(), time.ctime() print(f'Start time: {start_time[1]}') # Build df of playlists to classify in clusters val_pids = np.genfromtxt('../data/val_pids.csv', skip_header=1, dtype=int) # Import data to memory so it is not loaded from disk for every loop iteration playlist_df = pd.read_csv('../data/playlists.csv') track_df =
pd.read_csv('../data/songs_100000_feat_cleaned.csv', index_col='track_uri')
pandas.read_csv
# Importer le fichier et afficher les premières lignes : import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns df=pd.read_csv('D:\projet_energie.csv', sep=';', low_memory=False) df.head() #Création “Date_datetime” au format date : from datetime import datetime as dt df["Date_datetime"]=pd.to_datetime(df.Date) df.head() #“Heure” au format heure from datetime import datetime as dt df["Heure"]=df.Heure.astype("datetime64") df["Heure"]=df.Heure.dt.hour df.head() #Affichage des colonnes du dataset df.columns #Visualisation des informations des colonnes df.dtypes #Supression de la variable “Nature” df=df.drop("Nature", axis=1) df.head() #Création “Date_datetime” au format date : from datetime import datetime as dt df["Date_datetime"]=
pd.to_datetime(df.Date)
pandas.to_datetime
import carla from carla import ColorConverter as cc from ROAR_Sim.carla_client.util.sensors import CollisionSensor from ROAR_Sim.configurations.configuration import Configuration as CarlaConfig import logging import pygame from ROAR.utilities_module.data_structures_models import SensorsData from ROAR.utilities_module.vehicle_models import Vehicle from typing import Tuple from Bridges.carla_bridge import CarlaBridge from ROAR_Sim.carla_client.util.hud import HUD from ROAR_Sim.carla_client.util.world import World from ROAR_Sim.carla_client.util.keyboard_control import KeyboardControl from ROAR.configurations.configuration import Configuration as AgentConfig from ROAR_Sim.configurations.configuration import import_carla from pathlib import Path from typing import List, Dict, Any from ROAR.utilities_module.vehicle_models import VehicleControl import json from typing import Optional import numpy as np import cv2 from threading import Thread from datetime import datetime import time import pandas as pd from pandas import ExcelWriter from datetime import datetime class CarlaRunner: def __init__(self, carla_settings: CarlaConfig, agent_settings: AgentConfig, npc_agent_class, competition_mode=False, start_bbox: np.ndarray = np.array([5, -5, 0, 13, 5, 50]), lap_count=10): """ Args: carla_settings: CarlaConfig instance agent_settings: AgentConfig instance npc_agent_class: an agent class competition_mode: [Optional] True/False start_bbox: [Optional] array of [minx, miny, minz, maxx, maxy, maxz]. [5, -5, 0, 13, 5, 50] is the bbox for easy_map. [-815, 20, -760, -770, 120, -600] is the bbox for berkeley_minor_map lap_count: [Optional] total lap count """ self.carla_settings = carla_settings self.agent_settings = agent_settings self.carla_bridge = CarlaBridge() self.npc_agent_class = npc_agent_class self.world = None self.client = None self.controller = None self.display = None self.agent = None self.npc_agents: Dict[npc_agent_class, Any] = {} self.agent_collision_counter = 0 self.competition_mode = competition_mode self.start_bbox = start_bbox self.lap_count = lap_count self.completed_lap_count = 0 self.sensor_data = SensorsData() self.vehicle_state = Vehicle() self.start_simulation_time: Optional[float] = None self.start_vehicle_position: Optional[np.array] = None self.end_simulation_time: Optional[float] = None self.end_vehicle_position: Optional[np.array] = None self.logger = logging.getLogger(__name__) self.timestep_counter = 0 self.position = np.empty((0, 3)) def set_carla_world(self) -> Vehicle: """ Initiating the vehicle with loading messages Returns: Vehicle Information """ try: pygame.init() pygame.font.init() self.logger.debug(f"Connecting to {self.carla_settings.host}: " f"{self.carla_settings.port}") self.client = carla.Client(self.carla_settings.host, self.carla_settings.port) if not self.check_version(client=self.client): self.logger.error(f"Version Mismatch: Client = {self.client.get_client_version()}, " f"Server = {self.client.get_server_version()}. \n" f"HINT: Please change carla_version to either 0.9.9 or 0.9.10 " f"in ROAR_Sim.configurations.carla_version.txt") exit(1) if self.carla_settings.should_visualize_with_pygame is True: self.display = pygame.display.set_mode( (self.carla_settings.width, self.carla_settings.height), pygame.HWSURFACE | pygame.DOUBLEBUF) self.logger.debug(f"Setting HUD") hud = HUD(self.carla_settings.width, self.carla_settings.height) self.logger.debug("Setting up world") self.world = World(carla_world=self.client.get_world(), hud=hud, carla_settings=self.carla_settings, agent_settings=self.agent_settings) if self.carla_settings.should_spawn_npcs: self.spawn_npcs() self.logger.debug(f"Connecting to Keyboard controls") self.controller = KeyboardControl(world=self.world, carla_setting=self.carla_settings ) self.logger.debug("All settings done") return self.carla_bridge. \ convert_vehicle_from_source_to_agent(self.world.player) except Exception as e: self.logger.error( f"Unable to initiate the world due to error: {e}") raise e def start_game_loop(self, agent, use_manual_control=False, starting_lap_count=0): """Start running the vehicle and stop when finished running the track""" self.agent = agent lap_count = starting_lap_count has_entered_bbox = False should_restart_lap = False try: self.logger.debug("Initiating game") self.agent.start_module_threads() clock = pygame.time.Clock() self.start_simulation_time = time.time() self.start_vehicle_position = self.agent.vehicle.transform.location.to_array() while True: # make sure the program does not run above 60 frames per second # this allow proper synchrony between server and client clock.tick_busy_loop(60) should_continue, carla_control = self.controller.parse_events(client=self.client, world=self.world, clock=clock) self.agent_collision_counter = self.get_num_collision() if self.competition_mode: is_currently_in_bbox = self.is_within_start_finish_bbox( curr_pos=self.agent.vehicle.transform.location.to_array()) if has_entered_bbox is True and is_currently_in_bbox is False: has_entered_bbox = False elif has_entered_bbox is False and is_currently_in_bbox is True: has_entered_bbox = True lap_count += 1 if lap_count > self.lap_count: # if i have reached target number of lap counts, break out of game loop break else: self.logger.info(f"Going onto Lap {lap_count} out of {self.lap_count}") if len(self.world.collision_sensor.history) > 0: should_restart_lap = True if should_restart_lap: should_continue = False # check for exiting condition if should_continue is False: break self.world.tick(clock) self.world.render(display=self.display) if self.carla_settings.should_visualize_with_pygame is True: pygame.display.flip() self.fetch_data_async() sensor_data, new_vehicle = self.sensor_data.copy(), self.vehicle_state.copy() # Add for dynamics logging pos = self.agent.vehicle.transform.location self.position = np.append(self.position, [[pos.x, pos.y, pos.z]], axis=0) if self.carla_settings.save_semantic_segmentation and self.world.semantic_segmentation_sensor_data: Thread(target=lambda: self.world.semantic_segmentation_sensor_data.save_to_disk((Path( "./data/output_oct_10") / "ss" / f"frame_{self.agent.time_counter}.png").as_posix(), cc.CityScapesPalette), args=()).start() if self.carla_settings.should_spawn_npcs: self.execute_npcs_step() if self.agent_settings.enable_autopilot: if self.agent is None: raise Exception( "In autopilot mode, but no agent is defined.") agent_control = self.agent.run_step(vehicle=new_vehicle, sensors_data=sensor_data) if not use_manual_control: carla_control = self.carla_bridge. \ convert_control_from_agent_to_source(agent_control) self.world.player.apply_control(carla_control) self.timestep_counter += 1 self.completed_lap_count = lap_count - 1 except Exception as e: self.logger.error(f"Error happened, exiting safely. Error: {e}") finally: if self.competition_mode and should_restart_lap: self.restart_on_lap(agent=agent, use_manual_control=use_manual_control, starting_lap_count=lap_count - 1) else: self.on_finish() def restart_on_lap(self, agent, use_manual_control: bool, starting_lap_count: int): self.logger.info(f"Restarting on Lap {starting_lap_count}") self.on_finish() self.set_carla_world() agent.__init__(vehicle=agent.vehicle, agent_settings=agent.agent_settings) self.start_game_loop(agent=agent, use_manual_control=use_manual_control, starting_lap_count=starting_lap_count) def on_finish(self): self.logger.debug("Ending Game") if self.agent is not None: self.agent.shutdown_module_threads() self.end_vehicle_position = self.agent.vehicle.transform.location.to_array() else: self.end_vehicle_position = self.start_vehicle_position if self.world is not None: self.end_simulation_time = time.time() self.world.destroy() self.logger.debug("All actors are destroyed") try: pygame.quit() except Exception as e: self.logger.debug( f"Cannot quit pygame normally, force quitting. Error: {e}") # # Save Logged Dynamics Data t = np.linspace(0, self.end_simulation_time - self.start_simulation_time, len(self.position)) d = {'time': t, 'x': self.position[:, 0], 'y': self.position[:, 1], 'z': self.position[:, 2] } df =
pd.DataFrame(data=d)
pandas.DataFrame
# Copyright(c) 2019 <NAME> # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. import clr from System import DateTime import pandas as pd import re from datetime import datetime from pathlib import Path clr.AddReference(str(Path("curves/lib/Cmdty.TimePeriodValueTypes"))) from Cmdty.TimePeriodValueTypes import QuarterHour, HalfHour, Hour, Day, Month, Quarter, TimePeriodFactory FREQ_TO_PERIOD_TYPE = { "15min" : QuarterHour, "30min" : HalfHour, "H" : Hour, "D" : Day, "M" : Month, "Q" : Quarter } """ dict of str: .NET time period type. Each item describes an allowable granularity of curves constructed, as specified by the freq parameter in the curves public methods. The keys represent the pandas Offset Alias which describe the granularity, and will generally be used as the freq of the pandas Series objects returned by the curve construction methods. The values are the associated .NET time period types used in behind-the-scenes calculations. """ def tranform_time_func(freq, py_time_func): def wrapper_time_func(net_time_period): pandas_period = net_time_period_to_pandas_period(net_time_period, freq) return py_time_func(pandas_period) return wrapper_time_func def tranform_two_period_func(freq, py_two_period_func): def wrapper_time_func(net_time_period1, net_time_period2): pandas_period1 = net_time_period_to_pandas_period(net_time_period1, freq) pandas_period2 = net_time_period_to_pandas_period(net_time_period2, freq) return py_two_period_func(pandas_period1, pandas_period2) return wrapper_time_func def net_datetime_to_py_datetime(net_datetime): return datetime(net_datetime.Year, net_datetime.Month, net_datetime.Day, net_datetime.Hour, net_datetime.Minute, net_datetime.Second, net_datetime.Millisecond * 1000) def net_time_series_to_pandas_series(net_time_series, freq): """Converts an instance of class Cmdty.TimeSeries.TimeSeries to a pandas Series""" curve_start = net_time_series.Indices[0].Start curve_start_datetime = net_datetime_to_py_datetime(curve_start) index = pd.period_range(start=curve_start_datetime, freq=freq, periods=net_time_series.Count) prices = [net_time_series.Data[idx] for idx in range(0, net_time_series.Count)] return pd.Series(prices, index) def net_time_period_to_pandas_period(net_time_period, freq): start_datetime = net_datetime_to_py_datetime(net_time_period.Start) return
pd.Period(start_datetime, freq=freq)
pandas.Period
# StaticCell.py # Author: <NAME> # Version: 1.0.0 # This code is designed to be imported and run inside a Jupyter notebook using an iPython kernel. import numpy as np import pandas as pd import ALS import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from IPython.display import display, clear_output df_photolysis_params = {} df_photolysis_params['C3H3Br'] = {'xsn':1.0e-19, 'product1':'C3H3', 'product2':'Br'} class StaticCell(ALS.KineticModel): def __init__(self, user_model): super().__init__(user_model, err_weight=False, fit_pre_photo=False, apply_IRF=False, apply_PG=False, t_PG=1.0) def plot_model(self, t_start, t_end, tbin, df_model_params, initial_concentrations, df_photolysis_params, fluence, photolysis_cycles=1, delta_xtick=20.0, save_fn=None): df_ALS_params = {'t0': 0} #print(initial_concentrations) # = df_model_params.to_dict('index').copy() #print(type(dict_mod_params)) c_0 = initial_concentrations.copy() t_full = np.array([]) for cycle in range(0, photolysis_cycles): c_after_photo = c_0.copy() for species in df_photolysis_params.itertuples(): dC = species.xsn * fluence * c_0[species.Index] c_after_photo[species.Index] = c_0[species.Index] - dC for product, qyield in zip(species.products, species.qyields): c_after_photo[product] = c_0[product] + dC * qyield #print(c_after_photo) #for key in c_after_photo: # dict_mod_params['c_' + key + '_0'] = {'val':c_after_photo[key], 'err':0, 'fit':False} c_params = {} for key in c_after_photo: c_params['c_' + key + '_0'] = {'val':c_after_photo[key], 'err':0, 'fit':False} df_mod_params = df_model_params.append(pd.DataFrame.from_dict(c_params, orient='index')) if cycle == 0: t_model, c_model = self._model(t_start, t_end, tbin, df_mod_params['val'].to_dict(), df_ALS_params) endtime = 0 else: t_model, c_model = self._model(0, t_end, tbin, df_mod_params['val'].to_dict(), df_ALS_params) t_model = t_model + endtime endtime = t_model[-1] #print("New endtime", endtime) t_full = np.concatenate((t_full,t_model[:-1])) #print("Tfull", t_full) if cycle == 0: #c_full = c_model.to_dict('list').copy() c_full = c_model.copy().iloc[:-1] else: c_full = c_full.append(c_model.iloc[:-1], ignore_index=True) #for key in c_model: # c_full[key] = np.concatenate((c_full[key], c_model[key])) #for key in c_model: # #print(key) # c_0[key] = list(c_model[key])[-1] for (species, concentrations) in c_model.iteritems(): #print(species) #print(type(concentrations)) c_0[species] = concentrations.iloc[-1] #print(c_0['HO2']) species_names = list(c_model.columns) nSpecies = len(species_names) # Set up the grid of subplots ncols = 3 nrows = (nSpecies//ncols) if (nSpecies%ncols) == 0 else (nSpecies//ncols)+1 dpi = 120 plt.rc('font', size=9) plt.rc('axes.formatter', useoffset=False) f = plt.figure(figsize=(1000/dpi,325*nrows/dpi), dpi=dpi) gs = gridspec.GridSpec(nrows, ncols, figure=f, hspace=0.45, wspace=0.3, top=0.9, bottom=0.2) # Determine x-axis ticks tick_low = (t_start//delta_xtick)*delta_xtick tick_high = endtime if endtime % delta_xtick == 0. else ((endtime//delta_xtick)+1)*delta_xtick ticks = np.linspace(tick_low, tick_high, num=round(((tick_high-tick_low)/delta_xtick)+1), endpoint=True) # Make the subplots s_model = [] for i, species in enumerate(species_names): mod = c_full[species] s_model.append(mod) j = i // 3 # Row index k = i % 3 # Col index ax = plt.subplot(gs[j,k]) ax.ticklabel_format(axis='y', style='sci', scilimits=(0,0)) ax.plot(t_full, mod, linewidth=2) # Manually set x-axis ticks ax.set_xticks(ticks) # Labels ax.set_title(species, fontweight='bold') # Make the title the species name ax.set_xlabel('Time (ms)') # Set x-axis label for bottom plot if k == 0: # Set y-axis labels if plot is in first column ax.set_ylabel('Concentration ($\mathregular{molc/cm^{3}})$') plt.show() # Save the model traces if save_fn: df =
pd.DataFrame(s_model)
pandas.DataFrame
import sys import mechanize import pandas as pd from bs4 import BeautifulSoup class stockCrawler(object): """docstring for ClassName""" def __init__(self): self.all_l=[] self.year = sys.argv[1] self.month = sys.argv[2] def crawler(self,year,month): br = mechanize.Browser() url = "http://www.twse.com.tw/ch/trading/exchange/STOCK_DAY/genpage/Report"+str(year)+str(month)+"/"+str(year)+str(month)+"_F3_1_8_6214.php?STK_NO=6214&myear="+str(year)+"&mmon="+str(month) res = br.open(url) soup = BeautifulSoup(res) for a in soup.find_all( attrs={"bgcolor": "#FFFFFF"} ): data_l = [] for t in [0,1,3,4,5,6,8]: data_l.append(a.contents[t].string) self.all_l.append(data_l) def storage(self): rowname = ['Date','Trade Volume','Opening Price','Highest Price','Lowest Price','Closing Price','Transaction'] df =
pd.DataFrame(self.all_l, columns=rowname)
pandas.DataFrame
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/dev-01-retrieval.ipynb (unless otherwise specified). __all__ = ['query_API', 'dict_col_2_cols', 'clean_nested_dict_cols', 'set_dt_idx', 'create_df_dt_rng', 'clean_df_dts', 'retrieve_stream_df', 'check_streams', 'retrieve_streams_df', 'parse_A44_response', 'retreive_DAM_prices', 'parse_A75_response', 'retrieve_production'] # Cell import json import numpy as np import pandas as pd import os import requests import xmltodict from datetime import date from warnings import warn from itertools import product from dotenv import load_dotenv from entsoe import EntsoePandasClient, EntsoeRawClient # Cell def query_API(start_date:str, end_date:str, stream:str, time_group='30m'): """ 'Query API' makes the call to Electric Insights and returns the JSON response Parameters: start_date: Start date for data given as a string in the form '%Y-%m-%d' end_date: End date for data given as a string in the form '%Y-%m-%d' stream: One of 'prices_ahead', 'prices_ahead', 'prices', 'temperatures' or 'emissions' time_group: One of '30m', '1h', '1d' or '7d'. The default is '30m' """ # Checking stream is an EI endpoint possible_streams = ['prices_ahead', 'prices', 'temperatures', 'emissions', 'generation-mix'] assert stream in possible_streams, f"Stream must be one of {''.join([stream+', ' for stream in possible_streams])[:-2]}" # Checking time_group will be accepted by API possible_time_groups = ['30m', '1h', '1d', '7d'] assert time_group in possible_time_groups, f"Time group must be one of {''.join([time_group+', ' for time_group in possible_time_groups])[:-2]}" # Formatting dates format_dt = lambda dt: date.strftime(dt, '%Y-%m-%d') if isinstance(dt, date) else dt start_date = format_dt(start_date) end_date = format_dt(end_date) # Running query and parsing response response = requests.get(f'http://drax-production.herokuapp.com/api/1/{stream}?date_from={start_date}&date_to={end_date}&group_by={time_group}') r_json = response.json() return r_json # Cell def dict_col_2_cols(df:pd.DataFrame, value_col='value'): """Checks the `value_col`, if it contains dictionaries these are transformed into new columns which then replace it""" ## Checks the value col is found in the dataframe if value_col not in df.columns: return df if isinstance(df.loc[0, value_col], dict): df_values = pd.DataFrame(df[value_col].to_dict()).T df[df_values.columns] = df_values df = df.drop(columns=[value_col]) return df # Cell def clean_nested_dict_cols(df): """Unpacks columns contining nested dictionaries""" # Calculating columns that are still dictionaries s_types = df.iloc[0].apply(lambda val: type(val)) cols_with_dicts = s_types[s_types == dict].index while len(cols_with_dicts) > 0: for col_with_dicts in cols_with_dicts: # Extracting dataframes from dictionary columns df = dict_col_2_cols(df, col_with_dicts) # Recalculating columns that are still dictionaries s_types = df.iloc[0].apply(lambda val: type(val)) cols_with_dicts = s_types[s_types == dict].index return df # Cell def set_dt_idx(df:pd.DataFrame, idx_name='local_datetime'): """ Converts the start datetime to UK local time, then sets it as the index and removes the original datetime columns """ idx_dt = pd.DatetimeIndex(pd.to_datetime(df['start'], utc=True)).tz_convert('Europe/London') idx_dt.name = idx_name df.index = idx_dt df = df.drop(columns=['start', 'end']) return df def create_df_dt_rng(start_date, end_date, freq='30T', tz='Europe/London', dt_str_template='%Y-%m-%d'): """ Creates a dataframe mapping between local datetimes and electricity market dates/settlement periods """ # Creating localised datetime index s_dt_rng = pd.date_range(start_date, end_date, freq=freq, tz=tz) s_dt_SP_count = pd.Series(0, index=s_dt_rng).resample('D').count() # Creating SP column SPs = [] for num_SPs in list(s_dt_SP_count): SPs += list(range(1, num_SPs+1)) # Creating datetime dataframe df_dt_rng =
pd.DataFrame(index=s_dt_rng)
pandas.DataFrame
# -*- coding: utf-8 -*- from grimoire.ConfigurationEnginnering import ConfigurationEnginnering from pandas import DataFrame, Series class BaseEnginnering(ConfigurationEnginnering): __slots__ = ('train_X', 'train_y', 'predict_X', 'classes_') def __init__(self): super().__init__() self.train_X = [] self.train_y = [] self.predict_X = [] self.classes_ = {} def __del__(self): del self.train_X del self.train_y del self.predict_X del self.classes_ def get_subset(self, columns) -> tuple: df_subset_x = self.train_X.loc[:, columns] df_subset_y = self.train_y.loc[df_subset_x.index] return (df_subset_x, df_subset_y) def get_param_value(self, param_name: str): if param_name in self.__slots__: return self.__slots__[param_name] elif param_name in self.__dict__: return self.__dict__[param_name] else: raise TypeError('Access property is invalid') def get_arrangement_features(self, features, n_selected): from itertools import combinations if type(n_selected) != int: raise TypeError('Expected value integer in n_selected') permsList = list(combinations(features, r=n_selected)) return permsList def get_pack_nparray(self, elements: list): import numpy as np return np.array(elements, np.object) def get_size_estimator(self, estimator): from sys import getsizeof return (getsizeof(estimator) / 1024) def get_block_fit(self): from sys import getsizeof from math import ceil # in bytes df_sizeof = getsizeof(self.predict_X) # number of instances n_instances = self.predict_X.shape[0] # size in bytes of instances instance_sizeof = df_sizeof / n_instances # number of instance per block n_per_block = ceil((1024 * 4 * self.chunck) / instance_sizeof) if n_per_block >= n_instances: (yield (0, n_instances)) else: pair_blocks = [((y - n_per_block), (y-1)) for y in range(n_per_block, n_instances, n_per_block)] if (pair_blocks[-1][1] < n_instances): e = ((pair_blocks[-1][1] + 1), (n_instances-1)) pair_blocks.append(e) for item in pair_blocks: (yield (item)) def get_transform(self, data_encoder_type=1, target_encoder_type=0): condition = [self.encoder_enable, self.encoder_data, (self.encoder_flag[0] == 0)] if all(condition): self.run_encoder_data(data_encoder_type) encoder_df = DataFrame(index=self.train_X.index) for col in self.train_X.columns: index_first_element = self.train_X.index[0] first_element = self.train_X[col][index_first_element] if type(first_element) in self.encoder_not_type: encoder_df.insert(loc=encoder_df.shape[1], column=col, value=self.train_X[col]) self.encoder_feature[col] = type(first_element) else: df_col = self.train_X.loc[:, [col]] # reverse list of unique values # convertendo para um list para facilitar nos # próximos procedimentos unique_categories = list(df_col[col].unique()[::-1]) self.encoder_feature[col] = unique_categories df_tmp = self.encoder_X.fit_transform(df_col) if (len(df_tmp.shape) == 1): col_name = '{0}_all'.format(col) encoder_df.insert(loc=encoder_df.shape[1], column=col_name, value=df_tmp) self.encoder_categorical_columns.append(col_name) else: index_shape = range(df_tmp.shape[1]) for i, c in zip(index_shape, unique_categories): col_name = '{0}_{1}'.format(col, c) encoder_df.insert(loc=encoder_df.shape[1], column=col_name, value=df_tmp[:, i]) self.encoder_categorical_columns.append(col_name) del self.train_X self.train_X = encoder_df.copy() del encoder_df self.encoder_flag[0] = 1 condition = [self.encoder_enable, self.encoder_target, (self.encoder_flag[1] == 0)] if all(condition): self.run_encoder_target(target_encoder_type) encoder_index = self.train_y.index encoder_values = self.encoder_y.fit_transform(self.train_y) self.train_y =
Series(data=encoder_values, index=encoder_index)
pandas.Series
# -*- cding: utf-8 -*- import os import numpy as np import pandas as pd import pymysql import datetime import glob ''' 程序说明: 1.实现能从Mysql数据库读取AIS数据到本地,保存到pandas的dataframe中; 2.实现从本地读取CSV文件,以便于数据处理; 3.利用datetime函数将数据库保存的时间戳转换成具体的时间函数,以便于读取; 4.将轨迹数据进行清洗,并对轨迹数据进行重构,输出符合要求的轨迹数据; 5.形成最终的MMSI唯一性代表的轨迹运动特性的数据,以便于后期深度学习的时候使用。 ''' # 链接数据库的句子 # dbconn = pymysql.connect(host = '127.0.0.1',user = 'root', passwd='<PASSWORD>',db= 'ais_dynamic',charset = 'utf8') # sql查询语句 # sqlcmd = "select * from ais_dynamic.ais_dynamic limit 100" # 从CSV文件中读取数据进行处理 # ais_file= pd.read_csv(r'C:\Users\cege-user\Desktop\dataset-ais\1-1000000-ais.csv',header = 0,sep = ' ',names = list('Record_Datetime','MMSI','Longitude','Latitude','Direction', # 'Heading','Speed','Status','ROT','Position_Accuracy','UTC_Hour', # 'UTC_Minute','UTC_Second','Message_ID','Rec_Datetime','Source_ID')) ais_file1 = pd.read_csv(r'D:\Data store file\dataset-ais\1-1000000-ais.csv') ais_file2 =
pd.read_csv(r'D:\Data store file\dataset-ais\1000001-2000000-ais.csv')
pandas.read_csv
import os from multiprocessing import Pool import pandas as pd # import rioxarray as rxr import geopandas as gpd import fiona from shapely.geometry import Polygon from shapely.ops import linemerge import zipfile BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) processed_data_dir = os.path.join(BASE_DIR, 'processed_data') vector_save_path = os.path.join(processed_data_dir, 'grouped_hydrographic_features') if not os.path.exists(vector_save_path): os.mkdir(vector_save_path) # # Using the regrouped hydrologic regions, (process_hydrologic_regions.py), # group the stream vectors for dem processing # def fill_holes(data): interior_gaps = data.interiors.values.tolist()[0] group_name = data.index.values[0] gap_list = [] if interior_gaps is not None: print(f' ...{len(interior_gaps)} gaps found in {group_name} groupings.') for i in interior_gaps: gap_list.append(Polygon(i)) data_gaps = gpd.GeoDataFrame(geometry=gap_list, crs=data.crs) appended_set = data.append(data_gaps) appended_set['group'] = 0 merged_polygon = appended_set.dissolve(by='group') return merged_polygon.geometry.values[0] else: print(f' ...no gaps found in {group_name}') return data.geometry.values[0] # nhn_path = '/media/danbot/Samsung_T5/geospatial_data/WSC_data/NHN_feature_data/' nhn_path = '/home/danbot/Documents/code/hysets_validation/source_data/NHN_feature_data/' nhn_feature_path = os.path.join(nhn_path, 'BC_NHN_features/') seak_path = os.path.join(nhn_path, 'SEAK_features') bc_groups_path = os.path.join(processed_data_dir, 'merged_basin_groups/') bc_groups = gpd.read_file(bc_groups_path + 'BC_transborder_final_regions_4326.geojson') bc_groups = bc_groups.to_crs(3005) # 1. get the list of coastal + island regions coast_groups = [ '08A', '08B', '08C', '08D', '08E', '08F', '08G', '08M', '09M' ] coast_islands = ['08O', '08H'] seak_groups = ['08A', '08B', '08C', '08D'] seak_dict = { '08A': [19010405, 19010404, 19010403, 19010406], '08B': [19010301, 19010302, 19010303, 19010304, 19010206, 19010204, 19010212, 19010211], '08C': [19010210, 19010208, 19010207, 19010205], '08D': [19010103, 19010209, 19010104, 19010102], } # 2. retrieve the polygons associated with the 'region' boundary. # 3. retrieve littoral / shoreline layers and merge them # 4. split the region polygon using the line created in step 3. # 5. discard the sea surface polygon # 6. save new polygon and use to trim DEM in dem_basin_mapper.py # collection of individual linestrings for splitting in a # list and add the polygon lines to it. # line_split_collection.append(polygon.boundary) # merged_lines = shapely.ops.linemerge(line_split_collection) # border_lines = shapely.ops.unary_union(merged_lines) # decomposition = shapely.ops.polygonize(border_lines) # load and merge the SEAK files into one gdf seak_streams_path = os.path.join(nhn_path, 'SEAK_WBDHU8_polygons.geojson') SEAK_polygons = gpd.read_file(seak_streams_path) SEAK_polygons = SEAK_polygons.to_crs(3005) SEAK_files = os.listdir(seak_path) def retrieve_and_group_layers(feature_path, files, target_crs, target_layer): dfs = [] all_crs = [] print(f' ...checking features at {feature_path} for layer {target_layer}.') for file in files: file_layers = zipfile.ZipFile(os.path.join(feature_path, file)).namelist() layers = [e for e in file_layers if (target_layer in e) & (e.endswith('.shp'))] if layers: for layer in layers: layer_path = os.path.join(feature_path, file) + f'!{layer}' df = gpd.read_file(layer_path) crs = df.crs print(f' crs={crs}') if crs not in all_crs: all_crs.append(crs) print(f' new crs found: {crs}') df = df.to_crs(target_crs) # append the dataframe to the group list dfs.append(df) else: print(f'no target layers found in {file}') return dfs all_crs = [] # bc_groups = bc_groups[bc_groups['group_name'] == '08H'].copy() # print(bc_groups) target_crs = 3005 bc_groups = bc_groups.to_crs(target_crs) bc_groups = bc_groups[bc_groups['group_name'].isin(['08B', '08C', '08D'])] for i, row in bc_groups.iterrows(): grp_code = row['group_name'] sda_codes = row['WSCSDAs'] if sda_codes == None: sda_codes = [row['group_code'].lower()] grp_code = row['group_code'] else: sda_codes = [e.lower() for e in row['WSCSDAs'].split(',')] print(f'Starting stream vector merge on {grp_code}: {sda_codes}') nhn_files = [e for e in os.listdir(nhn_feature_path) if e.split('_')[2][:3] in sda_codes] # there is one sub-sub basin region polygon that has # a corrupt archive and needs to be filtered out bad_zip_file_link = 'https://ftp.maps.canada.ca/pub/nrcan_rncan/vector/geobase_nhn_rhn/shp_en/08/nhn_rhn_08nec00_shp_en.zip' bad_zip_file = bad_zip_file_link.split('/')[-1] # skip the bad file: nhn_files_trimmed = [f for f in nhn_files if f != bad_zip_file] seak_included = False for target_layer in ['WATERBODY', 'ISLAND', 'NLFLOW', 'LITTORAL',]: df_list = [] group_stream_layers = [] print(f' Starting merge of {target_layer} features.') output_folder = os.path.join(vector_save_path, f'{grp_code}/{target_layer}/') if not os.path.exists(output_folder): os.makedirs(output_folder) # use geojson for littoral and island (polygons) # use .shp for stream network (NLFLOW layer) output_filename = f'{grp_code}_{target_layer}_{target_crs}.geojson' if target_layer in ['NLFLOW']: output_filename = f'{grp_code}_{target_layer}_{target_crs}.shp' output_filepath = os.path.join(output_folder, output_filename) if not os.path.exists(output_filepath): nhn_dfs = retrieve_and_group_layers(nhn_feature_path, nhn_files_trimmed, target_crs, target_layer) if len(nhn_dfs) == 0: continue else: nhn_gdf = gpd.GeoDataFrame(pd.concat(nhn_dfs, ignore_index=True), crs=target_crs) print(f' {len(nhn_gdf)} NHN items found.') # nhn_gdf['intersects_group_polygon'] = gpd.sjoin(gdf, row, how='inner', predicate='contains') # gdf = gdf[gdf['intersects_group_polygon']].copy() # print(nhn_gdf.head()) if nhn_gdf.empty: continue else: df_list.append(nhn_gdf) if (target_layer == 'NLFLOW') & (grp_code in seak_dict.keys()): huc_codes = [str(e) for e in seak_dict[grp_code]] print('') print(f' ...searching for USGS vector info for {grp_code}.') group_seak_files = [] for h in huc_codes: files = [f for f in SEAK_files if h in f] if len(files) > 0: group_seak_files += files # there should be as many files as there are codes, # otherwise a file is missing. assert len(group_seak_files) == len(seak_dict[grp_code]) # get the southeast alaska hydrographic feature files seak_dfs = retrieve_and_group_layers(seak_path, group_seak_files, target_crs, 'NHDFlowline') seak_gdf = gpd.GeoDataFrame(
pd.concat(seak_dfs, ignore_index=True)
pandas.concat
# import pandas as pd import logging import numpy as np import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin from sklearn.preprocessing import StandardScaler logger = logging.getLogger(__name__) def subtract_shuffled_null_model_from_panel(panel, shift_null_model=False): """Standardize a panel dataset by subtracting the expected value in a null model. Given a panel dataset of export values, with items as countries, time as major_axis, and products as minor_axis, create a new panel in which an expected value in a null model is subtracted from the data. The null model assumes that a country's exports are allocated to different products in the same proportions as those products' total exports are compared to the total exports of all products. Parameters ---------- panel : pandas Panel A panel dataset with `items` being the names of different trajectories (people, countries, etc.), time as `major_axis`, and features as `minor_axis`. shift_null_model : bool, optional, default: False Whether to shift the null model by one time step so that data is not normalized by data that depends on itself. Returns ------- panel_normalized_null_model : pandas Panel A normalized panel in which an expected value is subtracted from each entry in `panel`. The new normalized panel is essentially `panel - (panel.sum(axis='minor_axis') * panel.sum('items') / panel.sum('items').sum(axis=1)). """ panel_normalized_null_model = panel.copy() sum_across_items = panel.sum('items') sum_across_items_and_features = panel.sum('items').sum(axis=1) share_of_each_feature = ( sum_across_items.div( sum_across_items_and_features, axis='index') .shift(int(shift_null_model))) for item in panel.items: sum_across_features = panel.loc[item].sum(axis=1) expected = ( share_of_each_feature).mul( sum_across_features, axis='index') panel_normalized_null_model.loc[item] -= expected return panel_normalized_null_model class IteratedLog1p(BaseEstimator, TransformerMixin): """Transforms features by applying log1p a certain number of times. Parameters ---------- n : int, default: 1 The number of times to apply numpy.log1p to the data """ def __init__(self, n=1, pseudolog=False): if n < 0: raise ValueError('`n` must be positive; got {}'.format(n)) self.n = n def _transformed_filename(self, filename): if self.n == 1: return 'log1p_{}'.format(filename) else: return 'log1p_applied_{}_times_to_{}'.format(self.n, filename) def _transformed_name(self, name): if self.n == 1: return 'log(1 + {})'.format(name) else: return r'log1p^{' + str(self.n) + '}' + '(' + name + ')' def fit(self, X, y=None): return self def transform(self, X, y=None): """Apply `numpy.log1p` to `X` `n` times.""" result = X.copy() for __ in range(self.n): result = np.log1p(result) if isinstance(X, pd.DataFrame): result = pd.DataFrame(result, index=X.index, columns=X.columns) if hasattr(X, 'name'): result.name = self._transformed_name(X.name) if hasattr(X, 'filename'): result.filename = self._transformed_filename(X.filename) return result def inverse_transform(self, X): """Apply `np.exp(X) - 1` `n` times.""" result = X.copy() for __ in range(self.n): result = np.exp(X) - 1.0 if isinstance(X, pd.DataFrame): result = pd.DataFrame(result, index=X.index, columns=X.columns) return result class PseudoLog(BaseEstimator, TransformerMixin): """Transforms features by applying arcsinh(x / 2). """ def __init__(self): pass def _transformed_filename(self, filename): return 'pseudolog_{}'.format(filename) def _transformed_name(self, name): return 'pseudolog(1 + {})'.format(name) def _transformed_math_name(self, name): return 'arcsinh({} / 2)'.format(name) def fit(self, X, y=None): return self def transform(self, X, y=None): """Apply `arcsinh(x / 2)` to `X`.""" result = np.arcsinh(X / 2.0) if isinstance(X, pd.DataFrame): result = pd.DataFrame(result, index=X.index, columns=X.columns) if hasattr(X, 'name'): result.name = self._transformed_name(X.name) if hasattr(X, 'filename'): result.filename = self._transformed_filename(X.filename) return result def inverse_transform(self, X): """Apply `np.exp(X) - 1` `n` times.""" result = 2.0 * np.sinh(X) if isinstance(X, pd.DataFrame): result =
pd.DataFrame(result, index=X.index, columns=X.columns)
pandas.DataFrame
import tkinter import pandas import pandas.errors import random import tkinter.messagebox SAVE_FILE = "data/save.csv" try: vocabulary_data = pandas.read_csv(SAVE_FILE) except (FileNotFoundError, pandas.errors.EmptyDataError): vocabulary_data = pandas.read_csv("data/sunda-english.csv") LANG_FRONT = vocabulary_data.columns[0] LANG_BACK = vocabulary_data.columns[1] cards = vocabulary_data.to_dict('records') current_card = None timer = None def count_down(): global timer timer = window.after(3000, flip_card, current_card) def flip_card(card): canvas_card.itemconfigure(front_image_canvas, state="hidden") canvas_card.itemconfigure(back_image_canvas, state="normal") canvas_card.itemconfigure(lang_text, text=LANG_BACK) canvas_card.itemconfigure(vocab_text, text=card[LANG_BACK]) def get_new_card(): global current_card current_card = None try: card = random.choice(cards) except IndexError: tkinter.messagebox.showinfo("Finish", "All cards have been answered correctly!") return else: current_card = card canvas_card.itemconfigure(front_image_canvas, state="normal") canvas_card.itemconfigure(back_image_canvas, state="hidden") canvas_card.itemconfigure(lang_text, text=LANG_FRONT) canvas_card.itemconfigure(vocab_text, text=current_card[LANG_FRONT]) count_down() def right_command(): window.after_cancel(timer) if current_card is not None: cards.remove(current_card) get_new_card() def wrong_command(): window.after_cancel(timer) if current_card is not None: cards.remove(current_card) cards.append(current_card) get_new_card() def on_closing(): save_data =
pandas.DataFrame(cards)
pandas.DataFrame
#-- -- -- -- Introduction to Importing Data in Python # Used for Data Scientist Training Path #FYI it's a compilation of how to work #with different commands. ### -------------------------------------------------------- # # ------>>>>> Exploring your working directory # In order to import data into Python, you should first # have an idea of what files are in your working directory. # IPython, which is running on DataCamp's servers, # has a bunch of cool commands, including its magic # commands. For example, starting a line with ! gives # you complete system shell access. This means that the # IPython magic command ! ls will display the contents of # your current directory. Your task is to use the IPython # magic command ! ls to check out the contents of your # current directory and answer the following question: # which of the following files is in your working directory? # R/ moby_dick.txt ### -------------------------------------------------------- # # ------>>>>> Importing entire text files # Open a file: file file = open('moby_dick.txt', mode='r') # Print it print(file.read()) # Check whether file is closed print(file.closed) # Close file file.close() # Check whether file is closed print(file.closed) ### -------------------------------------------------------- # # ------>>>>> Importing text files line by line # Read & print the first 3 lines with open('moby_dick.txt') as file: print(file.readline()) print(file.readline()) print(file.readline()) ### -------------------------------------------------------- # # ------>>>>> Pop quiz: examples of flat files # You're now well-versed in importing text files and # you're about to become a wiz at importing flat files. # But can you remember exactly what a flat file is? Test # your knowledge by answering the following question: # which of these file types below is NOT an example of a flat file? # R/ A relational database (e.g. PostgreSQL). ### -------------------------------------------------------- # # ------>>>>>Pop quiz: what exactly are flat files? # Which of the following statements about flat files is incorrect? # Flat files consist of rows and each row is called a record. # Flat files consist of multiple tables with structured # relationships between the tables. # A record in a flat file is composed of fields or # attributes, each of which contains at most one item of information. # Flat files are pervasive in data science. # R/ Flat files consist of multiple tables with structured relationships between the tables. ### -------------------------------------------------------- # # ------>>>>>Why we like flat files and the Zen of Python # In PythonLand, there are currently hundreds of Python # Enhancement Proposals, commonly referred to as PEPs. PEP8, for example, # is a standard style guide for Python, written by our sensei <NAME> # Rossum himself. It is the basis for how we here at DataCamp ask our # instructors to style their code. Another one of my favorites is PEP20, # commonly called the Zen of Python. Its abstract is as follows: # Long time Pythoneer <NAME> succinctly channels the BDFL's guiding # principles for Python's design into 20 aphorisms, only 19 of which have # been written down. # If you don't know what the acronym BDFL stands for, I suggest that you # look here. You can print the Zen of Python in your shell by typing import # this into it! You're going to do this now and the 5th aphorism (line) # will say something of particular interest. # The question you need to answer is: what is the 5th aphorism of the Zen of Python? # R/ -- > command: import this # Flat is better than nested. ### -------------------------------------------------------- # # ------>>>>> Using NumPy to import flat files # Import package import numpy as np import matplotlib.pyplot as plt # Assign filename to variable: file file = 'digits.csv' # Load file as array: digits digits = np.loadtxt(file, delimiter=',') # Print datatype of digits print(type(digits)) # Select and reshape a row im = digits[21, 1:] im_sq = np.reshape(im, (28, 28)) # Plot reshaped data (matplotlib.pyplot already loaded as plt) plt.imshow(im_sq, cmap='Greys', interpolation='nearest') plt.show() ### -------------------------------------------------------- # # ------>>>>> Customizing your NumPy import # Import numpy import numpy as np # Assign the filename: file file = 'digits_header.txt' # Load the data: data data = np.loadtxt(file, delimiter='\t', skiprows=1, usecols=[0, 2]) # Print data print(data) ### -------------------------------------------------------- # # ------>>>>> Importing different datatypes import numpy as np import matplotlib.pyplot as plt # Assign filename: file file = 'seaslug.txt' # Import file: data data = np.loadtxt(file, delimiter='\t', dtype=str) # Print the first element of data print(data[0]) # Import data as floats and skip the first row: data_float data_float = np.loadtxt(file, delimiter='\t', dtype=float, skiprows=1) # Print the 10th element of data_float print(data_float[9]) # Plot a scatterplot of the data plt.scatter(data_float[:, 0], data_float[:, 1]) plt.xlabel('time (min.)') plt.ylabel('percentage of larvae') plt.show() ### -------------------------------------------------------- # # ------>>>>> Working with mixed datatypes (1) # Much of the time you will need to import datasets which have # different datatypes in different columns; one column may contain # strings and another floats, for example. The function np.loadtxt() # will freak at this. There is another function, np.genfromtxt(), # which can handle such structures. If we pass dtype=None to it, it # will figure out what types each column should be. # Import 'titanic.csv' using the function np.genfromtxt() as follows: # data = np.genfromtxt('titanic.csv', delimiter=',', names=True, dtype=None) # Here, the first argument is the filename, the second specifies the delimiter, # and the third argument names tells us there is a header. Because the data are # of different types, data is an object called a structured array. Because numpy # arrays have to contain elements that are all the same type, the structured array # solves this by being a 1D array, where each element of the array is a row of the # flat file imported. You can test this by checking out the array's shape in the # shell by executing np.shape(data). # Accessing rows and columns of structured arrays is super-intuitive: to get the # ith row, merely execute data[i] and to get the column with name 'Fare', execute data['Fare']. # After importing the Titanic data as a structured array (as per the instructions above), # print the entire column with the name Survived to the shell. What are the last # 4 values of this column? # R/ 1,0,1,0 ### -------------------------------------------------------- # # ------>>>>> Working with mixed datatypes (2) # Assign the filename: file file = 'titanic.csv' # Import file using np.recfromcsv: d d = np.recfromcsv(file) # Print out first three entries of d print(d[:3]) ### -------------------------------------------------------- # # ------>>>>> Using pandas to import flat files as DataFrames (1) # Import pandas as pd import pandas as pd # Assign the filename: file file = 'titanic.csv' # Read the file into a DataFrame: df df = pd.read_csv(file) # View the head of the DataFrame print(df.head()) ### -------------------------------------------------------- # # ------>>>>> Using pandas to import flat files as DataFrames (2) # Assign the filename: file file = 'digits.csv' # Read the first 5 rows of the file into a DataFrame: data data = pd.read_csv(file, nrows=5, header=None) # Build a numpy array from the DataFrame: data_array data_array = data.values # Print the datatype of data_array to the shell print(type(data_array)) ### -------------------------------------------------------- # # ------>>>>> Customizing your pandas import # Import matplotlib.pyplot as plt import matplotlib.pyplot as plt # Assign filename: file file = 'titanic_corrupt.txt' # Import file: data data = pd.read_csv(file, sep='\t', comment='#', na_values='Nothing') # Print the head of the DataFrame print(data.head()) # Plot 'Age' variable in a histogram pd.DataFrame.hist(data[['Age']]) plt.xlabel('Age (years)') plt.ylabel('count') plt.show() ### -------------------------------------------------------- # # ------>>>>> Not so flat any more # In Chapter 1, you learned how to use the IPython magic command ! # ls to explore your current working directory. You can # also do this natively in Python using the library os, which # consists of miscellaneous operating system interfaces. # The first line of the following code imports the library os, # the second line stores the name of the current directory in a # string called wd and the third outputs the contents of the directory in a list to the shell. # import os # wd = os.getcwd() # os.listdir(wd) # Run this code in the IPython shell and answer the # following questions. Ignore the files that begin with . # Check out the contents of your current directory and answer the following # questions: # (1) which file is in your directory and NOT an example of a flat file; # (2) why is it not a flat file? # R/ battledeath.xlsx is not a flat because it is a spreadsheet consisting of many sheets, not a single table. ### -------------------------------------------------------- # # ------>>>>> Loading a pickled file # Import pickle package import pickle # Open pickle file and load data: d with open('data.pkl', 'rb') as file: d = pickle.load(file) # Print d print(d) # Print datatype of d print(type(d)) ### -------------------------------------------------------- # # ------>>>>> Listing sheets in Excel files # Import pandas import pandas as pd # Assign spreadsheet filename: file file = 'battledeath.xlsx' # Load spreadsheet: xls xls = pd.ExcelFile(file) # Print sheet names print(xls.sheet_names) ### -------------------------------------------------------- # # ------>>>>> Importing sheets from Excel files # Load a sheet into a DataFrame by name: df1 df1 = xls.parse('2004') # Print the head of the DataFrame df1 print(df1.head()) # Load a sheet into a DataFrame by index: df2 df2 = xls.parse(0) # Print the head of the DataFrame df2 print(df2.head()) ### -------------------------------------------------------- # # ------>>>>> Customizing your spreadsheet import # Import pandas import pandas as pd # Assign spreadsheet filename: file file = 'battledeath.xlsx' # Load spreadsheet: xl xls =
pd.ExcelFile(file)
pandas.ExcelFile
import pandas as pd from bokeh.plotting import figure, show, output_notebook, gridplot from bokeh.palettes import brewer from collections import OrderedDict from bokeh.models import HoverTool import numpy as np from bokeh.models import ColumnDataSource, Range1d, FactorRange from datetime import datetime # BREWER_PLOT def brewer_plot(defata, instruments_all, instruments=None): """ This function shows two bokeh brewer plots into the ipython notebook using the data given as a parameter. In the second one only the instruments given in the third parameter are plotted. In the first one all of them are plotted. :param data: power_avg table :type data: pandas DataFrame :param instruments_all: All the instruments in the power_avg file :type instruments_all: List of strings :param instruments: Instruments to be plotted in the second plot :type instruments: List of strings :returns: Nothing """ # Hidding anoying warnings on the top of the plot output_notebook(hide_banner=True) # Creating both figures big_figure = create_plot(data, instruments_all) small_figure = create_plot(data, instruments, big_figure.x_range) # Plotting them together p = gridplot([[big_figure], [small_figure]]) show(p) def create_plot(data, instruments, x_range=None): """ This function creates a plot given a power_avg table and the instruments to be plotted. Optionally an x_range to be linked to another plot can be passed as a parameter. :param data: module_states or modes table :type data: pandas DataFrame :param instruments: Instruments to be plotted :type instruments: List of strings :param x_range: x_range to be linked with :type x_range: figure x_range :returns: bokeh figure """ # Create a set of tools to use tools = "resize,hover,save,pan,box_zoom,wheel_zoom,reset" # Creating the areas to be plotted areas = stacked(data, instruments) # Selecting the colors for the calculated areas colors = palette(len(areas)) # Stacking the values of each instrument x2 = np.hstack((data.index.values[::-1], data.index.values)) # Creating the figure if x_range is None: f = figure(x_axis_label=data.index.name, y_axis_label='Watts', x_axis_type="datetime", tools=tools, logo=None, x_range=Range1d(min(data.index.values), max(data.index.values))) else: f = figure(x_axis_label=data.index.name, y_axis_label='Watts', x_axis_type="datetime", x_range=x_range, tools=tools, logo=None) for pos in range(len(colors)): f.patch(x2, list(areas.values())[pos], color=colors[pos], legend=instruments[pos], line_color=None, alpha=0.8) # Setting the color of the line of the background f.grid.minor_grid_line_color = '#eeeeee' return f def palette(number): """ This function returns a palette of hex colors of size number. :param number: Amount of different colors needed :type number: integer :returns: list of strings """ if number > 40: print ("Ooops, too many parameters, not enough colors...") # Selecting the colors from different bokeh palettes palette = brewer["Spectral"][11] palette += list(reversed(brewer["RdBu"][11])) palette += brewer["YlGnBu"][9] palette += list(reversed(brewer["YlGn"][9])) palette += brewer["PiYG"][11] return palette[:number] def stacked(df, categories): """ This function stacks all the power information for each instrument. :param df: power_avg pandas DataFrame :type df: pandas DataFrame :param categories: categories in which the plot is going to be divided :type categories: list of values :returns: pandas DataFrame """ areas = OrderedDict() last = np.zeros(len(df[categories[0]])) for cat in categories: next = last + df[cat] areas[cat] = np.hstack((last[::-1], next)) last = next return areas # MODES_SCHEDULE def modes_schedule(data): # Hidding anoying warnings on the top of the plot output_notebook(hide_banner=True) show(get_modes_schedule(data)) def get_modes_schedule(data, x_range=None): """ This function create a time line plot based on the data form modes or module_states files. :param data: module_states or modes table :type data: pandas DataFrame :returns: Nothing """ # Adding new column to see which instruments are changing in each entry data = add_difference_column(data) # Building a new table to make the data plotable by bokeh start_end_table = build_start_end_table(data) source = ColumnDataSource(start_end_table) # Selecting the instruments detected in the data instruments = [colum for colum in data if colum.upper() == colum] instruments.sort(reverse=True) # Creating the figure if x_range is None: p = figure(x_axis_type="datetime", logo=None, x_range=Range1d(min(start_end_table['Start_time']), max(start_end_table['End_time'])), y_range=FactorRange(factors=instruments), tools="resize,hover,save,pan,box_zoom,wheel_zoom,reset") else: p = figure(x_axis_type="datetime", logo=None, x_range=x_range, y_range=FactorRange(factors=instruments), tools="resize,hover,save,pan,box_zoom,wheel_zoom,reset") p.quad(left='Start_time', right='End_time', top='Instrument_top', bottom='Instrument_bottom', color='Color', source=source) # Adding the hover tool to see info when putting the mouse over the plot hover = p.select(dict(type=HoverTool)) hover.tooltips = OrderedDict([ ('Mode', '@Mode'), ('Time', '@Time') ]) return p def add_difference_column(data): """ This function returns the same pandas DataFrame that it receives as a parameter but with a new column, which contains which instrument has changed since the last recorded state in the table. :param data: module_states or modes table :type data: pandas DataFrame :returns: pandas DataFrame """ # We create a list of lists, which will be the new column to add to to data difference = [[]] # We take the first row of the table to have the starting values data_aux = data.transpose() prev_row = data_aux[data_aux.columns.values[0]] difference[0] = [element for element in prev_row.index if prev_row[element] is not None] # For each entry in the table we detect which instruments are changig # since the previous row pos = 0 for row in data_aux: for element in data_aux.index: if not prev_row[element] == data_aux[row][element]: if not len(difference) == pos + 1: difference.append([element]) else: difference[pos].append(element) if not len(difference) == pos + 1: difference.append([]) prev_row = data_aux[row] pos += 1 # Finally we add the calculated column data["Change"] = difference return data def build_start_end_table(data): """ This function returns a pandas DataFrame which will be used to make a Bokeh directly from it. This DataFrame will be created from the data received as a parameter. :param data: module_states or modes table :type data: pandas DataFrame :returns: pandas DataFrame """ # Creating the DataFrame manually di = {"End_time": [], "Instrument": [], "Mode": [], "Start_time": [], "Time": []} # Filling the new DataFrame with the instrument, mode and start time data_aux = data.transpose() for row in data_aux: row_t = data_aux[row].transpose() for instrument in row_t["Change"]: di["End_time"].append(None) di["Instrument"].append(instrument) di["Mode"].append(row_t[instrument]) di["Start_time"].append(row) di["Time"] = [str(x) for x in di["Start_time"]] df = pd.DataFrame(di) df = df.sort(["Start_time"], ascending=True) instruments = [colum for colum in data if colum.upper() == colum] # Calculating and adding the end time for each task for ins in instruments: shift = df.loc[df["Instrument"] == ins].shift(-1) if len(shift) > 1: for i in range(len(shift.index.values)): di["End_time"][shift.index.values[i]] = \ shift["Start_time"][shift.index.values[i]] df = pd.DataFrame(di) # Calculating and adding the end time for tasks without unespecified end for pos in range(len(df["End_time"])): if not type(df["End_time"][pos]) is pd.tslib.Timestamp: df.loc[pos, "End_time"] = df["Start_time"].max() # Deleting OFF states, we don't want to plot it df = df[df.Mode != "OFF"] df[["End_time", "Start_time"]] = \ df[["End_time", "Start_time"]].astype(datetime) # Creating new rows needed for making the bars wider in the plot df["Instrument_bottom"] = [row + ":0.25" if " " in row else row + ":0.1" for row in df["Instrument"].values] df["Instrument_top"] = [row + ":0.75" if " " in row else row + ":0.9" for row in df["Instrument"].values] # Setting different colors for each different mode in the DataFrame modes = df["Mode"].unique() colors = dict(zip(modes, palette(len(modes)))) df["Color"] = [colors[row] for row in df["Mode"].values] return df # DATA_PLOT def data_plot(data, instruments): """ This function shows a data plot in the ipython notebook using the given data for the given instruments. :param data: data_rate pandas DataFrame :type data: pandas DataFrame :param instruments: list of the instruments to plot :type instruments: list of strings :returns: nothing """ # Hidding anoying warnings on the top of the plot output_notebook(hide_banner=True) show(get_data_plot(data, instruments)) def get_data_plot(data, instruments, x_range=None): """ This function returns a data rate plot bokeh figure using the given data for the given instruments. :param data: data_rate pandas DataFrame :type data: pandas DataFrame :param instruments: list of the instruments to plot :type instruments: list of strings :param x_range: x_range from another figure to link with :type x_range: x_range bokeh format :returns: bokeh figure """ # Creating the figure depending if we want to link it to another figure if x_range is None: r = figure(x_axis_type="datetime", logo=None, x_range=Range1d(min(data.index.values), max(data.index.values)), tools="resize,hover,save,pan,box_zoom,wheel_zoom,reset") else: r = figure(x_axis_type="datetime", x_range=x_range, logo=None, tools="resize,hover,save,pan,box_zoom,wheel_zoom,reset") # Getting the appropiate list of colors colors = palette(len(instruments)) i = 0 # Transforming the multiindex dataframe into a normal one to use hover tool d = transform_multiindex_df(data, instruments) # Inserting the lines in the plot for ins in instruments: r.line(d['index'], d[ins[0] + "_" + ins[1]], color=colors[i], legend=ins[0] + " - " + ins[1], line_width=3) # I don't know why, but if this source is not rebuilt every single # time, it doesn't plot correctly source = ColumnDataSource(d) # WARNING: THIS IS A HACK # Hover tool doesn't work over lines show I have created points r.scatter(d['index'], d[ins[0] + "_" + ins[1]], color=colors[i], source=source, fill_color=None, size=8) i += 1 r.title = "Data Rate" r.grid.grid_line_alpha = 0.3 # Adding the hover tool to see info when putting the mouse over the plot hover = r.select(dict(type=HoverTool)) hover.tooltips = OrderedDict([("Time", "@Time")] + [(ins[0] + " - " + ins[1], "@" + ins[0] + "_" + ins[1]) for ins in instruments]) return r def transform_multiindex_df(data, instruments): """ This function returns a pandas DataFrame without a multiindex and prepared to be plotted and used by the hover tool when converted to the proper format. :param data: power usage pandas DataFrame :type data: pandas DataFrame :param instruments: list of the instruments to plot :type instruments: list of strings :returns: pandas DataFrame """ d = {} d['Time'] = [str(x) for x in pd.to_datetime(data.index.values)] d['index'] = data.index.values for ins in instruments: d[ins[0] + "_" + ins[1]] = \ [x[0] for x in data[ins[0], ins[1]].values.tolist()] df = pd.DataFrame(d) return df # POWER_PLOT def power_plot(data, instruments): """ This function shows a power plot in the ipython notebook using the given data for the given instruments. :param data: power usage pandas DataFrame :type data: pandas DataFrame :param instruments: list of the instruments to plot :type instruments: list of strings :returns: nothing """ # Hidding anoying warnings on the top of the plot output_notebook(hide_banner=True) show(get_power_plot(data, instruments)) def get_power_plot(data, instruments, x_range=None): """ This function returns a power plot bokeh figure using the given data for the given instruments. :param data: data_rate pandas DataFrame :type data: pandas DataFrame :param instruments: list of the instruments to plot :type instruments: list of strings :param x_range: x_range from another figure to link with :type x_range: x_range bokeh format :returns: bokeh figure """ # Creating the figure depending if we want to link it to another figure if x_range is None: r = figure(x_axis_type="datetime", logo=None, x_range=Range1d(min(data.index.values), max(data.index.values)), tools="resize,hover,save,pan,box_zoom,wheel_zoom,reset") else: r = figure(x_axis_type="datetime", x_range=x_range, logo=None, tools="resize,hover,save,pan,box_zoom,wheel_zoom,reset") # Getting the appropiate list of colors colors = palette(len(instruments)) i = 0 # Preparing a set of data to convert into a source for the hover tool d = data.copy(deep=True) d['Time'] = [str(x) for x in
pd.to_datetime(data.index.values)
pandas.to_datetime