prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd import hashlib import statsmodels.stats.multitest as multitest import scipy as sp import scipy.stats import numpy as np from collections import namedtuple import warnings from tqdm import tqdm # from .annotations import ProteinId, PeptideId, PeptideVariantId # from tqdm import tqdm # from modlamp.sequences import Helices # from modlamp.descriptors import PeptideDescriptor, GlobalDescriptor ################################################################################ # namedtuples ################################################################################ TTestResult = namedtuple("TTestResult", ("pvalue", "statistic", "ratio")) PeptideVariantId = namedtuple('PeptideVariantId', ('protein_id', 'start', 'stop', 'mod_seq', 'origin')) PeptideId = namedtuple('PeptideId', ('protein_id', 'start', 'stop')) ProteinId = namedtuple('ProteinId', ('protein_id',)) ################################################################################ # Pandas peptidomics Excensions ################################################################################ @pd.api.extensions.register_index_accessor("peptidomics") class PandasPeptidomicsIndex: def __init__(self, index): self.index = index id_classes = (PeptideVariantId, PeptideId, ProteinId) id_levels = ("peptide_variants", "peptides", "proteins") for id_class, level in zip(id_classes, id_levels): if id_class._fields == self.index.names[1:]: self.id_class = id_class self.level = level break else: # no break raise ValueError("index does not seem to be 'proteins', 'peptides' or " "peptide_variants") def to_proteins(self): if self.level == 'peptides': drop = ("start", "stop") elif self.level == "peptide_variants": drop = ("start", "stop", "mod_seq", "origin") else: raise ValueError("index does not seem to be 'peptides' or 'peptide_variants'") return self._drop_index(drop) def to_peptides(self): if self.level != 'peptide_variants': raise ValueError("can only craete peptide index from a peptide_variant index") return self._drop_index(("mod_seq", "origin")) def _drop_index(self, drop): index = self.index.copy() for level in drop: index = index.droplevel(level) return index.unique() def iter_index(self): for row in self.index: yield row[0], self.id_class(*row[1:]) def create_annotation_df(self): annotation_columns = pd.MultiIndex.from_tuples((), names=['annotation', 'group']) return pd.DataFrame(columns=annotation_columns, index=self.index) @pd.api.extensions.register_series_accessor("peptidomics") class PandasPeptidomicsSerie: def __init__(self, series): self.series = series def fdr(self, alpha=0.05, method='fdr_bh'): if method != "fdr_bh": raise NotImplementedError("TODO!!!") mask = self.series == self.series corrected = np.full(self.series.shape, np.nan) corrected[mask] = multitest.multipletests(self.series[mask], method=method, alpha=alpha)[1] return pd.Series(corrected, index=self.series.index, name=("FDR", self.series.name[1])) @pd.api.extensions.register_dataframe_accessor("peptidomics") class PandasPeptidomics: rename_header = {"end": "stop", "begin": "start", "prot_acc": "protein_id", "pep_start": "start", "pep_end": "stop", "pep_mod_seq": "mod_seq", "pep_seq": "seq"} def __init__(self, df): self.df = df def create_annotation(self): annotation_columns = pd.MultiIndex.from_tuples((), names=['annotation', 'group']) return pd.DataFrame(columns=annotation_columns, index=self.df.index) def add_annotation(self, annotation_series): self.df[annotation_series.name] = annotation_series @classmethod def load_ppv_file(cls, ppv_file, campaign_id, index=None): print('Load ppv file') ppv = pd.read_csv(ppv_file, sep="\t") ppv.rename(columns=cls.rename_header, inplace=True) ppv["campaign_id"] = campaign_id ppv["origin"] = "collapsed" if index is None: index = ['campaign_id'] + list(PeptideVariantId._fields) return pd.pivot_table(ppv, index=index, values="score") def _ppv_pval_combine(self, subset, compare, pvalue_name="P-Value", ratio_name="Ratio"): gt = subset[subset[ratio_name, compare] >= 0][pvalue_name, compare] / 2 lt = subset[subset[ratio_name, compare] <= 0][pvalue_name, compare] / 2 gt_flip = 1 - gt lt_flip = 1 - lt pval_gt = np.append(gt.values, lt_flip.values) pval_lt = np.append(lt.values, gt_flip.values) p1 = sp.stats.combine_pvalues(pval_gt)[1] p2 = sp.stats.combine_pvalues(pval_lt)[1] pval = min(p1, p2) * 2 return pval def ppv_pval(self, df_observed, compare, method="fisher", annotation_name="P-Value", progresbar=True): if method != "fisher": raise NotImplementedError("Only fishers method is implemented") _iter = (self._ppv_pval_combine(subset, compare) for subset in self._iter_ppvs(df_observed)) if progresbar: _iter = tqdm(_iter, "Collapsing p-values from UPF", total=self.df.shape[0]) return pd.Series(list(_iter), index=self.df.index, name=(annotation_name, compare)) def _ppv_intensity_combine(self, subset, group): return pd.Series(subset[group].values.flatten()).mean() def ppv_intensity(self, df_observed, group, annotation_name="Intensity", progresbar=True): _iter = (self._ppv_intensity_combine(subset, group) for subset in self._iter_ppvs(df_observed)) if progresbar: _iter = tqdm(_iter, "Collapsing intensities from UPF", total=self.df.shape[0]) return pd.Series(list(_iter), index=self.df.index, name=(annotation_name, group)) def _iter_ppvs(self, df): for index, ppv_data in self.df.iterrows(): campaign_id, protein_id, start, stop, mod_seq, origin = index subset = df.query('protein_id == "{}" and start >= {} and stop <= {}'.format( protein_id, start, stop)) yield subset def ppv_ratio(self, df_observed, compare, annotation_name="Ratio", progresbar=True): _iter = (subset[annotation_name, compare].median() for subset in self._iter_ppvs(df_observed)) if progresbar: _iter = tqdm(_iter, "Annotating ratio from UPF", total=self.df.shape[0]) return pd.Series(list(_iter), index=self.df.index, name=(annotation_name, compare)) @classmethod def load_upf_meta(cls, upf_file, meta_file, campaign_id, upf_file_sep="\t", meta_file_sep="\t", left_on='rs_acc', right_on='accno', pivot=True, add_meta_defaults=True, **kwargs): # TODO: campaing ID should be infered from dataset.meta # print('Load, merge and create peptide id') upf = pd.read_csv(upf_file, sep=upf_file_sep) upf.rename(columns=cls.rename_header, inplace=True) meta = cls._load_meta_from_file(meta_file, meta_file_sep, add_meta_defaults) upf_sample = pd.merge(meta, upf, left_on=left_on, right_on=right_on) upf_sample["campaign_id"] = campaign_id upf_sample["origin"] = "observed" if pivot: return cls.ms_pivot_table(upf_sample, **kwargs) return upf_sample @classmethod def _load_meta_from_file(cls, meta_file, sep, add_defaults=True): meta = pd.read_csv(meta_file, sep=sep) if not add_defaults: return meta if 'subject' not in meta.columns or meta['subject'].dropna().shape[0] == 0: # if there is no subject info assume that each sample is a unique subject meta["subject"] = meta["ps_acc"] if "qc" not in meta.columns or meta['qc'].dropna().shape[0] == 0: # if there are no qc info, all samples were probbably fine :D meta["qc"] = "OK" return meta @classmethod def ms_pivot_table(cls, df, values='intensity', index=['campaign_id', 'protein_id', 'start', 'stop', 'mod_seq', 'origin'], columns=['subject', 'group', 'qc']): return pd.pivot_table(df, values=values, index=index, columns=columns) def normalize(self, full_rank='auto', full_rank_cutoff=100): raw_data = self.df.replace(0, np.nan) log10_data = np.log10(raw_data) log10_data_full_rank = log10_data.dropna() rank = log10_data_full_rank.shape[0] if full_rank == 'auto': full_rank = rank >= full_rank_cutoff if full_rank: if rank < full_rank_cutoff: msg = ("The full rank of the normalization matrix is {}, consider " "consider running df.peptidomics.normalize(full_rank=False) instead") warnings.warn(msg.format(rank)) median_intensities = log10_data_full_rank.median() else: median_intensities = log10_data.median() norm_target = median_intensities.mean() normalization_factors = norm_target - median_intensities # ax = full_rank_median_intensities.plot(kind="hist", # title="Median Intensity across samples") return 10 ** (log10_data + normalization_factors) @classmethod def _ttest_return(cls, t_test, index, ratios): pvalue =
pd.Series(t_test.pvalue.data, index=index, name="P-Value")
pandas.Series
# -*- coding: utf-8 -*- """ Created on Sat Jun 20 10:08:35 2020 @author: suyu """ import numpy as np import pandas as pd import tensorflow as tf from sklearn.metrics import mean_squared_error,roc_auc_score,mean_absolute_error,log_loss from sklearn.preprocessing import MinMaxScaler import sys from sklearn.metrics import make_scorer from sklearn.model_selection import StratifiedKFold from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split sys.path.append('../') from gammli.DataReader import data_initialize sys.path.append('benchmark/deepfm' ) from fmDataReader import FeatureDictionary, DataParser from DeepFM import DeepFM def deepfm_fm(wc, data, meta_info_ori, task_type="Regression", random_state=0, params=None): train, test = train_test_split(data, test_size=0.2, random_state=0) tr_x, tr_Xi, tr_y, tr_idx, te_x, te_Xi, te_y, val_x, val_Xi, val_y, val_idx, meta_info, model_info, sy, sy_t = data_initialize(train, test, meta_info_ori, task_type, 'warm', random_state=0, verbose=True) epochs = params['epochs'] loss_type = params['loss_type'] eval_metric = params['eval_metric'] greater_is_better = params['greater_is_better'] verbose = params['verbose'] early_stopping = params['early_stopping'] NUMERIC_COLS = [] CATEGORICAL_COLS = [] IGNORE_COLS = [] for i, (key, item) in enumerate(meta_info.items()): if item['type'] == "categorical": if len(meta_info[key]['values']) ==2: NUMERIC_COLS.append(key) else: CATEGORICAL_COLS.append(key) elif item['type'] == "target": IGNORE_COLS.append(key) else: NUMERIC_COLS.append(key) # params dfm_params = { "embedding_size": 3, "deep_layers": [32, 32], "use_deep" : True , "use_fm" : True , "deep_layers_activation": tf.nn.relu, "loss_type" : loss_type, "epoch": epochs , "batch_size": 1000, "learning_rate": 0.001, "optimizer_type": "adam", "batch_norm": 0, "batch_norm_decay": 0.995, "l2_reg": 0.1, "greater_is_better" : greater_is_better, "verbose": verbose, "eval_metric": eval_metric, "random_seed": random_state } def _run_base_model_dfm(dfTrain, dfTest, folds, dfm_params): fd = FeatureDictionary(dfTrain=dfTrain, dfTest=dfTest, numeric_cols=NUMERIC_COLS, ignore_cols=IGNORE_COLS) data_parser = DataParser(feat_dict=fd) Xi_train, Xv_train, y_train = data_parser.parse(df=dfTrain, has_label=True) Xi_test, Xv_test, ids_test,idv_test = data_parser.parse(df=dfTest) dfm_params["feature_size"] = fd.feat_dim #print(fd.feat_dict) dfm_params["field_size"] = len(Xi_train[0]) print(dfm_params) y_train_meta = np.zeros((dfTrain.shape[0], 1), dtype=float) y_test_meta = np.zeros((dfTest.shape[0], 1), dtype=float) _get = lambda x, l: [x[i] for i in l] #gini_results_cv = np.zeros(len(folds), dtype=float) #gini_results_epoch_train = np.zeros((len(folds), dfm_params["epoch"]), dtype=float) #gini_results_epoch_valid = np.zeros((len(folds), dfm_params["epoch"]), dtype=float) y_train = list(map(float,y_train)) for i, (train_idx, valid_idx) in enumerate(folds): Xi_train_, Xv_train_, y_train_ = _get(Xi_train, train_idx), _get(Xv_train, train_idx), _get(y_train, train_idx) Xi_valid_, Xv_valid_, y_valid_ = _get(Xi_train, valid_idx), _get(Xv_train, valid_idx), _get(y_train, valid_idx) dfm = DeepFM(**dfm_params) dfm.fit(Xi_train_, Xv_train_, y_train_, Xi_valid_, Xv_valid_, y_valid_,early_stopping=early_stopping) y_train_meta[valid_idx,0] = dfm.predict(Xi_valid_, Xv_valid_) y_test_meta[:,0] += dfm.predict(Xi_test, Xv_test) #gini_results_cv[i] = mean_absolute_error(y_valid_, y_train_meta[valid_idx]) #gini_results_epoch_train[i] = dfm.train_result #gini_results_epoch_valid[i] = dfm.valid_result y_test_meta /= float(len(folds)) return y_train_meta, y_test_meta if task_type == "Regression": cold_mae = [] cold_rmse = [] warm_mae = [] warm_rmse = [] def model_choose(deep): dfm_params['use_deep']=deep for times in range(10): train, test = train_test_split(data, test_size=0.2, random_state=times) tr_x, tr_Xi, tr_y, tr_idx, te_x, te_Xi, te_y, val_x, val_Xi, val_y, val_idx, meta_info, model_info, sy, sy_t = data_initialize(train, test, meta_info_ori, task_type, 'warm', random_state=0, verbose=False) train_x = np.concatenate([tr_x,val_x],0) train_y = np.concatenate([tr_y,val_y],0) train_y = sy.inverse_transform(train_y) te_y = sy_t.inverse_transform(te_y) train_Xi = np.concatenate([tr_Xi,val_Xi],0) train_ = np.concatenate([train_x,train_Xi,train_y],1) test_ = np.concatenate([te_x,te_Xi,te_y],1) dfTrain =
pd.DataFrame(train_,columns=train.columns)
pandas.DataFrame
import os import time import pandas as pd import scipy import seaborn as sns from matplotlib import pyplot as plt # import warnings from kl_simulation_support import * from kl_simulation_support import grow_ode from scipy.stats import entropy # warnings.filterwarnings(action="error", category=np.ComplexWarning) def sigmoid_switch(mu, mumax, H0, beta, musens, noiserange): return noiserange * H0 * (mumax - mu) ** beta / ((mumax - musens) ** beta + (mumax - mu) ** beta) + H0 def exponential_mudep(mu, mumin, H0, beta, noiserange): return noiserange * H0 * np.exp(-beta * (mu - mumin)) + H0 def linear_mudep(mu, mumin, mumax, H0, noiserange): return H0 + ((mumax - mu) / (mumax - mumin)) * noiserange * H0 def switching_mat(mat_fit, num_env, num_phen, switch_rate=0.1, mu_dep=False, noiserange=4, beta=1, musens=0.5, mumax=2, mumin=0, dependency='sigmoid', sensing_cost=0, switch_matrices=None): """ Function which creates a switching matrix with. This matrix is combined with the fitness matrix and returned as one matrix. :return: :param musens: :param mumax: :param noiserange: :param mat_fit: growth rate matrix :param num_env: number of phenotypes :param num_phen: number of environments :param switch_rate: switching rate :param mu_dep: boolean to indicate whether the switching rate should depend on mu :param beta: constant for tuning sensitivity to mu in case of mu dependency :return a: growth/switching matrix """ # First set all away-switching rates, then sum them in diagonal cost_mat = np.zeros((num_env, num_phen, num_phen)) if switch_matrices is not None: return mat_fit + switch_matrices - cost_mat if mu_dep: if dependency == 'sigmoid': mat_switch = np.zeros((num_env, num_phen, num_phen)) if np.isscalar(switch_rate) | (len([switch_rate]) == 1): for i in range(num_env): for j in range(num_phen): mat_switch[i, :, j] = sigmoid_switch(mat_fit[i, j, j], mumax, switch_rate, beta, musens, noiserange) mat_switch[i, j, j] = -(num_phen - 1) * mat_switch[i, j, j] elif dependency == 'exponential': mat_switch = np.zeros((num_env, num_phen, num_phen)) if np.isscalar(switch_rate) | (len([switch_rate]) == 1): for i in range(num_env): for j in range(num_phen): mat_switch[i, :, j] = exponential_mudep(mat_fit[i, j, j], mumin, switch_rate, beta, noiserange) mat_switch[i, j, j] = -(num_phen - 1) * mat_switch[i, j, j] elif dependency == 'linear': mat_switch = np.zeros((num_env, num_phen, num_phen)) if np.isscalar(switch_rate) | (len([switch_rate]) == 1): for i in range(num_env): for j in range(num_phen): mat_switch[i, :, j] = linear_mudep(mat_fit[i, j, j], mumin, mumax, switch_rate, noiserange) mat_switch[i, j, j] = -(num_phen - 1) * mat_switch[i, j, j] elif dependency == 'sensing': mat_switch = np.zeros((num_env, num_phen, num_phen)) if np.isscalar(switch_rate) | (len([switch_rate]) == 1): for i in range(num_env): np.fill_diagonal(cost_mat[i], sensing_cost) fast_phen = np.argmax(np.diagonal(mat_fit[i])) np.fill_diagonal(mat_switch[i], -switch_rate) mat_switch[i, fast_phen, :] += switch_rate else: if np.isscalar(switch_rate) | (len([switch_rate]) == 1): mat_switch = np.ones((num_env, num_phen, num_phen)) * switch_rate for i in range(num_env): np.fill_diagonal(mat_switch[i], -(num_phen - 1) * switch_rate) return mat_fit + mat_switch - cost_mat def kl_optimisation(fit_mat, x_0, num_env, num_phen, env_seqs, total_times, mean_mu_max, switch_rate=0.1, mu_dep=False, max_switch_rate=1, beta=1, iterations=10, switch_basis='away'): """ :param: fit_mat: :param: b: :param: x_0: :param: max_mus: :param num_env: :param num_phen: :param switch_rate: :param mu_dep: :param seed: :param max_switch_rate: :param beta: :param min_sim_time: :param avg_env_length: :param iterations: :return: deviation from maximal mean fitness as a fraction. """ a_mat = switching_mat(fit_mat, num_env, num_phen, switch_rate=switch_rate, mu_dep=mu_dep, max_switch_rate=max_switch_rate, beta=beta, switch_basis=switch_basis) # TODO: check how close eigenvalues are eig_vals, eig_vecs = np.linalg.eig(a_mat) m_inverse = np.linalg.inv(eig_vecs) mean_mu = np.zeros(iterations) for i in range(iterations): start = time.time() x_t_fracs = np.zeros((num_phen, len(env_seqs[i][0]) + 1)) # initialise array to store phenotype fractions x_t_fracs[:, 0] = x_0 mu = np.zeros(len(env_seqs[i][0])) # array to store mean and max growth rate after each environment # solve system for specific sequence of environments for ind, env in enumerate(env_seqs[i][0]): c_scale = np.dot(m_inverse[env], x_t_fracs[:, ind]) x_t_fracs[:, ind + 1], mu[ind], extinction = grow(eig_vecs[env], eig_vals[env], c_scale, env_seqs[i][1][ind]) if extinction: return 1 mean_mu[i] = sum(mu * env_seqs[i][1]) / total_times[i] print('environment sequence ' + str(i) + ' finished in ' + str(time.time() - start) + ' seconds') frac_max_mu = mean_mu / mean_mu_max return 1 - np.average(frac_max_mu) def kl_simulation(fit_mat, x_0, num_env, num_phen, env_seq, total_time, mean_mu_max, switch_rate=0.1, mu_dep=False, noiserange=4, beta=1, musens=0.5, mumax=2, dependency='sigmoid', sensing_cost=0, switch_matrices=None): """ :param total_times: :param mean_mu_max: :param fit_mat: :param x_0: :param env_seq: :param num_env: :param num_phen: :param switch_rate: :param mu_dep: :param noiserange: :param beta: :return: deviation from maximal mean fitness as a fraction. """ a_mat = switching_mat(fit_mat, num_env, num_phen, switch_rate=switch_rate, mu_dep=mu_dep, sensing_cost=sensing_cost, noiserange=noiserange, beta=beta, musens=musens, mumax=mumax, dependency=dependency, switch_matrices=switch_matrices) # TODO: check how close eigenvalues are eig_vals, eig_vecs = np.linalg.eig(a_mat) m_inverse = np.linalg.inv(eig_vecs) growthcosts = np.zeros(num_env) for env in range(num_env): try: growthcosts[env] = (np.max(fit_mat[env]) - eig_vals[env].max()) # /fit_mat[env,env,env] except: max_eig_val = eig_vals[env].max() if np.imag(max_eig_val) < 1e-10: growthcosts[env] = (np.max(fit_mat[env]) - np.real(max_eig_val)) # /fit_mat[env,env,env] else: growthcosts[env] = (np.max(fit_mat[env]) - eig_vals[env].max()) # /fit_mat[env,env,env] x_t_fracs = np.zeros((num_phen, len(env_seq[0]) + 1)) # initialise array to store phenotype fractions x_t_fracs[:, 0] = x_0 mu = np.zeros(len(env_seq[0])) # array to store mean and max growth rate after each environment x_t_fracs2 = np.zeros((num_phen, len(env_seq[0]) + 1)) # initialise array to store phenotype fractions x_t_fracs2[:, 0] = x_0 # Initialize array for storing results results = np.zeros((4, len(env_seq[0]))) # solve system for specific sequence of environments for ind_env, env in enumerate(env_seq[0]): c_scale = np.dot(m_inverse[env], x_t_fracs[:, ind_env]) x_t_fracs[:, ind_env + 1], mu[ind_env], extinction, lag = grow_reportlag(eig_vecs[env], eig_vals[env], c_scale, env_seq[1][ind_env]) results[0, ind_env] = ind_env results[1, ind_env] = lag results[2, ind_env] = growthcosts[env] results[3, ind_env] = (mu[ind_env] * lag) / np.log(2) if extinction: continue mean_mu = sum(mu * env_seq[1]) / total_time frac_max_mu = mean_mu / mean_mu_max results_df = pd.DataFrame(data=np.transpose(results), columns=['envnumber', 'lag', 'growthcost', 'lag_gen']) results_df['meanmu'] = mean_mu results_df['frac_max_mu'] = frac_max_mu return frac_max_mu, results_df def kl_simulation_ode(fit_mat, x_0, num_env, num_phen, env_seq, total_time, mean_mu_max, switch_rate=0.1, mu_dep=False, noiserange=4, beta=1, musens=0.5, mumax=2, dependency='sigmoid', sensing_cost=0, switch_matrices=None): """ :param total_times: :param mean_mu_max: :param fit_mat: :param x_0: :param env_seq: :param num_env: :param num_phen: :param switch_rate: :param mu_dep: :param noiserange: :param beta: :return: deviation from maximal mean fitness as a fraction. """ a_mat = switching_mat(fit_mat, num_env, num_phen, switch_rate=switch_rate, mu_dep=mu_dep, sensing_cost=sensing_cost, noiserange=noiserange, beta=beta, musens=musens, mumax=mumax, dependency=dependency, switch_matrices=switch_matrices) x_t_fracs = np.zeros((num_phen, len(env_seq[0]) + 1)) # initialise array to store phenotype fractions x_t_fracs[:, 0] = x_0 mu = np.zeros(len(env_seq[0])) # array to store mean and max growth rate after each environment # Initialize array for storing results results = np.zeros((1, len(env_seq[0]))) # solve system for specific sequence of environments for ind_env, env in enumerate(env_seq[0]): x_t_fracs[:, ind_env + 1], mu[ind_env], extinction = grow_ode(a_mat[env], x_t_fracs[:, ind_env], env_seq[1][ind_env]) results[0, ind_env] = ind_env if extinction: continue mean_mu = sum(mu * env_seq[1]) / total_time frac_max_mu = mean_mu / mean_mu_max results_df = pd.DataFrame(data=np.transpose(results), columns=['envnumber']) results_df['meanmu'] = mean_mu results_df['frac_max_mu'] = frac_max_mu return frac_max_mu, results_df def kl_simulation_IR(fit_mat, x_0, num_env, num_phen, env_seq, total_time, mean_mu_max, switch_rate=0.1, mu_dep=False, noiserange=4, beta=1, musens=0.5, mumax=2, dependency='sigmoid', sensing_cost=0, switch_matrices=None): """ :param total_times: :param mean_mu_max: :param fit_mat: :param x_0: :param env_seq: :param num_env: :param num_phen: :param switch_rate: :param mu_dep: :param noiserange: :param beta: :return: deviation from maximal mean fitness as a fraction. """ a_mat = switching_mat(fit_mat, num_env, num_phen, switch_rate=switch_rate, mu_dep=mu_dep, sensing_cost=sensing_cost, noiserange=noiserange, beta=beta, musens=musens, mumax=mumax, dependency=dependency, switch_matrices=switch_matrices) # TODO: check how close eigenvalues are eig_vals, eig_vecs = np.linalg.eig(a_mat) m_inverse = np.linalg.inv(eig_vecs) growthcosts = np.zeros(num_env) for env in range(num_env): try: growthcosts[env] = (np.max(fit_mat[env]) - eig_vals[env].max()) # /fit_mat[env,env,env] except: max_eig_val = eig_vals[env].max() if np.imag(max_eig_val) < 1e-10: growthcosts[env] = (np.max(fit_mat[env]) - np.real(max_eig_val)) # /fit_mat[env,env,env] else: growthcosts[env] = (np.max(fit_mat[env]) - eig_vals[env].max()) # /fit_mat[env,env,env] x_t_fracs = np.zeros((num_phen, len(env_seq[0]) + 1)) # initialise array to store phenotype fractions x_t_fracs[:, 0] = x_0 mu = np.zeros(len(env_seq[0])) # array to store mean and max growth rate after each environment # Initialize array for storing results results = np.zeros((4, len(env_seq[0]))) # solve system for specific sequence of environments x_init = x_0 for ind_env, env in enumerate(env_seq[0]): c_scale = np.dot(m_inverse[env], x_init) x_t_fracs[:, ind_env + 1], mu[ind_env], extinction, lag = grow_reportlag(eig_vecs[env], eig_vals[env], c_scale, env_seq[1][ind_env]) results[0, ind_env] = ind_env results[1, ind_env] = lag results[2, ind_env] = growthcosts[env] results[3, ind_env] = (mu[ind_env] * lag) / np.log(2) end_fracs = x_t_fracs[:, ind_env + 1] opt_phen = np.argmax(np.diag(fit_mat[env])) x_adapted = end_fracs[opt_phen] x_init = np.ones(num_phen) * ((1 - x_adapted) / (num_phen - 1)) x_init[opt_phen] = x_adapted if extinction: continue mean_mu = sum(mu * env_seq[1]) / total_time frac_max_mu = mean_mu / mean_mu_max results_df = pd.DataFrame(data=np.transpose(results), columns=['envnumber', 'lag', 'growthcost', 'lag_gen']) results_df['meanmu'] = mean_mu results_df['frac_max_mu'] = frac_max_mu return frac_max_mu, results_df def kl_optimisation_new(fit_mat, x_0, num_env, num_phen, env_seq, total_time, mean_mu_max, switch_rate=0.1, mu_dep=False, dependency='sigmoid', mumin=0, sensing_cost=0, noiserange=4, beta=1, musens=0.5, mumax=2): """ :param total_times: :param mean_mu_max: :param fit_mat: :param x_0: :param env_seq: :param num_env: :param num_phen: :param switch_rate: :param mu_dep: :param noiserange: :param beta: :return: deviation from maximal mean fitness as a fraction. """ a_mat = switching_mat(fit_mat, num_env, num_phen, switch_rate=switch_rate, mu_dep=mu_dep, dependency=dependency, noiserange=noiserange, beta=beta, musens=musens, mumax=mumax, mumin=mumin, sensing_cost=sensing_cost) # TODO: check how close eigenvalues are eig_vals, eig_vecs = np.linalg.eig(a_mat) m_inverse = np.linalg.inv(eig_vecs) x_t_fracs = np.zeros((num_phen, len(env_seq[0]) + 1)) # initialise array to store phenotype fractions x_t_fracs[:, 0] = x_0 mu = np.zeros(len(env_seq[0])) # array to store mean and max growth rate after each environment # solve system for specific sequence of environments for ind_env, env in enumerate(env_seq[0]): c_scale = np.dot(m_inverse[env], x_t_fracs[:, ind_env]) x_t_fracs[:, ind_env + 1], mu[ind_env], extinction = grow(eig_vecs[env], eig_vals[env], c_scale, env_seq[1][ind_env]) if extinction: return 0 mean_mu = sum(mu * env_seq[1]) / total_time frac_max_mu = mean_mu / mean_mu_max return frac_max_mu def kl_optimisation_new_IR(fit_mat, x_0, num_env, num_phen, env_seq, total_time, mean_mu_max, switch_rate=0.1, mu_dep=False, dependency='sigmoid', mumin=0, sensing_cost=0, noiserange=4, beta=1, musens=0.5, mumax=2): """ :param total_times: :param mean_mu_max: :param fit_mat: :param x_0: :param env_seq: :param num_env: :param num_phen: :param switch_rate: :param mu_dep: :param noiserange: :param beta: :return: deviation from maximal mean fitness as a fraction. """ a_mat = switching_mat(fit_mat, num_env, num_phen, switch_rate=switch_rate, mu_dep=mu_dep, dependency=dependency, noiserange=noiserange, beta=beta, musens=musens, mumax=mumax, mumin=mumin, sensing_cost=sensing_cost) # TODO: check how close eigenvalues are eig_vals, eig_vecs = np.linalg.eig(a_mat) m_inverse = np.linalg.inv(eig_vecs) x_t_fracs = np.zeros((num_phen, len(env_seq[0]) + 1)) # initialise array to store phenotype fractions x_t_fracs[:, 0] = x_0 mu = np.zeros(len(env_seq[0])) # array to store mean and max growth rate after each environment # solve system for specific sequence of environments x_init = x_0 for ind_env, env in enumerate(env_seq[0]): c_scale = np.dot(m_inverse[env], x_init) x_t_fracs[:, ind_env + 1], mu[ind_env], extinction = grow(eig_vecs[env], eig_vals[env], c_scale, env_seq[1][ind_env]) if extinction: return 0 end_fracs = x_t_fracs[:, ind_env + 1] opt_phen = np.argmax(np.diag(fit_mat[env])) x_adapted = end_fracs[opt_phen] x_init = np.ones(num_phen) * ((1 - x_adapted) / (num_phen - 1)) x_init[opt_phen] = x_adapted mean_mu = sum(mu * env_seq[1]) / total_time frac_max_mu = mean_mu / mean_mu_max return frac_max_mu def get_mu_pdf(fit_mat, x_0, num_env, num_phen, env_seq, total_time, mean_mu_max, switch_rate=0.1, mu_dep=False, noiserange=4, beta=1, musens=0.5, mumax=2, mumin=-0.2, n_bins=200, dependency='sigmoid', sensing_cost=0): """ :param total_times: :param mean_mu_max: :param fit_mat: :param x_0: :param env_seq: :param num_env: :param num_phen: :param switch_rate: :param mu_dep: :param noiserange: :param beta: :return: deviation from maximal mean fitness as a fraction. """ a_mat = switching_mat(fit_mat, num_env, num_phen, switch_rate=switch_rate, mu_dep=mu_dep, noiserange=noiserange, beta=beta, musens=musens, mumax=mumax, dependency=dependency, mumin=mumin, sensing_cost=sensing_cost) lowerbound = np.min(np.sum(a_mat, axis=1)) murange = mumax - lowerbound bincenters = np.linspace(lowerbound - murange / 100, mumax + murange / 100, n_bins) binwidth = bincenters[1] - bincenters[0] mu_pdf = np.zeros(n_bins) t_cur = 0 # TODO: check how close eigenvalues are eig_vals, eig_vecs = np.linalg.eig(a_mat) m_inverse = np.linalg.inv(eig_vecs) x_t_fracs = np.zeros((num_phen, len(env_seq[0]) + 1)) # initialise array to store phenotype fractions x_t_fracs[:, 0] = x_0 mu = np.zeros(len(env_seq[0])) # array to store mean and max growth rate after each environment # solve system for specific sequence of environments for ind_env, env in enumerate(env_seq[0]): c_scale = np.dot(m_inverse[env], x_t_fracs[:, ind_env]) x_t_fracs[:, ind_env + 1], mu[ind_env], extinction, x_pdf, t_env = grow_reportpdf(eig_vecs[env], eig_vals[env], c_scale, env_seq[1][ind_env]) mu_pdf_env = convert_xpdf_to_mupdf(x_pdf, np.sum(a_mat[env], axis=0), binwidth, bincenters) mu_pdf = mu_pdf * (t_cur / (t_cur + t_env)) + mu_pdf_env * (t_env / (t_cur + t_env)) t_cur = t_cur + t_env if extinction: return 0 mean_mu = sum(mu * env_seq[1]) / total_time return mean_mu, mu_pdf, bincenters def get_mu_trace(fit_mat, x_0, num_env, num_phen, env_seq, switch_rate=0.1, mu_dep=False, sensing_cost=0, noiserange=4, beta=1, musens=0.5, mumax=2, mumin=-0.2, n_bins=200, dependency='sigmoid'): """ :param total_times: :param mean_mu_max: :param fit_mat: :param x_0: :param env_seq: :param num_env: :param num_phen: :param switch_rate: :param mu_dep: :param noiserange: :param beta: :return: deviation from maximal mean fitness as a fraction. """ t_cur = 0 a_mat = switching_mat(fit_mat, num_env, num_phen, switch_rate=switch_rate, mu_dep=mu_dep, sensing_cost=sensing_cost, noiserange=noiserange, beta=beta, musens=musens, mumax=mumax, dependency=dependency) # TODO: check how close eigenvalues are eig_vals, eig_vecs = np.linalg.eig(a_mat) m_inverse = np.linalg.inv(eig_vecs) x_t_fracs = np.zeros((num_phen, len(env_seq[0]) + 1)) # initialise array to store phenotype fractions x_t_fracs[:, 0] = x_0 # Initialize arrays to store trace data t_trace = [0] mu_trace = [0] logOD_trace = [0] x_trace = [x_0] # solve system for specific sequence of environments for ind_env, env in enumerate(env_seq[0]): c_scale = np.dot(m_inverse[env], x_t_fracs[:, ind_env]) x_t_fracs[:, ind_env + 1], t_trace_env, mu_trace_env, x_trace_env = grow_reporttrace(eig_vecs[env], eig_vals[env], c_scale, env_seq[1][ind_env]) timestep = 0.1 num_steps = max(int(np.ceil(env_seq[1][ind_env] / timestep)), 10) times = np.linspace(0, env_seq[1][ind_env], num_steps) logOD_trace_env = grow_reportlogOD(eig_vecs[env], eig_vals[env], c_scale, times) logOD_trace_env = np.array(logOD_trace_env[1:]) t_trace.extend(t_trace_env + t_cur) t_cur += env_seq[1][ind_env] mu_trace.extend(mu_trace_env) x_trace.extend(x_trace_env) logOD_trace.extend(logOD_trace_env + logOD_trace[-1]) # t_trace = np.array(t_trace[1:]) # mu_trace = np.array(mu_trace[1:]) # x_trace = np.array(x_trace[1:]) # logOD_trace = np.array(logOD_trace[1:]) t_trace = np.array(t_trace) mu_trace = np.array(mu_trace) x_trace = np.array(x_trace) logOD_trace = np.array(logOD_trace) return t_trace, mu_trace, x_trace, logOD_trace def get_logOD_oneenv(fit_mat, x_0, num_env, num_phen, env=0, switch_rate=0.1, mu_dep=False, dependency='sigmoid', noiserange=4, beta=1, musens=0.5, mumax=2, times=np.linspace(0, 20), sensing_cost=0): """ :param fit_mat: :param x_0: :param num_env: :param num_phen: :param switch_rate: :param mu_dep: :param noiserange: :param beta: :return: deviation from maximal mean fitness as a fraction. """ a_mat = switching_mat(fit_mat, num_env, num_phen, switch_rate=switch_rate, mu_dep=mu_dep, dependency=dependency, noiserange=noiserange, beta=beta, musens=musens, mumax=mumax, sensing_cost=sensing_cost) # TODO: check how close eigenvalues are eig_vals, eig_vecs = np.linalg.eig(a_mat) m_inverse = np.linalg.inv(eig_vecs) # solve system for specific sequence of environments c_scale = np.dot(m_inverse[env], x_0) logOD_trace = grow_reportlogOD(eig_vecs[env], eig_vals[env], c_scale, times) max_eig = eig_vals[env].max() return logOD_trace, max_eig def get_pretty_pdf(bincenters, mu_pdf, smoothing=0.1, n_bins=200): mus = bincenters freqs = mu_pdf bandwidth = smoothing * mus.std() * mus.size ** (-1 / 5.) support = np.linspace(min(mus) - bandwidth, max(mus) + bandwidth, n_bins) supp_width = support[1] - support[0] kernels = [] for ind, mu_i in enumerate(mus): if ind % 1000 == 0: print("Calculating mu dist: '{0}' out of '{1}'".format(ind, len(mus))) kernel = scipy.stats.norm(mu_i, bandwidth).pdf(support) kernel = kernel * freqs[ind] kernels.append(kernel) density = np.sum(kernels, axis=0) density /= scipy.integrate.trapz(density, support) return support, density def get_landscape_df(fit_mat, env_seq): num_env = fit_mat.shape[0] total_time = np.sum(env_seq[1]) landscape_df = pd.DataFrame(columns=['environment', 'growthrate', 'occurrence']) for env_ind in range(num_env): growthrates = np.diag(fit_mat[env_ind]) env_df = pd.DataFrame(data=growthrates, columns=['growthrate']) env_df['environment'] = env_ind times_env = [env_seq[1][ind] for ind, env in enumerate(env_seq[0]) if env == env_ind] occurrence = np.sum(times_env) / total_time env_df['occurrence'] = occurrence landscape_df = landscape_df.append(env_df, sort=True) return landscape_df def convert_xpdf_to_mupdf(x_pdf, growthrates, binwidth, bincenters): mu_pdf = np.zeros(len(bincenters)) x_pdf = np.real(x_pdf) for phen, freq in enumerate(x_pdf): corr_mu = growthrates[phen] bin_number = np.where((bincenters - binwidth / 2 <= corr_mu) & (bincenters + binwidth / 2 >= corr_mu))[0] mu_pdf[bin_number] += freq return mu_pdf def get_switch_matrix_from_vect(switch_vect, num_phen): if int(np.sqrt(len(switch_vect))) != num_phen - 1: raise ValueError('Not the right number of switching rates was given.') counter = 0 switch_matrix = np.zeros((num_phen, num_phen)) for i in range(num_phen): for j in range(num_phen): if i != j: switch_matrix[i, j] = switch_vect[counter] counter += 1 return switch_matrix def mullerplot_fig2(x_variable, y_variable, **kwargs): ax = plt.gca() data = kwargs.pop("data") phen_names = kwargs.pop("phen_names") env_seq = kwargs.pop("env_seq") env_changes = np.cumsum(env_seq[1]) if abs(env_changes[-1] - np.max(data['time'])) < 1e-6: env_changes = env_changes[:-1] data = data.sort_values('time') x = np.unique(np.sort(data['time'])).tolist() y = [] for phen in phen_names: phen_data = data[data['phenotype'] == phen][['fraction']].values.flatten() y.append(phen_data) new_colors = kwargs.pop("new_colors") ax.stackplot(x, y, colors=new_colors, lw=0.1) for change in env_changes: plt.plot([change, change], [0, 1.1], color='0.9', lw=2, ls='--') def plot_landscape_and_noiserelations(fit_mat, env_seq, res_const_x, res_lin_x, res_exp_x, res_sigm_x, mumax, mumin, store_figs_filename=False, kinds_to_show=['const', 'lin', 'exp', 'sigm']): kind_colors = ['#abd9e9', '#d7191c', '#2c7bb6', '#fdae61', ] num_phen = fit_mat[0].shape[0] num_env = fit_mat.shape[0] if num_phen == 2: phen_colors = sns.xkcd_palette(["greyish", "faded green"]) else: phen_colors = sns.color_palette("cubehelix", num_phen) phen_colors.reverse() landscape_df = get_landscape_df(fit_mat, env_seq) # calculate and show the optimal switching rates per growth rate growth_rates = np.linspace(np.min(fit_mat), np.max(fit_mat), 100) res_array = np.zeros((len(growth_rates), 5)) res_array[:, 0] = growth_rates res_array[:, 1] = res_const_x for i, mu in enumerate(growth_rates): res_array[i, 2] = sigmoid_switch(mu, mumax, res_sigm_x[0], res_sigm_x[2], res_sigm_x[3], (res_sigm_x[1] - res_sigm_x[0]) / res_sigm_x[0]) for i, mu in enumerate(growth_rates): res_array[i, 3] = exponential_mudep(mu, mumin, res_exp_x[0], res_exp_x[2], (res_exp_x[1] - res_exp_x[0]) / res_exp_x[0]) for i, mu in enumerate(growth_rates): res_array[i, 4] = linear_mudep(mu, mumin, mumax, res_lin_x[0], (res_lin_x[1] - res_lin_x[0]) / res_lin_x[0]) res_df = pd.DataFrame(data=res_array, columns=['mu', 'const', 'sigm', 'exp', 'lin']) # traces_df_filtered = traces_df[traces_df['switching type'].isin(kinds_to_show)] fig, ax = plt.subplots() ax.set_xlabel('growth rate') ax.set_ylabel('') ax.scatter('growthrate', 'environment', s=20, c='gray', data=landscape_df, zorder=1) ax.tick_params(axis='y', which='both', left=False, right=False, labelleft=False, labelright=False) if num_phen == num_env: ax.scatter(np.max(np.max(fit_mat, axis=1), axis=1), range(fit_mat.shape[0]), s=30, c=phen_colors, zorder=2) ax2 = ax.twinx() ax2.set_ylabel('switch rate') for kind_ind, kind in enumerate(kinds_to_show): ax2.plot('mu', kind, color=kind_colors[kind_ind], lw=2, data=res_df, zorder=-1) ax2.tick_params(axis='y', which='major', left=True, right=False, labelleft=True, labelright=False) ax2.tick_params(axis='y', which='minor', left=False, right=False, labelleft=True, labelright=False) ax2.yaxis.set_label_position("left") if store_figs_filename: workingdir = os.getcwd() filename = store_figs_filename + '_fitnesslandscape' plt.savefig(os.path.join(workingdir, "results", filename + '.png')) plt.savefig(os.path.join(workingdir, "results", filename + '.svg')) def plot_mu_distributions(fit_mat, x0, num_env, num_phen, env_seq, total_time, mean_mu_max, mumax, mumin, store_figs_filename=False, res_const_x=[], res_lin_x=[], res_exp_x=[], res_sigm_x=[], res_sensing_x=[], kinds_to_show=['const', 'lin', 'exp', 'sigm'], sensing_cost=0): kind_colors = {'sensing': '#d7191c', 'lin': '#fdae61', 'const': '#abd9e9', 'exp': '#fdae61', 'sigm': '#abd9e9'} nbins = 200 info_dict = {} # General res_dict = {'const': res_const_x, 'lin': res_lin_x, 'exp': res_exp_x, 'sigm': res_sigm_x, 'sensing': res_sensing_x} dep_dict = {'const': '', 'lin': 'linear', 'exp': 'exponential', 'sigm': 'sigmoid', 'sensing': 'sensing'} pdfs_df = pd.DataFrame(columns=['growth rate', 'probability', 'switching type']) for sw_type in kinds_to_show: mu_dep = (sw_type != 'const') res = res_dict[sw_type] dep = dep_dict[sw_type] switch_rate = res[0] noiserange, beta, musens = (np.nan, np.nan, np.nan) if len(res) > 1: noiserange = (res[1] - res[0]) / res[0] if len(res) > 2: beta = res[2] if len(res) > 3: musens = res[3] mean_mu, mu_pdf, bincenters = get_mu_pdf(fit_mat, x0, num_env, num_phen, env_seq, total_time, mean_mu_max, sensing_cost=sensing_cost, switch_rate=switch_rate, mu_dep=mu_dep, noiserange=noiserange, mumin=mumin, beta=beta, musens=musens, mumax=mumax, n_bins=nbins, dependency=dep) bincenters_pretty, mu_pdf_pretty = get_pretty_pdf(bincenters, mu_pdf, smoothing=0.1, n_bins=nbins) pdf_df = pd.DataFrame( data=np.concatenate((bincenters_pretty[:, np.newaxis], mu_pdf_pretty[:, np.newaxis]), axis=1), columns=['growth rate', 'probability']) pdf_df['switching type'] = sw_type info_dict.update({sw_type: {'mean_mu': mean_mu}}) pdfs_df = pdfs_df.append(pdf_df, ignore_index=True) pdfs_df_filtered = pdfs_df[pdfs_df['switching type'].isin(kinds_to_show)] # Plot the bunch fig, ax = plt.subplots() ax.set_xlabel('growth rate') ax.set_ylabel('probability density') for switch_ind, switchtype in enumerate(pdfs_df_filtered['switching type'].unique().tolist()): ax.plot('growth rate', 'probability', color=kind_colors[switchtype], lw=2, data=pdfs_df_filtered[pdfs_df_filtered['switching type'] == switchtype], label=switchtype) ylims = ax.get_ylim() for switch_ind, switchtype in enumerate(kinds_to_show): ax.plot([info_dict[switchtype]['mean_mu'], info_dict[switchtype]['mean_mu']], [ylims[0] - 10, ylims[1] + 10], color=kind_colors[switchtype], lw=2, ls='--') ax.set_ylim(ylims) plt.legend() if store_figs_filename: workingdir = os.getcwd() filename = store_figs_filename + '_mupdf' plt.savefig(os.path.join(workingdir, "results", filename + '.png')) plt.savefig(os.path.join(workingdir, "results", filename + '.svg')) def plot_mu_trace(fit_mat, x0, num_env, num_phen, env_seq, mumax, mumin, res_const_x=[], res_lin_x=[], res_exp_x=[], res_sigm_x=[], res_sensing_x=[], envs_to_show=10, kinds_to_show=['const', 'lin', 'exp', 'sigm'], store_figs_filename=False, sensing_cost=0, phen_colors=None, avg_mus_dict=None): env_seq = (env_seq[0][:envs_to_show], env_seq[1][:envs_to_show]) kind_colors = {'sensing': '#d7191c', 'lin': '#fdae61', 'const': '#abd9e9', 'exp': '#fdae61', 'sigm': '#abd9e9'} blackish = '#%02x%02x%02x' % (35, 31, 32) """Plot traces of average mu over environment""" traces_df = pd.DataFrame(columns=['time', 'mu', 'logOD', 'entropy', 'switching type']) colnames = ['time'] for i in range(num_phen): colnames.append('phenotype ' + str(i)) frac_traces_df =
pd.DataFrame(columns=['time', 'switching type', 'phenotype', 'fraction'])
pandas.DataFrame
""" Dataframe-like class to hold general energy-related timeseries; either volume ([MW] or [MWh]), price ([Eur/MWh]) or both; in all cases there is a single timeseries for each. """ from __future__ import annotations from . import single_helper from .base import PfLine from .. import changefreq from typing import Dict, Iterable, Union import pandas as pd import numpy as np class SinglePfLine(PfLine): """Portfolio line without children. Has a single dataframe; .children is the empty dictionary. Parameters ---------- data: Any Generally: object with one or more attributes or items ``w``, ``q``, ``r``, ``p``; all timeseries. Most commonly a ``pandas.DataFrame`` or a dictionary of ``pandas.Series``, but may also be e.g. another PfLine object. Returns ------- SinglePfLine Notes ----- * If the timeseries or values in ``data`` do not have a ``pint`` data type, the standard units are assumed (MW, MWh, Eur, Eur/MWh). * If the timeseries or values in ``data`` do have a ``pint`` data type, they are converted into the standard units. """ def __new__(cls, data): # Catch case where data is already a valid class instance. if isinstance(data, SinglePfLine): return data # TODO: return copy # Otherwise, do normal thing. return super().__new__(cls, data) def __init__(self, data: Union[PfLine, Dict, pd.DataFrame, pd.Series]): self._df = single_helper.make_dataframe(data) # Implementation of ABC methods. @property def children(self) -> Dict: return {} @property def index(self) -> pd.DatetimeIndex: return self._df.index @property def w(self) -> pd.Series: if self.kind == "p": return pd.Series(np.nan, self.index, name="w", dtype="pint[MW]") else: return pd.Series(self.q / self.index.duration, name="w").pint.to("MW") @property def q(self) -> pd.Series: if self.kind == "p": return
pd.Series(np.nan, self.index, name="q", dtype="pint[MWh]")
pandas.Series
from _operator import itemgetter import gc from math import sqrt, log10 import math import os import pickle import random import time import psutil from nltk import tokenize as tokenise, stem import numpy as np import pandas as pd class SessionKNN: ''' SessionKNN(k, sample_size=1000, sampling='recent', similarity='cosine', title_boost=0, seq_weighting=None, idf_weight=None, pop_weight=False, pop_boost=0, artist_boost=0, remind=False, sim_cap=0, normalize=True, neighbor_decay=0, session_key = 'playlist_id', item_key= 'track_id', time_key= 'pos', folder=None, return_num_preds=500 ) Parameters ----------- k : int Number of neighboring session to calculate the item scores from. (Default value: 100) sample_size : int Defines the length of a subset of all training sessions to calculate the nearest neighbors from. (Default value: 500) sampling : string String to define the sampling method for sessions (recent, random). (default: recent) similarity : string String to define the method for the similarity calculation (jaccard, cosine, binary, tanimoto). (default: jaccard) remind : bool Should the last items of the current session be boosted to the top as reminders pop_boost : int Push popular items in the neighbor sessions by this factor. (default: 0 to leave out) extend : bool Add evaluated sessions to the maps normalize : bool Normalize the scores in the end session_key : string Header of the session ID column in the input file. (default: 'SessionId') item_key : string Header of the item ID column in the input file. (default: 'ItemId') time_key : string Header of the timestamp column in the input file. (default: 'Time') ''' def __init__( self, k, sample_size=1000, sampling='recent', similarity='cosine', title_boost=0, seq_weighting=None, idf_weight=None, pop_weight=False, pop_boost=0, artist_boost=0, remind=False, sim_cap=0, normalize=True, neighbor_decay=0, session_key = 'playlist_id', item_key= 'track_id', time_key= 'pos', folder=None, return_num_preds=500 ): self.k = k self.sample_size = sample_size self.sampling = sampling self.similarity = similarity self.pop_boost = pop_boost self.artist_boost = artist_boost self.title_boost = title_boost self.seq_weighting = seq_weighting self.idf_weight = idf_weight self.pop_weight = pop_weight self.session_key = session_key self.item_key = item_key self.time_key = time_key self.remind = remind self.normalize = normalize self.sim_cap = sim_cap self.neighbor_decay = neighbor_decay self.return_num_preds = return_num_preds #updated while recommending self.session = -1 self.session_items = [] self.relevant_sessions = set() # cache relations once at startup self.session_item_map = dict() self.item_session_map = dict() self.session_time = dict() self.folder = folder self.sim_time = 0 def train( self, data, test=None ): ''' Trains the predictor. Parameters -------- data: pandas.DataFrame Training data. It contains the transactions of the sessions. It has one column for session IDs, one for item IDs and one for the timestamp of the events (unix timestamps). It must have a header. Column names are arbitrary, but must correspond to the ones you set during the initialization of the network (session_key, item_key, time_key properties). ''' train = data['actions'] playlists = data['playlists'] folder = self.folder if folder is not None and os.path.isfile( folder + 'session_item_map.pkl' ): self.session_item_map = pickle.load( open( folder + 'session_item_map.pkl', 'rb') ) self.session_time = pickle.load( open( folder + 'session_time.pkl', 'rb' ) ) self.item_session_map = pickle.load( open( folder + 'item_session_map.pkl', 'rb' ) ) else: index_session = train.columns.get_loc( self.session_key ) index_item = train.columns.get_loc( self.item_key ) #index_time = train.columns.get_loc( self.time_key ) session = -1 session_items = set() timestamp = -1 cnt = 0 tstart = time.time() timemap = pd.Series( index=playlists.playlist_id, data=playlists.modified_at ) for row in train.itertuples(index=False): # cache items of sessions if row[index_session] != session: if len(session_items) > 0: self.session_item_map.update({session : session_items}) # cache the last time stamp of the session self.session_time.update({session : timestamp}) session = row[index_session] session_items = set() timestamp = timemap[row[index_session]] session_items.add(row[index_item]) # cache sessions involving an item map_is = self.item_session_map.get( row[index_item] ) if map_is is None: map_is = set() self.item_session_map.update({row[index_item] : map_is}) map_is.add(row[index_session]) cnt += 1 if cnt % 100000 == 0: print( ' -- finished {} of {} rows in {}s'.format( cnt, len(train), (time.time() - tstart) ) ) # Add the last tuple self.session_item_map.update({session : session_items}) self.session_time.update({session : timestamp}) if folder is not None: pickle.dump( self.session_item_map, open( folder + 'session_item_map.pkl', 'wb' ) ) pickle.dump( self.session_time, open( folder + 'session_time.pkl', 'wb' ) ) pickle.dump( self.item_session_map, open( folder + 'item_session_map.pkl', 'wb' ) ) self.item_pop = pd.DataFrame() self.item_pop['pop'] = train.groupby( self.item_key ).size() #self.item_pop['pop'] = self.item_pop['pop'] / self.item_pop['pop'].max() self.item_pop['pop'] = self.item_pop['pop'] / len( train ) self.item_pop = self.item_pop['pop'].to_dict() if self.idf_weight != None: self.idf =
pd.DataFrame()
pandas.DataFrame
import logging import os import random import sys import time from itertools import chain from collections import Iterable import gc import glob import numpy as np import pandas as pd from PIL import Image import matplotlib.pyplot as plt from attrdict import AttrDict from tqdm import tqdm from pycocotools import mask as cocomask from sklearn.model_selection import BaseCrossValidator from sklearn.externals import joblib from steppy.base import BaseTransformer, Step from steppy.utils import get_logger from skimage.transform import resize import yaml from imgaug import augmenters as iaa import imgaug as ia import torch logger = get_logger() def read_config(config_path): with open(config_path) as f: config = yaml.load(f) return AttrDict(config) def check_env_vars(): assert os.getenv('NEPTUNE_API_TOKEN'), """You must put your Neptune API token in the \ NEPTUNE_API_TOKEN env variable. You should run: $ export NEPTUNE_API_TOKEN=your_neptune_api_token""" assert os.getenv('CONFIG_PATH'), """You must specify path to the config file in \ CONFIG_PATH env variable. For example run: $ export CONFIG_PATH=neptune.yaml""" def init_logger(): logger = logging.getLogger('salt-detection') logger.setLevel(logging.INFO) message_format = logging.Formatter(fmt='%(asctime)s %(name)s >>> %(message)s', datefmt='%Y-%m-%d %H-%M-%S') # console handler for validation info ch_va = logging.StreamHandler(sys.stdout) ch_va.setLevel(logging.INFO) ch_va.setFormatter(fmt=message_format) # add the handlers to the logger logger.addHandler(ch_va) return logger def get_logger(): return logging.getLogger('salt-detection') def create_submission(meta, predictions): output = [] for image_id, mask in zip(meta['id'].values, predictions): rle_encoded = ' '.join(str(rle) for rle in run_length_encoding(mask)) output.append([image_id, rle_encoded]) submission = pd.DataFrame(output, columns=['id', 'rle_mask']).astype(str) return submission def encode_rle(predictions): return [run_length_encoding(mask) for mask in predictions] def read_masks(masks_filepaths): masks = [] for mask_filepath in tqdm(masks_filepaths): mask = Image.open(mask_filepath) mask = np.asarray(mask.convert('L').point(lambda x: 0 if x < 128 else 1)).astype(np.uint8) masks.append(mask) return masks def read_images(filepaths): images = [] for filepath in filepaths: image = np.array(Image.open(filepath)) images.append(image) return images def run_length_encoding(x): # https://www.kaggle.com/c/data-science-bowl-2018/discussion/48561# bs = np.where(x.T.flatten())[0] rle = [] prev = -2 for b in bs: if (b > prev + 1): rle.extend((b + 1, 0)) rle[-1] += 1 prev = b return rle def run_length_decoding(mask_rle, shape): """ Based on https://www.kaggle.com/msl23518/visualize-the-stage1-test-solution and modified Args: mask_rle: run-length as string formatted (start length) shape: (height, width) of array to return Returns: numpy array, 1 - mask, 0 - background """ s = mask_rle.split() starts, lengths = [np.asarray(x, dtype=int) for x in (s[0:][::2], s[1:][::2])] starts -= 1 ends = starts + lengths img = np.zeros(shape[1] * shape[0], dtype=np.uint8) for lo, hi in zip(starts, ends): img[lo:hi] = 1 return img.reshape((shape[1], shape[0])).T def generate_metadata(train_images_dir, test_images_dir, depths_filepath): depths = pd.read_csv(depths_filepath) metadata = {} for filename in tqdm(os.listdir(os.path.join(train_images_dir, 'images'))): image_filepath = os.path.join(train_images_dir, 'images', filename) mask_filepath = os.path.join(train_images_dir, 'masks', filename) image_id = filename.split('.')[0] depth = depths[depths['id'] == image_id]['z'].values[0] size = (np.array(Image.open(mask_filepath)) > 0).astype(np.uint8).sum() is_not_empty = int(size != 0) metadata.setdefault('file_path_image', []).append(image_filepath) metadata.setdefault('file_path_mask', []).append(mask_filepath) metadata.setdefault('is_train', []).append(1) metadata.setdefault('id', []).append(image_id) metadata.setdefault('z', []).append(depth) metadata.setdefault('size', []).append(size) metadata.setdefault('is_not_empty', []).append(is_not_empty) for filename in tqdm(os.listdir(os.path.join(test_images_dir, 'images'))): image_filepath = os.path.join(test_images_dir, 'images', filename) image_id = filename.split('.')[0] depth = depths[depths['id'] == image_id]['z'].values[0] size = np.nan is_not_empty = np.nan metadata.setdefault('file_path_image', []).append(image_filepath) metadata.setdefault('file_path_mask', []).append(None) metadata.setdefault('is_train', []).append(0) metadata.setdefault('id', []).append(image_id) metadata.setdefault('z', []).append(depth) metadata.setdefault('size', []).append(size) metadata.setdefault('is_not_empty', []).append(is_not_empty) return
pd.DataFrame(metadata)
pandas.DataFrame
import datetime as dt import os import pickle from typing import Dict, List import numpy as np import pandas as pd import tensorflow as tf from tensorflow.keras import activations from dl_portfolio.logger import LOGGER from dl_portfolio.data import get_features from dl_portfolio.pca_ae import build_model from dl_portfolio.regularizers import WeightsOrthogonality from dl_portfolio.regressors.nonnegative_linear.ridge import NonnegativeRidge from dl_portfolio.regressors.nonnegative_linear.base import NonnegativeLinear from dl_portfolio.constant import BASE_FACTOR_ORDER_DATASET2, BASE_FACTOR_ORDER_DATASET1 from sklearn.linear_model import LinearRegression, Lasso LOG_BASE_DIR = './dl_portfolio/log' def build_linear_model(ae_config, reg_type: str, **kwargs): if reg_type == 'nn_ridge': if ae_config.l_name == 'l2': alpha = kwargs.get('alpha', ae_config.l) kwargs['alpha'] = alpha else: alpha = kwargs.get('alpha') assert alpha is not None model = NonnegativeRidge(**kwargs) elif reg_type == 'nn_ls_custom': model = NonnegativeLinear() elif reg_type == 'nn_ls': model = LinearRegression(positive=True, fit_intercept=False, **kwargs) elif reg_type == 'nn_lasso': if ae_config.l_name == 'l1': alpha = kwargs.get('alpha', ae_config.l) kwargs['alpha'] = alpha else: alpha = kwargs.get('alpha') assert alpha is not None model = Lasso(positive=True, fit_intercept=False, **kwargs) else: raise NotImplementedError(reg_type) return model def fit_nnls_one_cv(cv: int, test_set: str, data: pd.DataFrame, assets: List[str], base_dir: str, ae_config, reg_type: str = 'nn_ridge', **kwargs): model, scaler, dates, test_data, test_features, prediction, embedding, decoding = load_result(ae_config, test_set, data, assets, base_dir, cv) prediction -= scaler['attributes']['mean_'] prediction /= np.sqrt(scaler['attributes']['var_']) mse_or = np.mean((test_data - prediction) ** 2, 0) relu_activation_layer = tf.keras.Model(inputs=model.input, outputs=model.get_layer('encoder').output) relu_activation = relu_activation_layer.predict(test_data) relu_activation = pd.DataFrame(relu_activation, index=prediction.index) # Fit linear encoder to the factors # input_dim = model.layers[0].input_shape[0][-1] # encoding_dim = model.layers[1].output_shape[-1] # vlin_encoder = create_linear_encoder_with_constraint(input_dim, encoding_dim) # lin_encoder.fit(test_data_i, relu_activation_i, batch_size = 1, epochs=500, verbose=2, # max_queue_size=20, workers=2*os.cpu_count()-1, use_multiprocessing=True) # factors_nnls_i = lin_encoder.predict(test_data_i) # lin_embedding = pd.DataFrame(encoder.layers[1].weights[0].numpy(), index=embed.index) # # Fit non-negative linear least square to the factor reg_nnls = build_linear_model(ae_config, reg_type, **kwargs) x = test_data.copy() mean_ = np.mean(x, 0) # Center the data as we do not fit intercept x = x - mean_ reg_nnls.fit(x, relu_activation) # Now compute intercept: it is just the mean of the dependent variable intercept_ = np.mean(relu_activation).values factors_nnls = reg_nnls.predict(x) + intercept_ factors_nnls = pd.DataFrame(factors_nnls, index=prediction.index) # Get reconstruction error based on nnls embedding if ae_config.model_type == "pca_ae_model": # For PCA AE model encoder and decoder share weights weights = reg_nnls.coef_.copy() # Compute bias (reconstruction intercept) bias = mean_ - np.dot(np.mean(factors_nnls, 0), weights) elif ae_config.model_type == "ae_model": weights = model.get_layer('decoder').get_weights()[0] bias = model.get_layer('decoder').get_weights()[1] else: raise NotImplementedError(ae_config.model_type) # Reconstruction pred_nnls_model = np.dot(factors_nnls, weights) + bias mse_nnls_model = np.mean((test_data - pred_nnls_model) ** 2, 0) # pred_nnls_factors = pd.concat([pred_nnls_factors, pd.DataFrame(pred_nnls_factors_i, # columns=pred.columns, # index=pred.index)]) pred_nnls_model = pd.DataFrame(pred_nnls_model, columns=prediction.columns, index=prediction.index) test_data = pd.DataFrame(test_data, columns=prediction.columns, index=prediction.index) reg_coef = pd.DataFrame(weights.T, index=embedding.index) return test_data, embedding, decoding, reg_coef, relu_activation, factors_nnls, prediction, pred_nnls_model, mse_or, mse_nnls_model def get_nnls_analysis(test_set: str, data: pd.DataFrame, assets: List[str], base_dir: str, ae_config, reg_type: str = 'nn_ridge', **kwargs): """ :param test_set: :param data: :param assets: :param base_dir: :param ae_config: :param reg_type: regression type to fit "nn_ridge" for non negative Ridge or "nn_ls" for non negative LS :return: """ test_data = pd.DataFrame() prediction = pd.DataFrame() # pred_nnls_factors = pd.DataFrame() pred_nnls_model = pd.DataFrame() factors_nnls = pd.DataFrame() relu_activation = pd.DataFrame() embedding = {} decoding = {} reg_coef = {} mse = { 'original': [], 'nnls_factors': [], 'nnls_model': [] } # cv = 0 for cv in ae_config.data_specs: LOGGER.info(f'CV: {cv}') test_data_i, embedding_i, decoding_i, reg_coef_i, relu_activation_i, factors_nnls_i, pred, pred_nnls_model_i, mse_or, mse_nnls_model = fit_nnls_one_cv( cv, test_set, data, assets, base_dir, ae_config, reg_type=reg_type, **kwargs) embedding[cv] = embedding_i decoding[cv] = decoding_i reg_coef[cv] = reg_coef_i relu_activation = pd.concat([relu_activation, relu_activation_i]) factors_nnls = pd.concat([factors_nnls, factors_nnls_i]) prediction = pd.concat([prediction, pred]) pred_nnls_model = pd.concat([pred_nnls_model, pred_nnls_model_i]) test_data = pd.concat([test_data, test_data_i]) mse['original'].append(mse_or) mse['nnls_model'].append(mse_nnls_model) results = { 'test_data': test_data, 'prediction': prediction, # 'pred_nnls_factors': pred_nnls_factors, 'pred_nnls_model': pred_nnls_model, 'factors_nnls': factors_nnls, 'relu_activation': relu_activation, 'mse': mse, 'embedding': embedding, 'decoding': decoding, 'reg_coef': reg_coef } return results def reorder_columns(data, new_order): return data.iloc[:, new_order] def load_result_wrapper(config, test_set: str, data: pd.DataFrame, assets: List[str], base_dir: str, reorder_features: bool = True, first_cv=None): test_data = pd.DataFrame() prediction = pd.DataFrame() features = pd.DataFrame() relu_activation = pd.DataFrame() residuals = pd.DataFrame() embedding = {} decoding = {} cvs = list(config.data_specs.keys()) if first_cv: cvs = [cv for cv in cvs if cv >= first_cv] for cv in cvs: embedding[cv] = {} model, scaler, dates, t_data, f, pred, embed, decod, relu_act = load_result(config, test_set, data, assets, base_dir, cv, reorder_features) t_data = pd.DataFrame(t_data, columns=pred.columns, index=pred.index) t_data *= scaler["attributes"]["scale_"] t_data += scaler["attributes"]["mean_"] test_data = pd.concat([test_data, t_data]) prediction = pd.concat([prediction, pred]) features = pd.concat([features, f]) if relu_act is not None: relu_activation = pd.concat([relu_activation, relu_act]) residuals = pd.concat([residuals, t_data - pred]) embedding[cv] = embed decoding[cv] = decod return test_data, prediction, features, residuals, embedding, decoding, relu_activation def get_linear_encoder(config, test_set: str, data: pd.DataFrame, assets: List[str], base_dir: str, cv: str, reorder_features=True): """ :param model_type: 'ae' or 'nmf' :param test_set: :param data: :param assets: :param base_dir: :param cv: :param ae_config: :return: """ model_type = config.model_type assert model_type in ["pca_ae_model", "ae_model", "convex_nmf", "semi_nmf"] assert test_set in ["train", "val", "test"] scaler = pickle.load(open(f'{base_dir}/{cv}/scaler.p', 'rb')) input_dim = len(assets) model, encoder, extra_features = build_model(config.model_type, input_dim, config.encoding_dim, n_features=None, extra_features_dim=1, activation=config.activation, batch_normalization=config.batch_normalization, kernel_initializer=config.kernel_initializer, kernel_constraint=config.kernel_constraint, kernel_regularizer=config.kernel_regularizer, activity_regularizer=config.activity_regularizer, loss=config.loss, uncorrelated_features=config.uncorrelated_features, weightage=config.weightage) model.load_weights(f'{base_dir}/{cv}/model.h5') layer_name = list(filter(lambda x: 'uncorrelated_features_layer' in x, [l.name for l in model.layers]))[0] encoder = tf.keras.Model(inputs=model.input, outputs=model.get_layer(layer_name).output) dense_layer = tf.keras.Model(inputs=model.input, outputs=model.get_layer('encoder').output) dense_layer.layers[-1].activation = activations.linear assert dense_layer.layers[-1].activation == activations.linear assert encoder.layers[1].activation == activations.linear data_spec = config.data_specs[cv] if test_set == 'test': _, _, test_data, _, dates, _ = get_features(data, data_spec['start'], data_spec['end'], assets, val_start=data_spec['val_start'], test_start=data_spec.get('test_start'), scaler=scaler) elif test_set == 'val': _, test_data, _, _, dates, _ = get_features(data, data_spec['start'], data_spec['end'], assets, val_start=data_spec['val_start'], test_start=data_spec.get('test_start'), scaler=scaler) elif test_set == 'train': # For first cv: predict on train data then for the others used previous validation data for prediction test_data, _, _, _, dates, _ = get_features(data, data_spec['start'], data_spec['end'], assets, val_start=data_spec['val_start'], test_start=data_spec.get('test_start'), scaler=scaler) else: raise NotImplementedError(test_set) # Prediction test_features = encoder.predict(test_data) lin_activation = dense_layer.predict(test_data) index = dates[test_set] test_features = pd.DataFrame(test_features, index=index) lin_activation =
pd.DataFrame(lin_activation, index=index)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Create the economic tables required to run the MRIA model. """ import numpy as np import pandas as pd class io_basic(object): """ This is the class object **io_basic** which is used to set up the table. """ def __init__(self, name, filepath, list_regions): """ Creation of a the object instance, specify the file path and sectors to include. Parameters - *self* - **io_basic** class object - name - string name for the **io_basic** class - filepath - string path name to location of IO table - list_regions - list of regions to include Output - *self*.name - string name of the model in the **io_basic** class - *self*.file - filepath in the **MRIA_IO** class - *self*.regions - list of regions in the **MRIA_IO** class - *self*.total_regions - Integer of total amount of regions in the **io_basic** class """ self.name = name self.file = filepath self.regions = list_regions self.total_regions = len(list_regions) def load_labels(self): """ Load all labels for the **io_basic** class. Parameters - *self* - **io_basic** class object Output - *self*.FD_labels - labels for Final Demand columns in the **io_basic** class - *self*.FD_cat - labels for Final Demand categories in the **io_basic** class - *self*.Exp_labels - labels for Export columns in the **io_basic** class - *self*.T_labels - region and sector labels for Z-matrix in the **io_basic** class - *self*.VA_labels - labels for Value Added in the **io_basic** class - *self*.sectors - labels for the sectors in the **io_basic** class """ if 'xls' in self.file: FD_labels = pd.read_excel(self.file, sheet_name="labels_FD", names=['reg', 'tfd'], header=None) Exp_labels = pd.read_excel(self.file, sheet_name="labels_ExpROW", names=[ 'export'], header=None) T_labels = pd.read_excel(self.file, sheet_name="labels_T", header=None, names=['reg', 'ind']) VA_labels = pd.read_excel(self.file, sheet_name="labels_VA", names=[ 'Import', 'ValueA'], header=None) if len(self.regions) == 0: self.regions = list(T_labels['reg'].unique()) self.total_regions = len(self.regions) self.FD_labels = FD_labels self.FD_cat = list(self.FD_labels['tfd'].unique()) self.Exp_labels = Exp_labels self.T_labels = T_labels self.VA_labels = VA_labels self.sectors = list(T_labels['ind'].unique()) def load_all_data(self): """ Load all data for the **io_basic** class. Parameters - *self* - **io_basic** class object Output - *self*.FD_data - pandas Dataframe of Final Demand in the **io_basic** class - *self*.T_data - pandas Dataframe of Z matrix in the **io_basic** class - *self*.VA_data - pandas Dataframe of Value Added in the **io_basic** class - *self*.ImpROW_data - pandas Dataframe of import from the Rest of the World in the **io_basic** class - *self*.ExpROW_data - pandas Dataframe of exports to the Rest of The World in the **io_basic** class """ try: self.FD_labels is None except: self.load_labels() #LOAD DATA FD_data = pd.read_excel(self.file, sheet_name="FD", header=None) T_data = pd.read_excel(self.file, sheet_name="T", header=None) VA_data = pd.read_excel(self.file, sheet_name="VA", header=None) ExpROW_data = pd.read_excel(self.file, sheet_name="ExpROW", header=None) # Add labels to the data from 'load_labels' FD_data.index = pd.MultiIndex.from_arrays(self.T_labels.values.T) ExpROW_data.index = pd.MultiIndex.from_arrays(self.T_labels.values.T) T_data.index = pd.MultiIndex.from_arrays(self.T_labels.values.T) reg_label = np.array( list(self.T_labels.values.T[0])+list(self.FD_labels.values.T[0])+['export']) ind_label = np.array( list(self.T_labels.values.T[1])+list(self.FD_labels.values.T[1])+['export']) va_index = np.vstack((reg_label, ind_label)) VA_data.index = pd.MultiIndex.from_arrays(va_index) FD_data.columns = pd.MultiIndex.from_arrays(self.FD_labels.values.T) ExpROW_data.columns = pd.MultiIndex.from_arrays(self.Exp_labels.values.T) T_data.columns =
pd.MultiIndex.from_arrays(self.T_labels.values.T)
pandas.MultiIndex.from_arrays
import csv import requests from urllib.request import urlopen from bs4 import BeautifulSoup import pandas as pd from google.cloud.storage.blob import Blob from google.cloud import storage import yfinance as yf import datetime from datetime import datetime, timedelta import os import shutil import logging import os.path import datetime import tempfile import base64 import json from google.cloud import pubsub_v1 from dateutil.relativedelta import relativedelta from pytz import timezone def pub_bq_load_msg(file_to_load, bucket, store_path, project, region): REGION = region PROJECT_ID = project RECEIVING_FUNCTION = 'publish' function_url = f'https://{REGION}-{PROJECT_ID}.cloudfunctions.net/{RECEIVING_FUNCTION}' if file_to_load == 'micro_cap_etf_lst.csv': table_name = "top_micro_cap_etf" else: table_name = "etf_ytd_daily_summary" param = {"project":project,"region":region,"topic":"load_etf_dataset","message":{"tgt_dataset":"etf_dataset", "tgt_tbl_name":table_name, "bucket":bucket, "store_path":store_path}} data=json.dumps(param) logging.info('topic-message passed:{}'.format(data)) r = requests.post(function_url, json=param) logging.info('request post header:{} request post status:{}'.format(r.headers, r.status_code)) def load_file_to_storage(bucketname, file_path, store_path, project, region): storage_client = storage.Client() bucket = storage_client.get_bucket(bucketname) data=bucket.blob(store_path) data.upload_from_filename(file_path) file_name = os.path.basename(file_path) logging.info('load_file_to_storage:file to trans={}'.format(file_name)) # pub_bq_tran_msg (file_name, project, region) pub_bq_load_msg(file_name, bucketname, store_path, project, region) def get_hist_etf_price(bucket, destdir, file_loc, project, region): etf_sym_nm=
pd.read_csv(file_loc)
pandas.read_csv
import pandas as pd import numpy as np # from pandas.core.tools.datetimes import normalize_date from pandas._libs import tslib from backend.robinhood_api import RobinhoodAPI class RobinhoodData: """ Wrapper to download orders and dividends from Robinhood accounts Downloads two dataframes and saves to datafile ---------- Parameters: datafile : location of h5 datafile """ def __init__(self, datafile): self.datafile = datafile def _login(self, user, password): self.client = RobinhoodAPI() # try import the module with passwords try: _temp = __import__('auth') self.client.login(_temp.local_user, _temp.local_password) except: self.client.login(username=user, password=password) return self # private method for getting all orders def _fetch_json_by_url(self, url): return self.client.session.get(url).json() # deleting sensitive or redundant fields def _delete_sensitive_fields(self, df): for col in ['account', 'url', 'id', 'instrument']: if col in df: del df[col] return df # download orders and fields requiring RB client def _download_orders(self): print("Downloading orders from Robinhood") orders = [] past_orders = self.client.order_history() orders.extend(past_orders['results']) while past_orders['next']: next_url = past_orders['next'] past_orders = self._fetch_json_by_url(next_url) orders.extend(past_orders['results']) df = pd.DataFrame(orders) df['symbol'] = df['instrument'].apply( self.client.get_symbol_by_instrument) df.sort_values(by='created_at', inplace=True) df.reset_index(inplace=True, drop=True) df_ord = self._delete_sensitive_fields(df) return df_ord # download dividends and fields requiring RB client def _download_dividends(self): print("Downloading dividends from Robinhood") dividends = self.client.dividends() dividends = [x for x in dividends['results']] df = pd.DataFrame(dividends) if df.shape[0] > 0: df['symbol'] = df['instrument'].apply( self.client.get_symbol_by_instrument) df.sort_values(by='paid_at', inplace=True) df.reset_index(inplace=True, drop=True) df_div = self._delete_sensitive_fields(df) else: df_div = pd.DataFrame(columns=['symbol', 'amount', 'position', 'rate', 'paid_at', 'payable_date']) return df_div # process orders def _process_orders(self, df_ord): # assign to df and reduce the number of fields df = df_ord.copy() fields = [ 'created_at', 'average_price', 'cumulative_quantity', 'fees', 'symbol', 'side'] df = df[fields] # convert types for field in ['average_price', 'cumulative_quantity', 'fees']: df[field] = pd.to_numeric(df[field]) for field in ['created_at']: df[field] = pd.to_datetime(df[field]) # add days df['date'] = df['created_at'].apply( lambda x: tslib.normalize_date(x)) # rename columns for consistency df.rename(columns={ 'cumulative_quantity': 'current_size' }, inplace=True) # quantity accounting for side of transaction for cumsum later df['signed_size'] = np.where( df.side == 'buy', df['current_size'], -df['current_size']) df['signed_size'] = df['signed_size'].astype(np.int64) return df # process_orders def _process_dividends(self, df_div): df = df_div.copy() # convert types for field in ['amount', 'position', 'rate']: df[field] =
pd.to_numeric(df[field])
pandas.to_numeric
# Licensed to Modin Development Team under one or more contributor license agreements. # See the NOTICE file distributed with this work for additional information regarding # copyright ownership. The Modin Development Team licenses this file to you under the # Apache License, Version 2.0 (the "License"); you may not use this file except in # compliance with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed under # the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF # ANY KIND, either express or implied. See the License for the specific language # governing permissions and limitations under the License. import pytest import numpy as np import pandas from pandas.errors import ParserWarning import pandas._libs.lib as lib from pandas.core.dtypes.common import is_list_like from collections import OrderedDict from modin.db_conn import ModinDatabaseConnection, UnsupportedDatabaseException from modin.config import TestDatasetSize, Engine, StorageFormat, IsExperimental from modin.utils import to_pandas from modin.pandas.utils import from_arrow import pyarrow as pa import os import sys import shutil import sqlalchemy as sa import csv import tempfile from .utils import ( check_file_leaks, df_equals, json_short_string, json_short_bytes, json_long_string, json_long_bytes, get_unique_filename, io_ops_bad_exc, eval_io_from_str, dummy_decorator, create_test_dfs, COMP_TO_EXT, teardown_test_file, teardown_test_files, generate_dataframe, ) if StorageFormat.get() == "Omnisci": from modin.experimental.core.execution.native.implementations.omnisci_on_native.test.utils import ( eval_io, align_datetime_dtypes, ) else: from .utils import eval_io if StorageFormat.get() == "Pandas": import modin.pandas as pd else: import modin.experimental.pandas as pd try: import ray EXCEPTIONS = (ray.exceptions.WorkerCrashedError,) except ImportError: EXCEPTIONS = () from modin.config import NPartitions NPartitions.put(4) DATASET_SIZE_DICT = { "Small": 64, "Normal": 2000, "Big": 20000, } # Number of rows in the test file NROWS = DATASET_SIZE_DICT.get(TestDatasetSize.get(), DATASET_SIZE_DICT["Small"]) TEST_DATA = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } def assert_files_eq(path1, path2): with open(path1, "rb") as file1, open(path2, "rb") as file2: file1_content = file1.read() file2_content = file2.read() if file1_content == file2_content: return True else: return False def setup_clipboard(row_size=NROWS): df = pandas.DataFrame({"col1": np.arange(row_size), "col2": np.arange(row_size)}) df.to_clipboard() def parquet_eval_to_file(modin_obj, pandas_obj, fn, extension, **fn_kwargs): """ Helper function to test `to_parquet` method. Parameters ---------- modin_obj : pd.DataFrame A Modin DataFrame or a Series to test `to_parquet` method. pandas_obj: pandas.DataFrame A pandas DataFrame or a Series to test `to_parquet` method. fn : str Name of the method, that should be tested. extension : str Extension of the test file. """ unique_filename_modin = get_unique_filename(extension=extension) unique_filename_pandas = get_unique_filename(extension=extension) try: getattr(modin_obj, fn)(unique_filename_modin, **fn_kwargs) getattr(pandas_obj, fn)(unique_filename_pandas, **fn_kwargs) pandas_df = pandas.read_parquet(unique_filename_pandas) modin_df = pd.read_parquet(unique_filename_modin) df_equals(pandas_df, modin_df) finally: teardown_test_file(unique_filename_pandas) try: teardown_test_file(unique_filename_modin) except IsADirectoryError: shutil.rmtree(unique_filename_modin) def eval_to_file(modin_obj, pandas_obj, fn, extension, **fn_kwargs): """Helper function to test `to_<extension>` methods. Args: modin_obj: Modin DataFrame or Series to test `to_<extension>` method. pandas_obj: Pandas DataFrame or Series to test `to_<extension>` method. fn: name of the method, that should be tested. extension: Extension of the test file. """ unique_filename_modin = get_unique_filename(extension=extension) unique_filename_pandas = get_unique_filename(extension=extension) try: # parameter `max_retries=0` is set for `to_csv` function on Ray engine, # in order to increase the stability of tests, we repeat the call of # the entire function manually last_exception = None for _ in range(3): try: getattr(modin_obj, fn)(unique_filename_modin, **fn_kwargs) except EXCEPTIONS as exc: last_exception = exc continue break else: raise last_exception getattr(pandas_obj, fn)(unique_filename_pandas, **fn_kwargs) assert assert_files_eq(unique_filename_modin, unique_filename_pandas) finally: teardown_test_files([unique_filename_modin, unique_filename_pandas]) @pytest.mark.usefixtures("TestReadCSVFixture") @pytest.mark.skipif( IsExperimental.get() and StorageFormat.get() == "Pyarrow", reason="Segmentation fault; see PR #2347 ffor details", ) class TestCsv: # delimiter tests @pytest.mark.parametrize("sep", [None, "_", ",", ".", "\n"]) @pytest.mark.parametrize("delimiter", ["_", ",", ".", "\n"]) @pytest.mark.parametrize("decimal", [".", "_"]) @pytest.mark.parametrize("thousands", [None, ",", "_", " "]) def test_read_csv_delimiters( self, make_csv_file, sep, delimiter, decimal, thousands ): unique_filename = get_unique_filename() make_csv_file( filename=unique_filename, delimiter=delimiter, thousands_separator=thousands, decimal_separator=decimal, ) eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=unique_filename, delimiter=delimiter, sep=sep, decimal=decimal, thousands=thousands, ) # Column and Index Locations and Names tests @pytest.mark.parametrize("header", ["infer", None, 0]) @pytest.mark.parametrize("index_col", [None, "col1"]) @pytest.mark.parametrize("prefix", [None, "_", "col"]) @pytest.mark.parametrize( "names", [lib.no_default, ["col1"], ["c1", "c2", "c3", "c4", "c5", "c6", "c7"]] ) @pytest.mark.parametrize( "usecols", [None, ["col1"], ["col1", "col2", "col6"], [0, 1, 5]] ) @pytest.mark.parametrize("skip_blank_lines", [True, False]) def test_read_csv_col_handling( self, header, index_col, prefix, names, usecols, skip_blank_lines, ): if names is lib.no_default: pytest.skip("some parameters combiantions fails: issue #2312") if header in ["infer", None] and names is not lib.no_default: pytest.skip( "Heterogeneous data in a column is not cast to a common type: issue #3346" ) eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_blank_lines"], header=header, index_col=index_col, prefix=prefix, names=names, usecols=usecols, skip_blank_lines=skip_blank_lines, ) @pytest.mark.parametrize("usecols", [lambda col_name: col_name in ["a", "b", "e"]]) def test_from_csv_with_callable_usecols(self, usecols): fname = "modin/pandas/test/data/test_usecols.csv" pandas_df = pandas.read_csv(fname, usecols=usecols) modin_df = pd.read_csv(fname, usecols=usecols) df_equals(modin_df, pandas_df) # General Parsing Configuration @pytest.mark.parametrize("dtype", [None, True]) @pytest.mark.parametrize("engine", [None, "python", "c"]) @pytest.mark.parametrize( "converters", [ None, { "col1": lambda x: np.int64(x) * 10, "col2": pandas.to_datetime, "col4": lambda x: x.replace(":", ";"), }, ], ) @pytest.mark.parametrize("skipfooter", [0, 10]) def test_read_csv_parsing_1( self, dtype, engine, converters, skipfooter, ): if dtype: dtype = { col: "object" for col in pandas.read_csv( pytest.csvs_names["test_read_csv_regular"], nrows=1 ).columns } eval_io( fn_name="read_csv", check_exception_type=None, # issue #2320 raising_exceptions=None, check_kwargs_callable=not callable(converters), # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_regular"], dtype=dtype, engine=engine, converters=converters, skipfooter=skipfooter, ) @pytest.mark.parametrize("header", ["infer", None, 0]) @pytest.mark.parametrize( "skiprows", [ 2, lambda x: x % 2, lambda x: x > 25, lambda x: x > 128, np.arange(10, 50), np.arange(10, 50, 2), ], ) @pytest.mark.parametrize("nrows", [35, None]) @pytest.mark.parametrize( "names", [ [f"c{col_number}" for col_number in range(4)], [f"c{col_number}" for col_number in range(6)], None, ], ) @pytest.mark.parametrize("encoding", ["latin1", "windows-1251", None]) def test_read_csv_parsing_2( self, make_csv_file, request, header, skiprows, nrows, names, encoding, ): xfail_case = ( StorageFormat.get() == "Omnisci" and header is not None and isinstance(skiprows, int) and names is None and nrows is None ) if xfail_case: pytest.xfail( "read_csv fails because of duplicated columns names - issue #3080" ) if request.config.getoption( "--simulate-cloud" ).lower() != "off" and is_list_like(skiprows): pytest.xfail( reason="The reason of tests fail in `cloud` mode is unknown for now - issue #2340" ) if encoding: unique_filename = get_unique_filename() make_csv_file( filename=unique_filename, encoding=encoding, ) kwargs = { "filepath_or_buffer": unique_filename if encoding else pytest.csvs_names["test_read_csv_regular"], "header": header, "skiprows": skiprows, "nrows": nrows, "names": names, "encoding": encoding, } if Engine.get() != "Python": df = pandas.read_csv(**dict(kwargs, nrows=1)) # in that case first partition will contain str if df[df.columns[0]][df.index[0]] in ["c1", "col1", "c3", "col3"]: pytest.xfail("read_csv incorrect output with float data - issue #2634") eval_io( fn_name="read_csv", check_exception_type=None, # issue #2320 raising_exceptions=None, check_kwargs_callable=not callable(skiprows), # read_csv kwargs **kwargs, ) @pytest.mark.parametrize("true_values", [["Yes"], ["Yes", "true"], None]) @pytest.mark.parametrize("false_values", [["No"], ["No", "false"], None]) @pytest.mark.parametrize("skipfooter", [0, 10]) @pytest.mark.parametrize("nrows", [35, None]) def test_read_csv_parsing_3( self, true_values, false_values, skipfooter, nrows, ): xfail_case = ( (false_values or true_values) and Engine.get() != "Python" and StorageFormat.get() != "Omnisci" ) if xfail_case: pytest.xfail("modin and pandas dataframes differs - issue #2446") eval_io( fn_name="read_csv", check_exception_type=None, # issue #2320 raising_exceptions=None, # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_yes_no"], true_values=true_values, false_values=false_values, skipfooter=skipfooter, nrows=nrows, ) def test_read_csv_skipinitialspace(self): unique_filename = get_unique_filename() str_initial_spaces = ( "col1,col2,col3,col4\n" "five, six, seven, eight\n" " five, six, seven, eight\n" "five, six, seven, eight\n" ) eval_io_from_str(str_initial_spaces, unique_filename, skipinitialspace=True) @pytest.mark.parametrize( "test_case", ["single_element", "single_column", "multiple_columns"], ) def test_read_csv_squeeze(self, request, test_case): if request.config.getoption("--simulate-cloud").lower() != "off": pytest.xfail( reason="Error EOFError: stream has been closed in `modin in the cloud` mode - issue #3329" ) unique_filename = get_unique_filename() str_single_element = "1" str_single_col = "1\n2\n3\n" str_four_cols = "1, 2, 3, 4\n5, 6, 7, 8\n9, 10, 11, 12\n" case_to_data = { "single_element": str_single_element, "single_column": str_single_col, "multiple_columns": str_four_cols, } eval_io_from_str(case_to_data[test_case], unique_filename, squeeze=True) eval_io_from_str( case_to_data[test_case], unique_filename, header=None, squeeze=True ) def test_read_csv_mangle_dupe_cols(self): if StorageFormat.get() == "Omnisci": pytest.xfail( "processing of duplicated columns in OmniSci storage format is not supported yet - issue #3080" ) unique_filename = get_unique_filename() str_non_unique_cols = "col,col,col,col\n5, 6, 7, 8\n9, 10, 11, 12\n" eval_io_from_str(str_non_unique_cols, unique_filename, mangle_dupe_cols=True) # NA and Missing Data Handling tests @pytest.mark.parametrize("na_values", ["custom_nan", "73"]) @pytest.mark.parametrize("keep_default_na", [True, False]) @pytest.mark.parametrize("na_filter", [True, False]) @pytest.mark.parametrize("verbose", [True, False]) @pytest.mark.parametrize("skip_blank_lines", [True, False]) def test_read_csv_nans_handling( self, na_values, keep_default_na, na_filter, verbose, skip_blank_lines, ): eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_nans"], na_values=na_values, keep_default_na=keep_default_na, na_filter=na_filter, verbose=verbose, skip_blank_lines=skip_blank_lines, ) # Datetime Handling tests @pytest.mark.parametrize( "parse_dates", [True, False, ["col2"], ["col2", "col4"], [1, 3]] ) @pytest.mark.parametrize("infer_datetime_format", [True, False]) @pytest.mark.parametrize("keep_date_col", [True, False]) @pytest.mark.parametrize( "date_parser", [None, lambda x: pandas.datetime.strptime(x, "%Y-%m-%d")] ) @pytest.mark.parametrize("dayfirst", [True, False]) @pytest.mark.parametrize("cache_dates", [True, False]) def test_read_csv_datetime( self, parse_dates, infer_datetime_format, keep_date_col, date_parser, dayfirst, cache_dates, ): if ( StorageFormat.get() == "Omnisci" and isinstance(parse_dates, list) and ("col4" in parse_dates or 3 in parse_dates) ): pytest.xfail( "In some cases read_csv with `parse_dates` with OmniSci storage format outputs incorrect result - issue #3081" ) raising_exceptions = io_ops_bad_exc # default value if isinstance(parse_dates, dict) and callable(date_parser): # In this case raised TypeError: <lambda>() takes 1 positional argument but 2 were given raising_exceptions = list(io_ops_bad_exc) raising_exceptions.remove(TypeError) eval_io( fn_name="read_csv", check_kwargs_callable=not callable(date_parser), raising_exceptions=raising_exceptions, # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_regular"], parse_dates=parse_dates, infer_datetime_format=infer_datetime_format, keep_date_col=keep_date_col, date_parser=date_parser, dayfirst=dayfirst, cache_dates=cache_dates, ) # Iteration tests @pytest.mark.parametrize("iterator", [True, False]) def test_read_csv_iteration(self, iterator): filename = pytest.csvs_names["test_read_csv_regular"] # Tests __next__ and correctness of reader as an iterator # Use larger chunksize to read through file quicker rdf_reader = pd.read_csv(filename, chunksize=500, iterator=iterator) pd_reader = pandas.read_csv(filename, chunksize=500, iterator=iterator) for modin_df, pd_df in zip(rdf_reader, pd_reader): df_equals(modin_df, pd_df) # Tests that get_chunk works correctly rdf_reader = pd.read_csv(filename, chunksize=1, iterator=iterator) pd_reader = pandas.read_csv(filename, chunksize=1, iterator=iterator) modin_df = rdf_reader.get_chunk(1) pd_df = pd_reader.get_chunk(1) df_equals(modin_df, pd_df) # Tests that read works correctly rdf_reader = pd.read_csv(filename, chunksize=1, iterator=iterator) pd_reader = pandas.read_csv(filename, chunksize=1, iterator=iterator) modin_df = rdf_reader.read() pd_df = pd_reader.read() df_equals(modin_df, pd_df) def test_read_csv_encoding_976(self): file_name = "modin/pandas/test/data/issue_976.csv" names = [str(i) for i in range(11)] kwargs = { "sep": ";", "names": names, "encoding": "windows-1251", } df1 = pd.read_csv(file_name, **kwargs) df2 = pandas.read_csv(file_name, **kwargs) # these columns contain data of various types in partitions # see #1931 for details; df1 = df1.drop(["4", "5"], axis=1) df2 = df2.drop(["4", "5"], axis=1) df_equals(df1, df2) # Quoting, Compression parameters tests @pytest.mark.parametrize("compression", ["infer", "gzip", "bz2", "xz", "zip"]) @pytest.mark.parametrize("encoding", [None, "latin8", "utf16"]) @pytest.mark.parametrize("engine", [None, "python", "c"]) def test_read_csv_compression(self, make_csv_file, compression, encoding, engine): unique_filename = get_unique_filename() make_csv_file( filename=unique_filename, encoding=encoding, compression=compression ) compressed_file_path = ( f"{unique_filename}.{COMP_TO_EXT[compression]}" if compression != "infer" else unique_filename ) eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=compressed_file_path, compression=compression, encoding=encoding, engine=engine, ) @pytest.mark.parametrize( "encoding", [ None, "ISO-8859-1", "latin1", "iso-8859-1", "cp1252", "utf8", pytest.param( "unicode_escape", marks=pytest.mark.skip( condition=sys.version_info < (3, 9), reason="https://bugs.python.org/issue45461", ), ), "raw_unicode_escape", "utf_16_le", "utf_16_be", "utf32", "utf_32_le", "utf_32_be", "utf-8-sig", ], ) def test_read_csv_encoding(self, make_csv_file, encoding): unique_filename = get_unique_filename() make_csv_file(filename=unique_filename, encoding=encoding) eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=unique_filename, encoding=encoding, ) @pytest.mark.parametrize("thousands", [None, ",", "_", " "]) @pytest.mark.parametrize("decimal", [".", "_"]) @pytest.mark.parametrize("lineterminator", [None, "x", "\n"]) @pytest.mark.parametrize("escapechar", [None, "d", "x"]) @pytest.mark.parametrize("dialect", ["test_csv_dialect", None]) def test_read_csv_file_format( self, make_csv_file, thousands, decimal, lineterminator, escapechar, dialect, ): if Engine.get() != "Python" and lineterminator == "x": pytest.xfail("read_csv with Ray engine outputs empty frame - issue #2493") elif Engine.get() != "Python" and escapechar: pytest.xfail( "read_csv with Ray engine fails with some 'escapechar' parameters - issue #2494" ) elif Engine.get() != "Python" and dialect: pytest.xfail( "read_csv with Ray engine fails with `dialect` parameter - issue #2508" ) unique_filename = get_unique_filename() if dialect: test_csv_dialect_params = { "delimiter": "_", "doublequote": False, "escapechar": "\\", "quotechar": "d", "quoting": csv.QUOTE_ALL, } csv.register_dialect(dialect, **test_csv_dialect_params) dialect = csv.get_dialect(dialect) make_csv_file(filename=unique_filename, **test_csv_dialect_params) else: make_csv_file( filename=unique_filename, thousands_separator=thousands, decimal_separator=decimal, escapechar=escapechar, line_terminator=lineterminator, ) eval_io( check_exception_type=None, # issue #2320 raising_exceptions=None, fn_name="read_csv", # read_csv kwargs filepath_or_buffer=unique_filename, thousands=thousands, decimal=decimal, lineterminator=lineterminator, escapechar=escapechar, dialect=dialect, ) @pytest.mark.parametrize( "quoting", [csv.QUOTE_ALL, csv.QUOTE_MINIMAL, csv.QUOTE_NONNUMERIC, csv.QUOTE_NONE], ) @pytest.mark.parametrize("quotechar", ['"', "_", "d"]) @pytest.mark.parametrize("doublequote", [True, False]) @pytest.mark.parametrize("comment", [None, "#", "x"]) def test_read_csv_quoting( self, make_csv_file, quoting, quotechar, doublequote, comment, ): # in these cases escapechar should be set, otherwise error occures # _csv.Error: need to escape, but no escapechar set" use_escapechar = ( not doublequote and quotechar != '"' and quoting != csv.QUOTE_NONE ) escapechar = "\\" if use_escapechar else None unique_filename = get_unique_filename() make_csv_file( filename=unique_filename, quoting=quoting, quotechar=quotechar, doublequote=doublequote, escapechar=escapechar, comment_col_char=comment, ) eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=unique_filename, quoting=quoting, quotechar=quotechar, doublequote=doublequote, escapechar=escapechar, comment=comment, ) # Error Handling parameters tests @pytest.mark.parametrize("warn_bad_lines", [True, False, None]) @pytest.mark.parametrize("error_bad_lines", [True, False, None]) @pytest.mark.parametrize("on_bad_lines", ["error", "warn", "skip", None]) def test_read_csv_error_handling( self, warn_bad_lines, error_bad_lines, on_bad_lines, ): # in that case exceptions are raised both by Modin and pandas # and tests pass raise_exception_case = on_bad_lines is not None and ( error_bad_lines is not None or warn_bad_lines is not None ) if ( not raise_exception_case and Engine.get() not in ["Python", "Cloudpython"] and StorageFormat.get() != "Omnisci" ): pytest.xfail("read_csv doesn't raise `bad lines` exceptions - issue #2500") eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_bad_lines"], warn_bad_lines=warn_bad_lines, error_bad_lines=error_bad_lines, on_bad_lines=on_bad_lines, ) # Internal parameters tests @pytest.mark.parametrize("use_str_data", [True, False]) @pytest.mark.parametrize("engine", [None, "python", "c"]) @pytest.mark.parametrize("delimiter", [",", " "]) @pytest.mark.parametrize("delim_whitespace", [True, False]) @pytest.mark.parametrize("low_memory", [True, False]) @pytest.mark.parametrize("memory_map", [True, False]) @pytest.mark.parametrize("float_precision", [None, "high", "round_trip"]) def test_read_csv_internal( self, make_csv_file, use_str_data, engine, delimiter, delim_whitespace, low_memory, memory_map, float_precision, ): # In this case raised TypeError: cannot use a string pattern on a bytes-like object, # so TypeError should be excluded from raising_exceptions list in order to check, that # the same exceptions are raised by Pandas and Modin case_with_TypeError_exc = ( engine == "python" and delimiter == "," and delim_whitespace and low_memory and memory_map and float_precision is None ) raising_exceptions = io_ops_bad_exc # default value if case_with_TypeError_exc: raising_exceptions = list(io_ops_bad_exc) raising_exceptions.remove(TypeError) kwargs = { "engine": engine, "delimiter": delimiter, "delim_whitespace": delim_whitespace, "low_memory": low_memory, "memory_map": memory_map, "float_precision": float_precision, } unique_filename = get_unique_filename() if use_str_data: str_delim_whitespaces = ( "col1 col2 col3 col4\n5 6 7 8\n9 10 11 12\n" ) eval_io_from_str( str_delim_whitespaces, unique_filename, raising_exceptions=raising_exceptions, **kwargs, ) else: make_csv_file( filename=unique_filename, delimiter=delimiter, ) eval_io( filepath_or_buffer=unique_filename, fn_name="read_csv", raising_exceptions=raising_exceptions, **kwargs, ) # Issue related, specific or corner cases @pytest.mark.parametrize("nrows", [2, None]) def test_read_csv_bad_quotes(self, nrows): csv_bad_quotes = ( '1, 2, 3, 4\none, two, three, four\nfive, "six", seven, "eight\n' ) unique_filename = get_unique_filename() eval_io_from_str(csv_bad_quotes, unique_filename, nrows=nrows) def test_read_csv_categories(self): eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer="modin/pandas/test/data/test_categories.csv", names=["one", "two"], dtype={"one": "int64", "two": "category"}, ) @pytest.mark.parametrize("encoding", [None, "utf-8"]) @pytest.mark.parametrize("encoding_errors", ["strict", "ignore"]) @pytest.mark.parametrize("parse_dates", [False, ["timestamp"]]) @pytest.mark.parametrize("index_col", [None, 0, 2]) @pytest.mark.parametrize("header", ["infer", 0]) @pytest.mark.parametrize( "names", [ None, ["timestamp", "symbol", "high", "low", "open", "close", "spread", "volume"], ], ) def test_read_csv_parse_dates( self, names, header, index_col, parse_dates, encoding, encoding_errors ): if names is not None and header == "infer": pytest.xfail( "read_csv with Ray engine works incorrectly with date data and names parameter provided - issue #2509" ) eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer="modin/pandas/test/data/test_time_parsing.csv", names=names, header=header, index_col=index_col, parse_dates=parse_dates, encoding=encoding, encoding_errors=encoding_errors, ) @pytest.mark.parametrize( "storage_options", [{"anon": False}, {"anon": True}, {"key": "123", "secret": "123"}, None], ) def test_read_csv_s3(self, storage_options): eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer="s3://noaa-ghcn-pds/csv/1788.csv", storage_options=storage_options, ) @pytest.mark.parametrize("names", [list("XYZ"), None]) @pytest.mark.parametrize("skiprows", [1, 2, 3, 4, None]) def test_read_csv_skiprows_names(self, names, skiprows): if StorageFormat.get() == "Omnisci" and names is None and skiprows in [1, None]: # If these conditions are satisfied, columns names will be inferred # from the first row, that will contain duplicated values, that is # not supported by `Omnisci` storage format yet. pytest.xfail( "processing of duplicated columns in OmniSci storage format is not supported yet - issue #3080" ) eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer="modin/pandas/test/data/issue_2239.csv", names=names, skiprows=skiprows, ) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #2340", ) def test_read_csv_default_to_pandas(self): with pytest.warns(UserWarning): # This tests that we default to pandas on a buffer from io import StringIO pd.read_csv( StringIO(open(pytest.csvs_names["test_read_csv_regular"], "r").read()) ) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #2340", ) def test_read_csv_default_to_pandas_url(self): # We haven't implemented read_csv from https, but if it's implemented, then this needs to change eval_io( fn_name="read_csv", modin_warning=UserWarning, # read_csv kwargs filepath_or_buffer="https://raw.githubusercontent.com/modin-project/modin/master/modin/pandas/test/data/blah.csv", # It takes about ~17Gb of RAM for Omnisci to import the whole table from this test # because of too many (~1000) string columns in it. Taking a subset of columns # to be able to run this test on low-RAM machines. usecols=[0, 1, 2, 3] if StorageFormat.get() == "Omnisci" else None, ) @pytest.mark.parametrize("nrows", [21, 5, None]) @pytest.mark.parametrize("skiprows", [4, 1, 500, None]) def test_read_csv_newlines_in_quotes(self, nrows, skiprows): eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer="modin/pandas/test/data/newlines.csv", nrows=nrows, skiprows=skiprows, cast_to_str=StorageFormat.get() != "Omnisci", ) def test_read_csv_sep_none(self): eval_io( fn_name="read_csv", modin_warning=ParserWarning, # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_regular"], sep=None, ) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #2340", ) def test_read_csv_incorrect_data(self): eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer="modin/pandas/test/data/test_categories.json", ) @pytest.mark.parametrize( "kwargs", [ {"names": [5, 1, 3, 4, 2, 6]}, {"names": [0]}, {"names": None, "usecols": [1, 0, 2]}, {"names": [3, 1, 2, 5], "usecols": [4, 1, 3, 2]}, ], ) def test_read_csv_names_neq_num_cols(self, kwargs): eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer="modin/pandas/test/data/issue_2074.csv", **kwargs, ) def test_read_csv_wrong_path(self): raising_exceptions = [e for e in io_ops_bad_exc if e != FileNotFoundError] eval_io( fn_name="read_csv", raising_exceptions=raising_exceptions, # read_csv kwargs filepath_or_buffer="/some/wrong/path.csv", ) @pytest.mark.skipif( StorageFormat.get() == "Omnisci", reason="to_csv is not implemented with OmniSci storage format yet - issue #3082", ) @pytest.mark.parametrize("header", [False, True]) @pytest.mark.parametrize("mode", ["w", "wb+"]) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #2340", ) def test_to_csv(self, header, mode): pandas_df = generate_dataframe() modin_df = pd.DataFrame(pandas_df) eval_to_file( modin_obj=modin_df, pandas_obj=pandas_df, fn="to_csv", extension="csv", header=header, mode=mode, ) @pytest.mark.skipif( StorageFormat.get() == "Omnisci", reason="to_csv is not implemented with OmniSci storage format yet - issue #3082", ) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #2340", ) def test_dataframe_to_csv(self): pandas_df = pandas.read_csv(pytest.csvs_names["test_read_csv_regular"]) modin_df = pd.DataFrame(pandas_df) eval_to_file( modin_obj=modin_df, pandas_obj=pandas_df, fn="to_csv", extension="csv" ) @pytest.mark.skipif( StorageFormat.get() == "Omnisci", reason="to_csv is not implemented with OmniSci storage format yet - issue #3082", ) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #2340", ) def test_series_to_csv(self): pandas_s = pandas.read_csv( pytest.csvs_names["test_read_csv_regular"], usecols=["col1"] ).squeeze() modin_s = pd.Series(pandas_s) eval_to_file( modin_obj=modin_s, pandas_obj=pandas_s, fn="to_csv", extension="csv" ) def test_read_csv_within_decorator(self): @dummy_decorator() def wrapped_read_csv(file, method): if method == "pandas": return pandas.read_csv(file) if method == "modin": return pd.read_csv(file) pandas_df = wrapped_read_csv( pytest.csvs_names["test_read_csv_regular"], method="pandas" ) modin_df = wrapped_read_csv( pytest.csvs_names["test_read_csv_regular"], method="modin" ) if StorageFormat.get() == "Omnisci": # Aligning DateTime dtypes because of the bug related to the `parse_dates` parameter: # https://github.com/modin-project/modin/issues/3485 modin_df, pandas_df = align_datetime_dtypes(modin_df, pandas_df) df_equals(modin_df, pandas_df) @pytest.mark.parametrize( "read_mode", [ "r", pytest.param( "rb", marks=pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="Cannot pickle file handles. See comments in PR #2625", ), ), ], ) def test_read_csv_file_handle(self, read_mode, make_csv_file): unique_filename = get_unique_filename() make_csv_file(filename=unique_filename) with open(unique_filename, mode=read_mode) as buffer: df_pandas = pandas.read_csv(buffer) buffer.seek(0) df_modin = pd.read_csv(buffer) df_equals(df_modin, df_pandas) def test_unnamed_index(self): def get_internal_df(df): partition = read_df._query_compiler._modin_frame._partitions[0][0] return partition.to_pandas() path = "modin/pandas/test/data/issue_3119.csv" read_df = pd.read_csv(path, index_col=0) assert get_internal_df(read_df).index.name is None read_df = pd.read_csv(path, index_col=[0, 1]) for name1, name2 in zip(get_internal_df(read_df).index.names, [None, "a"]): assert name1 == name2 def test_read_csv_empty_frame(self): eval_io( fn_name="read_csv", # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_regular"], usecols=["col1"], index_col="col1", ) @pytest.mark.parametrize( "skiprows", [ lambda x: x > 20, lambda x: True, lambda x: x in [10, 20], pytest.param( lambda x: x << 10, marks=pytest.mark.skipif( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #2340", ), ), ], ) def test_read_csv_skiprows_corner_cases(self, skiprows): eval_io( fn_name="read_csv", check_kwargs_callable=not callable(skiprows), # read_csv kwargs filepath_or_buffer=pytest.csvs_names["test_read_csv_regular"], skiprows=skiprows, ) class TestTable: def test_read_table(self, make_csv_file): unique_filename = get_unique_filename() make_csv_file(filename=unique_filename, delimiter="\t") eval_io( fn_name="read_table", # read_table kwargs filepath_or_buffer=unique_filename, ) def test_read_table_within_decorator(self, make_csv_file): unique_filename = get_unique_filename() make_csv_file(filename=unique_filename, delimiter="\t") @dummy_decorator() def wrapped_read_table(file, method): if method == "pandas": return pandas.read_table(file) if method == "modin": return pd.read_table(file) pandas_df = wrapped_read_table(unique_filename, method="pandas") modin_df = wrapped_read_table(unique_filename, method="modin") df_equals(modin_df, pandas_df) def test_read_table_empty_frame(self, make_csv_file): unique_filename = get_unique_filename() make_csv_file(filename=unique_filename, delimiter="\t") eval_io( fn_name="read_table", # read_table kwargs filepath_or_buffer=unique_filename, usecols=["col1"], index_col="col1", ) class TestParquet: @pytest.mark.parametrize("columns", [None, ["col1"]]) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_parquet(self, make_parquet_file, columns): unique_filename = get_unique_filename(extension="parquet") make_parquet_file(filename=unique_filename) eval_io( fn_name="read_parquet", # read_parquet kwargs path=unique_filename, columns=columns, ) @pytest.mark.parametrize("columns", [None, ["col1"]]) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_parquet_directory(self, make_parquet_file, columns): # unique_filename = get_unique_filename(extension=None) make_parquet_file(filename=unique_filename, directory=True) eval_io( fn_name="read_parquet", # read_parquet kwargs path=unique_filename, columns=columns, ) @pytest.mark.parametrize("columns", [None, ["col1"]]) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_parquet_partitioned_directory(self, make_parquet_file, columns): unique_filename = get_unique_filename(extension=None) make_parquet_file(filename=unique_filename, partitioned_columns=["col1"]) eval_io( fn_name="read_parquet", # read_parquet kwargs path=unique_filename, columns=columns, ) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_parquet_pandas_index(self): # Ensure modin can read parquet files written by pandas with a non-RangeIndex object unique_filename = get_unique_filename(extension="parquet") pandas_df = pandas.DataFrame( { "idx": np.random.randint(0, 100_000, size=2000), "A": np.random.randint(0, 100_000, size=2000), "B": ["a", "b"] * 1000, "C": ["c"] * 2000, } ) try: pandas_df.set_index("idx").to_parquet(unique_filename) # read the same parquet using modin.pandas df_equals( pd.read_parquet(unique_filename), pandas.read_parquet(unique_filename) ) pandas_df.set_index(["idx", "A"]).to_parquet(unique_filename) df_equals( pd.read_parquet(unique_filename), pandas.read_parquet(unique_filename) ) finally: os.remove(unique_filename) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_parquet_pandas_index_partitioned(self): # Ensure modin can read parquet files written by pandas with a non-RangeIndex object unique_filename = get_unique_filename(extension="parquet") pandas_df = pandas.DataFrame( { "idx": np.random.randint(0, 100_000, size=2000), "A": np.random.randint(0, 10, size=2000), "B": ["a", "b"] * 1000, "C": ["c"] * 2000, } ) try: pandas_df.set_index("idx").to_parquet(unique_filename, partition_cols=["A"]) # read the same parquet using modin.pandas df_equals( pd.read_parquet(unique_filename), pandas.read_parquet(unique_filename) ) finally: shutil.rmtree(unique_filename) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_parquet_hdfs(self): eval_io( fn_name="read_parquet", # read_parquet kwargs path="modin/pandas/test/data/hdfs.parquet", ) @pytest.mark.parametrize("path_type", ["url", "object"]) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_parquet_s3(self, path_type): dataset_url = "s3://modin-datasets/testing/test_data.parquet" if path_type == "object": import s3fs fs = s3fs.S3FileSystem(anon=True) with fs.open(dataset_url, "rb") as file_obj: eval_io("read_parquet", path=file_obj) else: eval_io("read_parquet", path=dataset_url, storage_options={"anon": True}) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_parquet_without_metadata(self): """Test that Modin can read parquet files not written by pandas.""" from pyarrow import csv from pyarrow import parquet parquet_fname = get_unique_filename(extension="parquet") csv_fname = get_unique_filename(extension="parquet") pandas_df = pandas.DataFrame( { "idx": np.random.randint(0, 100_000, size=2000), "A": np.random.randint(0, 10, size=2000), "B": ["a", "b"] * 1000, "C": ["c"] * 2000, } ) try: pandas_df.to_csv(csv_fname, index=False) # read into pyarrow table and write it to a parquet file t = csv.read_csv(csv_fname) parquet.write_table(t, parquet_fname) df_equals( pd.read_parquet(parquet_fname), pandas.read_parquet(parquet_fname) ) finally: teardown_test_files([parquet_fname, csv_fname]) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_to_parquet(self): modin_df, pandas_df = create_test_dfs(TEST_DATA) parquet_eval_to_file( modin_obj=modin_df, pandas_obj=pandas_df, fn="to_parquet", extension="parquet", ) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_parquet_2462(self): test_df = pandas.DataFrame({"col1": [["ad_1", "ad_2"], ["ad_3"]]}) with tempfile.TemporaryDirectory() as directory: path = f"{directory}/data" os.makedirs(path) test_df.to_parquet(path + "/part-00000.parquet") read_df = pd.read_parquet(path) df_equals(test_df, read_df) class TestJson: @pytest.mark.parametrize("lines", [False, True]) def test_read_json(self, make_json_file, lines): eval_io( fn_name="read_json", # read_json kwargs path_or_buf=make_json_file(lines=lines), lines=lines, ) @pytest.mark.parametrize( "storage_options", [{"anon": False}, {"anon": True}, {"key": "123", "secret": "123"}, None], ) def test_read_json_s3(self, storage_options): eval_io( fn_name="read_json", path_or_buf="s3://modin-datasets/testing/test_data.json", lines=True, orient="records", storage_options=storage_options, ) def test_read_json_categories(self): eval_io( fn_name="read_json", # read_json kwargs path_or_buf="modin/pandas/test/data/test_categories.json", dtype={"one": "int64", "two": "category"}, ) @pytest.mark.parametrize( "data", [json_short_string, json_short_bytes, json_long_string, json_long_bytes], ) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_json_string_bytes(self, data): with pytest.warns(UserWarning): modin_df = pd.read_json(data) # For I/O objects we need to rewind to reuse the same object. if hasattr(data, "seek"): data.seek(0) df_equals(modin_df, pandas.read_json(data)) def test_to_json(self): modin_df, pandas_df = create_test_dfs(TEST_DATA) eval_to_file( modin_obj=modin_df, pandas_obj=pandas_df, fn="to_json", extension="json" ) @pytest.mark.parametrize( "read_mode", [ "r", pytest.param( "rb", marks=pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="Cannot pickle file handles. See comments in PR #2625", ), ), ], ) def test_read_json_file_handle(self, make_json_file, read_mode): with open(make_json_file(), mode=read_mode) as buf: df_pandas = pandas.read_json(buf) buf.seek(0) df_modin = pd.read_json(buf) df_equals(df_pandas, df_modin) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_json_metadata(self, make_json_file): # `lines=True` is for triggering Modin implementation, # `orient="records"` should be set if `lines=True` df = pd.read_json( make_json_file(ncols=80, lines=True), lines=True, orient="records" ) parts_width_cached = df._query_compiler._modin_frame._column_widths_cache num_splits = len(df._query_compiler._modin_frame._partitions[0]) parts_width_actual = [ len(df._query_compiler._modin_frame._partitions[0][i].get().columns) for i in range(num_splits) ] assert parts_width_cached == parts_width_actual class TestExcel: @check_file_leaks def test_read_excel(self, make_excel_file): eval_io( fn_name="read_excel", # read_excel kwargs io=make_excel_file(), ) @check_file_leaks @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_excel_engine(self, make_excel_file): eval_io( fn_name="read_excel", modin_warning=UserWarning, # read_excel kwargs io=make_excel_file(), engine="openpyxl", ) @check_file_leaks @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_excel_index_col(self, make_excel_file): eval_io( fn_name="read_excel", modin_warning=UserWarning, # read_excel kwargs io=make_excel_file(), index_col=0, ) @check_file_leaks @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_excel_all_sheets(self, make_excel_file): unique_filename = make_excel_file() pandas_df = pandas.read_excel(unique_filename, sheet_name=None) modin_df = pd.read_excel(unique_filename, sheet_name=None) assert isinstance(pandas_df, (OrderedDict, dict)) assert isinstance(modin_df, type(pandas_df)) assert pandas_df.keys() == modin_df.keys() for key in pandas_df.keys(): df_equals(modin_df.get(key), pandas_df.get(key)) @pytest.mark.xfail( Engine.get() != "Python", reason="pandas throws the exception. See pandas issue #39250 for more info", ) @check_file_leaks def test_read_excel_sheetname_title(self): eval_io( fn_name="read_excel", # read_excel kwargs io="modin/pandas/test/data/excel_sheetname_title.xlsx", ) @check_file_leaks def test_excel_empty_line(self): path = "modin/pandas/test/data/test_emptyline.xlsx" modin_df = pd.read_excel(path) assert str(modin_df) @pytest.mark.parametrize( "sheet_name", [ "Sheet1", "AnotherSpecialName", "SpecialName", "SecondSpecialName", 0, 1, 2, 3, ], ) @check_file_leaks def test_read_excel_sheet_name(self, sheet_name): eval_io( fn_name="read_excel", # read_excel kwargs io="modin/pandas/test/data/modin_error_book.xlsx", sheet_name=sheet_name, ) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="TypeError: Expected list, got type - issue #3284", ) def test_ExcelFile(self, make_excel_file): unique_filename = make_excel_file() modin_excel_file = pd.ExcelFile(unique_filename) pandas_excel_file = pandas.ExcelFile(unique_filename) try: df_equals(modin_excel_file.parse(), pandas_excel_file.parse()) assert modin_excel_file.io == unique_filename assert isinstance(modin_excel_file, pd.ExcelFile) finally: modin_excel_file.close() pandas_excel_file.close() @pytest.mark.xfail(strict=False, reason="Flaky test, defaults to pandas") def test_to_excel(self): modin_df, pandas_df = create_test_dfs(TEST_DATA) unique_filename_modin = get_unique_filename(extension="xlsx") unique_filename_pandas = get_unique_filename(extension="xlsx") modin_writer = pandas.ExcelWriter(unique_filename_modin) pandas_writer = pandas.ExcelWriter(unique_filename_pandas) try: modin_df.to_excel(modin_writer) pandas_df.to_excel(pandas_writer) modin_writer.save() pandas_writer.save() assert assert_files_eq(unique_filename_modin, unique_filename_pandas) finally: teardown_test_files([unique_filename_modin, unique_filename_pandas]) @pytest.mark.xfail( Engine.get() != "Python", reason="Test fails because of issue 3305" ) @check_file_leaks @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_excel_empty_frame(self, make_excel_file): eval_io( fn_name="read_excel", modin_warning=UserWarning, # read_excel kwargs io=make_excel_file(), usecols=[0], index_col=0, ) class TestHdf: @pytest.mark.parametrize("format", [None, "table"]) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_hdf(self, make_hdf_file, format): eval_io( fn_name="read_hdf", # read_hdf kwargs path_or_buf=make_hdf_file(format=format), key="df", ) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_HDFStore(self): hdf_file = None unique_filename_modin = get_unique_filename(extension="hdf") unique_filename_pandas = get_unique_filename(extension="hdf") try: modin_store = pd.HDFStore(unique_filename_modin) pandas_store = pandas.HDFStore(unique_filename_pandas) modin_df, pandas_df = create_test_dfs(TEST_DATA) modin_store["foo"] = modin_df pandas_store["foo"] = pandas_df modin_df = modin_store.get("foo") pandas_df = pandas_store.get("foo") df_equals(modin_df, pandas_df) modin_store.close() pandas_store.close() modin_df = pandas.read_hdf(unique_filename_modin, key="foo", mode="r") pandas_df = pandas.read_hdf(unique_filename_pandas, key="foo", mode="r") df_equals(modin_df, pandas_df) assert isinstance(modin_store, pd.HDFStore) handle, hdf_file = tempfile.mkstemp(suffix=".hdf5", prefix="test_read") os.close(handle) with pd.HDFStore(hdf_file, mode="w") as store: store.append("data/df1", pd.DataFrame(np.random.randn(5, 5))) store.append("data/df2", pd.DataFrame(np.random.randn(4, 4))) modin_df = pd.read_hdf(hdf_file, key="data/df1", mode="r") pandas_df = pandas.read_hdf(hdf_file, key="data/df1", mode="r") df_equals(modin_df, pandas_df) finally: if hdf_file: os.unlink(hdf_file) teardown_test_files([unique_filename_modin, unique_filename_pandas]) @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_HDFStore_in_read_hdf(self): filename = get_unique_filename(extension="hdf") dfin = pd.DataFrame(np.random.rand(8, 8)) try: dfin.to_hdf(filename, "/key") with pd.HDFStore(filename) as h: modin_df = pd.read_hdf(h, "/key") with pandas.HDFStore(filename) as h: pandas_df = pandas.read_hdf(h, "/key") df_equals(modin_df, pandas_df) finally: teardown_test_files([filename]) class TestSql: @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_sql(self, make_sql_connection): filename = get_unique_filename(extension="db") table = "test_read_sql" conn = make_sql_connection(filename, table) query = f"select * from {table}" eval_io( fn_name="read_sql", # read_sql kwargs sql=query, con=conn, ) eval_io( fn_name="read_sql", # read_sql kwargs sql=query, con=conn, index_col="index", ) with pytest.warns(UserWarning): pd.read_sql_query(query, conn) with pytest.warns(UserWarning): pd.read_sql_table(table, conn) # Test SQLAlchemy engine sqlalchemy_engine = sa.create_engine(conn) eval_io( fn_name="read_sql", # read_sql kwargs sql=query, con=sqlalchemy_engine, ) # Test SQLAlchemy Connection sqlalchemy_connection = sqlalchemy_engine.connect() eval_io( fn_name="read_sql", # read_sql kwargs sql=query, con=sqlalchemy_connection, ) modin_df = pd.read_sql( sql=query, con=ModinDatabaseConnection("sqlalchemy", conn) ) pandas_df = pandas.read_sql(sql=query, con=sqlalchemy_connection) df_equals(modin_df, pandas_df) with pytest.raises(UnsupportedDatabaseException): ModinDatabaseConnection("unsupported_database") @pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="The reason of tests fail in `cloud` mode is unknown for now - issue #3264", ) def test_read_sql_with_chunksize(self, make_sql_connection): filename = get_unique_filename(extension="db") table = "test_read_sql_with_chunksize" conn = make_sql_connection(filename, table) query = f"select * from {table}" pandas_gen = pandas.read_sql(query, conn, chunksize=10) modin_gen = pd.read_sql(query, conn, chunksize=10) for modin_df, pandas_df in zip(modin_gen, pandas_gen): df_equals(modin_df, pandas_df) @pytest.mark.parametrize("index", [False, True]) def test_to_sql(self, make_sql_connection, index): table_name = f"test_to_sql_{str(index)}" modin_df, pandas_df = create_test_dfs(TEST_DATA) # We do not pass the table name so the fixture won't generate a table conn = make_sql_connection(f"{table_name}_modin.db") modin_df.to_sql(table_name, conn, index=index) df_modin_sql = pandas.read_sql( table_name, con=conn, index_col="index" if index else None ) # We do not pass the table name so the fixture won't generate a table conn = make_sql_connection(f"{table_name}_pandas.db") pandas_df.to_sql(table_name, conn, index=index) df_pandas_sql = pandas.read_sql( table_name, con=conn, index_col="index" if index else None ) assert df_modin_sql.sort_index().equals(df_pandas_sql.sort_index()) class TestHtml: @pytest.mark.xfail(reason="read_html is not yet implemented properly - issue #1296") def test_read_html(self, make_html_file): eval_io(fn_name="read_html", io=make_html_file()) def test_to_html(self): modin_df, pandas_df = create_test_dfs(TEST_DATA) eval_to_file( modin_obj=modin_df, pandas_obj=pandas_df, fn="to_html", extension="html" ) class TestFwf: def test_fwf_file(self, make_fwf_file): fwf_data = ( "id8141 360.242940 149.910199 11950.7\n" "id1594 444.953632 166.985655 11788.4\n" "id1849 364.136849 183.628767 11806.2\n" "id1230 413.836124 184.375703 11916.8\n" "id1948 502.953953 173.237159 12468.3\n" ) unique_filename = make_fwf_file(fwf_data=fwf_data) colspecs = [(0, 6), (8, 20), (21, 33), (34, 43)] df = pd.read_fwf(unique_filename, colspecs=colspecs, header=None, index_col=0) assert isinstance(df, pd.DataFrame) @pytest.mark.parametrize( "kwargs", [ { "colspecs": [ (0, 11), (11, 15), (19, 24), (27, 32), (35, 40), (43, 48), (51, 56), (59, 64), (67, 72), (75, 80), (83, 88), (91, 96), (99, 104), (107, 112), ], "names": ["stationID", "year", 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "na_values": ["-9999"], "index_col": ["stationID", "year"], }, { "widths": [20, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8], "names": ["id", 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "index_col": [0], }, ], ) def test_fwf_file_colspecs_widths(self, make_fwf_file, kwargs): unique_filename = make_fwf_file() modin_df = pd.read_fwf(unique_filename, **kwargs) pandas_df = pd.read_fwf(unique_filename, **kwargs) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("usecols", [["a"], ["a", "b", "d"], [0, 1, 3]]) def test_fwf_file_usecols(self, make_fwf_file, usecols): fwf_data = ( "a b c d\n" "id8141 360.242940 149.910199 11950.7\n" "id1594 444.953632 166.985655 11788.4\n" "id1849 364.136849 183.628767 11806.2\n" "id1230 413.836124 184.375703 11916.8\n" "id1948 502.953953 173.237159 12468.3\n" ) eval_io( fn_name="read_fwf", # read_fwf kwargs filepath_or_buffer=make_fwf_file(fwf_data=fwf_data), usecols=usecols, ) def test_fwf_file_chunksize(self, make_fwf_file): unique_filename = make_fwf_file() # Tests __next__ and correctness of reader as an iterator rdf_reader = pd.read_fwf(unique_filename, chunksize=5) pd_reader = pandas.read_fwf(unique_filename, chunksize=5) for modin_df, pd_df in zip(rdf_reader, pd_reader): df_equals(modin_df, pd_df) # Tests that get_chunk works correctly rdf_reader = pd.read_fwf(unique_filename, chunksize=1) pd_reader = pandas.read_fwf(unique_filename, chunksize=1) modin_df = rdf_reader.get_chunk(1) pd_df = pd_reader.get_chunk(1) df_equals(modin_df, pd_df) # Tests that read works correctly rdf_reader = pd.read_fwf(unique_filename, chunksize=1) pd_reader = pandas.read_fwf(unique_filename, chunksize=1) modin_df = rdf_reader.read() pd_df = pd_reader.read() df_equals(modin_df, pd_df) @pytest.mark.parametrize( "nrows", [ pytest.param( 13, marks=pytest.mark.xfail( Engine.get() == "Ray", reason="read_fwf bug on pandas side: pandas-dev/pandas#44021", ), ), None, ], ) def test_fwf_file_skiprows(self, make_fwf_file, nrows): unique_filename = make_fwf_file() eval_io( fn_name="read_fwf", # read_fwf kwargs filepath_or_buffer=unique_filename, skiprows=2, nrows=nrows, ) eval_io( fn_name="read_fwf", # read_fwf kwargs filepath_or_buffer=unique_filename, usecols=[0, 4, 7], skiprows=[2, 5], nrows=nrows, ) def test_fwf_file_index_col(self, make_fwf_file): fwf_data = ( "a b c d\n" "id8141 360.242940 149.910199 11950.7\n" "id1594 444.953632 166.985655 11788.4\n" "id1849 364.136849 183.628767 11806.2\n" "id1230 413.836124 184.375703 11916.8\n" "id1948 502.953953 173.237159 12468.3\n" ) eval_io( fn_name="read_fwf", # read_fwf kwargs filepath_or_buffer=make_fwf_file(fwf_data=fwf_data), index_col="c", ) def test_fwf_file_skipfooter(self, make_fwf_file): eval_io( fn_name="read_fwf", # read_fwf kwargs filepath_or_buffer=make_fwf_file(), skipfooter=2, ) def test_fwf_file_parse_dates(self, make_fwf_file): dates = pandas.date_range("2000", freq="h", periods=10) fwf_data = "col1 col2 col3 col4" for i in range(10, 20): fwf_data = fwf_data + "\n{col1} {col2} {col3} {col4}".format( col1=str(i), col2=str(dates[i - 10].date()), col3=str(i), col4=str(dates[i - 10].time()), ) unique_filename = make_fwf_file(fwf_data=fwf_data) eval_io( fn_name="read_fwf", # read_fwf kwargs filepath_or_buffer=unique_filename, parse_dates=[["col2", "col4"]], ) eval_io( fn_name="read_fwf", # read_fwf kwargs filepath_or_buffer=unique_filename, parse_dates={"time": ["col2", "col4"]}, ) @pytest.mark.parametrize( "read_mode", [ "r", pytest.param( "rb", marks=pytest.mark.xfail( condition="config.getoption('--simulate-cloud').lower() != 'off'", reason="Cannot pickle file handles. See comments in PR #2625", ), ), ], ) def test_read_fwf_file_handle(self, make_fwf_file, read_mode): with open(make_fwf_file(), mode=read_mode) as buffer: df_pandas = pandas.read_fwf(buffer) buffer.seek(0) df_modin = pd.read_fwf(buffer) df_equals(df_modin, df_pandas) def test_read_fwf_empty_frame(self, make_fwf_file): kwargs = { "usecols": [0], "index_col": 0, } unique_filename = make_fwf_file() modin_df = pd.read_fwf(unique_filename, **kwargs) pandas_df =
pandas.read_fwf(unique_filename, **kwargs)
pandas.read_fwf
""" Functions to check data is loaded correctly """ import pandas as pd from flowsa.flowbyfunctions import fba_fill_na_dict, harmonize_units, fba_activity_fields, filter_by_geoscale, \ fba_default_grouping_fields, fbs_default_grouping_fields, aggregator, sector_aggregation, fbs_fill_na_dict, \ fbs_activity_fields, clean_df, create_geoscale_list, sector_disaggregation, replace_strings_with_NoneType, \ replace_NoneType_with_empty_cells from flowsa.common import US_FIPS, sector_level_key, flow_by_sector_fields, load_sector_length_crosswalk, \ load_sector_crosswalk, sector_source_name, log, fips_number_key, outputpath, activity_fields def check_flow_by_fields(flowby_df, flowbyfields): """ Add in missing fields to have a complete and ordered :param flowby_df: Either flowbyactivity or flowbysector df :param flowbyfields: Either flow_by_activity_fields or flow_by_sector_fields :return: """ for k, v in flowbyfields.items(): try: log.debug("fba activity " + k + " data type is " + str(flowby_df[k].values.dtype)) log.debug("standard " + k + " data type is " + str(v[0]['dtype'])) except: log.debug("Failed to find field ", k, " in fba") def check_if_activities_match_sectors(fba): """ Checks if activities in flowbyactivity that appear to be like sectors are actually sectors :param fba: a flow by activity dataset :return: A list of activities not marching the default sector list or text indicating 100% match """ # Get list of activities in a flowbyactivity file activities = [] for f in fba_activity_fields: activities.extend(fba[f]) #activities.remove("None") # Get list of module default sectors flowsa_sector_list = list(load_sector_crosswalk()[sector_source_name]) activities_missing_sectors = set(activities) - set(flowsa_sector_list) if len(activities_missing_sectors) > 0: log.info(str(len( activities_missing_sectors)) + " activities not matching sectors in default " + sector_source_name + " list.") return activities_missing_sectors else: log.info("All activities match sectors in " + sector_source_name + " list.") return None def check_if_data_exists_at_geoscale(df, geoscale, activitynames='All'): """ Check if an activity or a sector exists at the specified geoscale :param df: flowbyactivity dataframe :param activitynames: Either an activity name (ex. 'Domestic') or a sector (ex. '1124') :param geoscale: national, state, or county :return: """ # if any activity name is specified, check if activity data exists at the specified geoscale activity_list = [] if activitynames != 'All': if isinstance(activitynames, str) == True: activity_list.append(activitynames) else: activity_list = activitynames # check for specified activity name df = df[(df[fba_activity_fields[0]].isin(activity_list)) | (df[fba_activity_fields[1]].isin(activity_list))].reset_index(drop=True) else: activity_list.append('activities') # filter by geoscale depends on Location System fips = create_geoscale_list(df, geoscale) df = df[df['Location'].isin(fips)] if len(df) == 0: log.info( "No flows found for " + ', '.join(activity_list) + " at the " + geoscale + " scale") exists = "No" else: log.info("Flows found for " + ', '.join(activity_list) + " at the " + geoscale + " scale") exists = "Yes" return exists def check_if_data_exists_at_less_aggregated_geoscale(df, geoscale, activityname): """ In the event data does not exist at specified geoscale, check if data exists at less aggregated level :param df: Either flowbyactivity or flowbysector dataframe :param data_to_check: Either an activity name (ex. 'Domestic') or a sector (ex. '1124') :param geoscale: national, state, or county :param flowbytype: 'fba' for flowbyactivity, 'fbs' for flowbysector :return: """ if geoscale == 'national': df = df[(df[fba_activity_fields[0]] == activityname) | ( df[fba_activity_fields[1]] == activityname)] fips = create_geoscale_list(df, 'state') df = df[df['Location'].isin(fips)] if len(df) == 0: log.info("No flows found for " + activityname + " at the state scale") fips = create_geoscale_list(df, 'county') df = df[df['Location'].isin(fips)] if len(df) == 0: log.info("No flows found for " + activityname + " at the county scale") else: log.info("Flowbyactivity data exists for " + activityname + " at the county level") new_geoscale_to_use = 'county' return new_geoscale_to_use else: log.info("Flowbyactivity data exists for " + activityname + " at the state level") new_geoscale_to_use = 'state' return new_geoscale_to_use if geoscale == 'state': df = df[(df[fba_activity_fields[0]] == activityname) | ( df[fba_activity_fields[1]] == activityname)] fips = create_geoscale_list(df, 'county') df = df[df['Location'].isin(fips)] if len(df) == 0: log.info("No flows found for " + activityname + " at the county scale") else: log.info("Flowbyactivity data exists for " + activityname + " at the county level") new_geoscale_to_use = 'county' return new_geoscale_to_use def check_if_location_systems_match(df1, df2): """ Check if two dataframes share the same location system :param df1: fba or fbs df :param df2: fba or fbs df :return: """ if df1["LocationSystem"].all() == df2["LocationSystem"].all(): log.info("LocationSystems match") else: log.warning("LocationSystems do not match, might lose county level data") def check_if_data_exists_for_same_geoscales(fba_wsec_walloc, source, activity): # fba_w_aggregated_sectors """ Determine if data exists at the same scales for datasource and allocation source :param source_fba: :param allocation_fba: :return: """ # todo: modify so only returns warning if no value for entire location, not just no value for one of the possible sectors from flowsa.mapping import get_activitytosector_mapping # create list of highest sector level for which there should be data mapping = get_activitytosector_mapping(source) # filter by activity of interest mapping = mapping.loc[mapping['Activity'].isin(activity)] # add sectors to list sectors_list = pd.unique(mapping['Sector']).tolist() # subset fba w sectors and with merged allocation table so only have rows with aggregated sector list df_subset = fba_wsec_walloc.loc[ (fba_wsec_walloc[fbs_activity_fields[0]].isin(sectors_list)) | (fba_wsec_walloc[fbs_activity_fields[1]].isin(sectors_list))].reset_index(drop=True) # only interested in total flows # df_subset = df_subset.loc[df_subset['FlowName'] == 'total'].reset_index(drop=True) # df_subset = df_subset.loc[df_subset['Compartment'] == 'total'].reset_index(drop=True) # create subset of fba where the allocation data is missing missing_alloc = df_subset.loc[df_subset['FlowAmountRatio'].isna()].reset_index(drop=True) # drop any rows where source flow value = 0 missing_alloc = missing_alloc.loc[missing_alloc['FlowAmount'] != 0].reset_index(drop=True) # create list of locations with missing alllocation data states_missing_data = pd.unique(missing_alloc['Location']).tolist() if len(missing_alloc) == 0: log.info("All aggregated sector flows have allocation flow ratio data") else: log.warning("Missing allocation flow ratio data for " + ', '.join(states_missing_data)) return None def check_if_losing_sector_data(df, target_sector_level): """ Determine rows of data that will be lost if subset data at target sector level In some instances, not all :param fbs: :return: """ # exclude nonsectors df = replace_NoneType_with_empty_cells(df) rows_lost = pd.DataFrame() for i in range(2, sector_level_key[target_sector_level]): # create df of i length df_x1 = df.loc[(df[fbs_activity_fields[0]].apply(lambda x: len(x) == i)) & (df[fbs_activity_fields[1]] == '')] df_x2 = df.loc[(df[fbs_activity_fields[0]] == '') & (df[fbs_activity_fields[1]].apply(lambda x: len(x) == i))] df_x3 = df.loc[(df[fbs_activity_fields[0]].apply(lambda x: len(x) == i)) & (df[fbs_activity_fields[1]].apply(lambda x: len(x) == i))] df_x = pd.concat([df_x1, df_x2, df_x3], ignore_index=True, sort=False) # create df of i + 1 length df_y1 = df.loc[df[fbs_activity_fields[0]].apply(lambda x: len(x) == i + 1) | df[fbs_activity_fields[1]].apply(lambda x: len(x) == i + 1)] df_y2 = df.loc[df[fbs_activity_fields[0]].apply(lambda x: len(x) == i + 1) & df[fbs_activity_fields[1]].apply(lambda x: len(x) == i + 1)] df_y = pd.concat([df_y1, df_y2], ignore_index=True, sort=False) # create temp sector columns in df y, that are i digits in length df_y.loc[:, 'spb_tmp'] = df_y[fbs_activity_fields[0]].apply(lambda x: x[0:i]) df_y.loc[:, 'scb_tmp'] = df_y[fbs_activity_fields[1]].apply(lambda x: x[0:i]) # don't modify household sector lengths df_y = df_y.replace({'F0': 'F010', 'F01': 'F010'}) # merge the two dfs df_m = pd.merge(df_x, df_y[['Class', 'Context', 'FlowType', 'Flowable', 'Location', 'LocationSystem', 'Unit', 'Year', 'spb_tmp', 'scb_tmp']], how='left', left_on=['Class', 'Context', 'FlowType', 'Flowable', 'Location', 'LocationSystem', 'Unit', 'Year', 'SectorProducedBy', 'SectorConsumedBy'], right_on=['Class', 'Context', 'FlowType', 'Flowable', 'Location', 'LocationSystem', 'Unit', 'Year', 'spb_tmp', 'scb_tmp']) # extract the rows that are not disaggregated to more specific naics rl = df_m[(df_m['scb_tmp'].isnull()) & (df_m['spb_tmp'].isnull())] # clean df rl = clean_df(rl, flow_by_sector_fields, fbs_fill_na_dict) rl_list = rl[['SectorProducedBy', 'SectorConsumedBy']].drop_duplicates().values.tolist() # match sectors with target sector length sectors # import cw and subset to current sector length and target sector length cw_load = load_sector_length_crosswalk() nlength = list(sector_level_key.keys())[list(sector_level_key.values()).index(i)] cw = cw_load[[nlength, target_sector_level]].drop_duplicates() # add column with counts cw['sector_count'] = cw.groupby(nlength)[nlength].transform('count') # merge df & conditionally replace sector produced/consumed columns rl_m = pd.merge(rl, cw, how='left', left_on=[fbs_activity_fields[0]], right_on=[nlength]) rl_m.loc[rl_m[fbs_activity_fields[0]] != '', fbs_activity_fields[0]] = rl_m[target_sector_level] rl_m = rl_m.drop(columns=[nlength, target_sector_level]) rl_m2 = pd.merge(rl_m, cw, how='left', left_on=[fbs_activity_fields[1]], right_on=[nlength]) rl_m2.loc[rl_m2[fbs_activity_fields[1]] != '', fbs_activity_fields[1]] = rl_m2[target_sector_level] rl_m2 = rl_m2.drop(columns=[nlength, target_sector_level]) # create one sector count column rl_m2['sector_count_x'] = rl_m2['sector_count_x'].fillna(rl_m2['sector_count_y']) rl_m3 = rl_m2.rename(columns={'sector_count_x': 'sector_count'}) rl_m3 = rl_m3.drop(columns=['sector_count_y']) # calculate new flow amounts, based on sector count, allocating equally to the new sector length codes rl_m3['FlowAmount'] = rl_m3['FlowAmount'] / rl_m3['sector_count'] rl_m3 = rl_m3.drop(columns=['sector_count']) # append to df if len(rl) != 0: log.warning('Data found at ' + str(i) + ' digit NAICS not represented in current ' 'data subset: {}'.format(' '.join(map(str, rl_list)))) rows_lost = rows_lost.append(rl_m3, ignore_index=True, sort=True) if len(rows_lost) == 0: log.info('Data exists at ' + target_sector_level) else: log.info('Allocating FlowAmounts equally to each ' + target_sector_level + ' associated with the sectors previously dropped') # add rows of missing data to the fbs sector subset df_w_lost_data = pd.concat([df, rows_lost], ignore_index=True, sort=True) df_w_lost_data = replace_strings_with_NoneType(df_w_lost_data) return df_w_lost_data def check_allocation_ratios(flow_alloc_df, activity_set, source_name, method_name): """ Check for issues with the flow allocation ratios :param df: :return: """ # create column of sector lengths flow_alloc_df.loc[:, 'slength'] = flow_alloc_df['Sector'].apply(lambda x: len(x)) # subset df flow_alloc_df2 = flow_alloc_df[['FBA_Activity', 'Location', 'slength', 'FlowAmountRatio']] # sum the flow amount ratios by location and sector length flow_alloc_df3 = flow_alloc_df2.groupby(['FBA_Activity', 'Location', 'slength'], as_index=False)[["FlowAmountRatio"]].agg("sum") # not interested in sector length > 6 flow_alloc_df4 = flow_alloc_df3[flow_alloc_df3['slength'] <= 6] ua_count1 = len(flow_alloc_df4[flow_alloc_df4['FlowAmountRatio'] < 1]) log.info('There are ' + str(ua_count1) + ' instances at a sector length of 6 or less where the allocation ratio for a location and sector length is < 1') ua_count2 = len(flow_alloc_df4[flow_alloc_df4['FlowAmountRatio'] < 0.99]) log.info('There are ' + str(ua_count2) + ' instances at a sector length of 6 or less where the allocation ratio for a location and sector length is < 0.99') ua_count3 = len(flow_alloc_df4[flow_alloc_df4['FlowAmountRatio'] > 1]) log.info('There are ' + str(ua_count3) + ' instances at a sector length of 6 or less where the allocation ratio for a location and sector length is > 1') ua_count4 = len(flow_alloc_df4[flow_alloc_df4['FlowAmountRatio'] > 1.01]) log.info('There are ' + str(ua_count4) + ' instances at a sector length of 6 or less where the allocation ratio for a location and sector length is > 1.01') # save csv to output folder log.info('Save the summary table of flow allocation ratios for each sector length for ' + activity_set + ' in output folder') # output data for all sector lengths flow_alloc_df3.to_csv(outputpath + "FlowBySectorMethodAnalysis/" + method_name + '_' + source_name + "_allocation_ratios_" + activity_set + ".csv", index=False) return None def check_for_differences_between_fba_load_and_fbs_output(fba_load, fbs_load, activity_set, source_name, method_name): """ Function to compare the loaded flowbyactivity with the final flowbysector output, checking for data loss :param df: :return: """ from flowsa.flowbyfunctions import replace_strings_with_NoneType, replace_NoneType_with_empty_cells # subset fba df fba = fba_load[['Class', 'MetaSources', 'Flowable', 'Unit', 'FlowType', 'ActivityProducedBy', 'ActivityConsumedBy', 'Context', 'Location', 'LocationSystem', 'Year', 'FlowAmount']].drop_duplicates().reset_index(drop=True) fba.loc[:, 'Location'] = US_FIPS group_cols = ['ActivityProducedBy', 'ActivityConsumedBy', 'Flowable', 'Unit', 'FlowType', 'Context', 'Location', 'LocationSystem', 'Year'] fba_agg = aggregator(fba, group_cols) fba_agg.rename(columns={'FlowAmount': 'FBA_amount'}, inplace=True) # subset fbs df fbs = fbs_load[['Class', 'SectorSourceName', 'Flowable', 'Unit', 'FlowType', 'SectorProducedBy', 'SectorConsumedBy', 'ActivityProducedBy', 'ActivityConsumedBy', 'Context', 'Location', 'LocationSystem', 'Year', 'FlowAmount']].drop_duplicates().reset_index(drop=True) fbs = replace_NoneType_with_empty_cells(fbs) fbs['ProducedLength'] = fbs['SectorProducedBy'].apply(lambda x: len(x)) fbs['ConsumedLength'] = fbs['SectorConsumedBy'].apply(lambda x: len(x)) fbs['SectorLength'] = fbs[['ProducedLength', 'ConsumedLength']].max(axis=1) fbs.loc[:, 'Location'] = US_FIPS group_cols = ['ActivityProducedBy', 'ActivityConsumedBy', 'Flowable', 'Unit', 'FlowType', 'Context', 'Location', 'LocationSystem', 'Year', 'SectorLength'] fbs_agg = aggregator(fbs, group_cols) fbs_agg.rename(columns={'FlowAmount': 'FBS_amount'}, inplace=True) # merge compare 1 and compare 2 df_merge = fba_agg.merge(fbs_agg, left_on=['ActivityProducedBy', 'ActivityConsumedBy', 'Flowable', 'Unit', 'FlowType', 'Context', 'Location','LocationSystem', 'Year'], right_on=['ActivityProducedBy', 'ActivityConsumedBy', 'Flowable', 'Unit', 'FlowType', 'Context', 'Location', 'LocationSystem', 'Year'], how='left') df_merge['Ratio'] = df_merge['FBS_amount'] / df_merge['FBA_amount'] # reorder df_merge = df_merge[['ActivityProducedBy', 'ActivityConsumedBy', 'Flowable', 'Unit', 'FlowType', 'Context', 'Location', 'LocationSystem', 'Year', 'SectorLength', 'FBA_amount', 'FBS_amount', 'Ratio']] # only report difference at sector length <= 6 comparison = df_merge[df_merge['SectorLength'] <= 6] # todo: address the duplicated rows/data that occur for non-naics household sector length ua_count1 = len(comparison[comparison['Ratio'] < 0.95]) log.info('There are ' + str(ua_count1) + ' combinations of flowable/context/sector length where the flowbyactivity to flowbysector ratio is < 0.95') ua_count2 = len(comparison[comparison['Ratio'] < 0.99]) log.info('There are ' + str(ua_count2) + ' combinations of flowable/context/sector length where the flowbyactivity to flowbysector ratio is < 0.99') oa_count1 = len(comparison[comparison['Ratio'] > 1]) log.info('There are ' + str(oa_count1) + ' combinations of flowable/context/sector length where the flowbyactivity to flowbysector ratio is > 1.0') oa_count2 = len(comparison[comparison['Ratio'] > 1.01]) log.info('There are ' + str(oa_count2) + ' combinations of flowable/context/sector length where the flowbyactivity to flowbysector ratio is > 1.01') # save csv to output folder log.info('Save the comparison of FlowByActivity load to FlowBySector ratios for ' + activity_set + ' in output folder') # output data at all sector lengths df_merge.to_csv(outputpath + "FlowBySectorMethodAnalysis/" + method_name + '_' + source_name + "_FBA_load_to_FBS_comparison_" + activity_set + ".csv", index=False) return None def compare_fba_load_and_fbs_output_totals(fba_load, fbs_load, activity_set, source_name, method_name, attr, method, mapping_files): """ Function to compare the loaded flowbyactivity total with the final flowbysector output total :param df: :return: """ from flowsa.flowbyfunctions import subset_df_by_geoscale, sector_aggregation from flowsa.common import load_source_catalog from flowsa.mapping import map_elementary_flows log.info('Comparing loaded FlowByActivity FlowAmount total to subset FlowBySector FlowAmount total') # load source catalog cat = load_source_catalog() src_info = cat[source_name] # extract relevant geoscale data or aggregate existing data fba = subset_df_by_geoscale(fba_load, attr['allocation_from_scale'], method['target_geoscale']) # map loaded fba fba = map_elementary_flows(fba, mapping_files, keep_unmapped_rows=True) if src_info['sector-like_activities']: # if activities are sector-like, run sector aggregation and then subset df to only keep NAICS2 fba = fba[['Class', 'FlowAmount', 'Unit', 'Context', 'ActivityProducedBy', 'ActivityConsumedBy', 'Location', 'LocationSystem']] # rename the activity cols to sector cols for purposes of aggregation fba = fba.rename(columns={'ActivityProducedBy': 'SectorProducedBy', 'ActivityConsumedBy': 'SectorConsumedBy'}) group_cols_agg = ['Class', 'Context', 'Unit', 'Location', 'LocationSystem', 'SectorProducedBy', 'SectorConsumedBy'] fba = sector_aggregation(fba, group_cols_agg) # subset fba to only include NAICS2 fba = replace_NoneType_with_empty_cells(fba) fba = fba[fba['SectorConsumedBy'].apply(lambda x: len(x) == 2) | fba['SectorProducedBy'].apply(lambda x: len(x) == 2)] # subset/agg dfs col_subset = ['Class', 'FlowAmount', 'Unit', 'Context', 'Location', 'LocationSystem'] group_cols = ['Class', 'Unit', 'Context', 'Location', 'LocationSystem'] # fba fba = fba[col_subset] fba_agg = aggregator(fba, group_cols).reset_index(drop=True) fba_agg.rename(columns={'FlowAmount': 'FBA_amount', 'Unit': 'FBA_unit'}, inplace=True) # fbs fbs = fbs_load[col_subset] fbs_agg = aggregator(fbs, group_cols) fbs_agg.rename(columns={'FlowAmount': 'FBS_amount', 'Unit': 'FBS_unit'}, inplace=True) try: # merge FBA and FBS totals df_merge = fba_agg.merge(fbs_agg, how='left') df_merge['FlowAmount_difference'] = df_merge['FBA_amount'] - df_merge['FBS_amount'] df_merge['Percent_difference'] = (df_merge['FlowAmount_difference']/df_merge['FBA_amount']) * 100 # reorder df_merge = df_merge[['Class', 'Context', 'Location', 'LocationSystem', 'FBA_amount', 'FBA_unit', 'FBS_amount', 'FBS_unit', 'FlowAmount_difference', 'Percent_difference']] df_merge = replace_NoneType_with_empty_cells(df_merge) # list of contexts context_list = df_merge['Context'].to_list() # loop through the contexts and print results of comparison for i in context_list: df_merge_subset = df_merge[df_merge['Context'] == i].reset_index(drop=True) diff_per = df_merge_subset['Percent_difference'][0] # make reporting more manageable if abs(diff_per) > 0.001: diff_per = round(diff_per, 2) else: diff_per = round(diff_per, 6) diff_units = df_merge_subset['FBS_unit'][0] if diff_per > 0: log.info('The total FlowBySector FlowAmount for ' + source_name + ' ' + activity_set + ' ' + i + ' is ' + str(abs(diff_per)) + '% less than the total FlowByActivity FlowAmount') else: log.info('The total FlowBySector FlowAmount for ' + source_name + ' ' + activity_set + ' ' + i + ' is ' + str(abs(diff_per)) + '% more than the total FlowByActivity FlowAmount') # save csv to output folder log.info('Save the comparison of FlowByActivity load to FlowBySector total FlowAmounts for ' + activity_set + ' in output folder') # output data at all sector lengths df_merge.to_csv(outputpath + "FlowBySectorMethodAnalysis/" + method_name + '_' + source_name + "_FBA_total_to_FBS_total_FlowAmount_comparison_" + activity_set + ".csv", index=False) except: log.info('Error occured when comparing total FlowAmounts for FlowByActivity and FlowBySector') return None def check_summation_at_sector_lengths(df): # columns to keep df_cols = [e for e in df.columns if e not in ('MeasureofSpread', 'Spread', 'DistributionType', 'Min', 'Max', 'DataReliability', 'DataCollection', 'FlowType', 'Compartment', 'Description', 'Activity')] # subset df df2 = df[df_cols] # rename columns and clean up df df2 = df2[~df2['Sector'].isnull()] df2 = df2.assign(slength=df2['Sector'].apply(lambda x: len(x))) # sum flowamounts by sector length denom_df = df2.copy() denom_df.loc[:, 'Denominator'] = denom_df.groupby(['Location', 'slength'])['FlowAmount'].transform('sum') summed_df = denom_df.drop(columns=['Sector', 'FlowAmount']).drop_duplicates().reset_index(drop=True) # max value maxv = max(summed_df['Denominator'].apply(lambda x: x)) # percent of total accounted for summed_df = summed_df.assign(percentOfTot=summed_df['Denominator']/maxv) summed_df = summed_df.sort_values(['slength']).reset_index(drop=True) return summed_df def check_for_nonetypes_in_sector_col(df): """ Check for NoneType in columns where datatype = string :param df: df with columns where datatype = object :return: warning message if there are NoneTypes """ # if datatypes are strings, return warning message if df['Sector'].isnull().any(): log.warning("There are NoneType values in the 'Sector' column") return df def check_for_negative_flowamounts(df): if (df['FlowAmount'].values < 0).any(): log.warning('There are negative FlowAmounts') return df def check_if_sectors_are_naics(df, crosswalk_list, column_headers): """ Check if activity-like sectors are in fact sectors. Also works for the Sector column :return: """ # create a df of non-sectors to export non_sectors_df = [] # create a df of just the non-sectors column non_sectors_list = [] # loop through the df headers and determine if value is not in crosswalk list for c in column_headers: # create df where sectors do not exist in master crosswalk non_sectors = df[~df[c].isin(crosswalk_list)] # drop rows where c is empty non_sectors = non_sectors[non_sectors[c] != ''] # subset to just the sector column if len(non_sectors) != 0: sectors = non_sectors[[c]].rename(columns={c: 'NonSectors'}) non_sectors_df.append(non_sectors) non_sectors_list.append(sectors) if len(non_sectors_df) != 0: # concat the df and the df of sectors # ns_df = pd.concat(non_sectors_df, sort=False, ignore_index=True) ns_list =
pd.concat(non_sectors_list, sort=False, ignore_index=True)
pandas.concat
# -*- coding:utf-8 -*- # !/usr/bin/env python """ Date: 2021/11/2 21:08 Desc: 同花顺-数据中心-技术选股 http://data.10jqka.com.cn/rank/cxg/ """ import pandas as pd import requests from bs4 import BeautifulSoup from py_mini_racer import py_mini_racer from tqdm import tqdm from akshare.datasets import get_ths_js def _get_file_content_ths(file: str = "ths.js") -> str: """ 获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str """ setting_file_path = get_ths_js(file) with open(setting_file_path) as f: file_data = f.read() return file_data def stock_rank_cxg_ths(symbol: str = "创月新高") -> pd.DataFrame: """ 同花顺-数据中心-技术选股-创新高 http://data.10jqka.com.cn/rank/cxg/ :param symbol: choice of {"创月新高", "半年新高", "一年新高", "历史新高"} :type symbol: str :return: 创新高数据 :rtype: pandas.DataFrame """ symbol_map = { "创月新高": "4", "半年新高": "3", "一年新高": "2", "历史新高": "1", } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxg/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxg/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = ["序号", "股票代码", "股票简称", "涨跌幅", "换手率", "最新价", "前期高点", "前期高点日期"] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].str.strip("%") big_df["换手率"] = big_df["换手率"].str.strip("%") big_df["前期高点日期"] = pd.to_datetime(big_df["前期高点日期"]).dt.date big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["前期高点"] = pd.to_numeric(big_df["前期高点"]) return big_df def stock_rank_cxd_ths(symbol: str = "创月新低") -> pd.DataFrame: """ 同花顺-数据中心-技术选股-创新低 http://data.10jqka.com.cn/rank/cxd/ :param symbol: choice of {"创月新低", "半年新低", "一年新低", "历史新低"} :type symbol: str :return: 创新低数据 :rtype: pandas.DataFrame """ symbol_map = { "创月新低": "4", "半年新低": "3", "一年新低": "2", "历史新低": "1", } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxd/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxd/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = ["序号", "股票代码", "股票简称", "涨跌幅", "换手率", "最新价", "前期低点", "前期低点日期"] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].str.strip("%") big_df["换手率"] = big_df["换手率"].str.strip("%") big_df["前期低点日期"] = pd.to_datetime(big_df["前期低点日期"]).dt.date big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["前期低点"] = pd.to_numeric(big_df["前期低点"]) return big_df def stock_rank_lxsz_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-连续上涨 http://data.10jqka.com.cn/rank/lxsz/ :return: 连续上涨 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxsz/field/lxts/order/desc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxsz/field/lxts/order/desc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "收盘价", "最高价", "最低价", "连涨天数", "连续涨跌幅", "累计换手率", "所属行业", ] big_df["连续涨跌幅"] = big_df["连续涨跌幅"].str.strip("%") big_df["累计换手率"] = big_df["累计换手率"].str.strip("%") big_df["连续涨跌幅"] = pd.to_numeric(big_df["连续涨跌幅"]) big_df["累计换手率"] = pd.to_numeric(big_df["累计换手率"]) big_df["收盘价"] = pd.to_numeric(big_df["收盘价"]) big_df["最高价"] = pd.to_numeric(big_df["最高价"]) big_df["最低价"] = pd.to_numeric(big_df["最低价"]) big_df["连涨天数"] = pd.to_numeric(big_df["连涨天数"]) return big_df def stock_rank_lxxd_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-连续下跌 http://data.10jqka.com.cn/rank/lxxd/ :return: 连续下跌 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxxd/field/lxts/order/desc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxxd/field/lxts/order/desc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "收盘价", "最高价", "最低价", "连涨天数", "连续涨跌幅", "累计换手率", "所属行业", ] big_df["连续涨跌幅"] = big_df["连续涨跌幅"].str.strip("%") big_df["累计换手率"] = big_df["累计换手率"].str.strip("%") big_df["连续涨跌幅"] = pd.to_numeric(big_df["连续涨跌幅"]) big_df["累计换手率"] = pd.to_numeric(big_df["累计换手率"]) big_df["收盘价"] = pd.to_numeric(big_df["收盘价"]) big_df["最高价"] = pd.to_numeric(big_df["最高价"]) big_df["最低价"] = pd.to_numeric(big_df["最低价"]) big_df["连涨天数"] = pd.to_numeric(big_df["连涨天数"]) return big_df def stock_rank_cxfl_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-持续放量 http://data.10jqka.com.cn/rank/cxfl/ :return: 持续放量 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxfl/field/count/order/desc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxfl/field/count/order/desc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "涨跌幅", "最新价", "成交量", "基准日成交量", "放量天数", "阶段涨跌幅", "所属行业", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["阶段涨跌幅"] = big_df["阶段涨跌幅"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["阶段涨跌幅"] = pd.to_numeric(big_df["阶段涨跌幅"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["放量天数"] = pd.to_numeric(big_df["放量天数"]) return big_df def stock_rank_cxsl_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-持续缩量 http://data.10jqka.com.cn/rank/cxsl/ :return: 持续缩量 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxsl/field/count/order/desc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxsl/field/count/order/desc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "涨跌幅", "最新价", "成交量", "基准日成交量", "缩量天数", "阶段涨跌幅", "所属行业", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["阶段涨跌幅"] = big_df["阶段涨跌幅"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["阶段涨跌幅"] = pd.to_numeric(big_df["阶段涨跌幅"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["缩量天数"] = pd.to_numeric(big_df["缩量天数"]) return big_df def stock_rank_xstp_ths(symbol: str = "500日均线") -> pd.DataFrame: """ 同花顺-数据中心-技术选股-向上突破 http://data.10jqka.com.cn/rank/xstp/ :param symbol: choice of {"5日均线", "10日均线", "20日均线", "30日均线", "60日均线", "90日均线", "250日均线", "500日均线"} :type symbol: str :return: 向上突破 :rtype: pandas.DataFrame """ symbol_map = { "5日均线": 5, "10日均线": 10, "20日均线": 20, "30日均线": 30, "60日均线": 60, "90日均线": 90, "250日均线": 250, "500日均线": 500, } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xstp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xstp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "最新价", "成交额", "成交量", "涨跌幅", "换手率", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["换手率"] = big_df["换手率"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) return big_df def stock_rank_xxtp_ths(symbol: str = "500日均线") -> pd.DataFrame: """ 同花顺-数据中心-技术选股-向下突破 http://data.10jqka.com.cn/rank/xxtp/ :param symbol: choice of {"5日均线", "10日均线", "20日均线", "30日均线", "60日均线", "90日均线", "250日均线", "500日均线"} :type symbol: str :return: 向下突破 :rtype: pandas.DataFrame """ symbol_map = { "5日均线": 5, "10日均线": 10, "20日均线": 20, "30日均线": 30, "60日均线": 60, "90日均线": 90, "250日均线": 250, "500日均线": 500, } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xxtp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/xxtp/board/{symbol_map[symbol]}/order/asc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "最新价", "成交额", "成交量", "涨跌幅", "换手率", ] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].astype(str).str.strip("%") big_df["换手率"] = big_df["换手率"].astype(str).str.strip("%") big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) return big_df def stock_rank_ljqs_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-量价齐升 http://data.10jqka.com.cn/rank/ljqs/ :return: 量价齐升 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/ljqs/field/count/order/desc/ajax/1/free/1/page/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/ljqs/field/count/order/desc/ajax/1/free/1/page/{page}/free/1/" r = requests.get(url, headers=headers) temp_df =
pd.read_html(r.text, converters={"股票代码": str})
pandas.read_html
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jun 19 13:30:14 2020 @author: mehrdad """ # NOTE: This class/file is meant to be located in a data-access-layer (DAL) package/namespace from commonlayer.common_helper_class import CommonHelper from dal.base.table_interface import TableInterface import pandas as pd class TripPlans(TableInterface): def load_trip_plan(self, trip, mode, numItineraries, maxWalkDistance): qstr = """SELECT start_time, ST_AsText(origin) as origin, ST_AsText(destination) as destination, mode, max_walk_distance, no_of_itins, plan FROM trip_plans WHERE start_time = '{0}' AND origin = '{1}' AND destination = '{2}' AND mode = '{3}' AND max_walk_distance = {4} AND no_of_itins = {5}; """.format( CommonHelper.DateTime_to_Text(trip.starttime), CommonHelper.pointRow_to_postgisPoint(trip.origin), CommonHelper.pointRow_to_postgisPoint(trip.destination), mode, maxWalkDistance, numItineraries ) res, plan_rows = self.db_command.ExecuteSQL(qstr, LOG_IMPORTANT_CUSTOM = False) return res, plan_rows def store_trip_plan(self, trip, mode, numItineraries, maxWalkDistance, plan): qstr = """INSERT INTO trip_plans (start_time, origin, destination, mode, max_walk_distance, no_of_itins, plan) VALUES ('{0}', ST_GeomFromText('{1}'), ST_GeomFromText('{2}'), '{3}',{4},{5}, '{6}' ); """.format( CommonHelper.DateTime_to_Text(trip.starttime), CommonHelper.pointRow_to_postgisPoint(trip.origin), CommonHelper.pointRow_to_postgisPoint(trip.destination), mode, maxWalkDistance, numItineraries, CommonHelper.json_to_sqlstr(plan) ) res, db_res = self.db_command.ExecuteSQL(qstr, LOG_IMPORTANT_CUSTOM=False) return res def delete_trip_plan(self, trip, mode, numItineraries, maxWalkDistance): qstr = """DELETE FROM trip_plans WHERE start_time = '{0}' AND origin = '{1}' AND destination = '{2}' AND mode = '{3}' AND max_walk_distance = {4} AND no_of_itins = {5}; """.format( CommonHelper.DateTime_to_Text(trip.starttime), CommonHelper.pointRow_to_postgisPoint(trip.origin), CommonHelper.pointRow_to_postgisPoint(trip.destination), mode, maxWalkDistance, numItineraries ) res, db_res = self.db_command.ExecuteSQL(qstr, LOG_IMPORTANT_CUSTOM=False) return res, self._get_delete_macthed_count(res, db_res) def load_failed_OTP_plans(self): qstr = """ SELECT user_id as "user", trip_id as "trip", t.start_time, --ST_AsText(t.origin) origin, ST_AsText(t.destination) destination, CONCAT('(', st_y(st_astext(tt.origin))::text , ',' , st_x(st_astext(tt.origin))::text, ')') plan_origin, CONCAT('(', st_y(st_astext(tt.destination ))::text , ',' , st_x(st_astext(tt.destination))::text, ')') plan_destination, mode as mainmode, max_walk_distance, no_of_itins, plan FROM ( -- Observed trips with zero computed alternative (no walk, bike, PT) -- SELECT user_id, id as trip_id, start_time, origin, destination From trips_alts WHERE plan_id = 0 --------- Mandatory Filters ------------ AND duration > '00:00:00' AND duration < '1 day' --TODO: why there's such bugs? --------- Geographical Filters ---------: -- Helsinki region, only within the area (use AND): AND point(geometry(origin)) <@ box'(24.572978,60.100104)(25.216365, 60.336453)' -- Helsinki region rectangular boundaries AND point(geometry(destination)) <@ box'(24.572978,60.100104)(25.216365, 60.336453)' -- Helsinki region rectangular boundaries -- Greater Jatkasaari rectangular boundaries, Trips from/to: --AND (point(geometry(origin)) <@ box'(24.895571, 60.145601)(24.931923, 60.168201)' --OR point(geometry(destination)) <@ box'(24.895571, 60.145601)(24.931923, 60.168201)') AND (user_id, id) not in ( select user_id, id from trips_alts where plan_id > 0 ) ) t INNER JOIN (SELECT * FROM trip_plans) tt ON (tt.start_time = t.start_time AND tt.origin = t.origin AND tt.destination = t.destination) ORDER BY user_id, trip_id, mode """ res, db_res = self.db_command.ExecuteSQL(qstr) if res and db_res.rowcount>0: records_df = pd.DataFrame(db_res.fetchall()) records_df.columns = db_res.keys() print() print("load_failed_OTP_computations(): Loaded from DB,",db_res.rowcount,"records") print() else: records_df =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np import json from tqdm import tqdm from utils import odds, clean_sheet, time_decay, score_mtx, get_next_gw from ranked_probability_score import ranked_probability_score, match_outcome import pymc3 as pm import theano.tensor as tt class Bayesian: """ Model scored goals at home and away as Bayesian Random variables """ def __init__(self, games, performance='score', decay=True): """ Args: games (pd.DataFrame): Finished games to used for training. performance (string): Observed performance metric to use in model decay (boolean): Apply time decay """ teams = np.sort(np.unique(games["team1"])) league_size = len(teams) self.teams = ( games.loc[:, ["team1"]] .drop_duplicates() .sort_values("team1") .reset_index(drop=True) .assign(team_index=np.arange(league_size)) .rename(columns={"team1": "team"}) ) self.league_size = self.teams.shape[0] df = ( pd.merge(games, self.teams, left_on="team1", right_on="team") .rename(columns={"team_index": "hg"}) .drop(["team"], axis=1) .drop_duplicates() .merge(self.teams, left_on="team2", right_on="team") .rename(columns={"team_index": "ag"}) .drop(["team"], axis=1) .sort_values("date") ) df["date"] = pd.to_datetime(df["date"]) df["days_since"] = (df["date"].max() - df["date"]).dt.days df["weight"] = time_decay(0.00003, df["days_since"]) if decay else 1 self.decay = decay # Handle different data to infer assert performance == 'score' or performance == 'xg' self.performance = performance self.games = df.loc[:, [ f"{performance}1", f"{performance}2", "team1", "team2", "hg", "ag", "weight"]] self.games = self.games.dropna() if performance == 'xg': self.games = ( self.games .rename(columns={"xg1": "score1", "xg2": "score2"}) ) self.model = self._build_model() def _build_model(self): """ Build the model Returns: pymc3.Model: untrained model """ home_idx, teams = pd.factorize(self.games["team1"], sort=True) away_idx, _ = pd.factorize(self.games["team2"], sort=True) with pm.Model() as model: # constant data home_team = pm.Data("home_team", home_idx) away_team = pm.Data("away_team", away_idx) score1_obs = pm.Data("score1_obs", self.games["score1"]) score2_obs = pm.Data("score2_obs", self.games["score2"]) # global model parameters home = pm.Normal("home", mu=0, sigma=1) intercept = pm.Normal("intercept", mu=0, sigma=1) sd_att = pm.HalfNormal("sd_att", sigma=2) sd_def = pm.HalfNormal("sd_def", sigma=2) # team-specific model parameters atts_star = pm.Normal( "atts_star", mu=0, sigma=sd_att, shape=self.league_size) defs_star = pm.Normal( "defs_star", mu=0, sigma=sd_def, shape=self.league_size) # apply sum zero constraints atts = pm.Deterministic( "atts", atts_star - tt.mean(atts_star)) defs = pm.Deterministic( "defs", defs_star - tt.mean(defs_star)) # calulate theta home_theta = tt.exp( intercept + atts[home_team] + defs[away_team] + home) away_theta = tt.exp( intercept + atts[away_team] + defs[home_team]) # likelihood of observed data pm.Potential( 'home_goals', self.games["weight"].values * pm.Poisson.dist(mu=home_theta).logp( score1_obs) ) pm.Potential( 'away_goals', self.games["weight"].values * pm.Poisson.dist(mu=away_theta).logp( score2_obs) ) return model def fit(self): """Fit the model parameters""" with self.model: self.trace = pm.sample( 2000, tune=1000, cores=6, return_inferencedata=False, target_accept=0.85) def predict(self, games): """Predict the outcome of games Args: games (pd.DataFrame): Fixtures Returns: pd.DataFrame: Fixtures with game odds """ parameter_df = ( pd.DataFrame() .assign(attack=[ np.mean([x[team] for x in self.trace["atts"]]) for team in range(self.league_size)]) .assign(defence=[ np.mean([x[team] for x in self.trace["defs"]]) for team in range(self.league_size)]) .assign(team=np.array(self.teams.team_index.values)) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='hg', right_on='team') .rename(columns={"attack": "attack1", "defence": "defence1"}) .merge(parameter_df, left_on='ag', right_on='team') .rename(columns={"attack": "attack2", "defence": "defence2"}) .drop("team_y", axis=1) .drop("team_x", axis=1) .assign(home_adv=np.mean(self.trace["home"])) .assign(intercept=np.mean([x for x in self.trace["intercept"]])) ) fixtures_df["score1_infered"] = np.exp( fixtures_df['intercept'] + fixtures_df["home_adv"] + fixtures_df["attack1"] + fixtures_df["defence2"]) fixtures_df["score2_infered"] = np.exp( fixtures_df['intercept'] + fixtures_df["attack2"] + fixtures_df["defence1"]) def synthesize_odds(row): """ Lambda function that parses row by row to compute score matrix Args: row (array): Fixture Returns: (tuple): Home and Away winning and clean sheets odds """ m = score_mtx(row["score1_infered"], row["score2_infered"]) home_win_p, draw_p, away_win_p = odds(m) home_cs_p, away_cs_p = clean_sheet(m) return home_win_p, draw_p, away_win_p, home_cs_p, away_cs_p ( fixtures_df["home_win_p"], fixtures_df["draw_p"], fixtures_df["away_win_p"], fixtures_df["home_cs_p"], fixtures_df["away_cs_p"] ) = zip(*fixtures_df.apply( lambda row: synthesize_odds(row), axis=1)) return fixtures_df def predict_posterior(self, games): """Predict the outcome of games using posterior sampling Although I think this method is mathematically more sound, it gives worst results Args: games (pd.DataFrame): Fixtures Returns: pd.DataFrame: Fixtures with game odds """ with self.model: pm.set_data( { "home_team": games.hg.values, "away_team": games.ag.values, "score1_obs": np.repeat(0, games.ag.values.shape[0]), "score2_obs": np.repeat(0, games.ag.values.shape[0]), } ) post_pred = pm.sample_posterior_predictive(self.trace.posterior) parameter_df = ( pd.DataFrame() .assign(attack=[ np.mean([x[team] for x in self.trace.posterior["atts"]]) for team in range(self.league_size)]) .assign(defence=[ np.mean([x[team] for x in self.trace.posterior["defs"]]) for team in range(self.league_size)]) .assign(team=np.array(self.teams.team_index.values)) ) fixtures_df = ( pd.merge(games, parameter_df, left_on='hg', right_on='team') .rename(columns={"attack": "attack1", "defence": "defence1"}) .merge(parameter_df, left_on='ag', right_on='team') .rename(columns={"attack": "attack2", "defence": "defence2"}) .drop("team_y", axis=1) .drop("team_x", axis=1) .assign(home_adv=np.mean([x for x in self.trace.posterior["home"]])) .assign(intercept=np.mean([x for x in self.trace.posterior["intercept"]])) ) fixtures_df["score1_infered"] = post_pred["home_goals"].mean(axis=0) fixtures_df["score2_infered"] = post_pred["away_goals"].mean(axis=0) fixtures_df["home_win_p"] = ( (post_pred["home_goals"] > post_pred["away_goals"]).mean(axis=0) ) fixtures_df["away_win_p"] = ( (post_pred["home_goals"] < post_pred["away_goals"]).mean(axis=0) ) fixtures_df["draw_p"] = ( (post_pred["home_goals"] == post_pred["away_goals"]).mean(axis=0) ) return fixtures_df def evaluate(self, games): """ Evaluate the model's prediction accuracy Args: games (pd.DataFrame): Fixtured to evaluate on Returns: pd.DataFrame: df with appended metrics """ fixtures_df = self.predict(games) fixtures_df["winner"] = match_outcome(fixtures_df) fixtures_df["rps"] = fixtures_df.apply( lambda row: ranked_probability_score([ row["home_win_p"], row["draw_p"], row["away_win_p"]], row["winner"]), axis=1) return fixtures_df def backtest(self, train_games, test_season, path='', save=True): """ Test the model's accuracy on past/finished games by iteratively training and testing on parts of the data. Args: train_games (pd.DataFrame): All the training samples test_season (int): Season to use a test set path (string): Path extension to adjust to ipynb use save (boolean): Save predictions to disk Returns: (float): Evaluation metric """ # Get training data self.train_games = train_games # Initialize model self.__init__( self.train_games[self.train_games['season'] != test_season], performance=self.performance, decay=self.decay) # Initial train self.fit() # Get test data # Separate testing based on per GW intervals fixtures = ( pd.read_csv( f"{path}data/fpl_official/vaastav/data/2021-22/fixtures.csv") .loc[:, ['event', 'kickoff_time']]) fixtures["kickoff_time"] = ( pd.to_datetime(fixtures["kickoff_time"]).dt.date) # Get only EPL games from the test season self.test_games = ( self.train_games .loc[self.train_games['league_id'] == 2411] .loc[self.train_games['season'] == test_season] .dropna() ) self.test_games["kickoff_time"] = ( pd.to_datetime(self.test_games["date"]).dt.date) # Merge on date self.test_games = pd.merge( self.test_games, fixtures, left_on='kickoff_time', right_on='kickoff_time') # Add the home team and away team index for running inference self.test_games = ( pd.merge( self.test_games, self.teams, left_on="team1", right_on="team") .rename(columns={"team_index": "hg"}) .drop(["team"], axis=1) .drop_duplicates() .merge(self.teams, left_on="team2", right_on="team") .rename(columns={"team_index": "ag"}) .drop(["team"], axis=1) .sort_values("date") ) predictions = pd.DataFrame() for gw in tqdm(range(1, 39)): # For each GW of the season if gw in self.test_games['event'].values: # Handle case when the season is not finished # Run inference on the specific GW and save data. predictions = pd.concat([ predictions, self.evaluate( self.test_games[self.test_games['event'] == gw]) ]) # Retrain model with the new GW added to the train set. self.__init__( pd.concat([ self.train_games[ self.train_games['season'] != test_season], self.test_games[self.test_games['event'] <= gw] ]) .drop(columns=['ag', 'hg']), performance=self.performance, decay=self.decay) self.fit() if save: ( predictions .loc[:, [ 'date', 'team1', 'team2', 'event', 'hg', 'ag', 'attack1', 'defence1', 'attack2', 'defence2', 'home_adv', 'intercept', 'score1_infered', 'score2_infered', 'home_win_p', 'draw_p', 'away_win_p', 'home_cs_p', 'away_cs_p']] .to_csv( f"{path}data/predictions/fixtures/bayesian" + f"{'' if self.decay else '_no_decay'}" + f"{'_xg' if self.performance == 'xg' else ''}.csv", index=False) ) return predictions if __name__ == "__main__": with open('info.json') as f: season = json.load(f)['season'] next_gw = get_next_gw() df =
pd.read_csv("data/fivethirtyeight/spi_matches.csv")
pandas.read_csv
#Script to do a grid search of gas dump mass and gas dump time #Compares against 4 different sets of ages - linear correct form astroNN; lowess correct from astroNN; Sanders & Das; APOKASC import numpy as np import matplotlib.pyplot as plt import math import h5py import json from astropy.io import fits from astropy.table import Table, join import pandas as pd import subprocess import os import sys sys.path.append('./scripts/') from chemevo import * data_file_1 = '/data/ktfm2/apogee_data/apogee_astroNN_DR16.fits' #The astroNN VAC for APOGEE DR16 hdf5_file = '/data/ktfm2/apogee_data/gaia_spectro.hdf5' #The hdf5 file for Sanders and Das data_file_2 = '/data/jls/apokasc_astroNN.fits' #The APOKASC data file joined with AstroNN hdf = h5py.File(hdf5_file, "r") dataset = hdf['data'] log_age_data = dataset["log10_age"] ID_data = dataset["APOGEE_ID"] SD_table = Table([ID_data, log_age_data], names=('apogee_id', 'log_age_data')) hdu_list_1 = fits.open(data_file_1, memmap=True) #open fits file apogee_data = Table(hdu_list_1[1].data) #Creates table from fits file hdu_list_1.close() #Close the fits file hdu_list_2 = fits.open(data_file_2, memmap=True) #open fits file apokasc_data = Table(hdu_list_2[1].data) #Creates table from fits file hdu_list_2.close() #Close the fits file #Join tables together full_table = join(apogee_data, SD_table) #Define functions for the filter def betw(x,l,u): return (x>l)&(x<u) def outs(x,l,u): return (x<l)|(x>u) #Define filter for apogee data, use guiding centre radius RL, galactic height GALZ, surface gravity LOGG #Have 4 different filters and so on for linear age, lowess age, S&D age, APOKASC age - this extends to have disc stars NaN_bit1 = (~pd.isna(apogee_data['rl']))&(~
pd.isna(apogee_data['age_lowess_correct'])
pandas.isna
import builtins from io import StringIO from itertools import product from string import ascii_lowercase import numpy as np import pytest from pandas.errors import UnsupportedFunctionCall import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, date_range, isna) import pandas.core.nanops as nanops from pandas.util import testing as tm @pytest.mark.parametrize("agg_func", ['any', 'all']) @pytest.mark.parametrize("skipna", [True, False]) @pytest.mark.parametrize("vals", [ ['foo', 'bar', 'baz'], ['foo', '', ''], ['', '', ''], [1, 2, 3], [1, 0, 0], [0, 0, 0], [1., 2., 3.], [1., 0., 0.], [0., 0., 0.], [True, True, True], [True, False, False], [False, False, False], [np.nan, np.nan, np.nan] ]) def test_groupby_bool_aggs(agg_func, skipna, vals): df = DataFrame({'key': ['a'] * 3 + ['b'] * 3, 'val': vals * 2}) # Figure out expectation using Python builtin exp = getattr(builtins, agg_func)(vals) # edge case for missing data with skipna and 'any' if skipna and all(isna(vals)) and agg_func == 'any': exp = False exp_df = DataFrame([exp] * 2, columns=['val'], index=Index( ['a', 'b'], name='key')) result = getattr(df.groupby('key'), agg_func)(skipna=skipna) tm.assert_frame_equal(result, exp_df) def test_max_min_non_numeric(): # #2700 aa = DataFrame({'nn': [11, 11, 22, 22], 'ii': [1, 2, 3, 4], 'ss': 4 * ['mama']}) result = aa.groupby('nn').max() assert 'ss' in result result = aa.groupby('nn').max(numeric_only=False) assert 'ss' in result result = aa.groupby('nn').min() assert 'ss' in result result = aa.groupby('nn').min(numeric_only=False) assert 'ss' in result def test_intercept_builtin_sum(): s = Series([1., 2., np.nan, 3.]) grouped = s.groupby([0, 1, 2, 2]) result = grouped.agg(builtins.sum) result2 = grouped.apply(builtins.sum) expected = grouped.sum() tm.assert_series_equal(result, expected) tm.assert_series_equal(result2, expected) # @pytest.mark.parametrize("f", [max, min, sum]) # def test_builtins_apply(f): @pytest.mark.parametrize("f", [max, min, sum]) @pytest.mark.parametrize('keys', [ "jim", # Single key ["jim", "joe"] # Multi-key ]) def test_builtins_apply(keys, f): # see gh-8155 df = pd.DataFrame(np.random.randint(1, 50, (1000, 2)), columns=["jim", "joe"]) df["jolie"] = np.random.randn(1000) fname = f.__name__ result = df.groupby(keys).apply(f) ngroups = len(df.drop_duplicates(subset=keys)) assert_msg = ("invalid frame shape: {} " "(expected ({}, 3))".format(result.shape, ngroups)) assert result.shape == (ngroups, 3), assert_msg tm.assert_frame_equal(result, # numpy's equivalent function df.groupby(keys).apply(getattr(np, fname))) if f != sum: expected = df.groupby(keys).agg(fname).reset_index() expected.set_index(keys, inplace=True, drop=False) tm.assert_frame_equal(result, expected, check_dtype=False) tm.assert_series_equal(getattr(result, fname)(), getattr(df, fname)()) def test_arg_passthru(): # make sure that we are passing thru kwargs # to our agg functions # GH3668 # GH5724 df = pd.DataFrame( {'group': [1, 1, 2], 'int': [1, 2, 3], 'float': [4., 5., 6.], 'string': list('abc'), 'category_string': pd.Series(list('abc')).astype('category'), 'category_int': [7, 8, 9], 'datetime': pd.date_range('20130101', periods=3), 'datetimetz': pd.date_range('20130101', periods=3, tz='US/Eastern'), 'timedelta': pd.timedelta_range('1 s', periods=3, freq='s')}, columns=['group', 'int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) expected_columns_numeric = Index(['int', 'float', 'category_int']) # mean / median expected = pd.DataFrame( {'category_int': [7.5, 9], 'float': [4.5, 6.], 'timedelta': [pd.Timedelta('1.5s'), pd.Timedelta('3s')], 'int': [1.5, 3], 'datetime': [pd.Timestamp('2013-01-01 12:00:00'), pd.Timestamp('2013-01-03 00:00:00')], 'datetimetz': [ pd.Timestamp('2013-01-01 12:00:00', tz='US/Eastern'), pd.Timestamp('2013-01-03 00:00:00', tz='US/Eastern')]}, index=Index([1, 2], name='group'), columns=['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['mean', 'median']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_frame_equal(result.reindex_like(expected), expected) # TODO: min, max *should* handle # categorical (ordered) dtype expected_columns = Index(['int', 'float', 'string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['min', 'max']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_string', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['first', 'last']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'string', 'category_int', 'timedelta']) for attr in ['sum']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'category_int']) for attr in ['prod', 'cumprod']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) # like min, max, but don't include strings expected_columns = Index(['int', 'float', 'category_int', 'datetime', 'datetimetz', 'timedelta']) for attr in ['cummin', 'cummax']: f = getattr(df.groupby('group'), attr) result = f() # GH 15561: numeric_only=False set by default like min/max tm.assert_index_equal(result.columns, expected_columns) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) expected_columns = Index(['int', 'float', 'category_int', 'timedelta']) for attr in ['cumsum']: f = getattr(df.groupby('group'), attr) result = f() tm.assert_index_equal(result.columns, expected_columns_numeric) result = f(numeric_only=False) tm.assert_index_equal(result.columns, expected_columns) def test_non_cython_api(): # GH5610 # non-cython calls should not include the grouper df = DataFrame( [[1, 2, 'foo'], [1, np.nan, 'bar'], [3, np.nan, 'baz']], columns=['A', 'B', 'C']) g = df.groupby('A') gni = df.groupby('A', as_index=False) # mad expected = DataFrame([[0], [np.nan]], columns=['B'], index=[1, 3]) expected.index.name = 'A' result = g.mad() tm.assert_frame_equal(result, expected) expected = DataFrame([[0., 0.], [0, np.nan]], columns=['A', 'B'], index=[0, 1]) result = gni.mad() tm.assert_frame_equal(result, expected) # describe expected_index =
pd.Index([1, 3], name='A')
pandas.Index
# Copyright 2021 AI Singapore. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest import os import pandas as pd from rarity.data_loader import CSVDataLoader, DataframeLoader # add this in the conftest.py under tests folder from selenium.webdriver.chrome.options import Options def pytest_setup_options(): options = Options() # added mainly for integration test in gitlab-ci to resolve # (unknown error: DevToolsActivePort file doesn't exist) # (The process started from chrome location /usr/bin/google-chrome is no longer running, # so ChromeDriver is assuming that Chrome has crashed.) # solution reference => https://github.com/plotly/dash/issues/1420 options.add_argument('--no-sandbox') return options @pytest.fixture def csv_loader_single_modal_reg(): SAMPLE_DATA_DIR = './tests/sample_data/regression/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'reg_yPreds_modelA.csv') MODEL_NAMES = ['model_A'] ANALYSIS_TYPE = 'Regression' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_single_modal_cls(): SAMPLE_DATA_DIR = './tests/sample_data/classification/binary/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'binary_yPreds_modelA.csv') MODEL_NAMES = ['model_A'] ANALYSIS_TYPE = 'Binary-Classification' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_bimodal_reg(): SAMPLE_DATA_DIR = './tests/sample_data/regression/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'reg_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'reg_yPreds_modelA.csv') Y_PRED_FILE_2 = os.path.join(SAMPLE_DATA_DIR, 'reg_yPreds_modelB.csv') MODEL_NAMES = ['model_A', 'model_B'] ANALYSIS_TYPE = 'Regression' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1, Y_PRED_FILE_2], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_bimodal_cls(): SAMPLE_DATA_DIR = './tests/sample_data/classification/binary/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'binary_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'binary_yPreds_modelA.csv') Y_PRED_FILE_2 = os.path.join(SAMPLE_DATA_DIR, 'binary_yPreds_modelB.csv') MODEL_NAMES = ['model_A', 'model_B'] ANALYSIS_TYPE = 'Binary-Classification' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1, Y_PRED_FILE_2], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def csv_loader_bimodal_cls_multi(): SAMPLE_DATA_DIR = './tests/sample_data/classification/multiclass/' FEATURES_FILE = os.path.join(SAMPLE_DATA_DIR, 'multiclass_features.csv') Y_TRUE_FILE = os.path.join(SAMPLE_DATA_DIR, 'multiclass_yTrue.csv') Y_PRED_FILE_1 = os.path.join(SAMPLE_DATA_DIR, 'multiclass_yPreds_modelA.csv') Y_PRED_FILE_2 = os.path.join(SAMPLE_DATA_DIR, 'multiclass_yPreds_modelB.csv') MODEL_NAMES = ['model_A', 'model_B'] ANALYSIS_TYPE = 'Multiclass-Classification' data_loader = CSVDataLoader(FEATURES_FILE, Y_TRUE_FILE, yPred_file_ls=[Y_PRED_FILE_1, Y_PRED_FILE_2], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def dataframe_loader_single_modal_reg(): DF_FEATURES = pd.DataFrame([[0.1, 2.5, 3.6], [0.5, 2.2, 6.6]], columns=['x1', 'x2', 'x3']) DF_Y_TRUE = pd.DataFrame([[22.6], [36.6]], columns=['actual']) DF_Y_PRED_1 = pd.DataFrame([[22.2], [35.0]], columns=['pred']) MODEL_NAMES = ['model_A'] ANALYSIS_TYPE = 'Regression' data_loader = DataframeLoader(DF_FEATURES, DF_Y_TRUE, df_yPred_ls=[DF_Y_PRED_1], model_names_ls=MODEL_NAMES, analysis_type=ANALYSIS_TYPE) return data_loader @pytest.fixture def dataframe_loader_single_modal_cls(): DF_FEATURES =
pd.DataFrame([[0.1, 2.5, 3.6], [0.5, 2.2, 6.6], [0.3, 2.3, 5.2]], columns=['x1', 'x2', 'x3'])
pandas.DataFrame
import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt def clean_data(path): data= pd.read_csv(path) data_clean=data.dropna(axis=0) data_clean = data_clean[data_clean['Year'] >= 1985] data_clean = data_clean[data_clean['Year']<=2015] return data_clean def load_process(data,year): data=data[data['Year']==year] state_list=list(range(1,max(data['State'])+1)) state_list column_names=['State','percenatge'] df=
pd.DataFrame(columns=column_names)
pandas.DataFrame
import inspect import json import logging import random import re import sys from collections import defaultdict from contextlib import redirect_stdout from datetime import datetime, timedelta from io import StringIO from itertools import product from os import getenv from os.path import dirname, realpath from pathlib import Path from string import Template import click import discord import dunamai as _dunamai import hupper import matplotlib import matplotlib.dates as mdates import matplotlib.pyplot as plt import numpy as np import pandas as pd import pytz from dateutil.relativedelta import relativedelta from humanize import naturaltime from turnips.archipelago import Archipelago from turnips.plots import plot_models_range from yaml import load try: from yaml import CLoader as Loader except ImportError: # pragma: no cover from yaml import Loader __version__ = _dunamai.get_version( "turbot", third_choice=_dunamai.Version.from_any_vcs ).serialize() matplotlib.use("Agg") PACKAGE_ROOT = Path(dirname(realpath(__file__))) RUNTIME_ROOT = Path(".") # application configuration files DEFAULT_CONFIG_TOKEN = RUNTIME_ROOT / "token.txt" DEFAULT_CONFIG_CHANNELS = RUNTIME_ROOT / "channels.txt" # static application asset data DATA_DIR = PACKAGE_ROOT / "data" STRINGS_DATA_FILE = DATA_DIR / "strings.yaml" FOSSILS_DATA_FILE = DATA_DIR / "fossils.txt" FISH_DATA_FILE = DATA_DIR / "fish.csv" BUGS_DATA_FILE = DATA_DIR / "bugs.csv" ART_DATA_FILE = DATA_DIR / "art.csv" # persisted user and application data DB_DIR = RUNTIME_ROOT / "db" DEFAULT_DB_FOSSILS = DB_DIR / "fossils.csv" DEFAULT_DB_PRICES = DB_DIR / "prices.csv" DEFAULT_DB_ART = DB_DIR / "art.csv" DEFAULT_DB_USERS = DB_DIR / "users.csv" DEFAULT_DB_FISH = DB_DIR / "fish.csv" # temporary application files TMP_DIR = RUNTIME_ROOT / "tmp" GRAPHCMD_FILE = TMP_DIR / "graphcmd.png" LASTWEEKCMD_FILE = TMP_DIR / "lastweek.png" with open(STRINGS_DATA_FILE) as f: STRINGS = load(f, Loader=Loader) FISH = pd.read_csv(FISH_DATA_FILE) BUGS = pd.read_csv(BUGS_DATA_FILE) ART = pd.read_csv(ART_DATA_FILE) with open(FOSSILS_DATA_FILE) as f: FOSSILS_SET = frozenset([line.strip().lower() for line in f.readlines()]) FISH_SET = frozenset(FISH.drop_duplicates(subset="name").name.tolist()) BUGS_SET = frozenset(BUGS.drop_duplicates(subset="name").name.tolist()) ART_SET = frozenset(ART.drop_duplicates(subset="name").name.tolist()) COLLECTABLE_SET = FOSSILS_SET | FISH_SET | BUGS_SET | ART_SET EMBED_LIMIT = 5 # more embeds in a row than this causes issues USER_PREFRENCES = [ "hemisphere", "timezone", "island", "friend", "fruit", "nickname", "creator", ] # Based on values from datetime.isoweekday() DAYS = { "monday": 1, "tuesday": 2, "wednesday": 3, "thursday": 4, "friday": 5, "saturday": 6, "sunday": 7, } IDAYS = dict(map(reversed, DAYS.items())) class Validate: FRUITS = ["apple", "cherry", "orange", "peach", "pear"] HEMISPHERES = ["northern", "southern"] @classmethod def friend(cls, value): code = re.sub("[^0-9]", "", value) return code if len(code) == 12 and code.isdigit() else None @classmethod def creator(cls, value): code = re.sub("[^0-9]", "", value) return code if len(code) == 12 and code.isdigit() else None @classmethod def fruit(cls, value): fruit = value.lower() return fruit if fruit in cls.FRUITS else None @classmethod def hemisphere(cls, value): home = value.lower() return home if home in cls.HEMISPHERES else None @classmethod def nickname(cls, value): return value @classmethod def timezone(cls, value): return value if value in pytz.all_timezones_set else None @classmethod def island(cls, value): return value def s(key, **kwargs): """Returns a string from data/strings.yaml with subsitutions.""" data = STRINGS.get(key, "") assert data, f"error: missing strings key: {key}" return Template(data).substitute(kwargs) def h(dt): """Convertes a datetime to something readable by a human.""" if hasattr(dt, "tz_convert"): # pandas-datetime-like objects dt = dt.to_pydatetime() naive_dt = dt.replace(tzinfo=None) return naturaltime(naive_dt) def day_and_time(dt): """Converts a datetime to a day and time of day, eg: Monday pm.""" day = IDAYS[dt.isoweekday()] am_pm = "am" if dt.hour < 12 else "pm" return f"{day.title()} {am_pm}" def humanize_months(row): """Generator that humanizes months from row data where each month is a column.""" ABBR = { 0: "Jan", 1: "Feb", 2: "Mar", 3: "Apr", 4: "May", 5: "Jun", 6: "Jul", 7: "Aug", 8: "Sep", 9: "Oct", 10: "Nov", 11: "Dec", } months = [ row["jan"], row["feb"], row["mar"], row["apr"], row["may"], row["jun"], row["jul"], row["aug"], row["sep"], row["oct"], row["nov"], row["dec"], ] start = None for m, inc in enumerate(months): if inc and start is None: start = m # start of a range elif not inc and start is None: continue # range hasn't started yet elif inc and start is not None: continue # continuance of a range else: lhs = ABBR[start] rhs = ABBR[m - 1] if lhs != rhs: yield f"{lhs} - {rhs}" # previous element ended a range else: yield f"{lhs}" # captures a lone element start = None if start == 0: yield "the entire year" # capture total range elif start is not None: lhs = ABBR[start] rhs = ABBR[11] if lhs != rhs: yield f"{lhs} - {rhs}" # capture a trailing range else: yield f"{lhs}" # captures a trailing lone element def discord_user_from_name(channel, name): """Returns the discord user from the given channel and name.""" if name is None: return None lname = name.lower() members = channel.members return next(filter(lambda member: lname in str(member).lower(), members), None) def discord_user_from_id(channel, user_id): """Returns the discord user from the given channel and user id.""" if user_id is None: return None iid = int(user_id) members = channel.members return next(filter(lambda member: iid == member.id, members), None) def discord_user_name(channel, name_or_id): """Returns the discord user name from the given channel and name or id.""" if not name_or_id: return None user = ( discord_user_from_id(channel, name_or_id) if isinstance(name_or_id, int) or name_or_id.isdigit() else discord_user_from_name(channel, name_or_id) ) return str(user) if user else None def discord_user_id(channel, name): """Returns the discord user id name from the given channel and name.""" if not name: return None return getattr(discord_user_from_name(channel, name), "id", None) def is_turbot_admin(channel, user_or_member): """Checks to see if given user or member has the Turbot Admin role on this server.""" member = ( user_or_member if hasattr(user_or_member, "roles") # members have a roles property else channel.guild.get_member(user_or_member.id) # but users don't ) return any(role.name == "Turbot Admin" for role in member.roles) if member else False def command(f): f.is_command = True return f class Turbot(discord.Client): """Discord turnip bot""" def __init__( self, token="", channels=[], prices_file=DEFAULT_DB_PRICES, art_file=DEFAULT_DB_ART, fish_file=DEFAULT_DB_FISH, fossils_file=DEFAULT_DB_FOSSILS, users_file=DEFAULT_DB_USERS, log_level=None, ): if log_level: # pragma: no cover logging.basicConfig(level=log_level) super().__init__() self.token = token self.channels = channels self.prices_file = prices_file self.art_file = art_file self.fish_file = fish_file self.fossils_file = fossils_file self.users_file = users_file self.base_prophet_url = "https://turnipprophet.io/?prices=" # TODO: configurable? self._prices_data = None # do not use directly, load it from load_prices() self._art_data = None # do not use directly, load it from load_art() self._fish_data = None # do not use directly, load it from load_fish() self._fossils_data = None # do not use directly, load it from load_fossils() self._users_data = None # do not use directly, load it from load_users() self._last_backup_filename = None # build a list of commands supported by this bot by fetching @command methods members = inspect.getmembers(self, predicate=inspect.ismethod) self._commands = [ member[0] for member in members if hasattr(member[1], "is_command") and member[1].is_command ] def run(self): # pragma: no cover super().run(self.token) def save_prices(self, data): """Saves the given prices data to csv file.""" data.to_csv(self.prices_file, index=False) # persist to disk self._prices_data = data # in-memory optimization def last_backup_filename(self): """Return the name of the last known backup file for prices or None if unknown.""" return self._last_backup_filename def backup_prices(self, data): """Backs up the prices data to a datetime stamped file.""" filename = datetime.now(pytz.utc).strftime( "prices-%Y-%m-%d.csv" # TODO: configurable? ) filepath = Path(self.prices_file).parent / filename self._last_backup_filename = filepath data.to_csv(filepath, index=False) def load_prices(self): """Loads up and returns the application price data as a DataFrame.""" if self._prices_data is not None: return self._prices_data cols = ["author", "kind", "price", "timestamp"] dtypes = ["int64", "object", "int64", "datetime64[ns, UTC]"] if Path(self.prices_file).exists(): self._prices_data = pd.read_csv( self.prices_file, names=cols, parse_dates=True, skiprows=1 ) else: self._prices_data = pd.read_csv( StringIO(""), names=cols, dtype=dict(zip(cols, dtypes)) ) self._prices_data = self._prices_data.astype(dict(zip(cols, dtypes))) return self._prices_data def save_users(self, data): """Saves the given users data to csv file.""" data.to_csv(self.users_file, index=False) # persist to disk self._users_data = data # in-memory optimization def load_users(self): """Returns a DataFrame of user data or creates an empty one.""" if self._users_data is not None: self._users_data = self._users_data.fillna("") return self._users_data cols = ["author", *USER_PREFRENCES] dtypes = ["int64", "str", "str", "str", "str", "str", "str", "str"] if Path(self.users_file).exists(): self._users_data = pd.read_csv(self.users_file, names=cols, skiprows=1) else: self._users_data = pd.read_csv( StringIO(""), names=cols, dtype=dict(zip(cols, dtypes)) ) self._users_data = self._users_data.fillna("") self._users_data = self._users_data.astype(dict(zip(cols, dtypes))) return self._users_data def save_art(self, data): """Saves the given art data to csv file.""" data.to_csv(self.art_file, index=False) # persist to disk self._art_data = data # in-memory optimization def load_art(self): """Returns a DataFrame of art data or creates an empty one.""" if self._art_data is None: try: self._art_data = pd.read_csv(self.art_file) except FileNotFoundError: self._art_data = pd.DataFrame(columns=["author", "name"]) return self._art_data def save_fish(self, data): """Saves the given fish data to csv file.""" data.to_csv(self.fish_file, index=False) # persist to disk self._fish_data = data # in-memory optimization def load_fish(self): """Returns a DataFrame of fish data or creates an empty one.""" if self._fish_data is None: try: self._fish_data = pd.read_csv(self.fish_file) except FileNotFoundError: self._fish_data =
pd.DataFrame(columns=["author", "name"])
pandas.DataFrame
import os from datetime import datetime import pandas as pd import src.config.constants as constants import src.munging as process_data import src.common as common import src.modeling as train_util if __name__ == "__main__": RUN_ID = datetime.now().strftime("%m%d_%H%M") MODEL_NAME = os.path.basename(__file__).split(".")[0] logger = common.get_logger("blend") train_df, test_df, sample_submission_df = process_data.read_processed_data( logger, constants.PROCESSED_DATA_DIR, train=True, test=True, sample_submission=True, ) # https://www.kaggle.com/xiaoxiaoxiaoxiaoxiao/averaging-top-5-solutions # PL: 0.81856 df_1 = pd.read_csv( f"{constants.PUB_SUBMISSION_DIR}/averaging-top-5-solutions/submission.csv" ) # stacking_lgb_xbg_cat_imputer_no_imputer # PL: 0.81803 df_2 = pd.read_csv( f"{constants.SUBMISSION_DIR}/sub_stacking_lgb_xbg_cat_imputer_no_imputer_v2_0929_1549_0.81680.gz" ) merged_df =
pd.merge(df_1, df_2, how="left", on="id")
pandas.merge
# This module decodes the checkpoint # files and returns the output according # to the desired output format import os import os.path import configparser import struct import re import sys import csv import time from itertools import zip_longest import numpy as np import pandas as pd import h5py # Error codes # 1001: 'Unknown level' # 1002: 'Invalid output format' # 1003: 'Missing totalRanks' # 2001: 'Config file not found' # 2002: 'Checkpoint file not found' # 2003: 'Checkpoint file empty' # 2004: 'Meta file not found' # 2005: 'Failed to recover MPI-IO file' # 3001: 'No variable found in checkpoint' # 3002: 'Error while writing data to CSV' # 3003: 'Unavailable mapping of long double for decoding' # 3004: 'Unsupported decoding for self-defined variable' # 3005: 'Unsupported decoding for given data type' nbVars = 0 ckpt_file_size = 0 varheaders = [] # var headers # variable object class variable(object): def __init__(self, var_id, var_size, var_typeid, var_typesize, var_position, var_name=None, var_ndims=None, var_dims=None): self.var_id = var_id self.var_size = var_size self.var_typeid = var_typeid self.var_typesize = var_typesize self.var_position = var_position if var_name is not None: self.var_name = var_name if var_ndims is not None: self.var_ndims = var_ndims if var_dims is not None: self.var_dims = var_dims # This function reads the given meta data # and returns a list of the variables found # in the ckpt file def read_meta(meta_file, ckpt_file, group_size, level): ckpt_file = ckpt_file.rsplit('/', 1)[1] mysection = "" data = [] # count nbVars from meta_file regex = "var[-0-9]+_id" var_pattern = re.compile(regex) # parse and get value by key print("reading meta file:", meta_file) config = configparser.ConfigParser() config.read(meta_file) # get nbVars global nbVars nbVars = 0 # initialize it for every meta file if level == 4: # For level 4, ckpt file name does not match ckpt_file_name's value for section in config.sections(): # traverse sections # read from the first section with a digit as a key if section.isdigit() is True: mysection = section else: # for any level for section in config.sections(): # traverse sections if section.isdigit() is True: if config[section]['ckpt_file_name'] == ckpt_file: mysection = section break for (each_key, each_val) in config.items(mysection): # check var pattern to increment nbVars variable if var_pattern.match(each_key) and each_key.endswith('_id'): nbVars = nbVars + 1 if nbVars == 0: print("No variable found in Checkpoint file") sys.exit(3001) print("Number of variables to read = "+str(nbVars)) # create numpy array for variables (instead of data) datanumpy = np.array([]) # get data for each Var # for i in range(int(group_size)): for j in range(nbVars): var_id = config['0']['var'+str(j)+'_id'] var_size = config['0']['var'+str(j)+'_size'] var_typeid = config['0']['var'+str(j)+'_typeid'] var_typesize = config['0']['var'+str(j)+'_typesize'] var_position = config['0']['var'+str(j)+'_pos'] var_name = None var_ndims = 0 var_dims = [] if (config.has_option('0', 'var'+str(j)+'_name') is True and config['0']['var'+str(j)+'_name']): var_name = config['0']['var'+str(j)+'_name'] if config.has_option('0', 'var'+str(j)+'_ndims') is True: # if variable dims set by FTI_SetAttribute() var_ndims = int(config['0']['var'+str(j)+'_ndims']) if var_ndims != 0: for k in range(var_ndims): dim = config['0']['var'+str(j)+'_dim'+str(k)] var_dims.append(dim) datanumpy = np.append(datanumpy, variable(var_id, var_size, var_typeid, var_typesize, var_position, var_name, var_ndims, var_dims)) return datanumpy # This function reads the ckpt file # and saves its content to out.csv def read_checkpoint(ckpt_file, meta_file, config_file, group_size, level, output): if os.path.exists(ckpt_file) is False: # FileNotFoundError print("No checkpoint file found") else: if os.stat(ckpt_file).st_size == 0: print("Checkpoint file empty") sys.exit(2003) else: print( "Found checkpoint file with size ", os.path.getsize(ckpt_file)) file = open(ckpt_file, "rb") # read meta data data = read_meta(meta_file, ckpt_file, group_size, level) # read Checkpoint allvarsnumpy = np.empty((1, nbVars), dtype=object) for i in range(nbVars): # for each variable: create list per variable to hold # the value of the variable to be exported to the csv file file.seek(int(data[i].var_position), os.SEEK_SET) var = file.read(int(data[i].var_size)) # process the datatype if int(data[i].var_typeid) == -1: print("skipping var#", str(i)) print("Not a primitive data type") # skip this variable # only primitive types are decoded as of this version continue decode_pattern, dtype = decode_fti_type(data[i].var_typeid) # data[i].var_ndims already has data # if var has no dimension:: one element data[i].var_ndims = int(data[i].var_ndims) # should verify if dimensions are correct if (int(data[i].var_size) == int(data[i].var_typesize) and data[i].var_ndims == 0): # single var decoded_var = struct.unpack(decode_pattern, var) varnumpy = np.array([]) varnumpy = np.append(varnumpy, decoded_var) else: # multi-dim variable subvars = int(data[i].var_size) \ // (int(data[i].var_typesize)) decode_pattern = str(subvars)+decode_pattern decoded_var = struct.unpack(decode_pattern, var) varnumpy = np.array([]) # for v in range(subvars): varnumpy = np.append(varnumpy, decoded_var) # needs debugging if hasattr(data[i], 'var_name'): varheaders.append(data[i].var_name) else: varheaders.append("var#"+str(i)) allvarsnumpy[0, i] = varnumpy file.close() allvarsnumpy = allvarsnumpy[0] if output == 'CSV': write_data_to_csv(allvarsnumpy, varheaders) elif output == 'HDF5': write_data_to_hdf5(allvarsnumpy, varheaders) elif output == 'data': return allvarsnumpy # This function writes the variables # stored in a numpy array to the ouput csv file def write_data_to_csv(allvarsnumpy, varheaders): panda =
pd.DataFrame()
pandas.DataFrame
import pandas as pd from skmultilearn.model_selection.iterative_stratification import IterativeStratification from sklearn.model_selection import train_test_split from pynet.utils import get_pickle_obj import matplotlib.pyplot as plt import numpy as np import os, copy ## This script aims at giving Train/Val/Test scheme for the release of OpenBHB dataset. ## It also aims at giving the BHB extension with private datasets. For now, only Training/Val/Test scheme is ## implemented with Val/(Test-Intra + Test-Inter) preserved as before. def discretize_continous_label(labels, bins='sturges', verbose=False): # Get an estimation of the best bin edges. 'Sturges' is conservative for pretty large datasets (N>1000). bin_edges = np.histogram_bin_edges(labels, bins=bins) if verbose: print('Global histogram:\n', np.histogram(labels, bins=bin_edges, density=False), flush=True) # Discretizes the values according to these bins discretization = np.digitize(labels, bin_edges[1:], right=True) if verbose: print('Bin Counts after discretization:\n', np.bincount(discretization), flush=True) return discretization def get_stratification_split(labels, n_test=0.1, preserve:str=None, seed:int=None): np.random.seed(seed) dummy = np.arange(len(labels)).reshape(len(labels), -1) n_splits = int(1/n_test) stratifier = IterativeStratification(n_splits=n_splits, order=1) # iterate until we find train/test split preserving the variable "preserve" for _ in range(n_splits): train, test = next(stratifier.split(dummy, labels.values)) if preserve is None or set(labels.iloc[train][preserve]) == set(labels.iloc[test][preserve]) \ == set(labels[preserve]): return (train, test) print("Impossible to stratify by preserving %s"%preserve) return None ### Defines the splits used for OpenBHB-10K path = "/neurospin/hc/openBHB/participants.tsv" test_path = ["/neurospin/psy_sbox/icbm/ICBM_t1mri_mwp1_participants.csv", "/neurospin/psy_sbox/hcp_development/participants.csv"] open_bhb10k = ['abide1', 'abide2', 'ixi', 'npc', 'rbp', 'gsp', 'localizer', 'mpi-leipzig', 'corr', 'nar'] df =
pd.read_csv(path, sep="\t")
pandas.read_csv
#!/usr/bin/env python import numpy as np import pandas as pd import pytest from modnet.preprocessing import get_cross_nmi from modnet.preprocessing import nmi_target def test_nmi_target(): # Test with linear data (should get 1.0 mutual information, or very close due to algorithm used # in mutual_info_regression) npoints = 31 x = np.linspace(0.5, 3.5, npoints) y = 2*x - 2 z = 4*x + 2 df_feat = pd.DataFrame({'x': x, 'y': y}) df_target = pd.DataFrame({'z': z}) # Here we fix the number of neighbors for the call to sklearn.feature_selection's mutual_info_regression to 2 so # that we get exactly 1 for the mutual information. df_nmi_target = nmi_target(df_feat=df_feat, df_target=df_target, n_neighbors=2) assert df_nmi_target.shape == (2, 1) assert df_nmi_target.loc['x']['z'] == pytest.approx(1.0) assert df_nmi_target.loc['y']['z'] == pytest.approx(1.0) # Same data shuffled # Shuffle the x, y and z indices = np.arange(npoints) np.random.seed(42) np.random.shuffle(indices) xs = x.take(indices) ys = y.take(indices) zs = z.take(indices) df_feat = pd.DataFrame({'x': xs, 'y': ys}) df_target = pd.DataFrame({'z': zs}) df_nmi_target = nmi_target(df_feat=df_feat, df_target=df_target, n_neighbors=2) assert df_nmi_target.shape == (2, 1) assert df_nmi_target.loc['x']['z'] == pytest.approx(1.0) assert df_nmi_target.loc['y']['z'] == pytest.approx(1.0) # Test with one constant feature c = np.ones(npoints) * 1.4 df_feat = pd.DataFrame({'x': x, 'y': y, 'c': c}) df_target = pd.DataFrame({'z': z}) df_nmi_target = nmi_target(df_feat=df_feat, df_target=df_target, n_neighbors=2) assert df_nmi_target.shape == (2, 1) assert df_nmi_target.loc['x']['z'] == pytest.approx(1.0) assert df_nmi_target.loc['y']['z'] == pytest.approx(1.0) df_nmi_target = nmi_target(df_feat=df_feat, df_target=df_target, drop_constant_features=False, n_neighbors=2) assert df_nmi_target.shape == (3, 1) assert df_nmi_target.loc['x']['z'] == pytest.approx(1.0) assert df_nmi_target.loc['y']['z'] == pytest.approx(1.0) assert df_nmi_target.loc['c']['z'] == pytest.approx(0.0) # Test with unrelated data (grid) x = np.linspace(start=2, stop=5, num=4) z = np.linspace(start=3, stop=7, num=5) x, z = np.meshgrid(x, z) x = x.flatten() z = z.flatten() df_feat = pd.DataFrame({'x': x}) df_target = pd.DataFrame({'z': z}) df_nmi_target = nmi_target(df_feat=df_feat, df_target=df_target) assert df_nmi_target.shape == (1, 1) assert df_nmi_target.loc['x']['z'] == pytest.approx(0.0) # Test initial checks # Incompatible shapes x = np.linspace(start=2, stop=3, num=5) z = np.linspace(start=2, stop=3, num=8) df_feat = pd.DataFrame({'x': x}) df_target = pd.DataFrame({'z': z}) with pytest.raises(ValueError, match=r'The input features DataFrame and the target variable DataFrame ' r'should contain the same number of data points.'): nmi_target(df_feat=df_feat, df_target=df_target) # Target DataFrame does not have exactly one column x = np.linspace(start=2, stop=3, num=5) z = np.linspace(start=2, stop=3, num=5) df_feat = pd.DataFrame({'x': x}) df_target = pd.DataFrame({'z2': z, 'z': z}) with pytest.raises(ValueError, match=r'The target DataFrame should have exactly one column.'): nmi_target(df_feat=df_feat, df_target=df_target) # Test with some more real data (for which NMI is not just 0.0 or 1.0) npoints = 200 np.random.seed(42) x = np.random.rand(npoints) z = 4 * x + 1.0 * np.random.rand(npoints) df_feat = pd.DataFrame({'x': x}) df_target =
pd.DataFrame({'z': z})
pandas.DataFrame
""" Calculate various stats regarding how associated a context token is with contentiousness. process: * load the annotation set (controls already removed): * remove 'weet ik niet' and 'Onleesbare...' annotations * case-fold target words * With respect to the text-analysed context tokens * build a hash of {context token|str| : co-occurrent extract ids|set|, ...} * build a hash of {context token|str| : Counter{target1: 2, target2:1,... }, ...} * build and save a dataframe with: * e.g., ratios of count(token, contentious) / count(token), binomial test such to measure significance wrt., contentious sample or non-contentious sample association """ import os from collections import Counter, defaultdict import pandas as pd from scipy.stats import binom_test from statsmodels.stats.proportion import proportion_confint from tqdm import tqdm def main(): sav = "stats/associations.csv" os.makedirs(os.path.dirname(sav), exist_ok=True) # pass of sav exists if os.path.exists(sav): pass else: # load data with open("data.csv", "r") as f: data = pd.read_csv(f) # remove all 'weet ik niet' and 'Onleesbare ...' data = data[ data["response"].isin( ["Omstreden naar huidige maatstaven", "Niet omstreden"] ) ] # case fold target_compound data['target_compound'] = data['target_compound'].str.lower() # get a series of text-analysed contexts by extract_id contexts: pd.Series = ( data.groupby(["extract_id"]).first().loc[:, "text_analysed"] ) # load dataframe of | extract_id | label | with open("majority_vote/majority_vote.csv", "r") as f: majority_vote = pd.read_csv(f) majority_vote = majority_vote.set_index("extract_id") # build {context token: list of extract_ids} extracts_by_context_token = defaultdict(list) for extract_id, text in contexts.iteritems(): for context_token in set( [ t for s in text.split("<sent>") for t in s.split(" ") if t != "" and t != " " ] ): extracts_by_context_token[context_token].append(extract_id) # build {context token: list of associated target words} target_words_by_id = ( data.groupby(["extract_id"]).first().loc[:, "target_compound"] ) target_words_by_context_token = defaultdict(Counter) # for context_token, extract_ids in extracts_by_context_token.items(): for extract_id in extract_ids: target = target_words_by_id.at[extract_id] target_words_by_context_token[context_token][target] += 1 # ------ # build df of statistics # ------ stats = defaultdict(list) for context_token, extract_ids in extracts_by_context_token.items(): votes = [ majority_vote.at[extract_id, "label"] for extract_id in extract_ids ] stats["token"].append(context_token) stats["num_corresponding_extracts"].append(len(votes)) count_c = sum([1 for v in votes if v == 1]) count_n = sum([1 for v in votes if v == 0]) count_u = sum([1 for v in votes if v == 0.5]) count = len(votes) # attribute point estimates and p-values stats["proportion_with_contentious"].append((count_c) / (count)) stats["contentious_p_value"].append( binom_test(count_c, count, p=0.183, alternative="greater") ) stats["proportion_with_non_contentious"].append((count_n) / (count)) stats["non_contentious_p_value"].append( binom_test(count_n, count, p=0.796, alternative="greater") ) stats["proportion_with_no_majority"].append((count_u) / (count)) # attibute number of target words and number of instances targets = target_words_by_context_token[context_token] target_string = ", ".join( [t + f"({count})" for t, count in targets.items()] ) stats['targets_count'].append(sum([1 for t, c in targets.items()])) stats["targets"].append(target_string) # save as a dataframe stats =
pd.DataFrame.from_dict(stats)
pandas.DataFrame.from_dict
import tensorflow.keras as kr # Numerical arrays import numpy as np # Data frames. import pandas as pd # Plotting import matplotlib.pyplot as plt # neural neworks import tensorflow.keras as kr # this code all explained in jupyter notebook def load_model(): data = pd.read_csv('power_production.csv') # drop rows where the power putput is zero even though wind speed > 10 # https://stackoverflow.com/questions/52456874/drop-rows-on-multiple-conditions-in-pandas-dataframe df_new = data.drop(data[(data['speed'] > 10.0) & (data['power'] == 0.0)].index) train =
pd.DataFrame()
pandas.DataFrame
""" Функции и классы для проведения WoE-преобразований """ import math import warnings import numpy as np import pandas as pd import sklearn as sk from IPython.display import display from matplotlib import pyplot as plt from sklearn.base import BaseEstimator, TransformerMixin from sklearn.model_selection import train_test_split from tqdm.auto import tqdm class _GroupedPredictor(pd.DataFrame): """ Вспомогательный класс для удобства доступа к некоторым данным """ def get_predictor(self, x): """ Получение подвыборки по имени предиктора(ов) Parameters --------------- x : str/int/list-like Предиктор или список предикторов Returns: ----------- self : pd.DataFrame Часть датафрейма (самого себя) """ if isinstance(x, (list, set, tuple)): return self[self["predictor"].isin(x)] else: return self[self["predictor"] == x] def append(self, other): return _GroupedPredictor(super().append(other)) class WoeTransformer(TransformerMixin, BaseEstimator): """Класс для построения и применения WOE группировки к датасету Parameters ---------- min_sample_rate : float, default 0.05 Минимальный размер группы (доля от размера выборки) min_count : int, default 3 Минимальное количество наблюдений каждого класса в группе save_data : bool, default False Параметр, определяющий, нужно ли сохранить данные для обучения трансформера внутри экземпляра класса join_bad_categories : bool, default False Определяет, должени ли трансформер предпринять попытку для объединения катогориальных групп в более крупные Warning ------- join_bad_categories - Экспериментальная функция. Способ группировки категорий нестабилен Attributes ---------- stats : pandas.DataFrame Результаты WOE-группировки по всем предикторам predictors : list Список предикторов, на которых была построена группировка cat_values : dict[str, list] Словарь со списками категорий по предикторам, переданный при обучении alpha_values : dict[str, float] Словарь со значениями alpha для регуляризации групп possible groups : pandas.DataFrame Данные о значениях предиктора, которые могли бы стать отдельными категориями bad_groups : pandas.DataFrame Данные о группах, которые не удовлетворяют условиям """ def __repr__(self): return "WoeTransformer(min_sample_rate={!r}, min_count={!r}, n_fitted_predictors={!r})".format( self.min_sample_rate, self.min_count, len(self.predictors), ) def __init__( self, min_sample_rate: float = 0.05, min_count: int = 3, save_data: bool = False, join_bad_categories: bool = False, ): """ Инициализация экземпляра класса """ self.min_sample_rate = min_sample_rate self.min_count = min_count self.predictors = [] self.alpha_values = {} self.save_data = save_data self.join_bad_categories = join_bad_categories # ------------------------- # Функции интерфейса класса # ------------------------- def fit(self, X, y, cat_values={}, alpha_values={}): """ Обучение трансформера и расчет всех промежуточных данных Parameters --------------- X : pd.DataFrame Датафрейм с предикторами, которые нужно сгруппировать y : pd.Series Целевая переменная cat_values : dict[str, list[str]], optional Словарь списков с особыми значениями, которые нужно выделить в категории По умолчанию все строковые и пропущенные значения выделяются в отдельные категории alpha_values : dict[str, float], optional Словарь со значениями alpha для регуляризации WOE-групп Returns ------- self : WoeTransformer """ # Сброс текущего состояния трансформера self._reset_state() # Сохранение категориальных значений self.cat_values = cat_values # Валидация данных и решейпинг if hasattr(self, "_validate_data"): X, y = self._validate_and_convert_data(X, y) if self.save_data: self.data = X self.target = y # Инициализация коэффициентов для регуляризации групп self.alpha_values = {i: 0 for i in X.columns} self.alpha_values.update(alpha_values) # Агрегация значений предикторов self._grouping(X, y) # Расчет WOE и IV self._fit_numeric(X, y) # Поиск потенциальных групп # Поиск "плохих" групп self._get_bad_groups() return self def transform(self, X, y=None): """ Применение обученного трансформера к новым данным Parameters --------------- X : pandas.DataFrame Датафрейм, который нужно преобразовать Предикторы, которые не были сгруппированы ранее, будут проигнорированы и выведется сообщение y : pandas.Series Игнорируется Returns ----------- transformed : pandas.DataFrame Преобразованный датасет """ transformed = pd.DataFrame() if hasattr(self, "_validate_data"): try: X, y = self._validate_and_convert_data(X, y) except AttributeError: pass for i in X: if i in self.predictors: try: transformed[i] = self._transform_single(X[i]) except Exception as e: print(f"Transform failed on predictor: {i}", e) else: print(f"Column is not in fitted predictors list: {i}") return transformed def fit_transform(self, X, y, cat_values={}, alpha_values={}): """ Обучение трансформера и расчет всех промежуточных данных с последующим примененим группировки к тем же данным Parameters --------------- X : pandas.DataFrame Датафрейм с предикторами, которые нужно сгруппировать y : pandas.Series Целевая переменная cat_values : dict[str, list[str]], optional Словарь списков с особыми значениями, которые нужно выделить в категории По умолчанию все строковые и пропущенные значения выделяются в отдельные категории alpha_values : dict[str, float], optional Словарь со значениями alpha для регуляризации WOE-групп Returns ----------- transformed : pd.DataFrame Преобразованный датасет """ self.fit(X, y, cat_values=cat_values, alpha_values=alpha_values) return self.transform(X) def plot_woe(self, predictors=None): """ Отрисовка одного или нескольких графиков группировки Parameters --------------- predictors : str or array, default None Предиктор(ы), по которым нужны графики -- если str - отрисовывается один график -- если array - отрисовываются графики из списка -- если None - отрисовываются все сгруппированные предикторы Warning ------- Запуск метода без аргументов может занять длительное время при большом количестве предикторов """ if predictors is None: predictors = self.predictors elif isinstance(predictors, str): predictors = [predictors] elif isinstance(predictors, (list, tuple, set)): predictors = predictors _, axes = plt.subplots(figsize=(10, len(predictors) * 5), nrows=len(predictors)) try: for i, col in enumerate(predictors): self._plot_single_woe_grouping(self.stats.get_predictor(col), axes[i]) except TypeError: self._plot_single_woe_grouping(self.stats.get_predictor(col), axes) # return fig def get_iv(self, sort=False): """Получение списка значений IV по предикторам Parameters ---------- sort : bool, default False Включает сортировку результата по убыванию IV Returns ------- pandas.Series """ try: res = self.stats.groupby("predictor")["IV"].sum() if sort: res = res.sort_values(ascending=False) res = dict(res) except AttributeError as e: print(f"Transformer was not fitted yet. {e}") res = {} return res # ------------------------- # Внутренние функции над всем датасетом # ------------------------- def _validate_and_convert_data(self, X, y): """Проверяеn входные данные, трансформирует в объекты pandas Использует метод _validate_data из sklearn/base.py """ if hasattr(X, "columns"): predictors = X.columns else: predictors = ["X" + str(i + 1) for i in range(X.shape[1])] if y is None: X_valid = self._validate_data(X, y, dtype=None, force_all_finite=False) X_valid = pd.DataFrame(X, columns=predictors) y_valid = None else: X_valid, y_valid = self._validate_data( X, y, dtype=None, force_all_finite=False ) y_valid = pd.Series(y, name="target") X_valid = pd.DataFrame(X, columns=predictors) return X_valid, y_valid def _grouping(self, X, y): """ Применение группировки ко всем предикторам """ df = X.copy() df = df.fillna("пусто") df["target"] = y.copy() # Группировка и расчет показателей for col in df.columns[:-1]: grouped_temp = self._group_single(df[col], y) num_mask = self._get_nums_mask(grouped_temp["value"]) cat_val_mask = grouped_temp["value"].isin(self.cat_values.get(col, [])) is_all_categorical = all(~num_mask | cat_val_mask) if self.join_bad_categories and is_all_categorical: repl = self._get_cat_values_for_join(grouped_temp) grouped_temp = self._group_single(df[col].replace(repl), y) self.grouped = self.grouped.append(grouped_temp) # Замена пустых значений обратно на np.nan ИЛИ преобразование в числовой тип try: self.grouped["value"] = self.grouped["value"].replace({"пусто": np.nan}) except TypeError: self.grouped["value"] = pd.to_numeric( self.grouped["value"], downcast="signed" ) def _fit_numeric(self, X, y): """ Расчет WOE и IV Parameters: --------------- X : pd.DataFrame Датафрейм с предикторами, которые нужно сгруппировать y : pd.Series Целевая переменная Returns ------- None """ res = pd.DataFrame() for i in X: res_i = self._fit_single(X[i], y) res = res.append(res_i) self.predictors.append(i) self.stats = self.stats.append(res) # ------------------------- # Внутренние функции над отдельными столбцами # ------------------------- def _group_single(self, x, y): """ Агрегация данных по значениям предиктора. Рассчитывает количество наблюдений, количество целевых событий, долю группы от общего числа наблюдений и долю целевых в группе Parameters: --------------- X : pandas.DataFrame Таблица данных для агрегации y : pandas.Series Целевая переменная """ col = x.name df = pd.DataFrame({col: x.values, "target": y.values}) grouped_temp = df.groupby(col)["target"].agg(["count", "sum"]).reset_index() grouped_temp.columns = ["value", "sample_count", "target_count"] grouped_temp["sample_rate"] = ( grouped_temp["sample_count"] / grouped_temp["sample_count"].sum() ) grouped_temp["target_rate"] = ( grouped_temp["target_count"] / grouped_temp["sample_count"] ) grouped_temp.insert(0, "predictor", col) return _GroupedPredictor(grouped_temp) def _fit_single(self, x, y, gr_subset=None, cat_vals=None): """ Расчет WOE и IV Parameters: --------------- X : pd.DataFrame Датафрейм с предикторами, которые нужно сгруппировать y : pd.Series Целевая переменная gr_subset : _GroupedPredictor Предиктор """ gr_subset_num = pd.DataFrame() gr_subset_cat = pd.DataFrame() col = x.name if gr_subset is None: gr_subset = self.grouped.get_predictor(col) if cat_vals is None: cat_vals = self.cat_values.get(col, []) nan_mask = x.isna() num_mask = self._get_nums_mask(x) & (~x.isin(cat_vals)) & (~nan_mask) num_vals = x.loc[num_mask].unique() try: # Расчет коэффициентов тренда по числовым значениям предиктора if num_mask.sum() > 0: try: poly_coefs = np.polyfit( x.loc[num_mask].astype(float), y.loc[num_mask], deg=1 ) except np.linalg.LinAlgError as e: print(f"Error in np.polyfit on predictor: '{col}'.\nError MSG: {e}") print("Linear Least Squares coefficients were set to [1, 0]") poly_coefs = np.array([1, 0]) self.trend_coefs.update({col: poly_coefs}) # Расчет монотонных границ gr_subset_num = gr_subset[gr_subset["value"].isin(num_vals)].copy() gr_subset_num["value"] = pd.to_numeric(gr_subset_num["value"]) gr_subset_num = gr_subset_num.sort_values("value") borders = self._monotonic_borders(gr_subset_num, self.trend_coefs[col]) self.borders.update({col: borders}) # Применение границ к сгруппированным данным gr_subset_num["groups"] = pd.cut(gr_subset_num["value"], borders) gr_subset_num["type"] = "num" except ValueError as e: print(f"ValueError on predictor {col}.\nError MSG: {e}") # Расчет коэффициентов тренда по категориальным значениям предиктора if (~num_mask).sum() > 0: gr_subset_cat = gr_subset[~gr_subset["value"].isin(num_vals)].copy() gr_subset_cat["groups"] = gr_subset_cat["value"].fillna("пусто") gr_subset_cat["type"] = "cat" # Объединение числовых и категориальных значений gr_subset = pd.concat([gr_subset_num, gr_subset_cat], axis=0, ignore_index=True) # Расчет WOE и IV alpha = self.alpha_values.get(col, 0) res_i = self._statistic(gr_subset, alpha=alpha) is_empty_exists = any(res_i["groups"].astype(str).str.contains("пусто")) if is_empty_exists: res_i["groups"].replace({"пусто": np.nan}, inplace=True) return res_i def _transform_single(self, x, stats=None): """ Применение группировки и WoE-преобразования Parameters --------------- x : pandas.Series Значения предиктора Returns --------------- X_woe : pandas.DataFrame WoE-преобразования значений предиктора WoE = 0, если группа не встречалась в обучающей выборке """ orig_index = x.index X_woe = x.copy() if stats is None: stats = self.stats.get_predictor(X_woe.name) # Маппинги для замены групп на соответствующие значения WOE num_map = { stats.loc[i, "groups"]: stats.loc[i, "WOE"] for i in stats.index if stats.loc[i, "type"] == "num" } cat_map = { stats.loc[i, "groups"]: stats.loc[i, "WOE"] for i in stats.index if stats.loc[i, "type"] == "cat" } # Категориальные группы cat_bounds = stats.loc[stats["type"] == "cat", "groups"] # predict по числовым значениям DF_num = stats.loc[stats["type"] == "num"] if DF_num.shape[0] > 0: # Границы (правые) интервалов для разбивки числовых переменных num_bounds = [-np.inf] + list( pd.IntervalIndex(stats.loc[stats["type"] == "num", "groups"]).right ) # Выделение только числовых значений предиктора # (похожих на числа и тех, что явно не указаны как категориальные) X_woe_num = pd.to_numeric( X_woe[(self._get_nums_mask(X_woe)) & (~X_woe.isin(cat_bounds))] ) # Разбивка значений на интервалы в соответствии с группировкой X_woe_num = pd.cut(X_woe_num, num_bounds) # Замена групп на значения WOE X_woe_num = X_woe_num.replace(num_map) X_woe_num.name = "woe" else: X_woe_num = pd.Series() # predict по категориальным значениям (может обновлять значения по числовым) DF_cat = stats.loc[stats["type"] == "cat"] if DF_cat.shape[0] > 0: # Выделение строковых значений и тех, что явно выделены как категориальные X_woe_cat = X_woe[X_woe.isin(cat_map.keys())] # Замена групп на значения WOE X_woe_cat = X_woe_cat.replace(cat_map) else: X_woe_cat = pd.Series() # predict по новым категориям (нечисловые: которых не было при групприровке) # Сбор индексов категориальных и числовых значений used_index = np.hstack([X_woe_cat.index, X_woe_num.index]) if len(used_index) < len(x): X_woe_oth = X_woe.index.drop(used_index) X_woe_oth = pd.Series(0, index=X_woe_oth) else: X_woe_oth = pd.Series() X_woe = pd.concat([X_woe_num, X_woe_cat, X_woe_oth]).reindex(orig_index) X_woe = pd.to_numeric(X_woe, downcast="signed") return X_woe def _monotonic_borders(self, grouped, p): """ Определение оптимальных границ групп предиктора (монотонный тренд) Parameters --------------- DF_grouping : pandas.DataFrame Агрегированные данные по значениям предиктора (результат работы фунции grouping, очищенный от категориальных значений). Должен содержать поля 'predictor', 'sample_count', 'target_count', 'sample_rate и 'target_rate' p : list-like, длиной в 2 элемента Коэффициенты линейного тренда значений предиктора Returns --------------- R_borders : list Правые границы групп для последующей группировки """ k01, k11 = (1, 1) if p[0] > 0 else (0, -1) R_borders = [] min_ind = 0 # минимальный индекс. Начальные условия DF_grouping = grouped.copy().sort_values("value").reset_index() while min_ind < DF_grouping.shape[0]: # цикл по новым группам # Расчет показателей накопительным итогом DF_j = DF_grouping.iloc[min_ind:] DF_iter = DF_j[["sample_rate", "sample_count", "target_count"]].cumsum() DF_iter["non_target_count"] = ( DF_iter["sample_count"] - DF_iter["target_count"] ) DF_iter["target_rate"] = DF_iter["target_count"] / DF_iter["sample_count"] # Проверка на соответствие критериям групп DF_iter["check"] = self._check_groups(DF_iter) # Расчет базы для проверки оптимальности границы # В зависимости от тренда считается скользящий _вперед_ минимум или максимум # (в расчете участвуют все наблюдения от текущего до последнего) if k11 == 1: DF_iter["pd_gr"] = ( DF_iter["target_rate"][::-1] .rolling(len(DF_iter), min_periods=0) .min()[::-1] ) else: DF_iter["pd_gr"] = ( DF_iter["target_rate"][::-1] .rolling(len(DF_iter), min_periods=0) .max()[::-1] ) # Проверка оптимальности границы DF_iter["opt"] = DF_iter["target_rate"] == DF_iter["pd_gr"] DF_iter = pd.concat([DF_j[["value"]], DF_iter], axis=1) try: min_ind = DF_iter.loc[ (DF_iter["check"]) & (DF_iter["opt"]), "target_rate" ].index.values[0] score_j = DF_iter.loc[min_ind, "value"] if ( len(R_borders) > 0 and score_j == R_borders[-1] ): # Выход из цикла, если нет оптимальных границ break except Exception: break min_ind += 1 R_borders.append(score_j) # Проверка последней добавленной группы if len(R_borders) > 0: DF_iter = DF_grouping.loc[DF_grouping["value"] > R_borders[-1]] sample_rate_i = DF_iter["sample_rate"].sum() # доля выборки sample_count_i = DF_iter["sample_count"].sum() # количество наблюдений target_count_i = DF_iter["target_count"].sum() # количество целевых non_target_count_i = sample_count_i - target_count_i # количество нецелевых if ( (sample_rate_i < self.min_sample_rate) or (target_count_i < self.min_count) or (non_target_count_i < self.min_count) ): R_borders.remove(R_borders[-1]) # удаление последней границы else: predictor = DF_grouping["predictor"].iloc[0] warnings.warn( f"Couldn't find any borders for feature {predictor}.\n Borders set on (-inf, +inf)" ) R_borders = [-np.inf] + R_borders + [np.inf] return R_borders def _check_groups( self, df, sample_rate_col="sample_rate", sample_count_col="sample_count", target_count_col="target_count", ): """ Проверить сгруппированные значения предиктора на соответствме условиям""" cond_mask = ( (df[sample_rate_col] >= self.min_sample_rate - 10 ** -9) & (df[sample_count_col] >= self.min_count) & (df[target_count_col] >= self.min_count) ) return cond_mask def _get_cat_values_for_join(self, grouped): """Получить словарь для замены категорий на объединяемые NOTE: Нужно тестирование TODO: переписать на рекурсию """ df = grouped.copy() cond_mask = ~self._check_groups(df) res = df[ [ "predictor", "value", "sample_count", "target_count", "sample_rate", "target_rate", ] ].copy() res = res.sort_values(["sample_rate", "target_rate"]) res["cum_sample_rate"] = res["sample_rate"].cumsum() res["check"] = cond_mask res["check_reverse"] = ~cond_mask res["check_diff"] = res["check"].astype(int).diff() res["new_group"] = (res["check_diff"] == -1).astype(int) res["exist_group"] = res["check_reverse"].astype(int).eq(1) res.loc[~res["check_reverse"], "exist_group"] = np.NaN res["exist_group_cum"] = res["exist_group"].cumsum().fillna(method="bfill") res[["cum_sr", "cum_sc", "cum_tc"]] = res.groupby("exist_group_cum").agg( { "sample_rate": "cumsum", "sample_count": "cumsum", "target_count": "cumsum", } ) res["cum_sr_check"] = ( self._check_groups(res, "cum_sr", "cum_sc", "cum_tc") .astype(int) .diff() .eq(1) .astype(int) .shift() ) display(res) res.loc[res["cum_sr_check"] != 1, "cum_sr_check"] = np.nan res["cum_sr_check"] = res["cum_sr_check"].fillna(method="ffill").fillna(0) res["group_number"] = res["exist_group_cum"] + res["cum_sr_check"] repl = res.groupby("group_number").agg({"value": list}).to_dict()["value"] repl = {k: "_".join(v) for k, v in repl.items()} res["group_vals"] = res["group_number"].replace(repl) t = dict(zip(res["value"], res["group_vals"])) return t def _plot_single_woe_grouping(self, stats, ax_pd=None): """ Построение графика по группировке предиктора Parameters --------------- stats : pandas.DataFrame Статистика по каждой группе (результат работы функции statistic): минимальное, максимальное значение, доля от общего объема выборки, количество и доля целевых и нецелевых событий в каждой группе, WOE и IV каждой группы Должен содержать столбцы: 'sample_rate', 'target_rate', 'WOE' ax_pd : matplotlib.Axes Набор осей (subplot) """ # Расчеты x2 = [stats["sample_rate"][:i].sum() for i in range(stats.shape[0])] + [ 1 ] # доля выборки с накоплением x = [ np.mean(x2[i : i + 2]) for i in range(len(x2) - 1) ] # средняя точка в группах # Выделение нужной информации для компактности woe = list(stats["WOE"]) height = list(stats["target_rate"]) # проблемность в группе width = list(stats["sample_rate"]) # доля выборки на группу # Визуализация if ax_pd is None: _, ax_pd = plt.subplots(figsize=(8, 5)) # Столбчатая диаграмма доли целевых в группах ax_pd.bar( x=x, height=height, width=width, color=[0, 122 / 255, 123 / 255], label="Группировка", alpha=0.7, ) # График значений WOE по группам ax_woe = ax_pd.twinx() # дубликат осей координат ax_woe.plot( x, woe, lw=2, color=[37 / 255, 40 / 255, 43 / 255], label="woe", marker="o" ) # Линия нулевого значения WOE ax_woe.plot( [0, 1], [0, 0], lw=1, color=[37 / 255, 40 / 255, 43 / 255], linestyle="--" ) # Настройка осей координат plt.xlim([0, 1]) plt.xticks(x2, [round(i, 2) for i in x2], fontsize=12) ax_pd.grid(True) ax_pd.set_xlabel("Доля выборки", fontsize=16) ax_pd.set_ylabel("pd", fontsize=16) ax_woe.set_ylabel("woe", fontsize=16) # Расчет границ графика и шага сетки max_woe = max([int(abs(i)) + 1 for i in woe]) max_pd = max([int(i * 10) + 1 for i in height]) / 10 # Границы и сетка для столбчатой диаграммы ax_pd.set_ylim([0, max_pd]) ax_pd.set_yticks([round(i, 2) for i in np.linspace(0, max_pd, 11)]) ax_pd.legend(bbox_to_anchor=(1.05, 0.83), loc=[0.2, -0.25], fontsize=14) # Границы и сетка для графика WOE ax_woe.set_ylim([-max_woe, max_woe]) ax_woe.set_yticks([round(i, 2) for i in np.linspace(-max_woe, max_woe, 11)]) ax_woe.legend(bbox_to_anchor=(1.05, 0.92), loc=[0.6, -0.25], fontsize=14) plt.title( "Группировка предиктора {}".format(stats.loc[0, "predictor"]), fontsize=18 ) # Для категориальных n_cat = stats.loc[stats["type"] == "cat"].shape[0] if n_cat > 0: ax_pd.bar( x=x[-n_cat:], height=height[-n_cat:], width=width[-n_cat:], color="m", label="Категориальные", ) ax_pd.legend(bbox_to_anchor=(1.05, 0.76), loc=[0.15, -0.33], fontsize=14) plt.tight_layout() def _get_possible_groups(self): """ Поиск возможных групп в значениях предикторов после агрегации """ self.possible_groups = pd.DataFrame() # Выделение значений предиктора с достаточным кол-вом наблюдений и # не отмеченных, как категориальные for i in self.predictors: cat_vals = self.cat_values.get(i, []) DF_i1 = self.grouped.get_predictor(i).copy() DF_i1 = DF_i1.loc[ (DF_i1["sample_rate"] > self.min_sample_rate) & (~DF_i1["value"].isin(cat_vals)) ] # Выделение всех значений предиктора, не отмеченных, как категориальные DF_i2 = self.grouped.get_predictor(i).copy() DF_i2 = DF_i2.loc[(~DF_i2["value"].isin(cat_vals))] # Выбор значений: которые не равны бесконености и при этом не являются числами L = ~(DF_i2["value"] == np.inf) & (~(self._get_nums_mask(DF_i2["value"]))) DF_i2 = DF_i2.loc[L] # Объединение найденных значений в одну таблицу DF_i = pd.concat((DF_i1, DF_i2), ignore_index=True).drop_duplicates() self.possible_groups = self.possible_groups.append(DF_i) def _get_bad_groups(self): """ Поиск групп: не удовлетворяющих условиям """ self.bad_groups = self.stats.loc[ (self.stats["sample_rate"] < self.min_sample_rate) | (self.stats["target_count"] < self.min_count) | (self.stats["sample_count"] - self.stats["target_count"] < self.min_count) ] def _regularize_groups(self, stats, alpha=0): """расчет оптимальной целевой для группы на основе готовой woe-группировки формула и детали в видео https://www.youtube.com/watch?v=g335THJxkto&list=PLLIunAIxCvT8ZYpC6-X7H0QfAQO9H0f-8&index=12&t=0s pd = (y_local * K + Y_global * alpha) / (K + alpha)""" Y_global = stats["target_count"].sum() / stats["sample_count"].sum() K = stats["sample_count"] / stats["sample_count"].sum() stats["target_rate"] = (stats["target_rate"] * K + Y_global * alpha) / ( K + alpha ) stats["target_count"] = np.floor( stats["sample_count"] * stats["target_rate"] ).astype(int) return stats def _statistic(self, grouped, alpha=0): """ Расчет статистики по группам предиктора: минимальное, максимальное значение, доля от общего объема выборки, количество и доля целевых и нецелевых событий в каждой группе А также расчет WOE и IV каждой группы Parameters --------------- grouped : pandas.DataFrame Данные полученных групп предиктора. Кол-во строк совпадает с кол-вом уникальных значений предиктора. Должен содержать столбцы: 'sample_count', 'target_count', 'groups' alpha : float, default 0 Коэффициент регуляризации групп Returns --------------- stats : pandas.DataFrame Агрегированные данные по каждой группе """ nothing = 10 ** -6 stats = grouped.groupby(["predictor", "groups"], sort=False).agg( { "type": "first", "sample_count": "sum", "target_count": "sum", "value": ["min", "max"], }, ) stats.columns = ["type", "sample_count", "target_count", "min", "max"] stats.reset_index(inplace=True) stats["sample_rate"] = stats["sample_count"] / stats["sample_count"].sum() stats["target_rate"] = stats["target_count"] / stats["sample_count"] stats = self._regularize_groups(stats, alpha=alpha) # Расчет WoE и IV samples_num = stats["sample_count"].sum() events = stats["target_count"].sum() non_events = samples_num - events stats["non_events_i"] = stats["sample_count"] - stats["target_count"] stats["event_rate_i"] = stats["target_count"] / (events + nothing) stats["non_event_rate_i"] = stats["non_events_i"] / (non_events + nothing) stats["WOE"] = np.log( stats["non_event_rate_i"] / (stats["event_rate_i"] + nothing) + nothing ) stats["IV"] = stats["WOE"] * (stats["non_event_rate_i"] - stats["event_rate_i"]) return stats def _calc_trend_coefs(self, x, y): """ Расчет коэффициентов тренда Parameters --------------- x : pandas.Series Значения предиктора y : pandas.Series Целевая переменная Returns ----------- dict[str, tuple[float, float]] """ return {x.name: np.polyfit(x, y, deg=1)} # Служебные функции def _reset_state(self): self.trend_coefs = {} self.borders = {} self.cat_values = {} self.predictors = [] self.grouped = _GroupedPredictor() self.stats = _GroupedPredictor() def _get_nums_mask(self, x): # if x.apply(lambda x: isinstance(x, str)).sum() == len(x): # return pd.Series(False, index=x.index) # else: # mask = pd.to_numeric(x, errors="coerce").notna() mask = pd.to_numeric(x, errors="coerce").notna() return mask class WoeTransformerRegularized(WoeTransformer): """ Класс для построения и применения WOE группировки к датасету с применением регуляризации малых групп """ def __init__(self, min_sample_rate=0.05, min_count=3, alphas=None, n_seeds=30): """ Инициализация экземпляра класса """ self.min_sample_rate = min_sample_rate self.min_count = min_count self.predictors = [] self.alphas = 100 if alphas is None else alphas self.alpha_values = {} self.n_seeds = n_seeds def fit(self, X, y, cat_values={}, alpha_values={}): """ Обучение трансформера и расчет всех промежуточных данных Parameters --------------- X : pd.DataFrame Датафрейм с предикторами, которые нужно сгруппировать y : pd.Series Целевая переменная cat_values : dict[str, list[str]], optional Словарь списков с особыми значениями, которые нужно выделить в категории По умолчанию все строковые и пропущенные значения выделяются в отдельные категории alpha_values : dict[str, float], optional Словарь со значениями alpha для регуляризации WOE-групп Returns ------- self : WoeTransformer """ # Сброс текущего состояния трансформера self._reset_state() self.cat_values = cat_values self.regularization_stats = _GroupedPredictor() for col in tqdm(X.columns, desc="Searching alphas"): temp_alpha = self._cat_features_alpha_logloss( X[col], y, self.alphas, self.n_seeds ) self.alpha_values.update({col: temp_alpha}) self._grouping(X, y) # Расчет WOE и IV self._fit_numeric(X, y) # Поиск потенциальных групп # Поиск "плохих" групп self._get_bad_groups() return self def _cat_features_alpha_logloss(self, x, y, alphas, seed=30): """ функция расчета IV, GINI и logloss для категориальных переменных с корректировкой целевой по alpha """ # задаем промежуточную функцию для WOE преобразования переменной из исходного датафрейма # по рассчитанным WOE из IVWOE def calc_woe_i(row_value, stats): return stats.loc[stats["groups"] == row_value, "WOE"].values[0] predictor = x.name target = y.name df = pd.DataFrame({predictor: x.values, target: y.values}) df[predictor] = df[predictor].fillna("NO_INFO") L_logloss_mean = [] GINI_IV_mean = [] for alpha_i in alphas: logloss_i = [] GINI_i = [] IV_i = [] for seed_i in range(seed): X_train, X_test, y_train, y_test = train_test_split( x, y, test_size=0.3, random_state=seed_i, stratify=y ) # Группировка значений предиктора с текущим alpha df_i = self._group_single(X_train, y_train) df_i["groups"] = df_i["value"].fillna("пусто") df_i["type"] = "cat" # Обучение и применение группировки к обучающему набору WOE_i = self._fit_single(X_train, y_train, df_i) WOE_i = self._regularize_groups(WOE_i, alpha_i) # расчет оптимальной целевой для группы, формула и детали в видео # https://www.youtube.com/watch?v=g335THJxkto&list=PLLIunAIxCvT8ZYpC6-X7H0QfAQO9H0f-8&index=12&t=0s # pd = (y_local * K + Y_global * alpha) / (K + alpha) Y_global = y_train.mean() K = WOE_i["sample_count"] / WOE_i["sample_count"].sum() WOE_i["target_rate"] = ( WOE_i["target_rate"] * K + Y_global * alpha_i ) / (K + alpha_i) WOE_i["target_count"] = np.floor( WOE_i["sample_count"] * WOE_i["target_rate"] ).astype(int) X_test_WOE = self._transform_single(X_test, WOE_i) roc_auc_i = sk.metrics.roc_auc_score(y_test, X_test_WOE) # Подстановка регуляризованной доли целевой вместо каждой группы target_transformed = X_test_WOE.replace( dict(zip(WOE_i["WOE"], WOE_i["target_rate"])) ) # Запись значений logloss_i.append( sk.metrics.log_loss(y_test, target_transformed.fillna(0)) ) IV_i.append(WOE_i["IV"].sum()) GINI_i.append(abs(2 * roc_auc_i - 1)) # Запись средних значений L_logloss_mean.append([alpha_i, np.mean(logloss_i)]) GINI_IV_mean.append([alpha_i, np.mean(GINI_i), np.mean(IV_i)]) alpha_GINI_IV = pd.DataFrame(GINI_IV_mean, columns=["alpha", "GINI", "IV"]) alpha_GINI_IV.insert(0, "predictor", predictor) self.regularization_stats = self.regularization_stats.append(alpha_GINI_IV) # Индекс значения alpha с наименьшим логлоссом min_logloss_ind = np.argmin(L_logloss_mean, axis=0)[1] alpha_opt = L_logloss_mean[min_logloss_ind][0] return alpha_opt ######################## # Комплект ускоренных версий функции # ######################## # Сильно отстал от класса, но в точности повторяет функциональность Vanilla def grouping(DF_data_i, low_acc=False): """ Агрегация данных по значениям предиктора. Рассчитывает количество наблюдений, количество целевых событий, долю группы от общего числа наблюдений и долю целевых в группе Parameters --------------- DF_data_i : pandas.DataFrame Таблица данных для агрегации, должна содержать поля 'predictor' и 'target'. Поле target при этом должно состоять из 0 и 1, где 1 - целевое событие low_acc : int, default None Параметр для округления значений предиктора. Если None, то предиктор не округляется. Если целое неотрицательное число, параметр используется для определения количества знаков после запятой, остальные значения игнорируются Returns --------------- DF_grouping : pandas.DataFrame Таблица с агрегированными данными по значениям предиктора """ # Округение, если аргумент принимает допустимые значения if low_acc and type(low_acc) is int and low_acc > 0: DF_data_i = DF_data_i[["predictor", "target"]].round(low_acc) # Группировка и расчет показателей DF_grouping = ( DF_data_i.groupby("predictor")["target"].agg(["count", "sum"]).reset_index() ) DF_grouping.columns = ["predictor", "sample_count", "target_count"] DF_grouping["sample_rate"] = ( DF_grouping["sample_count"] / DF_grouping["sample_count"].sum() ) DF_grouping["target_rate"] = ( DF_grouping["target_count"] / DF_grouping["sample_count"] ) return DF_grouping def monotonic_borders(DF_grouping, p, min_sample_rate=0.05, min_count=3): """ Определение оптимальных границ групп предиктора (монотонный тренд) Parameters --------------- DF_grouping : pandas.DataFrame Агрегированные данные по значениям предиктора (результат работы фунции grouping, очищенный от категориальных значений). Должен содержать поля 'predictor', 'sample_count', 'target_count', 'sample_rate и 'target_rate' p : list-like, длиной в 2 элемента Коэффициенты линейного тренда значений предиктора min_sample_rate : float, default 0.05 Минимальный размер группы (доля от размера выборки) min_count : int, default 3 Минимальное количество наблюдений каждого класса в группе Returns --------------- R_borders : list Правые границы групп для последующей группировки """ k01, k11 = (1, 1) if p[0] > 0 else (0, -1) R_borders = [] min_ind = 0 # минимальный индекс. Начальные условия while min_ind < DF_grouping.shape[0]: # цикл по новым группам # Расчет показателей накопительным итогом DF_j = DF_grouping.loc[min_ind:] DF_iter = DF_j[["sample_rate", "sample_count", "target_count"]].cumsum() DF_iter["non_target_count"] = DF_iter["sample_count"] - DF_iter["target_count"] DF_iter["target_rate"] = DF_iter["target_count"] / DF_iter["sample_count"] # Проверка на соответствие критериям групп DF_iter["check"] = ( (DF_iter["sample_rate"] >= min_sample_rate - 10 ** -9) & (DF_iter["target_count"] >= min_count) & (DF_iter["non_target_count"] >= min_count) ) # Расчет базы для проверки оптимальности границы # В зависимости от тренда считается скользящий _вперед_ минимум или максимум # (в расчете участвуют все наблюдения от текущего до последнего) if k11 == 1: DF_iter["pd_gr"] = ( DF_iter["target_rate"][::-1] .rolling(len(DF_iter), min_periods=0) .min()[::-1] ) else: DF_iter["pd_gr"] = ( DF_iter["target_rate"][::-1] .rolling(len(DF_iter), min_periods=0) .max()[::-1] ) # Проверка оптимальности границы DF_iter["opt"] = DF_iter["target_rate"] == DF_iter["pd_gr"] DF_iter = pd.concat([DF_j[["predictor"]], DF_iter], axis=1) try: min_ind = DF_iter.loc[ (DF_iter["check"]) & (DF_iter["opt"]), "target_rate" ].index.values[0] score_j = DF_iter.loc[min_ind, "predictor"] if ( len(R_borders) > 0 and score_j == R_borders[-1] ): # Выход из цикла, если нет оптимальных границ break except Exception: break min_ind += 1 R_borders.append(score_j) # Проверка последней добавленной группы DF_iter = DF_grouping.loc[DF_grouping["predictor"] > R_borders[-1]] sample_rate_i = DF_iter["sample_rate"].sum() # доля выборки sample_count_i = DF_iter["sample_count"].sum() # количество наблюдений target_count_i = DF_iter["target_count"].sum() # количество целевых non_target_count_i = sample_count_i - target_count_i # количество нецелевых if ( (sample_rate_i < min_sample_rate) or (target_count_i < min_count) or (non_target_count_i < min_count) ): R_borders.remove(R_borders[-1]) # удаление последней границы return R_borders # Статистика def statistic(DF_groups): """ Расчет статистики по группам предиктора: минимальное, максимальное значение, доля от общего объема выборки, количество и доля целевых и нецелевых событий в каждой группе А также расчет WOE и IV каждой группы Parameters --------------- DF_groups : pandas.DataFrame Данные полученных групп предиктора. Кол-во строк совпадает с кол-вом уникальных значений предиктора. Должен содержать столбцы: 'sample_count', 'target_count', 'groups' Returns --------------- DF_statistic : pandas.DataFrame Агрегированные данные по каждой группе """ nothing = 10 ** -6 DF_statistic = ( DF_groups[["sample_count", "target_count", "groups"]] .groupby("groups", as_index=False, sort=False) .sum() ) DF_statistic_min = ( DF_groups[["predictor", "groups"]] .groupby("groups", as_index=False, sort=False) .min() ) DF_statistic_max = ( DF_groups[["predictor", "groups"]] .groupby("groups", as_index=False, sort=False) .max() ) DF_statistic["min"] = DF_statistic_min["predictor"] DF_statistic["max"] = DF_statistic_max["predictor"] DF_statistic["sample_rate"] = ( DF_statistic["sample_count"] / DF_statistic["sample_count"].sum() ) DF_statistic["target_rate"] = ( DF_statistic["target_count"] / DF_statistic["sample_count"] ) # Расчет WoE и IV samples_num = DF_statistic["sample_count"].sum() events = DF_statistic["target_count"].sum() non_events = samples_num - events DF_statistic["non_events_i"] = ( DF_statistic["sample_count"] - DF_statistic["target_count"] ) DF_statistic["event_rate_i"] = DF_statistic["target_count"] / (events + nothing) DF_statistic["non_event_rate_i"] = DF_statistic["non_events_i"] / ( non_events + nothing ) DF_statistic["WOE"] = np.log( DF_statistic["non_event_rate_i"] / (DF_statistic["event_rate_i"] + nothing) + nothing ) DF_statistic["IV"] = DF_statistic["WOE"] * ( DF_statistic["non_event_rate_i"] - DF_statistic["event_rate_i"] ) DF_statistic = DF_statistic.merge( DF_groups[["type", "groups"]].drop_duplicates(), how="left", on="groups" ) return DF_statistic # Графики def group_plot(DF_result): """ Построение графика по группировке предиктора Parameters --------------- DF_result : pandas.DataFrame Статистика по каждой группе (результат работы функции statistic): минимальное, максимальное значение, доля от общего объема выборки, количество и доля целевых и нецелевых событий в каждой группе, WOE и IV каждой группы Должен содержать столбцы: 'sample_rate', 'target_rate', 'WOE' Returns --------------- None Не возвращает ничего """ # Расчеты sample_rate, target_rate, WOE = ["sample_rate", "target_rate", "WOE"] x2 = [DF_result[sample_rate][:i].sum() for i in range(DF_result.shape[0])] + [ 1 ] # доля выборки с накоплением x = [np.mean(x2[i : i + 2]) for i in range(len(x2) - 1)] # средняя точка в группах # Выделение нужной информации для компактности woe = list(DF_result[WOE]) height = list(DF_result[target_rate]) # проблемность в группе width = list(DF_result[sample_rate]) # доля выборки на группу # Визуализация fig, ax_pd = plt.subplots(figsize=(8, 5)) # Столбчатая диаграмма доли целевых в группах ax_pd.bar( x=x, height=height, width=width, color=[0, 122 / 255, 123 / 255], label="Группировка", alpha=0.7, ) # График значений WOE по группам ax_woe = ax_pd.twinx() # дубликат осей координат ax_woe.plot( x, woe, lw=2, color=[37 / 255, 40 / 255, 43 / 255], label="woe", marker="o" ) # Линия нулевого значения WOE ax_woe.plot( [0, 1], [0, 0], lw=1, color=[37 / 255, 40 / 255, 43 / 255], linestyle="--" ) # Настройка осей координат plt.xlim([0, 1]) plt.xticks(x2, [round(i, 2) for i in x2], fontsize=12) ax_pd.grid(True) ax_pd.set_xlabel("Доля выборки", fontsize=16) ax_pd.set_ylabel("pd", fontsize=16) ax_woe.set_ylabel("woe", fontsize=16) # Расчет границ графика и шага сетки max_woe = max([int(abs(i)) + 1 for i in woe]) max_pd = max([int(i * 10) + 1 for i in height]) / 10 # Границы и сетка для столбчатой диаграммы ax_pd.set_ylim([0, max_pd]) ax_pd.set_yticks([round(i, 2) for i in np.linspace(0, max_pd, 11)]) ax_pd.legend(loc=[0.2, -0.25], fontsize=14) # Границы и сетка для графика WOE ax_woe.set_ylim([-max_woe, max_woe]) ax_woe.set_yticks([round(i, 2) for i in np.linspace(-max_woe, max_woe, 11)]) ax_woe.legend(loc=[0.6, -0.25], fontsize=14) plt.title("Группировка предиктора", fontsize=18) # Для категориальных n_cat = DF_result.loc[DF_result["type"] == "cat"].shape[0] if n_cat > 0: ax_pd.bar( x=x[-n_cat:], height=height[-n_cat:], width=width[-n_cat:], color="m", label="Категориальные", ) ax_pd.legend(loc=[0.15, -0.33], fontsize=14) plt.show() # ## Трансформер def woe_transformer( x, y, cat_values=[], min_sample_rate=0.05, min_count=3, errors="skip", low_accuracy=None, plot=True, verbose=True, ): """ Группировка значений предиктора, определение оптимальных границ и расчет WOE и IV Parameters --------------- x : pandas.Series Mассив числовых значений предиктора. Не должен содержать пропущенных значений, но может сочетать строковые и числовые y : pandas.Series Mассив меток класса (0, 1) cat_values: list Категориальные значения (пустышки и несравнимые значения). Элементы списка должны быть строками min_sample_rate : float, default 0.05 Минимальный размер группы (доля от размера выборки) min_count : int, default 3 Минимальное количество наблюдений каждого класса в группе errors : str, defaulf 'skip' Способ обработки ошибок: 'skip' - не возвращать ничего в случае ошибки 'origin' - вернуть исходные значения предиктора 'raise' - бросить исключение low_accuracy : int, default None Режим пониженной точности (округление при группировке) Если None, то предиктор не округляется. Если целое неотрицательное число, параметр используется для определения количества знаков после запятой, остальные значения игнорируются plot : bool, default True Включение/выключение визуализации группировки verbose : bool, default True Включение.выключение доп. информации по группировке Returns --------------- DF_result : pandas.DataFrame Таблица с итоговой группировкой и статистикой """ if errors not in ["skip", "raise"]: warnings.warn( f"Attribute `errors` must be one of ['skip', 'raise']. Passed {errors}.\n\ Defaulting to 'skip'" ) errors = "skip" # Обработка входных данных DF_data_i = pd.DataFrame({"predictor": x, "target": y}) # Агрегация данных по значениям предиктора DF_data_gr = grouping(DF_data_i, low_accuracy) # Проверка категориальных групп (возможные дополнительные категории) if verbose: # Выделение значений предиктора с достаточным кол-вом наблюдений и # не отмеченных, как категориальные DF_i1 = DF_data_gr.loc[DF_data_gr["sample_rate"] > min_sample_rate].loc[ ~DF_data_gr["predictor"].isin(cat_values) ] # Выделение всех значений предиктора, не отмеченных, как категориальные DF_i2 = DF_data_gr.loc[~DF_data_gr["predictor"].isin(cat_values)] # Выбор значений: которые не равны бесконености и при этом не являются числами L = ~(DF_i2["predictor"] == np.inf) & ( pd.to_numeric(DF_i2["predictor"], errors="coerce").isna() ) DF_i2 = DF_i2.loc[L] # Объединение найденных значений в одну таблицу DF_i = DF_i1.append(DF_i2, ignore_index=True).drop_duplicates() if DF_i.shape[0] > 0: print("Возможно эти значения предиктора тоже являются категориальными:") display(DF_i) # Выделение числовых значений предиктора DF_data_gr_num = DF_data_gr.loc[ ~DF_data_gr["predictor"].isin(cat_values) ].reset_index(drop=True) if DF_data_gr_num.shape[0] > 0: try: DF_data_gr_num["predictor"] = DF_data_gr_num["predictor"].astype("float") # Определение тренда по числовым значениям DF_i = DF_data_i.loc[~DF_data_i["predictor"].isin(cat_values)] p = np.polyfit(DF_i["predictor"].astype("float"), DF_i["target"], deg=1) # Определение оптимальных границ групп R_borders = monotonic_borders(DF_data_gr_num, p, min_sample_rate, min_count) except Exception: if errors == "raise": raise ValueError("Ошибка при расчете монотонных границ") else: print("Ошибка при расчете монотонных границ") try: # Применение границ DF_data_gr_num["groups"] = pd.cut( DF_data_gr_num["predictor"], [-np.inf] + R_borders + [np.inf] ) DF_data_gr_num["type"] = "num" except Exception: if errors == "raise": raise ValueError("Ошибка при применении монотонных границ") else: print("Ошибка при применении монотонных границ") # Добавление данных по категориальным значениям DF_data_gr_2k = DF_data_gr.loc[ DF_data_gr["predictor"].isin(cat_values) ].reset_index(drop=True) DF_data_gr_2k["groups"] = DF_data_gr_2k["predictor"].copy() DF_data_gr_2k["type"] = "cat" try: # Расчет статистики, WoE и IV по группам числовых значений if DF_data_gr_num.shape[0] > 0: DF_result = statistic( DF_data_gr_num.append(DF_data_gr_2k, ignore_index=True) ) else: DF_result = statistic(DF_data_gr_2k) except Exception: print("Ошибка при расчете статистики") # Проверка категориальных групп (категории, которые не удовлетворяют заданным ограничениям) if verbose: DF_j = DF_result.loc[ (DF_result["sample_rate"] < min_sample_rate) | (DF_result["target_count"] < min_count) | (DF_result["sample_count"] - DF_result["target_count"] < min_count) ] if DF_j.shape[0] > 0: print("Эти группы не удовлетворяют заданным ограничениям:") display(DF_j) # Построение графика if plot: group_plot(DF_result) return DF_result def woe_apply(S_data, DF_groups): """ Применение группировки и WoE-преобразования Parameters--------------- S_data : pandas.Series Значения предиктора DF_groups : pandas.DataFrame Данные о группировке предиктора Returns --------------- X_woe : pandas.DataFrame WoE-преобразования значений предиктора WoE = 0, если группа не встречалась в обучающей выборке """ X_woe = S_data.copy() # Маппинги для замены групп на соответствующие значения WOE num_map = { DF_groups.loc[i, "groups"]: DF_groups.loc[i, "WOE"] for i in DF_groups.index if DF_groups.loc[i, "type"] == "num" } cat_map = { DF_groups.loc[i, "groups"]: DF_groups.loc[i, "WOE"] for i in DF_groups.index if DF_groups.loc[i, "type"] == "cat" } # Категориальные группы cat_bounds = DF_groups.loc[DF_groups["type"] == "cat", "groups"] # predict по числовым значениям DF_num = DF_groups.loc[DF_groups["type"] == "num"] if DF_num.shape[0] > 0: # Границы (правые) интервалов для разбивки числовых переменных num_bounds = [-np.inf] + list(
pd.IntervalIndex(DF_groups.loc[DF_groups["type"] == "num", "groups"])
pandas.IntervalIndex
#!/usr/bin/env python # coding: utf-8 # # The Claremont Colleges' Semester Start Timeline vs Los Angeles County COVID-19 Trends # # ## Semester Start Dates # * **Fall 2020** - 24 August 2020 # * **Spring 2021** - 25 January 2021 # # <!--## Last Update # Tuesday, 3 November 2020 --> # # ## Data Sources # * California Department of Public Health # * [COVID-19 Cases](https://data.ca.gov/dataset/covid-19-cases/resource/926fd08f-cc91-4828-af38-bd45de97f8c3?filters=county%3ALos+Angeles) # * [COVID-19 Hospital Data](https://data.ca.gov/dataset/covid-19-hospital-data/resource/42d33765-20fd-44b8-a978-b083b7542225?filters=county%3ALos+Angeles) # In[ ]: import locale import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter import numpy as np import pandas as pd import requests import seaborn as sns locale.setlocale(locale.LC_ALL, 'en_US.UTF-8') plt.rcParams.update({'figure.autolayout': True}) sns.set() CA_CASES_URL = 'https://data.ca.gov/dataset/590188d5-8545-4c93-a9a0-e230f0db7290/resource/926fd08f-cc91-4828-af38-bd45de97f8c3/download/statewide_cases.csv' CA_CASES_CSV = 'ca_cases.csv' CA_HOSPITALIZED_URL = 'https://data.ca.gov/dataset/529ac907-6ba1-4cb7-9aae-8966fc96aeef/resource/42d33765-20fd-44b8-a978-b083b7542225/download/hospitals_by_county.csv' CA_HOSPITALIZED_CSV = 'ca_hospitalized.csv' COUNTY = 'county' DATE = 'date' NEW_CASES = 'newcountconfirmed' LOS_ANGELES = 'Los Angeles' NEW_CASES_AVG = 'New Cases, 14 day average' HOSPITALIZED_CONFIRMED_AVG = 'Hospitalized - Confrimed, 3 day average' HOSPITALIZED_ALL_AVG = 'Hospitalized - Confirmed and Suspected, 3 day average' SEMESTER = 'Semester' DAYS_UNTIL_SEMESTER = 'Days Until Semester Start' CASE_ROLLING_WINDOW = 14 NEW_CASES_AVG = 'New Cases, {} day average'.format(CASE_ROLLING_WINDOW) FALL_2020 = 'Fall 2020' FALL_2020_START = pd.Timestamp('2020-08-24') FALL_2020_COLOR = sns.color_palette()[0] SPRING_2021 = 'Spring 2021' SPRING_2021_START = pd.Timestamp('2021-01-25') SPRING_2021_COLOR = sns.color_palette()[1] X_AXIS_LABEL = 'Date (Fall 2020 timeline, Spring 2021 timeline)' def fetch_ca_dataset(url, output_csv): r = requests.get(url) if r.status_code == 200: with open(output_csv, 'w') as f: f.write(r.text) else: raise ConnectionError('HTTP code not 200') def days_until_start(row: pd.Series) -> int: if row[SEMESTER] == FALL_2020: return (FALL_2020_START - row[DATE]).days elif row[SEMESTER] == SPRING_2021: return (SPRING_2021_START - row[DATE]).days def date_axis_text(x, pos): td = pd.Timedelta(x, 'days') fall_equiv, spring_equiv = [ (semester-td).strftime('%b %d') for semester in (FALL_2020_START, SPRING_2021_START)] return ('{}\n{}'.format(fall_equiv, spring_equiv)) def chart_upper_bound(dep_var_series, tick_step, buffer): ticks_needed = (dep_var_series.max() + tick_step) // tick_step return int(tick_step * ticks_needed + buffer) def chart_lower_bound(upper_bound, ratio, top_value): return (ratio * upper_bound - top_value) / (ratio - 1) # In[ ]: fetch_ca_dataset(CA_CASES_URL, CA_CASES_CSV) fetch_ca_dataset(CA_HOSPITALIZED_URL, CA_HOSPITALIZED_CSV) # In[ ]: df_cases = pd.read_csv(CA_CASES_CSV) la_cases = df_cases.loc[ df_cases[COUNTY]==LOS_ANGELES ].drop(columns=COUNTY).reset_index(drop=True).copy() la_cases[DATE] = pd.to_datetime(la_cases[DATE]) # Forward fill new cases for negative new cases day. la_cases.loc[198, NEW_CASES] = pd.NA la_cases[NEW_CASES].ffill(inplace=True) la_cases[NEW_CASES_AVG] = la_cases.loc[:, NEW_CASES].rolling(CASE_ROLLING_WINDOW).mean() df_hospitalized = pd.read_csv(CA_HOSPITALIZED_CSV).rename(columns={'todays_date': DATE}) la_hospitalized = df_hospitalized.loc[ df_hospitalized[COUNTY]==LOS_ANGELES].drop(columns=COUNTY).reset_index(drop=True) la_hospitalized.loc[:, DATE] = pd.to_datetime(la_hospitalized.loc[:, DATE]) daily_average = ( ('hospitalized_covid_confirmed_patients', HOSPITALIZED_CONFIRMED_AVG), ('hospitalized_covid_patients', HOSPITALIZED_ALL_AVG), ) for col_day, col_avg in daily_average: la_hospitalized[col_avg] = la_hospitalized[col_day].rolling(3).mean().round(1) df_la = pd.merge(la_cases, la_hospitalized, on=DATE).reset_index(drop=True) df_la[SEMESTER] = df_la.loc[:, DATE].apply( lambda x: FALL_2020 if x <= FALL_2020_START else SPRING_2021) df_la[DAYS_UNTIL_SEMESTER] = df_la.apply(days_until_start, 'columns') df_la = df_la.loc[:, (DATE, SEMESTER, DAYS_UNTIL_SEMESTER, NEW_CASES_AVG, HOSPITALIZED_CONFIRMED_AVG, HOSPITALIZED_ALL_AVG)] # In[ ]: fig, ax = plt.subplots(figsize=(8, 5.5), dpi=300) rate_multiplier = (10_257_557 / 1e5) / 0.500 substantial_rate, moderate_rate = [rate_multiplier * x for x in (7, 4)] widespread_color = '#802f67' substantial_color = '#c43d53' moderate_color = '#d97641' widespread_message = 'Closed for in-person lectures' substantial_message, moderate_message = [ 'Lecture capacity limited to {}%'.format(x) for x in (25, 50)] vertical_pad = 100 horizontal_pad = 5 alpha = 0.75 ax.text(horizontal_pad, substantial_rate+vertical_pad, widespread_message, ha='right', color=widespread_color, alpha=alpha) ax.axhline(substantial_rate, color=substantial_color, linestyle='dashed', alpha=alpha) ax.text(horizontal_pad, substantial_rate-vertical_pad, substantial_message, ha='right', va='top', color=substantial_color, alpha=alpha) # ax.axhline(moderate_rate, color=moderate_color, linestyle='dashed', alpha=alpha) # ax.text(horizontal_pad, moderate_rate-vertical_pad, moderate_message, # ha='right', va='top', color=moderate_color, alpha=alpha) ax.set_title('Los Angeles County COVID-19 Transmission before TCC Semester') sns.lineplot(x=DAYS_UNTIL_SEMESTER, y=NEW_CASES_AVG, hue=SEMESTER, data=df_la, ax=ax) tick_step = 1500 y_max = chart_upper_bound(df_la[NEW_CASES_AVG], tick_step, 200) ax.set_yticks(list(range(0, y_max, tick_step))) ax.set_yticklabels([f'{int(x):n}' if x%3_000==0 else '' for x in ax.get_yticks()]) ax.set_xlabel(X_AXIS_LABEL) ax.set_ylabel(NEW_CASES_AVG) ax.set_xlim(120, 0) ax.xaxis.set_major_formatter(FuncFormatter(date_axis_text)) # ax.set_ylim(moderate_rate-vertical_pad-250, df_la[NEW_CASES_AVG].max()+100) ax.set_ylim(0, y_max) ax.legend(loc='upper left', title=SEMESTER) fig.savefig('docs/semester-start-v-new-cases.png') fig.show() # In[ ]: fig, ax = plt.subplots(figsize=(8, 5), dpi=300) ax.plot(DAYS_UNTIL_SEMESTER, HOSPITALIZED_ALL_AVG, 'b--', label='Fall 2020, Confirmed & Suspected', data=df_la[df_la[SEMESTER] == FALL_2020]) ax.plot(DAYS_UNTIL_SEMESTER, HOSPITALIZED_CONFIRMED_AVG, 'b-', label='Fall 2020, Confirmed', data=df_la[df_la[SEMESTER] == FALL_2020]) ax.plot(DAYS_UNTIL_SEMESTER, HOSPITALIZED_ALL_AVG, '--', color=sns.color_palette()[1], label='Spring 2021, Confirmed & Suspected', data=df_la[df_la[SEMESTER] == SPRING_2021]) ax.plot(DAYS_UNTIL_SEMESTER, HOSPITALIZED_CONFIRMED_AVG, color=sns.color_palette()[1], label='Spring 2021, Confirmed', data=df_la[df_la[SEMESTER] == SPRING_2021]) tick_step = 1000 y_max = chart_upper_bound(df_la[HOSPITALIZED_ALL_AVG], tick_step, 200) ax.set_yticks(list(range(0, y_max, tick_step))) ax.set_yticklabels([f'{int(x):n}' if x%2_000==0 else '' for x in ax.get_yticks()]) ax.set_xlabel(X_AXIS_LABEL) ax.xaxis.set_major_formatter(FuncFormatter(date_axis_text)) ax.set_ylabel('Hospitalized, 3 day avgerage') ax.set_title('Los Angeles County COVID-19 Hospital Patients before TCC Semester') ax.set_xlim(120, 0) legend_top = 600 # ax.axhline(legend_top, color='k') ax.set_ylim(chart_lower_bound(y_max, .2, legend_top), y_max) ax.legend(title='Semester, Patient COVID-19 Diagnosis', loc='lower right', ncol=2, fontsize='small', title_fontsize='small') fig.savefig('docs/semester-start-v-hospitalized.png') fig.show() # In[ ]: LACDPH_CSV = 'lacdph.csv' r = requests.get('https://github.com/amhirsch/lac_covid19/raw/master/docs/time-series/aggregate-ts.csv') if r.status_code == 200: with open(LACDPH_CSV, 'w') as f: f.write(r.text) else: raise ConnectionError('LACDPH Time Series Unavailable') # In[ ]: df_lacdph = pd.read_csv(LACDPH_CSV) df_lacdph[DATE] =
pd.to_datetime(df_lacdph['Date'])
pandas.to_datetime
import warnings import pandas as pd from transformers import (AutoModelForMaskedLM, AutoTokenizer, LineByLineTextDataset, DataCollatorForLanguageModeling, Trainer, TrainingArguments) warnings.filterwarnings('ignore') def get_task_data(data_path): with codecs.open(data_path, mode='r', encoding='utf8') as f: reader = f.readlines(f) data_list = [] for dialogue_ in reader: dialogue_content = [] dialogue_ = json.loads(dialogue_) _dialog_id = dialogue_['dialog_id'] for content_idx_, contents_ in enumerate(dialogue_['dialog_info']): dialogue_content.append(contents_['sender'] + ':' + contents_['text']) data_list.append(';'.join(dialogue_content)) return
pd.DataFrame(data_list, columns=['text'])
pandas.DataFrame
# -*- coding: utf-8 -*- """Road-Friction-Forecasting.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1W15eOQbeHp9wbJWRaE0f7ZfYv_jAj14O # Authors: **<NAME>** * LinkedIn: https://www.linkedin.com/in/md-abrar-jahin-9a026018b * Facebook: https://www.facebook.com/ * Github: https://github.com/Abrar2652 * email: <EMAIL> **<NAME>** * Website: https://krutsylo.neocities.org * email: <EMAIL> # Import Libraries and Packages After importing libraries and packages, we start off by defining a function `transform_to_supervised` that creates desired **lag** *(24 hours in this case)* and **forecasting** features *(1 hour)* of our independent variables concatening with the dataframe and returns the final dataframe. """ import os import optuna import pickle import pandas as pd from optuna import Trial from optuna.samplers import TPESampler from sklearn.impute import KNNImputer from sklearn.model_selection import StratifiedKFold, cross_val_score from xgboost import XGBClassifier, XGBRegressor from matplotlib import pyplot as plt from sklearn.metrics import mean_absolute_error, accuracy_score, balanced_accuracy_score import numpy as np def transform_to_supervised(df, previous_steps=1, forecast_steps=1, dropnan=False): """ https://gist.github.com/monocongo/6e0df19c9dd845f3f465a9a6ccfcef37 Transforms a DataFrame containing time series data into a DataFrame containing data suitable for use as a supervised learning problem. Derived from code originally found at https://machinelearningmastery.com/convert-time-series-supervised-learning-problem-python/ :param df: pandas DataFrame object containing columns of time series values :param previous_steps: the number of previous steps that will be included in the output DataFrame corresponding to each input column :param forecast_steps: the number of forecast steps that will be included in the output DataFrame corresponding to each input column :return Pandas DataFrame containing original columns, renamed <orig_name>(t), as well as columns for previous steps, <orig_name>(t-1) ... <orig_name>(t-n) and columns for forecast steps, <orig_name>(t+1) ... <orig_name>(t+n) """ # original column names col_names = df.columns # list of columns and corresponding names we'll build from # the originals found in the input DataFrame cols, names = list(), list() # input sequence (t-n, ... t-1) # Lag features for i in range(previous_steps, 0, -1): cols.append(df.shift(i)) names += [('%s(t-%d)' % (col_name, i)) for col_name in col_names] # forecast sequence (t, t+1, ... t+n) for i in range(0, forecast_steps): cols.append(df.shift(-i)) if i == 0: names += [('%s(t)' % col_name) for col_name in col_names] else: names += [('%s(t+%d)' % (col_name, i)) for col_name in col_names] # put all the columns together into a single aggregated DataFrame agg = pd.concat(cols, axis=1) agg.columns = names # drop rows with NaN values if dropnan: agg.dropna(inplace=True) return agg """# Data Collection and Import data The dataset has been collected from the **Smart Road - Winter Road Maintenance Challenge 2021** organized by *UiT The Arctic University of Norway* on Devpost. Dataset download link: https://uitno.app.box.com/s/bch09z27weq0wpcv8dbbc18sxz6cycjt After downloading the `smart_road_measurements.csv` file from the competition page, wehad added extra columns collecting data from the external resources authorized the organizers. The links of the external datasets are: [1] Weather data https://pypi.org/project/wwo-hist/ [2] UV Index data https://pyowm.readthedocs.io/en/latest/v3/uv-api-usage-examples.html After merging these 3 files together based on the same dates, we finalized our main dataset `smart_road_measurements_new_d_weather.csv` on top of which we will build our model after preprocessing. """ df = pd.read_csv("/content/smart_road_measurements_new_d_weather.csv", header=0) df2 = df.copy() df.head(15) """# Exploratory Data Analysis Our dataset contains 349613 rows and 29 columns """ df.shape df.info() import numpy as np np.random.seed(0) import seaborn as sns sns.set_theme() _ = sns.heatmap(df2.iloc[:,2:11].corr()) _ = sns.heatmap(df2.corr()) """We want to predict Friction of the road by weather conditions. So, this is a classification task. Every day the car drives on a new route. This means that all 11 days we receive data on new road sections. So, the only link between the road sections is the average weather conditions. This can be achieved by filtering the rows on **Microsoft Excel** for each date and get the total distance covered (the last row on each date because the column is cumulative in nature) **Max Distance traveled, Date** 42441, 16/02/2021 92311, 17/02/2021 150216, 18/02/2021 39007, 19/02/2021 71358, 22/02/2021 81999, 23/02/2021 55958, 24/02/2021 77315, 25/02/2021 55647, 26/02/2021 61534, 1/03/2021 12409, 2/03/2021 **Therefore, we can see from the above data that for all 11 days the car was driving at different routes** * We drop the `Distance` because the condition of the road does not depend on how much the car has traveled before. We use this column to get the speed and slope of the road. * This means that we are using normalized data + lag (time-series classification with engineered features instead of time-series classification with deep learning, because we have shallow data). We won't focus on any complicated models, just XGBClassifier to win. * Now we need to define at what Friction the road is dangerous (label 0), requires caution (label-1) and safe (label-2). Ta, Tsurf, friction are **highly correlated** which has been shown in our pandas profiling https://krutsylo.neocities.org/SmartRoads/pandas3.html of the smart road dataset. Yet we'll drop State, Height, Distance, Ta, Tsurf, Water, moon-illumination, uvIndex columns """ df = df.drop("Height", axis=1) # contain N/A df = df.drop("Distance", axis=1) df = df.drop("State", axis=1) df = df.drop("Ta", axis=1) df = df.drop("Tsurf", axis=1) df = df.drop("Water", axis=1) df = df.drop("moon_illumination", axis=1) df = df.drop("uvIndex", axis=1) df.head() """ We have grouped the data by calculating the mean of the rows in each hour based on the individual dates. For instance, if there are 8 rows for each hour, we calculated the mean of 8 rows and thus converted into a single row belonging to the distinct dates. We also avoided duplicates to reduce the noise in the data. """ df['Time(+01:00)'] =
pd.to_datetime(df['Time(+01:00)'], format='%H:%M:%S')
pandas.to_datetime
import pandas as pd import copy import numpy as np import re from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.base import BaseEstimator, TransformerMixin from sklearn.preprocessing import LabelEncoder, OneHotEncoder class CleanText(BaseEstimator, TransformerMixin): def __init__(self, feature_name): self.feature_name = feature_name self.values = None def clean_text(self, value): value_ = copy.copy(value).lower() value_ = value_.replace(" ", "") value_ = value_.replace("\n", "") value_ = value_.replace("\t", "") if self.feature_name == "InterventionLocationName": if ("at" in value) and (value_.replace("at", "@").split("@")[0] in self.values): value_ = value_.replace("at", "@") if "@" in value_: value_ = value_.split("@")[0] if "/" in value_: value_ = value_.split("/")[0] value_ = re.sub("[\W]", "", value_) value_ = self.clean_intervention_location_name(value_) return value_ elif self.feature_name == "Department Name": value_ = value_.replace("@", "at") value_ = re.sub("[\W]", "", value_) value_ = self.clean_department_name(value_) return value_ else: value_ = re.sub("[\W]", "", value_) return value_ def clean_intervention_location_name(self, value): value_ = copy.copy(value) if value_ in ["", "none", "na", "nan"]: return None elif "unknown" in value_: return None elif value_ in ["othertown", "ve", "venue", "yourcity", "st", "street", "dr", "drive", "ville"]: return "others" elif value_[-6:] == "street": return value_[:-6] elif value_[-2:] == "st": return value_[:-2] elif value_[-5:] == "drive": return value_[:-5] elif value_[-2:] == "dr": return value_[:-2] elif value_[-5:] == "ville": return value_[:-5] elif value_[-5:] == "venue": return value_[:-5] elif value_[-2:] == "ve": return value_[:-2] else: return value_ def clean_department_name(self, value): value_ = copy.copy(value) if "police" in value_: return value_.replace("police", "") else: return value_ def split_text(self, value): value_ = copy.copy(value) value_ = value_.lower().replace(" ", "") if "@" in value_: value_ = value_.split("@")[0] if "/" in value_: value_ = value_.split("/")[0] return value_ def fit(self, X, y=None): X_ = copy.copy(X) self.values = X_[self.feature_name].astype("str").apply(self.split_text).unique() return self def transform(self, X): X_ = copy.copy(X) X_[self.feature_name] = X_[self.feature_name].astype("str") X_[self.feature_name] = X_[self.feature_name].apply(lambda x: self.clean_text(x)) return X_ class SetOthers(BaseEstimator, TransformerMixin): def __init__(self, feature_name, threshold): self.feature_name = feature_name self.threshold = threshold self.values = None def get_values(self, X): number_ocurrencies = X[self.feature_name].value_counts() values = number_ocurrencies[number_ocurrencies > self.threshold].index return values def clean_value(self, value): if value in self.values: return value else: return "other" def fit(self, X, y=None): self.values = self.get_values(X) return self def transform(self, X): X_ = copy.copy(X) X_[self.feature_name] = X_[self.feature_name].astype("str") X_[self.feature_name] = X_[self.feature_name].apply(lambda x: self.clean_value(x)) return X_ class TimeFeatures(BaseEstimator, TransformerMixin): def __init__(self, feature_name, time_format="%m/%d/%Y %H:%M:%S", month=True, weekday=True, hour=True): self.feature_name = feature_name self.time_format = time_format if month == True: self.month = True else: self.month = False if weekday == True: self.weekday = True else: self.weekday = False if hour == True: self.hour = True else: self.hour = False def clean_timestamp(self, value): if value[-2:] == "AM" and value[11:13] == "12": return value[:11] + "00" + value[13:-3] # remove the AM elif value[-2:] == "AM": return value[:-3] # Checking if last two elements of time # is PM and first two elements are 12 elif value[-2:] == "PM" and value[11:13] == "12": return value[:-3] else: # add 12 to hours and remove PM return value[:11] + str(int(value[11:13]) + 12) + value[13:-3] def create_features(self, X): X_ = copy.copy(X) if self.weekday == True: X_["weekday"] = X_[self.feature_name].dt.weekday if self.hour == True: X_["hour"] = X_[self.feature_name].dt.hour if self.month == True: X_["month"] = X_[self.feature_name].dt.month return X_ def create_cyclical_feature(self, X, name, period): X_ = copy.copy(X) X_['sin_' + name] = np.sin(2 * np.pi * X_[name] / period) X_['cos_' + name] = np.cos(2 * np.pi * X_[name] / period) X_ = X_.drop(columns=[name]) return X_ def fit(self, X, y=None): return self def transform(self, X): X_ = copy.copy(X) X_[self.feature_name] = X_[self.feature_name].apply(self.clean_timestamp) X_[self.feature_name] = X_[self.feature_name].apply(lambda x:
pd.to_datetime(x, format=self.time_format)
pandas.to_datetime
from __future__ import print_function from datetime import datetime, timedelta import numpy as np import pandas as pd from pandas import (Series, Index, Int64Index, Timestamp, Period, DatetimeIndex, PeriodIndex, TimedeltaIndex, Timedelta, timedelta_range, date_range, Float64Index, _np_version_under1p10) import pandas.tslib as tslib import pandas.tseries.period as period import pandas.util.testing as tm from pandas.tests.test_base import Ops class TestDatetimeIndexOps(Ops): tz = [None, 'UTC', 'Asia/Tokyo', 'US/Eastern', 'dateutil/Asia/Singapore', 'dateutil/US/Pacific'] def setUp(self): super(TestDatetimeIndexOps, self).setUp() mask = lambda x: (isinstance(x, DatetimeIndex) or isinstance(x, PeriodIndex)) self.is_valid_objs = [o for o in self.objs if mask(o)] self.not_valid_objs = [o for o in self.objs if not mask(o)] def test_ops_properties(self): self.check_ops_properties( ['year', 'month', 'day', 'hour', 'minute', 'second', 'weekofyear', 'week', 'dayofweek', 'dayofyear', 'quarter']) self.check_ops_properties(['date', 'time', 'microsecond', 'nanosecond', 'is_month_start', 'is_month_end', 'is_quarter_start', 'is_quarter_end', 'is_year_start', 'is_year_end', 'weekday_name'], lambda x: isinstance(x, DatetimeIndex)) def test_ops_properties_basic(self): # sanity check that the behavior didn't change # GH7206 for op in ['year', 'day', 'second', 'weekday']: self.assertRaises(TypeError, lambda x: getattr(self.dt_series, op)) # attribute access should still work! s = Series(dict(year=2000, month=1, day=10)) self.assertEqual(s.year, 2000) self.assertEqual(s.month, 1) self.assertEqual(s.day, 10) self.assertRaises(AttributeError, lambda: s.weekday) def test_asobject_tolist(self): idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx') expected_list = [Timestamp('2013-01-31'), Timestamp('2013-02-28'), Timestamp('2013-03-31'), Timestamp('2013-04-30')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = pd.date_range(start='2013-01-01', periods=4, freq='M', name='idx', tz='Asia/Tokyo') expected_list = [Timestamp('2013-01-31', tz='Asia/Tokyo'), Timestamp('2013-02-28', tz='Asia/Tokyo'), Timestamp('2013-03-31', tz='Asia/Tokyo'), Timestamp('2013-04-30', tz='Asia/Tokyo')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) idx = DatetimeIndex([datetime(2013, 1, 1), datetime(2013, 1, 2), pd.NaT, datetime(2013, 1, 4)], name='idx') expected_list = [Timestamp('2013-01-01'), Timestamp('2013-01-02'), pd.NaT, Timestamp('2013-01-04')] expected = pd.Index(expected_list, dtype=object, name='idx') result = idx.asobject self.assertTrue(isinstance(result, Index)) self.assertEqual(result.dtype, object) self.assert_index_equal(result, expected) self.assertEqual(result.name, expected.name) self.assertEqual(idx.tolist(), expected_list) def test_minmax(self): for tz in self.tz: # monotonic idx1 = pd.DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], tz=tz) self.assertTrue(idx1.is_monotonic) # non-monotonic idx2 = pd.DatetimeIndex(['2011-01-01', pd.NaT, '2011-01-03', '2011-01-02', pd.NaT], tz=tz) self.assertFalse(idx2.is_monotonic) for idx in [idx1, idx2]: self.assertEqual(idx.min(), Timestamp('2011-01-01', tz=tz)) self.assertEqual(idx.max(), Timestamp('2011-01-03', tz=tz)) self.assertEqual(idx.argmin(), 0) self.assertEqual(idx.argmax(), 2) for op in ['min', 'max']: # Return NaT obj = DatetimeIndex([]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) obj = DatetimeIndex([pd.NaT, pd.NaT, pd.NaT]) self.assertTrue(pd.isnull(getattr(obj, op)())) def test_numpy_minmax(self): dr = pd.date_range(start='2016-01-15', end='2016-01-20') self.assertEqual(np.min(dr), Timestamp('2016-01-15 00:00:00', freq='D')) self.assertEqual(np.max(dr), Timestamp('2016-01-20 00:00:00', freq='D')) errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.min, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.max, dr, out=0) self.assertEqual(np.argmin(dr), 0) self.assertEqual(np.argmax(dr), 5) if not _np_version_under1p10: errmsg = "the 'out' parameter is not supported" tm.assertRaisesRegexp(ValueError, errmsg, np.argmin, dr, out=0) tm.assertRaisesRegexp(ValueError, errmsg, np.argmax, dr, out=0) def test_round(self): for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=5, freq='30Min', tz=tz) elt = rng[1] expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 01:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 02:00:00', tz=tz, freq='30T'), ]) expected_elt = expected_rng[1] tm.assert_index_equal(rng.round(freq='H'), expected_rng) self.assertEqual(elt.round(freq='H'), expected_elt) msg = pd.tseries.frequencies._INVALID_FREQ_ERROR with tm.assertRaisesRegexp(ValueError, msg): rng.round(freq='foo') with tm.assertRaisesRegexp(ValueError, msg): elt.round(freq='foo') msg = "<MonthEnd> is a non-fixed frequency" tm.assertRaisesRegexp(ValueError, msg, rng.round, freq='M') tm.assertRaisesRegexp(ValueError, msg, elt.round, freq='M') def test_repeat_range(self): rng = date_range('1/1/2000', '1/1/2001') result = rng.repeat(5) self.assertIsNone(result.freq) self.assertEqual(len(result), 5 * len(rng)) for tz in self.tz: index = pd.date_range('2001-01-01', periods=2, freq='D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-02', '2001-01-02'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.date_range('2001-01-01', periods=2, freq='2D', tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-03', '2001-01-03'], tz=tz) for res in [index.repeat(2), np.repeat(index, 2)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) index = pd.DatetimeIndex(['2001-01-01', 'NaT', '2003-01-01'], tz=tz) exp = pd.DatetimeIndex(['2001-01-01', '2001-01-01', '2001-01-01', 'NaT', 'NaT', 'NaT', '2003-01-01', '2003-01-01', '2003-01-01'], tz=tz) for res in [index.repeat(3), np.repeat(index, 3)]: tm.assert_index_equal(res, exp) self.assertIsNone(res.freq) def test_repeat(self): reps = 2 msg = "the 'axis' parameter is not supported" for tz in self.tz: rng = pd.date_range(start='2016-01-01', periods=2, freq='30Min', tz=tz) expected_rng = DatetimeIndex([ Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:00:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), Timestamp('2016-01-01 00:30:00', tz=tz, freq='30T'), ]) res = rng.repeat(reps) tm.assert_index_equal(res, expected_rng) self.assertIsNone(res.freq) tm.assert_index_equal(np.repeat(rng, reps), expected_rng) tm.assertRaisesRegexp(ValueError, msg, np.repeat, rng, reps, axis=1) def test_representation(self): idx = [] idx.append(DatetimeIndex([], freq='D')) idx.append(DatetimeIndex(['2011-01-01'], freq='D')) idx.append(DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00' ], freq='H', tz='Asia/Tokyo')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern')) idx.append(DatetimeIndex( ['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='UTC')) exp = [] exp.append("""DatetimeIndex([], dtype='datetime64[ns]', freq='D')""") exp.append("DatetimeIndex(['2011-01-01'], dtype='datetime64[ns]', " "freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], " "dtype='datetime64[ns]', freq='D')") exp.append("DatetimeIndex(['2011-01-01 09:00:00+09:00', " "'2011-01-01 10:00:00+09:00', '2011-01-01 11:00:00+09:00']" ", dtype='datetime64[ns, Asia/Tokyo]', freq='H')") exp.append("DatetimeIndex(['2011-01-01 09:00:00-05:00', " "'2011-01-01 10:00:00-05:00', 'NaT'], " "dtype='datetime64[ns, US/Eastern]', freq=None)") exp.append("DatetimeIndex(['2011-01-01 09:00:00+00:00', " "'2011-01-01 10:00:00+00:00', 'NaT'], " "dtype='datetime64[ns, UTC]', freq=None)""") with pd.option_context('display.width', 300): for indx, expected in zip(idx, exp): for func in ['__repr__', '__unicode__', '__str__']: result = getattr(indx, func)() self.assertEqual(result, expected) def test_representation_to_series(self): idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') idx7 = DatetimeIndex(['2011-01-01 09:00', '2011-01-02 10:15']) exp1 = """Series([], dtype: datetime64[ns])""" exp2 = """0 2011-01-01 dtype: datetime64[ns]""" exp3 = """0 2011-01-01 1 2011-01-02 dtype: datetime64[ns]""" exp4 = """0 2011-01-01 1 2011-01-02 2 2011-01-03 dtype: datetime64[ns]""" exp5 = """0 2011-01-01 09:00:00+09:00 1 2011-01-01 10:00:00+09:00 2 2011-01-01 11:00:00+09:00 dtype: datetime64[ns, Asia/Tokyo]""" exp6 = """0 2011-01-01 09:00:00-05:00 1 2011-01-01 10:00:00-05:00 2 NaT dtype: datetime64[ns, US/Eastern]""" exp7 = """0 2011-01-01 09:00:00 1 2011-01-02 10:15:00 dtype: datetime64[ns]""" with pd.option_context('display.width', 300): for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6, idx7], [exp1, exp2, exp3, exp4, exp5, exp6, exp7]): result = repr(Series(idx)) self.assertEqual(result, expected) def test_summary(self): # GH9116 idx1 = DatetimeIndex([], freq='D') idx2 = DatetimeIndex(['2011-01-01'], freq='D') idx3 = DatetimeIndex(['2011-01-01', '2011-01-02'], freq='D') idx4 = DatetimeIndex( ['2011-01-01', '2011-01-02', '2011-01-03'], freq='D') idx5 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', '2011-01-01 11:00'], freq='H', tz='Asia/Tokyo') idx6 = DatetimeIndex(['2011-01-01 09:00', '2011-01-01 10:00', pd.NaT], tz='US/Eastern') exp1 = """DatetimeIndex: 0 entries Freq: D""" exp2 = """DatetimeIndex: 1 entries, 2011-01-01 to 2011-01-01 Freq: D""" exp3 = """DatetimeIndex: 2 entries, 2011-01-01 to 2011-01-02 Freq: D""" exp4 = """DatetimeIndex: 3 entries, 2011-01-01 to 2011-01-03 Freq: D""" exp5 = ("DatetimeIndex: 3 entries, 2011-01-01 09:00:00+09:00 " "to 2011-01-01 11:00:00+09:00\n" "Freq: H") exp6 = """DatetimeIndex: 3 entries, 2011-01-01 09:00:00-05:00 to NaT""" for idx, expected in zip([idx1, idx2, idx3, idx4, idx5, idx6], [exp1, exp2, exp3, exp4, exp5, exp6]): result = idx.summary() self.assertEqual(result, expected) def test_resolution(self): for freq, expected in zip(['A', 'Q', 'M', 'D', 'H', 'T', 'S', 'L', 'U'], ['day', 'day', 'day', 'day', 'hour', 'minute', 'second', 'millisecond', 'microsecond']): for tz in self.tz: idx = pd.date_range(start='2013-04-01', periods=30, freq=freq, tz=tz) self.assertEqual(idx.resolution, expected) def test_union(self): for tz in self.tz: # union rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=10, tz=tz) rng2 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other2 = pd.date_range('1/4/2000', freq='D', periods=5, tz=tz) expected2 = pd.date_range('1/1/2000', freq='D', periods=8, tz=tz) rng3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other3 = pd.DatetimeIndex([], tz=tz) expected3 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) for rng, other, expected in [(rng1, other1, expected1), (rng2, other2, expected2), (rng3, other3, expected3)]: result_union = rng.union(other) tm.assert_index_equal(result_union, expected) def test_add_iadd(self): for tz in self.tz: # offset offsets = [pd.offsets.Hour(2), timedelta(hours=2), np.timedelta64(2, 'h'), Timedelta(hours=2)] for delta in offsets: rng = pd.date_range('2000-01-01', '2000-02-01', tz=tz) result = rng + delta expected = pd.date_range('2000-01-01 02:00', '2000-02-01 02:00', tz=tz) tm.assert_index_equal(result, expected) rng += delta tm.assert_index_equal(rng, expected) # int rng = pd.date_range('2000-01-01 09:00', freq='H', periods=10, tz=tz) result = rng + 1 expected = pd.date_range('2000-01-01 10:00', freq='H', periods=10, tz=tz) tm.assert_index_equal(result, expected) rng += 1 tm.assert_index_equal(rng, expected) idx = DatetimeIndex(['2011-01-01', '2011-01-02']) msg = "cannot add a datelike to a DatetimeIndex" with tm.assertRaisesRegexp(TypeError, msg): idx + Timestamp('2011-01-01') with tm.assertRaisesRegexp(TypeError, msg): Timestamp('2011-01-01') + idx def test_add_dti_dti(self): # previously performed setop (deprecated in 0.16.0), now raises # TypeError (GH14164) dti = date_range('20130101', periods=3) dti_tz = date_range('20130101', periods=3).tz_localize('US/Eastern') with tm.assertRaises(TypeError): dti + dti with tm.assertRaises(TypeError): dti_tz + dti_tz with tm.assertRaises(TypeError): dti_tz + dti with tm.assertRaises(TypeError): dti + dti_tz def test_difference(self): for tz in self.tz: # diff rng1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) other1 = pd.date_range('1/6/2000', freq='D', periods=5, tz=tz) expected1 = pd.date_range('1/1/2000', freq='D', periods=5, tz=tz) rng2 =
pd.date_range('1/1/2000', freq='D', periods=5, tz=tz)
pandas.date_range
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """Retrieve bikeshare stations metadata.""" # pylint: disable=invalid-name from io import BytesIO from typing import Dict, List from urllib.request import urlopen from zipfile import ZipFile import geopandas as gpd import pandas as pd import pandera as pa import requests ch_essentials_schema = pa.DataFrameSchema( columns={ "ID": pa.Column(pa.Int), "NAME": pa.Column(pd.StringDtype()), "POI_LATITUDE": pa.Column( pa.Float64, nullable=True, ), "POI_LONGITUDE": pa.Column( pa.Float64, nullable=True, ), }, index=pa.Index(pa.Int), ) poi_schema = pa.DataFrameSchema( columns={ "ID": pa.Column(pa.Int, unique=True), "ADDRESS_INFO": pa.Column(pd.StringDtype()), "NAME": pa.Column(pd.StringDtype(), unique=True), "CATEGORY": pa.Column(pd.StringDtype()), "PHONE": pa.Column(pd.StringDtype()), "EMAIL": pa.Column(pd.StringDtype()), "WEBSITE": pa.Column(pd.StringDtype()), "GEOID": pa.Column(pa.Float, nullable=True), "RECEIVED_DATE": pa.Column(pd.StringDtype()), "ADDRESS_POINT_ID": pa.Column(pa.Float, nullable=True), "LINEAR_NAME_FULL": pa.Column(pd.StringDtype()), "ADDRESS_FULL": pa.Column(pd.StringDtype()), "POSTAL_CODE": pa.Column(pd.StringDtype()), "MUNICIPALITY": pa.Column(pd.StringDtype()), "CITY": pa.Column(pd.StringDtype()), "PLACE_NAME": pa.Column(pd.StringDtype()), "GENERAL_USE_CODE": pa.Column(pa.Float, nullable=True), "CENTRELINE": pa.Column(pa.Float, nullable=True), "LO_NUM": pa.Column(pa.Float, nullable=True), "LO_NUM_SUF": pa.Column(pd.StringDtype()), "HI_NUM": pa.Column(pd.StringDtype()), "HI_NUM_SUF": pa.Column(pd.StringDtype()), "LINEAR_NAME_ID": pa.Column(pa.Float, nullable=True), "WARD": pa.Column(
pd.StringDtype()
pandas.StringDtype
import unittest import pandas as pd import calendar import time from application.model_functions import * class Testing(unittest.TestCase): def test_isempty(self): df1 = pd.DataFrame() self.assertTrue(isempty_df(df1)) df2 = pd.DataFrame([[0,'abcd',0,1,123]],columns=['a','b','c','d','e']) self.assertFalse(isempty_df(df2)) def test_convert_to_epoch(self): #TODO: REVIEW FUNCTION pass # df1 = pd.DataFrame([["Wednesday, 27-Jul-16 11:37:51 UTC"]],columns=['time']) # df1 = convert_to_epoch(df1, "time") # df2 = pd.DataFrame([[1469619471]],columns=['time']) # self.assertEqual(df1['time'][0], df2['time'][0]) def room_number(self): df1 = pd.DataFrame([['B002']],columns=['room']) df2 = pd.DataFrame([['B106']],columns=['room']) df3 = pd.DataFrame([['SC208W']],columns=['room']) self.assertEqual(df1['room'][0], 2) self.assertEqual(df2['room'][0], 106) self.assertEqual(df3['room'][0], 208) def estimate_occ(self): df1 =
pd.DataFrame([[2, 0],[3, 0.5],[4, 1]], columns=['room', 'occupancy_rate'])
pandas.DataFrame
import pandas as pd from django.db.models import Count from dateutil.parser import parse from dateutil.tz import gettz from django.conf import settings class ModelResource: """ Model resources: Exports queryset of model into excel and csv file And import excel or csv file data into model """ def __init__(self, queryset=None): """ Initializing model resource Input: queryset (not required) """ self.__list = None if queryset != None: self.__process_queryset(queryset) del queryset def __get_fields(self): """ -- used for IMPORT EXPORT -- Returns list of fields for resource """ has_fields = False fields = [] # fields if hasattr(self.Meta, 'fields'): # fields array if type(self.Meta.fields) == list: fields = self.Meta.fields has_fields = True # all fields elif self.Meta.fields == '__all__': for model_field in self.Meta.model._meta.fields: fields.append(model_field.name) for model_field in self.Meta.model._meta.many_to_many: fields.append(model_field.name) has_fields = True # exlude fields elif hasattr(self.Meta, 'exclude'): if type(self.Meta.exclude) == list: for model_field in self.Meta.model._meta.fields: if not model_field.name in self.Meta.exclude: fields.append(model_field.name) for model_field in self.Meta.model._meta.many_to_many: if not model_field.name in self.Meta.exclude: fields.append(model_field.name) has_fields = True if not has_fields: raise Exception('fields is required') if 'id' not in fields: fields.insert(0, 'id') for field in fields: field_type = self.Meta.model._meta.get_field(field).get_internal_type() if field_type == 'OneToOneField': if not hasattr(self, field): setattr(self, field, OneToOneResource()) elif field_type == 'ForeignKey': if not hasattr(self, field): setattr(self, field, ForeignKeyResource()) elif field_type == 'ManyToManyField': if not hasattr(self, field): setattr(self, field, ManyToManyResource()) return fields def __get_database_fields(self): """ -- used for IMPORT EXPORT -- Returns list of database fields (normal, foreign, related, m2m) for values """ fields = self.__get_fields() # getting all fields db_fields = list() # database list to be appended temp_attr = None for field in fields: if hasattr(self, field): # checking if field has attribute (special field) temp_attr = getattr(self, field) if type(temp_attr) == OneToOneResource: db_fields.append([field, 'o2o']) elif type(temp_attr) == ForeignKeyResource: db_fields.append([field, 'foreign']) elif type(temp_attr) == RelatedResource: db_fields.append([field, 'related']) elif type(temp_attr) == ManyToManyResource: db_fields.append([field, 'm2m']) else: db_fields.append([field, 'normal']) return db_fields def __process_queryset(self, queryset): """ -- used for EXPORT -- Process queryset into dictionary list that is to be saved """ db_fields = self.__get_database_fields() # categoried resource fields wrt db self.__fields_values = list() # fields values to be converted in list before renaming and converted to dataframe self.__rename_values = dict() # foreign key to be rename from 'project__column' to 'project' annotate_dict = dict() # queryset annotate fields for m2m and related fields queryset_values = list() # queryset values names for db_field in db_fields: if db_field[1] == 'normal': # normal field (just add to queryset_values and fields_values) self.__fields_values.append( db_field[0] ) queryset_values.append( db_field[0] ) elif db_field[1] == 'foreign' or db_field[1] == 'o2o': # foreignkey field ( add to queryset_values, fields_values and rename_values) self.__fields_values.append( db_field[0] + '__' + getattr(self, db_field[0]).column ) queryset_values.append( db_field[0] ) self.__rename_values[db_field[0] + '__' + getattr(self, db_field[0]).column ] = db_field[0] else: # m2m and related fields ( add to fields_values, postprocess_fields and annotate_dict to take just count as its column) self.__fields_values.append(db_field[0]) annotate_dict[db_field[0]] = Count(db_field[0]) # gettings values from queryset self.__list = list(queryset.order_by('id').values(*queryset_values).annotate(**annotate_dict).values(*self.__fields_values)) # appending one to many fields to list o2m_field = self.__get_o2m_field(db_fields, queryset) for i in range(0, len(self.__list)): for field in o2m_field[self.__list[i]['id']]: self.__list[i][field] = o2m_field[self.__list[i]['id']][field] del queryset def __get_o2m_field(self, db_fields, queryset): """ -- used for Export -- returns o2m and related queryset """ postprocess_fields = [ db_field[0] for db_field in db_fields if db_field[1] == 'related' or db_field[1] == 'm2m' ] o2m_field = dict() for obj in queryset: o2m_field[obj.id] = dict() for field in postprocess_fields: texts = [ str(getattr(m2m_obj, getattr(self, field).column)) for m2m_obj in getattr(obj, field).all() ] o2m_field[obj.id][field] = ",".join(texts) return o2m_field def __check_queryset(self): """ -- used for EXPORT -- Checks if queryset is available or not before exporting """ if self.__list == None: raise Exception('Cannot export without queryset.') def __get_dataframe(self): """ -- used for EXPORT -- returns dataframe from the list """ self.__check_queryset() df = pd.DataFrame(self.__list, columns=self.__fields_values) df=df.rename(columns = self.__rename_values) # converting datetimes to Local time db_fields = self.__get_database_fields() normal_fields = [ db_field[0] for db_field in db_fields if db_field[1] == 'normal'] for field in normal_fields: field_class = self.Meta.model._meta.get_field(field).get_internal_type() if field_class == 'DateTimeField': df[field] = pd.to_datetime(df[field], unit='s') try: setattr(df, field, getattr(df, field).dt.tz_localize('UTC')) except: pass setattr(df, field, getattr(df, field).dt.tz_convert(settings.TIME_ZONE) ) df[field] = df[field].apply(lambda x: '' if pd.isnull(x) else str(x)) elif field_class == 'DateField' or field_class == 'TimeField': df[field] = df[field].apply(lambda x: '' if pd.isnull(x) else str(x)) return df def to_excel(self, file_name): """ saves queryset to respective excel file """ self.__get_dataframe().to_excel(file_name, index=False) def to_csv(self, file_name): """ saves queryset to respective csv file """ self.__get_dataframe().to_csv(file_name, index=False) def __set_dataframe(self, df): """ -- used for EXPORT -- returns dataframe from the list """ self.__list = list(df.T.to_dict().values()) def __save_list(self, df): """ saves list of dictionaries to model (if id is empty creates as new object) """ update_df = df.loc[ pd.notnull(df['id']) ] # row that contain id self.__update_list(update_df) new_df = df.loc[ pd.isnull(df['id']) ] # row that doesn't contain id (considered as new object) self.__create_list(new_df) def __update_list(self, df): """ updates update_df list to model """ db_fields = self.__get_database_fields() for row in list(df.T.to_dict().values()): row_id = 0 self_kwargs = dict() # dictionary arguments passed to model object { 'field_name': 'Field_value'} m2m_fields = list() # m2m list carrying [ ['field_name', 'field_value'], ... ] for field in db_fields: # converting NaN and NaT to None if
pd.isnull(row[field[0]])
pandas.isnull
"""Compile 1/f-exponents across sessions for further computation in R.""" import os import pandas as pd import numpy as np df = pd.read_csv('../csv/sessions.csv') fmin = 1 fmax = 10 rsquare_threshold = 0.95 exp_folder = '../results/exponents/' dfs = [] nr_segments = [] for subject in df.subject_id: df_file_name = '%s/%s_exponents.csv' % (exp_folder, subject) df_exp = pd.read_csv(df_file_name) nr_segments.append(len(df_exp)) df_file_name = '%s/%s_rsquare.csv' % (exp_folder, subject) df_r =
pd.read_csv(df_file_name)
pandas.read_csv
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. # This file contains dummy data for the model unit tests import numpy as np import pandas as pd AIR_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 380.6292037661305, 1: 383.26004701147235, 2: 385.8905370924373, 3: 388.52067431512216, 4: 391.1504589893095, 5: 393.7798914284503, 6: 396.4089719496461, 7: 399.0377008736321, 8: 401.66607852475926, 9: 404.2941052309762, 10: 406.9217813238114, 11: 409.54910713835505, 12: 412.1760830132403, 13: 414.80270929062544, 14: 417.42898631617453, 15: 420.0549144390392, 16: 422.68049401183924, 17: 425.3057253906438, 18: 427.93060893495215, 19: 430.555145007674, 20: 433.1793339751107, 21: 435.8031762069345, 22: 438.42667207616984, 23: 441.0498219591729, 24: 443.6726262356114, 25: 446.2950852884452, 26: 448.91719950390507, 27: 451.53896927147304, 28: 454.1603949838614, 29: 456.78147703699216, }, "fcst_upper": { 0: 565.2596851227581, 1: 567.9432096935082, 2: 570.6270874286351, 3: 573.3113180220422, 4: 575.9959011639468, 5: 578.680836540898, 6: 581.3661238357942, 7: 584.0517627279, 8: 586.7377528928648, 9: 589.4240940027398, 10: 592.1107857259966, 11: 594.797827727545, 12: 597.4852196687516, 13: 600.1729612074585, 14: 602.8610519980012, 15: 605.5494916912286, 16: 608.2382799345206, 17: 610.9274163718079, 18: 613.6169006435915, 19: 616.3067323869615, 20: 618.9969112356168, 21: 621.6874368198849, 22: 624.3783087667415, 23: 627.0695266998305, 24: 629.7610902394838, 25: 632.4529990027421, 26: 635.145252603374, 27: 637.8378506518982, 28: 640.5307927556019, 29: 643.2240785185628, }, } ) AIR_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("1961-01-01 00:00:00"), 1: pd.Timestamp("1961-02-01 00:00:00"), 2: pd.Timestamp("1961-03-01 00:00:00"), 3: pd.Timestamp("1961-04-01 00:00:00"), 4: pd.Timestamp("1961-05-01 00:00:00"), 5: pd.Timestamp("1961-06-01 00:00:00"), 6: pd.Timestamp("1961-07-01 00:00:00"), 7: pd.Timestamp("1961-08-01 00:00:00"), 8: pd.Timestamp("1961-09-01 00:00:00"), 9: pd.Timestamp("1961-10-01 00:00:00"), 10: pd.Timestamp("1961-11-01 00:00:00"), 11: pd.Timestamp("1961-12-01 00:00:00"), 12: pd.Timestamp("1962-01-01 00:00:00"), 13: pd.Timestamp("1962-02-01 00:00:00"), 14: pd.Timestamp("1962-03-01 00:00:00"), 15: pd.Timestamp("1962-04-01 00:00:00"), 16: pd.Timestamp("1962-05-01 00:00:00"), 17: pd.Timestamp("1962-06-01 00:00:00"), 18: pd.Timestamp("1962-07-01 00:00:00"), 19: pd.Timestamp("1962-08-01 00:00:00"), 20: pd.Timestamp("1962-09-01 00:00:00"), 21: pd.Timestamp("1962-10-01 00:00:00"), 22: pd.Timestamp("1962-11-01 00:00:00"), 23: pd.Timestamp("1962-12-01 00:00:00"), 24: pd.Timestamp("1963-01-01 00:00:00"), 25: pd.Timestamp("1963-02-01 00:00:00"), 26: pd.Timestamp("1963-03-01 00:00:00"), 27: pd.Timestamp("1963-04-01 00:00:00"), 28: pd.Timestamp("1963-05-01 00:00:00"), 29: pd.Timestamp("1963-06-01 00:00:00"), }, "fcst": { 0: 472.9444444444443, 1: 475.60162835249025, 2: 478.2588122605362, 3: 480.9159961685822, 4: 483.57318007662815, 5: 486.23036398467417, 6: 488.88754789272014, 7: 491.5447318007661, 8: 494.20191570881207, 9: 496.85909961685803, 10: 499.516283524904, 11: 502.17346743295, 12: 504.830651340996, 13: 507.48783524904195, 14: 510.1450191570879, 15: 512.8022030651339, 16: 515.4593869731799, 17: 518.1165708812258, 18: 520.7737547892718, 19: 523.4309386973177, 20: 526.0881226053638, 21: 528.7453065134097, 22: 531.4024904214557, 23: 534.0596743295017, 24: 536.7168582375476, 25: 539.3740421455936, 26: 542.0312260536396, 27: 544.6884099616856, 28: 547.3455938697316, 29: 550.0027777777775, }, "fcst_lower": { 0: 351.01805478037915, 1: 353.64044896268456, 2: 356.2623766991775, 3: 358.883838394139, 4: 361.50483445671773, 5: 364.12536530090745, 6: 366.74543134552374, 7: 369.3650330141812, 8: 371.98417073526997, 9: 374.6028449419319, 10: 377.2210560720369, 11: 379.83880456815905, 12: 382.45609087755207, 13: 385.07291545212513, 14: 387.68927874841813, 15: 390.3051812275768, 16: 392.92062335532785, 17: 395.5356056019535, 18: 398.15012844226646, 19: 400.764192355584, 20: 403.37779782570226, 21: 405.99094534087044, 22: 408.60363539376465, 23: 411.2158684814615, 24: 413.82764510541136, 25: 416.4389657714128, 26: 419.04983098958445, 27: 421.66024127433906, 28: 424.2701971443558, 29: 426.8796991225531, }, "fcst_upper": { 0: 594.8708341085095, 1: 597.562807742296, 2: 600.255247821895, 3: 602.9481539430253, 4: 605.6415256965386, 5: 608.3353626684409, 6: 611.0296644399166, 7: 613.724430587351, 8: 616.4196606823541, 9: 619.1153542917842, 10: 621.8115109777711, 11: 624.508130297741, 12: 627.2052118044398, 13: 629.9027550459588, 14: 632.6007595657577, 15: 635.299224902691, 16: 637.998150591032, 17: 640.6975361604982, 18: 643.3973811362772, 19: 646.0976850390515, 20: 648.7984473850253, 21: 651.4996676859489, 22: 654.2013454491467, 23: 656.903480177542, 24: 659.6060713696838, 25: 662.3091185197744, 26: 665.0126211176946, 27: 667.716578649032, 28: 670.4209905951075, 29: 673.1258564330019, }, } ) PEYTON_FCST_LINEAR_95 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 7.055970485245664, 1: 7.056266316358524, 2: 7.056561800026597, 3: 7.056856936297079, 4: 7.057151725217398, 5: 7.05744616683524, 6: 7.057740261198534, 7: 7.058034008355445, 8: 7.058327408354395, 9: 7.058620461244044, 10: 7.0589131670733005, 11: 7.059205525891312, 12: 7.059497537747475, 13: 7.059789202691431, 14: 7.0600805207730595, 15: 7.060371492042489, 16: 7.060662116550093, 17: 7.060952394346479, 18: 7.06124232548251, 19: 7.0615319100092835, 20: 7.061821147978145, 21: 7.062110039440677, 22: 7.062398584448709, 23: 7.062686783054313, 24: 7.0629746353098, 25: 7.063262141267724, 26: 7.063549300980883, 27: 7.063836114502315, 28: 7.0641225818852975, 29: 7.064408703183352, }, "fcst_upper": { 0: 9.903278969069254, 1: 9.903703030365794, 2: 9.90412743910712, 3: 9.904552195246042, 4: 9.904977298735123, 5: 9.90540274952668, 6: 9.90582854757279, 7: 9.906254692825279, 8: 9.90668118523573, 9: 9.90710802475548, 10: 9.907535211335626, 11: 9.907962744927016, 12: 9.908390625480251, 13: 9.9088188529457, 14: 9.90924742727347, 15: 9.909676348413441, 16: 9.91010561631524, 17: 9.910535230928254, 18: 9.910965192201623, 19: 9.91139550008425, 20: 9.91182615452479, 21: 9.912257155471659, 22: 9.912688502873028, 23: 9.913120196676825, 24: 9.91355223683074, 25: 9.913984623282214, 26: 9.914417355978456, 27: 9.914850434866427, 28: 9.915283859892844, 29: 9.91571763100419, }, } ) PEYTON_FCST_LINEAR_99 = pd.DataFrame( { "time": { 0: pd.Timestamp("2013-05-01 00:00:00"), 1: pd.Timestamp("2013-05-02 00:00:00"), 2: pd.Timestamp("2013-05-03 00:00:00"), 3: pd.Timestamp("2013-05-04 00:00:00"), 4: pd.Timestamp("2013-05-05 00:00:00"), 5: pd.Timestamp("2013-05-06 00:00:00"), 6: pd.Timestamp("2013-05-07 00:00:00"), 7: pd.Timestamp("2013-05-08 00:00:00"), 8: pd.Timestamp("2013-05-09 00:00:00"), 9: pd.Timestamp("2013-05-10 00:00:00"), 10: pd.Timestamp("2013-05-11 00:00:00"), 11: pd.Timestamp("2013-05-12 00:00:00"), 12: pd.Timestamp("2013-05-13 00:00:00"), 13: pd.Timestamp("2013-05-14 00:00:00"), 14: pd.Timestamp("2013-05-15 00:00:00"), 15: pd.Timestamp("2013-05-16 00:00:00"), 16: pd.Timestamp("2013-05-17 00:00:00"), 17: pd.Timestamp("2013-05-18 00:00:00"), 18: pd.Timestamp("2013-05-19 00:00:00"), 19: pd.Timestamp("2013-05-20 00:00:00"), 20: pd.Timestamp("2013-05-21 00:00:00"), 21: pd.Timestamp("2013-05-22 00:00:00"), 22: pd.Timestamp("2013-05-23 00:00:00"), 23: pd.Timestamp("2013-05-24 00:00:00"), 24: pd.Timestamp("2013-05-25 00:00:00"), 25: pd.Timestamp("2013-05-26 00:00:00"), 26: pd.Timestamp("2013-05-27 00:00:00"), 27: pd.Timestamp("2013-05-28 00:00:00"), 28: pd.Timestamp("2013-05-29 00:00:00"), 29: pd.Timestamp("2013-05-30 00:00:00"), }, "fcst": { 0: 8.479624727157459, 1: 8.479984673362159, 2: 8.480344619566859, 3: 8.48070456577156, 4: 8.48106451197626, 5: 8.48142445818096, 6: 8.481784404385662, 7: 8.482144350590362, 8: 8.482504296795062, 9: 8.482864242999762, 10: 8.483224189204464, 11: 8.483584135409163, 12: 8.483944081613863, 13: 8.484304027818565, 14: 8.484663974023265, 15: 8.485023920227965, 16: 8.485383866432667, 17: 8.485743812637367, 18: 8.486103758842066, 19: 8.486463705046766, 20: 8.486823651251468, 21: 8.487183597456168, 22: 8.487543543660868, 23: 8.48790348986557, 24: 8.48826343607027, 25: 8.48862338227497, 26: 8.48898332847967, 27: 8.489343274684371, 28: 8.489703220889071, 29: 8.490063167093771, }, "fcst_lower": { 0: 6.605000045325637, 1: 6.605275566724015, 2: 6.605550630617649, 3: 6.605825237068679, 4: 6.606099386139563, 5: 6.60637307789309, 6: 6.606646312392368, 7: 6.606919089700827, 8: 6.607191409882221, 9: 6.607463273000626, 10: 6.607734679120443, 11: 6.608005628306389, 12: 6.608276120623508, 13: 6.608546156137163, 14: 6.608815734913038, 15: 6.609084857017139, 16: 6.609353522515795, 17: 6.609621731475649, 18: 6.609889483963668, 19: 6.610156780047143, 20: 6.61042361979368, 21: 6.610690003271204, 22: 6.610955930547961, 23: 6.611221401692519, 24: 6.611486416773756, 25: 6.611750975860878, 26: 6.612015079023405, 27: 6.612278726331177, 28: 6.612541917854348, 29: 6.612804653663393, }, "fcst_upper": { 0: 10.354249408989281, 1: 10.354693780000304, 2: 10.355138608516068, 3: 10.355583894474442, 4: 10.356029637812957, 5: 10.35647583846883, 6: 10.356922496378955, 7: 10.357369611479896, 8: 10.357817183707903, 9: 10.358265212998898, 10: 10.358713699288483, 11: 10.359162642511938, 12: 10.359612042604219, 13: 10.360061899499968, 14: 10.360512213133493, 15: 10.36096298343879, 16: 10.361414210349539, 17: 10.361865893799084, 18: 10.362318033720465, 19: 10.36277063004639, 20: 10.363223682709256, 21: 10.363677191641132, 22: 10.364131156773775, 23: 10.364585578038621, 24: 10.365040455366783, 25: 10.365495788689062, 26: 10.365951577935935, 27: 10.366407823037564, 28: 10.366864523923793, 29: 10.36732168052415, }, } ) PEYTON_FCST_LINEAR_INVALID_ZERO = pd.DataFrame( { "time": { 0: pd.Timestamp("2012-05-02 00:00:00"), 1: pd.Timestamp("2012-05-03 00:00:00"), 2: pd.Timestamp("2012-05-04 00:00:00"), 3: pd.Timestamp("2012-05-05 00:00:00"), 4: pd.Timestamp("2012-05-06 00:00:00"), 5: pd.Timestamp("2012-05-07 00:00:00"), 6: pd.Timestamp("2012-05-08 00:00:00"), 7: pd.Timestamp("2012-05-09 00:00:00"), 8: pd.Timestamp("2012-05-10 00:00:00"), 9: pd.Timestamp("2012-05-11 00:00:00"), 10: pd.Timestamp("2012-05-12 00:00:00"), 11: pd.Timestamp("2012-05-13 00:00:00"), 12: pd.Timestamp("2012-05-14 00:00:00"), 13: pd.Timestamp("2012-05-15 00:00:00"), 14: pd.Timestamp("2012-05-16 00:00:00"), 15: pd.Timestamp("2012-05-17 00:00:00"), 16: pd.Timestamp("2012-05-18 00:00:00"), 17: pd.Timestamp("2012-05-19 00:00:00"), 18: pd.Timestamp("2012-05-20 00:00:00"), 19: pd.Timestamp("2012-05-21 00:00:00"), 20: pd.Timestamp("2012-05-22 00:00:00"), 21: pd.Timestamp("2012-05-23 00:00:00"), 22: pd.Timestamp("2012-05-24 00:00:00"), 23: pd.Timestamp("2012-05-25 00:00:00"), 24: pd.Timestamp("2012-05-26 00:00:00"), 25: pd.Timestamp("2012-05-27 00:00:00"), 26: pd.Timestamp("2012-05-28 00:00:00"), 27: pd.Timestamp("2012-05-29 00:00:00"), 28: pd.Timestamp("2012-05-30 00:00:00"), 29: pd.Timestamp("2012-05-31 00:00:00"), 30: pd.Timestamp("2012-06-01 00:00:00"), 31: pd.Timestamp("2012-06-02 00:00:00"), 32: pd.Timestamp("2012-06-03 00:00:00"), 33: pd.Timestamp("2012-06-04 00:00:00"), 34: pd.Timestamp("2012-06-05 00:00:00"), 35: pd.Timestamp("2012-06-06 00:00:00"), 36: pd.Timestamp("2012-06-07 00:00:00"), 37: pd.Timestamp("2012-06-08 00:00:00"), 38: pd.Timestamp("2012-06-09 00:00:00"), 39: pd.Timestamp("2012-06-10 00:00:00"), 40: pd.Timestamp("2012-06-11 00:00:00"), 41: pd.Timestamp("2012-06-12 00:00:00"), 42: pd.Timestamp("2012-06-13 00:00:00"), 43: pd.Timestamp("2012-06-14 00:00:00"), 44: pd.Timestamp("2012-06-15 00:00:00"), 45: pd.Timestamp("2012-06-16 00:00:00"), 46: pd.Timestamp("2012-06-17 00:00:00"), 47: pd.Timestamp("2012-06-18 00:00:00"), 48: pd.Timestamp("2012-06-19 00:00:00"), 49: pd.Timestamp("2012-06-20 00:00:00"), 50: pd.Timestamp("2012-06-21 00:00:00"), 51: pd.Timestamp("2012-06-22 00:00:00"), 52: pd.Timestamp("2012-06-23 00:00:00"), 53: pd.Timestamp("2012-06-24 00:00:00"), 54: pd.Timestamp("2012-06-25 00:00:00"), 55: pd.Timestamp("2012-06-26 00:00:00"), 56: pd.Timestamp("2012-06-27 00:00:00"), 57: pd.Timestamp("2012-06-28 00:00:00"), 58: pd.Timestamp("2012-06-29 00:00:00"), 59: pd.Timestamp("2012-06-30 00:00:00"), 60: pd.Timestamp("2012-07-01 00:00:00"), 61: pd.Timestamp("2012-07-02 00:00:00"), 62: pd.Timestamp("2012-07-03 00:00:00"), 63: pd.Timestamp("2012-07-04 00:00:00"), 64: pd.Timestamp("2012-07-05 00:00:00"), 65: pd.Timestamp("2012-07-06 00:00:00"), 66: pd.Timestamp("2012-07-07 00:00:00"), 67: pd.Timestamp("2012-07-08 00:00:00"), 68: pd.Timestamp("2012-07-09 00:00:00"), 69: pd.Timestamp("2012-07-10 00:00:00"), 70: pd.Timestamp("2012-07-11 00:00:00"), 71: pd.Timestamp("2012-07-12 00:00:00"), 72: pd.Timestamp("2012-07-13 00:00:00"), 73: pd.Timestamp("2012-07-14 00:00:00"), 74: pd.Timestamp("2012-07-15 00:00:00"), 75: pd.Timestamp("2012-07-16 00:00:00"), 76: pd.Timestamp("2012-07-17 00:00:00"), 77: pd.Timestamp("2012-07-18 00:00:00"), 78: pd.Timestamp("2012-07-19 00:00:00"), 79: pd.Timestamp("2012-07-20 00:00:00"), 80: pd.Timestamp("2012-07-21 00:00:00"), 81: pd.Timestamp("2012-07-22 00:00:00"), 82: pd.Timestamp("2012-07-23 00:00:00"), 83: pd.Timestamp("2012-07-24 00:00:00"), 84: pd.Timestamp("2012-07-25 00:00:00"), 85: pd.Timestamp("2012-07-26 00:00:00"), 86: pd.Timestamp("2012-07-27 00:00:00"), 87: pd.Timestamp("2012-07-28 00:00:00"), 88: pd.Timestamp("2012-07-29 00:00:00"), 89: pd.Timestamp("2012-07-30 00:00:00"), 90: pd.Timestamp("2012-07-31 00:00:00"), 91: pd.Timestamp("2012-08-01 00:00:00"), 92: pd.Timestamp("2012-08-02 00:00:00"), 93: pd.Timestamp("2012-08-03 00:00:00"), 94: pd.Timestamp("2012-08-04 00:00:00"), 95: pd.Timestamp("2012-08-05 00:00:00"), 96: pd.Timestamp("2012-08-06 00:00:00"), 97: pd.Timestamp("2012-08-07 00:00:00"), 98: pd.Timestamp("2012-08-08 00:00:00"), 99: pd.Timestamp("2012-08-09 00:00:00"), 100: pd.Timestamp("2012-08-10 00:00:00"), 101: pd.Timestamp("2012-08-11 00:00:00"), 102: pd.Timestamp("2012-08-12 00:00:00"), 103: pd.Timestamp("2012-08-13 00:00:00"), 104: pd.Timestamp("2012-08-14 00:00:00"), 105: pd.Timestamp("2012-08-15 00:00:00"), 106: pd.Timestamp("2012-08-16 00:00:00"), 107: pd.Timestamp("2012-08-17 00:00:00"), 108: pd.Timestamp("2012-08-18 00:00:00"), 109: pd.Timestamp("2012-08-19 00:00:00"), 110: pd.Timestamp("2012-08-20 00:00:00"), 111: pd.Timestamp("2012-08-21 00:00:00"), 112: pd.Timestamp("2012-08-22 00:00:00"), 113: pd.Timestamp("2012-08-23 00:00:00"), 114: pd.Timestamp("2012-08-24 00:00:00"), 115: pd.Timestamp("2012-08-25 00:00:00"), 116: pd.Timestamp("2012-08-26 00:00:00"), 117: pd.Timestamp("2012-08-27 00:00:00"), 118: pd.Timestamp("2012-08-28 00:00:00"), 119: pd.Timestamp("2012-08-29 00:00:00"), 120: pd.Timestamp("2012-08-30 00:00:00"), 121: pd.Timestamp("2012-08-31 00:00:00"), 122: pd.Timestamp("2012-09-01 00:00:00"), 123: pd.Timestamp("2012-09-02 00:00:00"), 124: pd.Timestamp("2012-09-03 00:00:00"), 125: pd.Timestamp("2012-09-04 00:00:00"), 126: pd.Timestamp("2012-09-05 00:00:00"), 127: pd.Timestamp("2012-09-06 00:00:00"), 128: pd.Timestamp("2012-09-07 00:00:00"), 129: pd.Timestamp("2012-09-08 00:00:00"), 130: pd.Timestamp("2012-09-09 00:00:00"), 131: pd.Timestamp("2012-09-10 00:00:00"), 132: pd.Timestamp("2012-09-11 00:00:00"), 133: pd.Timestamp("2012-09-12 00:00:00"), 134: pd.Timestamp("2012-09-13 00:00:00"), 135: pd.Timestamp("2012-09-14 00:00:00"), 136: pd.Timestamp("2012-09-15 00:00:00"), 137: pd.Timestamp("2012-09-16 00:00:00"), 138: pd.Timestamp("2012-09-17 00:00:00"), 139: pd.Timestamp("2012-09-18 00:00:00"), 140: pd.Timestamp("2012-09-19 00:00:00"), 141: pd.Timestamp("2012-09-20 00:00:00"), 142: pd.Timestamp("2012-09-21 00:00:00"), 143: pd.Timestamp("2012-09-22 00:00:00"), 144: pd.Timestamp("2012-09-23 00:00:00"), 145: pd.Timestamp("2012-09-24 00:00:00"), 146: pd.Timestamp("2012-09-25 00:00:00"), 147: pd.Timestamp("2012-09-26 00:00:00"), 148: pd.Timestamp("2012-09-27 00:00:00"), 149: pd.Timestamp("2012-09-28 00:00:00"), 150: pd.Timestamp("2012-09-29 00:00:00"), 151: pd.Timestamp("2012-09-30 00:00:00"), 152: pd.Timestamp("2012-10-01 00:00:00"), 153: pd.Timestamp("2012-10-02 00:00:00"), 154: pd.Timestamp("2012-10-03 00:00:00"), 155: pd.Timestamp("2012-10-04 00:00:00"), 156: pd.Timestamp("2012-10-05 00:00:00"), 157: pd.Timestamp("2012-10-06 00:00:00"), 158: pd.Timestamp("2012-10-07 00:00:00"), 159: pd.Timestamp("2012-10-08 00:00:00"), 160: pd.Timestamp("2012-10-09 00:00:00"), 161: pd.Timestamp("2012-10-10 00:00:00"), 162: pd.Timestamp("2012-10-11 00:00:00"), 163: pd.Timestamp("2012-10-12 00:00:00"), 164: pd.Timestamp("2012-10-13 00:00:00"), 165: pd.Timestamp("2012-10-14 00:00:00"), 166: pd.Timestamp("2012-10-15 00:00:00"), 167: pd.Timestamp("2012-10-16 00:00:00"), 168: pd.Timestamp("2012-10-17 00:00:00"), 169: pd.Timestamp("2012-10-18 00:00:00"), 170: pd.Timestamp("2012-10-19 00:00:00"), 171: pd.Timestamp("2012-10-20 00:00:00"), 172: pd.Timestamp("2012-10-21 00:00:00"), 173: pd.Timestamp("2012-10-22 00:00:00"), 174: pd.Timestamp("2012-10-23 00:00:00"), 175: pd.Timestamp("2012-10-24 00:00:00"), 176: pd.Timestamp("2012-10-25 00:00:00"), 177: pd.Timestamp("2012-10-26 00:00:00"), 178: pd.Timestamp("2012-10-27 00:00:00"), 179: pd.Timestamp("2012-10-28 00:00:00"), 180: pd.Timestamp("2012-10-29 00:00:00"), 181: pd.Timestamp("2012-10-30 00:00:00"), 182: pd.Timestamp("2012-10-31 00:00:00"), 183: pd.Timestamp("2012-11-01 00:00:00"), 184: pd.Timestamp("2012-11-02 00:00:00"), 185: pd.Timestamp("2012-11-03 00:00:00"), 186: pd.Timestamp("2012-11-04 00:00:00"), 187: pd.Timestamp("2012-11-05 00:00:00"), 188: pd.Timestamp("2012-11-06 00:00:00"), 189: pd.Timestamp("2012-11-07 00:00:00"), 190: pd.Timestamp("2012-11-08 00:00:00"), 191: pd.Timestamp("2012-11-09 00:00:00"), 192: pd.Timestamp("2012-11-10 00:00:00"), 193: pd.Timestamp("2012-11-11 00:00:00"), 194: pd.Timestamp("2012-11-12 00:00:00"), 195: pd.Timestamp("2012-11-13 00:00:00"), 196: pd.Timestamp("2012-11-14 00:00:00"), 197: pd.Timestamp("2012-11-15 00:00:00"), 198: pd.Timestamp("2012-11-16 00:00:00"), 199: pd.Timestamp("2012-11-17 00:00:00"), 200: pd.Timestamp("2012-11-18 00:00:00"), 201: pd.Timestamp("2012-11-19 00:00:00"), 202: pd.Timestamp("2012-11-20 00:00:00"), 203: pd.Timestamp("2012-11-21 00:00:00"), 204: pd.Timestamp("2012-11-22 00:00:00"), 205: pd.Timestamp("2012-11-23 00:00:00"), 206: pd.Timestamp("2012-11-24 00:00:00"), 207: pd.Timestamp("2012-11-25 00:00:00"), 208: pd.Timestamp("2012-11-26 00:00:00"), 209: pd.Timestamp("2012-11-27 00:00:00"), 210: pd.Timestamp("2012-11-28 00:00:00"), 211: pd.Timestamp("2012-11-29 00:00:00"), 212: pd.Timestamp("2012-11-30 00:00:00"), 213: pd.Timestamp("2012-12-01 00:00:00"), 214: pd.Timestamp("2012-12-02 00:00:00"), 215: pd.Timestamp("2012-12-03 00:00:00"), 216: pd.Timestamp("2012-12-04 00:00:00"), 217: pd.Timestamp("2012-12-05 00:00:00"), 218: pd.Timestamp("2012-12-06 00:00:00"), 219: pd.Timestamp("2012-12-07 00:00:00"), 220: pd.Timestamp("2012-12-08 00:00:00"), 221: pd.Timestamp("2012-12-09 00:00:00"), 222: pd.Timestamp("2012-12-10 00:00:00"), 223: pd.Timestamp("2012-12-11 00:00:00"), 224: pd.Timestamp("2012-12-12 00:00:00"), 225: pd.Timestamp("2012-12-13 00:00:00"), 226: pd.Timestamp("2012-12-14 00:00:00"), 227: pd.Timestamp("2012-12-15 00:00:00"), 228: pd.Timestamp("2012-12-16 00:00:00"), 229: pd.Timestamp("2012-12-17 00:00:00"), 230: pd.Timestamp("2012-12-18 00:00:00"), 231: pd.Timestamp("2012-12-19 00:00:00"), 232: pd.Timestamp("2012-12-20 00:00:00"), 233: pd.Timestamp("2012-12-21 00:00:00"), 234: pd.Timestamp("2012-12-22 00:00:00"), 235: pd.Timestamp("2012-12-23 00:00:00"), 236: pd.Timestamp("2012-12-24 00:00:00"), 237: pd.Timestamp("2012-12-25 00:00:00"), 238: pd.Timestamp("2012-12-26 00:00:00"), 239: pd.Timestamp("2012-12-27 00:00:00"), 240: pd.Timestamp("2012-12-28 00:00:00"), 241: pd.Timestamp("2012-12-29 00:00:00"), 242: pd.Timestamp("2012-12-30 00:00:00"), 243: pd.Timestamp("2012-12-31 00:00:00"), 244: pd.Timestamp("2013-01-01 00:00:00"), 245: pd.Timestamp("2013-01-02 00:00:00"), 246: pd.Timestamp("2013-01-03 00:00:00"), 247: pd.Timestamp("2013-01-04 00:00:00"), 248: pd.Timestamp("2013-01-05 00:00:00"), 249: pd.Timestamp("2013-01-06 00:00:00"), 250: pd.Timestamp("2013-01-07 00:00:00"), 251: pd.Timestamp("2013-01-08 00:00:00"), 252: pd.Timestamp("2013-01-09 00:00:00"), 253: pd.Timestamp("2013-01-10 00:00:00"), 254: pd.Timestamp("2013-01-11 00:00:00"), 255: pd.Timestamp("2013-01-12 00:00:00"), 256: pd.Timestamp("2013-01-13 00:00:00"), 257: pd.Timestamp("2013-01-14 00:00:00"), 258: pd.Timestamp("2013-01-15 00:00:00"), 259: pd.Timestamp("2013-01-16 00:00:00"), 260: pd.Timestamp("2013-01-17 00:00:00"), 261: pd.Timestamp("2013-01-18 00:00:00"), 262: pd.Timestamp("2013-01-19 00:00:00"), 263: pd.Timestamp("2013-01-20 00:00:00"), 264: pd.Timestamp("2013-01-21 00:00:00"), 265: pd.Timestamp("2013-01-22 00:00:00"), 266: pd.Timestamp("2013-01-23 00:00:00"), 267: pd.Timestamp("2013-01-24 00:00:00"), 268: pd.Timestamp("2013-01-25 00:00:00"), 269: pd.Timestamp("2013-01-26 00:00:00"), 270: pd.Timestamp("2013-01-27 00:00:00"), 271: pd.Timestamp("2013-01-28 00:00:00"), 272: pd.Timestamp("2013-01-29 00:00:00"), 273: pd.Timestamp("2013-01-30 00:00:00"), 274: pd.Timestamp("2013-01-31 00:00:00"), 275: pd.Timestamp("2013-02-01 00:00:00"), 276: pd.Timestamp("2013-02-02 00:00:00"), 277: pd.Timestamp("2013-02-03 00:00:00"), 278: pd.Timestamp("2013-02-04 00:00:00"), 279: pd.Timestamp("2013-02-05 00:00:00"), 280: pd.Timestamp("2013-02-06 00:00:00"), 281: pd.Timestamp("2013-02-07 00:00:00"), 282: pd.Timestamp("2013-02-08 00:00:00"), 283: pd.Timestamp("2013-02-09 00:00:00"), 284: pd.Timestamp("2013-02-10 00:00:00"), 285: pd.Timestamp("2013-02-11 00:00:00"), 286: pd.Timestamp("2013-02-12 00:00:00"), 287: pd.Timestamp("2013-02-13 00:00:00"), 288: pd.Timestamp("2013-02-14 00:00:00"), 289: pd.Timestamp("2013-02-15 00:00:00"), 290: pd.Timestamp("2013-02-16 00:00:00"), 291: pd.Timestamp("2013-02-17 00:00:00"), 292: pd.Timestamp("2013-02-18 00:00:00"), 293: pd.Timestamp("2013-02-19 00:00:00"), 294: pd.Timestamp("2013-02-20 00:00:00"), 295: pd.Timestamp("2013-02-21 00:00:00"), 296: pd.Timestamp("2013-02-22 00:00:00"), 297: pd.Timestamp("2013-02-23 00:00:00"), 298: pd.Timestamp("2013-02-24 00:00:00"), 299: pd.Timestamp("2013-02-25 00:00:00"), 300: pd.Timestamp("2013-02-26 00:00:00"), 301: pd.Timestamp("2013-02-27 00:00:00"), 302: pd.Timestamp("2013-02-28 00:00:00"), 303: pd.Timestamp("2013-03-01 00:00:00"), 304: pd.Timestamp("2013-03-02 00:00:00"), 305: pd.Timestamp("2013-03-03 00:00:00"), 306: pd.Timestamp("2013-03-04 00:00:00"), 307: pd.Timestamp("2013-03-05 00:00:00"), 308: pd.Timestamp("2013-03-06 00:00:00"), 309: pd.Timestamp("2013-03-07 00:00:00"), 310: pd.Timestamp("2013-03-08 00:00:00"), 311: pd.Timestamp("2013-03-09 00:00:00"), 312: pd.Timestamp("2013-03-10 00:00:00"), 313:
pd.Timestamp("2013-03-11 00:00:00")
pandas.Timestamp
#!/usr/bin/env python """ Module implementing the Data class that manages data for it's associated PandasTable. Created Jan 2014 Copyright (C) <NAME> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA """ from types import * import operator import os, string, types, copy import pickle import numpy as np import pandas as pd from . import util class TableModel(object): """A data model for the Table class that uses pandas Args: dataframe: pandas dataframe rows: number of rows if empty table columns: number of columns if empty table """ keywords = {'colors':'colors'} def __init__(self, dataframe=None, rows=20, columns=5): """Constructor for table model. """ self.initialiseFields() self.setup(dataframe, rows, columns) return def setup(self, dataframe, rows=20, columns=5): """Create table model""" if not dataframe is None: self.df = dataframe else: colnames = list(string.ascii_lowercase[:columns]) self.df = pd.DataFrame(index=range(rows),columns=colnames) #self.df = self.getSampleData() #self.reclist = self.df.index # not needed now? return @classmethod def getSampleData(self, rows=400, cols=5, n=2): """Generate sample data Args: rows: no. of rows cols: columns n: length of column names """ import random s = string.ascii_lowercase def genstr(n=2): return ''.join(random.choice(s) for i in range(n)) maxrows = 5e6 if rows>maxrows: rows=maxrows if cols>1e5: cols=int(1e5) n=2 if cols>100: n=3 colnames = [genstr(n) for i in range(cols)] coldata = [np.random.normal(x,1,rows) for x in np.random.normal(5,3,cols)] n = np.array(coldata).T df = pd.DataFrame(n, columns=colnames) col1 = colnames[0] col2 = colnames[1] df[col2] = df[col1]*np.random.normal(.8, .2, len(df)) df = np.round(df, 3) cats = ['low','medium','high','very high'] df['label'] = pd.cut(df[col1], bins=4, labels=cats).astype(str) #df['label'] = df.label.cat.as_ordered() #don't add date if rows too large if rows<2e6: df['date'] = pd.date_range('1/1/2016', periods=rows, freq='H') return df @classmethod def getIrisData(self): """Get iris dataset""" path = os.path.dirname(__file__) cols = ['sepal length','sepal width','petal length','petal width','class'] df = pd.read_csv(os.path.join(path,'datasets','iris.data'),names=cols) return df @classmethod def getStackedData(self): """Get a dataframe to pivot test""" import pandas.util.testing as tm; tm.N = 4 frame = tm.makeTimeDataFrame() N, K = frame.shape data = {'value' : frame.values.ravel('F'), 'variable' : np.asarray(frame.columns).repeat(N), 'date' : np.tile(np.asarray(frame.index), K)} return pd.DataFrame(data, columns=['date', 'variable', 'value']) def initialiseFields(self): """Create meta data fields""" self.meta = {} self.columnwidths = {} #used to store col widths return def save(self, filename): """Save dataframe""" ftype = os.path.splitext(filename)[1] if ftype == '.mpk': self.df.to_msgpack(filename) elif ftype == '.pickle': self.df.to_pickle(filename) elif ftype == '.xls': self.df.to_excel(filename) elif ftype == '.csv': self.df.to_csv(filename) #elif ftype == '.html': # self.df.to_html(filename) return def load(self, filename, filetype=None): """Load file, if no filetype given assume it's msgpack format""" if filetype == '.pickle': self.df = pd.read_pickle(filename) else: self.df = pd.read_msgpack(filename) #print (len(self.df)) return def getlongestEntry(self, colindex, n=500): """Get the longest string in the column for determining width. Just uses the first n rows for speed""" df = self.df col = df.columns[colindex] try: if df.dtypes[col] == 'float64': c = df[col][:n].round(3) else: c = df[col][:n] except: return 1 longest = c.astype('object').astype('str').str.len().max() if np.isnan(longest): return 1 return longest def getRecordAtRow(self, rowIndex): """Get the entire record at the specifed row""" name = self.getRecName(rowIndex) record = self.df.ix[name] return record def moveColumn(self, oldindex, newindex): """Changes the order of columns""" df = self.df cols = list(df.columns) name = cols[oldindex] del cols[oldindex] cols.insert(newindex, name) self.df = df[cols] return def autoAddRows(self, num): """Add n rows to end of dataframe. Will create rows with index starting from highest previous row count""" df = self.df if len(df) == 0: self.df = pd.DataFrame(pd.Series(range(num))) print (df) return try: ind = self.df.index.max()+1 except: ind = len(df)+1 new = pd.DataFrame(np.nan, index=range(ind,ind+num), columns=df.columns) self.df = pd.concat([df, new]) return def addRow(self, rowindex): """Inserts a row at the required index by append/concat""" df = self.df a, b = df[:rowindex], df[rowindex:] a = a.append(pd.Series(), ignore_index=1) self.df =
pd.concat([a,b])
pandas.concat
from backend.lib import sql_queries import pandas as pd from pandas.testing import assert_frame_equal, assert_series_equal def test_get_user_info_for_existing_user(refresh_db_once, db_connection_sqlalchemy): engine = db_connection_sqlalchemy user_id = sql_queries.get_user_id(engine, email='<EMAIL>', password='<PASSWORD>') assert user_id == 1 def test_get_user_info_with_wrong_password_results_in_no_users_found(refresh_db_once, db_connection_sqlalchemy): engine = db_connection_sqlalchemy user_id = sql_queries.get_user_id(engine, email='<EMAIL>', password='<PASSWORD>') assert user_id is None def test_get_user_info_with_wildcard_email_address_results_in_no_users_found(refresh_db_once, db_connection_sqlalchemy): engine = db_connection_sqlalchemy user_id = sql_queries.get_user_id(engine, email='*', password='<PASSWORD>') assert user_id is None def test_get_user_info_with_wildcard_password_results_in_no_users_found(refresh_db_once, db_connection_sqlalchemy): engine = db_connection_sqlalchemy user_id = sql_queries.get_user_id(engine, email='<EMAIL>', password='*') assert user_id is None def test_get_user_info_for_non_existant_user(refresh_db_once, db_connection_sqlalchemy): engine = db_connection_sqlalchemy user_id = sql_queries.get_user_id(engine, email='<EMAIL>', password='<PASSWORD>') assert user_id is None def test_count_input_data_items_for_all_users_and_label_tasks(refresh_db_once, db_connection_sqlalchemy): df_test = pd.DataFrame() df_test['user_id'] = [1, 1, 1, 1, 2, 2, 2, 3, None, None] df_test['label_task_id'] = [1, 2, 3, 5, 1, 2, 5, 1, 4, 6] df_test['total_items'] = [5, 3, 1, 5, 5, 2, 5, 1, 1, 1] df_test['num_unlabeled'] = [2, 2, 1, 5, 4, 2, 5, 0, 1, 1] df_test['num_labeled'] = [3, 1, 0, 0, 1, 0, 0, 1, 0, 0] engine = db_connection_sqlalchemy df = sql_queries.count_input_data_items_per_user_per_label_task(engine, label_task_id=None, user_id=None) assert_series_equal(df['user_id'], df_test['user_id']) assert_series_equal(df['label_task_id'], df_test['label_task_id']) assert_series_equal(df['total_items'], df_test['total_items']) assert_series_equal(df['num_labeled'], df_test['num_labeled']) def test_get_all_input_data_items(refresh_db_once, db_connection_sqlalchemy): df_test = pd.DataFrame() df_test['input_data_id'] = [1, 2, 3, 4, 5] df_test['dataset_group_id'] = [1, 1, 1, 1, 1] df_test['dataset_id'] = [1, 1, 2, 2, 2] engine = db_connection_sqlalchemy df = sql_queries.get_all_input_data_items(engine, label_task_id=1) assert_frame_equal(df, df_test) def test_get_all_user_input_data(refresh_db_once, db_connection_sqlalchemy): df_test = pd.DataFrame() df_test['label_id'] = [3, 2, 1] df_test['input_data_id'] = [3, 2, 1] df_test['user_id'] = [1, 1, 1] df_test['label_task_id'] = [1, 1, 1] engine = db_connection_sqlalchemy df = sql_queries.get_all_user_input_data(engine, user_id=1, label_task_id=1, n=None) assert_series_equal(df['label_id'], df_test['label_id']) assert_series_equal(df['input_data_id'], df_test['input_data_id']) assert_series_equal(df['user_id'], df_test['user_id']) assert_series_equal(df['label_task_id'], df_test['label_task_id']) def test_get_all_user_input_data_filtered(refresh_db_once, db_connection_sqlalchemy): #filter incomplete df_test = pd.DataFrame() df_test['label_id'] = [1] df_test['input_data_id'] = [1] df_test['user_id'] = [1] df_test['label_task_id'] = [1] engine = db_connection_sqlalchemy df = sql_queries.get_first_user_input_data(engine, user_id=1, label_task_id=1, label_filter = "filter_incomplete") print("Received first incomplete entry") assert_series_equal(df['label_id'], df_test['label_id'])
assert_series_equal(df['input_data_id'], df_test['input_data_id'])
pandas.testing.assert_series_equal
#!/usr/bin/env python3 # -*- coding: utf-8 -*- QUANDLKEY = '<Enter your Quandl APT key here>' """ Created on Fri Oct 5 23:24:35 2018 @author: jeff """ '''************************************* #1. Import libraries and define key variables ''' import pandas as pd import numpy as np import quandl import matplotlib.pyplot as plt from sklearn.metrics import classification_report,roc_curve, auc,confusion_matrix,f1_score from sklearn.model_selection import train_test_split from sklearn import tree from sklearn.neural_network import MLPClassifier from sklearn.preprocessing import StandardScaler import pickle import graphviz #KPI keys quandl.ApiConfig.api_key = QUANDLKEY '''************************************* #2. Definition of functions ''' #2a.Download tickers def download_tkr(tkr): record_db_events_gp = pd.DataFrame() record_db_financials=quandl.get_table('SHARADAR/SF1', calendardate={'gte': '2008-12-31'}, ticker=tkr, dimension='MRY') record_db_financials['year'] = record_db_financials['reportperiod'].dt.year record_db_financials['year_1'] = record_db_financials['year']+1 record_db_events=quandl.get_table('SHARADAR/EVENTS', ticker=tkr) tmp_series = record_db_events['eventcodes'].str.contains('21') record_db_events= record_db_events[tmp_series] record_db_events['year'] = record_db_events.date.dt.year record_db_events= record_db_events.drop(['date'],axis=1) record_db_events_gp = record_db_events.groupby(['ticker','year'],as_index=False).count() combined_pd = pd.merge(record_db_financials,record_db_events_gp,how ='left',left_on='year_1',right_on='year') #convert all events to 1 and NaN combined_pd.loc[combined_pd['eventcodes']>1,'eventcodes'] = 1 X = record_db_financials.iloc[:,6:-5] Y = combined_pd.iloc[:,-1] return combined_pd, X, Y #tkr = 'AMZN' #df_tmp = download_tkr(tkr) #2b.Train tree def train_tree(X,Y,ind): print('Decision Tree') #split the dataset into training set and testing set X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.33, random_state=0) min_leaf_size = int(len(X_train) * 0.01) tree_clf = tree.DecisionTreeClassifier(min_samples_leaf=min_leaf_size) #preprocessing the data scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) #fit the training data to the model tree_clf.fit(X_train,Y_train) ##metric 1: roc Y_score_tree = tree_clf.predict(X_test) fpr, tpr, thresholds = roc_curve(Y_test,Y_score_tree, pos_label=1) roc_auc = auc(fpr,tpr) lw=2 plt.figure() plt.plot(fpr,tpr,color='darkorange',lw=lw,label='ROC curve (area = %0.2f)' %roc_auc) plt.plot([0,1],[0,1],color='navy',lw=lw,linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic - Decision Tree '+ind) plt.legend(loc="lower right") plt.savefig(ind+'_DT.png') ##metric 2: Confusion matrix Y_pred_tree = tree_clf.predict(X_test) confusion_matrix_tree = confusion_matrix(Y_test, Y_pred_tree) print(confusion_matrix_tree) print(classification_report(Y_test, Y_pred_tree)) #common standard to compare across models f1_clf = f1_score(Y_test, Y_pred_tree, average='weighted') ##save model f_tree = open(ind+'_tree_clf.pkl',"wb+") pickle.dump(tree_clf, f_tree) f_tree.close() f_tree_sc = open(ind+'_tree_scaler.pkl',"wb+") pickle.dump(scaler, f_tree_sc) f_tree_sc.close() return tree_clf,f1_clf ##2C Neural Network #2Ci. Grid search that simulate the performance of different neural network design def grid_search(X_train,X_test, Y_train,Y_test,num_training_sample): best_f1 = 0 best_hidden_layers_list = [] best_hidden_layers_tuple = () #various depth for depth in range(1,5): print('Depth = '+str(depth)) for layer_size in range(1,8): neuron_cnt = 0 hidden_layers_list = [] i = 0 while i<depth: hidden_layers_list.append(layer_size) neuron_cnt += layer_size i+=1 #pruning - to avoid over-training if num_training_sample<neuron_cnt: break hidden_layers_tuple = tuple(hidden_layers_list) nn_clf = MLPClassifier(alpha=1e-5, hidden_layer_sizes=hidden_layers_tuple, random_state=1) nn_clf.fit(X_train,Y_train) Y_pred = nn_clf.predict(X_test) temp_f1 = f1_score(Y_test, Y_pred, average='weighted') if temp_f1 > best_f1: best_f1 = temp_f1 best_hidden_layers_list = hidden_layers_list best_hidden_layers_tuple = hidden_layers_tuple print(best_hidden_layers_list) return best_hidden_layers_list,best_hidden_layers_tuple #2Cii. Train Neural Network def train_NN(X,Y,ind): print('Neural Network') #split the dataset into training set and testing set X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=.33, random_state=0) #preprocessing the data scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) X_test = scaler.transform(X_test) num_training_sample = len(X_train) best_hidden_layers_list,best_hidden_layers_tuple = grid_search(X_train, X_test, Y_train, Y_test,num_training_sample) nn_clf = MLPClassifier(alpha=1e-5, hidden_layer_sizes=best_hidden_layers_tuple, random_state=1) #fit the training data to the model nn_clf.fit(X_train,Y_train) ##metric 1: roc Y_score_nn = nn_clf.predict(X_test) fpr, tpr, thresholds = roc_curve(Y_test,Y_score_nn, pos_label=1) roc_auc = auc(fpr,tpr) lw=2 plt.figure() plt.plot(fpr,tpr,color='darkorange',lw=lw,label='ROC curve (area = %0.2f)' %roc_auc) plt.plot([0,1],[0,1],color='navy',lw=lw,linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic - Neural Network '+ind) plt.legend(loc="lower right") #plt.show() plt.savefig(ind+'_NN.png') ##metric 2: Confusion matrix Y_pred_tree = nn_clf.predict(X_test) confusion_matrix_tree = confusion_matrix(Y_test, Y_pred_tree) print(confusion_matrix_tree) print(classification_report(Y_test, Y_pred_tree)) #common standard to compare across models #f1_clf = f1_score(Y_test, Y_score_nn, average='binary') f1_clf = f1_score(Y_test, Y_score_nn, average='weighted') ##save model f_nn = open(ind+'_nn_clf_.pkl',"wb+") pickle.dump(nn_clf, f_nn) f_nn.close() f_nn_sc = open(ind+'_nn_scaler.pkl',"wb+") pickle.dump(scaler, f_nn_sc) f_nn_sc.close() return nn_clf, f1_clf '''************************************* 3. Execute the program #3a. filter the industry in scope ''' groupby_fld = 'sicsector' min_size = 30 df_tkr = pd.read_csv('industry_tickers_list.csv') dict_ind_tkr = {} f1_list = [] df_tkr_ind = pd.DataFrame() df_tkr_ind['cnt'] = df_tkr.groupby(groupby_fld)['ticker'].count() df_tkr_ind_select = df_tkr_ind[df_tkr_ind['cnt']>=min_size] list_scope = list(df_tkr_ind_select.index) #collect ticker in each industry for index, row in df_tkr.iterrows(): ind = row[groupby_fld] tkr = row['ticker'] if ind in list_scope: if ind in dict_ind_tkr: dict_ind_tkr[ind].append(tkr) else: dict_ind_tkr[ind] = [tkr] #loop through the dictionary - one industry at a time for ind, list_tkr in dict_ind_tkr.items(): df_X = pd.DataFrame({}) df_Y = pd.DataFrame({}) print(ind) #Go through the ticker list to Download data from source #loop through tickers from that industry for tkr in list_tkr: print(tkr) try: df_tmp,X_tmp,Y_tmp = download_tkr(tkr) except Exception: continue if len(df_X)==0: #df_all = df_tmp df_X = X_tmp df_Y = Y_tmp else: #df_all = pd.concat([df_all,df_tmp]) df_X =
pd.concat([df_X,X_tmp])
pandas.concat
import numpy as np import pandas as pd from powersimdata.input.input_data import InputData from powersimdata.tests.mock_scenario import MockScenario from postreise.analyze.transmission import congestion mock_plant = { "plant_id": ["A", "B", "C", "D"], "bus_id": [1, 1, 2, 3], } mock_bus = { "bus_id": [1, 2, 3, 4], "Pd": [5, 6, 30, 1], "zone_id": [1, 1, 1, 2], } grid_attrs = {"plant": mock_plant, "bus": mock_bus} def _check_return(expected_return, surplus): assert isinstance(surplus, pd.Series) msg = "Time series indices don't match" np.testing.assert_array_equal( surplus.index.to_numpy(), expected_return.index.to_numpy(), msg ) msg = "Values don't match expected" np.testing.assert_array_equal(surplus.to_numpy(), expected_return.to_numpy(), msg) def test_calculate_congestion_surplus_single_time(monkeypatch): """Congested case from Kirschen & Strbac Section 5.3.2.4""" def mock_get_data(*args, **kwargs): return demand # Override default InputData.get_data method to avoid profile csv lookup monkeypatch.setattr(InputData, "get_data", mock_get_data) demand = pd.DataFrame({"UTC": ["t1"], 1: [410], 2: [0]}) lmp = pd.DataFrame({"UTC": ["t1"], 1: [7.5], 2: [11.25], 3: [10], 4: [0]}) pg = pd.DataFrame({"UTC": ["t1"], "A": [50], "B": [285], "C": [0], "D": [75]}) for df in (demand, lmp, pg): df.set_index("UTC", inplace=True) mock_scenario = MockScenario(grid_attrs, demand=demand, lmp=lmp, pg=pg) expected_return = pd.Series( data=[787.5], index=
pd.date_range(start="2016-01-01", periods=1, freq="H")
pandas.date_range
import pandas as pd # just included for reference # this can be improved by using loops, reading the dir for CSV files. # read the created CSV files df1 = pd.read_csv('1.csv') print(df1.head()) print(len(df1)) df2 = pd.read_csv('2.csv') print(df2.head()) print(len(df2)) df3 = pd.read_csv('3.csv') print(df3.head()) print(len(df3)) print(f'total: {len(df1)+len(df2)+len(df3)}') # generate a single combined CSV df4 = pd.concat([df1, df2, df3]) print(df4.head()) combined_len = len(df4) print(combined_len) # drop duplicated entries if any df4 = df4.drop_duplicates() print(df4.head()) unique_len = len(df4) print(unique_len) print(f'unique% = {unique_len/combined_len*100}') df4.to_csv('combined.csv', index=False) # view the combined CSV with unique entries df5 =
pd.read_csv('combined.csv')
pandas.read_csv
import pandas as pd import boto3 name = "-20210326" metadata = "s3://ppmi-metadata/derived_tables/demog_ppmi_built_07042021.csv" cst = True cst = f's3://mjff-ppmi/volume_measures/direct_reg_seg_ppmi_volumes-mjff{name}-cst.csv' dir_reg_seg = f's3://mjff-ppmi/volume_measures/direct_reg_seg_ppmi_volumes-mjff.csv'#{name}.csv' randbasis = 's3://mjff-ppmi/superres-pipeline-mjff-randbasis/fullprojs.csv' randbasis_df =
pd.read_csv(randbasis)
pandas.read_csv
# Copyright (c) 2015-2020, Swiss Federal Institute of Technology (ETH Zurich) # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # """Core-activation RDP layer""" import copy import typing as t import numpy as np import pandas as pd import scipy.interpolate import scipy.signal from exot.exceptions import * from exot.util.misc import ( get_cores_and_schedules, get_valid_access_paths, getitem, is_scalar_numeric, ) from .._base import Layer from .._mixins import RDPmixins """ CoreActivation -------------- The CoreActivation performs the following: - [__Encode__]: takes a 1-d line-encoded stream, creates timestamps using a `subsymbol_rate` provided during execution, and produces a DataFrame with a `timestamp` as the 1st column, followed by columns with post-processed streams for each unique combination of `core_count` and `schedule_tag` for all configured environments/apps/zones. The post-processing maps line-encoded symbols using a symbol -> core-specifier mapping. The core-specifier is simply a the symbol as an integer represeted as a binary number. The `saturating` parameter is used to configure the mode in which the layer operates: for example, in saturating mode, the value of '2' is interpreted as "2 active", resulting in a core-specifier 0b11, which is equal to 3. The saturating operation is (2^x - 1), which produces binary numbers with all 1's (except for input of '0'). All produced values are in the range [0, 2^cores - 1]. In non-saturating mode the values are simply put through. Negative input values of are transformed into the (maximum saturating value + 1 - value). Checks are performed to make sure that all values lie in the valid range. Preconditions: - Input is a 1-d array Postconditions: - Output is a 2-d DataFrame with timestamps as 1st column, - [__Decode__]: takes a DataFrame with timestamps and values, oversamples the values in order to produce 2-d array of specific width (at least 2 × subsymbol count of the following line-coding layer), and outputs the reshaped values. After decoding, the corresponding timestamps array is available via the `decode_timestamps` property. Preconditions: - Input is a 2-d DataFrame - Input DataFrame has exactly 2 columns (timestamps + values) Postconditions: - Output is a NumPy array - Output is at least twice and less than 4 times the subsymbol count """ class CoreActivation(RDPmixins, Layer, layer=Layer.Type.PrePost): def __init__( self, *, sampling_period: float, environments_apps_zones: t.Mapping, saturating: bool = True, interpolation: str = "linear", **kwargs, ): """Initialise the CoreActivation RDP layer Args: sampling_period (float): the sink app's sampling period environments_apps_zones (t.Mapping): the env->app->zone mapping saturating (bool, optional): is configured as saturating? """ self.interpolation = interpolation self.sampling_period = sampling_period self.environments_apps_zones = environments_apps_zones self.saturating = saturating self.cores_and_schedules = get_cores_and_schedules(self.environments_apps_zones) @property def _encode_types(self) -> t.Tuple[type]: return (np.ndarray,) @property def _decode_types(self) -> t.Tuple[type]: return (pd.DataFrame,) @property def _encode_validators(self): return {np.ndarray: [lambda v: v.ndim == 1]} @property def _encode_output_validators(self): return { pd.DataFrame: [ lambda v: v.ndim == 2, lambda v: v.shape[1] == 1 + len(self.cores_and_schedules), ] } @property def _decode_validators(self): # Accepts: timestamps + single value return {pd.DataFrame: [lambda v: v.ndim == 2, lambda v: v.shape[1] == 2]} @property def _decode_output_validators(self): # Accepts: timestamps + single value return {pd.DataFrame: [lambda v: v.ndim == 2, lambda v: v.shape[1] >= 2]} @property def requires_runtime_config(self) -> (bool, bool): """Does the layer's (encode, decode) require runtime configuration?""" return (True, True) @property def required_config_keys(self): """The required config keys Implements the `required_config_keys` from Configurable base class """ return ["symbol_rate", "subsymbol_rate"] def validate(self) -> t.NoReturn: """Implementation of Configurable's `validate`""" if not is_scalar_numeric(self.config.subsymbol_rate): raise MisconfiguredError("subsymbol_rate must be a numeric value") if not is_scalar_numeric(self.config.symbol_rate): raise MisconfiguredError("symbol_rate must be a numeric value") @property def sampling_period(self): """Get the sampling period""" return self._sampling_period @sampling_period.setter def sampling_period(self, value): """Set the sampling period""" if not is_scalar_numeric(value): raise LayerMisconfigured("sampling_period must be an integer of float") self._sampling_period = value @property def saturating(self): """Is the layer operating in the saturating mode?""" return self._saturating @saturating.setter def saturating(self, value): """Set the saturating property""" if not isinstance(value, (bool, np.bool)): raise LayerMisconfigured(f"'saturating' must be a boolean, got: {value}") self._saturating = value @property def timing_interpolator(self) -> t.Optional[t.Callable]: """Get the timing interpolator Returns: t.Optional[t.Callable]: the interpolator function, if available """ return getattr(self, "_timing_interpolator", None) @property def values_interpolator(self) -> t.Optional[t.Callable]: """Get the values interpolator Returns: t.Optional[t.Callable]: the interpolator function, if available """ return getattr(self, "_values_interpolator", None) @staticmethod def _upper_limit(core_count: np.integer) -> np.integer: """Get the upper limit for valid core specifiers Args: core_count (np.integer): the core count Returns: np.integer: the upper limit """ assert isinstance(core_count, (int, np.integer)), "core_count must be an int" return 2 ** core_count - 1 def _apply_mapping(self, stream: np.ndarray, core_count: int) -> np.ndarray: """Apply a core-specifier mapping to an input stream Args: stream (np.ndarray): the 1-d lnestream core_count (int): the core count Returns: np.ndarray: a validated and optionally saturated stream Raises: ValueValidationFailed: if any of the values is not within [0, 2^core_count -1] """ # If operating in the 'saturating' mode if self.saturating: # If a negative value is encountered in the stream, replace it with the max, # which is (core_count), and subtract (value + 1). For example, with a core # count of 4, '-1' will yield '4', '-2' will yield '3', and so on. if (stream < 0).any(): stream[stream < 0] = core_count - (stream[stream < 0] + 1) stream = (2 ** stream - 1).astype(int) _ = self._upper_limit(core_count) if (stream < 0).any() or (stream > _).any(): raise ValueValidationFailed( f"some values in the mapped stream for core_count of {core_count} were " f"out of range [0, {_}]" ) return stream def _encode(self, lnestream: np.ndarray) -> pd.DataFrame: """Encode a lnestream for each core/schedule pair Args: lnestream (np.ndarray): the line-encoded stream from an LNE coder Returns: pd.DataFrame: a DataFrame with a timestamps and value columns named after tags """ tag_count = len(self.cores_and_schedules) rdpstream = np.empty((lnestream.shape[0], tag_count), dtype=np.dtype("int")) timestamps = np.full(lnestream.shape[0], 1 / self.config.subsymbol_rate) tags = [] for idx, (core_count, tag) in enumerate(self.cores_and_schedules): tags.append(tag) rdpstream[:, idx] = self._apply_mapping(lnestream.copy(), core_count) return pd.DataFrame.join( pd.DataFrame(timestamps, columns=["timestamp"]),
pd.DataFrame(rdpstream, columns=tags)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Time class. """ __all__ = ['Time'] class Time(object): """Class that defines the time of a unit or model Examples:: >>> th = Time('2017-01-01', '2017-01-02', freq = '2H') >>> th.dt 7200.0 .. _tab_tag_freq: .. table:: Freq available tags in Pandas ====== ============================================== Tag Description ====== ============================================== B business day frequency C custom business day frequency (experimental) D calendar day frequency W weekly frequency M month end frequency BM business month end frequency CBM custom business month end frequency MS month start frequency BMS business month start frequency CBMS custom business month start frequency Q quarter end frequency BQ business quarter endfrequency QS quarter start frequency BQS business quarter start frequency A year end frequency BA business year end frequency AS year start frequency BAS business year start frequency BH business hour frequency H hourly frequency T, min minutely frequency S secondly frequency L, ms milliseonds U, us microseconds N nanoseconds ====== ============================================== """ def __init__(self, start=None, end=None, freq=None, *args, **kwds): """ :param args: :param kwds: :param start: starting value, datetime-like :param end: end time, datetime-like :param freq: string or pandas offset object """ super().__init__(*args, **kwds) import pandas as pd from numpy import linspace from pandas.tseries.frequencies import to_offset if freq is None: freq = 'H' self.freq = freq if isinstance(start, str) and isinstance(end, str): try: self.start = pd.Timestamp(start) self.end =
pd.Timestamp(end)
pandas.Timestamp
import pytest import numpy as np import pandas import pandas.util.testing as tm from pandas.tests.frame.common import TestData import matplotlib import modin.pandas as pd from modin.pandas.utils import to_pandas from numpy.testing import assert_array_equal from .utils import ( random_state, RAND_LOW, RAND_HIGH, df_equals, df_is_empty, arg_keys, name_contains, test_data_values, test_data_keys, test_data_with_duplicates_values, test_data_with_duplicates_keys, numeric_dfs, no_numeric_dfs, test_func_keys, test_func_values, query_func_keys, query_func_values, agg_func_keys, agg_func_values, numeric_agg_funcs, quantiles_keys, quantiles_values, indices_keys, indices_values, axis_keys, axis_values, bool_arg_keys, bool_arg_values, int_arg_keys, int_arg_values, ) # TODO remove once modin-project/modin#469 is resolved agg_func_keys.remove("str") agg_func_values.remove(str) pd.DEFAULT_NPARTITIONS = 4 # Force matplotlib to not use any Xwindows backend. matplotlib.use("Agg") class TestDFPartOne: # Test inter df math functions def inter_df_math_helper(self, modin_df, pandas_df, op): # Test dataframe to datframe try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) # Test dataframe to int try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) # Test dataframe to float try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) # Test transposed dataframes to float try: pandas_result = getattr(pandas_df.T, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df.T, op)(4.0) else: modin_result = getattr(modin_df.T, op)(4.0) df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) # Test dataframe to different dataframe shape try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) # Test dataframe to list list_test = random_state.randint(RAND_LOW, RAND_HIGH, size=(modin_df.shape[1])) try: pandas_result = getattr(pandas_df, op)(list_test, axis=1) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(list_test, axis=1) else: modin_result = getattr(modin_df, op)(list_test, axis=1) df_equals(modin_result, pandas_result) # Test dataframe to series series_test_modin = modin_df[modin_df.columns[0]] series_test_pandas = pandas_df[pandas_df.columns[0]] try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Test dataframe to series with different index series_test_modin = modin_df[modin_df.columns[0]].reset_index(drop=True) series_test_pandas = pandas_df[pandas_df.columns[0]].reset_index(drop=True) try: pandas_result = getattr(pandas_df, op)(series_test_pandas, axis=0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(series_test_modin, axis=0) else: modin_result = getattr(modin_df, op)(series_test_modin, axis=0) df_equals(modin_result, pandas_result) # Level test new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "add") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_div(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "div") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_divide(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "divide") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_floordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "floordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_mul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "mul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_multiply(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "multiply") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pow(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive # values try: pandas_df = pandas_df.abs() except Exception: pass else: modin_df = modin_df.abs() self.inter_df_math_helper(modin_df, pandas_df, "pow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_sub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "sub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_subtract(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "subtract") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_truediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "truediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___div__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__div__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___add__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__add__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___radd__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__radd__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmul__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmul__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___pow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__pow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rpow__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rpow__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___sub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__sub__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___floordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__floordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rfloordiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rfloordiv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___truediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__truediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rtruediv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rtruediv__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___mod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__mod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rmod__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rmod__") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rdiv__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_helper(modin_df, pandas_df, "__rdiv__") # END test inter df math functions # Test comparison of inter operation functions def comparison_inter_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(pandas_df) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df) else: modin_result = getattr(modin_df, op)(modin_df) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except TypeError: with pytest.raises(TypeError): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)("a") except TypeError: with pytest.raises(TypeError): repr(getattr(modin_df, op)("a")) else: modin_result = getattr(modin_df, op)("a") df_equals(modin_result, pandas_result) frame_data = { "{}_other".format(modin_df.columns[0]): [0, 2], modin_df.columns[0]: [0, 19], modin_df.columns[1]: [1, 1], } modin_df2 = pd.DataFrame(frame_data) pandas_df2 = pandas.DataFrame(frame_data) try: pandas_result = getattr(pandas_df, op)(pandas_df2) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(modin_df2) else: modin_result = getattr(modin_df, op)(modin_df2) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_eq(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "eq") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ge(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ge") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_gt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "gt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_le(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "le") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_lt(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "lt") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ne(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.comparison_inter_ops_helper(modin_df, pandas_df, "ne") # END test comparison of inter operation functions # Test dataframe right operations def inter_df_math_right_ops_helper(self, modin_df, pandas_df, op): try: pandas_result = getattr(pandas_df, op)(4) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4) else: modin_result = getattr(modin_df, op)(4) df_equals(modin_result, pandas_result) try: pandas_result = getattr(pandas_df, op)(4.0) except Exception as e: with pytest.raises(type(e)): getattr(modin_df, op)(4.0) else: modin_result = getattr(modin_df, op)(4.0) df_equals(modin_result, pandas_result) new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in modin_df.index] ) modin_df_multi_level = modin_df.copy() modin_df_multi_level.index = new_idx # Defaults to pandas with pytest.warns(UserWarning): # Operation against self for sanity check getattr(modin_df_multi_level, op)(modin_df_multi_level, axis=0, level=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_radd(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "radd") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rdiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rdiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rfloordiv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rfloordiv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmod(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmod") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rmul(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rmul") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rpow(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # TODO: Revert to others once we have an efficient way of preprocessing for positive values # We need to check that negative integers are not used efficiently if "100x100" not in request.node.name: self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rpow") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rsub(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rsub") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_rtruediv(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "rtruediv") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test___rsub__(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) self.inter_df_math_right_ops_helper(modin_df, pandas_df, "__rsub__") # END test dataframe right operations @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_abs(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.abs() except Exception as e: with pytest.raises(type(e)): modin_df.abs() else: modin_result = modin_df.abs() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_prefix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_prefix = "TEST" new_modin_df = modin_df.add_prefix(test_prefix) new_pandas_df = pandas_df.add_prefix(test_prefix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): x = 2 modin_df.applymap(x) try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("testfunc", test_func_values, ids=test_func_keys) def test_applymap_numeric(self, request, data, testfunc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.applymap(testfunc) except Exception as e: with pytest.raises(type(e)): modin_df.applymap(testfunc) else: modin_result = modin_df.applymap(testfunc) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_add_suffix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) test_suffix = "TEST" new_modin_df = modin_df.add_suffix(test_suffix) new_pandas_df = pandas_df.add_suffix(test_suffix) df_equals(new_modin_df.columns, new_pandas_df.columns) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_at(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] # Scaler assert modin_df.at[0, key1] == pandas_df.at[0, key1] # Series df_equals(modin_df.loc[0].at[key1], pandas_df.loc[0].at[key1]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.at[1, key1] = modin_df.at[0, key1] pandas_df_copy.at[1, key1] = pandas_df.at[0, key1] df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) for modin_axis, pd_axis in zip(modin_df.axes, pandas_df.axes): assert np.array_equal(modin_axis, pd_axis) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_copy(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused but there so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize new_modin_df = modin_df.copy() assert new_modin_df is not modin_df assert np.array_equal( new_modin_df._query_compiler._modin_frame._partitions, modin_df._query_compiler._modin_frame._partitions, ) assert new_modin_df is not modin_df df_equals(new_modin_df, modin_df) # Shallow copy tests modin_df = pd.DataFrame(data) modin_df_cp = modin_df.copy(False) modin_df[modin_df.columns[0]] = 0 df_equals(modin_df, modin_df_cp) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dtypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.dtypes, pandas_df.dtypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ftypes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.ftypes, pandas_df.ftypes) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("key", indices_values, ids=indices_keys) def test_get(self, data, key): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get(key), pandas_df.get(key)) df_equals( modin_df.get(key, default="default"), pandas_df.get(key, default="default") ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_dtype_counts(self, data): modin_result = pd.DataFrame(data).get_dtype_counts().sort_index() pandas_result = pandas.DataFrame(data).get_dtype_counts().sort_index() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "dummy_na", bool_arg_values, ids=arg_keys("dummy_na", bool_arg_keys) ) @pytest.mark.parametrize( "drop_first", bool_arg_values, ids=arg_keys("drop_first", bool_arg_keys) ) def test_get_dummies(self, request, data, dummy_na, drop_first): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas.get_dummies( pandas_df, dummy_na=dummy_na, drop_first=drop_first ) except Exception as e: with pytest.raises(type(e)): pd.get_dummies(modin_df, dummy_na=dummy_na, drop_first=drop_first) else: modin_result = pd.get_dummies( modin_df, dummy_na=dummy_na, drop_first=drop_first ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_get_ftype_counts(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.get_ftype_counts(), pandas_df.get_ftype_counts()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg(self, data, axis, func): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_agg_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.aggregate(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.aggregate(func, axis) else: modin_result = modin_df.aggregate(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_aggregate_numeric(self, request, data, axis, func): if name_contains(request.node.name, numeric_agg_funcs) and name_contains( request.node.name, numeric_dfs ): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.agg(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.agg(func, axis) else: modin_result = modin_df.agg(func, axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_aggregate_error_checking(self, data): modin_df = pd.DataFrame(data) assert modin_df.aggregate("ndim") == 2 with pytest.warns(UserWarning): modin_df.aggregate( {modin_df.columns[0]: "sum", modin_df.columns[1]: "mean"} ) with pytest.warns(UserWarning): modin_df.aggregate("cumproduct") with pytest.raises(ValueError): modin_df.aggregate("NOT_EXISTS") def test_align(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).align(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_all(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.all(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.all(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.all( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # Test when axis is None. This will get repeated but easier than using list in parameterize decorator try: pandas_result = pandas_df.T.all( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.all(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.all( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "bool_only", bool_arg_values, ids=arg_keys("bool_only", bool_arg_keys) ) def test_any(self, data, axis, skipna, bool_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.any(axis=axis, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.any(axis=None, skipna=skipna, bool_only=bool_only) except Exception as e: with pytest.raises(type(e)): modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=axis, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=axis, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.any( axis=None, skipna=skipna, bool_only=bool_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) else: modin_result = modin_df.T.any(axis=None, skipna=skipna, bool_only=bool_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col for level in list(range(levels)) + (axis_names if axis_names else []): try: pandas_multi_level_result = pandas_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) else: modin_multi_level_result = modin_df_multi_level.any( axis=axis, bool_only=bool_only, level=level, skipna=skipna ) df_equals(modin_multi_level_result, pandas_multi_level_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_append(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) data_to_append = {"append_a": 2, "append_b": 1000} ignore_idx_values = [True, False] for ignore in ignore_idx_values: try: pandas_result = pandas_df.append(data_to_append, ignore_index=ignore) except Exception as e: with pytest.raises(type(e)): modin_df.append(data_to_append, ignore_index=ignore) else: modin_result = modin_df.append(data_to_append, ignore_index=ignore) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(pandas_df.iloc[-1]) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df.iloc[-1]) else: modin_result = modin_df.append(modin_df.iloc[-1]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append(list(pandas_df.iloc[-1])) except Exception as e: with pytest.raises(type(e)): modin_df.append(list(modin_df.iloc[-1])) else: modin_result = modin_df.append(list(modin_df.iloc[-1])) df_equals(modin_result, pandas_result) verify_integrity_values = [True, False] for verify_integrity in verify_integrity_values: try: pandas_result = pandas_df.append( [pandas_df, pandas_df], verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) else: modin_result = modin_df.append( [modin_df, modin_df], verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.append( pandas_df, verify_integrity=verify_integrity ) except Exception as e: with pytest.raises(type(e)): modin_df.append(modin_df, verify_integrity=verify_integrity) else: modin_result = modin_df.append( modin_df, verify_integrity=verify_integrity ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) def test_apply(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(TypeError): modin_df.apply({"row": func}, axis=1) try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) def test_apply_metadata(self): def add(a, b, c): return a + b + c data = {"A": [1, 2, 3], "B": [4, 5, 6], "C": [7, 8, 9]} modin_df = pd.DataFrame(data) modin_df["add"] = modin_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) pandas_df = pandas.DataFrame(data) pandas_df["add"] = pandas_df.apply( lambda row: add(row["A"], row["B"], row["C"]), axis=1 ) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("func", agg_func_values, ids=agg_func_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_apply_numeric(self, request, data, func, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): try: pandas_result = pandas_df.apply(func, axis) except Exception as e: with pytest.raises(type(e)): modin_df.apply(func, axis) else: modin_result = modin_df.apply(func, axis) df_equals(modin_result, pandas_result) if "empty_data" not in request.node.name: key = modin_df.columns[0] modin_result = modin_df.apply(lambda df: df.drop(key), axis=1) pandas_result = pandas_df.apply(lambda df: df.drop(key), axis=1) df_equals(modin_result, pandas_result) def test_as_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).as_blocks() def test_as_matrix(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) mat = frame.as_matrix() frame_columns = frame.columns for i, row in enumerate(mat): for j, value in enumerate(row): col = frame_columns[j] if np.isnan(value): assert np.isnan(frame[col][i]) else: assert value == frame[col][i] # mixed type mat = pd.DataFrame(test_data.mixed_frame).as_matrix(["foo", "A"]) assert mat[0, 0] == "bar" df = pd.DataFrame({"real": [1, 2, 3], "complex": [1j, 2j, 3j]}) mat = df.as_matrix() assert mat[0, 1] == 1j # single block corner case mat = pd.DataFrame(test_data.frame).as_matrix(["A", "B"]) expected = test_data.frame.reindex(columns=["A", "B"]).values tm.assert_almost_equal(mat, expected) def test_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) assert_array_equal(frame.values, test_data.frame.values) def test_partition_to_numpy(self): test_data = TestData() frame = pd.DataFrame(test_data.frame) for ( partition ) in frame._query_compiler._modin_frame._partitions.flatten().tolist(): assert_array_equal(partition.to_pandas().values, partition.to_numpy()) def test_asfreq(self): index = pd.date_range("1/1/2000", periods=4, freq="T") series = pd.Series([0.0, None, 2.0, 3.0], index=index) df = pd.DataFrame({"s": series}) with pytest.warns(UserWarning): # We are only testing that this defaults to pandas, so we will just check for # the warning df.asfreq(freq="30S") def test_asof(self): df = pd.DataFrame( {"a": [10, 20, 30, 40, 50], "b": [None, None, None, None, 500]}, index=pd.DatetimeIndex( [ "2018-02-27 09:01:00", "2018-02-27 09:02:00", "2018-02-27 09:03:00", "2018-02-27 09:04:00", "2018-02-27 09:05:00", ] ), ) with pytest.warns(UserWarning): df.asof(pd.DatetimeIndex(["2018-02-27 09:03:30", "2018-02-27 09:04:30"])) def test_assign(self): data = test_data_values[0] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.warns(UserWarning): modin_result = modin_df.assign(new_column=pd.Series(modin_df.iloc[:, 0])) pandas_result = pandas_df.assign(new_column=pd.Series(pandas_df.iloc[:, 0])) df_equals(modin_result, pandas_result) def test_astype(self): td = TestData() modin_df = pd.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) expected_df = pandas.DataFrame( td.frame.values, index=td.frame.index, columns=td.frame.columns ) modin_df_casted = modin_df.astype(np.int32) expected_df_casted = expected_df.astype(np.int32) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(np.float64) expected_df_casted = expected_df.astype(np.float64) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype(str) expected_df_casted = expected_df.astype(str) df_equals(modin_df_casted, expected_df_casted) modin_df_casted = modin_df.astype("category") expected_df_casted = expected_df.astype("category") df_equals(modin_df_casted, expected_df_casted) dtype_dict = {"A": np.int32, "B": np.int64, "C": str} modin_df_casted = modin_df.astype(dtype_dict) expected_df_casted = expected_df.astype(dtype_dict) df_equals(modin_df_casted, expected_df_casted) # Ignore lint because this is testing bad input bad_dtype_dict = {"B": np.int32, "B": np.int64, "B": str} # noqa F601 modin_df_casted = modin_df.astype(bad_dtype_dict) expected_df_casted = expected_df.astype(bad_dtype_dict) df_equals(modin_df_casted, expected_df_casted) with pytest.raises(KeyError): modin_df.astype({"not_exists": np.uint8}) def test_astype_category(self): modin_df = pd.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) pandas_df = pandas.DataFrame( {"col1": ["A", "A", "B", "B", "A"], "col2": [1, 2, 3, 4, 5]} ) modin_result = modin_df.astype({"col1": "category"}) pandas_result = pandas_df.astype({"col1": "category"}) df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) modin_result = modin_df.astype("category") pandas_result = pandas_df.astype("category") df_equals(modin_result, pandas_result) assert modin_result.dtypes.equals(pandas_result.dtypes) def test_at_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.at_time("12:00") def test_between_time(self): i = pd.date_range("2018-04-09", periods=4, freq="12H") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.between_time("0:15", "0:45") def test_bfill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.bfill(), test_data.tsframe.bfill()) def test_blocks(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).blocks @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_bool(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(ValueError): modin_df.bool() modin_df.__bool__() single_bool_pandas_df = pandas.DataFrame([True]) single_bool_modin_df = pd.DataFrame([True]) assert single_bool_pandas_df.bool() == single_bool_modin_df.bool() with pytest.raises(ValueError): # __bool__ always raises this error for DataFrames single_bool_modin_df.__bool__() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_boxplot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 assert modin_df.boxplot() == to_pandas(modin_df).boxplot() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower, upper = np.sort(random_state.random_integers(RAND_LOW, RAND_HIGH, 2)) lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test only upper scalar bound modin_result = modin_df.clip(None, upper, axis=axis) pandas_result = pandas_df.clip(None, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper scalar bound modin_result = modin_df.clip(lower, upper, axis=axis) pandas_result = pandas_df.clip(lower, upper, axis=axis) df_equals(modin_result, pandas_result) # test lower and upper list bound on each column modin_result = modin_df.clip(lower_list, upper_list, axis=axis) pandas_result = pandas_df.clip(lower_list, upper_list, axis=axis) df_equals(modin_result, pandas_result) # test only upper list bound on each column modin_result = modin_df.clip(np.nan, upper_list, axis=axis) pandas_result = pandas_df.clip(np.nan, upper_list, axis=axis) df_equals(modin_result, pandas_result) with pytest.raises(ValueError): modin_df.clip(lower=[1, 2, 3], axis=None) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_lower(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds lower = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] lower_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test lower scalar bound pandas_result = pandas_df.clip_lower(lower, axis=axis) modin_result = modin_df.clip_lower(lower, axis=axis) df_equals(modin_result, pandas_result) # test lower list bound on each column pandas_result = pandas_df.clip_lower(lower_list, axis=axis) modin_result = modin_df.clip_lower(lower_list, axis=axis) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) def test_clip_upper(self, request, data, axis): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): ind_len = ( len(modin_df.index) if not pandas.DataFrame()._get_axis_number(axis) else len(modin_df.columns) ) # set bounds upper = random_state.random_integers(RAND_LOW, RAND_HIGH, 1)[0] upper_list = random_state.random_integers(RAND_LOW, RAND_HIGH, ind_len) # test upper scalar bound modin_result = modin_df.clip_upper(upper, axis=axis) pandas_result = pandas_df.clip_upper(upper, axis=axis) df_equals(modin_result, pandas_result) # test upper list bound on each column modin_result = modin_df.clip_upper(upper_list, axis=axis) pandas_result = pandas_df.clip_upper(upper_list, axis=axis) df_equals(modin_result, pandas_result) def test_combine(self): df1 = pd.DataFrame({"A": [0, 0], "B": [4, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine(df2, lambda s1, s2: s1 if s1.sum() < s2.sum() else s2) def test_combine_first(self): df1 = pd.DataFrame({"A": [None, 0], "B": [None, 4]}) df2 = pd.DataFrame({"A": [1, 1], "B": [3, 3]}) with pytest.warns(UserWarning): df1.combine_first(df2) def test_compound(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).compound() def test_corr(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corr() def test_corrwith(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).corrwith(pd.DataFrame(data)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_count(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) modin_result = modin_df.T.count(axis=axis, numeric_only=numeric_only) pandas_result = pandas_df.T.count(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) # test level modin_df_multi_level = modin_df.copy() pandas_df_multi_level = pandas_df.copy() axis = modin_df._get_axis_number(axis) if axis is not None else 0 levels = 3 axis_names_list = [["a", "b", "c"], None] for axis_names in axis_names_list: if axis == 0: new_idx = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.index))], names=axis_names, ) modin_df_multi_level.index = new_idx pandas_df_multi_level.index = new_idx try: # test error pandas_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=1, numeric_only=numeric_only, level=0 ) else: new_col = pandas.MultiIndex.from_tuples( [(i // 4, i // 2, i) for i in range(len(modin_df.columns))], names=axis_names, ) modin_df_multi_level.columns = new_col pandas_df_multi_level.columns = new_col try: # test error pandas_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) except Exception as e: with pytest.raises(type(e)): modin_df_multi_level.count( axis=0, numeric_only=numeric_only, level=0 ) for level in list(range(levels)) + (axis_names if axis_names else []): modin_multi_level_result = modin_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) pandas_multi_level_result = pandas_df_multi_level.count( axis=axis, numeric_only=numeric_only, level=level ) df_equals(modin_multi_level_result, pandas_multi_level_result) def test_cov(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).cov() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummax(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummax(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummax(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cummin(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cummin(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cummin(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cummin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumprod(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.cumprod(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumprod(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumprod(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_cumsum(self, request, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # pandas exhibits weird behavior for this case # Remove this case when we can pull the error messages from backend if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) if name_contains(request.node.name, ["datetime_timedelta_data"]) and ( axis == 0 or axis == "rows" ): with pytest.raises(TypeError): modin_df.T.cumsum(axis=axis, skipna=skipna) else: try: pandas_result = pandas_df.T.cumsum(axis=axis, skipna=skipna) except Exception as e: with pytest.raises(type(e)): modin_df.T.cumsum(axis=axis, skipna=skipna) else: modin_result = modin_df.T.cumsum(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_describe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.describe(), pandas_df.describe()) percentiles = [0.10, 0.11, 0.44, 0.78, 0.99] df_equals( modin_df.describe(percentiles=percentiles), pandas_df.describe(percentiles=percentiles), ) try: pandas_result = pandas_df.describe(exclude=[np.float64]) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=[np.float64]) else: modin_result = modin_df.describe(exclude=[np.float64]) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe(exclude=np.float64) except Exception as e: with pytest.raises(type(e)): modin_df.describe(exclude=np.float64) else: modin_result = modin_df.describe(exclude=np.float64) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) except Exception as e: with pytest.raises(type(e)): modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) else: modin_result = modin_df.describe( include=[np.timedelta64, np.datetime64, np.object, np.bool] ) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=str(modin_df.dtypes.values[0])) pandas_result = pandas_df.describe(include=str(pandas_df.dtypes.values[0])) df_equals(modin_result, pandas_result) modin_result = modin_df.describe(include=[np.number]) pandas_result = pandas_df.describe(include=[np.number]) df_equals(modin_result, pandas_result) df_equals(modin_df.describe(include="all"), pandas_df.describe(include="all")) modin_df = pd.DataFrame(data).applymap(str) pandas_df = pandas.DataFrame(data).applymap(str) try: df_equals(modin_df.describe(), pandas_df.describe()) except AssertionError: # We have to do this because we choose the highest count slightly differently # than pandas. Because there is no true guarantee which one will be first, # If they don't match, make sure that the `freq` is the same at least. df_equals( modin_df.describe().loc[["count", "unique", "freq"]], pandas_df.describe().loc[["count", "unique", "freq"]], ) def test_describe_dtypes(self): modin_df = pd.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) pandas_df = pandas.DataFrame( { "col1": list("abc"), "col2": list("abc"), "col3": list("abc"), "col4": [1, 2, 3], } ) modin_result = modin_df.describe() pandas_result = pandas_df.describe() df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "periods", int_arg_values, ids=arg_keys("periods", int_arg_keys) ) def test_diff(self, request, data, axis, periods): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.diff(axis=axis, periods=periods) else: modin_result = modin_df.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.diff(axis=axis, periods=periods) except Exception as e: with pytest.raises(type(e)): modin_df.T.diff(axis=axis, periods=periods) else: modin_result = modin_df.T.diff(axis=axis, periods=periods) df_equals(modin_result, pandas_result) def test_drop(self): frame_data = {"A": [1, 2, 3, 4], "B": [0, 1, 2, 3]} simple = pandas.DataFrame(frame_data) modin_simple = pd.DataFrame(frame_data) df_equals(modin_simple.drop("A", axis=1), simple[["B"]]) df_equals(modin_simple.drop(["A", "B"], axis="columns"), simple[[]]) df_equals(modin_simple.drop([0, 1, 3], axis=0), simple.loc[[2], :]) df_equals(modin_simple.drop([0, 3], axis="index"), simple.loc[[1, 2], :]) pytest.raises(ValueError, modin_simple.drop, 5) pytest.raises(ValueError, modin_simple.drop, "C", 1) pytest.raises(ValueError, modin_simple.drop, [1, 5]) pytest.raises(ValueError, modin_simple.drop, ["A", "C"], 1) # errors = 'ignore' df_equals(modin_simple.drop(5, errors="ignore"), simple) df_equals(modin_simple.drop([0, 5], errors="ignore"), simple.loc[[1, 2, 3], :]) df_equals(modin_simple.drop("C", axis=1, errors="ignore"), simple) df_equals(modin_simple.drop(["A", "C"], axis=1, errors="ignore"), simple[["B"]]) # non-unique nu_df = pandas.DataFrame( zip(range(3), range(-3, 1), list("abc")), columns=["a", "a", "b"] ) modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("a", axis=1), nu_df[["b"]]) df_equals(modin_nu_df.drop("b", axis="columns"), nu_df["a"]) df_equals(modin_nu_df.drop([]), nu_df) nu_df = nu_df.set_index(pandas.Index(["X", "Y", "X"])) nu_df.columns = list("abc") modin_nu_df = pd.DataFrame(nu_df) df_equals(modin_nu_df.drop("X", axis="rows"), nu_df.loc[["Y"], :]) df_equals(modin_nu_df.drop(["X", "Y"], axis=0), nu_df.loc[[], :]) # inplace cache issue frame_data = random_state.randn(10, 3) df = pandas.DataFrame(frame_data, columns=list("abc")) modin_df = pd.DataFrame(frame_data, columns=list("abc")) expected = df[~(df.b > 0)] modin_df.drop(labels=df[df.b > 0].index, inplace=True) df_equals(modin_df, expected) midx = pd.MultiIndex( levels=[["lama", "cow", "falcon"], ["speed", "weight", "length"]], codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2], [0, 1, 2, 0, 1, 2, 0, 1, 2]], ) df = pd.DataFrame( index=midx, columns=["big", "small"], data=[ [45, 30], [200, 100], [1.5, 1], [30, 20], [250, 150], [1.5, 0.8], [320, 250], [1, 0.8], [0.3, 0.2], ], ) with pytest.warns(UserWarning): df.drop(index="length", level=1) def test_drop_api_equivalence(self): # equivalence of the labels/axis and index/columns API's frame_data = [[1, 2, 3], [3, 4, 5], [5, 6, 7]] modin_df = pd.DataFrame( frame_data, index=["a", "b", "c"], columns=["d", "e", "f"] ) modin_df1 = modin_df.drop("a") modin_df2 = modin_df.drop(index="a") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop("d", 1) modin_df2 = modin_df.drop(columns="d") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(labels="e", axis=1) modin_df2 = modin_df.drop(columns="e") df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0) modin_df2 = modin_df.drop(index=["a"]) df_equals(modin_df1, modin_df2) modin_df1 = modin_df.drop(["a"], axis=0).drop(["d"], axis=1) modin_df2 = modin_df.drop(index=["a"], columns=["d"]) df_equals(modin_df1, modin_df2) with pytest.raises(ValueError): modin_df.drop(labels="a", index="b") with pytest.raises(ValueError): modin_df.drop(labels="a", columns="b") with pytest.raises(ValueError): modin_df.drop(axis=1) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_drop_transpose(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.T.drop(columns=[0, 1, 2]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(index=["col3", "col1"]) pandas_result = pandas_df.T.drop(index=["col3", "col1"]) df_equals(modin_result, pandas_result) modin_result = modin_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) pandas_result = pandas_df.T.drop(columns=[0, 1, 2], index=["col3", "col1"]) df_equals(modin_result, pandas_result) def test_droplevel(self): df = ( pd.DataFrame([[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]]) .set_index([0, 1]) .rename_axis(["a", "b"]) ) df.columns = pd.MultiIndex.from_tuples( [("c", "e"), ("d", "f")], names=["level_1", "level_2"] ) with pytest.warns(UserWarning): df.droplevel("a") with pytest.warns(UserWarning): df.droplevel("level_2", axis=1) @pytest.mark.parametrize( "data", test_data_with_duplicates_values, ids=test_data_with_duplicates_keys ) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) @pytest.mark.parametrize( "subset", [None, ["col1", "col3", "col7"]], ids=["None", "subset"] ) def test_drop_duplicates(self, data, keep, subset): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.drop_duplicates(keep=keep, inplace=False, subset=subset), pandas_df.drop_duplicates(keep=keep, inplace=False, subset=subset), ) modin_results = modin_df.drop_duplicates(keep=keep, inplace=True, subset=subset) pandas_results = pandas_df.drop_duplicates( keep=keep, inplace=True, subset=subset ) df_equals(modin_results, pandas_results) def test_drop_duplicates_with_missing_index_values(self): data = { "columns": ["value", "time", "id"], "index": [ 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, 21, 22, 23, 24, 25, 26, 27, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, ], "data": [ ["3", 1279213398000.0, 88.0], ["3", 1279204682000.0, 88.0], ["0", 1245772835000.0, 448.0], ["0", 1270564258000.0, 32.0], ["0", 1267106669000.0, 118.0], ["7", 1300621123000.0, 5.0], ["0", 1251130752000.0, 957.0], ["0", 1311683506000.0, 62.0], ["9", 1283692698000.0, 89.0], ["9", 1270234253000.0, 64.0], ["0", 1285088818000.0, 50.0], ["0", 1218212725000.0, 695.0], ["2", 1383933968000.0, 348.0], ["0", 1368227625000.0, 257.0], ["1", 1454514093000.0, 446.0], ["1", 1428497427000.0, 134.0], ["1", 1459184936000.0, 568.0], ["1", 1502293302000.0, 599.0], ["1", 1491833358000.0, 829.0], ["1", 1485431534000.0, 806.0], ["8", 1351800505000.0, 101.0], ["0", 1357247721000.0, 916.0], ["0", 1335804423000.0, 370.0], ["24", 1327547726000.0, 720.0], ["0", 1332334140000.0, 415.0], ["0", 1309543100000.0, 30.0], ["18", 1309541141000.0, 30.0], ["0", 1298979435000.0, 48.0], ["14", 1276098160000.0, 59.0], ["0", 1233936302000.0, 109.0], ], } pandas_df = pandas.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_df = pd.DataFrame( data["data"], index=data["index"], columns=data["columns"] ) modin_result = modin_df.sort_values(["id", "time"]).drop_duplicates(["id"]) pandas_result = pandas_df.sort_values(["id", "time"]).drop_duplicates(["id"]) df_equals(modin_result, pandas_result) def test_drop_duplicates_after_sort(self): data = [ {"value": 1, "time": 2}, {"value": 1, "time": 1}, {"value": 2, "time": 1}, {"value": 2, "time": 2}, ] modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) pandas_result = pandas_df.sort_values(["value", "time"]).drop_duplicates( ["value"] ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("how", ["any", "all"], ids=["any", "all"]) def test_dropna(self, data, axis, how): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.dropna(axis=axis, how="invalid") with pytest.raises(TypeError): modin_df.dropna(axis=axis, how=None, thresh=None) with pytest.raises(KeyError): modin_df.dropna(axis=axis, subset=["NotExists"], how=how) modin_result = modin_df.dropna(axis=axis, how=how) pandas_result = pandas_df.dropna(axis=axis, how=how) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.dropna() modin_df.dropna(inplace=True) df_equals(modin_df, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(thresh=2, inplace=True) modin_df.dropna(thresh=2, inplace=True) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_df.dropna(axis=1, how="any", inplace=True) modin_df.dropna(axis=1, how="any", inplace=True) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.dropna(how="all", axis=[0, 1]), pandas_df.dropna(how="all", axis=[0, 1]), ) df_equals( modin_df.dropna(how="all", axis=(0, 1)), pandas_df.dropna(how="all", axis=(0, 1)), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_multiple_axes_inplace(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=[0, 1], inplace=True) pandas_df_copy.dropna(how="all", axis=[0, 1], inplace=True) df_equals(modin_df_copy, pandas_df_copy) modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.dropna(how="all", axis=(0, 1), inplace=True) pandas_df_copy.dropna(how="all", axis=(0, 1), inplace=True) df_equals(modin_df_copy, pandas_df_copy) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: column_subset = modin_df.columns[0:2] df_equals( modin_df.dropna(how="all", subset=column_subset), pandas_df.dropna(how="all", subset=column_subset), ) df_equals( modin_df.dropna(how="any", subset=column_subset), pandas_df.dropna(how="any", subset=column_subset), ) row_subset = modin_df.index[0:2] df_equals( modin_df.dropna(how="all", axis=1, subset=row_subset), pandas_df.dropna(how="all", axis=1, subset=row_subset), ) df_equals( modin_df.dropna(how="any", axis=1, subset=row_subset), pandas_df.dropna(how="any", axis=1, subset=row_subset), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dropna_subset_error(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 # pandas_df is unused so there won't be confusing list comprehension # stuff in the pytest.mark.parametrize with pytest.raises(KeyError): modin_df.dropna(subset=list("EF")) if len(modin_df.columns) < 5: with pytest.raises(KeyError): modin_df.dropna(axis=1, subset=[4, 5]) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_dot(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) col_len = len(modin_df.columns) # Test list input arr = np.arange(col_len) modin_result = modin_df.dot(arr) pandas_result = pandas_df.dot(arr) df_equals(modin_result, pandas_result) # Test bad dimensions with pytest.raises(ValueError): modin_result = modin_df.dot(np.arange(col_len + 10)) # Test series input modin_series = pd.Series(np.arange(col_len), index=modin_df.columns) pandas_series = pandas.Series(np.arange(col_len), index=modin_df.columns) modin_result = modin_df.dot(modin_series) pandas_result = pandas_df.dot(pandas_series) df_equals(modin_result, pandas_result) # Test when input series index doesn't line up with columns with pytest.raises(ValueError): modin_result = modin_df.dot(pd.Series(np.arange(col_len))) with pytest.warns(UserWarning): modin_df.dot(modin_df.T) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "keep", ["last", "first", False], ids=["last", "first", "False"] ) def test_duplicated(self, data, keep): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.duplicated(keep=keep) modin_result = modin_df.duplicated(keep=keep) df_equals(modin_result, pandas_result) import random subset = random.sample( list(pandas_df.columns), random.randint(1, len(pandas_df.columns)) ) pandas_result = pandas_df.duplicated(keep=keep, subset=subset) modin_result = modin_df.duplicated(keep=keep, subset=subset) df_equals(modin_result, pandas_result) def test_empty_df(self): df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 df = pd.DataFrame(index=["a", "b"]) df_is_empty(df) tm.assert_index_equal(df.index, pd.Index(["a", "b"])) assert len(df.columns) == 0 df = pd.DataFrame(columns=["a", "b"]) df_is_empty(df) assert len(df.index) == 0 tm.assert_index_equal(df.columns, pd.Index(["a", "b"])) df = pd.DataFrame() df_is_empty(df) assert len(df.index) == 0 assert len(df.columns) == 0 def test_equals(self): frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 4, 1]} modin_df1 = pd.DataFrame(frame_data) modin_df2 = pd.DataFrame(frame_data) assert modin_df1.equals(modin_df2) df_equals(modin_df1, modin_df2) df_equals(modin_df1, pd.DataFrame(modin_df1)) frame_data = {"col1": [2.9, 3, 3, 3], "col2": [2, 3, 5, 1]} modin_df3 = pd.DataFrame(frame_data, index=list("abcd")) assert not modin_df1.equals(modin_df3) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df1) with pytest.raises(AssertionError): df_equals(modin_df3, modin_df2) assert modin_df1.equals(modin_df2._query_compiler.to_pandas()) def test_eval_df_use_case(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) # test eval for series results tmp_pandas = df.eval("arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "arctan2(sin(a), b)", engine="python", parser="pandas" ) assert isinstance(tmp_modin, pd.Series) df_equals(tmp_modin, tmp_pandas) # Test not inplace assignments tmp_pandas = df.eval("e = arctan2(sin(a), b)", engine="python", parser="pandas") tmp_modin = modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas" ) df_equals(tmp_modin, tmp_pandas) # Test inplace assignments df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) modin_df.eval( "e = arctan2(sin(a), b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_eval_df_arithmetic_subexpression(self): frame_data = {"a": random_state.randn(10), "b": random_state.randn(10)} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df.eval("not_e = sin(a + b)", engine="python", parser="pandas", inplace=True) modin_df.eval( "not_e = sin(a + b)", engine="python", parser="pandas", inplace=True ) # TODO: Use a series equality validator. df_equals(modin_df, df) def test_ewm(self): df = pd.DataFrame({"B": [0, 1, 2, np.nan, 4]}) with pytest.warns(UserWarning): df.ewm(com=0.5).mean() def test_expanding(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).expanding() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_explode(self, data): modin_df = pd.DataFrame(data) with pytest.warns(UserWarning): modin_df.explode(modin_df.columns[0]) def test_ffill(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals(modin_df.ffill(), test_data.tsframe.ffill()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "method", ["backfill", "bfill", "pad", "ffill", None], ids=["backfill", "bfill", "pad", "ffill", "None"], ) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize("limit", int_arg_values, ids=int_arg_keys) def test_fillna(self, data, method, axis, limit): # We are not testing when limit is not positive until pandas-27042 gets fixed. # We are not testing when axis is over rows until pandas-17399 gets fixed. if limit > 0 and axis != 1 and axis != "columns": modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.fillna( 0, method=method, axis=axis, limit=limit ) except Exception as e: with pytest.raises(type(e)): modin_df.fillna(0, method=method, axis=axis, limit=limit) else: modin_result = modin_df.fillna(0, method=method, axis=axis, limit=limit) df_equals(modin_result, pandas_result) def test_fillna_sanity(self): test_data = TestData() tf = test_data.tsframe tf.loc[tf.index[:5], "A"] = np.nan tf.loc[tf.index[-5:], "A"] = np.nan zero_filled = test_data.tsframe.fillna(0) modin_df = pd.DataFrame(test_data.tsframe).fillna(0) df_equals(modin_df, zero_filled) padded = test_data.tsframe.fillna(method="pad") modin_df = pd.DataFrame(test_data.tsframe).fillna(method="pad") df_equals(modin_df, padded) # mixed type mf = test_data.mixed_frame mf.loc[mf.index[5:20], "foo"] = np.nan mf.loc[mf.index[-10:], "A"] = np.nan result = test_data.mixed_frame.fillna(value=0) modin_df = pd.DataFrame(test_data.mixed_frame).fillna(value=0) df_equals(modin_df, result) result = test_data.mixed_frame.fillna(method="pad") modin_df = pd.DataFrame(test_data.mixed_frame).fillna(method="pad") df_equals(modin_df, result) pytest.raises(ValueError, test_data.tsframe.fillna) pytest.raises(ValueError, pd.DataFrame(test_data.tsframe).fillna) with pytest.raises(ValueError): pd.DataFrame(test_data.tsframe).fillna(5, method="ffill") # mixed numeric (but no float16) mf = test_data.mixed_float.reindex(columns=["A", "B", "D"]) mf.loc[mf.index[-10:], "A"] = np.nan result = mf.fillna(value=0) modin_df = pd.DataFrame(mf).fillna(value=0) df_equals(modin_df, result) result = mf.fillna(method="pad") modin_df = pd.DataFrame(mf).fillna(method="pad") df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # empty frame # df = DataFrame(columns=['x']) # for m in ['pad', 'backfill']: # df.x.fillna(method=m, inplace=True) # df.x.fillna(method=m) # with different dtype frame_data = [ ["a", "a", np.nan, "a"], ["b", "b", np.nan, "b"], ["c", "c", np.nan, "c"], ] df = pandas.DataFrame(frame_data) result = df.fillna({2: "foo"}) modin_df = pd.DataFrame(frame_data).fillna({2: "foo"}) df_equals(modin_df, result) modin_df = pd.DataFrame(df) df.fillna({2: "foo"}, inplace=True) modin_df.fillna({2: "foo"}, inplace=True) df_equals(modin_df, result) frame_data = { "Date": [pandas.NaT, pandas.Timestamp("2014-1-1")], "Date2": [pandas.Timestamp("2013-1-1"), pandas.NaT], } df = pandas.DataFrame(frame_data) result = df.fillna(value={"Date": df["Date2"]}) modin_df = pd.DataFrame(frame_data).fillna(value={"Date": df["Date2"]}) df_equals(modin_df, result) # TODO: Use this when Arrow issue resolves: # (https://issues.apache.org/jira/browse/ARROW-2122) # with timezone """ frame_data = {'A': [pandas.Timestamp('2012-11-11 00:00:00+01:00'), pandas.NaT]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.fillna(method='pad'), df.fillna(method='pad')) frame_data = {'A': [pandas.NaT, pandas.Timestamp('2012-11-11 00:00:00+01:00')]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data).fillna(method='bfill') df_equals(modin_df, df.fillna(method='bfill')) """ def test_fillna_downcast(self): # infer int64 from float64 frame_data = {"a": [1.0, np.nan]} df = pandas.DataFrame(frame_data) result = df.fillna(0, downcast="infer") modin_df = pd.DataFrame(frame_data).fillna(0, downcast="infer") df_equals(modin_df, result) # infer int64 from float64 when fillna value is a dict df = pandas.DataFrame(frame_data) result = df.fillna({"a": 0}, downcast="infer") modin_df = pd.DataFrame(frame_data).fillna({"a": 0}, downcast="infer") df_equals(modin_df, result) def test_ffill2(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals( modin_df.fillna(method="ffill"), test_data.tsframe.fillna(method="ffill") ) def test_bfill2(self): test_data = TestData() test_data.tsframe["A"][:5] = np.nan test_data.tsframe["A"][-5:] = np.nan modin_df = pd.DataFrame(test_data.tsframe) df_equals( modin_df.fillna(method="bfill"), test_data.tsframe.fillna(method="bfill") ) def test_fillna_inplace(self): frame_data = random_state.randn(10, 4) df = pandas.DataFrame(frame_data) df[1][:4] = np.nan df[3][-4:] = np.nan modin_df = pd.DataFrame(df) df.fillna(value=0, inplace=True) try: df_equals(modin_df, df) except AssertionError: pass else: assert False modin_df.fillna(value=0, inplace=True) df_equals(modin_df, df) modin_df = pd.DataFrame(df).fillna(value={0: 0}, inplace=True) assert modin_df is None df[1][:4] = np.nan df[3][-4:] = np.nan modin_df = pd.DataFrame(df) df.fillna(method="ffill", inplace=True) try: df_equals(modin_df, df) except AssertionError: pass else: assert False modin_df.fillna(method="ffill", inplace=True) df_equals(modin_df, df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_frame_fillna_limit(self, data): pandas_df = pandas.DataFrame(data) index = pandas_df.index result = pandas_df[:2].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="pad", limit=2), result.fillna(method="pad", limit=2) ) result = pandas_df[-2:].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="backfill", limit=2), result.fillna(method="backfill", limit=2), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_frame_pad_backfill_limit(self, data): pandas_df = pandas.DataFrame(data) index = pandas_df.index result = pandas_df[:2].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="pad", limit=2), result.fillna(method="pad", limit=2) ) result = pandas_df[-2:].reindex(index) modin_df = pd.DataFrame(result) df_equals( modin_df.fillna(method="backfill", limit=2), result.fillna(method="backfill", limit=2), ) def test_fillna_dtype_conversion(self): # make sure that fillna on an empty frame works df = pandas.DataFrame(index=range(3), columns=["A", "B"], dtype="float64") modin_df = pd.DataFrame(index=range(3), columns=["A", "B"], dtype="float64") df_equals(modin_df.fillna("nan"), df.fillna("nan")) frame_data = {"A": [1, np.nan], "B": [1.0, 2.0]} df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) for v in ["", 1, np.nan, 1.0]: df_equals(modin_df.fillna(v), df.fillna(v)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_skip_certain_blocks(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # don't try to fill boolean, int blocks df_equals(modin_df.fillna(np.nan), pandas_df.fillna(np.nan)) def test_fillna_dict_series(self): frame_data = { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], } df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.fillna({"a": 0, "b": 5}), df.fillna({"a": 0, "b": 5})) df_equals( modin_df.fillna({"a": 0, "b": 5, "d": 7}), df.fillna({"a": 0, "b": 5, "d": 7}), ) # Series treated same as dict df_equals(modin_df.fillna(modin_df.max()), df.fillna(df.max())) def test_fillna_dataframe(self): frame_data = { "a": [np.nan, 1, 2, np.nan, np.nan], "b": [1, 2, 3, np.nan, np.nan], "c": [np.nan, 1, 2, 3, 4], } df = pandas.DataFrame(frame_data, index=list("VWXYZ")) modin_df = pd.DataFrame(frame_data, index=list("VWXYZ")) # df2 may have different index and columns df2 = pandas.DataFrame( { "a": [np.nan, 10, 20, 30, 40], "b": [50, 60, 70, 80, 90], "foo": ["bar"] * 5, }, index=list("VWXuZ"), ) modin_df2 = pd.DataFrame(df2) # only those columns and indices which are shared get filled df_equals(modin_df.fillna(modin_df2), df.fillna(df2)) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_columns(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals( modin_df.fillna(method="ffill", axis=1), pandas_df.fillna(method="ffill", axis=1), ) df_equals( modin_df.fillna(method="ffill", axis=1), pandas_df.fillna(method="ffill", axis=1), ) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_invalid_method(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with tm.assert_raises_regex(ValueError, "ffil"): modin_df.fillna(method="ffil") def test_fillna_invalid_value(self): test_data = TestData() modin_df = pd.DataFrame(test_data.frame) # list pytest.raises(TypeError, modin_df.fillna, [1, 2]) # tuple pytest.raises(TypeError, modin_df.fillna, (1, 2)) # frame with series pytest.raises(TypeError, modin_df.iloc[:, 0].fillna, modin_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_fillna_col_reordering(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.fillna(method="ffill"), pandas_df.fillna(method="ffill")) """ TODO: Use this when Arrow issue resolves: (https://issues.apache.org/jira/browse/ARROW-2122) def test_fillna_datetime_columns(self): frame_data = {'A': [-1, -2, np.nan], 'B': date_range('20130101', periods=3), 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]} df = pandas.DataFrame(frame_data, index=date_range('20130110', periods=3)) modin_df = pd.DataFrame(frame_data, index=date_range('20130110', periods=3)) df_equals(modin_df.fillna('?'), df.fillna('?')) frame_data = {'A': [-1, -2, np.nan], 'B': [pandas.Timestamp('2013-01-01'), pandas.Timestamp('2013-01-02'), pandas.NaT], 'C': ['foo', 'bar', None], 'D': ['foo2', 'bar2', None]} df = pandas.DataFrame(frame_data, index=date_range('20130110', periods=3)) modin_df = pd.DataFrame(frame_data, index=date_range('20130110', periods=3)) df_equals(modin_df.fillna('?'), df.fillna('?')) """ @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_filter(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) by = {"items": ["col1", "col5"], "regex": "4$|3$", "like": "col"} df_equals( modin_df.filter(items=by["items"]), pandas_df.filter(items=by["items"]) ) df_equals( modin_df.filter(regex=by["regex"], axis=0), pandas_df.filter(regex=by["regex"], axis=0), ) df_equals( modin_df.filter(regex=by["regex"], axis=1), pandas_df.filter(regex=by["regex"], axis=1), ) df_equals(modin_df.filter(like=by["like"]), pandas_df.filter(like=by["like"])) with pytest.raises(TypeError): modin_df.filter(items=by["items"], regex=by["regex"]) with pytest.raises(TypeError): modin_df.filter() def test_first(self): i = pd.date_range("2018-04-09", periods=4, freq="2D") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.first("3D") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_first_valid_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.first_valid_index() == (pandas_df.first_valid_index()) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_dict(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_dict(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_items(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_items(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_from_records(self, data): modin_df = pd.DataFrame(data) # noqa F841 pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): pd.DataFrame.from_records(None) def test_get_value(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).get_value(0, "col1") def test_get_values(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).get_values() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("n", int_arg_values, ids=arg_keys("n", int_arg_keys)) def test_head(self, data, n): # Test normal dataframe head modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.head(n), pandas_df.head(n)) df_equals(modin_df.head(len(modin_df) + 1), pandas_df.head(len(pandas_df) + 1)) # Test head when we call it from a QueryCompilerView modin_result = modin_df.loc[:, ["col1", "col3", "col3"]].head(n) pandas_result = pandas_df.loc[:, ["col1", "col3", "col3"]].head(n) df_equals(modin_result, pandas_result) def test_hist(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).hist(None) @pytest.mark.skip(reason="Defaulting to Pandas") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iat(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): modin_df.iat() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_idxmax(self, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) pandas_result = pandas_df.idxmax(axis=axis, skipna=skipna) modin_result = modin_df.idxmax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) pandas_result = pandas_df.T.idxmax(axis=axis, skipna=skipna) modin_result = modin_df.T.idxmax(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) def test_idxmin(self, data, axis, skipna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.idxmin(axis=axis, skipna=skipna) pandas_result = pandas_df.idxmin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) modin_result = modin_df.T.idxmin(axis=axis, skipna=skipna) pandas_result = pandas_df.T.idxmin(axis=axis, skipna=skipna) df_equals(modin_result, pandas_result) def test_infer_objects(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).infer_objects() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iloc(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if not name_contains(request.node.name, ["empty_data"]): # Scaler np.testing.assert_equal(modin_df.iloc[0, 1], pandas_df.iloc[0, 1]) # Series df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.iloc[1:, 0], pandas_df.iloc[1:, 0]) df_equals(modin_df.iloc[1:2, 0], pandas_df.iloc[1:2, 0]) # DataFrame df_equals(modin_df.iloc[[1, 2]], pandas_df.iloc[[1, 2]]) # See issue #80 # df_equals(modin_df.iloc[[1, 2], [1, 0]], pandas_df.iloc[[1, 2], [1, 0]]) df_equals(modin_df.iloc[1:2, 0:2], pandas_df.iloc[1:2, 0:2]) # Issue #43 modin_df.iloc[0:3, :] # Write Item modin_df.iloc[[1, 2]] = 42 pandas_df.iloc[[1, 2]] = 42 df_equals(modin_df, pandas_df) else: with pytest.raises(IndexError): modin_df.iloc[0, 1] @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.index, pandas_df.index) modin_df_cp = modin_df.copy() pandas_df_cp = pandas_df.copy() modin_df_cp.index = [str(i) for i in modin_df_cp.index] pandas_df_cp.index = [str(i) for i in pandas_df_cp.index] df_equals(modin_df_cp.index, pandas_df_cp.index) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_indexing_duplicate_axis(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.index = pandas_df.index = [i // 3 for i in range(len(modin_df))] assert any(modin_df.index.duplicated()) assert any(pandas_df.index.duplicated()) df_equals(modin_df.iloc[0], pandas_df.iloc[0]) df_equals(modin_df.loc[0], pandas_df.loc[0]) df_equals(modin_df.iloc[0, 0:4], pandas_df.iloc[0, 0:4]) df_equals( modin_df.loc[0, modin_df.columns[0:4]], pandas_df.loc[0, pandas_df.columns[0:4]], ) def test_info(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).info(memory_usage="deep") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("loc", int_arg_values, ids=arg_keys("loc", int_arg_keys)) def test_insert(self, data, loc): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df = modin_df.copy() pandas_df = pandas_df.copy() column = "New Column" value = modin_df.iloc[:, 0] try: pandas_df.insert(loc, column, value) except Exception as e: with pytest.raises(type(e)): modin_df.insert(loc, column, value) else: modin_df.insert(loc, column, value) df_equals(modin_df, pandas_df) with pytest.raises(ValueError): modin_df.insert(0, "Bad Column", modin_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.insert(0, "Duplicate", modin_df[modin_df.columns[0]]) pandas_df.insert(0, "Duplicate", pandas_df[pandas_df.columns[0]]) df_equals(modin_df, pandas_df) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_df.insert(0, "Scalar", 100) pandas_df.insert(0, "Scalar", 100) df_equals(modin_df, pandas_df) with pytest.raises(ValueError): modin_df.insert(0, "Too Short", list(modin_df[modin_df.columns[0]])[:-1]) with pytest.raises(ValueError): modin_df.insert(0, modin_df.columns[0], modin_df[modin_df.columns[0]]) with pytest.raises(IndexError): modin_df.insert(len(modin_df.columns) + 100, "Bad Loc", 100) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = pd.DataFrame(columns=list("ab")).insert( 0, modin_df.columns[0], modin_df[modin_df.columns[0]] ) pandas_result = pandas.DataFrame(columns=list("ab")).insert( 0, pandas_df.columns[0], pandas_df[pandas_df.columns[0]] ) df_equals(modin_result, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = pd.DataFrame(index=modin_df.index).insert( 0, modin_df.columns[0], modin_df[modin_df.columns[0]] ) pandas_result = pandas.DataFrame(index=pandas_df.index).insert( 0, pandas_df.columns[0], pandas_df[pandas_df.columns[0]] ) df_equals(modin_result, pandas_result) modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.insert( 0, "DataFrame insert", modin_df[[modin_df.columns[0]]] ) pandas_result = pandas_df.insert( 0, "DataFrame insert", pandas_df[[pandas_df.columns[0]]] ) df_equals(modin_result, pandas_result) def test_interpolate(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).interpolate() def test_is_copy(self): data = test_data_values[0] with pytest.warns(FutureWarning): assert pd.DataFrame(data).is_copy == pandas.DataFrame(data).is_copy @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_items(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_items = modin_df.items() pandas_items = pandas_df.items() for modin_item, pandas_item in zip(modin_items, pandas_items): modin_index, modin_series = modin_item pandas_index, pandas_series = pandas_item df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iteritems(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_items = modin_df.iteritems() pandas_items = pandas_df.iteritems() for modin_item, pandas_item in zip(modin_items, pandas_items): modin_index, modin_series = modin_item pandas_index, pandas_series = pandas_item df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_iterrows(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_iterrows = modin_df.iterrows() pandas_iterrows = pandas_df.iterrows() for modin_row, pandas_row in zip(modin_iterrows, pandas_iterrows): modin_index, modin_series = modin_row pandas_index, pandas_series = pandas_row df_equals(pandas_series, modin_series) assert pandas_index == modin_index @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_itertuples(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # test default modin_it_default = modin_df.itertuples() pandas_it_default = pandas_df.itertuples() for modin_row, pandas_row in zip(modin_it_default, pandas_it_default): np.testing.assert_equal(modin_row, pandas_row) # test all combinations of custom params indices = [True, False] names = [None, "NotPandas", "Pandas"] for index in indices: for name in names: modin_it_custom = modin_df.itertuples(index=index, name=name) pandas_it_custom = pandas_df.itertuples(index=index, name=name) for modin_row, pandas_row in zip(modin_it_custom, pandas_it_custom): np.testing.assert_equal(modin_row, pandas_row) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ix(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 with pytest.raises(NotImplementedError): modin_df.ix() def test_join(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 0, 1], "col4": [2, 4, 5, 6], } modin_df = pd.DataFrame(frame_data) pandas_df = pandas.DataFrame(frame_data) frame_data2 = {"col5": [0], "col6": [1]} modin_df2 = pd.DataFrame(frame_data2) pandas_df2 = pandas.DataFrame(frame_data2) join_types = ["left", "right", "outer", "inner"] for how in join_types: modin_join = modin_df.join(modin_df2, how=how) pandas_join = pandas_df.join(pandas_df2, how=how) df_equals(modin_join, pandas_join) frame_data3 = {"col7": [1, 2, 3, 5, 6, 7, 8]} modin_df3 = pd.DataFrame(frame_data3) pandas_df3 = pandas.DataFrame(frame_data3) join_types = ["left", "outer", "inner"] for how in join_types: modin_join = modin_df.join([modin_df2, modin_df3], how=how) pandas_join = pandas_df.join([pandas_df2, pandas_df3], how=how) df_equals(modin_join, pandas_join) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_keys(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.keys(), pandas_df.keys()) def test_kurt(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).kurt() def test_kurtosis(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).kurtosis() def test_last(self): i = pd.date_range("2018-04-09", periods=4, freq="2D") ts = pd.DataFrame({"A": [1, 2, 3, 4]}, index=i) with pytest.warns(UserWarning): ts.last("3D") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_last_valid_index(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.last_valid_index() == (pandas_df.last_valid_index()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_loc(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # We skip nan datasets because nan != nan if "nan" not in request.node.name: key1 = modin_df.columns[0] key2 = modin_df.columns[1] # Scaler assert modin_df.loc[0, key1] == pandas_df.loc[0, key1] # Series df_equals(modin_df.loc[0], pandas_df.loc[0]) df_equals(modin_df.loc[1:, key1], pandas_df.loc[1:, key1]) df_equals(modin_df.loc[1:2, key1], pandas_df.loc[1:2, key1]) # DataFrame df_equals(modin_df.loc[[1, 2]], pandas_df.loc[[1, 2]]) # List-like of booleans indices = [ True if i % 3 == 0 else False for i in range(len(modin_df.index)) ] columns = [ True if i % 5 == 0 else False for i in range(len(modin_df.columns)) ] modin_result = modin_df.loc[indices, columns] pandas_result = pandas_df.loc[indices, columns] df_equals(modin_result, pandas_result) # See issue #80 # df_equals(modin_df.loc[[1, 2], ['col1']], pandas_df.loc[[1, 2], ['col1']]) df_equals(modin_df.loc[1:2, key1:key2], pandas_df.loc[1:2, key1:key2]) # From issue #421 df_equals(modin_df.loc[:, [key2, key1]], pandas_df.loc[:, [key2, key1]]) df_equals(modin_df.loc[[2, 1], :], pandas_df.loc[[2, 1], :]) # Write Item modin_df_copy = modin_df.copy() pandas_df_copy = pandas_df.copy() modin_df_copy.loc[[1, 2]] = 42 pandas_df_copy.loc[[1, 2]] = 42 df_equals(modin_df_copy, pandas_df_copy) def test_loc_multi_index(self): modin_df = pd.read_csv( "modin/pandas/test/data/blah.csv", header=[0, 1, 2, 3], index_col=0 ) pandas_df = pandas.read_csv( "modin/pandas/test/data/blah.csv", header=[0, 1, 2, 3], index_col=0 ) df_equals(modin_df.loc[1], pandas_df.loc[1]) df_equals(modin_df.loc[1, "Presidents"], pandas_df.loc[1, "Presidents"]) df_equals( modin_df.loc[1, ("Presidents", "Pure mentions")], pandas_df.loc[1, ("Presidents", "Pure mentions")], ) assert ( modin_df.loc[1, ("Presidents", "Pure mentions", "IND", "all")] == pandas_df.loc[1, ("Presidents", "Pure mentions", "IND", "all")] ) df_equals( modin_df.loc[(1, 2), "Presidents"], pandas_df.loc[(1, 2), "Presidents"] ) tuples = [ ("bar", "one"), ("bar", "two"), ("bar", "three"), ("bar", "four"), ("baz", "one"), ("baz", "two"), ("baz", "three"), ("baz", "four"), ("foo", "one"), ("foo", "two"), ("foo", "three"), ("foo", "four"), ("qux", "one"), ("qux", "two"), ("qux", "three"), ("qux", "four"), ] modin_index = pd.MultiIndex.from_tuples(tuples, names=["first", "second"]) pandas_index = pandas.MultiIndex.from_tuples(tuples, names=["first", "second"]) frame_data = np.random.randint(0, 100, size=(16, 100)) modin_df = pd.DataFrame( frame_data, index=modin_index, columns=["col{}".format(i) for i in range(100)], ) pandas_df = pandas.DataFrame( frame_data, index=pandas_index, columns=["col{}".format(i) for i in range(100)], ) df_equals(modin_df.loc["bar", "col1"], pandas_df.loc["bar", "col1"]) assert ( modin_df.loc[("bar", "one"), "col1"] == pandas_df.loc[("bar", "one"), "col1"] ) df_equals( modin_df.loc["bar", ("col1", "col2")], pandas_df.loc["bar", ("col1", "col2")], ) def test_lookup(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).lookup([0, 1], ["col1", "col2"]) def test_mad(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).mad() def test_mask(self): df = pd.DataFrame(np.arange(10).reshape(-1, 2), columns=["A", "B"]) m = df % 3 == 0 with pytest.warns(UserWarning): try: df.mask(~m, -df) except ValueError: pass @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_max(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.max(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.max(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.max( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_mean(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception as e: with pytest.raises(type(e)): modin_df.mean(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception as e: with pytest.raises(type(e)): modin_df.T.mean(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.mean( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_median(self, request, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.median(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.median(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.median( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) class TestDFPartTwo: def test_melt(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).melt() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize( "index", bool_arg_values, ids=arg_keys("index", bool_arg_keys) ) def test_memory_usage(self, data, index): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) # noqa F841 modin_result = modin_df.memory_usage(index=index) pandas_result = pandas_df.memory_usage(index=index) df_equals(modin_result, pandas_result) def test_merge(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 0, 1], "col4": [2, 4, 5, 6], } modin_df = pd.DataFrame(frame_data) pandas_df = pandas.DataFrame(frame_data) frame_data2 = {"col1": [0, 1, 2], "col2": [1, 5, 6]} modin_df2 = pd.DataFrame(frame_data2) pandas_df2 = pandas.DataFrame(frame_data2) join_types = ["outer", "inner"] for how in join_types: # Defaults modin_result = modin_df.merge(modin_df2, how=how) pandas_result = pandas_df.merge(pandas_df2, how=how) df_equals(modin_result, pandas_result) # left_on and right_index modin_result = modin_df.merge( modin_df2, how=how, left_on="col1", right_index=True ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col1", right_index=True ) df_equals(modin_result, pandas_result) # left_index and right_on modin_result = modin_df.merge( modin_df2, how=how, left_index=True, right_on="col1" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_index=True, right_on="col1" ) df_equals(modin_result, pandas_result) # left_on and right_on col1 modin_result = modin_df.merge( modin_df2, how=how, left_on="col1", right_on="col1" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col1", right_on="col1" ) df_equals(modin_result, pandas_result) # left_on and right_on col2 modin_result = modin_df.merge( modin_df2, how=how, left_on="col2", right_on="col2" ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_on="col2", right_on="col2" ) df_equals(modin_result, pandas_result) # left_index and right_index modin_result = modin_df.merge( modin_df2, how=how, left_index=True, right_index=True ) pandas_result = pandas_df.merge( pandas_df2, how=how, left_index=True, right_index=True ) df_equals(modin_result, pandas_result) # Named Series promoted to DF s = pd.Series(frame_data2.get("col1")) with pytest.raises(ValueError): modin_df.merge(s) s = pd.Series(frame_data2.get("col1"), name="col1") df_equals(modin_df.merge(s), modin_df.merge(modin_df2[["col1"]])) with pytest.raises(ValueError): modin_df.merge("Non-valid type") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_min(self, data, axis, skipna, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.min(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) except Exception: with pytest.raises(TypeError): modin_df.T.min(axis=axis, skipna=skipna, numeric_only=numeric_only) else: modin_result = modin_df.T.min( axis=axis, skipna=skipna, numeric_only=numeric_only ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) def test_mode(self, request, data, axis, numeric_only): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.mode(axis=axis, numeric_only=numeric_only) except Exception: with pytest.raises(TypeError): modin_df.mode(axis=axis, numeric_only=numeric_only) else: modin_result = modin_df.mode(axis=axis, numeric_only=numeric_only) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_ndim(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) assert modin_df.ndim == pandas_df.ndim def test_nlargest(self): df = pd.DataFrame( { "population": [ 59000000, 65000000, 434000, 434000, 434000, 337000, 11300, 11300, 11300, ], "GDP": [1937894, 2583560, 12011, 4520, 12128, 17036, 182, 38, 311], "alpha-2": ["IT", "FR", "MT", "MV", "BN", "IS", "NR", "TV", "AI"], }, index=[ "Italy", "France", "Malta", "Maldives", "Brunei", "Iceland", "Nauru", "Tuvalu", "Anguilla", ], ) with pytest.warns(UserWarning): df.nlargest(3, "population") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_notna(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.notna(), pandas_df.notna()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_notnull(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) df_equals(modin_df.notnull(), pandas_df.notnull()) def test_nsmallest(self): df = pd.DataFrame( { "population": [ 59000000, 65000000, 434000, 434000, 434000, 337000, 11300, 11300, 11300, ], "GDP": [1937894, 2583560, 12011, 4520, 12128, 17036, 182, 38, 311], "alpha-2": ["IT", "FR", "MT", "MV", "BN", "IS", "NR", "TV", "AI"], }, index=[ "Italy", "France", "Malta", "Maldives", "Brunei", "Iceland", "Nauru", "Tuvalu", "Anguilla", ], ) with pytest.warns(UserWarning): df.nsmallest(3, "population") @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "dropna", bool_arg_values, ids=arg_keys("dropna", bool_arg_keys) ) def test_nunique(self, data, axis, dropna): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) modin_result = modin_df.nunique(axis=axis, dropna=dropna) pandas_result = pandas_df.nunique(axis=axis, dropna=dropna) df_equals(modin_result, pandas_result) modin_result = modin_df.T.nunique(axis=axis, dropna=dropna) pandas_result = pandas_df.T.nunique(axis=axis, dropna=dropna) df_equals(modin_result, pandas_result) def test_pct_change(self): data = test_data_values[0] with pytest.warns(UserWarning): pd.DataFrame(data).pct_change() @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pipe(self, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) n = len(modin_df.index) a, b, c = 2 % n, 0, 3 % n col = modin_df.columns[3 % len(modin_df.columns)] def h(x): return x.drop(columns=[col]) def g(x, arg1=0): for _ in range(arg1): x = x.append(x) return x def f(x, arg2=0, arg3=0): return x.drop([arg2, arg3]) df_equals( f(g(h(modin_df), arg1=a), arg2=b, arg3=c), (modin_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), ) df_equals( (modin_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), (pandas_df.pipe(h).pipe(g, arg1=a).pipe(f, arg2=b, arg3=c)), ) def test_pivot(self): df = pd.DataFrame( { "foo": ["one", "one", "one", "two", "two", "two"], "bar": ["A", "B", "C", "A", "B", "C"], "baz": [1, 2, 3, 4, 5, 6], "zoo": ["x", "y", "z", "q", "w", "t"], } ) with pytest.warns(UserWarning): df.pivot(index="foo", columns="bar", values="baz") def test_pivot_table(self): df = pd.DataFrame( { "A": ["foo", "foo", "foo", "foo", "foo", "bar", "bar", "bar", "bar"], "B": ["one", "one", "one", "two", "two", "one", "one", "two", "two"], "C": [ "small", "large", "large", "small", "small", "large", "small", "small", "large", ], "D": [1, 2, 2, 3, 3, 4, 5, 6, 7], "E": [2, 4, 5, 5, 6, 6, 8, 9, 9], } ) with pytest.warns(UserWarning): df.pivot_table(values="D", index=["A", "B"], columns=["C"], aggfunc=np.sum) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_plot(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if name_contains(request.node.name, numeric_dfs): # We have to test this way because equality in plots means same object. zipped_plot_lines = zip(modin_df.plot().lines, pandas_df.plot().lines) for l, r in zipped_plot_lines: if isinstance(l.get_xdata(), np.ma.core.MaskedArray) and isinstance( r.get_xdata(), np.ma.core.MaskedArray ): assert all((l.get_xdata() == r.get_xdata()).data) else: assert np.array_equal(l.get_xdata(), r.get_xdata()) if isinstance(l.get_ydata(), np.ma.core.MaskedArray) and isinstance( r.get_ydata(), np.ma.core.MaskedArray ): assert all((l.get_ydata() == r.get_ydata()).data) else: assert np.array_equal(l.get_xdata(), r.get_xdata()) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) def test_pop(self, request, data): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if "empty_data" not in request.node.name: key = modin_df.columns[0] temp_modin_df = modin_df.copy() temp_pandas_df = pandas_df.copy() modin_popped = temp_modin_df.pop(key) pandas_popped = temp_pandas_df.pop(key) df_equals(modin_popped, pandas_popped) df_equals(temp_modin_df, temp_pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "min_count", int_arg_values, ids=arg_keys("min_count", int_arg_keys) ) def test_prod(self, request, data, axis, skipna, numeric_only, min_count): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) try: pandas_result = pandas_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.T.prod( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "skipna", bool_arg_values, ids=arg_keys("skipna", bool_arg_keys) ) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "min_count", int_arg_values, ids=arg_keys("min_count", int_arg_keys) ) def test_product(self, request, data, axis, skipna, numeric_only, min_count): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) except Exception: with pytest.raises(TypeError): modin_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count, ) else: modin_result = modin_df.product( axis=axis, skipna=skipna, numeric_only=numeric_only, min_count=min_count ) df_equals(modin_result, pandas_result) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("q", quantiles_values, ids=quantiles_keys) def test_quantile(self, request, data, q): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) if not name_contains(request.node.name, no_numeric_dfs): df_equals(modin_df.quantile(q), pandas_df.quantile(q)) df_equals(modin_df.quantile(q, axis=1), pandas_df.quantile(q, axis=1)) try: pandas_result = pandas_df.quantile(q, axis=1, numeric_only=False) except Exception as e: with pytest.raises(type(e)): modin_df.quantile(q, axis=1, numeric_only=False) else: modin_result = modin_df.quantile(q, axis=1, numeric_only=False) df_equals(modin_result, pandas_result) else: with pytest.raises(ValueError): modin_df.quantile(q) if not name_contains(request.node.name, no_numeric_dfs): df_equals(modin_df.T.quantile(q), pandas_df.T.quantile(q)) df_equals(modin_df.T.quantile(q, axis=1), pandas_df.T.quantile(q, axis=1)) try: pandas_result = pandas_df.T.quantile(q, axis=1, numeric_only=False) except Exception as e: with pytest.raises(type(e)): modin_df.T.quantile(q, axis=1, numeric_only=False) else: modin_result = modin_df.T.quantile(q, axis=1, numeric_only=False) df_equals(modin_result, pandas_result) else: with pytest.raises(ValueError): modin_df.T.quantile(q) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("funcs", query_func_values, ids=query_func_keys) def test_query(self, data, funcs): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) with pytest.raises(ValueError): modin_df.query("") with pytest.raises(NotImplementedError): x = 2 # noqa F841 modin_df.query("col1 < @x") try: pandas_result = pandas_df.query(funcs) except Exception as e: with pytest.raises(type(e)): modin_df.query(funcs) else: modin_result = modin_df.query(funcs) df_equals(modin_result, pandas_result) def test_query_after_insert(self): modin_df = pd.DataFrame({"x": [-1, 0, 1, None], "y": [1, 2, None, 3]}) modin_df["z"] = modin_df.eval("x / y") modin_df = modin_df.query("z >= 0") modin_result = modin_df.reset_index(drop=True) modin_result.columns = ["a", "b", "c"] pandas_df = pd.DataFrame({"x": [-1, 0, 1, None], "y": [1, 2, None, 3]}) pandas_df["z"] = pandas_df.eval("x / y") pandas_df = pandas_df.query("z >= 0") pandas_result = pandas_df.reset_index(drop=True) pandas_result.columns = ["a", "b", "c"] df_equals(modin_result, pandas_result) df_equals(modin_df, pandas_df) @pytest.mark.parametrize("data", test_data_values, ids=test_data_keys) @pytest.mark.parametrize("axis", axis_values, ids=axis_keys) @pytest.mark.parametrize( "numeric_only", bool_arg_values, ids=arg_keys("numeric_only", bool_arg_keys) ) @pytest.mark.parametrize( "na_option", ["keep", "top", "bottom"], ids=["keep", "top", "bottom"] ) def test_rank(self, data, axis, numeric_only, na_option): modin_df = pd.DataFrame(data) pandas_df = pandas.DataFrame(data) try: pandas_result = pandas_df.rank( axis=axis, numeric_only=numeric_only, na_option=na_option ) except Exception as e: with pytest.raises(type(e)): modin_df.rank(axis=axis, numeric_only=numeric_only, na_option=na_option) else: modin_result = modin_df.rank( axis=axis, numeric_only=numeric_only, na_option=na_option ) df_equals(modin_result, pandas_result) def test_reindex(self): frame_data = { "col1": [0, 1, 2, 3], "col2": [4, 5, 6, 7], "col3": [8, 9, 10, 11], "col4": [12, 13, 14, 15], "col5": [0, 0, 0, 0], } pandas_df = pandas.DataFrame(frame_data) modin_df = pd.DataFrame(frame_data) df_equals(modin_df.reindex([0, 3, 2, 1]), pandas_df.reindex([0, 3, 2, 1])) df_equals(modin_df.reindex([0, 6, 2]), pandas_df.reindex([0, 6, 2])) df_equals( modin_df.reindex(["col1", "col3", "col4", "col2"], axis=1), pandas_df.reindex(["col1", "col3", "col4", "col2"], axis=1), ) df_equals( modin_df.reindex(["col1", "col7", "col4", "col8"], axis=1), pandas_df.reindex(["col1", "col7", "col4", "col8"], axis=1), ) df_equals( modin_df.reindex(index=[0, 1, 5], columns=["col1", "col7", "col4", "col8"]), pandas_df.reindex( index=[0, 1, 5], columns=["col1", "col7", "col4", "col8"] ), ) df_equals( modin_df.T.reindex(["col1", "col7", "col4", "col8"], axis=0), pandas_df.T.reindex(["col1", "col7", "col4", "col8"], axis=0), ) def test_reindex_like(self): df1 = pd.DataFrame( [ [24.3, 75.7, "high"], [31, 87.8, "high"], [22, 71.6, "medium"], [35, 95, "medium"], ], columns=["temp_celsius", "temp_fahrenheit", "windspeed"], index=pd.date_range(start="2014-02-12", end="2014-02-15", freq="D"), ) df2 = pd.DataFrame( [[28, "low"], [30, "low"], [35.1, "medium"]], columns=["temp_celsius", "windspeed"], index=pd.DatetimeIndex(["2014-02-12", "2014-02-13", "2014-02-15"]), ) with pytest.warns(UserWarning): df2.reindex_like(df1) def test_rename_sanity(self): test_data = TestData() mapping = {"A": "a", "B": "b", "C": "c", "D": "d"} modin_df = pd.DataFrame(test_data.frame) df_equals( modin_df.rename(columns=mapping), test_data.frame.rename(columns=mapping) ) renamed2 = test_data.frame.rename(columns=str.lower) df_equals(modin_df.rename(columns=str.lower), renamed2) modin_df = pd.DataFrame(renamed2) df_equals( modin_df.rename(columns=str.upper), renamed2.rename(columns=str.upper) ) # index data = {"A": {"foo": 0, "bar": 1}} # gets sorted alphabetical df = pandas.DataFrame(data) modin_df = pd.DataFrame(data) tm.assert_index_equal( modin_df.rename(index={"foo": "bar", "bar": "foo"}).index, df.rename(index={"foo": "bar", "bar": "foo"}).index, ) tm.assert_index_equal( modin_df.rename(index=str.upper).index, df.rename(index=str.upper).index ) # have to pass something with pytest.raises(TypeError): modin_df.rename() # partial columns renamed = test_data.frame.rename(columns={"C": "foo", "D": "bar"}) modin_df = pd.DataFrame(test_data.frame) tm.assert_index_equal( modin_df.rename(columns={"C": "foo", "D": "bar"}).index, test_data.frame.rename(columns={"C": "foo", "D": "bar"}).index, ) # TODO: Uncomment when transpose works # other axis # renamed = test_data.frame.T.rename(index={'C': 'foo', 'D': 'bar'}) # tm.assert_index_equal( # test_data.frame.T.rename(index={'C': 'foo', 'D': 'bar'}).index, # modin_df.T.rename(index={'C': 'foo', 'D': 'bar'}).index) # index with name index = pandas.Index(["foo", "bar"], name="name") renamer = pandas.DataFrame(data, index=index) modin_df = pd.DataFrame(data, index=index) renamed = renamer.rename(index={"foo": "bar", "bar": "foo"}) modin_renamed = modin_df.rename(index={"foo": "bar", "bar": "foo"}) tm.assert_index_equal(renamed.index, modin_renamed.index) assert renamed.index.name == modin_renamed.index.name def test_rename_multiindex(self): tuples_index = [("foo1", "bar1"), ("foo2", "bar2")] tuples_columns = [("fizz1", "buzz1"), ("fizz2", "buzz2")] index = pandas.MultiIndex.from_tuples(tuples_index, names=["foo", "bar"]) columns = pandas.MultiIndex.from_tuples(tuples_columns, names=["fizz", "buzz"]) frame_data = [(0, 0), (1, 1)] df = pandas.DataFrame(frame_data, index=index, columns=columns) modin_df = pd.DataFrame(frame_data, index=index, columns=columns) # # without specifying level -> accross all levels renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) modin_renamed = modin_df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) tm.assert_index_equal(renamed.index, modin_renamed.index) renamed = df.rename( index={"foo1": "foo3", "bar2": "bar3"}, columns={"fizz1": "fizz3", "buzz2": "buzz3"}, ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) assert renamed.index.names == modin_renamed.index.names assert renamed.columns.names == modin_renamed.columns.names # # with specifying a level # dict renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0) modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level=0 ) tm.assert_index_equal(renamed.columns, modin_renamed.columns) renamed = df.rename(columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz") modin_renamed = modin_df.rename( columns={"fizz1": "fizz3", "buzz2": "buzz3"}, level="fizz" )
tm.assert_index_equal(renamed.columns, modin_renamed.columns)
pandas.util.testing.assert_index_equal
import re import pathlib import pandas as pd import numpy as np import matplotlib.pyplot as plt from rdkit.Chem import MolFromSmiles, Draw, rdFMCS from rdkit.Chem.Fingerprints import FingerprintMols from rdkit.Chem.ChemUtils.AlignDepict import AlignDepict from rdkit.DataStructs import DiceSimilarity from rdkit.Chem import AllChem import molvs input_path = pathlib.Path(__file__).resolve().parent / 'input' tautomer_canonicalizer = molvs.tautomer.TautomerCanonicalizer(max_tautomers=20) fragments = molvs.fragment.REMOVE_FRAGMENTS + ( molvs.fragment.FragmentPattern('tartrate', 'O=C(O)C(O)C(O)C(=O)O'), ) fragment_remover = molvs.fragment.FragmentRemover(fragments) def mol_to_smiles(mol): return AllChem.MolToSmiles(mol, isomericSmiles=True) def get_fingerprint(mol): return AllChem.GetMorganFingerprint(mol, 2) old_data =
pd.read_csv(input_path / 'lsp_compounds_20180503.csv')
pandas.read_csv
''' PartsGenie (c) University of Liverpool 2020 All rights reserved. @author: neilswainston ''' # pylint: disable=invalid-name # pylint: disable=wrong-import-order import os.path from liv_utils import codon_utils, ncbi_tax_utils import pandas as pd def get_organisms(parent_id): '''Get all valid organisms (bacterial with codon usage tables).''' curr_dir = os.path.dirname(os.path.realpath(__file__)) filepath = os.path.join(curr_dir, '%s.csv' % parent_id) if not os.path.exists(filepath): organisms = codon_utils.get_codon_usage_organisms(expand=True) ids = ncbi_tax_utils.TaxonomyFactory().get_child_ids(parent_id) valid_ids = set(organisms.values()).intersection(set(ids)) valid_organisms = {name: tax_id for name, tax_id in organisms.items() if tax_id in valid_ids} _write(valid_organisms, filepath) return valid_organisms return _read(filepath) def _write(organisms, filepath): '''Write organisms.''' df = pd.Series(organisms, name='id') df.index.name = 'name' df.to_csv(filepath) def _read(filepath): '''Read organisms.''' df =
pd.read_csv(filepath, dtype=str)
pandas.read_csv
from ..utils import constants, utils import numpy as np import pandas as pd from collections import Counter import xlsxwriter """ Create a heatmap that depicts the temporal pattern for any dataset that includes a datetime column. The heatmap does not include a spatial dimension. Also, the module was created for HVI targeting. This means that when using it for HVI targeting you should filter the input dataset spatially before running. See the readme file for more information. There are two functions: one that creates a heatmap with month of year and one that creates a heatmap with week of year. ------------------------ Example from RADGIS.preprocessing import pol_heatmap pol_heatmap.heatmap(dataframe, temporalBinType, save_location, timestamp_column=constants.DATETIME) """ # Helper functions # Fills in missing days. def _addDays(df): all_days = pd.date_range(df.just_date.min(), df.just_date.max(), freq="D") po = all_days po = po.map(lambda t: t.strftime('%Y-%m-%d')) all_days = set(po) dfDaySet = set(df.just_date.tolist()) difference = set(map(str,all_days)) - dfDaySet if len(difference) >= 1: counter = -1 for d in difference: # Add this as the default. It's a placeholder and will be updated later outside of this function. df.loc[counter] = [0,"01", "Monday", d] counter -= 1 else: pass # Fills in missing hours. def _add_Hours(x): fullHourSet = set(range(0, 23+1)) hourSet = set(x.HourOfDay) difference = fullHourSet - hourSet return list(difference) # Main function that formats the data. def heatmap(dataframe, temporalBinType, save_location, timestamp_column=constants.DATETIME): ''' Return a xlsx file saved to disk. :param dataframe: pandas DataFrame or TrajDataFrame DataFrame or TrajDataFrame to be plotted :param temporalBinType: determines the temporal extent of the scatter plot. Options are: "MonthOfYear" "WeekOfYear" :param save_location: path and name with file extention (i.e., save_location=r"D:\Projects\20191211_TemporalChart_POL\file_name.xlsx") :param timestamp_column: DataFrame or TrajDataFrame column that contains the datetime information. Default is constants.DATETIME, which applies if TrajDataFrame and the original tdf datetime column is used. ''' df = dataframe.copy() # Add the columns and formatting that will be used to create the heatmap. # A conditional statement based on the user's temporalBinType input. if temporalBinType == "MonthOfYear": df[temporalBinType] = df[timestamp_column].dt.year.astype(str) + '-' + df[timestamp_column].dt.month.astype(str).apply(lambda x: "0" + x if len(x) == 1 else x) elif temporalBinType == "WeekOfYear": df[temporalBinType] = df[timestamp_column].dt.year.astype(str) + '-' + df[timestamp_column].dt.strftime('%U').apply(lambda x: "0" + x if len(x) == 1 else x) # Create a column for the day of week name and for the hour of day. Add a leading 0 to the hour of day if it's a single digit. df["DayOfWeek"] = df[timestamp_column].dt.day_name() df['HourOfDay'] = df[timestamp_column].dt.hour.astype(str).apply(lambda x: "0" + x if len(x) == 1 else x) # Count the events by binning them into the selected temporalBinType, day of week name, and hour of day. df["TotalHrByYearMonthDayNameHour"] = df.groupby([temporalBinType, "DayOfWeek", "HourOfDay"])[timestamp_column].transform(lambda x: len(x.dt.date.unique())) # Add the date column, which will be used to fill in the missing days using the _addDays helper function. df['just_date'] = df[timestamp_column].dt.date df["just_date"] = df.just_date.map(lambda t: t.strftime('%Y-%m-%d')) # Only keep the required columns. This is cleaner and decreases the size of the dataset that is processed. df = df.filter(items=["TotalHrByYearMonthDayNameHour", "HourOfDay", "DayOfWeek", "just_date"]) # Fill in missinges days that are within the min/max range. _addDays(df) df.reset_index(drop=True,inplace=True) # Redo these two columns now that the missing dates have been filled in since there could be new rows # that represent newly added days with the placeholder values inserted from the _addDays function. Also, the just_date # column is redone because it needs to be a pandas timestamp. df["just_date"] = pd.to_datetime(df.just_date) df["DayOfWeek"] = df.just_date.dt.day_name() # Redo this column because we did not include it when we filtered the dataframe. It was not included # because it had to be redone since we added missings days. if temporalBinType == "MonthOfYear": df[temporalBinType] = df['just_date'].dt.year.astype(str) + '-' + df['just_date'].dt.month.astype(str).apply(lambda x: "0" + x if len(x) == 1 else x) elif temporalBinType == "WeekOfYear": df[temporalBinType] = df['just_date'].dt.year.astype(str) + '-' + df['just_date'].dt.strftime('%U').apply(lambda x: "0" + x if len(x) == 1 else x) df["HourOfDay"] = df["HourOfDay"].astype(int) # Create a groupby object that is passed to the _add_Hours helper function that fills in missing hours. day_Group = df.groupby(["just_date"], sort=False) # Fill in missing hours. results = day_Group.apply(_add_Hours) results = pd.DataFrame(results) # This takes the index, which is the date, and makes it into a column. results["just_date"]=results.index.get_level_values("just_date") # Rename the column that is comprised of the missing hours. Now called HourOfDay. results.rename(columns={0:"HourOfDay"}, inplace=True) # Take each row and stack it on the date where the hours of the day that are in a list are stacked vertically under each date. sxy = results.apply(lambda x:
pd.Series(x["HourOfDay"])
pandas.Series
import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt import collections import copy # deadspots = 175.2 (full fov) / res / 2 * discretisation # eg. 115x44 disc. 5 -> 175.2/115/2*5 = 3.81 deg # 2nd July (93a92648a5e774c97e3368e3306782382f626b6d) - SR=1, rho=0.1, theta=5 deg data = { '115x44':{ '3.81': [1, 1, 1, 0, 1, 1, 1, 1, 1, 1], '7.62': [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], '11.43': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], }, '23x9':{ '3.81': [0, 1, 1, 1, 1, 0, 1, 1, 1, 1], '7.62': [0, 0, 1, 0, 1, 1, 0, 0, 0, 1], '11.43': [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], }, } mean = {} stdev = np.zeros((len(data.keys()),max([len(v) for k,v in data.items()]))) for i, (k,v) in enumerate(data.items()): mean[k] = {} for j, (k2, v2) in enumerate(v.items()): mean[k][k2] = np.mean(v2) stdev[i,j] = mean[k][k2] * (1-mean[k][k2]) / (len(v2)-1) df =
pd.DataFrame(mean)
pandas.DataFrame
from sklearn.metrics import classification_report, f1_score, confusion_matrix import editdistance import pandas as pd import numpy as np import os.path import sys from reach.pdf_parser.pdf_parse import parse_pdf_document, grab_section def pretty_confusion_matrix(actual_data, predict_data, labels): cm = confusion_matrix(actual_data, predict_data, labels = labels) pretty_conf = pd.DataFrame( cm, columns=["Predicted {}".format(label) for label in labels], index=["Actually {}".format(label) for label in labels] ) return pretty_conf def evaluate_metric_scraped(actual, predicted, sections, files, providers): """ Input: actual : a boolean list of whether section text was in the pdf predicted : a boolean list of whether section text was scraped sections : a list of the section names for each actual/predicted pair files : a list of the pdf names providers : a list of the providers where each pdf came from Output: Various metrics for how accurately the scraper scraped a section or not, no comment on how good the scrape was though """ similarity = round(f1_score(actual, predicted, average='micro'), 3) combined_data = pd.DataFrame({ 'Actual' : actual, 'Predicted' : predicted, 'Section' : sections, 'Files' : files, 'Provider' : providers }) all_providers = list(set(providers)) get_num_pdfs = lambda x: len(x["Files"].unique()) get_num_pdfs_text = lambda x: len(x[x["Actual"]==True]["Files"].unique()) get_prop_text = lambda x: round(sum(x["Actual"]==True) / len(x), 3) get_f1 = lambda x: round( f1_score( list(x["Actual"]), list(x["Predicted"]), average='micro' ), 3 ) grouped_provider = combined_data.groupby("Provider") n_by_prov = grouped_provider.apply(get_num_pdfs) n_text_by_prov = grouped_provider.apply(get_num_pdfs_text) prop_text_by_prov = round(n_text_by_prov/n_by_prov, 3) f1_by_prov = grouped_provider.apply(get_f1) grouped_provider_section = combined_data.groupby(["Provider","Section"]) n_text_by_sect = grouped_provider_section.apply(get_num_pdfs_text) prop_text_by_sect = grouped_provider_section.apply(get_prop_text) f1_by_sect = grouped_provider_section.apply(get_f1) metrics_by_prov = pd.concat( [n_by_prov, n_text_by_prov, prop_text_by_prov, f1_by_prov], axis = 1 ) metrics_by_prov.columns = [ "Number of pdfs included", "Number of pdfs with sections text", "Proportion of pdfs with sections text", "Lenient F1 score for all sections included" ] trans_n_text_by_sect = pd.DataFrame( [n_text_by_sect[provider] for provider in all_providers], index = all_providers ) trans_n_text_by_sect.columns = [ 'Number of pdfs with a {} section'.format(b)\ for b in trans_n_text_by_sect.columns ] trans_prop_text_by_sect = pd.DataFrame( [prop_text_by_sect[provider] for provider in all_providers], index = all_providers ) trans_prop_text_by_sect.columns = [ 'Proportion with a {} section'.format(b)\ for b in trans_prop_text_by_sect.columns ] trans_f1_by_sect = pd.DataFrame( [f1_by_sect[provider] for provider in all_providers], index = all_providers ) trans_f1_by_sect.columns = [ 'Lenient F1 score for the {} section'.format(b)\ for b in trans_f1_by_sect.columns ] provider_metrics = pd.concat( [metrics_by_prov, trans_n_text_by_sect, trans_prop_text_by_sect, trans_f1_by_sect], axis = 1, sort=True ) provider_metrics.index.name = 'Provider' provider_metrics.reset_index(inplace=True) n = len(set(files)) n_text = len( set([f for (f,a) in zip(files, actual) if a]) ) all_provider_metrics = { 'Provider': 'all', 'Number of pdfs included': n, 'Number of pdfs with sections text': n_text, 'Proportion of pdfs with sections text': round(n_text/n, 3), 'Lenient F1 score for all sections included': round( f1_score( list(combined_data["Actual"]), list(combined_data["Predicted"]), average='micro' ), 3) } sections_texts = pd.DataFrame( {'Section': sections, 'Actual': actual, 'Predicted': predicted} ) for section_name in set(sections): section_text = sections_texts[sections_texts['Section']==section_name] actual_section = section_text['Actual'] predicted_section = section_text['Predicted'] all_provider_metrics[ 'Number of pdfs with a {} section'.format(section_name) ] = len(set( [file for i,file in enumerate(files) if ((sections[i] == section_name) and (actual[i]))] )) all_provider_metrics[ 'Lenient F1 score for the {} section'.format(section_name) ] = f1_score(actual_section, predicted_section, average='micro') provider_metrics = provider_metrics.append( all_provider_metrics, ignore_index=True ) provider_metrics = (provider_metrics.set_index('Provider').T) metrics = { 'Lenient F1-score (references section exists or not)' : similarity, 'Metrics by provider' : provider_metrics, } return metrics def levenshtein_distance(actual_text, predicted_text, normalised=True): """ Calculate levenshtein distance given an actual and predicted text """ distance = editdistance.eval(actual_text, predicted_text) if normalised: distance = distance / max(len(actual_text), len(predicted_text)) return distance def evaluate_metric_quality(scrape_data, levenshtein_threshold): """ Normalised Levenshtein distances between actual and predicted section text for pdfs where there is a section (actual!='') """ # Get rid of times when there is no section scrape_data = list(filter(lambda x: x['Actual text'] != '', scrape_data)) hashes = [s['File'] for s in scrape_data] actual_texts = [s['Actual text'] for s in scrape_data] predicted_texts = [s['Predicted text'] for s in scrape_data] sections = [s['Section'] for s in scrape_data] # Get all the normalised Lev distances lev_distances_hash = dict() for hash, actual_text, predicted_text in zip (hashes, actual_texts, predicted_texts): lev_distances_hash[hash] = levenshtein_distance(actual_text, predicted_text) lev_distances = list(lev_distances_hash.values()) # Which sections were found exactly? equal = [lev_distance == 0 for lev_distance in lev_distances] # Which sections were found roughly the same? quite_equal = [ lev_distance<levenshtein_threshold for lev_distance in lev_distances ] metrics = { 'Number of pdfs with sections text' : len(scrape_data), 'Mean normalised Levenshtein distance' : np.mean(lev_distances), 'Strict accuracy (micro)' : np.mean(equal), 'Lenient accuracy (micro) (normalised Levenshtein < {})'.format( levenshtein_threshold ) : np.mean(quite_equal)} for section_name in set(sections): # Get the Levenshtein distances for this sections actual-predicted pairs lev_distances_section = [ lev_distance for (section,lev_distance) \ in zip(sections, lev_distances) \ if section == section_name ] equal_section = [l==0 for l in lev_distances_section] quite_equal_section = [ l<levenshtein_threshold for l in lev_distances_section ] strict_acc_section = np.mean(equal_section) lenient_acc_section = np.mean(quite_equal_section) metrics[ 'Mean normalised Levenshtein distance for the {} section'.format( section_name ) ] = np.mean(lev_distances_section) metrics[ 'Strict accuracy for the {} section'.format(section_name) ] = strict_acc_section metrics[ 'Lenient accuracy (normalised Levenshtein'+ '< {}) for the {} section'.format( levenshtein_threshold, section_name ) ] = lenient_acc_section return {k:round(v,3) for k,v in metrics.items()}, lev_distances_hash def scrape_process_pdf( section_names, pdf_name, scrape_pdf_location, actual_texts ): """ Input: section_names : the list of sections we are looking for in the pdf pdf_name : the name of the pdf scrape_pdf_location : the file location of the pdf Output: scrape_data : a list of dicts with the predicted and actual texts for each of the sections we looked for in the pdf """ if os.path.splitext(pdf_name)[1] == ".pdf": pdf_name = os.path.splitext(pdf_name)[0] with open('{}/{}.pdf'.format(scrape_pdf_location, pdf_name), 'r') as f: pdf_file, full_text, _ = parse_pdf_document(f) scrape_data = [] for section_name in section_names: scrape_data.append({ 'File' : pdf_name, 'Section' : section_name, 'Predicted text' : grab_section(pdf_file, section_name), 'Actual text' : actual_texts[section_name]}) return scrape_data def evaluate_find_section( evaluate_find_section_data, provider_names, scrape_pdf_location, levenshtein_threshold, csv=False ): # Get the predicted text for each of the pdf sections for each pdf section_names = evaluate_find_section_data[ next(iter(evaluate_find_section_data)) ].keys() scrape_data = [] for pdf_name, actual_texts in evaluate_find_section_data.items(): scrape_data.extend( scrape_process_pdf( section_names, pdf_name, scrape_pdf_location, actual_texts ) ) eval1_scores = evaluate_metric_scraped( [pred_section['Actual text']!='' for pred_section in scrape_data], [pred_section['Predicted text']!='' for pred_section in scrape_data], [pred_section['Section'] for pred_section in scrape_data], [pred_section['File'] for pred_section in scrape_data], [provider_names[pred_section['File']] for pred_section in scrape_data] ) eval2_scores, raw_levenshtein_distance = evaluate_metric_quality( scrape_data, levenshtein_threshold) eval_scores_find = { "Score" : 1 - eval2_scores['Mean normalised Levenshtein distance'] } eval_scores_find.update(eval1_scores) eval_scores_find.update(eval2_scores) # Write out the full evaluation data to csv file if csv: df =
pd.DataFrame(scrape_data)
pandas.DataFrame
# import libraries import requests import numpy as np import pandas as pd from bs4 import BeautifulSoup as bs import time import random import re import os # Important Note --- # change the value for which you want to scrape the data defaults to 2008-2019 year_list = [year for year in range(2019, 2007, -1)] # project paths project_root_dir = os.path.normpath(os.getcwd() + os.sep + os.pardir) file_path = os.path.join(project_root_dir, "data") os.makedirs(file_path, exist_ok=True) # function for loading data def load_data(filename, file_path=file_path): csv_path = os.path.join(file_path, filename) return pd.read_csv(csv_path) # function for saving data as csv file def save_dataframe(df, filename, file_path=file_path): """ This function takes a dataframe and save it as a csv file. df: dataframe to save filename: Name to use for the csv file eg: 'my_file.csv' file_path = where to save the file """ path = os.path.join(file_path, filename) df.to_csv(path, index=False) def get_batting_data(year): """This function gets the data from ipl official website, extract all the table data and return it as a pandas dataframe. """ try: # get the html from the website url = "https://www.iplt20.com/stats/{}/most-runs".format(year) response = requests.get(url) batting_html = response.text # parse the html batting_soup = bs(batting_html, features="lxml") # get the table data batting_table_data = batting_soup.find(class_="js-table") # get the column names col_names = [] for header in batting_table_data.find_all("th"): col_names.append(header.text.strip()) # create the dataframe a_list = [] for data in batting_table_data.find_all("td"): a_list.append(" ".join(data.text.split())) n = 14 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = col_names # Add the nationality of each player in the dataframe nationality_list = [] for index, data in enumerate(batting_table_data.find_all("tr")[1:]): try: nationality_list.append(data["data-nationality"]) except Exception as e: print(e) print(index) # add none nationality_list.append(None) df["Nationality"] = nationality_list # Add the player link for more info in the dataframe base_url = "https://www.iplt20.com" player_link_list = [] try: # get all the links and add it to the list for data in batting_table_data.find_all("a"): player_link_list.append(base_url + data["href"]) # create a column with None value df[15] = None # iterate through each row and create a player name pattern for index, row in df.iterrows(): player_name = row["PLAYER"].replace(" ", "-") player_regex = re.compile(r"{}".format(player_name), re.IGNORECASE) for item in player_link_list: # if the pattern matches any links if player_regex.search(item) != None: # then append it to that row of the df df.iloc[index, 15] = item # rename the column df.rename(columns={15: "Player Link"}, inplace=True) # extract the player team name from the link and add to the df team_regex = r"teams/(\w+-\w+-?\w+)" df["Team"] = df["Player Link"].str.extract(team_regex, flags=re.IGNORECASE) df["Team"] = df["Team"].apply(lambda x: str(x).title().replace("-", " ")) # convert data types from string to numeric df["POS"] = pd.to_numeric(df["POS"], errors="coerce").fillna(0) df["Mat"] = pd.to_numeric(df["Mat"], errors="coerce").fillna(0) df["Inns"] = pd.to_numeric(df["Inns"], errors="coerce").fillna(0) df["NO"] = pd.to_numeric(df["NO"], errors="coerce").fillna(0) df["Runs"] = pd.to_numeric(df["Runs"], errors="coerce").fillna(0) df["HS"] = pd.to_numeric( df["HS"].str.replace("*", ""), errors="coerce" ).fillna(0) df["Avg"] = pd.to_numeric(df["Avg"], errors="coerce").fillna(0) df["BF"] = pd.to_numeric(df["BF"], errors="coerce").fillna(0) df["SR"] = pd.to_numeric(df["SR"], errors="coerce").fillna(0) df["100"] = pd.to_numeric(df["100"], errors="coerce").fillna(0) df["50"] = pd.to_numeric(df["50"], errors="coerce").fillna(0) df["4s"] = pd.to_numeric(df["4s"], errors="coerce").fillna(0) df["6s"] = pd.to_numeric(df["6s"], errors="coerce").fillna(0) # Add season year df["Season"] = year except Exception as e: print(e) print(year) except Exception as e: print(e) print(year) # return the dataframe return df def combine_all_years_data(function, year_list): """ Common function for combining data for all the years for a given table from ipl website or any other. All table have different functions to get the data from the websites. """ try: # create an empty list to hold all the dataframes df_list = [] # loop through each year and extract the data for year in year_list: # call the function to get the data for that year df = function(year) # append the data to the df list df_list.append(df) # add some random pause time.sleep(1 + 2 * random.random()) # concat all the dataframes df = pd.concat(df_list, ignore_index=True) except Exception as e: print(e) print(year) # return the dataframe return df def get_points_table_data(year): """This Function takes the year value and extract the points table data from HowStat and return it as a Pandas Dataframe. """ try: url = "http://www.howstat.com/cricket/Statistics/IPL/PointsTable.asp?s={}".format( year ) response = requests.get(url) except Exception as e: print(e) print(year) try: # get the html text points_html_str = response.text # parse it using BeautifulSoup points_soup = bs(points_html_str, features="lxml") # Get all the Table data table_data = points_soup.find(class_="TableLined") # create an empty list a_list = [] # loop through all the table data and extract the desired value and append # it to the empty list for data in table_data.find_all("td"): a_list.append(data.text.strip()) # total item to put in a list as we have 10 columns n = 10 # create a list of list each contains 10 items final = [a_list[i : i + n] for i in range(0, len(a_list), n)] # create a dataframe from the list of list df = pd.DataFrame(final) # set the column names which is in the 0th index df.columns = df.iloc[0] # drop the column names from the 0th index df = df.drop(df.index[0]) # convert the data types of all the following columns col_to_convert = ["Mat", "Won", "Lost", "Tied", "N/R", "Points", "Net R/R"] # function for converting string to numerical values def convert_to_float(val): return float(val) # do the conversion for each column for col in col_to_convert: df[col] = df[col].apply(convert_to_float) # add season year df["Season"] = year except Exception as e: print(e) print("year:", year) print("Status Code:", response.status_code) # return the dataframe return df def get_series_matches_data(year): """This function takes the year value and returns the series match data. """ try: url = "http://howstat.com/cricket/Statistics/IPL/SeriesMatches.asp?s={}".format( year ) response = requests.get(url) except Exception as e: print(e) print(year) try: # get the html text series_match_html = response.text # parse the html text series_soup = bs(series_match_html, features="lxml") # get the table data series_table_data = series_soup.find(class_="TableLined") # an empty list and append all the data to it a_list = [] for data in series_table_data.find_all("td"): a_list.append(data.text.strip()) n = 4 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = df.iloc[0] df = df.drop(df.index[0]) # convert to datetime object df["Date"] = pd.to_datetime(df["Date"]) # split the match number and teams names df[["Match Number", "Teams"]] = df["Match"].str.split(":", expand=True) # get the team A and team B names df[["Team A", "Team B"]] = df["Teams"].str.split("v", expand=True) # matching pattern for team names team_regex = r""" (Rajasthan\sRoyals|Kings\sXI\sPunjab|Chennai\sSuper\sKings|Delhi\sCapitals|Mumbai\sIndians| Kolkata\sKnight\sRiders|Royal\sChallengers\sBangalore|Deccan\sChargers|Kochi\sTuskers\sKerala| Pune\sWarriors|Sunrisers\sHyderabad|Gujarat\sLions|Rising\sPune\sSupergiant|No\sresult|Match\sabandoned) """ # Extract the data df["winner"] = df["Result"].str.extract( team_regex, flags=re.VERBOSE | re.IGNORECASE ) df["Wins By Runs"] = ( df["Result"] .str.extract(r"(\d{1,3})\s(Runs|Run)", flags=re.IGNORECASE) .fillna(0) .iloc[:, 0] ) df["Wins By Wickets"] = ( df["Result"] .str.extract(r"(\d{1,2})\s(Wickets|Wicket)", flags=re.IGNORECASE) .fillna(0) .iloc[:, 0] ) df["Season"] = df["Date"].dt.year # columns to drop cols_to_drop = ["Match", "Teams", "Result"] df = df.drop(cols_to_drop, axis=1) # convert strings to int df["Wins By Runs"] = df["Wins By Runs"].astype("int") df["Wins By Wickets"] = df["Wins By Wickets"].astype("int") except Exception as e: print(e) print(year) print(response.status_code) # return the dataframe return df def get_fastest_fifties_data(year): """ Get the fastest fifties data. """ try: url = "https://www.iplt20.com/stats/{}/fastest-fifties".format(year) response = requests.get(url) fifties_html = response.text fifties_soup = bs(fifties_html, features="lxml") # get the table data fifties_table_data = fifties_soup.find(class_="js-table") # get the column names col_names = [] for header in fifties_table_data.find_all("th"): col_names.append(header.text.strip()) a_list = [] for data in fifties_table_data.find_all("td"): a_list.append(" ".join(data.text.split())) n = 9 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = col_names # convert to datetime object df["Match Date"] = pd.to_datetime(df["Match Date"]) # convert data types df["POS"] = pd.to_numeric(df["POS"], errors="coerce").fillna(0) df["BF"] = pd.to_numeric(df["BF"], errors="coerce").fillna(0) df["6s"] = pd.to_numeric(df["6s"], errors="coerce").fillna(0) df["4s"] = pd.to_numeric(df["4s"], errors="coerce").fillna(0) df["Runs"] = pd.to_numeric(df["Runs"], errors="coerce").fillna(0) # Add season year df["Season"] = year except Exception as e: print(e) print(year) return df def get_fastest_centuries_data(year): """ Extract fastest centuries data for this year. """ try: url = "https://www.iplt20.com/stats/{}/fastest-centuries".format(year) response = requests.get(url) centuries_html = response.text centuries_soup = bs(centuries_html, features="lxml") # get the table data centuries_table_data = centuries_soup.find(class_="js-table") # get the column names col_names = [] for header in centuries_table_data.find_all("th"): col_names.append(header.text.strip()) a_list = [] for data in centuries_table_data.find_all("td"): a_list.append(" ".join(data.text.split())) n = 9 final = [a_list[i : i + n] for i in range(0, len(a_list), n)] df = pd.DataFrame(final) df.columns = col_names # convert to datetime object df["Match Date"] = pd.to_datetime(df["Match Date"]) # convert data from string to numeric df["POS"] = pd.to_numeric(df["POS"], errors="coerce").fillna(0) df["BF"] = pd.to_numeric(df["BF"], errors="coerce").fillna(0) df["6s"] = pd.to_numeric(df["6s"], errors="coerce").fillna(0) df["4s"] = pd.to_numeric(df["4s"], errors="coerce").fillna(0) df["Runs"] =
pd.to_numeric(df["Runs"], errors="coerce")
pandas.to_numeric
# https://www.kaggle.com/dlarionov/feature-engineering-xgboost/ import time import pickle import gc import sys from xgboost import plot_importance from xgboost import XGBRegressor import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import LabelEncoder from itertools import product import numpy as np import pandas as pd pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 100) # %matplotlib inline def plot_features(booster, figsize): fig, ax = plt.subplots(1, 1, figsize=figsize) return plot_importance(booster=booster, ax=ax) print(sys.version_info) items = pd.read_csv('../input/items.csv') shops = pd.read_csv('../input/shops.csv') cats = pd.read_csv('../input/item_categories.csv') train = pd.read_csv('../input/sales_train.csv') # set index to ID to avoid dropping it later test = pd.read_csv('../input/test.csv').set_index('ID') # Plot Outliers plt.figure(figsize=(10, 4)) plt.xlim(-100, 3000) sns.boxplot(x=train.item_cnt_day) plt.figure(figsize=(10, 4)) plt.xlim(train.item_price.min(), train.item_price.max()*1.1) sns.boxplot(x=train.item_price) ## Remove Outliers train = train[train.item_price < 100000] train = train[train.item_cnt_day < 1001] # There is one item with price below zero. Fill it with median. median = train[(train.shop_id == 32) & (train.item_id == 2973) & ( train.date_block_num == 4) & (train.item_price > 0)].item_price.median() train.loc[train.item_price < 0, 'item_price'] = median # Several shops are duplicates of each other (according to its name). Fix train and test set. # Якутск Орджоникидзе, 56 train.loc[train.shop_id == 0, 'shop_id'] = 57 test.loc[test.shop_id == 0, 'shop_id'] = 57 # Якутск ТЦ "Центральный" train.loc[train.shop_id == 1, 'shop_id'] = 58 test.loc[test.shop_id == 1, 'shop_id'] = 58 # Жуковский ул. Чкалова 39м² train.loc[train.shop_id == 10, 'shop_id'] = 11 test.loc[test.shop_id == 10, 'shop_id'] = 11 # Shops/Cats/Items preprocessing # Each shop_name starts with the city name. # Each category contains type and subtype in its name. shops.loc[shops.shop_name == 'Сергиев Посад ТЦ "7Я"', 'shop_name'] = 'СергиевПосад ТЦ "7Я"' shops['city'] = shops['shop_name'].str.split(' ').map(lambda x: x[0]) shops.loc[shops.city == '!Якутск', 'city'] = 'Якутск' shops['city_code'] = LabelEncoder().fit_transform(shops['city']) shops = shops[['shop_id', 'city_code']] cats['split'] = cats['item_category_name'].str.split('-') cats['type'] = cats['split'].map(lambda x: x[0].strip()) cats['type_code'] = LabelEncoder().fit_transform(cats['type']) # if subtype is nan then type cats['subtype'] = cats['split'].map( lambda x: x[1].strip() if len(x) > 1 else x[0].strip()) cats['subtype_code'] = LabelEncoder().fit_transform(cats['subtype']) cats = cats[['item_category_id', 'type_code', 'subtype_code']] items.drop(['item_name'], axis=1, inplace=True) # Monthly sales len(list(set(test.item_id) - set(test.item_id).intersection(set(train.item_id))) ), len(list(set(test.item_id))), len(test) ts = time.time() matrix = [] cols = ['date_block_num', 'shop_id', 'item_id'] for i in range(34): sales = train[train.date_block_num == i] matrix.append(np.array(list( product([i], sales.shop_id.unique(), sales.item_id.unique())), dtype='int16')) matrix = pd.DataFrame(np.vstack(matrix), columns=cols) matrix['date_block_num'] = matrix['date_block_num'].astype(np.int8) matrix['shop_id'] = matrix['shop_id'].astype(np.int8) matrix['item_id'] = matrix['item_id'].astype(np.int16) matrix.sort_values(cols, inplace=True) time.time() - ts train['revenue'] = train['item_price'] * train['item_cnt_day'] # # In[11] ts = time.time() group = train.groupby(['date_block_num', 'shop_id', 'item_id']).agg( {'item_cnt_day': ['sum']}) group.columns = ['item_cnt_month'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=cols, how='left') matrix['item_cnt_month'] = (matrix['item_cnt_month'] .fillna(0) .clip(0, 20) # NB clip target here .astype(np.float16)) time.time() - ts # Test set # To use time tricks append test pairs to the matrix. test['date_block_num'] = 34 test['date_block_num'] = test['date_block_num'].astype(np.int8) test['shop_id'] = test['shop_id'].astype(np.int8) test['item_id'] = test['item_id'].astype(np.int16) # #In[13] ## Write the modified test dataframe for the model test.to_csv('test_modified.csv', index=True) ts = time.time() matrix = pd.concat([matrix, test], ignore_index=True, sort=False, keys=cols) matrix.fillna(0, inplace=True) # 34 month time.time() - ts # Out[13]: # Shops/Items/Cats features ts = time.time() matrix = pd.merge(matrix, shops, on=['shop_id'], how='left') matrix = pd.merge(matrix, items, on=['item_id'], how='left') matrix = pd.merge(matrix, cats, on=['item_category_id'], how='left') matrix['city_code'] = matrix['city_code'].astype(np.int8) matrix['item_category_id'] = matrix['item_category_id'].astype(np.int8) matrix['type_code'] = matrix['type_code'].astype(np.int8) matrix['subtype_code'] = matrix['subtype_code'].astype(np.int8) time.time() - ts # Target lags def lag_feature(df, lag_list, col): tmp = df[['date_block_num', 'shop_id', 'item_id', col]] for j in lag_list: shifted = tmp.copy() shifted.columns = ['date_block_num', 'shop_id', 'item_id', col +'_lag_' + str(j)] shifted['date_block_num'] += j df = pd.merge(df, shifted, on=[ 'date_block_num', 'shop_id', 'item_id'], how='left') return df ts = time.time() matrix = lag_feature(matrix, [1, 2, 3, 6, 12], 'item_cnt_month') time.time() - ts # Out[16]: ts = time.time() group = matrix.groupby(['date_block_num']).agg({'item_cnt_month': ['mean']}) group.columns = ['date_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num'], how='left') matrix['date_avg_item_cnt'] = matrix['date_avg_item_cnt'].astype(np.float16) matrix = lag_feature(matrix, [1], 'date_avg_item_cnt') matrix.drop(['date_avg_item_cnt'], axis=1, inplace=True) time.time() - ts # Out[17]: ts = time.time() group = matrix.groupby(['date_block_num', 'item_id']).agg( {'item_cnt_month': ['mean']}) group.columns = ['date_item_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'item_id'], how='left') matrix['date_item_avg_item_cnt'] = matrix['date_item_avg_item_cnt'].astype( np.float16) matrix = lag_feature(matrix, [1, 2, 3, 6, 12], 'date_item_avg_item_cnt') matrix.drop(['date_item_avg_item_cnt'], axis=1, inplace=True) time.time() - ts # Out[18]: ts = time.time() group = matrix.groupby(['date_block_num', 'shop_id']).agg( {'item_cnt_month': ['mean']}) group.columns = ['date_shop_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['date_block_num', 'shop_id'], how='left') matrix['date_shop_avg_item_cnt'] = matrix['date_shop_avg_item_cnt'].astype( np.float16) matrix = lag_feature(matrix, [1, 2, 3, 6, 12], 'date_shop_avg_item_cnt') matrix.drop(['date_shop_avg_item_cnt'], axis=1, inplace=True) time.time() - ts # Out[19]: ts = time.time() group = matrix.groupby(['date_block_num', 'item_category_id']).agg( {'item_cnt_month': ['mean']}) group.columns = ['date_cat_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=[ 'date_block_num', 'item_category_id'], how='left') matrix['date_cat_avg_item_cnt'] = matrix['date_cat_avg_item_cnt'].astype( np.float16) matrix = lag_feature(matrix, [1], 'date_cat_avg_item_cnt') matrix.drop(['date_cat_avg_item_cnt'], axis=1, inplace=True) time.time() - ts # Out[20]: ts = time.time() group = matrix.groupby(['date_block_num', 'shop_id', 'item_category_id']).agg( {'item_cnt_month': ['mean']}) group.columns = ['date_shop_cat_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=[ 'date_block_num', 'shop_id', 'item_category_id'], how='left') matrix['date_shop_cat_avg_item_cnt'] = matrix['date_shop_cat_avg_item_cnt'].astype( np.float16) matrix = lag_feature(matrix, [1], 'date_shop_cat_avg_item_cnt') matrix.drop(['date_shop_cat_avg_item_cnt'], axis=1, inplace=True) time.time() - ts # Out[21]: ts = time.time() group = matrix.groupby(['date_block_num', 'shop_id', 'type_code']).agg( {'item_cnt_month': ['mean']}) group.columns = ['date_shop_type_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=[ 'date_block_num', 'shop_id', 'type_code'], how='left') matrix['date_shop_type_avg_item_cnt'] = matrix['date_shop_type_avg_item_cnt'].astype( np.float16) matrix = lag_feature(matrix, [1], 'date_shop_type_avg_item_cnt') matrix.drop(['date_shop_type_avg_item_cnt'], axis=1, inplace=True) time.time() - ts # Out[22]: ts = time.time() group = matrix.groupby(['date_block_num', 'shop_id', 'subtype_code']).agg( {'item_cnt_month': ['mean']}) group.columns = ['date_shop_subtype_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=[ 'date_block_num', 'shop_id', 'subtype_code'], how='left') matrix['date_shop_subtype_avg_item_cnt'] = matrix['date_shop_subtype_avg_item_cnt'].astype( np.float16) matrix = lag_feature(matrix, [1], 'date_shop_subtype_avg_item_cnt') matrix.drop(['date_shop_subtype_avg_item_cnt'], axis=1, inplace=True) time.time() - ts # Out[23]: ts = time.time() group = matrix.groupby(['date_block_num', 'city_code'] ).agg({'item_cnt_month': ['mean']}) group.columns = ['date_city_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=[ 'date_block_num', 'city_code'], how='left') matrix['date_city_avg_item_cnt'] = matrix['date_city_avg_item_cnt'].astype( np.float16) matrix = lag_feature(matrix, [1], 'date_city_avg_item_cnt') matrix.drop(['date_city_avg_item_cnt'], axis=1, inplace=True) time.time() - ts # Out[24]: ts = time.time() group = matrix.groupby(['date_block_num', 'item_id', 'city_code']).agg( {'item_cnt_month': ['mean']}) group.columns = ['date_item_city_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=[ 'date_block_num', 'item_id', 'city_code'], how='left') matrix['date_item_city_avg_item_cnt'] = matrix['date_item_city_avg_item_cnt'].astype( np.float16) matrix = lag_feature(matrix, [1], 'date_item_city_avg_item_cnt') matrix.drop(['date_item_city_avg_item_cnt'], axis=1, inplace=True) time.time() - ts print(f"{time.time() - ts}") # Out[25]: ts = time.time() group = matrix.groupby(['date_block_num', 'type_code'] ).agg({'item_cnt_month': ['mean']}) group.columns = ['date_type_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=[ 'date_block_num', 'type_code'], how='left') matrix['date_type_avg_item_cnt'] = matrix['date_type_avg_item_cnt'].astype( np.float16) matrix = lag_feature(matrix, [1], 'date_type_avg_item_cnt') matrix.drop(['date_type_avg_item_cnt'], axis=1, inplace=True) time.time() - ts print(f"{time.time() - ts}") # Out[26]: ts = time.time() group = matrix.groupby(['date_block_num', 'subtype_code'] ).agg({'item_cnt_month': ['mean']}) group.columns = ['date_subtype_avg_item_cnt'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=[ 'date_block_num', 'subtype_code'], how='left') matrix['date_subtype_avg_item_cnt'] = matrix['date_subtype_avg_item_cnt'].astype( np.float16) matrix = lag_feature(matrix, [1], 'date_subtype_avg_item_cnt') matrix.drop(['date_subtype_avg_item_cnt'], axis=1, inplace=True) print(f"{time.time() - ts}") # Out[27]: # Trend features # Price trend for the last six months # ts = time.time() group = train.groupby(['item_id']).agg({'item_price': ['mean']}) group.columns = ['item_avg_item_price'] group.reset_index(inplace=True) matrix = pd.merge(matrix, group, on=['item_id'], how='left') matrix['item_avg_item_price'] = matrix['item_avg_item_price'].astype( np.float16) group = train.groupby(['date_block_num', 'item_id'] ).agg({'item_price': ['mean']}) group.columns = ['date_item_avg_item_price'] group.reset_index(inplace=True) matrix =
pd.merge(matrix, group, on=['date_block_num', 'item_id'], how='left')
pandas.merge
# -*- coding: utf-8 -*- import click import logging from pathlib import Path import pandas as pd from src.utils.config import Config from src.features import build_features from dotenv import find_dotenv, load_dotenv from sklearn.manifold import TSNE import umap from sklearn.decomposition import PCA import numpy as np from sklearn.preprocessing import RobustScaler as rs from sklearn.preprocessing import MinMaxScaler as mms from sklearn.preprocessing import StandardScaler as sd project_dir=Config.project_dir def process_data(): labels= pd.read_csv(project_dir / "data/raw/labels.csv") expression_data = pd.read_csv(project_dir / "data/raw/data.csv") #rename and Merge labels and features expression_data.rename({"Unnamed: 0":"sample"}, axis='columns', inplace =True) labels.rename({"Unnamed: 0":"sample"}, axis='columns', inplace =True) labled_expression_merged = pd.merge(labels,expression_data,on="sample") # save expression_data=expression_data.drop("sample",axis=1) expression_data.to_csv(project_dir/ "data/processed/expression_data_original.csv") labels=labels.drop("sample",axis=1) labels.to_csv(project_dir/ "data/processed/labels.csv") labled_expression_merged.to_csv(project_dir/ "data/processed/merged_expression_dataset.csv", index=True) """[Robust scaling ] Robust rescaling the expression levels of each gene, applying the formula : rescaled = (gene_expression - median(gene_expression)) / IQR(gene_expression) where IQR stands for Inter Quartile Range. """ expression_data_centered = rs().fit_transform(expression_data) df_expression_data_centered = pd.DataFrame(expression_data_centered,columns=expression_data.columns) df_expression_data_centered.to_csv(project_dir/ "data/processed/expression_data_centerted.csv") """[standard scaling ] """ expression_data_standardized = sd().fit_transform(expression_data) df_expression_data_standardized = pd.DataFrame(expression_data_standardized,columns=expression_data.columns) df_expression_data_standardized.to_csv(project_dir/ "data/processed/expression_data_standardized.csv") y = labels['Class'].values true_labels = np.array([Config.labels_map[element] for element in y]) df_true_labels = pd.DataFrame(true_labels,columns=["Class"]) df_true_labels.to_csv(project_dir/ "data/processed/true_labels.csv") expression_level_5000_HGV , features_5000_HGV= build_features.top_k_variance( expression_data.values, k=1000, names= expression_data.columns ) #--------------------- data reduction -----------------------# pca_reducer = PCA(n_components=2) pca_reducer.fit(expression_data ) pc = pca_reducer.transform(expression_data ) X_tsne = TSNE(n_components=2).fit_transform(expression_data) UMAP_COMPONENTS_REDUCTION = 2 UMAP_COMPONENTS_FEATURES = 20 UMAP_EPOCHS = 2000 manifold_reducer = umap.UMAP( n_components=UMAP_COMPONENTS_REDUCTION, n_neighbors=200, n_epochs=UMAP_EPOCHS, metric='cosine', min_dist=0.9) manifold = manifold_reducer.fit_transform(expression_data) # saving tranformed data components= ["c1","c2"] df_PCA =pd.DataFrame(pc,columns=components) df_PCA.to_csv(Config.project_dir/ "data/transformed/PCA_reduction.csv") df_PCA =pd.DataFrame(X_tsne,columns=components) df_PCA.to_csv(Config.project_dir/ "data/transformed/TSNA_reduction.csv") df_PCA =pd.DataFrame(manifold,columns=components) df_PCA.to_csv(Config.project_dir/ "data/transformed/UMAP_reduction.csv") # saving hvg df_expression_level_5000_HGV =pd.DataFrame(expression_level_5000_HGV,columns=features_5000_HGV) df_expression_level_5000_HGV.to_csv(Config.project_dir/ "data/transformed/expression_data_HVG_1000.csv") def get_data(data_type:str): """ this function : imports data Args: data_type (str): ["original","centered","standardized"] the type of data you want to import Returns: [tuple]: containing (the merged data , features , labels , true labels ) """ merged_data=
pd.read_csv(Config.data / f"processed/merged_expression_dataset.csv",index_col=0)
pandas.read_csv
# tallylib/textrank.py import pandas as pd import spacy import en_core_web_sm import pytextrank from datetime import datetime from datetime import timedelta from django.db import connection # Local from tallylib.sql import getYelpReviews def yelpTrendyPhrases(business_id, periods=12, bagging_periods=3, days_per_period=30, topk=10 ): ''' 1. Get Yelp review texts 2. Bag review texts within certain period, e.g. 6 peridos (180 days) 3. Use Textrank to get scores 4. Return JSON format for the frontend visualization ''' # In Google Colab, running 6 period bagging would need: # CPU times: user 24.5 s, sys: 520 ms, total: 25 s # Wall time: 25 s # https://colab.research.google.com/drive/1r4uvFA6RNV35lO3JcYoO5Psz_EVhmNu0 ## Get reivews from database current_date = datetime.strptime('2018-11-30', '%Y-%m-%d') past_date = current_date - timedelta(days=days_per_period * periods -1) reviews = getYelpReviews(business_id, starting_date=past_date, ending_date=current_date) if reviews == []: return df_reviews = pd.DataFrame(reviews, columns=['date', 'text']) df_reviews['date']=
pd.to_datetime(df_reviews['date'])
pandas.to_datetime
""" 中国国家统计局数据模块 作者:gansaihua """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import pandas as pd from datetime import date from calendar import monthrange from cnswd.websource.base import get_page_response, friendly_download HOST_URL = "http://data.stats.gov.cn/easyquery.htm" QUARTERLY_SUFFIX_MAPS = { 1: 'A', 2: 'B', 3: 'C', 4: 'D' } QUARTERLY_SUFFIX_MAPS_INV = {v: k for k, v in QUARTERLY_SUFFIX_MAPS.items()} def _extract_date(datestr): year = int(datestr[:4]) month = 12 if len(datestr) == 5: # quarterly quarter = int(QUARTERLY_SUFFIX_MAPS_INV.get(datestr[4])) month = quarter * 3 elif len(datestr) == 6: # monthly month = int(datestr[4:6]) day = monthrange(year, month)[1] return date(year=year, month=month, day=day) def _sanitize_date(datestr, freq): dt = pd.Timestamp(datestr) freq = freq.strip().lower() ret = dt.year if freq == 'quarterly': ret = '%d%s' % (ret, QUARTERLY_SUFFIX_MAPS.get(dt.quarter)) elif freq == 'monthly': ret = '%d%s' % (ret, str(dt.day).zfill(2)) return ret def _freq_to_dbcode(freq): ref = { 'monthly': 'hgyd', 'quarterly': 'hgjd', 'yearly': 'hgnd', } return ref.get(freq.strip().lower()) @friendly_download(times=66, duration=None, max_sleep=1) def fetch_economics(code, start, end, freq): '''freq = monthly, quarterly, yearly''' start = _sanitize_date(start, freq) end = _sanitize_date(end, freq) date_rng = start + '-' + end params = { 'm': 'QueryData', 'rowcode': 'zb', 'colcode': 'sj', 'wds': '[]', 'dbcode': _freq_to_dbcode(freq), 'dfwds': '[{"wdcode":"zb","valuecode":"%s"}, {"wdcode":"sj","valuecode": "%s"}]' % (code, date_rng), } r = get_page_response(HOST_URL, method='post', params=params) records = [] labels = ['code', 'asof_date', 'value'] for record in r.json()['returndata']['datanodes']: val = record['data'] if val['hasdata']: code = record['wds'][0]['valuecode'] asof_date = record['wds'][1]['valuecode'] records.append((code, _extract_date(asof_date), val['data'])) df = pd.DataFrame.from_records(records, columns=labels) return df def get_codes(freq, node_id='zb'): '''freq = monthly, quarterly, yearly public API ''' return _batch_leaf_codes(freq, node_id) def get_categories(freq, node_id='zb'): ''' return the categories which are parents or super-parents codes of series node_id should be nodes which are super-parents not direct parents of leafs ''' return _batch_page_codes(freq, node_id)[0] def _batch_leaf_codes(freq, node_id='zb'): '''return all the codes of series which are children to the node of node_id default the root node''' ret = [] page_codes = _batch_page_codes(freq, node_id)[1] if page_codes.empty: page_codes = [node_id] else: page_codes = page_codes['id'] for page_code in page_codes: res = _get_leaf_codes(freq, page_code) ret.append(res) if ret: ret =
pd.concat(ret)
pandas.concat
import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.core.arrays.sparse import ( SparseArray, SparseDtype, ) arr_data = np.array([np.nan, np.nan, 1, 2, 3, np.nan, 4, 5, np.nan, 6]) arr = SparseArray(arr_data) class TestGetitem: def test_getitem(self): dense = arr.to_dense() for i in range(len(arr)): tm.assert_almost_equal(arr[i], dense[i]) tm.assert_almost_equal(arr[-i], dense[-i]) def test_getitem_arraylike_mask(self): arr = SparseArray([0, 1, 2]) result = arr[[True, False, True]] expected = SparseArray([0, 2]) tm.assert_sp_array_equal(result, expected) @pytest.mark.parametrize( "slc", [ np.s_[:], np.s_[1:10], np.s_[1:100], np.s_[10:1], np.s_[:-3], np.s_[-5:-4], np.s_[:-12], np.s_[-12:], np.s_[2:], np.s_[2::3], np.s_[::2], np.s_[::-1], np.s_[::-2], np.s_[1:6:2], np.s_[:-6:-2], ], ) @pytest.mark.parametrize( "as_dense", [[np.nan] * 10, [1] * 10, [np.nan] * 5 + [1] * 5, []] ) def test_getslice(self, slc, as_dense): as_dense = np.array(as_dense) arr = SparseArray(as_dense) result = arr[slc] expected = SparseArray(as_dense[slc])
tm.assert_sp_array_equal(result, expected)
pandas._testing.assert_sp_array_equal
# -*- coding: utf-8 -*- import numpy as np import pandas as pd from mr_clean_func_utils import coerce,get_colname_gen,get_cutoff,ic_vec,is_num,row_req,rows def validate(df,coerce_numeric,coerce_dt,coerce_categorical): # validates input assert type(df) is pd.DataFrame column_dict = {} for element in coerce_numeric + coerce_dt + coerce_categorical: # these lists must be mutually exclusive assert type(element) is str assert not element in column_dict column_dict[element] = True def rename_cols(df, col_names): # renames columns if col_names is not None: col_list = [*col_names] col_gen = get_colname_gen(df) for col_name in col_gen(): if len(col_list) >= len(df.columns): break else: col_list.append(col_name) else: col_list = [*df.columns] for index,col_name in enumerate(col_list): col_list[index] = col_name.strip().lower().replace(' ','_') df.columns = col_list def remove_whitespace(df): # removes whitespace from string columns for column in (column for column in df if not is_num( df[column] ) ): df[column] = df[column].str.strip() yield column def rename_index(df): if not (type(df.index) is pd.RangeIndex or type(df.index) is pd.DatetimeIndex): df.reset_index() # reset the index return True #%%% def scrub_str_cols(df,column,char_scrub_cutoff): # Tries to remove common characters from the front and back of the strings in df[column] if not is_num(df[column]): # if it's not a numeric char_scrub_cutoff = get_cutoff(column, char_scrub_cutoff) from_front,from_back = "","" flag1, flag2 = True,True capture1,capture2 = ic_vec(df),ic_vec(df) # Boolean column vectors iteration = 0 get_colname = get_colname_gen(df) while flag1 or flag2: valcounts = df.loc[capture1 >= iteration,column].str[0].value_counts() flag1 = valcounts[0] >= char_scrub_cutoff * rows(df) if len(valcounts)>0 else False if flag1: from_front+=valcounts.index[0] capture1+=df[column].str.startswith(valcounts.index[0])&(capture1 >= iteration) df.loc[capture1 > iteration,column] = df.loc[capture1 > iteration,column].str[1:] valcounts = df.loc[capture2 >= iteration,column].str[-1].value_counts() flag2 = valcounts[0] >= char_scrub_cutoff * rows(df) if len(valcounts)>0 else False if flag2: from_back=valcounts.index[0]+from_back capture2+=df[column].str.endswith(valcounts.index[0])&(capture2 >= iteration) df.loc[capture2 > iteration,column] = df.loc[capture2 > iteration,column].str[:-1] iteration+=1 if len(from_front + from_back) > 0: # Generate unique column names for each appended column sieve_col_1 = next(get_colname(column+'_scrubf')) sieve_col_2 = next(get_colname(column+'_scrubb')) df[sieve_col_1] = capture1 # Add columns df[sieve_col_2] = capture2 # Add columns return (from_front, from_back, column,sieve_col_1,sieve_col_2) #%% def coerce_col(df, column, numeric_cutoff, coerce_numeric, dt_cutoff, coerce_dt, dt_format, categorical_cutoff,coerce_categorical): success = True if column in coerce_numeric: coerce(df, column, pd.to_numeric(df[column], errors = 'coerce')) elif column in coerce_dt: if dt_format is None: coerce(df, column, pd.to_datetime(df[column],errors = 'coerce',infer_datetime_format = True)) else: coerce(df, column, pd.to_datetime(df[column],errors = 'coerce',format = dt_format)) elif column in coerce_categorical: coerce(df, column, df[column].astype('category')) else: success = __infer_coerce(df, column, get_cutoff( column,numeric_cutoff ), get_cutoff( column,dt_cutoff ), get_cutoff( column,categorical_cutoff ) ) return success def __infer_coerce(df, column, numeric_cutoff,dt_cutoff,categorical_cutoff): cat_coerced = df[column].astype('category') num_coerced = pd.to_numeric(df[column], errors = 'coerce') dt_coerced = pd.to_datetime(df[column],errors = 'coerce',infer_datetime_format = True) all_cutoffs = [categorical_cutoff,numeric_cutoff,dt_cutoff] all_coerced = [cat_coerced,num_coerced,dt_coerced] all_counts = [coerced.count() for coerced in all_coerced] all_counts[0] = rows(df)-len(all_coerced[0].value_counts()) all_scores = [count-row_req(df,cutoff) for count,cutoff in zip(all_counts,all_cutoffs)] high_score = max(*all_scores) for index in range(3): if all_scores[index] == high_score and \ all_scores[index] >= 0: coerce(df, column, all_coerced[index]) return True return False def preview(df,preview_rows = 5,preview_max_cols = 0): """ Returns a preview of a dataframe, which contains both header rows and tail rows. """ assert type(df) is pd.DataFrame if preview_rows <= 0: preview_rows = 1 initial_max_cols = pd.get_option('display.max_columns')
pd.set_option('display.max_columns', preview_max_cols)
pandas.set_option
from time import time import pandas as pd from pandas.plotting import parallel_coordinates, andrews_curves import matplotlib.pyplot as plt from bokeh.plotting import figure, output_file, show from bokeh.models import ColumnDataSource, HoverTool from bokeh.palettes import Inferno import numpy as np from scipy.stats import gaussian_kde from utils import load_config from gps_analysis import TraceAnalysis, Trace def gkde(data, gridsize): """ :param data: pd timeserie :return: x grid & gaussian kde series """ bw = 1/data.std() x_grid = np.linspace(data.min(), data.max(), gridsize) gkde = gaussian_kde(data, bw_method=bw) gkde_pdf = gkde(x_grid) return (x_grid, gkde_pdf) def build_crunch_df(df, result_types): if not result_types: return # df2 = df[df.description.isin(result_types)].pivot_table( # values=["result"], # index=["n"], # columns=["description"], # aggfunc=np.mean, # dropna=True, # ) # df2.result[result_type] df2 = pd.DataFrame( data={ result_type: df[df.description == result_type].result for result_type in result_types if (df.description == result_type).any() } ) return df2 def all_results_speed_density(all_results): """crunch data with all ranking results""" if all_results is None: return trace = Trace() result_types = [r for k,v in trace.ranking_groups.items() for r in v] # do not plot 0 results: all_results.astype({'result':'float64'}).dtypes # density plot: all_results2 = all_results.reset_index(drop=True) df = build_crunch_df(all_results2, result_types) p = figure(x_axis_label="speed (kn)") try: for result_type, color in zip(result_types, Inferno[len(result_types)]): data = df[result_type].dropna() x, pdf = gkde(data, 100) p.line(x, pdf, color=color, line_width=3, legend_label=f'gkde density of {result_type}') except Exception as e: print(e) return p def bokeh_speed(gpsana_client): p = figure(x_axis_type="datetime", x_axis_label="time") dfs = pd.DataFrame(index=gpsana_client.ts.index) dfs["raw_speed"] = gpsana_client.raw_ts dfs.loc[dfs.raw_speed>55, "raw_speed"] = 55 dfs["speed"] = gpsana_client.ts dfs["speed_no_doppler"] = gpsana_client.tsp dfs.loc[dfs.speed_no_doppler > 55, "speed_no_doppler"] = 55 dfs = dfs.reset_index() source = ColumnDataSource(dfs) p.line(x='time', y='raw_speed', source=source, color='blue', line_width=2, legend_label='unfiltered raw speed') p.line(x='time', y='speed', source=source, color='red', legend_label = 'doppler speed') p.line(x='time', y='speed_no_doppler', source=source, color='orange', legend_label='positional speed') return p def bokeh_speed_density(gpsana_client, s): xs = f"{int(10)}S" p = figure(x_axis_label="speed (kn)") dfs = pd.DataFrame(index=gpsana_client.ts.index) dfs["speed"] = gpsana_client.ts dfs["speed_xs"] = gpsana_client.ts.rolling(xs).mean() dfs = dfs.reset_index() dfs.dropna(inplace=True) x_grid_xs, pdf_xs = gkde(dfs.speed_xs, 200) x_grid, pdf = gkde(dfs.speed, 200) p.line(x_grid, pdf, color='blue', legend_label=f'gkde density of filtered max doppler speeds') p.line(x_grid_xs, pdf_xs, color='red', legend_label=f'gkde density of v{xs} speeds') return p def compare_all_results_density(all_results, gpsana_client, result_types): if all_results is None: return # do not plot 0 results: all_results.astype({'result':'float64'}).dtypes # density plot: all_results2 = all_results.reset_index(drop=True) df = build_crunch_df(all_results2, result_types) results = build_crunch_df(gpsana_client.gpx_results, result_types) p = figure(x_axis_label='speed (kn)') #result = gpsana_client.gpx_results[gpsana_client.gpx_results.description.isin(result_types)].result #result_list = list(pd.Series.to_numpy(result)) colors = Inferno[len(result_types)+1] for result_type, color in zip(result_types, colors): data = df[result_type].dropna() data = data[data>0] result = results[result_type].dropna() result = result[result>0] if len(data)>1 and len(results)>0: x, pdf = gkde(data, 100) h = pdf.max() p.line(x, pdf, color=color, line_width=3, legend_label=f'gkde density of {result_type}') for r in pd.Series.to_numpy(result): p.line([r, r], [0, h], color=color, line_width=2) # for r, c in zip(result_list, colors[1:]): # p.line([r, r], [0, h], color=c, line_width=2) return p def process_config_plot(all_results, config_plot_file): """deprecated""" if all_results is None: return fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2) config_plot = load_config(config_plot_file) # do not plot 0 results: all_results.astype({'result':'float64'}).dtypes all_results.loc[all_results.result < 10, 'result'] = np.nan result_types = config_plot.get('distribution', []) # density plot: all_results2 = all_results.reset_index(drop=True) df = build_crunch_df(all_results2, result_types) df.plot.kde(ax=ax1) ax1.set_title("speed density") ax1.set_xlabel("speed (kn)") # parallel coordinates plot: all_results2 = all_results.set_index(pd.to_datetime(all_results.date)) all_results2 = all_results2.set_index(all_results2.index.year) df = build_crunch_df(all_results2, result_types) df = df.reset_index() df0 = df.copy()
parallel_coordinates(df, 'date', colormap="winter", ax=ax2)
pandas.plotting.parallel_coordinates
import os, re, json, sys, random, copy, argparse, torch import numpy as np import pandas as pd from collections import OrderedDict from tqdm import tqdm from util import * import warnings warnings.filterwarnings('ignore') # remove duplicates from df_a def RemoveDuplicates(df_a, df_b, cols): df = pd.concat([df_a, df_b[cols], df_b[cols]]).drop_duplicates(subset=cols, keep=False, ignore_index=True) return df # preprocessing for IEDB MS data def MSPreprocess(filename, min_peptide_length, max_peptide_length): df = pd.read_csv(filename) # rename columns rename_columns = ["%s - %s"%(i.split(".")[0], df.iloc[0][i]) for i in df.columns] df = df.rename(columns={df.columns[i]: rename_columns[i] for i in range(len(rename_columns))}) df = df.drop(0) # filter df = df[["Reference - MHC ligand ID", "Reference - PubMed ID", "Epitope - Description", "Epitope - Starting Position", "Epitope - Ending Position", "Epitope - Parent Protein Accession", "Antigen Processing Cells - Cell Tissue Type", "Antigen Processing Cells - Cell Type", "MHC - Allele Name", "Host - MHC Types Present"]] # epitope length df["Epitope - Length"] = df["Epitope - Description"].apply(lambda x: len(x)) df = df[(df["Epitope - Length"] >= min_peptide_length) & (df["Epitope - Length"] <= max_peptide_length)] # mono-allelic df = df[df["MHC - Allele Name"].str.match(r'^HLA-[A/B/C]\*\d+\:\d+$')] df["MHC - Allele Name"] = df["MHC - Allele Name"].apply(lambda x: x.replace("HLA-","")) return df # preprocessing for IEDB assay data def AssayPreprocess(filename, species, min_peptide_length, max_peptide_length): df = pd.read_csv(filename, sep='\t') df = df[df["species"] == species] df = df[df["mhc"].str.contains("HLA-[ABC]\*\d+\:\d+")] df["mhc"] = df["mhc"].apply(lambda x: x.replace("HLA-","")) df = df[(df["peptide_length"] >= min_peptide_length) & (df["peptide_length"] <= max_peptide_length)] df["value"] = df["meas"].apply(lambda x: max(1 - np.log10(x)/np.log10(50000), 0)) df["bind"] = (df["meas"] <= 500).astype(int) df["source"] = "assay" return df # build hit dataframe def BuildHit(df): hit_df = df[[ "MHC - Allele Name", "Epitope - Parent Protein Accession", "Epitope - Starting Position", "Epitope - Length", "Epitope - Description" ]] hit_df = hit_df.rename(columns={ "MHC - Allele Name": "mhc", "Epitope - Parent Protein Accession": "protein", "Epitope - Starting Position": "start_pos", "Epitope - Length": "peptide_length", "Epitope - Description": "sequence" }) hit_df["meas"] = 1 hit_df["value"] = 1 hit_df["bind"] = 1 hit_df["source"] = "MS" return hit_df # build decoy from the same protein of the hit sample def BuildProtDecoy(prot_dict, prot_len_dict, df, len_dict): decoy_list = list() alleles = list(df['mhc'].unique()) for allele in tqdm(alleles): temp_df = df[(df['mhc'] == allele) & (df['bind'] == 1)] prots = list(temp_df['protein'].unique()) for prot in prots: pos_num = temp_df[temp_df['protein'] == prot].shape[0] start_pos_list = list(temp_df[temp_df['protein'] == prot]['start_pos'].unique()) for length, multiple in len_dict.items(): decoy_num = multiple * pos_num try: candidate_pos = [i for i in range(prot_len_dict[prot] - length) if i not in start_pos_list] except: continue candidate_pos = random.sample(candidate_pos, min(len(candidate_pos), decoy_num)) for pos in candidate_pos: d = {'mhc': allele, 'protein': prot, 'start_pos': pos, 'peptide_length': length, 'sequence': prot_dict[prot][pos: pos+length]} decoy_list.append(d) decoy_df = pd.DataFrame(decoy_list) decoy_df = decoy_df.drop_duplicates(ignore_index=True) decoy_df["meas"] = 50000 decoy_df["value"] = 0 decoy_df['bind'] = 0 decoy_df['source'] = 'protein_decoy' return decoy_df # build decoy from random peptides def BuildRandomDecoy(prot_dict, prot_len_dict, df, len_dict): decoy_list = list() prot_list = list(prot_dict.keys()) alleles = list(df['mhc'].unique()) for allele in tqdm(alleles): pos_num = df.loc[(df['mhc'] == allele) & (df['bind'] == 1)].shape[0] for length, multiple in len_dict.items(): decoy_num = multiple * pos_num for i in range(decoy_num): choose = False while not choose: prot_id = random.choice(prot_list) try: start_pos = random.choice(range(prot_len_dict[prot_id]-length)) choose = True except: choose = False d = {'mhc': allele, 'protein': prot_id, 'start_pos': start_pos, 'peptide_length': length, 'sequence': prot_dict[prot_id][start_pos: start_pos+length]} decoy_list.append(d) decoy_df = pd.DataFrame(decoy_list) decoy_df = decoy_df.drop_duplicates(ignore_index=True) decoy_df["meas"] = 50000 decoy_df["value"] = 0 decoy_df['bind'] = 0 decoy_df['source'] = 'random_decoy' return decoy_df def ArgumentParser(): description = """ Build dataset for downsampling model Input contains: 1. MS data (.csv) 2. Assay data (.txt) 3. UniProt data (.json) Arguments: 1. train_valid_prop 2. random_seed 3. encoding_method: OneHot or Blosum 4. train_decoy_ratio 5. test_decoy_ratio Output: 1. dataframe/[train_hit / train_decoy_n / valid / test].csv 2. [encoding_method]/[train_hit / train_decoy_n / valid / test].pt the shape of x: (encoding size, 15(epitope length)) the shape of y: (3,) ([index, classification value, regression value]) """ parser = argparse.ArgumentParser(prog="BuildDatasetDownsampling", description=description, formatter_class=argparse.RawDescriptionHelpFormatter) parser.add_argument('--ms_data', required=True, help='the csv filename of MS data') parser.add_argument('--assay_data', required=True, help='the txt filename of assay data') parser.add_argument('--uniprot', required=True, help='the json filename of UniProt data') parser.add_argument('--train_valid_prop', required=False, type=float, default=0.95, help='default = 0.95') parser.add_argument('--random_seed', required=False, type=int, default=0, help='default = 0') parser.add_argument('--encoding_method', required=True, help='onehot or blosum') parser.add_argument('--train_decoy_times', required=True, type=int, help='decoy size of each length / hit size of training') parser.add_argument('--test_decoy_times', required=True, type=int, help='decoy size of each length / hit size of testing') parser.add_argument('--output_dir', required=True, help='the dirname of output') return parser if __name__ == "__main__": """"""""""""""""""""""""""""""""" # Loading data and arguments """"""""""""""""""""""""""""""""" print("Loading data and arguemnts...") min_peptide_length, max_peptide_length = 8, 15 args = ArgumentParser().parse_args() # IEDB data ms_df = MSPreprocess(args.ms_data, min_peptide_length, max_peptide_length) assay_df = AssayPreprocess(args.assay_data, "human", min_peptide_length, max_peptide_length) # UniProt data uniprot_dict = json.load(open(args.uniprot, 'r')) uniprot_len_dict = dict() for k, v in uniprot_dict.items(): uniprot_len_dict[k] = len(v) # Basic arguments unique_columns = ["mhc", "sequence"] # for removing duplicates test_ref_id = 31844290 train_valid_prop = args.train_valid_prop random_seed = args.random_seed encoding_method = args.encoding_method # Decoy arguments train_decoy_times = args.train_decoy_times test_decoy_times = args.test_decoy_times prot_decoy_len_dict = dict({i:2 for i in range(8, 16)}) train_random_decoy_len_dict = dict({i: train_decoy_times for i in range(8, 16)}) test_random_decoy_len_dict = dict({i: test_decoy_times for i in range(8, 16)}) # output directory output_dir = args.output_dir if not os.path.isdir(output_dir): os.mkdir(output_dir) if not os.path.isdir('%s/dataframe'%output_dir): os.mkdir('%s/dataframe'%output_dir) if not os.path.isdir('%s/%s'%(output_dir, encoding_method)): os.mkdir('%s/%s'%(output_dir, encoding_method)) """"""""""""""""""""""""""""""""" # Build MS positive data """"""""""""""""""""""""""""""""" print("Build MS positive data...") # split test df test_df = ms_df[ms_df["Reference - PubMed ID"] == test_ref_id] non_test_df = ms_df.drop(test_df.index) # df preprocess test_df = BuildHit(test_df) non_test_df = BuildHit(non_test_df) # drop duplicates non_test_df = non_test_df.drop_duplicates(subset=unique_columns, ignore_index=True) test_df = test_df.drop_duplicates(subset=unique_columns, ignore_index=True) # test_df = test_df - non_test_df test_df = RemoveDuplicates(test_df, non_test_df, unique_columns) """"""""""""""""""""""""""""""""" # Build MS decoy data """"""""""""""""""""""""""""""""" print("Build MS decoy data...") test_random_decoy_df = BuildRandomDecoy(uniprot_dict, uniprot_len_dict, test_df, test_random_decoy_len_dict) test_prot_decoy_df = BuildProtDecoy(uniprot_dict, uniprot_len_dict, test_df, prot_decoy_len_dict) non_test_random_decoy_df = BuildRandomDecoy(uniprot_dict, uniprot_len_dict, non_test_df, train_random_decoy_len_dict) non_test_prot_decoy_df = BuildProtDecoy(uniprot_dict, uniprot_len_dict, non_test_df, prot_decoy_len_dict) test_decoy_df = pd.concat([test_random_decoy_df, test_prot_decoy_df]).drop_duplicates(ignore_index=True) non_test_decoy_df = pd.concat([non_test_random_decoy_df, non_test_prot_decoy_df]).drop_duplicates(ignore_index=True) # test_decoy_df = test_decoy_df - test_df - non_test_df print("Remove duplicates of test_decoy_df...") print("before removing, data size = ", test_decoy_df.shape) test_decoy_df = RemoveDuplicates(test_decoy_df, test_df, unique_columns) test_decoy_df = RemoveDuplicates(test_decoy_df, non_test_df, unique_columns) print("after removing, data size = ", test_decoy_df.shape) # non_test_decoy_df = non_test_decoy_df - test_df - non_test_df - test_decoy_df print("Remove duplicates of non_test_decoy_df...") print("before removing, data size = ", non_test_decoy_df.shape) non_test_decoy_df = RemoveDuplicates(non_test_decoy_df, test_df, unique_columns) non_test_decoy_df = RemoveDuplicates(non_test_decoy_df, non_test_df, unique_columns) non_test_decoy_df = RemoveDuplicates(non_test_decoy_df, test_decoy_df, unique_columns) print("after removing, data size = ", non_test_decoy_df.shape) """"""""""""""""""""""""""""""""" # Split training and validation data """"""""""""""""""""""""""""""""" print("Split training and validation data...") # MS data train_df = non_test_df.sample(frac=train_valid_prop, random_state=random_seed) valid_df = non_test_df.drop(train_df.index).reset_index(drop=True) train_df = train_df.reset_index(drop=True) train_decoy_df = non_test_decoy_df.sample(frac=train_valid_prop, random_state=random_seed) valid_decoy_df = non_test_decoy_df.drop(train_decoy_df.index).reset_index(drop=True) train_decoy_df = train_decoy_df.reset_index(drop=True) # assay data assay_train_df = assay_df.sample(frac=train_valid_prop, random_state=random_seed) assay_valid_df = assay_df.drop(assay_train_df.index).reset_index(drop=True) assay_train_df = assay_train_df.reset_index(drop=True) """"""""""""""""""""""""""""""""" # Save dataframe and dataset """"""""""""""""""""""""""""""""" print("Save dataframe and dataset...") common_columns = ["sequence", "peptide_length", "mhc", "meas", "value", "bind", "source"] # train_hit (MS + assay) print("Current: train_hit...") train_hit_df = pd.concat([train_df[common_columns], assay_train_df[common_columns]], ignore_index=True) train_hit_df.to_csv('%s/dataframe/train_hit.csv'%output_dir) train_hit_num = train_hit_df.shape[0] dataset = BuildDataset(train_hit_df, encoding_method, max_peptide_length) torch.save(dataset, "%s/%s/train_hit.pt"%(output_dir, encoding_method)) # train_decoy decoy_file_num = int(np.floor(train_decoy_df.shape[0] / train_df.shape[0])) decoy_idx = train_decoy_df.index.to_numpy() np.random.seed(random_seed) np.random.shuffle(decoy_idx) decoy_idx_list = np.array_split(decoy_idx, decoy_file_num) print("Number of decoy file: ", decoy_file_num) for i in range(decoy_file_num): print("Current: train_decoy_%d..."%(i+1)) # make sure the decoy index within the number limitation(16777216) of pytorch tensor # decoy_1 and decoy_21 have the same starting index if i % 20 == 0: start_idx = train_hit_num temp_decoy_df = train_decoy_df.loc[decoy_idx_list[i], common_columns] temp_decoy_df = temp_decoy_df.set_index(pd.Series(range(start_idx, temp_decoy_df.shape[0]+start_idx))) start_idx += temp_decoy_df.shape[0] temp_decoy_df.to_csv('%s/dataframe/train_decoy_%d.csv'%(output_dir, i+1)) dataset = BuildDataset(temp_decoy_df, encoding_method, max_peptide_length) torch.save(dataset, '%s/%s/train_decoy_%d.pt'%(output_dir, encoding_method, i+1)) # validation print("Current: valid...") valid_df = pd.concat([valid_df[common_columns], valid_decoy_df[common_columns], assay_valid_df[common_columns]], ignore_index=True) valid_df.to_csv('%s/dataframe/valid.csv'%output_dir) dataset = BuildDataset(valid_df, encoding_method, max_peptide_length) torch.save(dataset, "%s/%s/valid.pt"%(output_dir, encoding_method)) # testing print("Current: test...") test_df =
pd.concat([test_df[common_columns], test_decoy_df[common_columns]], ignore_index=True)
pandas.concat
from contextlib import contextmanager from sqlalchemy.orm import sessionmaker from sqlalchemy.orm.session import make_transient import datetime from unittest.mock import Mock from numpy.testing import assert_array_almost_equal import pandas from triage.component.results_schema import TestPrediction, Matrix, Model from triage.component.catwalk.storage import TestMatrixType from triage.component.catwalk.db import ensure_db from tests.results_tests.factories import ( MatrixFactory, ModelFactory, PredictionFactory, init_engine, session as factory_session ) from triage.database_reflection import table_has_data from triage.component.catwalk.predictors import Predictor from tests.utils import ( MockTrainedModel, matrix_creator, matrix_metadata_creator, get_matrix_store, rig_engines, ) import pytest with_matrix_types = pytest.mark.parametrize( ('matrix_type',), [ ('train',), ('test',), ], ) MODEL_RANDOM_SEED = 123456 @contextmanager def prepare(): with rig_engines() as (db_engine, project_storage): train_matrix_uuid = "1234" try: session = sessionmaker(db_engine)() session.add(Matrix(matrix_uuid=train_matrix_uuid)) # Create the fake trained model and store in db trained_model = MockTrainedModel() model_hash = "abcd" project_storage.model_storage_engine().write(trained_model, model_hash) db_model = Model( model_hash=model_hash, train_matrix_uuid=train_matrix_uuid, random_seed=MODEL_RANDOM_SEED ) session.add(db_model) session.commit() yield project_storage, db_engine, db_model.model_id finally: session.close() @pytest.fixture(name='predict_setup_args', scope='function') def fixture_predict_setup_args(): with prepare() as predict_setup_args: yield predict_setup_args @pytest.fixture(name='predictor', scope='function') def predictor(predict_setup_args): (project_storage, db_engine, model_id) = predict_setup_args return Predictor(project_storage.model_storage_engine(), db_engine, rank_order='worst') @pytest.fixture(name='predict_proba', scope='function') def prediction_results(matrix_type, predictor, predict_setup_args): (project_storage, db_engine, model_id) = predict_setup_args dayone = datetime.datetime(2011, 1, 1) daytwo = datetime.datetime(2011, 1, 2) source_dict = { "entity_id": [1, 2, 3, 1, 2, 3], "as_of_date": [dayone, dayone, dayone, daytwo, daytwo, daytwo], "feature_one": [3] * 6, "feature_two": [5] * 6, "label": [True, False] * 3 } matrix =
pandas.DataFrame.from_dict(source_dict)
pandas.DataFrame.from_dict
import logging from typing import List, Dict, Tuple import numpy as np import pandas as pd from message_ix.utils import make_df from pandas.io.json import json_normalize from d2ix import Data, ModelPar, RawData from d2ix.util import split_columns from d2ix.util.acitve_year_vector import get_act_year_vector, get_years_no_hist_cap logger = logging.getLogger(__name__) YearVector = List[int] def add_technology(data: Data, model_par: ModelPar, first_model_year: int, active_years: YearVector, historical_years: YearVector, duration_period_sum: pd.DataFrame, loc: str, par: str, slack: bool = False) -> ModelPar: if slack is True: technology, technology_exist = _get_slack_techs(data, loc, par) else: technology, technology_exist = _get_location_techs(data, loc, par) if technology_exist: for tech in technology.keys(): params: Dict = _get_df_tech(technology, tech) tech_hist = model_par.get('historical_new_capacity') years_no_hist_cap = get_years_no_hist_cap(loc, tech, historical_years, tech_hist) tech_parameters = _get_active_model_par(data, params) for tech_par in tech_parameters: model_par[tech_par] = _add_parameter(model_par, params, tech_par, tech, loc, active_years, first_model_year, duration_period_sum, years_no_hist_cap) return model_par def _add_parameter(model_par: ModelPar, params: Dict[str, pd.DataFrame], tech_par: str, tech: str, loc: str, active_years: YearVector, first_model_year: int, duration_period_sum: pd.DataFrame, years_no_hist_cap: YearVector) -> pd.DataFrame: df = model_par[tech_par] # emission helper _emissions_is_list = _check_emissions_is_list(params) # single input - double output if isinstance(params['in_out'].loc['output', 'level'], list) and tech_par == 'output': _level = params['in_out'].loc['output', 'level'] _com = params['in_out'].loc['output', 'commodity'] _df_out = params['year_vtg'][ (params['year_vtg']['par_name'] == 'output') & (params['year_vtg']['par'] == 'value')] _df_out_val = pd.DataFrame(_df_out.val.values.tolist(), index=_df_out.index) _df_list = [] for _out in range(len(_com)): params['year_vtg'].loc[_df_out_val.index, 'val'] = _df_out_val[_out] params['in_out'].loc['output', 'level'] = _level[_out] params['in_out'].loc['output', 'commodity'] = _com[_out] df_base_dict = _create_parameter_df(params, tech_par, df, first_model_year, active_years, duration_period_sum, years_no_hist_cap) _df_list.append(df_base_dict) df_base_dict = pd.concat(_df_list, ignore_index=True) # emissions: C02 and CH4 elif _emissions_is_list and tech_par == 'emission_factor': _emission = params['others'].loc['emission'].val _df_em = params['year_vtg'][ (params['year_vtg']['par_name'] == 'emission_factor') & (params['year_vtg']['par'] == 'value')] _df_em_val = pd.DataFrame(_df_em.val.values.tolist(), index=_df_em.index) _df_list = [] for _emi in range(len(_emission)): params['others'].loc['emission'].val = _emission[_emi] params['year_vtg'].loc[_df_em_val.index, 'val'] = _df_em_val[_emi] df_base_dict = _create_parameter_df(params, tech_par, df, first_model_year, active_years, duration_period_sum, years_no_hist_cap) _df_list.append(df_base_dict) df_base_dict = pd.concat(_df_list, ignore_index=True) else: df_base_dict = _create_parameter_df(params, tech_par, df, first_model_year, active_years, duration_period_sum, years_no_hist_cap) model = pd.concat([df, df_base_dict]) logger.debug(f'Create parameter in location \'{loc}\' for \'{tech}\': \'{tech_par}\'') return model def _create_parameter_df(params: Dict[str, pd.DataFrame], model_par: str, df: pd.DataFrame, first_model_year: int, active_years: YearVector, duration_period_sum: pd.DataFrame, years_no_hist_cap: YearVector) -> pd.DataFrame: model_par_vtg = params['year_vtg'][ (params['year_vtg']['par_name'] == model_par) & (~params['year_vtg']['year_vtg'].isin(years_no_hist_cap))] model_par_act = params['year_vtg'][ (params['year_vtg']['par_name'] == model_par) & (params['year_vtg']['year_vtg'].isin(active_years))] # fill DataFrame base_dict = dict.fromkeys(df.columns) # base_dict = df.to_dict() keys = base_dict.keys() for i in keys: if i in params['others'].index: # load data not depends on year_vtg or year_act base_dict[i] = params['others'].loc[i].val elif i in params['in_out'].columns: # load output and/or input data base_dict[i] = params['in_out'].loc[model_par][i] else: if ('year_act' in keys and 'year_vtg' in keys) or ('year_vtg' in keys): # parameter depends on year_vtg or (year_act and year_vtg) if i == 'year_act': # load data for year tuples (year_vtg, year_act) base_dict.update( _create_dict_year_act(params, model_par, base_dict, first_model_year, duration_period_sum, years_no_hist_cap)) elif i == 'year_vtg' and 'year_act' not in keys: # load year_vtg data if only depends on year_vtg base_dict[i] = model_par_vtg.year_vtg[model_par_vtg.par == 'value'].tolist() elif (i == 'unit' or i == 'value') and ( 'year_act' not in keys): # load value and unit data base_dict[i] = model_par_vtg.val[model_par_vtg.par == i].tolist() if i == 'year_act' and 'year_vtg' not in keys: # parameter depends only on year_act base_dict['year_act'] = model_par_act.year_vtg[model_par_act.par == 'value'].tolist() base_dict['unit'] = model_par_act.val[model_par_act.par == 'unit'].tolist() base_dict['value'] = model_par_act.val[model_par_act.par == 'value'].tolist() df = pd.DataFrame(base_dict) if 'additional_pars' in params['others'].index: add_pars = params['others'].loc['additional_pars', 'val'] if [k for k in add_pars if model_par in k]: df = _calc_delta_change(active_years, df, model_par, add_pars) return df def _create_dict_year_act(params: Dict[str, pd.DataFrame], model_par: str, base_dict: Dict, first_model_year: int, duration_period_sum: pd.DataFrame, years_no_hist_cap: List[int]) -> Dict: tec_life = params['year_vtg'][params['year_vtg'].par_name == 'technical_lifetime'] life_val_unit = tec_life[tec_life.par == 'value'] life_val_unit = life_val_unit.assign(unit=tec_life[tec_life.par == 'unit']['val'].values) _year_vtg = [] _year_act = [] _value = [] _unit = [] _par_data = params['year_vtg'][params['year_vtg'].par_name == model_par].copy() _par_data_val = _par_data[_par_data['par'] == 'value'].set_index('year_vtg').to_dict(orient='index') _par_data_unit = _par_data[_par_data['par'] == 'unit'].set_index('year_vtg').to_dict(orient='index') tech_years = [i for i in life_val_unit['year_vtg'].values if i not in years_no_hist_cap] last_tech_year = tech_years[-1] for y in tech_years: year_life_time = list(life_val_unit[life_val_unit.year_vtg == y]['val'])[0] year_vec = get_act_year_vector(duration_period_sum, y, year_life_time, first_model_year, last_tech_year, years_no_hist_cap) _year_vtg.extend(year_vec.vintage_years) _year_act.extend(year_vec.act_years) _value.extend(len(year_vec.vintage_years) * [_par_data_val[y]['val']]) _unit.extend(len(year_vec.vintage_years) * [_par_data_unit[y]['val']]) base_dict['year_vtg'] = _year_vtg base_dict['year_act'] = _year_act base_dict['value'] = _value base_dict['unit'] = _unit return base_dict def _get_active_model_par(data: Data, _param: Dict[str, pd.DataFrame]) -> List[str]: tech_model_par = ['technology'] tech_model_par.extend(_param['in_out'].index.tolist()) tech_model_par.extend(_param['year_vtg'].par_name[~_param['year_vtg'].par_name.duplicated()].values.tolist()) tech_model_par = sorted(list(set(tech_model_par))) tech_model_par = [model_par for model_par in data['technology_parameter'] if model_par in tech_model_par] return tech_model_par def _calc_delta_change(active_years: YearVector, df: pd.DataFrame, par: str, add_pars: Dict[str, float]) -> pd.DataFrame: reference_year = __get_ref_year(df, active_years) if f'd_{par}_vtg' in add_pars.keys(): df = _comp_int(reference_year, df, par, add_pars, 'vtg') if f'd_{par}_act' in add_pars.keys(): df = _comp_int(reference_year, df, par, add_pars, 'act') return df def add_reliability_flexibility_parameter(data: Data, model_par: ModelPar, raw_data: RawData) -> Dict[str, pd.DataFrame]: rel_flex = raw_data['base_input']['rel_and_flex'] model = {} _rating_bin = [] _reliability_factor = [] _flexibility_factor = [] rating_bin_unit = data['units']['rating_bin']['unit'] reliability_factor_unit = data['units']['reliability_factor']['unit'] flexibility_factor_unit = data['units']['flexibility_factor']['unit'] output: pd.DataFrame = model_par['output'].copy() for i in rel_flex.index: node = rel_flex.at[i, 'node'] technology = rel_flex.at[i, 'technology'] mode = data['technology'][technology]['mode'] commodity = rel_flex.at[i, 'commodity'] level = rel_flex.at[i, 'level'] time = rel_flex.at[i, 'time'] rating = rel_flex.at[i, 'rating'] logger.debug(f'Create reliability flexibility parameters for {technology} in {node}') rating_bin_value = rel_flex.at[i, 'rating_bin'] reliability_factor_value = rel_flex.at[i, 'reliability_factor'] flexibility_factor_value = rel_flex.at[i, 'flexibility_factor'] _output_technology = output[output['technology'] == technology] _model_years = list(_output_technology['year_act'].unique()) _active_years = list(_output_technology['year_act']) _vintage_years = list(_output_technology['year_vtg']) base_par = pd.DataFrame( {'node': node, 'technology': technology, 'year_act': _model_years, 'commodity': commodity, 'level': level, 'time': time, 'rating': rating}) _rating_bin.append(make_df(base_par, value=rating_bin_value, unit=rating_bin_unit)) _reliability_factor.append(make_df(base_par, value=reliability_factor_value, unit=reliability_factor_unit)) base_flex = pd.DataFrame( {'node_loc': node, 'technology': technology, 'year_act': _active_years, 'year_vtg': _vintage_years, 'commodity': commodity, 'level': level, 'mode': mode, 'time': time, 'rating': rating}) _flexibility_factor.append(make_df(base_flex, value=flexibility_factor_value, unit=flexibility_factor_unit)) rating_bin = pd.concat(_rating_bin, sort=False, ignore_index=True) rating_bin['year_act'] = rating_bin['year_act'].astype(int) model['rating_bin'] = rating_bin reliability_factor = pd.concat(_reliability_factor, sort=False, ignore_index=True) reliability_factor['year_act'] = reliability_factor['year_act'].astype(int) model['reliability_factor'] = reliability_factor flexibility_factor = pd.concat(_flexibility_factor, sort=False, ignore_index=True) flexibility_factor['year_act'] = flexibility_factor['year_act'].astype(int) flexibility_factor['year_vtg'] = flexibility_factor['year_vtg'].astype(int) model['flexibility_factor'] = flexibility_factor return model def create_renewable_potential(raw_data: RawData, data: Data, active_years: YearVector) -> Dict[str, pd.DataFrame]: renewable_potential = raw_data['base_input']['renewable_potential'] model = {} re_year = renewable_potential.iloc[ np.repeat(np.arange(len(renewable_potential)), len(active_years))] re_year = re_year.assign( year=active_years * renewable_potential.shape[0]) re_potential = re_year.copy() re_potential['unit'] = data['units']['renewable_potential']['unit'] re_potential['value'] = re_potential['potential'] model['renewable_potential'] = re_potential[['commodity', 'level', 'grade', 'value', 'node', 'year', 'unit']] re_cap_factor = re_year.copy() re_cap_factor['unit'] = data['units']['renewable_capacity_factor']['unit'] re_cap_factor['value'] = re_cap_factor['capacity_factor'] model['renewable_capacity_factor'] = re_cap_factor[['commodity', 'level', 'grade', 'value', 'node', 'year', 'unit']] return model def change_emission_factor(raw_data: RawData, model_par: ModelPar) -> Dict[str, pd.DataFrame]: emissions = raw_data['base_input']['emissions'] emission_factor: pd.DataFrame = model_par['emission_factor'] model = {} def apply_change(row): loc = emissions['node_loc'] == row['node_loc'] tech = emissions['technology'] == row['technology'] year = emissions['year_act'] == row['year_act'] emission = emissions['emission'] == row['emission'] ef = emissions[loc & tech & year & emission] if not ef.empty: value = ef['value'].values[0] else: value = row['value'] return value emission_factor['value'] = emission_factor.apply(apply_change, axis=1) model['emission_factor'] = emission_factor return model # help functions def _check_emissions_is_list(params: Dict[str, pd.DataFrame]) -> bool: if 'emission' in params['others'].index: if isinstance(params['others'].loc['emission'].val, list): _emissions_is_list = True else: _emissions_is_list = False else: _emissions_is_list = False return _emissions_is_list def _get_location_techs(data: Data, loc: str, par: str) -> Tuple[Dict[str, dict], bool]: loc_techs = data['locations'][loc].get(par) if loc_techs: techs = [*loc_techs.keys()] technology = {k: v for k, v in data['technology'].items() if k in techs} technology = _override_techs(technology, loc_techs, techs) technology_exist = True else: technology = {} technology_exist = False return technology, technology_exist def _override_techs(technology: Dict[str, dict], loc_techs: Dict[str, dict], techs: List[str]) -> Dict[str, dict]: override = {t: {k: v for k, v in loc_techs[t]['override'].items()} for t in techs} for t in techs: technology[t].update(override[t]) return technology def _get_slack_techs(data, loc: str, par: str) -> Tuple[Dict[str, dict], bool]: commodity = [data[par][loc]['year'][i].keys() for i in data[par][loc]['year'].keys()] commodity = [i for l in commodity for i in l] commodity = sorted(list(set(commodity))) technology = {} for c in commodity: technology['slack_' + c] = data['technology']['slack_' + c] technology['slack_' + c]['node_loc'] = loc technology['slack_' + c]['node_dest'] = loc technology['slack_' + c]['node_origin'] = loc technology_exist = True return technology, technology_exist def _get_df_tech(technology: Dict[str, dict], t: str) -> Dict[str, dict]: _df = pd.DataFrame.from_dict(technology) _param = {} # create pandas Series for a given technology from a dict df = _df[t].dropna() if 'year_vtg' in df.keys(): _param['year_vtg'] = __get_df_year(df, year_type='year_vtg') df = df.drop('year_vtg') if 'input' in df.index: in_out = {'input': df['input'], 'output': df['output']} df_par_in_out = pd.DataFrame.from_dict(in_out, orient='index') df = df.drop(['input', 'output']) else: in_out = {'output': df['output']} df_par_in_out =
pd.DataFrame.from_dict(in_out, orient='index')
pandas.DataFrame.from_dict
"""A container to store training, validation and test results. """ from typing import Callable, Dict, Iterable, Optional import numpy as np import pandas as pd import ivory.core.collections from ivory.core.run import Run from ivory.core.state import State class Results(ivory.core.collections.Dict, State): """Results callback stores training, validation and test results. Each result is `ivory.core.collections.Dict` type that has `index`, `output`, and `target` array. To get `target` array of validation, use target = results.val.target Attributes: train (Dict): Train results. val (Dict): Validation results. test (Dict): Test results. """ def __call__(self): return self.index, self.output, self.target def reset(self): self.index = None self.output = None self.target = None def on_train_begin(self, run: Run): self.reset() def on_test_begin(self, run: Run): self.reset() def step(self, index, output, target=None): self.index = index self.output = output self.target = target def on_train_end(self, run: Run): self["train"] = self.result_dict() self.reset() def on_val_end(self, run: Run): self["val"] = self.result_dict() self.reset() def on_test_end(self, run: Run): self["test"] = self.result_dict() self.reset() def result_dict(self): dict = ivory.core.collections.Dict() index, output, target = self() return dict(index=index, output=output, target=target) def mean(self) -> "Results": """Returns a reduced `Results` instance aveaged by `index`.""" results = Results() for mode, result in self.items(): index = result.index kwargs = {} for key, value in list(result.items())[1:]: if value.ndim == 1: series = pd.Series(value, index=index) value = series.groupby(level=0).mean() else: df =
pd.DataFrame(value)
pandas.DataFrame
from numpy import NaN import pandas as pd import unittest import numpy as np ''' The series.count function that we are testing does: Return number of non-NA/null observations in the Series. Parameters ---------- level : int or level name, default None If the axis is a MultiIndex (hierarchical), count along a particular level, collapsing into a smaller Series. Returns ------- int or Series (if level specified) Number of non-null values in the Series. This means that series will count number of things in a series, except for NaN:s. If the series have multindex (several indexes), you have to pick a level. A level is a thing used when you have multiple indexes. Say you have two indexes for each entry , then level 0 is the first index and level 1 is the second index. Given a multiindex series, count will count how many values each value in the chosen index holds. If you have an index [1,2,3] for values [a,b,c], it will return : 1 1 2 1 3 1 If the index for some reason is [1,1,2,3] for [a,b,c,d] it will return: 1 2 2 1 3 1 Finally if one of the values is NaN, index [1,1,2,3] for values [a,b,c,NaN], the NaN isn't counted: 1 2 2 1 3 0 ############################################## Analysis with interface based approach: The parameters the function takes is a series and maybe a level. So the input domain can be: "A series and no level" "A series with a level" A note is that you get a warning when you add the levels parameter becaues it will be removed in a future version. In the futer you will have to perform a group by before you do the count, like this: s.groupby(level=1).count() instead of: pandas.Series.count(s,1) ''' class TestSeriesCount(unittest.TestCase): '''Functions for testing the count in pandas series functions. Count returns elements in a series, but will leave out NaN:s. ''' def setUp(self): self.sequence1 = [1, 2, 3] self.sequence2 = [1, 2, NaN] self.sequence3 = [] self.sequence4 = [0] self.sequence5 = [NaN] self.sequence6 = [NaN]*500 + [6,7] self.sequence7 = [0]*1000000 + [1] self.sequence8 = pd.Series([1, 2, 3],index=[ np.array([1,2,3]), np.array([15,16,16]), ]) def test_series_count_blackbox(self): "A series and no level" #Want to test just a small ordinary case. counted_sequence1 = pd.Series.count(pd.Series(self.sequence1)) self.assertEqual(counted_sequence1, 3) # Testing if NaN is dropped from the count. counted_sequence2 = pd.Series.count(pd.Series(self.sequence2)) self.assertEqual(counted_sequence2, 2) # Testing empty series. counted_sequence3 = pd.Series.count(pd.Series(self.sequence3)) self.assertEqual(counted_sequence3, 0) # Testing series with just a 0. counted_sequence4 = pd.Series.count(pd.Series(self.sequence4)) self.assertEqual(counted_sequence4, 1) # Testing series with just a NaN. counted_sequence5 = pd.Series.count(pd.Series(self.sequence5)) self.assertEqual(counted_sequence5, 0) # Testing series with alot of NaN:s and a 2 other. counted_sequence6 = pd.Series.count(pd.Series(self.sequence6)) self.assertEqual(counted_sequence6, 2) # Testing series with 1000000 of 0 and a one 1. counted_sequence7 = pd.Series.count(
pd.Series(self.sequence7)
pandas.Series
import pytest import numpy as np import pandas as pd from sklearn import clone from sklearn.preprocessing import LabelEncoder, FunctionTransformer, OneHotEncoder, QuantileTransformer, StandardScaler from sklearn.preprocessing import PowerTransformer, OrdinalEncoder from sklearn.model_selection import train_test_split from sklearn.impute import SimpleImputer from sklearn.pipeline import make_pipeline from data_dashboard.transformer import Transformer from data_dashboard.transformer import WrapperFunctionTransformer @pytest.mark.parametrize( ("test_func",), ( (lambda x: x,), (lambda x: 1,), (lambda x: x**2,), ) ) def test_wrapper_func_transformer(test_func): """Testing if WrapperFunctionTransformer still has functionality of an underlying FunctionTransformer.""" test_arr = np.array([1, 1, 1, 2, 3, 4, 5]).reshape(-1, 1) tr = FunctionTransformer(func=test_func) wrap_tr = WrapperFunctionTransformer("test", clone(tr)) expected_arr = tr.fit_transform(test_arr) actual_arr = wrap_tr.fit_transform(test_arr) assert np.array_equal(actual_arr, expected_arr) assert str(wrap_tr) != str(tr) @pytest.mark.parametrize( ("test_text",), ( ("Test1",), ("Test2",), ("",), ) ) def test_wrapper_func_transformer_str(test_text): """Testing if str() function of WrapperFunctionTransformer returns text provided as an argument.""" wrap_tr = WrapperFunctionTransformer(test_text, FunctionTransformer()) assert str(wrap_tr) == test_text def test_transformer_create_preprocessor_X(categorical_features, numerical_features): """Testing if X preprocessor correctly assigns steps to columns depending on their type.""" categorical_features.remove("Target") tr = Transformer(categorical_features, numerical_features, "Categorical") preprocessor = tr._create_preprocessor_X() expected_steps = [("numerical", numerical_features), ("categorical", categorical_features)] actual_steps = [(item[0], item[2]) for item in preprocessor.transformers] for step in expected_steps: assert step in actual_steps assert len(actual_steps) == len(expected_steps) @pytest.mark.parametrize( ("target_type", "expected_function"), ( ("Categorical", LabelEncoder()), ("Numerical", WrapperFunctionTransformer("test", FunctionTransformer(lambda x: x))) ) ) def test_transformer_create_preprocessor_y(categorical_features, numerical_features, target_type, expected_function): """Testing if y preprocessor is created correctly.""" tr = Transformer(categorical_features, numerical_features, target_type) preprocessor = tr._create_default_transformer_y() assert type(preprocessor).__name__ == type(expected_function).__name__ @pytest.mark.parametrize( ("transformed_feature",), ( ("Price",), ("bool",), ("AgeGroup",) ) ) def test_transformer_preprocessor_X_remainder( categorical_features, numerical_features, data_classification_balanced, expected_raw_mapping, transformed_feature ): """Testing if feature not declared in either categorical or numerical features passes through unchanged.""" categorical_features.remove("Target") categorical_features = [f for f in categorical_features if f != transformed_feature] numerical_features = [f for f in numerical_features if f != transformed_feature] X = data_classification_balanced[0].drop(["Date"], axis=1) if transformed_feature in expected_raw_mapping.keys(): X[transformed_feature] = X[transformed_feature].replace(expected_raw_mapping[transformed_feature]) tr = Transformer(categorical_features, numerical_features, "Numerical") tr.fit(X) transformed = tr.transform(X) try: transformed = transformed.toarray() except AttributeError: transformed = transformed cols = tr.transformed_columns() + [transformed_feature] actual_result = pd.DataFrame(transformed, columns=cols) assert np.allclose(actual_result[transformed_feature].to_numpy(), X[transformed_feature].to_numpy(), equal_nan=True) # checking if there is only one column with transformed_feature (no derivations) assert sum([1 for col in cols if transformed_feature in col]) == 1 @pytest.mark.parametrize( ("transformed_features",), ( (["Height", "Price"],), (["Price", "AgeGroup"],), ) ) def test_transformer_preprocessor_X_remainder_order( categorical_features, numerical_features, data_classification_balanced, expected_raw_mapping, transformed_features ): """Testing if remainder portion of ColumnTransformer returns the columns in the expected (alphabetical) order.""" categorical_features.remove("Target") categorical_features = [f for f in categorical_features if f not in transformed_features] numerical_features = [f for f in numerical_features if f not in transformed_features] X = data_classification_balanced[0].drop(["Date"], axis=1) tr = Transformer(categorical_features, numerical_features, "Numerical") tr.fit(X) transformed = tr.transform(X) try: transformed = transformed.toarray() except AttributeError: transformed = transformed cols = tr.transformed_columns() + sorted(transformed_features) actual_result =
pd.DataFrame(transformed, columns=cols)
pandas.DataFrame
import streamlit as st import numpy as np import pandas as pd # TODO this should be covered by the DataManager import xarray as xr # TODO this should be covered by the DataManager import matplotlib.pyplot as plt # TODO this should be moved into plotting submodule from ruins import components def load_alldata(): weather = xr.load_dataset('data/weather.nc') climate = xr.load_dataset('data/cordex_coast.nc') # WARNING - bug fix for now: # 'HadGEM2-ES' model runs are problematic and will be removed for now # The issue is with the timestamp and requires revision of the ESGF reading routines kys = [s for s in list(climate.keys()) if 'HadGEM2-ES' not in s] #remove all entries of HadGEM2-ES (6 entries) climate = climate[kys] return weather, climate def applySDM(wdata, data, meth='rel', cdf_threshold=0.9999999, lower_limit=0.1): '''apply structured distribution mapping to climate data and return unbiased version of dataset''' from sdm import SDM data_ub = data.copy() for k in data_ub.columns: data_col = data_ub[k].dropna() overlapx = pd.concat( [wdata.loc[data_col.index[0]:wdata.index[-1]], data_col.loc[data_col.index[0]:wdata.index[-1]]], axis=1) overlapx.columns = ['obs', 'cm'] overlapx = overlapx.dropna() try: data_ub[k] = SDM(overlapx.obs, overlapx.cm, data_col, meth, cdf_threshold, lower_limit) except: data_ub[k] = data_ub[k] * np.nan data_ub[data_ub == 0.0000000] = np.nan data_ub = data_ub.loc[data_ub.index[0]:pd.to_datetime('2099-12-31 23:59:59')] return data_ub def ub_climate(cdata, wdata, ub=True): varis = ['T', 'Tmax', 'Tmin', 'aP', 'Prec', 'RH', 'Rs', 'u2', 'EToHG'] firstitem = True for vari in varis: data = cdata.sel(vars=vari).to_dataframe() data = data[data.columns[data.columns != 'vars']] if (vari == 'T') | (vari == 'Tmax') | (vari == 'Tmin'): meth = 'abs' else: meth = 'rel' if ub: wdatax = wdata.sel(vars=vari).to_dataframe().iloc[:, -1].dropna() data_ub = applySDM(wdatax, data, meth=meth) else: data_ub = data data_ubx = data_ub.mean(axis=1) data_ubx.columns = [vari] if firstitem: data_ubc = data_ubx firstitem = False else: data_ubc = pd.concat([data_ubc, data_ubx], axis=1) data_ubc.columns = varis return data_ubc def get_turbine(pfi, plotit=False): dummy = pd.read_csv(pfi) v_start = dummy.loc[3].astype(np.float).values[0] v_max = dummy.loc[2].astype(np.float).values[0] P_v = dummy.loc[4:28].astype(np.float) P_v.index = np.arange(int(np.ceil(v_max)) + 1)[1:] if plotit: P_v.plot() return [P_v, v_start, v_max] def P_wind(wind, pfi): [P_v, v_start, v_max] = get_turbine(pfi, False) # stephours = (wind.index[2] - wind.index[1]).days * 24 # stephours = 1. def interp(val): if (val >= v_max) | (val < v_start): return 0. elif ~np.isnan(val): if np.ceil(val) == np.floor(val): return P_v.loc[int(np.floor(val))].values[0] else: x1 = P_v.loc[int(np.floor(val))].values[0] x2 = P_v.loc[int(np.ceil(val))].values[0] return ((val - np.floor(val)) * x2 + (1. - (val - np.floor(val))) * x1) else: return np.nan ip_vec = np.vectorize(interp) def get_windpower(u2): val = np.fmax(-1. * np.cos(np.arange(0., 2 * np.pi, 0.27)) + u2, 0.) return np.sum(ip_vec(val)) return wind.apply(get_windpower) def cropmodel(data,crop='wheat',rcp='rcp85',name='croprunname'): import get_climate_data.cli_crop as clc #read co2 concentrations if rcp == 'rcp85': CO2 = pd.read_csv('data/RCP85_MIDYEAR_CONCENTRATIONS.DAT', skiprows=38, delim_whitespace=True, index_col=0).CO2EQ elif rcp == 'rcp45': CO2 = pd.read_csv('data/RCP45_MIDYEAR_CONCENTRATIONS.DAT', skiprows=38, delim_whitespace=True, index_col=0).CO2EQ else: CO2 = pd.read_csv('data/RCP45_MIDYEAR_CONCENTRATIONS.DAT', skiprows=38, delim_whitespace=True, index_col=0).CO2EQ * 0. + 400. if crop == 'maize': x = np.array([9.375e+00, 3.198e+01, 1.973e+00, 8.700e+01, 1.144e+01, 3.630e+01, 7.260e-02, 1.237e+00, 2.180e+03, 1.501e-01, 5.230e-01, 5.678e+01, 6.970e+02]) elif crop == 'meadow': x = np.array([6.543e+00, 1.238e+01, 1.029e+00, 8.706e+01, 1.510e+01, 3.253e+01, 1.199e+00, 1.535e+03, 7.784e+03, 6.530e+03, 8.030e+03, 8.092e+03, 5.884e+03]) elif crop == 'wheat': x = np.array([1.257e+00, 1.276e+01, 1.101e+00, 1.010e+02, 2.578e+01, 2.769e+01, 3.416e-01, 4.940e-01, 1.906e+03, 1.921e-01, 4.595e-01, 6.066e+01, 5.360e+02]) else: print('ERROR: Crop not specified with parameters.') yields = clc.cli_SC(data, x, CO2, nme=name) return yields def water_proj(): #hsim = pd.read_csv('data/hsim.csv',index_col=0) #hsim.index = pd.to_datetime(hsim.index) hsim_collect = pd.read_csv('data/hsim_collect.csv', index_col=0) hsim_collect.index =
pd.to_datetime(hsim_collect.index)
pandas.to_datetime
from tutorial.main.stepbystep.stepbysteputils.pgconnector import create_engine_ready import pandas as pd from suricate.explore import Explorer from suricate.base import multiindex21column engine = create_engine_ready() n_questions = 100 # nrows = 50 # Xst = pd.read_sql(sql="SELECT * FROM es_scores LIMIT {}".format(nrows), con=engine).set_index(['ix_source', 'ix_target'], drop=True)[['ix', 'es_score']] # Xsbs = pd.read_sql(sql="SELECT * FROM es_sbs LIMIT {}".format(nrows), con=engine).set_index(['ix_source', 'ix_target'], drop=True) Xst = pd.read_sql(sql="SELECT * FROM es_scores", con=engine).set_index(['ix_source', 'ix_target'], drop=True)[['ix', 'es_score']] Xsbs = pd.read_sql(sql="SELECT * FROM es_sbs", con=engine).set_index(['ix_source', 'ix_target'], drop=True) # REBUILD Y_true y_true = pd.read_sql(sql="SELECT * FROM y_true WHERE y_true.y_true = 1", con=engine).set_index(['ix_source', 'ix_target'], drop=True) y_truetemp=Xst[['ix']] y_truetemp['y_true']=0 y_truetemp.loc[y_true.index.intersection(Xst.index), 'y_true'] = y_true.loc[y_true.index.intersection(Xst.index), 'y_true'] y_true = y_truetemp.copy() del y_truetemp ### y_true has now a multiindex, ix, and y_true columns ## Fit the cluster to non-supervized data exp = Explorer(n_simple=n_questions, n_hard=n_questions) exp.fit_cluster(X=Xst[['es_score']]) y_cluster = pd.Series(data=exp.pred_cluster(X=Xst), index=Xst.index, name='y_cluster') X_cluster =
pd.DataFrame(y_cluster)
pandas.DataFrame
# test bin, analyze, and plot functions # imports import os from os.path import join from os import listdir import matplotlib.pyplot as plt # imports import numpy as np import pandas as pd from scipy.optimize import curve_fit import filter import analyze from correction import correct from utils import fit, functions, bin, io, plotting, modify, plot_collections from utils.plotting import lighten_color # A note on SciencePlots colors """ Blue: #0C5DA5 Green: #00B945 Red: #FF9500 Orange: #FF2C00 Other Colors: Light Blue: #7BC8F6 Paler Blue: #0343DF Azure: #069AF3 Dark Green: #054907 """ sciblue = '#0C5DA5' scigreen = '#00B945' scired = '#FF9500' sciorange = '#FF2C00' plt.style.use(['science', 'ieee', 'std-colors']) fig, ax = plt.subplots() size_x_inches, size_y_inches = fig.get_size_inches() plt.close(fig) # ---------------------------------------------------------------------------------------------------------------------- # 1. SETUP - BASE DIRECTORY base_dir = '/Users/mackenzie/Desktop/gdpyt-characterization/experiments/11.02.21-BPE_Pressure_Deflection_20X/analyses/' # ---------------------------------------------------------------------------------------------------------------------- # 2. SETUP - IDPT path_idpt = join(base_dir, 'results-04.26.22_idpt') path_test_coords = join(path_idpt, 'coords/test-coords') path_calib_coords = join(path_idpt, 'coords/calib-coords') path_similarity = join(path_idpt, 'similarity') path_results = join(path_idpt, 'results') path_figs = join(path_idpt, 'figs') # ---------------------------------------------------------------------------------------------------------------------- # ---------------------------------------------------------------------------------------------------------------------- # 3. ANALYSIS - READ FILES method = 'idpt' microns_per_pixel = 0.8 # ----- 4.1 CORRECT TEST COORDS correct_test_coords = False if correct_test_coords: use_idpt_zf = False use_spct_zf = False # ------------------------------------------------------------------------------------------------------------------ if use_idpt_zf: """ NOTE: This correction scheme fits a 2D spline to the in-focus particle positions and uses this to set their z_f = 0 position. """ param_zf = 'zf_from_peak_int' plot_calib_plane = False plot_calib_spline = False kx, ky = 2, 2 # step 1. read calibration coords dfc, dfcpid, dfcpop, dfcstats = io.read_calib_coords(path_calib_coords, method) # step 2. remove outliers # 2.1 get z_in-focus mean + standard deviation zf_c_mean = dfcpid[param_zf].mean() zf_c_std = dfcpid[param_zf].std() # 2.2 filter calibration coords dfcpid = dfcpid[(dfcpid[param_zf] > zf_c_mean - zf_c_std) & (dfcpid[param_zf] < zf_c_mean + zf_c_std)] # step 3. fit plane dictc_fit_plane = correct.fit_in_focus_plane(df=dfcpid, param_zf=param_zf, microns_per_pixel=microns_per_pixel) popt_c = dictc_fit_plane['popt_pixels'] if plot_calib_plane: fig = plotting.plot_fitted_plane_and_points(df=dfcpid, dict_fit_plane=dictc_fit_plane) plt.savefig(path_figs + '/idpt-calib-coords_fit-plane_raw.png') plt.close() dfict_fit_plane = pd.DataFrame.from_dict(dictc_fit_plane, orient='index', columns=['value']) dfict_fit_plane.to_excel(path_figs + '/idpt-calib-coords_fit-plane_raw.xlsx') # step 4. FIT SMOOTH 2D SPLINE AND PLOT RAW POINTS + FITTED SURFACE (NO CORRECTION) bispl_c, rmse_c = fit.fit_3d_spline(x=dfcpid.x, y=dfcpid.y, z=dfcpid[param_zf], kx=kx, ky=ky) if plot_calib_spline: fig, ax = plotting.scatter_3d_and_spline(dfcpid.x, dfcpid.y, dfcpid[param_zf], bispl_c, cmap='RdBu', grid_resolution=30, view='multi') ax.set_xlabel('x (pixels)') ax.set_ylabel('y (pixels)') ax.set_zlabel(r'$z_{f} \: (\mu m)$') plt.suptitle('fit RMSE = {}'.format(np.round(rmse_c, 3))) plt.savefig(path_figs + '/idpt-calib-coords_fit-spline_kx{}_ky{}.png'.format(kx, ky)) plt.close() # step 5. read test_coords dft = io.read_test_coords(path_test_coords) # step 6. drop unnecessary columns in dft dft = dft[['frame', 'id', 'z', 'z_true', 'x', 'y', 'cm', 'error']] # step 7. create a z_corr column by using fitted spline to correct z dft = correct.correct_z_by_spline(dft, bispl=bispl_c, param_z='z') dft['z_true_corr'] = dft['z_true'] - dft['z_cal_surf'] # step 8. export corrected test_coords dft.to_excel(path_results + '/test_coords_corrected_t-calib2_c-calib1.xlsx', index=False) elif use_spct_zf: """ NOTE: No correction is currently performed. The z-coords are well aligned enough in both calibration image sets to just ignore. This is not necessarily surprising because the calibration images were acquired with the intention of making the z-coords identical for all calibration image sets (by using the same beginning and ending tick mark on the fine adjustment knob during image acquisition). """ # -------------------------------------------------------------------------------------------------------------- # SETUP - SPCT CALIBRATION IN-FOCUS COORDS # SPCT analysis of images used for IDPT calibration path_spct_calib_coords = join(base_dir, 'results-04.26.22_spct_calib1_test-2-3/coords/calib-coords') path_calib_pid_defocus = join(path_spct_calib_coords, 'calib_spct_pid_defocus_stats_c-calib1_t-calib2.xlsx') path_calib_spct_stats = join(path_spct_calib_coords, 'calib_spct_stats_c-calib1_t-calib2.xlsx') path_calib_spct_pop = join(path_spct_calib_coords, 'calib_spct_pop_defocus_stats_c-calib1_t-calib2.xlsx') # SPCT analysis of images used for IDPT test path_spct_test_coords = join(base_dir, 'results-04.28.22_spct-calib2_test3/coords/calib-coords') path_test_pid_defocus = join(path_spct_test_coords, 'calib_spct_pid_defocus_stats_c-calib2_t-calib3.xlsx') path_test_spct_stats = join(path_spct_test_coords, 'calib_spct_stats_c-calib2_t-calib3.xlsx') path_test_spct_pop = join(path_spct_test_coords, 'calib_spct_pop_defocus_stats_c-calib2_t-calib3.xlsx') # -------------------------------------------------------------------------------------------------------------- # --- PART A. READ COORDS USED FOR IDPT CALIBRATION (i.e. 'calib1') merge_spct_stats = True param_zf = 'zf_from_peak_int' plot_calib_plane = True plot_test_plane = True kx, ky = 2, 2 # step 1. merge [['x', 'y']] into spct pid defocus stats. if merge_spct_stats: # read SPCT calibration coords and merge ['x', 'y'] into pid_defocus_stats dfcpid = pd.read_excel(path_calib_pid_defocus) dfcstats = pd.read_excel(path_calib_spct_stats) dfcpid = modify.merge_calib_pid_defocus_and_correction_coords(path_calib_coords, method, dfs=[dfcstats, dfcpid]) else: # read SPCT pid defocus stats that have already been merged path_calib_pid_defocus = join(path_calib_coords, 'calib_spct_pid_defocus_stats_calib1_xy.xlsx') dfcpid = pd.read_excel(path_calib_pid_defocus) # step 2. remove outliers # 2.1 get z_in-focus mean + standard deviation zf_c_mean = dfcpid[param_zf].mean() zf_c_std = dfcpid[param_zf].std() # 2.2 filter calibration coords dfcpid = dfcpid[(dfcpid[param_zf] > 34) & (dfcpid[param_zf] < zf_c_mean + zf_c_std / 2)] dfcpid = dfcpid[dfcpid['x'] > 120] # step 3. fit plane dictc_fit_plane = correct.fit_in_focus_plane(df=dfcpid, param_zf=param_zf, microns_per_pixel=microns_per_pixel) popt_c = dictc_fit_plane['popt_pixels'] if plot_calib_plane: fig = plotting.plot_fitted_plane_and_points(df=dfcpid, dict_fit_plane=dictc_fit_plane) plt.savefig(path_figs + '/calibration-coords_fit-plane_raw.png') plt.close() dfict_fit_plane = pd.DataFrame.from_dict(dictc_fit_plane, orient='index', columns=['value']) dfict_fit_plane.to_excel(path_figs + '/calibration-coords_fit-plane_raw.xlsx') # FIT SMOOTH 2D SPLINE AND PLOT RAW POINTS + FITTED SURFACE (NO CORRECTION) bispl_c, rmse_c = fit.fit_3d_spline(x=dfcpid.x, y=dfcpid.y, z=dfcpid[param_zf], kx=kx, ky=ky) fig, ax = plotting.scatter_3d_and_spline(dfcpid.x, dfcpid.y, dfcpid[param_zf], bispl_c, cmap='RdBu', grid_resolution=30, view='multi') ax.set_xlabel('x (pixels)') ax.set_ylabel('y (pixels)') ax.set_zlabel(r'$z_{f} \: (\mu m)$') plt.suptitle('fit RMSE = {}'.format(np.round(rmse_c, 3))) plt.savefig(path_figs + '/calibration-coords_fit-spline_kx{}_ky{}.png'.format(kx, ky)) plt.close() # --- # --- PART B. READ COORDS USED FOR IDPT TEST (i.e. 'calib2') # step 1. merge [['x', 'y']] into spct pid defocus stats. if merge_spct_stats: # read SPCT calibration coords and merge ['x', 'y'] into pid_defocus_stats dfcpid = pd.read_excel(path_test_pid_defocus) dfcstats = pd.read_excel(path_test_spct_stats) dfcpid = modify.merge_calib_pid_defocus_and_correction_coords(path_calib_coords, method, dfs=[dfcstats, dfcpid]) else: # read SPCT pid defocus stats that have already been merged path_calib_pid_defocus = join(path_calib_coords, 'calib_spct_pid_defocus_stats_calib2_xy.xlsx') dfcpid = pd.read_excel(path_calib_pid_defocus) # step 2. remove outliers # 2.1 get z_in-focus mean + standard deviation zf_c_mean = dfcpid[param_zf].mean() zf_c_std = dfcpid[param_zf].std() # 2.2 filter calibration coords dfcpid = dfcpid[(dfcpid[param_zf] > zf_c_mean - zf_c_std / 2) & (dfcpid[param_zf] < zf_c_mean + zf_c_std / 2)] # step 3. fit plane dictc_fit_plane = correct.fit_in_focus_plane(df=dfcpid, param_zf=param_zf, microns_per_pixel=microns_per_pixel) popt_c = dictc_fit_plane['popt_pixels'] if plot_test_plane: fig = plotting.plot_fitted_plane_and_points(df=dfcpid, dict_fit_plane=dictc_fit_plane) plt.savefig(path_figs + '/test-coords_fit-plane_raw.png') plt.close() dfict_fit_plane = pd.DataFrame.from_dict(dictc_fit_plane, orient='index', columns=['value']) dfict_fit_plane.to_excel(path_figs + '/test-coords_fit-plane_raw.xlsx') # FIT SMOOTH 2D SPLINE AND PLOT RAW POINTS + FITTED SURFACE (NO CORRECTION) bispl_c, rmse_c = fit.fit_3d_spline(x=dfcpid.x, y=dfcpid.y, z=dfcpid[param_zf], kx=kx, ky=ky) fig, ax = plotting.scatter_3d_and_spline(dfcpid.x, dfcpid.y, dfcpid[param_zf], bispl_c, cmap='RdBu', grid_resolution=30, view='multi') ax.set_xlabel('x (pixels)') ax.set_ylabel('y (pixels)') ax.set_zlabel(r'$z_{f} \: (\mu m)$') plt.suptitle('fit RMSE = {}'.format(np.round(rmse_c, 3))) plt.savefig(path_figs + '/test-coords_fit-spline_kx{}_ky{}.png'.format(kx, ky)) plt.close() # ---------------------------------------------------------------------------------------------------------------------- # 4. PLOT TEST COORDS RMSE-Z analyze_test_coords = False save_plots = False show_plots = False if analyze_test_coords: # read test coords dft = io.read_test_coords(path_test_coords) # test coords stats mag_eff = 20.0 area_pixels = 512 ** 2 area_microns = (512 * microns_per_pixel) ** 2 i_num_rows = len(dft) i_num_pids = len(dft.id.unique()) # --- # --- STEP 0. drop and rename columns for simplicity dft = dft.drop(columns=['z', 'z_true']) dft = dft.rename(columns={'z_corr': 'z', 'z_true_corr': 'z_true'}) # --- rmse_all_particles = False rmse_on_off_bpe = False rmse_compare = False # format plots xylim = 37.25 xyticks = [-30, -15, 0, 15, 30] lbls = ['On', 'Border', 'Off'] markers = ['s', 'd', 'o'] if rmse_all_particles: # --- STEP 1. CALCULATE RMSE-Z FOR ALL PARTICLES column_to_bin = 'z_true' bins_z = 20 round_z_to_decimal = 3 min_cm = 0.5 # 1.1 mean rmse-z dfrmse_mean = bin.bin_local_rmse_z(dft, column_to_bin=column_to_bin, bins=1, min_cm=min_cm, z_range=None, round_to_decimal=round_z_to_decimal, df_ground_truth=None, dropna=True, error_column='error', ) dfrmse_mean.to_excel(path_results + '/mean-rmse-z_bin=1_no-filters.xlsx') # 1.2 binned rmse-z dfrmse = bin.bin_local_rmse_z(dft, column_to_bin=column_to_bin, bins=bins_z, min_cm=min_cm, z_range=None, round_to_decimal=round_z_to_decimal, df_ground_truth=None, dropna=True, error_column='error', ) dfrmse.to_excel(path_results + '/binned-rmse-z_bins={}_no-filters.xlsx'.format(bins_z)) # 1.3 groupby 'bin' rmse-z mean + std dfrmsem, dfrmsestd = bin.bin_generic(dft, column_to_bin='bin', column_to_count='id', bins=bins_z, round_to_decimal=round_z_to_decimal, return_groupby=True) # 1.3 plot binned rmse-z if save_plots or show_plots: # close all figs plt.close('all') # ----------------------- BASIC RMSE-Z PLOTS # rmse-z: microns fig, ax = plt.subplots() ax.plot(dfrmse.index, dfrmse.rmse_z, '-o') ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$\sigma_{z} \: (\mu m)$') plt.tight_layout() if save_plots: plt.savefig(path_figs + '/rmse-z_microns.png') if show_plots: plt.show() plt.close() # ----------------------- Z-MEAN +/- Z-STD PLOTS # fit line popt, pcov = curve_fit(functions.line, dfrmse.z_true, dfrmse.z) z_fit = np.linspace(dfrmse.z_true.min(), dfrmse.z_true.max()) rmse_fit_line = np.sqrt(np.sum((functions.line(dfrmse.z_true, *popt) - dfrmse.z)**2) / len(dfrmse.z)) print(rmse_fit_line) # binned calibration curve with std-z errorbars (microns) + fit line fig, ax = plt.subplots() ax.errorbar(dfrmsem.z_true, dfrmsem.z, yerr=dfrmsestd.z, fmt='o', ms=3, elinewidth=0.5, capsize=1, color=sciblue, label=r'$\overline{z} \pm \sigma$') # ax.plot(z_fit, functions.line(z_fit, *popt), linestyle='--', linewidth=1.5, color='black', alpha=0.25, label=r'$dz/dz_{true} = $' + ' {}'.format(np.round(popt[0], 3))) ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$z \: (\mu m)$') ax.set_ylim([-xylim, xylim]) ax.set_yticks(ticks=xyticks, labels=xyticks) ax.legend(loc='lower right', handletextpad=0.25, borderaxespad=0.3) plt.tight_layout() if save_plots: plt.savefig(path_figs + '/calibration_curve_z+std-errobars_fit_line_a{}_b{}_slope-label-blk.png'.format( np.round(popt[0], 3), np.round(popt[1], 3)) ) if show_plots: plt.show() plt.close() if rmse_on_off_bpe: # --- STEP 0. SPLIT DATAFRAME INTO (1) OFF BPE and (2) OFF BPE. column_to_bin = 'x' bins_x = [145, 175, 205] round_x_to_decimal = 0 dfbx = bin.bin_by_list(dft, column_to_bin=column_to_bin, bins=bins_x, round_to_decimal=round_x_to_decimal, ) df_on = dfbx[dfbx['bin'] == bins_x[0]] df_edge = dfbx[dfbx['bin'] == bins_x[1]] df_off = dfbx[dfbx['bin'] == bins_x[2]] # --- plotting # --- STEP 1. PLOT CALIBRATION CURVE (Z VS. Z_TRUE) FOR EACH DATAFRAME (ON, EDGE, OFF) ss = 1 fig, ax = plt.subplots() ax.scatter(df_off.z_true, df_off.z, s=ss, marker=markers[2], color=sciblue, label=lbls[2]) ax.scatter(df_on.z_true, df_on.z, s=ss, marker=markers[0], color=sciorange, label=lbls[0]) ax.scatter(df_edge.z_true, df_edge.z, s=ss, marker=markers[1], color=scired, label=lbls[1]) ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$z \: (\mu m)$') ax.set_ylim([-xylim, xylim]) ax.set_yticks(ticks=xyticks, labels=xyticks) ax.legend(loc='lower right', markerscale=2.5) plt.tight_layout() if save_plots: plt.savefig(path_figs + '/on-edge-off-bpe_calibration_curve.png') if show_plots: plt.show() plt.close() # --- STEP 2. FOR EACH DATAFRAME (ON, EDGE, OFF), COMPUTE RMSE-Z AND PLOT for lbl, dft in zip(lbls, [df_on, df_edge, df_off]): # --- STEP 1. CALCULATE RMSE-Z FOR ALL PARTICLES column_to_bin = 'z_true' bins_z = 20 round_z_to_decimal = 3 min_cm = 0.5 # 1.1 mean rmse-z dfrmse_mean = bin.bin_local_rmse_z(dft, column_to_bin=column_to_bin, bins=1, min_cm=min_cm, z_range=None, round_to_decimal=round_z_to_decimal, df_ground_truth=None, dropna=True, error_column='error', ) dfrmse_mean.to_excel(path_results + '/{}_mean-rmse-z_bin=1_no-filters.xlsx'.format(lbl)) # 1.2 binned rmse-z dfrmse = bin.bin_local_rmse_z(dft, column_to_bin=column_to_bin, bins=bins_z, min_cm=min_cm, z_range=None, round_to_decimal=round_z_to_decimal, df_ground_truth=None, dropna=True, error_column='error', ) dfrmse.to_excel(path_results + '/{}_binned-rmse-z_bins={}_no-filters.xlsx'.format(lbl, bins_z)) # 1.3 groupby 'bin' rmse-z mean + std dfrmsem, dfrmsestd = bin.bin_generic(dft, column_to_bin='bin', column_to_count='id', bins=bins_z, round_to_decimal=round_z_to_decimal, return_groupby=True) # 1.3 plot binned rmse-z if save_plots or show_plots: # close all figs plt.close('all') # ----------------------- BASIC RMSE-Z PLOTS # rmse-z: microns fig, ax = plt.subplots() ax.plot(dfrmse.index, dfrmse.rmse_z, '-o') ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$\sigma_{z} \: (\mu m)$') plt.tight_layout() if save_plots: plt.savefig(path_figs + '/{}_rmse-z_microns.png'.format(lbl)) if show_plots: plt.show() plt.close() # ----------------------- Z-MEAN +/- Z-STD PLOTS # fit line popt, pcov = curve_fit(functions.line, dfrmse.z_true, dfrmse.z) z_fit = np.linspace(dfrmse.z_true.min(), dfrmse.z_true.max()) rmse_fit_line = np.sqrt(np.sum((functions.line(dfrmse.z_true, *popt) - dfrmse.z) ** 2) / len(dfrmse.z)) print(rmse_fit_line) # binned calibration curve with std-z errorbars (microns) + fit line fig, ax = plt.subplots() ax.errorbar(dfrmsem.z_true, dfrmsem.z, yerr=dfrmsestd.z, fmt='o', ms=3, elinewidth=0.5, capsize=1, color=sciblue, label=r'$\overline{z} \pm \sigma$') # ax.plot(z_fit, functions.line(z_fit, *popt), linestyle='--', linewidth=1.5, color='black', alpha=0.25, label=r'$dz/dz_{true} = $' + ' {}'.format(np.round(popt[0], 3))) ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$z \: (\mu m)$') ax.set_ylim([-xylim, xylim]) ax.set_yticks(ticks=xyticks, labels=xyticks) ax.legend(loc='lower right', handletextpad=0.25, borderaxespad=0.3) plt.tight_layout() if save_plots: plt.savefig(path_figs + '/{}_calibration_curve_z+std-errobars_fit_line_a{}_b{}_slope-label-blk.png'.format( lbl, np.round(popt[0], 3), np.round(popt[1], 3)) ) if show_plots: plt.show() plt.close() if rmse_compare: # 1. read binned rmse-z dataframes from Excel path_rmse_compare = join(path_results, 'on-edge-off-bpe') df1 = pd.read_excel(join(path_rmse_compare, '{}_binned-rmse-z_bins=20_no-filters.xlsx'.format(lbls[0]))) df2 = pd.read_excel(join(path_rmse_compare, '{}_binned-rmse-z_bins=20_no-filters.xlsx'.format(lbls[1]))) df3 = pd.read_excel(join(path_rmse_compare, '{}_binned-rmse-z_bins=20_no-filters.xlsx'.format(lbls[2]))) # 1.3 plot binned rmse-z if save_plots or show_plots: ms = 4 # ----------------------- BASIC RMSE-Z PLOTS # rmse-z: microns fig, ax = plt.subplots() ax.plot(df3.bin, df3.rmse_z, '-o', ms=ms, label=lbls[2], color=sciblue) ax.plot(df2.bin, df2.rmse_z, '-o', ms=ms, label=lbls[1], color=scired) ax.plot(df1.bin, df1.rmse_z, '-o', ms=ms, label=lbls[0], color=sciorange) ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$\sigma_{z} \: (\mu m)$') ax.legend() plt.tight_layout() if save_plots: plt.savefig(path_figs + '/compare-on-edge-off-bpe_rmse-z_microns.png') if show_plots: plt.show() plt.close() # rmse-z (microns) + c_m darken_clr = 1.0 alpha_clr = 1.0 fig, [axr, ax] = plt.subplots(nrows=2, sharex=True, gridspec_kw={'height_ratios': [1, 2]}) axr.plot(df3.bin, df3.cm, '-', ms=ms-2, marker=markers[2], color=sciblue) axr.plot(df2.bin, df2.cm, '-', ms=ms-2, marker=markers[1], color=scired) axr.plot(df1.bin, df1.cm, '-', ms=ms-2, marker=markers[0], color=sciorange) axr.set_ylabel(r'$c_{m}$') ax.plot(df3.bin, df3.rmse_z, '-', ms=ms-0.75, marker=markers[2], color=sciblue, label=lbls[2]) ax.plot(df2.bin, df2.rmse_z, '-', ms=ms-0.75, marker=markers[1], color=scired, label=lbls[1]) ax.plot(df1.bin, df1.rmse_z, '-', ms=ms-0.75, marker=markers[0], color=sciorange, label=lbls[0]) ax.set_xlabel(r'$z_{true} \: (\mu m)$') ax.set_xlim([-xylim, xylim]) ax.set_xticks(ticks=xyticks, labels=xyticks) ax.set_ylabel(r'$\sigma_{z} \: (\mu m)$') ax.legend() plt.tight_layout() if save_plots: plt.savefig(path_figs + '/compare-on-edge-off-bpe_rmse-z_microns_cm.png') if show_plots: plt.show() plt.close() # ---------------------------------------------------------------------------------------------------------------------- # 5. IDPT VS. SPCT - COMPARE NUMBER OF PARTICLES PER Z compare_idpt_spct = False save_plots = False show_plots = False if compare_idpt_spct: # --- 1. IDPT # read IDPT test coords dft = io.read_test_coords(path_test_coords) # test coords stats mag_eff = 20.0 area_pixels = 512 ** 2 area_microns = (512 * microns_per_pixel) ** 2 i_num_rows = len(dft) i_num_pids = len(dft.id.unique()) dft = dft.drop(columns=['z', 'z_true']) dft = dft.rename(columns={'z_corr': 'z', 'z_true_corr': 'z_true'}) # --- 2. SPCT # 2.1 read SPCT off-bpe test coords dfs_off = pd.read_excel('/Users/mackenzie/Desktop/gdpyt-characterization/experiments/11.02.21-BPE_Pressure_Deflection_20X/analyses/results-04.26.22_spct_calib1_test-2-3/coords/test-coords/test_coords_t-calib2_c-calib1.xlsx') dfs_on =
pd.read_excel('/Users/mackenzie/Desktop/gdpyt-characterization/experiments/11.02.21-BPE_Pressure_Deflection_20X/analyses/results-04.26.22_spct_stack-id-on-bpe/testcalib2_calcalib1/test_coords_t_20X_ccalib1_tcalib2_c_20X_tcalib2_ccalib1_2022-04-26 20:45:34.334931.xlsx')
pandas.read_excel
from collections import Counter import numpy as np import pandas as pd from scipy.spatial.distance import cdist class KNN: def __init__(self, k: int): self.k = k # number of nearest neighbors to be found self.features = pd.DataFrame([]) # feature matrix self.labels = pd.Series([]) # label vector self.index = pd.Index([]) # indices of all the rows self.target = "" # name of the label self.columns = pd.Index([]) # indices of all the columns self.num_cols = pd.Index([]) # indices of numerical columns self.cat_cols = pd.Index([]) # indices of categorical columns def train(self, X: pd.DataFrame, y: pd.Series): # Sanity check assert all(X.index == y.index), "Indices mismatch" # Drop rows with missing data Xy = pd.concat([X, y], axis=1).dropna(axis=0, how='any') _X, _y = Xy[X.columns], Xy[y.name] # Initialization self.features = _X self.labels = _y self.index = _X.index self.target = _y.name self.columns = _X.columns self.num_cols = _X.select_dtypes(include='number').columns self.cat_cols = _X.select_dtypes(exclude='number').columns self.cat_cols = self.columns.drop(self.num_cols) def predict(self, x: pd.Series, return_neighbors: bool = False): r"""Predict the label of a single instance Args: x: pd.Series return_neighbors: bool If set to true, return the k nearest neighbors of the given instance, along with the the label Returns: label_pred (return_neighbors=False) label_pred, neighbors (return_neighbors=True) """ # Compute all pairwise distances dists = self.distance(x) # Select the k nearest neighbors idx = np.argpartition(dists, self.k)[:self.k] idx_neighbors = dists.iloc[idx].index features_k = self.features.loc[idx_neighbors] labels_k = self.labels.loc[idx_neighbors] # Majority vote label_pred = Counter(labels_k).most_common(1)[0][0] # Return class label and/or neighbors if return_neighbors: neighbors = pd.concat([features_k, labels_k], axis=1) return label_pred, neighbors else: return label_pred def impute(self, X: pd.DataFrame) -> pd.DataFrame: r"""Impute the missing value of the given dataset Args: X: pd.DataFrame Returns: X_imputed """ # Sanity check assert all(X.columns == self.columns), "Entries mismatch" # Combine X and self.features into the entire dataset E = pd.concat([self.features, X]) # Impute each row of X X_imputed = [] for index, x in X.iterrows(): # Find k nearest neighbors _, neighbors = self.predict(x, return_neighbors=True) neighbors.drop(columns=self.target) neighbors_num = neighbors[self.num_cols] neighbors_cat = neighbors[self.cat_cols] # Impute values impute_num = neighbors_num.mean() impute_cat = neighbors_cat.mode() # Breaking ties for categorical values if len(impute_cat) > 1: # at least one entry includes ties ties_idx = impute_cat.columns[impute_cat.count() > 1] ties = impute_cat[ties_idx] # Break ties by comparing occurrences in the entire dataset wins = {} for tie in ties.iteritems(): feature, cat = tie # Filter occurrences of interest cat_counts = E[feature].value_counts()[cat.dropna()] # Select the category with the highest frequency cat_win = cat_counts.sort_values(ascending=False).index[0] # Update impute_cat wins[feature] = cat_win # Update and clean up impute_cat for feature, cat_win in wins.items(): impute_cat.loc[0, feature] = cat_win # Combine impute values impute_cat = impute_cat.loc[0] # squeeze impute_cat into pd.Series impute_val = pd.concat([impute_num, impute_cat]) # Fill missing values _nan_cols = self.columns[x.isna()] x_imputed = x.copy() x_imputed[_nan_cols] = impute_val[_nan_cols] X_imputed.append(x_imputed) # Clean up X_imputed X_imputed = pd.DataFrame(X_imputed, index=X.index) return X_imputed def distance(self, x: pd.Series) -> pd.Series: r"""Pairwise distance between the given instance and all the instances in the model Args: x: pd.Series Returns: dist """ # Sanity check assert all(x.index == self.columns), "Entries mismatch" # Drop columns with missing values _nan_cols = self.columns[x.isna()] _num_cols = self.num_cols.drop(_nan_cols, errors='ignore') _cat_cols = self.cat_cols.drop(_nan_cols, errors='ignore') # Split numerical (continuous) and categorical parts x_num = x[_num_cols].to_numpy().reshape(1, -1) features_num = self.features[_num_cols].to_numpy() x_cat = x[_cat_cols] features_cat = self.features[_cat_cols] # Compute the distance dist_num = cdist(x_num, features_num).squeeze(0) dist_cat = np.sum(10 * (x_cat != features_cat), axis=1) dist =
pd.Series(dist_num + dist_cat, index=self.index)
pandas.Series
import os import numpy as np import pytest import pandas as pd from pandas import ( Categorical, DatetimeIndex, Interval, IntervalIndex, NaT, Series, TimedeltaIndex, Timestamp, cut, date_range, isna, qcut, timedelta_range, ) import pandas._testing as tm from pandas.api.types import CategoricalDtype as CDT from pandas.core.algorithms import quantile from pandas.tseries.offsets import Day, Nano def test_qcut(): arr = np.random.randn(1000) # We store the bins as Index that have been # rounded to comparisons are a bit tricky. labels, bins = qcut(arr, 4, retbins=True) ex_bins = quantile(arr, [0, 0.25, 0.5, 0.75, 1.0]) result = labels.categories.left.values assert np.allclose(result, ex_bins[:-1], atol=1e-2) result = labels.categories.right.values assert np.allclose(result, ex_bins[1:], atol=1e-2) ex_levels = cut(arr, ex_bins, include_lowest=True) tm.assert_categorical_equal(labels, ex_levels) def test_qcut_bounds(): arr = np.random.randn(1000) factor = qcut(arr, 10, labels=False) assert len(np.unique(factor)) == 10 def test_qcut_specify_quantiles(): arr = np.random.randn(100) factor = qcut(arr, [0, 0.25, 0.5, 0.75, 1.0]) expected = qcut(arr, 4) tm.assert_categorical_equal(factor, expected) def test_qcut_all_bins_same(): with pytest.raises(ValueError, match="edges.*unique"): qcut([0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 3) def test_qcut_include_lowest(): values = np.arange(10) ii = qcut(values, 4) ex_levels = IntervalIndex( [ Interval(-0.001, 2.25), Interval(2.25, 4.5), Interval(4.5, 6.75), Interval(6.75, 9), ] ) tm.assert_index_equal(ii.categories, ex_levels) def test_qcut_nas(): arr = np.random.randn(100) arr[:20] = np.nan result = qcut(arr, 4) assert isna(result[:20]).all() def test_qcut_index(): result = qcut([0, 2], 2) intervals = [Interval(-0.001, 1), Interval(1, 2)] expected = Categorical(intervals, ordered=True) tm.assert_categorical_equal(result, expected) def test_qcut_binning_issues(datapath): # see gh-1978, gh-1979 cut_file = datapath(os.path.join("reshape", "data", "cut_data.csv")) arr = np.loadtxt(cut_file) result = qcut(arr, 20) starts = [] ends = [] for lev in np.unique(result): s = lev.left e = lev.right assert s != e starts.append(float(s)) ends.append(float(e)) for (sp, sn), (ep, en) in zip( zip(starts[:-1], starts[1:]), zip(ends[:-1], ends[1:]) ): assert sp < sn assert ep < en assert ep <= sn def test_qcut_return_intervals(): ser = Series([0, 1, 2, 3, 4, 5, 6, 7, 8]) res = qcut(ser, [0, 0.333, 0.666, 1]) exp_levels = np.array( [Interval(-0.001, 2.664), Interval(2.664, 5.328), Interval(5.328, 8)] ) exp = Series(exp_levels.take([0, 0, 0, 1, 1, 1, 2, 2, 2])).astype(CDT(ordered=True)) tm.assert_series_equal(res, exp) @pytest.mark.parametrize("labels", ["foo", 1, True]) def test_qcut_incorrect_labels(labels): # GH 13318 values = range(5) msg = "Bin labels must either be False, None or passed in as a list-like argument" with pytest.raises(ValueError, match=msg): qcut(values, 4, labels=labels) @pytest.mark.parametrize("labels", [["a", "b", "c"], list(range(3))]) def test_qcut_wrong_length_labels(labels): # GH 13318 values = range(10) msg = "Bin labels must be one fewer than the number of bin edges" with pytest.raises(ValueError, match=msg): qcut(values, 4, labels=labels) @pytest.mark.parametrize( "labels, expected", [ (["a", "b", "c"], Categorical(["a", "b", "c"], ordered=True)), (list(range(3)), Categorical([0, 1, 2], ordered=True)), ], ) def test_qcut_list_like_labels(labels, expected): # GH 13318 values = range(3) result = qcut(values, 3, labels=labels) tm.assert_categorical_equal(result, expected) @pytest.mark.parametrize( "kwargs,msg", [ ({"duplicates": "drop"}, None), ({}, "Bin edges must be unique"), ({"duplicates": "raise"}, "Bin edges must be unique"), ({"duplicates": "foo"}, "invalid value for 'duplicates' parameter"), ], ) def test_qcut_duplicates_bin(kwargs, msg): # see gh-7751 values = [0, 0, 0, 0, 1, 2, 3] if msg is not None: with pytest.raises(ValueError, match=msg): qcut(values, 3, **kwargs) else: result = qcut(values, 3, **kwargs) expected = IntervalIndex([Interval(-0.001, 1), Interval(1, 3)]) tm.assert_index_equal(result.categories, expected) @pytest.mark.parametrize( "data,start,end", [(9.0, 8.999, 9.0), (0.0, -0.001, 0.0), (-9.0, -9.001, -9.0)] ) @pytest.mark.parametrize("length", [1, 2]) @pytest.mark.parametrize("labels", [None, False]) def test_single_quantile(data, start, end, length, labels): # see gh-15431 ser = Series([data] * length) result = qcut(ser, 1, labels=labels) if labels is None: intervals = IntervalIndex([Interval(start, end)] * length, closed="right") expected = Series(intervals).astype(CDT(ordered=True)) else: expected = Series([0] * length) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "ser", [ Series(DatetimeIndex(["20180101", NaT, "20180103"])), Series(TimedeltaIndex(["0 days", NaT, "2 days"])), ], ids=lambda x: str(x.dtype), ) def test_qcut_nat(ser): # see gh-19768 intervals = IntervalIndex.from_tuples( [(ser[0] - Nano(), ser[2] - Day()), np.nan, (ser[2] - Day(), ser[2])] ) expected = Series(Categorical(intervals, ordered=True)) result = qcut(ser, 2) tm.assert_series_equal(result, expected) @pytest.mark.parametrize("bins", [3, np.linspace(0, 1, 4)]) def test_datetime_tz_qcut(bins): # see gh-19872 tz = "US/Eastern" ser = Series(date_range("20130101", periods=3, tz=tz)) result = qcut(ser, bins) expected = Series( IntervalIndex( [ Interval( Timestamp("2012-12-31 23:59:59.999999999", tz=tz), Timestamp("2013-01-01 16:00:00", tz=tz), ), Interval( Timestamp("2013-01-01 16:00:00", tz=tz), Timestamp("2013-01-02 08:00:00", tz=tz), ), Interval( Timestamp("2013-01-02 08:00:00", tz=tz), Timestamp("2013-01-03 00:00:00", tz=tz), ), ] ) ).astype(CDT(ordered=True)) tm.assert_series_equal(result, expected) @pytest.mark.parametrize( "arg,expected_bins", [ [ timedelta_range("1day", periods=3), TimedeltaIndex(["1 days", "2 days", "3 days"]), ], [ date_range("20180101", periods=3), DatetimeIndex(["2018-01-01", "2018-01-02", "2018-01-03"]), ], ], ) def test_date_like_qcut_bins(arg, expected_bins): # see gh-19891 ser = Series(arg) result, result_bins = qcut(ser, 2, retbins=True) tm.assert_index_equal(result_bins, expected_bins) @pytest.mark.parametrize("bins", [6, 7]) @pytest.mark.parametrize( "box, compare", [ (Series, tm.assert_series_equal), (np.array, tm.assert_categorical_equal), (list, tm.assert_equal), ], ) def test_qcut_bool_coercion_to_int(bins, box, compare): # issue 20303 data_expected = box([0, 1, 1, 0, 1] * 10) data_result = box([False, True, True, False, True] * 10) expected =
qcut(data_expected, bins, duplicates="drop")
pandas.qcut
import numpy as np import pandas as pd from bs4 import BeautifulSoup def _clean_soup(soup): """Clean up html to get rid of tricky comments.""" return BeautifulSoup(str(soup).replace('<!--', '').replace('-->', ''), "lxml") def _get_urls(row): """Get urls for all cells in table row.""" all = row.findAll('th') + row.findAll('td') return [t.find('a')['href'] if t.find('a') else np.nan for t in all] def list_tables(soup): """List tables present in BSoup object that we know how to fetch.""" soup = _clean_soup(soup) return [t.attrs['id'] for t in soup.findAll('table') if 'id' in t.attrs] def _convert_dtypes(df): """Convert dtypes of df, when possible.""" for col in df.columns: try: df[col] = [int(i) if i != '' and i is not None else None for i in df[col]] except ValueError: try: df[col] = df[col].replace('', np.nan).astype(float) except ValueError: pass return df def get_table_from_soup(table_soup, get_url=False, include_tfoot=False): """Extract table from html to pd.DataFrame.""" th_soups = table_soup.find('thead').findAll('tr') columns = [t['data-stat'] for t in th_soups[-1].findAll('th')] row_soups = table_soup.findAll('tr', {'class': 'full_table'}) if not row_soups: row_soups = table_soup.find('tbody').findAll('tr') if include_tfoot: row_soups.extend(table_soup.find('tfoot').findAll('tr')) rows = [[r.find('th').text] + [t.text for t in r.findAll('td')] for r in row_soups] df =
pd.DataFrame(rows, columns=columns)
pandas.DataFrame
import pandas as pd import numpy as np from typing import Dict, Iterator, Tuple from ..models import unit from ..models.column import Column from ..models.table import Table from ..generators.label_generator import LabelGenerator from ..generators.unit_generator import UnitGenerator from ..generators.column_generator import ColumnGenerator from ..generators.table_generator import TableGenerator from ..generators.dataset_generator import DatasetGenerator from core.generators.mashup_dataset_generator import MashupDatasetGenerator ## Many-to-Many - Same input / output class ManyToManySameInputAndOutputVocabOrchestrator(object): def __init__(self, vocab: str, unit_lookup: Dict[int, str]): assert len(vocab) > 0 self.vocab = [ char for char in vocab ] system_vocab = ['\n', ' ', ] + [ char for char in '0123456789.\/' ] for v in system_vocab: self.vocab.append(v) ## want to make <eol> = 0 self.vocab = ['<eol>'] + list(sorted(set(self.vocab))) self.index_to_char = dict([ (i, c) for i, c in enumerate(self.vocab) ]) self.char_to_index = dict([ (c, i) for i, c in enumerate(self.vocab) ]) self.unit_lookup = unit_lookup label_generator_index_to_char = self.index_to_char.copy() for key in (['<eol>'] + system_vocab): del label_generator_index_to_char[self.char_to_index[key]] self.generators = { 'label': LabelGenerator(label_generator_index_to_char), 'unit': UnitGenerator(self.unit_lookup), } self.generators['column'] = ColumnGenerator( self.generators['label'], self.generators['unit'] ) super().__init__() def create_table_generator(self, table: Table): return TableGenerator(table, self.generators['column']) def get_vocab_size(self): return len(self.vocab) def build_dataset(self, options: Iterator[dict]): ## individual option: { 'table', 'n_instances' } return MashupDatasetGenerator().get_data(options) def translate_to_string_array(self, input_array: Iterator[int]) -> Iterator[str]: return [ self.index_to_char[i] for i in input_array ] def translate_to_integer_array(self, dataset: pd.DataFrame, table_lookup: Dict[str, Table]) -> pd.DataFrame: def translate(row: str): return [ self.char_to_index[char] for char in row ] ## 1. calculate the worst possible table, ## - we want to fit a dataset, with different possible tables, into one where the input and output are the exact same. table_height_width_lookup = {} for key in table_lookup.keys(): table = table_lookup[key] calculated_table_width, calculated_table_height = table.get_max_size() table_height_width_lookup[key] = (calculated_table_width, calculated_table_height, calculated_table_width * calculated_table_height) translated_dataset = [] for index, row in dataset.iterrows(): key = row['table_id'] table_width, table_height, target_total_chars = table_height_width_lookup[key] train = [] table = table_lookup[key] table_splits = row['table'].strip('\n').split('\n') for i, table_row in enumerate(table_splits): translated_row = translate(table_row) if i != 0 and i < len(table_splits) - 1: translated_row = [self.char_to_index['\n']] + translated_row if len(translated_row) < table_width: pad = table_width - len(translated_row) translated_row = translated_row + [ self.char_to_index[' '] for _ in range(pad)] assert len(translated_row) == table_width, f'{len(translated_row)} <> {table_width}, {index}' train.append(translated_row) while np.array(train).shape[0] < table_height: translated_row = [ self.char_to_index['<eol>'] for _ in range(table_width)] train.append(translated_row) shape = np.array(train).shape assert shape[0] == table_height, f'{shape[0]} <> {table_height}, {index}' target = translate(row['target'].strip('\n')) if len(target) < target_total_chars: pad = target_total_chars - len(target) target = target + [ self.char_to_index['<eol>'] for _ in range(pad)] assert len(target) == target_total_chars, f'{len(target)} <> {target_total_chars}, {index}' translated_dataset.append( (np.array(train).flatten().tolist(), target, len(table.columns)) ) df =
pd.DataFrame(translated_dataset)
pandas.DataFrame
import numpy as np import pandas as pd from scipy import signal, stats from sklearn.linear_model import LinearRegression from obspy.signal.trigger import classic_sta_lta def sequence_generator(data, xcol="acoustic_data", ycol="time_to_failure", size=150000): """Generator that extracts segments of the signal from the data. Parameters ---------- data: pd.DataFrame, The data with all observations. Must have two columns: one with the measurement of the signal and one with the target, i.e., time to the next earthquake. xcol: str, optional (default: "acoustic_data"), The column referring to the the signal data. ycol: str, optional (default: "time_to_failure"), The column referring to the target value. size: int, optional (default: 150,000), The number of observations to include in a single sequence. Should be left at its default to generate sequences similar to the test data. Returns ------- A generator object that generates tuples like: (sequence of 'size' observations of xcol, last corresponding value of ycol). """ while True: indices = np.random.randint(0, len(data) - size - 1, 10000) for idx in indices: y = data[ycol].iloc[idx + size - 1] x = data[idx:(idx + size)][xcol].values yield x, y class FeatureComputer(): """Class that computes features over a given array of observations. This is done in a class so that it can be initialized once and can then be used throughout the train-validate-test sequence without specifying all the parameters everytime. Parameters ---------- minimum, maximum, mean, median, std: boolean, optional (default: True), Whether to include the corresponding feature. quantiles: list of floats, The quantiles to compute. abs_min, abs_max, abs_mean, abs_median, abs_std: boolean, optional (default: True), The same features as above, but calculated over the absolute signal. abs_quantiles: list of floats, The quantiles to compute over the absolute signal. mean_abs_delta, mean_rel_delta: boolean, optional (default: True), Whether to compute the average change per observation. For 'mean_rel_delta' it is divided by the value of the previous observation, which leads to a change proportion. max_to_min: boolean, optional (default: True), Whether to compute the rate between the absolute maximum and the absolute minimum. count_abs_big: list of floats, The thresholds for which it is counted how many times the absolute signal exceeds the threshold. abs_trend: boolean, optional (default: True), Whether to calculate the linear trend of the time series. mad: boolean, optional (default: True), Whether to calculate the mean absolute deviation of the time series. skew: boolean, optional (default: True), Whether to calculate the skewness of the time series. abs_skew: boolean, optional (default: True), Whether to calculate the skewness of the absolute values of the time series. kurtosis: boolean, optional (default: True), Whether to calculate the kurosis of the time series. The kurtosis measures the tailedness of a time series abs_kurtosis: boolean, optional (default: True), Whether to calculate the kurosis of the absolute values of the time series. The kurtosis measures the tailedness of a time series hilbert: boolean, optional (default: True), Whether to calculate the abs mean in hilbert tranformed space. hann: boolean, optional (default: True), Whether to calculate the abs mean in hann window. stalta: list of floats, The short time average and the long time average over which the short time average over long time average is calculated. stalta_window: list of floats, The short time average and the long time average over which the short time average over long time average is calculated per window. exp_mov_ave: list of floats, The time windows over which the mean of the mean of the exponential moving average is calculated. exp_mov_ave_window: list of floats, The time windows over which the mean of the mean of the exponential moving average is calculated per window. window: int or None, optional (default: None), If given, calculates the features over subsequences of size 'window'. array_length: int, optional (default: 150000), The array length to expect. Only needed if window is not None. Returns ------- result: np.array, The specified features of the given array. Notes ----- In order to see which value in the result refers to which feature, see 'self.feature_names'. """ feats = ["minimum", "maximum", "mean", "median", "std", "abs_min", "abs_max", "abs_mean", "abs_median", "abs_std", "mean_abs_delta", "mean_rel_delta", "max_to_min", "abs_trend", "mad", "skew", "abs_skew", "kurtosis", "abs_kurtosis", "hilbert", "hann"] def __init__(self, minimum=True, maximum=True, mean=True, median=True, std=True, quantiles=None, abs_min=True, abs_max=True, abs_mean=True, abs_median=True, abs_std=True, abs_quantiles=None, mean_abs_delta=True, mean_rel_delta=True, max_to_min=True, count_abs_big=None, abs_trend=True, mad=True, skew=True, abs_skew=True, kurtosis=True, abs_kurtosis=True, hilbert=True, hann=True, stalta=None, stalta_window=None, exp_mov_ave=None, exp_mov_ave_window=None, window=None, array_length=150000): self.minimum = minimum self.maximum = maximum self.mean = mean self.median = median self.std = std self.abs_min = abs_min self.abs_max = abs_max self.abs_mean = abs_mean self.abs_median = abs_median self.abs_std = abs_std self.mean_abs_delta = mean_abs_delta self.mean_rel_delta = mean_rel_delta self.max_to_min = max_to_min self.abs_trend = abs_trend self.mad = mad self.skew = skew self.abs_skew = abs_skew self.kurtosis = kurtosis self.abs_kurtosis = abs_kurtosis self.hilbert = hilbert self.hann = hann if quantiles is None: self.quantiles = [] else: self.quantiles = quantiles if abs_quantiles is None: self.abs_quantiles = [] else: self.abs_quantiles = abs_quantiles self.window = window if count_abs_big is None: self.count_abs_big = [] else: self.count_abs_big = count_abs_big if stalta is None: self.stalta = [] else: self.stalta = stalta if stalta_window is None: self.stalta_window = [] else: self.stalta_window = stalta_window if exp_mov_ave is None: self.exp_mov_ave = [] else: self.exp_mov_ave = exp_mov_ave if exp_mov_ave_window is None: self.exp_mov_ave_window = [] else: self.exp_mov_ave_window = exp_mov_ave_window if self.window is not None: self.indicators = np.array(([np.ones(window)*i for i in range(int(np.ceil(array_length/window)))]), dtype=int).flatten() self.indicators = self.indicators[:array_length] assert len(self.indicators) == array_length, "Lengths do not match" self.feature_names = self._infer_names() self.n_features = len(self.feature_names) def _infer_names(self): """Infer the names of the features that will be calculated.""" quantile_names = [str(q) + "-quantile" for q in self.quantiles] abs_quantile_names = [str(q) + "-abs_quantile" for q in self.abs_quantiles] count_abs_big_names = [str(q) + "-count_big" for q in self.count_abs_big] stalta_names = ["all_stalta-" + str(q[0]) + "-" + str(q[1]) for q in self.stalta] exp_mov_ave_names = ["all_exp_mov_ave-" + str(q) for q in self.exp_mov_ave] if self.window is not None: stalta_names_window = ["stalta-" + str(q[0]) + "-" + str(q[1]) for q in self.stalta_window] exp_mov_ave_names_window = ["exp_mov_ave-" + str(q) for q in self.exp_mov_ave_window] names = np.array(self.feats)[[self.minimum, self.maximum, self.mean, self.median, self.std, self.abs_min, self.abs_max, self.abs_mean, self.abs_median, self.abs_std, self.mean_abs_delta, self.mean_rel_delta, self.max_to_min, self.abs_trend, self.mad, self.skew, self.abs_skew, self.kurtosis, self.abs_kurtosis, self.hilbert, self.hann]] names = names.tolist() + quantile_names + abs_quantile_names + count_abs_big_names if self.window is not None: all_names = [str(i) + "_" + name for i in np.unique(self.indicators) for name in names + stalta_names_window + exp_mov_ave_names_window] self.result_template_window = np.zeros(int(len(all_names) / len(np.unique(self.indicators)))) all_names = all_names + ["all_" + name for name in names] + stalta_names + exp_mov_ave_names self.result_template = np.zeros(len(names + stalta_names + exp_mov_ave_names)) return all_names else: all_names = names + stalta_names + exp_mov_ave_names self.result_template = np.zeros(len(all_names)) return all_names def compute(self, arr): if self.window is None: return self._compute_features(arr) else: df = pd.DataFrame({"arr": arr, "indicator": self.indicators}) values = (df.groupby("indicator")["arr"] .apply(lambda x: self._compute_features(x, window=True)) .apply(pd.Series) .values .flatten()) # include values over the whole segment overall_values = self._compute_features(arr) return np.concatenate([values, overall_values]) def _compute_features(self, arr, window=False): if window: result = np.zeros_like(self.result_template_window) else: result = np.zeros_like(self.result_template) i = 0 if self.minimum: result[i] = np.min(arr) i += 1 if self.maximum: result[i] = np.max(arr) i += 1 if self.mean: result[i] = np.mean(arr) i += 1 if self.median: result[i] = np.median(arr) i += 1 if self.std: result[i] = np.std(arr) i += 1 if self.abs_min: result[i] = np.min(np.abs(arr)) i += 1 if self.abs_max: result[i] = np.max(np.abs(arr)) i += 1 if self.abs_mean: result[i] = np.mean(np.abs(arr)) i += 1 if self.abs_median: result[i] = np.median(np.abs(arr)) i += 1 if self.abs_std: result[i] = np.std(np.abs(arr)) i += 1 if self.mean_abs_delta: result[i] = np.mean(np.diff(arr)) i += 1 if self.mean_rel_delta: result[i] = np.mean(np.nonzero((np.diff(arr) / arr[:-1]))[0]) i += 1 if self.max_to_min: result[i] = np.max(arr) / np.abs(np.min(arr)) i += 1 if self.abs_trend: idx = np.array(range(len(arr))) lr = LinearRegression() lr.fit(idx.reshape(-1, 1), np.abs(arr)) result[i] = lr.coef_[0] i += 1 if self.mad: # mean absolute deviation result[i] = np.mean(np.abs(arr - np.mean(arr))) i += 1 if self.skew: result[i] = stats.skew(arr) i += 1 if self.abs_skew: result[i] = stats.skew(np.abs(arr)) i += 1 if self.kurtosis: # measure of tailedness result[i] = stats.kurtosis(arr) i += 1 if self.abs_kurtosis: # measure of tailedness result[i] = stats.kurtosis(np.abs(arr)) i += 1 if self.hilbert: # abs mean in hilbert tranformed space result[i] = np.mean(np.abs(signal.hilbert(arr))) i += 1 if self.hann: # mean in hann window result[i] = np.mean(signal.convolve(arr, signal.hann(150), mode='same') / np.sum(signal.hann(150))) i += 1 if self.quantiles is not None: result[i:i + len(self.quantiles)] = np.quantile(arr, q=self.quantiles) i += len(self.quantiles) if self.abs_quantiles is not None: result[i:i + len(self.abs_quantiles)] = np.quantile(np.abs(arr), q=self.abs_quantiles) i += len(self.abs_quantiles) if self.count_abs_big is not None: result[i: i + len(self.count_abs_big)] = np.array([len(arr[np.abs(arr) > q]) for q in self.count_abs_big]) i += len(self.count_abs_big) if self.stalta: if window: result[i:i + len(self.stalta_window)] = np.array( [np.mean(classic_sta_lta(arr, q[0], q[1])) for q in self.stalta_window]) i += len(self.stalta_window) else: result[i:i + len(self.stalta)] = np.array( [np.mean(classic_sta_lta(arr, q[0], q[1])) for q in self.stalta]) i += len(self.stalta) if self.exp_mov_ave: if window: result[i:i + len(self.exp_mov_ave_window)] = np.array( [np.mean(pd.Series.ewm(pd.Series(arr), span=q).mean()) for q in self.exp_mov_ave_window]) i += len(self.exp_mov_ave_window) else: result[i:i + len(self.exp_mov_ave)] = np.array( [np.mean(pd.Series.ewm(
pd.Series(arr)
pandas.Series
from __future__ import division import os import time import argparse import subprocess import random import os.path as osp from glob import glob import tensorflow as tf import numpy as np import pandas as pd from tqdm import tqdm import utils.utils as utils from utils.data import load_img, save_img, darken, gen_shadow,detect_shadow,batch_crop from utils.data import concat_img, encode_jpeg,load_four from utils.raw import load_four_raw,linref2srgb,rgbg2rgb,load_raw_test from model.network import UNet as UNet from model.network import UNet_SE as UNet_SE from loss.losses import compute_percep_loss seed = 2020#2019 np.random.seed(seed) tf.set_random_seed(seed) random.seed(seed) parser = argparse.ArgumentParser() parser.add_argument("--loss", default="lp", help="choose the loss type") parser.add_argument("--is_test", default=0,type=int, help="choose the loss type") parser.add_argument("--model", default="pre-trained",help="path to folder containing the model") parser.add_argument("--debug", default=0, type=int, help="DEBUG or not") parser.add_argument("--use_gpu", default=1, type=int, help="DEBUG or not") parser.add_argument("--gpu", default=3, type=int, help="DEBUG or not") parser.add_argument("--save_model_freq", default=10, type=int, help="frequency to save model") ARGS = parser.parse_args() DEBUG = ARGS.debug save_model_freq = ARGS.save_model_freq model=ARGS.model is_test = ARGS.is_test BATCH_SIZE=1 NOFLASH=False continue_training=True if ARGS.use_gpu: os.environ["CUDA_VISIBLE_DEVICES"]=str(np.argmax([int(x.split()[2]) for x in subprocess.Popen("nvidia-smi -q -d Memory | grep -A4 GPU | grep Free", shell=True, stdout=subprocess.PIPE).stdout.readlines()])) else: os.environ["CUDA_VISIBLE_DEVICES"]='' os.environ["OMP_NUM_THREADS"] = '4' os.environ["CUDA_VISIBLE_DEVICES"] = str(ARGS.gpu) print(ARGS) # set up the model and define the graph lossDict= {} data_root="data/docshadow" test_dirs=["bio2"] test_dfs=[] for subdir in test_dirs: df=pd.read_csv(osp.join(data_root,subdir,'trip.csv')) df["f"]=df["f"].map(lambda x: osp.join('rawc','derived',x)) df["m"]=df["ab"].map(lambda x:osp.join('rawc','derived',x)) df[["gt","ab"]]=df[["gt","ab"]].applymap(lambda x: osp.join('rawc','origin',x)) df=df.applymap(lambda x:osp.join(data_root,subdir,x+'.png')) test_dfs.append(df) test_df=
pd.concat(test_dfs)
pandas.concat
#!/usr/bin/env python3 """ Author : <NAME> Date : 2022-02-03 Purpose: Parse tracy JSON files and produce summary .xlsx sheet. """ import argparse from typing import NamedTuple import json, pathlib, time import pandas as pd class Args(NamedTuple): """ Command-line arguments """ json_file_path: pathlib.Path output_dir: bool input_type: bool csv: bool # -------------------------------------------------- def get_args() -> Args: """ Get command-line arguments """ parser = argparse.ArgumentParser( description='Parse tracy JSONs and produce a summary excel sheet', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('json_file_path', metavar='json_file_path', type=pathlib.Path, help='Path of directory containing tracy JSONs (or directories of gene JSONs)') parser.add_argument('-o', '--output_dir', help="flag whether directory 'output' will be created", action='store_false') parser.add_argument('-i', '--input_type', help="flag whether Michael put genes into individual folders", action='store_false') parser.add_argument('--csv', help="flag whether .csv files will be produced for each gene (mostly for debugging)", action='store_true') args = parser.parse_args() return Args(args.json_file_path, args.output_dir, args.input_type, args.csv) # -------------------------------------------------- def main() -> None: start_main = time.time() # define args args = get_args() json_file_path_arg = args.json_file_path.resolve() output_dir_arg = args.output_dir input_type_arg = args.input_type csv_arg = args.csv # check output_dir flag, if true: make an output dir if output_dir_arg: output_flag = 'tracy_json_parse' output_path = json_file_path_arg.joinpath(f"{output_flag}_output-{time.strftime('%Y_%m_%d-%H%M%S', time.localtime(time.time()))}") output_path.mkdir(parents=True, exist_ok=True) else: output_path = json_file_path_arg sample_list = { '#reference': { 'aliases': ['reference', 'ref'], 'species': '#ref' }, 'AliBarber': { 'aliases': ['alibarber'], 'species': 'Bos taurus' }, 'Cochise': { 'aliases': ['cochise'], 'species': 'Bos taurus' }, 'Sansao': { 'aliases': ['sansao'], 'species': 'Bos taurus' }, 'Slugger': { 'aliases': ['slugger', 'slogger'], 'species': 'Bos taurus' }, 'LLNKune': { 'aliases': ['llnkune', 'llnkure'], 'species': 'Bos indicus' }, 'Nagaki': { 'aliases': ['nagaki'], 'species': 'Bos indicus' }, 'Raider': { 'aliases': ['raider'], 'species': 'Bos indicus' }, 'Renditium': { 'aliases': ['renditium', 'rendition'], 'species': 'Bos indicus' } } list_of_genotype_DataFrames = {} # check input_type flag, if true: if input_type_arg: for gene_dir in json_file_path_arg.iterdir(): if gene_dir.is_dir(): for sample_json in gene_dir.glob('*.json'): query_path = gene_dir list_of_genotype_DataFrames.update({gene_dir.stem: generate_genotype_DataFrame(sample_list, gene_dir.stem, query_path, output_path, csv_arg)}) else: list_of_genes = list(set([gene.stem.split('_')[0] for gene in json_file_path_arg.glob('*.json')])) for gene in list_of_genes: query_path = json_file_path_arg list_of_genotype_DataFrames.update({gene: generate_genotype_DataFrame(sample_list, gene, query_path, output_path, csv_arg)}) write_genotype_DataFrames_to_excel(list_of_genotype_DataFrames, output_path) print_runtime(f'Produced summary tracy genotyping excel file.') def generate_genotype_DataFrame(sample_list, gene_ID, query_path, output_path, csv_arg): """ Function will generate a genotype DataFrame with genotyping template """ SNP_data = generate_template(sample_list) for sample_json in query_path.glob(f'{gene_ID}*.json'): gene = sample_json.stem.split('_')[0] sample = validate_sample_name(sample_json.stem.split('_')[1], sample_list) results = parse_json(sample_json, gene, sample) SNP_data[sample]['seq'] = True SNP_data['#reference']['seq'] = True for i in results[0]: SNP_data[sample].update(i) for i in results[1]: SNP_data['#reference'].update(i) SNP_DataFrame = pd.DataFrame.from_dict(SNP_data, orient='index') for column in SNP_DataFrame.columns[2:]: reference_genotype = SNP_DataFrame.at['#reference', column][0] for row_num, row_val in SNP_DataFrame[1:].iterrows(): if not isinstance(SNP_DataFrame.at[row_num, column], list) and SNP_DataFrame.at[row_num, 'seq']: SNP_DataFrame.at[row_num, column] = [reference_genotype, None, None] elif not SNP_DataFrame.at[row_num, 'seq']: SNP_DataFrame.at[row_num, column] = ['*', None, None] if csv_arg: SNP_DataFrame.to_csv(output_path.joinpath(f'{gene}.csv')) print_runtime(f'Produced {gene}.csv') if SNP_DataFrame.columns.tolist()[2:]: SNP_DataFrame = SNP_DataFrame.explode(SNP_DataFrame.columns.tolist()[2:]) return SNP_DataFrame def write_genotype_DataFrames_to_excel(list_of_genotype_DataFrames, output_path) -> None: """ Function will write each of the genotypes into a summary excel sheet with each gene in their own sheet """ with pd.ExcelWriter(output_path.joinpath('#summary_tracy_results.xlsx'), engine='xlsxwriter') as writer: workbook = writer.book # excel formatting styles # -------------------------------------------------- f_align_left = workbook.add_format({ 'align': 'left', 'valign': 'vcenter',}) f_align_center = workbook.add_format({ 'align': 'center', 'valign': 'vcenter',}) f_neutral = workbook.add_format({ 'align' : 'center', 'valign' : 'vcenter', 'bg_color' : '#ffeb9c', 'font_color' : '#9c5700'}) f_neutral_under = workbook.add_format({ 'align' : 'center', 'valign' : 'vcenter', 'bg_color' : '#ffeb9c', 'font_color' : '#9c5700', 'bottom' : 1 }) f_bad = workbook.add_format({ 'align' : 'center', 'valign' : 'vcenter', 'bg_color' : '#ffc7ce', 'font_color' : '#9c0006'}) f_bad_under = workbook.add_format({ 'align' : 'center', 'valign' : 'vcenter', 'bg_color' : '#ffc7ce', 'font_color' : '#9c0006', 'bottom' : 1 }) f_header = workbook.add_format({ 'align' : 'center', 'valign' : 'vcenter', 'bold' : True, 'bottom' : 6 }) f_ref = workbook.add_format({ 'align' : 'center', 'valign' : 'vcenter', 'bold' : True, 'bottom' : 1 }) f_bos_divider = workbook.add_format({ 'align' : 'center', 'valign' : 'vcenter', 'bottom' : 1 }) f_species_merge = workbook.add_format({ 'bold': 1, 'border': 1, 'align': 'center', 'valign': 'vcenter', 'rotation': 90}) # for each each gene in the list of genotype DataFrames, set up an excel sheet for gene in list_of_genotype_DataFrames: # deal with blank tables because tracy didn't find any variants if len(list_of_genotype_DataFrames[gene]) == 9: list_of_genotype_DataFrames[gene][''] = [None]*9 list_of_genotype_DataFrames[gene].at['#reference', ''] = [None] for row_i, row_val in list_of_genotype_DataFrames[gene].iterrows(): if row_i != '#reference': list_of_genotype_DataFrames[gene].at[row_i,''] = [None, None, None] list_of_genotype_DataFrames[gene] = list_of_genotype_DataFrames[gene].explode('') list_of_genotype_DataFrames[gene].to_excel(writer, sheet_name=gene, index = True) genetype_DataFrame_for_excel = list_of_genotype_DataFrames[gene].reset_index() paternal_expressed = ['GNAS', 'MEST', 'NNAT', 'PEG10', 'PEG3', 'PLAGL1', 'RTL1', 'SNRPN', 'XIST'] maternal_expressed = ['H19', 'IGF2R'] # make formatting changes # -------------------------------------------------- worksheet = writer.sheets[gene] # colour sheet depending on whether it's maternal or paternal expressed if gene.split('-')[0] in paternal_expressed: worksheet.set_tab_color('#89CFF0') elif gene.split('-')[0] in maternal_expressed: worksheet.set_tab_color('#F2ACB9') # change the column formatting worksheet.set_column(0, 1, 10, f_align_left) worksheet.set_column(1, 2, 7, f_align_left) worksheet.set_column(3, len(list_of_genotype_DataFrames[gene].columns.tolist()) + 1, 14.3, f_align_center) worksheet.set_column(2, 3, options={'hidden' : True}) # write the header for col_num, col_value in enumerate(list_of_genotype_DataFrames[gene].columns.values): worksheet.write(0, col_num + 1, col_value, f_header) # header worksheet.write(1, col_num + 1, list_of_genotype_DataFrames[gene].iat[0, col_num], f_ref) # subheader # iterate through the rows and do actions for row_i, row_val in genetype_DataFrame_for_excel[1::3].iterrows(): # hide the second and third row after the reference worksheet.set_row(row_i+2, None, options={'hidden' : True}) worksheet.set_row(row_i+3, None, options={'hidden' : True}) # for each column, get the column reference for col_i, col_v in enumerate(list_of_genotype_DataFrames[gene].columns.values): if col_i > 1: reference_genotype = str(genetype_DataFrame_for_excel.at[0, col_v]).strip() individual_genotype = str(row_val[col_v]).strip() if row_i == 10: worksheet.write(row_i + 1, col_i + 1, genetype_DataFrame_for_excel.at[row_i, col_v], f_bos_divider) if row_i == 22: worksheet.write(row_i + 1, col_i + 1, genetype_DataFrame_for_excel.at[row_i, col_v], f_bos_divider) f_neutral_type = f_neutral_under if (row_i == 10 or row_i == 22) else f_neutral f_bad_type = f_bad_under if (row_i == 10 or row_i == 22) else f_bad # if the genotype isn't the reference and isn't a failed sequence, highlight this cell as yellow if individual_genotype != reference_genotype and individual_genotype != '*': worksheet.write(row_i + 1, col_i + 1, genetype_DataFrame_for_excel.at[row_i, col_v], f_neutral_type) # if the genotype is a failed sequence, highlight this cell as red elif individual_genotype == '*': worksheet.write(row_i + 1, col_i + 1, '*', f_bad_type) worksheet.merge_range('B3:B12', 'Bos indicus', f_species_merge) worksheet.merge_range('B15:B24', 'Bos taurus', f_species_merge) def parse_json(query_ab1, gene, name): """ Function will parse json files produced by tracy and return a list of sample genotypes and corresponding reference genotypes """ with open(f'{query_ab1}') as tracy_json: # initialize the json file from tracy data = json.load(tracy_json) # make a dataframe of the variants variant_data =
pd.DataFrame(data['variants']['rows'], columns=data['variants']['columns'])
pandas.DataFrame
__author__ = 'qchasserieau' import itertools import pandas as pd def nested_list(volume_array, paths): return [[volume_array[i]] * len(paths[i]) for i in range(len(volume_array))] def assign(volume_array, paths): nested_row_indices = [[i] * len(paths[i]) for i in range(len(volume_array))] row_indices = list(itertools.chain.from_iterable(nested_row_indices)) column_indices = list(itertools.chain.from_iterable(paths)) nested_volumes = nested_list(volume_array, paths) volumes = list(itertools.chain.from_iterable(nested_volumes)) try: test = volumes[0][0] # volumes_array is an ndarray sparse = pd.concat( ( pd.DataFrame( { 'od': row_indices, 'link': column_indices } ),
pd.DataFrame(volumes)
pandas.DataFrame
from datetime import datetime from django import template import pandas as pd import numpy as np import json import ast register = template.Library() @register.filter(name='getlist') def getlist(value): return ast.literal_eval(value) @register.simple_tag def multiply(value): return value * 6 @register.simple_tag def frame(values): df =
pd.DataFrame(values)
pandas.DataFrame
from functools import partial from warnings import warn from typing import Optional, List import pandas as pd import numpy as np def _check_features(df, features): valid_features = set(df.index) & set(features) if len(features) != len(valid_features): warn(f"Found {len(features) - len(valid_features)} invalid features (e.g. not shown in the dataframe)") return valid_features def calc_auc(rank_val: pd.Series, max_rank: int): insig_part = rank_val > max_rank if all(insig_part): return 0 else: rank_val[insig_part] = max_rank + 1 rank_sum = sum(rank_val) n = rank_val.shape[0] u_val = rank_sum - (n * (n + 1)) / 2 # lower if the rank is higher auc = 1 - (u_val / (n * max_rank)) return auc def calc_U_stat_df(features, df: pd.DataFrame, neg_features: Optional[List[str]] = None, max_rank=1500, w_neg=1): if neg_features is None: neg_features = [] pos_features = list(set(features) - set(neg_features)) if len(pos_features) > 0: pos = df.reindex(index=pos_features).apply(partial(calc_auc, max_rank=max_rank), axis=0).values else: pos = np.zeros(shape=(df.shape[2],)) if len(neg_features) > 0: neg = df.reindex(index=neg_features).apply(partial(calc_auc, max_rank=max_rank), axis=0).values else: neg = np.zeros(shape=(df.shape[2],)) diff = pos - w_neg * neg # diff[diff < 0] = 0 return diff def cal_Uscore(X: pd.DataFrame, pos_genes, neg_genes, max_rank=1500, w_neg=1, ties_method="average"): ranked_df = X.rank(ascending=False, method=ties_method) pos_genes = _check_features(X, pos_genes) cell_auc = calc_U_stat_df(pos_genes, ranked_df, neg_features=neg_genes, max_rank=max_rank, w_neg=w_neg) return
pd.DataFrame(cell_auc, index=ranked_df.columns)
pandas.DataFrame
from tqdm import tqdm import pandas as pd from datetime import timedelta import pickle import numpy as np import matplotlib.pyplot as plt plt.style.use('ggplot') def read(): """ :return: first dataset and GDU dataset df.columns = ['population', 'site', 'original_planting_date', 'early_planting_date', 'late_planting_date', 'required_gdus', 'scenario_1_harvest_quantity', 'scenario_2_harvest_quanitity'] dfGDU.columns = ['index', 'date', 'site_0', 'site_1'] """ df = pd.read_csv('Dataset_1.csv') df['original_planting_date'] = pd.to_datetime(df['original_planting_date']) df['early_planting_date'] = pd.to_datetime(df['early_planting_date']) df['late_planting_date'] = pd.to_datetime(df['late_planting_date']) gdu_df = pd.read_csv('finalGDUs.csv') gdu_df['date'] = pd.to_datetime(gdu_df['date']) return df, gdu_df def day_calculator(planting_date, gdu_df, req_gdu, site): """ :param planting_date: :param gdu_df: :param req_gdu: :param site: :return: the exact date of harvest for the given planting date, based on required GDU """ gdu_counter = 0 while gdu_counter < req_gdu: gdu_of_day = gdu_df[site][gdu_df['date'] == planting_date] try: gdu_counter += float(gdu_of_day) except: pass planting_date += timedelta(days=1) return planting_date - timedelta(days=1) def week_calculator(day): """ :param day: a pandas datetime type of a date :return: the number of week past from starting_day """ starting_day = pd.to_datetime('2020-01-05') temp = day - starting_day week = np.ceil(temp.days/7) if temp.days%7==0: return week +2 return week+1 def harvest_changer_init(pop, week_condidates, df, weekly_harvest, scenario): # get the only row that is belong to the chosen population tempdf = df[df['population'] == pop] minimum = np.inf place_holder = [] for weeks in week_condidates: # weeks : ( week number, planting date, harvest date) if weekly_harvest[weeks[0]] < minimum: minimum = weekly_harvest[weeks[0]] place_holder = weeks #keep the week that have less harvest quantity on it idx = tempdf.index if minimum == np.inf: raise Exception('the population {} is not in this site'.format(pop)) if scenario == 1: weekly_harvest[place_holder[0]] += int(tempdf['scenario_1_harvest_quantity']) else: weekly_harvest[place_holder[0]] += int(tempdf['scenario_2_harvest_quanitity']) df['original_planting_date'].loc[idx] = place_holder[1] df['harvest_time'].loc[idx] = place_holder[2] return df, weekly_harvest def loss(weekly_harvest, location_capacity): weekly_harvest = list(weekly_harvest.values()) weekly_harvest = np.array(list(filter(lambda a: a != 0, weekly_harvest))) location_capacity = np.ones(len(weekly_harvest)) * location_capacity su = np.abs(location_capacity - weekly_harvest) return np.sum(su) def loss2(weekly_harvest): weekly_harvest = list(weekly_harvest.values()) weekly_harvest = np.array(list(filter(lambda a: a != 0, weekly_harvest))) mean = np.mean(weekly_harvest) print('number of weeks: {}\nthe mean: {}\nthe max: {}\nthe median: {}\n######'.format( len(weekly_harvest),mean,np.max(weekly_harvest),np.median(weekly_harvest))) mean = np.ones(len(weekly_harvest)) * mean objective = np.abs(mean - weekly_harvest) return np.sum(objective) def refiner(df, weekly_harvest, objective, populations, lop, location_capacity, scenario): # we want to move from right to left and left to right simultaneously left2right = np.array(list(weekly_harvest.keys())) right2left = left2right[-1::-1] # the weeks that could be delete and not hurting the objective function saves hare forbidden_weeks = [] weekly_harvest = {i: 0 for i in weekly_harvest.keys()} for left, right in tqdm(zip(left2right,right2left)): ok = True temp_weekly_harvest = weekly_harvest.copy() temp_df = df.copy() for pop in lop: week_candidates = populations[pop] temp_df, temp_weekly_harvest, ok = harvest_changer_refine( pop, week_candidates, temp_df, temp_weekly_harvest.copy(), forbidden_weeks.copy(), left, scenario) if not ok: break if ok: if loss(temp_weekly_harvest, location_capacity) < objective: forbidden_weeks.append(left) objective = loss(temp_weekly_harvest, location_capacity) df = temp_df.copy() plotter(df, objective) else: print('objective before adding {} : {}\nbut after: {}'.format( left, objective, loss(temp_weekly_harvest, location_capacity) )) else: print("couldn't add", left) temp_weekly_harvest = weekly_harvest.copy() ok = True temp_df = df.copy() for pop in lop: week_candidates = populations[pop] temp_df, temp_weekly_harvest, ok = harvest_changer_refine( pop, week_candidates, temp_df, temp_weekly_harvest.copy(), forbidden_weeks.copy(), right, scenario) if not ok: break if ok: if loss(temp_weekly_harvest, location_capacity) < objective: objective = loss(temp_weekly_harvest, location_capacity) forbidden_weeks.append(right) df = temp_df.copy() plotter(df, objective) else: print('objective before adding {} : {}\nbut after: {}'.format( right, objective, loss(temp_weekly_harvest, location_capacity) )) else: print("couldn't add", right) print("the forbidden weeks are : ", forbidden_weeks) return df, forbidden_weeks, objective def harvest_changer_refine(pop, week_candidates, df, weekly_harvest, forbidden_weeks, test, scenario): if test in forbidden_weeks: return False, False, False tempdf = df[df['population'] == pop] forbidden_weeks += [test] minimum = np.inf place_holder = [] for weeks in week_candidates: if weeks[0] in forbidden_weeks: continue if weekly_harvest[weeks[0]] < minimum: minimum = weekly_harvest[weeks[0]] place_holder = weeks if minimum == np.inf: return False, False, False idx = tempdf.index if scenario == 1: weekly_harvest[place_holder[0]] += int(tempdf['scenario_1_harvest_quantity']) else: weekly_harvest[place_holder[0]] += int(tempdf['scenario_2_harvest_quanitity']) df['original_planting_date'].loc[idx] = place_holder[1] df['harvest_time'].loc[idx] = place_holder[2] return df, weekly_harvest, True def tunner(df, weekly_harvest, objective, populations, lop, location_capacity, forbidden_weeks, scenario): results = {} # see which weeks could be replaced to get a better objective other_weeks = [i for i in weekly_harvest.keys() if i not in forbidden_weeks] weekly_harvest = {i: 0 for i in weekly_harvest.keys()} for week in tqdm(other_weeks): for i in range(len(forbidden_weeks)): temp_weekly_harvest = weekly_harvest.copy() temp_df = df.copy() ok = True for pop in lop: week_candidates = populations[pop] temp_df, temp_weekly_harvest, ok = harvest_changer_tuning( pop, week_candidates, temp_df, temp_weekly_harvest.copy(), forbidden_weeks.copy(), week, i, scenario) if not ok: break if ok: if loss(temp_weekly_harvest, location_capacity) < objective: objective = loss(temp_weekly_harvest, location_capacity) print('instead of week {} we put week {} and got objective {}'.format( forbidden_weeks[i], week, objective )) temp_forbidden_weeks = [k for j, k in enumerate(forbidden_weeks) if j != i] results[objective] = temp_forbidden_weeks + [week] return results def harvest_changer_tuning(pop, week_candidates, df, weekly_harvest, forbidden_weeks, test, i, scenario): tempdf = df[df['population'] == pop] del forbidden_weeks[i] forbidden_weeks += [test] minimum = np.inf place_holder = [] for weeks in week_candidates: if weeks[0] in forbidden_weeks: continue if weekly_harvest[weeks[0]] < minimum: minimum = weekly_harvest[weeks[0]] place_holder = weeks if minimum == np.inf: return False, False, False idx = tempdf.index if scenario == 1: weekly_harvest[place_holder[0]] += int(tempdf['scenario_1_harvest_quantity']) else: weekly_harvest[place_holder[0]] += int(tempdf['scenario_2_harvest_quanitity']) df['original_planting_date'].loc[idx] = place_holder[1] df['harvest_time'].loc[idx] = place_holder[2] return df, weekly_harvest, True def final(df, weekly_harvest, populations, lop, location_capacity, forbidden_weeks, scenario): for pop in tqdm(lop): week_candidates = populations[pop] df, weekly_harvest, ok = harvest_changer_final( pop, week_candidates, df, weekly_harvest, forbidden_weeks, scenario) if not ok: break if ok: objective = loss(weekly_harvest, location_capacity) return df, objective def harvest_changer_final(pop, week_candidates, df, weekly_harvest, forbidden_weeks, scenario): tempdf = df[df['population'] == pop] minimum = np.inf place_holder = [] for weeks in week_candidates: if weeks[0] in forbidden_weeks: continue if weekly_harvest[weeks[0]] < minimum: minimum = weekly_harvest[weeks[0]] place_holder = weeks if minimum == np.inf: return False, False, False idx = tempdf.index if scenario == 1: weekly_harvest[place_holder[0]] += int(tempdf['scenario_1_harvest_quantity']) else: weekly_harvest[place_holder[0]] += int(tempdf['scenario_2_harvest_quanitity']) df['original_planting_date'].loc[idx] = place_holder[1] df['harvest_time'].loc[idx] = place_holder[2] return df, weekly_harvest, True def plotter(site0, objective): site0_sc1_weekly = {} # the start time to count the weeks date =
pd.to_datetime("2020-01-05")
pandas.to_datetime
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """Tests trained models on transfer environments to generate videos and scores. Note that this code assumes it will be provided with a .csv file indicating which checkpoints it should load based on finding the best hyperparameters for a given metric, such as 'SolvedPathLength_last20%'. It assumes this csv will have columns labeled 'metric', 'exp_id', 'best_seeds', and 'settings'. Such a csv can be created using the function utils.save_best_work_units_csv() """ import ast import datetime import os import pdb import pickle import sys from absl import app from absl import flags from absl import logging import numpy as np import pandas as pd import tensorflow as tf # tf from tf_agents.environments import tf_py_environment #from tf_agents.google.utils import mp4_video_recorder from tf_agents.trajectories import time_step as ts_lib from tf_agents.trajectories import trajectory # Import needed to trigger env registration, so pylint: disable=unused-import from social_rl import gym_multigrid from social_rl.adversarial_env import adversarial_env from social_rl.adversarial_env import utils from social_rl.multiagent_tfagents import multiagent_gym_suite flags.DEFINE_string( 'root_dir', None, 'Directory where videos and transfer results will be saved') flags.mark_flag_as_required('root_dir') #flags.DEFINE_string( # 'hparam_csv', None, # 'Required to determine which checkpoints to load.') #flags.mark_flag_as_required('hparam_csv') flags.DEFINE_string( 'transfer_csv', None, 'If provided, will load this csv and continue saving to it') flags.DEFINE_boolean( 'test_on_test', False, 'If True, will also test on the test environments') flags.DEFINE_boolean( 'test_mini', False, 'If True, will test on the mini environments instead') flags.DEFINE_boolean( 'fill_in_missing', False, 'If True, will test load all existing transfer dfs and try to fill in the ' 'missing data') flags.DEFINE_boolean( 'reverse_order', False, 'If True, will iterate through experiments in reverse order.') flags.DEFINE_string( 'metric', 'SolvedPathLength_best_ever', 'Metric to use for selecting which seeds to test.') flags.DEFINE_boolean( 'debug', False, 'If True, will only load 1 seed for each experiment for speed') flags.DEFINE_integer( 'num_trials', 10, 'Number of trials to do for each seed in each transfer environment') flags.DEFINE_boolean( 'save_video_matrices', False, 'If True, will also save matrix encodings of the environment state used to' 'make rendered videos') flags.DEFINE_string( 'name', 'Test transfer', 'Informative name to output to explain what process is running.') FLAGS = flags.FLAGS VAL_ENVS = [ 'MultiGrid-TwoRooms-Minigrid-v0', 'MultiGrid-Cluttered40-Minigrid-v0', 'MultiGrid-Cluttered10-Minigrid-v0', 'MultiGrid-SixteenRooms-v0', 'MultiGrid-Maze2-v0', 'MultiGrid-Maze3-v0', 'MultiGrid-Labyrinth2-v0', ] TEST_ENVS = [ 'MultiGrid-FourRooms-Minigrid-v0', 'MultiGrid-Cluttered50-Minigrid-v0', 'MultiGrid-Cluttered5-Minigrid-v0', 'MultiGrid-Empty-Random-15x15-Minigrid-v0', 'MultiGrid-SixteenRoomsFewerDoors-v0', 'MultiGrid-Maze-v0', 'MultiGrid-Labyrinth-v0', ] MINI_VAL_ENVS = [ 'MultiGrid-MiniTwoRooms-Minigrid-v0', 'MultiGrid-Empty-Random-6x6-Minigrid-v0', 'MultiGrid-MiniCluttered6-Minigrid-v0', 'MultiGrid-MiniCluttered-Lava-Minigrid-v0', 'MultiGrid-MiniMaze-v0' ] MINI_TEST_ENVS = [ 'MultiGrid-MiniFourRooms-Minigrid-v0', 'MultiGrid-MiniCluttered7-Minigrid-v0', 'MultiGrid-MiniCluttered1-Minigrid-v0' ] class Experiment: """Loads saved checkpoints, tests on transfer envs, generates videos.""" def __init__(self, name, exp_id, adv_env_name='MultiGrid-Adversarial-v0', seeds=None, root_dir=None, checkpoint_nums=None, fps=4, num_blank_frames=4, verbose=True, old_env=False, num_agents=3, time_last_updated=10, population=True, save_matrices=False, benchmark_against=None): self.name = name self.exp_id = exp_id self.adv_env_name = adv_env_name self.seeds = seeds self.checkpoint_nums = checkpoint_nums self.fps = fps self.num_blank_frames = num_blank_frames self.verbose = verbose self.old_env = old_env self.time_last_updated = time_last_updated self.population = population self.population_size = 1 self.checkpoint_nums = checkpoint_nums self.save_matrices = save_matrices self.benchmark_against = benchmark_against self.num_agents = num_agents # Paths self.root_dir = root_dir if root_dir is None: self.root_dir = '/tmp/adversarial_env/' self.videos_dir = os.path.join(self.root_dir, 'videos') self.model_path = os.path.join(*[self.root_dir, adv_env_name, 'xm', str(exp_id)]) self.policies = {} self.py_env = None self.tf_env = None self.blank_frame = None # Store the results of testing transfer on a number of environments self.transfer_results = {} def get_checkpoints_for_seed(self, seed): path = os.path.join(self.model_path, seed) path += '/policy_saved_model/agent' if self.population: path = os.path.join(path, '0') return tf.io.gfile.listdir(path) def get_latest_checkpoint(self, seed): """Finds the latest checkpoint number for a model.""" checkpoints = self.get_checkpoints_for_seed(seed) skip_idx = len('policy_') if len(checkpoints) < 2: return None else: # Get second last checkpoint to avoid errors where a currently-running XM # job is in the process of saving some checkpoint that cannot actually # be loaded yet. return checkpoints[-2][skip_idx:] def load(self, claim=True): """Loads policies for all agents and initializes training environment.""" # Create directory to claim this experiment as currently being computed # (Code prioritizes which checkpoint to load next based on when a file in # this directory was last modified) if claim: claim_dir = os.path.join(self.videos_dir, self.name, 'WallsAreLava') if not tf.io.gfile.exists(claim_dir): tf.io.gfile.makedirs(claim_dir) with tf.gfile.GFile(os.path.join(claim_dir, 'claim.txt'), 'wb') as f: f.write('Claiming this experiment in the name of some process!\n') print('Claiming this experiment by making file in', claim_dir) print('Creating experiment', self.name) print('Loading from', self.model_path) if self.seeds is None: files = tf.io.gfile.listdir(self.model_path) self.seeds = [f for f in files if tf.io.gfile.isdir( os.path.join(self.model_path, f))] print('Checking seeds', ', '.join(self.seeds)) # Get latest checkpoint if self.checkpoint_nums is None: self.checkpoint_nums = {} for s in self.seeds: ckpt_num = self.get_latest_checkpoint(s) if ckpt_num is None: print("Can't find checkpoint for seed", s) else: self.checkpoint_nums[s] = ckpt_num print('Loading policies...') for s in self.seeds: if s in self.checkpoint_nums.keys(): self.policies[s] = self.load_checkpoints_for_seed(s) if self.py_env is None or self.tf_env is None: print('Loading training environment...') self.py_env, self.tf_env = self.load_environment(self.adv_env_name) self.tf_env.reset() self.blank_frame = self.py_env.render() self.blank_frame_encoding = self.py_env._gym_env.grid.encode() # pylint:disable=protected-access def load_checkpoint_from_path(self, path, copy_local=True): """Load checkpoint from path. Copy locally first to improve speed.""" if copy_local: # First copy file from server locally to avoid deadline exceeded errors # and increase performance local_path = path.replace(self.root_dir, '/tmp/adversarial_env') tf.io.gfile.makedirs(local_path) utils.copy_recursively(path, local_path) else: local_path = path return tf.compat.v2.saved_model.load(local_path) def load_checkpoints_for_seed(self, seed): """Loads most recent checkpoint for each agent for a given work unit.""" policy_path = os.path.join(*[self.model_path, seed, 'policy_saved_model']) checkpoint_path = 'policy_' + self.checkpoint_nums[seed] policies = {} agents = ['agent', 'adversary_agent', 'adversary_env'] if 'unconstrained' in self.name or 'minimax' in self.name: agents = ['agent', 'adversary_env'] policies['adversary_agent'] = [None] elif 'domain_randomization' in self.name: agents = ['agent'] for name in agents: if not self.population: path = os.path.join(*[policy_path, name, checkpoint_path]) print('\tLoading seed', seed, 'policy for', name, '...') sys.stdout.flush() policies[name] = [self.load_checkpoint_from_path(path)] else: # Population-based training runs have several agents of each type. agent_path = os.path.join(policy_path, name) policies[name] = [] pop_agents = tf.io.gfile.listdir(agent_path) for pop in pop_agents: path = os.path.join(*[agent_path, pop, checkpoint_path]) if tf.io.gfile.exists(path): print('\tLoading seed', seed, 'policy for', name, pop, '...') policies[name].append(self.load_checkpoint_from_path(path)) return policies def load_environment(self, env_name): if 'Adversarial' in env_name: py_env = adversarial_env.load(env_name) tf_env = adversarial_env.AdversarialTFPyEnvironment(py_env) else: py_env = multiagent_gym_suite.load(env_name) tf_env = tf_py_environment.TFPyEnvironment(py_env) return py_env, tf_env def initialize_video_for_seed(self, seed, env_name, agent_id=None, adv_id=None, adv_agent_id=None): """Creates a video recorder which records agents playing an environment.""" env_start = env_name.find('MultiGrid') + len('MultiGrid-') env_end = env_name.find('-v0') trim_env_name = env_name[env_start:env_end] vid_name = '{0}_xm{1}_{2}_s{3}_{4}'.format( self.name, self.exp_id, trim_env_name, seed, self.checkpoint_nums[seed]) if agent_id is not None: vid_name += '_p{0}'.format(agent_id) if adv_agent_id is not None: vid_name += '_a{0}'.format(adv_agent_id) if adv_id is not None: vid_name += '_e{0}'.format(adv_id) matrix_filename = vid_name + '.pkl' vid_name += '.mp4' vid_path = os.path.join( *[self.videos_dir, self.name, trim_env_name, vid_name]) matrix_path = os.path.join( *[self.videos_dir, self.name, trim_env_name, matrix_filename]) if self.verbose: print('Saving video to', vid_path) vid_recorder = mp4_video_recorder.Mp4VideoRecorder(vid_path, self.fps) return vid_recorder, matrix_path def run_adversarial_trial(self, adv_policy, agent_policy, recorder, adv_agent_policy=None): """Run a trial in which the environment is generated by an adversary.""" # Run adversary to create environment encoded_images = self.create_env_with_adversary(adv_policy, recorder) # Run agent in the environment reward, encoded_images = self.run_agent( agent_policy, recorder, self.adv_env_name, self.py_env, self.tf_env, encoded_images=encoded_images) if adv_agent_policy is not None: _, encoded_images = self.run_agent( adv_agent_policy, recorder, self.adv_env_name, self.py_env, self.tf_env, encoded_images=encoded_images) return reward, encoded_images def run_seed_trials(self, seed, env_name, agent_id=0, num_trials=25, video_record_episodes=1, adv_id=0, adv_agent_id=None, py_env=None, tf_env=None): """Run a number of trials in an env for agents from a specific seed.""" rewards = [] # Initialize video recorder recorder = None if video_record_episodes > 0: recorder, matrix_filename = self.initialize_video_for_seed( seed, env_name, agent_id, adv_id, adv_agent_id) encoded_images = [] for t in range(num_trials): # Usually record fewer episodes than the number of trials completed if recorder and t == video_record_episodes: recorder.end_video() recorder = None if (env_name == self.adv_env_name and 'domain_randomization' not in self.name): # Run adversarial trial if adv_agent_id is not None: adv_agent_pol = self.policies[seed]['adversary_agent'][adv_agent_id] else: adv_agent_pol = None r, encoded = self.run_adversarial_trial( self.policies[seed]['adversary_env'][adv_id], self.policies[seed]['agent'][agent_id], recorder, adv_agent_policy=adv_agent_pol) rewards.append(r) if encoded is not None: encoded_images.extend(encoded) else: # Run agent in a transfer environment r, encoded = self.run_agent( self.policies[seed]['agent'][agent_id], recorder, env_name, py_env, tf_env) rewards.append(r) if encoded is not None: encoded_images.extend(encoded) if recorder: recorder.end_video() if self.save_matrices: with tf.gfile.GFile(matrix_filename, 'wb') as f: pickle.dump(encoded_images, f) f.close() return rewards def check_how_many_trials_in_df(self, df, env, seed, metric, dr_equiv, agent_id): """Check df to see if these trials have already been run.""" if df.empty or 'exp_id' not in df.columns.values: return False, df exp_df = df[df['exp_id'] == self.exp_id] if exp_df.empty: print('Experiment', self.name, self.exp_id, 'is not yet in the dataframe.') return False, df seed_df = exp_df[exp_df['seed'] == int(seed)] if seed_df.empty: return False, df env_df = seed_df[seed_df['env'] == env] if env_df.empty: return False, df ckpt_df = env_df[env_df['domain_rand_comparable_checkpoint'] == dr_equiv] if ckpt_df.empty: return False, df ckpt_df = ckpt_df[ckpt_df['checkpoint'] == int(self.checkpoint_nums[seed])] if ckpt_df.empty: return False, df agent_df = ckpt_df[ckpt_df['agent_id'] == agent_id] if agent_df.empty: return False, df # Check if these results exist for a different metric, and if so duplicate if metric is not None and metric not in agent_df['metric'].unique(): row_dict = agent_df[0:1].to_dict(orient='records')[0] print('Found existing records for a different metric. Making a copy for ' 'this metric') print(row_dict) row_dict['metric'] = metric df = df.append(row_dict, ignore_index=True) print('Found trials already in the df for', self.name, env, 'seed', seed, 'dr ckpt', dr_equiv, 'agent_id', agent_id, '... Skipping ahead.') return True, df def find_dr_ckpt_equivalent(self, dr_ckpts, seed): if dr_ckpts is None: print('!! No DR checkpoints passed to find_dr_ckpt_equivalent, not ' 'possible to find equivalent checkpoint') return '' equiv_ckpt = int(self.checkpoint_nums[seed]) / self.num_agents diffs = np.abs(np.array(dr_ckpts) - equiv_ckpt) return dr_ckpts[np.argmin(diffs)] def run_trials_in_env(self, env_name, df=None, num_trials=100, video_record_episodes=3, test_type='val', metric=None, dr_ckpts=None): """Run all trials of all seeds for a particular environment.""" if env_name == self.adv_env_name and 'domain_randomization' in self.name: print( 'Skipping adversarial episodes for domain randomization environment') return None else: py_env, tf_env = self.load_environment(env_name) if df is None: df = pd.DataFrame() for s in self.seeds: dr_equiv = self.find_dr_ckpt_equivalent(dr_ckpts, s) if s not in self.policies.keys(): continue for agent_id in range(len(self.policies[s]['agent'])): already_done, df = self.check_how_many_trials_in_df( df, env_name, s, metric, dr_equiv, agent_id) if already_done: continue if env_name == self.adv_env_name and 'domain_randomization' not in self.name: for adv_id in range(len(self.policies[s]['adversary_env'])): for adv_agent_id in range(len(self.policies[s]['adversary_agent'])): rewards = self.run_seed_trials( s, env_name, agent_id=agent_id, num_trials=num_trials, video_record_episodes=video_record_episodes, adv_id=adv_id, adv_agent_id=adv_agent_id) row_dict = self.log_seed( rewards, s, env_name, agent_id, adv_id, adv_agent_id, test_type=test_type, metric=metric, dr_equiv=dr_equiv) df = df.append(row_dict, ignore_index=True) else: rewards = self.run_seed_trials( s, env_name, agent_id=agent_id, num_trials=num_trials, video_record_episodes=video_record_episodes, py_env=py_env, tf_env=tf_env) row_dict = self.log_seed(rewards, s, env_name, agent_id, test_type=test_type, metric=metric, dr_equiv=dr_equiv) df = df.append(row_dict, ignore_index=True) return df def log_seed(self, rewards, seed, env_name, agent_id=0, adv_id=None, adv_agent_id=None, test_type='val', metric=None, dr_equiv=None): """Create a dictionary of all score metrics for a particular seed.""" print('Average return for', self.name, env_name, 'seed', seed, 'agent', agent_id, '=', np.mean(rewards)) if adv_id: print('\twith adversary', adv_id, 'and antagonist', adv_agent_id) seed_dict = { 'seed': seed, 'checkpoint': self.checkpoint_nums[seed], 'domain_rand_comparable_checkpoint': dr_equiv, 'num_solved': np.sum(np.greater(rewards, 0)), 'sum': np.sum(rewards), 'mean': np.mean(rewards), 'std': np.std(rewards), 'min': np.min(rewards), 'max': np.max(rewards), 'n': len(rewards), 'agent_id': agent_id, 'env': env_name, 'name': self.name, 'exp_id': self.exp_id, 'run': test_type} if metric is not None: seed_dict['metric'] = metric if adv_id is not None: seed_dict['adv_id'] = adv_id if adv_agent_id is not None: seed_dict['adv_agent_id'] = adv_agent_id return seed_dict def create_env_with_adversary(self, policy, recorder): """Run adversary to create environment.""" encoded_images = None # Add blank frames to make it easier to distinguish between runs/agents if recorder: for _ in range(self.num_blank_frames): recorder.add_frame(self.blank_frame) if self.save_matrices: encoded_images = [self.blank_frame_encoding] * self.num_blank_frames policy_state = policy.get_initial_state(1) time_step = self.tf_env.reset() if self.old_env: time_step = backwards_compatible_timestep(time_step) if self.verbose: print('\tAdversary is building the environment...') for _ in range(self.py_env._gym_env.adversary_max_steps): # pylint: disable=protected-access policy_step = policy.action(time_step, policy_state=policy_state) policy_state = policy_step.state time_step = self.tf_env.step_adversary(policy_step.action) if self.old_env: time_step = backwards_compatible_timestep(time_step) if recorder: recorder.add_frame(self.py_env.render()) if self.save_matrices: encoded_images.append(self.py_env._gym_env.grid.encode()) # pylint:disable=protected-access return encoded_images def run_agent(self, policy, recorder, env_name, py_env, tf_env, encoded_images=None): """Run an agent's policy in a particular environment. Possibly record.""" if self.save_matrices and encoded_images is None: encoded_images = [] # Add blank frames to make it easier to distinguish between runs/agents for _ in range(self.num_blank_frames): if recorder: recorder.add_frame(self.blank_frame) if self.save_matrices: encoded_images.append(self.blank_frame_encoding) rewards = 0 policy_state = policy.get_initial_state(1) if 'domain_randomization' in self.name and env_name == self.adv_env_name: time_step = tf_env.reset_random() elif 'Adversarial' in env_name: time_step = tf_env.reset_agent() else: time_step = tf_env.reset() if recorder: recorder.add_frame(py_env.render()) if self.save_matrices: encoded_images.append(self.py_env._gym_env.grid.encode()) # pylint:disable=protected-access num_steps = tf.constant(0.0) while True: policy_step = policy.action(time_step, policy_state=policy_state) policy_state = policy_step.state next_time_step = tf_env.step(policy_step.action) traj = trajectory.from_transition(time_step, policy_step, next_time_step) time_step = next_time_step num_steps += tf.math.reduce_sum(tf.cast(~traj.is_boundary(), tf.float32)) rewards += time_step.reward if recorder: recorder.add_frame(py_env.render()) if self.save_matrices: encoded_images.append(self.py_env._gym_env.grid.encode()) # pylint:disable=protected-access if traj.is_last(): break return rewards.numpy().sum(), encoded_images def backwards_compatible_timestep(new_ts): """Remove new observations added in later versions of the environment.""" old_obs = { 'image': new_ts.observation['image'], 'time_step': new_ts.observation['time_step'] } return ts_lib.TimeStep( new_ts.step_type, new_ts.reward, new_ts.discount, old_obs) def prioritize_experiments(experiments, videos_dir): """Prioritizes experiments based on recency of generated transfer videos.""" for exp in experiments: exp_dir = os.path.join(*[videos_dir, exp.name, 'WallsAreLava']) if tf.io.gfile.exists(exp_dir): files = tf.io.gfile.listdir(exp_dir) if files: # Gets the update time of most recently updated file update_times = [tf.io.gfile.stat( os.path.join(exp_dir, f)).mtime for f in files] update_times.sort() exp.time_last_updated = update_times[-1] experiments.sort(key=lambda x: x.time_last_updated) return experiments def test_experiment_in_environments(exp, envs, df, transfer_df_path, unsuccessful_trials, test_type='val', num_trials=25, debug=True, metric=None, dr_ckpts=None): """Test checkpoints for an experiment in a collection of environments.""" for env in envs: try: if debug: print('Testing', test_type, 'env', env) df = exp.transfer_results[env] = exp.run_trials_in_env( env, df=df, num_trials=num_trials, video_record_episodes=1, test_type=test_type, metric=metric, dr_ckpts=dr_ckpts) save_df_and_log(df, transfer_df_path) except Exception as e: # pylint: disable=broad-except logging.error('ERROR! with experiment %s in environment %s', exp.name, env) print(e) print('\n') unsuccessful_trials.append(exp.name + '_' + env) return df def load_existing_transfer_file(transfer_dir, transfer_csv, test_on_test=False, mini_str='', name=''): """Load existing transfer file if it exists. Otherwise initialize new.""" # If filename of transfer csv was provided but does not exist, ignore. if transfer_csv and not tf.io.gfile.exists( os.path.join(transfer_dir, transfer_csv)): print('Error! Could not find transfer CSV file', transfer_csv) transfer_csv = None if transfer_csv: transfer_df_path = os.path.join(transfer_dir, transfer_csv) with tf.gfile.GFile(transfer_df_path, 'rb') as f: df = pd.read_csv(f) print('Loaded existing transfer results file: %s', transfer_df_path) else: # Name file containing transfer results based on current time. test_str = '' if test_on_test: test_str = 'test_' csv_name = 'transfer_' + test_str + mini_str + name + '_results_' + \ datetime.datetime.now().strftime('%d.%m.%Y.%H:%M:%S') + '.csv' transfer_df_path = os.path.join(transfer_dir, csv_name) df =
pd.DataFrame()
pandas.DataFrame
import unittest from unittest.mock import MagicMock import pandas as pd from pandas.testing import assert_frame_equal from data_export.models import DATA from data_export.pipeline.formatters import ( DictFormatter, FastTextCategoryFormatter, JoinedCategoryFormatter, ListedCategoryFormatter, RenameFormatter, TupledSpanFormatter, ) TARGET_COLUMN = "labels" class TestDictFormatter(unittest.TestCase): def setUp(self): self.return_value = {"label": "Label"} label = MagicMock() label.to_dict.return_value = self.return_value self.dataset = pd.DataFrame([{TARGET_COLUMN: [label]}]) def test_format(self): formatter = DictFormatter(TARGET_COLUMN) dataset = formatter.format(self.dataset) expected_dataset = pd.DataFrame([{TARGET_COLUMN: [self.return_value]}]) assert_frame_equal(dataset, expected_dataset) class TestJoinedCategoryFormatter(unittest.TestCase): def setUp(self): self.return_value = "Label" label = MagicMock() label.to_string.return_value = self.return_value self.dataset = pd.DataFrame([{TARGET_COLUMN: [label]}]) def test_format(self): formatter = JoinedCategoryFormatter(TARGET_COLUMN) dataset = formatter.format(self.dataset) expected_dataset = pd.DataFrame([{TARGET_COLUMN: self.return_value}]) assert_frame_equal(dataset, expected_dataset) class TestListedCategoryFormatter(unittest.TestCase): def setUp(self): self.return_value = "Label" label = MagicMock() label.to_string.return_value = self.return_value self.dataset = pd.DataFrame([{TARGET_COLUMN: [label]}]) def test_format(self): formatter = ListedCategoryFormatter(TARGET_COLUMN) dataset = formatter.format(self.dataset) expected_dataset = pd.DataFrame([{TARGET_COLUMN: [self.return_value]}]) assert_frame_equal(dataset, expected_dataset) class TestTupledSpanFormatter(unittest.TestCase): def setUp(self): self.return_value = (0, 1, "Label") label = MagicMock() label.to_tuple.return_value = self.return_value self.dataset =
pd.DataFrame([{TARGET_COLUMN: [label]}])
pandas.DataFrame
#%% import sys import psutil import pandas as pd import numpy as np from tqdm import tqdm import time from sklearn.metrics import roc_auc_score import torch # HOME = "/home/scao/Documents/kaggle-riiid-test/" # DATA_DIR = '/home/scao/Documents/kaggle-riiid-test/data/' # MODEL_DIR = f'/home/scao/Documents/kaggle-riiid-test/model/' HOME = os.path.abspath(os.path.join(os.path.dirname(__file__),"..")) sys.path.append(HOME) MODEL_DIR = HOME+'/model/' DATA_DIR = HOME+'/data/' sys.path.append(HOME) from sakt import * from utils import * from iter_env import * NUM_SKILLS = 13523 PRIVATE = False DEBUG = False VAL_BATCH_SIZE = 4096 SIMU_PRI_SIZE = 250_000 SIMU_PUB_SIZE = 25_000 if DEBUG: test_df = pd.read_parquet(DATA_DIR+'cv2_valid.parquet') test_df[:SIMU_PUB_SIZE].to_parquet(DATA_DIR+'test_pub_simu.parquet') #%% # if __name__ == "__main__": TRAIN_DTYPES = { TIMESTAMP: 'int64', USER_ID: 'int32', CONTENT_ID: 'int16', CONTENT_TYPE_ID:'int8', TASK_CONTAINER_ID: 'int16', TARGET: 'int8', PRIOR_QUESTION_TIME: 'float32', PRIOR_QUESTION_EXPLAIN: 'bool' } print("\nLoading train for inference...") train_df = pd.read_parquet(DATA_DIR+'cv5_train.parquet', columns=list(TRAIN_DTYPES.keys())) train_df = train_df.astype(TRAIN_DTYPES) print("Loaded train.") print("\nLoading private simulated test set...") if PRIVATE: test_df = pd.read_parquet(DATA_DIR+'cv5_valid.parquet') test_df = test_df[:SIMU_PRI_SIZE] else: test_df =
pd.read_parquet(DATA_DIR+'test_pub_simu.parquet')
pandas.read_parquet
import streamlit as st from pathlib import Path import requests import pandas as pd from pandas.io.json import json_normalize import base64 from crim_intervals import * import ast from itertools import tee, combinations from typing import List # import matplotlib #sets up function to call Markdown File for "about" def read_markdown_file(markdown_file): return Path(markdown_file).read_text() # download function for output csv's def download_link(object_to_download, download_filename, download_link_text): """ Generates a link to download the given object_to_download. object_to_download (str, pd.DataFrame): The object to be downloaded. download_filename (str): filename and extension of file. e.g. mydata.csv, some_txt_output.txt download_link_text (str): Text to display for download link. Examples: download_link(YOUR_DF, 'YOUR_DF.csv', 'Click here to download data!') download_link(YOUR_STRING, 'YOUR_STRING.txt', 'Click here to download your text!') """ if isinstance(object_to_download,pd.DataFrame): object_to_download = object_to_download.to_csv(index=False) # some strings <-> bytes conversions necessary here b64 = base64.b64encode(object_to_download.encode()).decode() return f'<a href="data:file/txt;base64,{b64}" download="{download_filename}">{download_link_text}</a>' # functions for pairs of ratios def pairwise(iterable): "s -> (s0,s1), (s1,s2), (s2, s3), ..." a, b = tee(iterable) next(b, None) return zip(a, b) def get_ratios(input_list): ratio_pairs = [] for a, b in pairwise(input_list): ratio_pairs.append(b / a) return ratio_pairs # Here we group the rows in the DF by the Pattern Generating Match # Each has its own string of durations, and duration ratios # and then we compare the ratios to get the differences # the "list(combinations)" method takes care of building the pairs, using data from our dataframe 'results' def compare_ratios(ratios_1, ratios_2): ## division of lists # using zip() + list comprehension diffs = [i - j for i, j in zip(ratios_1, ratios_2)] abs_diffs = [abs(ele) for ele in diffs] sum_diffs = sum(abs_diffs) return sum_diffs #results["Pattern_Generating_Match"] = results["Pattern_Generating_Match"].apply(tuple) def get_ratio_distances(results, pattern_col, output_cols): matches = [] for name, group in results.groupby(pattern_col): ratio_pairs = list(combinations(group.index.values, 2)) for a, b in ratio_pairs: a_match = results.loc[a] b_match = results.loc[b] sum_diffs = compare_ratios(a_match.duration_ratios, b_match.duration_ratios) match_dict = { "pattern": name, "sum_diffs": sum_diffs } for col in output_cols: match_dict.update({ f"match_1_{col}": a_match[col], f"match_2_{col}": b_match[col] }) matches.append(match_dict) return pd.DataFrame(matches) # classifier output to pandas def classified_matches_to_pandas(matches): soggetti_matches = [] for i, cm in enumerate(matches): for j, soggetti in enumerate(cm.matches): soggetti_matches.append({ "piece": soggetti.first_note.metadata.title, "type": cm.type, "part": soggetti.first_note.part.strip("[] "), "start_measure": soggetti.first_note.note.measureNumber, "soggetto_number": j + 1, "pattern": cm.pattern, "match_number": i + 1 }) return pd.DataFrame(soggetti_matches) # work lists WorkList_mei = ['CA_Brumel_01.mei_msg.mei', 'CA_Brumel_02.mei_msg.mei', 'CA_Brumel_03.mei_msg.mei', 'CA_Brumel_04.mei_msg.mei', 'CA_Brumel_05.mei_msg.mei', 'CA_Guerrero_Missa_Congratulamini_1.mei_msg.mei', 'CA_Guerrero_Missa_Congratulamini_2.mei_msg.mei', 'CA_Guerrero_Missa_Congratulamini_3.mei_msg.mei', 'CA_Guerrero_Missa_Congratulamini_4.mei_msg.mei', 'CA_Guerrero_Missa_Congratulamini_5.mei_msg.mei', 'CA_Guerrero_Missa_Congratulamini_6.mei_msg.mei', 'CA_Guerrero_Missa_sancta_et_immaculata_1.mei_msg.mei', 'CA_Guerrero_Missa_sancta_et_immaculata_2.mei_msg.mei', 'CA_Guerrero_Missa_sancta_et_immaculata_3.mei_msg.mei', 'CA_Guerrero_Missa_sancta_et_immaculata_4.mei_msg.mei', 'CA_Guerrero_Missa_sancta_et_immaculata_5.mei_msg.mei', 'CA_Guerrero_Missa_sancta_et_immaculata_6.mei_msg.mei', 'CA_Lasso_Missa_Doulce_1.mei_msg.mei', 'CA_Lasso_Missa_Doulce_2.mei_msg.mei', 'CA_Lasso_Missa_Doulce_3.mei_msg.mei', 'CA_Lasso_Missa_Doulce_5.mei_msg.mei', 'CA_Sandrin_Doulce_msg.mei', 'CA_Recordare.mei_msg.mei' ] # general headers for main window #WorkList = ['CRIM_Model_0001.mei'] st.header("CRIM Project: CRIM Intervals") st.subheader("Python Scripts for Analysis of Similar Soggetti in Citations: The Renaissance Imitation Mass") st.write("Visit the [CRIM Project](https://crimproject.org) and its [Members Pages] (https://sites.google.com/haverford.edu/crim-project/home)") st.write("Also see the [Relationship Metadata Viewer] (https://crim-relationship-data-viewer.herokuapp.com/) and [Observation Metadata Viewer] (https://crim-observation-data-viewer.herokuapp.com/)") st.sidebar.subheader("Step 1: Choose Piece(s) from CRIM pending additions") st.sidebar.write("Select Works with Menu, or Type ID, such as 'Model_0008'") selected_works = st.sidebar.multiselect('', WorkList_mei) print_list = pd.DataFrame(selected_works) st.write("Your Selections:") st.write(print_list) #st.write(selected_works) #st.write(selected_works) # correct URL for MEI 4.0 WorkList_mei = [el.replace("CA_", "https://raw.githubusercontent.com/RichardFreedman/CRIM_additional_works/main/") for el in selected_works] @st.cache(allow_output_mutation=True) def load_corpusbase(WorkList_mei:List): corpus = CorpusBase(WorkList_mei) return corpus # Now pass the list of MEI files to Crim intervals #@st.cache(allow_output_mutation=True) #if st.sidebar.button('Load Selections'): corpus = load_corpusbase(WorkList_mei) # Correct the MEI metadata import xml.etree.ElementTree as ET import requests MEINSURI = 'http://www.music-encoding.org/ns/mei' MEINS = '{%s}' % MEINSURI for i, path in enumerate(WorkList_mei): try: if path[0] == '/': mei_doc = ET.parse(path) else: mei_doc = ET.fromstring(requests.get(path).text) # Find the title from the MEI file and update the Music21 Score metadata title = mei_doc.find('mei:meiHead//mei:titleStmt/mei:title', namespaces={"mei": MEINSURI}).text print(path, title) corpus.scores[i].metadata.title = title except: continue # Header # Select Actual or Incremental Durations st.sidebar.subheader("Step 2: Select Rhythmic Preference") duration_choice = st.sidebar.radio('Select Actual or Incremental Durations', ["Actual","Incremental@1","Incremental@2", "Incremental@4"]) if duration_choice == 'Actual': vectors = IntervalBase(corpus.note_list) elif duration_choice == 'Incremental@1': vectors = IntervalBase(corpus.note_list_incremental_offset(1)) elif duration_choice == 'Incremental@2': vectors = IntervalBase(corpus.note_list_incremental_offset(2)) elif duration_choice == 'Incremental@4': vectors = IntervalBase(corpus.note_list_incremental_offset(4)) else: st.write("Please select duration preference") # Select Generic or Semitone st.sidebar.subheader("Step 3: Select Interval Preference") scale_choice = st.sidebar.radio('Select Diatonic or Chromatic', ["Diatonic","Chromatic"]) if scale_choice == 'Diatonic': scale = vectors.generic_intervals elif scale_choice == 'Chromatic': scale = vectors.semitone_intervals else: st.write("Please select duration preference") # Select Vector Length and Minimum Number of Matches st.sidebar.subheader("Step 4: Select Vectors, Matches, and Thresholds") vector_length = st.sidebar.number_input("Enter a Number for the Length of Vector, or use default", min_value=1, max_value=20, value=5) minimum_match = st.sidebar.number_input("Enter a Minimum Number of Matches, or use default", min_value=1, max_value=20, value=3) close_distance = st.sidebar.number_input("If Close Search, then Enter Threshold, or use default", min_value=1, max_value=20, value=2) max_sum_diffs = st.sidebar.number_input("Enter Maximum Durational Differences (Whole Number or Fractional Value), or use default", min_value=None, max_value=None, value=2) patterns = into_patterns([scale], vector_length) search_summary_key = "Key: VE = Number of Melodic Vectors, MM = Minimum Matches, CD = Melodic Close Distance, DD = Maximum Sum of Durational Differences" close_short_search_summary = "{}_{}_V{}_M{}_C{}".format(duration_choice, scale_choice, vector_length, minimum_match, close_distance) exact_short_search_summary = "{}_{}_V{}_M{}".format(duration_choice, scale_choice, vector_length, minimum_match) close_dur_short_search_summary = "{}_{}_V{}_M{}_C{}_D{}".format(duration_choice, scale_choice, vector_length, minimum_match, close_distance, max_sum_diffs) exact_dur_short_search_summary = "{}_{}_V{}_M{}_D{}".format(duration_choice, scale_choice, vector_length, minimum_match, max_sum_diffs) # Select Exact or Close st.sidebar.subheader("Step 5: Search for Similar Melodies") st.sidebar.write("Adjust Time and Melodic Scales, Vectors, Minimum Matches, and Melodic Flex in Steps 2, 3, 4 at left, or use defaults") if st.sidebar.button('Run Exact Search'): patterns = into_patterns([scale], vector_length) find_matches = find_exact_matches(patterns, minimum_match) output = export_pandas(find_matches) #pd.DataFrame(output).head() results = pd.DataFrame(output) st.subheader('Key Values for Your Exact Search: ') st.write(exact_short_search_summary) st.text("(use this for CSV title or notes)") st.write('Results of Exact Melodic Pattern Search') st.write(results) st.subheader("Optional: Download CSV of Exact Melodies from Step 5") s1 = st.text_input('Provide filename for melodic pattern match download (must include ".csv")') tmp_download_link = download_link(results, s1, 'Click here to download your data!') st.markdown(tmp_download_link, unsafe_allow_html=True) if st.sidebar.button('Run Close Search'): patterns = into_patterns([scale], vector_length) find_matches = find_close_matches(patterns, minimum_match, close_distance) output = export_pandas(find_matches) #pd.DataFrame(output).head() st.subheader('Key Values for Your Close Search: ') st.write(close_short_search_summary) st.text("(use this for CSV title or notes)") results = pd.DataFrame(output) st.write('Results of Close Melodic Pattern Search') st.write(results) st.subheader("Optional: Download CSV of Close Melodies from Step 5") s2 = st.text_input('Provide filename for melodic pattern match download (must include ".csv")') tmp_download_link = download_link(results, s2, 'Click here to download your data!') st.markdown(tmp_download_link, unsafe_allow_html=True) st.sidebar.subheader("Step 6: Search with Duration Filter") st.sidebar.write("Threshold of Differences between Durational Ratios, or use default, above") if st.sidebar.button('Run Exact Search with Duration Filter'): patterns = into_patterns([scale], vector_length) find_matches = find_exact_matches(patterns, minimum_match) output = export_pandas(find_matches) results = pd.DataFrame(output) st.subheader('Key Values for Your Exact Search with Durational Distance: ') st.write(exact_dur_short_search_summary) st.text("(use this for CSV title or notes)") st.write('Results of Exact Melodic Pattern Search: Durational Ratios Unfiltered') # clean-up results of melodic match: chance patterns to tuples results["pattern_generating_match"] = results["pattern_generating_match"].apply(tuple) # evaluation Note_Durations as literals--only needed if we're importing CSV #results['note_durations'] = results['note_durations'].apply(ast.literal_eval) durations = results['note_durations'] # calculates 'duration ratios' for each soggetto, then adds this to the DF results["duration_ratios"] = results.note_durations.apply(get_ratios) st.write(results) # now we calculate the _distances_ between pairs of ratios ratio_distances = get_ratio_distances(results, "pattern_generating_match", ["piece_title", "part", "start_measure", "end_measure"]) ratios_filtered = ratio_distances[ratio_distances.sum_diffs <= max_sum_diffs] st.write("Results with Filtered Distances of Durational Ratios") st.write(ratios_filtered) st.subheader("Optional: Download CSV of Exact Melodies and Durations from Step 6") s3 = st.text_input('Provide filename for durational match download (must include ".csv")') tmp_download_link = download_link(ratios_filtered, s3, 'Click here to download your data!') st.markdown(tmp_download_link, unsafe_allow_html=True) if st.sidebar.button('Run Close Search with Duration Filter'): patterns = into_patterns([scale], vector_length) find_matches = find_close_matches(patterns, minimum_match, close_distance) output = export_pandas(find_matches) results = pd.DataFrame(output) st.subheader('Key Values for Your Close Search with Durational Distance: ') st.write(close_dur_short_search_summary) st.text("(use this for CSV title or notes)") # clean-up results of melodic match: chance patterns to tuples results["pattern_generating_match"] = results["pattern_generating_match"].apply(tuple) # evaluation Note_Durations as literals--only needed if we're importing CSV #results['note_durations'] = results['note_durations'].apply(ast.literal_eval) durations = results['note_durations'] # calculates 'duration ratios' for each soggetto, then adds this to the DF results["duration_ratios"] = results.note_durations.apply(get_ratios) st.write("Results of Close Search: Durational Ratios Unfiltered") st.write(results) # now we calculate the _distances_ between pairs of ratios ratio_distances = get_ratio_distances(results, "pattern_generating_match", ["piece_title", "part", "start_measure", "end_measure"]) ratios_filtered = ratio_distances[ratio_distances.sum_diffs <= max_sum_diffs] sort_by_measure = ratios_filtered.sort_values(["match_1_start_measure"]) st.write("Results with Filtered Distances of Durational Ratios") st.write(sort_by_measure) st.subheader("Optional: Download CSV of Close Melodies and Durations from Step 6") s4 = st.text_input('Provide filename for durational match download (must include ".csv")') tmp_download_link = download_link(sort_by_measure, s4, 'Click here to download your data!') st.markdown(tmp_download_link, unsafe_allow_html=True) # Classify Presentation Types st.sidebar.subheader("Step : Classify Presentation Types") st.sidebar.write('One Work at a Time!') st.sidebar.write() st.sidebar.write("Set Threshold of Durational Differences for Presentation Types.") st.sidebar.write("NB: This is different from the durational difference threshold set above.") st.sidebar.write() max_sum_diffs_classify = st.sidebar.number_input("Enter Maximum Durational Differences Among Soggetti to be Classified (whole number only)", min_value=None, max_value=None, value=1) if st.sidebar.button('Run Classifier with Exact Search'): find_matches = find_exact_matches(patterns, minimum_match) classified_matches = classify_matches(find_matches, max_sum_diffs_classify) classfied_output = classified_matches_to_pandas(classified_matches) classified_results =
pd.DataFrame(classfied_output)
pandas.DataFrame
import gensim import numpy as np import pandas as pd import re import os import time import jieba import cv2 import json import urllib import random import hashlib from snownlp import sentiment from snownlp import SnowNLP import jieba.posseg as pseg from gensim.models import word2vec import logging import torch import torch.nn as nn from torch.autograd import Variable from torchvision import models, transforms from PIL import Image from tensorflow.keras.applications import vgg19 from tensorflow.keras.applications import resnet50 from tensorflow.keras.preprocessing import image from collections import Counter from scipy.linalg import norm train_csv_path = r'G:\毕设\数据集\微博\train.csv' text_csv_path = r'G:\毕设\数据集\微博\text.csv' user_csv_path = r'G:\毕设\数据集\微博\user.csv' image_csv_path = r'G:\毕设\数据集\微博\image.csv' en_imagenet_class_path = r'G:\毕设\数据集\微博\imagenet_class_index.json' cn_imagenet_class_path = r'G:\毕设\数据集\微博\imagenet_class_cn.json' image_class_vgg19_score_path = r'G:\毕设\数据集\微博\image_class_vgg19.txt' image_class_resnet50_score_path = r'G:\毕设\数据集\微博\image_class_resnet50.txt' train_negative_corpus_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+'/util/negative.txt' train_positive_corpus_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+'/util/positive.txt' sentiment_model_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+'/util/sentiment.marshal' stopwords_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+"/util/stopwords.txt" word2vec_txt_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+"/util/word2vec_corpus.txt" word2vec_model_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+"/util/text8.model" possentiwords_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+"/util/possentiwords.txt" negsentiwords_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+"/util/negsentiwords.txt" appid = '20190716000318328' secretKey = '<KEY>' url_baidu = 'http://api.fanyi.baidu.com/api/trans/vip/translate' def train_data_read(train_csv_path): """ 训练数据的读入 df_text 文本信息列 df_user 用户信息列 df_image 图片信息列 """ logging.info("正在载入数据中...") #微博信息 df_text = pd.read_csv(train_csv_path,usecols=['id','text','category','label']) #用户信息 df_user = pd.read_csv(train_csv_path,usecols=['id','userGender','userFollowCount','userFansCount','userWeiboCount','userLocation','userDescription']) #微博图片信息 df_image = pd.read_csv(train_csv_path,usecols=['id','piclist']) logging.info("数据载入完成") return df_text,df_user,df_image def text_data_read(): ''' 文本特征文件的读取 :return: 文本特征文件 ''' df_text = pd.read_csv(text_csv_path) return df_text def text_insert_cols(df_text,new_features_list): ''' 增加文本新的特征列,方便后续提取并补充值 :param df_text: 文本信息 :return: df_text: 新文本信息dataframe ''' logging.info("正在扩展文本新特征列...") col_name = list(df_text.columns) # 插入新列之前列名去重 col_name = col_name + sorted(set(new_features_list) - set(col_name), key=new_features_list.index) df_text = df_text.reindex(columns=col_name, fill_value=0) logging.info("文本新特征列扩展完成") return df_text def text_feature_extraction(df_text): logging.info("开始文本特征提取...") # #统计字符串长度 # df_text['text_length'] = df_text['text'].str.len() # #将情感分数列转为float # df_text['sentiment_score'] = df_text['sentiment_score'].astype(float) for j in range(1,65): df_text['word2vec_'+str(j)] = df_text['word2vec_'+str(j)].astype(float) # #其余数据统计 i = 0 for index, row in df_text.iterrows(): logging.info("处理进度"+str(i+1)+"/"+str(df_text.shape[0])) #获得需要处理的文本内容 text_content = row['text'] # #获得是否含有问号以及问号的数量 # if row['num_questmarks'] > 0: # df_text.at[i, 'contains_questmark'] = 1 # df_text.at[i,'contains_questmark'], df_text.at[i,'num_questmarks'] = text_questmark(text_content) # #获得是否含有感叹号以及感叹号的数量 # if row['num_exclammarks'] > 0: # df_text.at[i, 'contains_exclammark'] = 1 # df_text.at[i, 'contains_exclammark'], df_text.at[i, 'num_exclammarks'] = text_exclammark(text_content) # #获得是否含有hashtag以及hashtag的数量 # if row['num_hashtags'] > 0: # df_text.at[i, 'contains_hashtag'] = 1 # df_text.at[i, 'contains_hashtag'], df_text.at[i, 'num_hashtags'] = text_hashtag(text_content) # #获得是否含有url以及url的数量 # if row['num_URLs'] > 0: # df_text.at[i, 'contains_URL'] = 1 # df_text.at[i, 'contains_URL'], df_text.at[i, 'num_URLs'] = text_url(text_content) # #获得是否含有@以及@的数量 # if row['num_mentions'] > 0: # df_text.at[i, 'contains_mention'] = 1 # df_text.at[i, 'contains_mention'], df_text.at[i, 'num_mentions'] = text_mention(text_content) # #获得文本情感分数 # df_text.at[i, 'sentiment_score'] = text_sentiment_score(text_content) # #词性标注,统计名词、动词、代词数量并返回 # df_text.at[i, 'num_noun'],df_text.at[i, 'num_verb'],df_text.at[i, 'num_pronoun'] = text_part_of_speech(text_content) # #计算每条微博正文的词向量均值 df_text.at[i,-64:] = text_compute_word2vec(text_content).tolist() # #获得每条微博的积极词汇数、消极词汇数 # df_text.at[i, 'num_possentiwords'], df_text.at[i, 'num_negsentiwords'] = text_pos_neg_sentiwords(text_content) #获取新闻是否含有第一人称、第二人称、第三人称 # df_text.at[i, 'contains_firstorderpron'], df_text.at[i, 'contains_secondorderpron'], df_text.at[i, 'contains_thirdorderpron'] = text_get_fir_sec_thi_orderpron(text_content) i += 1 logging.info("文本特征提取结束...") return df_text def text_get_fir_sec_thi_orderpron(text_content): """ 统计第一、二、三人称是否存在于微博中 :param text_content: :return: has_first, has_second, has_third(0:不包含,1:包含) """ has_first = 0 #第一人称 has_second = 0 #第二人称 has_third = 0 #第三人称 if text_content.find('我') != -1: has_first = 1 elif text_content.find('你') != -1: has_second = 1 elif text_content.find('他') != -1 or text_content.find('她') != -1 or text_content.find('它') != -1: has_third = 1 return has_first, has_second, has_third def text_pos_neg_sentiwords(text_content): # 去除停用词的分词String new_text_content = jieba_clear_text(text_content) #将词组转成list list_new_text_content = new_text_content.split(' ') #统计积极词、消极词 num_pos = 0 num_neg = 0 for word in list_new_text_content: if word in possentiwords: num_pos += 1 elif word in negsentiwords: num_neg += 1 return num_pos,num_neg def text_part_of_speech(text_content): """ 将文本中的汉字进行词性标注并返回数量 :param text_content: 文本信息 :return: n名词数量,v动词数量,r代词数量 """ #选取所有的汉字 if pd.isna(text_content): return 0,0,0 words = pseg.cut("".join(re.findall(u"[\u4e00-\u9fa5]",text_content))) n = 0 #名词数量 r = 0 #代词数量 v = 0 #动词数量 for w in words: if (w.flag.startswith('n')): n += 1 elif (w.flag.startswith('v')): v += 1 elif (w.flag.startswith('r')): r += 1 return n,v,r def text_questmark(text_content): """ 处理文本中的问号 :param text_content:处理对象文本 :return: 是否含有问号(1:有,0:无),问号数量 """ en_questmark_nums = text_content.count("?") cn_questmark_nums = text_content.count("?") if(en_questmark_nums + cn_questmark_nums > 0): return 1,en_questmark_nums + cn_questmark_nums else: return 0,0 def text_train_sentiment(): #微博语料训练 sentiment.train(train_negative_corpus_path,train_positive_corpus_path) #保存模型,同时修改snownlp->sentiment->__init__.py->data_path sentiment.save(sentiment_model_path) def text_sentiment_score(text_content): """ 获得文本的情感分数 0<------------------>1 消极 积极 :param text_content: 处理对象文本 :return: sentiment_score.sentiments 情感分数 """ if pd.isna(text_content): return 0 #去除停用词 new_text_content = jieba_clear_text(text_content) try: sentiment_score = SnowNLP(new_text_content).sentiments except: return 0 return sentiment_score def jieba_clear_text(text): """ jieba分词,并使用自定义停用词表去除停用词以及长度为1的词 """ text_n= "".join(re.findall(u"[\u4e00-\u9fa5]", text)) raw_result = "$".join(jieba.cut(text_n)) myword_list = [] #去除停用词 for myword in raw_result.split('$'): if myword not in stopwords: myword_list.append(myword) return " ".join(myword_list) def get_stopwords_list(): """ 获得停用词的列表 :return: stopwords:停用词列表 """ my_stopwords = [] fstop = open(stopwords_path, "r", encoding='UTF-8') for eachWord in fstop.readlines(): my_stopwords.append(eachWord.strip()) fstop.close() return my_stopwords def get_possentiwords_list(): """ 获得积极词汇列表 :return: """ my_possentiwords = [] fp = open(possentiwords_path, "r", encoding='UTF-8') for eachWord in fp.readlines(): my_possentiwords.append(eachWord.strip()) fp.close() return my_possentiwords def get_negsentiwords_list(): """ 获得消极词汇列表 :return: """ my_negsentiwords = [] fn = open(negsentiwords_path, "r", encoding='UTF-8') for eachWord in fn.readlines(): my_negsentiwords.append(eachWord.strip()) fn.close() return my_negsentiwords def text_exclammark(text_content): """ 处理文本中的感叹号 :param text_content:处理对象文本 :return: 是否含有感叹(1:有,0:无),感叹数量 """ en_exclammark_nums = text_content.count("!") cn_exclammark_nums = text_content.count("!") if(en_exclammark_nums + cn_exclammark_nums > 0): return 1,en_exclammark_nums + cn_exclammark_nums else: return 0,0 def text_hashtag(text_content): """ 判断文本中是否存在hashtag 微博中hashtag由两个#构成,例如 #毕业设计# :param text_content: 处理对象文本 :return: 是否含有hashtag(1:有,0:无),hashtag数量 """ hashtag_nums = text_content.count("#") if(hashtag_nums == 0): return 0,0 else: return 1,hashtag_nums/2 def text_url(text_content): """ 判断文本中是否存在微博URL :param text_content: 处理对象文本 :return: 是否含有url(1:有,0:无),url数量 """ url = re.findall('https?://(?:[-\w.]|(?:%[\da-fA-F]{2}))+', text_content) if url: return 1,len(url) else: return 0,0 def text_mention(text_content): """ 处理微博正文中的用户@ :param text_content: 处理对象文本 :return: 是否含有@(1:有,0:无),@数量 """ mention_nums = text_content.count("@") if(mention_nums > 0): return 1,mention_nums else: return 0,0 def text_train_word2vec_model(word2vec_txt_path,word2vec_model_path): """ 训练word2vec词向量模型 :param word2vec_txt_path: 语料路径 :param word2vec_model_path: 模型保存路径 :return: 词向量模型 """ sentences = word2vec.Text8Corpus(word2vec_txt_path) model = word2vec.Word2Vec(sentences,size=100,workers=4) # 1.sentences:可以是一个List,对于大语料集,建议使用BrownCorpus,Text8Corpus或·ineSentence构建。 # 2.sg: 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。 # 3.size:是指输出的词的向量维数,默认为100。大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百。 # 4.window:为训练的窗口大小,8表示每个词考虑前8个词与后8个词(实际代码中还有一个随机选窗口的过程,窗口大小<=5),默认值为5。 # 5.alpha: 是学习速率 # 6.seed:用于随机数发生器。与初始化词向量有关。 # 7.min_count: 可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5。 # 8.max_vocab_size: 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。 # 9.sample: 表示 采样的阈值,如果一个词在训练样本中出现的频率越大,那么就越会被采样。默认为1e-3,范围是(0,1e-5) # 10.workers:参数控制训练的并行数。 # 11.hs: 是否使用HS方法,0表示: Negative Sampling,1表示:Hierarchical Softmax 。默认为0 # 12.negative: 如果>0,则会采用negative samping,用于设置多少个noise words # 13.cbow_mean: 如果为0,则采用上下文词向量的和,如果为1(default)则采用均值。只有使用CBOW的时候才起作用。 # 14.hashfxn: hash函数来初始化权重。默认使用python的hash函数 # 15.iter: 迭代次数,默认为5。 # 16.trim_rule: 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RU·E_DISCARD,uti·s.RU·E_KEEP或者uti·s.RU·E_DEFAU·T的函数。 # 17.sorted_vocab: 如果为1(defau·t),则在分配word index 的时候会先对单词基于频率降序排序。 # 18.batch_words:每一批的传递给线程的单词的数量,默认为10000 model.save(word2vec_model_path) return model def text_load_word2vec_model(word2vec_model_path): """ 加载训练完成的word2vec词向量模型 :param word2vec_model_path: 模型路径 :return: 词向量模型 """ model = word2vec.Word2Vec.load(word2vec_model_path) return model def text_get_clear_word2vec_corpus(word2vec_txt_path): """ 从原始微博文本获得word2vec语料文本 :param word2vec_txt_path: 语料保存位置 :return: 0 """ with open(word2vec_txt_path, 'a') as f: for index, row in df_text.iterrows(): text_content = row['text'] raw_txt = jieba_clear_text("".join(re.findall(u"[\u4e00-\u9fa5]", text_content))) f.write(raw_txt + "\n") logging.info("清理word2vec语料文本结束") def text_compute_word2vec(text_content): if pd.isna(text_content): return np.zeros(64) raw_txt_list = jieba_clear_text("".join(re.findall(u"[\u4e00-\u9fa5]", text_content))).split(' ') text_word2vec_score_list = [] for word in raw_txt_list: try: #自己训练的词库用这一句 # text_word2vec_score_list.append(model_word2vec.wv[word]) text_word2vec_score_list.append(model_word2vec[word]) except KeyError: text_word2vec_score_list.append(np.zeros(64)) result_mean_array = np.mean(np.array(text_word2vec_score_list),axis=0) return result_mean_array def user_data_read(): """ 用户特征文件的读取 :return: 用户特征文件 """ df_user = pd.read_csv(user_csv_path) return df_user def user_insert_cols(df_user,new_features_list): """ 增加用户新的特征列,方便后续提取并补充值 :param df_user: 用户信息 :return: df_user: 新用户信息dataframe """ logging.info("正在扩展用户新特征列...") col_name = list(df_user.columns) col_name = col_name + new_features_list df_user = df_user.reindex(columns=col_name, fill_value=0) logging.info("用户新特征列扩展完成") return df_user def user_feature_extraction(df_user): logging.info("开始用户特征提取...") #将 关注/粉丝比 列转为float df_user['folfans_ratio'] = df_user['folfans_ratio'].astype(float) #其余数据统计 i = 0 for index, row in df_user.iterrows(): logging.info("处理进度"+str(i+1)+"/"+str(df_user.shape[0])) #获得需要处理的文本内容 user_follow_count = row['user_follow_count'] user_fans_count = row['user_fans_count'] #计算 关注/粉丝比 df_user.at[i,'folfans_ratio'] = user_compute_folfans_ratio(user_follow_count,user_fans_count) i += 1 logging.info("用户特征提取结束...") return df_user def user_compute_folfans_ratio(user_follow_count,user_fans_count): """ 计算关注/粉丝比 :param user_follow_count: 关注数 :param user_fans_count: 粉丝数 :return: """ if( user_fans_count == 0): return 0 else: return user_follow_count/user_fans_count def image_data_read(): """ 图片特征文件的读取 :return: 图片特征文件 """ df_image = pd.read_csv(image_csv_path) return df_image def image_insert_cols(df_image,new_features_list): """ 增加图片新的特征列,方便后续提取并补充值 :param df_image: 图片信息 :return: df_image: 新图片信息dataframe """ logging.info("正在扩展图片新特征列...") col_name = list(df_image.columns) #插入新列之前列名去重 col_name = col_name + sorted(set(new_features_list) - set(col_name), key = new_features_list.index) df_image = df_image.reindex(columns=col_name, fill_value=0) logging.info("图片新特征列扩展完成") return df_image def image_feature_extraction(df_image): logging.info("开始图片特征提取...") #将第三列到最后列转为float df_image.iloc[:,-2048:] = df_image.iloc[:,-2048:].astype(float) # df_image.iloc[:, -2:] = df_image.iloc[:, -2:].astype(object) # return df_image # df_image['sim_image_word'] = df_image['sim_image_word'].astype(float) #其余数据统计 i = 0 image_name = [] for index, row in df_image.iterrows(): logging.info("处理进度"+str(i+1)+"/"+str(df_image.shape[0])) #获得需要处理的文本内容 if (pd.isna(df_image.iloc[i,1])): i += 1 continue else: image_list = row['piclist'].split('\t') # 计算 颜色矩 # filename1 = 'G:/train/rumor_pic/' + image_list[0] # filename2 = 'G:/train/truth_pic/' + image_list[0] filename1 = 'G:/test/rumor_images/' + image_list[0] filename2 = 'G:/test/nonrumor_images/' + image_list[0] filename= '' if (os.path.isfile(filename1)): filename = filename1 else: filename = filename2 #计算颜色矩 # df_image.at[i, -9:] = image_color_moments(filename) #计算深度学习特征 ---PyTorch ResNet50 CNN try: df_image.at[i, -2048:] = image_resnet_cnn(filename,model_resnet50) except Exception as e: logging.info("图片有问题"+str(e)) # df_image['tf_vgg19_class'] = image_get_class(filename) # # 获得图片的宽度、高度、k物理大小kb # df_image.at[i, 'image_width'], df_image.at[i, 'image_height'], df_image.at[i, 'image_kb'] = image_get_width_height_kb(filename) # #计算图文相似度,当存在多张图片的时候采用第一张图片作为该博文的代表图片 # df_image.at[i, 'sim_image_word'] = image_get_img_word_sim(i, row['tf_vgg19_class'], row['tf_resnet50_class']) i += 1 logging.info("图片特征提取结束...") return df_image def image_get_img_word_sim(index, vgg19_class_name, resnet50_class_name): """ similarity_score = arg max{ log( f_i * c_j * swv(term_i,term_j) ) } 1 ≤ i ≤ n, 1 ≤ j ≤m swv(term_i,term_j)即term_i和term_j词向量的余弦相似度 f_i即第i个词汇(微博正文)的词频 c_j即第j个词汇(图片分类名)的可信度 """ #微博正文 text_content = df_text['text'][index] if pd.isna(text_content): return 0 #去除停用词和英文单词并分词为list list_clear_weibo_text = jieba_clear_text("".join(re.findall(u"[\u4e00-\u9fa5]", text_content))).split(' ') #获得微博正文的词频 dict_weibo_text = Counter(list_clear_weibo_text) #获得分类的词向量 try: #获取单词的词向量 term_vgg19_class_name = model_word2vec[dict_image_class[vgg19_class_name]] except Exception: #word2vec中不存在这个词汇,以64位0补充 term_vgg19_class_name = np.zeros(64) try: #获取单词的词向量 term_resnet50_class_name = model_word2vec[dict_image_class[resnet50_class_name]] except Exception: #word2vec中不存在这个词汇,以64位0补充 term_resnet50_class_name = np.zeros(64) list_vgg19_sim = [] list_resnet50_sim = [] #遍历微博正文词频表 for(word, frequency) in dict_weibo_text.items(): try: #获取单词的词向量 term_i = model_word2vec[word] except Exception: #word2vec中不存在这个词汇,以64位0补充 term_i = np.zeros(64) if np.all(term_i == 0): list_vgg19_sim.append(0) list_resnet50_sim.append(0) continue if np.all(term_vgg19_class_name == 0): list_vgg19_sim.append(0) if np.all(term_resnet50_class_name == 0): list_resnet50_sim.append(0) if np.all(term_vgg19_class_name != 0): # 计算余弦相似度 swv_vgg19 = np.dot(term_i, term_vgg19_class_name) / (norm(term_i) * norm(term_vgg19_class_name)) # 计算图文相似度 list_vgg19_sim.append(np.log(1 + frequency * float(list_vgg19_score[index]) * swv_vgg19)) if np.all(term_resnet50_class_name != 0): #计算余弦相似度 swv_resnet50 = np.dot(term_i, term_resnet50_class_name) / (norm(term_i) * norm(term_resnet50_class_name)) #计算图文相似度 list_resnet50_sim.append(np.log(1 + frequency*float(list_resnet50_score[index])*swv_resnet50)) similarity_score = (max(list_vgg19_sim,default=0) + max(list_resnet50_sim,default=0)) / 2 print(similarity_score) return similarity_score def image_get_score_list(image_class_vgg19_score_path, image_class_resnet50_score_path): #获得vgg19和resnet50分类时的可信度 with open(image_class_vgg19_score_path, "r", encoding='UTF-8') as f1: str_vgg19_score = f1.read() #分数以空格分开,将str转成list list_vgg19_score = str_vgg19_score.split(" ") with open(image_class_resnet50_score_path, "r", encoding='UTF-8') as f2: str_resnet50_score = f2.read() #分数以空格分开,将str转成list list_resnet50_score = str_resnet50_score.split(" ") return list_vgg19_score, list_resnet50_score def image_get_width_height_kb(img_path): try: im = Image.open(img_path) # 返回一个Image对象 except: return 0, 0, 0 fsize = os.path.getsize(img_path) fsize = fsize / float(1024) return im.size[0], im.size[1], round(fsize, 2) def image_color_moments(filename): """ 提取图像颜色矩 :param filename: 文件路径名 :return: color_feature:颜色矩特征 """ img = cv2.imread(filename) if img is None: return # Convert BGR to HSV colorspace OpenCV 默认的颜色空间是 BGR,类似于RGB,但不是RGB # HSV颜色空间的色调、饱和度、明度与人眼对颜色的主观认识相对比较符合,与其他颜色空间相比HSV空间能更好的反映人类对颜色的感知 hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # Split the channels - h,s,v h, s, v = cv2.split(hsv) # Initialize the color feature color_feature = [] # N = h.shape[0] * h.shape[1] # The first central moment - average 一阶矩(均值) h_mean = np.mean(h) # np.sum(h)/float(N) s_mean = np.mean(s) # np.sum(s)/float(N) v_mean = np.mean(v) # np.sum(v)/float(N) color_feature.extend([h_mean, s_mean, v_mean]) # The second central moment - standard deviation 二阶矩(方差) h_std = np.std(h) # np.sqrt(np.mean(abs(h - h.mean())**2)) s_std = np.std(s) # np.sqrt(np.mean(abs(s - s.mean())**2)) v_std = np.std(v) # np.sqrt(np.mean(abs(v - v.mean())**2)) color_feature.extend([h_std, s_std, v_std]) # The third central moment - the third root of the skewness 三阶矩(斜度) h_skewness = np.mean(abs(h - h.mean())**3) s_skewness = np.mean(abs(s - s.mean())**3) v_skewness = np.mean(abs(v - v.mean())**3) h_thirdMoment = h_skewness**(1./3) s_thirdMoment = s_skewness**(1./3) v_thirdMoment = v_skewness**(1./3) color_feature.extend([h_thirdMoment, s_thirdMoment, v_thirdMoment]) return color_feature class net(nn.Module): def __init__(self): super(net, self).__init__() # resnet50 self.net = models.resnet50(pretrained=True) def forward(self, input): output = self.net.conv1(input) output = self.net.bn1(output) output = self.net.relu(output) output = self.net.maxpool(output) output = self.net.layer1(output) output = self.net.layer2(output) output = self.net.layer3(output) output = self.net.layer4(output) output = self.net.avgpool(output) return output def image_resnet_cnn(img_path, net): transform = transforms.Compose([ #图片变换为256*256 transforms.Resize((256,256)), #用来将图片从中心裁剪成224*224 transforms.CenterCrop((224,224)), #将图片转成Tensor张量 transforms.ToTensor()] ) #读入图片并进行统一转换 try: img = Image.open(img_path) img = transform(img) logging.info(img.shape) x = Variable(torch.unsqueeze(img, dim=0).float(), requires_grad=False) logging.info(x.shape) # 启用GPU加速 if torch.cuda.is_available(): x = x.cuda() net = net.cuda() # 转回CPU,不然可能出错 y = net(x).cpu() y = torch.squeeze(y) cnn_features = y.data.numpy().tolist() logging.info(y.shape) return cnn_features except: return np.zeros(2048).tolist() def image_get_class(img_path): img_array = [] for i in img_path: if (i == 'nothing'): img_array.append('no') else: img = image.load_img(i, target_size=(224, 224)) # 将图片转换为(224,224,3)数组,最后的3是因为RGB三色彩图 img = image.img_to_array(img) # 跟前面的例子一样,使用模型进行预测是批处理模式, # 所以对于单个的图片,要扩展一维成为(1,224,224,3)这样的形式 # 相当于建立一个预测队列,但其中只有一张图片 img = np.expand_dims(img, axis=0) predict_class_vgg = model_tf_vgg19.predict(img) # 获取图片识别可能性最高的3个结果 desc_vgg = vgg19.decode_predictions(predict_class_vgg, top=1) # desc = resnet50.decode_predictions(predict_class, top=3) # 我们的预测队列中只有一张图片,所以结果也只有第一个有效,显示出来 img_array.append(desc_vgg[0][0][1]) print(i) # 使用模型预测(识别) return img_array def translateBaidu(text, f='en', t='zh'): salt = random.randint(32768, 65536) sign = appid + text + str(salt) + secretKey sign = hashlib.md5(sign.encode()).hexdigest() url = url_baidu + '?appid=' + appid + '&q=' + urllib.parse.quote(text) + '&from=' + f + '&to=' + t + '&salt=' + str(salt) + '&sign=' + sign response = urllib.request.urlopen(url) content = response.read().decode('utf-8') data = json.loads(content) result = str(data['trans_result'][0]['dst']) return result def get_cn_json_class(en_imagenet_class_path, cn_imagenet_class_path): fn = open(en_imagenet_class_path, "r", encoding='UTF-8') j = fn.read() dic = json.loads(j) #英文原版 fn.close() txt_dic = {} #中文 for i in range(0, 1000): try: start = time.time() txt_dic[dic[str(i)][1]] = translateBaidu(dic[str(i)][1]) end = time.time() if end - start < 1: time.sleep(1) # api接口限制,每秒调用1次 except Exception as e: print(e) json_str = json.dumps(txt_dic) file_object = open(cn_imagenet_class_path, 'w') file_object.write(json_str) file_object.close() def image_get_class_cn_dict(cn_imagenet_class_path): """ 获得分类的中文对照词典 :param cn_imagenet_class_path: :return: """ fn = open(cn_imagenet_class_path, "r", encoding='UTF-8') str_json = fn.read() dic = json.loads(str_json) fn.close() return dic # #*******************文本特征提取开始*************************** # #原始数据的读入 # #df_text,df_user,df_image = train_data_read(train_csv_path) # start = time.time() # # 读入停用词表、积极词汇表、消极词汇表 # stopwords = get_stopwords_list() # possentiwords = get_possentiwords_list() # negsentiwords = get_negsentiwords_list() # #文本的读入 # df_text = text_data_read() # #微博文本扩展特征数据列 # new_text_features_list = ['text_length', 'contains_questmark', 'num_questmarks', 'contains_exclammark', # 'num_exclammarks', 'contains_hashtag', 'num_hashtags', 'contains_URL', # 'num_URLs', 'contains_mention', 'num_mentions', 'sentiment_score', # 'num_noun','num_verb','num_pronoun','num_possentiwords','num_negsentiwords', # 'contains_firstorderpron','contains_secondorderpron','contains_thirdorderpron'] # # 浪费时间 # for i in range(1,101): # new_text_features_list.append('word2vec_'+str(i)) # df_text = text_insert_cols(df_text,new_text_features_list) # #加载sentiment model # if not os.path.isfile(sentiment_model_path + '.3'): # # 情感分析语料模型训练 # text_train_sentiment() # else: # logging.info("sentiment model is ready!") # #加载word2vec model # if not os.path.isfile(word2vec_model_path): # # 获得词向量训练语料 # text_get_clear_word2vec_corpus(word2vec_txt_path) # # 训练word2vec模型 # model_word2vec = text_train_word2vec_model(word2vec_txt_path, word2vec_model_path) # else: # # 加载word2vec模型 # #model_word2vec = text_load_word2vec_model(word2vec_model_path) # model_word2vec = gensim.models.KeyedVectors.load_word2vec_format(r'G:\毕设\数据集\微博\news_12g_baidubaike_20g_novel_90g_embedding_64.bin', binary=True) # remember_delete = 1 # #文本特征提取 # df_text = text_feature_extraction(df_text) # #文本特征保存 # df_text.to_csv(text_csv_path,index=0)#不保留行索引 # end = time.time() # logging.info("运行时间:"+str(end-start)) # #*******************文本特征提取结束*************************** # #*******************用户特征提取开始*************************** # start = time.time() # #原始数据读入 # df_user = user_data_read() # #用户新特征列扩展 # new_user_features_list = ['folfans_ratio'] # df_user = user_insert_cols(df_user,new_user_features_list) # #用户特征提取 # df_user = user_feature_extraction(df_user) # #用户特征保存 # df_user.to_csv(user_csv_path,index=0)#不保留行索引 # end = time.time() # logging.info("运行时间:"+str(end-start)) # #*******************用户特征提取结束*************************** # #*******************图片特征提取开始*************************** # start = time.time() # #原始数据读入 # df_image = image_data_read() # #图片新特征列扩展 # new_image_features_list = ['h_first_moment','s_first_moment','v_first_moment', # 'h_second_moment','s_second_moment','v_second_moment', # 'h_third_moment','s_third_moment','v_third_moment', # 'tf_vgg19_class','tf_resnet50_class','image_width','image_height','image_kb','sim_image_word'] # for i in range(1,2049): # new_image_features_list.append('resnet_'+str(i)) # df_image = image_insert_cols(df_image,new_image_features_list) # #pytorch ResNet 50网络 # model_resnet50 = net() # model_resnet50.eval() # model_resnet50 = model_resnet50.cuda() # #tensorflow vgg19和resnet50模型 # model_tf_vgg19 = vgg19.VGG19(weights='imagenet') # model_tf_resnet50 = resnet50.ResNet50(weights='imagenet') # model_word2vec = gensim.models.KeyedVectors.load_word2vec_format(r'G:\毕设\数据集\微博\news_12g_baidubaike_20g_novel_90g_embedding_64.bin', binary=True) # #获得vgg19和resnet50分类的图片top1可信度list # list_vgg19_score, list_resnet50_score = image_get_score_list(image_class_vgg19_score_path, image_class_resnet50_score_path) # #获得中文对照词典 # dict_image_class = image_get_class_cn_dict(cn_imagenet_class_path) # #获得文本特征中的微博原文 # df_text = pd.read_csv(text_csv_path, usecols=['text']) #只加载text列,提升速度,减小不必要的内存损耗 # #图片特征提取 # df_image = image_feature_extraction(df_image) # #图片特征保存 # df_image.to_csv(image_csv_path,index=0)#不保留行索引 # end = time.time() # logging.info("运行时间:"+str(end-start)) # #*******************图片特征提取结束*************************** # 2020-02-09 19:30:23,551 : INFO : 图片有问题Given groups=1, weight of size 64 3 7 7, expected input[1, 1, 224, 224] to have 3 channels, but got 1 channels instead # Loaded runtime CuDNN library: 7.5.1 but source was compiled with: 7.6.5. CuDNN library major and minor version needs to match or have higher minor version in case of CuDNN 7.0 or later version. If using a binary install, upgrade your CuDNN library. If building from sources, make sure the library loaded at runtime is compatible with the version specified during compile configuration. #新数据集的训练和测试 train_rumor_txt_path = r'G:\test\tweets\train_rumor.txt' train_non_rumor_txt_path = r'G:\test\tweets\train_nonrumor.txt' test_rumor_txt_path = r'G:\test\tweets\test_rumor.txt' test_non_rumor_txt_path = r'G:\test\tweets\test_nonrumor.txt' social_feature_txt_path = r'G:\test\social_feature.txt' test_csv_path = r"G:/result_origin.csv" #将原始数据集提取为需要数据内容的csv文件 def get_train_csv(rumor_path, label, save_path): features_list = ['id', 'user_name', 'tweet_url', 'user_url', 'publish_time', 'original', 'retweet_count', 'comment_count', 'praise_count', 'user_id', 'user_authentication_type', 'user_fans_count', 'user_follow_count', 'user_weibo_count', 'publish_platform', 'piclist', 'text', 'label'] write_list = [] with open(rumor_path,'r', encoding='UTF-8') as f: list_rumor = f.readlines() i = 1 list_content = [] for line in list_rumor: if i == 1: # 基础信息列 info_list = line.split('|') info_list[-1] = info_list[-1].replace('\n','') list_content.extend(info_list) info_list.clear() i += 1 elif i == 2: # 图片列 list_content.append(line.replace('|null\n','')) i += 1 else: # 微博正文 list_content.append(line.replace('\n','').replace(',',',')) list_content.append(str(label)+'\n') write_list.append(','.join(list_content)) list_content.clear() i = 1 with open(save_path, 'w+', encoding='UTF-8') as fwrite: fwrite.write(','.join(features_list)+'\n') fwrite.writelines(write_list) # get_train_csv(test_rumor_txt_path, 1, r"G:/test_data.csv") #删除新数据集csv文件不需要的列,并规范化命名,与原始数据集命名相同 def polish_test_csv(): # 删除多余特征 # drop_list = ['id', 'user_name', 'tweet_url', 'user_url', 'publish_time', 'original','retweet_count','comment_count','praise_count','user_id','user_authentication_type','publish_platform','people','location','organization','words'] # df = pd.read_csv(r"G:/result_test.csv") # df.drop(drop_list, axis=1, inplace=True) # print(df.shape) # df.to_csv(r"G:/result_origin.csv",index=0)#不保留行索引 df = pd.read_csv(r"G:/result_origin.csv") # 处理piclist列,使其保持和原始train.csv数据列一样 i = 0 for index, row in df.iterrows(): # 获得piclist列 if not pd.isna(row['piclist']): new_content_list = [] pic_list = row['piclist'].split('|') for item in pic_list: new_content_list.append(item.split('/')[-1]) df.at[i, 'piclist'] = '\t'.join(new_content_list) new_content_list.clear() i += 1 df.to_csv(r"G:/result_origin.csv",index=0)#不保留行索引 #将社交特征与测试集csv融合起来 def new_csv_fusion(): df1 = pd.read_csv(r"G:/test_data.csv") df2 = pd.read_csv(r"G:/social_feature.csv") result = pd.merge(df1, df2, on="id") result.to_csv(r"G:/result_test.csv", index=0) # 不保留行索引 print(df1.shape) print(result) print(result.shape) #补充文本特征 def get_text_feature(): # 原始数据的读入 df_text = pd.read_csv(test_csv_path) start = time.time() # 读入停用词表、积极词汇表、消极词汇表 stopwords = get_stopwords_list() possentiwords = get_possentiwords_list() negsentiwords = get_negsentiwords_list() # 微博文本扩展特征数据列 new_text_features_list = ['contains_questmark', 'contains_exclammark', 'contains_hashtag', 'contains_URL', 'contains_mention', 'num_noun', 'num_verb', 'num_pronoun', 'category'] # 浪费时间 for i in range(1, 65): new_text_features_list.append('word2vec_' + str(i)) df_text = text_insert_cols(df_text, new_text_features_list) # # 加载word2vec model # if not os.path.isfile(word2vec_model_path): # # 获得词向量训练语料 # text_get_clear_word2vec_corpus(word2vec_txt_path) # # 训练word2vec模型 # model_word2vec = text_train_word2vec_model(word2vec_txt_path, word2vec_model_path) # else: # # 加载word2vec模型 # # model_word2vec = text_load_word2vec_model(word2vec_model_path) # model_word2vec = gensim.models.KeyedVectors.load_word2vec_format( # r'G:\毕设\数据集\微博\news_12g_baidubaike_20g_novel_90g_embedding_64.bin', binary=True) # remember_delete = 1 # 文本特征提取 # df_text = text_feature_extraction(df_text) # 文本特征保存 df_text.to_csv(test_csv_path, index=0) # 不保留行索引 end = time.time() logging.info("运行时间:" + str(end - start)) #补充用户特征 def get_user_feature(): start = time.time() # 原始数据读入 df_user = pd.read_csv(test_csv_path) # 用户新特征列扩展 new_user_features_list = ['folfans_ratio', 'user_gender', 'user_location', 'user_description'] df_user = user_insert_cols(df_user, new_user_features_list) # 用户特征提取 df_user = user_feature_extraction(df_user) # 用户特征保存 df_user.to_csv(test_csv_path, index=0) # 不保留行索引 end = time.time() logging.info("运行时间:" + str(end - start)) #补充图片特征 def get_image_feature(test_csv_path): start = time.time() # 原始数据读入 df_image = pd.read_csv(test_csv_path) stopwords = get_stopwords_list() # 图片新特征列扩展 # new_image_features_list = ['h_first_moment','s_first_moment','v_first_moment', # 'h_second_moment','s_second_moment','v_second_moment', # 'h_third_moment','s_third_moment','v_third_moment', # 'tf_vgg19_class','tf_resnet50_class','image_width','image_height','image_kb','sim_image_word'] new_image_features_list = ['sim_image_word'] # for i in range(1,2049): # new_image_features_list.append('resnet_'+str(i)) df_image = image_insert_cols(df_image, new_image_features_list) # pytorch ResNet 50网络 # model_resnet50 = net() # model_resnet50.eval() # model_resnet50 = model_resnet50.cuda() # tensorflow vgg19和resnet50模型 # model_tf_vgg19 = vgg19.VGG19(weights='imagenet') # model_tf_resnet50 = resnet50.ResNet50(weights='imagenet') model_word2vec = gensim.models.KeyedVectors.load_word2vec_format( r'G:\毕设\数据集\微博\news_12g_baidubaike_20g_novel_90g_embedding_64.bin', binary=True) # 获得vgg19和resnet50分类的图片top1可信度list list_vgg19_score, list_resnet50_score = image_get_score_list(r'G:\test_image_class_vgg19.txt', r'G:\test_image_class_resnet50.txt') # 获得中文对照词典 dict_image_class = image_get_class_cn_dict(cn_imagenet_class_path) # 获得文本特征中的微博原文 df_text = pd.read_csv(test_csv_path, usecols=['text']) # 只加载text列,提升速度,减小不必要的内存损耗 # 图片特征提取 df_image = image_feature_extraction(df_image) # 图片特征保存 df_image.to_csv(test_csv_path, index=0) # 不保留行索引 end = time.time() logging.info("运行时间:" + str(end - start)) logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO) fusion_csv_path = r'G:\毕设\数据集\微博\fusion_news_features.csv' fusion_csv_path_0404_origin = r'G:\毕设\数据集\微博\fusion_news_features_0404_origin.csv' fusion_csv_path_0404 = r'G:\毕设\数据集\微博\fusion_news_features_0404.csv' start = time.time() # 原始数据读入 df_image =
pd.read_csv(fusion_csv_path_0404_origin)
pandas.read_csv
import os from typing import Dict, Optional, Sequence import pandas as pd from pandas.testing import assert_series_equal from finstmt import FinancialStatements from tests.conftest import DEVELOPMENT_MODE, GENERATED_PATH, EXPECT_STATEMENTS_PATH # Imported for test development purposes from tests.expectdata.statements.load_capiq_cat_annual import LOAD_CAPIQ_CAT_A_INDEX_DATA_DICT if DEVELOPMENT_MODE: from tests.utils.gen.data_load import print_test_data_def, get_keys_for_inc_data_items, get_keys_for_bs_data_items inc_keys = get_keys_for_inc_data_items() bs_keys = get_keys_for_bs_data_items() def check_data_items(stmts: FinancialStatements, data_dict: Dict[str, pd.Series], ignore_keys: Optional[Sequence[str]] = None): if ignore_keys is None: ignore_keys = [] for item_key, item_values in data_dict.items(): if item_key in ignore_keys: continue item = getattr(stmts, item_key) assert_series_equal(item, item_values, check_dtype=False) class LoadTest: name: str a_test_data_dict: Dict[str, pd.Series] q_test_data_dict: Dict[str, pd.Series] def test_annual(self, stmts: FinancialStatements, data: Optional[Dict[str, pd.Series]] = None, name: Optional[str] = None, ignore_keys: Optional[Sequence[str]] = None): if data is None: data = self.a_test_data_dict if name is None: name = self.name if DEVELOPMENT_MODE: out_path = os.path.join(EXPECT_STATEMENTS_PATH, f'{name}_annual.py') with open(out_path, 'w') as f: f.write('import pandas as pd\n\n') f.write( print_test_data_def( stmts, inc_keys + bs_keys, f'{name.upper()}_A_INDEX', f'{name.upper()}_A_INDEX_DATA_DICT', disp=False ) ) else: check_data_items(stmts, data, ignore_keys=ignore_keys) def test_quarterly(self, stmts: FinancialStatements, data: Optional[Dict[str, pd.Series]] = None, name: Optional[str] = None, ignore_keys: Optional[Sequence[str]] = None): if data is None: data = self.q_test_data_dict if name is None: name = self.name if DEVELOPMENT_MODE: out_path = os.path.join(EXPECT_STATEMENTS_PATH, f'{name}_quarterly.py') with open(out_path, 'w') as f: f.write('import pandas as pd\n\n') f.write( print_test_data_def( stmts, inc_keys + bs_keys, f'{name.upper()}_Q_INDEX', f'{name.upper()}_Q_INDEX_DATA_DICT', disp=False ) ) else: check_data_items(stmts, data, ignore_keys=ignore_keys) class TestLoadStockrowCAT(LoadTest): name = 'load_stockrow_cat' a_index_str = ["2009-12-31 00:00:00", "2010-12-31 00:00:00", "2011-12-31 00:00:00", "2012-12-31 00:00:00", "2013-12-31 00:00:00", "2014-12-31 00:00:00", "2015-12-31 00:00:00", "2016-12-31 00:00:00", "2017-12-31 00:00:00", "2018-12-31 00:00:00"] a_index = [
pd.to_datetime(val)
pandas.to_datetime
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from datetime import datetime, timedelta import numpy as np import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as tck import matplotlib.font_manager as fm import math as m import matplotlib.dates as mdates import netCDF4 as nc from netCDF4 import Dataset id import itertools import datetime from scipy.stats import ks_2samp import matplotlib.colors as colors "Codigo que permite la porderación de la nubosidad por la ponderación de sus horas" ## ----------------------LECTURA DE DATOS DE GOES CH02----------------------- ## ds = Dataset('/home/nacorreasa/Maestria/Datos_Tesis/GOES/GOES_nc_CREADOS/GOES_VA_C2_2019_0320_0822.nc') ## -----------------INCORPORANDO LOS DATOS DE RADIACIÓN Y DE LOS EXPERIMENTOS----------------- ## df_P975 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel975.txt', sep=',', index_col =0) df_P350 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel350.txt', sep=',', index_col =0) df_P348 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel348.txt', sep=',', index_col =0) df_P975['Fecha_hora'] = df_P975.index df_P350['Fecha_hora'] = df_P350.index df_P348['Fecha_hora'] = df_P348.index df_P975.index = pd.to_datetime(df_P975.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') df_P350.index = pd.to_datetime(df_P350.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') df_P348.index = pd.to_datetime(df_P348.index, format="%Y-%m-%d %H:%M:%S", errors='coerce') ## ----------------ACOTANDO LOS DATOS A VALORES VÁLIDOS---------------- ## 'Como en este caso lo que interesa es la radiacion, para la filtración de los datos, se' 'considerarán los datos de potencia mayores o iguales a 0, los que parecen generarse una' 'hora despues de cuando empieza a incidir la radiación.' df_P975 = df_P975[(df_P975['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P350 = df_P350[(df_P350['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P348 = df_P348[(df_P348['radiacion'] > 0) & (df_P975['strength'] >=0) & (df_P975['NI'] >=0)] df_P975_h = df_P975.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P350_h = df_P350.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P348_h = df_P348.groupby(pd.Grouper(level='fecha_hora', freq='1H')).mean() df_P975_h = df_P975_h.between_time('06:00', '17:00') df_P350_h = df_P350_h.between_time('06:00', '17:00') df_P348_h = df_P348_h.between_time('06:00', '17:00') #----------------------------------------------------------------------------- # Rutas para las fuentes ----------------------------------------------------- prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ## -------------------------------------------------------------------------- ## Umbral_up_348 = 46.26875 Umbral_down_348 = 22.19776 Umbrales_348 = [Umbral_down_348, Umbral_up_348] Umbral_up_350 = 49.4412 Umbral_down_350 = 26.4400 Umbrales_350 = [Umbral_down_350, Umbral_up_350] Umbral_up_975 = 49.4867 Umbral_down_975 = 17.3913 Umbrales_975 = [Umbral_down_975, Umbral_up_975] lat = ds.variables['lat'][:, :] lon = ds.variables['lon'][:, :] Rad = ds.variables['Radiancias'][:, :, :] ## -- Obtener el tiempo para cada valor tiempo = ds.variables['time'] fechas_horas = nc.num2date(tiempo[:], units=tiempo.units) for i in range(len(fechas_horas)): fechas_horas[i] = fechas_horas[i].strftime('%Y-%m-%d %H:%M') ## -- Selección del pixel de la TS y creación de DF lat_index_975 = np.where((lat[:, 0] > 6.25) & (lat[:, 0] < 6.26))[0][0] lon_index_975 = np.where((lon[0, :] < -75.58) & (lon[0, :] > -75.59))[0][0] Rad_pixel_975 = Rad[:, lat_index_975, lon_index_975] Rad_df_975 = pd.DataFrame() Rad_df_975['Fecha_Hora'] = fechas_horas Rad_df_975['Radiacias'] = Rad_pixel_975 Rad_df_975['Fecha_Hora'] = pd.to_datetime(Rad_df_975['Fecha_Hora'], format="%Y-%m-%d %H:%M", errors='coerce') Rad_df_975.index = Rad_df_975['Fecha_Hora'] Rad_df_975 = Rad_df_975.drop(['Fecha_Hora'], axis=1) ## -- Selección del pixel de la CI lat_index_350 = np.where((lat[:, 0] > 6.16) & (lat[:, 0] < 6.17))[0][0] lon_index_350 = np.where((lon[0, :] < -75.64) & (lon[0, :] > -75.65))[0][0] Rad_pixel_350 = Rad[:, lat_index_350, lon_index_350] Rad_df_350 = pd.DataFrame() Rad_df_350['Fecha_Hora'] = fechas_horas Rad_df_350['Radiacias'] = Rad_pixel_350 Rad_df_350['Fecha_Hora'] = pd.to_datetime(Rad_df_350['Fecha_Hora'], format="%Y-%m-%d %H:%M", errors='coerce') Rad_df_350.index = Rad_df_350['Fecha_Hora'] Rad_df_350 = Rad_df_350.drop(['Fecha_Hora'], axis=1) ## -- Selección del pixel de la JV lat_index_348 = np.where((lat[:, 0] > 6.25) & (lat[:, 0] < 6.26))[0][0] lon_index_348 = np.where((lon[0, :] < -75.54) & (lon[0, :] > -75.55))[0][0] Rad_pixel_348 = Rad[:, lat_index_348, lon_index_348] Rad_df_348 = pd.DataFrame() Rad_df_348['Fecha_Hora'] = fechas_horas Rad_df_348['Radiacias'] = Rad_pixel_348 Rad_df_348['Fecha_Hora'] = pd.to_datetime(Rad_df_348['Fecha_Hora'], format="%Y-%m-%d %H:%M", errors='coerce') Rad_df_348.index = Rad_df_348['Fecha_Hora'] Rad_df_348 = Rad_df_348.drop(['Fecha_Hora'], axis=1) 'OJOOOO DESDE ACÁ-----------------------------------------------------------------------------------------' 'Se comenta porque se estaba perdiendo la utilidad de la información cada 10 minutos al suavizar la serie.' ## ------------------------CAMBIANDO LOS DATOS HORARIOS POR LOS ORIGINALES---------------------- ## Rad_df_348_h = Rad_df_348 Rad_df_350_h = Rad_df_350 Rad_df_975_h = Rad_df_975 ## ------------------------------------DATOS HORARIOS DE REFLECTANCIAS------------------------- ## # Rad_df_348_h = Rad_df_348.groupby(pd.Grouper(freq="H")).mean() # Rad_df_350_h = Rad_df_350.groupby(pd.Grouper(freq="H")).mean() # Rad_df_975_h = Rad_df_975.groupby(pd.Grouper(freq="H")).mean() 'OJOOOO HASTA ACÁ-----------------------------------------------------------------------------------------' Rad_df_348_h = Rad_df_348_h.between_time('06:00', '17:00') Rad_df_350_h = Rad_df_350_h.between_time('06:00', '17:00') Rad_df_975_h = Rad_df_975_h.between_time('06:00', '17:00') ## --------------------------------------FDP COMO NP.ARRAY----- ------------------------------ ## Hist_348 = np.histogram(Rad_df_348_h['Radiacias'].values[~np.isnan(Rad_df_348_h['Radiacias'].values)]) Hist_350 = np.histogram(Rad_df_350_h['Radiacias'].values[~np.isnan(Rad_df_350_h['Radiacias'].values)]) Hist_975 = np.histogram(Rad_df_975_h['Radiacias'].values[~np.isnan(Rad_df_975_h['Radiacias'].values)]) ## ---------------------------------FDP COMO GRÁFICA----------------------------------------- ## fig = plt.figure(figsize=[10, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1, 3, 1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.hist(Rad_df_348_h['Radiacias'].values[~np.isnan(Rad_df_348_h['Radiacias'].values)], bins='auto', alpha = 0.5) Umbrales_line1 = [ax1.axvline(x=xc, color='k', linestyle='--') for xc in Umbrales_348] ax1.set_title(u'Distribución del FR en JV', fontproperties=prop, fontsize = 13) ax1.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax1.set_xlabel(u'Reflectancia', fontproperties=prop_1) ax2 = fig.add_subplot(1, 3, 2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.hist(Rad_df_350_h['Radiacias'].values[~np.isnan(Rad_df_350_h['Radiacias'].values)], bins='auto', alpha = 0.5) Umbrales_line2 = [ax2.axvline(x=xc, color='k', linestyle='--') for xc in Umbrales_350] ax2.set_title(u'Distribución del FR en CI', fontproperties=prop, fontsize = 13) ax2.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax2.set_xlabel(u'Reflectancia', fontproperties=prop_1) ax3 = fig.add_subplot(1, 3, 3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.hist(Rad_df_975_h['Radiacias'].values[~np.isnan(Rad_df_975_h['Radiacias'].values)], bins='auto', alpha = 0.5) Umbrales_line3 = [ax3.axvline(x=xc, color='k', linestyle='--') for xc in Umbrales_975] ax3.set_title(u'Distribución del FR en TS', fontproperties=prop, fontsize = 13) ax3.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax3.set_xlabel(u'Reflectancia', fontproperties=prop_1) plt.savefig('/home/nacorreasa/Escritorio/Figuras/HistoFRUmbral.png') plt.show() ## -------------------------OBTENER EL DF DEL ESCENARIO DESPEJADO---------------------------- ## df_348_desp = Rad_df_348_h[Rad_df_348_h['Radiacias'] < Umbral_down_348] df_350_desp = Rad_df_350_h[Rad_df_350_h['Radiacias'] < Umbral_down_350] df_975_desp = Rad_df_975_h[Rad_df_975_h['Radiacias'] < Umbral_down_975] ## --------------------------OBTENER EL DF DEL ESCENARIO NUBADO------------------------------ ## df_348_nuba = Rad_df_348_h[Rad_df_348_h['Radiacias'] > Umbral_up_348] df_350_nuba = Rad_df_350_h[Rad_df_350_h['Radiacias'] > Umbral_up_350] df_975_nuba = Rad_df_975_h[Rad_df_975_h['Radiacias'] > Umbral_up_975] ## -------------------------OBTENER LAS HORAS Y FECHAS DESPEJADAS---------------------------- ## Hora_desp_348 = df_348_desp.index.hour Fecha_desp_348 = df_348_desp.index.date Hora_desp_350 = df_350_desp.index.hour Fecha_desp_350 = df_350_desp.index.date Hora_desp_975 = df_975_desp.index.hour Fecha_desp_975 = df_975_desp.index.date ## ----------------------------OBTENER LAS HORAS Y FECHAS NUBADAS---------------------------- ## Hora_nuba_348 = df_348_nuba.index.hour Fecha_nuba_348 = df_348_nuba.index.date Hora_nuba_350 = df_350_nuba.index.hour Fecha_nuba_350 = df_350_nuba.index.date Hora_nuba_975 = df_975_nuba.index.hour Fecha_nuba_975 = df_975_nuba.index.date ## -----------------------------DIBUJAR LOS HISTOGRAMAS DE LAS HORAS ------ ----------------------- # fig = plt.figure(figsize=[10, 6]) plt.rc('axes', edgecolor='gray') ax1 = fig.add_subplot(1, 3, 1) ax1.spines['top'].set_visible(False) ax1.spines['right'].set_visible(False) ax1.hist(Hora_desp_348, bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax1.hist(Hora_nuba_348, bins='auto', alpha = 0.5, label = 'Nub') ax1.set_title(u'Distribución de nubes por horas en JV', fontproperties=prop, fontsize = 8) ax1.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax1.set_xlabel(u'Horas', fontproperties=prop_1) ax1.legend() ax2 = fig.add_subplot(1, 3, 2) ax2.spines['top'].set_visible(False) ax2.spines['right'].set_visible(False) ax2.hist(Hora_desp_350, bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax2.hist(Hora_nuba_350, bins='auto', alpha = 0.5, label = 'Nub') ax2.set_title(u'Distribución de nubes por horas en CI', fontproperties=prop, fontsize = 8) ax2.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax2.set_xlabel(u'Horas', fontproperties=prop_1) ax2.legend() ax3 = fig.add_subplot(1, 3, 3) ax3.spines['top'].set_visible(False) ax3.spines['right'].set_visible(False) ax3.hist(Hora_desp_975, bins='auto', alpha = 0.5, color = 'orange', label = 'Desp') ax3.hist(Hora_nuba_975, bins='auto', alpha = 0.5, label = 'Nub') ax3.set_title(u'Distribución de nubes por horas en TS', fontproperties=prop, fontsize = 8) ax3.set_ylabel(u'Frecuencia', fontproperties=prop_1) ax3.set_xlabel(u'Horas', fontproperties=prop_1) ax3.legend() plt.savefig('/home/nacorreasa/Escritorio/Figuras/HistoNubaDesp.png') plt.show() ##----------ENCONTRANDO LAS RADIACIONES CORRESPONDIENTES A LAS HORAS NUBOSAS----------## df_FH_nuba_348 = pd.DataFrame() df_FH_nuba_348 ['Fechas'] = Fecha_nuba_348 df_FH_nuba_348 ['Horas'] = Hora_nuba_348 df_FH_nuba_350 = pd.DataFrame() df_FH_nuba_350 ['Fechas'] = Fecha_nuba_350 df_FH_nuba_350 ['Horas'] = Hora_nuba_350 df_FH_nuba_975 = pd.DataFrame() df_FH_nuba_975 ['Fechas'] = Fecha_nuba_975 df_FH_nuba_975 ['Horas'] = Hora_nuba_975 df_FH_nuba_348_groupH = df_FH_nuba_348.groupby('Horas')['Fechas'].unique() df_nuba_348_groupH = pd.DataFrame(df_FH_nuba_348_groupH[df_FH_nuba_348_groupH.apply(lambda x: len(x)>1)]) ##NO entiendo bien acá que se está haciendo df_FH_nuba_350_groupH = df_FH_nuba_350.groupby('Horas')['Fechas'].unique() df_nuba_350_groupH = pd.DataFrame(df_FH_nuba_350_groupH[df_FH_nuba_350_groupH.apply(lambda x: len(x)>1)]) df_FH_nuba_975_groupH = df_FH_nuba_975.groupby('Horas')['Fechas'].unique() df_nuba_975_groupH = pd.DataFrame(df_FH_nuba_975_groupH[df_FH_nuba_975_groupH.apply(lambda x: len(x)>1)]) c = np.arange(6, 18, 1) Sk_Nuba_stat_975 = {} Sk_Nuba_pvalue_975 = {} Composites_Nuba_975 = {} for i in df_FH_nuba_975_groupH.index: H = str(i) if len(df_FH_nuba_975_groupH.loc[i]) == 1 : list = df_P975_h[df_P975_h.index.date == df_FH_nuba_975_groupH.loc[i][0]]['radiacion'].values list_sk_stat = np.ones(12)*np.nan list_sk_pvalue = np.ones(12)*np.nan elif len(df_FH_nuba_975_groupH.loc[i]) > 1 : temporal = pd.DataFrame() for j in range(len(df_FH_nuba_975_groupH.loc[i])): temporal = temporal.append(pd.DataFrame(df_P975_h[df_P975_h.index.date == df_FH_nuba_975_groupH.loc[i][j]]['radiacion'])) stat_975 = [] pvalue_975 = [] for k in c: temporal_sk = temporal[temporal.index.hour == k].radiacion.values Rad_sk = df_P975_h['radiacion'][df_P975_h.index.hour == k].values try: SK = ks_2samp(temporal_sk,Rad_sk) stat_975.append(SK[0]) pvalue_975.append(SK[1]) except ValueError: stat_975.append(np.nan) pvalue_975.append(np.nan) temporal_CD = temporal.groupby(by=[temporal.index.hour]).mean() list = temporal_CD['radiacion'].values list_sk_stat = stat_975 list_sk_pvalue = pvalue_975 Composites_Nuba_975[H] = list Sk_Nuba_stat_975 [H] = list_sk_stat Sk_Nuba_pvalue_975 [H] = list_sk_pvalue del H Comp_Nuba_975_df = pd.DataFrame(Composites_Nuba_975, index = c) Sk_Nuba_stat_975_df = pd.DataFrame(Sk_Nuba_stat_975, index = c) Sk_Nuba_pvalue_975_df = pd.DataFrame(Sk_Nuba_pvalue_975, index = c) Sk_Nuba_stat_350 = {} Sk_Nuba_pvalue_350 = {} Composites_Nuba_350 = {} for i in df_FH_nuba_350_groupH.index: H = str(i) if len(df_FH_nuba_350_groupH.loc[i]) == 1 : list = df_P350_h[df_P350_h.index.date == df_FH_nuba_350_groupH.loc[i][0]]['radiacion'].values list_sk_stat = np.ones(12)*np.nan list_sk_pvalue = np.ones(12)*np.nan elif len(df_FH_nuba_350_groupH.loc[i]) > 1 : temporal = pd.DataFrame() for j in range(len(df_FH_nuba_350_groupH.loc[i])): temporal = temporal.append(pd.DataFrame(df_P350_h[df_P350_h.index.date == df_FH_nuba_350_groupH.loc[i][j]]['radiacion'])) stat_350 = [] pvalue_350 = [] for k in c: temporal_sk = temporal[temporal.index.hour == k].radiacion.values Rad_sk = df_P350_h['radiacion'][df_P350_h.index.hour == k].values try: SK = ks_2samp(temporal_sk,Rad_sk) stat_350.append(SK[0]) pvalue_350.append(SK[1]) except ValueError: stat_350.append(np.nan) pvalue_350.append(np.nan) temporal_CD = temporal.groupby(by=[temporal.index.hour]).mean() list = temporal_CD['radiacion'].values list_sk_stat = stat_350 list_sk_pvalue = pvalue_350 Composites_Nuba_350[H] = list Sk_Nuba_stat_350 [H] = list_sk_stat Sk_Nuba_pvalue_350 [H] = list_sk_pvalue del H Comp_Nuba_350_df = pd.DataFrame(Composites_Nuba_350, index = c) Sk_Nuba_stat_350_df = pd.DataFrame(Sk_Nuba_stat_350, index = c) Sk_Nuba_pvalue_350_df = pd.DataFrame(Sk_Nuba_pvalue_350, index = c) Sk_Nuba_stat_348 = {} Sk_Nuba_pvalue_348 = {} Composites_Nuba_348 = {} for i in df_FH_nuba_348_groupH.index: H = str(i) if len(df_FH_nuba_348_groupH.loc[i]) == 1 : list = df_P348_h[df_P348_h.index.date == df_FH_nuba_348_groupH.loc[i][0]]['radiacion'].values list_sk_stat = np.ones(12)*np.nan list_sk_pvalue = np.ones(12)*np.nan elif len(df_FH_nuba_348_groupH.loc[i]) > 1 : temporal = pd.DataFrame() for j in range(len(df_FH_nuba_348_groupH.loc[i])): temporal = temporal.append(pd.DataFrame(df_P348_h[df_P348_h.index.date == df_FH_nuba_348_groupH.loc[i][j]]['radiacion'])) stat_348 = [] pvalue_348 = [] for k in c: temporal_sk = temporal[temporal.index.hour == k].radiacion.values Rad_sk = df_P348_h['radiacion'][df_P348_h.index.hour == k].values try: SK = ks_2samp(temporal_sk,Rad_sk) stat_348.append(SK[0]) pvalue_348.append(SK[1]) except ValueError: stat_348.append(np.nan) pvalue_348.append(np.nan) temporal_CD = temporal.groupby(by=[temporal.index.hour]).mean() list = temporal_CD['radiacion'].values list_sk_stat = stat_348 list_sk_pvalue = pvalue_348 Composites_Nuba_348[H] = list Sk_Nuba_stat_348 [H] = list_sk_stat Sk_Nuba_pvalue_348 [H] = list_sk_pvalue del H Comp_Nuba_348_df = pd.DataFrame(Composites_Nuba_348, index = c) Sk_Nuba_stat_348_df = pd.DataFrame(Sk_Nuba_stat_348, index = c) Sk_Nuba_pvalue_348_df = pd.DataFrame(Sk_Nuba_pvalue_348, index = c) ##----------ENCONTRANDO LAS RADIACIONES CORRESPONDIENTES A LAS HORAS DESPEJADAS----------## df_FH_desp_348 = pd.DataFrame() df_FH_desp_348 ['Fechas'] = Fecha_desp_348 df_FH_desp_348 ['Horas'] = Hora_desp_348 df_FH_desp_350 = pd.DataFrame() df_FH_desp_350 ['Fechas'] = Fecha_desp_350 df_FH_desp_350 ['Horas'] = Hora_desp_350 df_FH_desp_975 = pd.DataFrame() df_FH_desp_975 ['Fechas'] = Fecha_desp_975 df_FH_desp_975 ['Horas'] = Hora_desp_975 df_FH_desp_348_groupH = df_FH_desp_348.groupby('Horas')['Fechas'].unique() df_desp_348_groupH = pd.DataFrame(df_FH_desp_348_groupH[df_FH_desp_348_groupH.apply(lambda x: len(x)>1)]) ##NO entiendo bien acá que se está haciendo df_FH_desp_350_groupH = df_FH_desp_350.groupby('Horas')['Fechas'].unique() df_desp_350_groupH = pd.DataFrame(df_FH_desp_350_groupH[df_FH_desp_350_groupH.apply(lambda x: len(x)>1)]) df_FH_desp_975_groupH = df_FH_desp_975.groupby('Horas')['Fechas'].unique() df_desp_975_groupH = pd.DataFrame(df_FH_desp_975_groupH[df_FH_desp_975_groupH.apply(lambda x: len(x)>1)]) Sk_Desp_stat_975 = {} Sk_Desp_pvalue_975 = {} Composites_Desp_975 = {} for i in df_FH_desp_975_groupH.index: H = str(i) if len(df_FH_desp_975_groupH.loc[i]) == 1 : list = df_P975_h[df_P975_h.index.date == df_FH_desp_975_groupH.loc[i][0]]['radiacion'].values list_sk_stat = np.ones(12)*np.nan list_sk_pvalue = np.ones(12)*np.nan elif len(df_FH_desp_975_groupH.loc[i]) > 1 : temporal =
pd.DataFrame()
pandas.DataFrame
#!/bin/python from baseball_scraper import baseball_reference, espn, fangraphs from baseball_id import Lookup from yahoo_fantasy_bot import utils, source import pandas as pd import numpy as np import datetime import logging logger = logging.getLogger() class Builder: """Class that constructs prediction datasets for hitters and pitchers. The datasets it generates are fully populated with projected stats. The projection stats are scraped from fangraphs.com. :param lg: Yahoo! league :type lg: yahoo_fantasy_api.league.League :param cfg: config details :type cfg: ConfigParser :param csv_details: Details about projections, stored in csv format :type csv_details: dict :param ts: Scraper to use to pull team data from baseball_reference.com :type ts: baseball_reference.TeamScraper :param es: Scraper to use to pull probable starters from espn :type es: espn.ProbableStartersScraper :param tss: Scraper to use to pull team list data from baseball_reference :type tss: baseball_reference.TeamSummaryScraper """ def __init__(self, lg, cfg, csv_details, ts, es, tss): hitters = source.read_csv(csv_details['hitters']) pitchers = source.read_csv(csv_details['pitchers']) self.ppool = pd.concat([hitters, pitchers], sort=True) self.id_lookup = Lookup self.use_weekly_schedule = \ cfg['Scorer'].getboolean('useWeeklySchedule') self.source = cfg['Prediction']['source'] self.ts = ts self.es = es self.tss = tss self.join_col_csv = cfg['Prediction']['join_column_csv'] self.join_col_id_lookup = cfg['Prediction']['join_column_id_lookup'] if lg.settings()['weekly_deadline'] != '1': raise RuntimeError("This bot only supports weekly lineups.") # In the preseason the edit date will be the next day. Only once the # season starts does the edit date advance to the start of the next # week. if lg.current_week() == 1: self.wk_start_date, self.wk_end_date = lg.week_date_range(1) else: self.wk_start_date = lg.edit_date() assert(self.wk_start_date.weekday() == 0) self.wk_end_date = self.wk_start_date + datetime.timedelta(days=6) self.season_end_date = datetime.date(self.wk_end_date.year, 12, 31) def __getstate__(self): return (self.ppool, self.ts, self.es, self.tss, self.join_col_csv, self.join_col_id_lookup, self.wk_start_date, self.wk_end_date, self.season_end_date, self.use_weekly_schedule, self.source) def __setstate__(self, state): self.id_lookup = Lookup (self.ppool, self.ts, self.es, self.tss, self.join_col_csv, self.join_col_id_lookup, self.wk_start_date, self.wk_end_date, self.season_end_date, self.use_weekly_schedule, self.source) = state def set_id_lookup(self, lk): self.id_lookup = lk def select_players(self, plyrs): """Return players from the player pool that match the given Yahoo! IDs :param plyrs: List of dicts that contain the player name and their Yahoo! ID. These are all of the players we will return. :return: List of players from the player pool """ if self.source.startswith("yahoo"): for plyr in plyrs: stats = self.ppool[self.ppool['player_id'] == plyr['player_id']].to_dict('records')[0] dict = {**stats, **plyr} yield
pd.Series(dict)
pandas.Series
# Common library routines for the BCycle analysis import pandas as pd import numpy as np INPUT_DIR = '../input' def load_bikes(file=INPUT_DIR + '/bikes.csv'): ''' Load the bikes CSV file, converting column types INPUT: Filename to read (defaults to `../input/bikes.csv` RETURNS: Pandas dataframe containing bikes information ''' try: bikes_df = pd.read_csv(file, dtype={'station_id' : np.int8, 'bikes' : np.int8, 'docks' : np.int8} ) bikes_df['datetime'] = pd.to_datetime(bikes_df['datetime'], format='%Y-%m-%d %H:%M:%S') return bikes_df except OSError as e: print('Error opening {0}. Do you need to unzip {0}.zip?'.format(file)) return None def load_stations(file=INPUT_DIR + '/stations.csv'): ''' Load the stations CSV file, converting column types INPUT: Filename to read (defaults to `../input/stations.csv` RETURNS: Pandas dataframe containing stations information ''' try: stations_df = pd.read_csv(file, dtype={'station_id' : np.int8, 'lat' : np.float32, 'lon' : np.float32} ) stations_df['datetime'] = pd.to_datetime(stations_df['datetime'], format='%Y-%m-%d %H:%M:%S') return stations_df except OSError as e: print('Error opening {0}. Do you need to unzip {0}.zip?'.format(file)) return None def load_weather(file=INPUT_DIR + '/weather.csv'): '''Loads the weather CSV and converts types''' try: df = pd.read_csv(file) except OSError as e: print('Error opening {0}. Do you need to unzip {0}.zip?'.format(file)) return None # Remove whitespace and keep min/max values df.columns = [col.strip() for col in df.columns] df = df[['CDT','Max TemperatureF','Min TemperatureF', 'Max Humidity', 'Min Humidity', 'Max Sea Level PressureIn', 'Min Sea Level PressureIn', 'Max Wind SpeedMPH', 'Mean Wind SpeedMPH', 'Max Gust SpeedMPH', 'PrecipitationIn', 'CloudCover', 'Events']] # Clean up column names, drop means as they're a linear combination of max/min df.columns = ['date', 'max_temp', 'min_temp', 'max_humidity', 'min_humidity', 'max_pressure', 'min_pressure', 'max_wind', 'min_wind', 'max_gust', 'precipitation', 'cloud_cover', 'events'] # Convert column types appropriately df['date'] =
pd.to_datetime(df['date'], format='%Y-%m-%d')
pandas.to_datetime
# So we are going to solve the task packaging problem as a bin packaging problem. # Each day is a bin and we can compute à priori all the bins and their limits in man-hours # for A checks is trivial and we keep assigining until limits are reached # for C checks, when a C check starts, bins are created each day, then ordered # the order of the bins is: fill the ones with least amount of aircrafts assigned first import numpy as np import pandas as pd from copy import deepcopy from datetime import datetime, date from collections import OrderedDict from tqdm import tqdm from tr.core.utils import advance_date, save_pickle, load_pickle def datetime_to_integer(dt_time): # TODO: SOLVE FOR OLD DATA FIRST if not isinstance(dt_time, pd.Timestamp) \ and not isinstance(dt_time, pd.DatetimeIndex) \ and not isinstance(dt_time, date): return np.nan return 10000 * dt_time.year + 100 * dt_time.month + dt_time.day def integer_to_datetime(dt_time): dt_time = str(dt_time) try: date =
pd.to_datetime(dt_time)
pandas.to_datetime
import pandas as pd import os from tqdm import tqdm import json def news(): paths = os.listdir('文本分类数据集/ClassFile') label = [] text = [] for path in tqdm(paths): if path == '.DS_Store': continue p = '文本分类数据集/ClassFile/' + path file_path = os.listdir(p) for file in file_path: with open(p + '/' + file, encoding='GBK', errors='ignore') as f: content = f.read() content = content.strip() content = content.split('。')[0] + '。' content = content.replace('\n', '') content = content.replace('\t', '') content = content.replace(' ', '') content = content.replace('&nbsp', '') while content[0] == ';': content = content[1:] content = content.strip() if 10 < len(content) < 128: label.append(path) text.append(content) df = pd.DataFrame({'label': label, 'text': text}) df.to_csv('data/news_10.csv', index=False, encoding='utf_8_sig') def sentiment(): text = [] label = [] for path in os.listdir('文本分类数据集/corpus/neg'): with open('文本分类数据集/corpus/neg/' + path, encoding='GBK', errors='ignore') as file: content = file.read() content = content.replace('\n', '') content = content.replace('\t', '') content = content.replace(' ', '') if content: text.append(content) label.append(0) for path in os.listdir('文本分类数据集/corpus/pos'): with open('文本分类数据集/corpus/pos/' + path, encoding='GBK', errors='ignore') as file: content = file.read() content = content.replace('\n', '') content = content.replace('\t', '') content = content.replace(' ', '') if content: text.append(content) label.append(1) df = pd.DataFrame({'label': label, 'text': text}) df.to_csv('data/sentiment_hotel.csv', index=False, encoding='utf_8_sig') def sentiment2(): df1 = pd.read_csv('文本分类数据集/sentiment/train.tsv', sep='\t') df2 = pd.read_csv('文本分类数据集/sentiment/dev.tsv', sep='\t') df3 =
pd.read_csv('文本分类数据集/sentiment/test.tsv', sep='\t')
pandas.read_csv
""" the :mod:`fm` module includes a factorization machine algorithm. """ from __future__ import (absolute_import, division, print_function, unicode_literals) import copy from collections import defaultdict import time import warnings import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import torch from torch import nn import torch.utils.data from .predictions import PredictionImpossible from .algo_base import AlgoBase class CandidateDataset(torch.utils.data.Dataset): def __init__(self, x, y, w): self.len = x.shape[0] self.x = x self.y = y self.w = w def __getitem__(self, index): return self.x[index], self.y[index], self.w[index] def __len__(self): return self.len class MyCriterion(nn.Module): """ The PyTorch model for the loss function. This class is used by `FM`. Args: sample_weight: bool, default: False Whether sample weights are used. binary: bool, default: False Whether the output is binary. """ def __init__(self, sample_weight=False, binary=False): super().__init__() self.sample_weight = sample_weight self.binary = binary if self.binary: if self.sample_weight: self.loss_fn = nn.BCELoss(reduction='none') else: self.loss_fn = nn.BCELoss() else: if self.sample_weight: self.loss_fn = nn.MSELoss(reduction='none') else: self.loss_fn = nn.MSELoss() def forward(self, y_pred, y, w): loss = self.loss_fn(y_pred, y) if self.sample_weight: loss = torch.dot(w, loss) / torch.sum(w) return loss class FMMixin(): def set_random_state(self): if self.random_state is not None: np.random.seed(self.random_state) torch.manual_seed(self.random_state) def _construct_fit_data(self): """ Construct the data needed by the `fit()` function. It is assumed that the user and item features are correctly encoded. These dummies are created (if needed) using only the info in the trainset. """ if self.user_lst and (self.trainset.n_user_features == 0): raise ValueError('user_lst cannot be used since ' 'there are no user_features') if self.item_lst and (self.trainset.n_item_features == 0): raise ValueError('item_lst cannot be used since ' 'there are no item_features') n_ratings = self.trainset.n_ratings n_users = self.trainset.n_users n_items = self.trainset.n_items # Construct ratings_df from trainset # The IDs are unique and start at 0 ratings_df = pd.DataFrame([tup for tup in self.trainset.all_ratings()], columns=['userID', 'itemID', 'rating']) # Initialize df with rating values libsvm_df =
pd.DataFrame(ratings_df['rating'])
pandas.DataFrame
import calendar import pandas as pd import mysql.connector from etl_setup import * import os from etl_masterupdate import master_update import time start_t = time.time() setup() master_update() # setting paths & file names raw_data = 'C:\\Users\\work-dir\\sample data\\daily_sales_data\\' work_path = 'C:\\Users\\misc-folder\\arch_test\\' connect = "jun15_sep16.csv" qlikview = "oct16_jul17.csv" master = "id_region_master.xlsx" host = 'localhost' db = 'testdb' # setting cwd os.chdir(raw_data) def dateparser(x): return pd.datetime.strptime(x, "%d-%m-%Y") # parsing dates and importing files connect = pd.read_csv(raw_data+connect, date_parser=dateparser) qlikview = pd.read_csv(raw_data+qlikview, date_parser=dateparser) # importing files that would be moved to a sql db # when moving to db take credential security into account region_master = pd.read_excel(work_path+master) # converting to datetime connect['Date'] = pd.to_datetime(connect['Date']) qlikview['Date'] =
pd.to_datetime(qlikview['Date'])
pandas.to_datetime
import re from unittest.mock import Mock, patch import numpy as np import pandas as pd import pytest from rdt.transformers import ( CategoricalTransformer, LabelEncodingTransformer, OneHotEncodingTransformer) RE_SSN = re.compile(r'\d\d\d-\d\d-\d\d\d\d') class TestCategoricalTransformer: def test___init__(self): """Passed arguments must be stored as attributes.""" # Run transformer = CategoricalTransformer( fuzzy='fuzzy_value', clip='clip_value', ) # Asserts assert transformer.fuzzy == 'fuzzy_value' assert transformer.clip == 'clip_value' def test__get_intervals(self): # Run data = pd.Series(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) result = CategoricalTransformer._get_intervals(data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert result[0] == expected_intervals def test_fit(self): # Setup transformer = CategoricalTransformer() # Run data = np.array(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) transformer.fit(data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert transformer.intervals == expected_intervals def test__get_value_no_fuzzy(self): # Setup transformer = CategoricalTransformer(fuzzy=False) transformer.fuzzy = False transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), } # Run result = transformer._get_value('foo') # Asserts assert result == 0.25 @patch('scipy.stats.norm.rvs') def test__get_value_fuzzy(self, rvs_mock): # setup rvs_mock.return_value = 0.2745 transformer = CategoricalTransformer(fuzzy=True) transformer.intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), } # Run result = transformer._get_value('foo') # Asserts assert result == 0.2745 def test__normalize_no_clip(self): """Test normalize data""" # Setup transformer = CategoricalTransformer(clip=False) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.57, 0.1234, 0.5, 0.69], dtype=float) pd.testing.assert_series_equal(result, expect) def test__normalize_clip(self): """Test normalize data with clip=True""" # Setup transformer = CategoricalTransformer(clip=True) # Run data = pd.Series([-0.43, 0.1234, 1.5, -1.31]) result = transformer._normalize(data) # Asserts expect = pd.Series([0.0, 0.1234, 1.0, 0.0], dtype=float) pd.testing.assert_series_equal(result, expect) def test_reverse_transform_array(self): """Test reverse_transform a numpy.array""" # Setup data = np.array(['foo', 'bar', 'bar', 'foo', 'foo', 'tar']) rt_data = np.array([-0.6, 0.5, 0.6, 0.2, 0.1, -0.2]) transformer = CategoricalTransformer() # Run transformer.fit(data) result = transformer.reverse_transform(rt_data) # Asserts expected_intervals = { 'foo': (0, 0.5, 0.25, 0.5 / 6), 'bar': (0.5, 0.8333333333333333, 0.6666666666666666, 0.05555555555555555), 'tar': (0.8333333333333333, 0.9999999999999999, 0.9166666666666666, 0.027777777777777776) } assert transformer.intervals == expected_intervals expect = pd.Series(data) pd.testing.assert_series_equal(result, expect) def test__transform_by_category_called(self): """Test that the `_transform_by_category` method is called. When the number of rows is greater than the number of categories, expect that the `_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 5 rows Output: - the output of `_transform_by_category` Side effects: - `_transform_by_category` will be called once """ # Setup data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer.transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_category.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_category.return_value def test__transform_by_category(self): """Test the `_transform_by_category` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 5 rows Ouptut: - the transformed data """ # Setup data = pd.Series([1, 3, 3, 2, 1]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_category(data) # Asserts expected = np.array([0.875, 0.375, 0.375, 0.625, 0.875]) assert (transformed == expected).all() def test__transform_by_row_called(self): """Test that the `_transform_by_row` method is called. When the number of rows is less than or equal to the number of categories, expect that the `_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Input: - data with 4 rows Output: - the output of `_transform_by_row` Side effects: - `_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) # Run transformed = CategoricalTransformer.transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._transform_by_row.assert_called_once_with(data) assert transformed == categorical_transformer_mock._transform_by_row.return_value def test__transform_by_row(self): """Test the `_transform_by_row` method with numerical data. Expect that the correct transformed data is returned. Setup: The categorical transformer is instantiated with 4 categories and intervals. Input: - data with 4 rows Ouptut: - the transformed data """ # Setup data = pd.Series([1, 2, 3, 4]) transformer = CategoricalTransformer() transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } # Run transformed = transformer._transform_by_row(data) # Asserts expected = np.array([0.875, 0.625, 0.375, 0.125]) assert (transformed == expected).all() @patch('psutil.virtual_memory') def test__reverse_transfrom_by_matrix_called(self, psutil_mock): """Test that the `_reverse_transform_by_matrix` method is called. When there is enough virtual memory, expect that the `_reverse_transform_by_matrix` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_matrix` Side effects: - `_reverse_transform_by_matrix` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_matrix.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_matrix.return_value @patch('psutil.virtual_memory') def test__reverse_transfrom_by_matrix(self, psutil_mock): """Test the _reverse_transform_by_matrix method with numerical data Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories and means. Also patch the `psutil.virtual_memory` function to return a large enough `available_memory`. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data = pd.Series([1, 2, 3, 4]) transformed = pd.Series([0.875, 0.625, 0.375, 0.125]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 4 * 4 * 8 * 3 + 1 psutil_mock.return_value = virtual_memory # Run reverse = transformer._reverse_transform_by_matrix(transformed) # Assert pd.testing.assert_series_equal(data, reverse) @patch('psutil.virtual_memory') def test__reverse_transform_by_category_called(self, psutil_mock): """Test that the `_reverse_transform_by_category` method is called. When there is not enough virtual memory and the number of rows is greater than the number of categories, expect that the `_reverse_transform_by_category` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 5 rows Output: - the output of `_reverse_transform_by_category` Side effects: - `_reverse_transform_by_category` will be called once """ # Setup transform_data = pd.Series([1, 3, 3, 2, 1]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock._normalize.return_value = transform_data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform( categorical_transformer_mock, transform_data) # Asserts categorical_transformer_mock._reverse_transform_by_category.assert_called_once_with( transform_data) assert reverse == categorical_transformer_mock._reverse_transform_by_category.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_category(self, psutil_mock): """Test the _reverse_transform_by_category method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 5 rows Ouptut: - the original data """ data = pd.Series([1, 3, 3, 2, 1]) transformed = pd.Series([0.875, 0.375, 0.375, 0.625, 0.875]) transformer = CategoricalTransformer() transformer.means = pd.Series([0.125, 0.375, 0.625, 0.875], index=[4, 3, 2, 1]) transformer.intervals = { 4: (0, 0.25, 0.125, 0.041666666666666664), 3: (0.25, 0.5, 0.375, 0.041666666666666664), 2: (0.5, 0.75, 0.625, 0.041666666666666664), 1: (0.75, 1.0, 0.875, 0.041666666666666664), } transformer.dtype = data.dtype virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory reverse = transformer._reverse_transform_by_category(transformed) pd.testing.assert_series_equal(data, reverse) @patch('psutil.virtual_memory') def test__reverse_transform_by_row_called(self, psutil_mock): """Test that the `_reverse_transform_by_row` method is called. When there is not enough virtual memory and the number of rows is less than or equal to the number of categories, expect that the `_reverse_transform_by_row` method is called. Setup: The categorical transformer is instantiated with 4 categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - numerical data with 4 rows Output: - the output of `_reverse_transform_by_row` Side effects: - `_reverse_transform_by_row` will be called once """ # Setup data = pd.Series([1, 2, 3, 4]) categorical_transformer_mock = Mock() categorical_transformer_mock.means = pd.Series([0.125, 0.375, 0.625, 0.875]) categorical_transformer_mock.starts = pd.DataFrame( [0., 0.25, 0.5, 0.75], index=[4, 3, 2, 1], columns=['category']) categorical_transformer_mock._normalize.return_value = data virtual_memory = Mock() virtual_memory.available = 1 psutil_mock.return_value = virtual_memory # Run reverse = CategoricalTransformer.reverse_transform(categorical_transformer_mock, data) # Asserts categorical_transformer_mock._reverse_transform_by_row.assert_called_once_with(data) assert reverse == categorical_transformer_mock._reverse_transform_by_row.return_value @patch('psutil.virtual_memory') def test__reverse_transform_by_row(self, psutil_mock): """Test the _reverse_transform_by_row method with numerical data. Expect that the transformed data is correctly reverse transformed. Setup: The categorical transformer is instantiated with 4 categories, and the means, starts, and intervals are set for those categories. Also patch the `psutil.virtual_memory` function to return an `available_memory` of 1. Input: - transformed data with 4 rows Ouptut: - the original data """ # Setup data =
pd.Series([1, 2, 3, 4])
pandas.Series
### Author <NAME> - 30 September 2020 ### import pandas as pd import numpy as np from collections import Counter import matplotlib.pyplot as plt import seaborn as sns import warnings import time import argparse # Currently use sys to get other script - in Future use package import os import sys path_main = ("/".join(os.path.realpath(__file__).split("/")[:-2])) sys.path.append(path_main + '/Classes/') sys.path.append(path_main + '/Utils/') from media_class import Medium, Supplement, GrowthMedium, Medium_one_hot, Supplement_one_hot, GrowthMedium_one_hot from help_functions import mean, str_to_bool, str_none_check def extract_data(meta_data, maf_data, level="Lowest"): ''' Changing data for plotting input: meta_data = is a loaded pandas dataframe after media.py maf_data = is a loaded pandas dataframe after maf.py return: heatmap_data = dataframe with gene occurence counts_symbols = counter of symbols counts_disease = counter of disease ''' meta_data["file"] = [str(x).split("/")[-1].split(".")[0] for x in meta_data["PANEL_oncotated_maf_mutect2"]] if level == "Highest": meta_data = meta_data[meta_data["Disease_highest_level"] != "Unknown"] disease_types = list(set(meta_data["Disease_highest_level"])) elif level == "Lowest": meta_data = meta_data[meta_data["Disease_lowest_level"] != "Unknown"] disease_types = list(set(meta_data["Disease_lowest_level"])) else: raise KeyError(f"Wierd disease level was passed: {level}. please provide either Highest or Lowest") # Counter symbols counts_symbols = Counter(maf_data["Hugo_Symbol"]) counts_symbols = dict(counts_symbols.most_common(100)) maf_data = maf_data[maf_data["Hugo_Symbol"].isin(list(counts_symbols.keys()))] counts_symbols = pd.Series(counts_symbols, name='Count') counts_symbols.index.name = 'Hugo_Symbol' counts_symbols = counts_symbols.reset_index() # Counter disease counts_disease = Counter(meta_data["Disease_lowest_level"]) counts_disease = dict(counts_disease.most_common(len(counts_disease))) counts_disease = pd.Series(counts_disease, name='Count') counts_disease.index.name = 'Disease_lowest_level' counts_disease = counts_disease.reset_index() # Merge and transform into matrix heatmap_data = pd.merge(maf_data, meta_data, on="file") if level == "Highest": heatmap_data = heatmap_data.groupby(["Disease_highest_level", "Hugo_Symbol"]).size().reset_index(name="Count") heatmap_data = heatmap_data.pivot(index='Hugo_Symbol', columns='Disease_highest_level', values='Count') heatmap_data.index = heatmap_data.index.str.strip() heatmap_data = heatmap_data.reindex(counts_symbols["Hugo_Symbol"].tolist()) heatmap_data = heatmap_data.reindex(counts_disease["Disease_highest_level"].tolist(), axis=1) heatmap_data = heatmap_data.fillna(0) elif level == "Lowest": heatmap_data = heatmap_data.groupby(["Disease_lowest_level", "Hugo_Symbol"]).size().reset_index(name="Count") heatmap_data = heatmap_data.pivot(index='Hugo_Symbol', columns='Disease_lowest_level', values='Count') heatmap_data.index = heatmap_data.index.str.strip() heatmap_data = heatmap_data.reindex(counts_symbols["Hugo_Symbol"].tolist()) heatmap_data = heatmap_data.reindex(counts_disease["Disease_lowest_level"].tolist(), axis=1) heatmap_data = heatmap_data.fillna(0) else: raise KeyError(f"Wierd disease level was passed: {level}. please provide either Highest or Lowest") return heatmap_data, counts_symbols, counts_disease def plotting_normal(plot_data, counts_symbols, counts_disease, save=False, show=True, extention=""): ''' Heatmap plotting genes input: plot_data = input data from extract_data counts_symbols = counter of symbols counts_disease = counter of disease save = if you want to save the plot (default is True) show = if you want to show the plot (default is True) SavePath = If you want to save the plot where to save it (default is in Data/Ongoing folder) ''' width_ratio = len(plot_data.columns) # Get a combined legend using the max value max_value = np.max(np.max(plot_data)) f, ax = plt.subplots(2, 2, figsize=(30, 45), gridspec_kw={'width_ratios': [1, 5], 'height_ratios': [1, 7.5]}) ax_genes = ax[1][0].plot(counts_symbols["Count"], counts_symbols["Hugo_Symbol"]) ax_disease = ax[0][1].plot(counts_disease["Disease_lowest_level"], counts_disease["Count"]) ax_main = sns.heatmap(plot_data, ax=ax[1][1], square=False, vmin=0, cbar=False, cbar_kws={"shrink": .60}) ax[0][1].set_xlim(xmin=0, xmax=len(counts_disease)-1) ax[1][0].set_ylim(ymin=0, ymax=len(counts_symbols)-1) ax[0][1].set_xticks([]) ax[1][0].set_yticks([]) ax[1][0].invert_yaxis() ax[1][0].xaxis.tick_top() ax[1][0].invert_xaxis() ax[1][1].yaxis.set_label_text('') ax[1][1].xaxis.set_label_text('') ax[1][1].yaxis.tick_right() ax[1][1].set_yticklabels(counts_symbols["Hugo_Symbol"], rotation=0, ha='left', fontsize=16) ax[1][1].set_xticklabels(counts_disease["Disease_lowest_level"], rotation=90, ha='right', fontsize=16) ax[0][1].set_yticklabels([0,0,100,200,300,400,500,600], rotation=0, fontsize=16) ax[1][0].set_xticklabels([0,100,200,300,400], rotation=0, fontsize=16) f.delaxes(ax[0][0]) f.tight_layout() ax[1][1].set_xticklabels(counts_disease["Disease_lowest_level"], rotation=45, ha='right', fontsize=16) if save != False: if not save.endswith("Figures/"): save += "Figures/" f.savefig(save + extention + "heatmap_genes_matrix.png") if show == True: f.show() if show == False and save == False: warnings.warn('you are not checking the input data for media/supplements') def plotting_cluster(plot_data, save=False, show=True, extention=""): ''' Heatmap plotting genes input: plot_data = input data from extract_data save = if you want to save the plot (default is True) show = if you want to show the plot (default is True) SavePath = If you want to save the plot where to save it (default is in Data/Ongoing folder) ''' ax = sns.clustermap(plot_main, figsize=(30, 45)) plt.setp(ax.ax_heatmap.get_yticklabels(), rotation=0, ha='left', fontsize=16) # For y axis plt.setp(ax.ax_heatmap.get_xticklabels(), rotation=45, ha='right', fontsize=16) # For x axis ax.ax_heatmap.set_xlabel("") ax.ax_heatmap.set_ylabel("") if save != False: if not save.endswith("Figures/"): save += "Figures/" plt.savefig(save + extention + "heatmap_genes_matrix.png") if show == True: plt.show() if show == False and save == False: warnings.warn('you are not checking the input data for media/supplements') def heatmap_genes_matrix(meta_data, maf_data, Path_meta=False, Path_maf=False, Order="Nothing", Scale="Normalized", level="Lowest", save=False, show=True): ''' Main script for plotting heatmap genes matrix input: data_meta = loaded file after media.py data_maf = loaded file after maf.py Path_meta = location of file after media.py Path_maf = location of file after maf.py Order = how to order the heatmap choices=["Clustered", "Nothing", "Both"] Scale = how to scale the heatmap values=["log2", "Normalized", "log10"] save = if you want to save the plot (default is True) show = if you want to show the plot (default is True) SavePath = If you want to save the plot where to save it (default is in Data/Ongoing folder) ''' # Read file if using command line if Path_meta != False: if not Path_meta.endswith(".pkl"): Path_meta = Path_meta + "after_media.pkl" meta_data =
pd.read_pickle(Path_meta)
pandas.read_pickle
#!/usr/bin/env python # coding: utf-8 # #Step by step process of analyzing data and finding the best predictor. # In[ ]: # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load in import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the "../../../input/aljarah_xAPI-Edu-Data/" directory. # For example, running this (by clicking run or pressing Shift+Enter) will list the files in the input directory from subprocess import check_output print(check_output(["ls", "../../../input/aljarah_xAPI-Edu-Data"]).decode("utf8")) # Any results you write to the current directory are saved as output. # First lets import everything # In[ ]: import seaborn as sns sns.set(style='white') import matplotlib.pyplot as plt from sklearn.preprocessing import LabelEncoder from sklearn.cross_validation import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import KFold from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.linear_model import LinearRegression from sklearn.linear_model import Lasso from sklearn.linear_model import ElasticNet from sklearn.tree import DecisionTreeRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.svm import SVR from sklearn.pipeline import Pipeline from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import AdaBoostRegressor from sklearn.metrics import mean_squared_error # Reading the data and dropping place of birth due to similarity. Also looking at mean and std of the data. # In[ ]: df = pd.read_csv("../../../input/aljarah_xAPI-Edu-Data/xAPI-Edu-Data.csv") #print df.shape df = df.drop('PlaceofBirth',1) #print df.head(5) print (df.describe()) # Lets create count plots for better visualization of data. # In[ ]: ls = ['gender','Relation','Topic','SectionID','GradeID','NationalITy','Class','StageID','Semester','ParentAnsweringSurvey','ParentschoolSatisfaction','StudentAbsenceDays'] for i in ls: g = sns.factorplot(i,data=df,kind='count',size=5,aspect=1.5) print (df.shape) # We can observe disproportionate difference in peaks of attributes such as nationality, GradeID. # **Now let preprocess the data. First we do One hot Encoding to deal with categorical data .Then we split the data in train and test and also target and train. Finally we apply standard scaling to the data.** # In[ ]: #preprocessing target = df.pop('Class') X =
pd.get_dummies(df)
pandas.get_dummies
import sys import pandas as pd import numpy as np from sqlalchemy import create_engine def technical_indicators(df): """ Technical Indicator Calculator Function. This Function's Output Is A Pandas DataFrame Of Various Techincal Indicators Such As RSI,SMA,EVM,EWMA BB And ROC Using Different Time Intervals. Parameters: df (DataFrame) : Pandas DataFrame Of Stock Price Returns: new_df (DataFrame) : Pandas DataFrame Of Techincal Indicators """ new_df = pd.DataFrame() dm = ((df['Stock_High'] + df['Stock_Low'])/2) - ((df['Stock_High'].shift(1) + df['Stock_Low'].shift(1))/2) br = (df['Stock_Volume'] / 100000000) / ((df['Stock_High'] - df['Stock_Low'])) EVM = dm / br new_df['EVM_15'] = EVM.rolling(15).mean() sma_60 = pd.Series.rolling(df['Stock_Close'], window=60, center=False).mean() new_df["SMA_60"] = sma_60 sma_200 = pd.Series.rolling(df['Stock_Close'], window=30, center=False).mean() new_df["SMA_200"] = sma_200 ewma_50 = df['Stock_Close'].ewm(span = 50, min_periods = 50 - 1).mean() new_df["EWMA_50"] = ewma_50 ewma_200 = df['Stock_Close'].ewm(span = 200, min_periods = 200 - 1).mean() new_df["EWMA_200"] = ewma_200 sma_5 = pd.Series.rolling(df['Stock_Close'], window=5, center=False).mean() std_5 = pd.Series.rolling(df['Stock_Close'], window=5, center=False).std() bb_5_upper = sma_5 + (2 * std_5) bb_5_lower = sma_5 - (2 * std_5) new_df["BB_5_UPPER"] = bb_5_upper new_df["BB_5_LOWER"] = bb_5_lower new_df["SMA_5"] = sma_5 sma_10 = pd.Series.rolling(df['Stock_Close'], window=10, center=False).mean() std_10 = pd.Series.rolling(df['Stock_Close'], window=10, center=False).std() bb_10_upper = sma_10 + (2 * std_10) bb_10_lower = sma_10 - (2 * std_10) new_df["BB_10_UPPER"] = bb_10_upper new_df["BB_10_LOWER"] = bb_10_lower new_df["SMA_10"] = sma_10 sma_20 = pd.Series.rolling(df['Stock_Close'], window=20, center=False).mean() std_20 = pd.Series.rolling(df['Stock_Close'], window=20, center=False).std() bb_20_upper = sma_20 + (2 * std_20) bb_20_lower = sma_20 - (2 * std_20) new_df["BB_20_UPPER"] = bb_20_upper new_df["BB_20_LOWER"] = bb_20_lower new_df["SMA_20"] = sma_20 roc_5 = df['Stock_Close'][5:]/df['Stock_Close'][:-5].values - 1 new_df["ROC_5"] = roc_5 roc_10 = df['Stock_Close'][10:]/df['Stock_Close'][:-10].values - 1 new_df["ROC_10"] = roc_10 roc_20 = df['Stock_Close'][20:]/df['Stock_Close'][:-20].values - 1 new_df["ROC_20"] = roc_20 delta = df['Stock_Close'].diff() up, down = delta.copy(), delta.copy() up[up < 0] = 0 down[down > 0] = 0 up_5 = pd.Series.rolling(up, window=5, center=False).mean() down_5 = pd.Series.rolling(down.abs(), window=5, center=False).mean() RS_5 = up_5 / down_5 RSI_5 = 100.0 - (100.0 / (1.0 + RS_5)) new_df["RSI_5"] = RSI_5 up_10 =
pd.Series.rolling(up, window=10, center=False)
pandas.Series.rolling
### Author <NAME> - 30 September 2020 ### import pandas as pd import numpy as np from collections import Counter import matplotlib.pyplot as plt import seaborn as sns import warnings import time import argparse # Currently use sys to get other script - in Future use package import os import sys path_main = ("/".join(os.path.realpath(__file__).split("/")[:-2])) sys.path.append(path_main + '/Classes/') sys.path.append(path_main + '/Utils/') from media_class import Medium, Supplement, GrowthMedium, Medium_one_hot, Supplement_one_hot, GrowthMedium_one_hot from help_functions import mean, str_to_bool, str_none_check def extract_data(meta_data, maf_data, level="Lowest"): ''' Changing data for plotting input: meta_data = is a loaded pandas dataframe after media.py maf_data = is a loaded pandas dataframe after maf.py return: heatmap_data = dataframe with gene occurence counts_symbols = counter of symbols counts_disease = counter of disease ''' meta_data["file"] = [str(x).split("/")[-1].split(".")[0] for x in meta_data["PANEL_oncotated_maf_mutect2"]] if level == "Highest": meta_data = meta_data[meta_data["Disease_highest_level"] != "Unknown"] disease_types = list(set(meta_data["Disease_highest_level"])) elif level == "Lowest": meta_data = meta_data[meta_data["Disease_lowest_level"] != "Unknown"] disease_types = list(set(meta_data["Disease_lowest_level"])) else: raise KeyError(f"Wierd disease level was passed: {level}. please provide either Highest or Lowest") # Counter symbols counts_symbols = Counter(maf_data["Hugo_Symbol"]) counts_symbols = dict(counts_symbols.most_common(100)) maf_data = maf_data[maf_data["Hugo_Symbol"].isin(list(counts_symbols.keys()))] counts_symbols = pd.Series(counts_symbols, name='Count') counts_symbols.index.name = 'Hugo_Symbol' counts_symbols = counts_symbols.reset_index() # Counter disease counts_disease = Counter(meta_data["Disease_lowest_level"]) counts_disease = dict(counts_disease.most_common(len(counts_disease))) counts_disease = pd.Series(counts_disease, name='Count') counts_disease.index.name = 'Disease_lowest_level' counts_disease = counts_disease.reset_index() # Merge and transform into matrix heatmap_data =
pd.merge(maf_data, meta_data, on="file")
pandas.merge
import os import sys import glob import gc import datetime from tqdm import tqdm import tkinter from tkinter import filedialog from tkinter import messagebox import pydicom import pandas as pd def select_directory(initial_path): '''tkinterのGUIでDICOMが入ったディレクトリを指定させて、そのディレクトリのパスを出力''' tk = tkinter.Tk() tk.withdraw() dicom_directory = filedialog.askdirectory( initialdir=initial_path, title='DICOMファイルが含まれるフォルダを選択') return dicom_directory def get_file_path(directory): '''ディレクトリを入力し、ディレクトリ内のファイルのパスをすべて出力''' if directory == '': sys.exit(0) path_of_files = glob.glob(directory + '/**/*', recursive=True) return path_of_files def get_dicom_path(path): '''パスを入力し、その中のDICOMだけを出力''' dicom_files = [] for p in tqdm(path, desc='データを読み込み中'): try: dicom_files.append(pydicom.dcmread(p)) except: pass return dicom_files def separate_dicom_files(dicom_files): '''DICOMファイルを入力し、RDSRとPETに分割してそれぞれをタプルで出力''' rdsr_files = [] pet_files = [] for f in tqdm(dicom_files, desc='データを分割中'): try: if f.SOPClassUID == '1.2.840.10008.5.1.4.1.1.88.67': rdsr_files.append(f) elif f.Modality == 'PT' and f.ImageType[0] == 'ORIGINAL': pet_files.append(f) except: pass return rdsr_files, pet_files def separate_CT_Acquisition(rdsr_files): '''RDSRファイルのデータを入力し,CTの線量情報が記載されたレベルのネストの情報を出力する''' CTAcquisition = [] for r in rdsr_files[0x0040,0xa730].value: try: if r[0x0040,0xa043][0][0x0008,0x0100].value == '113819': # CTAcquisition_code CTAcquisition.append(r[0x0040,0xa730]) except: pass return CTAcquisition def extract_data_from_CT_Acquisition(rdsr_col, CTAcquisition): '''1つのCT Acquisitionを入力し,そのデータを辞書で返す''' # 各データの区切り部分のEV CTAcquisitionParameters_code = '113822' CTXraySourceParameters_code = '113831' CTDose_code = '113829' DeviceRoleinProcedure_code = '113876' DoseCheckNotificationDetails_code = '113908' # 空の辞書tmpを作成 tmp_dictionary = {col: [] for col in rdsr_col.keys()} for _, nest1 in enumerate(CTAcquisition.value): try: if nest1[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['AcquisitionProtocol']: tmp_dictionary['AcquisitionProtocol'] = nest1[0x0040, 0xa160].value elif nest1[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['TargetRegion']: tmp_dictionary['TargetRegion'] = nest1[0x0040,0xa168][0][0x0008, 0x0104].value elif nest1[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['CTAcquisitionType']: tmp_dictionary['CTAcquisitionType'] = nest1[0x0040,0xa168][0][0x0008, 0x0104].value elif nest1[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['ProcedureContext']: tmp_dictionary['ProcedureContext'] = nest1[0x0040,0xa168][0][0x0008, 0x0104].value elif nest1[0x0040,0xa043][0][0x0008,0x0100].value == CTAcquisitionParameters_code: try: for _, nest2 in enumerate(nest1[0x0040,0xa730].value): if nest2[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['ExposureTime']: tmp_dictionary['ExposureTime'] = nest2[0x0040,0xa300][0][0x0040,0xa30a].value elif nest2[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['ScanningLength']: tmp_dictionary['ScanningLength'] = nest2[0x0040,0xa300][0][0x0040,0xa30a].value elif nest2[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['ExposedRange']: tmp_dictionary['ExposedRange'] = nest2[0x0040,0xa300][0][0x0040,0xa30a].value elif nest2[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['NominalSingleCollimationWidth']: tmp_dictionary['NominalSingleCollimationWidth'] = nest2[0x0040,0xa300][0][0x0040,0xa30a].value elif nest2[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['NominalTotalCollimationWidth']: tmp_dictionary['NominalTotalCollimationWidth'] = nest2[0x0040,0xa300][0][0x0040,0xa30a].value elif nest2[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['PitchFactor']: tmp_dictionary['PitchFactor'] = nest2[0x0040,0xa300][0][0x0040,0xa30a].value elif nest2[0x0040,0xa043][0][0x0008,0x0100].value == CTXraySourceParameters_code: try: for _, nest3 in enumerate(nest2[0x0040,0xa730].value): if nest3[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['IdentificationoftheXRaySource']: tmp_dictionary['IdentificationoftheXRaySource'] = nest3[0x0040,0xa160].value elif nest3[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['KVP']: tmp_dictionary['KVP'] = nest3[0x0040,0xa300][0][0x0040,0xa30a].value elif nest3[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['MaximumXRayTubeCurrent']: tmp_dictionary['MaximumXRayTubeCurrent'] = nest3[0x0040,0xa300][0][0x0040,0xa30a].value elif nest3[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['MeanXRayTubeCurrent']: tmp_dictionary['MeanXRayTubeCurrent'] = nest3[0x0040,0xa300][0][0x0040,0xa30a].value elif nest3[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['ExposureTimeperRotation']: tmp_dictionary['ExposureTimeperRotation'] = nest3[0x0040,0xa300][0][0x0040,0xa30a].value except: pass except: pass elif nest1[0x0040,0xa043][0][0x0008,0x0100].value == CTDose_code: try: for _, nest2 in enumerate(nest1[0x0040,0xa730].value): if nest2[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['MeanCTDIvol']: tmp_dictionary['MeanCTDIvol'] = nest2[0x0040,0xa300][0][0x0040,0xa30a].value elif nest2[0x0040, 0xa043][0][0x0008, 0x0100].value == rdsr_col['CTDIwPhantomType']: tmp_dictionary['CTDIwPhantomType'] = nest2[0x0040,0xa168][0][0x0008,0x0104].value elif nest2[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['DLP']: tmp_dictionary['DLP'] = nest2[0x0040,0xa300][0][0x0040,0xa30a].value elif nest2[0x0040,0xa043][0][0x0008,0x0100].value == DoseCheckNotificationDetails_code: try: for _, nest3 in enumerate(nest2[0x0040,0xa730].value): if nest3[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['DLPNotificationValue']: tmp_dictionary['DLPNotificationValue'] = nest3[0x0040,0xa300][0][0x0040,0xa30a].value elif nest3[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['CTDIvolNotificationValue']: tmp_dictionary['CTDIvolNotificationValue'] = nest3[0x0040,0xa300][0][0x0040,0xa30a].value elif nest3[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['ReasonforProceeding']: tmp_dictionary['ReasonforProceeding'] = nest3[0x0040,0xa160].value except: pass except: pass elif nest1[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['Comment']: tmp_dictionary['Comment'] = nest1[0x0040,0xa160].value elif nest1[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['XRayModulationType']: tmp_dictionary['XRayModulationType'] = nest1[0x0040,0xa160].value elif nest1[0x0040,0xa043][0][0x0008,0x0100].value == DeviceRoleinProcedure_code: try: for _, nest2 in enumerate(nest1[0x0040,0xa730].value): if nest2[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['DeviceManufacturer']: tmp_dictionary['DeviceManufacturer'] = nest2[0x0040,0xa160].value elif nest2[0x0040,0xa043][0][0x0008,0x0100].value == rdsr_col['DeviceSerialNumber']: tmp_dictionary['DeviceSerialNumber'] = nest2[0x0040,0xa160].value except: pass except: pass # データが入っていない箇所を空欄とする for col in rdsr_col.keys(): if not tmp_dictionary[col]: tmp_dictionary[col] = ' ' return tmp_dictionary def get_events_from_rdsr(rdsr_files): '''CTの曝射回数をRDSRからeventsとして読み取る''' # EventsのEV TotalNumberofIrradiationEvents_code = '113812' for _, r in enumerate(rdsr_files[0x0040,0xa730].value): try: if r[0x0040,0xa730][0][0x0040,0xa043][0][0x0008,0x0100].value == TotalNumberofIrradiationEvents_code: events = r[0x0040,0xa730][0][0x0040,0xa300][0][0x0040,0xa30a].value except: pass return events def extract_CT_Dose_Length_Product_Total(rdsr_files): '''RDSRからCT Dose Length Product Totalを抽出し,辞書で出力''' # CT Dose Length Product TotalのEV CTDoseLengthProductTotal_code = '113813' for _, r in enumerate(rdsr_files[0x0040,0xa730].value): try: if r[0x0040,0xa730][1][0x0040,0xa043][0][0x0008,0x0100].value == CTDoseLengthProductTotal_code: CDLPT = r[0x0040,0xa730][1][0x0040,0xa300][0][0x0040,0xa30a].value except: pass return CDLPT def extract_data_from_rdsr_header(rdsr_header_col_names, rdsr_files, events): '''RDSRのヘッダーから情報を抽出し,辞書で出力''' # 空の辞書tmpを作成 tmp_header_dictionary = {col: [] for col in rdsr_header_col_names} for num, rdsr in enumerate(rdsr_files): for eve in range(int(events[num])): for name in rdsr_header_col_names: try: tmp_header_dictionary[name].append( str(getattr(rdsr, name))) except: tmp_header_dictionary[name].append(" ") return tmp_header_dictionary def extract_information_from_PET(PET): '''PETから必要な情報を取得して,pd.DataFrameとして出力''' pet_col_name = ['PatientID', 'StudyDate', 'RadionuclideTotalDose'] pet_df = pd.DataFrame(columns=pet_col_name) for p in PET: pet_tmp_data = [] for col in pet_col_name[0:2]: pet_tmp_data.append(str(getattr(p, col))) pet_tmp_data.append( p.RadiopharmaceuticalInformationSequence[0].RadionuclideTotalDose) tmp_se =
pd.Series(pet_tmp_data, index=pet_col_name)
pandas.Series
#Download and clean nest label series from Zooniverse import pandas as pd import geopandas as gpd from panoptes_client import Panoptes from shapely.geometry import box, Point import json import numpy as np import os from datetime import datetime import utils def species_from_label(value): label_dict = {} label_dict[0] = "Great Egret" label_dict[1] = "Snowy Egret" label_dict[2] = "White Ibis" label_dict[3] = "Great Blue Heron" label_dict[4] = "Wood Stork" label_dict[5] = "Roseate Spoonbill" label_dict[6] = "Anhinga" label_dict[7] = "Other" label_dict[8] = "Unknown" return label_dict[value] def download_data(everglades_watch, min_version, generate=False): #see https://panoptes-python-client.readthedocs.io/en/v1.1/panoptes_client.html#module-panoptes_client.classification classification_export = everglades_watch.get_export('classifications', generate=generate) rows = [] for row in classification_export.csv_dictreader(): rows.append(row) df =
pd.DataFrame(rows)
pandas.DataFrame
import pandas as pd import os global spot_df spot_df = pd.read_pickle('data/tge_spot_preprocessed.p') def diff_forecast(file_path, file_name): forecast_df = pd.read_pickle(file_path+file_name+'.p') if type(forecast_df) == type(
pd.DataFrame()
pandas.DataFrame