prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd import pytest import featuretools as ft from featuretools.entityset import EntitySet from featuretools.utils.gen_utils import import_or_none ks = import_or_none('databricks.koalas') @pytest.mark.skipif('not ks') def test_single_table_ks_entityset(): primitives_list = ['absolute', 'is_weekend', 'year', 'day', 'num_characters', 'num_words'] ks_es = EntitySet(id="ks_es") df = pd.DataFrame({"id": [0, 1, 2, 3], "values": [1, 12, -34, 27], "dates": [pd.to_datetime('2019-01-10'), pd.to_datetime('2019-02-03'), pd.to_datetime('2019-01-01'), pd.to_datetime('2017-08-25')], "strings": ["I am a string", "23", "abcdef ghijk", ""]}) values_dd = ks.from_pandas(df) vtypes = { "id": ft.variable_types.Id, "values": ft.variable_types.Numeric, "dates": ft.variable_types.Datetime, "strings": ft.variable_types.NaturalLanguage } ks_es.entity_from_dataframe(entity_id="data", dataframe=values_dd, index="id", variable_types=vtypes) ks_fm, _ = ft.dfs(entityset=ks_es, target_entity="data", trans_primitives=primitives_list) pd_es = ft.EntitySet(id="pd_es") pd_es.entity_from_dataframe(entity_id="data", dataframe=df, index="id", variable_types={"strings": ft.variable_types.NaturalLanguage}) fm, _ = ft.dfs(entityset=pd_es, target_entity="data", trans_primitives=primitives_list) ks_computed_fm = ks_fm.to_pandas().set_index('id').loc[fm.index][fm.columns] # NUM_WORDS(strings) is int32 in koalas for some reason
pd.testing.assert_frame_equal(fm, ks_computed_fm, check_dtype=False)
pandas.testing.assert_frame_equal
# -*- coding: utf-8 -*- """ Created on Fri Oct 6 17:20:54 2017 @author: thuzhang """ # ARIMA from statsmodels.tsa.arima_model import ARMA from statsmodels.tsa.arima_model import ARMAResults import numpy as np import statsmodels.tsa.stattools as ts import statsmodels.api as sm import numpy as np from matplotlib import pyplot as plt import pandas as pd from DeNoise import Denoise from ParseData import ParseData from statsmodels.tsa.seasonal import seasonal_decompose def Sigmoid(X,A,B,r): return A*B*np.exp(r*X)/(A+B*(np.exp(r*X)-1)) StartTime=48 LengthOfData=720 LengthOfPredict=24 OriginData=(ParseData(File='7576.csv',Sts=StartTime,Length=LengthOfData+LengthOfPredict+1)) SigmaUp=np.average(OriginData)+2*np.sqrt(np.var(OriginData)) SigmaDown=np.average(OriginData)-2*np.sqrt(np.var(OriginData)) MeanData=np.average(OriginData) RelativeValue=np.log(SigmaUp/SigmaDown-1)/MeanData print(np.average(OriginData),np.sqrt(np.var(OriginData))) def Logistic(x): return Sigmoid(x,SigmaUp,SigmaDown,RelativeValue) def test_stationarity(timeseries): # 决定起伏统计 rolmean = pd.rolling_mean(timeseries, window=100) # 对size个数据进行移动平均 rol_weighted_mean = pd.ewma(timeseries, span=36) # 对size个数据进行加权移动平均 rolstd =
pd.rolling_std(timeseries, window=100)
pandas.rolling_std
# -*- coding: utf-8 -*- import io import os import pickle import math import numpy as np import pandas as pd import lightgbm as lgb from tqdm.auto import tqdm class ScoringService(object): # 訓練期間終了日 TRAIN_END_HIGH = '2019-12-01' TRAIN_END_LOW = '2018-12-31' TRAIN_END = '2018-12-31' # 評価期間開始日 VAL_START = '2019-02-01' # 評価期間終了日 VAL_END = '2019-12-01' # テスト期間開始日 TEST_START = '2020-01-01' # 目的変数 TARGET_LABELS = ['label_high_20', 'label_low_20'] # データをこの変数に読み込む dfs = None # モデルをこの変数に読み込む models = None # 対象の銘柄コードをこの変数に読み込む codes = None @classmethod def getCodes(cls): return cls.codes @classmethod def get_inputs(cls, dataset_dir): """ Args: dataset_dir (str) : path to dataset directory Returns: dict[str]: path to dataset files """ inputs = { 'stock_list': f'{dataset_dir}/stock_list.csv.gz', 'stock_price': f'{dataset_dir}/stock_price.csv.gz', 'stock_fin': f'{dataset_dir}/stock_fin.csv.gz', # 'stock_fin_price': f'{dataset_dir}/stock_fin_price.csv.gz', 'stock_labels': f'{dataset_dir}/stock_labels.csv.gz', } return inputs @classmethod def get_dataset(cls, inputs): """ Args: inputs (list[str]): path to dataset files Returns: dict[pd.DataFrame]: loaded data """ if cls.dfs is None: cls.dfs = {} for k, v in inputs.items(): cls.dfs[k] = pd.read_csv(v) # DataFrameのindexを設定します。 if k == "stock_price": cls.dfs[k].loc[:, "datetime"] = pd.to_datetime(cls.dfs[k].loc[:, "EndOfDayQuote Date"]) cls.dfs[k].set_index("datetime", inplace=True) elif k in ["stock_fin", "stock_fin_price", "stock_labels"]: cls.dfs[k].loc[:, "datetime"] = pd.to_datetime(cls.dfs[k].loc[:, "base_date"]) cls.dfs[k].set_index("datetime", inplace=True) return cls.dfs @classmethod def get_codes(cls, dfs): """ Args: dfs (dict[pd.DataFrame]): loaded data Returns: array: list of stock codes """ stock_list = dfs['stock_list'].copy() # 予測対象の銘柄コードを取得 cls.codes = stock_list[stock_list['prediction_target'] == True]['Local Code'].values @classmethod def get_features_and_label(cls, dfs, codes, feature, label): """ Args: dfs (dict[pd.DataFrame]): loaded data codes (array) : target codes feature (pd.DataFrame): features label (str) : label column name Returns: train_X (pd.DataFrame): training data train_y (pd.DataFrame): label for train_X val_X (pd.DataFrame): validation data val_y (pd.DataFrame): label for val_X test_X (pd.DataFrame): test data test_y (pd.DataFrame): label for test_X """ # 分割データ用の変数を定義 trains_X, vals_X, tests_X = [], [], [] trains_y, vals_y, tests_y = [], [], [] # 銘柄コード毎に特徴量を作成 print(label,' Create Feature value') for code in tqdm(codes): # 特徴量取得 feats = feature[feature['code'] == code] # 特定の銘柄コードのデータに絞る stock_labels = dfs['stock_labels'][dfs['stock_labels']['Local Code'] == code].copy() # 特定の目的変数に絞る labels = stock_labels[label] # nanを削除 labels.dropna(inplace=True) if feats.shape[0] > 0 and labels.shape[0] > 0: # 特徴量と目的変数のインデックスを合わせる labels = labels.loc[labels.index.isin(feats.index)] feats = feats.loc[feats.index.isin(labels.index)] labels.index = feats.index # データを分割 _train_X = {} _val_X = {} _test_X = {} _train_y = {} _val_y = {} _test_y = {} if label == 'label_high_20': _train_X = feats[: cls.TRAIN_END_HIGH].copy() _val_X = feats[cls.VAL_START : cls.VAL_END].copy() _test_X = feats[cls.TEST_START :].copy() _train_y = labels[: cls.TRAIN_END_HIGH].copy() _val_y = labels[cls.VAL_START : cls.VAL_END].copy() _test_y = labels[cls.TEST_START :].copy() elif label == 'label_low_20': _train_X = feats[: cls.TRAIN_END_LOW].copy() _val_X = feats[cls.VAL_START : cls.VAL_END].copy() _test_X = feats[cls.TEST_START :].copy() _train_y = labels[: cls.TRAIN_END_LOW].copy() _val_y = labels[cls.VAL_START : cls.VAL_END].copy() _test_y = labels[cls.TEST_START :].copy() else: _train_X = feats[: cls.TRAIN_END].copy() _val_X = feats[cls.VAL_START : cls.VAL_END].copy() _test_X = feats[cls.TEST_START :].copy() _train_y = labels[: cls.TRAIN_END].copy() _val_y = labels[cls.VAL_START : cls.VAL_END].copy() _test_y = labels[cls.TEST_START :].copy() # データを配列に格納 (後ほど結合するため) trains_X.append(_train_X) vals_X.append(_val_X) tests_X.append(_test_X) trains_y.append(_train_y) vals_y.append(_val_y) tests_y.append(_test_y) # 銘柄毎に作成した説明変数データを結合します。 train_X = pd.concat(trains_X) val_X = pd.concat(vals_X) test_X = pd.concat(tests_X) # 銘柄毎に作成した目的変数データを結合します。 train_y = pd.concat(trains_y) val_y = pd.concat(vals_y) test_y = pd.concat(tests_y) return train_X, train_y, val_X, val_y, test_X, test_y #増加率の計算 @classmethod def get_Rate_of_increase(cls, df): df_return_1 = df.shift(1) return (df - df_return_1) / df_return_1 @classmethod def get_features_for_predict(cls, dfs, code, label, start_dt='2016-01-01'): """ Args: dfs (dict) : dict of pd.DataFrame include stock_fin, stock_price code (int) : A local code for a listed company start_dt (str): specify date range Returns: feature DataFrame (pd.DataFrame) """ # 特徴量の作成には過去60営業日のデータを使用しているため、 # 予測対象日からバッファ含めて土日を除く過去90日遡った時点から特徴量を生成します n = 90 # 特定の銘柄コードのデータに絞る fin_data = dfs['stock_fin'][dfs['stock_fin']['Local Code'] == code] # 特徴量の生成対象期間を指定 fin_data = fin_data.loc[pd.Timestamp(start_dt) - pd.offsets.BDay(n) :] #データを取得 fin_feats = fin_data[['Result_FinancialStatement FiscalYear']].copy() fin_feats['Result_FinancialStatement NetSales'] = fin_data['Result_FinancialStatement NetSales'] fin_feats['Result_FinancialStatement OperatingIncome'] = fin_data['Result_FinancialStatement OperatingIncome'] fin_feats['Result_FinancialStatement OrdinaryIncome'] = fin_data['Result_FinancialStatement OrdinaryIncome'] fin_feats['Result_FinancialStatement NetIncome'] = fin_data['Result_FinancialStatement NetIncome'] fin_feats['Result_FinancialStatement TotalAssets'] = fin_data['Result_FinancialStatement TotalAssets'] fin_feats['Result_FinancialStatement NetAssets'] = fin_data['Result_FinancialStatement NetAssets'] fin_feats['Result_FinancialStatement CashFlowsFromOperatingActivities'] = fin_data['Result_FinancialStatement CashFlowsFromOperatingActivities'] fin_feats['Result_FinancialStatement CashFlowsFromFinancingActivities'] = fin_data['Result_FinancialStatement CashFlowsFromFinancingActivities'] fin_feats['Result_FinancialStatement CashFlowsFromInvestingActivities'] = fin_data['Result_FinancialStatement CashFlowsFromInvestingActivities'] fin_feats['Forecast_FinancialStatement FiscalYear'] = fin_data['Forecast_FinancialStatement FiscalYear'] fin_feats['Forecast_FinancialStatement NetSales'] = fin_data['Forecast_FinancialStatement NetSales'] fin_feats['Forecast_FinancialStatement OperatingIncome'] = fin_data['Forecast_FinancialStatement OperatingIncome'] fin_feats['Forecast_FinancialStatement OrdinaryIncome'] = fin_data['Forecast_FinancialStatement OrdinaryIncome'] fin_feats['Forecast_FinancialStatement NetIncome'] = fin_data['Forecast_FinancialStatement NetIncome'] fin_feats['Result_Dividend FiscalYear'] = fin_data['Result_Dividend FiscalYear'] fin_feats['Result_Dividend QuarterlyDividendPerShare'] = fin_data['Result_Dividend QuarterlyDividendPerShare'] fin_feats['Forecast_Dividend FiscalYear'] = fin_data['Forecast_Dividend FiscalYear'] fin_feats['Forecast_Dividend QuarterlyDividendPerShare'] = fin_data['Forecast_Dividend QuarterlyDividendPerShare'] fin_feats['Forecast_Dividend AnnualDividendPerShare'] = fin_data['Forecast_Dividend AnnualDividendPerShare'] fin_feats['Result_FinancialStatement ReportType'] = fin_data['Result_FinancialStatement ReportType'] fin_feats['Result_FinancialStatement ReportType'].replace(['Q1','Q2','Q3','Annual',],[0,1,2,3],inplace=True) # 欠損値処理 fin_feats = fin_feats.fillna(0) # 特定の銘柄コードのデータに絞る price_data = dfs['stock_price'][dfs['stock_price']['Local Code'] == code] # 特徴量の生成対象期間を指定 price_data = price_data.loc[pd.Timestamp(start_dt) - pd.offsets.BDay(n) :] # 終値のみに絞る feats = price_data[['EndOfDayQuote ExchangeOfficialClose']].copy() #高値と安値の差額 price_data['Stock price difference'] = price_data['EndOfDayQuote High'] - price_data['EndOfDayQuote Low'] #騰落幅。前回終値と直近約定値の価格差 feats['EndOfDayQuote ChangeFromPreviousClose'] = price_data['EndOfDayQuote ChangeFromPreviousClose'] #騰落値 feats['EndOfDayQuote RisingAndFallingPrices'] = price_data['EndOfDayQuote PreviousClose'] + price_data['EndOfDayQuote ChangeFromPreviousClose'] #累積調整係数 feats['EndOfDayQuote CumulativeAdjustmentFactor'] = price_data['EndOfDayQuote CumulativeAdjustmentFactor'] #過去0,5,10,15,20日前の株価、出来高 for nn in range(0, 21, 5): nn_str = str(nn) #高値 feats['EndOfDayQuote High Return' + nn_str] = price_data['EndOfDayQuote High'].shift(nn) #安値 feats['EndOfDayQuote Low Return' + nn_str] = price_data['EndOfDayQuote Low'].shift(nn) #始値 feats['EndOfDayQuote Open Return' + nn_str] = price_data['EndOfDayQuote Open'].shift(nn) #終値 feats['EndOfDayQuote Close Return' + nn_str] = price_data['EndOfDayQuote Close'].shift(nn) #売買高 feats['EndOfDayQuote Volume Return' + nn_str] = price_data['EndOfDayQuote Volume'].shift(nn) #銘柄情報 list_data = dfs['stock_list'][dfs['stock_list']['Local Code'] == code].copy() #銘柄の33業種区分(コード) feats['33 Sector(Code)'] = list_data['33 Sector(Code)'].values[0] #銘柄の17業種区分(コード) feats['17 Sector(Code)'] = list_data['17 Sector(Code)'].values[0] #発行済株式数 feats['IssuedShareEquityQuote IssuedShare'] = list_data['IssuedShareEquityQuote IssuedShare'].values[0] #Size Code (New Index Series) list_data['Size Code (New Index Series)'] = list_data['Size Code (New Index Series)'].replace('-', 0).astype(int) million = 1000000 #来期の予測EPS(1株あたりの利益) forecast_EPS = (fin_feats['Forecast_FinancialStatement NetIncome'] * million) / feats['IssuedShareEquityQuote IssuedShare'] #feats['Forecast EPS'] = forecast_EPS #来期の予測PER(株価収益率) feats['Forecast PER ExchangeOfficialClose'] = price_data['EndOfDayQuote ExchangeOfficialClose'] / forecast_EPS #売買高加重平均価格(VWAP) feats['EndOfDayQuote VWAP'] = price_data['EndOfDayQuote VWAP'] # 財務データの特徴量とマーケットデータの特徴量のインデックスを合わせる feats = feats.loc[feats.index.isin(fin_feats.index)] fin_feats = fin_feats.loc[fin_feats.index.isin(feats.index)] # データを結合 feats = pd.concat([feats, fin_feats], axis=1).dropna() #決算種別gごとに分ける #Q1 q1 = feats.loc[feats['Result_FinancialStatement ReportType'] == 0].copy() #Q2 q2 = feats.loc[feats['Result_FinancialStatement ReportType'] == 1].copy() #Q3 q3 = feats.loc[feats['Result_FinancialStatement ReportType'] == 2].copy() #Annual annual = feats.loc[feats['Result_FinancialStatement ReportType'] == 3].copy() #決算 settlement = fin_data[['Forecast_FinancialStatement ReportType']].copy() settlement['Forecast_FinancialStatement ReportType'].replace(['Q1','Q2','Q3','Annual',],[0,1,2,3],inplace=True) settlement['Forecast_FinancialStatement FiscalYear'] = fin_data['Forecast_FinancialStatement FiscalYear'] settlement['Forecast_FinancialStatement NetSales'] = fin_data['Forecast_FinancialStatement NetSales'] settlement['Forecast_FinancialStatement OperatingIncome'] = fin_data['Forecast_FinancialStatement OperatingIncome'] settlement['Result_FinancialStatement OperatingIncome'] = fin_data['Result_FinancialStatement OperatingIncome'] #前の行と値が同じかどうか、同じならTrueを格納 settlement['Forecast_FinancialStatement ReportType Flag'] = settlement['Forecast_FinancialStatement ReportType'].eq(settlement['Forecast_FinancialStatement ReportType'].shift(1)) settlement['Forecast_FinancialStatement FiscalYear Flag'] = settlement['Forecast_FinancialStatement FiscalYear'].eq(settlement['Forecast_FinancialStatement FiscalYear'].shift(1)) #0,1に変換 settlement['Forecast_FinancialStatement ReportType Flag'] = settlement['Forecast_FinancialStatement ReportType Flag'] * 1 settlement['Forecast_FinancialStatement FiscalYear Flag'] = settlement['Forecast_FinancialStatement FiscalYear Flag'] * 1 #実行フラグを立てる settlement['Execution flag'] = ((settlement['Forecast_FinancialStatement ReportType Flag'] == 1) & (settlement['Forecast_FinancialStatement FiscalYear Flag'] == 1)) #実行フラグがTrueなら値を格納 settlement['Forecast_FinancialStatement NetSales Shift'] = 0 settlement['Forecast_FinancialStatement NetSales Shift'].where(settlement['Execution flag'] != True, settlement['Forecast_FinancialStatement NetSales'].shift(1), inplace=True) settlement['Forecast_FinancialStatement OperatingIncome Shift'] = 0 settlement['Forecast_FinancialStatement OperatingIncome Shift'].where(settlement['Execution flag'] != True, settlement['Forecast_FinancialStatement OperatingIncome'].shift(1), inplace=True) settlement['Result_FinancialStatement OperatingIncome Shift'] = 0 settlement['Result_FinancialStatement OperatingIncome Shift'].where(settlement['Execution flag'] != True, settlement['Result_FinancialStatement OperatingIncome'].shift(1), inplace=True) #負債 liabilities = feats['Result_FinancialStatement TotalAssets'] - feats['Result_FinancialStatement NetAssets'] #AnnualのEPS(1株当たり利益) annual_EPS = (annual['Result_FinancialStatement NetIncome'] * million) / list_data['IssuedShareEquityQuote IssuedShare'].values[0] if label == 'label_high_20': #Size Code (New Index Series) feats['Size Code (New Index Series)'] = list_data['Size Code (New Index Series)'].values[0] #Annual純利益増加率 annual['Annual Net income increase rate'] = cls.get_Rate_of_increase(annual['Result_FinancialStatement NetIncome']) #欠損値処理を行います。 annual = annual.replace([np.nan], 0) feats['Annual Net income increase rate'] = annual['Annual Net income increase rate'] #Q1,Q2,Q3,Annualの営業利益増加率 q1['Q1 Operating income increase rate'] = cls.get_Rate_of_increase(q1['Result_FinancialStatement OperatingIncome']) q2['Q2 Operating income increase rate'] = cls.get_Rate_of_increase(q2['Result_FinancialStatement OperatingIncome']) q3['Q3 Operating income increase rate'] = cls.get_Rate_of_increase(q3['Result_FinancialStatement OperatingIncome']) annual['Annual Operating income increase rate'] = cls.get_Rate_of_increase(annual['Result_FinancialStatement OperatingIncome']) #欠損値処理を行います。 q1 = q1.replace([np.nan], 0) q2 = q2.replace([np.nan], 0) q3 = q3.replace([np.nan], 0) annual = annual.replace([np.nan], 0) feats['Q1 Operating income increase rate'] = q1['Q1 Operating income increase rate'] feats['Q2 Operating income increase rate'] = q2['Q2 Operating income increase rate'] feats['Q3 Operating income increase rate'] = q3['Q3 Operating income increase rate'] feats['Annual Operating income increase rate'] = annual['Annual Operating income increase rate'] #Q1,Q2,Q3,Annualの当期純利益増加率 q1['Q1 Net income increase rate'] = cls.get_Rate_of_increase(q1['Result_FinancialStatement NetIncome']) q2['Q2 Net income increase rate'] = cls.get_Rate_of_increase(q2['Result_FinancialStatement NetIncome']) q3['Q3 Net income increase rate'] = cls.get_Rate_of_increase(q3['Result_FinancialStatement NetIncome']) annual['Annual Net income increase rate'] = cls.get_Rate_of_increase(annual['Result_FinancialStatement NetIncome']) #欠損値処理を行います。 q1 = q1.replace([np.nan], 0) q2 = q2.replace([np.nan], 0) q3 = q3.replace([np.nan], 0) annual = annual.replace([np.nan], 0) feats['Q1 Net income increase rate'] = q1['Q1 Net income increase rate'] feats['Q2 Net income increase rate'] = q2['Q2 Net income increase rate'] feats['Q3 Net income increase rate'] = q3['Q3 Net income increase rate'] feats['Annual Net income increase rate'] = annual['Annual Net income increase rate'] #PER(株価収益率) feats['Annual PER'] = price_data['EndOfDayQuote ExchangeOfficialClose'] / annual_EPS #決算営業利益増加率 feats['Settlement operating income increase rate'] = (settlement['Result_FinancialStatement OperatingIncome'] - settlement['Result_FinancialStatement OperatingIncome Shift']) / settlement['Result_FinancialStatement OperatingIncome Shift'] #欠損値処理を行います。 feats = feats.replace([np.nan], -99999) #来期決算種別 feats['Forecast_FinancialStatement ReportType'] = settlement['Forecast_FinancialStatement ReportType'] #来期の予想決算売上高増加率 feats['Expected settlement of accounts for the next fiscal year Sales increase rate'] = (settlement['Forecast_FinancialStatement NetSales'] - settlement['Forecast_FinancialStatement NetSales Shift']) / settlement['Forecast_FinancialStatement NetSales Shift'] #売上高増加率 feats['Sales growth rate'] = cls.get_Rate_of_increase(feats['Result_FinancialStatement NetSales']) #営業利益増加率 feats['Operating income increase rate'] = cls.get_Rate_of_increase(feats['Result_FinancialStatement OperatingIncome']) #経常利益増加率 feats['Ordinary income increase rate'] = cls.get_Rate_of_increase(feats['Result_FinancialStatement OrdinaryIncome']) #BPS(1株あたりの純資産) BPS = (feats['Result_FinancialStatement NetAssets'] * million) / feats['IssuedShareEquityQuote IssuedShare'] #PBR(株価純資産倍率) feats['PBR'] = feats['EndOfDayQuote ExchangeOfficialClose'] / BPS #CFPS(1株あたりのキャッシュフロー) CFPS = (feats['Result_FinancialStatement CashFlowsFromOperatingActivities'] * million) / feats['IssuedShareEquityQuote IssuedShare'] #PCFR(株価キャッシュフロー倍率) feats['PCFR'] = feats['EndOfDayQuote ExchangeOfficialClose'] / CFPS #来期の予測配当利回り feats['Forecast Dividend yield'] = feats['Forecast_Dividend AnnualDividendPerShare'] / feats['EndOfDayQuote ExchangeOfficialClose'] #時価総額 feats['Market capitalization'] = (feats['EndOfDayQuote ExchangeOfficialClose'] * million) * feats['IssuedShareEquityQuote IssuedShare'] #キャッシュフローマージン feats['Forecast Cash flow margin'] = feats['Result_FinancialStatement CashFlowsFromOperatingActivities'] / feats['Forecast_FinancialStatement NetSales'] #高値と安値の5日間の差額の平均 feats['Stock price difference Mean 5'] = price_data['Stock price difference'].rolling(5).mean() #5日間平均から当日株価を引く EndOfDayQuote_ExchangeOfficialClose_Mean_5 = price_data['EndOfDayQuote ExchangeOfficialClose'].rolling(5).mean() feats['Subtract the current days stock price from the 5-day average'] = EndOfDayQuote_ExchangeOfficialClose_Mean_5 - feats['EndOfDayQuote ExchangeOfficialClose'] #売上高に対しての負債割合 feats['Ratio of sales to liabilities'] = liabilities / feats['Result_FinancialStatement NetSales'] #負債増加率 feats['Debt growth rate'] = cls.get_Rate_of_increase(liabilities) #終値の20営業日ボラティリティ feats['20 business days volatility'] = (np.log(price_data['EndOfDayQuote ExchangeOfficialClose']).diff().rolling(20).std()) #終値の40営業日ボラティリティ feats['40 business days volatility'] = (np.log(price_data['EndOfDayQuote ExchangeOfficialClose']).diff().rolling(40).std()) #終値の60営業日ボラティリティ feats['60 business days volatility'] = (np.log(price_data['EndOfDayQuote ExchangeOfficialClose']).diff().rolling(60).std()) #終値の20営業日リターン feats['20 business day return'] = price_data['EndOfDayQuote ExchangeOfficialClose'].pct_change(20) #ドロップ for nn in range(0, 21, 5): nn_str = str(nn) feats = feats.drop(['EndOfDayQuote High Return' + nn_str], axis=1) feats = feats.drop(['EndOfDayQuote Low Return' + nn_str], axis=1) feats = feats.drop(['EndOfDayQuote Open Return' + nn_str], axis=1) feats = feats.drop(['EndOfDayQuote Close Return' + nn_str], axis=1) elif label == 'label_low_20': #Q1,Q2,Q3,Annualの売上高増加率 q1['Q1 Sales growth rate'] = cls.get_Rate_of_increase(q1['Result_FinancialStatement NetSales']) q2['Q2 Sales growth rate'] = cls.get_Rate_of_increase(q2['Result_FinancialStatement NetSales']) q3['Q3 Sales growth rate'] = cls.get_Rate_of_increase(q3['Result_FinancialStatement NetSales']) annual['Annual Sales growth rate'] = cls.get_Rate_of_increase(annual['Result_FinancialStatement NetSales']) #欠損値処理を行います。 q1 = q1.replace([np.nan], 0) q2 = q2.replace([np.nan], 0) q3 = q3.replace([np.nan], 0) annual = annual.replace([np.nan], 0) feats['Q1 Sales growth rate'] = q1['Q1 Sales growth rate'] feats['Q2 Sales growth rate'] = q2['Q2 Sales growth rate'] feats['Q3 Sales growth rate'] = q3['Q3 Sales growth rate'] feats['Annual Sales growth rate'] = annual['Annual Sales growth rate'] #Annual財務キャッシュフロー増加率 annual['Annual Rate of increase in financial cash flow'] = cls.get_Rate_of_increase(annual['Result_FinancialStatement CashFlowsFromFinancingActivities']) #欠損値処理を行います。 annual = annual.replace([np.nan], 0) feats['Annual Rate of increase in financial cash flow'] = annual['Annual Rate of increase in financial cash flow'] #Annual EPS(1株当たり利益) feats['Annual EPS'] = annual_EPS #欠損値処理を行います。 feats = feats.replace([np.nan], -99999) #来期の予想決算営業利益増加率 feats['Expected settlement of accounts for the next fiscal year Operating income increase rate'] = (settlement['Forecast_FinancialStatement OperatingIncome'] - settlement['Forecast_FinancialStatement OperatingIncome Shift']) / settlement['Forecast_FinancialStatement OperatingIncome Shift'] #負債比率 feats['Debt ratio'] = liabilities / feats['Result_FinancialStatement NetAssets'] #利益率 Profit_rate = feats['Result_FinancialStatement NetIncome'] / feats['Result_FinancialStatement NetSales'] #利益率増加率 feats['Profit margin increase rate'] = cls.get_Rate_of_increase(Profit_rate) #自己資本比率 feats['equity_ratio'] = feats['Result_FinancialStatement NetAssets'] / feats['Result_FinancialStatement TotalAssets'] #純利益増加率 feats['Net income increase rate'] = cls.get_Rate_of_increase(feats['Result_FinancialStatement NetIncome']) #EPS(1株当たり利益) EPS = feats['Result_FinancialStatement NetIncome'] / feats['IssuedShareEquityQuote IssuedShare'] #PER(株価収益率) PER = price_data['EndOfDayQuote ExchangeOfficialClose'] / EPS #目標株価 feats['Target stock price'] = EPS * PER #ドロップ feats = feats.drop(['EndOfDayQuote RisingAndFallingPrices','Result_FinancialStatement TotalAssets', 'Result_FinancialStatement CashFlowsFromOperatingActivities', 'Forecast_Dividend QuarterlyDividendPerShare','Result_FinancialStatement CashFlowsFromFinancingActivities', 'Forecast_FinancialStatement FiscalYear','Result_Dividend FiscalYear', 'Forecast_FinancialStatement NetIncome', 'Forecast_FinancialStatement OperatingIncome', 'Forecast_FinancialStatement NetSales','Result_FinancialStatement OrdinaryIncome',], axis=1) feats = feats.drop(['EndOfDayQuote ExchangeOfficialClose',], axis=1) # 欠損値処理を行います。 feats = feats.replace([np.inf, -np.inf, np.nan], 0) # 銘柄コードを設定 feats['code'] = code # 生成対象日以降の特徴量に絞る feats = feats.loc[pd.Timestamp(start_dt) :] return feats @classmethod def create_model(cls, dfs, codes, label): """ Args: dfs (dict) : dict of pd.DataFrame include stock_fin, stock_price codes (list[int]): A local code for a listed company label (str): prediction target label Returns: lgb.LGBMRegressor """ # 特徴量を取得 buff = [] print(label,' Get Feature value') for code in tqdm(codes): buff.append(cls.get_features_for_predict(cls.dfs,code,label)) feature =
pd.concat(buff)
pandas.concat
"""Twitter view""" __docformat__ = "numpy" import logging import os from typing import Optional, List from datetime import datetime, timedelta import matplotlib.pyplot as plt import numpy as np import pandas as pd from dateutil import parser as dparse import gamestonk_terminal.config_plot as cfg_plot from gamestonk_terminal.config_terminal import theme from gamestonk_terminal.common.behavioural_analysis import twitter_model from gamestonk_terminal.decorators import log_start_end from gamestonk_terminal.helper_funcs import export_data, plot_autoscale from gamestonk_terminal.rich_config import console logger = logging.getLogger(__name__) @log_start_end(log=logger) def display_inference(ticker: str, num: int, export: str = ""): """Infer sentiment from past n tweets Parameters ---------- ticker: str Stock ticker num: int Number of tweets to analyze export: str Format to export tweet dataframe """ df_tweets = twitter_model.load_analyze_tweets(ticker, num) if df_tweets.empty: return # Parse tweets dt_from = dparse.parse(df_tweets["created_at"].values[-1]) dt_to = dparse.parse(df_tweets["created_at"].values[0]) console.print(f"From: {dt_from.strftime('%Y-%m-%d %H:%M:%S')}") console.print(f"To: {dt_to.strftime('%Y-%m-%d %H:%M:%S')}") console.print(f"{len(df_tweets)} tweets were analyzed.") dt_delta = dt_to - dt_from n_freq = dt_delta.total_seconds() / len(df_tweets) console.print(f"Frequency of approx 1 tweet every {round(n_freq)} seconds.") pos = df_tweets["positive"] neg = df_tweets["negative"] percent_pos = len(np.where(pos > neg)[0]) / len(df_tweets) percent_neg = len(np.where(pos < neg)[0]) / len(df_tweets) total_sent = np.round(np.sum(df_tweets["sentiment"]), 2) mean_sent = np.round(np.mean(df_tweets["sentiment"]), 2) console.print(f"The summed compound sentiment of {ticker} is: {total_sent}") console.print(f"The average compound sentiment of {ticker} is: {mean_sent}") console.print( f"Of the last {len(df_tweets)} tweets, {100*percent_pos:.2f} % had a higher positive sentiment" ) console.print( f"Of the last {len(df_tweets)} tweets, {100*percent_neg:.2f} % had a higher negative sentiment" ) console.print("") export_data(export, os.path.dirname(os.path.abspath(__file__)), "infer", df_tweets) @log_start_end(log=logger) def display_sentiment( ticker: str, n_tweets: int, n_days_past: int, export: str = "", external_axes: Optional[List[plt.Axes]] = None, ): """Plot sentiments from ticker Parameters ---------- ticker: str Stock to get sentiment for n_tweets: int Number of tweets to get per hour n_days_past: int Number of days to extract tweets for export: str Format to export tweet dataframe """ # Date format string required by twitter dt_format = "%Y-%m-%dT%H:%M:%SZ" # Algorithm to extract dt_recent = datetime.utcnow() - timedelta(seconds=20) dt_old = dt_recent - timedelta(days=n_days_past) console.print( f"From {dt_recent.date()} retrieving {n_tweets*24} tweets ({n_tweets} tweets/hour)" ) df_tweets = pd.DataFrame( columns=[ "created_at", "text", "sentiment", "positive", "negative", "neutral", ] ) while True: # Iterate until we haven't passed the old number of days if dt_recent < dt_old: break # Update past datetime dt_past = dt_recent - timedelta(minutes=60) temp = twitter_model.load_analyze_tweets( ticker, n_tweets, start_time=dt_past.strftime(dt_format), end_time=dt_recent.strftime(dt_format), ) if temp.empty: return df_tweets = pd.concat([df_tweets, temp]) if dt_past.day < dt_recent.day: console.print( f"From {dt_past.date()} retrieving {n_tweets*24} tweets ({n_tweets} tweets/hour)" ) # Update recent datetime dt_recent = dt_past # Sort tweets per date df_tweets.sort_index(ascending=False, inplace=True) df_tweets["cumulative_compound"] = df_tweets["sentiment"].cumsum() df_tweets["prob_sen"] = 1 # df_tweets.to_csv(r'notebooks/tweets.csv', index=False) df_tweets.reset_index(inplace=True) df_tweets["Month"] = pd.to_datetime(df_tweets["created_at"]).apply( lambda x: x.month ) df_tweets["Day"] = pd.to_datetime(df_tweets["created_at"]).apply(lambda x: x.day) df_tweets["date"] = pd.to_datetime(df_tweets["created_at"]) df_tweets = df_tweets.sort_values(by="date") df_tweets["cumulative_compound"] = df_tweets["sentiment"].cumsum() # This plot has 2 axis if external_axes is None: _, axes = plt.subplots( 2, 1, sharex=True, figsize=plot_autoscale(), dpi=cfg_plot.PLOT_DPI ) ax1, ax2 = axes else: if len(external_axes) != 2: console.print("[red]Expected list of one axis item./n[/red]") return (ax1, ax2) = external_axes ax1.plot( pd.to_datetime(df_tweets["created_at"]), df_tweets["cumulative_compound"].values, ) ax1.set_ylabel("\nCumulative\nVADER Sentiment") for _, day_df in df_tweets.groupby(by="Day"): day_df["time"] =
pd.to_datetime(day_df["created_at"])
pandas.to_datetime
import os import numpy as np import pandas as pd from matplotlib import pyplot as plt from skimage.measure import label, regionprops from tqdm import tqdm from .nii_dataset import NiiDataset __all__ = ["froc", "plot_froc", "evaluate"] # detection key FP values DEFAULT_KEY_FP = (0.5, 1, 2, 4, 8) # classification confusion matrix settings label_code_dict = { 0: "Background", 1: "Displaced", 2: "Nondisplaced", 3: "Buckle", 4: "Segmental", -1: "Ignore" } # for ground truth; FP: false positive detections; # Ignore: undefined labels in annotations clf_conf_mat_cols = ["Buckle", "Displaced", "Nondisplaced", "Segmental", "FP", "Ignore"] # for prediction; FN: false negative, hit no gt labels clf_conf_mat_rows = ["Buckle", "Displaced", "Nondisplaced", "Segmental", "FN"] pd.set_option("display.precision", 6) def _get_gt_class(x): # if GT classification exists, use it if not
pd.isna(x["gt_class"])
pandas.isna
import logging from collections import defaultdict from concurrent.futures import FIRST_EXCEPTION, wait from itertools import product from pathlib import Path from typing import Iterable, List, Optional, Tuple, Union import numpy as np import pandas as pd from hermes.typeo import typeo from rich.progress import Progress from bbhnet.analysis.analysis import integrate from bbhnet.analysis.distributions import DiscreteDistribution from bbhnet.analysis.normalizers import GaussianNormalizer from bbhnet.io.h5 import write_timeseries from bbhnet.io.timeslides import Segment, TimeSlide from bbhnet.logging import configure_logging from bbhnet.parallelize import AsyncExecutor, as_completed event_times = [1186302519.8, 1186741861.5, 1187058327.1, 1187529256.5] event_names = ["GW170809", "GW170814", "GW170818", "GW170823"] events = {name: time for name, time in zip(event_names, event_times)} def load_segment(segment: Segment): """ Quick utility function which just wraps a Segment's `load` method so that we can execute it in a process pool since methods aren't picklable. """ segment.load("out") return segment def get_write_dir( write_dir: Path, norm: Optional[float], shift: Union[str, Segment] ) -> Path: """ Quick utility function for getting the name of the directory to which to save the outputs from an analysis using a particular time-shift/norm-seconds combination """ if isinstance(shift, Segment): shift = shift.shift write_dir = write_dir / f"norm-seconds.{norm}" / shift write_dir.mkdir(parents=True, exist_ok=True) return write_dir def build_background( thread_ex: AsyncExecutor, process_ex: AsyncExecutor, pbar: Progress, background_segments: Iterable[Segment], data_dir: Path, write_dir: Path, max_tb: float, window_length: float = 1.0, norm_seconds: Optional[Iterable[float]] = None, num_bins: int = int(1e4), ): """ For a sequence of background segments, compute a discrete distribution of integrated neural network outputs using the indicated integration window length for each of the normalization window lengths specified. Iterates through the background segments in order and tries to find as many time-shifts available for each segment as possible in the specified data directory, stopping iteration through segments once a maximum number of seconds of bacgkround have been generated. As a warning, there's a fair amount of asynchronous execution going on in this function, and it may come off a bit complex. Args: thread_ex: An `AsyncExecutor` that maintains a thread pool for writing analyzed segments in parallel with the analysis processes themselves. process_ex: An `AsyncExecutor` that maintains a process pool for loading and integrating Segments of neural network outputs. pbar: A `rich.progress.Progress` object for keeping track of the progress of each of the various subtasks. background_segments: The `Segment` objects to use for building a background distribution. `data_dir` will be searched for all time-shifts of each segment for parallel analysis. Once `max_tb` seconds worth of background have been generated, iteration through this array will be terminated, so segments should be ordered by some level of "importance", since it's likely that segments near the back of the array won't be analyzed for lower values of `max_tb`. data_dir: Directory containing timeslide root directories, which will be mined for time-shifts of each `Segment` in `background_segments`. If a time-shift doesn't exist for a given `Segment`, the time-shift is ignored. write_dir: Root directory to which to write integrated NN outputs. For each time-shift analyzed and normalization window length specified in `norm_seconds`, results will be written to a subdirectory `write_dir / "norm-seconds.{norm}" / shift`, which will be created if it does not exist. max_tb: The maximum number of seconds of background data to analyze for each value of `norm_seconds` before new segments to shift and analyze are no longer sought. However, because we use _every_ time-shift for each segment we iterate through, its possible that each background distribution will utilize slightly more than this value. window_length: The length of the integration window to use for analysis in seconds. norm_seconds: An array of normalization window lengths to use to standardize the integrated neural network outputs. (i.e. the output timeseries is the integral over the previous `window_length` seconds, normalized by the mean and standard deviation of the previous `norm` seconds before that, where `norm` is each value in `norm_seconds`). A `norm` value of `None` in the `norm_seconds` iterable indicates no normalization, and if `norm_seconds` is left as `None` this will be the only value used. num_bins: The number of bins to use to initialize the discrete distribution used to characterize the background distribution. Returns: A dictionary mapping each value in `norm_seconds` to an associated `DiscreteDistribution` characterizing its background distribution. """ write_dir.mkdir(exist_ok=True) norm_seconds = norm_seconds or [norm_seconds] # keep track of the min and max values of each normalization # window's background and the corresponding filenames so # that we can fit a discrete distribution to it after the fact mins = defaultdict(lambda: float("inf")) maxs = defaultdict(lambda: -float("inf")) # keep track of all the files that we've written # for each normalization window size so that we # can iterate through them later and submit them # for reloading once we have our distributions initialized fname_futures = defaultdict(list) # iterate through timeshifts of our background segments # until we've generated enough background data. background_segments = iter(background_segments) main_task_id = pbar.add_task("[red]Building background", total=max_tb) while not pbar.tasks[main_task_id].finished: segment = next(background_segments) # since we're assuming here that the background # segments are being provided in reverse chronological # order (with segments closest to the event segment first), # exhaust all the time shifts we can of each segment before # going to the previous one to keep data as fresh as possible load_futures = {} for shift in data_dir.iterdir(): try: shifted = segment.make_shift(shift.name) except ValueError: # this segment doesn't have a shift # at this value, so just move on continue # load all the timeslides up front in a separate thread # TODO: O(1GB) memory means segment.length * N ~O(4M), # so for ~O(10k) long segments this means this should # be fine as long as N ~ O(100). Worth doing a check for? future = process_ex.submit(load_segment, shifted) load_futures[shift.name] = [future] # create progress bar tasks for each one # of the subprocesses involved for analyzing # this set of timeslides load_task_id = pbar.add_task( f"[cyan]Loading {len(load_futures)} {segment.length}s timeslides", total=len(load_futures), ) analyze_task_id = pbar.add_task( "[yelllow]Integrating timeslides", total=len(load_futures) * len(norm_seconds), ) write_task_id = pbar.add_task( "[green]Writing integrated timeslides", total=len(load_futures) * len(norm_seconds), ) # now once each segment is loaded, submit a job # to our process pool to integrate it using each # one of the specified normalization periods integration_futures = {} sample_rate = None for shift, seg in as_completed(load_futures): # get the sample rate of the NN output timeseries # dynamically from the first timeseries we load, # since we'll need it to initialize our normalizers if sample_rate is None: t = seg._cache["t"] sample_rate = 1 / (t[1] - t[0]) for norm in norm_seconds: # build a normalizer for the given normalization window length if norm is not None: normalizer = GaussianNormalizer(norm * sample_rate) else: normalizer = None # submit the integration job and have it update the # corresponding progress bar task once it completes future = process_ex.submit( integrate, seg, kernel_length=1.0, window_length=window_length, normalizer=normalizer, ) future.add_done_callback( lambda f: pbar.update(analyze_task_id, advance=1) ) integration_futures[(norm, shift)] = [future] # advance the task keeping track of how many files # we've loaded by one pbar.update(load_task_id, advance=1) # make sure we have the expected number of jobs submitted if len(integration_futures) < (len(norm_seconds) * len(load_futures)): raise ValueError( "Expected {} integration jobs submitted, " "but only found {}".format( len(norm_seconds) * len(load_futures), len(integration_futures), ) ) # as the integration jobs come back, write their # results using our thread pool and record the # min and max values for our discrete distribution segment_futures = [] for (norm, shift), (t, y, integrated) in as_completed( integration_futures ): # submit the writing job to our thread pool and # use a callback to keep track of all the filenames # for a given normalization window shift_dir = get_write_dir(write_dir, norm, shift) future = thread_ex.submit( write_timeseries, shift_dir, t=t, y=y, integrated=integrated, ) future.add_done_callback( lambda f: pbar.update(write_task_id, advance=1) ) fname_futures[norm].append(future) segment_futures.append(future) # keep track of the max and min values for each norm mins[norm] = min(mins[norm], integrated.min()) maxs[norm] = max(maxs[norm], integrated.max()) # wait for all the writing to finish before we # move on so that we don't overload our processes wait(segment_futures, return_when=FIRST_EXCEPTION) pbar.update(main_task_id, advance=len(load_futures) * segment.length) # now that we've analyzed enough background data, # we'll initialize background distributions using # the min and max bounds we found during analysis # and then load everything back in to bin them # within these bounds Tb = pbar.tasks[main_task_id].completed logging.info(f"Accumulated {Tb}s of background matched filter outputs.") # submit a bunch of jobs for loading these integrated # segments back in for discretization load_futures = defaultdict(list) for norm, fname in as_completed(fname_futures): future = process_ex.submit(load_segment, Segment(fname)) load_futures[norm].append(future) # create a task for each one of the normalization windows # tracking how far along the distribution fit is fit_task_ids = {} for norm in norm_seconds: norm_name = f"{norm}s" if norm is not None else "empty" task_id = pbar.add_task( "[purple]Fitting background using {} normalization window".format( norm_name ), total=len(load_futures[norm]), ) fit_task_ids[norm] = task_id # now discretized the analyzed segments as they're loaded back in backgrounds = {} for norm, segment in as_completed(load_futures): try: # if we already have a background distribution # for this event, grab it and fit it with a # "warm start" aka don't ditch the existing histogram background = backgrounds[norm] warm_start = True except KeyError: # otherwise create a new distribution # and fit it from scratch mn, mx = mins[norm], maxs[norm] background = DiscreteDistribution("integrated", mn, mx, num_bins) backgrounds[norm] = background warm_start = False # fit the distribution to the new data and then # update the corresponding task tracker background.fit(segment, warm_start=warm_start) pbar.update(fit_task_ids[norm], advance=1) return backgrounds def check_if_needs_analyzing( event_segment: Segment, norm_seconds: Iterable[Optional[float]], characterizations: pd.DataFrame, ) -> Iterable[Optional[float]]: times = [t for t in event_times if t in event_segment] names = [name for name in event_names if events[name] in times] combos = set(product(names, norm_seconds)) remaining = combos - set(characterizations.index) # only do analysis on those normalization # values that we haven't already done # (sorry, you'll still have to do it for all events, # but those are miniscule by comparison) norm_seconds = list(set([j for i, j in remaining])) return norm_seconds, names, times def analyze_event( thread_ex: AsyncExecutor, process_ex: AsyncExecutor, characterizations: pd.DataFrame, timeseries: pd.DataFrame, event_segment: Segment, background_segments: Iterable[Segment], data_dir: Path, write_dir: Path, results_dir: Path, max_tb: float, window_length: float = 1.0, norm_seconds: Optional[Iterable[float]] = None, num_bins: int = int(1e4), force: bool = False, ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Use timeshifts of a set of previous segments to build a background distribution with which to analyze a segment containing an event and characterizing the false alaram rate of that event as a function of time from the event trigger. """ # first check if we can skip this analysis altogether # because we already have data on it and we're not # forcing ourselves to re-analyze norm_seconds = norm_seconds or [norm_seconds] if not force: norm_seconds, names, times = check_if_needs_analyzing( event_segment, norm_seconds, characterizations ) if len(norm_seconds) == 0: logging.info( f"Already analyzed events in segment {event_segment}, skipping" ) return with Progress() as pbar: # TODO: exclude segments with events? backgrounds = build_background( thread_ex, process_ex, pbar, background_segments=background_segments, data_dir=data_dir, write_dir=write_dir, window_length=window_length, norm_seconds=norm_seconds, max_tb=max_tb, num_bins=num_bins, ) # now use the fit background to characterize the # significance of BBHNet's detection around the event for norm, background in backgrounds.items(): if norm is not None: normalizer = GaussianNormalizer(norm) else: normalizer = None logging.info( "Characterizing events {} with normalization " "window length {}".format(", ".join(names), norm) ) t, y, integrated = integrate( event_segment, kernel_length=1, window_length=window_length, normalizer=normalizer, ) fname = write_timeseries( get_write_dir(write_dir, norm, event_segment), t=t, y=y, integrated=integrated, ) # create a segment and add the existing data to # its cache so that we don't try to load it again segment = Segment(fname) segment._cache = {"t": t, "integrated": integrated} fars, latencies = background.characterize_events( segment, times, window_length=window_length, metric="far" ) # for each one of the events in this segment, # record the false alarm rate as a function of # time and add it to our dataframe then checkpoint it. # Then isolate the timeseries of both the NN outputs and # the integrated values around the event and write those # to another dataframe and checkpoint that as well for far, latency, name, time in zip(fars, latencies, names, times): logging.info(f"\t{name}:") logging.info(f"\t\tFalse Alarm Rates: {list(far)}") logging.info(f"\t\tLatencies: {list(latency)}") df = pd.DataFrame( dict( event_name=[name] * len(far), norm_seconds=[norm] * len(far), far=far, latency=latency, ) ).set_index(["event_name", "norm_seconds"]) characterizations =
pd.concat([characterizations, df])
pandas.concat
import time import numpy as np import pandas as pd from scipy.sparse import csr_matrix from tqdm import tqdm from course_lib.Base.BaseRecommender import BaseRecommender from src.data_management.data_preprocessing_fm import sample_negative_interactions_uniformly from src.utils.general_utility_functions import get_total_number_of_users, get_total_number_of_items from sklearn.preprocessing import MinMaxScaler def preprocess_dataframe_after_reading(df: pd.DataFrame): df = df.copy() df = df.sort_values(by="user_id", ascending=True) df = df.reset_index() df = df.drop(columns=["index"], inplace=False) return df def get_valid_dataframe_second_version(user_id_array, cutoff, main_recommender, path, mapper, recommender_list, URM_train, user_factors=None, item_factors=None): data_frame = get_boosting_base_dataframe(user_id_array=user_id_array, top_recommender=main_recommender, exclude_seen=True, cutoff=cutoff) for rec in recommender_list: data_frame = add_recommender_predictions(data_frame=data_frame, recommender=rec, column_name=rec.RECOMMENDER_NAME) data_frame = advanced_subclass_handling(data_frame=data_frame, URM_train=URM_train, path=path) data_frame = add_ICM_information(data_frame=data_frame, path=path, one_hot_encoding_subclass=False, use_subclass=True) data_frame = add_UCM_information(data_frame=data_frame, path=path, user_mapper=mapper) data_frame = add_user_len_information(data_frame=data_frame, URM_train=URM_train) data_frame = add_item_popularity(data_frame=data_frame, URM_train=URM_train) if user_factors is not None: data_frame = add_user_factors(data_frame=data_frame, user_factors=user_factors) if item_factors is not None: data_frame = add_item_factors(data_frame=data_frame, item_factors=item_factors) data_frame = data_frame.sort_values(by="user_id", ascending=True) data_frame = data_frame.reset_index() data_frame = data_frame.drop(columns=["index"], inplace=False) return data_frame def get_train_dataframe_proportion(user_id_array, cutoff, main_recommender, path, mapper, recommender_list, URM_train, proportion, user_factors=None, item_factors=None, negative_label_value=0, threshold=0.7): data_frame = get_boosting_base_dataframe(user_id_array=user_id_array, top_recommender=main_recommender, exclude_seen=False, cutoff=cutoff) labels, non_zero_count, _ = get_label_array(data_frame, URM_train) data_frame['label'] = labels data_frame = add_random_negative_ratings(data_frame=data_frame, URM_train=URM_train, proportion=proportion, negative_label_value=negative_label_value) data_frame = data_frame.sort_values(by="user_id", ascending=True) data_frame = data_frame.reset_index() data_frame = data_frame.drop(columns=["index"], inplace=False) for rec in recommender_list: data_frame = add_recommender_predictions(data_frame=data_frame, recommender=rec, column_name=rec.RECOMMENDER_NAME) # Add labels value in order to differentiate more the elements mask = (data_frame[rec.RECOMMENDER_NAME] > threshold) & (data_frame['label'] > 0) print("\t Score greater than threshold: {}/{}".format(np.sum(mask), non_zero_count)) data_frame.loc[mask, 'label'] += 1 print("Labels greater than 1: {}".format(np.sum(data_frame['label'] > 1))) data_frame = advanced_subclass_handling(data_frame=data_frame, URM_train=URM_train, path=path, add_subclass=False) data_frame = add_ICM_information(data_frame=data_frame, path=path, one_hot_encoding_subclass=False, use_subclass=True) data_frame = add_UCM_information(data_frame=data_frame, path=path, user_mapper=mapper) data_frame = add_user_len_information(data_frame=data_frame, URM_train=URM_train) data_frame = add_item_popularity(data_frame=data_frame, URM_train=URM_train) if user_factors is not None: data_frame = add_user_factors(data_frame=data_frame, user_factors=user_factors) if item_factors is not None: data_frame = add_item_factors(data_frame=data_frame, item_factors=item_factors) data_frame = data_frame.sort_values(by="user_id", ascending=True) data_frame = data_frame.reset_index() data_frame = data_frame.drop(columns=["index"], inplace=False) return data_frame def get_dataframe_all_data(user_id_array, path, mapper, recommender_list, URM_train, proportion, user_factors=None, item_factors=None): negative_URM = sample_negative_interactions_uniformly(negative_sample_size=len(URM_train.data) * proportion, URM=URM_train) data_frame = get_dataframe_URM(user_id_array=user_id_array, URM_train=URM_train + negative_URM) labels, _, _ = get_label_array(data_frame, URM_train) data_frame['label'] = labels data_frame = data_frame.sort_values(by="user_id", ascending=True) data_frame = data_frame.reset_index() data_frame = data_frame.drop(columns=["index"], inplace=False) for rec in recommender_list: data_frame = add_recommender_predictions(data_frame=data_frame, recommender=rec, column_name=rec.RECOMMENDER_NAME) data_frame = advanced_subclass_handling(data_frame=data_frame, URM_train=URM_train, path=path, add_subclass=False) data_frame = add_ICM_information(data_frame=data_frame, path=path, one_hot_encoding_subclass=False, use_subclass=True) data_frame = add_UCM_information(data_frame=data_frame, path=path, user_mapper=mapper) data_frame = add_user_len_information(data_frame=data_frame, URM_train=URM_train) data_frame = add_item_popularity(data_frame=data_frame, URM_train=URM_train) if user_factors is not None: data_frame = add_user_factors(data_frame=data_frame, user_factors=user_factors) if item_factors is not None: data_frame = add_item_factors(data_frame=data_frame, item_factors=item_factors) data_frame = data_frame.sort_values(by="user_id", ascending=True) data_frame = data_frame.reset_index() data_frame = data_frame.drop(columns=["index"], inplace=False) return data_frame def get_dataframe_first_version(user_id_array, remove_seen_flag, cutoff, main_recommender, path, mapper, recommender_list, URM_train): # Get dataframe for these users data_frame = get_boosting_base_dataframe(user_id_array=user_id_array, exclude_seen=remove_seen_flag, cutoff=cutoff, top_recommender=main_recommender) for rec in recommender_list: data_frame = add_recommender_predictions(data_frame=data_frame, recommender=rec, column_name=rec.RECOMMENDER_NAME) data_frame = add_ICM_information(data_frame=data_frame, path=path) data_frame = add_UCM_information(data_frame=data_frame, path=path, user_mapper=mapper) data_frame = add_user_len_information(data_frame=data_frame, URM_train=URM_train) data_frame = data_frame.sort_values(by="user_id", ascending=True) data_frame = data_frame.reset_index() data_frame.drop(columns=["index"], inplace=False) return data_frame def add_user_factors(data_frame: pd.DataFrame, user_factors: np.ndarray): """ Add user factors to the dataframe :param data_frame: :param user_factors: :return: """ print("Adding user factors...") data_frame = data_frame.copy() user_factors_df = pd.DataFrame(data=user_factors, index=np.arange(0, user_factors.shape[0]), columns=["user_factor_{}".format(i + 1) for i in range(user_factors.shape[1])]) data_frame = pd.merge(data_frame, user_factors_df, left_on="user_id", right_index=True) return data_frame def add_item_factors(data_frame: pd.DataFrame, item_factors: np.ndarray): """ Add item factors to the dataframe :param data_frame: :param item_factors: :return: """ print("Adding item factors...") data_frame = data_frame.copy() item_factors_df = pd.DataFrame(data=item_factors, index=np.arange(0, item_factors.shape[0]), columns=["item_factor_{}".format(i + 1) for i in range(item_factors.shape[1])]) data_frame = pd.merge(data_frame, item_factors_df, left_on="item_id", right_index=True) return data_frame def add_item_popularity(data_frame: pd.DataFrame, URM_train: csr_matrix): """ Add the item popularity to the dataframe :param data_frame: data frame containing information for boosting :param URM_train: URM train matrix :return: dataframe containing boosting information + item popularity """ print("Adding item popularity...") data_frame = data_frame.copy() pop_items = (URM_train > 0).sum(axis=0) pop_items = np.array(pop_items).squeeze() item_ids = np.arange(URM_train.shape[1]) data = np.array([item_ids, pop_items]) data = np.transpose(data) new_df = pd.DataFrame(data=data, columns=["row", "item_pop"]) data_frame = pd.merge(data_frame, new_df, left_on="item_id", right_on="row") data_frame = data_frame.drop(columns=["row"], inplace=False) return data_frame def get_label_array(data_frame: pd.DataFrame, URM_train: csr_matrix): """ Create a dataframe with a single column with the correct predictions :param data_frame: data frame containing information for boosting :param URM_train: URM train matrix :return: numpy array containing y information """ print("Retrieving training labels...") user_ids = data_frame['user_id'].values item_ids = data_frame['item_id'].values y = np.zeros(user_ids.size, dtype=np.int) labels = np.array(URM_train[user_ids, item_ids].tolist()).flatten() y[labels > 0] = 1 non_zero_count = np.count_nonzero(y) print("\t- There are {} non-zero ratings in {}".format(non_zero_count, y.size)) return y, non_zero_count, y.size def add_user_len_information(data_frame: pd.DataFrame, URM_train: csr_matrix): """ Add information concerning the user profile length to the row of the dataframe :param data_frame: data frame that is being pre-processed from boosting :param URM_train: URM train from which to take profile length information :return: data frame with new content inserted """ print("Adding user profile length...") data_frame = data_frame.copy() user_act = (URM_train > 0).sum(axis=1) user_act = np.array(user_act).squeeze() user_ids = np.arange(URM_train.shape[0]) data = np.array([user_ids, user_act]) data = np.transpose(data) new_df = pd.DataFrame(data=data, columns=["row", "user_act"]) data_frame = pd.merge(data_frame, new_df, left_on="user_id", right_on="row") data_frame = data_frame.drop(columns=["row"], inplace=False) return data_frame def remap_data_frame(df: pd.DataFrame, mapper): """ Change user_id columns of the df given in input, according to the mapper. Users that are not present will be removed, and the others will be mapped to the correct number. :param df: dataframe that will be modified :param mapper: mapper according to which the dataframe will be modified :return: dataframe with "user_id" column modified properly """ df = df.copy() # Remove users that are not present in the mapper original_users = df['row'].values new_users_key = list(mapper.keys()) new_users_key = list(map(int, new_users_key)) new_users_key = np.array(new_users_key) mask = np.in1d(original_users, new_users_key, invert=True) remove = original_users[mask] df = df.set_index("row") mask = np.in1d(df.index, remove) df = df.drop(df.index[mask]) # Map the index to the new one df = df.reset_index() df['row'] = df['row'].map(lambda x: mapper[str(x)]) return df def add_UCM_information(data_frame: pd.DataFrame, user_mapper, path="../../data/", use_region=True, use_age=True, use_age_onehot=False): """ Add UCM information to the data frame for XGboost :param data_frame: data frame containing information being pre-processed for boosting :param user_mapper: mapper original users to train users :param path: where to read UCM csv files :param use_region: True is region information should be used, false otherwise :param use_age: True if age information should be used, false otherwise :param use_age_onehot: True if age information added is one hot, false otherwise :return: pd.DataFrame containing the original data frame+ UCM information """ print("Adding UCM information...") t_users = get_total_number_of_users() # Total number of users (-1 since indexing from 0) data_frame = data_frame.copy() df_region: pd.DataFrame = pd.read_csv(path + "data_UCM_region.csv") df_age: pd.DataFrame = pd.read_csv(path + "data_UCM_age.csv") # Re-map UCM data frame in order to have the correct user information if use_region: df_region = df_region[['row', 'col']] df_dummies = pd.get_dummies(df_region['col'], prefix='region') df_dummies = df_dummies.join(df_region['row']) df_dummies = df_dummies.groupby(['row'], as_index=False).sum() # Fill missing values user_present = df_dummies['row'].values total_users = np.arange(t_users) mask = np.in1d(total_users, user_present, invert=True) missing_users = total_users[mask] num_col = df_dummies.columns.size imputed_users = np.zeros(shape=(num_col, missing_users.size)) imputed_users[0] = missing_users missing_df = pd.DataFrame(data=np.transpose(imputed_users), dtype=np.int32, columns=df_dummies.columns) df_region_onehot = df_dummies.append(missing_df, sort=False) if user_mapper is not None: df_region_onehot = remap_data_frame(df=df_region_onehot, mapper=user_mapper) data_frame = pd.merge(data_frame, df_region_onehot, right_on="row", left_on="user_id") data_frame = data_frame.drop(columns=["row"], inplace=False) if use_age: df_age = df_age[['row', 'col']] # Handle missing values: fill with mode + 1 users_present = df_age['row'].values total_users = np.arange(t_users) mask = np.in1d(total_users, users_present, invert=True) missing_users = total_users[mask].astype(np.int32) missing_val_filled = np.ones(missing_users.size) * (int(df_age['col'].mode()) + 1) missing = np.array([missing_users, missing_val_filled], dtype=np.int32) missing_df = pd.DataFrame(data=np.transpose(missing), columns=["row", "col"]) df_age_imputed = df_age.copy().append(missing_df, sort=False) df_age_imputed = df_age_imputed.reset_index() df_age_imputed = df_age_imputed[['row', 'col']] if user_mapper is not None: df_age_imputed = remap_data_frame(df=df_age_imputed, mapper=user_mapper) df_age_imputed = df_age_imputed.rename(columns={"col": "age"}) if use_age_onehot: row = df_age_imputed['row'] df_age_imputed = pd.get_dummies(df_age_imputed['age'], prefix='age') df_age_imputed = df_age_imputed.join(row) data_frame = pd.merge(data_frame, df_age_imputed, right_on="row", left_on="user_id") data_frame = data_frame.drop(columns=["row"], inplace=False) # Add dummy variables indicating that the region has been imputed df_age_dummy_imputation = df_age.copy() df_age_dummy_imputation['col'] = 0 imputed_df = pd.DataFrame( data={"row": missing_users, "col": np.ones(shape=missing_users.size, dtype=np.int)}) df_age_dummy_imputation = df_age_dummy_imputation.append(imputed_df, sort=False) df_age_dummy_imputation = df_age_dummy_imputation.rename(columns={"col": "age_imputed_flag"}) if user_mapper is not None: df_age_dummy_imputation = remap_data_frame(df=df_age_dummy_imputation, mapper=user_mapper) data_frame = pd.merge(data_frame, df_age_dummy_imputation, right_on="row", left_on="user_id") data_frame = data_frame.drop(columns=["row"], inplace=False) return data_frame def advanced_subclass_handling(data_frame: pd.DataFrame, URM_train: csr_matrix, path="../../data/", add_subclass=False): """ Here we want to include in the training set sub class information in the following way: - A column encoding the mean of 'label' for a certain couple (user, subclass): i.e. how many items of that subclass the user liked - Including information about the popularity of the subclass (how many items for that subclass - Including ratings of that subclass :param URM_train: mean response will be retrieved from here :param data_frame: dataframe being pre-processed for boosting :param path: path to the folder containing subclass dataframe :return: dataframe with augmented information """ print("Adding subclass and feature engineering subclass...") data_frame = data_frame.copy() df_subclass: pd.DataFrame = pd.read_csv(path + "data_ICM_sub_class.csv") df_subclass = df_subclass[['row', 'col']] df_subclass = df_subclass.rename(columns={"col": "subclass"}) # Merging sub class information data_frame = pd.merge(data_frame, df_subclass, right_on="row", left_on="item_id") data_frame = data_frame.drop(columns=["row"], inplace=False) print("\t- Add items present for each subclass") # Add subclass item-popularity: how many items are present of that subclass subclass_item_count = df_subclass.groupby("subclass").count() data_frame = pd.merge(data_frame, subclass_item_count, right_index=True, left_on="subclass") data_frame = data_frame.rename(columns={"row": "item_per_subclass"}) print("\t- Add ratings popularity for each subclass") # Add subclass ratings-popularity: how many interactions we have for each subclass URM_train_csc = URM_train.tocsc() n_ratings_sub = [] sorted_sub_indices = np.argsort(df_subclass['subclass'].values) sorted_sub = df_subclass['subclass'][sorted_sub_indices].values sorted_item_subclass = df_subclass['row'][sorted_sub_indices].values unique_sorted_sub, sub_indptr = np.unique(sorted_sub, return_index=True) sub_indptr = np.concatenate([sub_indptr, [sorted_sub.size]]) for i, sub in tqdm(enumerate(unique_sorted_sub), total=unique_sorted_sub.size, desc="\t\tProcessing"): item_sub = sorted_item_subclass[sub_indptr[i]: sub_indptr[i + 1]] n_ratings_sub.append(URM_train_csc[:, item_sub].data.size) ratings_sub = np.array([unique_sorted_sub, n_ratings_sub]) ratings_per_sub_df = pd.DataFrame(data=np.transpose(ratings_sub), columns=["subclass", "global_ratings_per_subclass"]) data_frame = pd.merge(data_frame, ratings_per_sub_df, left_on="subclass", right_on="subclass") # Add subclass ratings-popularity for each user using rating percentage print("\t- Add ratings popularity for pairs (user, subclass)") users = data_frame['user_id'].values sub = data_frame['subclass'].values perc_array = np.zeros(users.size) rat_array = np.zeros(users.size) for i, user in tqdm(enumerate(users), total=users.size, desc="\t\tProcessing"): curr_sub = sub[i] curr_sub_index = np.searchsorted(unique_sorted_sub, curr_sub) # Find items of this subclass item_sub = sorted_item_subclass[sub_indptr[curr_sub_index]: sub_indptr[curr_sub_index + 1]] user_item = URM_train.indices[URM_train.indptr[user]: URM_train.indptr[user + 1]] total_user_likes = user_item.size mask = np.in1d(item_sub, user_item) likes_per_sub = item_sub[mask].size user_p = likes_per_sub / total_user_likes perc_array[i] = user_p rat_array[i] = likes_per_sub data_frame["subclass_user_like_perc"] = perc_array data_frame["subclass_user_like_quantity"] = rat_array if not add_subclass: data_frame = data_frame.drop(columns=["subclass"], inplace=False) return data_frame def add_ICM_information(data_frame: pd.DataFrame, path="../../data/", use_price=True, use_asset=True, use_subclass=True, one_hot_encoding_subclass=False): """ Add information form the ICM files to the data frame :param one_hot_encoding_subclass: if one hot encoding should be applied to subclass or not :param data_frame: data frame that is being pre-processed for boosting :param path: path to the folder containing the csv files :param use_price: True if you wish to append price information, false otherwise :param use_asset: True if you wish to append asset information, false otherwise :param use_subclass: True if you wish to append subclass information, false otherwise :return: pd.DataFrame containing the information """ print("Adding ICM information...") data_frame = data_frame.copy() df_price: pd.DataFrame = pd.read_csv(path + "data_ICM_price.csv") df_asset: pd.DataFrame = pd.read_csv(path + "data_ICM_asset.csv") df_subclass: pd.DataFrame = pd.read_csv(path + "data_ICM_sub_class.csv") total_items = get_total_number_of_items() total_items = np.arange(total_items) if use_price: # Handle missing values item_present = df_price['row'].values mask = np.in1d(total_items, item_present, invert=True) missing_items = total_items[mask].astype(np.int32) missing_val_filled = np.ones(missing_items.size) * df_price['data'].median() missing = np.array([missing_items, missing_val_filled]) missing_df = pd.DataFrame(data=np.transpose(missing), columns=['row', 'data']) df_price = df_price.append(missing_df, sort=False) df_price = df_price.reset_index() df_price = df_price[['row', 'data']] # TODO remove outliers and add dummy variable df_price = df_price.rename(columns={"data": "price"}) data_frame = pd.merge(data_frame, df_price, right_on="row", left_on="item_id") data_frame = data_frame.drop(columns=['row'], inplace=False) if use_asset: # Handle missing values item_present = df_asset['row'].values mask = np.in1d(total_items, item_present, invert=True) missing_items = total_items[mask].astype(np.int32) missing_val_filled = np.ones(missing_items.size) * df_asset['data'].median() missing = np.array([missing_items, missing_val_filled]) missing_df = pd.DataFrame(data=np.transpose(missing), columns=['row', 'data']) df_asset = df_asset.append(missing_df, sort=False) df_asset = df_asset.reset_index() df_asset = df_asset[['row', 'data']] # TODO remove outliers and add dummy variable df_asset = df_asset.rename(columns={"data": "asset"}) data_frame =
pd.merge(data_frame, df_asset, right_on="row", left_on="item_id")
pandas.merge
from copy import deepcopy import numpy as np import pandas as pd import pytest from etna.datasets import TSDataset from etna.models import NaiveModel from etna.transforms.missing_values import TimeSeriesImputerTransform from etna.transforms.missing_values.imputation import _OneSegmentTimeSeriesImputerTransform @pytest.fixture def ts_nans_beginning(example_reg_tsds): """Example dataset with NaNs at the beginning.""" ts = deepcopy(example_reg_tsds) # nans at the beginning (shouldn't be filled) ts.loc[ts.index[:5], pd.IndexSlice["segment_1", "target"]] = np.NaN # nans in the middle (should be filled) ts.loc[ts.index[8], pd.IndexSlice["segment_1", "target"]] = np.NaN ts.loc[ts.index[10], pd.IndexSlice["segment_2", "target"]] = np.NaN ts.loc[ts.index[40], pd.IndexSlice["segment_2", "target"]] = np.NaN return ts def test_wrong_init_one_segment(): """Check that imputer for one segment fails to init with wrong imputing strategy.""" with pytest.raises(ValueError): _ = _OneSegmentTimeSeriesImputerTransform( in_column="target", strategy="wrong_strategy", window=-1, seasonality=1, default_value=None ) def test_wrong_init_two_segments(all_date_present_df_two_segments): """Check that imputer for two segments fails to fit_transform with wrong imputing strategy.""" with pytest.raises(ValueError): _ = TimeSeriesImputerTransform(strategy="wrong_strategy") @pytest.mark.smoke @pytest.mark.parametrize("fill_strategy", ["mean", "zero", "running_mean", "forward_fill", "seasonal"]) def test_all_dates_present_impute(all_date_present_df: pd.DataFrame, fill_strategy: str): """Check that imputer does nothing with series without gaps.""" imputer = _OneSegmentTimeSeriesImputerTransform( in_column="target", strategy=fill_strategy, window=-1, seasonality=1, default_value=None ) result = imputer.fit_transform(all_date_present_df) np.testing.assert_array_equal(all_date_present_df["target"], result["target"]) @pytest.mark.smoke @pytest.mark.parametrize("fill_strategy", ["mean", "zero", "running_mean", "forward_fill", "seasonal"]) def test_all_dates_present_impute_two_segments(all_date_present_df_two_segments: pd.DataFrame, fill_strategy: str): """Check that imputer does nothing with series without gaps.""" imputer = TimeSeriesImputerTransform(strategy=fill_strategy) result = imputer.fit_transform(all_date_present_df_two_segments) for segment in result.columns.get_level_values("segment"): np.testing.assert_array_equal(all_date_present_df_two_segments[segment]["target"], result[segment]["target"]) @pytest.mark.parametrize("fill_strategy", ["zero", "mean", "running_mean", "forward_fill", "seasonal"]) def test_all_missing_impute_fail(df_all_missing: pd.DataFrame, fill_strategy: str): """Check that imputer can't fill nans if all values are nans.""" imputer = _OneSegmentTimeSeriesImputerTransform( in_column="target", strategy=fill_strategy, window=-1, seasonality=1, default_value=None ) with pytest.raises(ValueError, match="Series hasn't non NaN values which means it is empty and can't be filled"): _ = imputer.fit_transform(df_all_missing) @pytest.mark.parametrize("fill_strategy", ["mean", "running_mean", "forward_fill", "seasonal"]) def test_all_missing_impute_fail_two_segments(df_all_missing_two_segments: pd.DataFrame, fill_strategy: str): """Check that imputer can't fill nans if all values are nans.""" imputer = TimeSeriesImputerTransform(strategy=fill_strategy) with pytest.raises(ValueError, match="Series hasn't non NaN values which means it is empty and can't be filled"): _ = imputer.fit_transform(df_all_missing_two_segments) def test_one_missing_value_zero(df_with_missing_value_x_index: pd.DataFrame): """Check that imputer with zero-strategy works correctly in case of one missing value in data.""" df, idx = df_with_missing_value_x_index imputer = _OneSegmentTimeSeriesImputerTransform( in_column="target", strategy="zero", window=-1, seasonality=1, default_value=None ) result = imputer.fit_transform(df)["target"] assert result.loc[idx] == 0 assert not result.isna().any() def test_range_missing_zero(df_with_missing_range_x_index: pd.DataFrame): """Check that imputer with zero-strategy works correctly in case of range of missing values in data.""" df, rng = df_with_missing_range_x_index imputer = _OneSegmentTimeSeriesImputerTransform( in_column="target", strategy="zero", window=-1, seasonality=1, default_value=None ) result = imputer.fit_transform(df)["target"] expected_series =
pd.Series(index=rng, data=[0 for _ in rng], name="target")
pandas.Series
# -*- coding: utf-8 -*- """ Littlefinger Performing calculations on personal financial transactions Reports: """ import pandas as pd import numpy as np from datetime import datetime, timedelta from dateutil.parser import parse import seaborn as sns import matplotlib.pyplot as plt from pandas.tseries.offsets import * pd.set_option('float_format', '{:.2f}'.format) plt.style.use('seaborn-colorblind') # Useful timeranges now = datetime.now() weekago = now - timedelta(7) def tidyxacts(df): """ Fix formats of columns for transactions in dataframe df Parameters ---------- df : Dataframe Returns ------- Date formatted as Date Amounts as numeric Top and sub level categories as category Adds columns for year, month, quarter, week number Sets date as index """ df['Date'] = pd.to_datetime(df['Date']) df['Inflow'] = pd.to_numeric(df['Inflow']) df['Outflow'] = pd.to_numeric(df['Outflow']) df['Net'] = pd.to_numeric(df['Net']) # df['Master Category'] = df['Master Category'].astype("category") # df['Sub Category'] = df['Sub Category'].astype("category") # df['Year'], df['Month'] = df['Date'].dt.year, df['Date'].dt.strftime('%b') df['Year'], df['Month'] = df['Date'].dt.year, df['Date'].dt.month df['Quarter'], df['Week'] = df['Date'].dt.quarter, df['Date'].dt.week df.set_index(['Date'], inplace=True) def add_date_info(df): """ Adds columns for year, month, quarter, week number """ df['Year'], df['Month'] = df['Date'].dt.year, df['Date'].dt.strftime('%b') df['Quarter'], df['Week'] = df['Date'].dt.quarter, df['Date'].dt.week def top10expenses(df, starttime, endtime): """ Returns top 10 expenses between dates. Makes a smaller list of relevant columns and filters df. TODO ---- Add categorical listing to expense/income to avoid showing income """ cols = ['Account', 'Date', 'Payee', 'Master Category', 'Sub Category', 'Outflow', 'Type'] df2 = df[cols] filtered = df2[(df2['Date'] >= starttime) & (df2['Date'] <= endtime) & df['Type'] == 'Expense'] return filtered.sort_values(by='Outflow', ascending=False).head(10) def account_balances(df): """ Returns current account balances """ return pd.pivot_table(df, index=["Account"], values=["Net"], aggfunc=np.sum).sort_values(by='Net') def annualspends(df): """ Returns pivot table by year and master category. """ return pd.pivot_table(uk, index=['Master Category'], columns=['Year'], values=["Net"], aggfunc=np.sum) # Each account's balance def accounttrend(df): """ Plot running total of each account over all time """ plt.figure() grouped = df['Net'].groupby(df['Account']) for account, net in grouped: net.cumsum().plot(label=account, legend=True) def funds_net_worth(): """ This function calculates the net worth of each fund over time, plots it and calculates the total """ funds = excel.parse('Investments') prices = excel.parse('Funds') funds.set_index(['Date'], inplace=True) prices.set_index(['Date'], inplace=True) # Prices at point of purchase purchase_prices = funds.pivot(index='Date', columns='Company Code', values='Price (GBP)') # Price Table # TODO - import from somewhere price_table = prices.pivot(index='Date', columns='Fund', values='Price') # Join prices all_prices = pd.concat([price_table, purchase_prices]).sort_index() all_prices.fillna(method='ffill', inplace=True) # Cumulative Amount of Funds fund_table = pd.pivot_table(funds, values=['Quantity'], aggfunc=np.sum, index=['Date'], columns=['Company Code'], fill_value=0).cumsum() return all_prices, fund_table def xact_type(df): """ Adds transfer, expense, income category column to df """ def categorise(row): if row['Master Category'] == "Transfer": return 'Transfer' if row['Master Category'] == "Income": return 'Income' return 'Expense' df['Type'] = df.apply(lambda row: categorise(row), axis=1) """ Extra things to play with Groupby: grouped = df.groupby(lambda x: x.year) for year, group in grouped: ....: print (year) ....: print (group) usexpenses = us.query('Type == ["Expense"]') Last month date lastmonth = now - DateOffset(months=1) filter = str(lastmonth.year) + "-" + str(lastmonth.month) df[filter] Plot expenses graph: usexpenses = us.query('Type == ["Expense"]').copy() usexpenses.Net = usexpenses.Net * -1 usexpenses.groupby('Master Category')['Net'].sum().plot(kind="bar") ; plt.axhline(0, color='k') Graph of stacked subcategoryies per master category usexpenses.groupby(['Master Category', 'Sub Category'])['Net'].sum().unstack().plot(kind='bar', stacked=True) summary = pd.pivot_table(us['2017'], index=['Master Category'], columns=['Month'], values=['Net'], aggfunc=np.sum, fill_value=0) months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec'] summary.columns = months[:now.month] # Renames to months based off current month summary.loc['Total']= summary.sum() # adds total row at bottom """ def monthly_pivot(df): pass # Open Excel and parse worksheets excel =
pd.ExcelFile("C:\\Users\\aowd\OneDrive - Chevron\\Special Projects\\littlefinger\\Money1.2.xlsx")
pandas.ExcelFile
from django.core.files import temp from django.shortcuts import render from django.conf import settings from django.http import HttpResponse from django.core.files.storage import FileSystemStorage from django.http import FileResponse from django.views.static import serve import xlsxwriter import pdfkit import csv import numpy #import required libraries import pandas as pd import pyexcel import xlrd from matplotlib import pylab from matplotlib import collections as mc from pylab import * from pylev3 import Levenshtein from matplotlib.ticker import PercentFormatter from matplotlib import pyplot import matplotlib.pyplot as plt import PIL, PIL.Image import os try: from StringIO import BytesIO except ImportError: from io import BytesIO '''from google.colab import drive drive.mount('/content/drive')''' # Create your views here. def welcome(request): return HttpResponse("Welcome") def ourResponse(request): return HttpResponse("OUR RESPONSE") def takeInput(request): return render(request,'input.html') def similarity(seq1, seq2): l1 , l2 = len(seq1), len(seq2) ldist = Levenshtein.wf(seq1, seq2) return (1 - ldist/max(l1, l2))*100 def df_gdomain_counter(df): df_count = df["ProteinID"].value_counts() return df_count def match(x, y, mm): mismatch = 0 for i in range(len(x)): if (x[i] == 'X' or x[i] == y[i]): pass else: mismatch += 1 if (mismatch <= mm): return True else: return False def shuffler(word): word_to_scramble = list(word) numpy.random.shuffle(word_to_scramble) # O=seq= ''.join(seq_temp) new_word = ''.join(word_to_scramble) return new_word def list_of_7mer_X(sevenmer): x_data = [] for r1 in range(7): x = list(sevenmer) x[r1] = "X" x = ''.join(x) x_data.append(x) return x_data def performAlgo(request): myfile = request.FILES['document'] print(myfile.name) fs = FileSystemStorage() '''fs.save(myfile.name, myfile)''' workbook = xlsxwriter.Workbook('media/new.xlsx') family = request.POST.get("input01") outpath = "media/new.xlsx" df1 = pd.read_excel(myfile) df2 = df1 for i in range((df1.shape[0] - 1)): A = df1.loc[i, "Sequence"] B = df1.loc[(i + 1), "Sequence"] percent_similarity = similarity(A, B) if (percent_similarity >= 90): df2 = df2.drop(df2[df2.Sequence == B].index) df2.to_excel(outpath, index=False) NumProteins = df2.shape[0] def H(protein_id, protein, x1, x2, x3, x4, mm1, mm2, mm3, mm4, min13, min34, min45, max13, max34, max45): pL1 = [] pL2 = [] pL3 = [] pL4 = [] L1 = [] L2 = [] L3 = [] L4 = [] for i in range(len(protein) - len(x1)): if (match(x1, protein[i:i + len(x1)], mm1) == True): # global L1 pL1 = pL1 + [i] L1 = L1 + [protein[i:i + len(x1)]] # print "L1 = ", pL1,L1 for j in range(len(protein) - len(x2)): if (match(x2, protein[j:j + len(x2)], mm2) == True): # global L2 pL2 = pL2 + [j] L2 = L2 + [protein[j:j + len(x2)]] # print "L2 = ", pL2,L2 for k in range(len(protein) - len(x3)): if (match(x3, protein[k:k + len(x3)], mm3) == True): # global L3 pL3 = pL3 + [k] L3 = L3 + [protein[k:k + len(x3)]] # print "L3 = ", pL3,L3 for l in range(len(protein) - len(x4)): if (match(x4, protein[l:l + len(x4)], mm4) == True): # global L3 pL4 = pL4 + [l] L4 = L4 + [protein[l:l + len(x4)]] candidates = [] for i in range(len(pL1)): for j in range(len(pL2)): for k in range(len(pL3)): for l in range(len(pL4)): if (min13 <= pL2[j] - pL1[i] <= max13 and min34 <= pL3[k] - pL2[j] <= max34 and min45 <= pL4[l] - pL3[k] <= max45): # if 80 <=pL2[j]-pL1[i] <= 120 and 40 <=pL3[k]- pL2[j] <= 80 and 20 <=pL4[l]- pL3[k] <= 80 a = L1[i] a_pos = pL1[i] b = L2[j] b_pos = pL2[j] c = L3[k] c_pos = pL3[k] d = L4[l] d_pos = pL4[l] candidates.append((protein_id, a, a_pos, b, b_pos, c, c_pos, d, d_pos)) return candidates abc = [] l1 = [] inpath = "media/new.xlsx" mismatch1 = int(request.POST.get("mismatch1")) mismatch2 = int(request.POST.get("mismatch2")) mismatch3 = int(request.POST.get("mismatch3")) mismatch4 = int(request.POST.get("mismatch4")) mismatch41 = mismatch4 x1 = request.POST.get("x1") x2 = request.POST.get("x2") x3 = request.POST.get("x3") x4 = request.POST.get("x4") Min_G1_G3 = int(request.POST.get("Min_G1_G3")) Max_G1_G3 = int(request.POST.get("Max_G1_G3")) Min_G3_G4 = int(request.POST.get("Min_G3_G4")) Max_G3_G4 = int(request.POST.get("Max_G3_G4")) Min_G4_G5 = int(request.POST.get("Min_G4_G5")) Max_G4_G5 = int(request.POST.get("Max_G4_G5")) workbook = xlsxwriter.Workbook('media/output_wo_bias.xlsx') outpath = "media/output_wo_bias.xlsx" df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] protein_id for i in range(len(protein)): l = H(protein_id[i], protein[i], x1, x2, x3, x4, mismatch1, mismatch2, mismatch3, mismatch4, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position.1', 'G4-box', 'Position.2', 'G5-box', 'Position.3']) gdomains = gdomains[gdomains['ProteinID'].astype(bool)] gdomains.head() gdomains.to_excel(outpath, index=False) abc = [] l1 = [] workbook = xlsxwriter.Workbook('media/SA_nomismatch.xlsx') outpath = "media/SA_nomismatch.xlsx" str1 = "XXX" x41 = str1 + x4 + "X" mismatch41 = 0 df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] #protein_id for i in range(len(protein)): l = H(protein_id[i], protein[i], x1, x2, x3, x41, mismatch1, mismatch2, mismatch3, mismatch41, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position', 'G4-box', 'Position', 'G5-box', 'Position']) gdomains = gdomains[gdomains['ProteinID'].astype(bool)] gdomains.head() gdomains.to_excel(outpath, index=False) abc = [] l1 = [] workbook = xlsxwriter.Workbook('media/SA_mismatch.xlsx') outpath = "media/SA_mismatch.xlsx" df1 =
pd.read_excel(inpath)
pandas.read_excel
from unittest.mock import patch import featuretools as ft import pandas as pd import pytest import woodwork as ww from pandas.testing import assert_frame_equal from woodwork.logical_types import ( Boolean, Categorical, Datetime, Double, Integer, ) from blocktorch.pipelines.components import DFSTransformer def test_index_errors(X_y_binary): with pytest.raises(TypeError, match="Index provided must be string"): DFSTransformer(index=0) with pytest.raises(TypeError, match="Index provided must be string"): DFSTransformer(index=None) def test_numeric_columns(X_y_multi): X, y = X_y_multi X_pd = pd.DataFrame(X) feature = DFSTransformer() feature.fit(X_pd, y) feature.transform(X_pd) @patch("blocktorch.pipelines.components.transformers.preprocessing.featuretools.dfs") @patch( "blocktorch.pipelines.components.transformers.preprocessing.featuretools.calculate_feature_matrix" ) def test_featuretools_index(mock_calculate_feature_matrix, mock_dfs, X_y_multi): X, y = X_y_multi X_pd = pd.DataFrame(X) X_new_index = X_pd.copy() index = [i for i in range(len(X))] new_index = [i * 2 for i in index] X_new_index["index"] = new_index mock_calculate_feature_matrix.return_value = pd.DataFrame({}) # check if _make_entity_set keeps the intended index feature = DFSTransformer() feature.fit(X_new_index) feature.transform(X_new_index) arg_es = mock_dfs.call_args[1]["entityset"].entities[0].df["index"] arg_tr = ( mock_calculate_feature_matrix.call_args[1]["entityset"].entities[0].df["index"] ) assert arg_es.to_list() == new_index assert arg_tr.to_list() == new_index # check if _make_entity_set fills in the proper index values feature.fit(X_pd) feature.transform(X_pd) arg_es = mock_dfs.call_args[1]["entityset"].entities[0].df["index"] arg_tr = ( mock_calculate_feature_matrix.call_args[1]["entityset"].entities[0].df["index"] ) assert arg_es.to_list() == index assert arg_tr.to_list() == index def test_transform(X_y_binary, X_y_multi, X_y_regression): datasets = locals() for dataset in datasets.values(): X, y = dataset X_pd = pd.DataFrame(X) X_pd.columns = X_pd.columns.astype(str) es = ft.EntitySet() es = es.entity_from_dataframe( entity_id="X", dataframe=X_pd, index="index", make_index=True ) feature_matrix, features = ft.dfs(entityset=es, target_entity="X") feature = DFSTransformer() feature.fit(X) X_t = feature.transform(X) assert_frame_equal(feature_matrix, X_t) assert features == feature.features feature.fit(X, y) feature.transform(X) X_pd.ww.init() feature.fit(X_pd) feature.transform(X_pd) def test_transform_subset(X_y_binary, X_y_multi, X_y_regression): datasets = locals() for dataset in datasets.values(): X, y = dataset X_pd = pd.DataFrame(X) X_pd.columns = X_pd.columns.astype(str) X_fit = X_pd.iloc[: len(X) // 3] X_transform = X_pd.iloc[len(X) // 3 :] es = ft.EntitySet() es = es.entity_from_dataframe( entity_id="X", dataframe=X_transform, index="index", make_index=True ) feature_matrix, features = ft.dfs(entityset=es, target_entity="X") feature = DFSTransformer() feature.fit(X_fit) X_t = feature.transform(X_transform) assert_frame_equal(feature_matrix, X_t) @pytest.mark.parametrize( "X_df", [ pd.DataFrame( pd.to_datetime(["20190902", "20200519", "20190607"], format="%Y%m%d") ), pd.DataFrame(pd.Series([1, 2, 3], dtype="Int64")), pd.DataFrame(pd.Series([1.0, 2.0, 3.0], dtype="float")), pd.DataFrame(pd.Series(["a", "b", "a"], dtype="category")), ], ) def test_ft_woodwork_custom_overrides_returned_by_components(X_df): y = pd.Series([1, 2, 1]) override_types = [Integer, Double, Categorical, Datetime, Boolean] for logical_type in override_types: try: X = X_df.copy() X.ww.init(logical_types={0: logical_type}) except (ww.exceptions.TypeConversionError, ValueError): continue dft = DFSTransformer() dft.fit(X, y) transformed = dft.transform(X, y) assert isinstance(transformed, pd.DataFrame) if logical_type == Datetime: assert {k: type(v) for k, v in transformed.ww.logical_types.items()} == { "DAY(0)": Integer, "MONTH(0)": Integer, "WEEKDAY(0)": Integer, "YEAR(0)": Integer, } else: assert {k: type(v) for k, v in transformed.ww.logical_types.items()} == { "0": logical_type } @patch("blocktorch.pipelines.components.transformers.preprocessing.featuretools.dfs") def test_dfs_sets_max_depth_1(mock_dfs, X_y_multi): X, y = X_y_multi X_pd =
pd.DataFrame(X)
pandas.DataFrame
from flask import Flask, g, jsonify, json, request from flask_cors import CORS import numpy as np import os import pandas as pd import pysam from scipy.cluster.hierarchy import linkage, to_tree import zipfile def genotype(gt: tuple) -> int: """Convert genotype tuple to dosage (0/1/2)""" return None if gt == (None, None) else gt[0] + gt[1] def variant_record(variant_id, vcf): """Get record for one variant from VCF""" chrom, pos = variant_id.split(":") chrom = chrom.replace("chr", "") pos = int(pos) recs = list(vcf.fetch(chrom, pos - 1, pos, reopen=True)) assert len(recs) == 1, f"Genotype retrieval error: {variant_id}" return recs[0] def geno_matrix(ids, vcf): """Get genotype matrix for a list of SNPs Assumes SNPs are in close proximity on a chromosome, e.g. in a cis-window. """ chrom = ids[0].split(":")[0].replace("chr", "") pos = [int(x.split(":")[1]) for x in ids] genos = {} for rec in vcf.fetch(chrom, min(pos) - 1, max(pos) + 1): if rec.id in ids: genos[rec.id] = [genotype(rec.samples[s]["GT"]) for s in vcf.header.samples] mat = np.array([genos[id] if id in genos else [None] * len(vcf.header.samples) for id in ids]) return mat def get_newick(node, newick, parentdist, leaf_names): """Save dendrogram in Newick format from https://stackoverflow.com/questions/28222179/save-dendrogram-to-newick-format/31878514#31878514 """ if node.is_leaf(): return "%s:%g%s" % (leaf_names[node.id], parentdist - node.dist, newick) if len(newick) > 0: newick = "):%g%s" % (parentdist - node.dist, newick) else: newick = ");" newick = get_newick(node.get_left(), newick, node.dist, leaf_names) newick = get_newick(node.get_right(), ",%s" % (newick), node.dist, leaf_names) newick = "(%s" % (newick) return newick def row_tree(d): """Get Newick representation of matrix for clustering""" clust = linkage(d, method="average", optimal_ordering=True) tree = to_tree(clust) return get_newick(tree, "", tree.dist, d.index) def validate_genes(ids, genes): """Return valid gene IDs for a list of gene IDs/names""" valid = [] for id in ids: if id in genes.index: valid.append(id) else: x = list(genes.loc[genes["geneSymbol"] == id, :].index) if len(x) > 0: valid.append(x[0]) else: id2 = id[0].upper() + id[1:].lower() x = list(genes.loc[genes["geneSymbol"] == id2, :].index) if len(x) > 0: valid.append(x[0]) return valid def format_per_tissue_gene_info(info: list, tissues: list): """Collect per-tissue expression and eQTL indicators into a list""" for gene in info: gene["statusInTissue"] = [] for tissue in tissues: item = { "tissueSiteDetailId": tissue, "expressed": gene["expr_" + tissue], "tested": gene["tested_" + tissue], "eqtl": gene["eqtl_" + tissue], } gene["statusInTissue"].append(item) del gene["expr_" + tissue] del gene["tested_" + tissue] del gene["eqtl_" + tissue] # def load_tpm(path): # tpm = {} # expr = pd.read_csv(path, sep="\t") # samples = pd.read_csv("../data/ref/metadata.csv") # samples = samples.loc[samples["QC_pass"] == "pass", :] # expr = expr.loc[:, expr.columns.isin(samples["library"])] # tis_conv = {"Acbc": "NAcc", "IL": "IL", "LHB": "LHb", "PL": "PL", "VoLo": "OFC"} # tis = pd.Series([tis_conv[x.split("_")[1]] for x in expr.columns]) # for tissue in tis.unique(): # tpm[tissue] = expr.loc[:, list(tis == tissue)] # return tpm def cis_pval(tissue, gene, variant): """Return nominal p-value for a given cis-window variant""" with zipfile.ZipFile(f"../data/cis_pvals/{tissue}.zip", "r") as archive: fname = f"{tissue}/{gene}.txt" if fname in archive.namelist(): df = pd.read_csv(archive.open(fname), sep="\t", index_col="variant_id") if variant in df.index: return df.loc[variant, "pval_nominal"] return None def single_tissue(gene): """Return table of significant cis-eSNPs for a gene""" with zipfile.ZipFile(f"../data/singleTissueEqtl.zip", "r") as archive: fname = f"singleTissueEqtl/{gene}.txt" if fname in archive.namelist(): d = pd.read_csv(archive.open(fname), sep="\t", dtype={"chromosome": str}) d["geneId"] = gene return d return None tissueInfo =
pd.read_csv("../data/tissueInfo.txt", sep="\t")
pandas.read_csv
import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.lines import Line2D def _generate_counter(df_treat, counterfa): """ Combine estimated counterfactual outcomes with previous true outcomes for the treated unit. """ t_complete = df_treat.shape[0] t_replace = counterfa.shape[0] untreat = df_treat[:t_complete - t_replace] np_syn = np.concatenate((untreat.values, counterfa.reshape(-1,1)), axis=0) df_syn =
pd.DataFrame(np_syn)
pandas.DataFrame
import os import sys import pytest import numpy as np import pandas as pd sys.path.insert(0, os.path.abspath("../package")) from utils import bmi_classify, load_data, parse_bmi_matrix, parse_bmi_native def test_parse_bmi_native(): input_data = [{"Gender": "Female", "HeightCm": 167, "WeightKg": 82}] expected_data = ([{'Gender': 'Female', 'HeightCm': 167, 'WeightKg': 82, 'bmi': 29.402273297715947, 'BMI Category': 'Overweight', 'Health risk': 'Enhanced risk'}], 1) output = parse_bmi_native(input_data) assert expected_data == output def test_parse_bmi_matrix(): input_data =
pd.DataFrame([{"Gender": "Female", "HeightCm": 167, "WeightKg": 82}])
pandas.DataFrame
import pandas as pd class QueryDataLake: def retrieve_data_as_data_frame(self, dataDesc): if "query" in dataDesc: print("Query to data lake not implemented returning default values. Query: " + dataDesc["query"]) return pd.read_csv('../resources/dataset.csv', delimiter=';', index_col=0) if "expression" in dataDesc: expression_splitted = dataDesc["expression"].split() if len(expression_splitted) == 1: for element in dataDesc["data"]: delete = [key for key in element if key != expression_splitted[0]] for key in delete: del element[key] else: for element in dataDesc["data"]: result = [] for x in range(0, len(element[expression_splitted[0]])): if expression_splitted[1] == '*': result.append(element[expression_splitted[0]][x] * element[expression_splitted[2]][x]) elif expression_splitted[1] == '/': result.append(element[expression_splitted[0]][x] / element[expression_splitted[2]][x]) elif expression_splitted[1] == '+': result.append(element[expression_splitted[0]][x] + element[expression_splitted[2]][x]) elif expression_splitted[1] == '-': result.append(element[expression_splitted[0]][x] - element[expression_splitted[2]][x]) element["result"] = result for element in dataDesc["data"]: delete = [key for key in element if key != "result"] for key in delete: del element[key] if len(dataDesc["data"]) == 1: df_response = pd.DataFrame.from_dict(dataDesc["data"][0]) else: expression_splitted = dataDesc["expression"].split() if len(expression_splitted) == 1: df_response = [dataDesc["data"][0][expression_splitted[0]]] for x in range(1, len(dataDesc["data"])): df_response = pd.np.concatenate((df_response, [dataDesc["data"][x][expression_splitted[0]]])) else: df_response = [dataDesc["data"][0]["result"]] for x in range(1, len(dataDesc["data"])): df_response =
pd.np.concatenate((df_response, [dataDesc["data"][x]["result"]]))
pandas.np.concatenate
import pandas as pd import numpy as np from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA def get_transformed_spatial_coordinates(filename: str): df = pd.read_csv(filename, sep="\t") spatial_data = df.iloc[:, 0] spatial_xy = [] for spot in spatial_data: coordinates = spot.split('x') coordinates = [float(i) for i in coordinates] spatial_xy.append(coordinates) xy_coordinates = pd.DataFrame(spatial_xy, columns=['x', 'y']) # transform image x_scale = 288.9 y_scale = 292.6 x_shift = -288.9 y_shift = -292.6 xy_coordinates['x'] = xy_coordinates['x'] * x_scale + x_shift xy_coordinates['y'] = xy_coordinates['y'] * y_scale + y_shift return xy_coordinates def label_components(pca, bound): components = pca.to_numpy(copy=True) for i in range(len(pca)): if components[i] < bound: components[i] = 1 else: components[i] = 0 pca_components = pd.DataFrame(components).astype(int) return pca_components def match_labels(pred_labels, true_labels): """ true and pred labels are both 0, 1. Analyzes and matches which label in true corresponds to which label in true. Then adjusts labels so they align. :param true_labels: Set of true labels as column data frame :param pred_labels: Set of pred labels as column data frame :return: correctly labeled true and predicted labels as lists """ true_np = true_labels.to_numpy(copy=True) pred_np = pred_labels.to_numpy(copy=True) # count number of 0-0 and 1-1 matches same_count = 0 for i in range(len(true_np)): if true_np[i] == pred_np[i]: same_count += 1 # If over half are 0-0 and 1-1 labels, its probably correct. Otherwise, swap 0 and 1 in pred if same_count < (len(true_np) / 2): for i in range(len(pred_np)): if pred_np[i] == 1: pred_np[i] = 0 else: pred_np[i] = 1 return np.transpose(pred_np).flatten(), np.transpose(true_np).flatten() def percent_dropout(filename: str): """ :param filename: file containing spatial transcriptomics data :return: percent dropout component as a pandas dataframe """ df =
pd.read_csv(filename, sep="\t")
pandas.read_csv
import numpy as np import pandas as pd import statsmodels.api as sm from sklearn.preprocessing import OneHotEncoder import statistics import math import sys import itertools import time np.seterr(over='raise', under="ignore") def batch_pp(df, covariates, batch_column, ignore): """This function takes in a df, the name of the covariate columns, and the batch column and it outputs a feature count matrix, feature zero inflation matrix, batch dummy matrix (one hot vectors as rows), covariate matrix (concatenated one hot vectors ) (covariates coefficient matrix [X_ij], batch dummy matrix [X_batch], the zero inflation matrix [I_ijk], and count matrix [Y]) NOTE: this df can be a combination of datasets, or an individual dataset""" # df: [dataframe] input with rows as samples and columns as feature counts. # should only have OTU names ,covariates, and batch_column in keyspace # covariates: [List] of the covariates to retain and estimate betas for # batch_column: [string] column that defines the batches in this dataframe # ignore: [List] of column names to ignore ################################### Check proper input ################################### if (batch_column not in df.keys()): raise ValueError("Column name " + str(batch_column) + " not found") if (not set(covariates) <= set(df.keys())): raise ValueError("Covariate columns not found in dataframe") ################################### Turn batch column to one hot vector ################################### # note: for all features, batch matrix and covariate matrix will be the same. X_batch = pd.get_dummies(df[batch_column], drop_first=False) ################################### Turn covariate columns covariate matrix ################################### # number of columns is the number of betas to estimate X_cov = pd.get_dummies(df[covariates], drop_first=True) intercept = [1 for _ in range(X_cov.shape[0])] # adding intercept term X_cov.insert(0, "intercept", intercept) ################################### Build the feature zero inflation matrix ################################### # turn numbers to 1 and keep zeroes the way they are otu_keys = df.keys().drop(ignore) I = df[otu_keys].replace('0.0', False).astype(bool).replace(False, 0).replace(True, 1) df_dict = {"X_cov": X_cov, "X_batch": X_batch, "I": I, "Y": df[otu_keys], "ignore": df[ignore]} return df_dict def reduce_batch_effects(Y, I, X_cov, X_batch, verbose=False): """This function takes in the output of batch_pp and does the feature-wise batch reduction""" # INPUT: # Y: matrix of feature counts with the columns as features and columns as sample counts as rows # I: matrix of feature zero inflation (1s where values are >=1, 0s o.w.) # X_cov: covariance matrix (this will give us the betas we need to estimate) # X_batch: dummy matrix of batch values # OUTPUT: # corrected matrix # merge the dummy variables for the covariates and also for the batch to get the whole design matrix X_mat = pd.concat([X_cov, X_batch], axis=1).astype(float) # type conversions and index storing Y = Y.astype(float) num_beta_cov = X_cov.shape[1] num_beta_batch = X_batch.shape[1] num_features = len(Y.keys()) num_samples = Y.shape[0] Z = pd.DataFrame(index=Y.index, columns=Y.columns) # for each of the features, we will calculate the batch reduction coefficients, then reduce the batch effects count = 0 otu_names = list(Y.keys()) otu_names = [x for x in otu_names if Y[x][Y[x] > 0].count() > 2] sigma_p_store = {} beta_params_store = pd.DataFrame(columns=Y.columns, index=X_mat.columns) beta_cov_store = pd.DataFrame(columns=Y.columns, index=X_cov.columns) beta_batch_store = {} start = time.time() for p in otu_names: # select only the feature as a row y_ijp = Y[p] y_store = Y[p] # storing the original column(unchanged) I_ijp = I[p].astype(float) if (count % 100 == 0 and verbose): print("Estimating β_cov, β_batch, and σ_p for feature {}".format(count)) # --------- Estimate beta_p and beta_batch through OLS regression -------------- # ignore the keys with zero counts and only fit with non zero samples fit_index = list(y_ijp.to_numpy().astype(float).nonzero()[0]) zero_index = list(set(range(num_samples)) - set(fit_index)) zero_keys = y_store.keys()[zero_index] # use only non zero counts for index to fit our OLS y_ijp = y_ijp.iloc[fit_index] # y_ijp = y_ijp[fit_index] # PREVIOUS VERSION X_design_mat = X_mat.iloc[fit_index, :] X_cov_mat = X_cov.iloc[fit_index, :] X_batch_mat = X_batch.iloc[fit_index, :] # fit ols model = sm.OLS(y_ijp, X_design_mat) res = model.fit() ############# Calculate sigma_p using the standard deviation of previous regression ########### residuals = y_ijp - X_cov_mat.dot(res.params[:num_beta_cov]) sigma_hat_p = statistics.stdev(residuals) # store in feature keyed dictionary of standard deviations sigma_p_store[p] = sigma_hat_p # separate the beta cov from the beta batch beta_params = res.params beta_cov = res.params[:num_beta_cov] beta_batch = res.params[num_beta_cov:] # store list of beta parameters indexed by feature beta_params_store[p] = beta_params beta_cov_store[p] = beta_cov beta_batch_store[p] = beta_batch ####################################### Calculate Z_ijp ####################################### z_ijp = (y_ijp - X_cov_mat.dot(res.params[:num_beta_cov])) / sigma_hat_p Z[p] = z_ijp count += 1 if count % 25 == 0: end = time.time() print('{}/{} completed in: {}s'.format(count, len(otu_names), round(end - start, 2))) # ------------ LOOP END ----------------------------------------------------------------- end = time.time() print('Total OLS time: {}s'.format(round(end - start, 2))) Z = Z.fillna(0) beta_params_store = beta_params_store.astype(float) # return X_mat.dot(beta_params_store) estimates = eb_estimator(X_batch, Z, sigma_p=sigma_p_store, X_add=X_cov.dot(beta_cov_store), verbose=verbose) return estimates def eb_estimator(X_batch, Z, sigma_p, X_add, max_itt=6000, verbose=False): """This function returns the empirical bayes estimates for gamma_star_p and delta_star_p as well as the standerdized OTU counts""" # X_batch: Batch effects dummy matrix (n x alpha) matrix # Z: Matrix of standerdized data (n x p ) matrix # sigma_p: Vec of OTU variances # X_add: matrix to add back after parameter estimation # max_itt: Maximum number of iterations until convergence # smooth_delta: bool flag for whether or not we replace the 0 values in delta_i by 1 # Standardized matrix init Z_out =
pd.DataFrame(index=Z.index, columns=Z.columns)
pandas.DataFrame
""" Functions for IMGW database analysis. get_meteorological_data(interval, stations_kind, years_range, file_format_index=0, file_format=None, specific_columns=None, keywords=None, merge_split_stations=True, optimize_memory_usage=False) get_file_formats(interval, stations_kind, file_format_index) get_column_names(file_format) look_for_keywords_in_columns(keywords, file_format=None) get_urls(interval, stations_kind, years_range) download_data(urls) concatenate_data(downloaded_files_names, file_formats, specific_columns, keywords, optimize_memory_usage, years_range) """ def get_file_formats( interval, stations_kind, file_format_index ): """ Return the available file formats for the given 'interval' and 'stations_kind' (different file formats contain different data). Keyword arguments: interval -- data interval from the IMGW database ('monthly', 'daily', 'prompt') stations_kind -- stations' kind ('synop', 'climat', 'fall') file_format_index -- which element from the list of available formats will be returned. Usually two file formats are available, so the length of the list is 2 ('all', 0, 1) """ if interval == 'monthly': if stations_kind == 'synop': available_files_formats = ['s_m_d', 's_m_t'] elif stations_kind == 'fall': available_files_formats = ['o_m'] elif stations_kind == 'climat': available_files_formats = ['k_m_d', 'k_m_t'] else: raise ValueError( "Invalid 'stations_kind' input. Available inputs: 'synop', 'fall', 'climat'.") elif interval == 'daily': if stations_kind == 'synop': available_files_formats = ['s_d', 's_d_t'] elif stations_kind == 'fall': available_files_formats = ['o_d'] elif stations_kind == 'climat': available_files_formats = ['k_d', 'k_d_t'] else: raise ValueError( "Invalid 'stations_kind' input. Available inputs: 'synop', 'fall', 'climat'.") elif interval == 'prompt': if stations_kind == 'synop': available_files_formats = ['s_t'] elif stations_kind == 'fall': raise NotADirectoryError("There's no '/dane_meteorologiczne/terminowe/opad/' directory in IMGW database.") elif stations_kind == 'climat': available_files_formats = ['k_t'] else: raise ValueError( "Invalid 'stations_kind' input. Available inputs: 'synop', 'fall', 'climat'.") else: raise ValueError("Invalid 'interval' input. Available inputs: 'monthly', 'daily', 'prompt'.") if file_format_index == 'all': chosen_file_format = available_files_formats elif file_format_index == 0 or file_format_index == 1: try: chosen_file_format = [available_files_formats[file_format_index]] except IndexError: if len(available_files_formats) == 1: chosen_file_format = [available_files_formats[0]] else: raise Exception("Something's wrong with the file format.") else: raise ValueError( "{} file formats for the given 'interval' and 'stations_kind' available. Use index of the file format or 'all' " "for 'file_format_index' argument (if 'all', both file formats will be taken): {}".format( len(available_files_formats), available_files_formats ) ) return chosen_file_format def get_column_names(file_format): """ Return the column names for the given file format. Keyword arguments: file_format -- IMGW database file format (e.g. 's_m_t'). Available file formats: k_m_d, k_m_t, o_m, s_m_d, s_m_t, k_d, k_d_t, o_d, s_d, s_d_t, k_t, s_t """ if file_format == 'k_m_d': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Absolutna temperatura maksymalna [°C]', 'Status pomiaru TMAX', 'Średnia temperatura maksymalna [°C]', 'Status pomiaru TMXS', 'Absolutna temperatura minimalna [°C]', 'Status pomiaru TMIN', 'Średnia temperatura minimalna [°C]', 'Status pomiaru TMNS', 'Średnia temperatura miesięczna [°C]', 'Status pomiaru STM', 'Minimalna temperatura przy gruncie [°C]', 'Status pomiaru TMNG', 'Miesieczna suma opadów [mm]', 'Status pomiaru SUMM', 'Maksymalna dobowa suma opadów [mm]', 'Status pomiaru OPMX', 'Pierwszy dzień wystapienia opadu maksymalnego', 'Ostatni dzień wystąpienia opadu maksymalnego', 'Maksymalna wysokość pokrywy śnieżnej [cm]', 'Status pomiaru PKSN', 'Liczba dni z pokrywą śnieżną', 'Liczba dni z opadem deszczu', 'Liczba dni z opadem śniegu'] elif file_format == 'k_m_t': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Średnia miesięczna temperatura [°C]', 'Status pomiaru TEMP', 'Średnia miesięczna wilgotność względna [%]', 'Status pomiaru WLGS', 'Średnia miesięczna prędkość wiatru [m/s]', 'Status pomiaru FWS', 'Średnie miesięczne zachmurzenie ogólne [oktanty]', 'Status pomiaru NOS'] elif file_format == 'o_m': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Miesięczna suma opadów [mm]', 'Status pomiaru SUMM', 'Liczba dni z opadem śniegu', 'Status pomiaru LDS', 'Opad maksymalny [mm]', 'Status pomiaru MAXO', 'Dzień pierwszy wystąpienia opadu maksymalnego', 'Dzień ostatni wystąpienia opadu maksymalnego', 'Liczba dni z pokrywą śnieżną', 'Status pomiaru LDPS'] elif file_format == 's_m_d': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Absolutna temperatura maksymalna [°C]', 'Status pomiaru TMAX', 'Średnia temperatura maksymalna [°C]', 'Status pomiaru TMXS', 'Absolutna temperatura minimalna [°C]', 'Status pomiaru TMIN', 'Średnia temperatura minimalna [°C]', 'Status pomiaru TMNS', 'Średnia temperatura miesięczna [°C]', 'Status pomiaru STM', 'Minimalna temperatura przy gruncie [°C]', 'Status pomiaru TMNG', 'Miesieczna suma opadów [mm]', 'Status pomiaru SUMM', 'Maksymalna dobowa suma opadów [mm]', 'Status pomiaru OPMX', 'Pierwszy dzień wystapienia opadu maksymalnego', 'Ostatni dzień wystąpienia opadu maksymalnego', 'Miesięczna suma usłonecznienia [godziny]', 'Status pomiaru SUUS', 'Maksymalna wysokość pokrywy śnieżnej [cm]', 'Status pomiaru PKSN', 'Liczba dni z pokrywą śnieżną', 'Status pomiaru PSDN', 'Liczba dni z opadem deszczu', 'Status pomiaru DESD', 'Liczba dni z opadem śniegu', 'Status pomiaru SNID', 'Liczba dni z opadem deszczu ze śniegiem', 'Status pomiaru DSND', 'Liczba dni z gradem', 'Status pomiaru GRDD', 'Liczba dni z mgłą', 'Status pomiaru MGLD', 'Liczba dni z zamgleniem', 'Status pomiaru ZAMD', 'Liczba dni z sadzią', 'Status pomiaru SADD', 'Liczba dni z gołoledzią', 'Status pomiaru GOLD', 'Liczba dni z zamiecią śnieżną niską', 'Status pomiaru ZAND', 'Liczba dni z zamiecią śnieżną wysoką', 'Status pomiaru ZAWD', 'Liczba dni ze zmętnieniem', 'Status pomiaru ZMED', 'Liczba dni z wiatrem >= 10m/s', 'Status pomiaru W10D', 'Liczba dni z wiatrem >15m/s', 'Status pomiaru W15D', 'Liczba dni z burzą', 'Status pomiaru BURD', 'Liczba dni z rosą', 'Status pomiaru ROSD', 'Liczba dni ze szronem', 'Status pomiaru SZRD'] elif file_format == 's_m_t': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Średnie miesięczne zachmurzenie ogólne [oktanty]', 'Status pomiaru NOS', 'Średnia miesięczna prędkość wiatru [m/s]', 'Status pomiaru FWS', 'Średnia miesięczna temperatura [°C]', 'Status pomiaru TEMP', 'Średnie miesięczne ciśnienie pary wodnej [hPa]', 'Status pomiaru CPW', 'Średnia miesięczna wilgotność względna [%]', 'Status pomiaru WLGS', 'Średnie miesięczne ciśnienie na poziomie stacji [hPa]', 'Status pomiaru PPPS', 'Średnie miesięczne ciśnienie na pozimie morza [hPa]', 'Status pomiaru PPPM', 'Suma opadu dzień [mm]', 'Status pomiaru WODZ', 'Suma opadu noc [mm]', 'Status pomiaru WONO'] elif file_format == 'k_d': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Dzień', 'Maksymalna temperatura dobowa [°C]', 'Status pomiaru TMAX', 'Minimalna temperatura dobowa [°C]', 'Status pomiaru TMIN', 'Średnia temperatura dobowa [°C]', 'Status pomiaru STD', 'Temperatura minimalna przy gruncie [°C]', 'Status pomiaru TMNG', 'Suma dobowa opadów [mm]', 'Status pomiaru SMDB', 'Rodzaj opadu [S/W/ ]', 'Wysokość pokrywy śnieżnej [cm]', 'Status pomiaru PKSN'] elif file_format == 'k_d_t': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Dzień', 'Średnia dobowa temperatura [°C]', 'Status pomiaru TEMP', 'Średnia dobowa wilgotność względna [%]', 'Status pomiaru WLGS', 'Średnia dobowa prędkość wiatru [m/s]', 'Status pomiaru FWS', 'Średnie dobowe zachmurzenie ogólne [oktanty]', 'Status pomiaru NOS'] elif file_format == 'o_d': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Dzień', 'Suma dobowa opadów [mm]', 'Status pomiaru SMDB', 'Rodzaj opadu [S/W/ ]', 'Wysokość pokrywy śnieżnej [cm]', 'Status pomiaru PKSN', 'Wysokość świeżo spadłego śniegu [cm]', 'Status pomiaru HSS', 'Gatunek śniegu [kod]', 'Status pomiaru GATS', 'Rodzaj pokrywy śnieżnej [kod]', 'Status pomiaru RPSN'] elif file_format == 's_d': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Dzień', 'Maksymalna temperatura dobowa [°C]', 'Status pomiaru TMAX', 'Minimalna temperatura dobowa [°C]', 'Status pomiaru TMIN', 'Średnia temperatura dobowa [°C]', 'Status pomiaru STD', 'Temperatura minimalna przy gruncie [°C]', 'Status pomiaru TMNG', 'Suma dobowa opadu [mm]', 'Status pomiaru SMDB', 'Rodzaj opadu [S/W/ ]', 'Wysokość pokrywy śnieżnej [cm]', 'Status pomiaru PKSN', 'Równoważnik wodny śniegu [mm/cm]', 'Status pomiaru RWSN', 'Usłonecznienie [godziny]', 'Status pomiaru USL', 'Czas trwania opadu deszczu [godziny]', 'Status pomiaru DESZ', 'Czas trwania opadu śniegu [godziny]', 'Status pomiaru SNEG', 'Czas trwania opadu deszczu ze śniegiem [godziny]', 'Status pomiaru DISN', 'Czas trwania gradu [godziny]', 'Status pomiaru GRAD', 'Czas trwania mgły [godziny]', 'Status pomiaru MGLA', 'Czas trwania zamglenia [godziny]', 'Status pomiaru ZMGL', 'Czas trwania sadzi [godziny]', 'Status pomiaru SADZ', 'Czas trwania gołoledzi [godziny]', 'Status pomiaru GOLO', 'Czas trwania zamieci śnieżnej niskiej [godziny]', 'Status pomiaru ZMNI', 'Czas trwania zamieci śnieżnej wysokiej [godziny]', 'Status pomiaru ZMWS', 'Czas trwania zmętnienia [godziny]', 'Status pomiaru ZMET', 'Czas trwania wiatru >=10m/s [godziny]', 'Status pomiaru FF10', 'Czas trwania wiatru >15m/s [godziny]', 'Status pomiaru FF15', 'Czas trwania burzy [godziny]', 'Status pomiaru BRZA', 'Czas trwania rosy [godziny]', 'Status pomiaru ROSA', 'Czas trwania szronu [godziny]', 'Status pomiaru SZRO', 'Wystąpienie pokrywy śnieżnej [0/1]', 'Status pomiaru DZPS', 'Wystąpienie błyskawicy [0/1]', 'Status pomiaru DZBL', 'Stan gruntu [Z/R]', 'Izoterma dolna [cm]', 'Status pomiaru IZD', 'Izoterma górna [cm]', 'Status pomiaru IZG', 'Aktynometria [J/cm2]', 'Status pomiaru AKTN'] elif file_format == 's_d_t': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Dzień', 'Średnie dobowe zachmurzenie ogólne [oktanty]', 'Status pomiaru NOS', 'Średnia dobowa prędkość wiatru [m/s]', 'Status pomiaru FWS', 'Średnia dobowa temperatura [°C]', 'Status pomiaru TEMP', 'Średnia dobowe ciśnienie pary wodnej [hPa]', 'Status pomiaru CPW', 'Średnia dobowa wilgotność względna [%]', 'Status pomiaru WLGS', 'Średnia dobowe ciśnienie na poziomie stacji [hPa]', 'Status pomiaru PPPS', 'Średnie dobowe ciśnienie na pozimie morza [hPa]', 'Status pomiaru PPPM', 'Suma opadu dzień [mm]', 'Status pomiaru WODZ', 'Suma opadu noc [mm]', 'Status pomiaru WONO'] elif file_format == 'k_t': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Dzień', 'Godzina', 'Temperatura powietrza [°C]', 'Status pomiaru TEMP', 'Temperatura termometru zwilżonego [°C]', 'Status pomiaru TTZW', 'Wskaźnik lodu [L/W]', 'Wskaźnik wentylacji [W/N]', 'Wilgotność względna [%]', 'Status pomiaru WLGW', 'Kod kierunku wiatru [kod]', 'Status pomiaru DKDK', 'Prędkość wiatru [m/s]', 'Status pomiaru FWR', 'Zachmurzenie ogólne [0-10 do dn.31.12.1988/oktanty od dn.01.01.1989]', 'Status pomiaru ZOGK', 'Widzialność [kod]', 'Status pomiaru WID'] elif file_format == 's_t': return ['Kod stacji', 'Nazwa stacji', 'Rok', 'Miesiąc', 'Dzień', 'Godzina', 'Wysokość podstawy chmur CL CM szyfrowana [kod]', 'Status pomiaru HPOD', 'Wysokość podstawy niższej [m]', 'Status pomiaru HPON', 'Wysokość podstawy wyższej [m]', 'Status pomiaru HPOW', 'Wysokość podstawy tekstowy [opis]', 'Pomiar przyrzadem 1 (niższa) [P]', 'Pomiar przyrzadem 2 (wyższa) [P]', 'Widzialność [kod]', 'Status pomiaru WID', 'Widzialność operatora [m]', 'Status pomiaru WIDO', 'Widzialność automat [m]', 'Status pomiaru WIDA', 'Zachmurzenie ogólne [oktanty]', 'Status pomiaru NOG', 'Kierunek wiatru [°]', 'Status pomiaru KRWR', 'Prędkość wiatru [m/s]', 'Status pomiaru FWR', 'Poryw wiatru [m/s]', 'Status pomiaru PORW', 'Temperatura powietrza [°C]', 'Status pomiaru TEMP', 'Temperatura termometru zwilżonego [°C]', 'Status pomiaru TTZW', 'Wskaźnik wentylacji [W/N]', 'Wskaźnik lodu [L/W]', 'Ciśnienie pary wodnej [hPa]', 'Status pomiaru CPW', 'Wilgotność względna [%]', 'Status pomiaru WLGW', 'Temperatura punktu rosy [°C]', 'Status pomiaru TPTR', 'Ciśnienie na pozimie stacji [hPa]', 'Status pomiaru PPPS', 'Ciśnienie na poziomie morza [hPa]', 'Status pomiaru PPPM', 'Charakterystyka tendencji [kod]', 'Wartość tendencji [wartość]', 'Status pomiaru APP', 'Opad za 6 godzin [mm]', 'Status pomiaru WO6G', 'Rodzaj opadu za 6 godzin [kod]', 'Status pomiaru ROPT', 'Pogoda bieżąca [kod]', 'Pogoda ubiegła [kod]', 'Zachmurzenie niskie [oktanty]', 'Status pomiaru CLCM', 'Chmury CL [kod]', 'Status pomiaru CHCL', 'Chmury CL tekstem', 'Chmury CM [kod]', 'Status pomiaru CHCM', 'Chmury CM tekstem', 'Chmury CH [kod]', 'Status pomiaru CHCH', 'Chmury CH tekstem', 'Stan gruntu [kod]', 'Status pomiaru SGRN', 'Niedosyt wilgotności [hPa]', 'Status pomiaru DEFI', 'Usłonecznienie', 'Status pomiaru USLN', 'Wystąpienie rosy [0/1]', 'Status pomiaru ROSW', 'Poryw maksymalny za okres WW [m/s]', 'Status pomiaru PORK', 'Godzina wystąpienia porywu', 'Minuta wystąpienia porywu', 'Temperatura gruntu -5 [°C]', 'Status pomiaru TG05', 'Temperatura gruntu -10 [°C]', 'Status pomiaru TG10', 'Temperatura gruntu -20 [°C]', 'Status pomiaru TG20', 'Temperatura gruntu -50 [°C]', 'Status pomiaru TG50', 'Temperatura gruntu -100 [°C]', 'Status pomiaru TG100', 'Temperatura minimalna za 12 godzin [°C]', 'Status pomiaru TMIN', 'Temperatura maksymalna za 12 godzin [°C]', 'Status pomiaru TMAX', 'Temperatura minimalna przy gruncie za 12 godzin [°C]', 'Status pomiaru TGMI', 'Równoważnik wodny śniegu [mm/cm]', 'Status pomiaru RWSN', 'Wysokość pokrywy śnieżnej [cm]', 'Status pomiaru PKSN', 'Wysokość świeżo spadłego śniegu [cm]', 'Status pomiaru HSS', 'Wysokość śniegu na poletku [cm]', 'Status pomiaru GRSN', 'Gatunek śniegu [kod]', 'Ukształtowanie pokrywy [kod]', 'Wysokość próbki [cm]', 'Status pomiaru HPRO', 'Ciężar próbki [g]', 'Status pomiaru CIPR'] def search_for_keywords_in_columns( keywords, file_format=None ): """ Search for the given keywords in the column names and return a dictionary with the file formats in which the keywords were found. Keyword arguments: keywords -- keywords that will be looked for file_format -- IMGW database file format, the columns of which will be used to look for keywords. If 'file_format' is None, then every column from every file will be taken and the function will show you exactly where the keywords were found (default None) """ if type(keywords) == str: keywords = [keywords] if file_format is None: intervals = ['monthly', 'daily', 'prompt'] stations_kinds = ['synop', 'climat', 'fall'] found_file_formats = {} for interval in intervals: for kind in stations_kinds: if interval == 'prompt' and kind == 'fall': continue file_formats = get_file_formats(interval, kind, 'all') found_file_formats['interval=' + str(interval) + ', ' + 'stations_kind=' + str(kind)] = file_formats keywords_in_files = {} if type(keywords) == list: for interval_stkind, file_formats in found_file_formats.items(): for file in file_formats: columns_names = get_column_names(file) for name in columns_names: for keyword in keywords: if keyword.upper() in name.upper(): try: keywords_in_files[str(interval_stkind) + ", " + "file_format=" + str(file)].append( name) except KeyError: keywords_in_files[str(interval_stkind) + ", " + "file_format=" + str(file)] = [name] else: raise ValueError("Invalid input for 'keywords'. Use a list of strings or a single str.") return keywords_in_files else: if type(file_format) == str: keywords_in_columns = [] columns_names = get_column_names(file_format) for name in columns_names: if type(keywords) == list: for keyword in keywords: if keyword.upper() in name.upper(): keywords_in_columns.append(name) else: raise ValueError("Invalid input for 'keywords'. Use a list of strings or a single str.") else: raise ValueError("Invalid input for the 'file_format' argument. Use a single str.") return keywords_in_columns def get_urls( interval, stations_kind, years_range ): """ Return the urls to the IMGW database for the given 'interval', 'stations_kind' and 'years_range'. Keyword arguments: interval -- data interval from the IMGW database (monthly, daily, prompt) stations_kind -- stations' kind (synop, climat, fall) years_range -- years range (e.g. range(1966, 2021)) """ if interval == 'monthly': interval = 'miesieczne/' elif interval == 'daily': interval = 'dobowe/' elif interval == 'prompt': interval = 'terminowe/' if stations_kind == 'fall': raise NotADirectoryError("There's no '/dane_meteorologiczne/terminowe/opad/' directory.") else: raise ValueError("Invalid 'interval' input. Available inputs: 'monthly', 'daily', 'prompt'.") if stations_kind == 'synop': stations_kind = 'synop/' elif stations_kind == 'fall': stations_kind = 'opad/' elif stations_kind == 'climat': stations_kind = 'klimat/' else: raise ValueError("Invalid 'stations_kind' input. Available inputs: 'synop', 'fall', 'climat'.") years_endings = [] for year in years_range: if year < 2001: if year > 1995: if years_endings.count('1996_2000/') == 0: years_endings.append('1996_2000/') elif year > 1990: if years_endings.count('1991_1995/') == 0: years_endings.append('1991_1995/') elif year > 1985: if years_endings.count('1986_1990/') == 0: years_endings.append('1986_1990/') elif year > 1980: if years_endings.count('1981_1985/') == 0: years_endings.append('1981_1985/') elif year > 1975: if years_endings.count('1976_1980/') == 0: years_endings.append('1976_1980/') elif year > 1970: if years_endings.count('1971_1975/') == 0: years_endings.append('1971_1975/') elif year > 1965: if years_endings.count('1966_1970/') == 0: years_endings.append('1966_1970/') elif year > 1959: if years_endings.count('1960_1965/') == 0: years_endings.append('1960_1965/') else: raise ValueError("No data for {}. Available years range: 1960-2021.".format(str(year))) else: years_endings.append(str(year) + '/') urls = [] base_url = 'https://danepubliczne.imgw.pl/data/dane_pomiarowo_obserwacyjne/dane_meteorologiczne/' for ending in years_endings: url = base_url + interval + stations_kind + ending urls.append(url) return urls def download_data(urls): """ Download data from the IMGW database. Keyword arguments: urls -- urls for the data which is requested """ import requests from bs4 import BeautifulSoup as bs import zipfile import io files_reading_dir_path = str(__file__).replace('imgw.py', 'files_reading_folder') for url in urls: if urls.index(url) == 0: print("Data download started... 0% done") r = requests.get(url) soup = bs(r.content, features="html.parser") zip_file_paths = [] for element in soup.find_all('a'): if '.zip' in element.get_text(): zip_file_paths.append(element.get_text()) for path in zip_file_paths: zip_file = requests.get(url + path) zip_file = zipfile.ZipFile(io.BytesIO(zip_file.content)) zip_file.extractall(files_reading_dir_path) if (urls.index(url) + 1) % 5 == 0: print("Downloading data... {}% done".format(round((urls.index(url) / len(urls)) * 100))) print("Data downloaded! 100% done") def concatenate_data( downloaded_files_names, file_formats, specific_columns, keywords, optimize_memory_usage, years_range, merge_splitted_stations ): """ Merge tables from downloaded files and return them as one merged pd.DataFrame. Keyword arguments: downloaded_files_names -- list of downloaded file names file_formats -- IMGW file formats included in downloaded files specific_columns -- which columns will be taken for merge keywords -- words which must be in the column name if the column is to be merged optimize_memory_usage -- reduce pd.DataFrame memory usage years_range -- filter pd.DataFrame up to the given period """ import pandas as pd import numpy as np import os if isinstance(file_formats, list) and len(file_formats) > 1: raise ValueError( f"""Invalid value for the 'file_format' argument. Data downloading is possible only for a single file. {len(file_formats)} files given ({file_formats}). """ ) if isinstance(file_formats, str): file_formats = [file_formats] if isinstance(keywords, str): keywords = [keywords] df =
pd.DataFrame()
pandas.DataFrame
import os from os import listdir from os.path import isfile, join import re from path import Path import numpy as np import pandas as pd from poor_trader import utils from poor_trader.utils import quotes_range from poor_trader.config import INDICATORS_OUTPUT_PATH def _true_range(df_quotes, indices): cur = df_quotes.iloc[indices[1]] prev = df_quotes.iloc[indices[0]] high, low, prev_close = cur.High, cur.Low, prev.Close a = utils.roundn(high - low, 4) b = utils.roundn(abs(high - prev_close), 4) c = utils.roundn(abs(low - prev_close), 4) return max(a, b, c) def true_range(df_quotes): df = pd.DataFrame(index=df_quotes.index) df['n_index'] = range(len(df_quotes)) _trf = lambda x: _true_range(df_quotes, [int(i) for i in x]) df['true_range'] = df.n_index.rolling(2).apply(_trf) return df.filter(like='true_range') def SMA(df_quotes, period, field='Close', symbol=None): if symbol: outpath = INDICATORS_OUTPUT_PATH / '{}/{}_{}_SMA_{}.pkl'.format(symbol, quotes_range(df_quotes), field, period) if os.path.exists(outpath): return pd.read_pickle(outpath) df =
pd.DataFrame(index=df_quotes.index)
pandas.DataFrame
# -*- coding: utf-8 -*- """ This module holds functions processing the results of an oemof.solph optimisation model, that are used by methods of the classes `q100opt.scenario_tools.DistrictScenario` and `q100opt.scenario_tools.ParetoFront`. Please use this module with care. It is work in progress! Contact: <NAME> <<EMAIL>> SPDX-License-Identifier: MIT """ import logging import numpy as np import oemof.solph as solph import pandas as pd from oemof.solph import views def analyse_emissions(results): """ Performs analysis of emissions. Parameters ---------- results : dict Results of oemof.solph Energysystem. Returns ------- dict : Table with detailed emission analysis, containing 2 keys: 'summary' and 'sequences'. """ return analyse_flow_attribute(results, keyword='emission_factor') def analyse_costs(results): """ Performs a cost analysis. Parameters ---------- results : dict Results of oemof.solph Energysystem. Returns ------- dict : Table with detailed cost summary, containing 3 keys: 'capex', 'opex' and 'all'. """ costs = { 'capex': analyse_capex(results), 'opex': analyse_flow_attribute(results, keyword='variable_costs'), } capex = pd.concat({'capex': costs['capex']}, names=['cost_type']) opex = pd.concat({'opex': costs['opex']['sum']}, names=['cost_type']) all = pd.concat([capex, opex]) costs.update({'all': all}) return costs def analyse_capex(results): """ Analysis and Summary of the investment costs of the EnergySystem. Parameters ---------- results : q100opt.DistrictScenario.results The results Dictionary of the District Scenario class (a dictionary containing the processed oemof.solph.results with the key 'main' and the oemof.solph parameters with the key 'param'.) Returns ------- pd.DataFrame : The table contains both the parameter and result value of the Investment objects. - Columns: 'ep_costs', 'offset', 'invest_value' and 'costs' - Index: - First level: 'converter' or 'storage (Converter are all flows comming from a solph.Transformer or a solph.Source) - Second level: Label of the corresponding oemof.solph component: in case of 'converter', the label from which the flow is comming. in case of 'storage', the label of the GenericStorage. """ # energy converter units df_converter = get_invest_converter_table(results) df_converter['category'] = 'converter' # energy storages units df_storages = get_invest_storage_table(results) df_storages['category'] = 'storage' df_result = pd.concat([df_converter, df_storages]) df_result.index = pd.MultiIndex.from_frame( df_result[['category', 'label']]) df_result.drop(df_result[['category', 'label']], axis=1, inplace=True) return df_result def get_invest_converter(results): """ Gets the keys of investment converter units of the energy system. Only the flows from a solph.Transformer or a solph.Source are considered. """ return [ x for x in results.keys() if hasattr(results[x]['scalars'], 'invest') if isinstance(x[0], solph.Transformer) or isinstance( x[0], solph.Source) ] def get_invest_storages(results): """ Gets the investment storages of the energy system. Only the investment of the solph.components.GenericStorage is considered, and not a investment in the in- or outflow. """ return [ x for x in results.keys() if x[1] is None if hasattr(results[x]['scalars'], 'invest') if isinstance(x[0], solph.components.GenericStorage) ] def get_invest_converter_table(results): """ Returns a table with a summary of investment flows of energy converter units. These are oemof.solph.Flows comming from a solph.Transformer or a solph.Source. Parameters ---------- results : q100opt.DistrictScenario.results The results Dictionary of the District Scenario class (a dictionary containing the processed oemof.solph.results with the key 'main' and the oemof.solph parameters with the key 'param'.) Returns ------- pd.DataFrame : The table contains both the parameter and result value of the Investment objects. - Columns: 'label', 'ep_costs', 'offset', 'invest_value' and 'costs' The 'label' column is the label of the corresponding oemof.solph.Transformer or Source, from that the flow is coming. """ converter_units = get_invest_converter(results['main']) return get_invest_table(results, converter_units) def get_invest_storage_table(results): """ Returns a table with a summary of investment flows of all oemof.solph.components.GeneicStorage units. results : q100opt.DistrictScenario.results The results Dictionary of the District Scenario class (a dictionary containing the processed oemof.solph.results with the key 'main' and the oemof.solph parameters with the key 'param'.) Returns ------- pd.DataFrame : The table contains both the parameter and result value of the Investment objects. - Columns: 'label', 'ep_costs', 'offset', 'invest_value' and 'costs' The 'label' column is the label of the corresponding oemof.solph label, which is the label from which the flow is coming. """ storages = get_invest_storages(results['main']) return get_invest_table(results, storages) def get_invest_table(results, keys): """ Returns the investment data for a list of "results keys". Parameters ---------- results : dict oemof.solph results dictionary (results['main]) keys : list Keys of flows and nodes Returns ------- pd.DataFrame : The table contains both the parameter and result value of the Investment objects. - Columns: 'label', 'ep_costs', 'offset', 'invest_value' and 'costs' The 'label' column is the label of the corresponding oemof.solph label, which is the label from which the flow is coming. """ invest_lab = [x[0].label for x in keys] df = pd.DataFrame(data=invest_lab, columns=['label']) df['ep_costs'] = [results['param'][x]['scalars']['investment_ep_costs'] for x in keys] df['offset'] = [results['param'][x]['scalars']['investment_offset'] for x in keys] df['invest_value'] = [results['main'][x]['scalars']['invest'] for x in keys] df['costs'] = df['invest_value'] * df['ep_costs'] + df[ 'offset'] * np.sign(df['invest_value']) return df def analyse_flow_attribute(des_results, keyword='variable_costs'): """ Analysis and Summary of flow attribute keyword of the EnergySystem. Parameters ---------- des_results : q100opt.DistrictScenario.results The results Dictionary of the District Scenario class (a dictionary containing the processed oemof.solph.results with the key 'main' and the oemof.solph parameters with the key 'param'.) keyword : str Keyword for that values are analyzed, e.g. variable_costs or emission_factor. Returns ------- dict : All relevant data with variable_costs. Keys of dictionary: 'summary' and 'sequences'. """ param = des_results['param'] results = des_results['main'] var_cost_flows = get_attr_flows(des_results, key=keyword) df = pd.DataFrame(index=next(iter(results.values()))['sequences'].index) len_index = len(df) # define columns of result dataframe if keyword == 'variable_costs': key_product = 'costs' elif keyword == 'emission_factor': key_product = 'emissions' else: key_product = 'product' for flow in var_cost_flows: if isinstance(flow[0], solph.Source): category = 'source' label = flow[0].label elif isinstance(flow[0], solph.Transformer): category = 'converter' label = flow[0].label elif isinstance(flow[1], solph.Sink): category = 'sink' label = flow[1].label else: label = flow[0].label + '-' + flow[1].label category = 'unknown' logging.warning( "Flow/Node category of {} not specified!".format(label) ) if keyword in param[flow]['scalars'].keys(): df[(category, label, keyword)] = param[flow]['scalars'][keyword] else: df[(category, label, keyword)] = \ param[flow]['sequences'][keyword].values[:len_index] # 2) get flow results df[(category, label, 'flow')] = results[flow]["sequences"].values # 3) calc a * b df[(category, label, key_product)] = \ df[(category, label, keyword)] * df[(category, label, 'flow')] df.columns = pd.MultiIndex.from_tuples( list(df.columns), names=('category', 'label', 'value') ) df.sort_index(axis=1, inplace=True) df_sum = df.iloc[:, df.columns.isin(['flow', key_product], level=2)].sum() df_summary = df_sum.unstack(level=2) df_summary['var_' + key_product + '_av_flow'] = \ df_summary[key_product] / df_summary['flow'] df_mean = \ df.iloc[:, df.columns.get_level_values(2) == keyword].mean().unstack( level=2).rename(columns={ keyword: 'var_' + key_product + '_av_param'}) df_summary = df_summary.join(df_mean) return {'sum': df_summary, 'sequences': df} def get_attr_flows(results, key='variable_costs'): """ Return all flows of an EnergySystem for a given attribute, which is not zero. Parameters ---------- results : dict Results dicionary of the oemof.solph optimisation including the Parameters with key 'param'. key : str Returns ------- list : List of flows, where a non zero attribute value is given either at the 'scalars' or 'sequences'. """ param = results['param'] list_keys = list(param.keys()) var_scalars = [ x for x in list_keys if key in param[x]['scalars'].keys() if abs(param[x]['scalars'][key]) > 0 ] var_sequences = [ x for x in list_keys if key in param[x]['sequences'].keys() if abs(param[x]['sequences'][key].sum()) > 0 ] var_cost_flows = var_scalars + var_sequences return var_cost_flows def get_attr_flow_results(des_results, key='variable_costs'): """ Return the parameter and flow results for all flows of an EnergySystem for a given attribute, which is not zero. Parameters ---------- des_results : dict Results of district energy system. Must have the keys: 'main', 'param'. key : str Flow attribute. Returns ------- pd.DataFrame : Multiindex DataFrame. - Index : Timeindex of oemof.solph.EnergySystem. - First column index level: <from>-<to>, where from an to are the labels of the Nodes. - Second column index level: - attribute parameter - resulting flow value - product of parameter and flow column """ attr_flows = get_attr_flows(des_results, key=key) param = des_results['Param'] results = des_results['Main'] df = pd.DataFrame(index=next(iter(results.values()))['sequences'].index) len_index = len(df) for flow in attr_flows: label = flow[0].label + '-' + flow[1].label # 1) get parameters if key in param[flow]['scalars'].keys(): df[(label, key)] = param[flow]['scalars'][key] else: df[(label, key)] = param[flow]['sequences'][key].values[:len_index] # 2) get flow results df[(label, 'flow')] = results[flow]["sequences"].values # 3) calc a * b if key == 'variable_costs': key_product = 'costs' elif key == 'emission_factor': key_product = 'emissions' else: key_product = 'product' df[(label, key_product)] = df[(label, key)] * df[(label, 'flow')] df.columns = pd.MultiIndex.from_tuples( list(df.columns), names=('from-to', 'value') ) return df def get_all_sequences(results): """...""" d_node_types = { 'sink': solph.Sink, 'source': solph.Source, 'transformer': solph.Transformer, 'storage_flow': solph.GenericStorage, } l_df = [] for typ, solph_class in d_node_types.items(): group = { k: v["sequences"] for k, v in results.items() if k[1] is not None if isinstance(k[0], solph_class) or isinstance(k[1], solph_class) } df = views.convert_to_multiindex(group) df_mi = df.columns.to_frame() df_mi.reset_index(drop=True, inplace=True) df_mi['from'] = [x.label for x in df_mi['from']] df_mi['to'] = [x.label for x in df_mi['to']] df_mi['type'] = typ df.columns =
pd.MultiIndex.from_frame(df_mi[['type', 'from', 'to']])
pandas.MultiIndex.from_frame
from path_manager import get_models_path from gensim.models.wrappers.ldamallet import malletmodel2ldamodel import os import json import numpy as np import pandas as pd from gensim.corpora import Dictionary from gensim.models.wrappers import LdaMallet from sklearn.metrics import euclidean_distances class LDAInferencer: def __init__( self, corpus_id, model_id ): # We will use the 0 index convention CORPUS_ID = corpus_id MODEL_ID = model_id self.corpus_id = corpus_id self.model_id = model_id self.corpus_part = '_'.join(model_id.split('_')[:-1]) self.num_topics = int(model_id.split('_')[-1]) self.models_path = get_models_path('LDA') self.model_folder = os.path.join( self.models_path, f'{CORPUS_ID}-{MODEL_ID}') self.model_data_folder = os.path.join(self.model_folder, 'data') self.model = LdaMallet.load(os.path.join( self.model_data_folder, f'{CORPUS_ID}_lda_model_{MODEL_ID}.mallet.lda')) self.gensim_model = malletmodel2ldamodel( self.model, iterations=self.model.iterations) self.g_dict = Dictionary() self.g_dict.id2token = self.model.id2word self.g_dict.token2id = {k: v for v, k in self.g_dict.id2token.items()} self.normalized_topics = self.model.get_topics() self.topics = self.model.word_topics self.documents_topics = pd.read_csv( os.path.join(self.model_data_folder, f'doc_topics_{MODEL_ID}_with_details.csv'), # header='', # Change to True if topic id should be present as the header index_col=0 # Change to True if the uid should be present as the index ) self.documents_topics.columns = self.documents_topics.columns.astype( int) self.normalized_topics_by_documents = self.documents_topics / \ self.documents_topics.sum() self.normalized_documents_topics = self.documents_topics.div( self.documents_topics.sum(axis=1), axis=0) self.topic_composition_ranges = self._get_topic_composition_ranges() def get_topic_share(self, topic_id, doc_ids, serialize=False): if isinstance(doc_ids, str): doc_ids = [doc_ids] topic_share = self.normalized_topics_by_documents.reindex(doc_ids)[ topic_id].to_dict() if serialize: topic_share = json.dumps(topic_share) return topic_share def infer_topics(self, text, topn_topics=None, total_topic_score=None, serialize=False): if isinstance(text, str): text = text.split() if len(text) == 1: doc_topics = self.gensim_model.get_term_topics( self.g_dict.token2id[text[0]]) else: doc = self.g_dict.doc2bow(text) doc_topics = self.gensim_model[doc] found_topics = {i for i, v in doc_topics} print(found_topics) for i in range(self.model.num_topics): if i not in found_topics: doc_topics.append((i, 0)) doc_topics = pd.DataFrame(doc_topics, columns=['topic', 'score']) doc_topics = doc_topics.sort_values('score', ascending=False) if total_topic_score is not None: tdoc_topics = doc_topics[doc_topics.score.cumsum( ) <= total_topic_score] if tdoc_topics.empty: doc_topics = doc_topics.head(1) else: doc_topics = tdoc_topics if topn_topics is not None and doc_topics.shape[0] > topn_topics: doc_topics = doc_topics.head(topn_topics) # doc_topics['topic'] = doc_topics['topic'].astype(int) doc_topics = doc_topics.to_dict('records') if serialize: doc_topics = json.dumps(doc_topics) return doc_topics def get_model_topic_words(self, topn_words=5, total_word_score=None, serialize=False): payload = [] for topic_id in range(self.num_topics): topic_words = self.get_topic_words( topic_id, topn_words=topn_words, total_word_score=total_word_score ) payload.append({'topic_id': topic_id, 'topic_words': topic_words}) if serialize: payload = json.dumps(payload) return payload def get_topic_words(self, topic_id, topn_words=10, total_word_score=None, serialize=False): topic_id = int(topic_id) topic_words = pd.DataFrame(self.model.show_topic( topic_id, topn=topn_words), columns=['word', 'score']) topic_words = topic_words.sort_values('score', ascending=False) if total_word_score is not None: ttopic_words = topic_words[topic_words.score.cumsum( ) <= total_word_score] if ttopic_words.empty: topic_words = topic_words.head(1) else: topic_words = ttopic_words if topn_words is not None and topic_words.shape[0] > topn_words: topic_words = topic_words.head(topn_words) topic_words = topic_words.to_dict('records') if serialize: topic_words = json.dumps(topic_words) return topic_words def get_doc_topic_words(self, text, topn_topics=10, topn_words=10, total_topic_score=1, total_word_score=1, serialize=False): doc_topics = self.infer_topics( text, topn_topics=topn_topics, total_topic_score=total_topic_score) doc_topic_words = [] for dt in doc_topics: topic = dt['topic'] topic_score = dt['score'] topic_words = self.get_topic_words( topic, topn_words=topn_words, total_word_score=total_word_score) topic_data = {'topic': topic, 'score': topic_score} topic_data['words'] = topic_words doc_topic_words.append(topic_data) doc_topic_words = pd.DataFrame(doc_topic_words).to_dict('records') if serialize: doc_topic_words = json.dumps(doc_topic_words) return doc_topic_words def get_doc_topic_words_by_id(self, doc_id, topn_topics=10, topn_words=10, total_topic_score=1, total_word_score=1, serialize=False): doc_topics = self.get_doc_topic_by_id( doc_id, topn=topn_topics, serialize=False) doc_topic_words = [] for dt in doc_topics: topic = dt['topic'] topic_score = dt['score'] topic_words = self.get_topic_words( topic, topn_words=topn_words, total_word_score=total_word_score) topic_data = {'topic': topic, 'score': topic_score} topic_data['words'] = topic_words doc_topic_words.append(topic_data) doc_topic_words = pd.DataFrame(doc_topic_words).to_dict('records') if serialize: doc_topic_words = json.dumps(doc_topic_words) return doc_topic_words def get_combined_doc_topic_words(self, text, topn_topics=None, topn_words=None, total_topic_score=0.8, total_word_score=0.2, serialize=False): doc_topics = self.infer_topics( text, topn_topics=topn_topics, total_topic_score=total_topic_score) doc_topic_words = [] for dt in doc_topics: topic = dt['topic'] topic_score = dt['score'] topic_words = self.get_topic_words( topic, topn_words=topn_words, total_word_score=total_word_score) for tw in topic_words: word = tw['word'] word_score = tw['score'] doc_topic_words.append({ 'topic': topic, 'word': word, 'topic_score': topic_score, 'word_score': word_score, 'score': topic_score * word_score }) doc_topic_words = pd.DataFrame(doc_topic_words).sort_values( 'score', ascending=False).to_dict('records') if serialize: doc_topic_words = json.dumps(doc_topic_words) return doc_topic_words def get_doc_topic_by_id(self, doc_id, topn=None, serialize=False): doc = self.documents_topics.loc[doc_id] if doc.empty: return [] # Just call is score for consistency doc.name = 'score' doc.index.name = 'topic' doc = doc.sort_values(ascending=False) / doc.sum() doc.index = doc.index.astype(int) doc = doc.reset_index() if topn is not None: doc = doc.head(topn) doc = doc.to_dict('records') if serialize: doc = json.dumps(doc) return doc def get_similar_documents(self, document, topn=10, return_data='id', return_similarity=False, duplicate_threshold=0.01, show_duplicates=True, serialize=False): doc_topics = self.infer_topics(document) doc_topics = pd.DataFrame(doc_topics).sort_values( 'topic').set_index('topic') e_distance = euclidean_distances(doc_topics.score.values.reshape( 1, -1), self.normalized_documents_topics.values).flatten() if not show_duplicates: e_distance[e_distance <= duplicate_threshold] = np.inf payload = [] for rank, top_sim_ix in enumerate(e_distance.argsort()[:topn], 1): payload.append( {'id': self.normalized_documents_topics.iloc[top_sim_ix].name, 'score': e_distance[top_sim_ix], 'rank': rank}) if serialize: payload = pd.DataFrame(payload).to_json() return payload def get_similar_docs_by_id(self, doc_id, topn=10, return_data='id', return_similarity=False, duplicate_threshold=0.01, show_duplicates=True, serialize=False): doc_topics = self.normalized_documents_topics.loc[doc_id].values.reshape( 1, -1) e_distance = euclidean_distances( doc_topics, self.normalized_documents_topics.values).flatten() if not show_duplicates: e_distance[e_distance <= duplicate_threshold] = pd.np.inf payload = [] for rank, top_sim_ix in enumerate(e_distance.argsort()[:topn], 1): payload.append( {'id': self.normalized_documents_topics.iloc[top_sim_ix].name, 'score': e_distance[top_sim_ix], 'rank': rank}) if serialize: payload = pd.DataFrame(payload).to_json() return payload def get_docs_by_topic_composition(self, topic_percentage, topn=10, return_data='id', closest_to_minimum=False, return_similarity=False, duplicate_threshold=0.01, show_duplicates=True, serialize=False): ''' topic_percentage (dict): key (int) corresponds to topic id and value (float [0, 1]) corresponds to the expected topic percentage. ''' topic_percentage =
pd.Series(topic_percentage)
pandas.Series
# -*- coding:utf-8 -*- """ #====#====#====#==== # Project Name: RNN-SignalProcess # File Name: TestSomeFunction # Date: 3/1/18 7:45 PM # Using IDE: PyCharm Community Edition # From HomePage: https://github.com/DuFanXin/RNN # Author: DuFanXin # BlogPage: http://blog.csdn.net/qq_30239975 # E-mail: <EMAIL> # Copyright (c) 2018, All Rights Reserved. #====#====#====#==== """ import tensorflow as tf import argparse import os def write_img_to_tfrecords(): import numpy as np import pandas as pd type_to_num = { 'galaxy': 0, 'qso': 1, 'star': 2, 'unknown': 3 } train_set_writer = tf.python_io.TFRecordWriter(os.path.join(FLAGS.data_dir, 'train_set.tfrecords')) validation_set_writer = tf.python_io.TFRecordWriter(os.path.join(FLAGS.data_dir, 'validation_set.tfrecords')) train_set = pd.read_csv(filepath_or_buffer=os.path.join(FLAGS.data_dir, 'train_set.csv'), header=0, sep=',') # splite_merge_csv() # print(train_set.head()) row_num = train_set.shape[0] for index, row in train_set.iterrows(): # print(row['id']) train_list = np.loadtxt( os.path.join('../data/first_train_data_20180131', '%d.txt' % row['id']), delimiter=",", skiprows=0, dtype=np.float32) example = tf.train.Example(features=tf.train.Features(feature={ 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[type_to_num[row['type']]])), 'signal': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_list.tobytes()])) })) train_set_writer.write(example.SerializeToString()) # 序列化为字符串 if index % 100 == 0: print('Done train_set writing %.2f%%' % (index / row_num * 100)) train_set_writer.close() print("Done train_set writing") validation_set = pd.read_csv(filepath_or_buffer=os.path.join(FLAGS.data_dir, 'validation_set.csv'), header=0, sep=',') # splite_merge_csv() # print(validation_set.head()) row_num = validation_set.shape[0] for index, row in validation_set.iterrows(): # print(row['type']) validation_list = np.loadtxt( os.path.join('../data/first_train_data_20180131', '%d.txt' % row['id']), delimiter=",", skiprows=0, dtype=np.float32) example = tf.train.Example(features=tf.train.Features(feature={ 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[type_to_num[row['type']]])), 'signal': tf.train.Feature(bytes_list=tf.train.BytesList(value=[validation_list.tobytes()])) })) validation_set_writer.write(example.SerializeToString()) # 序列化为字符串 if index % 100 == 0: print('Done validation_set writing %.2f%%' % (index / row_num * 100)) validation_set_writer.close() print("Done validation_set writing") def test(): import numpy as np # import pandas as pd type_to_num = { 'galaxy': 0, 'qso': 1, 'star': 2, 'unknown': 3 } train_set_writer = tf.python_io.TFRecordWriter(os.path.join(FLAGS.data_dir, 'train_set_test.tfrecords')) # 要生成的文件 train_list = np.loadtxt(os.path.join('../data', '%d.txt' % 696220), delimiter=",", skiprows=0, dtype=np.float32) example = tf.train.Example(features=tf.train.Features(feature={ 'label': tf.train.Feature(int64_list=tf.train.Int64List(value=[type_to_num['star']])), 'signal': tf.train.Feature(bytes_list=tf.train.BytesList(value=[train_list.tobytes()])) })) train_set_writer.write(example.SerializeToString()) # 序列化为字符串 train_set_writer.close() def read_image(file_queue): reader = tf.TFRecordReader() # key, value = reader.read(file_queue) _, serialized_example = reader.read(file_queue) features = tf.parse_single_example( serialized_example, features={ 'label': tf.FixedLenFeature([], tf.int64), 'signal': tf.FixedLenFeature([], tf.string) }) signal = tf.decode_raw(features['signal'], tf.float32) # print('image ' + str(image)) # image = tf.reshape(image, [INPUT_IMG_WIDE, INPUT_IMG_HEIGHT, INPUT_IMG_CHANNEL]) # image = tf.image.convert_image_dtype(image, dtype=tf.float32) # image = tf.image.resize_images(image, (IMG_HEIGHT, IMG_WIDE)) # signal = tf.cast(features['signal'], tf.float32) signal = tf.reshape(signal, [2600, 1]) # label = tf.decode_raw(features['label'], tf.int64) label = tf.cast(features['label'], tf.int32) # label = tf.reshape(label, [OUTPUT_IMG_WIDE, OUTPUT_IMG_HEIGHT]) # label = tf.decode_raw(features['image_raw'], tf.uint8) # print(label) # label = tf.reshape(label, shape=[1, 4]) return signal, label def read_check_tfrecords(): train_file_path = os.path.join(FLAGS.data_dir, 'train_set.tfrecords') train_image_filename_queue = tf.train.string_input_producer( string_tensor=tf.train.match_filenames_once(train_file_path), num_epochs=1, shuffle=True) train_images, train_labels = read_image(train_image_filename_queue) # one_hot_labels = tf.to_float(tf.one_hot(indices=train_labels, depth=CLASS_NUM)) with tf.Session() as sess: # 开始一个会话 sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) signal, label = sess.run([train_images, train_labels]) print(signal) print(label) # print(sess.run(one_hot_labels)) coord.request_stop() coord.join(threads) print("Done reading and checking") def splite_merge_csv(): import pandas as pd df = pd.read_csv(filepath_or_buffer='../data/first_train_index_20180131.csv', header=0, sep=',') train_set = pd.DataFrame() validate_set = pd.DataFrame() # print(df.head()) grouped = df.groupby('type') print(grouped.count()) for name, group in grouped: if name == 'galaxy': train_set = pd.concat([train_set, group[:5200]]) validate_set = pd.concat([validate_set, group[5200:]]) elif name == 'qso': train_set = pd.concat([train_set, group[:1300]]) validate_set = pd.concat([validate_set, group[1300:]]) elif name == 'star': train_set = pd.concat([train_set, group[:140000]]) validate_set = pd.concat([validate_set, group[140000:140969]]) elif name == 'unknown': print(name) train_set = pd.concat([train_set, group[:34000]]) validate_set = pd.concat([validate_set, group[34000:]]) print('train_set') print(train_set.count(axis=0)) print('validate_set') print(validate_set.count(axis=0)) train_set.sample(frac=1).to_csv(path_or_buf='../data/train_set.csv') validate_set.sample(frac=1).to_csv(path_or_buf='../data/validation_set.csv') print('Done splite and merge csv') def write_csv(): import pandas as pd num_to_type = { 0: 'galaxy', 1: 'qso', 2: 'star', 3: 'unknown' } type_to_num = { 'galaxy': 0, 'qso': 1, 'star': 2, 'unknown': 3 } test_set = pd.read_csv(filepath_or_buffer=os.path.join(FLAGS.data_dir, 'test_set_test.csv'), header=0, sep=',') test_arr = test_set.values print(test_arr.shape) # for index, row in test_set.iterrows(): # row['prediction'] = 1 test_arr[0][-1] = 11 test_set =
pd.DataFrame(data=test_arr, columns=['id', 'type', 'prediction'])
pandas.DataFrame
import random import spotipy import requests import pandas as pd from sklearn import metrics from sklearn import preprocessing from sklearn.preprocessing import StandardScaler from sklearn.cluster import KMeans class Recommend: ''' Arguments - client_id - unique client ID client_secret - unique secret key username - unique Spotify username ''' def __init__(self, client_id = None, client_secret = None, username = None): self.client_id = client_id self.client_secret = client_secret self.username = username self.url = 'https://api.spotify.com/v1/recommendations?' self.market = 'US' self.sp = spotipy.Spotify(auth = self.generate_token()) def generate_token(self): post_response = requests.post('https://accounts.spotify.com/api/token', { 'grant_type': 'client_credentials', 'client_id': self.client_id, 'client_secret': self.client_secret, }) post_respose_json = post_response.json() token = post_respose_json['access_token'] return token def print_response(self, query): token = self.generate_token() response = requests.get(query, headers = {"Content-Type": "application/json", "Authorization": f"Bearer {token}"}) json_response = response.json() try: print('Recommendations:\n') for i, j in enumerate(json_response['tracks']): print(f"{i+1}) \"{j['name']}\" : {j['artists'][0]['name']}") print() except: print(json_response) def byArtistSpotify(self, artist = None, number = None): if artist is None: print('Enter the artist as a string argument\n') if number is None: number = 10 artist_result = self.sp.search(artist) try: seed_artists = artist_result['tracks']['items'][0]['artists'][0]['uri'][15:] seed_genres = [] seed_genres_entire = self.sp.artist(seed_artists) if len(seed_genres_entire) < 3: seed_genres = seed_genres_entire else: for i in seed_genres_entire['genres'][:3]: seed_genres.append(i) query = f'{self.url}limit={number}&market={self.market}&seed_genres={seed_genres}&seed_artists={seed_artists}' print(self.print_response(query)) except: print('Seed artists for given artist could not be generated\n') def byTrackSpotify(self, track_URI = None, number = None): if track_URI is None: print('Enter the track_URI as a string argument\n') if number is None: number = 10 track_ID = track_URI.split(':')[2] try: meta = self.sp.track(track_ID) artist = meta['album']['artists'][0]['name'] artist_result = self.sp.search(artist) try: seed_artists = artist_result['tracks']['items'][0]['artists'][0]['uri'][15:] seed_genres = [] seed_genres_entire = self.sp.artist(seed_artists) if len(seed_genres_entire) < 3: seed_genres = seed_genres_entire else: for i in seed_genres_entire['genres'][:3]: seed_genres.append(i) query = f'{self.url}limit={number}&market={self.market}&seed_genres={seed_genres}&seed_artists={seed_artists}&seed_tracks={track_ID}' print(self.print_response(query)) except: print('Seed artist for given track could not be generated\n') except: print('Recheck track_URI argument\n') def byPlaylistSpotify(self, playlist_URL = None, number = None): if number is None: number = 10 if playlist_URL is None: print('Recheck playlist_URL argument\n') playlist_id = playlist_URL[34:] df = pd.DataFrame(columns = ['Name', 'Album', 'Artist', 'Year', 'Duration', 'Danceability', 'Energy']) track_ids = [] for i in self.sp.playlist(playlist_id)['tracks']['items']: track_ids.append(i['track']['id']) for i in track_ids: meta = self.sp.track(i) features = self.sp.audio_features(i) track_dict = { 'Name' : meta['name'], 'Album' : meta['album']['name'], 'Artist' : meta['album']['artists'][0]['name'], 'Year' : meta['album']['release_date'][0:4], 'Duration' : meta['duration_ms'] * 0.001, 'Danceability' : features[0]['danceability'], 'Energy' : features[0]['energy'] } df = df.append(track_dict, ignore_index = True, sort = False) common_artist = self.sp.search(df['Artist'].value_counts().head(1)) seed_artists = common_artist['tracks']['items'][0]['artists'][0]['uri'][15:] seed_genres = [] seed_genres_entire = self.sp.artist(seed_artists) if len(seed_genres_entire) < 3: seed_genres = seed_genres_entire else: for i in seed_genres_entire['genres'][:3]: seed_genres.append(i) seed_tracks = random.choice(track_ids) target_danceability = round(df['Danceability'].mean(), 1) target_energy = round(df['Energy'].mean(), 1) try: query = f'{self.url}limit={number}&market={self.market}&seed_genres={seed_genres}' query += f'&target_danceability={target_danceability}' query += f'&target_energy={target_energy}' query += f'&seed_artists={seed_artists}&seed_tracks={seed_tracks}' print(self.print_response(query)) except: print('Query could not be executed\n') def byAudioFeaturesSpotify(self, target_acousticness = None, target_danceability = None, target_duration_ms = None, target_energy = None, target_instrumentalness = None, target_key = None, target_liveness = None, target_loudness = None, target_mode = None, target_popularity = None, target_speechiness = None, target_tempo = None, target_time_signature = None, target_valence = None, artist = None): if artist is None: print('Enter the artist as a string argument\n') artist_result = self.sp.search(artist) try: seed_artists = artist_result['tracks']['items'][0]['artists'][0]['uri'][15:] seed_genres = [] seed_genres_entire = self.sp.artist(seed_artists) if len(seed_genres_entire) < 3: seed_genres = seed_genres_entire else: for i in seed_genres_entire['genres'][:3]: seed_genres.append(i) query = f'{self.url}limit={10}&market={self.market}&seed_genres={seed_genres}' if target_acousticness is not None: query += f'&target_acousticness={target_acousticness}' if target_danceability is not None: query += f'&target_danceability={target_danceability}' if target_duration_ms is not None: query += f'target_duration_ms={target_duration_ms}' if target_energy is not None: query += f'target_energy={target_energy}' if target_instrumentalness is not None: query += f'target_instrumentalness={target_instrumentalness}' if target_key is not None: query += f'target_key={target_key}' if target_liveness is not None: query += f'target_liveness={target_liveness}' if target_loudness is not None: query += f'target_loudness={target_loudness}' if target_mode is not None: query += f'target_mode={target_mode}' if target_popularity is not None: query += f'target_popularity={target_popularity}' if target_speechiness is not None: query += f'target_speechiness={target_speechiness}' if target_tempo is not None: query += f'target_tempo={target_tempo}' if target_time_signature is not None: query += f'target_time_signature={target_time_signature}' if target_valence is not None: query += f'target_valence={target_valence}' query += f'&seed_artists={seed_artists}' print(self.print_response(query)) except: print('Seed artists for given artist could not be generated\n') def byTrack(self, track_URL = None, number = None, query = None, cluster = None): if track_URL is None: print('Recheck track_URL argument\n') track_ID = track_URL[31:].split('?')[0] if number is None: number = 10 if query is None and cluster is None: print('Specify method of recommendation as boolean argument\n') if query is True and cluster is True: print('Specify single method of recommendation as boolean argument\n') if query == True: meta = self.sp.track(track_ID) features = self.sp.audio_features(track_ID) target_year = meta['album']['release_date'][0:4] target_popularity = meta['popularity'] target_danceability = features[0]['danceability'] target_energy = features[0]['energy'] tracks_df = pd.read_csv('tracks.csv') try: results =
pd.DataFrame()
pandas.DataFrame
#import warnings #warnings.filterwarnings('ignore') import pandas as pd import pickle train=pd.read_csv('Train.csv') test =
pd.read_csv("Test.csv")
pandas.read_csv
""" Module to provide processing functions for ISS data. """ from pilates import wrds_module import pandas as pd import numpy as np import os, zipfile, re from codecs import open from rapidfuzz import fuzz class iss(wrds_module): """ Class providing main processing methods for the ISS data. One instance of this classs is automatically created and accessible from any data object instance. Args: d (pilates.data): Instance of pilates.data object. """ def __init__(self, d): wrds_module.__init__(self, d) def cik_from_gvkey(self, data): """ Returns ISS cik from Compustat gvkey. """ None def gvkey_from_cik(self, data): """ Returns COMPUSTAT gvkey from ISS cik. """ df_iss = self.open_data(self.companyfy, columns=['cik','companyname','ticker','cusip']) df_comp = self.d.comp.open_data(self.d.comp.names, columns=['gvkey','conm','cik','tic','cusip']) # Clean ISS companies names for c in [',','.']: df_iss['companyname'] = df_iss.companyname.str.replace(c,'',regex=False) df_iss['companyname'] = df_iss.companyname.str.upper() df_iss = df_iss.drop_duplicates() df = df_iss ############# # Using CIK # ############# df = pd.merge(df, df_comp[['cik', 'gvkey']], how='left') # Only 157 missing CIKs, so we stop here for now. ###################### # Merge to user data # ###################### df_gvkey = df[['cik','gvkey']].drop_duplicates().dropna() dfin = pd.merge(data['cik'], df_gvkey, how='left') # Return the gvkeys dfin.index = data.index return dfin.gvkey def get_link_iss_execucomp(self): #################################################### # Create a general match between Execucomp and ISS # #################################################### fields_iss = ['cik', 'participantid', 'fullname', 'lastname', 'middlename', 'firstname'] fields_exe = ['gvkey', 'execid', 'exec_fullname', 'exec_lname', 'exec_mname', 'exec_fname'] dfiss = self.open_data(self.participantfy, fields_iss) dfexe = self.d.execucomp.open_data(self.d.execucomp.anncomp, fields_exe) dfiss = dfiss.drop_duplicates() dfexe = dfexe.drop_duplicates() # Add gvkey information dfiss['gvkey'] = self.gvkey_from_cik(dfiss) dfexe['lastname'] = dfexe.exec_lname dfexe['middlename'] = dfexe.exec_mname dfexe['firstname'] = dfexe.exec_fname dfexe['fullname'] = dfexe.exec_fullname ##### Name cleanup ##### # Remove '.', ',' and all cap for col in ['lastname', 'middlename', 'firstname', 'fullname']: for char in [',', '.']: dfiss[col] = dfiss[col].str.replace(char, '', regex=False) dfexe[col] = dfexe[col].str.replace(char, '', regex=False) dfiss[col] = dfiss[col].str.upper() dfexe[col] = dfexe[col].str.upper() ##### Merge ##### ### Start from most strict to more lax and keep 1-1 matches dfkeeps = [] ## For same firm ## # For same (lastname, middlename, firstname) # or same (lastname, firstname), allow for 1-N and N-1 matches keys = [['lastname', 'middlename', 'firstname'], ['lastname', 'firstname']] for key in keys: df =
pd.merge(dfiss[key+['gvkey', 'participantid']], dfexe[key+['gvkey', 'execid']])
pandas.merge
import pandas as pd # read the csv input_name = "heart.csv" df =
pd.read_csv(input_name, parse_dates=["dateTime"], infer_datetime_format=True)
pandas.read_csv
""" Created on Sun Sep 22 08:24:36 2019 @author: <NAME> @contact: <EMAIL> Structure outline: HTML page with pandas read html parser """ import requests import pandas as pd from Market.exc_parser import exc_parser from Market.gen_process_params import gen_proc_params class DL_parser(exc_parser): """ Shanghai exchange parser """ def __init__( self ): self.__col_names = ["Dates","Code","Open","High","Low","Close","OPI","Vol"] self.__exc_name = "DL" self.__URL_TEMPL = "http://www.dce.com.cn/publicweb/quotesdata/dayQuotesCh.html" self.__headers = { 'Content-Type': 'application/x-www-form-urlencoded', 'Cookie': 'JSESSIONID=34581314E8E6F047ABE7D22180DCE3A2; WMONID=-b8uBX4vHDi; Hm_lvt_a50228174de2a93aee654389576b60fb=1567732473,1568333912,1568936184,1569113640; Hm_lpvt_a50228174de2a93aee654389576b60fb=1569113660', 'Referer': 'http://www.dce.com.cn/publicweb/quotesdata/dayQuotesCh.html', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/76.0.3809.132 Safari/537.36' } self.__payload = { 'dayQuotes.variety': 'all', 'dayQuotes.trade_type': '0', 'year': 0, 'month':0, 'day': 0, } self.__name_map = {"豆一":"a","豆二":"b","乙二醇":"eg","焦煤":"jm","焦炭":"j", "铁矿石":"i","聚氯乙烯":"pvc","聚丙烯":"pp","聚乙烯":"pe","豆粕":"m", "豆油":"y","棕榈油":"p","鸡蛋":"jd","玉米淀粉":"cs","玉米":"c"} self.__datas = [] def _get_URL_TEMP(self): # update exchange url return self.__URL_TEMPL def _read_html_format(self,page,dates): df =
pd.read_html(page,skiprows=0)
pandas.read_html
from calendar import month import pandas as pd import numpy as np import os.path as path import datetime from datetime import datetime from pathlib import Path, PurePath # try: # from urllib.parse import urlparse # from urllib.request import request # except ImportError: # try: # from urlparse import urlparse # from urlrequest import request # except ImportError: # print('Sorry ran out of options') import urllib.parse as urlparse import urllib.request as request, json def import_func(file_or_url): """Private function to use the file extension to determine the Pandas import function to use""" # Locate the text at the last period '.' _, extn = path.splitext(file_or_url.lower()) extn_fns = { '.csv':pd.read_csv , '.xls':pd.read_excel , '.xlsx':pd.read_excel , '.json':pd.read_json , '.html':pd.read_html } return extn_fns[extn] def is_valid_url(url): """Determines if the URL is valid or not.""" rslt = urlparse.urlparse(url) is_url = all([rslt.scheme, rslt.netloc, rslt.path]) is_url_valid = False if is_url: try: with request.urlopen(url) as resp: is_url_valid = (resp.status == 200) except Exception as exn: is_url_valid = False print(f'There was an error {exn}') else: is_url_valid = True return is_url_valid def Get_json(json_path:str): if is_valid_url(json_path): with request.urlopen(json_path) as url: data = json.loads(url.read().decode()) if data["Response"]=="Success": all_data = data else: print("NOT ABLE TO READ THE DATA!!!") all_data = None elif(path.exists(json_path)): with open(json_path) as f: data = json.load(f) if data is not None: all_data = data else: all_data = None return all_data def apply_index(df, idx=None): """Apply an index to a dataframe""" right_type = type(idx) == list or type(idx) == str idx_in_df = set(idx).issubset(set(df)) not_already_idxd = not (set(idx).issubset(df.index.names) or idx in df.index.names) if right_type and idx_in_df and not_already_idxd: df.set_index(keys=idx,inplace=True) else: # TODO: Fix this later, check if the index already exists #print(f"Index not applied {idx} [Type {right_type}] [Subset {idx_in_df}]") pass return df def CreateDataFrame(file_name, idx=None, remove_nulls=True): """Creates a DataFrame the way I like it.""" if type(file_name) == str: file_name = file_name.strip() elif file_name.issubclass(PurePath): pass state = [] apply_func = import_func(file_name) if is_valid_url(file_name): state.append('Valid url') else: if not path.exists(file_name): print(f'Had problems locating the data [{file_name}]') return pd.DataFrame() # Import File based on file extension df = apply_func(file_name, index_col=idx, parse_dates=True, infer_datetime_format=True) state.append('imported') if remove_nulls: df.dropna(inplace=True) print(state) return df # Check if the object is a list or dictionary Is_Iterable = lambda objX: ('__getitem__' in dir(objX) or '__iter__' in dir(objX)) # Split up the componets of a list of tuples unzip_list = lambda zlst: list(zip(*zlst)) # Get the Quarter, based on the date Qtr = lambda dtx: (dtx.month+2)//3 # Get the Last Month of the Qtr Qtr_EOM = lambda dtx: Qtr(dtx) * 3 # Let's put it all together def Last_Day_Qtr(dtx:datetime.date): """Get the last day of the month in a Given Qtr""" Qtr_Last_Day_LU = {1:31,2:30,3:30,4:31} yr = dtx.year m = Qtr_EOM(dtx) d = Qtr_Last_Day_LU[ Qtr(dtx) ] return datetime(yr,m,d) # Get the number of days from the End of Qtr to given date Days_2_EoQ = lambda dtx: (Last_Day_Qtr(dtx) - dtx).days def Get_Qtr(xdate:datetime): """ This function takes various datetime objects and returns the Quarter associated with the values passed in So for an array, it will return an array of quarters as string. If a single value was passed the a single quarter will be returned.""" from calendar import monthrange import numpy as np typ = type(xdate) if typ is datetime or typ is datetime.date: q = (xdate.month+2)//3 y = xdate.year return (f"{y}Q{q}") elif typ is np.ndarray: lst_date = [Get_Qtr(x) for x in xdate] return lst_date elif typ is pd.Series or typ is list: lst_date = [Get_Qtr(x[1]) for x in xdate.iteritems()] return lst_date elif typ is pd.core.indexes.multi.MultiIndex: lst_date = [Get_Qtr(x[1].date()) for x in xdate.values] return lst_date elif typ is pd.core.indexes.datetimes.DatetimeIndex: lst_date = [Get_Qtr(x.date()) for x in xdate] return lst_date elif typ is str: return Get_Qtr(datetime.strptime(xdate, '%Y-%m-%d')) else: #print(f'The type is {type(xdate)} not planned for.') d = xdate q = (d.month+2)//3 y = d.year return (f"{y}Q{q}") def Get_Date(xdate:datetime=None): """ This function takes various datetime objects and returns the Date associated with the values passed in. So for an array, it will return an array of datetime dates. If a single value was passed the a single date will be returned.""" if xdate is None: return None if 'mro' in (dir(xdate)): print(f'{xdate.mro()}') import numpy as np import pandas as pd typ = type(xdate) if typ is datetime or typ is datetime.date: return datetime(xdate.year,xdate.month,xdate.day) elif (typ is np.ndarray): lst_date = [Get_Date(x) for x in xdate] return lst_date elif (typ is pd._libs.tslibs.timestamps.Timestamp) and Is_Iterable(xdate): #print('pd._libs.tslibs.timestamps.Timestamp ITERABLE') return [Get_Date(x) for x in xdate] elif (typ is pd._libs.tslibs.timestamps.Timestamp): #print('pd._libs.tslibs.timestamps.Timestamp') return
pd.to_datetime(xdate)
pandas.to_datetime
"""TSV Class""" import re import math import pandas as pd import random import json from omigo_core import tsvutils from omigo_core import utils import sys class TSV: """This is the main data processing class to apply different filter and transformation functions on tsv data and get the results. The design is more aligned with functional programming where each step generates a new copy of the data""" header = None header_map = None header_index_map = None header_fields = None data = None # constructor def __init__(self, header, data): # initialize header and data self.header = header self.data = data # create map of name->index and index->name self.header_fields = self.header.split("\t") self.header_map = {} self.header_index_map = {} # validation for h in self.header_fields: if (len(h) == 0): raise Exception("Zero length header fields:" + str(self.header_fields)) # create hashmap for i in range(len(self.header_fields)): h = self.header_fields[i] # validation if (h in self.header_map.keys()): raise Exception("Duplicate header key:" + str(self.header_fields)) self.header_map[h] = i self.header_index_map[i] = h # basic validation if (len(data) > 0 and len(data[0].split("\t")) != len(self.header_fields)): raise Exception("Header length is not matching with data length:", len(self.header_fields), len(data[0].split("\t")), str(self.header_fields), str(data[0].split("\t"))) # debugging def to_string(self): return "Header: {}, Data: {}".format(str(self.header_map), str(len(self.data))) # check data format def validate(self): # data validation count = 0 for line in self.data: count = count + 1 fields = line.split("\t") if (len(fields) != len(self.header_fields)): raise Exception("Header length is not matching with data length. position: {}, len(header): {}, header: {}, len(fields): {}, fields: {}".format( count, len(self.header_fields), self.header_fields, len(fields), str(fields))) # return return self def __has_col__(self, col): # validate xcol return col in self.header_map.keys() # cols is array of string def select(self, col_or_cols, inherit_message = ""): # get matching column and indexes matching_cols = self.__get_matching_cols__(col_or_cols) indexes = self.__get_col_indexes__(matching_cols) # create new header new_header = "\t".join(matching_cols) # create new data counter = 0 new_data = [] for line in self.data: # report progress counter = counter + 1 utils.report_progress("select: [1/1] selecting columns", inherit_message, counter, len(self.data)) fields = line.split("\t") new_fields = [] for i in indexes: if (i >= len(fields)): raise Exception("Invalid index: ", col_or_cols, matching_cols, indexes, line, fields, len(fields), len(self.header_fields), self.header_map) new_fields.append(fields[i]) new_data.append("\t".join(new_fields)) # return return TSV(new_header, new_data) def values_not_in(self, col, values, inherit_message = ""): inherit_message2 = inherit_message + ": values_not_in" if (inherit_message != "") else "values_not_in" return self.filter([col], lambda x: x not in values, inherit_message = inherit_message2) def values_in(self, col, values, inherit_message = ""): inherit_message2 = inherit_message + ": values_in" if (inherit_message != "") else "values_in" return self.filter([col], lambda x: x in values, inherit_message = inherit_message2) def not_match(self, col, pattern, inherit_message = ""): utils.warn("Please use not_regex_match instead") return self.not_regex_match(col, pattern, inherit_message) def not_regex_match(self, col, pattern, inherit_message = ""): inherit_message2 = inherit_message + ": not_regex_match" if (inherit_message != "") else "not_regex_match" return self.regex_match(col, pattern, condition = False, inherit_message = inherit_message2) def match(self, col, pattern, inherit_message = ""): utils.warn("Please use regex_match instead") return self.regex_match(col, pattern, inherit_message = inherit_message) def regex_match(self, col, pattern, condition = True, inherit_message = ""): inherit_message2 = inherit_message + ": regex_match" if (inherit_message != "") else "regex_match" return self.filter([col], lambda x: (re.match(pattern, x) is not None) == condition, inherit_message = inherit_message2) def not_eq(self, col, value, inherit_message = ""): utils.warn("This api can have side effects because of implicit data types conversion in python. Use not_eq_int, not_eq_str or not_eq_float") inherit_message2 = inherit_message + ": not_eq" if (inherit_message != "") else "not_eq" return self.filter([col], lambda x: x != value, inherit_message = inherit_message2) def eq(self, col, value, inherit_message = ""): utils.warn("This api can have side effects because of implicit data types conversion in python. Use eq_int, eq_str or eq_float") return self.filter([col], lambda x: x == value, inherit_message = inherit_message2) def eq_int(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": eq_int" if (inherit_message != "") else "eq_int" return self.filter([col], lambda x: int(float(x)) == value, inherit_message = inherit_message2) def eq_float(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": eq_float" if (inherit_message != "") else "eq_float" return self.filter([col], lambda x: float(x) == value, inherit_message = inherit_message2) def eq_str(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": eq_str" if (inherit_message != "") else "eq_str" return self.filter([col], lambda x: str(x) == str(value), inherit_message = inherit_message2) def not_eq_str(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": not_eq_str" if (inherit_message != "") else "not_eq_str" return self.filter([col], lambda x: str(x) != str(value), inherit_message = inherit_message2) def is_nonzero(self, col, inherit_message = ""): utils.warn("Deprecated. Use is_nonzero_float() instead") inherit_message2 = inherit_message + ": is_nonzero" if (len(inherit_message) > 0) else "is_nonzero" return self.is_nonzero_float(col, inherit_message = inherit_message2) def is_nonzero_int(self, col, inherit_message = ""): inherit_message2 = inherit_message + ": is_nonzero_int" if (len(inherit_message) > 0) else "is_nonzero_int" return self.filter([col], lambda x: int(x) != 0, inherit_message = inherit_message2) def is_nonzero_float(self, col, inherit_message = ""): inherit_message2 = inherit_message + ": is_nonzero_float" if (len(inherit_message) > 0) else "is_nonzero_float" return self.filter([col], lambda x: float(x) != 0, inherit_message = inherit_message2) def lt_str(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": lt_str" if (len(inherit_message) > 0) else "lt_str" return self.filter([col], lambda x: x < value, inherit_message = inherit_message2) def le_str(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": le_str" if (len(inherit_message) > 0) else "le_str" return self.filter([col], lambda x: x <= value, inherit_message = inherit_message2) def gt_str(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": gt_str" if (len(inherit_message) > 0) else "gt_str" return self.filter([col], lambda x: x > value, inherit_message = inherit_message2) def ge_str(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": ge_str" if (len(inherit_message) > 0) else "ge_str" return self.filter([col], lambda x: x >= value, inherit_message = inherit_message2) def gt(self, col, value, inherit_message = ""): utils.warn("Deprecated. Use gt_float() instead") inherit_message2 = inherit_message + ": gt" if (len(inherit_message) > 0) else "gt" return self.gt_float(col, value, inherit_message = inherit_message2) def gt_int(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": gt_int" if (len(inherit_message) > 0) else "gt_int" return self.filter([col], lambda x: int(float(x)) > int(float(value)), inherit_message = inherit_message2) def gt_float(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": gt_float" if (len(inherit_message) > 0) else "gt_float" return self.filter([col], lambda x: float(x) > float(value), inherit_message = inherit_message2) def ge(self, col, value, inherit_message = ""): utils.warn("Deprecated. Use ge_float() instead") inherit_message2 = inherit_message + ": ge" if (len(inherit_message) > 0) else "ge" return self.ge_float(col, value, inherit_message = inherit_message2) def ge_int(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": ge_int" if (len(inherit_message) > 0) else "ge_int" return self.filter([col], lambda x: int(float(x)) >= int(float(value)), inherit_message = inherit_message2) def ge_float(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": ge_float" if (len(inherit_message) > 0) else "ge_float" return self.filter([col], lambda x: float(x) >= float(value), inherit_message = inherit_message2) def lt(self, col, value, inherit_message = ""): utils.warn("Deprecated. Use lt_float() instead") inherit_message2 = inherit_message + ": lt" if (len(inherit_message) > 0) else "lt" return self.lt_float(col, value, inherit_message = inherit_message2) def lt_int(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": lt_int" if (len(inherit_message) > 0) else "lt_int" return self.filter([col], lambda x: int(float(x)) < int(float(value)), inherit_message = inherit_message2) def lt_float(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": lt_float" if (len(inherit_message) > 0) else "lt_float" return self.filter([col], lambda x: float(x) < float(value), inherit_message = inherit_message2) def le(self, col, value, inherit_message = ""): utils.warn("Deprecated. Use le_float() instead") inherit_message2 = inherit_message + ": le" if (len(inherit_message) > 0) else "le" return self.filter([col], lambda x: float(x) <= float(value), inherit_message = inherit_message2) def le_int(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": le_int" if (len(inherit_message) > 0) else "le_int" return self.filter([col], lambda x: int(float(x)) <= int(float(value)), inherit_message = inherit_message2) def le_float(self, col, value, inherit_message = ""): inherit_message2 = inherit_message + ": le_float" if (len(inherit_message) > 0) else "le_float" return self.filter([col], lambda x: float(x) <= float(value), inherit_message = inherit_message2) def startswith(self, col, prefix, inherit_message = ""): inherit_message2 = inherit_message + ": startswith" if (len(inherit_message) > 0) else "startswith" return self.filter([col], lambda x: x.startswith(prefix), inherit_message = inherit_message2) def not_startswith(self, col, prefix, inherit_message = ""): inherit_message2 = inherit_message + ": not_startswith" if (len(inherit_message) > 0) else "not_startswith" return self.exclude_filter([col], lambda x: x.startswith(prefix), inherit_message = inherit_message2) def endswith(self, col, suffix, inherit_message = ""): inherit_message2 = inherit_message + ": endswith" if (len(inherit_message) > 0) else "endswith" return self.filter([col], lambda x: x.endswith(suffix), inherit_message = inherit_message2) def not_endswith(self, col, suffix, inherit_message = ""): inherit_message2 = inherit_message + ": not_endswith" if (len(inherit_message) > 0) else "not_endswith" return self.exclude_filter([col], lambda x: x.endswith(suffix), inherit_message = inherit_message2) def replace_str_inline(self, cols, old_str, new_str, inherit_message = ""): inherit_message2 = inherit_message + ": replace_str_inline" if (len(inherit_message) > 0) else "replace_str_inline" return self.transform_inline(cols, lambda x: x.replace(old_str, new_str), inherit_message = inherit_message2) def group_count(self, cols, prefix = "group", collapse = True, precision = 6, inherit_message = ""): # find the matching cols and indexes cols = self.__get_matching_cols__(cols) # define new columns new_count_col = prefix + ":count" new_ratio_col = prefix + ":ratio" # validation and suggestion if (new_count_col in cols or new_ratio_col in cols): raise Exception("Use a different prefix than: {}".format(prefix)) # call aggregate with collapse=False inherit_message2 = inherit_message + ":group_count" if (inherit_message != "") else "group_count" return self.aggregate(cols, [cols[0]], [len], collapse = collapse, inherit_message = inherit_message2) \ .rename(cols[0] + ":len", new_count_col) \ .transform([new_count_col], lambda x: str(int(x) / len(self.data)), new_ratio_col, inherit_message = inherit_message2) \ .reverse_sort(new_count_col) \ .apply_precision(new_ratio_col, precision, inherit_message = inherit_message2) def ratio(self, col1, col2, new_col, default = 0.0, precision = 6, inherit_message = ""): return self \ .transform([col1, col2], lambda x, y: float(x) / float(y) if (float(y) != 0) else default, new_col) \ .apply_precision(new_col, precision, inherit_message = inherit_message) def ratio_const(self, col, denominator, new_col, precision = 6, inherit_message = ""): return self \ .transform([col], lambda x: float(x) / float(denominator) if (float(denominator) != 0) else default, new_col) \ .apply_precision(new_col, precision, inherit_message = inherit_message) def apply_precision(self, cols, precision, inherit_message = ""): inherit_message2 = inherit_message + ": apply_precision" if (len(inherit_message) > 0) else "apply_precision" return self.transform_inline(cols, lambda x: ("{:." + str(precision) + "f}").format(float(x)), inherit_message = inherit_message2) # TODO: use skip_rows for better name def skip(self, count): return TSV(self.header, self.data[count:]) def skip_rows(self, count): return self.skip(count) def last(self, count): if (count > len(self.data)): count = len(self.data) return TSV(self.header, self.data[-count:]) def take(self, count): # return result if (count > len(self.data)): count = len(self.data) return TSV(self.header, self.data[0:count]) def distinct(self): new_data = [] key_map = {} for line in self.data: if (line not in key_map.keys()): key_map[line] = 1 new_data.append(line) return TSV(self.header, new_data) # TODO: use drop_cols instead coz of better name def drop(self, col_or_cols, inherit_message = ""): # get matching column and indexes matching_cols = self.__get_matching_cols__(col_or_cols) # find the columns that dont match non_matching_cols = [] for h in self.header_fields: if (h not in matching_cols): non_matching_cols.append(h) # return inherit_message2 = inherit_message + ": drop" if (len(inherit_message) > 0) else "drop" return self.select(non_matching_cols, inherit_message = inherit_message2) def drop_cols(self, col_or_cols, inherit_message = ""): return self.drop(col_or_cols, inherit_message) def drop_if_exists(self, col_or_cols, inherit_message = ""): # validation if (col_or_cols is None or len(col_or_cols) == 0): return self # convert to array form if (isinstance(col_or_cols, str)): col_or_cols = [col_or_cols] # debug inherit_message2 = inherit_message + ": drop_if_exists" if (inherit_message != "") else "drop_if_exists" # iterate through each element and call drop result = self for c in col_or_cols: try: cols = result.__get_matching_cols__(c) result = result.drop(cols, inherit_message = inherit_message2) except: # ignore utils.debug("Column (pattern) not found or already deleted during batch deletion: {}".format(c)) # return return result # TODO: the select_cols is not implemented properly def window_aggregate(self, win_col, agg_cols, agg_funcs, winsize, select_cols = None, sliding = False, collapse = True, suffix = "", precision = 2, inherit_message = ""): # get the matching cols if (select_cols is None): select_cols = [] select_cols = self.__get_matching_cols__(select_cols) # do validation on window column. All values should be unique if (len(self.col_as_array(win_col)) != len(self.col_as_array_uniq(win_col))): utils.warn("The windowing column has non unique values: total: {}, uniq: {}. The results may not be correct.".format(len(self.col_as_array(win_col)), len(self.col_as_array_uniq(win_col)))) # this takes unique values for agg column, split them into windows and then run the loop win_col_values = sorted(list(set(self.col_as_array(win_col)))) # store the number of values num_win_col_values = len(win_col_values) # find number of windows num_windows = int(math.ceil(1.0 * num_win_col_values / winsize)) if (sliding == False) else (num_win_col_values - (winsize - 1)) # map to the window index win_mapping = {} win_names_mapping = {} # assign index for i in range(num_win_col_values): win_col_val = win_col_values[i] win_indexes = [] if (sliding == False): win_index = int(i / winsize) win_indexes.append(win_index) else: for i1 in range(winsize): win_index = i - (winsize - 1) + i1 if (win_index >= 0 and (num_win_col_values - win_index) >= winsize): win_indexes.append(win_index) # assign the mapping indexes win_mapping[win_col_val] = win_indexes # assign window column range for win_index in range(num_windows): if (sliding == True): win_names_mapping[win_index] = (win_col_values[win_index], win_col_values[win_index + winsize - 1]) else: start_index = win_index * winsize end_index = int(min(num_win_col_values - 1, win_index * winsize + winsize - 1)) win_names_mapping[win_index] = (win_col_values[start_index], win_col_values[end_index]) # transform and normalize the value of win_col suffix2 = suffix if (suffix != "") else "window_aggregate" new_win_col = win_col + ":" + suffix2 new_header = self.header + "\t" + new_win_col new_data = [] # iterate over data counter = 0 for line in self.data: # report progress counter = counter + 1 utils.report_progress("window_aggregate: [1/1] calling function", inherit_message, counter, len(self.data)) # parse data fields = line.split("\t") win_value = fields[self.header_map[win_col]] win_indexes = win_mapping[win_value] # explode for multiple windows for win_index in win_indexes: (namex, namey) = win_names_mapping[win_index] namexy = namex + " - " + namey new_data.append(line + "\t" + str(namexy)) # return if (collapse == True): cols2 = select_cols cols2.append(win_col) return TSV(new_header, new_data) \ .drop(win_col) \ .rename(new_win_col, win_col) \ .aggregate(cols2, agg_cols, agg_funcs, collapse) else: cols2 = select_cols cols2.append(new_win_col) return TSV(new_header, new_data) \ .aggregate(cols2, agg_cols, agg_funcs, collapse, precision) # The signature for agg_func is func(list_of_maps). Each map will get the agg_cols def group_by_key(self, grouping_cols, agg_cols, agg_func, suffix = "", collapse = True, inherit_message = ""): # resolve grouping and agg_cols grouping_cols = self.__get_matching_cols__(grouping_cols) agg_cols = self.__get_matching_cols__(agg_cols) # check for validity if (len(grouping_cols) == 0): raise Exception("No input columns:", grouping_cols) # validate grouping cols for c in grouping_cols: if (c not in self.header_map.keys()): raise Exception("grouping col not found:", c, ", columns:", self.header_fields) # validate agg cols for c in agg_cols: if (c not in self.header_map.keys()): raise Exception("agg col not found:", c, ", columns:", self.header_fields) # group all the values in the key grouped = {} counter = 0 for line in self.data: # report progress counter = counter + 1 utils.report_progress("group_by_key: [1/3] grouping: progress", inherit_message, counter, len(self.data)) # parse data fields = line.split("\t") # create grouping key keys = [] values_map = {} for g in grouping_cols: keys.append(fields[self.header_map[g]]) for a in agg_cols: values_map[a] = fields[self.header_map[a]] keys_str = "\t".join(keys) if (keys_str not in grouped.keys()): grouped[keys_str] = [] grouped[keys_str].append(values_map) # apply the agg func grouped_agg = {} counter = 0 for k, vs in grouped.items(): # report progress counter = counter + 1 utils.report_progress("group_by_key: [2/3] grouping func: progress", inherit_message, counter, len(grouped)) # get fields vs_map = agg_func(vs) grouped_agg[k] = vs_map # determine the set of keys in the aggregation function output agg_out_keys = {} # check for special condition for empty data if (len(grouped) > 0): for k, vs in grouped_agg.items(): for k2 in vs.keys(): agg_out_keys[k2] = 1 else: dummy_response = agg_func([]) for k in dummy_response.keys(): agg_out_keys[k] = 1 # validate that none of the agg_func output keys are conflicting with the original tsvs. TODO utils.print_code_todo_warning("Removing this condition for checking of duplicate names. They are already given a suffix so there is no clash.") for k in agg_out_keys.keys(): if (k in self.header_map.keys()): utils.print_code_todo_warning("TODO: Old check: Agg func can not output keys that have the same name as original columns: {}, {}".format(k, str(self.header_fields))) # create an ordered list of agg output keys new_cols = sorted(list(agg_out_keys.keys())) new_cols_names = [] name_suffix = suffix if (suffix != "") else get_func_name(agg_func) for nc in new_cols: new_cols_names.append(nc + ":" + name_suffix) # check for collapse flag and add the agg func value result = {} # create header new_header = None if (collapse == True): new_header = "\t".join(utils.merge_arrays([grouping_cols, new_cols_names])) else: new_header = "\t".join(utils.merge_arrays([self.header_fields, new_cols_names])) # create data new_data = [] counter = 0 for line in self.data: # report progress counter = counter + 1 utils.report_progress("group_by_key: [3/3] generating data", inherit_message, counter, len(self.data)) # process data fields = line.split("\t") # create grouping key keys = [] for g in grouping_cols: keys.append(fields[self.header_map[g]]) keys_str = "\t".join(keys) # check output data if (len(grouped_agg[keys_str]) != len(new_cols)): raise Exception("Error in data and number of output cols:", grouped_agg[keys_str], new_cols) # get the new values in the correct order new_col_values = [] vs = grouped_agg[keys_str] for c in new_cols: new_col_values.append(str(vs[c])) # generate the string for new values v = "\t".join(new_col_values) # add result according to collapse flag if (collapse == True): if (keys_str not in result.keys()): # append to the output data new_line = keys_str + "\t" + str(v) new_data.append(new_line) result[keys_str] = 1 else: new_line = line + "\t" + str(v) new_data.append(new_line) return TSV(new_header, new_data) # FIXME def arg_min(self, grouping_cols, argcols, valcols, suffix = "arg_min", topk = 1, sep = "|", collapse = True): utils.warn("arg_min is not implemented correctly. Too complicated") return self.__arg_min_or_max_common__(grouping_cols, argcols, valcols, suffix, topk, sep, -1, collapse = collapse) def arg_max(self, grouping_cols, argcols, valcols, suffix = "arg_max", topk = 1, sep = "|", collapse = True): utils.warn("arg_max is not implemented correctly. Too complicated") return self.__arg_min_or_max_common__(grouping_cols, argcols, valcols, suffix, topk, sep, 1, collapse = collapse) # grouping_cols are for grouping # argcols which are returned where valcols values are max or min # suffix is added to both arg and val. arg are suffixed as :arg, values are suffixed as val1, val2 upto topk def __arg_min_or_max_common__(self, grouping_cols, argcols, valcols, suffix, topk, sep, sign, collapse = False): grouping_cols = self.__get_matching_cols__(grouping_cols) argcols = self.__get_matching_cols__(argcols) valcols = self.__get_matching_cols__(valcols) def __arg_max_grouping_func__(vs): # initialize max_keys = [] for i in range(len(argcols)): max_keys.append([]) max_values = [] for i in range(len(valcols)): max_values.append(sign * float('-inf')) # iterate over all values for mp in vs: # read keys keys = [] for i in range(len(argcols)): keys.append(mp[argcols[i]]) # read values values = [] for i in range(len(valcols)): values.append(sign * float(mp[valcols[i]])) # check if a new max has been found found = False for i in range(len(values)): if (max_values[i] < values[i]): # found a new max for j in range(len(keys)): max_keys[j] = [str(keys[j])] for j in range(len(values)): max_values[j] = values[j] found = True break elif (max_values[i] > values[i]): found = True break # check for value of found. If it is still true, then it means multiple matches if (found == False): for i in range(len(keys)): max_keys[i].append(str(keys[i])) # check for topk result = {} for i in range(len(argcols)): result[argcols[i] + ":arg"] = sep.join(max_keys[i][0:topk]) for i in range(len(valcols)): result[valcols[i] + ":val" + str(i+1)] = str(max_values[i]) # return return result # combine both columns combined_cols = [] for k in argcols: combined_cols.append(k) for k in valcols: combined_cols.append(k) # remaining validation done by the group_by_key return self.group_by_key(grouping_cols, combined_cols, __arg_max_grouping_func__, suffix = suffix, collapse = collapse) # TODO: this use_string_datatype is temporary and needs to be replaced with better design. def aggregate(self, grouping_col_or_cols, agg_cols, agg_funcs, collapse = True, precision = 6, use_rolling = False, use_string_datatype = False, inherit_message = ""): # get matching columns grouping_cols = self.__get_matching_cols__(grouping_col_or_cols) # define rolling functions rolling_agg_funcs_map = {"sum": get_rolling_func_update_sum, "min": get_rolling_func_update_min, "max": get_rolling_func_update_max, "mean": get_rolling_func_update_mean, "len": get_rolling_func_update_len} # validation on number of grouping cols if (len(grouping_cols) == 0 or len(agg_cols) == 0): raise Exception("No input columns:", grouping_cols, agg_cols, suffix) # validation on number of agg funcs if (len(agg_cols) != len(agg_funcs)): raise Exception("Aggregate functions are not of correct size") # validation indexes = self.__get_col_indexes__(grouping_cols) # check for column to be aggregated new_cols = [] for i in range(len(agg_cols)): agg_col = agg_cols[i] if (agg_col not in self.header_map.keys()): raise Exception("Column not found: ", str(agg_col) + ", header:", str(self.header_fields)) new_cols.append(agg_col + ":" + get_func_name(agg_funcs[i])) # take the indexes agg_col_indexes = [] rolling_agg_col_indexes_map = {} rolling_agg_funcs = [] # for each agg col, add the index for i in range(len(agg_cols)): agg_col = agg_cols[i] agg_index = self.header_map[agg_col] agg_col_indexes.append(agg_index) # prepare map of indexes of rolling_agg functions if (get_func_name(agg_funcs[i]) in rolling_agg_funcs_map.keys()): rolling_agg_col_indexes_map[i] = 1 rolling_agg_funcs.append(rolling_agg_funcs_map[get_func_name(agg_funcs[i])]) # create a map to store array of values value_map_arr = [{} for i in range(len(agg_col_indexes))] # TODO: This rolling aggregation needs to be removed # rolling_value_map_arr = [{} for i in range(len(agg_col_indexes))] # iterate over the data counter = 0 for line in self.data: # report progress counter = counter + 1 utils.report_progress("aggregate: [1/2] building groups", inherit_message, counter, len(self.data)) # process data fields = line.split("\t") # new col values col_values = [] for i in indexes: col_values.append(fields[i]) cols_key = "\t".join(col_values) # for each possible aggregation, do this for j in range(len(agg_col_indexes)): if (cols_key not in value_map_arr[j].keys()): value_map_arr[j][cols_key] = [] # check for rolling functions if (use_rolling and j in rolling_agg_col_indexes_map.keys()): if (len(value_map_arr[j][cols_key]) == 0): value_map_arr[j][cols_key] = get_rolling_func_init(get_func_name(agg_funcs[j])) #get_rolling_func_update(value_map_arr[j][cols_key], float(fields[agg_col_indexes[j]]), get_func_name(agg_funcs[j])) rolling_agg_funcs[j](value_map_arr[j][cols_key], float(fields[agg_col_indexes[j]])) else: # TODO: this is a hack on datatype if (use_string_datatype == False): try: value_map_arr[j][cols_key].append(float(fields[agg_col_indexes[j]])) except ValueError: value_map_arr[j][cols_key].append(fields[agg_col_indexes[j]]) else: value_map_arr[j][cols_key].append(str(fields[agg_col_indexes[j]])) # compute the aggregation value_func_map_arr = [{} for i in range(len(agg_col_indexes))] # for each possible index, do aggregation for j in range(len(agg_col_indexes)): for k, vs in value_map_arr[j].items(): # check for rolling functions if (use_rolling and j in rolling_agg_col_indexes_map.keys()): value_func_map_arr[j][k] = get_rolling_func_closing(vs, get_func_name(agg_funcs[j])) else: value_func_map_arr[j][k] = agg_funcs[j](vs) # create new header and data new_header = "\t".join(utils.merge_arrays([self.header_fields, new_cols])) new_data = [] # for each output line, attach the new aggregate value counter = 0 cols_key_map = {} for line in self.data: # report progress counter = counter + 1 utils.report_progress("aggregate: [2/2] calling function", inherit_message, counter, len(self.data)) # data processing fields = line.split("\t") col_values = [] for i in indexes: col_values.append(fields[i]) cols_key = "\t".join(col_values) # append the aggregated values agg_values = [] for j in range(len(agg_col_indexes)): agg_values.append(str(value_func_map_arr[j][cols_key])) # check for different flags if (collapse == False or cols_key not in cols_key_map.keys()): new_line = "\t".join(utils.merge_arrays([fields, agg_values])) new_data.append(new_line) cols_key_map[cols_key] = 1 # return if (collapse == True): # uniq cols uniq_cols = [] for col in grouping_cols: uniq_cols.append(col) for new_col in new_cols: uniq_cols.append(new_col) return TSV(new_header, new_data).to_numeric(new_cols, precision, inherit_message = inherit_message).select(uniq_cols) else: return TSV(new_header, new_data).to_numeric(new_cols, precision, inherit_message = inherit_message) def filter(self, cols, func, include_cond = True, inherit_message = ""): # TODO: Filter should not use regex. Need to add warning as the order of fields matter cols = self.__get_matching_cols__(cols) indexes = self.__get_col_indexes__(cols) # count the number of columns num_cols = len(cols) # new data new_data = [] counter = 0 for line in self.data: counter = counter + 1 utils.report_progress("filter: [1/1] calling function", inherit_message, counter, len(self.data)) fields = line.split("\t") col_values = [] for index in indexes: col_values.append(fields[index]) if (num_cols == 1): result = func(col_values[0]) elif (num_cols == 2): result = func(col_values[0], col_values[1]) elif (num_cols == 3): result = func(col_values[0], col_values[1], col_values[2]) elif (num_cols == 4): result = func(col_values[0], col_values[1], col_values[2], col_values[3]) elif (num_cols == 5): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4]) elif (num_cols == 6): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5]) elif (num_cols == 7): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6]) elif (num_cols == 8): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6], col_values[7]) elif (num_cols == 9): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6], col_values[7], col_values[8]) elif (num_cols == 10): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6], col_values[7], col_values[8], col_values[9]) else: raise Exception("Number of columns is not supported beyond 10" + str(cols)) if (result == include_cond): new_data.append(line) return TSV(self.header, new_data) def exclude_filter(self, cols, func, inherit_message = ""): inherit_message2 = inherit_message + ": exclude_filter" if (inherit_message != "") else "exclude_filter" return self.filter(cols, func, include_cond = False, inherit_message = inherit_message2) def transform(self, cols, func, new_col_or_cols, use_array_notation = False, inherit_message = ""): # resolve to matching_cols matching_cols = self.__get_matching_cols__(cols) # find if the new cols is a single value or array if (isinstance(new_col_or_cols, str)): new_cols = [new_col_or_cols] else: new_cols = new_col_or_cols # number of new_cols num_new_cols = len(new_cols) # validation if ((utils.is_array_of_string_values(cols) == False and len(matching_cols) != 1) or (utils.is_array_of_string_values(cols) == True and len(matching_cols) != len(cols))): raise Exception("transform api doesnt support regex style cols array as the order of columns matter:", cols, matching_cols) # validation for col in matching_cols: if (col not in self.header_map.keys()): raise Exception("Column not found:", str(col), str(self.header_fields)) # new col validation for new_col in new_cols: if (new_col in self.header_fields): raise Exception("New column already exists:", new_col, str(self.header_fields)) # get the indexes num_cols = len(matching_cols) indexes = [] for col in matching_cols: indexes.append(self.header_map[col]) # create new header and data new_header = "\t".join(utils.merge_arrays([self.header_fields, new_cols])) new_data = [] counter = 0 # iterate over data for line in self.data: counter = counter + 1 utils.report_progress("transform: [1/1] calling function", inherit_message, counter, len(self.data)) # get fields fields = line.split("\t") col_values = [] # get the fields in cols for index in indexes: col_values.append(fields[index]) # check which notation is used to do the function call if (use_array_notation == False): if (num_cols == 1): # TODO: this if condition is not able to do error check when number of output columns doesnt match number of input cols result = func(col_values[0]) elif (num_cols == 2): result = func(col_values[0], col_values[1]) elif (num_cols == 3): result = func(col_values[0], col_values[1], col_values[2]) elif (num_cols == 4): result = func(col_values[0], col_values[1], col_values[2], col_values[3]) elif (num_cols == 5): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4]) elif (num_cols == 6): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5]) elif (num_cols == 7): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6]) elif (num_cols == 8): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6], col_values[7]) elif (num_cols == 9): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6], col_values[7], col_values[8]) elif (num_cols == 10): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6], col_values[7], col_values[8], col_values[9]) elif (num_cols == 11): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6], col_values[7], col_values[8], col_values[9], col_values[10]) elif (num_cols == 12): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6], col_values[7], col_values[8], col_values[9], col_values[10], col_values[11]) elif (num_cols == 13): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6], col_values[7], col_values[8], col_values[9], col_values[10], col_values[11], col_values[12]) elif (num_cols == 14): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6], col_values[7], col_values[8], col_values[9], col_values[10], col_values[11], col_values[12], col_values[13]) elif (num_cols == 15): result = func(col_values[0], col_values[1], col_values[2], col_values[3], col_values[4], col_values[5], col_values[6], col_values[7], col_values[8], col_values[9], col_values[10], col_values[11], col_values[12], col_values[13], col_values[15]) else: raise Exception("Number of columns is not supported beyond 15. Probably try to use use_array_notation approach:" + str(cols)) else: result = func(col_values) # create new line and append to data. Do validation result_arr = [] if (use_array_notation == False): if (num_new_cols == 1): if (isinstance(result, list)): result_arr.append(str(result[0])) else: result_arr.append(str(result)) if (num_new_cols >= 2): result_arr.append(str(result[0])) result_arr.append(str(result[1])) if (num_new_cols >= 3): result_arr.append(str(result[2])) if (num_new_cols >= 4): result_arr.append(str(result[3])) if (num_new_cols >= 5): result_arr.append(str(result[4])) if (num_new_cols >= 6): result_arr.append(str(result[5])) if (num_new_cols >= 7): result_arr.append(str(result[6])) if (num_new_cols >= 8): result_arr.append(str(result[7])) if (num_new_cols >= 9): result_arr.append(str(result[8])) if (num_new_cols >= 10): result_arr.append(str(result[9])) if (num_new_cols >= 11): raise Exception("Number of new columns is not supported beyond 10. Probably try to use use_array_notation approach:" + str(new_cols)) else: # check how many columns to expect. if (num_new_cols == 1): if (isinstance(result, str)): result_arr.append(str(result)) elif (isinstance(result, list)): result_arr.append(str(result[0])) else: result_arr.append(str(result)) else: if (len(result) != num_new_cols): raise Exception("Invalid number of fields in the result array. Expecting: {}, Got: {}, result: {}, new_cols: {}".format(num_new_cols, len(result), result, new_cols)) for r in result: result_arr.append(r) # create new line new_line = "\t".join(utils.merge_arrays([fields, result_arr])) new_data.append(new_line) # return return TSV(new_header, new_data) def transform_inline(self, cols, func, inherit_message = ""): # find the matching cols and indexes matching_cols = self.__get_matching_cols__(cols) indexes = self.__get_col_indexes__(matching_cols) # print which columns are going to be transformed if (len(matching_cols) != len(cols) and len(matching_cols) != 1): utils.debug("transform_inline: list of columns that will be transformed: {}".format(str(matching_cols))) # create new data new_data = [] counter = 0 for line in self.data: counter = counter + 1 utils.report_progress("transform_inline: [1/1] calling function", inherit_message, counter, len(self.data)) fields = line.split("\t") new_fields = [] for i in range(len(fields)): if (i in indexes): new_fields.append(str(func(fields[i]))) else: new_fields.append(str(fields[i])) new_data.append("\t".join(new_fields)) return TSV(self.header, new_data) def rename(self, col, new_col): if (col not in self.header_map.keys()): raise Exception("Column not found:", str(col), str(self.header_fields)) if (new_col in self.header_map.keys()): raise Exception("New Column already exists:", str(new_col), str(self.header_fields)) index = self.header_map[col] header_fields2 = [] for h in self.header_fields: if (h == col): header_fields2.append(new_col) else: header_fields2.append(h) new_header = "\t".join(header_fields2) return TSV(new_header, self.data) def get_header(self): return self.header def get_data(self): return self.data def get_header_map(self): return self.header_map def num_rows(self): return len(self.data) def num_cols(self): return len(self.header_map) def get_size_in_bytes(self): utils.warn("Please use size_in_bytes() instead") return self.size_in_bytes() def size_in_bytes(self): total = len(self.header) for line in self.data: total = total + len(line) return total def size_in_mb(self): return int(self.size_in_bytes() / 1e6) def size_in_gb(self): return int(self.size_in_bytes() / 1e9) def get_header_fields(self): return self.header_fields def get_columns(self): return self.get_header_fields() def columns(self): utils.warn("Deprecated. Use get_columns() instead") return self.get_columns() def get_column_index(self, col): # validation if (col not in self.get_columns()): raise Exception("Column not found: {}, {}".format(col, self.get_columns())) # get index header_map = self.get_header_map() return header_map[col] def export_to_maps(self): utils.warn("Please use to_maps()") return self.to_maps() def to_maps(self): mps = [] for line in self.data: fields = line.split("\t") mp = {} for i in range(len(self.header_fields)): mp[self.header_fields[i]] = str(fields[i]) mps.append(mp) return mps def __convert_to_numeric__(self, x, precision = 6): try: if (int(float(x)) == float(x)): return str(int(float(x))) else: precision_str = "{:." + str(precision) + "f}" return precision_str.format(float(x)) except ValueError: return str(x) # TODO def to_numeric(self, cols, precision = 6, inherit_message = ""): inherit_message2 = inherit_message + ": to_numeric" if (len(inherit_message) > 0) else "to_numeric" return self.transform_inline(cols, lambda x: self.__convert_to_numeric__(x, precision), inherit_message = inherit_message2) def add_seq_num(self, new_col, inherit_message = ""): # validation if (new_col in self.header_map.keys()): raise Exception("Output column name already exists:", new_col, self.header_fields) # create new header new_header = new_col + "\t" + self.header # create new data new_data = [] counter = 0 for line in self.data: counter = counter + 1 utils.report_progress("add_seq_num: [1/1] adding new column", inherit_message, counter, len(self.data)) new_data.append(str(counter) + "\t" + line) # return return TSV(new_header, new_data) def show_transpose(self, n = 1, title = None): # validation and doing min if (self.num_rows() < n): n = self.num_rows() # max width of screen to determine per column width max_width = 180 max_col_width = int(max_width / (n + 1)) return self.transpose(n).show(n = self.num_cols(), max_col_width = max_col_width, title = title) def show(self, n = 100, max_col_width = 40, title = None): self.take(n).__show_topn__(max_col_width, title) # return the original tsv return self def __show_topn__(self, max_col_width, title): spaces = " ".join([""]*max_col_width) # gather data about width of columns col_widths = {} is_numeric_type_map = {} # determine which columns are numeric type for k in self.header_map.keys(): col_widths[k] = min(len(k), max_col_width) is_numeric_type_map[k] = True # determine width for line in self.data: fields = line.split("\t") for i in range(len(fields)): k = self.header_index_map[i] value = fields[i] col_widths[k] = min(max_col_width, max(col_widths[k], len(str(value)))) try: vfloat = float(value) except ValueError: is_numeric_type_map[k] = False # combine header and lines all_data = [self.header] for line in self.data: all_data.append(line) # print label if (title is not None): print("=============================================================================================================================================") print(title) print("=============================================================================================================================================") # iterate and print. +1 for header for i in range(len(all_data)): line = all_data[i] fields = line.split("\t") row = [] for j in range(len(fields)): col_width = col_widths[self.header_index_map[j]] value = str(fields[j]) if (len(value) > col_width): value = value[0:col_width] elif (len(value) < col_width): if (j > 0 and is_numeric_type_map[self.header_index_map[j]] == True): value = spaces[0:col_width - len(value)] + value else: value = value + spaces[0:col_width - len(value)] row.append(str(value)) print("\t".join(row)) if (title is not None): print("=============================================================================================================================================") # return self return self def col_as_array(self, col): if (col not in self.header_map.keys()): raise Exception("Column not found:", str(col), str(self.header_fields)) index = self.header_map[col] ret_values = [] for line in self.data: fields = line.split("\t") ret_values.append(str(fields[index])) return ret_values def col_as_float_array(self, col): values = self.col_as_array(col) float_values = [float(v) for v in values] return float_values def col_as_int_array(self, col): values = self.col_as_float_array(col) numeric_values = [int(v) for v in values] return numeric_values def col_as_array_uniq(self, col): values = self.col_as_array(col) return list(dict.fromkeys(values)) # this method returns hashmap of key->map[k:v] # TODO: keys should be changed to single column def cols_as_map(self, key_cols, value_cols): utils.warn("This api has changed from prev implementation") # validation key_cols = self.__get_matching_cols__(key_cols) # check for all columns in the value part value_cols = self.__get_matching_cols__(value_cols) # create map mp = {} for line in self.data: fields = line.split("\t") # get the key keys = [] for key_col in key_cols: key = fields[self.header_map[key_col]] keys.append(key) keys_tuple = self.__expand_to_tuple__(keys) # check for non duplicate keys if (keys_tuple in mp.keys()): raise Exception("keys is not unique:", keys) values = [] for value_col in value_cols: value = fields[self.header_map[value_col]] values.append(str(value)) values_tuple = self.__expand_to_tuple__(values) # store value in hashmap mp[keys_tuple] = values_tuple return mp def __sort_helper__(self, line, indexes, all_numeric): values = [] fields = line.split("\t") for i in indexes: if (all_numeric == True): values.append(float(fields[i])) else: values.append(fields[i]) return tuple(values) def sort(self, cols = None, reverse = False, reorder = False, all_numeric = None): # if nothing is specified sort on all columns if (cols is None): cols = self.get_header_fields() # find the matching cols and indexes matching_cols = self.__get_matching_cols__(cols) indexes = self.__get_col_indexes__(matching_cols) # check if all are numeric or not if (all_numeric is None): has_alpha = False for col in matching_cols: if (utils.is_float_col(self, col) == False): has_alpha = True break if (has_alpha == True): all_numeric = False else: all_numeric = True # sort new_data = sorted(self.data, key = lambda line: self.__sort_helper__(line, indexes, all_numeric = all_numeric), reverse = reverse) # check if need to reorder the fields if (reorder == True): return TSV(self.header, new_data).reorder(matching_cols, inherit_message = "sort") else: return TSV(self.header, new_data) def reverse_sort(self, cols = None, reorder = False, all_numeric = None): return self.sort(cols = cols, reverse = True, reorder = reorder, all_numeric = all_numeric) # reorder the specific columns def reorder(self, cols, use_existing_order = True, inherit_message = ""): # get matching column and indexes matching_cols = self.__get_matching_cols__(cols) indexes = self.__get_col_indexes__(matching_cols) # do a full reorder if asked if (use_existing_order == False): # get the non matching cols non_matching_cols = [] for c in self.get_header_fields(): if (c not in matching_cols): non_matching_cols.append(c) # all cols all_cols = [] for c in matching_cols: all_cols.apppend(c) for c in non_matching_cols: all_cols.apppend(c) # return return self.select(all_cols).reorder(cols, use_existing_order = False, inherit_message = inherit_message) # create a map of columns that match the criteria new_header_fields = [] # append all the matching columns for h in self.header_fields: if (h in matching_cols): new_header_fields.append(h) # append all the remaining columns for h in self.header_fields: if (h not in matching_cols): new_header_fields.append(h) # pass on the message inherit_message2 = inherit_message + ": reorder" if (len(inherit_message) > 0) else "reorder" return self.select(new_header_fields, inherit_message = inherit_message2) def reorder_reverse(self, cols, inherit_message = ""): utils.warn("Please use reverse_reorder instead") return self.reverse_reorder(cols, inherit_message) # reorder for pushing the columns to the end def reverse_reorder(self, cols, inherit_message = ""): # get matching column and indexes matching_cols = self.__get_matching_cols__(cols) # generate the list of cols that should be brought to front rcols = [] for h in self.header_fields: if (h not in matching_cols): rcols.append(h) # pass on the message inherit_message2 = inherit_message + ": reorder_reverse" if (len(inherit_message) > 0) else "reorder_reverse" return self.reorder(rcols, inherit_message = inherit_message2) def noop(self, *args, **kwargs): return self def to_df(self, n = -1): return self.export_to_df(n) def export_to_df(self, n = -1): # find how many rows to select nrows = len(self.data) nrows = n if (n > 0 and n < nrows) else nrows # initialize map df_map = {} for h in self.header_fields: df_map[h] = [] # iterate over data for line in self.data[0:nrows]: fields = line.split("\t") for i in range(len(fields)): df_map[self.header_index_map[i]].append(str(fields[i])) # return return
pd.DataFrame(df_map)
pandas.DataFrame
from collections import deque from datetime import datetime import operator import re import numpy as np import pytest import pytz import pandas as pd from pandas import DataFrame, MultiIndex, Series import pandas._testing as tm import pandas.core.common as com from pandas.core.computation.expressions import _MIN_ELEMENTS, _NUMEXPR_INSTALLED from pandas.tests.frame.common import _check_mixed_float, _check_mixed_int # ------------------------------------------------------------------- # Comparisons class TestFrameComparisons: # Specifically _not_ flex-comparisons def test_frame_in_list(self): # GH#12689 this should raise at the DataFrame level, not blocks df = pd.DataFrame(np.random.randn(6, 4), columns=list("ABCD")) msg = "The truth value of a DataFrame is ambiguous" with pytest.raises(ValueError, match=msg): df in [None] def test_comparison_invalid(self): def check(df, df2): for (x, y) in [(df, df2), (df2, df)]: # we expect the result to match Series comparisons for # == and !=, inequalities should raise result = x == y expected = pd.DataFrame( {col: x[col] == y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) result = x != y expected = pd.DataFrame( {col: x[col] != y[col] for col in x.columns}, index=x.index, columns=x.columns, ) tm.assert_frame_equal(result, expected) msgs = [ r"Invalid comparison between dtype=datetime64\[ns\] and ndarray", "invalid type promotion", ( # npdev 1.20.0 r"The DTypes <class 'numpy.dtype\[.*\]'> and " r"<class 'numpy.dtype\[.*\]'> do not have a common DType." ), ] msg = "|".join(msgs) with pytest.raises(TypeError, match=msg): x >= y with pytest.raises(TypeError, match=msg): x > y with pytest.raises(TypeError, match=msg): x < y with pytest.raises(TypeError, match=msg): x <= y # GH4968 # invalid date/int comparisons df = pd.DataFrame(np.random.randint(10, size=(10, 1)), columns=["a"]) df["dates"] = pd.date_range("20010101", periods=len(df)) df2 = df.copy() df2["dates"] = df["a"] check(df, df2) df = pd.DataFrame(np.random.randint(10, size=(10, 2)), columns=["a", "b"]) df2 = pd.DataFrame( { "a": pd.date_range("20010101", periods=len(df)), "b": pd.date_range("20100101", periods=len(df)), } ) check(df, df2) def test_timestamp_compare(self): # make sure we can compare Timestamps on the right AND left hand side # GH#4982 df = pd.DataFrame( { "dates1": pd.date_range("20010101", periods=10), "dates2": pd.date_range("20010102", periods=10), "intcol": np.random.randint(1000000000, size=10), "floatcol": np.random.randn(10), "stringcol": list(tm.rands(10)), } ) df.loc[np.random.rand(len(df)) > 0.5, "dates2"] = pd.NaT ops = {"gt": "lt", "lt": "gt", "ge": "le", "le": "ge", "eq": "eq", "ne": "ne"} for left, right in ops.items(): left_f = getattr(operator, left) right_f = getattr(operator, right) # no nats if left in ["eq", "ne"]: expected = left_f(df, pd.Timestamp("20010109")) result = right_f(pd.Timestamp("20010109"), df) tm.assert_frame_equal(result, expected) else: msg = ( "'(<|>)=?' not supported between " "instances of 'numpy.ndarray' and 'Timestamp'" ) with pytest.raises(TypeError, match=msg): left_f(df, pd.Timestamp("20010109")) with pytest.raises(TypeError, match=msg): right_f(pd.Timestamp("20010109"), df) # nats expected = left_f(df, pd.Timestamp("nat")) result = right_f(pd.Timestamp("nat"), df) tm.assert_frame_equal(result, expected) def test_mixed_comparison(self): # GH#13128, GH#22163 != datetime64 vs non-dt64 should be False, # not raise TypeError # (this appears to be fixed before GH#22163, not sure when) df = pd.DataFrame([["1989-08-01", 1], ["1989-08-01", 2]]) other = pd.DataFrame([["a", "b"], ["c", "d"]]) result = df == other assert not result.any().any() result = df != other assert result.all().all() def test_df_boolean_comparison_error(self): # GH#4576, GH#22880 # comparing DataFrame against list/tuple with len(obj) matching # len(df.columns) is supported as of GH#22800 df = pd.DataFrame(np.arange(6).reshape((3, 2))) expected = pd.DataFrame([[False, False], [True, False], [False, False]]) result = df == (2, 2) tm.assert_frame_equal(result, expected) result = df == [2, 2] tm.assert_frame_equal(result, expected) def test_df_float_none_comparison(self): df = pd.DataFrame( np.random.randn(8, 3), index=range(8), columns=["A", "B", "C"] ) result = df.__eq__(None) assert not result.any().any() def test_df_string_comparison(self): df = pd.DataFrame([{"a": 1, "b": "foo"}, {"a": 2, "b": "bar"}]) mask_a = df.a > 1 tm.assert_frame_equal(df[mask_a], df.loc[1:1, :]) tm.assert_frame_equal(df[-mask_a], df.loc[0:0, :]) mask_b = df.b == "foo" tm.assert_frame_equal(df[mask_b], df.loc[0:0, :]) tm.assert_frame_equal(df[-mask_b], df.loc[1:1, :]) class TestFrameFlexComparisons: # TODO: test_bool_flex_frame needs a better name def test_bool_flex_frame(self): data = np.random.randn(5, 3) other_data = np.random.randn(5, 3) df = pd.DataFrame(data) other = pd.DataFrame(other_data) ndim_5 = np.ones(df.shape + (1, 3)) # Unaligned def _check_unaligned_frame(meth, op, df, other): part_o = other.loc[3:, 1:].copy() rs = meth(part_o) xp = op(df, part_o.reindex(index=df.index, columns=df.columns)) tm.assert_frame_equal(rs, xp) # DataFrame assert df.eq(df).values.all() assert not df.ne(df).values.any() for op in ["eq", "ne", "gt", "lt", "ge", "le"]: f = getattr(df, op) o = getattr(operator, op) # No NAs tm.assert_frame_equal(f(other), o(df, other)) _check_unaligned_frame(f, o, df, other) # ndarray tm.assert_frame_equal(f(other.values), o(df, other.values)) # scalar tm.assert_frame_equal(f(0), o(df, 0)) # NAs msg = "Unable to coerce to Series/DataFrame" tm.assert_frame_equal(f(np.nan), o(df, np.nan)) with pytest.raises(ValueError, match=msg): f(ndim_5) # Series def _test_seq(df, idx_ser, col_ser): idx_eq = df.eq(idx_ser, axis=0) col_eq = df.eq(col_ser) idx_ne = df.ne(idx_ser, axis=0) col_ne = df.ne(col_ser) tm.assert_frame_equal(col_eq, df == pd.Series(col_ser)) tm.assert_frame_equal(col_eq, -col_ne) tm.assert_frame_equal(idx_eq, -idx_ne) tm.assert_frame_equal(idx_eq, df.T.eq(idx_ser).T) tm.assert_frame_equal(col_eq, df.eq(list(col_ser))) tm.assert_frame_equal(idx_eq, df.eq(pd.Series(idx_ser), axis=0)) tm.assert_frame_equal(idx_eq, df.eq(list(idx_ser), axis=0)) idx_gt = df.gt(idx_ser, axis=0) col_gt = df.gt(col_ser) idx_le = df.le(idx_ser, axis=0) col_le = df.le(col_ser) tm.assert_frame_equal(col_gt, df > pd.Series(col_ser)) tm.assert_frame_equal(col_gt, -col_le) tm.assert_frame_equal(idx_gt, -idx_le) tm.assert_frame_equal(idx_gt, df.T.gt(idx_ser).T) idx_ge = df.ge(idx_ser, axis=0) col_ge = df.ge(col_ser) idx_lt = df.lt(idx_ser, axis=0) col_lt = df.lt(col_ser) tm.assert_frame_equal(col_ge, df >= pd.Series(col_ser)) tm.assert_frame_equal(col_ge, -col_lt) tm.assert_frame_equal(idx_ge, -idx_lt) tm.assert_frame_equal(idx_ge, df.T.ge(idx_ser).T) idx_ser = pd.Series(np.random.randn(5)) col_ser = pd.Series(np.random.randn(3)) _test_seq(df, idx_ser, col_ser) # list/tuple _test_seq(df, idx_ser.values, col_ser.values) # NA df.loc[0, 0] = np.nan rs = df.eq(df) assert not rs.loc[0, 0] rs = df.ne(df) assert rs.loc[0, 0] rs = df.gt(df) assert not rs.loc[0, 0] rs = df.lt(df) assert not rs.loc[0, 0] rs = df.ge(df) assert not rs.loc[0, 0] rs = df.le(df) assert not rs.loc[0, 0] def test_bool_flex_frame_complex_dtype(self): # complex arr = np.array([np.nan, 1, 6, np.nan]) arr2 = np.array([2j, np.nan, 7, None]) df = pd.DataFrame({"a": arr}) df2 = pd.DataFrame({"a": arr2}) msg = "|".join( [ "'>' not supported between instances of '.*' and 'complex'", r"unorderable types: .*complex\(\)", # PY35 ] ) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df.gt(df2) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df["a"].gt(df2["a"]) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df.values > df2.values rs = df.ne(df2) assert rs.values.all() arr3 = np.array([2j, np.nan, None]) df3 = pd.DataFrame({"a": arr3}) with pytest.raises(TypeError, match=msg): # inequalities are not well-defined for complex numbers df3.gt(2j) with pytest.raises(TypeError, match=msg): # regression test that we get the same behavior for Series df3["a"].gt(2j) with pytest.raises(TypeError, match=msg): # Check that we match numpy behavior here df3.values > 2j def test_bool_flex_frame_object_dtype(self): # corner, dtype=object df1 = pd.DataFrame({"col": ["foo", np.nan, "bar"]}) df2 = pd.DataFrame({"col": ["foo", datetime.now(), "bar"]}) result = df1.ne(df2) exp = pd.DataFrame({"col": [False, True, False]}) tm.assert_frame_equal(result, exp) def test_flex_comparison_nat(self): # GH 15697, GH 22163 df.eq(pd.NaT) should behave like df == pd.NaT, # and _definitely_ not be NaN df = pd.DataFrame([pd.NaT]) result = df == pd.NaT # result.iloc[0, 0] is a np.bool_ object assert result.iloc[0, 0].item() is False result = df.eq(pd.NaT) assert result.iloc[0, 0].item() is False result = df != pd.NaT assert result.iloc[0, 0].item() is True result = df.ne(pd.NaT) assert result.iloc[0, 0].item() is True @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types(self, opname): # GH 15077, non-empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 result = getattr(df, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) @pytest.mark.parametrize("opname", ["eq", "ne", "gt", "lt", "ge", "le"]) def test_df_flex_cmp_constant_return_types_empty(self, opname): # GH 15077 empty DataFrame df = pd.DataFrame({"x": [1, 2, 3], "y": [1.0, 2.0, 3.0]}) const = 2 empty = df.iloc[:0] result = getattr(empty, opname)(const).dtypes.value_counts() tm.assert_series_equal(result, pd.Series([2], index=[np.dtype(bool)])) def test_df_flex_cmp_ea_dtype_with_ndarray_series(self): ii = pd.IntervalIndex.from_breaks([1, 2, 3]) df = pd.DataFrame({"A": ii, "B": ii}) ser = pd.Series([0, 0]) res = df.eq(ser, axis=0) expected = pd.DataFrame({"A": [False, False], "B": [False, False]}) tm.assert_frame_equal(res, expected) ser2 = pd.Series([1, 2], index=["A", "B"]) res2 = df.eq(ser2, axis=1) tm.assert_frame_equal(res2, expected) # ------------------------------------------------------------------- # Arithmetic class TestFrameFlexArithmetic: def test_floordiv_axis0(self): # make sure we df.floordiv(ser, axis=0) matches column-wise result arr = np.arange(3) ser = pd.Series(arr) df = pd.DataFrame({"A": ser, "B": ser}) result = df.floordiv(ser, axis=0) expected = pd.DataFrame({col: df[col] // ser for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = df.floordiv(ser.values, axis=0) tm.assert_frame_equal(result2, expected) @pytest.mark.skipif(not _NUMEXPR_INSTALLED, reason="numexpr not installed") @pytest.mark.parametrize("opname", ["floordiv", "pow"]) def test_floordiv_axis0_numexpr_path(self, opname): # case that goes through numexpr and has to fall back to masked_arith_op op = getattr(operator, opname) arr = np.arange(_MIN_ELEMENTS + 100).reshape(_MIN_ELEMENTS // 100 + 1, -1) * 100 df = pd.DataFrame(arr) df["C"] = 1.0 ser = df[0] result = getattr(df, opname)(ser, axis=0) expected = pd.DataFrame({col: op(df[col], ser) for col in df.columns}) tm.assert_frame_equal(result, expected) result2 = getattr(df, opname)(ser.values, axis=0) tm.assert_frame_equal(result2, expected) def test_df_add_td64_columnwise(self): # GH 22534 Check that column-wise addition broadcasts correctly dti = pd.date_range("2016-01-01", periods=10) tdi = pd.timedelta_range("1", periods=10) tser = pd.Series(tdi) df = pd.DataFrame({0: dti, 1: tdi}) result = df.add(tser, axis=0) expected = pd.DataFrame({0: dti + tdi, 1: tdi + tdi}) tm.assert_frame_equal(result, expected) def test_df_add_flex_filled_mixed_dtypes(self): # GH 19611 dti = pd.date_range("2016-01-01", periods=3) ser = pd.Series(["1 Day", "NaT", "2 Days"], dtype="timedelta64[ns]") df = pd.DataFrame({"A": dti, "B": ser}) other = pd.DataFrame({"A": ser, "B": ser}) fill = pd.Timedelta(days=1).to_timedelta64() result = df.add(other, fill_value=fill) expected = pd.DataFrame( { "A": pd.Series( ["2016-01-02", "2016-01-03", "2016-01-05"], dtype="datetime64[ns]" ), "B": ser * 2, } ) tm.assert_frame_equal(result, expected) def test_arith_flex_frame( self, all_arithmetic_operators, float_frame, mixed_float_frame ): # one instance of parametrized fixture op = all_arithmetic_operators def f(x, y): # r-versions not in operator-stdlib; get op without "r" and invert if op.startswith("__r"): return getattr(operator, op.replace("__r", "__"))(y, x) return getattr(operator, op)(x, y) result = getattr(float_frame, op)(2 * float_frame) expected = f(float_frame, 2 * float_frame) tm.assert_frame_equal(result, expected) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) @pytest.mark.parametrize("op", ["__add__", "__sub__", "__mul__"]) def test_arith_flex_frame_mixed( self, op, int_frame, mixed_int_frame, mixed_float_frame ): f = getattr(operator, op) # vs mix int result = getattr(mixed_int_frame, op)(2 + mixed_int_frame) expected = f(mixed_int_frame, 2 + mixed_int_frame) # no overflow in the uint dtype = None if op in ["__sub__"]: dtype = dict(B="uint64", C=None) elif op in ["__add__", "__mul__"]: dtype = dict(C=None) tm.assert_frame_equal(result, expected) _check_mixed_int(result, dtype=dtype) # vs mix float result = getattr(mixed_float_frame, op)(2 * mixed_float_frame) expected = f(mixed_float_frame, 2 * mixed_float_frame) tm.assert_frame_equal(result, expected) _check_mixed_float(result, dtype=dict(C=None)) # vs plain int result = getattr(int_frame, op)(2 * int_frame) expected = f(int_frame, 2 * int_frame) tm.assert_frame_equal(result, expected) def test_arith_flex_frame_raise(self, all_arithmetic_operators, float_frame): # one instance of parametrized fixture op = all_arithmetic_operators # Check that arrays with dim >= 3 raise for dim in range(3, 6): arr = np.ones((1,) * dim) msg = "Unable to coerce to Series/DataFrame" with pytest.raises(ValueError, match=msg): getattr(float_frame, op)(arr) def test_arith_flex_frame_corner(self, float_frame): const_add = float_frame.add(1) tm.assert_frame_equal(const_add, float_frame + 1) # corner cases result = float_frame.add(float_frame[:0]) tm.assert_frame_equal(result, float_frame * np.nan) result = float_frame[:0].add(float_frame) tm.assert_frame_equal(result, float_frame * np.nan) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], fill_value=3) with pytest.raises(NotImplementedError, match="fill_value"): float_frame.add(float_frame.iloc[0], axis="index", fill_value=3) def test_arith_flex_series(self, simple_frame): df = simple_frame row = df.xs("a") col = df["two"] # after arithmetic refactor, add truediv here ops = ["add", "sub", "mul", "mod"] for op in ops: f = getattr(df, op) op = getattr(operator, op) tm.assert_frame_equal(f(row), op(df, row)) tm.assert_frame_equal(f(col, axis=0), op(df.T, col).T) # special case for some reason tm.assert_frame_equal(df.add(row, axis=None), df + row) # cases which will be refactored after big arithmetic refactor tm.assert_frame_equal(df.div(row), df / row) tm.assert_frame_equal(df.div(col, axis=0), (df.T / col).T) # broadcasting issue in GH 7325 df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="int64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) df = pd.DataFrame(np.arange(3 * 2).reshape((3, 2)), dtype="float64") expected = pd.DataFrame([[np.nan, np.inf], [1.0, 1.5], [1.0, 1.25]]) result = df.div(df[0], axis="index") tm.assert_frame_equal(result, expected) def test_arith_flex_zero_len_raises(self): # GH 19522 passing fill_value to frame flex arith methods should # raise even in the zero-length special cases ser_len0 = pd.Series([], dtype=object) df_len0 = pd.DataFrame(columns=["A", "B"]) df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) with pytest.raises(NotImplementedError, match="fill_value"): df.add(ser_len0, fill_value="E") with pytest.raises(NotImplementedError, match="fill_value"): df_len0.sub(df["A"], axis=None, fill_value=3) def test_flex_add_scalar_fill_value(self): # GH#12723 dat = np.array([0, 1, np.nan, 3, 4, 5], dtype="float") df = pd.DataFrame({"foo": dat}, index=range(6)) exp = df.fillna(0).add(2) res = df.add(2, fill_value=0) tm.assert_frame_equal(res, exp) class TestFrameArithmetic: def test_td64_op_nat_casting(self): # Make sure we don't accidentally treat timedelta64(NaT) as datetime64 # when calling dispatch_to_series in DataFrame arithmetic ser = pd.Series(["NaT", "NaT"], dtype="timedelta64[ns]") df = pd.DataFrame([[1, 2], [3, 4]]) result = df * ser expected = pd.DataFrame({0: ser, 1: ser}) tm.assert_frame_equal(result, expected) def test_df_add_2d_array_rowlike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) expected = pd.DataFrame( [[2, 4], [4, 6], [6, 8]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + rowlike tm.assert_frame_equal(result, expected) result = rowlike + df tm.assert_frame_equal(result, expected) def test_df_add_2d_array_collike_broadcasts(self): # GH#23000 arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) expected = pd.DataFrame( [[1, 2], [5, 6], [9, 10]], columns=df.columns, index=df.index, # specify dtype explicitly to avoid failing # on 32bit builds dtype=arr.dtype, ) result = df + collike tm.assert_frame_equal(result, expected) result = collike + df tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_rowlike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) rowlike = arr[[1], :] # shape --> (1, ncols) assert rowlike.shape == (1, df.shape[1]) exvals = [ getattr(df.loc["A"], opname)(rowlike.squeeze()), getattr(df.loc["B"], opname)(rowlike.squeeze()), getattr(df.loc["C"], opname)(rowlike.squeeze()), ] expected = pd.DataFrame(exvals, columns=df.columns, index=df.index) result = getattr(df, opname)(rowlike) tm.assert_frame_equal(result, expected) def test_df_arith_2d_array_collike_broadcasts(self, all_arithmetic_operators): # GH#23000 opname = all_arithmetic_operators arr = np.arange(6).reshape(3, 2) df = pd.DataFrame(arr, columns=[True, False], index=["A", "B", "C"]) collike = arr[:, [1]] # shape --> (nrows, 1) assert collike.shape == (df.shape[0], 1) exvals = { True: getattr(df[True], opname)(collike.squeeze()), False: getattr(df[False], opname)(collike.squeeze()), } dtype = None if opname in ["__rmod__", "__rfloordiv__"]: # Series ops may return mixed int/float dtypes in cases where # DataFrame op will return all-float. So we upcast `expected` dtype = np.common_type(*[x.values for x in exvals.values()]) expected = pd.DataFrame(exvals, columns=df.columns, index=df.index, dtype=dtype) result = getattr(df, opname)(collike) tm.assert_frame_equal(result, expected) def test_df_bool_mul_int(self): # GH 22047, GH 22163 multiplication by 1 should result in int dtype, # not object dtype df = pd.DataFrame([[False, True], [False, False]]) result = df * 1 # On appveyor this comes back as np.int32 instead of np.int64, # so we check dtype.kind instead of just dtype kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() result = 1 * df kinds = result.dtypes.apply(lambda x: x.kind) assert (kinds == "i").all() def test_arith_mixed(self): left = pd.DataFrame({"A": ["a", "b", "c"], "B": [1, 2, 3]}) result = left + left expected = pd.DataFrame({"A": ["aa", "bb", "cc"], "B": [2, 4, 6]}) tm.assert_frame_equal(result, expected) def test_arith_getitem_commute(self): df = pd.DataFrame({"A": [1.1, 3.3], "B": [2.5, -3.9]}) def _test_op(df, op): result = op(df, 1) if not df.columns.is_unique: raise ValueError("Only unique columns supported by this test") for col in result.columns: tm.assert_series_equal(result[col], op(df[col], 1)) _test_op(df, operator.add) _test_op(df, operator.sub) _test_op(df, operator.mul) _test_op(df, operator.truediv) _test_op(df, operator.floordiv) _test_op(df, operator.pow) _test_op(df, lambda x, y: y + x) _test_op(df, lambda x, y: y - x) _test_op(df, lambda x, y: y * x) _test_op(df, lambda x, y: y / x) _test_op(df, lambda x, y: y ** x) _test_op(df, lambda x, y: x + y) _test_op(df, lambda x, y: x - y) _test_op(df, lambda x, y: x * y) _test_op(df, lambda x, y: x / y) _test_op(df, lambda x, y: x ** y) @pytest.mark.parametrize( "values", [[1, 2], (1, 2), np.array([1, 2]), range(1, 3), deque([1, 2])] ) def test_arith_alignment_non_pandas_object(self, values): # GH#17901 df = pd.DataFrame({"A": [1, 1], "B": [1, 1]}) expected = pd.DataFrame({"A": [2, 2], "B": [3, 3]}) result = df + values tm.assert_frame_equal(result, expected) def test_arith_non_pandas_object(self): df = pd.DataFrame( np.arange(1, 10, dtype="f8").reshape(3, 3), columns=["one", "two", "three"], index=["a", "b", "c"], ) val1 = df.xs("a").values added = pd.DataFrame(df.values + val1, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val1, added) added = pd.DataFrame((df.values.T + val1).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val1, axis=0), added) val2 = list(df["two"]) added = pd.DataFrame(df.values + val2, index=df.index, columns=df.columns) tm.assert_frame_equal(df + val2, added) added = pd.DataFrame((df.values.T + val2).T, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val2, axis="index"), added) val3 = np.random.rand(*df.shape) added = pd.DataFrame(df.values + val3, index=df.index, columns=df.columns) tm.assert_frame_equal(df.add(val3), added) def test_operations_with_interval_categories_index(self, all_arithmetic_operators): # GH#27415 op = all_arithmetic_operators ind = pd.CategoricalIndex(pd.interval_range(start=0.0, end=2.0)) data = [1, 2] df = pd.DataFrame([data], columns=ind) num = 10 result = getattr(df, op)(num) expected = pd.DataFrame([[getattr(n, op)(num) for n in data]], columns=ind) tm.assert_frame_equal(result, expected) def test_frame_with_frame_reindex(self): # GH#31623 df = pd.DataFrame( { "foo": [pd.Timestamp("2019"), pd.Timestamp("2020")], "bar": [pd.Timestamp("2018"), pd.Timestamp("2021")], }, columns=["foo", "bar"], ) df2 = df[["foo"]] result = df - df2 expected = pd.DataFrame( {"foo": [pd.Timedelta(0), pd.Timedelta(0)], "bar": [np.nan, np.nan]}, columns=["bar", "foo"], ) tm.assert_frame_equal(result, expected) def test_frame_with_zero_len_series_corner_cases(): # GH#28600 # easy all-float case df = pd.DataFrame(np.random.randn(6).reshape(3, 2), columns=["A", "B"]) ser = pd.Series(dtype=np.float64) result = df + ser expected = pd.DataFrame(df.values * np.nan, columns=df.columns) tm.assert_frame_equal(result, expected) result = df == ser expected = pd.DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) # non-float case should not raise on comparison df2 = pd.DataFrame(df.values.view("M8[ns]"), columns=df.columns) result = df2 == ser expected = pd.DataFrame(False, index=df.index, columns=df.columns) tm.assert_frame_equal(result, expected) def test_zero_len_frame_with_series_corner_cases(): # GH#28600 df = pd.DataFrame(columns=["A", "B"], dtype=np.float64) ser = pd.Series([1, 2], index=["A", "B"]) result = df + ser expected = df tm.assert_frame_equal(result, expected) def test_frame_single_columns_object_sum_axis_1(): # GH 13758 data = { "One": pd.Series(["A", 1.2, np.nan]), } df = pd.DataFrame(data) result = df.sum(axis=1) expected = pd.Series(["A", 1.2, 0]) tm.assert_series_equal(result, expected) # ------------------------------------------------------------------- # Unsorted # These arithmetic tests were previously in other files, eventually # should be parametrized and put into tests.arithmetic class TestFrameArithmeticUnsorted: def test_frame_add_tz_mismatch_converts_to_utc(self): rng = pd.date_range("1/1/2011", periods=10, freq="H", tz="US/Eastern") df = pd.DataFrame(np.random.randn(len(rng)), index=rng, columns=["a"]) df_moscow = df.tz_convert("Europe/Moscow") result = df + df_moscow assert result.index.tz is pytz.utc result = df_moscow + df assert result.index.tz is pytz.utc def test_align_frame(self): rng =
pd.period_range("1/1/2000", "1/1/2010", freq="A")
pandas.period_range
import os import numpy as np import pandas as pd import seaborn as sns from scipy.stats import ttest_ind from scipy.stats import bartlett import matplotlib.pyplot as plt from sklearn.model_selection import KFold from sklearn.linear_model import LogisticRegression from sklearn.metrics import confusion_matrix radiomics_path = './results/radiomics/radiomics.csv' name_mapping_path = './data/name_mapping.csv' if __name__ == '__main__': mapping = pd.read_csv(name_mapping_path, header=0)[['Grade', 'BraTS_2019_subject_ID']] radiomics = pd.read_csv(radiomics_path, header=0, index_col=0) df = radiomics.merge(mapping, left_index=True, right_on='BraTS_2019_subject_ID') print(df.groupby('Grade').mean()) print(df.groupby('Grade').var()) lgg = df[df['Grade'] == 'LGG'] hgg = df[df['Grade'] == 'HGG'] print(bartlett(lgg['ALL_VoxelVolume'], hgg['ALL_VoxelVolume'])) print(ttest_ind(lgg['ALL_VoxelVolume'], hgg['ALL_VoxelVolume'], equal_var=False)) df.groupby('Grade')['ALL_VoxelVolume'].apply( lambda x: sns.distplot(x, bins=50, hist=True, rug=False, label=x.name) ) plt.xlabel('Voxel volume') plt.ylabel('KDE') plt.show() y = np.array(df['Grade']) X = np.array(df.loc[:, ['ALL_VoxelVolume']]) random_state = 1173 kf = KFold(n_splits=5, shuffle=True, random_state=random_state) accuracy_list = [] precision_list = [] sensitivity_list = [] specificity_list = [] npv_list = [] for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] y_train, y_test = y[train_index], y[test_index] clf = LogisticRegression(random_state=random_state).fit(X_train, y_train) y_pred = clf.predict(X_test) tn, fp, fn, tp = confusion_matrix(y_test, y_pred).ravel() accuracy = (tp + tn) / (tp + tn + fp + fn) precision = tp / (tp + fp) sensitivity = tp / (tp + fn) specificity = tn / (tn + fp) npv = tn / (tn + fn) accuracy_list.append(accuracy) precision_list.append(precision) sensitivity_list.append(sensitivity) specificity_list.append(specificity) npv_list.append(npv) result = { 'accuracy_mean': [np.mean(accuracy_list)], 'accuracy_std': [np.std(accuracy_list)], 'precision_mean': [np.mean(precision_list)], 'precision_std': [np.std(precision_list)], 'sensitivity_mean': [np.mean(sensitivity_list)], 'sensitivity_std': [np.std(sensitivity_list)], 'specificity_mean': [np.mean(specificity_list)], 'specificity_std': [np.std(specificity_list)], 'npv_mean': [np.mean(npv_list)], 'npv_std': [np.std(npv_list)], } df =
pd.DataFrame(data=result)
pandas.DataFrame
# $Id$ # $HeadURL$ ################################################################ # The contents of this file are subject to the BSD 3Clause (New) # you may not use this file except in # compliance with the License. You may obtain a copy of the License at # http://directory.fsf.org/wiki/License:BSD_3Clause # Software distributed under the License is distributed on an "AS IS" # basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the # License for the specific language governing rights and limitations # under the License. # The Original Code is part of the PyRadi toolkit. # The Initial Developer of the Original Code is <NAME>, # Portions created by <NAME> are Copyright (C) 2006-2012 # All Rights Reserved. # Contributor(s): <NAME>, <NAME>, <NAME>, <NAME> ################################################################ """ This module provides functions for plotting cartesian and polar plots. This class provides a basic plotting capability, with a minimum number of lines. These are all wrapper functions, based on existing functions in other Python classes. Provision is made for combinations of linear and log scales, as well as polar plots for two-dimensional graphs. The Plotter class can save files to disk in a number of formats. For more examples of use see: https://github.com/NelisW/ComputationalRadiometry See the __main__ function for examples of use. This package was partly developed to provide additional material in support of students and readers of the book Electro-Optical System Analysis and Design: A Radiometry Perspective, <NAME>, ISBN 9780819495693, SPIE Monograph Volume PM236, SPIE Press, 2013. http://spie.org/x648.html?product_id=2021423&origin_id=x646 """ __version__ = "$Revision$" __author__ = 'pyradi team' __all__ = ['Plotter','cubehelixcmap', 'FilledMarker', 'Markers','ProcessImage', 'savePlot'] import numpy as np import pandas as pd import math import sys import itertools import matplotlib as mpl import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.font_manager import FontProperties from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.backends.backend_pdf import PdfPages import matplotlib.dates as mdates from mpl_toolkits.axes_grid1 import make_axes_locatable # following for the pie plots from matplotlib.transforms import Affine2D import mpl_toolkits.axisartist.floating_axes as floating_axes import mpl_toolkits.axisartist.angle_helper as angle_helper from matplotlib.projections import PolarAxes from mpl_toolkits.axisartist.grid_finder import MaxNLocator from matplotlib.ticker import FormatStrFormatter from matplotlib.colors import LinearSegmentedColormap as LSC # see if plotly is available try: __import__('plotly.tools') imported_plotly = True from plotly import tools from plotly.offline import download_plotlyjs, offline from plotly.graph_objs import Scatter, Layout, Figure,Scatter3d,Mesh3d,ColorBar,Contour except ImportError: imported_plotly = False from datetime import datetime #################################################################### ## class FilledMarker: """Filled marker user-settable values. This class encapsulates a few variables describing a Filled marker. Default values are provided that can be overridden in user plots. Values relevant to filled makers are as follows: | marker = ['o', 'v', '^', '<', '>', '8', 's', 'p', '*', 'h', 'H', 'D', 'd'] | fillstyle = ['full', 'left', 'right', 'bottom', 'top', 'none'] | colour names = http://www.w3schools.com/html/html_colornames.asp """ def __init__(self, markerfacecolor=None, markerfacecoloralt=None, markeredgecolor=None, marker=None, markersize=None, fillstyle=None): """Define marker default values. Args: | markerfacecolor (colour): main colour for marker (optional) | markerfacecoloralt (colour): alterive colour for marker (optional) | markeredgecolor (colour): edge colour for marker (optional) | marker (string): string to specify the marker (optional) | markersize (int)): size of the marker (optional) | fillstyle (string): string to define fill style (optional) Returns: | Nothing. Creates the figure for subequent use. Raises: | No exception is raised. """ __all__ = ['__init__'] if markerfacecolor is None: self.markerfacecolor = 'r' else: self.markerfacecolor = markerfacecolor if markerfacecoloralt is None: self.markerfacecoloralt = 'b' else: self.markerfacecoloralt = markerfacecoloralt if markeredgecolor is None: self.markeredgecolor = 'k' else: self.markeredgecolor = markeredgecolor if marker is None: self.marker = 'o' else: self.marker = marker if markersize is None: self.markersize = 20 else: self.markersize = markersize if fillstyle is None: self.fillstyle = 'full' else: self.fillstyle = fillstyle ################################################################################### ################################################################################### class Markers: """Collect marker location and types and mark subplot. Build a list of markers at plot locations with the specified marker. """ #################################################################### ## def __init__(self, markerfacecolor = None, markerfacecoloralt = None, markeredgecolor = None, marker = None, markersize = None, fillstyle = None): """Set default marker values for this collection Specify default marker properties to be used for all markers in this instance. If no marker properties are specified here, the default FilledMarker marker properties will be used. Args: | markerfacecolor (colour): main colour for marker (optional) | markerfacecoloralt (colour): alternative colour for marker (optional) | markeredgecolor (colour): edge colour for marker (optional) | marker (string): string to specify the marker (optional) | markersize (int)): size of the marker (optional) | fillstyle (string): string to define fill style (optional) Returns: | Nothing. Creates the figure for subequent use. Raises: | No exception is raised. """ __all__ = ['__init__', 'add', 'plot'] if markerfacecolor is None: self.markerfacecolor = None else: self.markerfacecolor = markerfacecolor if markerfacecoloralt is None: self.markerfacecoloralt = None else: self.markerfacecoloralt = markerfacecoloralt if markeredgecolor is None: self.markeredgecolor = None else: self.markeredgecolor = markeredgecolor if marker is None: self.marker = None else: self.marker = marker if markersize is None: self.markersize = markersize else: self.markersize = markersize if fillstyle is None: self.fillstyle = None else: self.fillstyle = fillstyle #list if markers to be drawn self.markers = [] #################################################################### ## def add(self,x,y,markerfacecolor = None, markerfacecoloralt = None, markeredgecolor = None, marker = None, markersize = None, fillstyle = None): """Add a marker to the list, overridding properties if necessary. Specify location and any specific marker properties to be used. The location can be (xy,y) for cartesian plots or (theta,rad) for polars. If no marker properties are specified, the current marker class properties will be used. If the current maker instance does not specify properties, the default marker properties will be used. Args: | x (float): the x/theta location for the marker | y (float): the y/radial location for the marker | markerfacecolor (colour): main colour for marker (optional) | markerfacecoloralt (colour): alterive colour for marker (optional) | markeredgecolor (colour): edge colour for marker (optional) | marker (string): string to specify the marker (optional) | markersize (int)): size of the marker (optional) | fillstyle (string): string to define fill style (optional) Returns: | Nothing. Creates the figure for subequent use. Raises: | No exception is raised. """ if markerfacecolor is None: if self.markerfacecolor is not None: markerfacecolor = self.markerfacecolor if markerfacecoloralt is None: if self.markerfacecoloralt is not None: markerfacecoloralt = self.markerfacecoloralt if markeredgecolor is None: if self.markeredgecolor is not None: markeredgecolor = self.markeredgecolor if marker is None: if self.marker is not None: marker = self.marker if markersize is None: if self.markersize is not None: markersize = self.markersize if fillstyle is None: if self.fillstyle is not None: fillstyle = self.fillstyle marker = FilledMarker(markerfacecolor, markerfacecoloralt , markeredgecolor , marker, markersize , fillstyle) self.markers.append((x,y,marker)) #################################################################### ## def plot(self,ax): """Plot the current list of markers on the given axes. All the markers currently stored in the class will be drawn. Args: | ax (axes): an axes handle for the plot Returns: | Nothing. Creates the figure for subsequent use. Raises: | No exception is raised. """ usetex = plt.rcParams['text.usetex'] plt.rcParams['text.usetex'] = False # otherwise, '^' will cause trouble for marker in self.markers: ax.plot(marker[0], marker[1], color = marker[2].markerfacecolor, markerfacecoloralt = marker[2].markerfacecoloralt, markeredgecolor = marker[2].markeredgecolor, marker = marker[2].marker, markersize = marker[2].markersize, fillstyle = marker[2].fillstyle, linewidth=0) plt.rcParams['text.usetex'] = usetex ################################################################################### ################################################################################### class ProcessImage: """This class provides a functions to assist in the optimal display of images. """ #define the compression rule to be used in the equalisation function compressSet = [ [lambda x : x , lambda x : x, 'Linear'], [np.log, np.exp, 'Natural Log'], [np.sqrt, np.square, 'Square Root']] ############################################################ def __init__(self): """Class constructor Sets up some variables for use in this class Args: | None Returns: | Nothing Raises: | No exception is raised. """ __all__ = ['__init__', 'compressEqualizeImage', 'reprojectImageIntoPolar'] ############################################################ def compressEqualizeImage(self, image, selectCompressSet=2, numCbarlevels=20, cbarformat='.3f'): """Compress an image (and then inversely expand the color bar values), prior to histogram equalisation to ensure that the two keep in step, we store the compression function names as pairs, and invoke the compression function as follows: linear, log. sqrt. Note that the image is histogram equalised in all cases. Args: | image (np.ndarray): the image to be processed | selectCompressSet (int): compression selection [0,1,2] (optional) | numCbarlevels (int): number of labels in the colourbar (optional) | cbarformat (string): colourbar label format, e.g., '10.3f', '.5e' (optional) Returns: | imgHEQ (np.ndarray): the equalised image array | customticksz (zip(float, string)): colourbar levels and associated levels Raises: | No exception is raised. """ #compress the input image - rescale color bar tick to match below #also collapse into single dimension imgFlat = self.compressSet[selectCompressSet][0](image.flatten()) imgFlatSort = np.sort(imgFlat) #cumulative distribution cdf = imgFlatSort.cumsum()/imgFlatSort[-1] #remap image values to achieve histogram equalisation y=np.interp(imgFlat,imgFlatSort, cdf ) #and reshape to original image shape imgHEQ = y.reshape(image.shape) # #plot the histogram mapping # minData = np.min(imgFlat) # maxData = np.max(imgFlat) # print('Image irradiance range minimum={0} maximum={1}'.format(minData, maxData)) # irradRange=np.linspace(minData, maxData, 100) # normalRange = np.interp(irradRange,imgFlatSort, cdf ) # H = ryplot.Plotter(1, 1, 1,'Mapping Input Irradiance to Equalised Value', # figsize=(10, 10)) # H.plot(1, "","Irradiance [W/(m$^2$)]", "Equalised value",irradRange, # normalRange, powerLimits = [-4, 2, -10, 2]) # #H.getPlot().show() # H.saveFig('cumhist{0}.png'.format(entry), dpi=300) #prepare the color bar tick labels from image values (as plotted) imgLevels = np.linspace(np.min(imgHEQ), np.max(imgHEQ), numCbarlevels) #map back from image values to original values as read it (inverse to above) irrLevels=np.interp(imgLevels,cdf, imgFlatSort) #uncompress the tick labels - match with compression above fstr = '{0:' + cbarformat + '}' customticksz = list(zip(imgLevels, [fstr.format(self.compressSet[selectCompressSet][1](x)) for x in irrLevels])) return imgHEQ, customticksz ############################################################################## ## def reprojectImageIntoPolar(self, data, origin=None, framesFirst=True,cval=0.0): """Reprojects a 3D numpy array into a polar coordinate system, relative to some origin. This function reprojects an image from cartesian to polar coordinates. The origin of the new coordinate system defaults to the center of the image, unless the user supplies a new origin. The data format can be data.shape = (rows, cols, frames) or data.shape = (frames, rows, cols), the format of which is indicated by the framesFirst parameter. The reprojectImageIntoPolar function maps radial to cartesian coords. The radial image is however presented in a cartesian grid, the corners have no meaning. The radial coordinates are mapped to the radius, not the corners. This means that in order to map corners, the frequency is scaled with sqrt(2), The corners are filled with the value specified in cval. Args: | data (np.array): 3-D array to which transformation must be applied. | origin ( (x-orig, y-orig) ): data-coordinates of where origin should be placed | framesFirst (bool): True if data.shape is (frames, rows, cols), False if data.shape is (rows, cols, frames) | cval (float): the fill value to be used in coords outside the mapped range(optional) Returns: | output (float np.array): transformed images/array data in the same sequence as input sequence. | r_i (np.array[N,]): radial values for returned image. | theta_i (np.array[M,]): angular values for returned image. Raises: | No exception is raised. original code by <NAME> https://stackoverflow.com/questions/3798333/image-information-along-a-polar-coordinate-system """ import pyradi.ryutils as ryutils # import scipy as sp import scipy.ndimage as spndi if framesFirst: data = ryutils.framesLast(data) ny, nx = data.shape[:2] if origin is None: origin = (nx//2, ny//2) # Determine what the min and max r and theta coords will be x, y = ryutils.index_coords(data, origin=origin, framesFirst=framesFirst ) r, theta = ryutils.cart2polar(x, y) # Make a regular (in polar space) grid based on the min and max r & theta r_i = np.linspace(r.min(), r.max(), nx) theta_i = np.linspace(theta.min(), theta.max(), ny) theta_grid, r_grid = np.meshgrid(theta_i, r_i) # Project the r and theta grid back into pixel coordinates xi, yi = ryutils.polar2cart(r_grid, theta_grid) xi += origin[0] # We need to shift the origin back to yi += origin[1] # back to the lower-left corner... xi, yi = xi.flatten(), yi.flatten() coords = np.vstack((xi, yi)) # (map_coordinates requires a 2xn array) # Reproject each band individually and the restack # (uses less memory than reprojection the 3-dimensional array in one step) bands = [] for band in data.T: zi = spndi.map_coordinates(band, coords, order=1,cval=cval) bands.append(zi.reshape((nx, ny))) output = np.dstack(bands) if framesFirst: output = ryutils.framesFirst(output) return output, r_i, theta_i ################################################################################### ################################################################################### class Plotter: """ Encapsulates a plotting environment, optimized for compact code. This class provides a wrapper around Matplotlib to provide a plotting environment specialised towards typical pyradi visualisation. These functions were developed to provide sophisticated plots by entering the various plot options on a few lines, instead of typing many commands. Provision is made for plots containing subplots (i.e., multiple plots on the same figure), linear scale and log scale plots, images, and cartesian, 3-D and polar plots. """ ############################################################ ## def __init__(self,fignumber=0,subpltnrow=1,subpltncol=1,\ figuretitle=None, figsize=(9,9), titlefontsize=14, useplotly = False,doWarning=True): """Class constructor The constructor defines the number for this figure, allowing future reference to this figure. The number of subplot rows and columns allow the user to define the subplot configuration. The user can also provide a title to be used for the figure (centred on top) and finally, the size of the figure in inches can be specified to scale the text relative to the figure. Args: | fignumber (int): the plt figure number, must be supplied | subpltnrow (int): subplot number of rows | subpltncol (int): subplot number of columns | figuretitle (string): the overall heading for the figure | figsize ((w,h)): the figure size in inches | titlefontsize (int): the figure title size in points | useplotly (bool): Plotly activation parameter | doWarning (bool): print warning messages to the screen Returns: | Nothing. Creates the figure for subequent use. Raises: | No exception is raised. """ __all__ = ['__init__', 'saveFig', 'getPlot', 'plot', 'logLog', 'semilogX', 'semilogY', 'polar', 'showImage', 'plot3d', 'buildPlotCol', 'getSubPlot', 'meshContour', 'nextPlotCol', 'plotArray', 'polarMesh', 'resetPlotCol', 'mesh3D', 'polar3d', 'labelSubplot', 'emptyPlot','setup_pie_axes','pie'] version=mpl.__version__.split('.') vnum=float(version[0]+'.'+version[1]) if vnum<1.1: print('Install Matplotlib 1.1 or later') print('current version is {0}'.format(vnum)) sys.exit(-1) self.figurenumber = fignumber self.fig = plt.figure(self.figurenumber) self.fig.set_size_inches(figsize[0], figsize[1]) self.fig.clear() self.figuretitle = figuretitle self.doWarning = doWarning #Plotly variables initialization self.useplotly = useplotly if self.useplotly: self.Plotlyfig = [] self.Plotlydata = [] self.Plotlylayout = [] self.PlotlyXaxisTitles = [] self.PlotlyYaxisTitles = [] self.PlotlySubPlotTitles = [] self.PlotlySubPlotLabels = [] self.PlotlySubPlotNumbers = [] self.PlotlyPlotCalls = 0 self.PLcolor='' self.PLwidth=0 self.PLdash='' self.PLmultiAxisTitle='' self.PLmultipleYAxis=False self.PLyAxisSide='' self.PLyAxisOverlaying='' self.PLmultipleXAxis=False self.PLxAxisSide='' self.PLxAxisOverlaying='' self.PLIs3D=False self.PLType='' self.nrow=subpltnrow self.ncol=subpltncol # width reserved for space between subplots self.fig.subplots_adjust(wspace=0.25) #height reserved for space between subplots self.fig.subplots_adjust(hspace=0.4) #height reserved for top of the subplots of the figure self.fig.subplots_adjust(top=0.88) # define the default line colour and style self.buildPlotCol(plotCol=None, n=None) self.bbox_extra_artists = [] self.subplots = {} self.gridSpecsOuter = {} self.arrayRows = {} self.gridSpecsInner = {} if figuretitle: self.figtitle=plt.gcf().text(.5,.95,figuretitle,\ horizontalalignment='center',\ fontproperties=FontProperties(size=titlefontsize)) self.bbox_extra_artists.append(self.figtitle) ############################################################ ## def buildPlotCol(self, plotCol=None, n=None): """Set a sequence of default colour styles of appropriate length. The constructor provides a sequence with length 14 pre-defined plot styles. The user can define a new sequence if required. This function modulus-folds either sequence, in case longer sequences are required. Colours can be one of the basic colours: ['b', 'g', 'r', 'c', 'm', 'y', 'k'] or it can be a gray shade float value between 0 and 1, such as '0.75', or it can be in hex format '#eeefff' or it can be one of the legal html colours. See http://html-color-codes.info/ and http://www.computerhope.com/htmcolor.htm. http://latexcolor.com/ Args: | plotCol ([strings]): User-supplied list | of plotting styles(can be empty []). | n (int): Length of required sequence. Returns: | A list with sequence of plot styles, of required length. Raises: | No exception is raised. """ # assemble the list as requested, use default if not specified if plotCol is None: plotCol = ['b', 'g', 'r', 'c', 'm', 'y', 'k', '#5D8AA8','#E52B50','#FF7E00','#9966CC','#CD9575','#915C83', '#008000','#4B5320','#B2BEB5','#A1CAF1','#FE6F5E','#333399', '#DE5D83','#800020','#1E4D2B','#00BFFF','#007BA7','#FFBCD9'] if n is None: n = len(plotCol) self.plotCol = [plotCol[i % len(plotCol)] for i in range(n)] # copy this to circular list as well self.plotColCirc = itertools.cycle(self.plotCol) return self.plotCol ############################################################ ## def nextPlotCol(self): """Returns the next entry in a sequence of default plot line colour styles in circular list. One day I want to do this with a generator.... Args: | None Returns: | The next plot colour in the sequence. Raises: | No exception is raised. """ col = next(self.plotColCirc) return col ############################################################ ## def resetPlotCol(self): """Resets the plot colours to start at the beginning of the cycle. Args: | None Returns: | None. Raises: | No exception is raised. """ self.plotColCirc = itertools.cycle(self.plotCol) ############################################################ ## def saveFig(self, filename='mpl.png',dpi=300,bbox_inches='tight',\ pad_inches=0.1, useTrueType = True): """Save the plot to a disk file, using filename, dpi specification and bounding box limits. One of matplotlib's design choices is a bounding box strategy which may result in a bounding box that is smaller than the size of all the objects on the page. It took a while to figure this out, but the current default values for bbox_inches and pad_inches seem to create meaningful bounding boxes. These are however larger than the true bounding box. You still need a tool such as epstools or Adobe Acrobat to trim eps files to the true bounding box. The type of file written is picked up in the filename. Most backends support png, pdf, ps, eps and svg. Args: | filename (string): output filename to write plot, file ext | dpi (int): the resolution of the graph in dots per inch | bbox_inches: see matplotlib docs for more detail. | pad_inches: see matplotlib docs for more detail. | useTrueType: if True, truetype fonts are used in eps/pdf files, otherwise Type3 Returns: | Nothing. Saves a file to disk. Raises: | No exception is raised. """ # http://matplotlib.1069221.n5.nabble.com/TrueType-font-embedding-in-eps-problem-td12691.html # http://stackoverflow.com/questions/5956182/cannot-edit-text-in-chart-exported-by-matplotlib-and-opened-in-illustrator # http://newsgroups.derkeiler.com/Archive/Comp/comp.soft-sys.matlab/2008-07/msg02038.html if useTrueType: mpl.rcParams['pdf.fonttype'] = 42 mpl.rcParams['ps.fonttype'] = 42 #http://stackoverflow.com/questions/15341757/how-to-check-that-pylab-backend-of-matplotlib-runs-inline/17826459#17826459 # print(mpl.get_backend()) if 'inline' in mpl.get_backend() and self.doWarning: print('**** If saveFig does not work inside the notebook please comment out the line "%matplotlib inline" ') print('To disable ryplot warnings, set doWarning=False') # return if len(filename)>0: if self.bbox_extra_artists: self.fig.savefig(filename, dpi=dpi, bbox_inches=bbox_inches, pad_inches=pad_inches,\ bbox_extra_artists= self.bbox_extra_artists); else: self.fig.savefig(filename, dpi=dpi, bbox_inches=bbox_inches, pad_inches=pad_inches); ############################################################ ## def getPlot(self): """Returns a handle to the current figure Args: | None Returns: | A handle to the current figure. Raises: | No exception is raised. """ return self.fig ############################################################ ## def labelSubplot(self, spax, ptitle=None, xlabel=None, ylabel=None, zlabel=None, titlefsize=10, labelfsize=10, ): """Set the sub-figure title and axes labels (cartesian plots only). Args: | spax (handle): subplot axis handle where labels must be drawn | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | zlabel (string): z axis label (optional) | titlefsize (float): title fontsize (optional) | labelfsize (float): x,y,z label fontsize (optional) Returns: | None. Raises: | No exception is raised. """ if xlabel is not None: spax.set_xlabel(xlabel,fontsize=labelfsize) if ylabel is not None: spax.set_ylabel(ylabel,fontsize=labelfsize) if zlabel is not None: spax.set_ylabel(zlabel,fontsize=labelfsize) if ptitle is not None: spax.set_title(ptitle,fontsize=titlefsize) ############################################################ ## def getSubPlot(self, subplotNum = 1): """Returns a handle to the subplot, as requested per subplot number. Subplot numbers range from 1 upwards. Args: | subplotNumer (int) : number of the subplot Returns: | A handle to the requested subplot or None if not found. Raises: | No exception is raised. """ if (self.nrow,self.ncol, subplotNum) in list(self.subplots.keys()): return self.subplots[(self.nrow,self.ncol, subplotNum)] else: return None ############################################################ ## def getXLim(self, subplotNum = 1): """Returns the x limits of the current subplot. Subplot numbers range from 1 upwards. Args: | subplotNumer (int) : number of the subplot Returns: | An array with the two limits Raises: | No exception is raised. """ if (self.nrow,self.ncol, subplotNum) in list(self.subplots.keys()): return np.asarray(self.subplots[(self.nrow,self.ncol, subplotNum)].get_xlim()) else: return None ############################################################ ## def getYLim(self, subplotNum = 1): """Returns the y limits of the current subplot. Subplot numbers range from 1 upwards. Args: | subplotNumer (int) : number of the subplot Returns: | An array with the two limits Raises: | No exception is raised. """ if (self.nrow,self.ncol, subplotNum) in list(self.subplots.keys()): return np.asarray(self.subplots[(self.nrow,self.ncol, subplotNum)].get_ylim()) else: return None ############################################################ ## def verticalLineCoords(self,subplotNum=1,x=0): """Returns two arrays for vertical line at x in the specific subplot. The line is drawn at specified x, with current y limits in subplot. Subplot numbers range from 1 upwards. Use as follows to draw a vertical line in plot: p.plot(1,*p.verticalLineCoords(subplotNum=1,x=freq),plotCol=['k']) Args: | subplotNumer (int) : number of the subplot | x (double): horizontal value used for line Returns: | A tuple with two arrays for line (x-coords,y-coords) Raises: | No exception is raised. """ if (self.nrow,self.ncol, subplotNum) in list(self.subplots.keys()): handle = self.subplots[(self.nrow,self.ncol, subplotNum)] x = np.asarray((x,x)) y = self.getYLim(subplotNum) return x,y else: return None ############################################################ ## def horizontalLineCoords(self,subplotNum=1,y=0): """Returns two arrays for horizontal line at y in the specific subplot. The line is drawn at specified y, with current x limits in subplot. Subplot numbers range from 1 upwards. Use as follows to draw a horizontal line in plot: p.plot(1,*p.horizontalLineCoords(subplotNum=1,x=freq),plotCol=['k']) Args: | subplotNumer (int) : number of the subplot | y (double): horizontal value used for line Returns: | A tuple with two arrays for line (x-coords,y-coords) Raises: | No exception is raised. """ if (self.nrow,self.ncol, subplotNum) in list(self.subplots.keys()): handle = self.subplots[(self.nrow,self.ncol, subplotNum)] y = np.asarray((y,y)) x = self.getXLim(subplotNum) return x,y else: return None ############################################################ ## def plot(self, plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[], legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10, labelfsize=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, drawGrid=True,xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None, clip_on=True,axesequal=False, xAxisFmt=None, yAxisFmt=None, PLcolor=None, PLwidth=None, PLdash=None, PLyAxisSide=None, PLyAxisOverlaying=None, PLmultipleYAxis=False, PLmultiAxisTitle=None, PLxAxisSide=None, PLxAxisOverlaying=None, PLmultipleXAxis=False ): #Plotly initialization parameters """Cartesian plot on linear scales for abscissa and ordinates. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list with M entries (optional) | legendAlpha (float): transparency for legend box (optional) | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLcolor (string): graph color scheme. Format 'rgb(r,g,b)' | PLwidth | PLdash (string): Line stlye | PLyAxisSide (string): Sets the location of the y-axis (left/right) | PLyAxisOverlaying (string): Sets the overlaying | PLmultipleYAxis (bool): Indicates presence of multiple axis | PLmultiAxisTitle (string): Sets the title of the multiple axis | PLxAxisSide (string): Sets the location of the x-axis (top/bottom) | PLxAxisOverlaying (string): Sets the overlaying | PLmultipleXAxis (bool): Indicates presence of multiple axis Returns: | the axis object for the plot Raises: | No exception is raised. """ #Plotly variables initialization self.PLcolor=PLcolor self.PLwidth=PLwidth self.PLdash=PLdash self.PLmultipleYAxis=PLmultipleYAxis self.PLmultiAxisTitle=PLmultiAxisTitle self.PLyAxisSide=PLyAxisSide self.PLyAxisOverlaying=PLyAxisOverlaying self.PLmultipleXAxis=PLmultipleXAxis self.PLxAxisSide=PLxAxisSide self.PLxAxisOverlaying=PLxAxisOverlaying ## see self.MyPlot for parameter details. pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] self.myPlot(ax.plot, plotnum, x, y, ptitle, xlabel, ylabel, plotCol, linewidths, label,legendAlpha, legendLoc, pltaxis, maxNX, maxNY, linestyle, powerLimits,titlefsize, xylabelfsize, xytickfsize, labelfsize, drawGrid, xScientific, yScientific, yInvert, xInvert, xIsDate, xTicks, xtickRotation, markers, markevery, markerfacecolor,markeredgecolor, zorders, clip_on,axesequal, xAxisFmt,yAxisFmt) return ax ############################################################ ## def logLog(self, plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[],legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10,labelfsize=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, drawGrid=True,xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None, clip_on=True,axesequal=False, xAxisFmt=None, yAxisFmt=None, PLcolor=None, PLwidth=None, PLdash=None, PLyAxisSide=None, PLyAxisOverlaying=None, PLmultipleYAxis=False, PLmultiAxisTitle=None): """Plot data on logarithmic scales for abscissa and ordinates. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list with M entries (optional) | legendAlpha (float): transparency for legend box (optional) | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLcolor (string): graph color scheme. Format 'rgb(r,g,b)' | PLwidth | PLdash (string): Line stlye | PLyAxisSide (string): Sets the location of the y-axis (left/right) | PLyAxisOverlaying (string): Sets the overlaying | PLmultipleYAxis (bool): Indicates presence of multiple axis | PLmultiAxisTitle (string): Sets the title of the multiple axis Returns: | the axis object for the plot Raises: | No exception is raised. """ # Plotly variables initialization self.PLcolor=PLcolor self.PLwidth=PLwidth self.PLdash=PLdash self.PLmultipleYAxis=PLmultipleYAxis self.PLmultiAxisTitle=PLmultiAxisTitle self.PLyAxisSide=PLyAxisSide self.PLyAxisOverlaying=PLyAxisOverlaying ## see self.MyPlot for parameter details. pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] # self.myPlot(ax.loglog, plotnum, x, y, ptitle, xlabel,ylabel,\ # plotCol, label,legendAlpha, pltaxis, \ # maxNX, maxNY, linestyle, powerLimits,titlefsize,xylabelfsize, # xytickfsize,labelfsize, drawGrid # xTicks, xtickRotation, # markers=markers) self.myPlot(ax.loglog, plotnum, x, y, ptitle, xlabel, ylabel, plotCol, linewidths, label,legendAlpha, legendLoc, pltaxis, maxNX, maxNY, linestyle, powerLimits,titlefsize, xylabelfsize, xytickfsize, labelfsize, drawGrid, xScientific, yScientific, yInvert, xInvert, xIsDate, xTicks, xtickRotation, markers, markevery, markerfacecolor,markeredgecolor, zorders, clip_on,axesequal, xAxisFmt,yAxisFmt) return ax ############################################################ ## def semilogX(self, plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[],legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10,labelfsize=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, drawGrid=True,xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None, clip_on=True, axesequal=False, xAxisFmt=None, yAxisFmt=None, PLcolor=None, PLwidth=None, PLdash=None, PLyAxisSide=None, PLyAxisOverlaying=None, PLmultipleYAxis=False, PLmultiAxisTitle=None): """Plot data on logarithmic scales for abscissa and linear scale for ordinates. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list with M entries (optional) | legendAlpha (float): transparency for legend box (optional) | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label notation power limits [x-low, x-high, y-low, y-high] (optional) (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLcolor (string): graph color scheme. Format 'rgb(r,g,b)' | PLwidth | PLdash (string): Line stlye | PLyAxisSide (string): Sets the location of the y-axis (left/right) | PLyAxisOverlaying (string): Sets the overlaying | PLmultipleYAxis (bool): Indicates presence of multiple axis | PLmultiAxisTitle (string): Sets the title of the multiple axis Returns: | the axis object for the plot Raises: | No exception is raised. """ #Plotly variables initialization self.PLcolor=PLcolor self.PLwidth=PLwidth self.PLdash=PLdash self.PLmultipleYAxis=PLmultipleYAxis self.PLmultiAxisTitle=PLmultiAxisTitle self.PLyAxisSide=PLyAxisSide self.PLyAxisOverlaying=PLyAxisOverlaying ## see self.MyPlot for parameter details. pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] self.myPlot(ax.semilogx, plotnum, x, y, ptitle, xlabel, ylabel,\ plotCol, linewidths, label,legendAlpha, legendLoc, pltaxis, maxNX, maxNY, linestyle, powerLimits, titlefsize, xylabelfsize, xytickfsize, labelfsize, drawGrid, xScientific, yScientific, yInvert, xInvert, xIsDate, xTicks, xtickRotation, markers, markevery, markerfacecolor,markeredgecolor, zorders, clip_on,axesequal, xAxisFmt,yAxisFmt) return ax ############################################################ ## def semilogY(self, plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[],legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10, labelfsize=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, drawGrid=True,xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None, clip_on=True,axesequal=False, xAxisFmt=None, yAxisFmt=None, PLcolor=None, PLwidth=None, PLdash=None, PLyAxisSide=None, PLyAxisOverlaying=None, PLmultipleYAxis=False, PLmultiAxisTitle=None): """Plot data on linear scales for abscissa and logarithmic scale for ordinates. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list withM entries (optional) | legendAlpha (float): transparency for legend box (optional) | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLcolor (string): graph color scheme. Format 'rgb(r,g,b)' | PLwidth | PLdash (string): Line stlye | PLyAxisSide (string): Sets the location of the y-axis (left/right) | PLyAxisOverlaying (string): Sets the overlaying | PLmultipleYAxis (bool): Indicates presence of multiple axis | PLmultiAxisTitle (string): Sets the title of the multiple axis Returns: | the axis object for the plot Raises: | No exception is raised. """ #Plotly variables initialization self.PLcolor=PLcolor self.PLwidth=PLwidth self.PLdash=PLdash self.PLmultipleYAxis=PLmultipleYAxis self.PLmultiAxisTitle=PLmultiAxisTitle self.PLyAxisSide=PLyAxisSide self.PLyAxisOverlaying=PLyAxisOverlaying ## see self.MyPlot for parameter details. pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] self.myPlot(ax.semilogy, plotnum, x, y, ptitle,xlabel,ylabel, plotCol, linewidths, label,legendAlpha, legendLoc, pltaxis, maxNX, maxNY, linestyle, powerLimits, titlefsize, xylabelfsize, xytickfsize, labelfsize, drawGrid, xScientific, yScientific, yInvert, xInvert, xIsDate, xTicks, xtickRotation, markers, markevery, markerfacecolor,markeredgecolor, zorders, clip_on, axesequal,xAxisFmt,yAxisFmt) return ax ############################################################ ## def stackplot(self, plotnum, x, y, ptitle=None, xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[],legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=10, maxNY=10, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10, labelfsize=10, xScientific=False, yScientific=False, yInvert=False, xInvert=False, drawGrid=True,xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None, clip_on=True, axesequal=False, xAxisFmt=None, yAxisFmt=None, PLcolor=None, PLwidth=None, PLdash=None, PLyAxisSide=None, PLyAxisOverlaying=None, PLmultipleYAxis=False, PLmultiAxisTitle=None): """Plot stacked data on linear scales for abscissa and ordinates. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the y-values or ordinates can be more than one column, each column representing a different line in the plot. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The pltaxis argument defines the min/max scale values for the x and y axes. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list withM entries (optional) | legendAlpha (float): transparency for legend box (optional) | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLcolor (string): graph color scheme. Format 'rgb(r,g,b)' | PLwidth | PLdash (string): Line stlye | PLyAxisSide (string): Sets the location of the y-axis (left/right) | PLyAxisOverlaying (string): Sets the overlaying | PLmultipleYAxis (bool): Indicates presence of multiple axis | PLmultiAxisTitle (string): Sets the title of the multiple axis Returns: | the axis object for the plot Raises: | No exception is raised. """ #Plotly variables initialization self.PLcolor=PLcolor self.PLwidth=PLwidth self.PLdash=PLdash self.PLmultipleYAxis=PLmultipleYAxis self.PLmultiAxisTitle=PLmultiAxisTitle self.PLyAxisSide=PLyAxisSide self.PLyAxisOverlaying=PLyAxisOverlaying ## see self.MyPlot for parameter details. pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] self.myPlot(ax.stackplot, plotnum, x, y.T, ptitle,xlabel,ylabel, plotCol, linewidths, label,legendAlpha, legendLoc, pltaxis, maxNX, maxNY, linestyle, powerLimits, titlefsize, xylabelfsize, xytickfsize, labelfsize, drawGrid, xScientific, yScientific, yInvert, xInvert, xIsDate, xTicks, xtickRotation, markers, markevery, markerfacecolor,markeredgecolor, zorders, clip_on, axesequal,xAxisFmt,yAxisFmt) return ax ############################################################ ## def myPlot(self, plotcommand,plotnum, x, y, ptitle=None,xlabel=None, ylabel=None, plotCol=[], linewidths=None, label=[], legendAlpha=0.0, legendLoc='best', pltaxis=None, maxNX=0, maxNY=0, linestyle=None, powerLimits = [-4, 2, -4, 2], titlefsize = 12, xylabelfsize = 12, xytickfsize = 10, labelfsize=10, drawGrid=True, xScientific=False, yScientific=False, yInvert=False, xInvert=False, xIsDate=False, xTicks=None, xtickRotation=0, markers=[], markevery=None, markerfacecolor=True,markeredgecolor=True, zorders=None,clip_on=True,axesequal=False, xAxisFmt=None,yAxisFmt=None, PLyStatic=[0] ): """Low level helper function to create a subplot and plot the data as required. This function does the actual plotting, labelling etc. It uses the plotting function provided by its user functions. lineStyles = { '': '_draw_nothing', ' ': '_draw_nothing', 'None': '_draw_nothing', '--': '_draw_dashed', '-.': '_draw_dash_dot', '-': '_draw_solid', ':': '_draw_dotted'} Args: | plotcommand: name of a MatplotLib plotting function | plotnum (int): subplot number, 1-based index | ptitle (string): plot title | xlabel (string): x axis label | ylabel (string): y axis label | x (np.array[N,] or [N,1]): abscissa | y (np.array[N,] or [N,M]): ordinates - could be M columns | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list with M entries | legendAlpha (float): transparency for legend box | legendLoc (string): location for legend box (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. | maxNX (int): draw maxNX+1 tick labels on x axis | maxNY (int): draw maxNY+1 tick labels on y axis | linestyle (string): linestyle for this plot (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | labelfsize (int): label/legend font size, default 10pt (optional) | drawGrid (bool): draw the grid on the plot (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | yInvert (bool): invert the y-axis (optional) | xInvert (bool): invert the x-axis (optional) | xIsDate (bool): convert the datetime x-values to dates (optional) | xTicks ({tick:label}): dict of x-axis tick locations and associated labels (optional) | xtickRotation (float) x-axis tick label rotation angle (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | markerfacecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | markeredgecolor (True|None|str) if True same as plotCol, if None empty, otherwise str is colour (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | axesequal (bool) force scaling on x and y axes to be equal (optional) | xAxisFmt (string) x-axis format string, e.g., '%.2f', default None (optional) | yAxisFmt (string) y-axis format string, e.g., '%.2e',, default None (optional) | PLyStatic ([int]) the guy that added this did not document it properly Returns: | the axis object for the plot Raises: | No exception is raised. """ #Initialize plotlyPlot call when Plotly is activated if self.useplotly: self.PlotlyPlotCalls = self.PlotlyPlotCalls + 1 if x.ndim>1: xx=x else: if type(x)==type(pd.Series()): x = x.values xx=x.reshape(-1, 1) if y.ndim>1: yy=y else: if type(y)==type(pd.Series()): y = y.values yy=y.reshape(-1, 1) # plotCol = self.buildPlotCol(plotCol, yy.shape[1]) pkey = (self.nrow, self.ncol, plotnum) ax = self.subplots[pkey] if drawGrid: ax.grid(True) else: ax.grid(False) # use scientific format on axes #yfm = sbp.yaxis.get_major_formatter() #yfm.set_powerlimits([ -3, 3]) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=xylabelfsize) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=xylabelfsize) if xIsDate: ax.xaxis_date() ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d')) ax.xaxis.set_major_locator(mdates.DayLocator()) if maxNX >0: ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNX)) if maxNY >0: ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNY)) if xScientific: # formx = plt.FormatStrFormatter('%.3e') formx = plt.ScalarFormatter() formx.set_powerlimits([powerLimits[0], powerLimits[1]]) formx.set_scientific(True) ax.xaxis.set_major_formatter(formx) # http://matplotlib.1069221.n5.nabble.com/ScalarFormatter-td28042.html # http://matplotlib.org/api/ticker_api.html # http://matplotlib.org/examples/pylab_examples/newscalarformatter_demo.html # ax.xaxis.set_major_formatter( plt.FormatStrFormatter('%d')) # http://matplotlib.org/1.3.1/api/axes_api.html#matplotlib.axes.Axes.ticklabel_format # plt.ticklabel_format(style='sci', axis='x', # scilimits=(powerLimits[0], powerLimits[1])) if yScientific: formy = plt.ScalarFormatter() formy.set_powerlimits([powerLimits[2], powerLimits[3]]) formy.set_scientific(True) ax.yaxis.set_major_formatter(formy) # this user-defined format setting is given at the end of the function. # # override the format with user defined # if xAxisFmt is not None: # ax.xaxis.set_major_formatter(FormatStrFormatter(xAxisFmt)) # if yAxisFmt is not None: # ax.yaxis.set_major_formatter(FormatStrFormatter(yAxisFmt)) ###############################stacked plot ####################### if plotcommand==ax.stackplot: if not self.useplotly: if not plotCol: plotCol = [self.nextPlotCol() for col in range(0,yy.shape[0])] ax.stackplot(xx.reshape(-1), yy, colors=plotCol) ax.margins(0, 0) # Set margins to avoid "whitespace" # creating the legend manually ax.legend([mpl.patches.Patch(color=col) for col in plotCol], label, loc=legendLoc, framealpha=legendAlpha) else: #Plotly stacked plot #Plotly stacked plot variables PLXAxis = 0 PLYAxis = 0 for i in range(yy.shape[0]): PLXAxis = dict(type='category',) PLYAxis = dict(type='linear') try: if len(y[0,:]) > 1: self.Plotlydata.append(Scatter(x=x, y=y[i,:]+PLyStatic[0],mode='lines', name = label,fill='tonexty',line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) PLyStatic[0] += y[i,:] elif len(x[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,i], y=y,mode='lines', name = label,fill='tonexty',line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) except: self.Plotlydata.append(Scatter(x=x, y=y, name = label,fill='tonexty',line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) ###############################line plot ####################### else: # not a stacked plot for i in range(yy.shape[1]): #set up the line style, either given or next in sequence mmrk = '' if markers: if i >= len(markers): mmrk = markers[-1] else: mmrk = markers[i] if plotCol: if i >= len(plotCol): col = plotCol[-1] else: col = plotCol[i] else: col = self.nextPlotCol() if markerfacecolor==True: markerfacecolor = col elif markerfacecolor is None: markerfacecolor='none' else: pass # keep as is if markeredgecolor==True: markeredgecolor = col elif markeredgecolor is None: markeredgecolor='none' else: pass # keep as is if linestyle is None: linestyleL = '-' else: if type(linestyle) == type([1]): linestyleL = linestyle[i] else: linestyleL = linestyle if zorders: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 2 if not self.useplotly: if not label: if linewidths is not None: plotcommand(xx, yy[:, i], col, label=None, linestyle=linestyleL, markerfacecolor=markerfacecolor,markeredgecolor=markeredgecolor, marker=mmrk, markevery=markevery, linewidth=linewidths[i], clip_on=clip_on, zorder=zorder) else: plotcommand(xx, yy[:, i], col, label=None, linestyle=linestyleL, markerfacecolor=markerfacecolor,markeredgecolor=markeredgecolor, marker=mmrk, markevery=markevery, clip_on=clip_on, zorder=zorder) else: if linewidths is not None: # print('***************',linewidths) line, = plotcommand(xx,yy[:,i],col,#label=label[i], linestyle=linestyleL, markerfacecolor=markerfacecolor,markeredgecolor=markeredgecolor, marker=mmrk, markevery=markevery, linewidth=linewidths[i], clip_on=clip_on, zorder=zorder) else: line, = plotcommand(xx,yy[:,i],col,#label=label[i], linestyle=linestyleL, markerfacecolor=markerfacecolor,markeredgecolor=markeredgecolor, marker=mmrk, markevery=markevery, clip_on=clip_on, zorder=zorder) line.set_label(label[i]) leg = ax.legend( loc=legendLoc, fancybox=True,fontsize=labelfsize) leg.get_frame().set_alpha(legendAlpha) # ax.legend() self.bbox_extra_artists.append(leg) else:#Plotly plots if 'loglog' in str(plotcommand): PLXAxis = dict(type='log',showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=xlabel,mirror='all') PLYAxis = dict(type='log',showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=ylabel,mirror='all') # Assuming that either y or x has to 1 try: if len(x[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,i], y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) elif len(y[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,0], y=y[:,i], name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) except: self.Plotlydata.append(Scatter(x=x, y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif 'semilogx' in str(plotcommand): PLXAxis = dict(type='log',showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=xlabel,mirror='all') PLYAxis = dict(showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=ylabel,mirror='all') # Assuming that either y or x has to 1 try: if len(x[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,i], y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) elif len(y[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,0], y=y[:,i], name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) except: self.Plotlydata.append(Scatter(x=x, y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif 'semilogy' in str(plotcommand): PLXAxis = dict(showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=xlabel,mirror='all') PLYAxis = dict(type='log',showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=ylabel,mirror='all') # Assuming that either y or x has to 1 try: if len(x[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,i], y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) elif len(y[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,0], y=y[:,i], name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) except: self.Plotlydata.append(Scatter(x=x, y=y, name = label,line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) else: PLXAxis = dict(showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=xlabel,mirror='all') PLYAxis = dict(showgrid=drawGrid,zeroline=False,nticks=20,showline=True,title=ylabel,mirror='all') # Assuming that either y or x has to 1 try: if len(x[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,i], y=y, name = label,xaxis='x1', line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) elif len(y[0,:]) > 1: self.Plotlydata.append(Scatter(x=x[:,0], y=y[:,i], name = label,xaxis='x1', line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) except: self.Plotlydata.append(Scatter(x=x, y=y, name = label,xaxis='x1', line = dict(color = self.PLcolor, width = self.PLwidth, dash = self.PLdash))) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) #Plotly plots setup if self.useplotly: if self.PLmultipleYAxis: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,xaxis = PLXAxis,yaxis=PLYAxis,yaxis2=dict(title=self.PLmultiAxisTitle,side=self.PLyAxisSide,overlaying=self.PLyAxisOverlaying))) elif self.PLmultipleXAxis: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,yaxis=PLYAxis,xaxis = PLXAxis,xaxis2=dict(title=self.PLmultiAxisTitle,side=self.PLxAxisSide,overlaying=self.PLxAxisOverlaying))) else: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,xaxis = PLXAxis,yaxis=PLYAxis)) if self.ncol > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlySubPlotLabels.append(label) elif self.nrow > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlySubPlotLabels.append(label) if xIsDate: plt.gcf().autofmt_xdate() #scale the axes if pltaxis is not None: # ax.axis(pltaxis) if not xIsDate: ax.set_xlim(pltaxis[0],pltaxis[1]) ax.set_ylim(pltaxis[2],pltaxis[3]) if xTicks is not None: ticks = ax.set_xticks(list(xTicks.keys())) ax.set_xticklabels([xTicks[key] for key in xTicks], rotation=xtickRotation, fontsize=xytickfsize) if xTicks is None and xtickRotation is not None: ticks = ax.get_xticks() if xIsDate: from datetime import date ticks = [date.fromordinal(int(tick)).strftime('%Y-%m-%d') for tick in ticks] ax.set_xticks(ticks) # this is workaround for bug in matplotlib ax.set_xticklabels(ticks, rotation=xtickRotation, fontsize=xytickfsize) if(ptitle is not None): ax.set_title(ptitle, fontsize=titlefsize) # minor ticks are two points smaller than major ax.tick_params(axis='both', which='major', labelsize=xytickfsize) ax.tick_params(axis='both', which='minor', labelsize=xytickfsize-2) if yInvert: ax.set_ylim(ax.get_ylim()[::-1]) if xInvert: ax.set_xlim(ax.get_xlim()[::-1]) if axesequal: ax.axis('equal') # override the format with user defined if xAxisFmt is not None: ax.xaxis.set_major_formatter(FormatStrFormatter(xAxisFmt)) if yAxisFmt is not None: ax.yaxis.set_major_formatter(FormatStrFormatter(yAxisFmt)) return ax ############################################################ #Before this function is called, plot data is accumulated in runtime variables #At the call of this function the Plotly plots are plotted using the accumulated data. def plotlyPlot(self,filename=None,image=None,image_filename=None,auto_open=True): if ((self.nrow == self.ncol) & self.ncol == 1 & self.nrow == 1 ): #No subplots fig = Figure(data=self.Plotlydata,layout=self.Plotlylayout[0]) fig['layout'].update(title=str(self.figuretitle)) else: dataFormatCatch = 0 try: len(self.Plotlydata[0].y[1,:]) dataFormatCatch = 0 except: dataFormatCatch = 1 if self.PLIs3D: specRow = [] specCol = [] for r in range(int(self.nrow)): specRow.append({'is_3d': True}) for r in range(int(self.ncol)): specCol.append({'is_3d': True}) fig = tools.make_subplots(rows=int(self.nrow), cols=int(self.nrow), specs=[specRow,specCol])#[[{'is_3d': True}, {'is_3d': True}], [{'is_3d': True}, {'is_3d': True}]]) else: fig = tools.make_subplots(int(self.nrow), int(self.ncol), subplot_titles=self.PlotlySubPlotTitles) # make row and column formats rowFormat = [] colFormat = [] countRows = 1 rowCount = 1 colCount = 1 for tmp in range(int(self.nrow)*int(self.ncol)): if int(self.nrow) == int(self.ncol): if countRows == int(self.nrow): rowFormat.append(rowCount) rowCount = rowCount + 1 if rowCount > int(self.nrow): rowCount = 1 countRows = 1 elif countRows < int(self.nrow) : rowFormat.append(rowCount) countRows = countRows + 1 if colCount == int(self.ncol): colFormat.append(colCount) colCount = 1 elif colCount < int(self.ncol): colFormat.append(colCount) colCount = colCount + 1 else: if rowCount > int(self.nrow): rowCount = 1 rowFormat.append(rowCount) rowCount = rowCount + 1 else: rowFormat.append(rowCount) rowCount = rowCount + 1 if colCount > int(self.ncol): colCount = 1 colFormat.append(colCount) colCount = colCount + 1 else: colFormat.append(colCount) colCount = colCount + 1 if dataFormatCatch == 0: for tmp in range(self.PlotlyPlotCalls): if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[tmp], colFormat[tmp]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[tmp], colFormat[tmp]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: fig.append_trace(self.Plotlydata, rowFormat[tmp], colFormat[tmp]) else: rCntrl = 1 rIndex = 1 cIndex = 1 cCntrl = 1 rStpVal = int(len(self.Plotlydata)/len(rowFormat)) cStpVal = int(len(self.Plotlydata)/len(colFormat)) for i in range(len(self.Plotlydata)): if rCntrl > rStpVal: rCntrl = 1 rIndex = rIndex+1 if cCntrl > cStpVal: cCntrl = 1 cIndex = cIndex+1 if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[rIndex-1], colFormat[cIndex-1]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if(len(self.Plotlydata) == len(rowFormat)): fig.append_trace(self.Plotlydata[i], rowFormat[i], colFormat[i]) else: fig.append_trace(self.Plotlydata[i], rowFormat[self.PlotlySubPlotNumbers[i]-1], colFormat[self.PlotlySubPlotNumbers[i]-1]) cCntrl = cCntrl + 1 else: if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[rIndex-1], colFormat[cIndex-1]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: fig.append_trace(self.Plotlydata[i], rowFormat[rIndex-1], colFormat[cIndex-1]) rCntrl = rCntrl + 1 elif cCntrl > cStpVal: cCntrl = 1 cIndex = cIndex+1 if rCntrl > rStpVal: rCntrl = 1 rIndex = rIndex+1 if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[rIndex-1], colFormat[cIndex-1]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: fig.append_trace(self.Plotlydata[i], rowFormat[rIndex-1], colFormat[cIndex-1]) rCntrl = rCntrl + 1 else: if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[rIndex-1], colFormat[cIndex-1]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: fig.append_trace(self.Plotlydata[i], rowFormat[rIndex-1], colFormat[cIndex-1]) cCntrl = cCntrl + 1 else: if self.PLIs3D: if str(self.PLType) == "plot3d": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,mode=self.Plotlydata[i].mode), rowFormat[rIndex-1], colFormat[cIndex-1]) elif str(self.PLType) == "mesh3D": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,color=self.Plotlydata[i].color), rowFormat[rIndex-1], colFormat[cIndex-1]) else: if str(self.PLType) == "meshContour": fig.append_trace(dict(type=self.Plotlydata[i].type,x=self.Plotlydata[i].x, y=self.Plotlydata[i].y, z=self.Plotlydata[i].z,name=self.Plotlydata[i].name,PLcolorscale=self.Plotlydata[i].PLcolorscale), rowFormat[rIndex-1], colFormat[cIndex-1]) else: fig.append_trace(self.Plotlydata[i], rowFormat[rIndex-1], colFormat[cIndex-1]) rCntrl = rCntrl + 1 cCntrl = cCntrl + 1 fig['layout'].update(title=str(self.figuretitle)) for j in range(self.PlotlyPlotCalls): if j < len(self.PlotlyXaxisTitles): fig['layout']['xaxis'+str(j+1)].update(title=self.PlotlyXaxisTitles[j],type=self.Plotlylayout[j].xaxis.type) else: fig['layout']['xaxis'+str(j+1)].update(type=self.Plotlylayout[j].xaxis.type) if j < len(self.PlotlyYaxisTitles): fig['layout']['yaxis'+str(j+1)].update(title=self.PlotlyYaxisTitles[j],type=self.Plotlylayout[j].yaxis.type) else: fig['layout']['yaxis'+str(j+1)].update(type=self.Plotlylayout[j].yaxis.type) if filename: offline.plot(fig,filename=filename) elif image: offline.plot(fig,image_filename=image_filename,image=image,auto_open=auto_open) else: offline.plot(fig) ############################################################ ## def emptyPlot(self,plotnum,projection='rectilinear'): """Returns a handler to an empty plot. This function does not do any plotting, the use must add plots using the standard MatPlotLib means. Args: | plotnum (int): subplot number, 1-based index | rectilinear (str): type of axes projection, from ['aitoff', 'hammer', 'lambert', 'mollweide', 'polar', 'rectilinear.]. Returns: | the axis object for the plot Raises: | No exception is raised. """ pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum,projection=projection) ax = self.subplots[pkey] return ax ############################################################ ## def meshContour(self, plotnum, xvals, yvals, zvals, levels=10, ptitle=None, xlabel=None, ylabel=None, shading='flat', plotCol=[], pltaxis=None, maxNX=0, maxNY=0, xScientific=False, yScientific=False, powerLimits=[-4, 2, -4, 2], titlefsize=12, xylabelfsize=12, xytickfsize=10, meshCmap=cm.rainbow, cbarshow=False, cbarorientation='vertical', cbarcustomticks=[], cbarfontsize=12, drawGrid=False, yInvert=False, xInvert=False, contourFill=True, contourLine=True, logScale=False, negativeSolid=False, zeroContourLine=None, contLabel=False, contFmt='%.2f', contCol='k', contFonSz=8, contLinWid=0.5, zorders=None, PLcolorscale='' ): """XY colour mesh countour plot for (xvals, yvals, zvals) input sets. The data values must be given on a fixed mesh grid of three-dimensional $(x,y,z)$ array input sets. The mesh grid is defined in $(x,y)$, while the height of the mesh is the $z$ value. Given an existing figure, this function plots in a specified subplot position. Only one contour plot is drawn at a time. Future contours in the same subplot will cover any previous contours. The data set must have three two dimensional arrays, each for x, y, and z. The data in x, y, and z arrays must have matching data points. The x and y arrays each define the grid in terms of x and y values, i.e., the x array contains the x values for the data set, while the y array contains the y values. The z array contains the z values for the corresponding x and y values in the contour mesh. Z-values can be plotted on a log scale, in which case the colourbar is adjusted to show true values, but on the nonlinear scale. The current version only saves png files, since there appears to be a problem saving eps files. The xvals and yvals vectors may have non-constant grid-intervals, i.e., they do not have to be on regular intervals. Args: | plotnum (int): subplot number, 1-based index | xvals (np.array[N,M]): array of x values | yvals (np.array[N,M]): array of y values | zvals (np.array[N,M]): values on a (x,y) grid | levels (int or [float]): number of contour levels or a list of levels (optional) | ptitle (string): plot title (optional) | xlabel (string): x axis label (optional) | ylabel (string): y axis label (optional) | shading (string): not used currently (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | pltaxis ([xmin, xmax, ymin,ymax]): scale for x,y axes. Let Matplotlib decide if None. (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | powerLimits[float]: scientific tick label power limits [x-low, x-high, y-low, y-high] (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | meshCmap (cm): colour map for the mesh (optional) | cbarshow (bool): if true, the show a colour bar (optional) | cbarorientation (string): 'vertical' (right) or 'horizontal' (below) (optional) | cbarcustomticks zip([z values/float],[tick labels/string])` define custom colourbar ticks locations for given z values(optional) | cbarfontsize (int): font size for colour bar (optional) | drawGrid (bool): draw the grid on the plot (optional) | yInvert (bool): invert the y-axis. Flip the y-axis up-down (optional) | xInvert (bool): invert the x-axis. Flip the x-axis left-right (optional) | contourFill (bool): fill contours with colour (optional) | contourLine (bool): draw a series of contour lines (optional) | logScale (bool): do Z values on log scale, recompute colourbar values (optional) | negativeSolid (bool): draw negative contours in solid lines, dashed otherwise (optional) | zeroContourLine (double): draw a single contour at given value (optional) | contLabel (bool): label the contours with values (optional) | contFmt (string): contour label c-printf format (optional) | contCol (string): contour label colour, e.g., 'k' (optional) | contFonSz (float): contour label fontsize (optional) | contLinWid (float): contour line width in points (optional) | zorders ([int]) list of zorders for drawing sequence, highest is last (optional) | PLcolorscale (?) Plotly parameter ? (optional) Returns: | the axis object for the plot Raises: | No exception is raised. """ #to rank 2 xx=xvals.reshape(-1, 1) yy=yvals.reshape(-1, 1) #if this is a log scale plot if logScale is True: zvals = np.log10(zvals) contour_negative_linestyle = plt.rcParams['contour.negative_linestyle'] if contourLine: if negativeSolid: plt.rcParams['contour.negative_linestyle'] = 'solid' else: plt.rcParams['contour.negative_linestyle'] = 'dashed' #create subplot if not existing if (self.nrow,self.ncol, plotnum) not in list(self.subplots.keys()): self.subplots[(self.nrow,self.ncol, plotnum)] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) #get axis ax = self.subplots[(self.nrow,self.ncol, plotnum)] if drawGrid: ax.grid(True) else: ax.grid(False) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=xylabelfsize) if xScientific: formx = plt.ScalarFormatter() formx.set_scientific(True) formx.set_powerlimits([powerLimits[0], powerLimits[1]]) ax.xaxis.set_major_formatter(formx) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=xylabelfsize) if yScientific: formy = plt.ScalarFormatter() formy.set_powerlimits([powerLimits[2], powerLimits[3]]) formy.set_scientific(True) ax.yaxis.set_major_formatter(formy) if maxNX >0: ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNX)) if maxNY >0: ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNY)) if plotCol: col = plotCol[0] else: col = self.nextPlotCol() if zorders is not None: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 2 if self.useplotly: self.PlotlyPlotCalls = self.PlotlyPlotCalls + 1 self.PLType = "meshContour" if cbarshow: self.Plotlydata.append(Contour(x=list(itertools.chain.from_iterable(xvals)), y=list(itertools.chain.from_iterable(yvals)), z=list(itertools.chain.from_iterable(zvals)), PLcolorscale=PLcolorscale)) #,color=color,colorbar = ColorBar(PLtickmode=PLtickmode,nticks=PLnticks, # PLtick0=PLtick0,PLdtick=PLdtick,PLtickvals=PLtickvals,PLticktext=PLticktext), # PLcolorscale = PLcolorScale,intensity = PLintensity)) else: self.Plotlydata.append(Contour(x=list(itertools.chain.from_iterable(xvals)), y=list(itertools.chain.from_iterable(yvals)), z=list(itertools.chain.from_iterable(zvals)),PLcolorscale=PLcolorscale)) #,color=color)) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) #do the plot if contourFill: pmplotcf = ax.contourf(xvals, yvals, zvals, levels, cmap=meshCmap, zorder=zorder) if contourLine: pmplot = ax.contour(xvals, yvals, zvals, levels, cmap=None, linewidths=contLinWid, colors=col, zorder=zorder) if zeroContourLine: pmplot = ax.contour(xvals, yvals, zvals, (zeroContourLine,), cmap=None, linewidths=contLinWid, colors=col, zorder=zorder) if contLabel: # and not contourFill: plt.clabel(pmplot, fmt = contFmt, colors = contCol, fontsize=contFonSz) #, zorder=zorder) if cbarshow and (contourFill): #http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html#colorbar-whose-height-or-width-in-sync-with-the-master-axes divider = make_axes_locatable(ax) if cbarorientation == 'vertical': cax = divider.append_axes("right", size="5%", pad=0.05) else: cax = divider.append_axes("bottom", size="5%", pad=0.1) if not cbarcustomticks: # cbar = self.fig.colorbar(pmplotcf,orientation=cbarorientation) cbar = self.fig.colorbar(pmplotcf,cax=cax) if logScale: cbartickvals = cbar.ax.yaxis.get_ticklabels() tickVals = [] # need this roundabout trick to handle minus sign in unicode for item in cbartickvals: valstr = float(item.get_text().replace(u'\N{MINUS SIGN}', '-').replace('$','')) # valstr = item.get_text().replace('\u2212', '-').replace('$','') val = 10**float(valstr) if abs(val) < 1000: str = '{0:f}'.format(val) else: str = '{0:e}'.format(val) tickVals.append(str) cbartickvals = cbar.ax.yaxis.set_ticklabels(tickVals) else: ticks, ticklabels = list(zip(*cbarcustomticks)) # cbar = self.fig.colorbar(pmplotcf,ticks=ticks, orientation=cbarorientation) cbar = self.fig.colorbar(pmplotcf,ticks=ticks, cax=cax) if cbarorientation == 'vertical': cbar.ax.set_yticklabels(ticklabels) else: cbar.ax.set_xticklabels(ticklabels) if cbarorientation == 'vertical': for t in cbar.ax.get_yticklabels(): t.set_fontsize(cbarfontsize) else: for t in cbar.ax.get_xticklabels(): t.set_fontsize(cbarfontsize) #scale the axes if pltaxis is not None: ax.axis(pltaxis) if(ptitle is not None): ax.set_title(ptitle, fontsize=titlefsize) # minor ticks are two points smaller than major ax.tick_params(axis='both', which='major', labelsize=xytickfsize) ax.tick_params(axis='both', which='minor', labelsize=xytickfsize-2) if yInvert: ax.set_ylim(ax.get_ylim()[::-1]) if xInvert: ax.set_xlim(ax.get_xlim()[::-1]) plt.rcParams['contour.negative_linestyle'] = contour_negative_linestyle if self.useplotly: if self.PLmultipleYAxis: if yInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel,autorange='reversed'))) elif xInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel,autorange='reversed'),yaxis=dict(title=ylabel))) else: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel)))#,font=dict(title=self.PLmultiAxisTitle,side=self.PLyAxisSide,overlaying=self.PLyAxisOverlaying))) elif self.PLmultipleXAxis: if yInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel,autorange='reversed'))) elif xInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel,autorange='reversed'),yaxis=dict(title=ylabel))) else: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel)))#,yaxis=PLYAxis,xaxis = PLXAxis,xaxis2=dict(title=self.PLmultiAxisTitle,side=self.PLxAxisSide,overlaying=self.PLxAxisOverlaying))) else: if yInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel,autorange='reversed'))) elif xInvert: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel,autorange='reversed'),yaxis=dict(title=ylabel))) else: self.Plotlylayout.append(Layout(title = ptitle,xaxis=dict(title=xlabel),yaxis=dict(title=ylabel)))#,xaxis = PLXAxis,yaxis=PLYAxis)) if self.ncol > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) return ax ############################################################ ## def mesh3D(self, plotnum, xvals, yvals, zvals, ptitle=None, xlabel=None, ylabel=None, zlabel=None, rstride=1, cstride=1, linewidth=0, plotCol=None, edgeCol=None, pltaxis=None, maxNX=0, maxNY=0, maxNZ=0, xScientific=False, yScientific=False, zScientific=False, powerLimits=[-4, 2, -4, 2, -2, 2], titlefsize=12, xylabelfsize=12, xytickfsize=10, wireframe=False, surface=True, cmap=cm.rainbow, cbarshow=False, cbarorientation = 'vertical', cbarcustomticks=[], cbarfontsize = 12, drawGrid=True, xInvert=False, yInvert=False, zInvert=False, logScale=False, alpha=1, alphawire=1, azim=45, elev=30, distance=10, zorders=None, clip_on=True, PLcolor=None, PLcolorScale=None, PLtickmode=None, PLnticks=None, PLtick0=None, PLdtick=None, PLtickvals=None, PLticktext=None, PLintensity = None ): """XY colour mesh plot for (xvals, yvals, zvals) input sets. Given an existing figure, this function plots in a specified subplot position. Only one mesh is drawn at a time. Future meshes in the same subplot will cover any previous meshes. The mesh grid is defined in (x,y), while the height of the mesh is the z value. The data set must have three two dimensional arrays, each for x, y, and z. The data in x, y, and z arrays must have matching data points. The x and y arrays each define the grid in terms of x and y values, i.e., the x array contains the x values for the data set, while the y array contains the y values. The z array contains the z values for the corresponding x and y values in the mesh. Use wireframe=True to obtain a wireframe plot. Use surface=True to obtain a surface plot with fill colours. Z-values can be plotted on a log scale, in which case the colourbar is adjusted to show true values, but on the nonlinear scale. The xvals and yvals vectors may have non-constant grid-intervals, i.e., they do not have to be on regular intervals, but z array must correspond to the (x,y) grid. Args: | plotnum (int): subplot number, 1-based index | xvals (np.array[N,M]): array of x values, corresponding to (x,y) grid | yvals (np.array[N,M]): array of y values, corresponding to (x,y) grid | zvals (np.array[N,M]): array of z values, corresponding to (x,y) grid | ptitle (string): plot title (optional) | xlabel (string): x axis label (optional) | ylabel (string): y axis label (optional) | zlabel (string): z axis label (optional) | rstride (int): mesh line row (y axis) stride, every rstride value along y axis (optional) | cstride (int): mesh line column (x axis) stride, every cstride value along x axis (optional) | linewidth (float): mesh line width in points (optional) | plotCol ([strings]): fill colour, list with M=1 entries, use default if None (optional) | edgeCol ([strings]): mesh line colour , list with M=1 entries, use default if None (optional) | pltaxis ([xmin, xmax, ymin, ymax]): scale for x,y axes. z scale is not settable. Let Matplotlib decide if None (optional) | maxNX (int): draw maxNX+1 tick labels on x axis (optional) | maxNY (int): draw maxNY+1 tick labels on y axis (optional) | maxNZ (int): draw maxNY+1 tick labels on z axis (optional) | xScientific (bool): use scientific notation on x axis (optional) | yScientific (bool): use scientific notation on y axis (optional) | zScientific (bool): use scientific notation on z-axis (optional) | powerLimits[float]: scientific tick label power limits [x-neg, x-pos, y-neg, y-pos, z-neg, z-pos] (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis, z-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis, z-axis tick font size, default 10pt (optional) | wireframe (bool): If True, do a wireframe plot, (optional) | surface (bool): If True, do a surface plot, (optional) | cmap (cm): color map for the mesh (optional) | cbarshow (bool): if true, the show a color bar (optional) | cbarorientation (string): 'vertical' (right) or 'horizontal' (below) (optional) | cbarcustomticks zip([z values/float],[tick labels/string]): define custom colourbar ticks locations for given z values(optional) | cbarfontsize (int): font size for color bar (optional) | drawGrid (bool): draw the grid on the plot (optional) | xInvert (bool): invert the x-axis. Flip the x-axis left-right (optional) | yInvert (bool): invert the y-axis. Flip the y-axis left-right (optional) | zInvert (bool): invert the z-axis. Flip the z-axis up-down (optional) | logScale (bool): do Z values on log scale, recompute colourbar vals (optional) | alpha (float): surface transparency (optional) | alphawire (float): mesh transparency (optional) | azim (float): graph view azimuth angle [degrees] (optional) | elev (float): graph view evelation angle [degrees] (optional) | distance (float): distance between viewer and plot (optional) | zorder ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | PLcolor (string): Graph colors e.g 'FFFFFF' | PLcolorScale ([int,string]): Color scale for mesh graphs e.g [0, 'rgb(0, 0, 0)'] | PLtickmode (string): Plot mode | PLnticks (int): number of ticks | PLtick0 (int): First tick value | PLdtick (int): | PLtickvals [int]: Plot intervals | PLticktext [string]: Plot text | PLintensity Returns: | the axis object for the plot Raises: | No exception is raised. """ from mpl_toolkits.mplot3d.axes3d import Axes3D #if this is a log scale plot if logScale is True: zvals = np.log10(zvals) #create subplot if not existing if (self.nrow,self.ncol, plotnum) not in list(self.subplots.keys()): self.subplots[(self.nrow,self.ncol, plotnum)] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum, projection='3d') #get axis ax = self.subplots[(self.nrow,self.ncol, plotnum)] if drawGrid: ax.grid(True) else: ax.grid(False) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=xylabelfsize) if xScientific: formx = plt.ScalarFormatter() formx.set_scientific(True) formx.set_powerlimits([powerLimits[0], powerLimits[1]]) ax.xaxis.set_major_formatter(formx) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=xylabelfsize) if yScientific: formy = plt.ScalarFormatter() formy.set_powerlimits([powerLimits[2], powerLimits[3]]) formy.set_scientific(True) ax.yaxis.set_major_formatter(formy) if zlabel is not None: ax.set_zlabel(zlabel, fontsize=xylabelfsize) if zScientific: formz = plt.ScalarFormatter() formz.set_powerlimits([powerLimits[4], powerLimits[5]]) formz.set_scientific(True) ax.zaxis.set_major_formatter(formz) if maxNX >0: ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNX)) if maxNY >0: ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNY)) if maxNZ >0: ax.zaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNZ)) if plotCol: col = plotCol[0] else: col = self.nextPlotCol() if edgeCol: edcol = edgeCol[0] else: edcol = self.nextPlotCol() if zorders: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 1 if self.useplotly: self.PlotlyPlotCalls = self.PlotlyPlotCalls + 1 self.PLIs3D = True self.PLType = "mesh3D" if cbarshow: self.Plotlydata.append(Mesh3d(x=list(itertools.chain.from_iterable(xvals)), y=list(itertools.chain.from_iterable(yvals)), z=list(itertools.chain.from_iterable(zvals)),color=PLcolor, colorbar = ColorBar(PLtickmode=PLtickmode,nticks=PLnticks, PLtick0=PLtick0,PLdtick=PLdtick,PLtickvals=PLtickvals,PLticktext=PLticktext), PLcolorscale=PLcolorScale,intensity=PLintensity)) else: self.Plotlydata.append(Mesh3d(x=list(itertools.chain.from_iterable(xvals)), y=list(itertools.chain.from_iterable(yvals)), z=list(itertools.chain.from_iterable(zvals)),color=PLcolor)) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) #do the plot if surface: pmplot = ax.plot_surface(xvals, yvals, zvals, rstride=rstride, cstride=cstride, edgecolor=edcol, cmap=cmap, linewidth=linewidth, alpha=alpha, zorder=zorder, clip_on=clip_on) if wireframe: pmplot = ax.plot_wireframe(xvals, yvals, zvals, rstride=rstride, cstride=cstride, color=col, edgecolor=edcol, linewidth=linewidth, alpha=alphawire, zorder=zorder, clip_on=clip_on) ax.view_init(azim=azim, elev=elev) ax.dist = distance if cbarshow is True and cmap is not None: #http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html#colorbar-whose-height-or-width-in-sync-with-the-master-axes # divider = make_axes_locatable(ax) # if cbarorientation == 'vertical': # cax = divider.append_axes("right", size="5%", pad=0.05) # else: # cax = divider.append_axes("bottom", size="5%", pad=0.1) if not cbarcustomticks: cbar = self.fig.colorbar(pmplot,orientation=cbarorientation) # cbar = self.fig.colorbar(pmplot,cax=cax) if logScale: cbartickvals = cbar.ax.yaxis.get_ticklabels() tickVals = [] # need this roundabout trick to handle minus sign in unicode for item in cbartickvals: valstr = item.get_text().replace('\u2212', '-').replace('$','') val = 10**float(valstr) if abs(val) < 1000: str = '{0:f}'.format(val) else: str = '{0:e}'.format(val) tickVals.append(str) cbartickvals = cbar.ax.yaxis.set_ticklabels(tickVals) else: ticks, ticklabels = list(zip(*cbarcustomticks)) cbar = self.fig.colorbar(pmplot,ticks=ticks, orientation=cbarorientation) # cbar = self.fig.colorbar(pmplot,ticks=ticks, cax=cax) if cbarorientation == 'vertical': cbar.ax.set_yticklabels(ticklabels) else: cbar.ax.set_xticklabels(ticklabels) if cbarorientation == 'vertical': for t in cbar.ax.get_yticklabels(): t.set_fontsize(cbarfontsize) else: for t in cbar.ax.get_xticklabels(): t.set_fontsize(cbarfontsize) if(ptitle is not None): plt.title(ptitle, fontsize=titlefsize) #scale the axes if pltaxis is not None: # ax.axis(pltaxis) ax.set_xlim(pltaxis[0], pltaxis[1]) ax.set_ylim(pltaxis[2], pltaxis[3]) ax.set_zlim(pltaxis[4], pltaxis[5]) if(ptitle is not None): ax.set_title(ptitle, fontsize=titlefsize) # minor ticks are two points smaller than major ax.tick_params(axis='both', which='major', labelsize=xytickfsize) ax.tick_params(axis='both', which='minor', labelsize=xytickfsize-2) if xInvert: ax.set_xlim(ax.get_xlim()[::-1]) if yInvert: ax.set_ylim(ax.get_ylim()[::-1]) if zInvert: ax.set_zlim(ax.get_zlim()[::-1]) if self.useplotly: if self.PLmultipleYAxis: self.Plotlylayout.append(Layout(title = ptitle)) elif self.PLmultipleXAxis: self.Plotlylayout.append(Layout(title = ptitle)) else: self.Plotlylayout.append(Layout(title = ptitle)) if self.ncol > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) elif self.nrow > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlyXaxisTitles.append(xlabel) self.PlotlyYaxisTitles.append(ylabel) return ax ############################################################ ## def polar(self, plotnum, theta, r, ptitle=None, \ plotCol=None, label=[],labelLocation=[-0.1, 0.1], \ highlightNegative=True, highlightCol='#ffff00', highlightWidth=4,\ legendAlpha=0.0, linestyle=None,\ rscale=None, rgrid=[0,5], thetagrid=[30], \ direction='counterclockwise', zerooffset=0, titlefsize=12, drawGrid=True, zorders=None, clip_on=True, markers=[], markevery=None, ): """Create a subplot and plot the data in polar coordinates (linear radial orginates only). Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that the radial values or ordinates can be more than one column, each column representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. The scale for the radial ordinates can be set with rscale. The number of radial grid circles can be set with rgrid - this provides a somewhat better control over the built-in radial grid in matplotlib. thetagrids defines the angular grid interval. The angular rotation direction can be set to be clockwise or counterclockwise. Likewise, the rotation offset where the plot zero angle must be, is set with `zerooffset`. For some obscure reason Matplitlib version 1.13 does not plot negative values on the polar plot. We therefore force the plot by making the values positive and then highlight it as negative. Args: | plotnum (int): subplot number, 1-based index | theta (np.array[N,] or [N,1]): angular abscissa in radians | r (np.array[N,] or [N,M]): radial ordinates - could be M columns | ptitle (string): plot title (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if None (optional) | label ([strings]): legend label, list with M entries (optional) | labelLocation ([x,y]): where the legend should located (optional) | highlightNegative (bool): indicate if negative data must be highlighted (optional) | highlightCol (string): negative highlight colour string (optional) | highlightWidth (int): negative highlight line width(optional) | legendAlpha (float): transparency for legend box (optional) | linestyle ([str]): line style to be used in plot | rscale ([rmin, rmax]): radial plotting limits. use default setting if None. If rmin is negative the zero is a circle and rmin is at the centre of the graph (optional) | rgrid ([rinc, numinc]): radial grid, use default is [0,5]. If rgrid is None don't show. If rinc=0 then numinc is number of intervals. If rinc is not zero then rinc is the increment and numinc is ignored (optional) | thetagrid (float): theta grid interval [degrees], if None don't show (optional) | direction (string): direction in increasing angle, 'counterclockwise' or 'clockwise' (optional) | zerooffset (float): rotation offset where zero should be [rad]. Positive zero-offset rotation is counterclockwise from 3'o'clock (optional) | titlefsize (int): title font size, default 12pt (optional) | drawGrid (bool): draw a grid on the graph (optional) | zorder ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) Returns: | the axis object for the plot Raises: | No exception is raised. """ if theta.ndim>1: tt=theta else: if type(theta)==type(pd.Series()): theta = theta.values tt=theta.reshape(-1, 1) if r.ndim>1: rr=r else: if type(r)==type(pd.Series()): r = r.values rr=r.reshape(-1, 1) MakeAbs = True if rscale is not None: if rscale[0] < 0: MakeAbs = False else: highlightNegative=True #override the function value else: highlightNegative=True #override the function value #plotCol = self.buildPlotCol(plotCol, rr.shape[1]) ax = None pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum, polar=True) ax = self.subplots[pkey] ax.grid(drawGrid) rmax=0 for i in range(rr.shape[1]): # negative val :forcing positive and phase shifting # if forceAbsolute: # ttt = tt + np.pi*(rr[:, i] < 0).reshape(-1, 1) # rrr = np.abs(rr[:, i]) # else: ttt = tt.reshape(-1,) rrr = rr[:, i].reshape(-1,) #print(rrr) if highlightNegative: #find zero crossings in data zero_crossings = np.where(np.diff(np.sign(rr),axis=0))[0] + 1 #split the input into different subarrays according to crossings negrrr = np.split(rr,zero_crossings) negttt = np.split(tt,zero_crossings) # print('zero crossing',zero_crossings) # print(len(negrrr)) # print(negrrr) mmrk = '' if markers: if i >= len(markers): mmrk = markers[-1] else: mmrk = markers[i] #set up the line style, either given or next in sequence if plotCol: col = plotCol[i] else: col = self.nextPlotCol() if linestyle is None: linestyleL = '-' else: if type(linestyle) == type([1]): linestyleL = linestyle[i] else: linestyleL = linestyle # print('p',ttt.shape) # print('p',rrr.shape) if zorders: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 2 if not label: if highlightNegative: lines = ax.plot(ttt, rrr, col, clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) neglinewith = highlightWidth*plt.getp(lines[0],'linewidth') for ii in range(0,len(negrrr)): if len(negrrr[ii]) > 0: if negrrr[ii][0] < 0: if MakeAbs: ax.plot(negttt[ii], np.abs(negrrr[ii]), highlightCol, linewidth=neglinewith, clip_on=clip_on, zorder=zorder, marker=mmrk, markevery=markevery,linestyle=linestyleL) else: ax.plot(negttt[ii], negrrr[ii], highlightCol, linewidth=neglinewith, clip_on=clip_on, zorder=zorder, marker=mmrk, markevery=markevery,linestyle=linestyleL) ax.plot(ttt, rrr, col, clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) rmax = np.maximum(np.abs(rrr).max(), rmax) rmin = 0 else: if highlightNegative: lines = ax.plot(ttt, rrr, col, clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) neglinewith = highlightWidth*plt.getp(lines[0],'linewidth') for ii in range(0,len(negrrr)): if len(negrrr[ii]) > 0: # print(len(negrrr[ii])) # if negrrr[ii][0] < 0: if negrrr[ii][0][0] < 0: if MakeAbs: ax.plot(negttt[ii], np.abs(negrrr[ii]), highlightCol, linewidth=neglinewith, clip_on=clip_on, zorder=zorder, marker=mmrk, markevery=markevery,linestyle=linestyleL) else: ax.plot(negttt[ii], negrrr[ii], highlightCol, linewidth=neglinewith, clip_on=clip_on, zorder=zorder, marker=mmrk, markevery=markevery,linestyle=linestyleL) ax.plot(ttt, rrr, col,label=label[i], clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) rmax=np.maximum(np.abs(rrr).max(), rmax) rmin = 0 if MakeAbs: ax.plot(ttt, np.abs(rrr), col, clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) else: ax.plot(ttt, rrr, col, clip_on=clip_on, zorder=zorder,marker=mmrk, markevery=markevery,linestyle=linestyleL) #Plotly polar setup if self.useplotly: # Assuming that either y or x has to 1 if thetagrid is None: tt=tt*(180.0/(np.pi)) else: tt=tt*(180.0/(np.pi*(thetagrid[0]/(-4.62*i+5)))) try: if len(r[0,:]) > 1: self.Plotlydata.append(Scatter(r=rr[:,i], t=tt[:,0], name = label,mode='lines')) elif len(theta[0,:]) > 1: self.Plotlydata.append(Scatter(r=rr[:,0], t=tt[:,i], name = label,mode='lines')) else: self.Plotlydata.append(Scatter(r=rr[:,0], t=tt[:,0], name = label,mode='lines')) except: self.Plotlydata.append(Scatter(r=rr[:,0], t=tt[:,0], name = label)) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) if label: fontP = mpl.font_manager.FontProperties() fontP.set_size('small') leg = ax.legend(loc='upper left', bbox_to_anchor=(labelLocation[0], labelLocation[1]), prop = fontP, fancybox=True) leg.get_frame().set_alpha(legendAlpha) self.bbox_extra_artists.append(leg) ax.set_theta_direction(direction) ax.set_theta_offset(zerooffset) #set up the grids if thetagrid is None: ax.set_xticklabels([]) else: plt.thetagrids(list(range(0, 360, thetagrid[0]))) #Set increment and maximum radial limits if rscale is None: rscale = [rmin, rmax] if rgrid is None: ax.set_yticklabels([]) else: if rgrid[0] == 0: ax.set_yticks(np.linspace(rscale[0],rscale[1],int(rgrid[1]))) if rgrid[0] != 0: numrgrid = (rscale[1] - rscale[0] ) / rgrid[0] ax.set_yticks(np.linspace(rscale[0],rscale[1],int(numrgrid+1.000001))) ax.set_ylim(rscale[0],rscale[1]) if(ptitle is not None): ax.set_title(ptitle, fontsize=titlefsize, \ verticalalignment ='bottom', horizontalalignment='center') if self.useplotly: if self.PLmultipleYAxis: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,orientation=+90)) elif self.PLmultipleXAxis: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,orientation=+90)) else: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,orientation=+90)) if self.ncol > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlySubPlotLabels.append(label) elif self.nrow > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlySubPlotLabels.append(label) return ax ############################################################ ## def showImage(self, plotnum, img, ptitle=None, xlabel=None, ylabel=None, cmap=plt.cm.gray, titlefsize=12, cbarshow=False, cbarorientation = 'vertical', cbarcustomticks=[], cbarfontsize = 12, labelfsize=10, xylabelfsize = 12,interpolation=None): """Creates a subplot and show the image using the colormap provided. Args: | plotnum (int): subplot number, 1-based index | img (np.ndarray): numpy 2d array containing the image | ptitle (string): plot title (optional) | xlabel (string): x axis label (optional) | ylabel (string): y axis label (optional) | cmap: matplotlib colormap, default gray (optional) | fsize (int): title font size, default 12pt (optional) | cbarshow (bool): if true, the show a colour bar (optional) | cbarorientation (string): 'vertical' (right) or 'horizontal' (below) (optional) | cbarcustomticks zip([tick locations/float],[tick labels/string]): locations in image grey levels (optional) | cbarfontsize (int): font size for colour bar (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional) | interpolation (str): 'none', 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric', 'catrom', 'gaussian', 'bessel', 'mitchell', 'sinc', 'lanczos'(optional, see pyplot.imshow) Returns: | the axis object for the plot Raises: | No exception is raised. """ #http://matplotlib.sourceforge.net/examples/pylab_examples/colorbar_tick_labelling_demo.html #http://matplotlib.1069221.n5.nabble.com/Colorbar-Ticks-td21289.html pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): self.subplots[pkey] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum) ax = self.subplots[pkey] cimage = ax.imshow(img, cmap,interpolation=interpolation) if xlabel is not None: ax.set_xlabel(xlabel, fontsize=xylabelfsize) if ylabel is not None: ax.set_ylabel(ylabel, fontsize=xylabelfsize) ax.axis('off') if cbarshow is True: #http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html#colorbar-whose-height-or-width-in-sync-with-the-master-axes divider = make_axes_locatable(ax) if cbarorientation == 'vertical': cax = divider.append_axes("right", size="5%", pad=0.05) # else: # cay = divider.append_axes("bottom", size="5%", pad=0.1) if not cbarcustomticks: if cbarorientation == 'vertical': cbar = self.fig.colorbar(cimage,cax=cax) else: cbar = self.fig.colorbar(cimage,orientation=cbarorientation) else: ticks, ticklabels = list(zip(*cbarcustomticks)) if cbarorientation == 'vertical': cbar = self.fig.colorbar(cimage,ticks=ticks, cax=cax) else: cbar = self.fig.colorbar(cimage,ticks=ticks, orientation=cbarorientation) if cbarorientation == 'vertical': cbar.ax.set_yticklabels(ticklabels) else: cbar.ax.set_xticklabels(ticklabels) if cbarorientation == 'vertical': for t in cbar.ax.get_yticklabels(): t.set_fontsize(cbarfontsize) else: for t in cbar.ax.get_xticklabels(): t.set_fontsize(cbarfontsize) if(ptitle is not None): ax.set_title(ptitle, fontsize=titlefsize) return ax ############################################################ ## def plot3d(self, plotnum, x, y, z, ptitle=None, xlabel=None, ylabel=None, zlabel=None, plotCol=[], linewidths=None, pltaxis=None, label=None, legendAlpha=0.0, titlefsize=12, xylabelfsize = 12, xInvert=False, yInvert=False, zInvert=False,scatter=False, markers=None, markevery=None, azim=45, elev=30, zorders=None, clip_on=True, edgeCol=None, linestyle='-'): """3D plot on linear scales for x y z input sets. Given an existing figure, this function plots in a specified subplot position. The function arguments are described below in some detail. Note that multiple 3D data sets can be plotted simultaneously by adding additional columns to the input coordinates of the (x,y,z) arrays, each set of columns representing a different line in the plot. This is convenient if large arrays of data must be plotted. If more than one column is present, the label argument can contain the legend labels for each of the columns/lines. Args: | plotnum (int): subplot number, 1-based index | x (np.array[N,] or [N,M]) x coordinates of each line. | y (np.array[N,] or [N,M]) y coordinates of each line. | z (np.array[N,] or [N,M]) z coordinates of each line. | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | zlabel (string): z axis label (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if None (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | pltaxis ([xmin, xmax, ymin, ymax, zmin, zmax]) scale for x,y,z axes. Let Matplotlib decide if None. (optional) | label ([strings]): legend label for ordinate, list with M entries (optional) | legendAlpha (float): transparency for legend box (optional) | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x, y, z label font size, default 12pt (optional) | xInvert (bool): invert the x-axis (optional) | yInvert (bool): invert the y-axis (optional) | zInvert (bool): invert the z-axis (optional) | scatter (bool): draw only the points, no lines (optional) | markers ([string]): markers to be used for plotting data points (optional) | markevery (int | (startind, stride)): subsample when using markers (optional) | azim (float): graph view azimuth angle [degrees] (optional) | elev (float): graph view evelation angle [degrees] (optional) | zorder ([int]): list of zorder for drawing sequence, highest is last (optional) | clip_on (bool): clips objects to drawing axes (optional) | edgeCol ([int]): list of colour specs, value at [0] used for edge colour (optional). | linestyle (string): linestyle for this plot (optional) Returns: | the axis object for the plot Raises: | No exception is raised. """ # if required convert 1D arrays into 2D arrays if type(x)==type(pd.Series()): x = x.values if type(y)==type(pd.Series()): y = y.values if type(z)==type(pd.Series()): z = z.values if x.ndim < 2: x = x.reshape(-1,1) if y.ndim < 2: y = y.reshape(-1,1) if z.ndim < 2: z = z.reshape(-1,1) # if not plotCol: # plotCol = self.nextPlotCol() # else: # plotCol = self.buildPlotCol(plotCol, x.shape[-1]) if linestyle is None: linestyleL = '-' else: if type(linestyle) == type([1]): linestyleL = linestyle[i] else: linestyleL = linestyle if (self.nrow,self.ncol, plotnum) not in list(self.subplots.keys()): self.subplots[(self.nrow,self.ncol, plotnum)] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum, projection='3d') ax = self.subplots[(self.nrow,self.ncol, plotnum)] if self.useplotly: self.PlotlyPlotCalls = self.PlotlyPlotCalls + 1 # print(x.shape[-1]) for i in range(x.shape[-1]): if plotCol: if i >= len(plotCol): col = plotCol[-1] else: col = plotCol[i] else: col = self.nextPlotCol() if markers: marker = markers[i] else: marker = None if zorders: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 2 if linewidths is not None: if scatter: ax.scatter(x[:,i], y[:,i], z[:,i], c=col, linewidth=linewidths[i], marker=marker, zorder=zorder, clip_on=clip_on) else: ax.plot(x[:,i], y[:,i], z[:,i], c=col, linewidth=linewidths[i], marker=marker,markevery=markevery, zorder=zorder, clip_on=clip_on,linestyle=linestyleL) else: if scatter: ax.scatter(x[:,i], y[:,i], z[:,i], c=col, marker=marker, zorder=zorder, clip_on=clip_on) else: ax.plot(x[:,i], y[:,i], z[:,i], c=col, marker=marker, markevery=markevery, zorder=zorder, clip_on=clip_on,linestyle=linestyleL) # Plotly 3D plot setup if self.useplotly: self.PLIs3D = True self.PLType = "plot3d" try: if (len(x[0,:]) > 1) and (len(y[0,:]) > 1) and (len(z[0,:]) > 1): if len(label) > x.shape[-1]: self.Plotlydata.append(Scatter3d(x=x[:,i],y=y[:,i],z=z[:,i], name = label,mode='lines')) else: self.Plotlydata.append(Scatter3d(x=x[:,i],y=y[:,i],z=z[:,i], name = label[i],mode='lines')) elif (len(x[0,:]) > 1) and (len(y[0,:]) <= 1) and (len(z[0,:]) <= 1): if len(label) > x.shape[-1]: self.Plotlydata.append(Scatter3d(x=x[:,i],y=y[:,0],z=z[:,0], name = label,mode='lines')) else: self.Plotlydata.append(Scatter3d(x=x[:,i],y=y[:,0],z=z[:,0], name = label[i],mode='lines')) elif (len(x[0,:]) <= 1) and (len(y[0,:]) > 1) and (len(z[0,:]) <= 1): if len(label) > x.shape[-1]: self.Plotlydata.append(Scatter3d(x=x[:,0],y=y[:,i],z=z[:,0], name = label,mode='lines')) else: self.Plotlydata.append(Scatter3d(x=x[:,0],y=y[:,i],z=z[:,0], name = label[i],mode='lines')) elif (len(x[0,:]) <= 1) and (len(y[0,:]) <= 1) and (len(z[0,:]) > 1): if len(label) > x.shape[-1]: self.Plotlydata.append(Scatter3d(x=x[:,0],y=y[:,0],z=z[:,i], name = label,mode='lines')) else: self.Plotlydata.append(Scatter3d(x=x[:,0],y=y[:,0],z=z[:,i], name = label[i],mode='lines')) else: if len(label) > x.shape[-1]: self.Plotlydata.append(Scatter3d(x=x[:,0],y=y[:,0],z=z[:,0], name = label,mode='lines')) else: self.Plotlydata.append(Scatter3d(x=x[:,0],y=y[:,0],z=z[:,0], name = label[i],mode='lines')) except: if len(label) > x.shape[-1]: self.Plotlydata.append(Scatter3d(x=x[:,0],y=y[:,0],z=z[:,0], name = label,mode='lines')) else: self.Plotlydata.append(Scatter3d(x=x[:,0],y=y[:,0],z=z[:,0], name = label[i],mode='lines')) # Append axis and plot titles if self.ncol > 1: self.PlotlySubPlotNumbers.append(plotnum) elif self.nrow > 1 : self.PlotlySubPlotNumbers.append(plotnum) if edgeCol: edcol = edgeCol else: edcol = self.nextPlotCol() #scale the axes if pltaxis is not None: # ax.axis(pltaxis) # if not xIsDate: ax.set_xlim(pltaxis[0],pltaxis[1]) ax.set_ylim(pltaxis[2],pltaxis[3]) ax.set_zlim(pltaxis[4],pltaxis[5]) ax.view_init(azim=azim, elev=elev) if xInvert: ax.set_xlim(ax.get_xlim()[::-1]) if yInvert: ax.set_ylim(ax.get_ylim()[::-1]) if zInvert: ax.set_zlim(ax.get_zlim()[::-1]) if xlabel is not None: ax.set_xlabel(xlabel, fontsize = xylabelfsize) if ylabel is not None: ax.set_ylabel(ylabel, fontsize = xylabelfsize) if zlabel is not None: ax.set_zlabel(zlabel, fontsize = xylabelfsize) if label is not None: leg = plt.legend(label, loc='best', fancybox=True) leg.get_frame().set_alpha(legendAlpha) self.bbox_extra_artists.append(leg) if(ptitle is not None): plt.title(ptitle, fontsize=titlefsize) if self.useplotly: if self.PLmultipleYAxis: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,scene2=dict(camera=dict(up=dict(x=0,y=0,z=1))))) elif self.PLmultipleXAxis: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,scene2=dict(camera=dict(up=dict(x=0,y=0,z=1))))) else: self.Plotlylayout.append(Layout(showlegend = True,title = ptitle,scene2=dict(camera=dict(up=dict(x=0,y=0,z=1))))) if self.ncol > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlySubPlotLabels.append(label) elif self.nrow > 1: self.PlotlySubPlotTitles.append(ptitle) self.PlotlySubPlotLabels.append(label) return ax ############################################################ ## def polar3d(self, plotnum, theta, radial, zvals, ptitle=None, xlabel=None, ylabel=None, zlabel=None, zscale=None, titlefsize=12, xylabelfsize = 12, thetaStride=1, radialstride=1, meshCmap = cm.rainbow, linewidth=0.1, azim=45, elev=30, zorders=None, clip_on=True, facecolors=None, alpha=1, edgeCol=None): """3D polar surface/mesh plot for (r, theta, zvals) input sets. Given an existing figure, this function plots in a specified subplot position. Only one mesh is drawn at a time. Future meshes in the same subplot will cover any previous meshes. The data in zvals must be on a grid where the theta vector correspond to the number of rows in zvals and the radial vector corresponds to the number of columns in zvals. The r and p vectors may have non-constant grid-intervals, i.e., they do not have to be on regular intervals. Args: | plotnum (int): subplot number, 1-based index | theta (np.array[N,M]): array of angular values [0..2pi] corresponding to (theta,rho) grid. | radial (np.array[N,M]): array of radial values corresponding to (theta,rho) grid. | zvals (np.array[N,M]): array of z values corresponding to (theta,rho) grid. | ptitle (string): plot title (optional) | xlabel (string): x-axis label (optional) | ylabel (string): y-axis label (optional) | zlabel (string): z-axis label (optional) | zscale ([float]): z axis [min, max] in the plot. | titlefsize (int): title font size, default 12pt (optional) | xylabelfsize (int): x, y, z label font size, default 12pt (optional) | thetaStride (int): theta stride in input data (optional) | radialstride (int): radial stride in input data (optional) | meshCmap (cm): color map for the mesh (optional) | linewidth (float): width of the mesh lines | azim (float): graph view azimuth angle [degrees] (optional) | elev (float): graph view evelation angle [degrees] (optional) | zorder ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | facecolors ((np.array[N,M]): array of z value facecolours, corresponding to (theta,rho) grid. | alpha (float): facecolour surface transparency (optional) | edgeCol ([int]): list of colour specs, value at [0] used for edge colour (optional). Returns: | the axis object for the plot Raises: | No exception is raised. """ # transform to cartesian system, using meshgrid Radial,Theta = np.meshgrid(radial,theta) X,Y = Radial*np.cos(Theta),Radial*np.sin(Theta) #create subplot if not existing if (self.nrow,self.ncol, plotnum) not in list(self.subplots.keys()): self.subplots[(self.nrow,self.ncol, plotnum)] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum, projection='3d') #get axis ax = self.subplots[(self.nrow,self.ncol, plotnum)] if zorders: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 2 if edgeCol: edcol = edgeCol else: edcol = self.nextPlotCol() #do the plot if facecolors is not None: ax.plot_surface(X, Y, zvals, rstride=thetaStride, cstride=radialstride, linewidth=linewidth, cmap=meshCmap, zorder=zorder, clip_on=clip_on, facecolors=facecolors, edgecolors=edcol, alpha=alpha) else: ax.plot_surface(X, Y, zvals, rstride=thetaStride, cstride=radialstride, linewidth=linewidth, cmap=meshCmap, zorder=zorder, clip_on=clip_on, alpha=alpha, edgecolors=edcol) ax.view_init(azim=azim, elev=elev) #label and clean up if zscale==None: ax.set_zlim3d(np.min(zvals), np.max(zvals)) else: ax.set_zlim3d(zscale[0], zscale[1]) if xlabel is not None: ax.set_xlabel(xlabel, fontsize = xylabelfsize) if ylabel is not None: ax.set_ylabel(ylabel, fontsize = xylabelfsize) if zlabel is not None: ax.set_zlabel(zlabel, fontsize = xylabelfsize) if(ptitle is not None): plt.title(ptitle, fontsize=titlefsize) return ax ############################################################ ## def polarMesh(self, plotnum, theta, radial, zvals, ptitle=None, shading='flat', radscale=None, titlefsize=12, meshCmap=cm.rainbow, cbarshow=False, cbarorientation='vertical', cbarcustomticks=[], cbarfontsize=12, rgrid=[0,5], thetagrid=[30], drawGrid=False, thetagridfontsize=12, radialgridfontsize=12, direction='counterclockwise', zerooffset=0, logScale=False, plotCol=[], levels=10, contourFill=True, contourLine=True, zeroContourLine=None, negativeSolid=False, contLabel=False, contFmt='%.2f', contCol='k', contFonSz=8, contLinWid=0.5, zorders=None, clip_on=True): """Polar colour contour and filled contour plot for (theta, r, zvals) input sets. The data values must be given on a fixed mesh grid of three-dimensional (theta,rho,z) array input sets (theta is angle, and rho is radial distance). The mesh grid is defined in (theta,rho), while the height of the mesh is the z value. The (theta,rho) arrays may have non-constant grid-intervals, i.e., they do not have to be on regular intervals. Given an existing figure, this function plots in a specified subplot position. Only one contour plot is drawn at a time. Future contours in the same subplot will cover any previous contours. The data set must have three two dimensional arrays, each for theta, rho, and z. The data in theta, rho, and z arrays must have matching data points. The theta and rho arrays each define the grid in terms of theta and rho values, i.e., the theta array contains the angular values for the data set, while the rho array contains the radial values. The z array contains the z values for the corresponding theta and rho values in the contour mesh. Z-values can be plotted on a log scale, in which case the colourbar is adjusted to show true values, but on the nonlinear scale. The current version only saves png files, since there appears to be a problem saving eps files. Args: | plotnum (int): subplot number, 1-based index | theta (np.array[N,M]) array of angular values [0..2pi] corresponding to (theta,rho) grid. | radial (np.array[N,M]) array of radial values corresponding to (theta,rho) grid. | zvals (np.array[N,M]) array of z values corresponding to (theta,rho) grid. | ptitle (string): plot title (optional) | shading (string): 'flat' | 'gouraud' (optional) | radscale ([float]): inner and outer radial scale max in the plot. | titlefsize (int): title font size, default 12pt (optional) | meshCmap (cm): color map for the mesh (optional) | cbarshow (bool): if true, the show a color bar | cbarorientation (string): 'vertical' (right) or 'horizontal' (below) | cbarcustomticks zip([tick locations/float],[tick labels/string]): locations in image grey levels | cbarfontsize (int): font size for color bar | rgrid ([float]): radial grid - None, [number], [inc,max] | thetagrid ([float]): angular grid - None, [inc] | drawGrid (bool): draw the grid on the plot (optional) | thetagridfontsize (float): font size for the angular grid | radialgridfontsize (float): font size for the radial grid | direction (string)= 'counterclockwise' or 'clockwise' (optional) | zerooffset (float) = rotation offset where zero should be [rad] (optional) | logScale (bool): do Z values on log scale, recompute colourbar vals | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] | levels (int or [float]): number of contour levels or a list of levels (optional) | contourFill (bool): fill contours with colour (optional) | contourLine (bool): draw a series of contour lines | zeroContourLine (double): draw a contour at the stated value (optional) | negativeSolid (bool): draw negative contours in solid lines, dashed otherwise (optional) | contLabel (bool): label the contours with values (optional) | contFmt (string): contour label c-printf format (optional) | contCol (string): contour label colour, e.g., 'k' (optional) | contFonSz (float): contour label fontsize (optional) | contLinWid (float): contour line width in points (optional) | zorder ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) Returns: | the axis object for the plot Raises: | No exception is raised. """ # # transform to cartesian system, using meshgrid # Radial,Theta = np.meshgrid(radial,theta) # X,Y = Radial*np.cos(Theta),Radial*np.sin(Theta) #if this is a log scale plot if logScale is True: zvals = np.log10(zvals) contour_negative_linestyle = plt.rcParams['contour.negative_linestyle'] if contourLine: if negativeSolid: plt.rcParams['contour.negative_linestyle'] = 'solid' else: plt.rcParams['contour.negative_linestyle'] = 'dashed' #create subplot if not existing if (self.nrow,self.ncol, plotnum) not in list(self.subplots.keys()): self.subplots[(self.nrow,self.ncol, plotnum)] = \ self.fig.add_subplot(self.nrow,self.ncol, plotnum, projection='polar') #get axis ax = self.subplots[(self.nrow,self.ncol, plotnum)] if plotCol: col = plotCol[0] else: col = self.nextPlotCol() if zorders: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 2 #do the plot if contourLine: pmplot = ax.contour(theta, radial, zvals, levels, cmap=None, linewidths=contLinWid, colors=col, zorder=zorder, clip_on=clip_on) if zeroContourLine: pmplot = ax.contour(theta, radial, zvals, (zeroContourLine,), cmap=None, linewidths=contLinWid, colors=col, zorder=zorder, clip_on=clip_on) if contourFill: pmplot = ax.pcolormesh(theta, radial, zvals, shading=shading, cmap=meshCmap, zorder=zorder, clip_on=clip_on) if contLabel: plt.clabel(pmplot, fmt = contFmt, colors = contCol, fontsize=contFonSz) ax.grid(drawGrid) if(ptitle is not None): plt.title(ptitle, fontsize=titlefsize) #set up the grids # add own labels: http://astrometry.net/svn/trunk/projects/masers/py/poster/plot_data.py # http://matplotlib.org/devel/add_new_projection.html if thetagrid is None: plt.thetagrids([]) else: plt.thetagrids(list(range(0, 360, thetagrid[0]))) plt.tick_params(axis='x', which='major', labelsize=thetagridfontsize) # plt.thetagrids(radscale[0], radscale[1],5) if radscale==None: rscale = [np.min(radial), np.max(radial)] else: rscale = radscale ax.set_ylim(rscale[0],rscale[1]) if rgrid is None: ax.set_yticklabels([]) else : #set the number of intervals if rgrid[0] == 0: ax.set_yticks(np.linspace(rscale[0],rscale[1],int(rgrid[1]))) #set the interval incremental size if rgrid[0] != 0: numrgrid = (rscale[1] - rscale[0] ) / (rgrid[0]) ax.set_yticks(np.linspace(rscale[0],rscale[1],int(numrgrid+1.000001))) plt.tick_params(axis='y', which='major', labelsize=radialgridfontsize) ax.set_theta_direction(direction) ax.set_theta_offset(zerooffset) if cbarshow is True: #http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html#colorbar-whose-height-or-width-in-sync-with-the-master-axes # this does not work with the polar projection, use gridspec to do this. # divider = make_axes_locatable(ax) # if cbarorientation == 'vertical': # cax = divider.append_axes("right", size="5%", pad=0.05) # else: # cax = divider.append_axes("bottom", size="5%", pad=0.1) if not cbarcustomticks: cbar = self.fig.colorbar(pmplot,orientation=cbarorientation) # cbar = self.fig.colorbar(pmplot,cax=cax) if logScale: cbartickvals = cbar.ax.yaxis.get_ticklabels() tickVals = [] # need this roundabout trick to handle minus sign in unicode for item in cbartickvals: valstr = item.get_text().replace('\u2212', '-').replace('$','') val = 10**float(valstr) if abs(val) < 1000: str = '{0:f}'.format(val) else: str = '{0:e}'.format(val) tickVals.append(str) cbartickvals = cbar.ax.yaxis.set_ticklabels(tickVals) else: ticks, ticklabels = list(zip(*cbarcustomticks)) cbar = self.fig.colorbar(pmplot,ticks=ticks, orientation=cbarorientation) # cbar = self.fig.colorbar(pmplot,ticks=ticks, cax=cax) if cbarorientation == 'vertical': cbar.ax.set_yticklabels(ticklabels) else: cbar.ax.set_xticklabels(ticklabels) if cbarorientation == 'vertical': for t in cbar.ax.get_yticklabels(): t.set_fontsize(cbarfontsize) else: for t in cbar.ax.get_xticklabels(): t.set_fontsize(cbarfontsize) plt.rcParams['contour.negative_linestyle'] = contour_negative_linestyle return ax ############################################################ ## def plotArray(self, plotnum, inarray, slicedim = 0, labels = None, maxNX=0, maxNY=0, titlefsize = 8, xylabelfsize = 8, xytickfsize = 8, selectCols=None, sepSpace=0.2, allPlotCol='r' ): """Creates a plot from an input array. Given an input array with m x n dimensions, this function creates a subplot for vectors [1-n]. Vector 0 serves as the x-axis for each subplot. The slice dimension can be in columns (0) or rows (1). Args: | plotnum (int): The subplot number, 1-based index, according to Matplotlib conventions. This value must always be given, even if only a single 1,1 subplot is used. | inarray (np.array): data series to be plotted. Data direction can be cols or rows. The abscissa (x axis) values must be the first col/row, with ordinates in following cols/rows. | slicedim (int): slice along columns (0) or rows (1) (optional). | labels (list): a list of strings as labels for each subplot. x=labels[0], y=labels[1:] (optional). | maxNX (int): draw maxNX+1 tick labels on x axis (optional). | maxNY (int): draw maxNY+1 tick labels on y axis (optional). | titlefsize (int): title font size, default 12pt (optional). | xylabelfsize (int): x-axis, y-axis label font size, default 12pt (optional). | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional). | selectCols ([int]): select columns for plot. Col 0 corresponds to col 1 in input data (because col 0 is abscissa),plot all if not given (optional). | sepSpace (float): vertical spacing between sub-plots in inches (optional). | allPlotCol (str): make all plot lines this colour (optional). Returns: | Nothing Raises: | No exception is raised. """ #prepare the data #if slicedim = 0, slice across columns if slicedim == 0: pass elif slicedim == 1: inarray = inarray.T x = inarray[:,0] yAll = inarray[:,1:].transpose() nestnrow = inarray.shape[1]-1 nestncol = 1 xlabel = labels[0] ylabels = labels[1:] ## keep track of whether the outer grid was already defined. #use current subplot number as outer grid reference ogkey = (self.nrow, self.ncol) if ogkey not in list(self.gridSpecsOuter.keys()): self.gridSpecsOuter[ogkey] = \ gridspec.GridSpec(self.nrow,self.ncol, wspace=0, hspace=0) outer_grid = self.gridSpecsOuter[ogkey] ## keep track of whether the inner grid was already defined. #inner_grid (nested): igkey = (self.nrow, self.ncol, plotnum) if igkey not in list(self.gridSpecsInner.keys()): self.gridSpecsInner[igkey] = \ gridspec.GridSpecFromSubplotSpec(nestnrow,nestncol, subplot_spec=outer_grid[plotnum-1],wspace=0, hspace=sepSpace) inner_grid = self.gridSpecsInner[igkey] #set up list of all cols if required if not selectCols: selectCols = list(range(yAll.shape[0])) nestplotnum = 0 #create subplot for each y-axis vector numplots = len(ylabels) for index,y in enumerate(yAll): if index in selectCols: ## if this row of array plot in key, else create rkey = (self.nrow, self.ncol, plotnum, nestplotnum) if rkey not in list(self.arrayRows.keys()): self.arrayRows[rkey] = \ plt.Subplot(self.fig, inner_grid[nestplotnum]) self.fig.add_subplot(self.arrayRows[rkey]) nestplotnum = nestplotnum + 1 ax = self.arrayRows[rkey] # plot the data if self.useplotly:#Plotly subplot configuration self.nrow = nestnrow self.ncol = nestncol self.plot(plotnum,x,y,allPlotCol) else: line, = ax.plot(x,y,allPlotCol) if ylabels is not None: doYAxis = False if doYAxis: # place on y-axis ax.set_ylabel(ylabels[index], fontsize=xylabelfsize) else: # place as legend line.set_label(ylabels[index]) leg = ax.legend( loc='best', fancybox=True,fontsize=8) leg.get_frame().set_alpha(0.1) # ax.legend() self.bbox_extra_artists.append(leg) ###align ylabels ### ax.yaxis.set_label_coords(-0.05, 0.5) #tick label fonts for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(xytickfsize) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(xytickfsize) if maxNX > 0: ax.xaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNX)) if maxNY > 0: ax.yaxis.set_major_locator(mpl.ticker.MaxNLocator(maxNY)) #share x ticklabels and label to avoid clutter and overlapping plt.setp([a.get_xticklabels() for a in self.fig.axes[:-1]], visible=False) if xlabel is not None and index==numplots-1: self.fig.axes[-1].set_xlabel(xlabel, fontsize=xylabelfsize) # minor ticks are two points smaller than major # ax.tick_params(axis='both', which='major', labelsize=xytickfsize) # ax.tick_params(axis='both', which='minor', labelsize=xytickfsize-2) ############################################################ ## def setup_pie_axes(self,fig, rect, thetaAxis, radiusAxis,radLabel='',angLabel='',numAngGrid=5, numRadGrid=10,drawGrid=True, degreeformatter="%d$^\circ$"): """Sets up the axes_grid for the pie plot, not using regulat Matplotlib axes. http://matplotlib.org/mpl_toolkits/axes_grid/users/overview.html http://matplotlib.org/mpl_toolkits/axes_grid/api/axis_artist_api.html http://matplotlib.org/mpl_toolkits/axes_grid/users/axisartist.html http://matplotlib.org/examples/axes_grid/demo_floating_axes.html https://fossies.org/dox/matplotlib-1.5.3/classmpl__toolkits_1_1axisartist_1_1angle__helper_1_1FormatterDMS.html Args: | fig (matplotlib figure): which figure to use | rect (matplotlib subaxis): which subplot to use | thetaAxis ([float]): [min,max] for angular scale | radiusAxis ([float]): [min,max] for radial scale | radLabel (str): radial label | angLabel (str): angular label | numAngGrid (int): number of ticks on angular grid | numRadGrid (int): number of ticks on radial grid | drawGrid (bool): must grid be drawn? | degreeformatter (str): format string for angular tick labels Returns: | the axes and parasitic axes object for the plot Raises: | No exception is raised. """ # PolarAxes.PolarTransform takes radian. However, we want our coordinate # system in degree tr = Affine2D().scale(np.pi/180., 1.) + PolarAxes.PolarTransform() # Find grid values appropriate for the coordinate (degree). # The argument is an approximate number of grids. grid_locator1 = angle_helper.LocatorD(numAngGrid) # And also use an appropriate formatter: tick_formatter1 = angle_helper.FormatterDMS() tick_formatter1.fmt_d = degreeformatter # set up number of ticks for the r-axis grid_locator2 = MaxNLocator(numRadGrid) # the extremes are passed to the function grid_helper = floating_axes.GridHelperCurveLinear(tr, extremes=(thetaAxis[0], thetaAxis[1], radiusAxis[0], radiusAxis[1]), grid_locator1=grid_locator1, grid_locator2=grid_locator2, tick_formatter1=tick_formatter1, tick_formatter2=None, ) ax1 = floating_axes.FloatingSubplot(fig, rect, grid_helper=grid_helper) fig.add_subplot(ax1) # create a parasite axes aux_ax = ax1.get_aux_axes(tr) aux_ax.patch = ax1.patch # for aux_ax to have a clip path as in ax ax1.patch.zorder=0.9 # but this has a side effect that the patch is # drawn twice, and possibly over some other # artists. So, we decrease the zorder a bit to # prevent this. return ax1, aux_ax ############################################################ ## def pie(self, plotnum,theta,radius, ptitle=None,angLabel='',radLabel='', thetaAxis=[0,360.],radiusAxis=[0,1],plotCol=[], linewidths=None, label=[], legendAlpha=0.0, legendLoc='best', linestyle=None, titlefsize = 12, numAngGrid=5, numRadGrid=10, labelfsize=10, drawGrid=True, markers=[],markevery=None, radangfsize = 12, xytickfsize = 10, zorders=None, clip_on=True, degreeformatter="%d$^\circ$" ): """Plots data in pie section on a polar grid. Args: | plotnum (int): subplot number, 1-based index | theta (np.array[N,] or [N,M]): angular data set in degrees - could be M columns | radius (np.array[N,] or [N,M]): radial data set - could be M columns | ptitle (string): plot title (optional) | angLabel (string): angular axis label (optional) | radLabel (string): radial axis label (optional) | thetaAxis ([minAngle, maxAnlge]): the angular extent to be displayed, degrees (optional) | radiusAxis ([minRad, maxRad]): the radial extent to be displayed, degrees (optional) | plotCol ([strings]): plot colour and line style, list with M entries, use default if [] (optional) | linewidths ([float]): plot line width in points, list with M entries, use default if None (optional) | label ([strings]): legend label for ordinate, list with M entries | legendAlpha (float): transparency for legend box | legendLoc (string): location for legend box (optional) | linestyle (string): linestyle for this plot (optional) | titlefsize (int): title font size, default 12pt (optional) | numAngGrid (int): number of grid or tick marks along angular extent | numRadGrid (int): number of grid or tick marks along angular extent | labelfsize (int): label/legend font size, default 10pt (optional) | drawGrid (bool): draw the grid on the plot (optional) | markers ([string]) markers to be used for plotting data points (optional) | markevery (int | (startind, stride)) subsample when using markers (optional) | radangfsize (int): x-axis, y-axis label font size, default 12pt (optional) | xytickfsize (int): x-axis, y-axis tick font size, default 10pt (optional) | zorders ([int]) list of zorder for drawing sequence, highest is last (optional) | clip_on (bool) clips objects to drawing axes (optional) | degreeformatter (str) format string to defie the angular tick labels (optional) Returns: | the axis object for the plot Raises: | No exception is raised. """ pkey = (self.nrow, self.ncol, plotnum) if pkey not in list(self.subplots.keys()): ax, aux_ax1 = self.setup_pie_axes(self.fig, '{}{}{}'.format(*pkey), thetaAxis, radiusAxis, radLabel=radLabel,angLabel=angLabel,numAngGrid=numAngGrid, numRadGrid=numRadGrid,drawGrid=drawGrid,degreeformatter=degreeformatter) self.subplots[pkey] = (ax,aux_ax1) else: (ax,aux_ax1) = self.subplots[pkey] # reshape input dataset into rank 2 xx = theta if theta.ndim>1 else theta.reshape(-1, 1) yy = radius if radius.ndim>1 else radius.reshape(-1, 1) ax.grid(drawGrid) for i in range(yy.shape[1]): #set up the line style, either given or next in sequence mmrk = '' if markers: mmrk = markers[-1] if i >= len(markers) else markers[i] if plotCol: if i >= len(plotCol): col = plotCol[-1] else: col = plotCol[i] else: col = self.nextPlotCol() if linestyle is None: linestyleL = '-' else: if type(linestyle) == type([1]): linestyleL = linestyle[i] else: linestyleL = linestyle if zorders: if len(zorders) > 1: zorder = zorders[i] else: zorder = zorders[0] else: zorder = 2 if not label: if linewidths is not None: line = aux_ax1.plot(xx[:, i], yy[:, i], col, label=None, linestyle=linestyleL, marker=mmrk, markevery=markevery, linewidth=linewidths[i], clip_on=clip_on, zorder=zorder) else: line = aux_ax1.plot(xx[:, i], yy[:, i], col, label=None, linestyle=linestyleL, marker=mmrk, markevery=markevery, clip_on=clip_on, zorder=zorder) line = line[0] else: if linewidths is not None: line = aux_ax1.plot(xx[:, i],yy[:,i],col,#label=label[i], linestyle=linestyleL, marker=mmrk, markevery=markevery, linewidth=linewidths[i], clip_on=clip_on, zorder=zorder) else: line = aux_ax1.plot(xx[:, i],yy[:,i],col,#label=label[i], linestyle=linestyleL, marker=mmrk, markevery=markevery, clip_on=clip_on, zorder=zorder) line = line[0] line.set_label(label[i]) leg = aux_ax1.legend( loc=legendLoc, fancybox=True,fontsize=labelfsize) leg.get_frame().set_alpha(legendAlpha) # aux_ax1.legend() self.bbox_extra_artists.append(leg) if(ptitle is not None): ax.set_title(ptitle, fontsize=titlefsize) # adjust axis # the axis artist lets you call axis with # "bottom", "top", "left", "right" # radial axis scale are the left/right of the graph # draw labels outside the grapgh if thetaAxis[0] > 90 and thetaAxis[0] < 270: ax.axis["left"].set_visible(False) ax.axis["right"].set_visible(True) ax.axis["right"].set_axis_direction("top") ax.axis["right"].toggle(ticklabels=True, label=True) ax.axis["right"].major_ticklabels.set_axis_direction("bottom") ax.axis["right"].label.set_axis_direction("bottom") #set radial label ax.axis["right"].label.set_text(radLabel) ax.axis["right"].label.set_size(radangfsize) aux_ax1.plot(np.array([thetaAxis[0],thetaAxis[0]]), np.array([radiusAxis[0],radiusAxis[1]]),'k',linewidth=2.5) ax.axis["right"].major_ticklabels.set_size(xytickfsize) ax.axis["right"].minor_ticklabels.set_size(xytickfsize-2) else: # ax.axis["right"].set_visible(False) ax.axis["left"].set_axis_direction("bottom") # ax.axis["right"].set_axis_direction("top") #set radial label ax.axis["left"].label.set_text(radLabel) ax.axis["left"].label.set_size(radangfsize) ax.axis["left"].major_ticklabels.set_size(xytickfsize) ax.axis["left"].minor_ticklabels.set_size(xytickfsize-2) # angular axis scale are top / bottom ax.axis["bottom"].set_visible(False) ax.axis["top"].set_axis_direction("bottom") ax.axis["top"].toggle(ticklabels=True, label=True) ax.axis["top"].major_ticklabels.set_axis_direction("top") ax.axis["top"].label.set_axis_direction("top") #set angular label ax.axis["top"].label.set_text(angLabel) ax.axis["top"].label.set_size(radangfsize) ax.axis["top"].major_ticklabels.set_size(xytickfsize) ax.axis["top"].minor_ticklabels.set_size(xytickfsize-2) #draw the inner grif boundary,somehow not done by matplotlib # if radiusAxis[0] > 0.: numqi = 20 thqi = np.linspace(thetaAxis[0], thetaAxis[1],numqi) raqi = np.linspace(radiusAxis[0],radiusAxis[0],numqi) aux_ax1.plot(thqi,raqi,'k',linewidth=2.5) return aux_ax1 ################################################################ ################################################################ ## ## plot graphs and confirm the correctness of the functions from contextlib import contextmanager @contextmanager def savePlot(fignumber=0,subpltnrow=1,subpltncol=1, figuretitle=None, figsize=(9,9), saveName=None): """Uses 'with' statement to create a plot and save to file on exit. Use as follows:: x=np.linspace(-3,3,20) with savePlot(1,saveName=['testwith.png','testwith.eps']) as p: p.plot(1,x,x*x) where the savePlot parameters are exactly the same as ``Plotter``, except that a new named parameter ``saveName`` is now present. If ``saveName`` is not ``None``, the list of filenames is used to save files of the plot (any number of names/types) Args: | fignumber (int): the plt figure number, must be supplied | subpltnrow (int): subplot number of rows | subpltncol (int): subplot number of columns | figuretitle (string): the overall heading for the figure | figsize ((w,h)): the figure size in inches | saveName str or [str]: string or list of save filenames Returns: | The plotting object, used to populate the plot (see example) Raises: | No exception is raised. """ p = Plotter(fignumber,subpltnrow,subpltncol, figuretitle, figsize) try: yield p finally: if saveName is not None: if isinstance(saveName, str): p.saveFig(filename=saveName) else: for fname in saveName: p.saveFig(filename=fname) ################################################################ ## def cubehelixcmap(start=0.5, rot=-1.5, gamma=1.0, hue=1.2, reverse=False, nlev=256.): """ A full implementation of <NAME>'s "cubehelix" for Matplotlib. Based on the FORTRAN 77 code provided in <NAME>, 2011, BASI, 39, 289. http://adsabs.harvard.edu/abs/2011arXiv1108.5083G http://www.astron-soc.in/bulletin/11June/289392011.pdf User can adjust all parameters of the cubehelix algorithm. This enables much greater flexibility in choosing color maps, while always ensuring the color map scales in intensity from black to white. A few simple examples: Default color map settings produce the standard "cubehelix". Create color map in only blues by setting rot=0 and start=0. Create reverse (white to black) backwards through the rainbow once by setting rot=1 and reverse=True. Args: | start : scalar, optional | Sets the starting position in the color space. 0=blue, 1=red, | 2=green. Defaults to 0.5. | rot : scalar, optional | The number of rotations through the rainbow. Can be positive | or negative, indicating direction of rainbow. Negative values | correspond to Blue->Red direction. Defaults to -1.5 | gamma : scalar, optional | The gamma correction for intensity. Defaults to 1.0 | hue : scalar, optional | The hue intensity factor. Defaults to 1.2 | reverse : boolean, optional | Set to True to reverse the color map. Will go from black to | white. Good for density plots where shade~density. Defaults to False | nevl : scalar, optional | Defines the number of discrete levels to render colors at. | Defaults to 256. Returns: | matplotlib.colors.LinearSegmentedColormap object Example: >>> import cubehelix >>> cx = cubehelix.cmap(start=0., rot=-0.5) >>> plot(x,cmap=cx) Revisions 2014-04 (@jradavenport) Ported from IDL version source https://github.com/jradavenport/cubehelix Licence Copyright (c) 2014, <NAME> and contributors All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ #-- set up the parameters fract = np.arange(nlev)/(nlev-1.) angle = 2.0*np.pi * (start/3.0 + 1.0 + rot*fract) fract = fract**gamma amp = hue*fract*(1.-fract)/2. #-- compute the RGB vectors according to main equations red = fract+amp*(-0.14861*np.cos(angle)+1.78277*np.sin(angle)) grn = fract+amp*(-0.29227*np.cos(angle)-0.90649*np.sin(angle)) blu = fract+amp*(1.97294*np.cos(angle)) #-- find where RBB are outside the range [0,1], clip red[np.where((red > 1.))] = 1. grn[np.where((grn > 1.))] = 1. blu[np.where((blu > 1.))] = 1. red[np.where((red < 0.))] = 0. grn[np.where((grn < 0.))] = 0. blu[np.where((blu < 0.))] = 0. #-- optional color reverse if reverse==True: red = red[::-1] blu = blu[::-1] grn = grn[::-1] #-- put in to tuple & dictionary structures needed rr = [] bb = [] gg = [] for k in range(0,int(nlev)): rr.append((float(k)/(nlev-1.), red[k], red[k])) bb.append((float(k)/(nlev-1.), blu[k], blu[k])) gg.append((float(k)/(nlev-1.), grn[k], grn[k])) cdict = {'red':rr, 'blue':bb, 'green':gg} return LSC('cubehelix_map',cdict) ################################################################ ################################################################ """ Turbo, An Improved Rainbow Colormap for Visualization https://ai.googleblog.com/2019/08/turbo-improved-rainbow-colormap-for.html <NAME> One of the most commonly used color mapping algorithms in computer vision applications is Jet, which is high contrast, making it useful for accentuating even weakly distinguished image features. However, if you look at the color map gradient, one can see distinct “bands” of color, most notably in the cyan and yellow regions. This causes sharp transitions when the map is applied to images, which are misleading when the underlying data is actually smoothly varying. Because the rate at which the color changes ‘perceptually’ is not constant, Jet is not perceptually uniform. Today we are happy to introduce Turbo, a new colormap that has the desirable properties of Jet while also addressing some of its shortcomings, such as false detail, banding and color blindness ambiguity. https://gist.github.com/mikhailov-work/ee72ba4191942acecc03fe6da94fc73f https://gist.githubusercontent.com/FedeMiorelli/640bbc66b2038a14802729e609abfe89/raw/c84943cb48ca7d7d90e2b882ea46e07613dcfe13/turbo_colormap_mpl.py """ turbo_colormap_data = np.array( [[0.18995,0.07176,0.23217], [0.19483,0.08339,0.26149], [0.19956,0.09498,0.29024], [0.20415,0.10652,0.31844], [0.20860,0.11802,0.34607], [0.21291,0.12947,0.37314], [0.21708,0.14087,0.39964], [0.22111,0.15223,0.42558], [0.22500,0.16354,0.45096], [0.22875,0.17481,0.47578], [0.23236,0.18603,0.50004], [0.23582,0.19720,0.52373], [0.23915,0.20833,0.54686], [0.24234,0.21941,0.56942], [0.24539,0.23044,0.59142], [0.24830,0.24143,0.61286], [0.25107,0.25237,0.63374], [0.25369,0.26327,0.65406], [0.25618,0.27412,0.67381], [0.25853,0.28492,0.69300], [0.26074,0.29568,0.71162], [0.26280,0.30639,0.72968], [0.26473,0.31706,0.74718], [0.26652,0.32768,0.76412], [0.26816,0.33825,0.78050], [0.26967,0.34878,0.79631], [0.27103,0.35926,0.81156], [0.27226,0.36970,0.82624], [0.27334,0.38008,0.84037], [0.27429,0.39043,0.85393], [0.27509,0.40072,0.86692], [0.27576,0.41097,0.87936], [0.27628,0.42118,0.89123], [0.27667,0.43134,0.90254], [0.27691,0.44145,0.91328], [0.27701,0.45152,0.92347], [0.27698,0.46153,0.93309], [0.27680,0.47151,0.94214], [0.27648,0.48144,0.95064], [0.27603,0.49132,0.95857], [0.27543,0.50115,0.96594], [0.27469,0.51094,0.97275], [0.27381,0.52069,0.97899], [0.27273,0.53040,0.98461], [0.27106,0.54015,0.98930], [0.26878,0.54995,0.99303], [0.26592,0.55979,0.99583], [0.26252,0.56967,0.99773], [0.25862,0.57958,0.99876], [0.25425,0.58950,0.99896], [0.24946,0.59943,0.99835], [0.24427,0.60937,0.99697], [0.23874,0.61931,0.99485], [0.23288,0.62923,0.99202], [0.22676,0.63913,0.98851], [0.22039,0.64901,0.98436], [0.21382,0.65886,0.97959], [0.20708,0.66866,0.97423], [0.20021,0.67842,0.96833], [0.19326,0.68812,0.96190], [0.18625,0.69775,0.95498], [0.17923,0.70732,0.94761], [0.17223,0.71680,0.93981], [0.16529,0.72620,0.93161], [0.15844,0.73551,0.92305], [0.15173,0.74472,0.91416], [0.14519,0.75381,0.90496], [0.13886,0.76279,0.89550], [0.13278,0.77165,0.88580], [0.12698,0.78037,0.87590], [0.12151,0.78896,0.86581], [0.11639,0.79740,0.85559], [0.11167,0.80569,0.84525], [0.10738,0.81381,0.83484], [0.10357,0.82177,0.82437], [0.10026,0.82955,0.81389], [0.09750,0.83714,0.80342], [0.09532,0.84455,0.79299], [0.09377,0.85175,0.78264], [0.09287,0.85875,0.77240], [0.09267,0.86554,0.76230], [0.09320,0.87211,0.75237], [0.09451,0.87844,0.74265], [0.09662,0.88454,0.73316], [0.09958,0.89040,0.72393], [0.10342,0.89600,0.71500], [0.10815,0.90142,0.70599], [0.11374,0.90673,0.69651], [0.12014,0.91193,0.68660], [0.12733,0.91701,0.67627], [0.13526,0.92197,0.66556], [0.14391,0.92680,0.65448], [0.15323,0.93151,0.64308], [0.16319,0.93609,0.63137], [0.17377,0.94053,0.61938], [0.18491,0.94484,0.60713], [0.19659,0.94901,0.59466], [0.20877,0.95304,0.58199], [0.22142,0.95692,0.56914], [0.23449,0.96065,0.55614], [0.24797,0.96423,0.54303], [0.26180,0.96765,0.52981], [0.27597,0.97092,0.51653], [0.29042,0.97403,0.50321], [0.30513,0.97697,0.48987], [0.32006,0.97974,0.47654], [0.33517,0.98234,0.46325], [0.35043,0.98477,0.45002], [0.36581,0.98702,0.43688], [0.38127,0.98909,0.42386], [0.39678,0.99098,0.41098], [0.41229,0.99268,0.39826], [0.42778,0.99419,0.38575], [0.44321,0.99551,0.37345], [0.45854,0.99663,0.36140], [0.47375,0.99755,0.34963], [0.48879,0.99828,0.33816], [0.50362,0.99879,0.32701], [0.51822,0.99910,0.31622], [0.53255,0.99919,0.30581], [0.54658,0.99907,0.29581], [0.56026,0.99873,0.28623], [0.57357,0.99817,0.27712], [0.58646,0.99739,0.26849], [0.59891,0.99638,0.26038], [0.61088,0.99514,0.25280], [0.62233,0.99366,0.24579], [0.63323,0.99195,0.23937], [0.64362,0.98999,0.23356], [0.65394,0.98775,0.22835], [0.66428,0.98524,0.22370], [0.67462,0.98246,0.21960], [0.68494,0.97941,0.21602], [0.69525,0.97610,0.21294], [0.70553,0.97255,0.21032], [0.71577,0.96875,0.20815], [0.72596,0.96470,0.20640], [0.73610,0.96043,0.20504], [0.74617,0.95593,0.20406], [0.75617,0.95121,0.20343], [0.76608,0.94627,0.20311], [0.77591,0.94113,0.20310], [0.78563,0.93579,0.20336], [0.79524,0.93025,0.20386], [0.80473,0.92452,0.20459], [0.81410,0.91861,0.20552], [0.82333,0.91253,0.20663], [0.83241,0.90627,0.20788], [0.84133,0.89986,0.20926], [0.85010,0.89328,0.21074], [0.85868,0.88655,0.21230], [0.86709,0.87968,0.21391], [0.87530,0.87267,0.21555], [0.88331,0.86553,0.21719], [0.89112,0.85826,0.21880], [0.89870,0.85087,0.22038], [0.90605,0.84337,0.22188], [0.91317,0.83576,0.22328], [0.92004,0.82806,0.22456], [0.92666,0.82025,0.22570], [0.93301,0.81236,0.22667], [0.93909,0.80439,0.22744], [0.94489,0.79634,0.22800], [0.95039,0.78823,0.22831], [0.95560,0.78005,0.22836], [0.96049,0.77181,0.22811], [0.96507,0.76352,0.22754], [0.96931,0.75519,0.22663], [0.97323,0.74682,0.22536], [0.97679,0.73842,0.22369], [0.98000,0.73000,0.22161], [0.98289,0.72140,0.21918], [0.98549,0.71250,0.21650], [0.98781,0.70330,0.21358], [0.98986,0.69382,0.21043], [0.99163,0.68408,0.20706], [0.99314,0.67408,0.20348], [0.99438,0.66386,0.19971], [0.99535,0.65341,0.19577], [0.99607,0.64277,0.19165], [0.99654,0.63193,0.18738], [0.99675,0.62093,0.18297], [0.99672,0.60977,0.17842], [0.99644,0.59846,0.17376], [0.99593,0.58703,0.16899], [0.99517,0.57549,0.16412], [0.99419,0.56386,0.15918], [0.99297,0.55214,0.15417], [0.99153,0.54036,0.14910], [0.98987,0.52854,0.14398], [0.98799,0.51667,0.13883], [0.98590,0.50479,0.13367], [0.98360,0.49291,0.12849], [0.98108,0.48104,0.12332], [0.97837,0.46920,0.11817], [0.97545,0.45740,0.11305], [0.97234,0.44565,0.10797], [0.96904,0.43399,0.10294], [0.96555,0.42241,0.09798], [0.96187,0.41093,0.09310], [0.95801,0.39958,0.08831], [0.95398,0.38836,0.08362], [0.94977,0.37729,0.07905], [0.94538,0.36638,0.07461], [0.94084,0.35566,0.07031], [0.93612,0.34513,0.06616], [0.93125,0.33482,0.06218], [0.92623,0.32473,0.05837], [0.92105,0.31489,0.05475], [0.91572,0.30530,0.05134], [0.91024,0.29599,0.04814], [0.90463,0.28696,0.04516], [0.89888,0.27824,0.04243], [0.89298,0.26981,0.03993], [0.88691,0.26152,0.03753], [0.88066,0.25334,0.03521], [0.87422,0.24526,0.03297], [0.86760,0.23730,0.03082], [0.86079,0.22945,0.02875], [0.85380,0.22170,0.02677], [0.84662,0.21407,0.02487], [0.83926,0.20654,0.02305], [0.83172,0.19912,0.02131], [0.82399,0.19182,0.01966], [0.81608,0.18462,0.01809], [0.80799,0.17753,0.01660], [0.79971,0.17055,0.01520], [0.79125,0.16368,0.01387], [0.78260,0.15693,0.01264], [0.77377,0.15028,0.01148], [0.76476,0.14374,0.01041], [0.75556,0.13731,0.00942], [0.74617,0.13098,0.00851], [0.73661,0.12477,0.00769], [0.72686,0.11867,0.00695], [0.71692,0.11268,0.00629], [0.70680,0.10680,0.00571], [0.69650,0.10102,0.00522], [0.68602,0.09536,0.00481], [0.67535,0.08980,0.00449], [0.66449,0.08436,0.00424], [0.65345,0.07902,0.00408], [0.64223,0.07380,0.00401], [0.63082,0.06868,0.00401], [0.61923,0.06367,0.00410], [0.60746,0.05878,0.00427], [0.59550,0.05399,0.00453], [0.58336,0.04931,0.00486], [0.57103,0.04474,0.00529], [0.55852,0.04028,0.00579], [0.54583,0.03593,0.00638], [0.53295,0.03169,0.00705], [0.51989,0.02756,0.00780], [0.50664,0.02354,0.00863], [0.49321,0.01963,0.00955], [0.47960,0.01583,0.01055]]) def RGBToPyCmap(rgbdata): nsteps = rgbdata.shape[0] stepaxis = np.linspace(0, 1, nsteps) rdata=[]; gdata=[]; bdata=[] for istep in range(nsteps): r = rgbdata[istep,0] g = rgbdata[istep,1] b = rgbdata[istep,2] rdata.append((stepaxis[istep], r, r)) gdata.append((stepaxis[istep], g, g)) bdata.append((stepaxis[istep], b, b)) mpl_data = {'red': rdata, 'green': gdata, 'blue': bdata} return mpl_data # register turbo as a matplotlib colourmap for matplotlib versions below 3.3 if float(mpl.__version__[:3]) < 3.3: mpl_data = RGBToPyCmap(turbo_colormap_data) # plt.register_cmap(name='turbo', data=mpl_data, lut=turbo_colormap_data.shape[0]) # plt.register_cmap(cmap=LSC(name='turbo', data=mpl_data, lut=turbo_colormap_data.shape[0])) plt.register_cmap(cmap=LSC('turbo', mpl_data, turbo_colormap_data.shape[0])) mpl_data = RGBToPyCmap(np.flipud(turbo_colormap_data)) # plt.register_cmap(name='iturbo', data=mpl_data, lut=turbo_colormap_data.shape[0]) # plt.register_cmap(cmap=LSC(name='iturbo', data=mpl_data, lut=turbo_colormap_data.shape[0])) plt.register_cmap(cmap=LSC('iturbo', mpl_data, turbo_colormap_data.shape[0])) # usage: # plt.imshow(ZZ, cmap='turbo') ################################################################ ################################################################ ## ## plot graphs and confirm the correctness of the functions if __name__ == '__main__': import datetime as dt import ryutils rit = ryutils.intify_tuple doAll = False if doAll: p = Plotter(1,2,3,figsize=(12,12)) theta = np.linspace(-10,10,20) + np.random.random(20) # in degrees radius = np.linspace(.5, 1., 20) + np.random.random(20) /50. thetax2 = np.hstack((theta.reshape(-1,1), -4 + theta.reshape(-1,1))) radiusx2 = np.hstack((radius.reshape(-1,1), 0.1+radius.reshape(-1,1))) # plot one data set p.pie(1,theta,radius,ptitle='test 1',radLabel='Distance m',angLabel='OTA deg',thetaAxis=[-20,20], radiusAxis=[0.5,1], numAngGrid=3, numRadGrid=5,linewidths=[5],linestyle=[''],markers=['x'],label=['dada'],legendAlpha=0.7, labelfsize=14,titlefsize=18) p.pie(2,theta,radius,ptitle='test 2',radLabel='Distance m',angLabel='OTA deg',thetaAxis=[-20,20], radiusAxis=[0.,1], numAngGrid=3, numRadGrid=5,linestyle=['--']) # plot two datasets in one np.array p.pie(3,thetax2,radiusx2,ptitle='test 3',radLabel='Distance m',angLabel='OTA deg',thetaAxis=[-20,20], radiusAxis=[0.5,1], numAngGrid=3, numRadGrid=5,linewidths=[2,1],linestyle=['-',':'],markers=['v','o'],drawGrid=False, label=['dada','dodo'],clip_on=False) p.pie(4,theta+180.,radius,ptitle='',radLabel='Distance m',angLabel='OTA deg',thetaAxis=[90,270], radiusAxis=[0.,1], numAngGrid=10, numRadGrid=5,linestyle=['--'],degreeformatter="%d") p.pie(5,theta+180.,radius,ptitle='',radLabel='Distance m',angLabel='OTA deg',thetaAxis=[91,270], radiusAxis=[0.,1], numAngGrid=10, numRadGrid=5,linestyle=['--'],degreeformatter="%d") # use the same subplot more than once p.pie(6,theta+180,radius,ptitle='test 6',radLabel='Distance m',angLabel='OTA deg', thetaAxis=[135,270], radiusAxis=[0,1],xytickfsize=8,numAngGrid=3, numRadGrid=5, linewidths=[5],linestyle=[''],markers=['x'],label=['dada'],radangfsize=8) p.pie(6,theta+185,radius,ptitle='test 6',radLabel='Distance m',angLabel='OTA deg', thetaAxis=[135,271], radiusAxis=[0,1],xytickfsize=8,numAngGrid=3, numRadGrid=5, linewidths=[2],linestyle=['-'],markers=['o'],label=['dodo'],markevery=4,radangfsize=8) p.saveFig('piepol.png') if doAll: # stacked plot np.random.seed(1) fnx = lambda : np.random.randint(5, 50, 10) y = np.row_stack((fnx(), fnx(), fnx())) x = np.arange(10) # Make new array consisting of fractions of column-totals, # using .astype(float) to avoid integer division percent = y / y.sum(axis=0).astype(float) * 100 #data must vary along rows for single column (row-major) percent = percent.T # print(rit(percent.shape)) sp = Plotter(1,1,1,figsize=(16,8)) sp.stackplot(1,x,percent,'Stack plot','X-axis label','Y-axis label', plotCol=['crimson','teal','#553300'], label=['aaa','bbb','cccc'],legendAlpha=0.5) sp.saveFig('stackplot.png') if doAll: #next line include both 0 and 360 degrees, i.e., overlap on edge angled = np.linspace(0.,360.,25) angler = np.pi * angled / 180. grange = np.linspace(500.,4000.,8) #create a 2-D meshgrid. grangeg, anglerg= np.meshgrid(grange,angler + np.pi * 7.5 / 180) height = 2000. launch = (1 + np.cos(anglerg) ) ** .1 * (1 - np.exp(-( 500 + grangeg) / 2000.) ) launch *= np.exp(-( 500 + grangeg) / (6000. - height)) launch = np.where(launch<0.2, 0.2, launch) #normalise launch -= np.min(launch) launch /= np.max(launch) pm = Plotter(1,1,2,figsize=(16,8)) pm.polarMesh(1,angler+np.pi, grange, launch.T, ptitle='Probability of launch for height {:.0f} [m]'.format(height), radscale=[0, 4000], cbarshow=True, cbarorientation='vertical', cbarcustomticks=[], cbarfontsize=12, rgrid=[500], thetagrid=[45], drawGrid=True, direction='clockwise', zerooffset=np.pi/2, ) pm.polar3d(2, angler, grange, launch, zlabel='zlabel', linewidth=1, zscale=[0, 1], azim=135, elev=60, alpha=0.5,edgeCol=['k']) pm.saveFig('3Dlaunch.png') if doAll: ############################################################################ #create the wireframe for the sphere u = np.linspace(0, np.pi, 100) v = np.linspace(0, 2 * np.pi, 100) x = np.outer(np.sin(u), np.sin(v)) y = np.outer(np.sin(u), np.cos(v)) z = np.outer(np.cos(u), np.ones_like(v)) #create the random point samples on the sphere samples = 500 np.random.seed(1) np.random.RandomState(200) theta = 2 * np.pi * np.random.uniform(0, 1, size=samples) #biased sampling with higher density towards the poles phib = np.pi * (2 * np.random.uniform(0, 1, size=samples) -1 ) / 2 #uniform sampling corrected for polar bias phiu = np.arccos(2 * np.random.uniform(0, 1, size=samples) -1 ) - np.pi/2 #create normal vectors using the pairs of random angles in a transformation xsb = np.cos(phib) * np.cos(theta) ysb = np.cos(phib) * np.sin(theta) zsb = np.sin(phib) xsu = np.cos(phiu) * np.cos(theta) ysu = np.cos(phiu) * np.sin(theta) zsu = np.sin(phiu) azim = 45 # view angle elev = 45 # view angle sph = Plotter(1,1,2, figsize=(20,10)) sph.mesh3D(1,x,y,z,'','x','y','z',alpha=0.1, wireframe=False, surface=True,linewidth=0, drawGrid=False) sph.mesh3D(1,x,y,z,'','x','y','z', alphawire=0.4, wireframe=True, surface=False, edgeCol=['b'],plotCol=['b'],linewidth=0.4,rstride=2,cstride=2, drawGrid=False) sph.plot3d(1, xsb, ysb, zsb, ptitle='', scatter=True,markers=['o' for i in range(len(xsb))], azim=azim, elev=elev) sph.mesh3D(2,x,y,z,'','x','y','z',alpha=0.1, wireframe=False, surface=True,linewidth=0, drawGrid=False) sph.mesh3D(2,x,y,z,'','x','y','z', alphawire=0.4, wireframe=True, surface=False, edgeCol=['b'],plotCol=['b'],linewidth=0.4,rstride=2,cstride=2, drawGrid=False) sph.plot3d(2, xsu, ysu, zsu, ptitle='', scatter=True,markers=['o' for i in range(len(xsu))], azim=azim, elev=elev) sph.saveFig('3dsphere.png') ############################################################################ #demonstrate the use of a polar 3d plot #create the radial and angular vectors r = np.linspace(0,1.25,25) p = np.linspace(0,2*np.pi,50) #the r and p vectors may have non-constant grid-intervals # r = np.logspace(np.log10(0.001),np.log10(1.25),50) # p = np.logspace(np.log10(0.001),np.log10(2*np.pi),100) #build a meshgrid (2-D array of values) R,P = np.meshgrid(r,p) #calculate the z values on the cartesian grid # value = (np.tan(P**3)*np.cos(P**2)*(R**2 - 1)**2) value = ((R**2 - 1)**2) p3D = Plotter(1, 1, 1,'Polar plot in 3-D',figsize=(12,8)) p3D.polar3d(1, p, r, value, ptitle='3-D Polar Plot', xlabel='xlabel', ylabel='ylabel', zlabel='zlabel')#,zscale=[-2,1]) p3D.saveFig('p3D.png') #p3D.saveFig('p3D.eps') with open('./data/Intensity-max.dat', 'rt') as fin: aArray = np.loadtxt( fin, skiprows=1 , dtype=float ) azim = aArray[1:,0] + np.pi # to positive angles elev = aArray[0,1:] + np.pi/2 # get out of negative data on polar intensity = aArray[1:,1:] p3D = Plotter(1, 2, 2,'Polar plot in 3-D',figsize=(12,8)) elev1 = elev p3D.polar3d(1, azim, elev1, intensity, zlabel='zlabel',zscale=[0, 600], azim=45, elev=30) p3D.polar3d(2, azim, elev, intensity, zlabel='zlabel',zscale=[0, 2000], azim=-45, elev=30) elev3 = elev + np.pi/2 # get hole in centre p3D.polar3d(3, azim, elev3, intensity, zlabel='zlabel',zscale=[0, 2000], azim=60, elev=60) p3D.polar3d(4, azim, elev, intensity, zlabel='zlabel',zscale=[0, 1000], azim=110, elev=-30) p3D.saveFig('p3D2.png') #p3D.saveFig('p3D2.eps') ############################################################################ xv,yv = np.mgrid[-2:2:21j, -2:2:21j] z = np.exp(np.exp(-(xv**2 + yv**2))) I = Plotter(4, 1, 2,'High dynamic range image', figsize=(8, 4)) I.showImage(1, z, ptitle='xv**2 + yv**2', titlefsize=10, cbarshow=True, cbarorientation = 'vertical', cbarfontsize = 7) ip = ProcessImage() zz, customticksz = ip.compressEqualizeImage(z, 2, 10) I.showImage(2, zz, ptitle='Equalized xv**2 + yv**2', titlefsize=10, cbarshow=True, cbarorientation = 'vertical', cbarcustomticks=customticksz, cbarfontsize = 7) I.saveFig('HistoEq.png') # I.saveFig('HistoEq.eps') ############################################################################ # demonstrate dates on the x-axis dates = ['01/02/1991','01/03/1991','01/04/1991'] x = np.asarray([dt.datetime.strptime(d,'%m/%d/%Y').date() for d in dates]) y = np.asarray(list(range(len(x)))) pd = Plotter(1) pd.plot(1,x,y,xIsDate=True,pltaxis=[x[0],x[-1],-1,4],xtickRotation=30)
pd.saveFig('plotdateX.png')
pandas.saveFig
#%%[markdown][markdown] # # Titanic(Classical Problem) For Machine Learning Engineers from sklearn.metrics import make_scorer, accuracy_score from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.metrics import classification_report from sklearn.model_selection import GridSearchCV from sklearn.metrics import confusion_matrix from sklearn.metrics import accuracy_score from sklearn import preprocessing import matplotlib.pylab as pylab import matplotlib.pyplot as plt from pandas import get_dummies import matplotlib as mpl import xgboost as xgb import seaborn as sns import pandas as pd import numpy as np import matplotlib import warnings import sklearn import scipy import numpy import json import sys import csv import os sns.set(style='white', context='notebook', palette='deep') pylab.rcParams['figure.figsize'] = 12,8 warnings.filterwarnings('ignore') mpl.style.use('ggplot') sns.set_style('white') df_train=
pd.read_csv('/home/rahul/Desktop/Link to rahul_environment/Kernels/Titanic_Disaster/train.csv')
pandas.read_csv
import glob import random from pathlib import Path import numpy as np import pandas as pd import pickle5 as pickle from astropy.table import Table from scipy import integrate, stats from scipy.stats import maxwell from scipy.interpolate import griddata from shapely.geometry import Point from shapely.geometry.polygon import Polygon def select_within_boundary(x, y, boundary): polygon = Polygon(boundary) p = Point(x, y) is_in = polygon.contains(p) return is_in def maxwell_d(x, scale_s, A_s, scale_f, loc_f): return A_s * maxwell.pdf(x, scale=scale_s) + (1 - A_s) * maxwell.pdf( x, scale=scale_f, loc=loc_f ) def gauss(x, *p): A, mu, sigma = p return A * np.exp(-((x - mu) ** 2) / (2 * sigma ** 2)) def dgauss(x, *p): return gauss(x, p[0], p[1], p[2]) + gauss(x, p[3], p[4], p[5]) def sersic(x, a, b, c, d, m): return -a * np.exp(-((abs(x - d) / b) ** c)) + m def pdf(kernel, x, min_x, max_x, int_k): """possibility distribution function Returns: p (array-like): probability """ if x < min_x or x > max_x: return 0 else: return kernel(x) / int_k def log_err_func(x, a, b, c): return a / (x - b) + c def gen_kernel_sample(kernel, num, min_x, max_x): """Generate mass following Kroupa mass function Args: num (int): number of points min_x (float): minimum boundary max_x (float): maximum boundary Returns: result (array): mass """ int_k = integrate.quad(lambda x: kernel(x), min_x, max_x)[0] sample = [] x = np.linspace(min_x, max_x, 100) c = pdf(kernel, x[kernel(x).argmax()], min_x, max_x, int_k) for i in range(num): flag = 0 while flag == 0: x = random.uniform(min_x, max_x) y = random.uniform(0, 1) if y < pdf(kernel, x, min_x, max_x, int_k) / c: sample.append(x) flag = 1 return sample def z2mh(Z): Y = 0.2485 + 1.78 * Z X = 1 - Y - Z Z_sun = 0.0152 Y_sun = 0.2485 + 1.78 * Z_sun X_sun = 1 - Y_sun - Z_sun mh = np.log10(Z / X) - np.log10(Z_sun / X_sun) return mh def get_z_tri(y, dist_dir): Z = list() dist_list = list() for mass in y: info = pickle.load( open("./pickle/{0}/m{1:.2f}.pkl".format(dist_dir, mass), "rb") ) vsini_dist = info["vsini_dist"] vsini_dist_sel = vsini_dist[(vsini_dist.x >= 10) & (vsini_dist.x < 400)] vsini_dist_sel = vsini_dist_sel.assign(mass=info["mass_mean"]) dist_list.append(vsini_dist_sel) dist = pd.concat(dist_list) X = np.linspace(min(dist.x), max(dist.x), 100) Y = np.linspace(min(dist.mass), max(dist.mass), 50) Z = griddata((dist.x, dist.mass), dist.g, (X[None, :], Y[:, None]), method="linear") Z[Z < 0] = 0 return X, Y, Z def get_z_tri_dist(y, dist_dir): dist_list = list() for mass in y: info = pickle.load( open("./pickle/{0}/m{1:.2f}.pkl".format(dist_dir, mass), "rb") ) vsini_dist = info["vsini_dist"] vsini_dist_sel = vsini_dist[(vsini_dist.x >= 20) & (vsini_dist.x < 400)] vsini_dist_sel = vsini_dist_sel.assign(mass=info["mass_mean"]) dist_list.append(vsini_dist_sel) dist = pd.concat(dist_list) return dist def get_z_omega_dist(y, dist_dir, ratio): df = Table.read("./material/Netopil2017.fit").to_pandas() df = df[df.v_vcrit > 0] dist_list = list() for mass in y: info = pickle.load( open("./pickle/{0}/m{1:.2f}.pkl".format(dist_dir, mass), "rb") ) omega_dist = info["omega_dist"] omega_dist.g[omega_dist.x > 1.03] = 0 g_new = clean_omega_cp_dist(omega_dist, df.v_vcrit, ratio) omega_dist = omega_dist.assign(mass=info["mass_mean"]) omega_dist.g = g_new dist_list.append(omega_dist) dist =
pd.concat(dist_list)
pandas.concat
# python 2/3 compatibility from __future__ import division, print_function import sys import os.path import numpy import pandas import copy import difflib import scipy import collections import json # package imports import rba from .rba import RbaModel, ConstraintMatrix, Solver from .rba_SimulationData import RBA_SimulationData from .rba_SimulationParameters import RBA_SimulationParameters from .rba_ModelStructure import RBA_ModelStructure from .rba_Problem import RBA_Problem from .rba_Matrix import RBA_Matrix from .rba_LP import RBA_LP from .rba_FBA import RBA_FBA from .rba_LogBook import RBA_LogBook class RBA_Session(object): """ Top level of the RBA API. Attributes ---------- xml_dir : str Current Growth rate as numeric value model : rba.RbaModel Current Growth rate as numeric value matrices : rba.ConstraintMatrix Current Growth rate as numeric value solver : rba.Solver Current Growth rate as numeric value Problem : rbatools.RBA_Problem Current Growth rate as numeric value Medium : dict Current Growth rate as numeric value ModelStructure : rbatools.RBA_ModelStructure Current Growth rate as numeric value Results : dict Current Growth rate as numeric value Parameters : dict Current Growth rate as numeric value SimulationData : rbatools.RBA_SimulationData Current Growth rate as numeric value SimulationParameters : rbatools.RBA_SimulationParameters Current Growth rate as numeric value Methods ---------- __init__(xml_dir) Creates RBA_Session object from files Parameters ---------- xml_dir : str Path to the directory where rba-model files are located. rebuild_from_model() Rebuilds computational model-representation (matrix) from own attribute "model" (rba.RbaModel-object). reloadModel() Reloads model from xml-files and then rebuild computational model-representation (matrix). recordResults(runName) Records Simulation output for further use. and strores them in own 'Results'-attribute as pandas.DataFrames in a dictionary with the respective run-name being a column in all DataFrames. Parameters ---------- runName : str Name of observation/condition. Serves as ID for all Data, originating from these. recordParameters(runName) Records Simulation parameters (LP-coefficients etc.) for further use. and strores them in own 'Parameters'-attribute as pandas.DataFrames in a dictionary with the respective run-name being a column in all DataFrames. Parameters ---------- runName : str Name of observation/condition. Serves as ID for all Data, originating from these. clearResults() Removes all previosly recorded results and deletes own 'Results'-attribute. clearParameters() Removes all previosly recorded parameters and deletes own 'Parameters'-attribute. writeResults(session_name='', digits=10) Creates SimulationData and SimulationParameters objects from recordings ('Results'.'Parameters'). Stores them as rbatools.RBA_SimulationData and rbatools.RBA_SimulationParameters objects as attributes. Access via attributes .SimulationData and SimulationParameters respectively. Parameters ---------- digits : int Number of decimal places in the numeric results Default: 10 session_name : str Name of Simulation session. Default: '' returnExchangeFluxes() Returns a dictonary with the exchang-rates of boundary-metabolites. Returns ------- Dictonary with exchange-keys and respective -rates. ConstraintSaturation(constraints=None) Determines the saturation of model constraints at current solution. Parameters ---------- constraints : str or list of str Specifies constraints(s) for which the saturation is to be determined. Default-value = None: All model-constraints are taken Returns ------- Pandas DataFrame with constraint-names as indices and the columns 'LHS', 'RHS', and 'Saturation'. 'LHS': The sum over the respoctive constraint-row multiplied elementwise with the solution vector. 'RHS': The value of the problem's righthand side, correesponding to the respective constraint. 'Saturation': The saturation of the respective constraint ('LHS'/'RHS'). (Equality constraints are always saturated) setMedium(changes) Sets the concentration of specified growth-substrate(s) in medium. Parameters ---------- changes : dict Keys : ID of metabolite(s) in medium. Values : New concention(s) setMu(Mu) Sets growth-rate to specified value. Parameters ---------- Mu : float Growth rate doSolve(runName='DontSave') Solves problem to find solution. Does the same as rbatools.RBA_Problem.solveLP(). Just has some automatic option for results-recording. Parameters ---------- runName : str Name of observation. Serves as ID for all data, originating from this run. Special values : 'DontSave' : Results are not recorded 'Auto' : Results are automatically recorded and appended to existing ones. Named with number. Any other string: Results are recorded under this name. Default: 'DontSave' findMaxGrowthRate(precision=0.0005, max=4, start_value=None, recording=False) Applies dichotomy-search to find the maximal feasible growth-rate. Parameters ---------- precision : float Numberic precision with which maximum is approximated. Default : 0.00001 max : float Defines the highest growth rate to be screened for. Default=4 start_value : float Defines a starting-value of the search for the maximum growth-rate. A close starting-value reduces the required number of iterations, for the algorithm to converge. If not provided search starts at growth-rate 0. Default = None recording : bool Records intermediate feasible solutions while approaching the maximum growth-rate. Default : False Returns ------- maximum feasible growth rate as float. knockOut(gene) Simulates a gene knock out. Constrains all variables in the LP-problem (enzymes, other machineries), which require this gene(s), to zero. Parameters ---------- gene : str or list of strings ID(s) of model-proteins to be knocked out. Can either be gene-identifier, represented as ID or ProtoID of proteins in rbatools.protein_bloc.ProteinBlock.Elements class (depends on whether protein-isoforms are considered). FeasibleRange(variables=None) Determines the feasible range of model variables. Parameters ---------- variables : str or list of str Specifies variable(s) for which the feasible range is to be determined. Default-value = None: All model-variables are taken Returns ------- Dictionary with variable-names as keys and other dictionaries as values. The 'inner' dictionaries hold keys 'Min' and 'Max' with values representing lower and upper bound of feasible range respectively. E.g. : {'variableA':{'Min':42 , 'Max':9000}, 'variableB':{'Min':-9000 , 'Max':-42}} ParetoFront(variable_X, variable_Y, N=10, sign_VY='max') Determine Pareto front of two model variables. Parameters ---------- variable_X : str ID of variable, representing the X-coordinate of the Pareto-front variable_Y : str ID of variable, representing the Y-coordinate of the Pareto-front N : int Number of intervals within the feasible range of variable_X. Default-value=10. sign_VY : str 'max': variable_Y is maximised 'min': variable_Y is minimised Returns ------- Pandas DataFrame with columns named after the two input variables and 'N' rows. Each row represents an interval on the Pareto front. Entries on each row are the X and Y coordinate on the Pareto front, representing the values of the two variables. """ def __init__(self, xml_dir): """ Creates RBA_Session object from files Parameters ---------- xml_dir : str Path to the directory where rba-model files are located. """ self.xml_dir = xml_dir self.LogBook = RBA_LogBook('Controler') if not hasattr(self, 'ModelStructure'): if os.path.isfile(str(self.xml_dir+'/ModelStructure.json')): self.ModelStructure = RBA_ModelStructure() with open(str(self.xml_dir+'/ModelStructure.json'), 'r') as myfile: data = myfile.read() self.ModelStructure.fromJSON(inputString=data) else: self.build_ModelStructure() self.model = RbaModel.from_xml(input_dir=xml_dir) self.matrices = ConstraintMatrix(model=self.model) self.solver = Solver(matrix=self.matrices) self.LogBook.addEntry('Model loaded from {}.'.format(self.xml_dir)) self.Problem = RBA_Problem(solver=self.solver) medium = pandas.read_csv(xml_dir+'/medium.tsv', sep='\t') self.Medium = dict(zip(list(medium.iloc[:, 0]), [float(i) for i in list(medium.iloc[:, 1])])) self.Mu = self.Problem.Mu self.ExchangeMap = buildExchangeMap(self) def build_ModelStructure(self): self.ModelStructure = RBA_ModelStructure() self.ModelStructure.fromFiles(xml_dir=self.xml_dir) self.ModelStructure.exportJSON(path=self.xml_dir) def addExchangeReactions(self): """ Adds explicit exchange-reactions of boundary-metabolites to RBA-problem, named R_EX_ followed by metabolite name (without M_ prefix). """ Mets_external = [m.id for m in self.model.metabolism.species if m.boundary_condition] Mets_internal = [m.id for m in self.model.metabolism.species if not m.boundary_condition] Reactions = [r.id for r in self.model.metabolism.reactions] full_S = rba.core.metabolism.build_S( Mets_external+Mets_internal, self.model.metabolism.reactions) S_M_ext = full_S[:len(Mets_external), ].toarray() col_indices_toremove = [] for i in range(S_M_ext.shape[1]): s_col_uniques = list(set(list(S_M_ext[:, i]))) if len(s_col_uniques) == 1: if s_col_uniques[0] == 0: col_indices_toremove.append(i) RemainingReactions = [i for i in Reactions if Reactions.index( i) not in col_indices_toremove] S_ext = numpy.delete(S_M_ext, col_indices_toremove, axis=1) A = numpy.concatenate((S_ext, numpy.eye(len(Mets_external))), axis=1, out=None) ColNames = RemainingReactions+[str('R_EX_'+i.split('M_')[-1]) for i in Mets_external] # print(str('R_EX_'+i.split('M_')[-1])) LBs = list([self.Problem.LP.LB[self.Problem.LP.col_names.index(i)] for i in RemainingReactions]+[-10000]*len(Mets_external)) UBs = list([self.Problem.LP.UB[self.Problem.LP.col_names.index(i)] for i in RemainingReactions]+[10000]*len(Mets_external)) b = [0]*len(Mets_external) f = list([self.Problem.LP.f[self.Problem.LP.col_names.index(i)] for i in RemainingReactions]+[0]*len(Mets_external)) ExchangeMatrix = RBA_Matrix() ExchangeMatrix.A = scipy.sparse.coo_matrix(A) ExchangeMatrix.b = numpy.array([0]*len(Mets_external)) ExchangeMatrix.f = numpy.array(f) ExchangeMatrix.LB = numpy.array(LBs) ExchangeMatrix.UB = numpy.array(UBs) ExchangeMatrix.row_signs = ['E']*len(Mets_external) ExchangeMatrix.row_names = Mets_external ExchangeMatrix.col_names = ColNames ExchangeMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=ExchangeMatrix) self.ExchangeReactionMap = dict( zip(Mets_external, [str('R_EX_'+i.split('M_')[-1]) for i in Mets_external])) def rebuild_from_model(self): """ Rebuilds computational model-representation (matrix) from own attribute "model" (rba.RbaModel-object). """ self.LogBook.addEntry('Model rebuilt.') self.matrices = ConstraintMatrix(model=self.model) self.solver = Solver(matrix=self.matrices) self.Problem = RBA_Problem(solver=self.solver) self.setMedium(changes=self.Medium) def reloadModel(self): """ Reloads model from xml-files and then rebuild computational model-representation (matrix). """ self.LogBook.addEntry('Model reloaded from {}.'.format(self.xml_dir)) self.model = RbaModel.from_xml(input_dir=self.xml_dir) self.rebuild_from_model() def recordResults(self, runName): """ Records Simulation output for further use. and strores them in own 'Results'-attribute as pandas.DataFrames in a dictionary with the respective run-name being a column in all DataFrames. Parameters ---------- runName : str Name of observation/condition. Serves as ID for all Data, originating from these. """ self.LogBook.addEntry('Solution recorded under {}.'.format(runName)) if not hasattr(self, 'Results'): self.Results = {'Reactions': pandas.DataFrame(index=list(self.ModelStructure.ReactionInfo.Elements.keys())), 'Enzymes': pandas.DataFrame(index=list(self.ModelStructure.EnzymeInfo.Elements.keys())), 'Processes': pandas.DataFrame(index=[self.ModelStructure.ProcessInfo.Elements[i]['ID']+'_machinery' for i in self.ModelStructure.ProcessInfo.Elements.keys()]), 'Proteins': pandas.DataFrame(index=list(self.ModelStructure.ProteinMatrix['Proteins'])), 'ProtoProteins': pandas.DataFrame(index=list(self.ModelStructure.ProteinGeneMatrix['ProtoProteins'])), 'Constraints': pandas.DataFrame(index=self.Problem.LP.row_names), 'SolutionType': pandas.DataFrame(index=['SolutionType']), 'Mu': pandas.DataFrame(index=['Mu']), 'ObjectiveFunction': pandas.DataFrame(index=self.Problem.LP.col_names), 'ObjectiveValue': pandas.DataFrame(index=['ObjectiveValue']), 'ExchangeFluxes': pandas.DataFrame(index=list(self.ExchangeMap.keys()))} Exchanges = self.returnExchangeFluxes() for i in Exchanges.keys(): self.Results['ExchangeFluxes'].loc[i, runName] = Exchanges[i] self.Results['Reactions'][runName] = self.Results['Reactions'].index.map( {i: self.Problem.SolutionValues[i] for i in list(self.Results['Reactions'].index)}) self.Results['Enzymes'][runName] = self.Results['Enzymes'].index.map( {i: self.Problem.SolutionValues[i] for i in list(self.Results['Enzymes'].index)}) self.Results['Processes'][runName] = self.Results['Processes'].index.map( {i: self.Problem.SolutionValues[i] for i in list(self.Results['Processes'].index)}) self.Results['Constraints'][runName] = self.Results['Constraints'].index.map( {i: self.Problem.DualValues[i] for i in self.Problem.LP.row_names}) self.Results['Proteins'][runName] = self.Results['Proteins'].index.map( ProteomeRecording(self, runName)) self.Results['ProtoProteins'][runName] = self.Results['ProtoProteins'].index.map( ProtoProteomeRecording(self, runName, self.Results['Proteins'])) self.Results['SolutionType'][runName] = self.Problem.SolutionType self.Results['Mu'][runName] = self.Problem.Mu self.Results['ObjectiveFunction'][runName] = list(self.Problem.getObjective().values()) self.Results['ObjectiveValue'][runName] = self.Problem.ObjectiveValue def recordParameters(self, runName): """ Records Simulation parameters (LP-coefficients etc.) for further use. and strores them in own 'Parameters'-attribute as pandas.DataFrames in a dictionary with the respective run-name being a column in all DataFrames. Parameters ---------- runName : str Name of observation/condition. Serves as ID for all Data, originating from these. """ self.LogBook.addEntry('Coefficients recorded under {}.'.format(runName)) EnzymeCapacities = self.get_parameter_values( parameter_type='enzyme_efficiencies', species=None, output_format='dict') ProcessCapacities = self.get_parameter_values( parameter_type='machine_efficiencies', species=None, output_format='dict') CompartmentCapacities = self.get_parameter_values( parameter_type='maximal_densities', species=None, output_format='dict') TargetValues = self.get_parameter_values( parameter_type='target_values', species=None, output_format='dict') if not hasattr(self, 'Parameters'): self.Parameters = {'EnzymeEfficiencies_FW': pandas.DataFrame(index=list(EnzymeCapacities.keys())), 'EnzymeEfficiencies_BW': pandas.DataFrame(index=list(EnzymeCapacities.keys())), 'ProcessEfficiencies': pandas.DataFrame(index=list(ProcessCapacities.keys())), 'CompartmentCapacities': pandas.DataFrame(index=list(CompartmentCapacities.keys())), 'Medium': pandas.DataFrame(index=self.Medium.keys()), 'TargetValues': pandas.DataFrame(index=[TargetValues[i]['Target_id'] for i in list(TargetValues.keys())])} self.Parameters['EnzymeEfficiencies_FW'][runName] = self.Parameters['EnzymeEfficiencies_FW'].index.map({i: list( EnzymeCapacities[i]['Forward'].values())[0] for i in list(EnzymeCapacities.keys()) if len(list(EnzymeCapacities[i]['Forward'].values())) > 0}) self.Parameters['EnzymeEfficiencies_BW'][runName] = self.Parameters['EnzymeEfficiencies_BW'].index.map({i: list( EnzymeCapacities[i]['Backward'].values())[0] for i in list(EnzymeCapacities.keys()) if len(list(EnzymeCapacities[i]['Forward'].values())) > 0}) self.Parameters['ProcessEfficiencies'][runName] = self.Parameters['ProcessEfficiencies'].index.map( {i: list(ProcessCapacities[i].values())[0] for i in list(ProcessCapacities.keys()) if len(list(ProcessCapacities[i].values())) > 0}) self.Parameters['CompartmentCapacities'][runName] = self.Parameters['CompartmentCapacities'].index.map( {i: list(CompartmentCapacities[i].values())[0] for i in list(CompartmentCapacities.keys()) if len(list(CompartmentCapacities[i].values())) > 0}) self.Parameters['Medium'][runName] = self.Parameters['Medium'].index.map(self.Medium) self.Parameters['TargetValues'][runName] = self.Parameters['TargetValues'].index.map( {TargetValues[i]['Target_id']: list(TargetValues[i]['Target_value'].values())[0] for i in list(TargetValues.keys()) if len(list(TargetValues[i]['Target_value'].values())) > 0}) def clearResults(self): """ Removes all previosly recorded results and deletes own 'Results'-attribute. """ self.LogBook.addEntry('Results cleared.') delattr(self, 'Results') def clearParameters(self): """ Removes all previosly recorded parameters and deletes own 'Parameters'-attribute. """ self.LogBook.addEntry('Parameters cleared.') delattr(self, 'Parameters') def writeResults(self, session_name='', digits=5, loggingIntermediateSteps=False): """ Creates SimulationData and SimulationParameters objects from recordings ('Results'.'Parameters'). Stores them as rbatools.RBA_SimulationData and rbatools.RBA_SimulationParameters objects as attributes. Access via attributes .SimulationData and SimulationParameters respectively. Parameters ---------- digits : int Number of decimal places in the numeric results Default: 10 session_name : str Name of Simulation session. Default: '' """ self.LogBook.addEntry('Data written under {}.'.format(session_name)) if hasattr(self, 'Results'): self.Results['uniqueReactions'] = mapIsoReactions(Controller=self) self.Results['SolutionType'] = self.Results['SolutionType'] self.Results['Mu'] = self.Results['Mu'].round(digits) self.Results['ObjectiveFunction'] = self.Results['ObjectiveFunction'].loc[( self.Results['ObjectiveFunction'] != 0).any(axis=1)].round(digits) self.Results['ObjectiveValue'] = self.Results['ObjectiveValue'].round(digits) self.Results['Proteins'] = self.Results['Proteins'].round(digits) self.Results['uniqueReactions'] = self.Results['uniqueReactions'].round(digits) self.Results['Reactions'] = self.Results['Reactions'].round(digits) self.Results['Enzymes'] = self.Results['Enzymes'].round(digits) self.Results['Processes'] = self.Results['Processes'].round(digits) self.Results['Constraints'] = self.Results['Constraints'].round(digits) self.Results['ExchangeFluxes'] = self.Results['ExchangeFluxes'].round(digits) self.SimulationData = RBA_SimulationData(StaticData=self.ModelStructure) self.SimulationData.fromSimulationResults(Controller=self, session_name=session_name) if hasattr(self, 'Parameters'): self.Parameters['EnzymeEfficiencies_FW'] = self.Parameters['EnzymeEfficiencies_FW'].round( digits) self.Parameters['EnzymeEfficiencies_BW'] = self.Parameters['EnzymeEfficiencies_BW'].round( digits) self.Parameters['ProcessEfficiencies'] = self.Parameters['ProcessEfficiencies'].round( digits) self.Parameters['CompartmentCapacities'] = self.Parameters['CompartmentCapacities'].round( digits) self.Parameters['TargetValues'] = self.Parameters['TargetValues'].round(digits) self.Parameters['Medium'] = self.Parameters['Medium'].loc[( self.Parameters['Medium'] != 0).any(axis=1)].round(digits) self.SimulationParameters = RBA_SimulationParameters(StaticData=self.ModelStructure) self.SimulationParameters.fromSimulationResults(Controller=self) def returnExchangeFluxes(self): """ Returns a dictonary with the exchang-rates of boundary-metabolites. Returns ------- Dictonary with exchange-keys and respective -rates. """ out = {} for j in self.ExchangeMap.keys(): netflux = 0 for k in self.ExchangeMap[j].keys(): netflux += self.ExchangeMap[j][k]*self.Problem.SolutionValues[k] if netflux != 0: out[j] = netflux return(out) def ConstraintSaturation(self, constraints=None): """ Determines the saturation of model constraints at current solution. Parameters ---------- constraints : str or list of str Specifies constraints(s) for which the saturation is to be determined. Default-value = None: All model-constraints are taken Returns ------- Pandas DataFrame with constraint-names as indices and the columns 'LHS', 'RHS', and 'Saturation'. 'LHS': The sum over the respoctive constraint-row multiplied elementwise with the solution vector. 'RHS': The value of the problem's righthand side, correesponding to the respective constraint. 'Saturation': The saturation of the respective constraint ('LHS'/'RHS'). (Equality constraints are always saturated) """ if constraints is None: ConstraintsInQuestion = self.Problem.LP.row_names else: if isinstance(constraints, list): ConstraintsInQuestion = constraints elif isinstance(constraints, str): ConstraintsInQuestion = [constraints] if len(list(constraints)) > 0: if isinstance(constraints[0], list): ConstraintsInQuestion = constraints[0] if isinstance(constraints[0], str): ConstraintsInQuestion = [constraints[0]] if len(list(constraints)) == 0: ConstraintsInQuestion = self.Problem.LP.row_names rhs = self.Problem.getRighthandSideValue(ConstraintsInQuestion) lhs = self.Problem.calculateLefthandSideValue(ConstraintsInQuestion) RHS = list(rhs.values()) LHS = list(lhs.values()) Out = pandas.DataFrame(columns=['LHS', 'RHS', 'Saturation'], index=ConstraintsInQuestion) for i in ConstraintsInQuestion: lhval = LHS[self.Problem.LP.rowIndicesMap[i]] rhval = RHS[self.Problem.LP.rowIndicesMap[i]] sat = numpy.nan if rhval != 0: sat = lhval/rhval Out.loc[i, 'LHS'] = lhval Out.loc[i, 'RHS'] = rhval Out.loc[i, 'Saturation'] = sat self.LogBook.addEntry( 'Saturation of constraint {} determined to be {}.'.format(i, sat)) return(Out) def setMedium(self, changes, loggingIntermediateSteps=False): """ Sets the concentration of specified growth-substrate(s) in medium. Parameters ---------- changes : dict Keys : ID of metabolite(s) in medium. Values : New concention(s) """ for species in (changes.keys()): self.Medium[species] = float(changes[species]) self.Problem.ClassicRBAmatrix.set_medium(self.Medium) self.Problem.ClassicRBAmatrix.build_matrices(self.Mu) inputMatrix = RBA_Matrix() inputMatrix.loadMatrix(matrix=self.Problem.ClassicRBAmatrix) self.Problem.LP.updateMatrix(matrix=inputMatrix, Ainds=MediumDependentCoefficients_A( self), Binds=[], CTinds=[], LBinds=None, UBinds=None) def setMu(self, Mu, loggingIntermediateSteps=False): """ Sets growth-rate to specified value. Parameters ---------- Mu : float Growth rate """ self.LogBook.addEntry('Growth-rate changed:{} --> {}'.format(self.Mu, float(Mu))) self.Problem.setMu(Mu=float(Mu), ModelStructure=self.ModelStructure, logging=loggingIntermediateSteps) self.Mu = float(Mu) def doSolve(self, runName='DontSave', loggingIntermediateSteps=False): """ Solves problem to find solution. Does the same as rbatools.RBA_Problem.solveLP(). Just has some automatic option for results-recording. Parameters ---------- runName : str Name of observation. Serves as ID for all data, originating from this run. Special values : 'DontSave' : Results are not recorded 'Auto' : Results are automatically recorded and appended to existing ones. Named with number. Any other string: Results are recorded under this name. Default: 'DontSave' """ self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: if runName is not 'DontSave': if runName is 'Auto': if hasattr(self, 'Results'): name = str(self.Results['Reactions'].shape[1]+1) if not hasattr(self, 'Results'): name = '1' if runName is not 'Auto': name = runName self.recordResults(runName=name) def findMaxGrowthRate(self, precision=0.0005, max=4, start_value=None, recording=False, loggingIntermediateSteps=False): """ Applies dichotomy-search to find the maximal feasible growth-rate. Parameters ---------- precision : float Numberic precision with which maximum is approximated. Default : 0.00001 max : float Defines the highest growth rate to be screened for. Default=4 start_value : float Defines a starting-value of the search for the maximum growth-rate. A close starting-value reduces the required number of iterations, for the algorithm to converge. If not provided search starts at growth-rate 0. Default = None recording : bool Records intermediate feasible solutions while approaching the maximum growth-rate. Default : False Returns ------- maximum feasible growth rate as float. """ minMu = 0 maxMu = max if start_value is None: testMu = minMu else: testMu = start_value iteration = 0 while (maxMu - minMu) > precision: self.setMu(Mu=testMu) self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: iteration += 1 if recording: self.recordResults('DichotomyMu_iteration_'+str(iteration)) minMu = testMu else: maxMu = testMu testMu = numpy.mean([maxMu, minMu]) self.LogBook.addEntry('Maximal growth-rate found to be: {}.'.format(minMu)) if minMu == max: print('Warning: Maximum growth rate might exceed specified range. Try rerunning this method with larger max-argument.') self.setMu(Mu=minMu) self.Problem.solveLP(logging=False) self.Problem.SolutionType = 'GrowthRate_maximization' return(minMu) def knockOut(self, gene, loggingIntermediateSteps=False): """ Simulates a gene knock out. Constrains all variables in the LP-problem (enzymes, other machineries), which require this gene(s), to zero. Parameters ---------- gene : str or list of strings ID(s) of model-proteins to be knocked out. Can either be gene-identifier, represented as ID or ProtoID of proteins in rbatools.protein_bloc.ProteinBlock.Elements class (depends on whether protein-isoforms are considered). """ if type(gene) is str: genes = [gene] if type(gene) is list: genes = gene isoform_genes = [g for g in genes if g in list(self.ModelStructure.ProteinInfo.Elements.keys( ))]+[i for g in genes for i in self.ModelStructure.ProteinInfo.Elements.keys() if self.ModelStructure.ProteinInfo.Elements[i]['ProtoID'] == g] for g in isoform_genes: self.LogBook.addEntry('Gene {} knocked out.'.format(g)) ConsumersEnzymes = self.ModelStructure.ProteinInfo.Elements[g]['associatedEnzymes'] for i in ConsumersEnzymes: LikeliestVarName = difflib.get_close_matches(i, self.Problem.LP.col_names, 1)[0] self.Problem.setLB(inputDict={LikeliestVarName: 0}, logging=loggingIntermediateSteps) self.Problem.setUB(inputDict={LikeliestVarName: 0}, logging=loggingIntermediateSteps) ConsumersProcess = self.ModelStructure.ProteinInfo.Elements[g]['SupportsProcess'] for i in ConsumersProcess: LikeliestVarName = difflib.get_close_matches( str(self.ModelStructure.ProcessInfo.Elements[i]['ID']+'_machinery'), self.Problem.LP.col_names, 1)[0] self.Problem.setLB(inputDict={LikeliestVarName: 0}, logging=loggingIntermediateSteps) self.Problem.setUB(inputDict={LikeliestVarName: 0}, logging=loggingIntermediateSteps) def FeasibleRange(self, variables=None, loggingIntermediateSteps=False): """ Determines the feasible range of model variables. Parameters ---------- variables : str or list of str Specifies variable(s) for which the feasible range is to be determined. Default-value = None: All model-variables are taken Returns ------- Dictionary with variable-names as keys and other dictionaries as values. The 'inner' dictionaries hold keys 'Min' and 'Max' with values representing lower and upper bound of feasible range respectively. E.g. : {'variableA':{'Min':42 , 'Max':9000}, 'variableB':{'Min':-9000 , 'Max':-42}} """ if variables is None: VariablesInQuestion = self.Problem.LP.col_names else: if isinstance(variables, list): VariablesInQuestion = variables elif isinstance(variables, str): VariablesInQuestion = [variables] out = {} for i in VariablesInQuestion: min = numpy.nan max = numpy.nan self.Problem.clearObjective(logging=loggingIntermediateSteps) self.Problem.setObjectiveCoefficients( inputDict={i: 1.0}, logging=loggingIntermediateSteps) self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: min = self.Problem.SolutionValues[i] self.Problem.setObjectiveCoefficients( inputDict={i: -1.0}, logging=loggingIntermediateSteps) self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: max = self.Problem.SolutionValues[i] out.update({i: {'Min': min, 'Max': max}}) self.LogBook.addEntry( 'Feasible-range of {} determined to be between {} and {}.'.format(i, min, max)) return(out) def ParetoFront(self, variable_X, variable_Y, N=10, sign_VY='max', loggingIntermediateSteps=False): """ Determine Pareto front of two model variables. Parameters ---------- variable_X : str ID of variable, representing the X-coordinate of the Pareto-front variable_Y : str ID of variable, representing the Y-coordinate of the Pareto-front N : int Number of intervals within the feasible range of variable_X. Default-value=10. sign_VY : str 'max': variable_Y is maximised 'min': variable_Y is minimised Returns ------- Pandas DataFrame with columns named after the two input variables and 'N' rows. Each row represents an interval on the Pareto front. Entries on each row are the X and Y coordinate on the Pareto front, representing the values of the two variables. """ if variable_X not in self.Problem.LP.col_names: print('Chosen Element not among problem variables') return if variable_Y not in self.Problem.LP.col_names: print('Chosen Element not among problem variables') return FR = self.FeasibleRange(variable_X) cMin = FR[variable_X]['Min'] cMax = FR[variable_X]['Max'] concentrations = [float(cMin+(cMax-cMin)*i/N) for i in range(N+1)] Out = pandas.DataFrame(columns=[variable_X, variable_Y]) oldLB = self.Problem.getLB(variable_X) oldUB = self.Problem.getUB(variable_X) iteration = -1 for conc in concentrations: iteration += 1 self.Problem.setLB(inputDict={variable_X: conc}, logging=loggingIntermediateSteps) self.Problem.setUB(inputDict={variable_X: conc}, logging=loggingIntermediateSteps) self.Problem.clearObjective(logging=loggingIntermediateSteps) if sign_VY == 'max': self.Problem.setObjectiveCoefficients( inputDict={variable_Y: -1}, logging=loggingIntermediateSteps) if sign_VY == 'min': self.Problem.setObjectiveCoefficients( inputDict={variable_Y: 1}, logging=loggingIntermediateSteps) self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: max = abs(self.Problem.ObjectiveValue) else: max = numpy.nan self.Problem.setLB(inputDict=oldLB, logging=loggingIntermediateSteps) self.Problem.setUB(inputDict=oldUB, logging=loggingIntermediateSteps) Out.loc[iteration, variable_X] = conc Out.loc[iteration, variable_Y] = max self.LogBook.addEntry( 'Pareto-front between {} and {} determined.'.format(variable_X, variable_Y)) return(Out) ### !!! Docstring ### def buildFBA(self, type='classic', objective='classic', maintenanceToBM=False): """ Derives and constructs FBA-problem from RBA-problem and stores it under attribute 'FBA'. Parameters ---------- type : str objective : str maintenanceToBM : boolean """ RBAproblem = self.Problem.LP A = RBAproblem.A.toarray() if type == 'classic': Cols2remove = list(set([RBAproblem.col_names.index(i) for i in RBAproblem.col_names if not i.startswith('R_') and not i.startswith('M_') and not i.endswith('_synthesis')] + [RBAproblem.col_names.index(i) for i in RBAproblem.col_names if '_duplicate_' in i] + [RBAproblem.col_names.index(i) for i in RBAproblem.col_names if 'enzyme' in i])) Rows2remove = [RBAproblem.row_names.index( i) for i in RBAproblem.row_names if not i.startswith('M_')] elif type == 'parsi': Cols2remove = list(set([RBAproblem.col_names.index(i) for i in RBAproblem.col_names if not i.startswith( 'R_') and not i.startswith('M_') and not i.endswith('_synthesis')]+[RBAproblem.col_names.index(i) for i in RBAproblem.col_names if '_duplicate_' in i])) Rows2remove = [RBAproblem.row_names.index( i) for i in RBAproblem.row_names if not i.startswith('R_') and not i.startswith('M_')] if objective == 'classic': if 'R_maintenance_atp' in RBAproblem.col_names: Cols2remove.append(RBAproblem.col_names.index('R_maintenance_atp')) Anew = numpy.delete(A, Cols2remove, axis=1) col_namesNew = list(numpy.delete(RBAproblem.col_names, Cols2remove)) LBnew = numpy.delete(RBAproblem.LB, Cols2remove) UBnew = numpy.delete(RBAproblem.UB, Cols2remove) fNew = numpy.delete(RBAproblem.f, Cols2remove) Anew2 = numpy.delete(Anew, Rows2remove, axis=0) row_namesNew = list(numpy.delete(RBAproblem.row_names, Rows2remove)) row_signsNew = list(numpy.delete(RBAproblem.row_signs, Rows2remove)) bNew = numpy.delete(RBAproblem.b, Rows2remove) trnaInds = [i for i in range(len(row_namesNew)) if row_namesNew[i].startswith( 'M_') and 'trna' in row_namesNew[i]] # bNew[trnaInds] = 0 if objective == 'targets': col_namesNew.append('R_BIOMASS_targetsRBA') LBnew = numpy.append(LBnew, 0) UBnew = numpy.append(UBnew, 10000) fNew = numpy.append(fNew, 0) BMrxnCol = numpy.ones((len(row_namesNew), 1)) BMrxnCol[:, 0] = bNew if maintenanceToBM: MaintenanceTarget = LBnew[col_namesNew.index('R_maintenance_atp')] BMrxnCol[row_namesNew.index('M_atp_c')] += MaintenanceTarget BMrxnCol[row_namesNew.index('M_h2o_c')] += MaintenanceTarget BMrxnCol[row_namesNew.index('M_adp_c')] -= MaintenanceTarget BMrxnCol[row_namesNew.index('M_pi_c')] -= MaintenanceTarget BMrxnCol[row_namesNew.index('M_h_c')] -= MaintenanceTarget LBnew[col_namesNew.index('R_maintenance_atp')] = 0 Anew2 = numpy.append(Anew2, -BMrxnCol, axis=1) bNew = numpy.array([0]*Anew2.shape[0]) Matrix1 = RBA_Matrix() Matrix1.A = scipy.sparse.coo_matrix(Anew2) Matrix1.b = bNew Matrix1.LB = LBnew Matrix1.UB = UBnew Matrix1.row_signs = row_signsNew Matrix1.row_names = row_namesNew Matrix1.col_names = col_namesNew Matrix1.f = fNew if type == 'classic': Matrix1.b = numpy.array([0]*len(row_signsNew)) LP1 = RBA_LP() LP1.loadMatrix(Matrix1) elif type == 'parsi': MetaboliteRows = {i: Matrix1.row_names.index( i) for i in Matrix1.row_names if i.startswith('M_')} EnzymeCols = {i: Matrix1.col_names.index( i) for i in Matrix1.col_names if i.startswith('R_') and '_enzyme' in i} Matrix2 = RBA_Matrix() Matrix2.A = scipy.sparse.coo_matrix(numpy.zeros((len(MetaboliteRows), len(EnzymeCols)))) Matrix2.b = numpy.array(Matrix1.b[list(MetaboliteRows.values())]) Matrix2.LB = numpy.array(Matrix1.LB[list(EnzymeCols.values())]) Matrix2.UB = numpy.array(Matrix1.UB[list(EnzymeCols.values())]) Matrix2.f = numpy.array(Matrix1.f[list(EnzymeCols.values())]) Matrix2.row_signs = [Matrix1.row_signs[i] for i in list(MetaboliteRows.values())] Matrix2.row_names = list(MetaboliteRows.keys()) Matrix2.col_names = list(EnzymeCols.keys()) Matrix2.mapIndices() Matrix1.b = numpy.array([0]*len(bNew)) LP1 = RBA_LP() LP1.loadMatrix(Matrix1) LP1.updateMatrix(Matrix2) self.FBA = RBA_FBA(LP1) def findMinMediumConcentration(self, metabolite, precision=0.00001, max=100, recording=False, loggingIntermediateSteps=False): """ Applies dichotomy-search to find the minimal feasible concentration of growth-substrate in medium, at a previously set growth-rate. Parameters ---------- metabolite : str ID of metabolite in medium. precision : float Numberic precision with which minimum is approximated. Default : 0.00001 max : float Defines the highest concentration rate to be screened for. Default=100 recording : bool Records intermediate feasible solutions while approaching the minimum concentration. Default : False Returns ------- minimum feasible growth-substrate concentration as float. """ minConc = 0.0 maxConc = max testConc = minConc iteration = 0 oldConc = self.Medium[metabolite] while (maxConc - minConc) > precision: self.setMedium(changes={metabolite: testConc}) self.Problem.solveLP(logging=loggingIntermediateSteps) if self.Problem.Solved: iteration += 1 if recording: run_name = 'Dichotomy_'+metabolite+'_' + \ str(testConc)+'_iteration_'+str(iteration) self.recordResults(run_name) maxConc = testConc else: minConc = testConc testConc = numpy.mean([maxConc, minConc]) self.LogBook.addEntry( 'Minimal required {} concentration found to be: {}.'.format(metabolite, maxConc)) self.setMedium(changes={metabolite: oldConc}) return(maxConc) def addProtein(self, input): """ Adds representation of individual proteins to problem. Parameters ---------- input : dict or str If input is str it has to be the ID of a protein in the model. Then this protein is added to the problem an creates: One constraint named Protein_'ID' (equality). One variable named TotalLevel_'ID' representing the total amount. One variable named Free_'ID'_'respectiveCompartment', this represents the fraction of the protein not assuming any function. It however consumes resources for synthesis (precursors and processes), which are the same as defined in the model files. And takes up space i the compartment as specified in the model-files for the protein. If input is dict it has to have two keys; 'ID' and 'UnusedProteinFraction'. By specifying this input one can define that the unused franction of the protein can also reside in other compartments and which processes it requires. The value to 'ID' is the ID of a protein in the model. The value to 'UnusedProteinFraction' is another dictionary. This can have several keys which must be model-compartments. For each of the keys the value is a dict holding IDs of model-processes as Keys and process requirements as Values (numerical). This specifies which processes each of the compartment-species of the protein requires. This generates the same constraint and TotalLevel-variable as with the simple input, however a variable representing each of the compartment-species for the unused fraction is added and incorporates the specific process requirements. E.g: input = {'ID': 'proteinA', 'UnusedProteinFraction':{'Cytoplasm':{'Translation':100}, {'Folding':10}], 'Membrane':{'Translation':100}, {'Folding':20}, {'Secretion':100} } } This adds 'proteinA' to the model, where the unused fraction can reside either in the Cytoplasm or the Membrane. However while the cytosolic-species only requires the processes 'Translation' and 'Folding'; the membrane-bound species also requires 'Secretion' and occupies more folding capacity. Then the constraint 'Protein_proteinA' is added and the 3 variables 'TotalLevel_proteinA', 'Free_proteinA_Cytoplasm' and 'Free_proteinA_Membrane'. """ if type(input) is str: input = {'ID': input} if 'ID' not in list(input.keys()): print('Error, no protein ID provided') return if input['ID'] not in list(self.ModelStructure.ProteinInfo.Elements.keys()): print('Error, protein not in model') return if 'UnusedProteinFraction' not in list(input.keys()): input.update({'UnusedProteinFraction': {self.ModelStructure.ProteinInfo.Elements[input['ID']]['Compartment']: self.ModelStructure.ProteinInfo.Elements[input['ID']]['ProcessRequirements']}}) self.LogBook.addEntry('Protein {} added with specifications {}.'.format( input['ID'], str(json.dumps(input)))) Muindexlist = [] ## Building RBA_Matrix-object for new constraint-row, representing protein ## UsedProtein = RBA_Matrix() UsedProtein.A = scipy.sparse.coo_matrix( buildUsedProteinConstraint(Controler=self, protein=input['ID'])) UsedProtein.b = numpy.array([float(0)]) UsedProtein.f = numpy.array(self.Problem.LP.f) UsedProtein.LB = numpy.array(self.Problem.LP.LB) UsedProtein.UB = numpy.array(self.Problem.LP.UB) UsedProtein.row_signs = ['E'] UsedProtein.row_names = ['Protein_'+input['ID']] UsedProtein.col_names = self.Problem.LP.col_names ## Add used protein row to problem ## self.Problem.LP.addMatrix(matrix=UsedProtein) ## Add used protein row to reference Matrix (Mu == 1) ## self.Problem.MuOneMatrix.addMatrix(matrix=UsedProtein) ## Building RBA_Matrix-object for new variable-col, representing total level of protein ## TotProtein = RBA_Matrix() TotProtein.A = scipy.sparse.coo_matrix(numpy.array(numpy.matrix( numpy.array([float(0)]*self.Problem.LP.A.shape[0]+[float(-1)])).transpose())) TotProtein.f = numpy.array([float(0)]) TotProtein.LB = numpy.array([float(0)]) TotProtein.UB = numpy.array([float(100000.0)]) TotProtein.b = numpy.array(list(self.Problem.LP.b)+list(UsedProtein.b)) TotProtein.row_signs = self.Problem.LP.row_signs+UsedProtein.row_signs TotProtein.row_names = self.Problem.LP.row_names+UsedProtein.row_names TotProtein.col_names = ['TotalLevel_'+input['ID']] ## Add total protein col to problem ## self.Problem.LP.addMatrix(matrix=TotProtein) ## Add total protein col to reference Matrix (Mu == 1) ## self.Problem.MuOneMatrix.addMatrix(matrix=TotProtein) ## Building RBA_Matrix-object for new variable-col,## ## representing each compartment-species of the protein ## for comp_species in list(input['UnusedProteinFraction'].keys()): ## Initiate RBA_Matrix object## UnusedProtein = RBA_Matrix() UnusedProtein.col_names = ['Free_'+input['ID']+'_'+comp_species] ## Extract required processes for protein and the respective demand ## ProcIDs = list(input['UnusedProteinFraction'][comp_species].keys()) Preq = list(input['UnusedProteinFraction'][comp_species].values()) ProcessCost = dict( zip([self.ModelStructure.ProcessInfo.Elements[k]['ID'] for k in ProcIDs], Preq)) ## Get required charged trna buildingblocks and their stoichiometry in protein ## composition = self.ModelStructure.ProteinInfo.Elements[input['ID']]['AAcomposition'] ## Extract the composition of charged trnas in terms of metabolic species ## species = self.ModelStructure.ProcessInfo.Elements['Translation']['Components'] ## Determine required metabolites and their stoichiometry in protein ## MetaboliteCost = buildCompositionofUnusedProtein( species=species, composition=composition) ## Assemble process and metabolite requirements into stoichiometric coloumn vector ## ## And add to RBA_Matrix object ## colToAdd = numpy.array(numpy.matrix(numpy.array(list(MetaboliteCost.values())+list(ProcessCost.values()) + [float(1)]+[self.ModelStructure.ProteinInfo.Elements[input['ID']]['AAnumber']])).transpose()) UnusedProtein.A = scipy.sparse.coo_matrix(colToAdd) ## Add other information to RBA_Matrix object ## UnusedProtein.row_names = list(MetaboliteCost.keys())+[str(pc+'_capacity') for pc in list( ProcessCost.keys())]+['Protein_'+input['ID']]+[str(comp_species + '_density')] UnusedProtein.b = numpy.zeros(len(UnusedProtein.row_names)) UnusedProtein.row_signs = ['E']*len(UnusedProtein.row_names) UnusedProtein.LB = numpy.array([float(0)]) UnusedProtein.UB = numpy.array([float(100000.0)]) UnusedProtein.f = numpy.array([float(0)]) self.ProteinDilutionIndices = list( zip(list(MetaboliteCost.keys()), UnusedProtein.col_names*len(list(MetaboliteCost.keys())))) ## Add free protein col to problem ## self.Problem.LP.addMatrix(matrix=UnusedProtein) ## Add free protein col to reference Matrix (Mu == 1) ## self.Problem.MuOneMatrix.addMatrix(matrix=UnusedProtein) ## Find coefficients of unused protein column, subject to dilution (Metabolite and Process cost) ## ## And add them to MuDepIndices_A ## nonZeroEntries = numpy.where(UnusedProtein.A != 0)[0] self.Problem.MuDepIndices_A += [(UnusedProtein.row_names[i], UnusedProtein.col_names[0]) for i in nonZeroEntries if UnusedProtein.row_names[i] != 'Protein_'+input['ID'] and UnusedProtein.row_names[i] not in self.Problem.CompartmentDensities] self.setMu(self.Problem.Mu) ## !!! ## def eukaryoticDensities(self, totalAA=3.1, CompartmentRelationships=True, CompartmentComponents=False): Compartments = ['n', 'mIM', 'vM', 'mIMS', 'm', 'erM', 'mOM', 'x', 'c', 'cM', 'gM'] Signs = ['L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L', 'L'] totalAA = 3.1*0.71 m_mIM = 0.66 m_mIMS = 2 m_mOM = 8 DensityIndices = [self.Problem.LP.row_names.index( i) for i in self.Problem.CompartmentDensities] A = self.Problem.LP.A.toarray() A[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA self.Problem.LP.A = scipy.sparse.coo_matrix(A) A0 = self.Problem.MuOneMatrix.A.toarray() A0[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA self.Problem.MuOneMatrix.A = scipy.sparse.coo_matrix(A0) CompartmentMatrix = RBA_Matrix() A = numpy.ones((len(Compartments)+1, len(Compartments))) Eye = -numpy.eye(len(Compartments)) A[0:len(Compartments), :] = Eye CompartmentMatrix.A = scipy.sparse.coo_matrix(A) CompartmentMatrix.b = numpy.array([float(0)]*len(Compartments)+[float(1)]) CompartmentMatrix.f = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.LB = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.UB = numpy.array([float(1)]*len(Compartments)) CompartmentMatrix.row_signs = ['L']*len(Compartments)+['E'] # CompartmentMatrix.row_signs = ['E']*(len(Compartments)+1) CompartmentMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density', 'TotalCapacity'] CompartmentMatrix.col_names = ['F_n', 'F_mIM', 'F_vM', 'F_mIMS', 'F_m', 'F_erM', 'F_mOM', 'F_x', 'F_cM', 'F_gM', 'F_c'] # CompartmentMatrix.row_signs[CompartmentMatrix.col_names.index('F_m')]='E' if CompartmentRelationships: Anew = numpy.zeros((A.shape[0]+3, A.shape[1])) Anew[0:A.shape[0], :] = A CompartmentMatrix.row_names += ['m_mIM', 'm_mIMS', 'm_mOM'] CompartmentMatrix.row_signs += ['E', 'E', 'E'] CompartmentMatrix.b = numpy.array(list(CompartmentMatrix.b)+[float(0)]*3) Anew[CompartmentMatrix.row_names.index( 'm_mIM'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mIMS'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mOM'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mIM'), CompartmentMatrix.col_names.index('F_mIM')] = -m_mIM Anew[CompartmentMatrix.row_names.index( 'm_mIMS'), CompartmentMatrix.col_names.index('F_mIMS')] = -m_mIMS Anew[CompartmentMatrix.row_names.index( 'm_mOM'), CompartmentMatrix.col_names.index('F_mOM')] = -m_mOM CompartmentMatrix.A = scipy.sparse.coo_matrix(Anew) self.Problem.LP.addMatrix(matrix=CompartmentMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=CompartmentMatrix) if CompartmentComponents: AlipidsA = numpy.zeros((7, len(Compartments))) Alipids = RBA_Matrix() Alipids.col_names = ['F_n', 'F_mIM', 'F_vM', 'F_mIMS', 'F_m', 'F_erM', 'F_mOM', 'F_x', 'F_cM', 'F_gM', 'F_c'] Alipids.row_names = ['M_pc_SC_c', 'M_pe_SC_c', 'M_ptd1ino_SC_c', 'M_ps_SC_c', 'M_clpn_SC_m', 'M_pa_SC_c', 'M_ergst_c'] Alipids.row_signs += ['E', 'E', 'E', 'E', 'E', 'E', 'E'] Alipids.b = numpy.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) Alipids.LB = numpy.array([float(0)]*len(Compartments)) Alipids.UB = numpy.array([float(1)]*len(Compartments)) Alipids.f = numpy.array([float(0)]*len(Compartments)) AlipidsA[Alipids.row_names.index('M_pc_SC_c'), Alipids.col_names.index( 'F_mIM')] = -0.0000883*totalAA AlipidsA[Alipids.row_names.index('M_pe_SC_c'), Alipids.col_names.index( 'F_mIM')] = -0.00005852*totalAA AlipidsA[Alipids.row_names.index('M_ptd1ino_SC_c'), Alipids.col_names.index('F_mIM')] = -0.00003377*totalAA AlipidsA[Alipids.row_names.index('M_ps_SC_c'), Alipids.col_names.index( 'F_mIM')] = -0.00000873*totalAA AlipidsA[Alipids.row_names.index('M_clpn_SC_m'), Alipids.col_names.index('F_mIM')] = -0.00002*totalAA AlipidsA[Alipids.row_names.index('M_pa_SC_c'), Alipids.col_names.index( 'F_mIM')] = -0.0000039*totalAA AlipidsA[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_mIM')] = -0.008547*totalAA self.Problem.MuDepIndices_A += [('M_pc_SC_c', 'F_mIM'), ('M_pe_SC_c', 'F_mIM'), ('M_ptd1ino_SC_c', 'F_mIM'), ('M_ps_SC_c', 'F_mIM'), ('M_clpn_SC_m', 'F_mIM'), ('M_pa_SC_c', 'F_mIM'), ('M_ergst_c', 'F_mIM')] AlipidsA[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_mOM')] = -0.000636*totalAA AlipidsA[Alipids.row_names.index('M_pe_SC_c'), Alipids.col_names.index( 'F_mOM')] = -0.0004822*totalAA AlipidsA[Alipids.row_names.index('M_ptd1ino_SC_c'), Alipids.col_names.index('F_mOM')] = -0.0001289*totalAA AlipidsA[Alipids.row_names.index('M_ps_SC_c'), Alipids.col_names.index( 'F_mOM')] = -0.0000167*totalAA AlipidsA[Alipids.row_names.index('M_clpn_SC_m'), Alipids.col_names.index( 'F_mOM')] = -0.00004467*totalAA AlipidsA[Alipids.row_names.index('M_pa_SC_c'), Alipids.col_names.index( 'F_mOM')] = -0.0000696*totalAA self.Problem.MuDepIndices_A += [('M_pc_SC_c', 'F_mOM'), ('M_pe_SC_c', 'F_mOM'), ('M_ptd1ino_SC_c', 'F_mOM'), ('M_ps_SC_c', 'F_mOM'), ('M_clpn_SC_m', 'F_mOM'), ('M_pa_SC_c', 'F_mOM')] Alipids.A = scipy.sparse.coo_matrix(AlipidsA) Alipids.mapIndices() self.Problem.LP.updateMatrix(Alipids, Ainds=[('M_pc_SC_c', 'F_mIM'), ('M_pe_SC_c', 'F_mIM'), ('M_ptd1ino_SC_c', 'F_mIM'), ('M_ps_SC_c', 'F_mIM'), ('M_clpn_SC_m', 'F_mIM'), ('M_pa_SC_c', 'F_mIM'), ( 'M_ergst_c', 'F_mIM'), ('M_pc_SC_c', 'F_mOM'), ('M_pe_SC_c', 'F_mOM'), ('M_ptd1ino_SC_c', 'F_mOM'), ('M_ps_SC_c', 'F_mOM'), ('M_clpn_SC_m', 'F_mOM'), ('M_pa_SC_c', 'F_mOM')]) self.Problem.MuOneMatrix.updateMatrix(Alipids, Ainds=[('M_pc_SC_c', 'F_mIM'), ('M_pe_SC_c', 'F_mIM'), ('M_ptd1ino_SC_c', 'F_mIM'), ('M_ps_SC_c', 'F_mIM'), ('M_clpn_SC_m', 'F_mIM'), ( 'M_pa_SC_c', 'F_mIM'), ('M_ergst_c', 'F_mIM'), ('M_pc_SC_c', 'F_mOM'), ('M_pe_SC_c', 'F_mOM'), ('M_ptd1ino_SC_c', 'F_mOM'), ('M_ps_SC_c', 'F_mOM'), ('M_clpn_SC_m', 'F_mOM'), ('M_pa_SC_c', 'F_mOM')]) ## !!! ## def eukaryoticDensities2(self, totalAA=3.1, CompartmentRelationships=True, CompartmentComponents=False): Compartments = ['n', 'mIM', 'vM', 'mIMS', 'm', 'erM', 'mOM', 'x', 'c', 'cM', 'gM'] totalAA = 3.1*0.69 m_mIM = 1.11 m_mIMS = 0.7 m_mOM = 7.2 DensityIndices = [self.Problem.LP.row_names.index( i) for i in self.Problem.CompartmentDensities] A = self.Problem.LP.A.toarray() A[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA self.Problem.LP.A = scipy.sparse.coo_matrix(A) A0 = self.Problem.MuOneMatrix.A.toarray() A0[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA self.Problem.MuOneMatrix.A = scipy.sparse.coo_matrix(A0) CompartmentMatrix = RBA_Matrix() A = numpy.ones((len(Compartments)+1, len(Compartments))) Eye = -numpy.eye(len(Compartments)) A[0:len(Compartments), :] = Eye CompartmentMatrix.A = scipy.sparse.coo_matrix(A) CompartmentMatrix.b = numpy.array([float(0)]*len(Compartments)+[float(1)]) CompartmentMatrix.f = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.LB = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.UB = numpy.array([float(1)]*len(Compartments)) CompartmentMatrix.row_signs = ['L']*(len(Compartments)+1) # CompartmentMatrix.row_signs = ['E']*(len(Compartments)+1) CompartmentMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density', 'TotalCapacity'] CompartmentMatrix.col_names = ['F_n', 'F_mIM', 'F_vM', 'F_mIMS', 'F_m', 'F_erM', 'F_mOM', 'F_x', 'F_cM', 'F_gM', 'F_c'] # CompartmentMatrix.row_signs[CompartmentMatrix.col_names.index('F_m')]='E' if CompartmentRelationships: Anew = numpy.zeros((A.shape[0]+3, A.shape[1])) Anew[0:A.shape[0], :] = A CompartmentMatrix.row_names += ['m_mIM', 'm_mIMS', 'm_mOM'] CompartmentMatrix.row_signs += ['E', 'E', 'E'] CompartmentMatrix.b = numpy.array(list(CompartmentMatrix.b)+[float(0)]*3) Anew[CompartmentMatrix.row_names.index( 'm_mIM'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mIMS'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mOM'), CompartmentMatrix.col_names.index('F_m')] = float(1) Anew[CompartmentMatrix.row_names.index( 'm_mIM'), CompartmentMatrix.col_names.index('F_mIM')] = -m_mIM Anew[CompartmentMatrix.row_names.index( 'm_mIMS'), CompartmentMatrix.col_names.index('F_mIMS')] = -m_mIMS Anew[CompartmentMatrix.row_names.index( 'm_mOM'), CompartmentMatrix.col_names.index('F_mOM')] = -m_mOM CompartmentMatrix.A = scipy.sparse.coo_matrix(Anew) self.Problem.LP.addMatrix(matrix=CompartmentMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=CompartmentMatrix) if CompartmentComponents: PC_mIM = 0.0000883 PE_mIM = 0.00005852 PI_mIM = 0.00003377 PS_mIM = 0.00000873 CL_mIM = 0.00002 PA_mIM = 0.0000039 ES_mIM = 0.008547 PC_mOM = 0.000636 PE_mOM = 0.0004822 PI_mOM = 0.0001289 PS_mOM = 0.0000167 CL_mOM = 0.00004467 PA_mOM = 0.0000696 ES_mOM = 0.0 ConstraintMatrix = numpy.zeros((7, 0)) Alipids = RBA_Matrix() Alipids.col_names = [] Alipids.row_names = ['M_pc_SC_c', 'M_pe_SC_c', 'M_ptd1ino_SC_c', 'M_ps_SC_c', 'M_clpn_SC_m', 'M_pa_SC_c', 'M_ergst_c'] Alipids.row_signs = [ self.Problem.LP.row_signs[self.Problem.LP.row_names.index(i)] for i in Alipids.row_names] Alipids.b = numpy.array( [self.Problem.LP.b[self.Problem.LP.row_names.index(i)] for i in Alipids.row_names]) Alipids.LB = numpy.array([]) Alipids.UB = numpy.array([]) Alipids.f = numpy.array([]) MudepIndices = [] for pc in self.ModelStructure.ProcessInfo.Elements.keys(): if self.ModelStructure.ProcessInfo.Elements[pc]['ID'] not in self.Problem.LP.col_names: continue ConstraintMatrixNew = numpy.zeros( (ConstraintMatrix.shape[0], ConstraintMatrix.shape[1]+1)) ConstraintMatrixNew[:, 0:ConstraintMatrix.shape[1]] = ConstraintMatrix Alipids.col_names.append(self.ModelStructure.ProcessInfo.Elements[pc]['ID']) # Alipids.LB = numpy.array(list(Alipids.LB).append(list(self.Problem.LP.LB)[ # self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])) # Alipids.UB = numpy.array(list(Alipids.UB).append(list(self.Problem.LP.UB)[ # self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])) # Alipids.f = numpy.array(list(Alipids.f).append(list(self.Problem.LP.f)[ # self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])) Alipids.LB = numpy.concatenate([Alipids.LB, numpy.array( list(self.Problem.LP.LB)[self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])]) Alipids.UB = numpy.concatenate([Alipids.UB, numpy.array( list(self.Problem.LP.UB)[self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])]) Alipids.f = numpy.concatenate([Alipids.f, numpy.array( list(self.Problem.LP.f)[self.Problem.LP.col_names.index(self.ModelStructure.ProcessInfo.Elements[pc]['ID'])])]) for p in self.ModelStructure.ProcessInfo.Elements[pc]['Composition'].keys(): lE = sum(list(self.ModelStructure.ProteinInfo.Elements[p]['AAcomposition'].values( )))*self.ModelStructure.ProcessInfo.Elements[pc]['Composition'][p] if self.ModelStructure.ProteinInfo.Elements[p]['Compartment'] == 'mOM': ConstraintMatrixNew[Alipids.col_names.index( 'M_pc_SC_c'), ConstraintMatrix.shape[1]] -= PC_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pe_SC_c'), ConstraintMatrix.shape[1]] -= PE_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ptd1ino_SC_c'), ConstraintMatrix.shape[1]] -= PI_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ps_SC_c'), ConstraintMatrix.shape[1]] -= PS_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_clpn_SC_m'), ConstraintMatrix.shape[1]] -= CL_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pa_SC_c'), ConstraintMatrix.shape[1]] -= PA_mOM*lE/totalAA MudepIndices += ('M_pc_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_pe_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_ptd1ino_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_ps_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_clpn_SC_m', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_pa_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) elif self.ModelStructure.ProteinInfo.Elements[p]['Compartment'] == 'mIM': ConstraintMatrixNew[Alipids.col_names.index( 'M_pc_SC_c'), ConstraintMatrix.shape[1]] -= PC_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pe_SC_c'), ConstraintMatrix.shape[1]] -= PE_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ptd1ino_SC_c'), ConstraintMatrix.shape[1]] -= PI_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ps_SC_c'), ConstraintMatrix.shape[1]] -= PS_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_clpn_SC_m'), ConstraintMatrix.shape[1]] -= CL_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pa_SC_c'), ConstraintMatrix.shape[1]] -= PA_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ergst_c'), ConstraintMatrix.shape[1]] -= ES_mIM*lE/totalAA MudepIndices += ('M_pc_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_pe_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_ptd1ino_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_ps_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_clpn_SC_m', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_pa_SC_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) MudepIndices += ('M_ergst_c', self.ModelStructure.ProcessInfo.Elements[pc]['ID']) ConstraintMatrix = ConstraintMatrixNew for e in self.ModelStructure.EnzymeInfo.Elements.keys(): if e not in self.Problem.LP.col_names: continue ConstraintMatrixNew = numpy.zeros( (ConstraintMatrix.shape[0], ConstraintMatrix.shape[1]+1)) ConstraintMatrixNew[:, 0:ConstraintMatrix.shape[1]] = ConstraintMatrix Alipids.col_names.append(e) # xnew = list(self.Problem.LP.LB)[self.Problem.LP.col_names.index(e)] Alipids.LB = numpy.concatenate([Alipids.LB, numpy.array( list(self.Problem.LP.LB)[self.Problem.LP.col_names.index(e)])]) Alipids.UB = numpy.concatenate([Alipids.UB, numpy.array( list(self.Problem.LP.UB)[self.Problem.LP.col_names.index(e)])]) Alipids.f = numpy.concatenate([Alipids.f, numpy.array( list(self.Problem.LP.f)[self.Problem.LP.col_names.index(e)])]) # Alipids.LB = numpy.array(list(Alipids.LB).append(xnew)) # Alipids.UB = numpy.array(list(Alipids.UB).append( # list(self.Problem.LP.UB)[self.Problem.LP.col_names.index(e)])) # Alipids.f = numpy.array(list(Alipids.f).append( # list(self.Problem.LP.f)[self.Problem.LP.col_names.index(e)])) for p in self.ModelStructure.EnzymeInfo.Elements[e]['Subunits'].keys(): lE = sum( list(self.ModelStructure.ProteinInfo.Elements[p]['AAcomposition'].values())) lE *= self.ModelStructure.EnzymeInfo.Elements[e]['Subunits'][p]['StochFac'] if self.ModelStructure.ProteinInfo.Elements[p]['Compartment'] == 'mOM': ConstraintMatrixNew[Alipids.col_names.index( 'M_pc_SC_c'), ConstraintMatrix.shape[1]] -= PC_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pe_SC_c'), ConstraintMatrix.shape[1]] -= PE_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ptd1ino_SC_c'), ConstraintMatrix.shape[1]] -= PI_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ps_SC_c'), ConstraintMatrix.shape[1]] -= PS_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_clpn_SC_m'), ConstraintMatrix.shape[1]] -= CL_mOM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pa_SC_c'), ConstraintMatrix.shape[1]] -= PA_mOM*lE/totalAA MudepIndices += ('M_pc_SC_c', e) MudepIndices += ('M_pe_SC_c', e) MudepIndices += ('M_ptd1ino_SC_c', e) MudepIndices += ('M_ps_SC_c', e) MudepIndices += ('M_clpn_SC_m', e) MudepIndices += ('M_pa_SC_c', e) elif self.ModelStructure.ProteinInfo.Elements[p]['Compartment'] == 'mIM': ConstraintMatrixNew[Alipids.col_names.index( 'M_pc_SC_c'), ConstraintMatrix.shape[1]] -= PC_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pe_SC_c'), ConstraintMatrix.shape[1]] -= PE_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ptd1ino_SC_c'), ConstraintMatrix.shape[1]] -= PI_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ps_SC_c'), ConstraintMatrix.shape[1]] -= PS_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_clpn_SC_m'), ConstraintMatrix.shape[1]] -= CL_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_pa_SC_c'), ConstraintMatrix.shape[1]] -= PA_mIM*lE/totalAA ConstraintMatrixNew[Alipids.col_names.index( 'M_ergst_c'), ConstraintMatrix.shape[1]] -= ES_mIM*lE/totalAA MudepIndices += ('M_pc_SC_c', e) MudepIndices += ('M_pe_SC_c', e) MudepIndices += ('M_ptd1ino_SC_c', e) MudepIndices += ('M_ps_SC_c', e) MudepIndices += ('M_clpn_SC_m', e) MudepIndices += ('M_pa_SC_c', e) MudepIndices += ('M_ergst_c', e) ConstraintMatrix = ConstraintMatrixNew self.Problem.MuDepIndices_A += MudepIndices Alipids.A = scipy.sparse.coo_matrix(ConstraintMatrix) Alipids.mapIndices() self.Problem.LP.updateMatrix(Alipids, Ainds=MudepIndices) self.Problem.LP.updateMatrix(MuOneMatrix, Ainds=MudepIndices) ## !!! ## def eukaryoticDensities3(self, totalAA=3.1, VolumeFraction=False, CompartmentRelationships=True, CompartmentComponents=False): Compartments = ['n', 'mIM', 'vM', 'mIMS', 'm', 'erM', 'mOM', 'x', 'c', 'cM', 'gM'] totalAA = 3.1*0.91 m_mIM = 0.66 m_mIMS = 2 m_mOM = 8 DensityIndices = [self.Problem.LP.row_names.index( i) for i in self.Problem.CompartmentDensities] A = self.Problem.LP.A.toarray() # A[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA # self.Problem.LP.A = scipy.sparse.coo_matrix(A) A0 = self.Problem.MuOneMatrix.A.toarray() # A0[numpy.min(DensityIndices):numpy.max(DensityIndices)+1, :] /= totalAA # self.Problem.MuOneMatrix.A = scipy.sparse.coo_matrix(A0) OccupationMatrix = RBA_Matrix() # A = numpy.ones((len(Compartments)+1, len(Compartments))) A = -numpy.eye(len(Compartments)) # Eye = -numpy.eye(len(Compartments)) # A[0:len(Compartments), :] = Eye OccupationMatrix.A = scipy.sparse.coo_matrix(A) # OccupationMatrix.b = numpy.array([-0.209*totalAA]+[float(0)]*(len(Compartments)-1)+[float(totalAA)]) OccupationMatrix.b = numpy.array([-0.209*totalAA]+[float(0)]*(len(Compartments)-1)) OccupationMatrix.f = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.LB = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.UB = numpy.array([float(totalAA)]*len(Compartments)) # OccupationMatrix.row_signs = ['E']*(len(Compartments))+['L'] OccupationMatrix.row_signs = ['E']*(len(Compartments)) # OccupationMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', # 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density', 'TotalProtein'] OccupationMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density'] OccupationMatrix.col_names = ['O_n', 'O_mIM', 'O_vM', 'O_mIMS', 'O_m', 'O_erM', 'O_mOM', 'O_x', 'O_cM', 'O_gM', 'O_c'] # CompartmentMatrix.row_signs[CompartmentMatrix.col_names.index('F_m')]='E' OccupationMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=OccupationMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=OccupationMatrix) CompartmentMatrix = RBA_Matrix() if VolumeFraction: A = numpy.eye(len(Compartments))*5/float(totalAA) else: A = numpy.eye(len(Compartments))/float(totalAA) CompartmentMatrix.A = scipy.sparse.coo_matrix(A) CompartmentMatrix.b = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.f = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.LB = numpy.array([float(0)]*len(Compartments)) CompartmentMatrix.UB = numpy.array([float(totalAA)]*len(Compartments)) CompartmentMatrix.row_signs = ['L']*(len(Compartments)) # CompartmentMatrix.row_signs = ['E']*(len(Compartments)) CompartmentMatrix.row_names = ['n_volume', 'mIM_volume', 'vM_volume', 'mIMS_volume', 'm_volume', 'erM_volume', 'mOM_volume', 'x_volume', 'cM_volume', 'gM_volume', 'c_volume'] CompartmentMatrix.col_names = ['O_n', 'O_mIM', 'O_vM', 'O_mIMS', 'O_m', 'O_erM', 'O_mOM', 'O_x', 'O_cM', 'O_gM', 'O_c'] CompartmentMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=CompartmentMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=CompartmentMatrix) VolumeMatrix = RBA_Matrix() A = numpy.ones((len(Compartments)+1, len(Compartments))) Eye = -numpy.eye(len(Compartments)) A[0:len(Compartments), :] = Eye # A[len(Compartments), [1, 5, 6, 8, 9]] = 0 # A[len(Compartments), 8] = 0 VolumeMatrix.A = scipy.sparse.coo_matrix(A) VolumeMatrix.b = numpy.array([float(0)]*len(Compartments)+[float(1)]) VolumeMatrix.f = numpy.array([float(0)]*len(Compartments)) VolumeMatrix.LB = numpy.array([float(0)]*len(Compartments)) VolumeMatrix.UB = numpy.array([float(1)]*len(Compartments)) VolumeMatrix.row_signs = ['L']*(len(Compartments))+['E'] # VolumeMatrix.row_signs = ['E']*(len(Compartments))+['E'] VolumeMatrix.row_names = ['n_volume', 'mIM_volume', 'vM_volume', 'mIMS_volume', 'm_volume', 'erM_volume', 'mOM_volume', 'x_volume', 'cM_volume', 'gM_volume', 'c_volume', 'TotalVolume'] VolumeMatrix.col_names = ['F_n', 'F_mIM', 'F_vM', 'F_mIMS', 'F_m', 'F_erM', 'F_mOM', 'F_x', 'F_cM', 'F_gM', 'F_c'] if not CompartmentRelationships: VolumeMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=VolumeMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=VolumeMatrix) if CompartmentRelationships: Anew = numpy.zeros((A.shape[0]+3, A.shape[1])) Anew[0:A.shape[0], :] = A VolumeMatrix.row_names += ['m_mIM', 'm_mIMS', 'm_mOM'] VolumeMatrix.row_signs += ['E', 'E', 'E'] VolumeMatrix.b = numpy.array(list(VolumeMatrix.b)+[float(0)]*3) Anew[VolumeMatrix.row_names.index( 'm_mIM'), VolumeMatrix.col_names.index('F_m')] = float(1) Anew[VolumeMatrix.row_names.index( 'm_mIMS'), VolumeMatrix.col_names.index('F_m')] = float(1) Anew[VolumeMatrix.row_names.index( 'm_mOM'), VolumeMatrix.col_names.index('F_m')] = float(1) Anew[VolumeMatrix.row_names.index( 'm_mIM'), VolumeMatrix.col_names.index('F_mIM')] = -m_mIM Anew[VolumeMatrix.row_names.index( 'm_mIMS'), VolumeMatrix.col_names.index('F_mIMS')] = -m_mIMS Anew[VolumeMatrix.row_names.index( 'm_mOM'), VolumeMatrix.col_names.index('F_mOM')] = -m_mOM VolumeMatrix.A = scipy.sparse.coo_matrix(Anew) VolumeMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=VolumeMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=VolumeMatrix) if CompartmentComponents: PC_mIM = 0.0000883 PE_mIM = 0.00005852 PI_mIM = 0.00003377 PS_mIM = 0.00000873 CL_mIM = 0.00002 PA_mIM = 0.0000039 ES_mIM = 0.008547 PC_mOM = 0.000636 PE_mOM = 0.0004822 PI_mOM = 0.0001289 PS_mOM = 0.0000167 CL_mOM = 0.00004467 PA_mOM = 0.0000696 ES_mOM = 0.0 PC_vM = 0.0003635 PE_vM = 0.4156 PI_vM = 0.0001297 PS_vM = 0.00003435 CL_vM = 0.0000068 PA_vM = 0.0000186 ES_vM = 0.0142 PC_n = 0.000055 PE_n = 0.000035 PI_n = 0.000017 PS_n = 0.0000072 CL_n = 0.0 PA_n = 0.0000031 ES_n = 0.0086 PC_gM = 0.00043 PE_gM = 0.00044 PI_gM = 0.00041 PS_gM = 0.0 CL_gM = 0.00022 PA_gM = 0.0 ES_gM = 0.0 PC_n = 0.0 PE_n = 0.0 PI_n = 0.0 PS_n = 0.0 CL_n = 0.0 PA_n = 0.0 ES_n = 0.0 PC_gM = 0.0 PE_gM = 0.0 PI_gM = 0.0 PS_gM = 0.0 CL_gM = 0.0 PA_gM = 0.0 ES_gM = 0.0 PC_vM = 0.0 PE_vM = 0.0 PI_vM = 0.0 PS_vM = 0.0 CL_vM = 0.0 PA_vM = 0.0 ES_vM = 0.0 PC_mIM = 0.0 PE_mIM = 0.0 PI_mIM = 0.0 PS_mIM = 0.0 CL_mIM = 0.0 PA_mIM = 0.0 ES_mIM = 0.0 PC_mOM = 0.0 PE_mOM = 0.0 PI_mOM = 0.0 PS_mOM = 0.0 CL_mOM = 0.0 PA_mOM = 0.0 ES_mOM = 0.0 Alipids = RBA_Matrix() Alipids.col_names = ['F_mIM', 'F_mOM', 'F_vM', 'F_n', 'F_gM'] Alipids.row_names = ['M_pc_SC_c', 'M_pe_SC_c', 'M_ptd1ino_SC_c', 'M_ps_SC_c', 'M_clpn_SC_m', 'M_pa_SC_c', 'M_ergst_c'] Alipids.row_signs = [ self.Problem.LP.row_signs[self.Problem.LP.row_names.index(i)] for i in Alipids.row_names] Alipids.b = numpy.array( [self.Problem.LP.b[self.Problem.LP.row_names.index(i)] for i in Alipids.row_names]) Alipids.LB = numpy.array([0, 0, 0, 0, 0]) Alipids.UB = numpy.array([1, 1, 1, 1, 1]) Alipids.f = numpy.array([0, 0, 0, 0, 0]) LipidMatrix = numpy.zeros((7, 5)) LipidMatrix[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_mIM')] = PC_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pe_SC_c'), Alipids.col_names.index('F_mIM')] = PE_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ptd1ino_SC_c'), Alipids.col_names.index('F_mIM')] = PI_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ps_SC_c'), Alipids.col_names.index('F_mIM')] = PS_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_clpn_SC_m'), Alipids.col_names.index('F_mIM')] = CL_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pa_SC_c'), Alipids.col_names.index('F_mIM')] = PA_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_mIM')] = ES_mIM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_mOM')] = PC_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pe_SC_c'), Alipids.col_names.index('F_mOM')] = PE_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ptd1ino_SC_c'), Alipids.col_names.index('F_mOM')] = PI_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ps_SC_c'), Alipids.col_names.index('F_mOM')] = PS_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_clpn_SC_m'), Alipids.col_names.index('F_mOM')] = CL_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pa_SC_c'), Alipids.col_names.index('F_mOM')] = PA_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_mOM')] = ES_mOM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_vM')] = PC_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pe_SC_c'), Alipids.col_names.index('F_vM')] = PE_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ptd1ino_SC_c'), Alipids.col_names.index('F_vM')] = PI_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ps_SC_c'), Alipids.col_names.index('F_vM')] = PS_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_clpn_SC_m'), Alipids.col_names.index('F_vM')] = CL_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pa_SC_c'), Alipids.col_names.index('F_vM')] = PA_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_vM')] = ES_vM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_n')] = PC_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_pe_SC_c'), Alipids.col_names.index('F_n')] = PE_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_ptd1ino_SC_c'), Alipids.col_names.index('F_n')] = PI_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_ps_SC_c'), Alipids.col_names.index('F_n')] = PS_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_clpn_SC_m'), Alipids.col_names.index('F_n')] = CL_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_pa_SC_c'), Alipids.col_names.index('F_n')] = PA_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_n')] = ES_n/totalAA LipidMatrix[Alipids.row_names.index( 'M_pc_SC_c'), Alipids.col_names.index('F_gM')] = PC_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pe_SC_c'), Alipids.col_names.index('F_gM')] = PE_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ptd1ino_SC_c'), Alipids.col_names.index('F_gM')] = PI_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ps_SC_c'), Alipids.col_names.index('F_gM')] = PS_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_clpn_SC_m'), Alipids.col_names.index('F_gM')] = CL_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_pa_SC_c'), Alipids.col_names.index('F_gM')] = PA_gM/totalAA LipidMatrix[Alipids.row_names.index( 'M_ergst_c'), Alipids.col_names.index('F_gM')] = ES_gM/totalAA MudepIndices = [('M_pc_SC_c', i) for i in Alipids.col_names]+[('M_pe_SC_c', i) for i in Alipids.col_names]+[('M_ptd1ino_SC_c', i) for i in Alipids.col_names]+[('M_ps_SC_c', i) for i in Alipids.col_names]+[('M_clpn_SC_m', i) for i in Alipids.col_names]+[('M_pa_SC_c', i) for i in Alipids.col_names]+[('M_ergst_c', i) for i in Alipids.col_names] self.Problem.MuDepIndices_A += MudepIndices Alipids.A = scipy.sparse.coo_matrix(LipidMatrix) Alipids.mapIndices() self.Problem.LP.updateMatrix(Alipids, Ainds=MudepIndices) self.Problem.MuOneMatrix.updateMatrix(Alipids, Ainds=MudepIndices) ## !!! ## def eukaryoticDensities4(self, CompartmentRelationships=True): Compartments = ['n', 'mIM', 'vM', 'mIMS', 'm', 'erM', 'mOM', 'x', 'c', 'cM', 'gM'] totalAA = 3.1*0.91 DensityIndices = [self.Problem.LP.row_names.index( i) for i in self.Problem.CompartmentDensities] A = self.Problem.LP.A.toarray() A0 = self.Problem.MuOneMatrix.A.toarray() OccupationMatrix = RBA_Matrix() A = numpy.ones((len(Compartments)+1, len(Compartments))) Eye = -numpy.eye(len(Compartments)) A[0:len(Compartments), :] = Eye OccupationMatrix.b = numpy.array(list([float(0)]*len(Compartments))+[totalAA]) OccupationMatrix.f = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.LB = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.UB = numpy.array([float(totalAA)]*len(Compartments)) OccupationMatrix.row_signs = ['E']*(len(Compartments)+1) OccupationMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density', 'O_total'] OccupationMatrix.col_names = ['O_n', 'O_mIM', 'O_vM', 'O_mIMS', 'O_m', 'O_erM', 'O_mOM', 'O_x', 'O_cM', 'O_gM', 'O_c'] if CompartmentRelationships: m_mIM = 0.5 m_mIMS = 1 m_mOM = 5 Anew = numpy.zeros((A.shape[0]+3, A.shape[1])) Anew[0:A.shape[0], :] = A OccupationMatrix.row_names += ['m_mIM', 'm_mIMS', 'm_mOM'] OccupationMatrix.row_signs += ['E', 'E', 'E'] OccupationMatrix.b = numpy.array(list(OccupationMatrix.b)+[float(0)]*3) Anew[OccupationMatrix.row_names.index( 'm_mIM'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mIMS'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mOM'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mIM'), OccupationMatrix.col_names.index('O_mIM')] = -m_mIM Anew[OccupationMatrix.row_names.index( 'm_mIMS'), OccupationMatrix.col_names.index('O_mIMS')] = -m_mIMS Anew[OccupationMatrix.row_names.index( 'm_mOM'), OccupationMatrix.col_names.index('O_mOM')] = -m_mOM OccupationMatrix.A = scipy.sparse.coo_matrix(Anew) else: OccupationMatrix.A = scipy.sparse.coo_matrix(A) OccupationMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=OccupationMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=OccupationMatrix) # {'Index':{'Param1':'+','Param2':'+','Param2':'-'}} #Type: 'Sum'# # {'Index':'Param1'} self.Problem.MuDependencies['FromParameters']['b'].update( {'n_density': 'AAres_PG_nucleus_DNA'}) self.Problem.MuDependencies['FromParameters']['b'].update( {'O_total': {'Equation': 'amino_acid_concentration_total - AAres_PG_secreted_Euk', 'Variables': ['amino_acid_concentration_total', 'AAres_PG_secreted_Euk']}}) self.Problem.MuDependencies['FromMatrix']['b'].remove('n_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('mIM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('vM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('mIMS_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('m_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('erM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('mOM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('x_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('cM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('gM_density') self.Problem.MuDependencies['FromMatrix']['b'].remove('c_density') ## !!! ## def eukaryoticDensities_calibration(self, CompartmentRelationships=False, mitoProportions={}, amino_acid_concentration_total='amino_acid_concentration_total'): Compartments = ['n', 'mIM', 'vM', 'mIMS', 'm', 'erM', 'mOM', 'x', 'c', 'cM', 'gM'] totalAA_parameter = amino_acid_concentration_total totalAA = 3.1 DensityIndices = [self.Problem.LP.row_names.index( i) for i in self.Problem.CompartmentDensities] A = self.Problem.LP.A.toarray() A0 = self.Problem.MuOneMatrix.A.toarray() OccupationMatrix = RBA_Matrix() A = numpy.ones((len(Compartments)+1, len(Compartments))) Eye = -numpy.eye(len(Compartments)) A[0:len(Compartments), :] = Eye OccupationMatrix.b = numpy.array(list([float(0)]*len(Compartments))+[totalAA]) OccupationMatrix.f = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.LB = numpy.array([float(0)]*len(Compartments)) OccupationMatrix.UB = numpy.array([float(totalAA)]*len(Compartments)) OccupationMatrix.row_signs = ['E']*(len(Compartments)+1) OccupationMatrix.row_names = ['n_density', 'mIM_density', 'vM_density', 'mIMS_density', 'm_density', 'erM_density', 'mOM_density', 'x_density', 'cM_density', 'gM_density', 'c_density', 'O_total'] OccupationMatrix.col_names = ['O_n', 'O_mIM', 'O_vM', 'O_mIMS', 'O_m', 'O_erM', 'O_mOM', 'O_x', 'O_cM', 'O_gM', 'O_c'] if CompartmentRelationships: if len(list(mitoProportions.keys())) == 3: m_mIM = mitoProportions['m_mIM'] m_mIMS = mitoProportions['m_mIMS'] m_mOM = mitoProportions['m_mOM'] Anew = numpy.zeros((A.shape[0]+3, A.shape[1])) Anew[0:A.shape[0], :] = A OccupationMatrix.row_names += ['m_mIM', 'm_mIMS', 'm_mOM'] OccupationMatrix.row_signs += ['E', 'E', 'E'] OccupationMatrix.b = numpy.array(list(OccupationMatrix.b)+[float(0)]*3) Anew[OccupationMatrix.row_names.index( 'm_mIM'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mIMS'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mOM'), OccupationMatrix.col_names.index('O_m')] = float(1) Anew[OccupationMatrix.row_names.index( 'm_mIM'), OccupationMatrix.col_names.index('O_mIM')] = -m_mIM Anew[OccupationMatrix.row_names.index( 'm_mIMS'), OccupationMatrix.col_names.index('O_mIMS')] = -m_mIMS Anew[OccupationMatrix.row_names.index( 'm_mOM'), OccupationMatrix.col_names.index('O_mOM')] = -m_mOM OccupationMatrix.A = scipy.sparse.coo_matrix(Anew) else: OccupationMatrix.A = scipy.sparse.coo_matrix(A) OccupationMatrix.mapIndices() self.Problem.LP.addMatrix(matrix=OccupationMatrix) self.Problem.MuOneMatrix.addMatrix(matrix=OccupationMatrix) # {'Index':{'Param1':'+','Param2':'+','Param2':'-'}} #Type: 'Sum'# # {'Index':'Param1'} self.Problem.MuDependencies['FromParameters']['b'].update( {'n_density': {'Equation': '-nonenzymatic_proteins_n/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_n', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'mIM_density': { 'Equation': '-nonenzymatic_proteins_mIM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_mIM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'vM_density': { 'Equation': '-nonenzymatic_proteins_vM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_vM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'mIMS_density': { 'Equation': '-nonenzymatic_proteins_mIMS/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_mIMS', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update( {'m_density': {'Equation': '-nonenzymatic_proteins_m/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_m', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'erM_density': { 'Equation': '-nonenzymatic_proteins_erM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_erM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'mOM_density': { 'Equation': '-nonenzymatic_proteins_mOM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_mOM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update( {'x_density': {'Equation': '-nonenzymatic_proteins_x/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_x', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'cM_density': { 'Equation': '-nonenzymatic_proteins_cM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_cM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'gM_density': { 'Equation': '-nonenzymatic_proteins_gM/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_gM', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update( {'c_density': {'Equation': '-nonenzymatic_proteins_c/inverse_average_protein_length', 'Variables': ['nonenzymatic_proteins_c', 'inverse_average_protein_length']}}) self.Problem.MuDependencies['FromParameters']['b'].update({'O_total': {'Equation': '{} - nonenzymatic_proteins_Secreted/inverse_average_protein_length'.format(totalAA_parameter), 'Variables': [ totalAA_parameter, 'nonenzymatic_proteins_Secreted', 'inverse_average_protein_length']}}) # !!! deal with hardcoded parameter_names... !!! def estimate_specific_Kapps(self, proteomicsData, flux_bounds, mu, biomass_function=None, target_biomass_function=True, parsimonious_fba=True): """ Parameters ---------- proteomicsData : pandas.DataFrame (in mmol/gDW) flux_bounds : pandas.DataFrame (in mmol/(gDW*h)) mu : float (in 1/h) biomass_function : str target_biomass_function : bool atp_maintenance_to_biomassfunction : bool eukaryotic : bool """ from scipy.stats.mstats import gmean old_model = copy.deepcopy(self.model) for i in self.model.targets.target_groups._elements_by_id['translation_targets'].concentrations._elements: if i.species == 'average_protein_c': new_agg = rba.xml.parameters.Aggregate(id_='total_protein', type_='multiplication') new_agg.function_references.append(rba.xml.parameters.FunctionReference( function='amino_acid_concentration_total')) new_agg.function_references.append(rba.xml.parameters.FunctionReference( function='inverse_average_protein_length')) self.model.parameters.aggregates._elements.append(new_agg) i.value = 'total_protein' else: self.model.targets.target_groups._elements_by_id['translation_targets'].concentrations._elements.remove( i) for i in self.model.targets.target_groups._elements_by_id['transcription_targets'].concentrations._elements: if i.species == 'mrna': new_agg = rba.xml.parameters.Aggregate(id_='total_rna', type_='multiplication') new_agg.function_references.append(rba.xml.parameters.FunctionReference( function='RNA_massfraction_CarbonLimitation')) new_agg.function_references.append( rba.xml.parameters.FunctionReference(function='RNA_inversemillimolarweight')) self.model.parameters.aggregates._elements.append(new_agg) i.value = 'total_rna' else: self.model.targets.target_groups._elements_by_id['transcription_targets'].concentrations._elements.remove( i) self.rebuild_from_model() self.setMedium(self.Medium) self.addExchangeReactions() self.setMu(mu) if target_biomass_function: self.buildFBA(objective='targets', maintenanceToBM=True) BMfunction = 'R_BIOMASS_targetsRBA' else: self.buildFBA(objective='classic', maintenanceToBM=False) BMfunction = biomass_function for j in [i for i in self.Medium.keys() if self.Medium[i] == 0]: Exrxn = 'R_EX_'+j.split('M_')[-1]+'_e' self.FBA.setUB({Exrxn: 0}) rxn_LBs = {} rxn_UBs = {} for rx in flux_bounds['Reaction_ID']: lb = flux_bounds.loc[flux_bounds['Reaction_ID'] == rx, 'LB'].values[0] ub = flux_bounds.loc[flux_bounds['Reaction_ID'] == rx, 'UB'].values[0] if not pandas.isna(lb): rxn_LBs.update({rx: lb}) if not
pandas.isna(ub)
pandas.isna
# -*- coding: utf-8 -*- import pandas as pd import numpy as np import scipy.stats as stats from datetime import datetime, timedelta import math import os import logging from pathlib import Path import ast class bpeace2(): ''' Class used to process bpeace2 data (Spring 2020 into Summer 2020) ''' def __init__(self): self.study = 'bpeace2' self.id_crossover = pd.read_excel('../../data/raw/bpeace2/admin/id_crossover.xlsx',sheet_name='id') self.beacon_id = pd.read_excel('../../data/raw/bpeace2/admin/id_crossover.xlsx',sheet_name='beacon') def move_to_purgatory(self,path_to_file,path_to_destination): ''' Moves problematic file to the purgatory data directory Returns void ''' print('\t\tMoving to purgatory...') os.replace(path_to_file, path_to_destination) def process_beacon(self, remove_extreme=True): ''' Combines data from all sensors on all beacons Returns True if able to save one dataframe that contains all the data at regular intervals in /data/processed directory ''' # list of all beacons used in the study beacon_list = [1,5,6,7,10,11,15,16,17,19,21,22,23,24,25,26,28,29,30,32,34,36,38,40,41,44,46,48] beacons_folder='../../data/raw/bpeace2/beacon' beacon_data_list = [] # list where each item will be a dataframe for a beacon print('\nProcessing beacon data...') for beacon in beacon_list: # correcting the number since the values <10 have leading zero in directory number = f'{beacon:02}' print(f'\t{number}') beacon_folder=f'{beacons_folder}/B{number}' beacon_df = pd.DataFrame() # dataframe specific to the beacon # getting other ids beacon_crossover_info = self.id_crossover.loc[self.id_crossover['Beacon']==beacon].reset_index(drop=True) beiwe = beacon_crossover_info['Beiwe'][0] fitbit = beacon_crossover_info['Fitbit'][0] redcap = beacon_crossover_info['REDCap'][0] del beacon_crossover_info def import_and_merge(csv_dir,number): df_list = [] for file in os.listdir(csv_dir+'/'): try: # reading in raw data (csv for one day at a time) and appending it to the overal dataframe day_df = pd.read_csv(f'{csv_dir}/{file}', index_col='Timestamp',parse_dates=True, infer_datetime_format=True) df_list.append(day_df) except Exception as inst: # for whatever reason, some files have header issues - these are moved to purgatory to undergo triage #print(f'{inst}; filename: {file}') print(f'Issue encountered while importing {csv_dir}/{file}, skipping...') self.move_to_purgatory(f'{csv_dir}/{file}',f'../../data/purgatory/{self.study}-B{number}-py3-{file}') df = pd.concat(df_list).resample('5T').mean() # resampling to 5 minute intervals (raw data is at about 1 min) return df # Python3 Sensors # --------------- # dataframe for sensors using python3 py3_df = import_and_merge(f'{beacon_folder}/adafruit', number) # Changing NO2 readings on beacons without NO2 readings to CO (wiring issues - see Hagen) if number in ['28','29','32','34','36','38','40','46','30','44']: print('\t\t\tNo NO2 sensor - removing values') py3_df[['CO','T_CO','RH_CO']] = py3_df[['NO2','T_NO2','RH_NO2']] py3_df[['NO2','T_NO2','RH_NO2']] = np.nan py3_df['CO'] /= 1000 # converting ppb measurements to ppm # Python2 Sensors # --------------- # dataframe for sensors using python3 py2_df = import_and_merge(f'{beacon_folder}/sensirion', number) # merging python2 and 3 sensor dataframes beacon_df = py3_df.merge(right=py2_df,left_index=True,right_index=True,how='outer') # getting relevant data only beacon_info = self.beacon_id[self.beacon_id['Beiwe'] == beiwe] start_date = beacon_info['start_date'].values[0] end_date = beacon_info['end_date'].values[0] beacon_df = beacon_df[start_date:end_date] del beacon_info # removing bad values from important variables important_vars = ['TVOC','CO2','NO2','CO','PM_C_2p5','PM_C_10','T_NO2','T_CO','Temperature [C]','Lux','RH_NO2','RH_CO','Relative Humidity'] # variables that should never have anything less than zero for var in ['CO2','T_NO2','T_CO','Temperature [C]','RH_NO2','RH_CO','Relative Humidity']: beacon_df[var].mask(beacon_df[var] < 0, np.nan, inplace=True) # variables that should never be less than a certain limit for var, threshold in zip(['CO2','Lux'],[100,-1]): beacon_df[var].mask(beacon_df[var] < threshold, np.nan, inplace=True) if remove_extreme: # removing extreme values (zscore greater than 2.5) # for var in important_vars: # beacon_df['z'] = abs(beacon_df[var] - beacon_df[var].mean()) / beacon_df[var].std(ddof=0) # beacon_df.loc[beacon_df['z'] > 2.5, var] = np.nan # beacon_df.drop(columns='z',inplace=True) #IQR method for var in important_vars: # Computing IQR Q1 = beacon_df[var].quantile(0.25) Q3 = beacon_df[var].quantile(0.75) IQR = Q3 - Q1 # Filtering Values between Q1-1.5IQR and Q3+1.5IQR beacon_df[var].mask(beacon_df[var]<Q1-1.5*IQR,np.nan,inplace=True) beacon_df[var].mask(beacon_df[var]>Q3+1.5*IQR,np.nan,inplace=True) # adding columns for the pt details beacon_df['Beacon'] = beacon beacon_df['Beiwe'] = beiwe beacon_df['Fitbit'] = fitbit beacon_df['REDCap'] = redcap beacon_data_list.append(beacon_df) beacon_data = pd.concat(beacon_data_list) # saving try: filename = f'../../data/processed/bpeace2-beacon-IQR.parquet' if not remove_extreme: filename = f'../../data/processed/bpeace2-beacon-with-extreme.parquet' beacon_data.to_parquet(filename, compression='brotli') except: return False return True def process_gps(self, data_dir = '/Volumes/HEF_Dissertation_Research/utx000/extension/data/beiwe/gps/'): ''' Processes the raw gps data into one csv file for each participant and saves into /data/processed/ All GPS data are recorded at 1-second intervals and stored in separate data files for every hour. The data are combined into one dataframe per participant, downsampled to 5-minute intervals using the mode value for those 5-minutes (after rounding coordinates to five decimal places), and combined into a final dataframe that contains all participants' data. Returns True is able to process the data, false otherwise. ''' print('\tProcessing gps data...') gps_df = pd.DataFrame() for participant in os.listdir(data_dir): if len(participant) == 8: # checking to make sure we only look for participant directories pid = participant print(f'\t\tWorking for Participant: {pid}') participant_df = pd.DataFrame() # for file in os.listdir(f'{data_dir}{pid}/gps/'): if file[-1] == 'v': # so we only import cs[v] files try: hourly_df = pd.read_csv(f'{data_dir}{pid}/gps/{file}',usecols=[1,2,3,4,5]) # all columns but UTC except KeyError: print(f'Problem with gps data for {file} for Participant {pid}') self.move_to_purgatory(f'{data_dir}{pid}/gps/{file}',f'../../data/purgatory/{self.study}-{pid}-gps-{file}') if len(hourly_df) > 0: # append to participant df if there were data for that hour participant_df = participant_df.append(hourly_df,ignore_index=True) # converting utc to cdt participant_df['Time'] = pd.to_datetime(participant_df['UTC time']) - timedelta(hours=5) participant_df.drop(['UTC time'],axis=1,inplace=True) participant_df.set_index('Time',inplace=True) # rounding gps and taking the mode for every 5-minutes participant_df = round(participant_df,5) participant_df = participant_df.resample('5T').apply({lambda x: stats.mode(x)[0]}) # converting values to numeric and removing NaN datapoints participant_df.columns = ['Lat','Long','Alt','Accuracy'] for col in ['Lat','Long','Alt','Accuracy']: participant_df[col] = pd.to_numeric(participant_df[col],errors='coerce') participant_df.dropna(inplace=True) # getting participant's home coordinates home_coords = self.beacon_id.set_index('Beiwe') home_lat = home_coords.loc[pid,'Lat'] home_long = home_coords.loc[pid,'Long'] # getting distance R = 6.371*10**6 # radius of the earth in meters participant_df['X_Distance'] = abs( R * (participant_df['Lat'] - home_lat) * math.pi * math.cos(home_long) / 180) participant_df['Y_Distance'] = abs( R * (participant_df['Long'] - home_long) * math.pi / 180) dist = [] for i in range(len(participant_df)): dist.append(math.sqrt(math.pow(participant_df.iloc[i,-2],2) + math.pow(participant_df.iloc[i,-1],2))) participant_df['Distance_Home'] = dist participant_df['Beiwe'] = pid gps_df = gps_df.append(participant_df) try: gps_df.to_csv(f'../../data/processed/bpeace2-gps.csv') except: return False return True def process_weekly_surveys(self): ''' Processes raw weekly survey answers. The survey IDs are: - eQ2L3J08ChlsdSXXKOoOjyLJ: morning - 7TaT8zapOWO0xdtONnsY8CE0: evening Returns True if able to save two dataframes for morning/evening survey data in /data/processed directory ''' # defining some variables for ease of understanding parent_dir = '../../data/raw/bpeace2/beiwe/survey_answers/' morning_survey_id = 'eQ2L3J08ChlsdSXXKOoOjyLJ' evening_survey_id = '7TaT8zapOWO0xdtONnsY8CE0' weekly_survey_id = 'lh9veS0aSw2KfrfwSytYjxVr' # defining the final dataframes to append to evening_survey_df = pd.DataFrame() morning_survey_df = pd.DataFrame() weekly_survey_df = pd.DataFrame() # Morning Survey Data # ------------------- print('\tProcessing morning survey data...') # looping through the participants and then all their data for participant in os.listdir(parent_dir): # making sure we don't read from any hidden directories/files if len(participant) == 8: pid = participant participant_df = pd.DataFrame(columns=['ID','Content','Stress','Lonely','Sad','Energy','TST','SOL','NAW','Restful']) for file in os.listdir(f'{parent_dir}{participant}/survey_answers/{morning_survey_id}/'): # reading raw data df = pd.read_csv(f'{parent_dir}{participant}/survey_answers/{morning_survey_id}/{file}') # adding new row try: participant_df.loc[datetime.strptime(file[:-4],'%Y-%m-%d %H_%M_%S') - timedelta(hours=5)] = [pid,df.loc[4,'answer'],df.loc[5,'answer'],df.loc[6,'answer'],df.loc[7,'answer'],df.loc[8,'answer'], df.loc[0,'answer'],df.loc[1,'answer'],df.loc[2,'answer'],df.loc[3,'answer']] except KeyError: print(f'\t\tProblem with morning survey {file} for Participant {pid} - Participant most likely did not answer a question') self.move_to_purgatory(f'{parent_dir}{participant}/survey_answers/{morning_survey_id}/{file}',f'../../data/purgatory/{self.study}-{pid}-survey-morning-{file}') # appending participant df to overall df morning_survey_df = morning_survey_df.append(participant_df) else: print(f'\t\tDirectory {participant} is not valid') # replacing string values with numeric morning_survey_df.replace({'Not at all':0,'A little bit':1,'Quite a bit':2,'Very Much':3, 'Low energy':0,'Low Energy':0,'Somewhat low energy':1,'Neutral':2,'Somewhat high energy':3,'High energy':4,'High Energy':4, 'Not at all restful':0,'Slightly restful':1,'Somewhat restful':2,'Very restful':3, 'NO_ANSWER_SELECTED':-1,'NOT_PRESENTED':-1,'SKIP QUESTION':-1},inplace=True) # fixing any string inputs outside the above range morning_survey_df['NAW'] = pd.to_numeric(morning_survey_df['NAW'],errors='coerce') # Evening Survey Data # ------------------- print('\tProcessing evening survey data...') for participant in os.listdir(parent_dir): if len(participant) == 8: pid = participant # less columns participant_df = pd.DataFrame(columns=['ID','Content','Stress','Lonely','Sad','Energy']) for file in os.listdir(f'{parent_dir}{participant}/survey_answers/{evening_survey_id}/'): df = pd.read_csv(f'{parent_dir}{participant}/survey_answers/{evening_survey_id}/{file}') try: participant_df.loc[datetime.strptime(file[:-4],'%Y-%m-%d %H_%M_%S') - timedelta(hours=5)] = [pid,df.loc[0,'answer'],df.loc[1,'answer'],df.loc[2,'answer'],df.loc[3,'answer'],df.loc[4,'answer']] except KeyError: print(f'\t\tProblem with evening survey {file} for Participant {pid} - Participant most likely did not answer a question') self.move_to_purgatory(f'{parent_dir}{participant}/survey_answers/{evening_survey_id}/{file}',f'../../data/purgatory/{self.study}-{pid}-survey-evening-{file}') evening_survey_df = evening_survey_df.append(participant_df) else: print(f'\t\tDirectory {participant} is not valid') evening_survey_df.replace({'Not at all':0,'A little bit':1,'Quite a bit':2,'Very Much':3, 'Low energy':0,'Low Energy':0,'Somewhat low energy':1,'Neutral':2,'Somewhat high energy':3,'High energy':4,'High Energy':4, 'Not at all restful':0,'Slightly restful':1,'Somewhat restful':2,'Very restful':3, 'NO_ANSWER_SELECTED':-1,'NOT_PRESENTED':-1,'SKIP QUESTION':-1},inplace=True) # Weekly Survey Data # ------------------- print('\tProcessing weekly survey data...') for participant in os.listdir(parent_dir): if len(participant) == 8: pid = participant # less columns participant_df = pd.DataFrame(columns=['ID','Upset','Unable','Stressed','Confident','Your_Way','Cope','Able','Top','Angered','Overcome']) try: for file in os.listdir(f'{parent_dir}{participant}/survey_answers/{weekly_survey_id}/'): df = pd.read_csv(f'{parent_dir}{participant}/survey_answers/{weekly_survey_id}/{file}') try: participant_df.loc[datetime.strptime(file[:-4],'%Y-%m-%d %H_%M_%S') - timedelta(hours=6)] = [pid,df.loc[1,'answer'],df.loc[2,'answer'],df.loc[3,'answer'],df.loc[4,'answer'],df.loc[5,'answer'],df.loc[6,'answer'],df.loc[7,'answer'],df.loc[8,'answer'],df.loc[9,'answer'],df.loc[10,'answer']] except KeyError: try: participant_df.loc[datetime.strptime(file[:-4],'%Y-%m-%d %H_%M_%S') - timedelta(hours=6)] = [pid,df.loc[0,'answer'],df.loc[1,'answer'],df.loc[2,'answer'],df.loc[3,'answer'],df.loc[4,'answer'],df.loc[5,'answer'],df.loc[6,'answer'],df.loc[7,'answer'],df.loc[8,'answer'],df.loc[9,'answer']] except: print(f'\t\tProblem with weekly survey {file} for Participant {pid} - Participant most likely did not answer a question') self.move_to_purgatory(f'{parent_dir}{participant}/survey_answers/{weekly_survey_id}/{file}',f'../../data/purgatory/{self.study}-{pid}-survey-weekly-{file}') weekly_survey_df = weekly_survey_df.append(participant_df) except FileNotFoundError: print(f'\t\tParticipant {pid} does not seem to have submitted any weekly surveys - check directory') else: print(f'\t\tDirectory {participant} is not valid') weekly_survey_df.replace({'Not at all':0,'A little bit':1,'Quite a bit':2,'Very Much':3, 'Never':0,'Almost Never':1,'Sometimes':2,'Fairly Often':3,'Very Often':4, 'Low energy':0,'Low Energy':0,'Somewhat low energy':1,'Neutral':2,'Somewhat high energy':3,'High energy':4,'High Energy':4, 'Not at all restful':0,'Slightly restful':1,'Somewhat restful':2,'Very restful':3, 'NO_ANSWER_SELECTED':-1,'NOT_PRESENTED':-1,'SKIP QUESTION':-1},inplace=True) # saving try: morning_survey_df.to_csv(f'../../data/processed/bpeace2-morning-survey.csv') evening_survey_df.to_csv(f'../../data/processed/bpeace2-evening-survey.csv') weekly_survey_df.to_csv(f'../../data/processed/bpeace2-weekly-survey.csv') except: return False return True def process_environment_survey(self, data_file='../../data/raw/bpeace2/surveys/EESurvey_E1_raw.csv'): ''' Processes raw environment survey (first instance) and combines relevant data into processed directory Returns True if processed, False otherwise ''' print('\tProcessing first environment survey...') ee = pd.read_csv(data_file,usecols=[0,2,4,5,6,7,8,9],parse_dates=[1]) ee.columns = ['REDCap','Timestamp','Apartment','Duplex','House','Dorm','Hotel','Other'] ee.dropna(subset=['Timestamp'],inplace=True) ee.set_index('Timestamp',inplace=True) # saving try: ee.to_csv(f'../../data/processed/bpeace2-ee-survey.csv') except: return False return True def process_fitbit(self): ''' Processes fitbit data Returns True if processed, False otherwise ''' print('\tProcessing Fitbit data...') def import_fitbit(filename, pt_dir=f"../../data/raw/bpeace2/fitbit/"): ''' Imports the specified file for each participant in the directory Inputs: - filename: string corresponding to the filename to look for for each participant Returns a dataframe with the combined data from all participants ''' print(f"\tReading from file {filename}") df = pd.DataFrame() for pt in os.listdir(pt_dir): if pt[0] != ".": print(f"\t\tReading for participant {pt}") try: temp = pd.read_csv(f"{pt_dir}{pt}/fitbit_{filename}.csv", index_col=0, parse_dates=True) if filename[:4] == "intr": temp = process_fitbit_intraday(temp) temp["beiwe"] = pt df = df.append(temp) except FileNotFoundError: print(f"\t\tFile {filename} not found for participant {pt}") return df def get_device_df(info_df): ''' Take dictionary-like entries for fitbit info dataframe for each row in a dataframe and makes a new dataframe Inputs: - info_df: the fitbit info dataframe with the dictionary-like entries Returns a dataframe for the device column ''' overall_dict = {} for row in range(len(info_df)): Dict = ast.literal_eval(info_df['devices'][row]) if type(Dict) == dict: Dict = Dict elif type(Dict) in [tuple,list] and len(Dict) > 1: Dict = Dict[0] else: continue for key in Dict.keys(): overall_dict.setdefault(key, []) overall_dict[key].append(Dict[key]) # adding in the date of recording overall_dict.setdefault('date', []) overall_dict['date'].append(info_df.index[row]) df = pd.DataFrame(overall_dict) df['date'] = pd.to_datetime(df['date'],errors='coerce') return df.set_index('date') def get_daily_sleep(daily_df): ''' Creates a dataframe with the daily sleep data summarized Inputs: - daily_df: dataframe created from the daily fitbit csv file Returns a dataframe of the daily sleep data ''' overall_dict = {} for row in range(len(daily_df)): # in case Fitbit didn't record sleep records for that night - value is NaN pt = daily_df['beiwe'][row] # pts with classic sleep data if pt in ['awa8uces','ewvz3zm1','pgvvwyvh']: continue if type(daily_df['sleep'][row]) == float: continue else: Dict = ast.literal_eval(daily_df['sleep'][row]) if type(Dict) == dict: Dict = Dict else: Dict = Dict[0] for key in Dict.keys(): overall_dict.setdefault(key, []) overall_dict[key].append(Dict[key]) # adding in the date of recording overall_dict.setdefault('date', []) overall_dict['date'].append(daily_df.index[row]) # adding beiwe id overall_dict.setdefault('beiwe', []) overall_dict['beiwe'].append(daily_df['beiwe'][row]) df = pd.DataFrame(overall_dict) df['date'] = pd.to_datetime(df['date'],errors='coerce') # removing classic sleep stage data df = df[df['type'] != 'classic'] return df.set_index('date') def get_sleep_stages(daily_sleep): ''' Creates a dataframe for the minute sleep data Input(s): - daily_sleep: dataframe holding the daily sleep data with a column called minuteData Returns: - sleep_stages: a dataframe with sleep stage data for every stage transition - summary: a dataframe with the nightly sleep stage information ''' data_dict = {'startDate':[],'endDate':[],'dateTime':[],'level':[],'seconds':[],'beiwe':[]} summary_dict = {'startDate':[],'endDate':[],'deep_count':[],'deep_minutes':[],'light_count':[],'light_minutes':[], 'rem_count':[],'rem_minutes':[],'wake_count':[],'wake_minutes':[],'beiwe':[]} for row in range(len(daily_sleep)): d0 = pd.to_datetime(daily_sleep['startTime'][row]) d1 = pd.to_datetime(daily_sleep['dateOfSleep'][row]) sleep_dict = daily_sleep['levels'][row] for key in sleep_dict.keys(): if key == 'data': # data without short wake periods temp_data = sleep_dict['data'] for temp_data_dict in temp_data: for data_key in temp_data_dict.keys(): data_dict[data_key].append(temp_data_dict[data_key]) data_dict['startDate'].append(d0.date()) data_dict['endDate'].append(d1.date()) data_dict['beiwe'].append(daily_sleep['beiwe'][row]) elif key == 'summary': # nightly summary data - already in dictionary form for summary_key in sleep_dict['summary'].keys(): stage_dict = sleep_dict['summary'][summary_key] for stage_key in ['count','minutes']: summary_dict[f'{summary_key}_{stage_key}'].append(stage_dict[stage_key]) summary_dict['startDate'].append(d0.date()) summary_dict['endDate'].append(d1.date()) summary_dict['beiwe'].append(daily_sleep['beiwe'][row]) else: # shortData or data with short wake periods - don't need pass sleep_stages = pd.DataFrame(data_dict) sleep_stages.columns = ['start_date','end_date','time','stage','time_at_stage','beiwe'] # renaming columns # adding column for numeric value of sleep stage def numeric_from_str_sleep_stage(row): if row['stage'] == 'wake': return 0 elif row['stage'] == 'light': return 1 elif row['stage'] == 'deep': return 2 elif row['stage'] == 'rem': return 3 else: return -1 sleep_stages['value'] = sleep_stages.apply(lambda row: numeric_from_str_sleep_stage(row), axis=1) summary =
pd.DataFrame(summary_dict)
pandas.DataFrame
#!/usr/bin/env python # -*- coding:utf-8 -*- """ Date: 2022/2/2 23:26 Desc: 东方财富网-行情首页-沪深京 A 股 """ import requests import pandas as pd def stock_zh_a_spot_em() -> pd.DataFrame: """ 东方财富网-沪深京 A 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://82.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80,m:1 t:2,m:1 t:23,m:0 t:81 s:2048", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "_", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "_", "_", "_", "市净率", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = temp_df.index + 1 temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") return temp_df def stock_zh_b_spot_em() -> pd.DataFrame: """ 东方财富网- B 股-实时行情 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 实时行情 :rtype: pandas.DataFrame """ url = "http://28.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:7,m:1 t:3", "fields": "f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f12,f13,f14,f15,f16,f17,f18,f20,f21,f23,f24,f25,f22,f11,f62,f128,f136,f115,f152", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return pd.DataFrame() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df.columns = [ "_", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "换手率", "市盈率-动态", "量比", "_", "代码", "_", "名称", "最高", "最低", "今开", "昨收", "_", "_", "_", "市净率", "_", "_", "_", "_", "_", "_", "_", "_", "_", ] temp_df.reset_index(inplace=True) temp_df["index"] = range(1, len(temp_df) + 1) temp_df.rename(columns={"index": "序号"}, inplace=True) temp_df = temp_df[ [ "序号", "代码", "名称", "最新价", "涨跌幅", "涨跌额", "成交量", "成交额", "振幅", "最高", "最低", "今开", "昨收", "量比", "换手率", "市盈率-动态", "市净率", ] ] temp_df["最新价"] = pd.to_numeric(temp_df["最新价"], errors="coerce") temp_df["涨跌幅"] = pd.to_numeric(temp_df["涨跌幅"], errors="coerce") temp_df["涨跌额"] = pd.to_numeric(temp_df["涨跌额"], errors="coerce") temp_df["成交量"] = pd.to_numeric(temp_df["成交量"], errors="coerce") temp_df["成交额"] = pd.to_numeric(temp_df["成交额"], errors="coerce") temp_df["振幅"] = pd.to_numeric(temp_df["振幅"], errors="coerce") temp_df["最高"] = pd.to_numeric(temp_df["最高"], errors="coerce") temp_df["最低"] = pd.to_numeric(temp_df["最低"], errors="coerce") temp_df["今开"] = pd.to_numeric(temp_df["今开"], errors="coerce") temp_df["昨收"] = pd.to_numeric(temp_df["昨收"], errors="coerce") temp_df["量比"] = pd.to_numeric(temp_df["量比"], errors="coerce") temp_df["换手率"] = pd.to_numeric(temp_df["换手率"], errors="coerce") temp_df["市盈率-动态"] = pd.to_numeric(temp_df["市盈率-动态"], errors="coerce") temp_df["市净率"] = pd.to_numeric(temp_df["市净率"], errors="coerce") return temp_df def code_id_map_em() -> dict: """ 东方财富-股票和市场代码 http://quote.eastmoney.com/center/gridlist.html#hs_a_board :return: 股票和市场代码 :rtype: dict """ url = "http://80.push2.eastmoney.com/api/qt/clist/get" params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:1 t:2,m:1 t:23", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df = pd.DataFrame(data_json["data"]["diff"]) temp_df["market_id"] = 1 temp_df.columns = ["sh_code", "sh_id"] code_id_dict = dict(zip(temp_df["sh_code"], temp_df["sh_id"])) params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:6,m:0 t:80", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df_sz = pd.DataFrame(data_json["data"]["diff"]) temp_df_sz["sz_id"] = 0 code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["sz_id"]))) params = { "pn": "1", "pz": "5000", "po": "1", "np": "1", "ut": "bd1d9ddb04089700cf9c27f6f7426281", "fltt": "2", "invt": "2", "fid": "f3", "fs": "m:0 t:81 s:2048", "fields": "f12", "_": "1623833739532", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["diff"]: return dict() temp_df_sz = pd.DataFrame(data_json["data"]["diff"]) temp_df_sz["bj_id"] = 0 code_id_dict.update(dict(zip(temp_df_sz["f12"], temp_df_sz["bj_id"]))) return code_id_dict def stock_zh_a_hist( symbol: str = "000001", period: str = "daily", start_date: str = "19700101", end_date: str = "20500101", adjust: str = "", ) -> pd.DataFrame: """ 东方财富网-行情首页-沪深京 A 股-每日行情 http://quote.eastmoney.com/concept/sh603777.html?from=classic :param symbol: 股票代码 :type symbol: str :param period: choice of {'daily', 'weekly', 'monthly'} :type period: str :param start_date: 开始日期 :type start_date: str :param end_date: 结束日期 :type end_date: str :param adjust: choice of {"qfq": "前复权", "hfq": "后复权", "": "不复权"} :type adjust: str :return: 每日行情 :rtype: pandas.DataFrame """ code_id_dict = code_id_map_em() adjust_dict = {"qfq": "1", "hfq": "2", "": "0"} period_dict = {"daily": "101", "weekly": "102", "monthly": "103"} url = "http://push2his.eastmoney.com/api/qt/stock/kline/get" params = { "fields1": "f1,f2,f3,f4,f5,f6", "fields2": "f51,f52,f53,f54,f55,f56,f57,f58,f59,f60,f61,f116", "ut": "7eea3edcaed734bea9cbfc24409ed989", "klt": period_dict[period], "fqt": adjust_dict[adjust], "secid": f"{code_id_dict[symbol]}.{symbol}", "beg": start_date, "end": end_date, "_": "1623766962675", } r = requests.get(url, params=params) data_json = r.json() if not data_json["data"]["klines"]: return pd.DataFrame() temp_df = pd.DataFrame( [item.split(",") for item in data_json["data"]["klines"]] ) temp_df.columns = [ "日期", "开盘", "收盘", "最高", "最低", "成交量", "成交额", "振幅", "涨跌幅", "涨跌额", "换手率", ] temp_df.index = pd.to_datetime(temp_df["日期"]) temp_df.reset_index(inplace=True, drop=True) temp_df["开盘"] = pd.to_numeric(temp_df["开盘"]) temp_df["收盘"] = pd.to_numeric(temp_df["收盘"]) temp_df["最高"] = pd.to_numeric(temp_df["最高"]) temp_df["最低"] = pd.to_numeric(temp_df["最低"]) temp_df["成交量"] = pd.to_numeric(temp_df["成交量"]) temp_df["成交额"] = pd.to_
numeric(temp_df["成交额"])
pandas.to_numeric
""" data_collection_10_Network_Centrality.py This code calcualtes centrality metrics... 1 - load in graphs - Largest weakly Connected Components!! 2 - applying HITs algorithm 4 - re-calculating centrality within my sub-graph only (4 - draw network graphs with hubs centrality metrics --> see next .py doc) @author: lizakarmannaya """ import networkx as nx import pandas as pd import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt import fnmatch import os import glob from scipy.stats import skew, kurtosis, mode #### 1 - load in graphs - Largest weakly Connected Components!! #### os.chdir(os.path.expanduser("~")) L = nx.read_pajek('study2_largest_wcc_LEFT_directed.net') R = nx.read_pajek('study2_largest_wcc_RIGHT_directed.net') #this imports them as multigraph types --> convert to DiGraph L = nx.DiGraph(L) R = nx.DiGraph(R) ######################################## #### 2 - applying HITS algorithm ##### ######################################## #for LEFT hits_L_hubs, hits_L_authorities = nx.hits(L) plt.hist(hits_L_hubs.values(), 40, log=False, facecolor='red', alpha=0.5) plt.savefig('RESULTS/hist_LEFT_hubs_with_elites') #have to execute together with line above to avoid saving blank canvas plt.show() #deleting elites from graph my_elites = pd.read_csv('my_elites.csv', index_col=0) my_elites['twitter_name_index'] = my_elites['twitter_name'] my_elites = my_elites.set_index('twitter_name_index') #using twitter_name = screen_name as index for later my_elites.head() elites_ids = my_elites['user_id'] #pandas series len(elites_ids) #420 ##now delete these elites from page_rank_L - LEFT: #need to create a list of strings first to_delete = [] for item in elites_ids: key = str(item) to_delete.append(key) len(to_delete) #420 ### LEFT #### to_delete_LEFT = set(L.nodes()).intersection(to_delete) len(to_delete_LEFT) #29 hits_L_hubs_noelites = hits_L_hubs ## NB this currently doesn't help distibguish them for item in to_delete_LEFT: del hits_L_hubs_noelites[item] len(hits_L_hubs_noelites) #822752 - without elites L.number_of_nodes() #822781 - with elites ##NB re-run these 3 sections below plt.hist(hits_L_hubs_noelites.values(), 40, log=False, facecolor='red', alpha=0.5) plt.savefig('RESULTS/hist_LEFT_hubs_noelites') #have to execute together with line above to avoid saving blank canvas plt.hist(hits_L_hubs_noelites.values(), 40, log=True, facecolor='red', alpha=0.5) plt.savefig('RESULTS/hist_LEFT_hubs_noelites_logscale') #have to execute together with line above to avoid saving blank canvas LEFT_hubs = pd.DataFrame.from_dict(data=hits_L_hubs_noelites, orient='index', columns=['hubs']) LEFT_hubs.to_csv('hubs_scores/LEFT_hubs_noelites.csv') #repeat for RIGHT hits_R_hubs, hits_R_authorities = nx.hits(R) #example hits_L_authorities['703690879'] #0 plt.hist(hits_R_hubs.values(), 40, log=False, facecolor='blue', alpha=0.5) plt.savefig('RESULTS/hist_RIGHT_hubs_with_elites') #have to execute together with line above to avoid saving blank canvas #deleting elites from graph to_delete_RIGHT = set(R.nodes()).intersection(to_delete) len(to_delete_RIGHT) #35 hits_R_hubs_noelites = hits_R_hubs ### NB this currently doesn't help distibguish them - pointless for item in to_delete_RIGHT: del hits_R_hubs_noelites[item] len(hits_R_hubs_noelites) #1542221 - without elites #len(hits_R_hubs) #1542221 - original dict is also modified R.number_of_nodes() #1542256 - with elites #NB re-run these 3 sections below plt.hist(hits_R_hubs_noelites.values(), 40, log=False, facecolor='blue', alpha=0.5) plt.savefig('RESULTS/hist_RIGHT_hubs_noelites') #have to execute together with line above to avoid saving blank canvas plt.hist(hits_R_hubs_noelites.values(), 40, log=True, facecolor='blue', alpha=0.5) plt.savefig('RESULTS/hist_RIGHT_hubs_noelites_logscale') #have to execute together with line above to avoid saving blank canvas RIGHT_hubs = pd.DataFrame.from_dict(data=hits_R_hubs_noelites, orient='index', columns=['hubs']) RIGHT_hubs.to_csv('hubs_scores/RIGHT_hubs_noelites.csv') RIGHT_hubs #### calculating skew and kurtosis for entire sample's hubs centrality ## NB re-run these? L_hubs = list(hits_L_hubs.values()) #currently this is without the elites, as they were taken out above len(L_hubs) #822752 skew(L_hubs) #-0.1830900326354742 kurtosis(L_hubs) #-1.8363738717470777 np.mean(L_hubs) mode(L_hubs) np.median(L_hubs) np.std(L_hubs) R_hubs = list(hits_R_hubs.values()) #currently this is without the elites, as they were taken out above len(R_hubs) #1542221 skew(R_hubs) #-0.6376712808927192 kurtosis(R_hubs) #-1.16105655692604 np.mean(R_hubs) mode(R_hubs) np.median(R_hubs) np.std(R_hubs) entire_hubs = L_hubs+R_hubs len(entire_hubs) #2,364,973 skew(entire_hubs) #0.7903545150997883 kurtosis(entire_hubs) #-0.3640943243229504 np.mean(entire_hubs) mode(entire_hubs) np.median(entire_hubs) np.std(entire_hubs) #### save hubs & authorities values into results df #### df = pd.read_csv('RESULTS_df_multiverse_4.csv', index_col=0) df = df.reset_index() df['authorities']='NaN' df['hubs'] = 'NaN' df.head() errors3 = [] for index in df.index: user_id = df['user_id_str'].values[index] #NB this is a numpy integer if df['side'].values[index] == 'LEFT': try: df['authorities'].values[index] = hits_L_authorities[str(user_id)] df['hubs'].values[index] = hits_L_hubs[str(user_id)] except KeyError as e: errors3.append(e) print(e) df['authorities'].values[index] = 'NaN' df['hubs'].values[index]='NaN' elif df['side'].values[index] == 'RIGHT': try: df['authorities'].values[index] = hits_R_authorities[str(user_id)] df['hubs'].values[index] = hits_R_hubs[str(user_id)] except KeyError as e: errors3.append(user_id) print(e) df['authorities'].values[index] = 'NaN' df['hubs'].values[index] = 'NaN' else: print('error') len(errors3) #326 df.head() df.shape #(34284, 20) df['authorities'] df['hubs'] # create user_id_str_index from user_id_str # df = df.set_index('user_id_str_index') #using twitter_name = screen_name as index for later df.to_csv('RESULTS_df_multiverse_6.csv') #plt.hist(df['authorities'], log=False, facecolor='purple', alpha=0.5) #plt.hist(df['hubs'], log=False, facecolor='purple', alpha=0.5) ############################################################################# ########### 3 - re-calculating centrality within my sub-graph only ########## ############################################################################# #re-load in elites my_elites = pd.read_csv('my_elites.csv', index_col=0) #my_elites['twitter_name_index'] = my_elites['twitter_name'] #my_elites = my_elites.set_index('twitter_name_index') #using twitter_name = screen_name as index for later #my_elites.head() elites_ids = [str(item) for item in my_elites['user_id']] len(elites_ids) #420 #re-loaded L and R graphs as at the start of this document #split elites by graph elites_LEFT = set(L.nodes()).intersection(elites_ids) len(elites_LEFT) #29 elites_RIGHT = set(R.nodes()).intersection(elites_ids) len(elites_RIGHT) #35 df = pd.read_csv('RESULTS_df_multiverse_2.csv', index_col=0) df.head() df_LEFT = df[df['side']=='LEFT'] df_LEFT.shape #(17788, 13) user_ids_LEFT = [str(item) for item in df_LEFT['user_id_str']] df_RIGHT = df[df['side']=='RIGHT'] df_RIGHT.shape #(16496, 13) user_ids_RIGHT = [str(item) for item in df_RIGHT['user_id_str']] L_small_nodes = list(elites_LEFT) + user_ids_LEFT len(L_small_nodes) #17817 L_small = L.subgraph(L_small_nodes) L_small.number_of_nodes() #17817 L_small.number_of_edges() #26796 R_small_nodes = list(elites_RIGHT) + user_ids_RIGHT len(R_small_nodes) #16531 R_small = R.subgraph(R_small_nodes) R_small.number_of_nodes() #16205 - ???? R_small.number_of_edges() #21188 #save these new small graphs nx.write_gexf(L_small, 'L_small.gexf') nx.write_gexf(R_small, 'R_small.gexf') #save as Pajek graphs nx.write_pajek(L_small, 'L_small.net') nx.write_pajek(R_small, 'R_small.net') #calculate hubs and authorities scores hits_L_small_hubs, hits_L_small_authorities = nx.hits(L_small) hits_R_small_hubs, hits_R_small_authorities = nx.hits(R_small) #plot histograms for new hits scores plt.hist(hits_L_small_hubs.values(), 40, log=False, facecolor='red', alpha=0.5) plt.savefig('RESULTS/hist_LEFT_small_hubs_with_elites') #have to execute together with line above to avoid saving blank canvas hits_L_small_hubs_noelites = hits_L_small_hubs ### NB this currently modifies the original list for item in elites_LEFT: del hits_L_small_hubs_noelites[item] len(hits_L_small_hubs_noelites) #17788 len(hits_L_small_hubs) #177788 - NB the original list is also modified!!! plt.hist(hits_L_small_hubs_noelites.values(), 40, log=False, facecolor='red', alpha=0.5) plt.savefig('RESULTS/hist_LEFT_small_hubs_noelites') #have to execute together with line above to avoid saving blank canvas ##repeat for RIGHT #plot histograms for new hits scores plt.hist(hits_R_small_hubs.values(), 40, log=False, facecolor='blue', alpha=0.5) plt.savefig('RESULTS/hist_RIGHT_small_hubs_with_elites') #have to execute together with line above to avoid saving blank canvas hits_R_small_hubs_noelites = hits_R_small_hubs ### NB this currently doesn't help distibguish them - pointless for item in elites_RIGHT: del hits_R_small_hubs_noelites[item] len(hits_R_small_hubs_noelites) #16170 len(hits_R_small_hubs) #16170 - NB modified the original dictionary!! plt.hist(hits_R_small_hubs_noelites.values(), 40, log=False, facecolor='blue', alpha=0.5) plt.savefig('RESULTS/hist_RIGHT_small_hubs_noelites') #have to execute together with line above to avoid saving blank canvas ##save these new hubs scores into RESULTS_df_multiverse_4.csv df =
pd.read_csv('RESULTS_df_multiverse_4.csv', index_col=0)
pandas.read_csv
# import import pandas as pd import sys import glob import dask.dataframe as dd import matplotlib.pyplot as plt from utils import get_spain_places import re # args raw_tweet_dir = sys.argv[1] # data path scope = sys.argv[2] # SPA # read files # tweets all_files = glob.glob(raw_tweet_dir + "/ours_*.csv") raw_tweet_files = dd.read_csv(all_files,usecols=['tweet_id','date','user_id'],dtype={'user_id': 'str'}) raw_tweet_files = raw_tweet_files.compute() # lang all_files = glob.glob(raw_tweet_dir + "/tweets_*.csv") raw_lang_files = dd.read_csv(all_files,usecols=['tweet_id','lang']) raw_lang_files = raw_lang_files.compute() # merge files data = pd.merge(raw_tweet_files,raw_lang_files, on='tweet_id') # SPA if scope=='SPA': # tweets users all_files = glob.glob(raw_tweet_dir + '/users_loc*.csv') raw_user_file = dd.read_csv(all_files,usecols=['id_str','location'],dtype={'id_str': 'str'}) raw_user_file = raw_user_file.compute() raw_user_file.rename({'id_str': 'user_id'}, axis=1, inplace=True) # data = data.merge(raw_user_file, on='user_id') # exclude latam but check spain places > 50k locations2check = "|".join(get_spain_places(raw_tweet_dir+"/places_spain.csv")) # get lists of spain places > 50k data = data[data.apply(lambda x: len([s for s in str(x['location']).split() if re.compile(locations2check).match(s.lower())]) > 0, axis=1)] counting = set(data.loc[data['lang'].str.contains(lang)]['tweet_id']) print("SPA excluding locations tweets, es",len(counting)) # get stats data['date'] =
pd.to_datetime(data['date'])
pandas.to_datetime
# import python libraries from pickle import TRUE import pandas as pd from pandas._libs.missing import NA from pandas.api.types import is_numeric_dtype import streamlit as st import copy import matplotlib.pyplot as plt import os # import user-defined parameter selectors from models.Regression import regression_param_selector from models.SVR import svr_param_selector from models.SVC import svc_param_selector from models.kerasNN import knn_param_selector from sklearn.model_selection import train_test_split from sklearn.preprocessing import OneHotEncoder, LabelEncoder # import user-defined functions from models.utils import model_imports from utils.functions import img_to_bytes @st.experimental_memo def read_csv(path): return pd.read_csv(path) def introduction(): st.title("Machine Learning Models for HTP phenotype prediction") st.subheader("Predict phenotypes from indices and assess the accuracy of predictions") st.image('./images/field.tif') st.markdown( """ - 🗂️ Choose/upload a dataset - ⚙️ Pick a phenotype to predict, predictors, model and set its hyper-parameters - 📉 Train it and check its performance metrics on train and test data - 🩺 Diagnose possible overfitting and experiment with other settings ----- """ ) def dataset_selector(): global current_data current_data = None uploaded_file = st.file_uploader("Upload CSV file", key='data_uploader') if uploaded_file is not None: current_data = read_csv(uploaded_file) dataset = "upload" else: # st.write("#### Or, choose a pre-loaded dataset") # dataset = st.selectbox("Choose a dataset", options=("IRRI (2016)","iris")) ######################################### st.write("#### Or, explore with a pre-loaded dataset") dataset = "IRRI (2016)" if dataset == "IRRI (2016)": current_data = read_csv('data/2016DS_merged.csv') elif dataset == 'iris': current_data = read_csv('data/iris.csv') return current_data def model_selector(goal): models = {'Regression':['Linear Regression', 'Keras Neural Network', 'SVR'], 'Classification':['SVC', 'Keras Neural Network']} model_type = st.selectbox("Models", models[goal]) return model_type def parameter_selector(model_type, goal, nclasses, input_shape=None): epochs = None validation_split = None batch_size = None if model_type == "Linear Regression": model, json_param = regression_param_selector() elif model_type == "Keras Neural Network": validation_split, epochs, batch_size, model, json_param = knn_param_selector(goal, nclasses, input_shape=input_shape) elif model_type == "SVR": model, json_param = svr_param_selector() elif model_type == 'SVC': model, json_param = svc_param_selector() return validation_split, epochs, batch_size, model, json_param def footer(): st.sidebar.markdown("---") st.sidebar.markdown( """ [<img src='data:image/png;base64,{}' class='img-fluid' width=25 height=25>](https://github.com/songwan/HTPPs) <small> Based on Playground 0.1.0 </small>""".format( img_to_bytes("./images/github.png") ), unsafe_allow_html=True, ) def is_categorical(df, colname): # if the column is string, then assume it to be categorical if df[colname].dtype=='object': return True # else assume it numerical else: return False def labelencoder(y, yy): label_encoder = LabelEncoder() cat_y = label_encoder.fit_transform(y) cat_y = pd.Series(cat_y) labely = pd.DataFrame(label_encoder.classes_).transpose() return cat_y, labely def onehot_encoder(df): # One-hot encoding if there is a charictar variable in X ohe_info = None ohe_info_concat = pd.DataFrame() for var in df: if is_categorical(df, var): enc = OneHotEncoder(handle_unknown='ignore') var_ohe = pd.DataFrame(enc.fit_transform(pd.DataFrame(df[var])).toarray()) var_ohe.index = df.index colname_ohe = enc.get_feature_names_out([var]) var_ohe.columns = colname_ohe ohe_info = var_ohe.drop_duplicates(ignore_index=True) ohe_info_concat = pd.concat([ohe_info_concat, ohe_info], axis=1) df =
pd.merge(df, var_ohe, left_index=True, right_index=True, how='left')
pandas.merge
#!/usr/bin/env python # coding: utf-8 import pandas as pd import numpy as np from itertools import islice import os import pysam import gzip import pdb import time import argparse import warnings import sys from tqdm.auto import tqdm def genotype_finder(path_vcf, path_lookup_table,max_var,output_path,vcf_geno): #looking for genotypes from vcf file def genotypeOfHaplotypes(genotype_info): # set 22 for nonphased genotypes if not ("|" in genotype_info): return "22" genotype_info_Split = genotype_info.split("|") genotype_hap1 = 0 if genotype_info_Split[0] == "0" else 1 genotype_hap2 = 0 if genotype_info_Split[1] == "0" else 1 return (str(genotype_hap1) + str(genotype_hap2)) def sample_column_map(path, start_col=9, line_key="#CHR"): stream_in = gzip.open(path, "r") out_map = {} for line in stream_in: if isinstance(line, bytes) and not isinstance(line, str): line = line.decode() if line_key in line: line = line.rstrip().split("\t") for i in range(start_col,len(line)): out_map[line[i]] = i break stream_in.close() return(out_map) vcf_map = sample_column_map(os.path.expanduser(vcf_path)) tabix_vcf = pysam.Tabixfile(os.path.expanduser(vcf_path),"r") for var_count in range(1,max_var+1): lookup_table= pd.read_table(path_lookup_table+'haplotype_logExpression_var_'+str(var_count)+'_sort.txt', sep=" ") lookup_table = lookup_table.reset_index(drop= True) prediction_matrix_haplotype1= pd.DataFrame(); prediction_matrix_haplotype2= pd.DataFrame(); hap1_individual_genotype_lst = []; hap2_individual_genotype_lst = []; temp =
pd.DataFrame()
pandas.DataFrame
import pandas as pd import json from web_constants import * from helpers import pd_fetch_tsv, path_or_none from oncotree import * """ Load the metadata file to be able to create ProjectData objects """ meta_df = pd.read_csv(META_DATA_FILE, sep='\t', index_col=0) sigs_mapping_df = pd.read_csv(PROJ_TO_SIGS_FILE, sep='\t') samples_agg_df = pd.read_csv(SAMPLES_AGG_FILE, sep='\t', index_col=0) """ Load the Oncotree """ with open(ONCOTREE_FILE) as f: tree_json = json.load(f) tree = OncoTree(tree_json) def get_prepend_proj_id_to_sample_id_func(proj_id, proj_source): def prepend_proj_id_to_sample_id(sample_id): if proj_source == "TCGA": # special case for TCGA, trim ends of sample IDs # for convenience but also to match PanCanAtlas samples to cBioPortal samples sample_id = sample_id[:15] return ("%s %s" % (proj_id, sample_id)) return prepend_proj_id_to_sample_id # Factory-type function for getting single ProjectData object def get_project_data(proj_id): return ProjectData(proj_id, meta_df.loc[proj_id]) def get_selected_project_data(proj_id_list): return list(map(lambda proj_id: get_project_data(proj_id), proj_id_list)) # Factory-type function for getting list of all ProjectData objects def get_all_project_data(): row_tuples = meta_df.to_dict(orient='index').items() return list(map(lambda row: ProjectData(row[0], row[1]), row_tuples)) # Factory-type function for getting 'serialized' list of all ProjectData objects def get_all_project_data_as_json(): def project_data_to_json(obj): # Even though this says as_json it is really a list of python objects oncotree_code = obj.get_oncotree_code() oncotree_name = obj.get_oncotree_name() oncotree_tissue_code = obj.get_oncotree_tissue_code() return { "id": obj.get_proj_id(), "name": obj.get_proj_name(), "num_samples": obj.get_proj_num_samples(), "source": obj.get_proj_source(), "has_clinical": obj.has_clinical_df(), "has_gene_mut": obj.has_gene_mut_df(), "has_gene_exp": obj.has_gene_exp_df(), "has_gene_cna": obj.has_gene_cna_df(), "sigs_mapping": obj.get_sigs_mapping(), "oncotree_code": (oncotree_code if oncotree_code is not None else "nan"), "oncotree_name": (oncotree_name if oncotree_name is not None else "nan"), "oncotree_tissue_code": (oncotree_tissue_code if oncotree_tissue_code is not None else "nan") } return list(map(project_data_to_json, get_all_project_data())) def get_all_tissue_types_as_json(): return [{'oncotree_name':node.name, 'oncotree_code':node.code} for node in tree.get_tissue_nodes()] """ Class representing a single row of the META_DATA_FILE, also how the files referenced within the meta file should be loaded into data frames """ class ProjectData(): def __init__(self, proj_id, proj_row): self.proj_id = proj_id self.proj_name = proj_row[META_COL_PROJ_NAME] self.oncotree_code = proj_row[META_COL_ONCOTREE_CODE] if pd.notnull(proj_row[META_COL_ONCOTREE_CODE]) else None self.oncotree_node = tree.find_node(self.oncotree_code) if pd.notnull(proj_row[META_COL_ONCOTREE_CODE]) else None self.proj_source = proj_row[META_COL_PROJ_SOURCE] self.seq_type = proj_row[SEQ_TYPE] self.counts_paths = {} # Check for a clinical file self.clinical_path = path_or_none(proj_row, META_COL_PATH_CLINICAL) # Check for a samples file self.samples_path = path_or_none(proj_row, META_COL_PATH_SAMPLES) # Check for a gene mutation file self.gene_mut_path = path_or_none(proj_row, META_COL_PATH_GENE_MUT) self.gene_exp_path = path_or_none(proj_row, META_COL_PATH_GENE_EXP) self.gene_cna_path = path_or_none(proj_row, META_COL_PATH_GENE_CNA) for mut_type in MUT_TYPES: cat_type = MUT_TYPE_MAP[mut_type] # Check for a counts file for the category type self.counts_paths[mut_type] = path_or_none(proj_row, META_COL_PATH_MUTS_COUNTS.format(cat_type=cat_type)) # Basic getters def get_proj_id(self): return self.proj_id def get_proj_name(self): return self.proj_name def get_oncotree_code(self): return self.oncotree_code def get_oncotree_name(self): if self.oncotree_node is not None: return self.oncotree_node.name return None def get_oncotree_tissue_code(self): if self.oncotree_node is not None: return self.oncotree_node.get_tissue_node().code return None def get_proj_num_samples(self): try: return int(samples_agg_df.loc[self.get_proj_id()]["count"]) except: return 0 def get_proj_source(self): return self.proj_source def get_seq_type(self): return self.seq_type # Samples file def has_samples_df(self): return (self.samples_path != None) def get_samples_df(self): if self.has_samples_df(): samples_df = pd_fetch_tsv(OBJ_DIR, self.samples_path) samples_df[SAMPLE] = samples_df[SAMPLE].apply(get_prepend_proj_id_to_sample_id_func(self.get_proj_id(), self.get_proj_source())) samples_df[PATIENT] = samples_df[PATIENT].apply(get_prepend_proj_id_to_sample_id_func(self.get_proj_id(), self.get_proj_source())) samples_df = samples_df.set_index(SAMPLE, drop=True) return samples_df return None def get_samples_list(self): counts_df = pd.DataFrame(index=[], data=[]) for mut_type in MUT_TYPES: if self.has_counts_df(mut_type): cat_type_counts_df = self.get_counts_df(mut_type) counts_df = counts_df.join(cat_type_counts_df, how='outer') counts_df = counts_df.fillna(value=0) counts_df = counts_df.loc[~(counts_df==0).all(axis=1)] return list(counts_df.index.values) def get_counts_sum_series(self): counts_df =
pd.DataFrame(index=[], data=[])
pandas.DataFrame
""" Test the imbalanced_analysis module. """ import pytest import pandas as pd from sklearn.base import clone from sklearn.model_selection import ParameterGrid from sklearn.datasets import make_classification from sklearn.tree import DecisionTreeClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.ensemble import GradientBoostingClassifier from imblearn.over_sampling import RandomOverSampler, SMOTE, BorderlineSMOTE from rlearn.tools.experiment import ( select_results, combine_results, ImbalancedExperiment, GROUP_KEYS, ) RND_SEED = 23 X1, y1 = make_classification(random_state=RND_SEED, n_features=10, n_samples=50) X2, y2 = make_classification(random_state=RND_SEED + 2, n_features=20, n_samples=50) X3, y3 = make_classification(random_state=RND_SEED + 5, n_features=5, n_samples=50) EXPERIMENT = ImbalancedExperiment( oversamplers=[ ('random', RandomOverSampler(), {}), ('smote', SMOTE(), {'k_neighbors': [2, 3, 4]}), ], classifiers=[ ('dtc', DecisionTreeClassifier(), {'max_depth': [3, 5]}), ('knc', KNeighborsClassifier(), {}), ], random_state=RND_SEED, ) DATASETS = [('A', (X1, y1)), ('B', (X2, y2)), ('C', (X3, y3))] def test_select_results_raise_error(): """Test raising of error on selection of results.""" imbalanced_results = clone(EXPERIMENT).fit(DATASETS).results_ with pytest.raises(ValueError): select_results(imbalanced_results, oversamplers_names=['random', 'bsmote']) with pytest.raises(ValueError): select_results(imbalanced_results, classifiers_names=['kn']) with pytest.raises(ValueError): select_results(imbalanced_results, datasets_names=['D', 'A']) with pytest.raises(ValueError): select_results(imbalanced_results, datasets_names=['f1']) @pytest.mark.parametrize( 'oversamplers_names, classifiers_names, datasets_names, scoring_cols', [(None, None, None, None), (['random'], ['knc'], ['A', 'C'], ['f1'])], ) def test_select_results( oversamplers_names, classifiers_names, datasets_names, scoring_cols ): """Test selection of results.""" experiment = clone(EXPERIMENT).set_params(scoring=['f1', 'accuracy']).fit(DATASETS) selected_results = select_results( experiment.results_, oversamplers_names, classifiers_names, datasets_names, scoring_cols, ) results = selected_results.reset_index() if oversamplers_names is not None: assert set(results.Oversampler) == set(oversamplers_names) else: assert set(results.Oversampler) == set(experiment.oversamplers_names_) if classifiers_names is not None: assert set(results.Classifier) == set(classifiers_names) else: assert set(results.Classifier) == set(experiment.classifiers_names_) if datasets_names is not None: assert set(results.Dataset) == set(datasets_names) else: assert set(results.Dataset) == set(experiment.datasets_names_) unique_scoring_cols = set([scorer[0] for scorer in selected_results.columns]) if scoring_cols is not None: assert unique_scoring_cols == set(scoring_cols) else: assert unique_scoring_cols == set(experiment.scoring_cols_) def test_combine_results_datasets(): """Test the combination of experimental results for different datasets.""" # Clone and fit experiments experiment1 = clone(EXPERIMENT).fit(DATASETS[:-1]) experiment2 = clone(EXPERIMENT).fit(DATASETS[-1:]) # Extract combined results combined_results = combine_results(experiment1.results_, experiment2.results_) results = combined_results.reset_index() # Assertions assert set(results.Dataset) == {'A', 'B', 'C'} assert set(results.Oversampler) == {'random', 'smote'} assert set(results.Classifier) == {'dtc', 'knc'} assert set([scorer[0] for scorer in combined_results.columns]) == set(['accuracy']) pd.testing.assert_frame_equal( combined_results, pd.concat([experiment1.results_, experiment2.results_]).sort_index(), ) def test_combine_results_ovrs(): """Test the combination of experimental results for different oversamplers.""" # Clone and fit experiments experiment1 = ( clone(EXPERIMENT) .set_params( oversamplers=[('bsmote', BorderlineSMOTE(), {'k_neighbors': [2, 5]})] ) .fit(DATASETS) ) experiment2 = clone(EXPERIMENT).fit(DATASETS) # Extract combined results combined_results = combine_results(experiment1.results_, experiment2.results_) results = combined_results.reset_index() # Assertions assert set(results.Dataset) == {'A', 'B', 'C'} assert set(results.Oversampler) == {'random', 'smote', 'bsmote'} assert set(results.Classifier) == {'dtc', 'knc'} assert set([scorer[0] for scorer in combined_results.columns]) == set(['accuracy']) pd.testing.assert_frame_equal( combined_results,
pd.concat([experiment1.results_, experiment2.results_])
pandas.concat
# -*- coding: utf-8 -*- """ Created 23 April 2019 mean_traces.py Version 1 The purpose of this script is to pull all of the mean trace files that were saved from the initial analysis. These traces are mean subtracted and filtered and comprise the entire 6 s of recording. The idea here is to open the files individually, extract the data, save it to a dataframe and compile all of the files of the same genotype into a dataframe. Then take the mean. Then plot the means vs. all traces for both OMP and Gg8. """ import pandas as pd import numpy as np import matplotlib.pyplot as plt import os import platform ''' ################## Define file structure on server #################### ''' # home_dir will depend on the OS, but the rest will not # query machine identity and set home_dir from there machine = platform.uname()[0] if machine == 'Darwin': home_dir = '/Volumes/Urban' elif machine == 'Linux': home_dir = '/run/user/1000/gvfs/smb-share:server=192.168.3.11,share=urban' elif machine == 'Windows': home_dir = os.path.join('N:', os.sep, 'urban') else: print("OS not recognized. \nPlease see Nate for correction.") project_dir = os.path.join(home_dir, 'Huang', 'OSN_OMPvGg8_MTC') figure_dir = os.path.join(project_dir, 'figures') table_dir = os.path.join(project_dir, 'tables') data_dir = os.path.join(project_dir, 'data') ''' ########################################################################## This is all the analysis, figures, saving Read in file metadata, open file from igor, convert to pandas ############################################################################## ''' # grab all files in table_dir file_list = os.listdir(table_dir) trace_files = [] cell_ids = [] for file in file_list: if 'timeseries' in file: trace_files.append(file) cell_id = file.split('_')[1] + '_' + file.split('_')[2] cell_ids.append(cell_id) else: continue traces_df = pd.DataFrame({'file name': trace_files, 'cell id': cell_ids}) # grab data_notes to select out by cell type analyzed_data_notes = pd.read_csv(os.path.join(table_dir +'analyzed_data_notes.csv'), index_col=0) mc_df = analyzed_data_notes[analyzed_data_notes['Cell type'] == 'MC'] # pull out gg8 cells mc_gg8_df = mc_df[mc_df['Genotype'] == 'Gg8'] mc_gg8_list = mc_gg8_df['Cell name'].to_list() mc_gg8_list = [name.split('_')[0] + '_' + name.split('_')[1] for name in mc_gg8_list] mc_gg8_df = pd.DataFrame(mc_gg8_list, columns=['cell id']) # pull out omp cells mc_omp_df = mc_df[mc_df['Genotype'] == 'OMP'] mc_omp_list = mc_omp_df['Cell name'].to_list() mc_omp_list = [name.split('_')[0] + '_' + name.split('_')[1] for name in mc_omp_list] mc_omp_df = pd.DataFrame(mc_omp_list, columns=['cell id']) # make list of Gg8 MCs gg8_mcs = pd.merge(traces_df, mc_gg8_df) gg8_mc_list = gg8_mcs['file name'].to_list() # make list of OMP MCs omp_mcs = pd.merge(traces_df, mc_omp_df) omp_mc_list = omp_mcs['file name'].to_list() # create empty dataframes for gg8 and omp cells gg8_cells = pd.DataFrame() omp_cells = pd.DataFrame() # loop through all files, extract data and add to appropriate dataframes for file in gg8_mc_list: # open file and extract data into a new dataframe mean_trace = pd.read_csv(os.path.join(table_dir, file), header=None) gg8_cells =
pd.concat([gg8_cells, mean_trace], axis=1, ignore_index=True)
pandas.concat
""" Functions to clean up neighborhood data and feed into interactive charts """ import numpy as np import pandas as pd from datetime import date, timedelta S3_FILE_PATH = "s3://public-health-dashboard/jhu_covid19/" NEIGHBORHOOD_URL = f"{S3_FILE_PATH}la-county-neighborhood-time-series.parquet" CROSSWALK_URL = f"{S3_FILE_PATH}la_neighborhoods_population_crosswalk.parquet" NEIGHBORHOOD_APPENDED_URL = f"{S3_FILE_PATH}la-county-neighborhood-testing-appended.parquet" def clean_data(): df =
pd.read_parquet(NEIGHBORHOOD_URL)
pandas.read_parquet
import pandas as pd import sys ### COMMON TO HYPERGRAPH AND SIMPLE GRAPH def makeDefs(DEFS, opts={}): defs = {key: opts[key] if key in opts else DEFS[key] for key in DEFS} base_skip = opts['SKIP'] if 'SKIP' in opts else defs['SKIP'] skip = [x for x in base_skip] #copy defs['SKIP'] = skip for key in DEFS: if not defs[key] in skip: skip.append(defs[key]) return defs def screen_entities(events, entity_types, defs): base = entity_types if not entity_types == None else events.columns return [x for x in base if not x in defs['SKIP']] def col2cat(cat_lookup, col): return cat_lookup[col] if col in cat_lookup else col def make_reverse_lookup(categories): lookup = {} for category in categories: for col in categories[category]: lookup[col] = category return lookup def valToSafeStr (v): if sys.version_info < (3,0): t = type(v) if t is unicode: # noqa: F821 return v elif t is str: return v else: return repr(v) else: t = type(v) if t is str: return v else: return repr(v) #ex output: pd.DataFrame([{'val::state': 'CA', 'nodeType': 'state', 'nodeID': 'state::CA'}]) def format_entities(events, entity_types, defs, drop_na): cat_lookup = make_reverse_lookup(defs['CATEGORIES']) lst = sum([[{ col: v, defs['TITLE']: v, defs['NODETYPE']: col, defs['NODEID']: col2cat(cat_lookup, col) + defs['DELIM'] + valToSafeStr(v) } for v in events[col].unique() if not drop_na or valToSafeStr(v) != 'nan'] for col in entity_types], []) df = pd.DataFrame(lst) df[defs['CATEGORY']] = df[defs['NODETYPE']].apply(lambda col: col2cat(cat_lookup, col)) return df DEFS_HYPER = { 'TITLE': 'nodeTitle', 'DELIM': '::', 'NODEID': 'nodeID', 'ATTRIBID': 'attribID', 'EVENTID': 'EventID', 'CATEGORY': 'category', 'NODETYPE': 'type', 'EDGETYPE': 'edgeType', 'SKIP': [], 'CATEGORIES': {} # { 'categoryName': ['colName', ...], ... } } #ex output: pd.DataFrame([{'edgeType': 'state', 'attribID': 'state::CA', 'eventID': 'eventID::0'}]) def format_hyperedges(events, entity_types, defs, drop_na, drop_edge_attrs): is_using_categories = len(defs['CATEGORIES'].keys()) > 0 cat_lookup = make_reverse_lookup(defs['CATEGORIES']) subframes = [] for col in sorted(entity_types): fields = list(set([defs['EVENTID']] + ([x for x in events.columns] if not drop_edge_attrs else [col]))) raw = events[ fields ] if drop_na: raw = raw.dropna() raw = raw.copy() if len(raw): if is_using_categories: raw[defs['EDGETYPE']] = raw.apply(lambda r: col2cat(cat_lookup, col), axis=1) raw[defs['CATEGORY']] = raw.apply(lambda r: col, axis=1) else: raw[defs['EDGETYPE']] = raw.apply(lambda r: col, axis=1) raw[defs['ATTRIBID']] = raw.apply(lambda r: col2cat(cat_lookup, col) + defs['DELIM'] + valToSafeStr(r[col]), axis=1) if drop_edge_attrs: raw = raw.drop([col], axis=1) subframes.append(raw) if len(subframes): result_cols = list(set( ([x for x in events.columns.tolist() if not x == defs['NODETYPE']] if not drop_edge_attrs else []) + [defs['EDGETYPE'], defs['ATTRIBID'], defs['EVENTID']] + ([defs['CATEGORY']] if is_using_categories else []) )) out = pd.concat(subframes, ignore_index=True).reset_index(drop=True)[ result_cols ] return out else: return
pd.DataFrame([])
pandas.DataFrame
# Library import pandas as pd import numpy as np import datetime as dt import time,datetime import math from math import sin, asin, cos, radians, fabs, sqrt from geopy.distance import geodesic from numpy import NaN from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from sklearn.pipeline import Pipeline import sklearn from sklearn import tree from sklearn.model_selection import train_test_split from sklearn import preprocessing from sklearn import tree from sklearn.model_selection import GridSearchCV from sklearn import metrics from IPython.display import Image from sklearn.metrics import classification_report from sklearn.metrics import precision_recall_curve import matplotlib.pyplot as plt import random from sklearn.ensemble import RandomForestClassifier import eli5 from eli5.sklearn import PermutationImportance from matplotlib import pyplot as plt from pdpbox import pdp, get_dataset, info_plots from sklearn.svm import SVC from sklearn.linear_model import LogisticRegression from sklearn.metrics import precision_score,recall_score,f1_score,roc_auc_score,roc_curve import sys EARTH_RADIUS=6371 # Common Utilities def num2date(num): # Convert eventid in GTD to standard time format num = str(num) d = num[:4]+'/'+num[4:6]+'/'+num[6:8] tmp = dt.datetime.strptime(d, '%Y/%m/%d').date() return tmp def num2date_(num): # Convert time of market data to standard time format num = str(num) d = num[:4]+'/'+num[5:7]+'/'+num[8:10] tmp = dt.datetime.strptime(d, '%Y/%m/%d').date() return tmp def get_week_day(date): day = date.weekday() return day def hav(theta): s = sin(theta / 2) return s * s def get_distance_hav(lat0, lng0, lat1, lng1): # The distance between two points of a sphere is calculated by the haversine formula # Longitude and latitude convert to radians lat0 = radians(lat0) lat1 = radians(lat1) lng0 = radians(lng0) lng1 = radians(lng1) dlng = fabs(lng0 - lng1) dlat = fabs(lat0 - lat1) h = hav(dlat) + cos(lat0) * cos(lat1) * hav(dlng) distance = 2 * EARTH_RADIUS * asin(sqrt(h)) return distance # Load the population density data - https://sedac.ciesin.columbia.edu/data/set/spatialecon-gecon-v4 def load_eco(filename,country): basic_ec_file1 = filename basic_ec = pd.read_excel(basic_ec_file1, country,header=0) # Load the page of Israel lonlat_list = [] for i in range(basic_ec.shape[0]): temp = [] temp.append(basic_ec.iloc[i]['LONGITUDE']) temp.append(basic_ec.iloc[i]['LAT']) lonlat_list.append(temp) return lonlat_list # Make terrorist attack features def gtd_one_hot(gtd): # Group the features at daily level gtd_grouped = gtd.groupby(gtd['Timestamp']).sum() # Occurrence measure gtd_grouped['occur_count'] = gtd.groupby(gtd['Timestamp']).size() # Maintain the max nightlight value each day gtd_grouped['nightlight'] = gtd.groupby(gtd['Timestamp'])['nightlight'].max() # Obtain the weekday of certain timestamp gtd_grouped['week'] = gtd.groupby(gtd['Timestamp'])['week'].mean() return gtd_grouped def lag(df,col_name,count): # Shift the column for i in range(1,count+1): df[col_name + '_' + str(i)] = df[col_name].shift(i) return df def compute_nl(lon,lat): # Map certain geographic position to corresponding value of nightlight intensity round_lon = round((lon+180)*37.5) round_lat = 6750-round((lat+90)*37.5) try: return nl[int(round_lat)][int(round_lon)] except: return 0 def contain_or_not(string,list_): if string in list_: return 1 else: return 0 def adjust_week(timestamp,week): # Adjust the weekend to friday if week == 5: return (timestamp+datetime.timedelta(days=2)).strftime("%Y/%m/%d") elif week == 6: return (timestamp+datetime.timedelta(days=1)).strftime("%Y/%m/%d") return timestamp.strftime("%Y/%m/%d") # Make the market features def get_market_data(start,end,ref,goal,host,user,password,db): con = pymysql.connect(host,user,password,db, charset='utf8' ) # Reference Index cmd1 = "select * from " + ref + " where Timestamp >= " + start + ' and Timestamp <= ' + end ref_df = pd.read_sql(cmd1, con) #Goal Index cmd2 = "select * from " + goal + " where Timestamp >= " + start + ' and Timestamp <= ' + end goal_df = pd.read_sql(cmd2, con) return ref_df,goal_df def get_diff(origin_md,name): md = origin_md.copy() str1 = 'logdiff_' + name str2 = 'twologdiff_' + name md['close_shift1'] = md['Trade Close'].shift(1) md['onediff'] = md['Trade Close'].diff() md['open_shift_minus1'] = md['Trade Open'].shift(-1) md['twodiff'] = md['open_shift_minus1']-md['close_shift1'] md = md.dropna() md[str1] = md['onediff']/md['close_shift1'] < 0 md[str2] = md['twodiff']/md['close_shift1'] < 0 md_onediff = pd.DataFrame(md,columns = ['Timestamp',str1]).dropna() md_twodiff = pd.DataFrame(md,columns = ['Timestamp',str2]).dropna() return md_onediff,md_twodiff # Merge terrorist attack features and market features def diff_merge(gtd_grouped,diff_list): for i in range(1,len(diff_list)): diff_feature = pd.merge(diff_list[i-1],diff_list[i],on='Timestamp') diff_feature = diff_feature.dropna() diff_feature = pd.merge(gtd_grouped,diff_feature,on='Timestamp',how='right') return diff_feature def lag_part(feature,lag_features,lag_numbers): for i in range(len(lag_features)): feature = lag(feature,lag_features[i],lag_numbers[i]) return feature def reset_df(df,target_col,index): cols = list(df) cols.insert(index, cols.pop(cols.index(target_col))) df = df.loc[:, cols] return df def final_process(gtd_grouped,diff_list,lag_features,lag_numbers,target_col,future_drop_col): feature = diff_merge(gtd_grouped,diff_list) feature.sort_values("Timestamp",inplace=True) feature = feature.fillna(0) feature = lag_part(feature,lag_features,lag_numbers) feature = reset_df(feature,target_col,len(feature.columns.values)-1) feature = feature.drop(future_drop_col,axis=1) feature.rename(columns={target_col: 'target'}, inplace = True) feature = feature.dropna() return feature def train_test(features,split_point): y = list(features['target']) X = features.drop(['target','Timestamp'],axis=1) x = X.values var_list = list(X) X_train,X_test,Y_train,Y_test = x[:split_point],x[split_point:],y[:split_point],y[split_point:] return X_train,X_test,Y_train,Y_test,var_list def pr_(y_test,y_pred): realminus = 0 predminus = 0 correct = 0 for ii in range(len(y_test)): if y_test[ii] == True: realminus += 1 if y_pred[ii] == True: predminus += 1 if y_test[ii] == True and y_pred[ii] == True: correct += 1 if predminus == 0: precision = 1 else: precision = correct/predminus recall = correct/realminus if recall == 0: precision,recall = 1,0 return correct,predminus,correct,realminus def split_pos_neg(feature,y_pred): # Display the performance in days with terrorist attacks and days without terrorist attacks testset = feature[cut_point:].copy() testset = testset.reset_index() pred_content = pd.Series(y_pred) testset['pred'] = pred_content testset1 = testset[(testset['occur_count'] >= 1)] y_pred_ = list(testset1['pred']) y_test_ = list(testset1['target']) precision, recall = pr(y_test_,y_pred_) f1 = 2*(precision*recall)/(precision+recall) print(precision, ' ',recall,' ',f1) print(classification_report(y_test_,y_pred_)) testset1 = testset[(testset['occur_count'] == 0)] y_pred_ = list(testset1['pred']) y_test_ = list(testset1['target']) precision, recall = pr(y_test_,y_pred_) f1 = 2*(precision*recall)/(precision+recall) print(precision, ' ',recall,' ',f1) print(classification_report(y_test_,y_pred_)) def best_para(x_train,x_val,y_train,y_val): mf1=0 mins=0 maxd=0 for j in range(5,10): for i in range(15,32): clf = tree.DecisionTreeClassifier(min_samples_leaf = i,max_depth = j) clf.fit(x_train, y_train) y_pred = clf.predict(x_test) y_pred_pre = clf.predict_proba(x_val) precision, recall = pr(y_val,y_pred) f1 = 2*(precision*recall)/(precision+recall) if(f1>mf1): mf1=f1 mins=i maxd=j return mf1,mins,maxd def train_dt(feature,cut_point,samples_leaf=1,depth=100): x_train,x_test,y_train,y_test,var_list = train_test(feature,cut_point) y_pred = clf.predict(x_test) y_pred_pre = clf.predict_proba(x_test,min_samples_leaf = samples_leaf,max_depth = depth) print(classification_report(y_test,y_pred)) im = clf.feature_importances_ print(im) precision, recall = pr(y_test,y_pred) f1 = 2*(precision*recall)/(precision+recall) print(precision, ' ',recall,' ',f1) split_pos_neg(feature,y_pred) def experment_full_sample(feature, cut_point): # Market Only Baseline - Exp-FS test = pd.DataFrame(feature, columns=['Timestamp','logdiff_sp500','logdiff_sp500_1','twologdiff_is100_1','twologdiff_is100_2','logdiff_sp500_2','target']) train_dt(test,cut_point) # Exp-FS X_train,x_val,Y_train,y_val,var_list = train_test(features[:cut_point],val_cut_point) _,mins,maxd = best_para(x_train,x_val,y_train,y_val) train_dt(feature,cut_point) def experment_terr(feature, cut_point): # Exp-Terr feature_ = feature.copy() feature_ = feature_[(feature_['occur_count'] >= 1)] val_cut_point_terr = 320 cut_point_terr = 415 ## Market Only Baseline - Exp-Terr test = pd.DataFrame(feature_, columns=['Timestamp','logdiff_sp500','logdiff_sp500_1','twologdiff_is100_1','twologdiff_is100_2','logdiff_sp500_2','target']) train_dt(test,cut_point_terr) # Exp-Terr X_train,x_val,Y_train,y_val,var_list = train_test(feature_[:cut_point_terr],val_cut_point_terr) _,mins,maxd = best_para(x_train,x_val,y_train,y_val) train_dt(feature_,cut_point_terr) def one_step_ahead(feature): # One step ahead - Need to load the terrorist attack data extract from news since startdate # Merge GTD data prior to that startdata and terrorist attack data extract from news since startdate gtd_news = pd.read_excel('reuters.xlsx','Israel') ## rechange the load GTD data part gtd = gtd_original[gtd_original['country'] == 97] gtd = gtd[gtd['iday']!=0] gtd['Timestamp'] = gtd['eventid'].apply(num2date) gtd = gtd[['Timestamp','latitude','longitude','nkill','nwound','city','provstate']] gtd = gtd.dropna() startdate = '2007-01-01' gtd = gtd[gtd['Timestamp'] < dt.datetime.strptime(startdate, '%Y-%m-%d').date()] gtd_news['Timestamp'] = gtd_news['Timestamp'].apply(num2date_) gtd = pd.concat([gtd,gtd_news]) feature_all = feature.copy() feature = feature[feature['occur_count'] != 0] startdate = '2007-01-01' feature_train = feature[feature['Timestamp'] < dt.datetime.strptime(startdate, '%Y-%m-%d').date()] feature_test = feature[feature['Timestamp'] >= dt.datetime.strptime(startdate, '%Y-%m-%d').date()] test_time = list(feature_test['Timestamp']) # Market-only baseline and full-feature version for one-step-ahead fall_count = 0 fall_predict_true = 0 fall_predict_count = 0 fall_predict_count_true = 0 for i in range(len(test_time)): train_set = pd.concat([feature_train[-feature_train.shape[0]+i:], feature_test[0:i]]) test_set = feature_test[i:i+1] test_set = test_set.drop([], 1) # market-only version # x_train,x_test,y_train,y_test,var_list_market = train_test(train_set[['Timestamp','logdiff_sp500','logdiff_sp500_1','twologdiff_is100_1','twologdiff_is100_2','logdiff_sp500_2','target']],train_set.shape[0]) # full-feature version x_train,x_test,y_train,y_test,var_list = train_test(train_set,train_set.shape[0]) time = str((test_set['Timestamp'].values)[0]) y = list(test_set['target']) # market-only version # X = test_set[['logdiff_sp500','logdiff_sp500_1','twologdiff_is100_1','twologdiff_is100_2','logdiff_sp500_2']] # full-feature version X = test_set.drop(['target','Timestamp'],axis=1) # market-only version # clf = tree.DecisionTreeClassifier() # full-feature version clf = tree.DecisionTreeClassifier(min_samples_leaf = 26) clf.fit(x_train, y_train) y_pred = clf.predict(X) if y == [1]: fall_count += 1 if y_pred == [1]: fall_predict_true += 1 if y_pred == [1]: fall_predict_count += 1 if y == [1]: fall_predict_count_true += 1 plusprecision = fall_predict_count_true/fall_predict_count plusrecall = fall_predict_true/fall_count f1 = 2*(plusprecision*plusrecall)/(plusprecision+plusrecall) print(plusprecision,' ',plusrecall,' ',f1) print(fall_predict_count_true,' ',fall_predict_count,' ',fall_predict_true,' ',fall_count) def main(argv): # Load the population density data - https://sedac.ciesin.columbia.edu/data/set/spatialecon-gecon-v4 lonlat_list = load_eco('basic_eco.xls',"Israel") # Load the nightlight data - https://eoimages.gsfc.nasa.gov/images/imagerecords/144000/144897/BlackMarble_2016_3km_gray_geo.tif gray_file = open("nightlight.csv","rb") nl_tmp = np.loadtxt(gray_file,delimiter=',',skiprows=0) gray_file.close() nl = np.array(nl_tmp) # Load the GTD data - https://www.start.umd.edu/gtd/ gtd_original = pd.read_excel('gtd90_17.xlsx') gtd = gtd_original[gtd_original['country'] == 97] gtd = gtd[gtd['iday']!=0] gtd['Timestamp'] = gtd['eventid'].apply(num2date) gtd = gtd[['Timestamp','latitude','longitude','nkill','nwound','city','provstate']] gtd = gtd.dropna() # capital/cultural center/religious center labels - From Wikipedia capital = ['Jerusalem','Nazareth','Haifa','Ramla','Tel Aviv','Beersheva'] cultural_center = ['Tel Aviv'] religious_center = ['Jerusalem'] gtd['capital'] = gtd['city'].apply(contain_or_not,args=(capital,)) gtd['cultural_center'] = gtd['city'].apply(contain_or_not,args=(cultural_center,)) gtd['religious_center'] = gtd['city'].apply(contain_or_not,args=(religious_center,)) # One-hot encoding of provstate gtd = gtd.join(
pd.get_dummies(gtd.provstate)
pandas.get_dummies
''' Stage 1 involves selected the major cryptos based on a criteria of exceedance of market capitalization above $4bn Don't forget to set the folder in which this script is held in as the current working folder before running the script ''' # import needed libraries import pandas as pd import time from tqdm import tqdm pd.options.mode.chained_assignment = None # read historical market cap table df =
pd.read_html('https://coinmarketcap.com/historical/20180429/')
pandas.read_html
import os import pandas as pd import uproot3 as uproot from tqdm import tqdm import json def check_integrity(basedir, period, samples, TreeName="selection", mode="normal", verbose=False): """ Check integrity of jobs results. Args: basedir (str): Path to analysis root folder period (str): Jobs period used in anafile TreeName (str): Tree name used in ROOTfile samples (dict): Dictionary mapping each event flavour to job directories systematics (dict): Dictionary defining the systematic universes Returns: tuple: (Dictonary with datasets statistics, list of old jobs, list of jobs with errors) """ Integrity_Jobs = [] Error_OldJobs = [] Error_Output = [] Resubmit_Jobs = [] if mode == "syst": with open(os.path.join(basedir, "lateral_systematics.json")) as json_sys_file: systematics = json.load(json_sys_file) #print(systematics) has_tag = False # Remove if CMS join 2016 samples again for datasets in tqdm(samples.keys()): count_good = 0 count_bad = 0 Nentries = 0 job = "None" for dataset in samples[datasets]: dataset_year = dataset.split("_files_")[0] dataset_year = dataset_year.split("_")[-1] dataset_tag = dataset.split("_"+dataset_year)[0][-3:] if (dataset_year == period): #print(dataset) if( dataset_tag == "APV" ): has_tag = True control = 0 jobs_file = os.path.join(basedir, "jobs.txt") with open(jobs_file) as f: for line in f: #if dataset == line[:-1]: info = line.split(" ") #print(info) info_source = info[8].split(",")[0] #info_universe = info[9].split("]")[0] #print(info_source) #print(info_universe) job_line = info[2][3:-2] + "_files_" + info[6][:-1] + "_" + str(int(info[7][:-1])-1) if( (dataset == job_line) and (info_source == "0") ): control = 1 job = line job = "[["+job.split("[[")[1] if control == 0: Error_OldJobs.append(dataset) cutflow = os.path.join(basedir, dataset, "cutflow.txt") bad_0_0 = False control = 0 if os.path.isfile(cutflow): N_entries = 0 with open(cutflow) as f: for line in f: control += line.count("Time to process the selection") if line[:28] == "Number of entries considered" : N_entries = int(line.split()[4]) try: if control == 1 and N_entries > 0: root_file = os.path.join(basedir, dataset, "Tree.root") if os.path.isfile(root_file): f = uproot.open(root_file) if len(f.keys()) == 1: #count_good += 1 tree = f[TreeName] df = tree.pandas.df(flatten=False) Nentries += len(df) del df #print("") if mode == "syst": sys_control = 0 for sys_source in systematics.keys(): sys_list = systematics[sys_source] if( (sys_list[0] > 0) and (datasets[:4] == "Data") ): continue for universe in range(sys_list[1]): #print(universe) sys_file = str(sys_list[0]) + "_" + str(universe) + ".json" sys_file = os.path.join(basedir, dataset, "Systematics", sys_file) #print(sys_file) #print(os.path.isfile(sys_file)) if os.path.isfile(sys_file): #print(os.stat(sys_file).st_size > 0) if os.stat(sys_file).st_size > 0: with open(sys_file) as json_file: sys_dict = json.load(json_file) #print(sys_dict.keys()) if len(sys_dict) == 0: sys_control += 1 else: sys_control += 1 else: sys_control += 1 if sys_control == 0: count_good += 1 else: count_bad += 1 Error_Output.append(dataset) else: count_good += 1 else: count_bad += 1 Error_Output.append(dataset) Resubmit_Jobs.append(job) bad_0_0 = True else: count_bad += 1 Error_Output.append(dataset) Resubmit_Jobs.append(job) bad_0_0 = True else: count_bad += 1 Error_Output.append(dataset) Resubmit_Jobs.append(job) bad_0_0 = True except Exception as ex: print(str(ex), '---->', dataset) count_bad += 1 Error_Output.append(dataset) Resubmit_Jobs.append(job) bad_0_0 = True else: count_bad += 1 Error_Output.append(dataset) Resubmit_Jobs.append(job) bad_0_0 = True if mode == "syst": for sys_source in systematics.keys(): if( (sys_source == "CV") and bad_0_0 ): continue else: sys_list = systematics[sys_source] if( (sys_list[0] > 0) and (datasets[:4] == "Data") ): continue for universe in range(sys_list[1]): sys_file = str(sys_list[0]) + "_" + str(universe) + ".json" sys_file = os.path.join(basedir, dataset, "Systematics", sys_file) job_eff = job[:-7] + str(sys_list[0]) + ", " + str(universe) + "]," + "\n" #print(job_eff) if os.path.isfile(sys_file): if os.stat(sys_file).st_size > 0: temporary = 0 #with open(sys_file) as json_file: #sys_dict = json.load(json_file) #if len(sys_dict) == 0: # Resubmit_Jobs.append(job) else: Resubmit_Jobs.append(job_eff) else: Resubmit_Jobs.append(job_eff) Integrity_Jobs.append({ "Dataset": datasets, "nFolders": len(samples[datasets]), "Good": count_good, "Bad": str(count_bad), "Entries": Nentries }) if len(Resubmit_Jobs) > 0: if( has_tag ): file_name = os.path.join(basedir, "resubmit_APV_" + period + ".txt") else: file_name = os.path.join(basedir, "resubmit_" + period + ".txt") resubmit_file = open(file_name, "w") for i in range(len(Resubmit_Jobs)): resubmit_file.write(Resubmit_Jobs[i]) if verbose: Integrity_Jobs =
pd.DataFrame(Integrity_Jobs)
pandas.DataFrame
import numpy as np from ripser import ripser from scipy.spatial.distance import pdist, squareform from gudhi.clustering.tomato import Tomato from umap import UMAP import pandas as pd from tqdm import tqdm from cosine_hack import umap_hack def calculate_persistence( cluster, num_of_neurons, maxdim=1, coeff=47, num_longest_bars=10 ): print(cluster.shape[0]) if (num_of_neurons < 400) and (cluster.shape[0] > 4000): try: layout = umap_hack( activity=cluster, n_components=num_of_neurons, verbose=True, n_neighbors=20, min_dist=0.01, ) except KeyError: return np.array([-1]) else: layout = UMAP( n_components=num_of_neurons, verbose=True, n_neighbors=20, min_dist=0.01, metric="cosine", ).fit_transform(cluster) distance = squareform(pdist(layout, "euclidean")) thresh = np.max(distance[~np.isinf(distance)]) diagrams = ripser( X=distance, maxdim=maxdim, coeff=coeff, do_cocycles=False, distance_matrix=True, thresh=thresh, )["dgms"][1].T births1 = diagrams[0] # the time of birth for the 1-dim classes deaths1 = diagrams[1] # the time of death for the 1-dim classes lives1 = deaths1 - births1 # the lifetime for the 1-dim classes if len(lives1) > num_longest_bars: iMax = np.argsort(lives1) return lives1[iMax[-num_longest_bars:]] else: return lives1 def cluster_activity(activity): layout = umap_hack( activity=activity, n_components=activity.shape[1], verbose=True, n_neighbors=15, min_dist=0.01, ) # logDTM, DTM, ‘KDE’ or ‘logKDE’ n_clusters = activity.shape[0] // 1200 # avrage cluster size return Tomato(density_type="logDTM", k=200, n_clusters=n_clusters).fit_predict( layout ) def find_circles(layer): activity = np.load(f"activations/MNIST/{layer}.npy") large_cluster_size = activity.shape[1] clustering = cluster_activity(activity=activity) unique, counts = np.unique(clustering, return_counts=True) large_clusters = [ unique[i] for i, count in enumerate(counts) if count > large_cluster_size ] print( f"{len(unique)} clusters fund. {len(large_clusters)} large clusters bigger than {large_cluster_size}." ) num_longest_bars, coeff = 10, 47 cluster_info = { "cluster_id": [], "cluster_size": [], "cluster_members": [], "longest_bar": [], f"Top {num_longest_bars} longest bars": [], } pbar = tqdm(total=len(large_clusters)) for index in large_clusters: cluster_members = np.array( [n for n, cluster in enumerate(clustering) if cluster == index] ) longest_bars = calculate_persistence( cluster=activity[cluster_members], num_of_neurons=activity.shape[1], coeff=coeff, num_longest_bars=num_longest_bars, ) cluster_info["cluster_id"].append(index) cluster_info["cluster_size"].append(cluster_members.shape[0]) cluster_info["cluster_members"].append(cluster_members) cluster_info["longest_bar"].append(longest_bars.max()) cluster_info[f"Top {num_longest_bars} longest bars"].append(longest_bars) pbar.update(1) df =
pd.DataFrame.from_dict(data=cluster_info)
pandas.DataFrame.from_dict
from experiment.general import general from plots.rec_plots import precision_recall_curve from utils.io import load_numpy, save_dataframe_csv, find_best_hyperparameters, load_yaml from utils.modelnames import models import argparse import pandas as pd import timeit def main(args): table_path = load_yaml('config/global.yml', key='path')['tables'] df = find_best_hyperparameters(table_path+args.tuning_result_path, 'NDCG') R_train = load_numpy(path=args.data_dir, name=args.train_set) R_valid = load_numpy(path=args.data_dir, name=args.valid_set) R_test = load_numpy(path=args.data_dir, name=args.test_set) R_train = R_train + R_valid topK = [5, 10, 15, 20, 50] frame = [] for idx, row in df.iterrows(): start = timeit.default_timer() row = row.to_dict() row['metric'] = ['R-Precision', 'NDCG', 'Precision', 'Recall', "MAP"] row['topK'] = topK result = general(R_train, R_test, row, models[row['model']], measure=row['similarity'], gpu_on=args.gpu, model_folder=args.model_folder) stop = timeit.default_timer() print('Time: ', stop - start) frame.append(result) results =
pd.concat(frame)
pandas.concat
import math import os from os.path import join as pjoin import json import copy import matplotlib.pyplot as plt import numpy as np import seaborn as sns import GPUtil import pandas as pd from multiprocessing import Pool from tqdm import tqdm import sklearn.metrics from .config import print_config, class_labels from .utils import ( anno_to_binary, cut_score, debug, display_imgs, info, gen_cwd_slash, labels_to_str, load_config, load_img, np_macro_f1, str_to_labels, class_id_to_label, class_ids_to_label, combine_windows, chunk, compute_i_coords, format_macro_f1_details, vec_to_str ) # from .utils_heavy import predict, model_from_config from .ignite_trainer import predict as predict # def predict_and_save_scores( # config, # path_to_anno=None, # path_to_imgs=None, # save_scores_to=None, # to_csv=None, # ): # model = model_from_config(config, which='latest') # valid_anno = pd.read_csv(path_to_anno, index_col=0) # predict(config) # return valid_anno_predicted def remove_scores_predicted(config): cwd_slash = gen_cwd_slash(config) pd.read_csv(cwd_slash('validation_predictions.csv'), index_col=0) \ .drop('Scores Predicted', 1) \ .to_csv(cwd_slash('validation_predictions.csv')) def evaluate_validation_prediction(config): info('evaluate_validation_prediction()') cwd_slash = gen_cwd_slash(config) anno = pd.read_csv(config['path_to_valid_anno_cache'], index_col=0, dtype=object) prediction_df = pd.read_csv(cwd_slash('valid_predicted.csv'), index_col=0, dtype=object) anno = anno.join(prediction_df, how='left') # DEBUG BEGIN anno.loc[:, ['Target', 'Predicted', 'folder', 'extension']].to_csv(cwd_slash('valid_anno_predicted.csv')) # DEBUG END y_true, y_pred = anno_to_binary(anno, config) macro_f1_score, f1_details = np_macro_f1(y_true, y_pred, config, return_details=True) print(format_macro_f1_details(f1_details, config)) print(f'macro_f1_score = {macro_f1_score}') def final_corrections(config): info('final_corrections()') cwd_slash = gen_cwd_slash(config) anno = pd.read_csv(cwd_slash('test_predicted.csv'), index_col=0) # correct best submission [TODO: REMOVE: not for private leaderboard] -------------- # best_anno = pd.read_csv(cwd_slash('submission_587.csv'), index_col=0) # rare_classes = [15, 27, 10, 8, 9, 17, 20, 24, 26] # comparison_anno = anno.copy() # comparison_anno['best'] = best_anno['Predicted'] # plot_imgs( # config, # comparison_anno.query('best != Predicted').sample(28), # save_as='./tmp/best_submission_corrections.png', # folder='data/test_minimaps', # extension='jpg', # ) # new_rows = [] # for id_, row in comparison_anno.iterrows(): # current_labels = str_to_labels(row['Predicted']) # best_labels = str_to_labels(row['best']) # for c in rare_classes: # if c in current_labels and c not in best_labels: # debug(f"removing {c} from {id_}") # current_labels.remove(c) # if c not in current_labels and c in best_labels: # debug(f"adding {c} to {id_}") # current_labels.append(c) # new_row = { # 'Id': id_, # 'Predicted': labels_to_str(current_labels), # } # new_rows.append(new_row) # anno = pd.DataFrame.from_records(new_rows).set_index('Id') # debug(f"anno ({len(anno)}) =\n{anno.head(10)}") # correct leaked -------------- # pairs_anno = pd.read_csv('data/identical_pairs.csv') # hpa_anno = pd.read_csv('data/hpa_public_imgs.csv', index_col=0) # correction_anno = pairs_anno.join(hpa_anno, how='left', on=['hpa_id'])\ # .join(anno, how='left', on=['test_id']) # correction_anno['Target'] = [labels_to_str(str_to_labels(x)) for x in correction_anno['Target']] # debug(f"correction_anno['test_id'] = {correction_anno['test_id']}") # debug(f"len = {len(anno.loc[correction_anno['test_id'], 'Predicted'].values)}") # correction_anno['Predicted'] = anno.loc[correction_anno['test_id'], 'Predicted'].values # actual_corrections = correction_anno.query('Predicted != Target').set_index('test_id') # # DEBUG BEGIN # # plot_imgs(config, actual_corrections, folder='data/test_minimaps', extension='jpg') # # DEBUG END # debug(f"making {len(correction_anno)} corrections, {len(actual_corrections)} are actually different") # debug(f"actual_corrections =\n{actual_corrections}") # anno.loc[correction_anno['test_id'], 'Predicted'] = correction_anno['Target'].values # correct leaked 2 -------------- pairs_anno = pd.read_csv('data/identical_pairs_new_fixed.csv') for i_begin, i_end in chunk(len(pairs_anno), 24): plot_imgs( config, pairs_anno.iloc[i_begin:i_end].drop('test_id', axis=1).set_index('hpa_id'), save_as=f'./tmp/diff_{i_begin}_hpa.jpg', folder='data/hpa_public_imgs', extension='jpg', background_color=None, channel=None, dpi=100, ) plot_imgs( config, pairs_anno.iloc[i_begin:i_end].drop('hpa_id', axis=1).set_index('test_id'), save_as=f'./tmp/diff_{i_begin}_test.jpg', folder='data/test_full_size', extension='tif', background_color=None, channel=['red', 'green', 'blue'], dpi=100, ) hpa_anno =
pd.read_csv('data/hpa_public_imgs.csv', index_col=0)
pandas.read_csv
#!/usr/bin/env python ############################################################################### # binning.py - A binning algorithm spinning off of the methodology of # Lorikeet ############################################################################### # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # ############################################################################### __author__ = "<NAME>" __copyright__ = "Copyright 2020" __credits__ = ["<NAME>"] __license__ = "GPL3" __maintainer__ = "<NAME>" __email__ = "<EMAIL> near hdr.qut.edu.au" __status__ = "Development" import json import logging ############################################################################### # System imports import sys import os import matplotlib import matplotlib.pyplot as plt # Function imports import numpy as np import pandas as pd import scipy.stats as sp_stats import seaborn as sns import skbio.stats.composition import umap from Bio import SeqIO from numba import njit from numpy import int64 # self imports import flight.metrics as metrics import flight.utils as utils # Set plotting style sns.set(style='white', context='notebook', rc={'figure.figsize': (14, 10)}) matplotlib.use('pdf') # Debug debug = { 1: logging.CRITICAL, 2: logging.ERROR, 3: logging.WARNING, 4: logging.INFO, 5: logging.DEBUG } ############################################################################### ############################### - Exceptions - ################################ class BadTreeFileException(Exception): pass ############################################################################### [44/1010] ################################ - Functions - ################################ @njit def index(array, item): for idx, val in np.ndenumerate(array): if val == item: return idx ############################################################################### ################################ - Classes - ################################## class Binner: def __init__( self, count_path, kmer_frequencies, output_prefix, assembly, long_count_path=None, n_neighbors=100, min_dist=0.1, min_contig_size=2500, threads=8, a=1.58, b=0.4, min_bin_size=200000, initialization='spectral', random_seed=42069 ): self.max_time_to_recluster_bin = 1800 # 30 mins self.findem = [] self.min_contig_size = min_contig_size self.min_bin_size = min_bin_size self.threads = threads self.checked_bins = [] # Used in the pdist function self.survived = [] # Open up assembly self.assembly = {} self.assembly_names = {} if assembly is not None: for (tid, rec) in enumerate(SeqIO.parse(assembly, "fasta")): self.assembly[rec.id] = tid self.assembly_names[tid] = rec.id # initialize bin dictionary Label: Vec<Contig> self.bins = {} self.bin_validity = {} ## Set up clusterer and UMAP self.path = output_prefix self.coverage_profile = None self.kmer_signature = None self.contig_lengths = None ## These tables should have the same ordering as each other if they came from rosella. ## I.e. all the rows match the same contig if count_path is not None and long_count_path is not None: self.coverage_table = pd.read_csv(count_path, sep='\t') self.long_depths = pd.read_csv(long_count_path, sep='\t') self.coverage_table['coverageSum'] = (self.coverage_table.iloc[:, 3::2] > 0).any(axis=1) self.long_depths['coverageSum'] = (self.long_depths.iloc[:, 3::2] > 0).any(axis=1) self.large_contigs = self.coverage_table[(self.coverage_table["contigLen"] >= min_contig_size) & ((self.coverage_table["coverageSum"]) & (self.long_depths["coverageSum"]))] self.small_contigs = self.coverage_table[(self.coverage_table["contigLen"] < min_contig_size) | ((~self.coverage_table["coverageSum"]) | (~self.long_depths["coverageSum"]))] self.long_depths = self.long_depths[self.long_depths['contigName'].isin(self.large_contigs['contigName'])] self.large_contigs = self.large_contigs.drop('coverageSum', axis=1) self.small_contigs = self.small_contigs.drop('coverageSum', axis=1) self.long_depths = self.long_depths.drop('coverageSum', axis=1) self.large_contigs = pd.concat([self.large_contigs, self.long_depths.iloc[:, 3:]], axis = 1) self.n_samples = len(self.large_contigs.columns[3::2]) self.long_samples = 0 self.short_sample_distance = utils.sample_distance(self.large_contigs) self.long_sample_distance = utils.sample_distance(self.long_depths) elif count_path is not None: self.coverage_table = pd.read_csv(count_path, sep='\t') self.coverage_table['coverageSum'] = (self.coverage_table.iloc[:, 3::2] > 0).any(axis=1) self.large_contigs = self.coverage_table[(self.coverage_table["contigLen"] >= min_contig_size) & (self.coverage_table["coverageSum"])] self.small_contigs = self.coverage_table[(self.coverage_table["contigLen"] < min_contig_size) | (~self.coverage_table["coverageSum"])] self.large_contigs = self.large_contigs.drop('coverageSum', axis=1) self.small_contigs = self.small_contigs.drop('coverageSum', axis=1) self.short_sample_distance = utils.sample_distance(self.large_contigs) self.n_samples = len(self.large_contigs.columns[3::2]) self.long_samples = 0 else: ## Treat long coverages as the default set self.coverage_table = pd.read_csv(long_count_path, sep='\t') self.coverage_table['coverageSum'] = (self.coverage_table.iloc[:, 3::2] > 0).any(axis=1) self.large_contigs = self.coverage_table[(self.coverage_table["contigLen"] >= min_contig_size) & (self.coverage_table["coverageSum"])] self.small_contigs = self.coverage_table[(self.coverage_table["contigLen"] < min_contig_size) | (~self.coverage_table["coverageSum"])] self.large_contigs = self.large_contigs.drop('coverageSum', axis=1) self.small_contigs = self.small_contigs.drop('coverageSum', axis=1) self.long_sample_distance = utils.sample_distance(self.large_contigs) self.long_samples = 0 self.n_samples = len(self.large_contigs.columns[3::2]) if assembly is None: for (tid, rec) in enumerate(self.coverage_table['contigName']): self.assembly[rec] = tid self.assembly_names[tid] = rec tids = [] for name in self.large_contigs['contigName']: tids.append(self.assembly[name]) self.large_contigs['tid'] = tids ## Handle TNFs self.tnfs =
pd.read_csv(kmer_frequencies, sep='\t')
pandas.read_csv
from datetime import ( datetime, timedelta, ) import re import numpy as np import pytest from pandas._libs import iNaT from pandas.errors import InvalidIndexError import pandas.util._test_decorators as td from pandas.core.dtypes.common import is_integer import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, Timestamp, date_range, isna, notna, ) import pandas._testing as tm import pandas.core.common as com # We pass through a TypeError raised by numpy _slice_msg = "slice indices must be integers or None or have an __index__ method" class TestDataFrameIndexing: def test_getitem(self, float_frame): # Slicing sl = float_frame[:20] assert len(sl.index) == 20 # Column access for _, series in sl.items(): assert len(series.index) == 20 assert tm.equalContents(series.index, sl.index) for key, _ in float_frame._series.items(): assert float_frame[key] is not None assert "random" not in float_frame with pytest.raises(KeyError, match="random"): float_frame["random"] def test_getitem2(self, float_frame): df = float_frame.copy() df["$10"] = np.random.randn(len(df)) ad = np.random.randn(len(df)) df["@awesome_domain"] = ad with pytest.raises(KeyError, match=re.escape("'df[\"$10\"]'")): df.__getitem__('df["$10"]') res = df["@awesome_domain"] tm.assert_numpy_array_equal(ad, res.values) def test_setitem_list(self, float_frame): float_frame["E"] = "foo" data = float_frame[["A", "B"]] float_frame[["B", "A"]] = data tm.assert_series_equal(float_frame["B"], data["A"], check_names=False) tm.assert_series_equal(float_frame["A"], data["B"], check_names=False) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): data[["A"]] = float_frame[["A", "B"]] newcolumndata = range(len(data.index) - 1) msg = ( rf"Length of values \({len(newcolumndata)}\) " rf"does not match length of index \({len(data)}\)" ) with pytest.raises(ValueError, match=msg): data["A"] = newcolumndata def test_setitem_list2(self): df = DataFrame(0, index=range(3), columns=["tt1", "tt2"], dtype=np.int_) df.loc[1, ["tt1", "tt2"]] = [1, 2] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series([1, 2], df.columns, dtype=np.int_, name=1) tm.assert_series_equal(result, expected) df["tt1"] = df["tt2"] = "0" df.loc[df.index[1], ["tt1", "tt2"]] = ["1", "2"] result = df.loc[df.index[1], ["tt1", "tt2"]] expected = Series(["1", "2"], df.columns, name=1) tm.assert_series_equal(result, expected) def test_getitem_boolean(self, mixed_float_frame, mixed_int_frame, datetime_frame): # boolean indexing d = datetime_frame.index[10] indexer = datetime_frame.index > d indexer_obj = indexer.astype(object) subindex = datetime_frame.index[indexer] subframe = datetime_frame[indexer] tm.assert_index_equal(subindex, subframe.index) with pytest.raises(ValueError, match="Item wrong length"): datetime_frame[indexer[:-1]] subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) with pytest.raises(ValueError, match="Boolean array expected"): datetime_frame[datetime_frame] # test that Series work indexer_obj = Series(indexer_obj, datetime_frame.index) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test that Series indexers reindex # we are producing a warning that since the passed boolean # key is not the same as the given index, we will reindex # not sure this is really necessary with tm.assert_produces_warning(UserWarning): indexer_obj = indexer_obj.reindex(datetime_frame.index[::-1]) subframe_obj = datetime_frame[indexer_obj] tm.assert_frame_equal(subframe_obj, subframe) # test df[df > 0] for df in [ datetime_frame, mixed_float_frame, mixed_int_frame, ]: data = df._get_numeric_data() bif = df[df > 0] bifw = DataFrame( {c: np.where(data[c] > 0, data[c], np.nan) for c in data.columns}, index=data.index, columns=data.columns, ) # add back other columns to compare for c in df.columns: if c not in bifw: bifw[c] = df[c] bifw = bifw.reindex(columns=df.columns) tm.assert_frame_equal(bif, bifw, check_dtype=False) for c in df.columns: if bif[c].dtype != bifw[c].dtype: assert bif[c].dtype == df[c].dtype def test_getitem_boolean_casting(self, datetime_frame): # don't upcast if we don't need to df = datetime_frame.copy() df["E"] = 1 df["E"] = df["E"].astype("int32") df["E1"] = df["E"].copy() df["F"] = 1 df["F"] = df["F"].astype("int64") df["F1"] = df["F"].copy() casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] * 2 + [np.dtype("int64")] * 2, index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) # int block splitting df.loc[df.index[1:3], ["E1", "F1"]] = 0 casted = df[df > 0] result = casted.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("int32")] + [np.dtype("float64")] + [np.dtype("int64")] + [np.dtype("float64")], index=["A", "B", "C", "D", "E", "E1", "F", "F1"], ) tm.assert_series_equal(result, expected) def test_getitem_boolean_list(self): df = DataFrame(np.arange(12).reshape(3, 4)) def _checkit(lst): result = df[lst] expected = df.loc[df.index[lst]] tm.assert_frame_equal(result, expected) _checkit([True, False, True]) _checkit([True, True, True]) _checkit([False, False, False]) def test_getitem_boolean_iadd(self): arr = np.random.randn(5, 5) df = DataFrame(arr.copy(), columns=["A", "B", "C", "D", "E"]) df[df < 0] += 1 arr[arr < 0] += 1 tm.assert_almost_equal(df.values, arr) def test_boolean_index_empty_corner(self): # #2096 blah = DataFrame(np.empty([0, 1]), columns=["A"], index=DatetimeIndex([])) # both of these should succeed trivially k = np.array([], bool) blah[k] blah[k] = 0 def test_getitem_ix_mixed_integer(self): df = DataFrame( np.random.randn(4, 3), index=[1, 10, "C", "E"], columns=[1, 2, 3] ) result = df.iloc[:-1] expected = df.loc[df.index[:-1]] tm.assert_frame_equal(result, expected) result = df.loc[[1, 10]] expected = df.loc[Index([1, 10])] tm.assert_frame_equal(result, expected) def test_getitem_ix_mixed_integer2(self): # 11320 df = DataFrame( { "rna": (1.5, 2.2, 3.2, 4.5), -1000: [11, 21, 36, 40], 0: [10, 22, 43, 34], 1000: [0, 10, 20, 30], }, columns=["rna", -1000, 0, 1000], ) result = df[[1000]] expected = df.iloc[:, [3]] tm.assert_frame_equal(result, expected) result = df[[-1000]] expected = df.iloc[:, [1]] tm.assert_frame_equal(result, expected) def test_getattr(self, float_frame): tm.assert_series_equal(float_frame.A, float_frame["A"]) msg = "'DataFrame' object has no attribute 'NONEXISTENT_NAME'" with pytest.raises(AttributeError, match=msg): float_frame.NONEXISTENT_NAME def test_setattr_column(self): df = DataFrame({"foobar": 1}, index=range(10)) df.foobar = 5 assert (df.foobar == 5).all() def test_setitem(self, float_frame): # not sure what else to do here series = float_frame["A"][::2] float_frame["col5"] = series assert "col5" in float_frame assert len(series) == 15 assert len(float_frame) == 30 exp = np.ravel(np.column_stack((series.values, [np.nan] * 15))) exp = Series(exp, index=float_frame.index, name="col5") tm.assert_series_equal(float_frame["col5"], exp) series = float_frame["A"] float_frame["col6"] = series tm.assert_series_equal(series, float_frame["col6"], check_names=False) # set ndarray arr = np.random.randn(len(float_frame)) float_frame["col9"] = arr assert (float_frame["col9"] == arr).all() float_frame["col7"] = 5 assert (float_frame["col7"] == 5).all() float_frame["col0"] = 3.14 assert (float_frame["col0"] == 3.14).all() float_frame["col8"] = "foo" assert (float_frame["col8"] == "foo").all() # this is partially a view (e.g. some blocks are view) # so raise/warn smaller = float_frame[:2] msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): smaller["col10"] = ["1", "2"] assert smaller["col10"].dtype == np.object_ assert (smaller["col10"] == ["1", "2"]).all() def test_setitem2(self): # dtype changing GH4204 df = DataFrame([[0, 0]]) df.iloc[0] = np.nan expected = DataFrame([[np.nan, np.nan]]) tm.assert_frame_equal(df, expected) df = DataFrame([[0, 0]]) df.loc[0] = np.nan tm.assert_frame_equal(df, expected) def test_setitem_boolean(self, float_frame): df = float_frame.copy() values = float_frame.values df[df["A"] > 0] = 4 values[values[:, 0] > 0] = 4 tm.assert_almost_equal(df.values, values) # test that column reindexing works series = df["A"] == 4 series = series.reindex(df.index[::-1]) df[series] = 1 values[values[:, 0] == 4] = 1 tm.assert_almost_equal(df.values, values) df[df > 0] = 5 values[values > 0] = 5 tm.assert_almost_equal(df.values, values) df[df == 5] = 0 values[values == 5] = 0 tm.assert_almost_equal(df.values, values) # a df that needs alignment first df[df[:-1] < 0] = 2 np.putmask(values[:-1], values[:-1] < 0, 2) tm.assert_almost_equal(df.values, values) # indexed with same shape but rows-reversed df df[df[::-1] == 2] = 3 values[values == 2] = 3 tm.assert_almost_equal(df.values, values) msg = "Must pass DataFrame or 2-d ndarray with boolean values only" with pytest.raises(TypeError, match=msg): df[df * 0] = 2 # index with DataFrame mask = df > np.abs(df) expected = df.copy() df[df > np.abs(df)] = np.nan expected.values[mask.values] = np.nan tm.assert_frame_equal(df, expected) # set from DataFrame expected = df.copy() df[df > np.abs(df)] = df * 2 np.putmask(expected.values, mask.values, df.values * 2) tm.assert_frame_equal(df, expected) def test_setitem_cast(self, float_frame): float_frame["D"] = float_frame["D"].astype("i8") assert float_frame["D"].dtype == np.int64 # #669, should not cast? # this is now set to int64, which means a replacement of the column to # the value dtype (and nothing to do with the existing dtype) float_frame["B"] = 0 assert float_frame["B"].dtype == np.int64 # cast if pass array of course float_frame["B"] = np.arange(len(float_frame)) assert issubclass(float_frame["B"].dtype.type, np.integer) float_frame["foo"] = "bar" float_frame["foo"] = 0 assert float_frame["foo"].dtype == np.int64 float_frame["foo"] = "bar" float_frame["foo"] = 2.5 assert float_frame["foo"].dtype == np.float64 float_frame["something"] = 0 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2 assert float_frame["something"].dtype == np.int64 float_frame["something"] = 2.5 assert float_frame["something"].dtype == np.float64 def test_setitem_corner(self, float_frame): # corner case df = DataFrame({"B": [1.0, 2.0, 3.0], "C": ["a", "b", "c"]}, index=np.arange(3)) del df["B"] df["B"] = [1.0, 2.0, 3.0] assert "B" in df assert len(df.columns) == 2 df["A"] = "beginning" df["E"] = "foo" df["D"] = "bar" df[datetime.now()] = "date" df[datetime.now()] = 5.0 # what to do when empty frame with index dm = DataFrame(index=float_frame.index) dm["A"] = "foo" dm["B"] = "bar" assert len(dm.columns) == 2 assert dm.values.dtype == np.object_ # upcast dm["C"] = 1 assert dm["C"].dtype == np.int64 dm["E"] = 1.0 assert dm["E"].dtype == np.float64 # set existing column dm["A"] = "bar" assert "bar" == dm["A"][0] dm = DataFrame(index=np.arange(3)) dm["A"] = 1 dm["foo"] = "bar" del dm["foo"] dm["foo"] = "bar" assert dm["foo"].dtype == np.object_ dm["coercible"] = ["1", "2", "3"] assert dm["coercible"].dtype == np.object_ def test_setitem_corner2(self): data = { "title": ["foobar", "bar", "foobar"] + ["foobar"] * 17, "cruft": np.random.random(20), } df = DataFrame(data) ix = df[df["title"] == "bar"].index df.loc[ix, ["title"]] = "foobar" df.loc[ix, ["cruft"]] = 0 assert df.loc[1, "title"] == "foobar" assert df.loc[1, "cruft"] == 0 def test_setitem_ambig(self): # Difficulties with mixed-type data from decimal import Decimal # Created as float type dm = DataFrame(index=range(3), columns=range(3)) coercable_series = Series([Decimal(1) for _ in range(3)], index=range(3)) uncoercable_series = Series(["foo", "bzr", "baz"], index=range(3)) dm[0] = np.ones(3) assert len(dm.columns) == 3 dm[1] = coercable_series assert len(dm.columns) == 3 dm[2] = uncoercable_series assert len(dm.columns) == 3 assert dm[2].dtype == np.object_ def test_setitem_None(self, float_frame): # GH #766 float_frame[None] = float_frame["A"] tm.assert_series_equal( float_frame.iloc[:, -1], float_frame["A"], check_names=False ) tm.assert_series_equal( float_frame.loc[:, None], float_frame["A"], check_names=False ) tm.assert_series_equal(float_frame[None], float_frame["A"], check_names=False) repr(float_frame) def test_loc_setitem_boolean_mask_allfalse(self): # GH 9596 df = DataFrame( {"a": ["1", "2", "3"], "b": ["11", "22", "33"], "c": ["111", "222", "333"]} ) result = df.copy() result.loc[result.b.isna(), "a"] = result.a tm.assert_frame_equal(result, df) def test_getitem_fancy_slice_integers_step(self): df = DataFrame(np.random.randn(10, 5)) # this is OK result = df.iloc[:8:2] # noqa df.iloc[:8:2] = np.nan assert isna(df.iloc[:8:2]).values.all() def test_getitem_setitem_integer_slice_keyerrors(self): df = DataFrame(np.random.randn(10, 5), index=range(0, 20, 2)) # this is OK cp = df.copy() cp.iloc[4:10] = 0 assert (cp.iloc[4:10] == 0).values.all() # so is this cp = df.copy() cp.iloc[3:11] = 0 assert (cp.iloc[3:11] == 0).values.all() result = df.iloc[2:6] result2 = df.loc[3:11] expected = df.reindex([4, 6, 8, 10]) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # non-monotonic, raise KeyError df2 = df.iloc[list(range(5)) + list(range(5, 10))[::-1]] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] with pytest.raises(KeyError, match=r"^3$"): df2.loc[3:11] = 0 @td.skip_array_manager_invalid_test # already covered in test_iloc_col_slice_view def test_fancy_getitem_slice_mixed(self, float_frame, float_string_frame): sliced = float_string_frame.iloc[:, -3:] assert sliced["D"].dtype == np.float64 # get view with single block # setting it triggers setting with copy sliced = float_frame.iloc[:, -3:] assert np.shares_memory(sliced["C"]._values, float_frame["C"]._values) msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): sliced.loc[:, "C"] = 4.0 assert (float_frame["C"] == 4).all() def test_getitem_setitem_non_ix_labels(self): df = tm.makeTimeDataFrame() start, end = df.index[[5, 10]] result = df.loc[start:end] result2 = df[start:end] expected = df[5:11] tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) result = df.copy() result.loc[start:end] = 0 result2 = df.copy() result2[start:end] = 0 expected = df.copy() expected[5:11] = 0 tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) def test_ix_multi_take(self): df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, :] xp = df.reindex([0]) tm.assert_frame_equal(rs, xp) # GH#1321 df = DataFrame(np.random.randn(3, 2)) rs = df.loc[df.index == 0, df.columns == 1] xp = df.reindex(index=[0], columns=[1]) tm.assert_frame_equal(rs, xp) def test_getitem_fancy_scalar(self, float_frame): f = float_frame ix = f.loc # individual value for col in f.columns: ts = f[col] for idx in f.index[::5]: assert ix[idx, col] == ts[idx] @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_scalar(self, float_frame): f = float_frame expected = float_frame.copy() ix = f.loc # individual value for j, col in enumerate(f.columns): ts = f[col] # noqa for idx in f.index[::5]: i = f.index.get_loc(idx) val = np.random.randn() expected.values[i, j] = val ix[idx, col] = val tm.assert_frame_equal(f, expected) def test_getitem_fancy_boolean(self, float_frame): f = float_frame ix = f.loc expected = f.reindex(columns=["B", "D"]) result = ix[:, [False, True, False, True]] tm.assert_frame_equal(result, expected) expected = f.reindex(index=f.index[5:10], columns=["B", "D"]) result = ix[f.index[5:10], [False, True, False, True]] tm.assert_frame_equal(result, expected) boolvec = f.index > f.index[7] expected = f.reindex(index=f.index[boolvec]) result = ix[boolvec] tm.assert_frame_equal(result, expected) result = ix[boolvec, :] tm.assert_frame_equal(result, expected) result = ix[boolvec, f.columns[2:]] expected = f.reindex(index=f.index[boolvec], columns=["C", "D"]) tm.assert_frame_equal(result, expected) @td.skip_array_manager_invalid_test # TODO(ArrayManager) rewrite not using .values def test_setitem_fancy_boolean(self, float_frame): # from 2d, set with booleans frame = float_frame.copy() expected = float_frame.copy() mask = frame["A"] > 0 frame.loc[mask] = 0.0 expected.values[mask.values] = 0.0 tm.assert_frame_equal(frame, expected) frame = float_frame.copy() expected = float_frame.copy() frame.loc[mask, ["A", "B"]] = 0.0 expected.values[mask.values, :2] = 0.0 tm.assert_frame_equal(frame, expected) def test_getitem_fancy_ints(self, float_frame): result = float_frame.iloc[[1, 4, 7]] expected = float_frame.loc[float_frame.index[[1, 4, 7]]] tm.assert_frame_equal(result, expected) result = float_frame.iloc[:, [2, 0, 1]] expected = float_frame.loc[:, float_frame.columns[[2, 0, 1]]] tm.assert_frame_equal(result, expected) def test_getitem_setitem_boolean_misaligned(self, float_frame): # boolean index misaligned labels mask = float_frame["A"][::-1] > 1 result = float_frame.loc[mask] expected = float_frame.loc[mask[::-1]] tm.assert_frame_equal(result, expected) cp = float_frame.copy() expected = float_frame.copy() cp.loc[mask] = 0 expected.loc[mask] = 0 tm.assert_frame_equal(cp, expected) def test_getitem_setitem_boolean_multi(self): df = DataFrame(np.random.randn(3, 2)) # get k1 = np.array([True, False, True]) k2 = np.array([False, True]) result = df.loc[k1, k2] expected = df.loc[[0, 2], [1]] tm.assert_frame_equal(result, expected) expected = df.copy() df.loc[np.array([True, False, True]), np.array([False, True])] = 5 expected.loc[[0, 2], [1]] = 5 tm.assert_frame_equal(df, expected) def test_getitem_setitem_float_labels(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.random.randn(5, 5), index=index) result = df.loc[1.5:4] expected = df.reindex([1.5, 2, 3, 4]) tm.assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4:5] expected = df.reindex([4, 5]) # reindex with int tm.assert_frame_equal(result, expected, check_index_type=False) assert len(result) == 2 result = df.loc[4:5] expected = df.reindex([4.0, 5.0]) # reindex with float tm.assert_frame_equal(result, expected) assert len(result) == 2 # loc_float changes this to work properly result = df.loc[1:2] expected = df.iloc[0:2] tm.assert_frame_equal(result, expected) df.loc[1:2] = 0 result = df[1:2] assert (result == 0).all().all() # #2727 index = Index([1.0, 2.5, 3.5, 4.5, 5.0]) df = DataFrame(np.random.randn(5, 5), index=index) # positional slicing only via iloc! msg = ( "cannot do positional indexing on Float64Index with " r"these indexers \[1.0\] of type float" ) with pytest.raises(TypeError, match=msg): df.iloc[1.0:5] result = df.iloc[4:5] expected = df.reindex([5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 1 cp = df.copy() with pytest.raises(TypeError, match=_slice_msg): cp.iloc[1.0:5] = 0 with pytest.raises(TypeError, match=msg): result = cp.iloc[1.0:5] == 0 assert result.values.all() assert (cp.iloc[0:1] == df.iloc[0:1]).values.all() cp = df.copy() cp.iloc[4:5] = 0 assert (cp.iloc[4:5] == 0).values.all() assert (cp.iloc[0:4] == df.iloc[0:4]).values.all() # float slicing result = df.loc[1.0:5] expected = df tm.assert_frame_equal(result, expected) assert len(result) == 5 result = df.loc[1.1:5] expected = df.reindex([2.5, 3.5, 4.5, 5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 4 result = df.loc[4.51:5] expected = df.reindex([5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 1 result = df.loc[1.0:5.0] expected = df.reindex([1.0, 2.5, 3.5, 4.5, 5.0]) tm.assert_frame_equal(result, expected) assert len(result) == 5 cp = df.copy() cp.loc[1.0:5.0] = 0 result = cp.loc[1.0:5.0] assert (result == 0).values.all() def test_setitem_single_column_mixed_datetime(self): df = DataFrame( np.random.randn(5, 3), index=["a", "b", "c", "d", "e"], columns=["foo", "bar", "baz"], ) df["timestamp"] = Timestamp("20010102") # check our dtypes result = df.dtypes expected = Series( [np.dtype("float64")] * 3 + [np.dtype("datetime64[ns]")], index=["foo", "bar", "baz", "timestamp"], ) tm.assert_series_equal(result, expected) # GH#16674 iNaT is treated as an integer when given by the user df.loc["b", "timestamp"] = iNaT assert not isna(df.loc["b", "timestamp"]) assert df["timestamp"].dtype == np.object_ assert df.loc["b", "timestamp"] == iNaT # allow this syntax (as of GH#3216) df.loc["c", "timestamp"] = np.nan assert isna(df.loc["c", "timestamp"]) # allow this syntax df.loc["d", :] = np.nan assert not isna(df.loc["c", :]).all() def test_setitem_mixed_datetime(self): # GH 9336 expected = DataFrame( { "a": [0, 0, 0, 0, 13, 14], "b": [ datetime(2012, 1, 1), 1, "x", "y", datetime(2013, 1, 1), datetime(2014, 1, 1), ], } ) df = DataFrame(0, columns=list("ab"), index=range(6)) df["b"] = pd.NaT df.loc[0, "b"] = datetime(2012, 1, 1) df.loc[1, "b"] = 1 df.loc[[2, 3], "b"] = "x", "y" A = np.array( [ [13, np.datetime64("2013-01-01T00:00:00")], [14, np.datetime64("2014-01-01T00:00:00")], ] ) df.loc[[4, 5], ["a", "b"]] = A tm.assert_frame_equal(df, expected) def test_setitem_frame_float(self, float_frame): piece = float_frame.loc[float_frame.index[:2], ["A", "B"]] float_frame.loc[float_frame.index[-2] :, ["A", "B"]] = piece.values result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values expected = piece.values tm.assert_almost_equal(result, expected) def test_setitem_frame_mixed(self, float_string_frame): # GH 3216 # already aligned f = float_string_frame.copy() piece = DataFrame( [[1.0, 2.0], [3.0, 4.0]], index=f.index[0:2], columns=["A", "B"] ) key = (f.index[slice(None, 2)], ["A", "B"]) f.loc[key] = piece tm.assert_almost_equal(f.loc[f.index[0:2], ["A", "B"]].values, piece.values) def test_setitem_frame_mixed_rows_unaligned(self, float_string_frame): # GH#3216 rows unaligned f = float_string_frame.copy() piece = DataFrame( [[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]], index=list(f.index[0:2]) + ["foo", "bar"], columns=["A", "B"], ) key = (f.index[slice(None, 2)], ["A", "B"]) f.loc[key] = piece tm.assert_almost_equal( f.loc[f.index[0:2:], ["A", "B"]].values, piece.values[0:2] ) def test_setitem_frame_mixed_key_unaligned(self, float_string_frame): # GH#3216 key is unaligned with values f = float_string_frame.copy() piece = f.loc[f.index[:2], ["A"]] piece.index = f.index[-2:] key = (f.index[slice(-2, None)], ["A", "B"]) f.loc[key] = piece piece["B"] = np.nan tm.assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values) def test_setitem_frame_mixed_ndarray(self, float_string_frame): # GH#3216 ndarray f = float_string_frame.copy() piece = float_string_frame.loc[f.index[:2], ["A", "B"]] key = (f.index[slice(-2, None)], ["A", "B"]) f.loc[key] = piece.values tm.assert_almost_equal(f.loc[f.index[-2:], ["A", "B"]].values, piece.values) def test_setitem_frame_upcast(self): # needs upcasting df = DataFrame([[1, 2, "foo"], [3, 4, "bar"]], columns=["A", "B", "C"]) df2 = df.copy() df2.loc[:, ["A", "B"]] = df.loc[:, ["A", "B"]] + 0.5 expected = df.reindex(columns=["A", "B"]) expected += 0.5 expected["C"] = df["C"] tm.assert_frame_equal(df2, expected) def test_setitem_frame_align(self, float_frame): piece = float_frame.loc[float_frame.index[:2], ["A", "B"]] piece.index = float_frame.index[-2:] piece.columns = ["A", "B"] float_frame.loc[float_frame.index[-2:], ["A", "B"]] = piece result = float_frame.loc[float_frame.index[-2:], ["A", "B"]].values expected = piece.values tm.assert_almost_equal(result, expected) def test_getitem_setitem_ix_duplicates(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"]) result = df.loc["foo"] expected = df[:2] tm.assert_frame_equal(result, expected) result = df.loc["bar"] expected = df.iloc[[2, 4]] tm.assert_frame_equal(result, expected) result = df.loc["baz"] expected = df.iloc[3] tm.assert_series_equal(result, expected) def test_getitem_ix_boolean_duplicates_multiple(self): # #1201 df = DataFrame(np.random.randn(5, 3), index=["foo", "foo", "bar", "baz", "bar"]) result = df.loc[["bar"]] exp = df.iloc[[2, 4]] tm.assert_frame_equal(result, exp) result = df.loc[df[1] > 0] exp = df[df[1] > 0] tm.assert_frame_equal(result, exp) result = df.loc[df[0] > 0] exp = df[df[0] > 0] tm.assert_frame_equal(result, exp) @pytest.mark.parametrize("bool_value", [True, False]) def test_getitem_setitem_ix_bool_keyerror(self, bool_value): # #2199 df = DataFrame({"a": [1, 2, 3]}) message = f"{bool_value}: boolean label can not be used without a boolean index" with pytest.raises(KeyError, match=message): df.loc[bool_value] msg = "cannot use a single bool to index into setitem" with pytest.raises(KeyError, match=msg): df.loc[bool_value] = 0 # TODO: rename? remove? def test_single_element_ix_dont_upcast(self, float_frame): float_frame["E"] = 1 assert issubclass(float_frame["E"].dtype.type, (int, np.integer)) result = float_frame.loc[float_frame.index[5], "E"] assert is_integer(result) # GH 11617 df = DataFrame({"a": [1.23]}) df["b"] = 666 result = df.loc[0, "b"] assert is_integer(result) expected = Series([666], [0], name="b") result = df.loc[[0], "b"] tm.assert_series_equal(result, expected) def test_iloc_row(self): df = DataFrame(np.random.randn(10, 4), index=range(0, 20, 2)) result = df.iloc[1] exp = df.loc[2] tm.assert_series_equal(result, exp) result = df.iloc[2] exp = df.loc[4] tm.assert_series_equal(result, exp) # slice result = df.iloc[slice(4, 8)] expected = df.loc[8:14] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[[1, 2, 4, 6]] expected = df.reindex(df.index[[1, 2, 4, 6]]) tm.assert_frame_equal(result, expected) def test_iloc_row_slice_view(self, using_array_manager): df = DataFrame(np.random.randn(10, 4), index=range(0, 20, 2)) original = df.copy() # verify slice is view # setting it makes it raise/warn subset = df.iloc[slice(4, 8)] assert np.shares_memory(df[2], subset[2]) msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): subset.loc[:, 2] = 0.0 exp_col = original[2].copy() # TODO(ArrayManager) verify it is expected that the original didn't change if not using_array_manager: exp_col[4:8] = 0.0 tm.assert_series_equal(df[2], exp_col) def test_iloc_col(self): df = DataFrame(np.random.randn(4, 10), columns=range(0, 20, 2)) result = df.iloc[:, 1] exp = df.loc[:, 2] tm.assert_series_equal(result, exp) result = df.iloc[:, 2] exp = df.loc[:, 4] tm.assert_series_equal(result, exp) # slice result = df.iloc[:, slice(4, 8)] expected = df.loc[:, 8:14] tm.assert_frame_equal(result, expected) # list of integers result = df.iloc[:, [1, 2, 4, 6]] expected = df.reindex(columns=df.columns[[1, 2, 4, 6]]) tm.assert_frame_equal(result, expected) def test_iloc_col_slice_view(self, using_array_manager): df = DataFrame(np.random.randn(4, 10), columns=range(0, 20, 2)) original = df.copy() subset = df.iloc[:, slice(4, 8)] if not using_array_manager: # verify slice is view assert np.shares_memory(df[8]._values, subset[8]._values) # and that we are setting a copy msg = r"\nA value is trying to be set on a copy of a slice from a DataFrame" with pytest.raises(com.SettingWithCopyError, match=msg): subset.loc[:, 8] = 0.0 assert (df[8] == 0).all() else: # TODO(ArrayManager) verify this is the desired behaviour subset[8] = 0.0 # subset changed assert (subset[8] == 0).all() # but df itself did not change (setitem replaces full column) tm.assert_frame_equal(df, original) def test_loc_duplicates(self): # gh-17105 # insert a duplicate element to the index trange = date_range( start=Timestamp(year=2017, month=1, day=1), end=Timestamp(year=2017, month=1, day=5), ) trange = trange.insert(loc=5, item=Timestamp(year=2017, month=1, day=5)) df = DataFrame(0, index=trange, columns=["A", "B"]) bool_idx = np.array([False, False, False, False, False, True]) # assignment df.loc[trange[bool_idx], "A"] = 6 expected = DataFrame( {"A": [0, 0, 0, 0, 6, 6], "B": [0, 0, 0, 0, 0, 0]}, index=trange ) tm.assert_frame_equal(df, expected) # in-place df = DataFrame(0, index=trange, columns=["A", "B"]) df.loc[trange[bool_idx], "A"] += 6 tm.assert_frame_equal(df, expected) def test_setitem_with_unaligned_tz_aware_datetime_column(self): # GH 12981 # Assignment of unaligned offset-aware datetime series. # Make sure timezone isn't lost column = Series(date_range("2015-01-01", periods=3, tz="utc"), name="dates") df = DataFrame({"dates": column}) df["dates"] = column[[1, 0, 2]] tm.assert_series_equal(df["dates"], column) df = DataFrame({"dates": column}) df.loc[[0, 1, 2], "dates"] = column[[1, 0, 2]] tm.assert_series_equal(df["dates"], column) def test_loc_setitem_datetimelike_with_inference(self): # GH 7592 # assignment of timedeltas with NaT one_hour = timedelta(hours=1) df = DataFrame(index=date_range("20130101", periods=4)) df["A"] = np.array([1 * one_hour] * 4, dtype="m8[ns]") df.loc[:, "B"] = np.array([2 * one_hour] * 4, dtype="m8[ns]") df.loc[df.index[:3], "C"] = np.array([3 * one_hour] * 3, dtype="m8[ns]") df.loc[:, "D"] = np.array([4 * one_hour] * 4, dtype="m8[ns]") df.loc[df.index[:3], "E"] = np.array([5 * one_hour] * 3, dtype="m8[ns]") df["F"] = np.timedelta64("NaT") df.loc[df.index[:-1], "F"] = np.array([6 * one_hour] * 3, dtype="m8[ns]") df.loc[df.index[-3] :, "G"] = date_range("20130101", periods=3) df["H"] = np.datetime64("NaT") result = df.dtypes expected = Series( [np.dtype("timedelta64[ns]")] * 6 + [np.dtype("datetime64[ns]")] * 2, index=list("ABCDEFGH"), ) tm.assert_series_equal(result, expected) def test_getitem_boolean_indexing_mixed(self): df = DataFrame( { 0: {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan}, 1: { 35: np.nan, 40: 0.32632316859446198, 43: np.nan, 49: 0.32632316859446198, 50: 0.39114724480578139, }, 2: { 35: np.nan, 40: np.nan, 43: 0.29012581014105987, 49: np.nan, 50: np.nan, }, 3: {35: np.nan, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan}, 4: { 35: 0.34215328467153283, 40: np.nan, 43: np.nan, 49: np.nan, 50: np.nan, }, "y": {35: 0, 40: 0, 43: 0, 49: 0, 50: 1}, } ) # mixed int/float ok df2 = df.copy() df2[df2 > 0.3] = 1 expected = df.copy() expected.loc[40, 1] = 1 expected.loc[49, 1] = 1 expected.loc[50, 1] = 1 expected.loc[35, 4] = 1 tm.assert_frame_equal(df2, expected) df["foo"] = "test" msg = "not supported between instances|unorderable types" with pytest.raises(TypeError, match=msg): df[df > 0.3] = 1 def test_type_error_multiindex(self): # See gh-12218 mi = MultiIndex.from_product([["x", "y"], [0, 1]], names=[None, "c"]) dg = DataFrame( [[1, 1, 2, 2], [3, 3, 4, 4]], columns=mi, index=Index([0, 1], name="i") ) with pytest.raises(InvalidIndexError, match="slice"): dg[:, 0] index = Index(range(2), name="i") columns = MultiIndex( levels=[["x", "y"], [0, 1]], codes=[[0, 1], [0, 0]], names=[None, "c"] ) expected = DataFrame([[1, 2], [3, 4]], columns=columns, index=index) result = dg.loc[:, (slice(None), 0)] tm.assert_frame_equal(result, expected) name = ("x", 0) index = Index(range(2), name="i") expected = Series([1, 3], index=index, name=name) result = dg["x", 0] tm.assert_series_equal(result, expected) def test_getitem_interval_index_partial_indexing(self): # GH#36490 df = DataFrame( np.ones((3, 4)), columns=pd.IntervalIndex.from_breaks(np.arange(5)) ) expected = df.iloc[:, 0] res = df[0.5] tm.assert_series_equal(res, expected) res = df.loc[:, 0.5] tm.assert_series_equal(res, expected) def test_setitem_array_as_cell_value(self): # GH#43422 df = DataFrame(columns=["a", "b"], dtype=object) df.loc[0] = {"a": np.zeros((2,)), "b": np.zeros((2, 2))} expected = DataFrame({"a": [np.zeros((2,))], "b": [np.zeros((2, 2))]}) tm.assert_frame_equal(df, expected) # with AM goes through split-path, loses dtype @td.skip_array_manager_not_yet_implemented def test_iloc_setitem_nullable_2d_values(self): df = DataFrame({"A": [1, 2, 3]}, dtype="Int64") orig = df.copy() df.loc[:] = df.values[:, ::-1] tm.assert_frame_equal(df, orig) df.loc[:] = pd.core.arrays.PandasArray(df.values[:, ::-1]) tm.assert_frame_equal(df, orig) df.iloc[:] = df.iloc[:, :] tm.assert_frame_equal(df, orig) @pytest.mark.parametrize( "null", [pd.NaT, pd.NaT.to_numpy("M8[ns]"), pd.NaT.to_numpy("m8[ns]")] ) def test_setting_mismatched_na_into_nullable_fails( self, null, any_numeric_ea_dtype ): # GH#44514 don't cast mismatched nulls to pd.NA df = DataFrame({"A": [1, 2, 3]}, dtype=any_numeric_ea_dtype) ser = df["A"] arr = ser._values msg = "|".join( [ r"int\(\) argument must be a string, a bytes-like object or a " "(real )?number, not 'NaTType'", r"timedelta64\[ns\] cannot be converted to an? (Floating|Integer)Dtype", r"datetime64\[ns\] cannot be converted to an? (Floating|Integer)Dtype", "object cannot be converted to a FloatingDtype", "'values' contains non-numeric NA", ] ) with pytest.raises(TypeError, match=msg): arr[0] = null with pytest.raises(TypeError, match=msg): arr[:2] = [null, null] with pytest.raises(TypeError, match=msg): ser[0] = null with pytest.raises(TypeError, match=msg): ser[:2] = [null, null] with pytest.raises(TypeError, match=msg): ser.iloc[0] = null with pytest.raises(TypeError, match=msg): ser.iloc[:2] = [null, null] with pytest.raises(TypeError, match=msg): df.iloc[0, 0] = null with pytest.raises(TypeError, match=msg): df.iloc[:2, 0] = [null, null] # Multi-Block df2 = df.copy() df2["B"] = ser.copy() with pytest.raises(TypeError, match=msg): df2.iloc[0, 0] = null with pytest.raises(TypeError, match=msg): df2.iloc[:2, 0] = [null, null] def test_loc_expand_empty_frame_keep_index_name(self): # GH#45621 df = DataFrame(columns=["b"], index=Index([], name="a")) df.loc[0] = 1 expected = DataFrame({"b": [1]}, index=Index([0], name="a")) tm.assert_frame_equal(df, expected) def test_loc_expand_empty_frame_keep_midx_names(self): # GH#46317 df = DataFrame( columns=["d"], index=MultiIndex.from_tuples([], names=["a", "b", "c"]) ) df.loc[(1, 2, 3)] = "foo" expected = DataFrame( {"d": ["foo"]}, index=MultiIndex.from_tuples([(1, 2, 3)], names=["a", "b", "c"]), ) tm.assert_frame_equal(df, expected) class TestDataFrameIndexingUInt64: def test_setitem(self, uint64_frame): df = uint64_frame idx = df["A"].rename("foo") # setitem assert "C" not in df.columns df["C"] = idx tm.assert_series_equal(df["C"], Series(idx, name="C")) assert "D" not in df.columns df["D"] = "foo" df["D"] = idx tm.assert_series_equal(df["D"], Series(idx, name="D")) del df["D"] # With NaN: because uint64 has no NaN element, # the column should be cast to object. df2 = df.copy() df2.iloc[1, 1] = pd.NaT df2.iloc[1, 2] = pd.NaT result = df2["B"] tm.assert_series_equal(notna(result), Series([True, False, True], name="B")) tm.assert_series_equal( df2.dtypes, Series( [np.dtype("uint64"), np.dtype("O"), np.dtype("O")], index=["A", "B", "C"], ), ) def test_object_casting_indexing_wraps_datetimelike(using_array_manager): # GH#31649, check the indexing methods all the way down the stack df = DataFrame( { "A": [1, 2], "B": date_range("2000", periods=2), "C": pd.timedelta_range("1 Day", periods=2), } ) ser = df.loc[0] assert isinstance(ser.values[1], Timestamp) assert isinstance(ser.values[2], pd.Timedelta) ser = df.iloc[0] assert isinstance(ser.values[1], Timestamp) assert isinstance(ser.values[2], pd.Timedelta) ser = df.xs(0, axis=0) assert isinstance(ser.values[1], Timestamp) assert isinstance(ser.values[2], pd.Timedelta) if using_array_manager: # remainder of the test checking BlockManager internals return mgr = df._mgr mgr._rebuild_blknos_and_blklocs() arr = mgr.fast_xs(0) assert isinstance(arr[1], Timestamp) assert isinstance(arr[2], pd.Timedelta) blk = mgr.blocks[mgr.blknos[1]] assert blk.dtype == "M8[ns]" # we got the right block val = blk.iget((0, 0)) assert isinstance(val, Timestamp) blk = mgr.blocks[mgr.blknos[2]] assert blk.dtype == "m8[ns]" # we got the right block val = blk.iget((0, 0)) assert isinstance(val, pd.Timedelta) msg1 = r"Cannot setitem on a Categorical with a new category( \(.*\))?, set the" msg2 = "Cannot set a Categorical with another, without identical categories" class TestLocILocDataFrameCategorical: @pytest.fixture def orig(self): cats = Categorical(["a", "a", "a", "a", "a", "a", "a"], categories=["a", "b"]) idx = Index(["h", "i", "j", "k", "l", "m", "n"]) values = [1, 1, 1, 1, 1, 1, 1] orig =
DataFrame({"cats": cats, "values": values}, index=idx)
pandas.DataFrame
"""Evaluate multiple models in multiple experiments, or evaluate baseline on multiple datasets TODO: use hydra or another model to manage the experiments """ import os import sys import json import argparse import logging from glob import glob import time import string logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s', level=logging.INFO) import numpy as np import pandas as pd import h5py import scipy import scipy.interpolate import scipy.stats import torch import dill import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.ticker as ticker import matplotlib.colors as colors import matplotlib.patheffects as pe import matplotlib.animation as animation from tqdm import tqdm from tabulate import tabulate import utility as util from helper import load_model, prediction_output_to_trajectories pd.set_option('io.hdf.default_format','table') ############################ # Bag-of-N (BoN) FDE metrics ############################ def compute_min_FDE(predict, future): return np.min(np.linalg.norm(predict[...,-1,:] - future[-1], axis=-1)) def compute_min_ADE(predict, future): mean_ades = np.mean(np.linalg.norm(predict - future, axis=-1), axis=-1) return np.min(mean_ades) def evaluate_scene_BoN(scene, ph, eval_stg, hyp, n_predictions=20, min_fde=True, min_ade=True): predictconfig = util.AttrDict(ph=ph, num_samples=n_predictions, z_mode=False, gmm_mode=False, full_dist=False, all_z_sep=False) max_hl = hyp['maximum_history_length'] with torch.no_grad(): predictions = eval_stg.predict(scene, np.arange(scene.timesteps), predictconfig.ph, num_samples=predictconfig.num_samples, min_future_timesteps=predictconfig.ph, z_mode=predictconfig.z_mode, gmm_mode=predictconfig.gmm_mode, full_dist=predictconfig.full_dist, all_z_sep=predictconfig.all_z_sep) prediction_dict, histories_dict, futures_dict = \ prediction_output_to_trajectories( predictions, dt=scene.dt, max_h=max_hl, ph=predictconfig.ph, map=None) batch_metrics = {'min_ade': list(), 'min_fde': list()} for t in prediction_dict.keys(): for node in prediction_dict[t].keys(): if min_ade: batch_metrics['min_ade'].append(compute_min_ADE(prediction_dict[t][node], futures_dict[t][node])) if min_fde: batch_metrics['min_fde'].append(compute_min_FDE(prediction_dict[t][node], futures_dict[t][node])) return batch_metrics def evaluate_BoN(env, ph, eval_stg, hyp, n_predictions=20, min_fde=True, min_ade=True): batch_metrics = {'min_ade': list(), 'min_fde': list()} prefix = f"Evaluate Bo{n_predictions} (ph = {ph}): " for scene in tqdm(env.scenes, desc=prefix, dynamic_ncols=True, leave=True): _batch_metrics = evaluate_scene_BoN(scene, ph, eval_stg, hyp, n_predictions=n_predictions, min_fde=min_fde, min_ade=min_ade) batch_metrics['min_ade'].extend(_batch_metrics['min_ade']) batch_metrics['min_fde'].extend(_batch_metrics['min_fde']) return batch_metrics ############### # Other metrics ############### def make_interpolate_map(scene): map = scene.map['VEHICLE'] obs_map = 1 - np.max(map.data[..., :, :, :], axis=-3) / 255 interp_obs_map = scipy.interpolate.RectBivariateSpline( range(obs_map.shape[0]), range(obs_map.shape[1]), obs_map, kx=1, ky=1) return interp_obs_map def compute_num_offroad_viols(interp_map, scene_map, predicted_trajs): """Count the number of predicted trajectories that go off the road. Note this does not count trajectories that go over road/lane dividers. Parameters ========== interp_map : scipy.interpolate.RectBivariateSpline Interpolation to get road obstacle indicator value from predicted points. scene_map : trajectron.environment.GeometricMap Map transform the predicted points to map coordinates. predicted_trajs : ndarray Predicted trajectories of shape (number of predictions, number of timesteps, 2). Returns ======= int A value between [0, number of predictions]. """ old_shape = predicted_trajs.shape pred_trajs_map = scene_map.to_map_points(predicted_trajs.reshape((-1, 2))) traj_values = interp_map(pred_trajs_map[:, 0], pred_trajs_map[:, 1], grid=False) # traj_values has shape (1, num_samples, ph). traj_values = traj_values.reshape((old_shape[0], old_shape[1], old_shape[2])) # num_viol_trajs is an integer in [0, num_samples]. return np.sum(traj_values.max(axis=2) > 0, dtype=float) def compute_kde_nll(predicted_trajs, gt_traj): kde_ll = 0. log_pdf_lower_bound = -20 num_timesteps = gt_traj.shape[0] num_batches = predicted_trajs.shape[0] for batch_num in range(num_batches): for timestep in range(num_timesteps): try: kde = scipy.stats.gaussian_kde(predicted_trajs[batch_num, :, timestep].T) pdf = kde.logpdf(gt_traj[timestep].T) pdf = np.clip(kde.logpdf(gt_traj[timestep].T), a_min=log_pdf_lower_bound, a_max=None)[0] kde_ll += pdf / (num_timesteps * num_batches) except np.linalg.LinAlgError: kde_ll = np.nan return -kde_ll def compute_ade(predicted_trajs, gt_traj): error = np.linalg.norm(predicted_trajs - gt_traj, axis=-1) ade = np.mean(error, axis=-1) return ade.flatten() def compute_fde(predicted_trajs, gt_traj): final_error = np.linalg.norm(predicted_trajs[:, :, -1] - gt_traj[-1], axis=-1) return final_error.flatten() ######################## # Most Likely Evaluation ######################## def evaluate_scene_most_likely(scene, ph, eval_stg, hyp, ade=True, fde=True): predictconfig = util.AttrDict(ph=ph, num_samples=1, z_mode=True, gmm_mode=True, full_dist=False, all_z_sep=False) max_hl = hyp['maximum_history_length'] with torch.no_grad(): predictions = eval_stg.predict(scene, np.arange(scene.timesteps), predictconfig.ph, num_samples=predictconfig.num_samples, min_future_timesteps=predictconfig.ph, z_mode=predictconfig.z_mode, gmm_mode=predictconfig.gmm_mode, full_dist=predictconfig.full_dist, all_z_sep=predictconfig.all_z_sep) prediction_dict, histories_dict, futures_dict = \ prediction_output_to_trajectories( predictions, dt=scene.dt, max_h=max_hl, ph=predictconfig.ph, map=None) batch_metrics = {'ade': list(), 'fde': list()} for t in prediction_dict.keys(): for node in prediction_dict[t].keys(): if ade: batch_metrics['ade'].extend( compute_ade(prediction_dict[t][node], futures_dict[t][node]) ) if fde: batch_metrics['fde'].extend( compute_fde(prediction_dict[t][node], futures_dict[t][node]) ) return batch_metrics def evaluate_most_likely(env, ph, eval_stg, hyp, ade=True, fde=True): batch_metrics = {'ade': list(), 'fde': list()} prefix = f"Evaluate Most Likely (ph = {ph}): " for scene in tqdm(env.scenes, desc=prefix, dynamic_ncols=True, leave=True): _batch_metrics = evaluate_scene_most_likely(scene, ph, eval_stg, hyp, ade=ade, fde=fde) batch_metrics['ade'].extend(_batch_metrics['ade']) batch_metrics['fde'].extend(_batch_metrics['fde']) return batch_metrics ################# # Full Evaluation ################# def evaluate_scene_full(scene, ph, eval_stg, hyp, ade=True, fde=True, kde=True, offroad_viols=True): num_samples = 2000 predictconfig = util.AttrDict(ph=ph, num_samples=num_samples, z_mode=False, gmm_mode=False, full_dist=False, all_z_sep=False) max_hl = hyp['maximum_history_length'] with torch.no_grad(): predictions = eval_stg.predict(scene, np.arange(scene.timesteps), predictconfig.ph, num_samples=predictconfig.num_samples, min_future_timesteps=predictconfig.ph, z_mode=predictconfig.z_mode, gmm_mode=predictconfig.gmm_mode, full_dist=predictconfig.full_dist, all_z_sep=predictconfig.all_z_sep) prediction_dict, histories_dict, futures_dict = \ prediction_output_to_trajectories( predictions, dt=scene.dt, max_h=max_hl, ph=predictconfig.ph, map=None) interp_map = make_interpolate_map(scene) map = scene.map['VEHICLE'] batch_metrics = {'ade': list(), 'fde': list(), 'kde': list(), 'offroad_viols': list()} for t in prediction_dict.keys(): for node in prediction_dict[t].keys(): if ade: batch_metrics['ade'].extend( compute_ade(prediction_dict[t][node], futures_dict[t][node]) ) if fde: batch_metrics['fde'].extend( compute_fde(prediction_dict[t][node], futures_dict[t][node]) ) if offroad_viols: batch_metrics['offroad_viols'].extend( [ compute_num_offroad_viols(interp_map, map, prediction_dict[t][node]) / float(num_samples) ]) if kde: batch_metrics['kde'].extend( [ compute_kde_nll(prediction_dict[t][node], futures_dict[t][node]) ]) return batch_metrics def evaluate_full(env, ph, eval_stg, hyp, ade=True, fde=True, kde=True, offroad_viols=True): batch_metrics = {'ade': list(), 'fde': list(), 'kde': list(), 'offroad_viols': list()} prefix = f"Evaluate Full (ph = {ph}): " for scene in tqdm(env.scenes, desc=prefix, dynamic_ncols=True, leave=True): _batch_metrics = evaluate_scene_full(scene, ph, eval_stg, hyp, ade=ade, fde=fde, kde=kde, offroad_viols=offroad_viols) batch_metrics['ade'].extend(_batch_metrics['ade']) batch_metrics['fde'].extend(_batch_metrics['fde']) batch_metrics['kde'].extend(_batch_metrics['kde']) batch_metrics['offroad_viols'].extend(_batch_metrics['offroad_viols']) return batch_metrics ########## # Datasets ########## dataset_dir = "../../.." dataset_1 = util.AttrDict( test_set_path=f"{ dataset_dir }/carla_v3-1_dataset/v3-1_split1_test.pkl", name='v3-1_split1_test', desc="CARLA synthesized dataset with heading fix, occlusion fix, and 32 timesteps.") dataset_2 = util.AttrDict( test_set_path=f"{ dataset_dir }/carla_v3-1-1_dataset/v3-1-1_split1_test.pkl", name='v3-1-1_split1_test', desc="CARLA synthesized dataset with heading fix, occlusion fix, and 32 timesteps.") dataset_3 = util.AttrDict( test_set_path=f"{ dataset_dir }/carla_v3-1-2_dataset/v3-1-2_split1_test.pkl", name='v3-1-2_split1_test', desc="CARLA synthesized dataset with heading fix, occlusion fix, and 32 timesteps.") DATASETS = [dataset_1, dataset_2, dataset_3] def load_dataset(dataset): logging.info(f"Loading dataset: {dataset.name}: {dataset.desc}") with open(dataset.test_set_path, 'rb') as f: eval_env = dill.load(f, encoding='latin1') return eval_env ############# # Experiments ############# """ The experiments to evaluate are: - 20210621 one model trained on NuScenes to use as baseline for other evaluation - 20210801 have models trained from v3-1-1 (train set has 200 scenes). Compare MapV2, MapV3. - 20210802 have models trained from v3-1-1. MapV5 squeezes map encoding to size 32 using FC. - 20210803 have models trained from v3-1-1. Compare map, mapV4. MapV4 with multi K values. MapV4 does not apply FC. May have size 100 or 150. - 20210804 have models trained from v3-1 (train set has 300 scenes). Compare map with mapV4. - 20210805 have models trained from v3-1 (train set has 300 scenes). MapV4 with multi K values. - 20210812 have models trained from v3-1-1 rebalanced. Models are trained 20 epochs. - 20210815 have models trained from v3-1-1 rebalanced. Models are trained 40 epochs. - 20210816 have models trained from v3-1-2 (train set has 600 scenes) rebalanced. """ model_dir = "models" baseline_model = util.AttrDict( path=f"{ model_dir }/20210621/models_19_Mar_2021_22_14_19_int_ee_me_ph8", desc="Base model +Dynamics Integration, Maps with K=25 latent values " "(on NuScenes dataset)") experiment_1 = util.AttrDict( models_dir=f"{ model_dir }/20210801", dataset=dataset_2, desc="20210801 have models trained from v3-1-1 (train set has 200 scenes). Compare MapV2, MapV3.") experiment_2 = util.AttrDict( models_dir=f"{ model_dir }/20210802", dataset=dataset_2, desc="20210802 have models trained from v3-1-1. MapV5 squeezes map encoding to size 32 using FC.") experiment_3 = util.AttrDict( models_dir=f"{ model_dir }/20210803", dataset=dataset_2, desc="20210803 have models trained from v3-1-1. Compare map, mapV4. MapV4 with multi K values. " "MapV4 does not apply FC. May have size 100 or 150.") experiment_4 = util.AttrDict( models_dir=f"{ model_dir }/20210804", dataset=dataset_1, desc="20210804 have models trained from v3-1 (train set has 300 scenes). Compare map with mapV4.") experiment_5 = util.AttrDict( models_dir=f"{ model_dir }/20210805", dataset=dataset_1, desc="20210805 have models trained from v3-1 (train set has 300 scenes). MapV4 with multi K values.") experiment_6 = util.AttrDict( models_dir=f"{ model_dir }/20210812", dataset=dataset_2, desc="20210812 have models trained from v3-1-1 rebalanced. Models are trained 20 epochs.") experiment_7 = util.AttrDict( models_dir=f"{ model_dir }/20210815", dataset=dataset_2, ts=40, desc="20210815 have models trained from v3-1-1 rebalanced. Models are trained 40 epochs.") experiment_8 = util.AttrDict( models_dir=f"{ model_dir }/20210816", dataset=dataset_3, desc="20210816 have models trained from v3-1-2 (train set has 600 scenes) rebalanced.") EXPERIMENTS = [experiment_1, experiment_2, experiment_3, experiment_4, experiment_5, experiment_6, experiment_7, experiment_8] def _load_model(model_path, eval_env, ts=20): eval_stg, hyp = load_model(model_path, eval_env, ts=ts)#, device='cuda') return eval_stg, hyp PREDICTION_HORIZONS = [2,4,6,8] def run_evaluate_experiments(config): if config.experiment_index is not None and config.experiment_index >= 1: experiments = [EXPERIMENTS[config.experiment_index - 1]] else: experiments = EXPERIMENTS ###################### # Evaluate experiments ###################### # results_filename = f"results_{time.strftime('%d_%b_%Y_%H_%M_%S', time.localtime())}.h5" logging.info("Evaluating each experiment") for experiment in experiments: results_key = experiment.models_dir.split('/')[-1] results_filename = f"results_{results_key}.h5" logging.info(f"Evaluating models in experiment: {experiment.desc}") logging.info(f"Writing to: {results_filename}") eval_env = load_dataset(experiment.dataset) # need hyper parameters to do this, but have to load models first has_computed_scene_graph = False for model_path in glob(f"{experiment.models_dir}/*"): model_key = '/'.join(model_path.split('/')[-2:]) ts = getattr(experiment, 'ts', 20) eval_stg, hyp = _load_model(model_path, eval_env, ts=ts) if not has_computed_scene_graph: prefix = f"Preparing Node Graph: " for scene in tqdm(eval_env.scenes, desc=prefix, dynamic_ncols=True, leave=True): scene.calculate_scene_graph(eval_env.attention_radius, hyp['edge_addition_filter'], hyp['edge_removal_filter']) has_computed_scene_graph = True logging.info(f"Evaluating: {model_key}") BoN_results_key = '/'.join([experiment.dataset.name] + model_path.split('/')[-2:] + ['BoN']) with pd.HDFStore(results_filename, 'a') as s: for ph in PREDICTION_HORIZONS: batch_metrics = evaluate_BoN(eval_env, ph, eval_stg, hyp) df =
pd.DataFrame(batch_metrics)
pandas.DataFrame
import pandas as pd import numpy as np import glob import os, os.path as osp DIFFSDIR1 = '../../data/dfdc/diffs1/' DIFFSDIR2 = '../../data/dfdc/diffs2/' reals = glob.glob(osp.join(DIFFSDIR1, 'reals/*.png')) reals.extend(glob.glob(osp.join(DIFFSDIR2, 'reals/*.png'))) fakes = glob.glob(osp.join(DIFFSDIR1, 'fakes/*.png')) fakes.extend(glob.glob(osp.join(DIFFSDIR2, 'fakes/*.png'))) masks = glob.glob(osp.join(DIFFSDIR1, 'masks/*.npy')) masks.extend(glob.glob(osp.join(DIFFSDIR2, 'masks/*.npy'))) df =
pd.read_csv('../../data/dfdc/train.csv')
pandas.read_csv
# Data Science with SQL Server Quick Start Guide # Chapter 03 # This is a comment print("Hello World!") # This line is ignored - it is a comment again print('Another string.') print('O"Brien') # In-line comment print("O'Brien") # Simple expressions 3 + 2 print("The result of 5 + 30 / 6 is:", 5 + 30 / 6) 10 * 3 - 6 11 % 4 print("Is 8 less or equal to 5?", 8 <= 5) print("Is 8 greater than 5?", 8 > 5) # Integer a = 3 b = 4 a ** b # Float c = 6.0 d = float(7) print(c, d) # Formatted strings # Variables in print() e = "repeat" f = 5 print("Let's %s string formatting %d times." % (e, f)) # String.format() four_par = "String {} {} {} {}" print(four_par.format(1, 2, 3, 4)) print(four_par.format('a', 'b', 'c', 'd')) # More strings print("""Three double quotes are needed to delimit strings in multiple lines. You can have as many lines as you wish.""") a = "I am 5'11\" tall" b = 'I am 5\'11" tall' print("\t" + a + "\n\t" + b) # Functions def nopar(): print("No parameters") def add(a, b): return a + b # Call without arguments nopar() # Call with variables and math a = 10 b = 20 add(a / 5, b / 4) # if..elif..else a = 10 b = 20 c = 30 if a > b: print("a > b") elif a > c: print("a > c") elif (b < c): print("b < c") if a < c: print("a < c") if b in range(10, 30): print("b is between a and c") else: print("a is less than b and less than c") # List and loops animals = ["bee", "whale", "cow"] nums = [] for animal in animals: print("Animal: ", animal) for i in range(2, 5): nums.append(i) print(nums) i = 1 while i <= 3: print(i) i = i + 1 # Dictionary CtyCou = { "Paris": "France", "Tokyo": "Japan", "Lagos": "Nigeria"} for city, country in CtyCou.items(): print("{0} is in {1}.".format(city, country)) # Demo graphics # Imports import numpy as np import pandas as pd import pyodbc import matplotlib.pyplot as plt # Reading the data from SQL Server con = pyodbc.connect('DSN=AWDW;UID=RUser;PWD=<PASSWORD>') query = """SELECT CustomerKey, Age, YearlyIncome, CommuteDistance, BikeBuyer FROM dbo.vTargetMail;""" TM = pd.read_sql(query, con) # Info about the data TM.head(5) TM.shape # Define CommuteDistance as categorical TM['CommuteDistance'] = TM['CommuteDistance'].astype('category') # Reordering Education TM['CommuteDistance'].cat.reorder_categories( ["0-1 Miles", "1-2 Miles","2-5 Miles", "5-10 Miles", "10+ Miles"], inplace=True) # Crosstabulation cdbb =
pd.crosstab(TM.CommuteDistance, TM.BikeBuyer)
pandas.crosstab
# -------------------------------------------------- ML 02/10/2019 ----------------------------------------------------# # # This is the class for poisson process # # -------------------------------------------------------------------------------------------------------------------- # import numpy as np import pandas as pd import math from handles.data_hand import get_slotted_data from sklearn.linear_model import LinearRegression from scipy.stats import kstest import statsmodels.api as sm import statsmodels.formula.api as smf from modeling.stat.models import fit_neg_binom from scipy.stats import expon,gamma,nbinom import random random.seed( 30 ) class poisson_process: def __init__(self,events,x,slotmin=60,sesonality=24.00,x_meta=None,combine=None,variablity_lambda=True): # x is the numeric features lambda depends on. # x_meta are catagorical features that lambda depends on # Sesonality is when to loop the ts back. i.e. like 24 hours # x can be any factor levels. with _ in between each category. however, each catogory # should be defined by a numeric indicator self.x_names = np.array( x.columns ) self.ts = np.array(events) self.x = np.array(x) self.x_meta=x_meta self.slotmin = slotmin self.sesonality = float( sesonality ) self.processed_data = self.get_combined_ts_data(combine=combine) self.def_scale_multiplier() self._variablity_lambda = variablity_lambda def combine_timeslots(self,x,combine): p = x.copy() p[np.in1d(x, combine)] = combine[0] return p def poles_fun(self,d): return pd.DataFrame(d).apply(lambda x: 1/(x**3)) def def_scale_multiplier(self): # this is based on emperical data average_mat = pd.DataFrame({'2014':[0.237053898,0.23033784,0.22646637,0.224855127,0.22145071,0.22017719,0.219680942], '2015':[0.190591233,0.185363899,0.183113651,0.180825924,0.179276851,0.179478113,0.17919847]}).T average_mat.columns = [1000,1100,1200,1300,1400,1500,1600] average_mat=average_mat.reset_index() average_mat=average_mat.melt(id_vars=["index"],var_name="Poles",value_name="Value") cols = ['year','poles','scale'] average_mat.columns = cols average_mat[cols] = average_mat[cols].apply(pd.to_numeric, errors='coerce') average_mat['poles']=self.poles_fun(average_mat['poles']) regressor = LinearRegression() regressor.fit(average_mat[['year','poles']], average_mat['scale']) self.scale_multiplier_predictor = regressor self.reset_scale_multiplier() def reset_scale_multiplier(self): self._scale_multiplier = 1 def avg_scale_pred(self,year,poles): return self.scale_multiplier_predictor.predict(np.array([year, np.array(self.poles_fun([poles]))]).reshape(1, -1)) def get_processed_data(self): diff_col_name = 'Aarrival_diff' delta_t = np.diff(self.ts, n=1).reshape(-1, 1) fin_d = pd.DataFrame(np.concatenate((delta_t, self.x[:-1, :]), axis=1)) fin_d.columns = np.concatenate( (np.array(diff_col_name).reshape(-1, 1), np.array(self.x_names).reshape(-1, 1)), axis=0).flatten() fin_d[diff_col_name] = pd.to_numeric(fin_d[diff_col_name]) # split the values in the factor that was provided to us split = fin_d[self.x_names[0]].str.split("_", -1) n = [] for i in range(0, len(split[0])): fin_d['f' + str(i)] = split.str.get(i)#.astype(float) # update this if code breaks n.append('f' + str(i)) n.append(self.x_names[1]) self.all_names = n fin_d = fin_d.sort_values(by=n) return fin_d def get_combined_ts_data(self,combine): # combine timeslots # if given argument = combine -- array of time slots to combine. we will replace these with # the first element of the combine array # start time internal is the timeslots to model the data on self.processed_data = self.get_processed_data() self.combine = combine if combine is None: self.combined_slots = False combined_timeslots = self.processed_data[self.x_names[1]] else: self.combined_slots = True combined_timeslots = self.combine_timeslots(self.processed_data[self.x_names[1]], combine=combine) self.processed_data['Start_time_internal'] = combined_timeslots return self.processed_data def get_slotted_data(self,data, slot_secs): return get_slotted_data(data=data,slot_secs=slot_secs) # ------------------------------------------- FITTING -------------------------------------------------------------- def daywise_training_data(self,d,combine,fac1,fac2,f1,days,orignal_start_slot): # fac2 is out internal slots that are combined # it is also worth noting that we calculate the average for combined slots and then put them for # all the slots for that given duration if self.combined_slots: x = fac2[(fac1 == f1)] day = days[(fac1 == f1)] model_d = [] for day_i in np.unique(day): model_d_temp = [] for t_i in np.unique(x): try: model_d_temp.append([[t_i, expon.fit(pd.to_numeric(d[(x == t_i) & (day == day_i)]))[1], day_i]]) except: continue model_d_temp = np.vstack(model_d_temp) scale_val = model_d_temp[(model_d_temp[:, 0] == combine[0])].flatten()[1] add = [[i, scale_val, day_i] for i in combine[1:]] model_d_temp = np.concatenate((model_d_temp, add)) model_d.append(model_d_temp) model_d = np.vstack(model_d) else: x = orignal_start_slot[(fac1 == f1)] day = days[(fac1 == f1)] model_d = [] for day_i in np.unique(day): model_d_temp = [] for t_i in np.unique(x): try: model_d_temp.append([[t_i, expon.fit(pd.to_numeric(d[(x == t_i) & (day == day_i)]))[1], day_i]]) except: continue model_d_temp = np.vstack(model_d_temp) model_d.append(model_d_temp) model_d = np.vstack(model_d) return model_d def discreet_fit_model(self,data,x): data_gamma = pd.DataFrame({'days':data, 'arrivalslot':x,'indicator':1}) data_gamma = data_gamma.groupby(['days','arrivalslot']).agg(['count']).reset_index() data_gamma.columns = ['days', 'arrivalslot','count'] data_save = data_gamma['count'] x_save = data_gamma['arrivalslot'] ks_t_D = pd.DataFrame() ks_t_pval = pd.DataFrame() t_t_pval = pd.DataFrame() exp_loc = pd.DataFrame() exp_scale = pd.DataFrame() exp_shape = pd.DataFrame() time_slot = pd.DataFrame() pos_l = pd.DataFrame() neg_bio_r = pd.DataFrame() neg_bio_p = pd.DataFrame() for f2 in np.unique(data_gamma['arrivalslot']): d = pd.to_numeric( data_gamma[data_gamma['arrivalslot'] == f2]['count'] ) # poission lam = np.mean(d) # gamma alpha,loc, beta = gamma.fit(d,loc=0) # ks test D , kspval = kstest(d,'gamma', args=(alpha,loc,beta)) # ttest - one sided # sample2 = gamma.rvs(a = alpha, loc=loc, scale=beta, size=d.shape[0]) val , pval = 0,0 #ttest_ind(d,sample2) # neg_binom r,p = fit_neg_binom(vec=np.array(d).flatten(),init=0.0000001) # if we have combined data then add same model to all combined timeslots if self.combined_slots and f2 == self.combine[0]: for var in self.combine: pos_l = pos_l.append(pd.DataFrame([lam])) exp_loc = exp_loc.append(pd.DataFrame([loc])) exp_shape = exp_shape.append(pd.DataFrame([alpha])) exp_scale = exp_scale.append(pd.DataFrame([beta])) neg_bio_r = neg_bio_r.append(pd.DataFrame([r])) neg_bio_p = neg_bio_p.append(pd.DataFrame([p])) ks_t_D = ks_t_D.append(pd.DataFrame([D])) ks_t_pval = ks_t_pval.append(pd.DataFrame([kspval])) t_t_pval = t_t_pval.append(pd.DataFrame([pval / 2])) # add timeslot time_slot = time_slot.append([var]) else: pos_l = pos_l.append(pd.DataFrame([lam])) exp_loc = exp_loc.append(pd.DataFrame([loc])) exp_shape = exp_shape.append(pd.DataFrame([alpha])) exp_scale = exp_scale.append(pd.DataFrame([beta])) neg_bio_r = neg_bio_r.append(pd.DataFrame([r])) neg_bio_p = neg_bio_p.append(pd.DataFrame([p])) ks_t_D = ks_t_D.append(pd.DataFrame([D])) ks_t_pval = ks_t_pval.append(pd.DataFrame([kspval])) t_t_pval = t_t_pval.append(pd.DataFrame([pval / 2])) # add timeslot time_slot = time_slot.append([f2]) # this is the final fit fit = pd.DataFrame() fit[[self.x_names[1]]] = time_slot fit['gamma_loc'] = np.array(exp_loc).flatten() fit['gamma_scale'] = np.array(exp_scale).flatten() fit['gamma_shape'] = np.array(exp_shape).flatten() fit['KS_D'] = np.array(ks_t_D).flatten() fit['KS_PVal'] = np.array(ks_t_pval).flatten() fit['Ttest_PVal'] = np.array(t_t_pval).flatten() fit['Poisson_lam'] = np.array(pos_l).flatten() fit['Negbio_r'] = np.array(neg_bio_r).flatten() fit['Negbio_p'] = np.array(neg_bio_p).flatten() return fit,data_save,x_save def neg_bio_reg_fit_model(self,data,x): data_gamma = pd.DataFrame({'days': data, 'arrivalslot': x, 'indicator': 1}) data_gamma = data_gamma.groupby(['days', 'arrivalslot']).agg(['count']).reset_index() data_gamma.columns = ['days', 'arrivalslot', 'count'] data_save = data_gamma['count'] x_save = data_gamma['arrivalslot'] nb_mu = pd.DataFrame() nb_p = pd.DataFrame() nb_n = pd.DataFrame() nb_alpha = pd.DataFrame() time_slot = pd.DataFrame() # data_gamma.to_csv("aaaaaaaaaaaaaaaaaa.csv") for f2 in np.unique(data_gamma['arrivalslot']): d = pd.to_numeric(data_gamma[data_gamma['arrivalslot'] == f2]['count']) X_train = np.ones(len(d)) try: df_train = pd.DataFrame({'counts':d,'Intercept':X_train}) # Calculating alpha = shape parameter # theta = (1/alpha) = r = number of sucess # Using the statsmodels GLM class, train the Poisson regression model on the training data set poisson_training_results = sm.GLM(d, X_train, family=sm.families.Poisson()).fit() df_train['BB_LAMBDA'] = poisson_training_results.mu df_train['AUX_OLS_DEP'] = df_train.apply( lambda x: ((x['counts'] - x['BB_LAMBDA']) ** 2 - x['counts']) / x['BB_LAMBDA'], axis=1) ols_expr = """AUX_OLS_DEP ~ BB_LAMBDA - 1""" aux_olsr_results = smf.ols(ols_expr, df_train).fit() alpha = aux_olsr_results.params[0] # introducing a minimum liimit on alpha # -- putting alpha = 0.00001 trigggers poisson distribution if alpha <= 0: alpha = 0.00001 # ---> this will trigger poisson while prediciton # alpha = 0.25 # this just introductes a min limit on alpha # # use this when we dont want to use calculated alpha # alpha = 0.2 # calculating the mean parameter mu nb2_training_results = sm.GLM(d.astype(float), X_train.astype(float), family=sm.families.NegativeBinomial(alpha = alpha)).fit() mean = float( np.exp(nb2_training_results.params) )# float(np.mean(d)) # calculate n and p n = float(1/alpha) var = mean + 1 / n * mean ** 2 p = float(1-((var - mean) / var)) # var = mean + (np.power(mean,2)*alpha) # n = float((np.power(mean,2))/ (var - mean)) # p = float((var - mean)/var) except: n,p,mean,alpha = -1,-1,-1,-1 # if we have combined data then add same model to all combined timeslots if self.combined_slots and f2 == self.combine[0]: for var in self.combine: nb_mu = nb_mu.append(pd.DataFrame([mean])) nb_p = nb_p.append(pd.DataFrame([p])) nb_n = nb_n.append(pd.DataFrame([n])) nb_alpha = nb_alpha.append(pd.DataFrame([alpha])) time_slot = time_slot.append([var]) else: nb_mu = nb_mu.append(pd.DataFrame([mean])) nb_p = nb_p.append(pd.DataFrame([p])) nb_n = nb_n.append(pd.DataFrame([n])) nb_alpha = nb_alpha.append(pd.DataFrame([alpha])) # add timeslot time_slot = time_slot.append([f2]) # this is the final fit fit = pd.DataFrame() fit[[self.x_names[1]]] = time_slot fit['nb_n'] = np.array(nb_n).flatten() fit['nb_p'] = np.array(nb_p).flatten() fit['nb_mu'] = np.array(nb_mu).flatten() fit['nb_alpha'] = np.array(nb_alpha).flatten() return fit,data_save,x_save def fit(self,lambda_mod='expon_fit',combine=np.arange(1,7),year=2015,poles=1677,verbose=1): # ------------------------------ Prepration ------------------------------------------------- # create dataset for modeling # if continous = True, we replace the values of means with continous values self.lambda_mod = lambda_mod # create the scale multipler for this function self._fit_year = int(year) self._fit_poles = int(poles) self._scale_multiplier_fit = self.avg_scale_pred(year=self._fit_year,poles=self._fit_poles) # this is done because poly model has -ve starting self._scale_old =
pd.Series(self._scale_multiplier_fit)
pandas.Series
import os import random import sys import joblib import math import lightgbm as lgb import xgboost as xgb import matplotlib.pyplot as plt import numpy as np import pandas as pd import sklearn.svm as svm from sklearn.ensemble import RandomForestClassifier, VotingClassifier from sklearn.linear_model import LinearRegression, LogisticRegression from catboost import CatBoostClassifier from sklearn.metrics import (accuracy_score, average_precision_score, classification_report, confusion_matrix, f1_score, precision_recall_curve, roc_auc_score, roc_curve) from sklearn.model_selection import GroupKFold from sklearn.naive_bayes import GaussianNB from keras.layers import LSTM from keras.layers import Dense from keras.models import Sequential from keras.utils import to_categorical import keras.callbacks as kcallbacks from utilClass import RocAucMetricCallback from utils import series_to_supervised from tqdm import tqdm from imblearn.over_sampling import SMOTE from imblearn.under_sampling import RandomUnderSampler from imblearn.pipeline import Pipeline sys.path.append('..') pd.set_option('display.max_columns', None) pd.set_option('display.max_rows', None) class AtoA: def __init__(self, mode, type='df', seed=2021, scale='all'): self.seed = seed self.window = 0 # 在线数据读取中滑动窗口的长度 self.win_df = pd.DataFrame() # 在线数据读取中始终维持一个长度为最大滑动窗口的dataframe self.mode = mode # 离线或在线 self.type = type # df 或者 dcs self.scale = scale # 模型量级 self.current_row = None # 当前时刻样本 self.pre_row = None # 上一时刻样本 # dogfight特征工程工具函数 def FE_DF(self, data): """ DF特征工程 Args: data (dataframe): 原始数据 Returns: DataFrame: 特征工程后数据 """ data = data.sort_values(by=['id']) if self.scale == 'all': # 计算敌机的速度,先用diffh函数得到和上一时刻xyz差值,然后除以时间得到速度 for f in ['x', 'y', 'z']: data['enemy_v_{}'.format(f)] = data.groupby('id')[ 'enemy_{}'.format(f)].diff(1) / 0.02 # 敌我两机加速度,先用diffh函数得到和上一时刻v_x,v_y,v_z差值,然后除以时间得到加速度 for f in ['v_x', 'v_y', 'v_z']: data[f'my_{f}_acc'] = data.groupby( 'id')[f'my_{f}'].diff() / 0.2 data[f'enemy_{f}_acc'] = data.groupby( 'id')[f'enemy_{f}'].diff() / 0.2 # 敌我两机速度与位置交互式差值 for f in ['x', 'y', 'z', 'v_x', 'v_y', 'v_z']: data[f'{f}_me_minus'] = data[f'my_{f}'] - data[f'enemy_{f}'] # 飞机之间的距离 data['distance'] = ((data['my_x'] - data['enemy_x'])**2 + (data['my_y'] - data['enemy_y'])**2 + (data['my_z'] - data['enemy_z'])**2)**0.5 # 瞄准夹角 data['cos'] = ((data['my_v_x'] * (data['enemy_x'] - data['my_x'])) + (data['my_v_y'] * (data['enemy_y'] - data['my_y'])) + (data['my_v_z'] * (data['enemy_z'] - data['my_z']))) # 合速度 data['speedAll'] = ((data['my_v_x']**2 + data['my_v_y']**2 + data['my_v_z']**2)**0.5) # 夹角cos值 data['cosValue'] = data['cos'] / (data['speedAll'] * data['distance']) # 缺失值补0 data.fillna(0, inplace=True) return data def online_FE_DF(self, row_dict): """ DF在线特征工程 Args: row_dict(dict): 传入的一行字典记录 Returns: DataFrame: 加入特征后的记录dataframe """ # 将字典转为dataframe格式 data = pd.DataFrame(row_dict, index=[0]) # 飞机之间的距离 data['distance'] = ((data['my_x'] - data['enemy_x'])**2 + (data['my_y'] - data['enemy_y'])**2 + (data['my_z'] - data['enemy_z'])**2)**0.5 # 瞄准夹角 data['cos'] = ((data['my_v_x'] * (data['enemy_x'] - data['my_x'])) + (data['my_v_y'] * (data['enemy_y'] - data['my_y'])) + (data['my_v_z'] * (data['enemy_z'] - data['my_z']))) # 合速度 data['speedAll'] = ((data['my_v_x']**2 + data['my_v_y']**2 + data['my_v_z']**2)**0.5) # 夹角cos值 data['cosValue'] = data['cos'] / (data['speedAll'] * data['distance']) # 缺失值补0 data.fillna(0, inplace=True) return data # DCS特征工程工具函数 def FE_DCS(self, data_): """ DCS特征工程 Args: data (dataframe): 原始数据 Returns: DataFrame: 特征工程后数据 """ data = data_.copy(deep=True) if self.mode == 'offline': # 如果是离线训练,需要根据id进行数据分组 data = data.sort_values(by=['id']) # 飞机之间的距离 data['distance'] = ( (data['my_position_x'] - data['enemy_position_x'])**2 + (data['my_position_y'] - data['enemy_position_y'])**2 + (data['my_position_z'] - data['enemy_position_z'])**2)**0.5 # 向量乘法,向量 a = (x,y,z) b = (x2,y2,z2) c = (x3,y3,z3),a代表我机速度向量 # b代表位置向量,c代表敌机位置向量,我机中心到敌机中心向量d = c - b # d与a之间cos = d×a/(|d|*|a|) data['cos'] = ((data['my_speed_x'] * (data['enemy_position_x'] - data['my_position_x'])) + (data['my_speed_y'] * (data['enemy_position_y'] - data['my_position_y'])) + (data['my_speed_z'] * (data['enemy_position_z'] - data['my_position_z']))) # 速度向量 data['speedAll'] = ((data['my_speed_x']**2 + data['my_speed_y']**2 + data['my_speed_z']**2)**0.5) # 向量之间夹角 data['cosValue'] = data['cos'] / (data['speedAll'] * data['distance']) # 敌我两机位置交互式差值 for f in ['position_x', 'position_y', 'position_z']: data[f'{f}_diff'] = data[f'my_{f}'] - data[f'enemy_{f}'] return data @staticmethod def _caculate_speed_connect_cos(x, y, z, enemy_x, enemy_y, enemy_z, speed_x, speed_y, speed_z): """ 计算我敌连线矢量与我机速度矢量夹角 Args: x, y, z: 我机坐标 enemy_x, enemy_y, enemy_z:敌机坐标 speed_x, speed_y, speed_z: 我机或敌机速度 Returns: speed_connect_cos:我敌连线矢量与速度矢量夹角余弦值 """ connect_vec = np.array([enemy_x - x, enemy_y - y, enemy_z - z]) my_speed_vec = np.array([speed_x, speed_y, speed_z]) speed_connect_cos = connect_vec.dot(my_speed_vec) / np.sqrt( connect_vec.dot(connect_vec) * my_speed_vec.dot(my_speed_vec)) return speed_connect_cos @staticmethod def _caculate_speed_cos(speed_x, speed_y, speed_z, enemy_speed_x, enemy_speed_y, enemy_speed_z): """ 计算我机速度矢量与敌机速度矢量夹角 Args: speed_x, speed_y, speed_z:我机速度 enemy_speed_x, enemy_speed_y, enemy_speed_z: 敌机速度 Returns: speed_cos:敌机速度与我机速度矢量夹角余弦值 """ my_speed_vec = np.array([speed_x, speed_y, speed_z]) enemy_speed_vec = np.array( [enemy_speed_x, enemy_speed_y, enemy_speed_z]) speed_cos = my_speed_vec.dot(enemy_speed_vec) / np.sqrt( my_speed_vec.dot(my_speed_vec) * enemy_speed_vec.dot(enemy_speed_vec)) return speed_cos def FE_DCS_new(self, data_): """新DCS任务特征工程 Args: data_ (dataframe): 原始数据 Returns: data: 特征工程后数据 """ data = data_.copy() data = data.sort_values(by=['id', 'ISO time']) data.reset_index(drop=True, inplace=True) data.rename(columns={ 'U': 'x', 'V': 'z', 'Altitude': 'y', 'enemy_U': 'enemy_x', 'enemy_V': 'enemy_z', 'enemy_Altitude': 'enemy_y', }, inplace=True) if self.mode == 'offline': if self.scale == 'all': # 计算我机速度 data = pd.concat([ data, pd.DataFrame({ 'speed_x': data.groupby('id')['x'].diff(), 'speed_y': data.groupby('id')['y'].diff(), 'speed_z': data.groupby('id')['z'].diff() }) ], sort=False, axis=1) data.fillna(0, inplace=True) data[['speed_x', 'speed_y', 'speed_z' ]] = data[['speed_x', 'speed_y', 'speed_z']] / 0.05 data['speed'] = data.apply(lambda x: np.sqrt(x[ 'speed_x']**2 + x['speed_y']**2 + x['speed_z']**2), axis=1) # 计算敌机速度 data = pd.concat([ data, pd.DataFrame({ 'enemy_speed_x': data.groupby('id')['enemy_x'].diff(), 'enemy_speed_y': data.groupby('id')['enemy_y'].diff(), 'enemy_speed_z': data.groupby('id')['enemy_z'].diff() }) ], sort=False, axis=1) data.fillna(0, inplace=True) data[[ 'enemy_speed_x', 'enemy_speed_y', 'enemy_speed_z' ]] = data[['enemy_speed_x', 'enemy_speed_y', 'enemy_speed_z' ]] / 0.05 data['enemy_speed'] = data.apply( lambda x: np.sqrt(x['enemy_speed_x']**2 + x[ 'enemy_speed_y']**2 + x['enemy_speed_z']**2), axis=1) # 计算敌我距离 data['distance'] = data.apply(lambda x: np.sqrt( (x['x'] - x['enemy_x'])**2 + (x['y'] - x['enemy_y'])**2 + (x['z'] - x['enemy_z'])**2), axis=1) # 计算我机速度与敌我连线夹角余弦值 data['speed_connect_cos'] = data.apply( lambda x: self._caculate_speed_connect_cos( x['x'], x['y'], x['z'], x['enemy_x'], x['enemy_y'], x[ 'enemy_z'], x['speed_x'], x['speed_y'], x['speed_z' ]), axis=1) # 计算敌机速度与敌我连线夹角余弦值 data['enemy_speed_connect_cos'] = data.apply( lambda x: self._caculate_speed_connect_cos( x['x'], x['y'], x['z'], x['enemy_x'], x['enemy_y'], x[ 'enemy_z'], x['enemy_speed_x'], x['enemy_speed_y'], x['enemy_speed_z']), axis=1) # 计算两机速度夹角余弦值 data['speed_cos'] = data.apply( lambda x: self._caculate_speed_cos(x['speed_x'], x[ 'speed_y'], x['speed_z'], x['enemy_speed_x'], x[ 'enemy_speed_y'], x['enemy_speed_z']), axis=1) # 我机朝向处理 data['Heading'] = data['Heading'] % 360 # 计算相对位置与速度 for f in [ 'x', 'y', 'z', 'speed_x', 'speed_y', 'speed_z', 'speed' ]: data[f'relative_{f}'] = data[f'enemy_{f}'] - data[f'{f}'] # 计算是否领先追逐 data['is_lead_chase'] = data.apply( lambda x: self._is_lead_chase( x['x'], x['y'], x['z'], x['enemy_x'], x['enemy_y'], x['enemy_z'], x['speed_x'], x['speed_y'], x['speed_z'], x['enemy_speed_x'], x['enemy_speed_y'], x[ 'enemy_speed_z'], x['speed_connect_cos'], x[ 'enemy_speed_connect_cos']), axis=1) # 筛除不能开火标签(两机距离大于1000或背对) data['label'] = data.apply( lambda x: 0 if x['speed_connect_cos'] < 0 or x[ 'distance'] > 1000 else x['label'], axis=1) data.fillna(0, inplace=True) data.dropna(inplace=True) data.to_csv('a2a_fe.csv', index=False) return data elif self.scale == 'light': # 计算我机速度 data = pd.concat([ data, pd.DataFrame({ 'speed_x': data.groupby('id')['x'].diff(), 'speed_y': data.groupby('id')['y'].diff(), 'speed_z': data.groupby('id')['z'].diff() }) ], sort=False, axis=1) data.fillna(0, inplace=True) data[['speed_x', 'speed_y', 'speed_z' ]] = data[['speed_x', 'speed_y', 'speed_z']] / 0.05 data['speed'] = data.apply(lambda x: np.sqrt(x[ 'speed_x']**2 + x['speed_y']**2 + x['speed_z']**2), axis=1) # 计算敌机速度 data = pd.concat([ data, pd.DataFrame({ 'enemy_speed_x': data.groupby('id')['enemy_x'].diff(), 'enemy_speed_y': data.groupby('id')['enemy_y'].diff(), 'enemy_speed_z': data.groupby('id')['enemy_z'].diff() }) ], sort=False, axis=1) data.fillna(0, inplace=True) data[[ 'enemy_speed_x', 'enemy_speed_y', 'enemy_speed_z' ]] = data[['enemy_speed_x', 'enemy_speed_y', 'enemy_speed_z' ]] / 0.05 data['enemy_speed'] = data.apply( lambda x: np.sqrt(x['enemy_speed_x']**2 + x[ 'enemy_speed_y']**2 + x['enemy_speed_z']**2), axis=1) # 计算敌我距离 data['distance'] = data.apply(lambda x: np.sqrt( (x['x'] - x['enemy_x'])**2 + (x['y'] - x['enemy_y'])**2 + (x['z'] - x['enemy_z'])**2), axis=1) # 计算我机速度与敌我连线夹角余弦值 data['speed_connect_cos'] = data.apply( lambda x: self._caculate_speed_connect_cos( x['x'], x['y'], x['z'], x['enemy_x'], x['enemy_y'], x[ 'enemy_z'], x['speed_x'], x['speed_y'], x['speed_z' ]), axis=1) # 计算敌机速度与敌我连线夹角余弦值 data['enemy_speed_connect_cos'] = data.apply( lambda x: self._caculate_speed_connect_cos( x['x'], x['y'], x['z'], x['enemy_x'], x['enemy_y'], x[ 'enemy_z'], x['enemy_speed_x'], x['enemy_speed_y'], x['enemy_speed_z']), axis=1) # 计算两机速度夹角余弦 data['speed_cos'] = data.apply( lambda x: self._caculate_speed_cos(x['speed_x'], x[ 'speed_y'], x['speed_z'], x['enemy_speed_x'], x[ 'enemy_speed_y'], x['enemy_speed_z']), axis=1) # 计算相对位置 for f in ['z', 'speed']: data[f'relative_{f}'] = data[f'enemy_{f}'] - data[f'{f}'] # 计算是否领先追逐 data['is_lead_chase'] = data.apply( lambda x: self._is_lead_chase( x['x'], x['y'], x['z'], x['enemy_x'], x['enemy_y'], x['enemy_z'], x['speed_x'], x['speed_y'], x['speed_z'], x['enemy_speed_x'], x['enemy_speed_y'], x[ 'enemy_speed_z'], x['speed_connect_cos'], x[ 'enemy_speed_connect_cos']), axis=1) # 筛除不能开火标签(两机距离大于1000或背对) data['label'] = data.apply( lambda x: 0 if x['speed_connect_cos'] < 0 or x[ 'distance'] > 1000 else x['label'], axis=1) data.fillna(0, inplace=True) data.dropna(inplace=True) data.to_csv('a2a_fe.csv', index=False) return data if self.mode == 'online': if self.scale == 'all': # 计算我机速度 data = pd.concat([ data, pd.DataFrame({ 'speed_x': data['x'].diff(), 'speed_y': data['y'].diff(), 'speed_z': data['z'].diff() }) ], sort=False, axis=1) data.fillna(0, inplace=True) data[['speed_x', 'speed_y', 'speed_z' ]] = data[['speed_x', 'speed_y', 'speed_z']] / 0.05 data['speed'] = data.apply(lambda x: np.sqrt(x[ 'speed_x']**2 + x['speed_y']**2 + x['speed_z']**2), axis=1) # 计算敌机速度 data = pd.concat([ data, pd.DataFrame({ 'enemy_speed_x': data['enemy_x'].diff(), 'enemy_speed_y': data['enemy_y'].diff(), 'enemy_speed_z': data['enemy_z'].diff() }) ], sort=False, axis=1) data.fillna(0, inplace=True) data[[ 'enemy_speed_x', 'enemy_speed_y', 'enemy_speed_z' ]] = data[['enemy_speed_x', 'enemy_speed_y', 'enemy_speed_z' ]] / 0.05 data['enemy_speed'] = data.apply( lambda x: np.sqrt(x['enemy_speed_x']**2 + x[ 'enemy_speed_y']**2 + x['enemy_speed_z']**2), axis=1) # 计算敌我距离 data['distance'] = data.apply(lambda x: np.sqrt( (x['x'] - x['enemy_x'])**2 + (x['y'] - x['enemy_y'])**2 + (x['z'] - x['enemy_z'])**2), axis=1) # 计算我机速度与敌我连线夹角余弦值 data['speed_connect_cos'] = data.apply( lambda x: self._caculate_speed_connect_cos( x['x'], x['y'], x['z'], x['enemy_x'], x['enemy_y'], x[ 'enemy_z'], x['speed_x'], x['speed_y'], x['speed_z' ]), axis=1) # 计算敌机速度与敌我连线夹角余弦值 data['enemy_speed_connect_cos'] = data.apply( lambda x: self._caculate_speed_connect_cos( x['x'], x['y'], x['z'], x['enemy_x'], x['enemy_y'], x[ 'enemy_z'], x['enemy_speed_x'], x['enemy_speed_y'], x['enemy_speed_z']), axis=1) # 计算两机速度夹角余弦值 data['speed_cos'] = data.apply( lambda x: self._caculate_speed_cos(x['speed_x'], x[ 'speed_y'], x['speed_z'], x['enemy_speed_x'], x[ 'enemy_speed_y'], x['enemy_speed_z']), axis=1) # 我机朝向处理 data['Heading'] = data['Heading'] % 360 # 计算相对位置与速度 for f in [ 'x', 'y', 'z', 'speed_x', 'speed_y', 'speed_z', 'speed' ]: data[f'relative_{f}'] = data[f'enemy_{f}'] - data[f'{f}'] # 筛除不能开火标签(两机距离大于1000或背对) data['label'] = data.apply( lambda x: 0 if x['speed_connect_cos'] < 0 or x[ 'distance'] > 1000 else x['label'], axis=1) data.fillna(0, inplace=True) data.dropna(inplace=True) data.to_csv('a2a_fe.csv', index=False) return data elif self.scale == 'light': # 计算我机速度 data = pd.concat([ data, pd.DataFrame({ 'speed_x': data['x'].diff(), 'speed_y': data['y'].diff(), 'speed_z': data['z'].diff() }) ], sort=False, axis=1) data.fillna(0, inplace=True) data[['speed_x', 'speed_y', 'speed_z' ]] = data[['speed_x', 'speed_y', 'speed_z']] / 0.05 data['speed'] = data.apply(lambda x: np.sqrt(x[ 'speed_x']**2 + x['speed_y']**2 + x['speed_z']**2), axis=1) # 计算敌机速度 data = pd.concat([ data, pd.DataFrame({ 'enemy_speed_x': data['enemy_x'].diff(), 'enemy_speed_y': data['enemy_y'].diff(), 'enemy_speed_z': data['enemy_z'].diff() }) ], sort=False, axis=1) data.fillna(0, inplace=True) data[[ 'enemy_speed_x', 'enemy_speed_y', 'enemy_speed_z' ]] = data[['enemy_speed_x', 'enemy_speed_y', 'enemy_speed_z' ]] / 0.05 data['enemy_speed'] = data.apply( lambda x: np.sqrt(x['enemy_speed_x']**2 + x[ 'enemy_speed_y']**2 + x['enemy_speed_z']**2), axis=1) # 计算敌我距离 data['distance'] = data.apply(lambda x: np.sqrt( (x['x'] - x['enemy_x'])**2 + (x['y'] - x['enemy_y'])**2 + (x['z'] - x['enemy_z'])**2), axis=1) # 计算我机速度与敌我连线夹角余弦值 data['speed_connect_cos'] = data.apply( lambda x: self._caculate_speed_connect_cos( x['x'], x['y'], x['z'], x['enemy_x'], x['enemy_y'], x[ 'enemy_z'], x['speed_x'], x['speed_y'], x['speed_z' ]), axis=1) # 计算敌机速度与敌我连线夹角余弦值 data['enemy_speed_connect_cos'] = data.apply( lambda x: self._caculate_speed_connect_cos( x['x'], x['y'], x['z'], x['enemy_x'], x['enemy_y'], x[ 'enemy_z'], x['enemy_speed_x'], x['enemy_speed_y'], x['enemy_speed_z']), axis=1) # 计算两机速度夹角余弦 data['speed_cos'] = data.apply( lambda x: self._caculate_speed_cos(x['speed_x'], x[ 'speed_y'], x['speed_z'], x['enemy_speed_x'], x[ 'enemy_speed_y'], x['enemy_speed_z']), axis=1) # 计算相对位置 for f in ['y', 'speed']: data[f'relative_{f}'] = data[f'enemy_{f}'] - data[f'{f}'] # 筛除不能开火标签(两机距离大于1000或背对) data['label'] = data.apply( lambda x: 0 if x['speed_connect_cos'] < 0 or x[ 'distance'] > 1000 else x['label'], axis=1) data.fillna(0, inplace=True) data.dropna(inplace=True) data.to_csv('a2a_fe.csv', index=False) return data # DCS在线特征工程 def online_FE_DCS(self, row_dict): """ DCS在线特征工程 Args: row_dict(dict): 传入的一行字典记录 Returns: DataFrame: 加入特征后的记录dataframe """ # 字典转dataframe row = pd.DataFrame(row_dict, index=[0]) # 调用离线特征工程函数 FE_row = self.FE_DCS(row) return FE_row # DCS在线特征工程 def online_FE_DCS_new(self, row_dict): """ AtoA在线特征工程 Args: row_dict(dict): 传入的一行字典记录 Returns: DataFrame: 加入特征后的记录dataframe """ row = pd.DataFrame(row_dict, index=[0]) self.current_row = row if self.pre_row is None: FE_row = self.online_FE_DCS(self.current_row) else: window = pd.concat([self.pre_row, self.current_row], axis=0) FE_row = self.online_FE_DCS(window)[-1:] self.pre_row = self.current_row return FE_row def train_val_split(self, df_train, percent=0.8): """ 数据集划分 划分数据集为训练集与测试 Args: df_train(dataframe): 原始数据 percent(int): 切分比例 Returns: train(dataframe): 训练集 val_data(dataframe): 验证集 """ # 获取所有id all_ids = df_train['id'].values.tolist() # id去重 all_ids = list(set(all_ids)) # 每次 set 的结果都不一样,所以要先排序,防止结果不可复现 all_ids.sort() # random.seed 只能生效一次,所以每次 random.sample 之前都要设置 random.seed(self.seed) # 训练集id采样 train_ids = random.sample(all_ids, int(len(all_ids) * percent)) # 获取验证集id val_ids = list(set(all_ids) - set(train_ids)) # 根据id获取训练数据 train_data = df_train[df_train['id'].isin(train_ids)] # 根据id获取验证数据 val_data = df_train[df_train['id'].isin(val_ids)] # 连续序列数据,但是是以单个样本建模的情况下,需要 shuffle 打乱 train_data = train_data.sample( frac=1, random_state=self.seed).reset_index(drop=True) return train_data, val_data def smote(self, data_): data = data_.copy() over = SMOTE(sampling_strategy=0.2, random_state=self.seed) under = RandomUnderSampler(sampling_strategy=1.0, random_state=self.seed) steps = [('o', over), ('u', under)] pipeline = Pipeline(steps=steps) X, y = pipeline.fit_resample( data[[i for i in data.columns if i not in ['label']]], data['label']) return pd.concat([X, y], axis=1) def _feature_name(self): """ 获取保留列名 Returns: feature_names(list): 列名信息 """ # 固定顺序,否则模型预测会出错 if self.type == 'df': if self.scale == 'all': feature_names = [ 'my_x', 'my_y', 'my_z', 'my_v_x', 'my_v_y', 'my_v_z', 'my_rot_x', 'my_rot_y', 'my_rot_z', 'enemy_x', 'enemy_y', 'enemy_z', 'enemy_v_x', 'enemy_v_y', 'enemy_v_z', 'my_v_x_acc', 'enemy_v_x_acc', 'my_v_y_acc', 'enemy_v_y_acc', 'my_v_z_acc', 'enemy_v_z_acc', 'x_me_minus', 'y_me_minus', 'z_me_minus', 'v_x_me_minus', 'v_y_me_minus', 'v_z_me_minus', 'distance', 'cos', 'speedAll', 'cosValue' ] else: feature_names = ['cosValue', 'speedAll', 'distance'] elif self.type == 'dcs': if self.scale == 'all': feature_names = [ 'z', 'Roll', 'Pitch', 'Yaw', 'x', 'y', 'Heading', 'enemy_z', 'enemy_x', 'enemy_y', 'speed_x', 'speed_y', 'speed_z', 'enemy_speed_x', 'enemy_speed_y', 'enemy_speed_z', 'distance', 'speed', 'speed_connect_cos', 'enemy_speed_connect_cos', 'relative_x', 'relative_z', 'relative_y', 'relative_speed_x', 'relative_speed_y', 'relative_speed_z', 'relative_speed', 'speed_cos' ] elif self.scale == 'light': feature_names = [ 'distance', 'speed_connect_cos', 'enemy_speed_connect_cos', 'relative_y', 'speed_cos' ] else: feature_names = [ 'z', 'Roll', 'Pitch', 'Yaw', 'x', 'y', 'Heading', 'enemy_z', 'enemy_x', 'enemy_y' ] return feature_names # 留出法数据 def _hold_out(self, raw_train, percent_train): """ 获取留出法的训练数据 Args: raw_train(dataframe): 原始数据 percent_train(int): 训练集占比 Returns: train(dataframe): 训练集 val(dataframe): 验证集 """ # 获取保留的列名 feature_names = self._feature_name() # 切分训练集、验证集 train_data, val_data = self.train_val_split(raw_train, percent=percent_train) if self.type == 'dcs': train_data = self.smote(train_data) # 获取训练验证数据和标签数据 X_train, X_val, y_train, y_val = train_data[feature_names], val_data[ feature_names], train_data['label'], val_data['label'] return X_train, X_val, y_train, y_val # k折交叉验证数据 def _k_fold(self, raw_train, k): """ 获取交叉验证数据 Args: raw_train(dataframe): 原始数据 k(int): 交叉折数 Returns: train(dataframe): k折交叉验证的训练集 val(dataframe): 验证集 """ # 获取保留列名 feature_names = self._feature_name() # 根据id分组 groups = list(raw_train['id']) # 分组交叉验证 gkf = GroupKFold(n_splits=k) data_list = [] # 获取交叉验证数据 for train_index, val_index in gkf.split(raw_train[feature_names], raw_train['label'], groups=groups): # 根据index索引获取每一折数据 X_train, y_train, X_val, y_val = raw_train.iloc[train_index][feature_names], \ raw_train.iloc[train_index]['label'], \ raw_train.iloc[val_index][feature_names], \ raw_train.iloc[val_index]['label'] # 将数据加入列表保存 data_list.append([X_train, X_val, y_train, y_val]) # 返回列表 return data_list def _bootstrap(self, raw_train): """ 获取提升法数据 Args: raw_train(dataframe): 原始数据 Returns: train(dataframe): 提升法训练集 val(dataframe): 验证集 """ # 获取保留列名 feature_names = self._feature_name() # 获取所有数据id,并去重 ids = pd.DataFrame(set(raw_train['id']), columns=['id'], index=None) random.seed(self.seed) # 根据id采样 train_group_ids = ids.sample(frac=1.0, replace=True, random_state=self.seed) # 总id减去训练集的id,得到验证集id val_group_ids = ids.loc[ids.index.difference( train_group_ids.index)].copy() # 创建两个dataframe train_data =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ This function creates kymographs from a stack of images. By <NAME> 2020 """ from skimage import io, measure import matplotlib.pyplot as plt import numpy as np from cell_segmentation import cell_seg_no_cell_crop import statistics from matplotlib import gridspec import pandas as pd import os def kymo_generator(image, fname, save_data, interval, pixel_size, bit_depth, small_obj = 1000, save_destination = os.path.dirname(__file__)): """ This function takes an image, generates four kymographs, and analyze them. Parameters ---------- image : array An input image. fname : string The filename. save_data : boolean Whether to save the data. interval : integer The interval at which images were acquired (e.g. every 5 seconds) pixel_size : integer The pixel size of the image. bit_depth : integer The bit depth of the image. small_obj : integer, optional The smallest object allowed. The default is 1000 pixels. save_destination : string, optional The saving directory. The default is os.path.dirname(__file__). Returns ------- A confirmation note "done". """ all_cell_masks, all_cell_props = cell_seg_no_cell_crop(image, filename = fname, DEPTH = bit_depth, small_obj = small_obj, show_img = False, save_contour = False) y, x = all_cell_props[0][-1].centroid y = int(y) x = int(x) kymo_1 = np.empty((y+1,all_cell_masks[0].shape[0])) kymo_2 = np.empty((all_cell_masks[0].shape[1]-y,all_cell_masks[0].shape[0])) kymo_3 = np.empty((x+1,all_cell_masks[0].shape[0])) kymo_4 = np.empty((all_cell_masks[0].shape[2]-x,all_cell_masks[0].shape[0])) width = 3 all_kymos = [] for slice_number in range (all_cell_masks[0].shape[0]): profile_line_1 = measure.profile_line(all_cell_masks[0][slice_number, :, :], src=(y, x), dst=(0, x), linewidth=width, mode='constant') kymo_1[:,slice_number] = np.flip(profile_line_1, axis=0) profile_line_2 = measure.profile_line(all_cell_masks[0][slice_number, :, :], src=(y, x), dst=(all_cell_masks[0][slice_number, :, :].shape[0]-1, x), linewidth=width, mode='constant') kymo_2[:,slice_number] = np.flip(profile_line_2, axis=0) profile_line_3 = measure.profile_line(all_cell_masks[0][slice_number, :, :], src=(y, x), dst=(y, 0), linewidth=width, mode='constant') kymo_3[:,slice_number] = np.flip(profile_line_3, axis=0) profile_line_4 = measure.profile_line(all_cell_masks[0][slice_number, :, :], src=(y, x), dst=(y, all_cell_masks[0][slice_number, :, :].shape[1]-1), linewidth=width, mode='constant') kymo_4[:,slice_number] = np.flip(profile_line_4, axis=0) all_kymos.append(kymo_1) all_kymos.append(kymo_2) all_kymos.append(kymo_3) all_kymos.append(kymo_4) del kymo_1, kymo_2, kymo_3, kymo_4 # to save memory from kymo_to_coords import kymo_to_coords all_normalized_coords = [] all_filtered_coords = [] for n in range(len(all_kymos)): normalized, filtered_coords = kymo_to_coords(all_kymos[n], thres=15, pixel_length = 0.1833333) all_normalized_coords.append(normalized) all_filtered_coords.append(filtered_coords) ################################dividing line########################################### from measure_protrusions import measure_protrusions all_plateau_idx = [] all_minimas = [] all_retraction_rate = [] all_avg_speed = [] all_lowest_point_idx = [] print(fname + ' results') print('----------------------------------------') for n in range(len(all_normalized_coords)): lowest_point_idx, plateau_idx, minima, retraction_rate, avg_speed = measure_protrusions(normalized_coords = all_normalized_coords[n], frame_rate = interval) all_plateau_idx.append(plateau_idx) all_minimas.append(minima) all_retraction_rate.append(retraction_rate) all_avg_speed.append(avg_speed) all_lowest_point_idx.append(lowest_point_idx) all_avg_speed_avg = statistics.mean(all_avg_speed) all_avg_speed_stdev = statistics.stdev(all_avg_speed) all_retraction_rate_avg = statistics.mean(all_retraction_rate) all_retraction_rate_stdev = statistics.stdev(all_retraction_rate) print('----------------------------------------') print('Average retraction rate of all kymos = ' + str(round(all_retraction_rate_avg, 3))+ ' ± ' + str(round(all_retraction_rate_stdev,2))) print('Average protrusion speed of all kymos = ' + str(round(all_avg_speed_avg, 2))+ ' ± ' + str(round(all_avg_speed_stdev,2))) ################################dividing line########################################### color_1 = '#003f5c' color_2 = '#7a5195' color_3 = '#ef5675' color_4 = '#ffa600' fig = plt.figure(figsize=(20, 10)) # 20 in x and 10 in y gs = gridspec.GridSpec(2, 4) # 2 in x and 4 in y axes0 = plt.subplot(gs[:,0:2]) axes0.imshow(image[-1,:,:], cmap='Greys') axes0.plot([x, x], [y, 0], color_1, [x, x], [y, all_cell_masks[0][slice_number, :, :].shape[0]-1], color_2, [x, 0], [y, y], color_3, [x, all_cell_masks[0][slice_number, :, :].shape[1]-1], [y, y], color_4, linewidth = width, linestyle='dashed') axes0.axis('off') ################### axes1 = plt.subplot(gs[0,2]) x_axis = np.linspace(start = 0, stop = int((len(all_normalized_coords[0])-1)*interval), num = len(all_normalized_coords[0])) axes1.plot(x_axis, all_normalized_coords[0], 'k') last_slope_point_0 = x_axis[all_plateau_idx[0]] axes1.plot([x_axis[all_lowest_point_idx[0]], last_slope_point_0], [all_normalized_coords[0][all_lowest_point_idx[0]], all_normalized_coords[0][all_plateau_idx[0]]], color_1, linewidth = width/2, linestyle='dashed', label='Protrusion speed') # plot retraction points axes1.scatter(all_minimas[0]*interval, [all_normalized_coords[0][n] for n in all_minimas[0]], s=20, c='r', label='Retraction') axes1.legend(loc="lower right") for spine in axes1.spines.values(): spine.set_edgecolor(color_1) spine.set_linewidth(3) axes1.set_ylabel('Distance ‎(µm)') axes1.set_ylim(top = int(np.max(all_normalized_coords)+2)) #limit y axis to be the maximum of all the numbers ################### axes2 = plt.subplot(gs[0,3], sharex=axes1, sharey=axes1) x_axis = np.linspace(start = 0, stop = int((len(all_normalized_coords[1])-1)*interval), num = len(all_normalized_coords[1])) axes2.plot(x_axis, all_normalized_coords[1], 'k') last_slope_point_1 = x_axis[all_plateau_idx[1]] axes2.plot([x_axis[all_lowest_point_idx[1]], last_slope_point_1], [all_normalized_coords[1][all_lowest_point_idx[1]], all_normalized_coords[1][all_plateau_idx[1]]], color_2, linewidth = width/2, linestyle='dashed', label='Protrusion speed') axes2.scatter(all_minimas[1]*interval, [all_normalized_coords[1][n] for n in all_minimas[1]], s=20, c='r', label='Retraction') axes2.legend(loc="lower right") for spine in axes2.spines.values(): spine.set_edgecolor(color_2) spine.set_linewidth(3) ################### axes3 = plt.subplot(gs[1,2], sharex=axes1, sharey=axes1) x_axis = np.linspace(start = 0, stop = int((len(all_normalized_coords[2])-1)*interval), num = len(all_normalized_coords[2])) axes3.plot(x_axis, all_normalized_coords[2], 'k') last_slope_point_2 = x_axis[all_plateau_idx[2]] axes3.plot([x_axis[all_lowest_point_idx[2]], last_slope_point_2], [all_normalized_coords[2][all_lowest_point_idx[2]], all_normalized_coords[2][all_plateau_idx[2]]], color_3, linewidth = width/2, linestyle='dashed', label='Protrusion speed') axes3.scatter(all_minimas[2]*interval, [all_normalized_coords[2][n] for n in all_minimas[2]], s=20, c='r', label='Retraction') axes3.legend(loc="lower right") for spine in axes3.spines.values(): spine.set_edgecolor(color_3) spine.set_linewidth(3) axes3.set_xlabel('Time (s)') axes3.set_ylabel('Distance ‎(µm)') ################### axes4 = plt.subplot(gs[1,3], sharex=axes1, sharey=axes1) x_axis = np.linspace(start = 0, stop = int((len(all_normalized_coords[3])-1)*interval), num = len(all_normalized_coords[3])) axes4.plot(x_axis, all_normalized_coords[3], 'k') last_slope_point_3 = x_axis[all_plateau_idx[3]] axes4.plot([x_axis[all_lowest_point_idx[3]], last_slope_point_3], [all_normalized_coords[3][all_lowest_point_idx[3]], all_normalized_coords[3][all_plateau_idx[3]]], color_4, linewidth = width/2, linestyle='dashed', label='Protrusion speed') axes4.scatter(all_minimas[3]*interval, [all_normalized_coords[3][n] for n in all_minimas[3]], s=20, c='r', label='Retraction') axes4.legend(loc="lower right") for spine in axes4.spines.values(): spine.set_edgecolor(color_4) spine.set_linewidth(3) axes4.set_xlabel('Time (s)') plt.show() ################################dividing line########################################### if save_data: df = pd.DataFrame() df[fname + ' Kymo_1'] = pd.Series(all_normalized_coords[0]) df[fname + ' Kymo_1' + ' retraction pts'] = pd.Series(all_minimas[0]*interval) df[fname + ' Kymo_1' + ' plateau idx'] = pd.Series(all_plateau_idx[0]) df[fname + ' Kymo_1' + ' protrusion beginning idx'] = pd.Series(all_lowest_point_idx[0]) df[fname + ' Kymo_2'] = pd.Series(all_normalized_coords[1]) df[fname + ' Kymo_2' + ' retraction pts'] =
pd.Series(all_minimas[1]*interval)
pandas.Series
import unittest class TestLearn(unittest.TestCase): def test_ewm_covariance_vs_pandas(self): import numpy as np import pandas as pd from pyonline.covariance import Covariance span = 3 random_state = np.random.RandomState(3) X = random_state.normal(.1, .324, (100, 10)) candidate = Covariance(span=span).fit(X).covariance_ true =
pd.DataFrame(X)
pandas.DataFrame
# -*- coding: utf-8 -*- """ @file @brief Various function to download data about population """ import gzip import os import numpy import pandas from pyquickhelper.loghelper import noLOG from pyensae.datasource import download_data from .data_exceptions import DataFormatException def population_france_year(url="https://www.insee.fr/fr/statistiques/fichier/1892086/pop-totale-france.xls", sheet_name=0, year=2020): """ Downloads the data for the French population from INSEE website @param url url @param sheet_name sheet index @param year last year to find @return DataFrame The sheet index is 0 for the all France, 1 for metropolitean France. The last row aggregates multiple ages ``1914 ou avant``, they will remain aggregated but the label will be changed to 1914. ``100 ou plus`` is replaced by 100. By default, the data is coming from `INSEE, Bilan Démographique <https://www.insee.fr/fr/statistiques/1892086?sommaire=1912926>`_. **2017/01**: pandas does not seem to be able to read the format (old format). You should convert the file in txt with Excel. """ try: df = pandas.read_excel(url, sheet_name=sheet_name) skiprows = 5 except Exception as e: # pragma: no cover # we try to find a local version this = os.path.dirname(__file__) name = os.path.join(this, "data_population", url.split( "/")[-1].replace(".xls", ".xlsx")) if not os.path.exists(name): raise FileNotFoundError( "Unable to find a replacement for '{0}' as '{1}'".format(url, name)) from e df = pandas.read_excel(name, sheet_name=sheet_name) url = name skiprows = 0 col = df.columns[0] if len(col) == 0: raise DataFormatException( # pragma: no cover "Unable to find {0} (year) in table at url '{1}'".format(year, url)) if skiprows > 0 and str(year) not in col: raise DataFormatException( # pragma: no cover "Unable to find {0} (year) in first column name '{1}' at url " "'{2}'".format(year, col, url)) table = pandas.read_excel(url, sheet_name=sheet_name, skiprows=skiprows) table.columns = ["naissance", "age", "hommes", "femmes", "ensemble"] table = table[(table.naissance != 'Champ : France y c. Mayotte.') & table.naissance.apply(lambda s: "Source" not in str(s))].copy() table["naissance"] = table.apply(lambda r: r["naissance"] if isinstance(r["naissance"], (int, float)) else r["naissance"].replace(" ou avant", ""), axis=1) table["age"] = table.apply(lambda r: r["age"] if isinstance(r["age"], (int, float)) else r["age"].replace(" ou plus", "") if isinstance( r["age"], str) else r["age"], axis=1) table = table.dropna(axis=0) for c in table.columns: table[c] = table[c].astype(int) return table def table_mortalite_france_00_02(homme=None, femme=None): """ Download mortality table for France assuming they are available in Excel format. @param homme table for men @param femme table for women @return DataFrame The final DataFrame merges both sheets. The data is coming from `Institut des Actuaires: Reférences de mortalité <http://www.institutdesactuaires.com/gene/main.php?base=2127>`_ or `Références techniques <http://www.ressources-actuarielles.net/EXT/ISFA/fp-isfa.nsf/ 34a14c286dfb0903c1256ffd00502d73/d62719e329025b94c12577c100545bb7?OpenDocument>`_. """ this = os.path.join(os.path.abspath( os.path.dirname(__file__)), "data_population") if homme is None: homme = os.path.join(this, "TH00-02_D.xls") sheeth = "Table" else: sheeth = 0 if femme is None: femme = os.path.join(this, "TF00-02_D.xls") sheetf = "Table" else: sheetf = 0 isexch = os.path.splitext(homme)[-1] in (".xls", ".xlsx") dfh = pandas.read_excel( homme, sheet_name=sheeth) if isexch else pandas.read_csv(homme, sep=";") if dfh.shape[1] > 2: dfh = dfh[dfh.columns[:2]] isexcf = os.path.splitext(femme)[-1] in (".xls", ".xlsx") dff = pandas.read_excel( femme, sheet_name=sheetf) if isexcf else pandas.read_csv(femme, sep=";") if dff.shape[1] > 2: dff = dff[dff.columns[:2]] df = dfh.merge(dff, on="Age") df.columns = ["Age", "Homme", "Femme"] return df.dropna().reset_index(drop=True) def fecondite_france(url=None): """ download fecondity table for France (Excel format) @param url source (url or file) @return DataFrame By default, the data is coming from a local file which is a copy of `INSEE: Fécondité selon l'âge détaillé de la mère <https://www.insee.fr/fr/statistiques/2045366?sommaire=2045470&q=fecondite>`_. The original file cannot be read by pandas so we convert it first. See also `INSEE Bilan Démographique 2016 <https://www.insee.fr/fr/statistiques/1892259?sommaire=1912926>`_. """ if url is None: this = os.path.abspath(os.path.dirname(__file__)) url = os.path.join(this, "data_population", "irsocsd2014_G10.xlsx") df = pandas.read_excel(url) col = df.columns[0] df[col] = df.apply(lambda r: r[col] if isinstance(r[col], int) else r[col].replace(" ou plus", "").replace(" ans", "").replace(" (p)", "") if isinstance( r[col], str) else r[col], axis=1) df = df[df[col].apply(lambda x: "0" <= x[0] <= "9" if isinstance( x, str) else (isinstance(x, (int, float))))].copy() df[col] = df[col].astype(float) cp = df[df[col] == 15] if len(cp) == 0: ages = [str(_) for _ in set(df[col])] # pragma: no cover raise DataFormatException( # pragma: no cover "Unable to find 15 (age) in table at url: {0}\n{1}".format( url, "\n".join(ages))) if len(cp) != 1: raise DataFormatException( # pragma: no cover "too many values 15 in table at url: " + url) cpe = df[df[col] == 50] if len(cpe) == 0: raise DataFormatException( # pragma: no cover "Unable to find 50 (age) in table at url: " + url) if len(cpe) != 1: raise DataFormatException( # pragma: no cover "Too many values 50 in table at url: " + url) ind = cp.index[0] ind2 = cpe.index[0] table = df.iloc[ind:ind2, :3].copy() table.columns = ["age", "2005", "2015"] for c in table.columns: table[c] = table[c].astype(float) return table def table_mortalite_euro_stat(url="http://ec.europa.eu/eurostat/estat-navtree-portlet-prod/BulkDownloadListing?file=data/", name="demo_mlifetable.tsv.gz", final_name="mortalite.txt", whereTo=".", stop_at=None, fLOG=noLOG): """ This function retrieves mortality table from `EuroStat <http://ec.europa.eu/eurostat/fr>`_ through `table de mortalité <http://www.data-publica.com/opendata/7098--population-et-conditions-sociales-table-de-mortalite-de-1960-a-2010>`_ (*this link is currently broken, data-publica does not provide such a database anymore, a copy is provided*). @param url data source @param name data table name @param final_name the data is compressed, it needs to be uncompressed into a file, this parameter defines its name @param whereTo data needs to be downloaded, location of this place @param stop_at the overall process is quite long, if not None, it only keeps the first rows @param fLOG logging function @return data_frame The function checks the file final_name exists. If it is the case, the data is not downloaded twice. The header contains a weird format as coordinates are separated by a comma:: indic_de,sex,age,geo\time 2013 2012 2011 2010 2009 We need to preprocess the data to split this information into columns. The overall process takes 4-5 minutes, 10 seconds to download (< 10 Mb), 4-5 minutes to preprocess the data (it could be improved). The processed data contains the following columns:: ['annee', 'valeur', 'age', 'age_num', 'indicateur', 'genre', 'pays'] Columns *age* and *age_num* look alike. *age_num* is numeric and is equal to *age* except when *age_num* is 85. Everybody above that age fall into the same category. The table contains many indicators: * PROBSURV: Probabilité de survie entre deux âges exacts (px) * LIFEXP: Esperance de vie à l'âge exact (ex) * SURVIVORS: Nombre des survivants à l'âge exact (lx) * PYLIVED: Nombre d'années personnes vécues entre deux âges exacts (Lx) * DEATHRATE: Taux de mortalité à l'âge x (Mx) * PROBDEATH: Probabilité de décès entre deux âges exacts (qx) * TOTPYLIVED: Nombre total d'années personne vécues après l'âge exact (Tx) """ if os.path.exists(final_name) and os.stat(final_name).st_size > 1e7: return final_name temp = final_name + ".remove.txt" if not os.path.exists(temp) or os.stat(temp).st_size < 1e7: local = download_data(name, url=url, whereTo=whereTo) local = local[0] + ".gz" with gzip.open(local, 'rb') as f: file_content = f.read() content = str(file_content, encoding="utf8") with open(temp, "w", encoding="utf8") as f: f.write(content) def format_age(s): if s.startswith("Y_"): if s.startswith("Y_LT"): # pragma: no cover return "YLT" + s[4:] if s.startswith("Y_GE"): # pragma: no cover return "YGE" + s[4:] raise SyntaxError(s) # pragma: no cover i = int(s.strip("Y")) return "Y%02d" % i def format_age_num(s): if s.startswith("Y_"): if s.startswith("Y_LT"): # pragma: no cover return float(s.replace("Y_LT", "")) if s.startswith("Y_GE"): # pragma: no cover return float(s.replace("Y_GE", "")) raise SyntaxError(s) # pragma: no cover i = int(s.strip("Y")) return float(i) def format_value(s): if s.strip() == ":": return numpy.nan return float(s.strip(" ebp")) fLOG("step 0, reading") dff =
pandas.read_csv(temp, sep="\t", encoding="utf8")
pandas.read_csv
# python 3 import matplotlib # matplotlib.use('pgf') # pgf_with_pdflatex = { # "pgf.texsystem": "pdflatex", # "pgf.preamble": [ # r"\usepackage[utf8x]{inputenc}", # r"\usepackage[T1]{fontenc}", # r"\usepackage{cmbright}", # ] # } # matplotlib.rcParams.update(pgf_with_pdflatex) import pandas import re from matplotlib2tikz import save as tikz_save import numpy from matplotlib import pyplot matplotlib.style.use('ggplot') pyplot.interactive(False) def to_min_secs(x, pos): x = int(x) minutes = x // 60 seconds = x % 60 return '{:02d}:{:02d}'.format(minutes, seconds) def get_speed_stats(speed_data_path): df = pandas.read_csv(speed_data_path, sep=',', thousands=',') try: node_nr = re.search('ProvidenciaExampleScenario.(.+?).veinsmobility.speed', df.columns[1]).group(1) except AttributeError: node_nr = '??' # apply your error handling df.columns = ['time', 'speed'] mean = df['speed'].mean() std = df['speed'].std() return (node_nr, mean, std) def build_dataframe_case(case): # mobility data mobility_columns = ['module', 'max_speed', 'min_speed', 'start_time', 'stop_time', 'total_co2', 'total_dist', 'total_time'] case_df_mobility = pandas.read_csv(case + '_stats_veinsmobility.csv') case_df_mobility.columns = mobility_columns mobility_search_re = 'ProvidenciaExampleScenario.(.+?).veinsmobility' case_df_mobility['module'] = case_df_mobility['module'].map(lambda x: re.search(mobility_search_re, x).group(1)) case_df_mobility.set_index(['module'], inplace=True) # appl data (sent warnings, arrived at dest) appl_columns = ['module', 'arrived', 'rcvd_warnings', 'sent_warnings'] case_df_appl = pandas.read_csv(case + '_stats_appl.csv') case_df_appl.columns = appl_columns appl_search_re = 'ProvidenciaExampleScenario.(.+?).appl' case_df_appl['module'] = case_df_appl['module'].map(lambda x: re.search(appl_search_re, x).group(1)) case_df_appl['arrived'] = case_df_appl['arrived'].map({1: True, 0: False}) case_df_appl.set_index(['module'], inplace=True) case_df_speed = pandas.DataFrame() case_df_speed['mean_speed'] = case_df_mobility['total_dist'] / case_df_mobility['total_time'] # join all tables case_df = pandas.merge(case_df_mobility, case_df_appl, left_index=True, right_index=True, how='outer') case_df = pandas.merge(case_df, case_df_speed, left_index=True, right_index=True, how='outer') return case_df def buid_csv(): for case in ['per0.0', 'per1.0', 'base_case', 'per0.5', 'per0.75', 'per0.25']: df = build_dataframe_case(case) df.to_csv(case + '_total_stats.csv') def analysis_arrived_vhc(): per00 = pandas.read_csv('per0.0_total_stats.csv').set_index(['module']) per10 = pandas.read_csv('per1.0_total_stats.csv').set_index(['module']) base = pandas.read_csv('base_case_total_stats.csv').set_index(['module']) per05 = pandas.read_csv('per0.5_total_stats.csv').set_index(['module']) per075 = pandas.read_csv('per0.75_total_stats.csv').set_index(['module']) per025 = pandas.read_csv('per0.25_total_stats.csv').set_index(['module']) base_arrived_cnt = base['arrived'].sum() per00_arrived_cnt = per00['arrived'].sum() per10_arrived_cnt = per10['arrived'].sum() per05_arrived_cnt = per05['arrived'].sum() per075_arrived_cnt = per075['arrived'].sum() per025_arrived_cnt = per025['arrived'].sum() objects = ('Caso Base', 'PER 0.0', 'PER 0.25', 'PER 0.75', 'PER 1.0') #objects = ('Caso Base', 'PER 0.0', 'PER 1.0') x_ax = numpy.arange(len(objects)) #bars = [base_arrived_cnt, per00_arrived_cnt, per025_arrived_cnt, # per05_arrived_cnt, per075_arrived_cnt, per10_arrived_cnt] bars = [base_arrived_cnt, per00_arrived_cnt, per025_arrived_cnt, per075_arrived_cnt, per10_arrived_cnt] pyplot.bar(x_ax, bars) #pyplot.yscale('log') pyplot.yticks(bars) pyplot.xticks(x_ax, objects) for a, b in zip(x_ax, bars): pyplot.text(a, b, str(b)) #pyplot.ylabel('N° de vehículos que alcanzaron su destino') pyplot.title('N° de vehículos que alcanzaron su destino (escala log)') pyplot.show() def analysis_speed(): per00 = pandas.read_csv('per0.0_total_stats.csv').set_index(['module']) per10 = pandas.read_csv('per1.0_total_stats.csv').set_index(['module']) base = pandas.read_csv('base_case_total_stats.csv').set_index(['module']) per05 = pandas.read_csv('per0.5_total_stats.csv').set_index(['module']) per075 = pandas.read_csv('per0.75_total_stats.csv').set_index(['module']) per025 = pandas.read_csv('per0.25_total_stats.csv').set_index(['module']) y = [base.loc[base['arrived'] == False]['mean_speed'].mean(), per00.loc[per00['arrived'] == False]['mean_speed'].mean(), per025.loc[per025['arrived'] == False]['mean_speed'].mean(), per05.loc[per05['arrived'] == False]['mean_speed'].mean(), per075.loc[per075['arrived'] == False]['mean_speed'].mean(), per10.loc[per10['arrived'] == False]['mean_speed'].mean()] objects = ('Caso Base', 'PER 0.0', 'PER 0.25', 'PER 0.5', 'PER 0.75', 'PER 1.0') x = numpy.arange(len(objects)) pyplot.bar(x, y) pyplot.yscale('log') #pyplot.yticks(y) pyplot.xticks(x, objects) pyplot.ylabel('Velocidad m/s') pyplot.title('Velocidades promedio de vehículos que NO alcanzaron su destino.') for a, b in zip(x, y): pyplot.text(a, b, str(b)) pyplot.show() def analysis_distance(): per00 = pandas.read_csv('per0.0_total_stats.csv').set_index(['module']) per10 = pandas.read_csv('per1.0_total_stats.csv').set_index(['module']) base = pandas.read_csv('base_case_total_stats.csv').set_index(['module']) per05 = pandas.read_csv('per0.5_total_stats.csv').set_index(['module']) per075 = pandas.read_csv('per0.75_total_stats.csv').set_index(['module']) per025 = pandas.read_csv('per0.25_total_stats.csv').set_index(['module']) # filter data = [base.loc[base['arrived'] != True]['total_dist'], per00.loc[per00['arrived'] != True]['total_dist'], per025.loc[per025['arrived'] != True]['total_dist'], per05.loc[per05['arrived'] != True]['total_dist'], per075.loc[per075['arrived'] != True]['total_dist'], per10.loc[per10['arrived'] != True]['total_dist']] labels = ['Caso Base', 'PER 0.0', 'PER 0.25', 'PER 0.5', 'PER 0.75', 'PER 1.0'] bins = numpy.linspace(0, base['total_dist'].max(), 50) fig, axes = pyplot.subplots(nrows=2, ncols=3, sharey=True) fig.suptitle("Frecuencia relativa de distancias recorridas - autos que NO llegaron a su destino.") for idx, ax in enumerate(axes.ravel()): x, y, _ = ax.hist(data[idx], bins, label=labels[idx], normed=True) pyplot.setp(ax.get_yticklabels(), visible=True) ax.legend(loc='upper right') pyplot.show() def analysis_time(): per00 = pandas.read_csv('per0.0_total_stats.csv').set_index(['module']) per10 = pandas.read_csv('per1.0_total_stats.csv').set_index(['module']) base = pandas.read_csv('base_case_total_stats.csv').set_index(['module']) per05 = pandas.read_csv('per0.5_total_stats.csv').set_index(['module']) per075 = pandas.read_csv('per0.75_total_stats.csv').set_index(['module']) per025 = pandas.read_csv('per0.25_total_stats.csv').set_index(['module']) # filter data = [base.loc[base['arrived'] == False]['total_time'], per00.loc[per00['arrived'] == False]['total_time'], per025.loc[per025['arrived'] == False]['total_time'], per05.loc[per05['arrived'] == False]['total_time'], per075.loc[per075['arrived'] == False]['total_time'], per10.loc[per10['arrived'] == False]['total_time']] labels = ['Caso Base', 'PER 0.0', 'PER 0.25', 'PER 0.5', 'PER 0.75', 'PER 1.0'] bins = numpy.linspace(0, base['total_dist'].max(), 50) fig, axes = pyplot.subplots(nrows=2, ncols=3) for idx, ax in enumerate(axes.ravel()): ax.hist(data[idx], bins, label=labels[idx], normed=True) ax.legend(loc='upper right') pyplot.show() def per00_vs_per10_distancetime(): per00 = pandas.read_csv('per0.0_total_stats.csv').set_index(['module']) per10 = pandas.read_csv('per1.0_total_stats.csv').set_index(['module']) fig, ax = pyplot.subplots() ax.set_facecolor('white') ax.grid(color='#a1a1a1', linestyle='-', alpha=0.1) ax.scatter(per00['total_dist'], per00['total_time'], marker='o', s=4, alpha=0.75, label='PER 0.0', color='#ff0000') ax.scatter(per10['total_dist'], per10['total_time'], marker='o', s=4, alpha=0.75, label='PER 1.0', color='#33cc22') ax.legend(loc='lower right') formatter = matplotlib.ticker.FuncFormatter(to_min_secs) ax.yaxis.set_major_formatter(formatter) ax.yaxis.set_major_formatter(formatter) pyplot.xlabel('Distancia Total [m]') #pyplot.ylabel('Tiempo Total [MM:SS]') ax.set_ylabel('Tiempo Total [MM:SS]') ax.set_ylabel('Tiempo Total [MM:SS]') #pyplot.savefig('per00per10_timedistance.pgf') tikz_save('per00per10_timedistance.tex', figureheight='\\figureheight', figurewidth='\\figurewidth') pyplot.show() def per00_vs_per10_co2distance(): per00 = pandas.read_csv('per0.0_total_stats.csv').set_index(['module']) per10 = pandas.read_csv('per1.0_total_stats.csv').set_index(['module']) fig, ax = pyplot.subplots() ax.set_facecolor('white') ax.grid(color='#a1a1a1', linestyle='-', alpha=0.1) ax.scatter(per00['total_dist'], per00['total_co2'], marker='o', s=4, alpha=0.75, label='PER 0.0', color='#ff0000') ax.scatter(per10['total_dist'], per10['total_co2'], marker='o', s=4, alpha=0.75, label='PER 1.0', color='#33cc22') ax.legend(loc='lower right') #formatter = matplotlib.ticker.FuncFormatter(to_min_secs) #ax.yaxis.set_major_formatter(formatter) ax.set_ylabel('CO2 Total [g]') pyplot.xlabel('Distancia Total') #pyplot.savefig('per00per10_co2.pgf') tikz_save('per00per10_co2.tex', figureheight='\\figureheight', figurewidth='\\figurewidth') pyplot.show() def per00_vs_per10_speedhist(): per00 =
pandas.read_csv('per0.0_total_stats.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """Timeseries Module This module mirrors the Timeseries API. It allows you to fetch data from the api and output it in various formats. https://doc.cognitedata.com/0.5/#Cognite-API-Time-series """ import io import os import time import math from functools import partial from multiprocessing import Pool from typing import List from urllib.parse import quote import numpy as np from requests_futures.sessions import FuturesSession from concurrent.futures import ThreadPoolExecutor import cognite._constants as _constants import cognite._utils as _utils import cognite.config as config import pandas as pd from cognite._protobuf_descriptors import _api_timeseries_data_v2_pb2 from cognite.v05.dto import ( Datapoint, DatapointsResponse, DatapointsResponseIterator, LatestDatapointResponse, TimeSeries, TimeSeriesResponse, TimeseriesWithDatapoints, ) def get_datapoints(name, aggregates=None, granularity=None, start=None, end=None, **kwargs): """Returns a DatapointsObject containing a list of datapoints for the given query. This method will automate paging for the user and return all data for the given time period. Args: name (str): The name of the timeseries to retrieve data for. aggregates (list): The list of aggregate functions you wish to apply to the data. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. Keyword Arguments: protobuf (bool): Download the data using the binary protobuf format. Only applicable when getting raw data. Defaults to True. processes (int): Number of download processes to run in parallell. Defaults to number returned by cpu_count(). api_key (str): Your api-key. project (str): Project name. limit (str): Max number of datapoints to return. If limit is specified, this method will not automate paging and will return a maximum of 100,000 dps. Returns: v05.dto.DatapointsResponse: A data object containing the requested data with several getter methods with different output formats. """ api_key, project = config.get_config_variables(kwargs.get("api_key"), kwargs.get("project")) start, end = _utils.interval_to_ms(start, end) if kwargs.get("limit"): return _get_datapoints_user_defined_limit( name, aggregates, granularity, start, end, limit=kwargs.get("limit"), protobuf=kwargs.get("protobuf"), api_key=api_key, project=project, ) diff = end - start num_of_processes = kwargs.get("processes", os.cpu_count()) granularity_ms = 1 if granularity: granularity_ms = _utils.granularity_to_ms(granularity) # Ensure that number of steps is not greater than the number data points that will be returned steps = min(num_of_processes, max(1, int(diff / granularity_ms))) # Make step size a multiple of the granularity requested in order to ensure evenly spaced results step_size = _utils.round_to_nearest(int(diff / steps), base=granularity_ms) # Create list of where each of the parallelized intervals will begin step_starts = [start + (i * step_size) for i in range(steps)] args = [{"start": start, "end": start + step_size} for start in step_starts] partial_get_dps = partial( _get_datapoints_helper_wrapper, name=name, aggregates=aggregates, granularity=granularity, protobuf=kwargs.get("protobuf", True), api_key=api_key, project=project, ) if steps == 1: dps = _get_datapoints_helper( name, aggregates, granularity, start, end, protobuf=kwargs.get("protobuf", True), api_key=api_key, project=project, ) return DatapointsResponse({"data": {"items": [{"name": name, "datapoints": dps}]}}) with Pool(steps) as p: datapoints = p.map(partial_get_dps, args) concat_dps = [] [concat_dps.extend(el) for el in datapoints] return DatapointsResponse({"data": {"items": [{"name": name, "datapoints": concat_dps}]}}) def _get_datapoints_helper_wrapper(args, name, aggregates, granularity, protobuf, api_key, project): return _get_datapoints_helper( name, aggregates, granularity, args["start"], args["end"], protobuf=protobuf, api_key=api_key, project=project ) def _get_datapoints_helper(name, aggregates=None, granularity=None, start=None, end=None, **kwargs): """Returns a list of datapoints for the given query. This method will automate paging for the given time period. Args: name (str): The name of the timeseries to retrieve data for. aggregates (list): The list of aggregate functions you wish to apply to the data. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. Keyword Arguments: protobuf (bool): Download the data using the binary protobuf format. Only applicable when getting raw data. Defaults to True. api_key (str): Your api-key. Obligatory in this helper method. project (str): Project name. Obligatory in this helper method. Returns: list of datapoints: A list containing datapoint dicts. """ api_key, project = kwargs.get("api_key"), kwargs.get("project") url = config.get_base_url(api_version=0.5) + "/projects/{}/timeseries/data/{}".format(project, quote(name, safe="")) use_protobuf = kwargs.get("protobuf", True) and aggregates is None limit = _constants.LIMIT if aggregates is None else _constants.LIMIT_AGG params = {"aggregates": aggregates, "granularity": granularity, "limit": limit, "start": start, "end": end} headers = {"api-key": api_key, "accept": "application/protobuf" if use_protobuf else "application/json"} datapoints = [] while (not datapoints or len(datapoints[-1]) == limit) and params["end"] > params["start"]: res = _utils.get_request(url, params=params, headers=headers) if use_protobuf: ts_data = _api_timeseries_data_v2_pb2.TimeseriesData() ts_data.ParseFromString(res.content) res = [{"timestamp": p.timestamp, "value": p.value} for p in ts_data.numericData.points] else: res = res.json()["data"]["items"][0]["datapoints"] if not res: break datapoints.append(res) latest_timestamp = int(datapoints[-1][-1]["timestamp"]) params["start"] = latest_timestamp + (_utils.granularity_to_ms(granularity) if granularity else 1) dps = [] [dps.extend(el) for el in datapoints] return dps def _get_datapoints_user_defined_limit(name, aggregates, granularity, start, end, limit, **kwargs): """Returns a DatapointsResponse object with the requested data. No paging or parallelizing is done. Args: name (str): The name of the timeseries to retrieve data for. aggregates (list): The list of aggregate functions you wish to apply to the data. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. limit (str): Max number of datapoints to return. Max is 100,000. Keyword Arguments: protobuf (bool): Download the data using the binary protobuf format. Only applicable when getting raw data. Defaults to True. api_key (str): Your api-key. Obligatory in this helper method. project (str): Project name. Obligatory in this helper method. Returns: v05.dto.DatapointsResponse: A data object containing the requested data with several getter methods with different output formats. """ api_key, project = kwargs.get("api_key"), kwargs.get("project") url = config.get_base_url(api_version=0.5) + "/projects/{}/timeseries/data/{}".format(project, quote(name, safe="")) use_protobuf = kwargs.get("protobuf", True) and aggregates is None params = {"aggregates": aggregates, "granularity": granularity, "limit": limit, "start": start, "end": end} headers = {"api-key": api_key, "accept": "application/protobuf" if use_protobuf else "application/json"} res = _utils.get_request(url, params=params, headers=headers) if use_protobuf: ts_data = _api_timeseries_data_v2_pb2.TimeseriesData() ts_data.ParseFromString(res.content) res = [{"timestamp": p.timestamp, "value": p.value} for p in ts_data.numericData.points] else: res = res.json()["data"]["items"][0]["datapoints"] return DatapointsResponse({"data": {"items": [{"name": name, "datapoints": res}]}}) def _split_TimeseriesWithDatapoints_if_over_limit( timeseries_with_datapoints: TimeseriesWithDatapoints, limit: int ) -> List[TimeseriesWithDatapoints]: """Takes a TimeseriesWithDatapoints and splits it into multiple so that each has a max number of datapoints equal to the limit given. Args: timeseries_with_datapoints (v05.dto.TimeseriesWithDatapoints): The timeseries with data to potentially split up. Returns: A list of v05.dto.TimeSeriesWithDatapoints where each has a maximum number of datapoints equal to the limit given. """ timeseries_with_datapoints_list = [] if len(timeseries_with_datapoints.datapoints) > limit: i = 0 while i < len(timeseries_with_datapoints.datapoints): timeseries_with_datapoints_list.append( TimeseriesWithDatapoints( name=timeseries_with_datapoints.name, datapoints=timeseries_with_datapoints.datapoints[i : i + limit], ) ) i += limit else: timeseries_with_datapoints_list.append(timeseries_with_datapoints) return timeseries_with_datapoints_list def post_multi_tag_datapoints(timeseries_with_datapoints: List[TimeseriesWithDatapoints], **kwargs): """Insert data into multiple timeseries. Args: timeseries_with_datapoints (List[v05.dto.TimeseriesWithDatapoints]): The timeseries with data to insert. Keyword Args: api_key (str): Your api-key. project (str): Project name. use_gzip (bool): Whether or not to gzip the request Returns: An empty response. """ api_key, project = config.get_config_variables(kwargs.get("api_key"), kwargs.get("project")) url = config.get_base_url(api_version=0.4) + "/projects/{}/timeseries/data".format(project) use_gzip = kwargs.get("use_gzip", False) headers = {"api-key": api_key, "content-type": "application/json", "accept": "application/json"} ul_dps_limit = 100000 # Make sure we only work with TimeseriesWithDatapoints objects that has a max number of datapoints timeseries_with_datapoints_limited = [] for entry in timeseries_with_datapoints: timeseries_with_datapoints_limited.extend(_split_TimeseriesWithDatapoints_if_over_limit(entry, ul_dps_limit)) # Group these TimeseriesWithDatapoints if possible so that we upload as much as possible in each call to the API timeseries_to_upload_binned = _utils.first_fit( list_items=timeseries_with_datapoints_limited, max_size=ul_dps_limit, get_count=lambda x: len(x.datapoints) ) for bin in timeseries_to_upload_binned: body = { "items": [ {"tagId": ts_with_data.name, "datapoints": [dp.__dict__ for dp in ts_with_data.datapoints]} for ts_with_data in bin ] } res = _utils.post_request(url, body=body, headers=headers, use_gzip=use_gzip) return res.json() def get_num_chunks(num_datapoints, max_post_size, num_workers): nd = num_datapoints return math.ceil(min(max(num_workers, nd/max_post_size), nd)) def post_datapoints(name, datapoints: List[Datapoint], **kwargs): """Insert a list of datapoints. Args: name (str): Name of timeseries to insert to. datapoints (list[v05.dto.Datapoint): List of datapoint data transfer objects to insert. Keyword Args: api_key (str): Your api-key. project (str): Project name. Returns: An empty response. """ num_workers = config.get_number_of_parallel_workers(kwargs.get("workers")) api_key, project = config.get_config_variables(kwargs.get("api_key"), kwargs.get("project")) url = config.get_base_url(api_version=0.5) + \ "/projects/{}/timeseries/data/{}".format(project, quote(name, safe="")) headers = {"api-key": api_key, "content-type": "application/json", "accept": "application/json"} session = FuturesSession(executor=ThreadPoolExecutor(max_workers=num_workers)) def do_post(chunk): body = {"items": [dp.__dict__ for dp in chunk]} return _utils.post_request(url, body=body, headers=headers, session=session) ul_dps_limit = 100000 num_chunks = get_num_chunks(len(datapoints), ul_dps_limit, num_workers) chunk_indices = np.linspace(0, len(datapoints), num_chunks + 1, dtype=int) chunks = [datapoints[s:e] for s, e in zip(chunk_indices[:-1], chunk_indices[1:])] responses = [None for _ in chunks] failures = [None for _ in chunks] for retry in range(config.get_number_of_retries() + 1): futures = [do_post(chunk) for chunk, res in zip(chunks, responses) if not res] fut_idx = 0 for res_idx in range(len(responses)): if responses[res_idx]: continue try: response = futures[fut_idx].result() if response.status_code == 200: responses[res_idx] = response else: failures[res_idx] = response print(f'Failure on retry {retry}: response #{res_idx} had status ' f'code {response.status_code}.') except Exception as e: failures[res_idx] = e print(f'Failure on retry {retry}: response #{res_idx} threw exception with ' f'message {e}.') fut_idx += 1 for res_idx, fail in enumerate(failures): if responses[res_idx] is None: responses[res_idx] = fail return responses def get_latest(name, **kwargs): """Returns a LatestDatapointObject containing the latest datapoint for the given timeseries. Args: name (str): The name of the timeseries to retrieve data for. Keyword Arguments: api_key (str): Your api-key. project (str): Project name. Returns: v05.dto.LatestDatapointsResponse: A data object containing the requested data with several getter methods with different output formats. """ api_key, project = config.get_config_variables(kwargs.get("api_key"), kwargs.get("project")) url = config.get_base_url(api_version=0.5) + "/projects/{}/timeseries/latest/{}".format( project, quote(name, safe="") ) headers = {"api-key": api_key, "accept": "application/json"} res = _utils.get_request(url, headers=headers, cookies=config.get_cookies()) return LatestDatapointResponse(res.json()) def get_multi_time_series_datapoints( datapoints_queries, aggregates=None, granularity=None, start=None, end=None, **kwargs ): """Returns a list of DatapointsObjects each of which contains a list of datapoints for the given timeseries. This method will automate paging for the user and return all data for the given time period(s). Args: datapoints_queries (list[v05.dto.DatapointsQuery]): The list of DatapointsQuery objects specifying which timeseries to retrieve data for. aggregates (list, optional): The list of aggregate functions you wish to apply to the data. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. Keyword Arguments: api_key (str): Your api-key. project (str): Project name. Returns: list(v05.dto.DatapointsResponse): A list of data objects containing the requested data with several getter methods with different output formats. """ api_key, project = config.get_config_variables(kwargs.get("api_key"), kwargs.get("project")) url = config.get_base_url(api_version=0.5) + "/projects/{}/timeseries/dataquery".format(project) start, end = _utils.interval_to_ms(start, end) num_of_dpqs_with_agg = 0 num_of_dpqs_raw = 0 for dpq in datapoints_queries: if (dpq.aggregates is None and aggregates is None) or dpq.aggregates == "": num_of_dpqs_raw += 1 else: num_of_dpqs_with_agg += 1 items = [] for dpq in datapoints_queries: if dpq.aggregates is None and aggregates is None: dpq.limit = int(_constants.LIMIT / num_of_dpqs_raw) else: dpq.limit = int(_constants.LIMIT_AGG / num_of_dpqs_with_agg) items.append(dpq.__dict__) body = { "items": items, "aggregates": ",".join(aggregates) if aggregates is not None else None, "granularity": granularity, "start": start, "end": end, } headers = {"api-key": api_key, "content-type": "application/json", "accept": "application/json"} datapoints_responses = [] has_incomplete_requests = True while has_incomplete_requests: res = _utils.post_request(url=url, body=body, headers=headers, cookies=config.get_cookies()).json()["data"][ "items" ] datapoints_responses.append(res) has_incomplete_requests = False for i, dpr in enumerate(res): dpq = datapoints_queries[i] if len(dpr["datapoints"]) == dpq.limit: has_incomplete_requests = True latest_timestamp = dpr["datapoints"][-1]["timestamp"] ts_granularity = granularity if dpq.granularity is None else dpq.granularity next_start = latest_timestamp + (_utils.granularity_to_ms(ts_granularity) if ts_granularity else 1) else: next_start = end - 1 if datapoints_queries[i].end: next_start = datapoints_queries[i].end - 1 datapoints_queries[i].start = next_start results = [{"data": {"items": [{"name": dpq.name, "datapoints": []}]}} for dpq in datapoints_queries] for res in datapoints_responses: for i, ts in enumerate(res): results[i]["data"]["items"][0]["datapoints"].extend(ts["datapoints"]) return DatapointsResponseIterator([DatapointsResponse(result) for result in results]) def get_datapoints_frame(time_series, aggregates, granularity, start=None, end=None, **kwargs): """Returns a pandas dataframe of datapoints for the given timeseries all on the same timestamps. This method will automate paging for the user and return all data for the given time period. Args: time_series (list): The list of timeseries names to retrieve data for. Each timeseries can be either a string containing the timeseries or a dictionary containing the names of thetimeseries and a list of specific aggregate functions. aggregates (list): The list of aggregate functions you wish to apply to the data for which you have not specified an aggregate function. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. Keyword Arguments: api_key (str): Your api-key. project (str): Project name. cookies (dict): Cookies. limit (str): Max number of rows to return. If limit is specified, this method will not automate paging and will return a maximum of 100,000 rows. processes (int): Number of download processes to run in parallell. Defaults to number returned by cpu_count(). Returns: pandas.DataFrame: A pandas dataframe containing the datapoints for the given timeseries. The datapoints for all the timeseries will all be on the same timestamps. Note: The ``timeseries`` parameter can take a list of strings and/or dicts on the following formats:: Using strings: ['<timeseries1>', '<timeseries2>'] Using dicts: [{'name': '<timeseries1>', 'aggregates': ['<aggfunc1>', '<aggfunc2>']}, {'name': '<timeseries2>', 'aggregates': []}] Using both: ['<timeseries1>', {'name': '<timeseries2>', 'aggregates': ['<aggfunc1>', '<aggfunc2>']}] """ if not isinstance(time_series, list): raise _utils.InputError("time_series should be a list") api_key, project = config.get_config_variables(kwargs.get("api_key"), kwargs.get("project")) cookies = config.get_cookies(kwargs.get("cookies")) start, end = _utils.interval_to_ms(start, end) if kwargs.get("limit"): return _get_datapoints_frame_user_defined_limit( time_series, aggregates, granularity, start, end, limit=kwargs.get("limit"), api_key=api_key, project=project, cookies=cookies, ) diff = end - start num_of_processes = kwargs.get("processes") or os.cpu_count() granularity_ms = 1 if granularity: granularity_ms = _utils.granularity_to_ms(granularity) # Ensure that number of steps is not greater than the number data points that will be returned steps = min(num_of_processes, max(1, int(diff / granularity_ms))) # Make step size a multiple of the granularity requested in order to ensure evenly spaced results step_size = _utils.round_to_nearest(int(diff / steps), base=granularity_ms) # Create list of where each of the parallelized intervals will begin step_starts = [start + (i * step_size) for i in range(steps)] args = [{"start": start, "end": start + step_size} for start in step_starts] partial_get_dpsf = partial( _get_datapoints_frame_helper_wrapper, time_series=time_series, aggregates=aggregates, granularity=granularity, api_key=api_key, project=project, cookies=cookies, ) if steps == 1: return _get_datapoints_frame_helper( time_series, aggregates, granularity, start, end, api_key=api_key, project=project, cookies=cookies ) with Pool(steps) as p: dataframes = p.map(partial_get_dpsf, args) df = pd.concat(dataframes).drop_duplicates(subset="timestamp").reset_index(drop=True) return df def _get_datapoints_frame_helper_wrapper(args, time_series, aggregates, granularity, api_key, project, cookies): return _get_datapoints_frame_helper( time_series, aggregates, granularity, args["start"], args["end"], api_key=api_key, project=project, cookies=cookies, ) def _get_datapoints_frame_helper(time_series, aggregates, granularity, start=None, end=None, **kwargs): """Returns a pandas dataframe of datapoints for the given timeseries all on the same timestamps. This method will automate paging for the user and return all data for the given time period. Args: time_series (list): The list of timeseries names to retrieve data for. Each timeseries can be either a string containing the ts name or a dictionary containing the ts name and a list of specific aggregate functions. aggregates (list): The list of aggregate functions you wish to apply to the data for which you have not specified an aggregate function. Valid aggregate functions are: 'average/avg, max, min, count, sum, interpolation/int, stepinterpolation/step'. granularity (str): The granularity of the aggregate values. Valid entries are : 'day/d, hour/h, minute/m, second/s', or a multiple of these indicated by a number as a prefix e.g. '12hour'. start (Union[str, int, datetime]): Get datapoints after this time. Format is N[timeunit]-ago where timeunit is w,d,h,m,s. E.g. '2d-ago' will get everything that is up to 2 days old. Can also send time in ms since epoch or a datetime object which will be converted to ms since epoch UTC. end (Union[str, int, datetime]): Get datapoints up to this time. Same format as for start. Keyword Arguments: api_key (str): Your api-key. project (str): Project name. Returns: pandas.DataFrame: A pandas dataframe containing the datapoints for the given timeseries. The datapoints for all the timeseries will all be on the same timestamps. Note: The ``timeseries`` parameter can take a list of strings and/or dicts on the following formats:: Using strings: ['<timeseries1>', '<timeseries2>'] Using dicts: [{'name': '<timeseries1>', 'aggregates': ['<aggfunc1>', '<aggfunc2>']}, {'name': '<timeseries2>', 'aggregates': []}] Using both: ['<timeseries1>', {'name': '<timeseries2>', 'aggregates': ['<aggfunc1>', '<aggfunc2>']}] """ api_key, project = kwargs.get("api_key"), kwargs.get("project") cookies = kwargs.get("cookies") url = config.get_base_url(api_version=0.5) + "/projects/{}/timeseries/dataframe".format(project) num_aggregates = 0 for ts in time_series: if isinstance(ts, str) or ts.get("aggregates") is None: num_aggregates += len(aggregates) else: num_aggregates += len(ts["aggregates"]) per_tag_limit = int(_constants.LIMIT / num_aggregates) body = { "items": [ {"name": "{}".format(ts)} if isinstance(ts, str) else {"name": "{}".format(ts["name"]), "aggregates": ts.get("aggregates", [])} for ts in time_series ], "aggregates": aggregates, "granularity": granularity, "start": start, "end": end, "limit": per_tag_limit, } headers = {"api-key": api_key, "content-type": "application/json", "accept": "text/csv"} dataframes = [] while (not dataframes or dataframes[-1].shape[0] == per_tag_limit) and body["end"] > body["start"]: res = _utils.post_request(url=url, body=body, headers=headers, cookies=cookies) dataframes.append( pd.read_csv(io.StringIO(res.content.decode(res.encoding if res.encoding else res.apparent_encoding))) ) if dataframes[-1].empty: break latest_timestamp = int(dataframes[-1].iloc[-1, 0]) body["start"] = latest_timestamp + _utils.granularity_to_ms(granularity) return
pd.concat(dataframes)
pandas.concat
# -*- coding: utf-8 -*- #https://github.com/gboeing/osmnx-examples/tree/master/notebooks #import database.mongo_loginManager as mdb #import database.models.odm_distribution_mongo as model_dist #import database.models.odm_production_mongo as model_prod from logproj.ml_dataCleaning import cleanUsingIQR import osmnx as ox import numpy as np import pandas as pd def import_graph_drive(D_node,latCol,lonCol,D_plant, plantLatitude, plantLongitude,cleanOutliers=False): ''' the function imports a road network using osmnx library D_node is the table containing the nodes of the network latCol is the name attribute of the latitude of the node collection lonCol is the name attribute of the longitude of the node collection D_plant id the table containing the plant of the network plantLatitude is the name attribute of the latitude of the plant collection plantLongitude is the name attribute of the longitude of the plant collection cleanOutliers is True to remove outliers of latitude and logitude by using IQR return the cleaned dataframe and a coverage tuple ''' coverages=(1,np.nan) #mdb.setConnection(dbName) #D_plant=mdb.queryTodf(model_prod.plant.objects) #D_node=mdb.queryTodf(model_dist.node.objects) #remove latitude and longitude outliers if cleanOutliers: D_node, coverages, =cleanUsingIQR(D_node, [latCol,lonCol]) allLatitudes=list(D_node[latCol]) + list(D_plant[plantLatitude]) allLongitudes=list(D_node[lonCol]) + list(D_plant[plantLongitude]) min_lat = min(allLatitudes) max_lat = max(allLatitudes) min_lon = min(allLongitudes) max_Lon = max(allLongitudes) G = ox.graph_from_bbox(max_lat, min_lat,max_Lon,min_lon, network_type='drive') output_coverages =
pd.DataFrame(coverages)
pandas.DataFrame
import glob import os import sys # these imports and usings need to be in the same order sys.path.insert(0, "../") sys.path.insert(0, "TP_model") sys.path.insert(0, "TP_model/fit_and_forecast") from Reff_functions import * from Reff_constants import * from sys import argv from datetime import timedelta, datetime from scipy.special import expit import matplotlib.pyplot as plt import numpy as np import pandas as pd import matplotlib matplotlib.use("Agg") def forecast_TP(data_date): from scenarios import scenarios, scenario_dates from params import ( num_forecast_days, alpha_start_date, delta_start_date, omicron_start_date, truncation_days, start_date, sim_start_date, third_start_date, mob_samples, ) data_date = pd.to_datetime(data_date) # Define inputs sim_start_date = pd.to_datetime(sim_start_date) # Add 3 days buffer to mobility forecast num_forecast_days = num_forecast_days + 3 # data_date = pd.to_datetime('2022-01-25') print("============") print("Generating forecasts using data from", data_date) print("============") # convert third start date to the correct format third_start_date = pd.to_datetime(third_start_date) third_end_date = data_date - timedelta(truncation_days) # a different end date to deal with issues in fitting third_end_date_diff = data_date - timedelta(18 + 7 + 7) third_states = sorted(["NSW", "VIC", "ACT", "QLD", "SA", "TAS", "NT", "WA"]) # third_states = sorted(['NSW', 'VIC', 'ACT', 'QLD', 'SA', 'NT']) # choose dates for each state for third wave # NOTE: These need to be in date sorted order third_date_range = { "ACT": pd.date_range(start="2021-08-15", end=third_end_date).values, "NSW": pd.date_range(start="2021-06-25", end=third_end_date).values, "NT": pd.date_range(start="2021-12-20", end=third_end_date).values, "QLD": pd.date_range(start="2021-07-30", end=third_end_date).values, "SA": pd.date_range(start="2021-12-10", end=third_end_date).values, "TAS": pd.date_range(start="2021-12-20", end=third_end_date).values, "VIC": pd.date_range(start="2021-07-10", end=third_end_date).values, "WA": pd.date_range(start="2022-01-01", end=third_end_date).values, } # Get Google Data - Don't use the smoothed data? df_google_all = read_in_google(Aus_only=True, moving=True, local=True) third_end_date = pd.to_datetime(data_date) - pd.Timedelta(days=truncation_days) results_dir = ( "results/" + data_date.strftime("%Y-%m-%d") + "/" ) # Load in vaccination data by state and date which should have the same date as the # NNDSS/linelist data use the inferred VE vaccination_by_state_delta = pd.read_csv( results_dir + "adjusted_vaccine_ts_delta" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) vaccination_by_state_delta = vaccination_by_state_delta[["state", "date", "effect"]] vaccination_by_state_delta = vaccination_by_state_delta.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # Convert to simple array for indexing vaccination_by_state_delta_array = vaccination_by_state_delta.to_numpy() vaccination_by_state_omicron = pd.read_csv( results_dir + "adjusted_vaccine_ts_omicron" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) vaccination_by_state_omicron = vaccination_by_state_omicron[["state", "date", "effect"]] vaccination_by_state_omicron = vaccination_by_state_omicron.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # Convert to simple array for indexing vaccination_by_state_omicron_array = vaccination_by_state_omicron.to_numpy() # Get survey data surveys = pd.DataFrame() path = "data/md/Barometer wave*.csv" for file in glob.glob(path): surveys = surveys.append(pd.read_csv(file, parse_dates=["date"])) surveys = surveys.sort_values(by="date") print("Latest microdistancing survey is {}".format(surveys.date.values[-1])) surveys.loc[surveys.state != "ACT", "state"] = ( surveys.loc[surveys.state != "ACT", "state"] .map(states_initials) .fillna(surveys.loc[surveys.state != "ACT", "state"]) ) surveys["proportion"] = surveys["count"] / surveys.respondents surveys.date = pd.to_datetime(surveys.date) always = surveys.loc[surveys.response == "Always"].set_index(["state", "date"]) always = always.unstack(["state"]) # fill in date range idx = pd.date_range("2020-03-01", pd.to_datetime("today")) always = always.reindex(idx, fill_value=np.nan) always.index.name = "date" always = always.fillna(method="bfill") always = always.stack(["state"]) # Zero out before first survey 20th March always = always.reset_index().set_index("date") always.loc[:"2020-03-20", "count"] = 0 always.loc[:"2020-03-20", "respondents"] = 0 always.loc[:"2020-03-20", "proportion"] = 0 always = always.reset_index().set_index(["state", "date"]) survey_X = pd.pivot_table( data=always, index="date", columns="state", values="proportion" ) prop_all = survey_X ## read in and process mask wearing data mask_wearing = pd.DataFrame() path = "data/face_coverings/face_covering_*_.csv" for file in glob.glob(path): mask_wearing = mask_wearing.append(pd.read_csv(file, parse_dates=["date"])) mask_wearing = mask_wearing.sort_values(by="date") print("Latest mask wearing survey is {}".format(mask_wearing.date.values[-1])) # mask_wearing['state'] = mask_wearing['state'].map(states_initials).fillna(mask_wearing['state']) mask_wearing.loc[mask_wearing.state != "ACT", "state"] = ( mask_wearing.loc[mask_wearing.state != "ACT", "state"] .map(states_initials) .fillna(mask_wearing.loc[mask_wearing.state != "ACT", "state"]) ) mask_wearing["proportion"] = mask_wearing["count"] / mask_wearing.respondents mask_wearing.date = pd.to_datetime(mask_wearing.date) mask_wearing_always = mask_wearing.loc[ mask_wearing.face_covering == "Always" ].set_index(["state", "date"]) mask_wearing_always = mask_wearing_always.unstack(["state"]) idx = pd.date_range("2020-03-01", pd.to_datetime("today")) mask_wearing_always = mask_wearing_always.reindex(idx, fill_value=np.nan) mask_wearing_always.index.name = "date" # fill back to earlier and between weeks. # Assume survey on day x applies for all days up to x - 6 mask_wearing_always = mask_wearing_always.fillna(method="bfill") mask_wearing_always = mask_wearing_always.stack(["state"]) # Zero out before first survey 20th March mask_wearing_always = mask_wearing_always.reset_index().set_index("date") mask_wearing_always.loc[:"2020-03-20", "count"] = 0 mask_wearing_always.loc[:"2020-03-20", "respondents"] = 0 mask_wearing_always.loc[:"2020-03-20", "proportion"] = 0 mask_wearing_X = pd.pivot_table( data=mask_wearing_always, index="date", columns="state", values="proportion" ) mask_wearing_all = mask_wearing_X # Get posterior df_samples = read_in_posterior( date=data_date.strftime("%Y-%m-%d"), ) states = sorted(["NSW", "QLD", "SA", "VIC", "TAS", "WA", "ACT", "NT"]) plot_states = states.copy() one_month = data_date + timedelta(days=num_forecast_days) days_from_March = (one_month - pd.to_datetime(start_date)).days # filter out future info prop = prop_all.loc[:data_date] masks = mask_wearing_all.loc[:data_date] df_google = df_google_all.loc[df_google_all.date <= data_date] # use this trick of saving the google data and then reloading it to kill # the date time values df_google.to_csv("results/test_google_data.csv") df_google = pd.read_csv("results/test_google_data.csv") # remove the temporary file # os.remove("results/test_google_data.csv") # Simple interpolation for missing vlaues in Google data df_google = df_google.interpolate(method="linear", axis=0) df_google.date = pd.to_datetime(df_google.date) # forecast time parameters today = data_date.strftime("%Y-%m-%d") # add days to forecast if we are missing data if df_google.date.values[-1] < data_date: n_forecast = num_forecast_days + (data_date - df_google.date.values[-1]).days else: n_forecast = num_forecast_days training_start_date = datetime(2020, 3, 1, 0, 0) print( "Forecast ends at {} days after 1st March".format( (pd.to_datetime(today) - pd.to_datetime(training_start_date)).days + num_forecast_days ) ) print( "Final date is {}".format(pd.to_datetime(today) + timedelta(days=num_forecast_days)) ) df_google = df_google.loc[df_google.date >= training_start_date] outdata = {"date": [], "type": [], "state": [], "mean": [], "std": []} predictors = mov_values.copy() # predictors.remove("residential_7days") # Setup Figures axes = [] figs = [] for var in predictors: fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) # fig.suptitle(var) figs.append(fig) # extra fig for microdistancing var = "Proportion people always microdistancing" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) # # extra fig for mask wearing var = "Proportion people always wearing masks" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) var = "Reduction in Reff due to vaccination" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) var = "Reduction in Reff due to vaccination" fig, ax_states = plt.subplots(figsize=(7, 8), nrows=4, ncols=2, sharex=True) axes.append(ax_states) figs.append(fig) # Forecasting Params n_training = 21 # Period to examine trend n_baseline = 150 # Period to create baseline n_training_vaccination = 30 # period to create trend for vaccination # since this can be useful, predictor ordering is: # [ # 'retail_and_recreation_7days', # 'grocery_and_pharmacy_7days', # 'parks_7days', # 'transit_stations_7days', # 'workplaces_7days' # ] # Loop through states and run forecasting. print("============") print("Forecasting macro, micro and vaccination") print("============") state_Rmed = {} state_sims = {} for i, state in enumerate(states): rownum = int(i / 2) colnum = np.mod(i, 2) rows = df_google.loc[df_google.state == state].shape[0] # Rmed currently a list, needs to be a matrix Rmed_array = np.zeros(shape=(rows, len(predictors), mob_samples)) for j, var in enumerate(predictors): for n in range(mob_samples): # historically we want a little more noise. In the actual forecasting of trends # we don't want this to be quite that prominent. Rmed_array[:, j, n] = df_google[df_google["state"] == state][ var ].values.T + np.random.normal( loc=0, scale=df_google[df_google["state"] == state][var + "_std"] ) dates = df_google[df_google["state"] == state]["date"] # cap min and max at historical or (-50,0) # 1 by predictors by mob_samples size minRmed_array = np.minimum(-50, np.amin(Rmed_array, axis=0)) maxRmed_array = np.maximum(10, np.amax(Rmed_array, axis=0)) # days by predictors by samples sims = np.zeros(shape=(n_forecast, len(predictors), mob_samples)) for n in range(mob_samples): # Loop through simulations Rmed = Rmed_array[:, :, n] minRmed = minRmed_array[:, n] maxRmed = maxRmed_array[:, n] if maxRmed[1] < 20: maxRmed[1] = 50 R_baseline_mean = np.mean(Rmed[-n_baseline:, :], axis=0) if state not in {"WA"}: R_baseline_mean[-1] = 0 R_diffs = np.diff(Rmed[-n_training:, :], axis=0) mu = np.mean(R_diffs, axis=0) cov = np.cov(R_diffs, rowvar=False) # columns are vars, rows are obs # Forecast mobility forward sequentially by day. # current = np.mean(Rmed[-9:-2, :], axis=0) # Start from last valid days # current = np.mean(Rmed[-1, :], axis=0) # Start from last valid days current = Rmed[-1, :] # Start from last valid days for i in range(n_forecast): # ## SCENARIO MODELLING # This code chunk will allow you manually set the distancing params for a state to allow for modelling. if scenarios[state] == "": # Proportion of trend_force to regression_to_baseline_force p_force = (n_forecast - i) / (n_forecast) # Generate a single forward realisation of trend trend_force = np.random.multivariate_normal(mu, cov) # Generate a single forward realisation of baseline regression # regression to baseline force stronger in standard forecasting regression_to_baseline_force = np.random.multivariate_normal( 0.05 * (R_baseline_mean - current), cov ) new_forcast_points = ( current + p_force * trend_force + (1 - p_force) * regression_to_baseline_force ) # Find overall simulation step # Apply minimum and maximum new_forcast_points = np.maximum(minRmed, new_forcast_points) new_forcast_points = np.minimum(maxRmed, new_forcast_points) current = new_forcast_points elif scenarios[state] != "": # Make baseline cov for generating points cov_baseline = np.cov(Rmed[-42:-28, :], rowvar=False) mu_current = Rmed[-1, :] mu_victoria = np.array( [ -55.35057887, -22.80891056, -46.59531636, -75.99942378, -44.71119293, ] ) mu_baseline = np.mean(Rmed[-42:-28, :], axis=0) # mu_baseline = 0*np.mean(Rmed[-42:-28, :], axis=0) if scenario_dates[state] != "": scenario_change_point = ( pd.to_datetime(scenario_dates[state]) - data_date ).days + (n_forecast - 42) # Constant Lockdown if ( scenarios[state] == "no_reversion" or scenarios[state] == "school_opening_2022" ): # take a continuous median to account for noise in recent observations (such as sunny days) # mu_current = np.mean(Rmed[-7:, :], axis=0) # cov_baseline = np.cov(Rmed[-28:, :], rowvar=False) new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) elif scenarios[state] == "no_reversion_continuous_lockdown": # add the new scenario here new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) # No Lockdown elif scenarios[state] == "full_reversion": # a full reversion scenario changes the social mobility and microdistancing # behaviours at the scenario change date and then applies a return to baseline force if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: # baseline is within lockdown period so take a new baseline of 0's and trend towards this R_baseline_0 = np.zeros_like(R_baseline_mean) R_baseline_0 = mu_baseline # set adjusted baselines by eyeline for now, need to get this automated # R_baseline_0[1] = 10 # baseline of +10% for Grocery based on other jurisdictions # # apply specific baselines to the jurisdictions progressing towards normal restrictions # if state == 'NSW': # R_baseline_0[3] = -25 # baseline of -25% for Transit based on 2021-April to 2021-July (pre-third-wave lockdowns) # elif state == 'ACT': # R_baseline_0[1] = 20 # baseline of +20% for Grocery based on other jurisdictions # R_baseline_0[3] = -25 # baseline of -25% for Transit based on 2021-April to 2021-July (pre-third-wave lockdowns) # elif state == 'VIC': # R_baseline_0[0] = -15 # baseline of -15% for R&R based on 2021-April to 2021-July (pre-third-wave lockdowns) # R_baseline_0[3] = -30 # baseline of -30% for Transit based on 2021-April to 2021-July (pre-third-wave lockdowns) # R_baseline_0[4] = -15 # baseline of -15% for workplaces based on 2021-April to 2021-July (pre-third-wave lockdowns) # the force we trend towards the baseline above with p_force = (n_forecast - i) / (n_forecast) trend_force = np.random.multivariate_normal( mu, cov ) # Generate a single forward realisation of trend # baseline scalar is smaller for this as we want slow returns adjusted_baseline_drift_mean = R_baseline_0 - current # we purposely scale the transit measure so that we increase a little more quickly # tmp = 0.05 * adjusted_baseline_drift_mean[3] adjusted_baseline_drift_mean *= 0.005 # adjusted_baseline_drift_mean[3] = tmp regression_to_baseline_force = np.random.multivariate_normal( adjusted_baseline_drift_mean, cov ) # Generate a single forward realisation of baseline regression new_forcast_points = ( current + p_force * trend_force + (1 - p_force) * regression_to_baseline_force ) # Find overall simulation step # new_forcast_points = current + regression_to_baseline_force # Find overall simulation step # Apply minimum and maximum new_forcast_points = np.maximum(minRmed, new_forcast_points) new_forcast_points = np.minimum(maxRmed, new_forcast_points) current = new_forcast_points elif scenarios[state] == "immediately_baseline": # this scenario is used to return instantly to the baseline levels if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: # baseline is within lockdown period so take a new baseline of 0's and trend towards this R_baseline_0 = np.zeros_like(R_baseline_mean) # jump immediately to baseline new_forcast_points = np.random.multivariate_normal( R_baseline_0, cov_baseline ) # Temporary Lockdown elif scenarios[state] == "half_reversion": if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: new_forcast_points = np.random.multivariate_normal( (mu_current + mu_baseline) / 2, cov_baseline ) # Stage 4 elif scenarios[state] == "stage4": if i < scenario_change_point: new_forcast_points = np.random.multivariate_normal( mu_current, cov_baseline ) else: new_forcast_points = np.random.multivariate_normal( mu_victoria, cov_baseline ) # Set this day in this simulation to the forecast realisation sims[i, :, n] = new_forcast_points dd = [dates.tolist()[-1] + timedelta(days=x) for x in range(1, n_forecast + 1)] sims_med = np.median(sims, axis=2) # N by predictors sims_q25 = np.percentile(sims, 25, axis=2) sims_q75 = np.percentile(sims, 75, axis=2) # forecast mircodistancing # Get a baseline value of microdistancing mu_overall = np.mean(prop[state].values[-n_baseline:]) md_diffs = np.diff(prop[state].values[-n_training:]) mu_diffs = np.mean(md_diffs) std_diffs = np.std(md_diffs) extra_days_md = ( pd.to_datetime(df_google.date.values[-1]) - pd.to_datetime(prop[state].index.values[-1]) ).days # Set all values to current value. current = [prop[state].values[-1]] * mob_samples new_md_forecast = [] # Forecast mobility forward sequentially by day. for i in range(n_forecast + extra_days_md): # SCENARIO MODELLING # This code chunk will allow you manually set the distancing params for a state to allow for modelling. if scenarios[state] == "": # Proportion of trend_force to regression_to_baseline_force p_force = (n_forecast + extra_days_md - i) / (n_forecast + extra_days_md) # Generate step realisations in training trend direction trend_force = np.random.normal(mu_diffs, std_diffs, size=mob_samples) # Generate realisations that draw closer to baseline regression_to_baseline_force = np.random.normal( 0.05 * (mu_overall - current), std_diffs ) current = ( current + p_force * trend_force + (1 - p_force) * regression_to_baseline_force ) # Balance forces # current = current+p_force*trend_force # Balance forces elif scenarios[state] != "": current = np.array(current) # Make baseline cov for generating points std_baseline = np.std(prop[state].values[-42:-28]) mu_baseline = np.mean(prop[state].values[-42:-28], axis=0) mu_current = prop[state].values[-1] if scenario_dates[state] != "": scenario_change_point = ( pd.to_datetime(scenario_dates[state]) - data_date ).days + extra_days_md # Constant Lockdown if ( scenarios[state] == "no_reversion" or scenarios[state] == "school_opening_2022" ): # use only more recent data to forecast under a no-reversion scenario # std_lockdown = np.std(prop[state].values[-24:-4]) # current = np.random.normal(mu_current, std_lockdown) current = np.random.normal(mu_current, std_baseline) # No Lockdown elif scenarios[state] == "full_reversion": if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: mu_baseline_0 = 0.2 # Proportion of trend_force to regression_to_baseline_force p_force = (n_forecast + extra_days_md - i) / ( n_forecast + extra_days_md ) # take a mean of the differences over the last 2 weeks mu_diffs = np.mean(np.diff(prop[state].values[-14:])) # Generate step realisations in training trend direction trend_force = np.random.normal(mu_diffs, std_baseline) # Generate realisations that draw closer to baseline regression_to_baseline_force = np.random.normal( 0.005 * (mu_baseline_0 - current), std_baseline ) current = current + regression_to_baseline_force # Balance forces elif scenarios[state] == "immediately_baseline": # this scenario is an immediate return to baseline values if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: mu_baseline_0 = 0.2 # jump immediately to baseline current = np.random.normal(mu_baseline_0, std_baseline) # Temporary Lockdown elif scenarios[state] == "half_reversion": # No Lockdown if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: # Revert to values halfway between the before and after current = np.random.normal( (mu_current + mu_baseline) / 2, std_baseline ) new_md_forecast.append(current) md_sims = np.vstack(new_md_forecast) # Put forecast days together md_sims = np.minimum(1, md_sims) md_sims = np.maximum(0, md_sims) dd_md = [ prop[state].index[-1] + timedelta(days=x) for x in range(1, n_forecast + extra_days_md + 1) ] ## currently not forecasting masks — may return in the future but will need to assess. # forecast mask wearing compliance # Get a baseline value of microdistancing mu_overall = np.mean(masks[state].values[-n_baseline:]) md_diffs = np.diff(masks[state].values[-n_training:]) mu_diffs = np.mean(md_diffs) std_diffs = np.std(md_diffs) extra_days_masks = ( pd.to_datetime(df_google.date.values[-1]) - pd.to_datetime(masks[state].index.values[-1]) ).days # Set all values to current value. current = [masks[state].values[-1]] * mob_samples new_masks_forecast = [] # Forecast mobility forward sequentially by day. for i in range(n_forecast + extra_days_masks): # SCENARIO MODELLING # This code chunk will allow you manually set the distancing params for a state to allow for modelling. if scenarios[state] == "": # masksortion of trend_force to regression_to_baseline_force p_force = (n_forecast + extra_days_masks - i) / ( n_forecast + extra_days_masks ) # Generate step realisations in training trend direction trend_force = np.random.normal(mu_diffs, std_diffs, size=mob_samples) # Generate realisations that draw closer to baseline # regression_to_baseline_force = np.random.normal(0.05*(mu_overall - current), std_diffs) # current = current + p_force*trend_force + (1-p_force)*regression_to_baseline_force # Balance forces current = current + trend_force elif scenarios[state] != "": current = np.array(current) # Make baseline cov for generating points std_baseline = np.std(masks[state].values[-42:-28]) mu_baseline = np.mean(masks[state].values[-42:-28], axis=0) mu_current = masks[state].values[-1] if scenario_dates[state] != "": scenario_change_point = ( pd.to_datetime(scenario_dates[state]) - data_date ).days + extra_days_masks # Constant Lockdown if ( scenarios[state] == "no_reversion" or scenarios[state] == "school_opening_2022" ): # use only more recent data to forecast under a no-reversion scenario # std_lockdown = np.std(masks[state].values[-24:-4]) # current = np.random.normal(mu_current, std_lockdown) current = np.random.normal(mu_current, std_baseline) # No Lockdown elif scenarios[state] == "full_reversion": if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: mu_baseline_0 = 0.2 # masksortion of trend_force to regression_to_baseline_force p_force = (n_forecast + extra_days_masks - i) / ( n_forecast + extra_days_masks ) # take a mean of the differences over the last 2 weeks mu_diffs = np.mean(np.diff(masks[state].values[-14:])) # Generate step realisations in training trend direction trend_force = np.random.normal(mu_diffs, std_baseline) # Generate realisations that draw closer to baseline regression_to_baseline_force = np.random.normal( 0.005 * (mu_baseline_0 - current), std_baseline ) current = current + regression_to_baseline_force # Balance forces elif scenarios[state] == "immediately_baseline": # this scenario is an immediate return to baseline values if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: mu_baseline_0 = 0.2 # jump immediately to baseline current = np.random.normal(mu_baseline_0, std_baseline) # Temporary Lockdown elif scenarios[state] == "half_reversion": # No Lockdown if i < scenario_change_point: current = np.random.normal(mu_current, std_baseline) else: # Revert to values halfway between the before and after current = np.random.normal( (mu_current + mu_baseline) / 2, std_baseline ) new_masks_forecast.append(current) masks_sims = np.vstack(new_masks_forecast) # Put forecast days together masks_sims = np.minimum(1, masks_sims) masks_sims = np.maximum(0, masks_sims) dd_masks = [ masks[state].index[-1] + timedelta(days=x) for x in range(1, n_forecast + extra_days_masks + 1) ] # Forecasting vaccine effect # if state == "WA": # last_fit_date = pd.to_datetime(third_end_date) # else: last_fit_date = pd.to_datetime(third_date_range[state][-1]) extra_days_vacc = (pd.to_datetime(df_google.date.values[-1]) - last_fit_date).days total_forecasting_days = n_forecast + extra_days_vacc # get the VE on the last day mean_delta = vaccination_by_state_delta.loc[state][last_fit_date + timedelta(1)] mean_omicron = vaccination_by_state_omicron.loc[state][last_fit_date + timedelta(1)] current = np.zeros_like(mob_samples) new_delta = [] new_omicron = [] # variance on the vaccine forecasts is equivalent to what we use in the fitting var_vax = 0.00005 a_vax = np.zeros_like(mob_samples) b_vax = np.zeros_like(mob_samples) for d in pd.date_range( last_fit_date + timedelta(1), pd.to_datetime(today) + timedelta(days=num_forecast_days), ): mean_delta = vaccination_by_state_delta.loc[state][d] a_vax = mean_delta * (mean_delta * (1 - mean_delta) / var_vax - 1) b_vax = (1 - mean_delta) * (mean_delta * (1 - mean_delta) / var_vax - 1) current = np.random.beta(a_vax, b_vax, mob_samples) new_delta.append(current.tolist()) mean_omicron = vaccination_by_state_omicron.loc[state][d] a_vax = mean_omicron * (mean_omicron * (1 - mean_omicron) / var_vax - 1) b_vax = (1 - mean_omicron) * (mean_omicron * (1 - mean_omicron) / var_vax - 1) current = np.random.beta(a_vax, b_vax, mob_samples) new_omicron.append(current.tolist()) vacc_sims_delta = np.vstack(new_delta) vacc_sims_omicron = np.vstack(new_omicron) dd_vacc = [ last_fit_date + timedelta(days=x) for x in range(1, n_forecast + extra_days_vacc + 1) ] for j, var in enumerate( predictors + ["md_prop"] + ["masks_prop"] + ["vaccination_delta"] + ["vaccination_omicron"] ): # Record data axs = axes[j] if (state == "AUS") and (var == "md_prop"): continue if var == "md_prop": outdata["type"].extend([var] * len(dd_md)) outdata["state"].extend([state] * len(dd_md)) outdata["date"].extend([d.strftime("%Y-%m-%d") for d in dd_md]) outdata["mean"].extend(np.mean(md_sims, axis=1)) outdata["std"].extend(np.std(md_sims, axis=1)) elif var == "masks_prop": outdata["type"].extend([var] * len(dd_masks)) outdata["state"].extend([state] * len(dd_masks)) outdata["date"].extend([d.strftime("%Y-%m-%d") for d in dd_masks]) outdata["mean"].extend(np.mean(masks_sims, axis=1)) outdata["std"].extend(np.std(masks_sims, axis=1)) elif var == "vaccination_delta": outdata["type"].extend([var] * len(dd_vacc)) outdata["state"].extend([state] * len(dd_vacc)) outdata["date"].extend([d.strftime("%Y-%m-%d") for d in dd_vacc]) outdata["mean"].extend(np.mean(vacc_sims_delta, axis=1)) outdata["std"].extend(np.std(vacc_sims_delta, axis=1)) elif var == "vaccination_omicron": outdata["type"].extend([var] * len(dd_vacc)) outdata["state"].extend([state] * len(dd_vacc)) outdata["date"].extend([d.strftime("%Y-%m-%d") for d in dd_vacc]) outdata["mean"].extend(np.mean(vacc_sims_omicron, axis=1)) outdata["std"].extend(np.std(vacc_sims_omicron, axis=1)) else: outdata["type"].extend([var] * len(dd)) outdata["state"].extend([state] * len(dd)) outdata["date"].extend([d.strftime("%Y-%m-%d") for d in dd]) outdata["mean"].extend(np.mean(sims[:, j, :], axis=1)) outdata["std"].extend(np.std(sims[:, j, :], axis=1)) if state in plot_states: if var == "md_prop": # md plot axs[rownum, colnum].plot(prop[state].index, prop[state].values, lw=1) axs[rownum, colnum].plot(dd_md, np.median(md_sims, axis=1), "k", lw=1) axs[rownum, colnum].fill_between( dd_md, np.quantile(md_sims, 0.25, axis=1), np.quantile(md_sims, 0.75, axis=1), color="k", alpha=0.1, ) elif var == "masks_prop": # masks plot axs[rownum, colnum].plot(masks[state].index, masks[state].values, lw=1) axs[rownum, colnum].plot( dd_masks, np.median(masks_sims, axis=1), "k", lw=1 ) axs[rownum, colnum].fill_between( dd_masks, np.quantile(masks_sims, 0.25, axis=1), np.quantile(masks_sims, 0.75, axis=1), color="k", alpha=0.1, ) elif var == "vaccination_delta": # vaccination plot axs[rownum, colnum].plot( vaccination_by_state_delta.loc[ state, ~vaccination_by_state_delta.loc[state].isna() ].index, vaccination_by_state_delta.loc[ state, ~vaccination_by_state_delta.loc[state].isna() ].values, lw=1, ) axs[rownum, colnum].plot( dd_vacc, np.median(vacc_sims_delta, axis=1), color="C1", lw=1 ) axs[rownum, colnum].fill_between( dd_vacc, np.quantile(vacc_sims_delta, 0.25, axis=1), np.quantile(vacc_sims_delta, 0.75, axis=1), color="C1", alpha=0.1, ) elif var == "vaccination_omicron": # vaccination plot axs[rownum, colnum].plot( vaccination_by_state_omicron.loc[ state, ~vaccination_by_state_omicron.loc[state].isna() ].index, vaccination_by_state_omicron.loc[ state, ~vaccination_by_state_omicron.loc[state].isna() ].values, lw=1, ) axs[rownum, colnum].plot( dd_vacc, np.median(vacc_sims_omicron, axis=1), color="C1", lw=1 ) axs[rownum, colnum].fill_between( dd_vacc, np.quantile(vacc_sims_omicron, 0.25, axis=1), np.quantile(vacc_sims_omicron, 0.75, axis=1), color="C1", alpha=0.1, ) else: # all other predictors axs[rownum, colnum].plot( dates, df_google[df_google["state"] == state][var].values, lw=1 ) axs[rownum, colnum].fill_between( dates, np.percentile(Rmed_array[:, j, :], 25, axis=1), np.percentile(Rmed_array[:, j, :], 75, axis=1), alpha=0.5, ) axs[rownum, colnum].plot(dd, sims_med[:, j], color="C1", lw=1) axs[rownum, colnum].fill_between( dd, sims_q25[:, j], sims_q75[:, j], color="C1", alpha=0.1 ) # axs[rownum,colnum].axvline(dd[-num_forecast_days], ls = '--', color = 'black', lw=1) # plotting a vertical line at the end of the data date # axs[rownum,colnum].axvline(dd[-(num_forecast_days+truncation_days)], ls = '-.', color='grey', lw=1) # plotting a vertical line at the forecast date axs[rownum, colnum].set_title(state) # plotting horizontal line at 1 axs[rownum, colnum].axhline(1, ls="--", c="k", lw=1) axs[rownum, colnum].set_title(state) axs[rownum, colnum].tick_params("x", rotation=90) axs[rownum, colnum].tick_params("both", labelsize=8) # plot the start date of the data and indicators of the data we are actually fitting to (in grey) axs[rownum, colnum].axvline(data_date, ls="-.", color="black", lw=1) if j < len(predictors): axs[rownum, colnum].set_ylabel( predictors[j].replace("_", " ")[:-5], fontsize=7 ) elif var == "md_prop": axs[rownum, colnum].set_ylabel( "Proportion of respondents\n micro-distancing", fontsize=7 ) elif var == "masks_prop": axs[rownum, colnum].set_ylabel( "Proportion of respondents\n wearing masks", fontsize=7 ) elif var == "vaccination_delta" or var == "vaccination_omicron": axs[rownum, colnum].set_ylabel( "Reduction in TP \n from vaccination", fontsize=7 ) # historically we want to store the higher variance mobilities state_Rmed[state] = Rmed_array state_sims[state] = sims os.makedirs( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts", exist_ok=True, ) for i, fig in enumerate(figs): fig.text(0.5, 0.02, "Date", ha="center", va="center", fontsize=15) if i < len(predictors): # this plots the google mobility forecasts fig.tight_layout() fig.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/" + str(predictors[i]) + ".png", dpi=400, ) elif i == len(predictors): # this plots the microdistancing forecasts fig.tight_layout() fig.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/micro_dist.png", dpi=400, ) elif i == len(predictors) + 1: # this plots the microdistancing forecasts fig.tight_layout() fig.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/mask_wearing.png", dpi=400, ) elif i == len(predictors) + 2: # finally this plots the delta VE forecasts fig.tight_layout() fig.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/delta_vaccination.png", dpi=400, ) else: # finally this plots the omicron VE forecasts fig.tight_layout() fig.savefig( "figs/mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/omicron_vaccination.png", dpi=400, ) df_out = pd.DataFrame.from_dict(outdata) df_md = df_out.loc[df_out.type == "md_prop"] df_masks = df_out.loc[df_out.type == "masks_prop"] df_out = df_out.loc[df_out.type != "vaccination_delta"] df_out = df_out.loc[df_out.type != "vaccination_omicron"] df_out = df_out.loc[df_out.type != "md_prop"] df_out = df_out.loc[df_out.type != "masks_prop"] df_forecast = pd.pivot_table( df_out, columns=["type"], index=["date", "state"], values=["mean"] ) df_std = pd.pivot_table( df_out, columns=["type"], index=["date", "state"], values=["std"] ) df_forecast_md = pd.pivot_table( df_md, columns=["state"], index=["date"], values=["mean"] ) df_forecast_md_std = pd.pivot_table( df_md, columns=["state"], index=["date"], values=["std"] ) df_forecast_masks = pd.pivot_table( df_masks, columns=["state"], index=["date"], values=["mean"] ) df_forecast_masks_std = pd.pivot_table( df_masks, columns=["state"], index=["date"], values=["std"] ) # align with google order in columns df_forecast = df_forecast.reindex([("mean", val) for val in predictors], axis=1) df_std = df_std.reindex([("std", val) for val in predictors], axis=1) df_forecast.columns = predictors # remove the tuple name of columns df_std.columns = predictors df_forecast = df_forecast.reset_index() df_std = df_std.reset_index() df_forecast.date = pd.to_datetime(df_forecast.date) df_std.date = pd.to_datetime(df_std.date) df_forecast_md = df_forecast_md.reindex([("mean", state) for state in states], axis=1) df_forecast_md_std = df_forecast_md_std.reindex( [("std", state) for state in states], axis=1 ) df_forecast_md.columns = states df_forecast_md_std.columns = states df_forecast_md = df_forecast_md.reset_index() df_forecast_md_std = df_forecast_md_std.reset_index() df_forecast_md.date = pd.to_datetime(df_forecast_md.date) df_forecast_md_std.date = pd.to_datetime(df_forecast_md_std.date) df_forecast_masks = df_forecast_masks.reindex( [("mean", state) for state in states], axis=1 ) df_forecast_masks_std = df_forecast_masks_std.reindex( [("std", state) for state in states], axis=1 ) df_forecast_masks.columns = states df_forecast_masks_std.columns = states df_forecast_masks = df_forecast_masks.reset_index() df_forecast_masks_std = df_forecast_masks_std.reset_index() df_forecast_masks.date = pd.to_datetime(df_forecast_masks.date) df_forecast_masks_std.date = pd.to_datetime(df_forecast_masks_std.date) df_R = df_google[["date", "state"] + mov_values + [val + "_std" for val in mov_values]] df_R = pd.concat([df_R, df_forecast], ignore_index=True, sort=False) df_R["policy"] = (df_R.date >= "2020-03-20").astype("int8") df_md = pd.concat([prop, df_forecast_md.set_index("date")]) df_masks = pd.concat([masks, df_forecast_masks.set_index("date")]) # now we read in the ve time series and create an adjusted timeseries from March 1st # that includes no effect prior vaccination_by_state = pd.read_csv( results_dir + "adjusted_vaccine_ts_delta" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) # there are a couple NA's early on in the time series but is likely due to slightly different start dates vaccination_by_state.fillna(1, inplace=True) vaccination_by_state = vaccination_by_state[["state", "date", "effect"]] vaccination_by_state = vaccination_by_state.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # initialise a complete dataframe which will be the full VE timeseries plus the forecasted VE df_ve_delta = pd.DataFrame() # loop over states and get the offset compoonenets of the full VE before_vacc_dates = pd.date_range( start_date, vaccination_by_state.columns[0] - timedelta(days=1), freq="d" ) # this is just a df of ones with all the missing dates as indices (8 comes from 8 jurisdictions) before_vacc_Reff_reduction = pd.DataFrame(np.ones(((1, len(before_vacc_dates))))) before_vacc_Reff_reduction.columns = before_vacc_dates for state in states: before_vacc_Reff_reduction.index = {state} # merge the vaccine data and the 1's dataframes df_ve_delta[state] = pd.concat( [before_vacc_Reff_reduction.loc[state].T, vaccination_by_state.loc[state].T] ) # clip off extra days df_ve_delta = df_ve_delta[ df_ve_delta.index <= pd.to_datetime(today) + timedelta(days=num_forecast_days) ] # save the forecasted vaccination line df_ve_delta.to_csv( results_dir + "forecasted_vaccination_delta" + data_date.strftime("%Y-%m-%d") + ".csv" ) vaccination_by_state = pd.read_csv( results_dir + "adjusted_vaccine_ts_omicron" + data_date.strftime("%Y-%m-%d") + ".csv", parse_dates=["date"], ) # there are a couple NA's early on in the time series but is likely due to slightly different start dates vaccination_by_state.fillna(1, inplace=True) vaccination_by_state = vaccination_by_state[["state", "date", "effect"]] vaccination_by_state = vaccination_by_state.pivot( index="state", columns="date", values="effect" ) # Convert to matrix form # initialise a complete dataframe which will be the full VE timeseries plus the forecasted VE df_ve_omicron = pd.DataFrame() # loop over states and get the offset compoonenets of the full VE before_vacc_dates = pd.date_range( start_date, pd.to_datetime(omicron_start_date) - timedelta(days=1), freq="d" ) # this is just a df of ones with all the missing dates as indices (8 comes from 8 jurisdictions) before_vacc_Reff_reduction = pd.DataFrame(np.ones(((1, len(before_vacc_dates))))) before_vacc_Reff_reduction.columns = before_vacc_dates for state in states: before_vacc_Reff_reduction.index = {state} # merge the vaccine data and the 1's dataframes df_ve_omicron[state] = pd.concat( [ before_vacc_Reff_reduction.loc[state].T, vaccination_by_state.loc[state][ vaccination_by_state.loc[state].index >= pd.to_datetime(omicron_start_date) ], ] ) df_ve_omicron = df_ve_omicron[ df_ve_omicron.index <= pd.to_datetime(today) + timedelta(days=num_forecast_days) ] # save the forecasted vaccination line df_ve_omicron.to_csv( results_dir + "forecasted_vaccination_omicron" + data_date.strftime("%Y-%m-%d") + ".csv" ) print("============") print("Plotting forecasted estimates") print("============") expo_decay = True theta_md = np.tile(df_samples["theta_md"].values, (df_md["NSW"].shape[0], 1)) fig, ax = plt.subplots(figsize=(12, 9), nrows=4, ncols=2, sharex=True, sharey=True) for i, state in enumerate(plot_states): # np.random.normal(df_md[state].values, df_md_std.values) prop_sim = df_md[state].values if expo_decay: md = ((1 + theta_md).T ** (-1 * prop_sim)).T else: md = 2 * expit(-1 * theta_md * prop_sim[:, np.newaxis]) row = i // 2 col = i % 2 ax[row, col].plot( df_md[state].index, np.median(md, axis=1), label="Microdistancing" ) ax[row, col].fill_between( df_md[state].index, np.quantile(md, 0.25, axis=1), np.quantile(md, 0.75, axis=1), label="Microdistancing", alpha=0.4, color="C0", ) ax[row, col].fill_between( df_md[state].index, np.quantile(md, 0.05, axis=1), np.quantile(md, 0.95, axis=1), label="Microdistancing", alpha=0.4, color="C0", ) ax[row, col].set_title(state) ax[row, col].tick_params("x", rotation=45) ax[row, col].set_xticks( [df_md[state].index.values[-n_forecast - extra_days_md]], minor=True, ) ax[row, col].xaxis.grid(which="minor", linestyle="-.", color="grey", linewidth=1) fig.text( 0.03, 0.5, "Multiplicative effect \n of micro-distancing $M_d$", ha="center", va="center", rotation="vertical", fontsize=20, ) fig.text(0.5, 0.04, "Date", ha="center", va="center", fontsize=20) plt.tight_layout(rect=[0.05, 0.04, 1, 1]) fig.savefig( "figs/" + "mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/md_factor.png", dpi=144, ) theta_masks = np.tile(df_samples["theta_masks"].values, (df_masks["NSW"].shape[0], 1)) fig, ax = plt.subplots(figsize=(12, 9), nrows=4, ncols=2, sharex=True, sharey=True) for i, state in enumerate(plot_states): # np.random.normal(df_md[state].values, df_md_std.values) masks_prop_sim = df_masks[state].values if expo_decay: mask_wearing_factor = ((1 + theta_masks).T ** (-1 * masks_prop_sim)).T else: mask_wearing_factor = 2 * expit( -1 * theta_masks * masks_prop_sim[:, np.newaxis] ) row = i // 2 col = i % 2 ax[row, col].plot( df_masks[state].index, np.median(mask_wearing_factor, axis=1), label="Microdistancing", ) ax[row, col].fill_between( df_masks[state].index, np.quantile(mask_wearing_factor, 0.25, axis=1), np.quantile(mask_wearing_factor, 0.75, axis=1), label="Microdistancing", alpha=0.4, color="C0", ) ax[row, col].fill_between( df_masks[state].index, np.quantile(mask_wearing_factor, 0.05, axis=1), np.quantile(mask_wearing_factor, 0.95, axis=1), label="Microdistancing", alpha=0.4, color="C0", ) ax[row, col].set_title(state) ax[row, col].tick_params("x", rotation=45) ax[row, col].set_xticks( [df_masks[state].index.values[-n_forecast - extra_days_masks]], minor=True ) ax[row, col].xaxis.grid(which="minor", linestyle="-.", color="grey", linewidth=1) fig.text( 0.03, 0.5, "Multiplicative effect \n of mask-wearing $M_d$", ha="center", va="center", rotation="vertical", fontsize=20, ) fig.text(0.5, 0.04, "Date", ha="center", va="center", fontsize=20) plt.tight_layout(rect=[0.05, 0.04, 1, 1]) fig.savefig( "figs/" + "mobility_forecasts/" + data_date.strftime("%Y-%m-%d") + "_mobility_forecasts/mask_wearing_factor.png", dpi=144, ) df_R = df_R.sort_values("date") # samples = df_samples.sample(n_samples) # test on sample of 2 # keep all samples samples = df_samples.iloc[:mob_samples, :] # for strain in ("Delta", "Omicron"): # samples = df_samples # flags for advanced scenario modelling advanced_scenario_modelling = False save_for_SA = False # since this can be useful, predictor ordering is: # ['retail_and_recreation_7days', 'grocery_and_pharmacy_7days', 'parks_7days', 'transit_stations_7days', 'workplaces_7days'] typ = "R_L" forecast_type = ["R_L"] for strain in ("Delta", "Omicron"): print("============") print("Calculating", strain, "TP") print("============") state_Rs = { "state": [], "date": [], "type": [], "median": [], "lower": [], "upper": [], "bottom": [], "top": [], "mean": [], "std": [], } ban = "2020-03-20" # VIC and NSW allow gatherings of up to 20 people, other jurisdictions allow for new_pol = "2020-06-01" expo_decay = True # start and end date for the third wave # Subtract 10 days to avoid right truncation third_end_date = data_date - pd.Timedelta(days=truncation_days) typ_state_R = {} mob_forecast_date = df_forecast.date.min() state_key = { "ACT": "1", "NSW": "2", "NT": "3", "QLD": "4", "SA": "5", "TAS": "6", "VIC": "7", "WA": "8", } total_N_p_third_omicron = 0 for v in third_date_range.values(): tmp = sum(v >= pd.to_datetime(omicron_start_date)) # add a plus one for inclusion of end date (the else 0 is due to QLD having no Omicron potential) total_N_p_third_omicron += tmp if tmp > 0 else 0 state_R = {} for (kk, state) in enumerate(states): # sort df_R by date so that rows are dates. rows are dates, columns are predictors df_state = df_R.loc[df_R.state == state] dd = df_state.date post_values = samples[predictors].values.T prop_sim = df_md[state].values # grab vaccination data vacc_ts_delta = df_ve_delta[state] vacc_ts_omicron = df_ve_omicron[state] # take right size of md to be N by N theta_md = np.tile(samples["theta_md"].values, (df_state.shape[0], 1)) theta_masks = np.tile(samples["theta_masks"].values, (df_state.shape[0], 1)) r = samples["r[" + str(kk + 1) + "]"].values tau = samples["tau[" + str(kk + 1) + "]"].values m0 = samples["m0[" + str(kk + 1) + "]"].values m1 = samples["m1[" + str(kk + 1) + "]"].values # m1 = 1.0 md = ((1 + theta_md).T ** (-1 * prop_sim)).T masks = ((1 + theta_masks).T ** (-1 * masks_prop_sim)).T third_states_indices = { state: index + 1 for (index, state) in enumerate(third_states) } third_days = {k: v.shape[0] for (k, v) in third_date_range.items()} third_days_cumulative = np.append( [0], np.cumsum([v for v in third_days.values()]) ) vax_idx_ranges = { k: range(third_days_cumulative[i], third_days_cumulative[i + 1]) for (i, k) in enumerate(third_days.keys()) } third_days_tot = sum(v for v in third_days.values()) # get the sampled vaccination effect (this will be incomplete as it's only over the fitting period) sampled_vax_effects_all = samples[ ["ve_delta[" + str(j + 1) + "]" for j in range(third_days_tot)] ].T vacc_tmp = sampled_vax_effects_all.iloc[vax_idx_ranges[state], :] # now we layer in the posterior vaccine multiplier effect which ill be a (T,mob_samples) array # get before and after fitting and tile them vacc_ts_data_before = pd.concat( [vacc_ts_delta.loc[vacc_ts_delta.index < third_date_range[state][0]]] * mob_samples, axis=1, ).to_numpy() vacc_ts_data_after = pd.concat( [vacc_ts_delta.loc[vacc_ts_delta.index > third_date_range[state][-1]]] * mob_samples, axis=1, ).to_numpy() # merge in order vacc_ts_delta = np.vstack( [vacc_ts_data_before, vacc_tmp, vacc_ts_data_after] ) # construct a range of dates for omicron which starts at the maximum of the start date for that state or the Omicron start date third_omicron_date_range = { k: pd.date_range( start=max(v[0],
pd.to_datetime(omicron_start_date)
pandas.to_datetime
# import pandas import pandas as pd import numpy as np import statsmodels.api as sm
pd.set_option('display.width', 200)
pandas.set_option
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jan 26 15:39:02 2018 @author: joyce """ import pandas as pd import numpy as np from numpy.matlib import repmat from stats import get_stockdata_from_sql,get_tradedate,Corr,Delta,Rank,Cross_max,\ Cross_min,Delay,Sum,Mean,STD,TsRank,TsMax,TsMin,DecayLinear,Count,SMA,Cov,DTM,DBM,\ Highday,Lowday,HD,LD,RegBeta,RegResi,SUMIF,get_indexdata_from_sql,timer,get_fama class stAlpha(object): def __init__(self,begin,end): self.begin = begin self.end = end self.close = get_stockdata_from_sql(1,self.begin,self.end,'Close') self.open = get_stockdata_from_sql(1,self.begin,self.end,'Open') self.high = get_stockdata_from_sql(1,self.begin,self.end,'High') self.low = get_stockdata_from_sql(1,self.begin,self.end,'Low') self.volume = get_stockdata_from_sql(1,self.begin,self.end,'Vol') self.amt = get_stockdata_from_sql(1,self.begin,self.end,'Amount') self.vwap = get_stockdata_from_sql(1,self.begin,self.end,'Vwap') self.ret = get_stockdata_from_sql(1,begin,end,'Pctchg') self.close_index = get_indexdata_from_sql(1,begin,end,'close','000001.SH') self.open_index = get_indexdata_from_sql(1,begin,end,'open','000001.SH') # self.mkt = get_fama_from_sql() @timer def alpha1(self): volume = self.volume ln_volume = np.log(volume) ln_volume_delta = Delta(ln_volume,1) close = self.close Open = self.open price_temp = pd.concat([close,Open],axis = 1,join = 'outer') price_temp['ret'] = (price_temp['Close'] - price_temp['Open'])/price_temp['Open'] del price_temp['Close'],price_temp['Open'] r_ln_volume_delta = Rank(ln_volume_delta) r_ret = Rank(price_temp) rank = pd.concat([r_ln_volume_delta,r_ret],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,6) alpha = corr alpha.columns = ['alpha1'] return alpha @timer def alpha2(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') temp['alpha'] = (2 * temp['Close'] - temp['Low'] - temp['High']) \ / (temp['High'] - temp['Low']) del temp['Close'],temp['Low'],temp['High'] alpha = -1 * Delta(temp,1) alpha.columns = ['alpha2'] return alpha @timer def alpha3(self): close = self.close low = self.low high = self.high temp = pd.concat([close,low,high],axis = 1,join = 'outer') close_delay = Delay(pd.DataFrame(temp['Close']),1) close_delay.columns = ['close_delay'] temp = pd.concat([temp,close_delay],axis = 1,join = 'inner') temp['min'] = Cross_max(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['Low'])) temp['max'] = Cross_min(pd.DataFrame(temp['close_delay']),pd.DataFrame(temp['High'])) temp['alpha_temp'] = 0 temp['alpha_temp'][temp['Close'] > temp['close_delay']] = temp['Close'] - temp['min'] temp['alpha_temp'][temp['Close'] < temp['close_delay']] = temp['Close'] - temp['max'] alpha = Sum(pd.DataFrame(temp['alpha_temp']),6) alpha.columns = ['alpha3'] return alpha @timer def alpha4(self): close = self.close volume = self.volume close_mean_2 = Mean(close,2) close_mean_8 = Mean(close,8) close_std = STD(close,8) volume_mean_20 = Mean(volume,20) data = pd.concat([close_mean_2,close_mean_8,close_std,volume_mean_20,volume],axis = 1,join = 'inner') data.columns = ['close_mean_2','close_mean_8','close_std','volume_mean_20','volume'] data['alpha'] = -1 data['alpha'][data['close_mean_2'] < data['close_mean_8'] - data['close_std']] = 1 data['alpha'][data['volume']/data['volume_mean_20'] >= 1] = 1 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha4'] return alpha @timer def alpha5(self): volume = self.volume high = self.high r1 = TsRank(volume,5) r2 = TsRank(high,5) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(corr,5) alpha.columns = ['alpha5'] return alpha @timer def alpha6(self): Open = self.open high = self.high df = pd.concat([Open,high],axis = 1,join = 'inner') df['price'] = df['Open'] * 0.85 + df['High'] * 0.15 df_delta = Delta(pd.DataFrame(df['price']),1) alpha = Rank(np.sign(df_delta)) alpha.columns = ['alpha6'] return alpha @timer def alpha7(self): close = self.close vwap = self.vwap volume = self.volume volume_delta = Delta(volume,3) data = pd.concat([close,vwap],axis = 1,join = 'inner') data['diff'] = data['Vwap'] - data['Close'] r1 = Rank(TsMax(pd.DataFrame(data['diff']),3)) r2 = Rank(TsMin(pd.DataFrame(data['diff']),3)) r3 = Rank(volume_delta) rank = pd.concat([r1,r2,r3],axis = 1,join = 'inner') rank.columns = ['r1','r2','r3'] alpha = (rank['r1'] + rank['r2'])* rank['r3'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha7'] return alpha @timer def alpha8(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') data_price = (data['High'] + data['Low'])/2 * 0.2 + data['Vwap'] * 0.2 data_price_delta = Delta(pd.DataFrame(data_price),4) * -1 alpha = Rank(data_price_delta) alpha.columns = ['alpha8'] return alpha @timer def alpha9(self): high = self.high low = self.low volume = self.volume data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['price']= (data['High'] + data['Low'])/2 data['price_delay'] = Delay(pd.DataFrame(data['price']),1) alpha_temp = (data['price'] - data['price_delay']) * (data['High'] - data['Low'])/data['Vol'] alpha_temp_unstack = alpha_temp.unstack(level = 'ID') alpha = alpha_temp_unstack.ewm(span = 7, ignore_na = True, min_periods = 7).mean() alpha_final = alpha.stack() alpha = pd.DataFrame(alpha_final) alpha.columns = ['alpha9'] return alpha @timer def alpha10(self): ret = self.ret close = self.close ret_std = STD(pd.DataFrame(ret),20) ret_std.columns = ['ret_std'] data = pd.concat([ret,close,ret_std],axis = 1, join = 'inner') temp1 = pd.DataFrame(data['ret_std'][data['Pctchg'] < 0]) temp2 = pd.DataFrame(data['Close'][data['Pctchg'] >= 0]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0,join = 'outer') temp_order = pd.concat([data,temp],axis = 1) temp_square = pd.DataFrame(np.power(temp_order['temp'],2)) alpha_temp = TsMax(temp_square,5) alpha = Rank(alpha_temp) alpha.columns = ['alpha10'] return alpha @timer def alpha11(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume],axis = 1,join = 'inner') data_temp = (data['Close'] - data['Low']) -(data['High'] - data['Close'])\ /(data['High'] - data['Low']) * data['Vol'] alpha = Sum(pd.DataFrame(data_temp),6) alpha.columns = ['alpha11'] return alpha @timer def alpha12(self): Open = self.open vwap = self.vwap close = self.close data = pd.concat([Open,vwap,close],axis = 1, join = 'inner') data['p1'] = data['Open'] - Mean(data['Open'],10) data['p2'] = data['Close'] - data['Vwap'] r1 = Rank(pd.DataFrame(data['p1'])) r2 = Rank(pd.DataFrame(np.abs(data['p2']))) rank = pd.concat([r1,r2],axis = 1,join = 'inner') rank.columns = ['r1','r2'] alpha = rank['r1'] - rank['r2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha12'] return alpha @timer def alpha13(self): high = self.high low = self.low vwap = self.vwap data = pd.concat([high,low,vwap],axis = 1,join = 'inner') alpha = (data['High'] + data['Low'])/2 - data['Vwap'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha13'] return alpha @timer def alpha14(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close'] - data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha14'] return alpha @timer def alpha15(self): Open = self.open close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([Open,close_delay],axis = 1,join = 'inner') alpha = data['Open']/data['close_delay'] - 1 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha15'] return alpha @timer def alpha16(self): vwap = self.vwap volume = self.volume data = pd.concat([vwap,volume],axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vol'])) r2 = Rank(pd.DataFrame(data['Vwap'])) rank = pd.concat([r1,r2],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,5) alpha = -1 * TsMax(Rank(corr),5) alpha.columns = ['alpha16'] return alpha @timer def alpha17(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close],axis = 1, join = 'inner') data['vwap_max15'] = TsMax(data['Vwap'],15) data['close_delta5'] = Delta(data['Close'],5) temp = np.power(data['vwap_max15'],data['close_delta5']) alpha = Rank(pd.DataFrame(temp)) alpha.columns = ['alpha17'] return alpha @timer def alpha18(self): """ this one is similar with alpha14 """ close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = data['Close']/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha18'] return alpha @timer def alpha19(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') data['temp1'] = (data['Close'] - data['close_delay'])/data['close_delay'] data['temp2'] = (data['Close'] - data['close_delay'])/data['Close'] temp1 = pd.DataFrame(data['temp1'][data['Close'] < data['close_delay']]) temp2 = pd.DataFrame(data['temp2'][data['Close'] >= data['close_delay']]) temp1.columns = ['temp'] temp2.columns = ['temp'] temp = pd.concat([temp1,temp2],axis = 0) data = pd.concat([data,temp],axis = 1,join = 'outer') alpha = pd.DataFrame(data['temp']) alpha.columns = ['alpha19'] return alpha @timer def alpha20(self): close = self.close close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha20'] return alpha @timer def alpha21(self): close = self.close close_mean = Mean(close,6) alpha = RegBeta(0,close_mean,None,6) alpha.columns = ['alpha21'] return alpha @timer def alpha22(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1,join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame((data['close'] - data['close_mean'])/data['close_mean']) temp_delay = Delay(temp,3) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] temp2 = pd.DataFrame(data_temp['temp'] - data_temp['temp_delay']) alpha = SMA(temp2,12,1) alpha.columns = ['alpha22'] return alpha @timer def alpha23(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['Close','close_std','close_delay'] data['temp'] = data['close_std'] data['temp'][data['Close'] <= data['close_delay']] = 0 temp = pd.DataFrame(data['temp']) sma1 = SMA(temp,20,1) sma2 = SMA(pd.DataFrame(data['close_std']),20,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2']) alpha.columns = ['alpha23'] return alpha @timer def alpha24(self): close = self.close close_delay = Delay(close,5) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis=1 ,join = 'inner' ) temp = data['Close'] - data['close_delay'] temp = pd.DataFrame(temp) alpha = SMA(temp,5,1) alpha.columns = ['alpha24'] return alpha @timer def alpha25(self): close = self.close close_delta = Delta(close,7) ret = self.ret r1 = Rank(close_delta) r3 = Rank(Sum(ret,250)) volume = self.volume volume_mean = Mean(pd.DataFrame(volume['Vol']),20) volume_mean.columns = ['volume_mean'] data = pd.concat([volume,volume_mean],axis = 1,join = 'inner') temp0 = pd.DataFrame(data['Vol']/data['volume_mean']) temp = DecayLinear(temp0,9) r2 = Rank(temp) rank = pd.concat([r1,r2,r3],axis = 1, join = 'inner') rank.columns = ['r1','r2','r3'] alpha = pd.DataFrame(-1 * rank['r1'] * (1 - rank['r2']) * rank['r3']) alpha.columns = ['alpha25'] return alpha @timer def alpha26(self): close = self.close vwap = self.vwap close_mean7 = Mean(close,7) close_mean7.columns = ['close_mean7'] close_delay5 = Delay(close,5) close_delay5.columns = ['close_delay5'] data = pd.concat([vwap,close_delay5],axis = 1,join = 'inner') corr = Corr(data,230) corr.columns = ['corr'] data_temp = pd.concat([corr,close_mean7,close],axis = 1,join = 'inner') alpha = data_temp['close_mean7'] - data_temp['Close'] + data_temp['corr'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha26'] return alpha @timer def alpha27(self): """ uncompleted """ close = self.close close_delay3 = Delay(close,3) close_delay6 = Delay(close,6) data = pd.concat([close,close_delay3,close_delay6],axis = 1,join = 'inner') data.columns = ['close','close_delay3','close_delay6'] temp1 = pd.DataFrame((data['close'] - data['close_delay3'])/data['close_delay3'] * 100) temp2 = pd.DataFrame((data['close'] - data['close_delay6'])/data['close_delay6'] * 100) data_temp = pd.concat([temp1,temp2],axis = 1,join = 'inner') data_temp.columns = ['temp1','temp2'] temp = pd.DataFrame(data_temp['temp1'] + data_temp['temp2']) alpha = DecayLinear(temp,12) alpha.columns = ['alpha27'] return alpha @timer def alpha28(self): close = self.close low = self.low high = self.high low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['Close','low_min','high_max'] temp1 = pd.DataFrame((data['Close'] - data['low_min']) /(data['high_max'] - data['low_min'])) sma1 = SMA(temp1,3,1) sma2 = SMA(sma1,3,1) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] * 2 - sma['sma2'] * 3) alpha.columns = ['alpha28'] return alpha @timer def alpha29(self): close = self.close volume = self.volume close_delay = Delay(close,6) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha29'] return alpha @timer def alpha30(self): close = self.close close_delay = Delay(close,1) @timer def alpha31(self): close = self.close close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay],axis = 1, join = 'inner') alpha = (data['Close'] - data['close_delay'])/data['close_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha31'] return alpha @timer def alpha32(self): volume = self.volume high = self.high r1 = Rank(volume) r2 = Rank(high) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,3) r = Rank(corr) alpha = -1 * Sum(r,3) alpha.columns = ['alpha32'] return alpha @timer def alpha33(self): low = self.low volume = self.volume ret = self.ret low_min = TsMin(low,5) low_min_delay = Delay(low_min,5) data1 = pd.concat([low_min,low_min_delay],axis = 1,join = 'inner') data1.columns = ['low_min','low_min_delay'] ret_sum240 = Sum(ret,240) ret_sum20 = Sum(ret,20) ret_temp = pd.concat([ret_sum240,ret_sum20],axis = 1, join = 'inner') ret_temp.columns = ['ret240','ret20'] temp1 = pd.DataFrame(data1['low_min_delay'] - data1['low_min']) temp2 = pd.DataFrame((ret_temp['ret240'] - ret_temp['ret20'])/220) r_temp2 = Rank(temp2) r_volume = TsRank(volume,5) temp = pd.concat([temp1,r_temp2,r_volume],axis = 1,join = 'inner') temp.columns = ['temp1','r_temp2','r_volume'] alpha = temp['temp1'] * temp['r_temp2'] * temp['r_volume'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha33'] return alpha @timer def alpha34(self): close = self.close close_mean = Mean(close,12) close_mean.columns = ['close_mean'] data = pd.concat([close,close_mean],axis = 1, join = 'inner') alpha = pd.DataFrame(data['close_mean']/data['Close']) alpha.columns = ['alpha34'] return alpha @timer def alpha35(self): volume = self.volume Open = self.open open_delay = Delay(Open,1) open_delay.columns = ['open_delay'] open_linear = DecayLinear(Open,17) open_linear.columns = ['open_linear'] open_delay_temp = DecayLinear(open_delay,15) r1 = Rank(open_delay_temp) data = pd.concat([Open,open_linear],axis = 1,join = 'inner') Open_temp = data['Open'] * 0.65 + 0.35 * data['open_linear'] rank = pd.concat([volume,Open_temp],axis = 1, join = 'inner') rank.columns = ['r1','r2'] corr = Corr(rank,7) r2 = Rank(-1 * corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = Cross_min(pd.DataFrame(r['r1']),pd.DataFrame(r['r2'])) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha35'] return alpha @timer def alpha36(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2],axis = 1,join = 'inner') corr = Corr(rank,6) temp = Sum(corr,2) alpha = Rank(temp) alpha.columns = ['alpha36'] return alpha @timer def alpha37(self): Open = self.open ret = self.ret open_sum = Sum(Open,5) ret_sum = Sum(ret,5) data = pd.concat([open_sum,ret_sum],axis = 1,join = 'inner') data.columns = ['open_sum','ret_sum'] temp = data['open_sum'] * data['ret_sum'] temp_delay = Delay(temp,10) data_temp = pd.concat([temp,temp_delay],axis = 1,join = 'inner') data_temp.columns = ['temp','temp_delay'] alpha = -1 * Rank(pd.DataFrame(data_temp['temp'] - data_temp['temp_delay'])) alpha.columns = ['alpha37'] return alpha @timer def alpha38(self): high = self.high high_mean = Mean(high,20) high_delta = Delta(high,2) data = pd.concat([high,high_mean,high_delta],axis = 1,join = 'inner') data.columns = ['high','high_mean','high_delta'] data['alpha'] = -1 * data['high_delta'] data['alpha'][data['high_mean'] >= data['high']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha38'] return alpha @timer def alpha39(self): close = self.close Open = self.open vwap = self.vwap volume = self.volume close_delta2 = Delta(close,2) close_delta2_decay = DecayLinear(close_delta2,8) r1 = Rank(close_delta2_decay) price_temp = pd.concat([vwap,Open],axis = 1,join = 'inner') price = pd.DataFrame(price_temp['Vwap'] * 0.3 + price_temp['Open'] * 0.7) volume_mean = Mean(volume,180) volume_mean_sum = Sum(volume_mean,37) rank = pd.concat([price,volume_mean_sum],axis = 1,join = 'inner') corr = Corr(rank,14) corr_decay = DecayLinear(corr,12) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns = ['alpha39'] return alpha @timer def alpha40(self): close = self.close volume = self.volume close_delay = Delay(close,1) data = pd.concat([close,volume,close_delay],axis = 1, join = 'inner') data.columns = ['close','volume','close_delay'] data['temp1'] = data['volume'] data['temp2'] = data['volume'] data['temp1'][data['close'] <= data['close_delay']] = 0 data['temp2'][data['close'] > data['close_delay']] = 0 s1 = Sum(pd.DataFrame(data['temp1']),26) s2 = Sum(pd.DataFrame(data['temp2']),26) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha40'] return alpha @timer def alpha41(self): vwap = self.vwap vwap_delta = Delta(vwap,3) vwap_delta_max = TsMax(vwap_delta,5) alpha = -1 * Rank(vwap_delta_max) alpha.columns = ['alpha41'] return alpha @timer def alpha42(self): high = self.high volume = self.volume high_std = STD(high,10) r1 = Rank(high_std) data = pd.concat([high,volume],axis = 1,join = 'inner') corr = Corr(data,10) r = pd.concat([r1,corr],axis = 1,join = 'inner') r.columns = ['r1','corr'] alpha = pd.DataFrame(-1 * r['r1'] * r['corr']) alpha.columns = ['alpha42'] return alpha @timer def alpha43(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,6) alpha.columns = ['alpha43'] return alpha @timer def alpha44(self): volume = self.volume vwap = self.vwap low = self.low volume_mean = Mean(volume,10) rank = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(rank,7) corr_decay = DecayLinear(corr,6) r1 = TsRank(corr_decay,4) vwap_delta = Delta(vwap,3) vwap_delta_decay = DecayLinear(vwap_delta,10) r2 = TsRank(vwap_delta_decay,15) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha44'] return alpha @timer def alpha45(self): volume = self.volume vwap = self.vwap close = self.close Open = self.open price = pd.concat([close,Open],axis = 1,join = 'inner') price['price'] = price['Close'] * 0.6 + price['Open'] * 0.4 price_delta = Delta(pd.DataFrame(price['price']),1) r1 = Rank(price_delta) volume_mean = Mean(volume,150) data = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr = Corr(data,15) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha45'] return alpha @timer def alpha46(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close,close_mean3,close_mean6,close_mean12,close_mean24],axis = 1,join = 'inner') data.columns = ['c','c3','c6','c12','c24'] alpha = (data['c3'] + data['c6'] + data['c12'] + data['c24'])/(4 * data['c']) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha46'] return alpha @timer def alpha47(self): close = self.close low = self.low high = self.high high_max = TsMax(high,6) low_min = TsMin(low,6) data = pd.concat([high_max,low_min,close],axis = 1,join = 'inner') data.columns = ['high_max','low_min','close'] temp = pd.DataFrame((data['high_max'] - data['close'])/(data['high_max'] - \ data['low_min']) * 100) alpha = SMA(temp,9,1) alpha.columns = ['alpha47'] return alpha @timer def alpha48(self): close = self.close volume = self.volume temp1 = Delta(close,1) temp1_delay1 = Delay(temp1,1) temp1_delay2 = Delay(temp1,2) data = pd.concat([temp1,temp1_delay1,temp1_delay2],axis = 1,join = 'inner') data.columns = ['temp1','temp1_delay1','temp1_delay2'] temp2 = pd.DataFrame(np.sign(data['temp1']) + np.sign(data['temp1_delay1']) \ + np.sign(data['temp1_delay2'])) volume_sum5 = Sum(volume,5) volume_sum20 = Sum(volume,20) data_temp = pd.concat([temp2,volume_sum5,volume_sum20],axis = 1,join = 'inner') data_temp.columns = ['temp2','volume_sum5','volume_sum20'] temp3 = pd.DataFrame(data_temp['temp2'] * data_temp['volume_sum5']/\ data_temp['volume_sum20']) alpha = -1 * Rank(temp3) alpha.columns = ['alpha48'] return alpha @timer def alpha49(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 0 price['temp'][price['sum'] < price['sum_delay']] = 1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha49'] return alpha @timer def alpha50(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = -1 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha50'] return alpha @timer def alpha51(self): low = self.low high = self.high data = pd.concat([low,high],axis = 1,join = 'inner') price_sum = pd.DataFrame(data['Low'] + data['High']) price_sum_delay = Delay(price_sum,1) price = pd.concat([price_sum,price_sum_delay],axis = 1,join = 'inner') price.columns = ['sum','sum_delay'] price['temp'] = 1 price['temp'][price['sum'] <= price['sum_delay']] = 0 alpha = Sum(pd.DataFrame(price['temp']),12) alpha.columns = ['alpha51'] return alpha @timer def alpha52(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') data['sum_delay'] = Delay(pd.DataFrame((data['High'] + data['Low'] + data['Close'])/3),1) temp1 = pd.DataFrame(data['High'] - data['sum_delay']) temp1.columns = ['high_diff'] temp2 = pd.DataFrame(data['sum_delay'] - data['Low']) temp2.columns = ['low_diff'] temp1['max'] = temp1['high_diff'] temp1['max'][temp1['high_diff'] < 0 ] = 0 temp2['max'] = temp2['low_diff'] temp2['max'][temp2['low_diff'] < 0 ] = 0 temp1_sum = Sum(pd.DataFrame(temp1['max']),26) temp2_sum = Sum(pd.DataFrame(temp2['max']),26) alpha_temp = pd.concat([temp1_sum,temp2_sum],axis = 1,join = 'inner') alpha_temp.columns = ['s1','s2'] alpha = pd.DataFrame(alpha_temp['s1']/alpha_temp['s2'] * 100) alpha.columns = ['alpha52'] return alpha @timer def alpha53(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,12) alpha = count/12.0 * 100 alpha.columns = ['alpha53'] return alpha @timer def alpha54(self): Open = self.open close = self.close data = pd.concat([Open,close], axis = 1, join = 'inner') data.columns = ['close','open'] temp = pd.DataFrame(data['close'] - data['open']) temp_abs = pd.DataFrame(np.abs(temp)) df = pd.concat([temp,temp_abs], axis = 1, join= 'inner') df.columns = ['temp','abs'] std = STD(pd.DataFrame(df['temp'] + df['abs']),10) corr = Corr(data,10) data1 = pd.concat([corr,std],axis = 1, join = 'inner') data1.columns = ['corr','std'] alpha = Rank(pd.DataFrame(data1['corr'] + data1['std'])) * -1 alpha.columns = ['alpha54'] return alpha @timer def alpha55(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] tep = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha = Sum(tep,20) alpha.columns = ['alpha55'] return alpha @timer def alpha56(self): low = self.low high = self.high volume = self.volume Open = self.open open_min = TsMin(Open,12) data1 = pd.concat([Open,open_min], axis = 1, join = 'inner') data1.columns = ['open','open_min'] r1 = Rank(pd.DataFrame(data1['open'] - data1['open_min'])) volume_mean = Mean(volume,40) volume_mean_sum= Sum(volume_mean,19) data2 = pd.concat([high,low],axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) rank = pd.concat([temp,volume_mean_sum],axis = 1 , join = 'inner') rank.columns = ['temp','volume_mean_sum'] corr = Corr(rank,13) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] >= r['r2']] = 1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha56'] return alpha @timer def alpha57(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = pd.DataFrame((data['close'] - data['low_min'])/(data['high_max'] \ - data['low_min']) * 100) alpha = SMA(temp,3,1) alpha.columns = ['alpha57'] return alpha @timer def alpha58(self): close = self.close close_delay = Delay(close,1) count = Count(0,close,close_delay,20) alpha = count/20.0 * 100 alpha.columns = ['alpha58'] return alpha @timer def alpha59(self): low = self.low high = self.high close = self.close close_delay = Delay(close,1) max_temp = pd.concat([high,close_delay],axis = 1,join = 'inner') min_temp = pd.concat([low,close_delay],axis = 1,join = 'inner') max_temp1 = pd.DataFrame(np.max(max_temp,axis = 1)) min_temp1 = pd.DataFrame(np.min(min_temp,axis = 1)) data = pd.concat([close,close_delay,max_temp1,min_temp1],axis = 1,join = 'inner') data.columns = ['close','close_delay','max','min'] data['max'][data['close'] > data['close_delay']] = 0 data['min'][data['close'] <= data['close_delay']] = 0 alpha = pd.DataFrame(data['max'] + data['min']) alpha.columns = ['alpha59'] return alpha @timer def alpha60(self): low = self.low high = self.high close = self.close volume = self.volume data = pd.concat([low,high,close,volume],axis = 1,join = 'inner') temp = pd.DataFrame((2 * data['Close'] - data['Low'] - data['High'])/(data['Low'] + \ data['High']) * data['Vol']) alpha = Sum(temp,20) alpha.columns = ['alpha60'] return alpha @timer def alpha61(self): low = self.low volume = self.volume vwap = self.vwap vwap_delta = Delta(vwap,1) vwap_delta_decay = DecayLinear(vwap_delta,12) r1 = Rank(vwap_delta_decay) volume_mean = Mean(volume,80) data = pd.concat([low,volume_mean],axis = 1,join = 'inner') corr = Corr(data,8) corr_decay = DecayLinear(corr,17) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) * -1) alpha.columns = ['alpha61'] return alpha @timer def alpha62(self): high = self.high volume = self.volume volume_r = Rank(volume) data = pd.concat([high,volume_r],axis = 1,join = 'inner') alpha = -1 * Corr(data,5) alpha.columns = ['alpha62'] return alpha @timer def alpha63(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),6,1) sma2 = SMA(pd.DataFrame(data['abs']),6,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha63'] return alpha @timer def alpha64(self): vwap = self.vwap volume = self.volume close = self.close vwap_r = Rank(vwap) volume_r = Rank(volume) data1 = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr1 = Corr(data1,4) corr1_decay = DecayLinear(corr1,4) r1 = Rank(corr1_decay) close_mean = Mean(close,60) close_r = Rank(close) close_mean_r = Rank(close_mean) data2 = pd.concat([close_r,close_mean_r],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_max = TsMax(corr2,13) corr2_max_decay = DecayLinear(corr2_max,14) r2 = Rank(corr2_max_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.max(r,axis = 1) *-1) alpha.columns = ['alpha64'] return alpha @timer def alpha65(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = pd.DataFrame(data['close_mean']/data['close']) alpha.columns = ['alpha65'] return alpha @timer def alpha66(self): close = self.close close_mean = Mean(close,6) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha66'] return alpha @timer def alpha67(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),24,1) sma2 = SMA(pd.DataFrame(data['abs']),24,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha67'] return alpha @timer def alpha68(self): high = self.high volume = self.volume low = self.low data = pd.concat([high,low,volume],axis = 1,join = 'inner') data['sum']= (data['High'] + data['Low'])/2 data['sum_delta'] = Delta(pd.DataFrame(data['sum']),1) temp = data['sum_delta'] * (data['High'] - data['Low'])/data['Vol'] alpha = SMA(pd.DataFrame(temp),15,2) alpha.columns = ['alpha68'] return alpha @timer def alpha69(self): high = self.high low = self.low Open = self.open dtm = DTM(Open,high) dbm = DBM(Open,low) dtm_sum = Sum(dtm,20) dbm_sum = Sum(dbm,20) data = pd.concat([dtm_sum,dbm_sum],axis = 1, join = 'inner') data.columns = ['dtm','dbm'] data['temp1'] = (data['dtm'] - data['dbm'])/data['dtm'] data['temp2'] = (data['dtm'] - data['dbm'])/data['dbm'] data['temp1'][data['dtm'] <= data['dbm']] = 0 data['temp2'][data['dtm'] >= data['dbm']] = 0 alpha = pd.DataFrame(data['temp1'] + data['temp2']) alpha.columns = ['alpha69'] return alpha @timer def alpha70(self): amount = self.amt alpha= STD(amount,6) alpha.columns = ['alpha70'] return alpha @timer def alpha71(self): close = self.close close_mean = Mean(close,24) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] alpha = (data['close'] - data['close_mean'])/data['close_mean'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha71'] return alpha @timer def alpha72(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),15,1) alpha.columns = ['alpha72'] return alpha @timer def alpha73(self): vwap = self.vwap volume = self.volume close = self.close data1 = pd.concat([close,volume],axis = 1,join = 'inner') corr1 = Corr(data1,10) corr1_decay = DecayLinear(DecayLinear(corr1,16),4) r1 = TsRank(corr1_decay,5) volume_mean = Mean(volume,30) data2 = pd.concat([vwap,volume_mean],axis = 1,join = 'inner') corr2 = Corr(data2,4) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1,join ='inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r2'] - r['r1']) alpha.columns= ['alpha73'] return alpha @timer def alpha74(self): vwap = self.vwap volume = self.volume low = self.low volume_mean = Mean(volume,40) volume_mean_sum = Sum(volume_mean,20) data1 = pd.concat([low,vwap],axis = 1,join = 'inner') data_sum = Sum(pd.DataFrame(data1['Low'] * 0.35 + data1['Vwap'] * 0.65),20) data = pd.concat([volume_mean_sum,data_sum],axis = 1,join = 'inner') corr = Corr(data,7) r1 = Rank(corr) vwap_r = Rank(vwap) volume_r = Rank(volume) data_temp = pd.concat([vwap_r,volume_r],axis = 1,join = 'inner') corr2 = Corr(data_temp,6) r2 = Rank(corr2) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] + r['r2']) alpha.columns = ['alpha74'] return alpha @timer def alpha75(self): close = self.close Open = self.open close_index = self.close_index open_index = self.open_index data1 = pd.concat([close,Open], axis = 1, join = 'inner') data1.columns = ['close','open'] data1['temp'] = 1 data1['temp'][data1['close'] <= data1['open']] = 0 data2 = pd.concat([close_index,open_index], axis = 1, join = 'inner') data2.columns = ['close','open'] data2['tep'] = 1 data2['tep'][data2['close'] > data2['open']] = 0 temp = data1['temp'].unstack() tep = data2['tep'].unstack() tep1 = repmat(tep,1,np.size(temp,1)) data3 = temp * tep1 temp_result = data3.rolling(50,min_periods = 50).sum() tep_result = tep.rolling(50,min_periods = 50).sum() tep2_result = np.matlib.repmat(tep_result,1,np.size(temp,1)) result = temp_result/tep2_result alpha = pd.DataFrame(result.stack()) alpha.columns = ['alpha75'] return alpha @timer def alpha76(self): volume = self.volume close = self.close close_delay = Delay(close,1) data = pd.concat([volume,close,close_delay],axis = 1,join = 'inner') data.columns = ['volume','close','close_delay'] temp = pd.DataFrame(np.abs((data['close']/data['close_delay'] -1 )/data['volume'])) temp_std = STD(temp,20) temp_mean = Mean(temp,20) data_temp = pd.concat([temp_std,temp_mean],axis = 1,join = 'inner') data_temp.columns = ['std','mean'] alpha = pd.DataFrame(data_temp['std']/data_temp['mean']) alpha.columns = ['alpha76'] return alpha @timer def alpha77(self): vwap = self.vwap volume = self.volume low = self.low high = self.high data = pd.concat([high,low,vwap],axis = 1,join = 'inner') temp = pd.DataFrame((data['High'] + data['Low'])/2 - data['Vwap']) temp_decay = DecayLinear(temp,20) r1 = Rank(temp_decay) temp1 = pd.DataFrame((data['High'] + data['Low'])/2) volume_mean = Mean(volume,40) data2 = pd.concat([temp1,volume_mean],axis = 1,join = 'inner') corr = Corr(data2,3) corr_decay = DecayLinear(corr,6) r2 = Rank(corr_decay) r = pd.concat([r1,r2],axis = 1,join = 'inner') alpha = pd.DataFrame(np.min(r,axis = 1)) alpha.columns = ['alpha77'] return alpha @timer def alpha78(self): low = self.low high = self.high close = self.close data = pd.concat([low,high,close],axis = 1,join = 'inner') temp = pd.DataFrame((data['Low'] + data['High'] + data['Close'])/3) temp.columns = ['temp'] temp_mean = Mean(temp,12) temp_mean.columns = ['temp_mean'] temp2 = pd.concat([temp,temp_mean],axis = 1,join = 'inner') tmp = pd.DataFrame(temp2['temp'] - temp2['temp_mean']) data1 = pd.concat([close,temp_mean],axis = 1,join = 'inner') temp_abs = pd.DataFrame(np.abs(data1['Close'] - data1['temp_mean'])) temp_abs_mean = Mean(temp_abs,12) df = pd.concat([tmp,temp_abs_mean],axis = 1,join = 'inner') df.columns = ['df1','df2'] alpha = pd.DataFrame(df['df1']/(df['df2'] * 0.015)) alpha.columns = ['alpha78'] return alpha @timer def alpha79(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delay'] data['max'] = data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) sma1 = SMA(pd.DataFrame(data['max']),12,1) sma2 = SMA(pd.DataFrame(data['abs']),12,1) sma = pd.concat([sma1,sma2],axis = 1,join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/sma['sma2'] * 100) alpha.columns = ['alpha79'] return alpha @timer def alpha80(self): volume = self.volume volume_delay = Delay(volume,5) volume_delay.columns = ['volume_delay'] data = pd.concat([volume,volume_delay],axis = 1,join = 'inner') alpha = (data['Vol'] - data['volume_delay'])/data['volume_delay'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha80'] return alpha @timer def alpha81(self): volume = self.volume alpha = SMA(volume,21,2) alpha.columns = ['alpha81'] return alpha @timer def alpha82(self): low = self.low high = self.high close = self.close low_min = TsMin(low,6) high_max = TsMax(high,6) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = (data['high_max'] - data['close'])/(data['high_max'] - data['low_min']) * 100 alpha = SMA(pd.DataFrame(temp),20,1) alpha.columns = ['alpha82'] return alpha @timer def alpha83(self): high = self.high volume = self.volume high_r = Rank(high) volume_r = Rank(volume) data = pd.concat([high_r,volume_r],axis = 1,join = 'inner') corr = Corr(data,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha83'] return alpha @timer def alpha84(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,20) alpha.columns = ['alpha84'] return alpha @timer def alpha85(self): close = self.close volume = self.volume volume_mean = Mean(volume,20) close_delta = Delta(close,7) data1 = pd.concat([volume,volume_mean],axis = 1,join = 'inner') data1.columns = ['volume','volume_mean'] temp1 = pd.DataFrame(data1['volume']/data1['volume_mean']) r1 = TsRank(temp1,20) r2 = TsRank(-1 * close_delta,8) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha85'] return alpha @timer def alpha86(self): close = self.close close_delay20 = Delay(close,20) close_delay10 = Delay(close,20) data = pd.concat([close,close_delay20,close_delay10],axis = 1,join = 'inner') data.columns = ['close','close_delay20','close_delay10'] temp = pd.DataFrame((data['close_delay20'] - data['close_delay10'])/10 - \ (data['close_delay10'] - data['close'])/10) close_delta = Delta(close,1) * -1 data_temp = pd.concat([close_delta,temp],axis = 1,join = 'inner') data_temp.columns = ['close_delta','temp'] data_temp['close_delta'][data_temp['temp'] > 0.25]= -1 data_temp['close_delta'][data_temp['temp'] < 0]= 1 alpha = pd.DataFrame(data_temp['close_delta']) alpha.columns = ['alpha86'] return alpha @timer def alpha87(self): vwap = self.vwap high = self.high low = self.low Open = self.open vwap_delta = Delta(vwap,4) vwap_delta_decay = DecayLinear(vwap_delta,7) r1 = Rank(vwap_delta_decay) data = pd.concat([low,high,vwap,Open], axis = 1, join = 'inner') temp = pd.DataFrame((data['Low'] * 0.1 + data['High'] * 0.9 - data['Vwap'])/\ (data['Open'] - 0.5 * (data['Low'] + data['High']))) temp_decay = DecayLinear(temp,11) r2 = TsRank(temp_decay,7) r = pd.concat([r1,r2], axis = 1,join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(-1 * (r['r1'] + r['r2'])) alpha.columns = ['alpha87'] return alpha @timer def alpha88(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1,join = 'inner') data.columns = ['close','close_delta'] alpha = (data['close'] - data['close_delta'])/data['close_delta'] * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha88'] return alpha @timer def alpha89(self): close = self.close sma1 = SMA(close,13,2) sma2 = SMA(close,27,2) sma = pd.concat([sma1,sma2],axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3],axis = 1, join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(2 *(data['temp'] - data['sma'])) alpha.columns = ['alpha89'] return alpha @timer def alpha90(self): volume = self.volume vwap = self.vwap r1 = Rank(volume) r2 = Rank(vwap) rank = pd.concat([r1,r2], axis = 1, join = 'inner') corr = Corr(rank,5) alpha = -1 * Rank(corr) alpha.columns = ['alpha90'] return alpha @timer def alpha91(self): close = self.close volume = self.volume low = self.low close_max = TsMax(close,5) data1 = pd.concat([close,close_max], axis = 1,join = 'inner') data1.columns = ['close','close_max'] r1 = Rank(pd.DataFrame(data1['close'] - data1['close_max'])) volume_mean = Mean(volume,40) data2 = pd.concat([volume_mean,low], axis = 1, join = 'inner') corr = Corr(data2,5) r2 = Rank(corr) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha91'] return alpha @timer def alpha92(self): volume = self.volume vwap = self.vwap close = self.close data = pd.concat([close,vwap],axis = 1, join = 'inner') data['price'] = data['Close'] * 0.35 + data['Vwap'] * 0.65 price_delta = Delta(pd.DataFrame(data['price']),2) price_delta_decay = DecayLinear(price_delta,3) r1 = Rank(price_delta_decay) volume_mean = Mean(volume,180) rank = pd.concat([volume_mean,close],axis = 1,join = 'inner') corr = Corr(rank,13) temp = pd.DataFrame(np.abs(corr)) temp_decay = DecayLinear(temp,5) r2 = TsRank(temp_decay,15) r = pd.concat([r1,r2],axis = 1, join = 'inner') alpha = pd.DataFrame(-1 * np.max(r, axis = 1)) alpha.columns = ['alpha92'] return alpha @timer def alpha93(self): low = self.low Open = self.open open_delay = Delay(Open,1) data = pd.concat([low,Open,open_delay],axis = 1,join = 'inner') data.columns = ['low','open','open_delay'] temp1 = pd.DataFrame(data['open'] - data['low']) temp2 = pd.DataFrame(data['open'] - data['open_delay']) data_temp = pd.concat([temp1,temp2],axis = 1 ,join = 'inner') temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) temp_max.columns = ['max'] data2 = pd.concat([data,temp_max],axis = 1,join = 'inner') data2['temp'] = data2['max'] data2['temp'][data2['open'] >= data2['open_delay']] = 0 alpha = Sum(pd.DataFrame(data2['temp']),20) alpha.columns = ['alpha93'] return alpha @timer def alpha94(self): close = self.close volume = self.volume close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([close,close_delay,volume],axis = 1,join = 'inner') data['sign'] = 1 data['sign'][data['Close'] < data['close_delay']] = -1 data['sign'][data['Close'] == data['close_delay']] = 0 temp = pd.DataFrame(data['Vol'] * data['sign']) alpha = Sum(temp,30) alpha.columns = ['alpha94'] return alpha @timer def alpha95(self): amt = self.amt alpha = STD(amt,20) alpha.columns = ['alpha95'] return alpha @timer def alpha96(self): low = self.low high = self.high close = self.close low_min = TsMin(low,9) high_max = TsMax(high,9) data = pd.concat([close,low_min,high_max],axis = 1,join = 'inner') data.columns = ['close','low_min','high_max'] temp = ( data['close'] - data['low_min'])/(data['high_max'] - data['low_min']) * 100 alpha_temp = SMA(pd.DataFrame(temp),3,1) alpha = SMA(alpha_temp,3,1) alpha.columns = ['alpha96'] return alpha @timer def alpha97(self): volume = self.volume alpha = STD(volume,10) alpha.columns = ['alpha97'] return alpha @timer def alpha98(self): close = self.close close_mean = Mean(close,100) close_mean_delta = Delta(close_mean,100) close_delay = Delay(close,100) data = pd.concat([close_mean_delta,close_delay],axis = 1,join = 'inner') data.columns = ['delta','delay'] temp = pd.DataFrame(data['delta']/ data['delay']) close_delta = Delta(close,3) close_min = TsMin(close,100) data_temp = pd.concat([close,close_delta,close_min,temp],axis = 1,join = 'inner') data_temp.columns = ['close','close_delta','close_min','temp'] data_temp['diff'] = (data_temp['close'] - data_temp['close_min']) * -1 data_temp['diff'][data_temp['temp'] < 0.05] = 0 data_temp['close_delta'] = data_temp['close_delta'] * -1 data_temp['close_delta'][data_temp['temp'] >= 0.05]= 0 alpha = pd.DataFrame(data_temp['close_delta'] + data_temp['diff']) alpha.columns = ['alpha98'] return alpha @timer def alpha99(self): close = self.close volume = self.volume r1 = Rank(close) r2 = Rank(volume) r = pd.concat([r1,r2],axis = 1,join = 'inner') cov = Cov(r,5) alpha = -1 * Rank(cov) alpha.columns = ['alpha99'] return alpha @timer def alpha100(self): volume = self.volume alpha = STD(volume,20) alpha.columns = ['alpha100'] return alpha @timer def alpha101(self): close = self.close volume = self.volume high = self.high vwap = self.vwap volume_mean = Mean(volume,30) volume_mean_sum = Sum(volume_mean,37) data1 = pd.concat([close,volume_mean_sum], axis = 1, join = 'inner') corr1 = Corr(data1,15) r1 = Rank(corr1) data2 = pd.concat([high,vwap],axis = 1, join = 'inner') temp = pd.DataFrame(data2['High'] * 0.1 + data2['Vwap'] * 0.9) temp_r = Rank(temp) volume_r = Rank(volume) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,11) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = 0 r['alpha'][r['r1'] < r['r2']] = -1 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha101'] return alpha @timer def alpha102(self): volume = self.volume temp = Delta(volume,1) temp.columns = ['temp'] temp['max'] = temp['temp'] temp['max'][temp['temp'] < 0 ] = 0 temp['abs'] = np.abs(temp['temp']) sma1 = SMA(pd.DataFrame(temp['max']),6,1) sma2 = SMA(pd.DataFrame(temp['abs']),6,1) sma = pd.concat([sma1,sma2], axis = 1 ,join ='inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1']/ sma['sma2'] * 100) alpha.columns = ['alpha102'] return alpha @timer def alpha103(self): low = self.low lowday = Lowday(low,20) alpha = (20 - lowday)/20.0 * 100 alpha.columns = ['alpha103'] return alpha @timer def alpha104(self): close = self.close volume = self.volume high = self.high data = pd.concat([high,volume], axis = 1, join = 'inner') corr = Corr(data,5) corr_delta = Delta(corr,5) close_std = STD(close,20) r1 = Rank(close_std) temp = pd.concat([corr_delta,r1], axis = 1, join = 'inner') temp.columns = ['delta','r'] alpha = pd.DataFrame(-1 * temp['delta'] * temp['r']) alpha.columns = ['alpha104'] return alpha @timer def alpha105(self): volume = self.volume Open = self.open volume_r = Rank(volume) open_r = Rank(Open) rank = pd.concat([volume_r,open_r],axis = 1, join = 'inner') alpha = -1 * Corr(rank,10) alpha.columns = ['alpha105'] return alpha @timer def alpha106(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] alpha = pd.DataFrame(data['close'] - data['close_delay']) alpha.columns = ['alpha106'] return alpha @timer def alpha107(self): Open = self.open high = self.high close = self.close low = self.low high_delay = Delay(high,1) close_delay = Delay(close,1) low_delay = Delay(low,1) data = pd.concat([high_delay,close_delay,low_delay,Open], axis = 1, join = 'inner') data.columns = ['high_delay','close_delay','low_delay','open'] r1 = Rank(pd.DataFrame(data['open'] - data['high_delay'])) r2 = Rank(pd.DataFrame(data['open'] - data['close_delay'])) r3 = Rank(pd.DataFrame(data['open'] - data['low_delay'])) alpha = -1 * r1 * r2 * r3 alpha.columns = ['alpha107'] return alpha @timer def alpha108(self): high = self.high volume = self.volume vwap = self.vwap high_min = TsMin(high,2) data1 = pd.concat([high,high_min], axis = 1, join = 'inner') data1.columns = ['high','high_min'] r1 = Rank(pd.DataFrame(data1['high'] - data1['high_min'])) volume_mean = Mean(volume,120) rank = pd.concat([vwap,volume_mean],axis = 1, join = 'inner') corr = Corr(rank,6) r2 = Rank(corr) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = r['r1'] * r['r2'] * -1 alpha.columns = ['alpha108'] return alpha @timer def alpha109(self): high = self.high low = self.low data = pd.concat([high,low],axis = 1, join = 'inner') temp = SMA(pd.DataFrame(data['High'] - data['Low']),10,2) sma = SMA(temp,10,2) sma_temp = pd.concat([temp,sma],axis = 1, join = 'inner') sma_temp.columns = ['temp','sma'] alpha = pd.DataFrame(sma_temp['temp']/sma_temp['sma']) alpha.columns = ['alpha109'] return alpha @timer def alpha110(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data = pd.concat([high,low,close_delay], axis = 1, join = 'inner') data['max1'] = data['High'] - data['close_delay'] data['max2'] = data['close_delay'] - data['Low'] data['max1'][data['max1'] < 0] = 0 data['max2'][data['max2'] < 0] = 0 s1 = Sum(pd.DataFrame(data['max1']),20) s2 = Sum(pd.DataFrame(data['max2']),20) s = pd.concat([s1,s2], axis = 1 , join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2']) alpha.columns = ['alpha110'] return alpha @timer def alpha111(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') temp = pd.DataFrame(data['Vol'] * (2 * data['Close'] - data['Low'] - data['High'])\ /(data['High'] - data['Low'])) sma1 = SMA(temp,11,2) sma2 = SMA(temp,4,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] alpha = pd.DataFrame(sma['sma1'] - sma['sma2']) alpha.columns = ['alpha111'] return alpha @timer def alpha112(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close, close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = 1 data['temp'][data['close'] > data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha112'] return alpha @timer def alpha113(self): close = self.close volume = self.volume close_delay = Delay(close,5) close_delay_mean = Mean(close_delay,20) data1 = pd.concat([close,volume],axis = 1, join = 'inner') corr = Corr(data1,2) r1 = Rank(close_delay_mean) data2 = pd.concat([r1,corr], axis = 1, join = 'inner') data2.columns = ['r1','corr'] r1 = pd.DataFrame(data2['r1'] * data2['corr']) close_sum5 = Sum(close,5) close_sum20 = Sum(close,20) data3 = pd.concat([close_sum5,close_sum20],axis = 1, join = 'inner') corr2 = Corr(data3,2) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2'] * -1) alpha.columns = ['alpha113'] return alpha @timer def alpha114(self): close = self.close high = self.high low = self.low volume = self.volume vwap = self.vwap close_mean = Mean(close,5) data = pd.concat([high,low,close_mean], axis = 1, join = 'inner') data.columns = ['high','low','close_mean'] temp = pd.DataFrame(data['high'] - data['low'] / data['close_mean']) temp_delay = Delay(temp,2) r1 = TsRank(temp_delay,5) temp1 = pd.concat([temp,vwap,close], axis = 1, join = 'inner') temp1.columns = ['temp','vwap','close'] tep = pd.DataFrame(temp1['temp']/(temp1['vwap'] - temp1['close'])) r2 = TsRank(volume,5) data2 = pd.concat([r2,tep], axis = 1, join = 'inner') data2.columns = ['r2','tep'] tep1 = pd.DataFrame(data2['r2']/data2['tep']) r3 = TsRank(tep1,5) r = pd.concat([r1,r3],axis = 1, join = 'inner') r.columns = ['r1','r3'] alpha = pd.DataFrame(r['r1'] + r['r3']) alpha.columns = ['alpha114'] return alpha @timer def alpha115(self): high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,30) price = pd.concat([high,low], axis = 1, join = 'inner') price.columns = ['high','low'] price_temp = price['high'] * 0.9 + price['low'] * 0.1 data = pd.concat([price_temp,volume_mean],axis = 1, join = 'inner') corr = Corr(data,10) r1 = Rank(corr) data2 = pd.concat([high,low], axis = 1, join = 'inner') temp = pd.DataFrame((data2['High'] + data2['Low'])/2) temp_r = TsRank(temp,4) volume_r = TsRank(volume,10) data3 = pd.concat([temp_r,volume_r], axis = 1, join = 'inner') corr2 = Corr(data3,7) r2 = Rank(corr2) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] * r['r2']) alpha.columns = ['alpha115'] return alpha @timer def alpha116(self): close = self.close alpha = RegResi(0,close,None,20) alpha.columns = ['alpha116'] return alpha @timer def alpha117(self): high = self.high low = self.low close = self.close volume = self.volume ret = self.ret r1 = TsRank(volume,32) data1 = pd.concat([close,high,low],axis = 1, join = 'inner') r2 = TsRank(pd.DataFrame(data1['Close'] + data1['High'] - data1['Low']),16) r3 = TsRank(ret,32) r = pd.concat([r1,r2,r3], axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(r['r1'] * (1 - r['r2']) * (1 - r['r3'])) alpha.columns = ['alpha117'] return alpha @timer def alpha118(self): high = self.high low = self.low Open = self.open data = pd.concat([high,low,Open], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame(data['High'] - data['Open']),20) s2 = Sum(pd.DataFrame(data['Open'] - data['Low']),20) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(s['s1']/s['s2'] * 100) alpha.columns = ['alpha118'] return alpha @timer def alpha119(self): Open = self.open volume = self.volume vwap = self.vwap volume_mean = Mean(volume,5) volume_mean_sum = Sum(volume_mean,26) data1 = pd.concat([vwap,volume_mean_sum],axis = 1, join = 'inner') corr1 = Corr(data1,5) corr1_decay = DecayLinear(corr1,7) r1 = Rank(corr1_decay) open_r = Rank(Open) volume_mean2 = Mean(volume,15) volume_mean2_r = Rank(volume_mean2) data2 = pd.concat([open_r, volume_mean2_r], axis = 1, join = 'inner') corr2 = Corr(data2,21) corr2_min = TsMin(corr2,9) corr2_min_r = TsRank(corr2_min,7) corr_min_r_decay = DecayLinear(corr2_min_r,8) r2 = Rank(corr_min_r_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha119'] return alpha @timer def alpha120(self): vwap = self.vwap close = self.close data = pd.concat([vwap,close], axis = 1, join = 'inner') r1 = Rank(pd.DataFrame(data['Vwap'] - data['Close'])) r2 = Rank(pd.DataFrame(data['Vwap'] + data['Close'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha120'] return alpha @timer def alpha121(self): vwap = self.vwap volume = self.volume vwap_r = TsRank(vwap,20) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,2) data = pd.concat([vwap_r,volume_mean_r], axis = 1, join = 'inner') corr= Corr(data,18) temp = TsRank(corr,3) vwap_min = TsMin(vwap,12) data2 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data2.columns = ['vwap','vwap_min'] rank = Rank(pd.DataFrame(data2['vwap'] - data2['vwap_min'])) data3 = pd.concat([rank,temp],axis = 1, join = 'inner') data3.columns = ['rank','temp'] alpha = pd.DataFrame(np.power(data3['rank'],data3['temp']) * -1) alpha.columns = ['alpha121'] return alpha @timer def alpha122(self): close = self.close close_ln = pd.DataFrame(np.log(close)) temp1 = SMA(close_ln,13,2) sma1 = SMA(temp1,13,2) sma2 = SMA(sma1,13,2) sma3 = SMA(sma2,13,2) sma3_delay = Delay(sma3,1) data = pd.concat([sma3,sma3_delay],axis = 1, join = 'inner') data.columns = ['sma','sma_delay'] alpha = pd.DataFrame(data['sma']/data['sma_delay']) alpha.columns = ['alpha122'] return alpha @timer def alpha123(self): volume = self.volume high = self.high low = self.low data1 = pd.concat([high,low], axis = 1, join = 'inner') s1 = Sum(pd.DataFrame((data1['High'] + data1['Low'])/2),20) volume_mean = Mean(volume,60) s2 = Sum(volume_mean,20) data2 = pd.concat([s1,s2], axis = 1, join = 'inner') corr1 = Corr(data2,9) data3 = pd.concat([low,volume], axis = 1, join = 'inner') corr2 = Corr(data3,6) corr1_r = Rank(corr1) corr2_r = Rank(corr2) data = pd.concat([corr1_r,corr2_r], axis = 1, join = 'inner') data.columns = ['r1','r2'] data['alpha'] = -1 data['alpha'][data['r1'] >= data['r2']] = 0 alpha = pd.DataFrame(data['alpha']) alpha.columns = ['alpha123'] return alpha @timer def alpha124(self): close = self.close vwap = self.vwap close_max = TsMax(close,30) close_max_r = Rank(close_max) close_max_r_decay = DecayLinear(close_max_r,2) close_max_r_decay.columns = ['decay'] data = pd.concat([close,vwap,close_max_r_decay], axis = 1, join ='inner') alpha = pd.DataFrame((data['Close'] - data['Vwap'])/data['decay']) alpha.columns = ['alpha124'] return alpha @timer def alpha125(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,80) data1 = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr1 = Corr(data1,17) data2 = pd.concat([close,vwap], axis = 1, join = 'inner') temp2 = pd.DataFrame(0.5*(data2['Close'] + data2['Vwap'])) temp2_delta = Delta(temp2,3) corr1_decay = DecayLinear(corr1,20) r1 = Rank(corr1_decay) temp2_delta_decay = DecayLinear(temp2_delta,16) r2 = Rank(temp2_delta_decay) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha125'] return alpha @timer def alpha126(self): close = self.close high = self.high low = self.low data = pd.concat([close,high,low], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] + data['High'] + data['Low'])/3) alpha.columns = ['alpha126'] return alpha @timer def alpha127(self): close = self.close close_max = TsMax(close,12) data = pd.concat([close,close_max], axis = 1, join = 'inner') data.columns = ['close','close_max'] alpha = pd.DataFrame((data['close'] - data['close_max'])/data['close_max']) alpha.columns = ['alpha127'] return alpha @timer def alpha128(self): close = self.close high = self.high low = self.low volume = self.volume data = pd.concat([close,high,low,volume], axis = 1, join = 'inner') data['temp1'] = (data['Close'] + data['Low'] + data['High'])/3 data['temp2'] = data['temp1'] * data['Vol'] data['temp3'] = data['temp1'] * data['Vol'] temp_delay = Delay(pd.DataFrame(data['temp1']),1) temp_delay.columns = ['temp_decay'] data = pd.concat([data,temp_delay], axis = 1, join = 'inner') data['temp2'][data['temp1'] < data['temp_decay']] = 0 data['temp3'][data['temp1'] > data['temp_decay']] = 0 s1 = Sum(pd.DataFrame(data['temp2']),14) s2 = Sum(pd.DataFrame(data['temp3']),14) s = pd.concat([s1,s2], axis = 1, join = 'inner') s.columns = ['s1','s2'] alpha = pd.DataFrame(100 - 100/(1+ s['s1']/s['s2'])) alpha.columns = ['alpha128'] return alpha @timer def alpha129(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['abs'] = np.abs(data['close'] - data['close_delay']) data['temp'] = data['abs'] data['temp'][data['close'] < data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha129'] return alpha @timer def alpha130(self): close = self.close high = self.high low = self.low volume = self.volume volume_mean = Mean(volume,40) data1 = pd.concat([high,low],axis = 1, join = 'inner') temp1 = pd.DataFrame((data1['High'] + data1['Low'])/2) rank1 = pd.concat([temp1,volume_mean], axis = 1, join = 'inner') corr = Corr(rank1,9) close_r = Rank(close) volume_r = Rank(volume) data2 = pd.concat([close_r,volume_r],axis = 1, join = 'inner') corr2 = Corr(data2,7) corr_decay = DecayLinear(corr,10) r1 = Rank(corr_decay) corr2_decay = DecayLinear(corr2,3) r2 = Rank(corr2_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1']/r['r2']) alpha.columns = ['alpha130'] return alpha @timer def alpha131(self): close = self.close vwap = self.vwap volume = self.volume volume_mean = Mean(volume,50) data1 = pd.concat([close,volume_mean], axis = 1, join = 'inner') corr = Corr(data1,18) vwap_delta = Delta(vwap,1) temp2 = TsRank(corr,18) data2 = pd.concat([vwap_delta,temp2],axis = 1, join = 'inner') data2.columns = ['vwap_delta','temp2'] temp3 = np.power(data2['vwap_delta'],data2['temp2']) alpha = Rank(pd.DataFrame(temp3)) alpha.columns = ['alpha131'] return alpha @timer def alpha132(self): amt = self.amt alpha = Mean(amt,20) alpha.columns = ['alpha132'] return alpha @timer def alpha133(self): low = self.low high = self.high highday = Highday(high,20) lowday = Lowday(low,20) data = pd.concat([highday,lowday],axis = 1, join = 'inner') data.columns = ['highday','lowday'] alpha = (20 - data['highday']/20.0) * 100 - (20 - data['lowday']/20.0) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha133'] return alpha @timer def alpha134(self): close = self.close volume = self.volume close_delay = Delay(close,12) close_delay.columns = ['close_delay'] data = pd.concat([close,volume,close_delay], axis = 1, join = 'inner') alpha = pd.DataFrame((data['Close'] - data['close_delay'])/data['close_delay']) alpha.columns = ['alpha134'] return alpha @timer def alpha135(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay],axis = 1 , join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) alpha = SMA(temp_delay,20,1) alpha.columns = ['alpha135'] return alpha @timer def alpha136(self): volume = self.volume Open = self.open ret = self.ret ret_delta = Delta(ret,3) ret_delta_r = Rank(ret_delta) data = pd.concat([Open,volume],axis = 1, join = 'inner') corr = Corr(data,10) data_temp = pd.concat([ret_delta_r,corr],axis = 1, join = 'inner') data_temp.columns = ['ret_delta','corr'] alpha = pd.DataFrame(-1 * data_temp['ret_delta'] * data_temp['corr']) alpha.columns = ['alpha136'] return alpha @timer def alpha137(self): Open = self.open close = self.close low = self.low high = self.high close_delay = Delay(close,1) open_delay = Delay(Open,1) low_delay = Delay(low,1) data = pd.concat([Open,close,low,high,close_delay,open_delay,low_delay], axis =1 ,join = 'inner') data.columns= ['open','close','low','high','close_delay','open_delay','low_delay'] temp1 = pd.DataFrame((data['close'] - data['close_delay'] + (data['close'] - data['open'])/2\ + data['close_delay'] - data['open_delay'])/ np.abs(data['high'] - data['close_delay'])) temp2 = pd.DataFrame(np.abs(data['high'] - data['close_delay']) + np.abs(data['low'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) temp3 = pd.DataFrame(np.abs(data['low'] - data['close_delay']) + np.abs(data['high'] - data['close_delay'])/2 \ + np.abs(data['close_delay'] - data['open_delay'])/4) abs1 = pd.DataFrame(np.abs(data['high'] - data['close_delay'])) abs2 = pd.DataFrame(np.abs(data['low'] - data['close_delay'])) abs3 = pd.DataFrame(np.abs(data['high'] - data['low_delay'])) data1 = pd.concat([abs1,abs2,abs3], axis = 1, join = 'inner') data1.columns = ['abs1','abs2','abs3'] data_temp = pd.concat([abs1,abs2],axis = 1, join = 'inner') data_temp_max = pd.DataFrame(np.max(data_temp,axis = 1)) data_temp_max.columns = ['max'] data_temp1 = pd.concat([data,data_temp_max], axis = 1, join = 'inner') temp4 = pd.DataFrame((np.abs(data_temp1['high'] - data_temp1['low_delay']) + \ np.abs(data_temp1['close_delay'] - data_temp1['open_delay'])) *\ data_temp1['max']) data1['judge1'] = 0 data1['judge2'] = 0 data1['judge3'] = 0 data1['judge4'] = 0 data1['judge1'][data1['abs1'] > data1['abs2']] = 1 data1['judge2'][data1['abs1'] > data1['abs3']] = 1 data1['judge3'][data1['abs2'] > data1['abs3']] = 1 data1['judge3'][data1['abs3'] > data1['abs1']] = 1 judge_1 = pd.DataFrame(data1['judge1'] * data1['judge2']) judge_2 = pd.DataFrame(data1['judge3'] * data1['judge4']) data2 = pd.concat([temp1,temp2,temp3,temp4,judge_1,judge_2], axis = 1, join = 'inner') data2.columns = ['t1','t2','t3','t4','j1','j2'] data2['j3'] = 1 data2['j4'] = data2['j3'] - data2['j1'] - data2['j2'] data2['t5'] = data2['t2'] * data2['j1'] + data2['t3'] * data2['j2'] + \ data2['t4'] * data2['j4'] alpha = pd.DataFrame(16 * data2['t5']/data2['t1']) alpha.columns = ['alpha137'] return alpha @timer def alpha138(self): vwap = self.vwap volume = self.volume low = self.low data1 = pd.concat([low,vwap], axis = 1, join = 'inner') temp1 = pd.DataFrame(data1['Low'] * 0.7 + data1['Vwap'] * 0.3) temp1_delta = Delta(temp1,3) temp1_delta_decay = DecayLinear(temp1_delta,20) r1 = Rank(temp1_delta_decay) low_r = TsRank(low,8) volume_mean = Mean(volume,60) volume_mean_r = TsRank(volume_mean,17) data2 = pd.concat([low_r,volume_mean_r],axis = 1, join = 'inner') corr = Corr(data2,5) corr_r = TsRank(corr,19) corr_r_decay = DecayLinear(corr_r,16) r2 = TsRank(corr_r_decay,7) r = pd.concat([r1,r2], axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(r['r1'] - r['r2']) alpha.columns = ['alpha138'] return alpha @timer def alpha139(self): Open = self.open volume = self.volume data = pd.concat([Open,volume], axis = 1, join = 'inner') alpha = -1 * Corr(data,10) alpha.columns = ['alpha139'] return alpha @timer def alpha140(self): Open = self.open volume = self.volume high = self.high low = self.low close = self.close open_r = Rank(Open) low_r = Rank(low) high_r = Rank(high) close_r = Rank(close) data1 = pd.concat([open_r,low_r,high_r,close_r],axis = 1, join = 'inner') data1.columns = ['open_r','low_r','high_r','close_r'] temp = pd.DataFrame(data1['open_r'] + data1['low_r'] - \ (data1['high_r'] + data1['close_r'])) close_r_temp = TsRank(close,8) volume_mean = Mean(volume,70) volume_mean_r = TsRank(volume_mean,20) data2 = pd.concat([close_r_temp,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data2,8) temp_decay = DecayLinear(temp,8) r1 = Rank(temp_decay) corr_decay = DecayLinear(corr,7) r2 = TsRank(corr_decay,3) r = pd.concat([r1,r2], axis = 1, join = 'inner') alpha = pd.DataFrame(np.min(r)) alpha.columns = ['alpha140'] return alpha @timer def alpha141(self): volume = self.volume high = self.high volume_mean = Mean(volume,15) high_r = Rank(high) volume_mean_r = Rank(volume_mean) data = pd.concat([high_r,volume_mean_r], axis = 1, join = 'inner') corr = Corr(data,9) alpha = -1 * Rank(corr) alpha.columns = ['alpha141'] return alpha @timer def alpha142(self): close = self.close volume = self.volume close_r = TsRank(close,10) r1 = Rank(close_r) close_delta = Delta(close,1) close_delta_delta = Delta(close_delta,1) r2 = Rank(close_delta_delta) volume_mean = Mean(volume,20) data = pd.concat([volume,volume_mean], axis = 1, join = 'inner') data.columns = ['v','v_m'] temp = pd.DataFrame(data['v']/data['v_m']) temp_r = TsRank(temp,5) r3 = Rank(temp_r) r = pd.concat([r1,r2,r3],axis = 1, join = 'inner') r.columns = ['r1','r2','r3'] alpha = pd.DataFrame(- 1* r['r1'] * r['r2'] * r['r3']) alpha.columns= ['alpha142'] return alpha @timer def alpha143(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] - data['close_delay'])/data['close_delay']) temp.columns= ['temp'] data_temp = pd.concat([data,temp],axis = 1, join = 'inner') data_temp['temp'][data_temp['close'] <= data_temp['close_delay']] = 1 temp_unstack = data_temp['temp'].unstack() temp_unstack.iloc[0,:] = 1 df = np.cumprod(temp_unstack,axis = 0) alpha = df.stack() alpha.columns = ['alpha143'] return alpha @timer def alpha144(self): close = self.close amt = self.amt close_delay = Delay(close,1) data = pd.concat([close,close_delay,amt], axis = 1, join = 'inner') data.columns = ['close','close_delay','amt'] data['temp'] = np.abs(data['close']/data['close_delay'] - 1)/data['amt'] data['sign'] = 1 data['sign'][data['close'] >= data['close_delay']] = 0 tep1 = Sum(pd.DataFrame(data['sign'] * data['temp']),20) tep2 = Count(0,pd.DataFrame(data['close_delay']),pd.DataFrame(data['close']),20) data2 = pd.concat([tep1,tep2], axis = 1, join = 'inner') data2.columns = ['tep1','tep2'] alpha = pd.DataFrame(data2['tep1']/data2['tep2']) alpha.columns = ['alpha144'] return alpha @timer def alpha145(self): volume = self.volume volume_mean9 = Mean(volume,9) volume_mean26 = Mean(volume,26) volume_mean12 = Mean(volume,12) data = pd.concat([volume_mean9,volume_mean26,volume_mean12], axis = 1, join = 'inner') data.columns = ['m9','m26','m12'] alpha = pd.DataFrame((data['m9'] - data['m26'])/data['m12'] * 100) alpha.columns = ['alpha145'] return alpha @timer def alpha146(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame((data['close'] -data['close_delay'])/data['close_delay']) sma1 = SMA(temp,61,2) data2 = pd.concat([temp,sma1], axis = 1, join = 'inner') data2.columns = ['temp1','sma1'] data2['temp2'] = data2['temp1'] - data2['sma1'] temp2_mean = Mean(pd.DataFrame(data2['temp2']),20) sma2 = SMA(pd.DataFrame(data2['temp1'] - data2['temp2']),61,2) data_temp = pd.concat([temp2_mean,pd.DataFrame(data2['temp2']),sma2], axis = 1 , join = 'inner') data_temp.columns = ['temp2_mean','temp2','sma2'] alpha = data_temp['temp2_mean'] * data_temp['temp2'] / data_temp['sma2'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha146'] return alpha @timer def alpha147(self): close = self.close close_mean = Mean(close,12) alpha = RegBeta(0,close_mean,None,12) alpha.columns = ['alpha147'] return alpha @timer def alpha148(self): Open = self.open volume = self.volume volume_mean = Mean(volume,60) volume_mean_s = Sum(volume_mean,9) data = pd.concat([Open,volume_mean_s],axis = 1, join = 'inner') corr = Corr(data,6) r1 = Rank(corr) open_min = TsMin(Open,14) data2 = pd.concat([Open,open_min], axis = 1, join = 'inner') data2.columns = ['open','open_min'] r2 = Rank(pd.DataFrame(data2['open'] - data2['open_min'])) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] r['alpha'] = -1 r['alpha'][r['r1'] > r['r2']] = 0 alpha = pd.DataFrame(r['alpha']) alpha.columns = ['alpha148'] return alpha @timer def alpha149(self): close = self.close close_index = self.close_index close_delay = Delay(close,1) close_index_delay = Delay(close_index,1) data_index = pd.concat([close_index,close_index_delay], axis = 1, join = 'inner') data_index.columns = ['close','close_delay'] data_index['delta'] = data_index['close']/data_index['close_delay'] - 1 data_index['judge'] = 1 data_index['judge'][data_index['close'] >= data_index['close_delay']] = 0 data_index['delta'][data_index['judge'] == 0] = np.nan # index_delta_unstack = index_delta_unstack.dropna() data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['delta'] = data['close'] / data['close_delay'] - 1 df1 = pd.DataFrame(data['delta']) df2 = pd.DataFrame(data_index['delta']) alpha = RegBeta(1,df1,df2,252) alpha.columns = ['alpha149'] return alpha @timer def alpha150(self): high = self.high low = self.low close = self.close volume = self.volume data = pd.concat([high,low,close,volume], axis = 1, join = 'inner') alpha = (data['Close'] + data['High'] + data['Low'])/3 * data['Vol'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha150'] return alpha @timer def alpha151(self): close = self.close close_delay = Delay(close,20) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close'] - data['close_delay']) alpha = SMA(temp,20,1) alpha.columns = ['alpha151'] return alpha @timer def alpha152(self): close = self.close close_delay = Delay(close,9) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_delay = Delay(temp,1) sma1 = SMA(temp_delay,9,1) sma1_delay = Delay(sma1,1) sma1_delay_mean1 = Mean(sma1_delay,12) sma1_delay_mean2 = Mean(sma1_delay,26) data_temp = pd.concat([sma1_delay_mean1,sma1_delay_mean2],axis = 1, join = 'inner') data_temp.columns = ['m1','m2'] alpha = SMA(pd.DataFrame(data_temp['m1'] - data_temp['m2']),9,1) alpha.columns = ['alpha152'] return alpha @timer def alpha153(self): close = self.close close_mean3 = Mean(close,3) close_mean6 = Mean(close,6) close_mean12 = Mean(close,12) close_mean24 = Mean(close,24) data = pd.concat([close_mean3, close_mean6, close_mean12, close_mean24], axis = 1 ,join ='inner') alpha = pd.DataFrame(np.mean(data, axis = 1)) alpha.columns = ['alpha153'] return alpha @timer def alpha154(self): volume = self.volume vwap = self.vwap volume_mean = Mean(volume,180) data = pd.concat([vwap,volume_mean], axis = 1, join = 'inner') corr = Corr(data,18) vwap_min = TsMin(vwap,16) data1 = pd.concat([vwap,vwap_min],axis = 1, join = 'inner') data1.columns = ['vwap','vwap_min'] temp = pd.DataFrame(data1['vwap'] - data1['vwap_min']) data_temp = pd.concat([corr,temp], axis = 1, join = 'inner') data_temp.columns = ['corr','temp'] data_temp['alpha'] = 1 data_temp['alpha'][data_temp['corr'] >= data_temp['temp']] = 0 alpha = pd.DataFrame(data_temp['alpha']) alpha.columns = ['alpha154'] return alpha @timer def alpha155(self): volume = self.volume sma1 = SMA(volume,13,2) sma2 = SMA(volume,26,2) sma = pd.concat([sma1, sma2], axis = 1, join = 'inner') sma.columns = ['sma1','sma2'] temp = pd.DataFrame(sma['sma1'] - sma['sma2']) sma3 = SMA(temp,10,2) data = pd.concat([temp,sma3], axis = 1 ,join = 'inner') data.columns = ['temp','sma'] alpha = pd.DataFrame(data['temp'] - data['sma']) alpha.columns = ['alpha155'] return alpha @timer def alpha156(self): vwap = self.vwap Open = self.open low = self.low vwap_delta = Delta(vwap,5) vwap_delta_decay = DecayLinear(vwap_delta,3) r1 = Rank(vwap_delta_decay) data1 = pd.concat([Open,low],axis = 1, join = 'inner') temp = -1 * Delta(pd.DataFrame(data1['Open'] * 0.15 + data1['Low'] * 0.85),2) temp_decay = DecayLinear(temp,3) r2 = Rank(temp_decay) r = pd.concat([r1,r2],axis = 1, join = 'inner') r.columns = ['r1','r2'] alpha = pd.DataFrame(- 1 *np.max(r, axis = 1)) alpha.columns = ['alpha156'] return alpha @timer def alpha157(self): close = self.close ret = self.ret close_delta = Delta(close,5) close_delta_r = Rank(Rank(close_delta) * -1) r1 = TsMin(close_delta_r,2) ret_delay = Delay(-1 * ret,6) r2 = TsRank(ret_delay,5) r = pd.concat([r1,r2],axis = 1,join = 'inner') r.columns = ['r1','r2'] temp = pd.DataFrame(r['r1'] + r['r2']) alpha = TsMin(temp,5) alpha.columns = ['alpha157'] return alpha @timer def alpha158(self): high = self.high low = self.low close = self.close temp = SMA(close,15,2) temp.columns = ['temp'] data = pd.concat([high,low,close,temp],axis = 1 , join = 'inner') alpha =(data['High'] + data['Low'] - 2 * data['temp'] )/data['Close'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha158'] return alpha @timer def alpha159(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) data1 = pd.concat([low,close_delay],axis = 1, join = 'inner') data2 = pd.concat([high, close_delay], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.min(data1,axis = 1)) temp2= pd.DataFrame(np.max(data2,axis = 1)) temp = pd.concat([temp1,temp2], axis = 1 ,join = 'inner') temp.columns = ['temp1','temp2'] temp1_sum6 = Sum(temp1,6) temp1_sum12 = Sum(temp1,12) temp1_sum24 = Sum(temp1,24) tep = pd.DataFrame(temp['temp2'] - temp['temp1']) s6 = Sum(tep,6) s12 = Sum(tep,12) s24 = Sum(tep,24) data3 = pd.concat([temp1_sum6,temp1_sum12,temp1_sum24,s6,s12,s24], axis = 1 ,join = 'inner') data3.columns = ['ts6','ts12','ts24','s6','s12','s24'] temp3 = pd.DataFrame(data3['ts6']/data3['s6'] * 12 * 24 + data3['ts12']/data3['s12'] * 6 * 24 \ + data3['ts24']/data3['s24'] * 6 * 24) alpha = temp3 / (6*12 + 6*24 + 12*24) * 100 alpha.columns = ['alpha159'] return alpha @timer def alpha160(self): close = self.close close_std = STD(close,20) close_delay = Delay(close,1) data = pd.concat([close,close_std,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_std','close_delay'] data['close_std'][data['close'] >= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data['close_std']),20,1) alpha.columns = ['alpha160'] return alpha @timer def alpha161(self): high = self.high low = self.low close = self.close close_delay = Delay(close,1) close_delay.columns = ['close_delay'] data1 = pd.concat([high,low],axis = 1 , join = 'inner') diff = pd.DataFrame(data1['High'] - data1['Low']) data2 = pd.concat([close_delay,high], axis = 1, join ='inner') abs1 = pd.DataFrame(np.abs(data2['close_delay'] - data2['High'])) data3 = pd.concat([diff,abs1], axis = 1, join = 'inner') temp1 = pd.DataFrame(np.max(data3,axis = 1)) data4 = pd.concat([close_delay,low],axis = 1, join = 'inner') temp2 = pd.DataFrame(np.abs(data4['close_delay'] -data4['Low'])) data = pd.concat([temp1,temp2],axis =1 , join = 'inner') data.columns = ['temp1','temp2'] temp = pd.DataFrame(np.max(data, axis = 1)) alpha = Mean(temp,12) alpha.columns = ['alpha161'] return alpha @timer def alpha162(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay],axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['max']= data['close'] - data['close_delay'] data['max'][data['max'] < 0] = 0 data['abs'] = np.abs(data['close'] - data['close_delay']) temp1 = SMA(pd.DataFrame(data['max']),12,1) temp2 = SMA(pd.DataFrame(data['abs']),12,1) data1 = pd.concat([temp1,temp2], axis = 1, join = 'inner') data1.columns = ['temp1','temp2'] tep = pd.DataFrame(data1['temp1']/data1['temp2']) temp3 = TsMin(tep,12) temp4 = TsMax(tep,12) data_temp = pd.concat([tep,temp3,temp4], axis = 1, join = 'inner') data_temp.columns = ['tep','temp3','temp4'] alpha = (data_temp['tep'] - data_temp['temp3']/data_temp['temp4']) * 100 alpha = pd.DataFrame(alpha) alpha.columns = ['alpha162'] return alpha @timer def alpha163(self): low = self.low high = self.high volume = self.volume ret = self.ret vwap = self.vwap volume_mean = Mean(volume,20) data = pd.concat([high,low,vwap,ret,volume_mean],axis = 1, join = 'inner') data.columns = ['high','low','vwap','ret','volume_mean'] temp = pd.DataFrame(-1 *data['ret'] * data['volume_mean'] *data['vwap'] * \ (data['high'] - data['low'])) alpha = Rank(temp) alpha.columns = ['alpha163'] return alpha @timer def alpha164(self): close = self.close high = self.high low = self.low close_delay = Delay(close,1) data = pd.concat([close,high,low,close_delay],axis = 1, join = 'inner') data.columns = ['close','high','low','close_delay'] data['temp'] = 1/(data['close'] - data['close_delay']) data_min = TsMin(pd.DataFrame(data['temp']),12) data_min.columns = ['min'] data2 = pd.concat([data,data_min],axis = 1, join = 'inner') data2['tep'] = data2['temp'] - data2['min']/(data2['high'] - data2['low']) data2['tep'][data['close'] <= data['close_delay']] = 0 alpha = SMA(pd.DataFrame(data2['tep']) * 100,13,2) alpha.columns = ['alpha164'] return alpha @timer def alpha165(self): close = self.close close_mean = Mean(close,48) data = pd.concat([close,close_mean],axis = 1, join = 'inner') data.columns = ['close','close_mean'] temp = pd.DataFrame(data['close'] - data['close_mean']) temp_sum = Sum(temp,48) temp_sum_min = TsMin(temp_sum,48) temp_sum_max = TsMax(temp_sum,48) close_std = STD(close,48) data_temp = pd.concat([temp_sum_min,temp_sum_max,close_std], axis = 1, join = 'inner') data_temp.columns = ['min','max','std'] alpha = (data_temp['max'] - data_temp['min'])/data_temp['std'] alpha = pd.DataFrame(alpha) alpha.columns = ['alpha165'] return alpha @timer def alpha166(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp = pd.DataFrame(data['close']/data['close_delay']) temp_mean = Mean(temp,20) data1 = pd.concat([temp,temp_mean], axis = 1, join = 'inner') data1.columns = ['temp','temp_mean'] temp2 = Sum(pd.DataFrame(data1['temp'] - data1['temp_mean']),20) * 20 * 19 temp3 = Sum(temp,20) * 19 * 18 data2 = pd.concat([temp2,temp3], axis = 1, join = 'inner') data2.columns = ['temp2','temp3'] alpha = np.power(data2['temp2'],1.5)/np.power(data2['temp3'],1.5) alpha = pd.DataFrame(alpha) alpha.columns = ['alpha166'] return alpha @timer def alpha167(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] data['temp'] = data['close'] - data['close_delay'] data['temp'][data['close'] <= data['close_delay']] = 0 alpha = Sum(pd.DataFrame(data['temp']),12) alpha.columns = ['alpha167'] return alpha @timer def alpha168(self): volume = self.volume volume_mean = Mean(volume,20) data = pd.concat([volume,volume_mean], axis = 1, join = 'inner') data.columns = ['volume','volume_mean'] alpha = data['volume']/data['volume_mean'] * -1 alpha.columns = ['alpha168'] return alpha @timer def alpha169(self): close = self.close close_delay = Delay(close,1) data = pd.concat([close,close_delay], axis = 1, join = 'inner') data.columns = ['close','close_delay'] temp1 = pd.DataFrame(data['close'] - data['close_delay']) sma = SMA(temp1,9,1) temp2 = Delay(sma,1) temp2_mean12 = Mean(temp2,12) temp2_mean26 = Mean(temp2,26) data2 = pd.concat([temp2_mean12,temp2_mean26], axis = 1, join ='inner') data2.columns = ['mean1','mean2'] alpha = SMA(pd.DataFrame(data2['mean1'] - data2['mean2']),10,1) alpha.columns = ['alpha169'] return alpha @timer def alpha170(self): close = self.close high = self.high volume = self.volume vwap = self.vwap volume_mean = Mean(volume,20) data1 = pd.concat([high,close,volume,volume_mean], axis = 1, join = 'inner') data1.columns =['high','close','volume','volume_mean'] temp1 = pd.DataFrame(data1['high']/data1['close'] * data1['volume']/data1['volume_mean']) r1 = Rank(temp1) high_mean = Mean(high,5) vwap_delay = Delay(vwap,5) data2 = pd.concat([high,close,high_mean], axis = 1, join = 'inner') data2.columns = ['high','close','high_mean'] temp2 = pd.DataFrame((data2['high'] - data2['close'])/data2['high_mean']) temp2_r = Rank(temp2) data3 = pd.concat([vwap,vwap_delay], axis = 1, join = 'inner') data3.columns = ['vwap','vwap_delay'] temp3 = pd.DataFrame(data3['vwap'] - data3['vwap_delay']) temp3_r = Rank(temp3) rank = pd.concat([temp2_r,temp3_r], axis = 1, join = 'inner') rank.columns = ['r1','r2'] r2 =
pd.DataFrame(rank['r1'] - rank['r2'])
pandas.DataFrame
import six import warnings from onecodex.exceptions import OneCodexException from onecodex.lib.enums import AbundanceMetric, Rank from onecodex.viz import ( VizPCAMixin, VizHeatmapMixin, VizMetadataMixin, VizDistanceMixin, VizBargraphMixin, ) class AnalysisMixin( VizPCAMixin, VizHeatmapMixin, VizMetadataMixin, VizDistanceMixin, VizBargraphMixin ): """Contains methods for analyzing Classifications results. Notes ----- Three DataFrames are required by most methods: collated counts, collated metadata, and taxonomy. This data is obtained from either a `ClassificationsDataFrame` or a `SampleCollection`. Both classes use this mixin. `AnalysisMixin` pulls additional methods in from `onecodex.distance`, `onecodex.taxonomy`, and `onecodex.viz`. """ def _get_auto_rank(self, rank): """Attempt to figure out what rank we should use for analyses.""" if rank == Rank.Auto: # if we're an accessor for a ClassificationsDataFrame, use its _rank property if self.__class__.__name__ == "OneCodexAccessor": return self._rank if AbundanceMetric.has_value(self._metric) or self._is_metagenomic: return Rank.Species else: return Rank.Genus else: return rank def _guess_normalized(self): """Return True if the collated counts in `self._results` appear to be normalized. Notes ----- It's possible that the _results df has already been normalized, which can cause some methods to fail. This method lets us guess whether that's true and act accordingly. """ return ( getattr(self, "_normalized", False) or AbundanceMetric.has_value(self._metric) or bool((self._results.sum(axis=1).round(4) == 1.0).all()) ) # noqa def _metadata_fetch(self, metadata_fields, label=None): """Fetch and transform given metadata fields from `self.metadata`. Takes a list of metadata fields, some of which can contain taxon names or taxon IDs, and returns a DataFrame with transformed data that can be used for plotting. Parameters ---------- metadata_fields : `list` of `string` A list of metadata fields, taxon names, or taxon IDs to fetch and transform for display. label : `string` or `callable`, optional A metadata field (or function) used to label each analysis. If passing a function, a dict containing the metadata for each analysis is passed as the first and only positional argument. The callable function must return a string. If this argument is not given, and "Label" is in `metadata_fields`, "Label" will be set to the filename associated with an analysis. Notes ----- Taxon names and IDs are transformed into the relative abundances of those taxa within their own rank. For example, 'Bacteroides' will return the relative abundances of 'Bacteroides' among all taxa of rank genus. Taxon IDs are stored as strings in `ClassificationsDataFrame` and are coerced to strings if integers are given. Metadata fields are returned as is, from the `self.metadata` DataFrame. If multiple metadata fields are specified in a tuple, their values are joined as strings separated by underscore. Multiple metadata fields in a tuple must both be categorical. That is, a numerical field and boolean can not be joined, or the result would be something like '87.4_True'. Returns ------- `pandas.DataFrame` Columns are renamed (if applicable) metadata fields and rows are `Classifications.id`. Elements are transformed values. Not all metadata fields will have been renamed, but will be present in the below `dict` nonetheless. `dict` Keys are metadata fields and values are renamed metadata fields. This can be used to map metadata fields which were passed to this function, to prettier names. For example, if 'bacteroid' is passed, it will be matched with the Bacteroides genus and renamed to 'Bacteroides (816)', which includes its taxon ID. """ import pandas as pd help_metadata = ", ".join(self.metadata.keys()) magic_metadata = pd.DataFrame({"classification_id": self._results.index}).set_index( "classification_id" ) # if user passed label kwarg but didn't put "Label" in the fields, assume the user wants # that field added if label is not None and "Label" not in metadata_fields: metadata_fields.append("Label") # if we magically rename fields, keep track magic_fields = {} for f in set([f for f in metadata_fields if f]): if isinstance(f, tuple): # joined categorical metadata for field in f: if field not in self.metadata: raise OneCodexException( "Metric {} not found. Choose from: {}".format(field, help_metadata) ) if not ( pd.api.types.is_bool_dtype(self.metadata[field]) or pd.api.types.is_categorical_dtype(self.metadata[field]) # noqa or
pd.api.types.is_object_dtype(self.metadata[field])
pandas.api.types.is_object_dtype
import argparse from pathlib import Path import multiprocessing import pandas as pd import tqdm from utils import read_img_cv def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--data-path', type=str, default='./data/test_tiles_1024') parser.add_argument('--preds-path', type=str, required=True) return parser.parse_args() def process_img(row): _, item = row return item.fname, read_img_cv(item.mask_path).any() def main(): args = parse_args() print(args) data_path = Path(args.data_path) img_paths = list(data_path.glob('*.jpg')) test =
pd.DataFrame(img_paths, columns=['fname'])
pandas.DataFrame
import numpy as np import pandas as pd from pandas import ( Categorical, DataFrame, MultiIndex, Series, Timestamp, date_range, ) from .pandas_vb_common import tm try: from pandas.tseries.offsets import ( Hour, Nano, ) except ImportError: # For compatibility with older versions from pandas.core.datetools import ( Hour, Nano, ) class FromDicts: def setup(self): N, K = 5000, 50 self.index = tm.makeStringIndex(N) self.columns = tm.makeStringIndex(K) frame = DataFrame(np.random.randn(N, K), index=self.index, columns=self.columns) self.data = frame.to_dict() self.dict_list = frame.to_dict(orient="records") self.data2 = {i: {j: float(j) for j in range(100)} for i in range(2000)} # arrays which we wont consolidate self.dict_of_categoricals = {i: Categorical(np.arange(N)) for i in range(K)} def time_list_of_dict(self): DataFrame(self.dict_list) def time_nested_dict(self): DataFrame(self.data) def time_nested_dict_index(self): DataFrame(self.data, index=self.index) def time_nested_dict_columns(self):
DataFrame(self.data, columns=self.columns)
pandas.DataFrame
""" This is a pseudo-public API for downstream libraries. We ask that downstream authors 1) Try to avoid using internals directly altogether, and failing that, 2) Use only functions exposed here (or in core.internals) """ from __future__ import annotations from collections import defaultdict from typing import DefaultDict import numpy as np from pandas._libs.internals import BlockPlacement from pandas._typing import ( ArrayLike, Dtype, ) from pandas.core.dtypes.common import ( is_datetime64tz_dtype, pandas_dtype, ) from pandas.core.arrays import DatetimeArray from pandas.core.construction import extract_array from pandas.core.indexes.api import Index from pandas.core.internals.blocks import ( Block, CategoricalBlock, DatetimeTZBlock, ExtensionBlock, check_ndim, ensure_block_shape, extract_pandas_array, get_block_type, maybe_coerce_values, new_block, ) from pandas.core.internals.managers import ( BlockManager, construction_error, multi_blockify, simple_blockify, ) def make_block( values, placement, klass=None, ndim=None, dtype: Dtype | None = None ) -> Block: """ This is a pseudo-public analogue to blocks.new_block. We ask that downstream libraries use this rather than any fully-internal APIs, including but not limited to: - core.internals.blocks.make_block - Block.make_block - Block.make_block_same_class - Block.__init__ """ if dtype is not None: dtype = pandas_dtype(dtype) values, dtype = extract_pandas_array(values, dtype, ndim) if klass is None: dtype = dtype or values.dtype klass = get_block_type(values, dtype) elif klass is DatetimeTZBlock and not is_datetime64tz_dtype(values.dtype): # pyarrow calls get here values =
DatetimeArray._simple_new(values, dtype=dtype)
pandas.core.arrays.DatetimeArray._simple_new
import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import os import json # Feature selection strategies from sklearn.feature_selection import SelectKBest from sklearn.feature_selection import SelectFromModel # Scale feature scores from sklearn.preprocessing import MinMaxScaler # SKLearn estimators list from sklearn.utils import all_estimators # MLRun utils from mlrun.mlutils.plots import gcf_clear from mlrun.utils.helpers import create_class from mlrun.artifacts import PlotArtifact def show_values_on_bars(axs, h_v="v", space=0.4): def _show_on_single_plot(ax): if h_v == "v": for p in ax.patches: _x = p.get_x() + p.get_width() / 2 _y = p.get_y() + p.get_height() value = int(p.get_height()) ax.text(_x, _y, value, ha="center") elif h_v == "h": for p in ax.patches: _x = p.get_x() + p.get_width() + float(space) _y = p.get_y() + p.get_height() value = int(p.get_width()) ax.text(_x, _y, value, ha="left") if isinstance(axs, np.ndarray): for idx, ax in np.ndenumerate(axs): _show_on_single_plot(ax) else: _show_on_single_plot(axs) def plot_stat(context, stat_name, stat_df): gcf_clear(plt) # Add chart ax = plt.axes() stat_chart = sns.barplot(x=stat_name, y='index', data=stat_df.sort_values(stat_name, ascending=False).reset_index(), ax=ax) plt.tight_layout() for p in stat_chart.patches: width = p.get_width() plt.text(5 + p.get_width(), p.get_y() + 0.55 * p.get_height(), '{:1.2f}'.format(width), ha='center', va='center') context.log_artifact(PlotArtifact(f'{stat_name}', body=plt.gcf()), local_path=os.path.join('plots', 'feature_selection', f'{stat_name}.html')) gcf_clear(plt) def feature_selection(context, df_artifact, k=2, min_votes=0.5, label_column: str = 'Y', stat_filters=['f_classif', 'mutual_info_classif', 'chi2', 'f_regression'], model_filters={'LinearSVC': 'LinearSVC', 'LogisticRegression': 'LogisticRegression', 'ExtraTreesClassifier': 'ExtraTreesClassifier'}, max_scaled_scores=True): """Applies selected feature selection statistical functions or models on our 'df_artifact'. Each statistical function or model will vote for it's best K selected features. If a feature has >= 'min_votes' votes, it will be selected. :param context: the function context :param k: number of top features to select from each statistical function or model :param min_votes: minimal number of votes (from a model or by statistical function) needed for a feature to be selected. Can be specified by percentage of votes or absolute number of votes :param label_column: ground-truth (y) labels :param stat_filters: statistical functions to apply to the features (from sklearn.feature_selection) :param model_filters: models to use for feature evaluation, can be specified by model name (ex. LinearSVC), formalized json (contains 'CLASS', 'FIT', 'META') or a path to such json file. :param max_scaled_scores: produce feature scores table scaled with max_scaler """ # Read input DF df_path = str(df_artifact) context.logger.info(f'input dataset {df_path}') if df_path.endswith('csv'): df =
pd.read_csv(df_path)
pandas.read_csv
from sklearn.metrics import accuracy_score, precision_score, recall_score, confusion_matrix, f1_score import numpy as np import pandas as pd import seaborn as sn import matplotlib.pyplot as plt def _store_X(X, store_X): if store_X is False or X is None: return None else: if isinstance(X, pd.DataFrame): return X else: return pd.DataFrame(X) def _clust_centers(centers): clusters_col_names = ['Feature ' + str(x + 1) for x in range(np.shape(centers)[1])] ct = pd.DataFrame(centers, columns = clusters_col_names) return ct def _prior(y_true, digits): class_weight = None class_count = None if y_true is not None: labs = pd.DataFrame(y_true) class_weight = round(labs.value_counts(normalize=True), digits) class_count = labs.value_counts(normalize=False) return class_weight, class_count def _class_pred(obj, X, X_train, y_pred, y_train, y_true, y_true_train, prob_return, average = 'binary', digits = 3): y_pred_prob = None acc = None ce = None prc = None rcl = None f1 = None conf = None class_weight = None class_count = None y_pred_prob_train = None acc_train = None ce_train = None prc_train = None rcl_train = None f1_train = None conf_train = None class_weight_train = None class_count_train = None if y_pred is not None: labs = pd.DataFrame(y_pred) class_weight = round(labs.value_counts(normalize=True), digits) class_count = labs.value_counts(normalize=False) if y_true is not None: if pd.Series(y_true).unique().shape[0] > 2: average = 'micro' acc = round(accuracy_score(y_true, y_pred),digits) ce = round(1-acc,digits) prc = round(precision_score(y_true, y_pred, average=average),digits) rcl = round(recall_score(y_true, y_pred, average=average),digits) f1 = round(f1_score(y_true, y_pred, average = average),digits) conf = round(pd.DataFrame(confusion_matrix(y_true, y_pred)),digits) elif X is not None: y_pred = obj.predict(X) if prob_return is True: y_pred_prob = obj.predict_proba(X) labs = pd.DataFrame(y_pred) class_weight = round(labs.value_counts(normalize=True), digits) class_count = labs.value_counts(normalize=False) if y_true is not None: if pd.Series(y_true).unique().shape[0] > 2: average = 'micro' acc = round(accuracy_score(y_true, y_pred),digits) ce = round(1-acc,digits) prc = round(precision_score(y_true, y_pred, average=average),digits) rcl = round(recall_score(y_true, y_pred, average=average),digits) f1 = round(f1_score(y_true, y_pred, average = average),digits) conf = round(pd.DataFrame(confusion_matrix(y_true, y_pred)),digits) if y_train is not None: labs = pd.DataFrame(y_train) class_weight_train = round(labs.value_counts(normalize=True),digits) class_count_train = labs.value_counts(normalize=False) if y_true_train is not None: if pd.Series(y_true_train).unique().shape[0] > 2: average = 'micro' acc_train = round(accuracy_score(y_true_train, y_train), digits) ce_train = round(1-acc_train, digits) prc_train = round(precision_score(y_true_train, y_train, average=average), digits) rcl_train = round(recall_score(y_true_train, y_train, average=average), digits) f1_train = round(f1_score(y_true_train, y_train, average = average), digits) conf_train = round(pd.DataFrame(confusion_matrix(y_true_train, y_train)), digits) elif X_train is not None: y_train = obj.predict(X_train) if prob_return is True: y_pred_prob_train = obj.predict_proba(X_train) labs = pd.DataFrame(y_train) class_weight_train = round(labs.value_counts(normalize=True),digits) class_count_train = labs.value_counts(normalize=False) if y_true_train is not None: if pd.Series(y_true_train).unique().shape[0] > 2: average = 'micro' acc_train = round(accuracy_score(y_true_train, y_train), digits) ce_train = round(1-acc_train, digits) prc_train = round(precision_score(y_true_train, y_train, average=average), digits) rcl_train = round(recall_score(y_true_train, y_train, average=average), digits) f1_train = round(f1_score(y_true_train, y_train, average=average), digits) conf_train = round(pd.DataFrame(confusion_matrix(y_true_train, y_train)), digits) return y_pred, y_true, y_pred_prob, class_weight, class_count, acc, \ prc, rcl, f1, conf, y_train, y_pred_prob_train, \ class_weight_train, class_count_train, acc_train, \ prc_train, rcl_train, f1_train, conf_train, ce, ce_train, y_true_train def _features_important(features, X): if X is None: ft = pd.Series(features).sort_values(ascending=False) else: XX = X.copy() XX =
pd.DataFrame(XX)
pandas.DataFrame
import pandas as pd import numpy as np from sklearn import linear_model from itertools import combinations from .stats import * from functools import partial import multiprocessing as mp from tqdm import tqdm def csRenameOrth(adQuery,adTrain,orthTable,speciesQuery='human',speciesTrain='mouse'): _,_,cgenes=np.intersect1d(adQuery.var_names.values, orthTable[speciesQuery], return_indices=True) _,_,ccgenes=np.intersect1d(adTrain.var_names.values, orthTable[speciesTrain], return_indices=True) temp1=np.zeros(len(orthTable.index.values), dtype=bool) temp2=np.zeros(len(orthTable.index.values), dtype=bool) temp1[cgenes]=True temp2[ccgenes]=True common=np.logical_and(temp1, temp2) oTab=orthTable.loc[common.T,:] adT=adTrain[:, oTab[speciesTrain]] adQ=adQuery[:, oTab[speciesQuery]] adQ.var_names = adT.var_names return [adQ, adT] def csRenameOrth2(expQuery,expTrain,orthTable,speciesQuery='human',speciesTrain='mouse'): _,_,cgenes=np.intersect1d(expQuery.columns.values, orthTable[speciesQuery], return_indices=True) _,_,ccgenes=np.intersect1d(expTrain.columns.values, orthTable[speciesTrain], return_indices=True) temp1=np.zeros(len(orthTable.index.values), dtype=bool) temp2=np.zeros(len(orthTable.index.values), dtype=bool) temp1[cgenes]=True temp2[ccgenes]=True common=np.logical_and(temp1, temp2) oTab=orthTable.loc[common.T,:] expT=expTrain.loc[:, oTab[speciesTrain]] expQ=expQuery.loc[:, oTab[speciesQuery]] expQ.columns= expT.columns return [expQ, expT] def makePairTab(genes): pairs = list(combinations(genes, 2)) labels = ['genes1', 'genes2'] pTab =
pd.DataFrame(data=pairs, columns=labels)
pandas.DataFrame
from GoogleNews import GoogleNews import pandas as pd import dataframe_image as dfi from datetime import date,timedelta class newsDataCapturing(): def getnewsData(self): today = date.today() T_split = str(today).split('-') toDate = T_split[2]+'/'+T_split[1]+'/'+T_split[0] googlenewsMkt=GoogleNews(start=toDate,end=toDate) googlenewsMkt.get_news('Market') result=googlenewsMkt.results() df=pd.DataFrame(result).head(10) dfi.export(df, './template/df_styled_Market.jpeg') googlenewsBiz=GoogleNews(start=toDate,end=toDate) googlenewsBiz.get_news('Business') result=googlenewsBiz.results() df=
pd.DataFrame(result)
pandas.DataFrame
import sys import numpy as np import pandas as pd from sqlalchemy import create_engine import nltk nltk.download('wordnet') nltk.download('stopwords') from warnings import simplefilter from nltk.tokenize import word_tokenize from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer from sklearn.pipeline import Pipeline from sklearn.model_selection import train_test_split from sklearn.multioutput import MultiOutputClassifier from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import classification_report from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.model_selection import GridSearchCV from sklearn.externals import joblib stop_words = set(stopwords.words('english')) def load_data(database_filepath): """Loads data from the database. Args: database_filepath (str): Path to the database file Returns: (pd.Series, pd.DataFrame, list): A tuple containing messages as a first element, categories as a second element and a list of category names as the third element """ engine = create_engine('sqlite:///{}'.format(database_filepath)) df =
pd.read_sql_table('messages', con=engine)
pandas.read_sql_table
# -*- coding: utf-8 -*- """ Created on Mon Nov 22 11:00:00 2021 @author: user """ import pandas as pd def pearson(x, y): ''' Reference Paper: An introduction to variable and feature selection(Isabelle Guyon) section 2.2 適用於線性 Parameters ---------- x : m*n DataFrame m is # of data(examples) n is # of features y : m*1 array output of the model(target) Returns ------- m*1 Series Sorted square Pearson coefficient Pearson = -1~1 ''' y_term = y - y.mean() pearson_list = [] # 計算每種feature的pearson^2 for i in range(x.shape[1]): x_term = x.iloc[:, i] - x.iloc[:, i].mean() # 分子 numerator = (x_term * y_term).sum() # 分母 denominator = ((x_term ** 2).sum() * (y_term ** 2).sum()) ** (1/2) # 公式(2)平方 pearson_list.append((numerator / denominator)**2) pearson = pd.Series(pearson_list, index=x.columns) pearson.sort_values(inplace=True) return pearson def spearman(x, y): ''' Reference: https://www.youtube.com/watch?v=Zc9sm1irUx8&ab_channel=CUSTCourses 適用於非線性 Parameters ---------- x : m*n DataFrame m is # of data(examples) n is # of features y : m*1 array output of the model(target) Returns ------- m*1 Series Sorted square Spearman coefficient Spearman = -1~1 ''' rank_x = x.rank() rank_y = y.rank() # 計算每種feature的spearman spearman_list = [] for i in range(rank_x.shape[1]): d = rank_x.iloc[:, i] - rank_y d = d**2 # 分子 numerator = 6 * d.sum() # 分母 n = rank_x.shape[0] denominator = n * (n**2 - 1) spearman = 1 - (numerator / denominator) # 原本的spearman係數取平方 spearman_list.append(spearman**2) spearman =
pd.Series(spearman_list, index=x.columns)
pandas.Series
import numpy as np import pytest import pandas as pd from pandas import ( DataFrame, lreshape, melt, wide_to_long, ) import pandas._testing as tm class TestMelt: def setup_method(self, method): self.df = tm.makeTimeDataFrame()[:10] self.df["id1"] = (self.df["A"] > 0).astype(np.int64) self.df["id2"] = (self.df["B"] > 0).astype(np.int64) self.var_name = "var" self.value_name = "val" self.df1 = DataFrame( [ [1.067683, -1.110463, 0.20867], [-1.321405, 0.368915, -1.055342], [-0.807333, 0.08298, -0.873361], ] ) self.df1.columns = [list("ABC"), list("abc")] self.df1.columns.names = ["CAP", "low"] def test_top_level_method(self): result = melt(self.df) assert result.columns.tolist() == ["variable", "value"] def test_method_signatures(self): tm.assert_frame_equal(self.df.melt(), melt(self.df)) tm.assert_frame_equal( self.df.melt(id_vars=["id1", "id2"], value_vars=["A", "B"]), melt(self.df, id_vars=["id1", "id2"], value_vars=["A", "B"]), ) tm.assert_frame_equal( self.df.melt(var_name=self.var_name, value_name=self.value_name), melt(self.df, var_name=self.var_name, value_name=self.value_name), ) tm.assert_frame_equal(self.df1.melt(col_level=0), melt(self.df1, col_level=0)) def test_default_col_names(self): result = self.df.melt() assert result.columns.tolist() == ["variable", "value"] result1 = self.df.melt(id_vars=["id1"]) assert result1.columns.tolist() == ["id1", "variable", "value"] result2 = self.df.melt(id_vars=["id1", "id2"]) assert result2.columns.tolist() == ["id1", "id2", "variable", "value"] def test_value_vars(self): result3 = self.df.melt(id_vars=["id1", "id2"], value_vars="A") assert len(result3) == 10 result4 = self.df.melt(id_vars=["id1", "id2"], value_vars=["A", "B"]) expected4 = DataFrame( { "id1": self.df["id1"].tolist() * 2, "id2": self.df["id2"].tolist() * 2, "variable": ["A"] * 10 + ["B"] * 10, "value": (self.df["A"].tolist() + self.df["B"].tolist()), }, columns=["id1", "id2", "variable", "value"], ) tm.assert_frame_equal(result4, expected4) def test_value_vars_types(self): # GH 15348 expected = DataFrame( { "id1": self.df["id1"].tolist() * 2, "id2": self.df["id2"].tolist() * 2, "variable": ["A"] * 10 + ["B"] * 10, "value": (self.df["A"].tolist() + self.df["B"].tolist()), }, columns=["id1", "id2", "variable", "value"], ) for type_ in (tuple, list, np.array): result = self.df.melt(id_vars=["id1", "id2"], value_vars=type_(("A", "B"))) tm.assert_frame_equal(result, expected) def test_vars_work_with_multiindex(self): expected = DataFrame( { ("A", "a"): self.df1[("A", "a")], "CAP": ["B"] * len(self.df1), "low": ["b"] * len(self.df1), "value": self.df1[("B", "b")], }, columns=[("A", "a"), "CAP", "low", "value"], ) result = self.df1.melt(id_vars=[("A", "a")], value_vars=[("B", "b")]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "id_vars, value_vars, col_level, expected", [ ( ["A"], ["B"], 0, DataFrame( { "A": {0: 1.067683, 1: -1.321405, 2: -0.807333}, "CAP": {0: "B", 1: "B", 2: "B"}, "value": {0: -1.110463, 1: 0.368915, 2: 0.08298}, } ), ), ( ["a"], ["b"], 1, DataFrame( { "a": {0: 1.067683, 1: -1.321405, 2: -0.807333}, "low": {0: "b", 1: "b", 2: "b"}, "value": {0: -1.110463, 1: 0.368915, 2: 0.08298}, } ), ), ], ) def test_single_vars_work_with_multiindex( self, id_vars, value_vars, col_level, expected ): result = self.df1.melt(id_vars, value_vars, col_level=col_level) tm.assert_frame_equal(result, expected) def test_tuple_vars_fail_with_multiindex(self): # melt should fail with an informative error message if # the columns have a MultiIndex and a tuple is passed # for id_vars or value_vars. tuple_a = ("A", "a") list_a = [tuple_a] tuple_b = ("B", "b") list_b = [tuple_b] msg = r"(id|value)_vars must be a list of tuples when columns are a MultiIndex" for id_vars, value_vars in ( (tuple_a, list_b), (list_a, tuple_b), (tuple_a, tuple_b), ): with pytest.raises(ValueError, match=msg): self.df1.melt(id_vars=id_vars, value_vars=value_vars) def test_custom_var_name(self): result5 = self.df.melt(var_name=self.var_name) assert result5.columns.tolist() == ["var", "value"] result6 = self.df.melt(id_vars=["id1"], var_name=self.var_name) assert result6.columns.tolist() == ["id1", "var", "value"] result7 = self.df.melt(id_vars=["id1", "id2"], var_name=self.var_name) assert result7.columns.tolist() == ["id1", "id2", "var", "value"] result8 = self.df.melt( id_vars=["id1", "id2"], value_vars="A", var_name=self.var_name ) assert result8.columns.tolist() == ["id1", "id2", "var", "value"] result9 = self.df.melt( id_vars=["id1", "id2"], value_vars=["A", "B"], var_name=self.var_name ) expected9 = DataFrame( { "id1": self.df["id1"].tolist() * 2, "id2": self.df["id2"].tolist() * 2, self.var_name: ["A"] * 10 + ["B"] * 10, "value": (self.df["A"].tolist() + self.df["B"].tolist()), }, columns=["id1", "id2", self.var_name, "value"], ) tm.assert_frame_equal(result9, expected9) def test_custom_value_name(self): result10 = self.df.melt(value_name=self.value_name) assert result10.columns.tolist() == ["variable", "val"] result11 = self.df.melt(id_vars=["id1"], value_name=self.value_name) assert result11.columns.tolist() == ["id1", "variable", "val"] result12 = self.df.melt(id_vars=["id1", "id2"], value_name=self.value_name) assert result12.columns.tolist() == ["id1", "id2", "variable", "val"] result13 = self.df.melt( id_vars=["id1", "id2"], value_vars="A", value_name=self.value_name ) assert result13.columns.tolist() == ["id1", "id2", "variable", "val"] result14 = self.df.melt( id_vars=["id1", "id2"], value_vars=["A", "B"], value_name=self.value_name ) expected14 = DataFrame( { "id1": self.df["id1"].tolist() * 2, "id2": self.df["id2"].tolist() * 2, "variable": ["A"] * 10 + ["B"] * 10, self.value_name: (self.df["A"].tolist() + self.df["B"].tolist()), }, columns=["id1", "id2", "variable", self.value_name], ) tm.assert_frame_equal(result14, expected14) def test_custom_var_and_value_name(self): result15 = self.df.melt(var_name=self.var_name, value_name=self.value_name) assert result15.columns.tolist() == ["var", "val"] result16 = self.df.melt( id_vars=["id1"], var_name=self.var_name, value_name=self.value_name ) assert result16.columns.tolist() == ["id1", "var", "val"] result17 = self.df.melt( id_vars=["id1", "id2"], var_name=self.var_name, value_name=self.value_name ) assert result17.columns.tolist() == ["id1", "id2", "var", "val"] result18 = self.df.melt( id_vars=["id1", "id2"], value_vars="A", var_name=self.var_name, value_name=self.value_name, ) assert result18.columns.tolist() == ["id1", "id2", "var", "val"] result19 = self.df.melt( id_vars=["id1", "id2"], value_vars=["A", "B"], var_name=self.var_name, value_name=self.value_name, ) expected19 = DataFrame( { "id1": self.df["id1"].tolist() * 2, "id2": self.df["id2"].tolist() * 2, self.var_name: ["A"] * 10 + ["B"] * 10, self.value_name: (self.df["A"].tolist() + self.df["B"].tolist()), }, columns=["id1", "id2", self.var_name, self.value_name], ) tm.assert_frame_equal(result19, expected19) df20 = self.df.copy() df20.columns.name = "foo" result20 = df20.melt() assert result20.columns.tolist() == ["foo", "value"] def test_col_level(self): res1 = self.df1.melt(col_level=0) res2 = self.df1.melt(col_level="CAP") assert res1.columns.tolist() == ["CAP", "value"] assert res2.columns.tolist() == ["CAP", "value"] def test_multiindex(self): res = self.df1.melt() assert res.columns.tolist() == ["CAP", "low", "value"] @pytest.mark.parametrize( "col", [ pd.Series(pd.date_range("2010", periods=5, tz="US/Pacific")), pd.Series(["a", "b", "c", "a", "d"], dtype="category"), pd.Series([0, 1, 0, 0, 0]), ], ) def test_pandas_dtypes(self, col): # GH 15785 df = DataFrame( {"klass": range(5), "col": col, "attr1": [1, 0, 0, 0, 0], "attr2": col} ) expected_value = pd.concat([pd.Series([1, 0, 0, 0, 0]), col], ignore_index=True) result = melt( df, id_vars=["klass", "col"], var_name="attribute", value_name="value" ) expected = DataFrame( { 0: list(range(5)) * 2, 1: pd.concat([col] * 2, ignore_index=True), 2: ["attr1"] * 5 + ["attr2"] * 5, 3: expected_value, } ) expected.columns = ["klass", "col", "attribute", "value"] tm.assert_frame_equal(result, expected) def test_preserve_category(self): # GH 15853 data = DataFrame({"A": [1, 2], "B": pd.Categorical(["X", "Y"])}) result = melt(data, ["B"], ["A"]) expected = DataFrame( {"B": pd.Categorical(["X", "Y"]), "variable": ["A", "A"], "value": [1, 2]} ) tm.assert_frame_equal(result, expected) def test_melt_missing_columns_raises(self): # GH-23575 # This test is to ensure that pandas raises an error if melting is # attempted with column names absent from the dataframe # Generate data df = DataFrame(np.random.randn(5, 4), columns=list("abcd")) # Try to melt with missing `value_vars` column name msg = "The following '{Var}' are not present in the DataFrame: {Col}" with pytest.raises( KeyError, match=msg.format(Var="value_vars", Col="\\['C'\\]") ): df.melt(["a", "b"], ["C", "d"]) # Try to melt with missing `id_vars` column name with pytest.raises(KeyError, match=msg.format(Var="id_vars", Col="\\['A'\\]")): df.melt(["A", "b"], ["c", "d"]) # Multiple missing with pytest.raises( KeyError, match=msg.format(Var="id_vars", Col="\\['not_here', 'or_there'\\]"), ): df.melt(["a", "b", "not_here", "or_there"], ["c", "d"]) # Multiindex melt fails if column is missing from multilevel melt multi = df.copy() multi.columns = [list("ABCD"), list("abcd")] with pytest.raises(KeyError, match=msg.format(Var="id_vars", Col="\\['E'\\]")): multi.melt([("E", "a")], [("B", "b")]) # Multiindex fails if column is missing from single level melt with pytest.raises( KeyError, match=msg.format(Var="value_vars", Col="\\['F'\\]") ): multi.melt(["A"], ["F"], col_level=0) def test_melt_mixed_int_str_id_vars(self): # GH 29718 df = DataFrame({0: ["foo"], "a": ["bar"], "b": [1], "d": [2]}) result = melt(df, id_vars=[0, "a"], value_vars=["b", "d"]) expected = DataFrame( {0: ["foo"] * 2, "a": ["bar"] * 2, "variable": list("bd"), "value": [1, 2]} ) tm.assert_frame_equal(result, expected) def test_melt_mixed_int_str_value_vars(self): # GH 29718 df = DataFrame({0: ["foo"], "a": ["bar"]}) result = melt(df, value_vars=[0, "a"]) expected = DataFrame({"variable": [0, "a"], "value": ["foo", "bar"]}) tm.assert_frame_equal(result, expected) def test_ignore_index(self): # GH 17440 df = DataFrame({"foo": [0], "bar": [1]}, index=["first"]) result = melt(df, ignore_index=False) expected = DataFrame( {"variable": ["foo", "bar"], "value": [0, 1]}, index=["first", "first"] ) tm.assert_frame_equal(result, expected) def test_ignore_multiindex(self): # GH 17440 index = pd.MultiIndex.from_tuples( [("first", "second"), ("first", "third")], names=["baz", "foobar"] ) df = DataFrame({"foo": [0, 1], "bar": [2, 3]}, index=index) result = melt(df, ignore_index=False) expected_index = pd.MultiIndex.from_tuples( [("first", "second"), ("first", "third")] * 2, names=["baz", "foobar"] ) expected = DataFrame( {"variable": ["foo"] * 2 + ["bar"] * 2, "value": [0, 1, 2, 3]}, index=expected_index, ) tm.assert_frame_equal(result, expected) def test_ignore_index_name_and_type(self): # GH 17440 index = pd.Index(["foo", "bar"], dtype="category", name="baz") df = DataFrame({"x": [0, 1], "y": [2, 3]}, index=index) result = melt(df, ignore_index=False) expected_index = pd.Index(["foo", "bar"] * 2, dtype="category", name="baz") expected = DataFrame( {"variable": ["x", "x", "y", "y"], "value": [0, 1, 2, 3]}, index=expected_index, ) tm.assert_frame_equal(result, expected) def test_melt_with_duplicate_columns(self): # GH#41951 df = DataFrame([["id", 2, 3]], columns=["a", "b", "b"]) result = df.melt(id_vars=["a"], value_vars=["b"]) expected = DataFrame( [["id", "b", 2], ["id", "b", 3]], columns=["a", "variable", "value"] ) tm.assert_frame_equal(result, expected) class TestLreshape: def test_pairs(self): data = { "birthdt": [ "08jan2009", "20dec2008", "30dec2008", "21dec2008", "11jan2009", ], "birthwt": [1766, 3301, 1454, 3139, 4133], "id": [101, 102, 103, 104, 105], "sex": ["Male", "Female", "Female", "Female", "Female"], "visitdt1": [ "11jan2009", "22dec2008", "04jan2009", "29dec2008", "20jan2009", ], "visitdt2": ["21jan2009", np.nan, "22jan2009", "31dec2008", "03feb2009"], "visitdt3": ["05feb2009", np.nan, np.nan, "02jan2009", "15feb2009"], "wt1": [1823, 3338, 1549, 3298, 4306], "wt2": [2011.0, np.nan, 1892.0, 3338.0, 4575.0], "wt3": [2293.0, np.nan, np.nan, 3377.0, 4805.0], } df = DataFrame(data) spec = { "visitdt": [f"visitdt{i:d}" for i in range(1, 4)], "wt": [f"wt{i:d}" for i in range(1, 4)], } result = lreshape(df, spec) exp_data = { "birthdt": [ "08jan2009", "20dec2008", "30dec2008", "21dec2008", "11jan2009", "08jan2009", "30dec2008", "21dec2008", "11jan2009", "08jan2009", "21dec2008", "11jan2009", ], "birthwt": [ 1766, 3301, 1454, 3139, 4133, 1766, 1454, 3139, 4133, 1766, 3139, 4133, ], "id": [101, 102, 103, 104, 105, 101, 103, 104, 105, 101, 104, 105], "sex": [ "Male", "Female", "Female", "Female", "Female", "Male", "Female", "Female", "Female", "Male", "Female", "Female", ], "visitdt": [ "11jan2009", "22dec2008", "04jan2009", "29dec2008", "20jan2009", "21jan2009", "22jan2009", "31dec2008", "03feb2009", "05feb2009", "02jan2009", "15feb2009", ], "wt": [ 1823.0, 3338.0, 1549.0, 3298.0, 4306.0, 2011.0, 1892.0, 3338.0, 4575.0, 2293.0, 3377.0, 4805.0, ], } exp = DataFrame(exp_data, columns=result.columns) tm.assert_frame_equal(result, exp) result = lreshape(df, spec, dropna=False) exp_data = { "birthdt": [ "08jan2009", "20dec2008", "30dec2008", "21dec2008", "11jan2009", "08jan2009", "20dec2008", "30dec2008", "21dec2008", "11jan2009", "08jan2009", "20dec2008", "30dec2008", "21dec2008", "11jan2009", ], "birthwt": [ 1766, 3301, 1454, 3139, 4133, 1766, 3301, 1454, 3139, 4133, 1766, 3301, 1454, 3139, 4133, ], "id": [ 101, 102, 103, 104, 105, 101, 102, 103, 104, 105, 101, 102, 103, 104, 105, ], "sex": [ "Male", "Female", "Female", "Female", "Female", "Male", "Female", "Female", "Female", "Female", "Male", "Female", "Female", "Female", "Female", ], "visitdt": [ "11jan2009", "22dec2008", "04jan2009", "29dec2008", "20jan2009", "21jan2009", np.nan, "22jan2009", "31dec2008", "03feb2009", "05feb2009", np.nan, np.nan, "02jan2009", "15feb2009", ], "wt": [ 1823.0, 3338.0, 1549.0, 3298.0, 4306.0, 2011.0, np.nan, 1892.0, 3338.0, 4575.0, 2293.0, np.nan, np.nan, 3377.0, 4805.0, ], } exp = DataFrame(exp_data, columns=result.columns) tm.assert_frame_equal(result, exp) with tm.assert_produces_warning(FutureWarning): result = lreshape(df, spec, dropna=False, label="foo") spec = { "visitdt": [f"visitdt{i:d}" for i in range(1, 3)], "wt": [f"wt{i:d}" for i in range(1, 4)], } msg = "All column lists must be same length" with pytest.raises(ValueError, match=msg): lreshape(df, spec) class TestWideToLong: def test_simple(self): np.random.seed(123) x = np.random.randn(3) df = DataFrame( { "A1970": {0: "a", 1: "b", 2: "c"}, "A1980": {0: "d", 1: "e", 2: "f"}, "B1970": {0: 2.5, 1: 1.2, 2: 0.7}, "B1980": {0: 3.2, 1: 1.3, 2: 0.1}, "X": dict(zip(range(3), x)), } ) df["id"] = df.index exp_data = { "X": x.tolist() + x.tolist(), "A": ["a", "b", "c", "d", "e", "f"], "B": [2.5, 1.2, 0.7, 3.2, 1.3, 0.1], "year": [1970, 1970, 1970, 1980, 1980, 1980], "id": [0, 1, 2, 0, 1, 2], } expected = DataFrame(exp_data) expected = expected.set_index(["id", "year"])[["X", "A", "B"]] result = wide_to_long(df, ["A", "B"], i="id", j="year") tm.assert_frame_equal(result, expected) def test_stubs(self): # GH9204 wide_to_long call should not modify 'stubs' list df = DataFrame([[0, 1, 2, 3, 8], [4, 5, 6, 7, 9]]) df.columns = ["id", "inc1", "inc2", "edu1", "edu2"] stubs = ["inc", "edu"] wide_to_long(df, stubs, i="id", j="age") assert stubs == ["inc", "edu"] def test_separating_character(self): # GH14779 np.random.seed(123) x = np.random.randn(3) df = DataFrame( { "A.1970": {0: "a", 1: "b", 2: "c"}, "A.1980": {0: "d", 1: "e", 2: "f"}, "B.1970": {0: 2.5, 1: 1.2, 2: 0.7}, "B.1980": {0: 3.2, 1: 1.3, 2: 0.1}, "X": dict(zip(range(3), x)), } ) df["id"] = df.index exp_data = { "X": x.tolist() + x.tolist(), "A": ["a", "b", "c", "d", "e", "f"], "B": [2.5, 1.2, 0.7, 3.2, 1.3, 0.1], "year": [1970, 1970, 1970, 1980, 1980, 1980], "id": [0, 1, 2, 0, 1, 2], } expected = DataFrame(exp_data) expected = expected.set_index(["id", "year"])[["X", "A", "B"]] result = wide_to_long(df, ["A", "B"], i="id", j="year", sep=".") tm.assert_frame_equal(result, expected) def test_escapable_characters(self): np.random.seed(123) x = np.random.randn(3) df = DataFrame( { "A(quarterly)1970": {0: "a", 1: "b", 2: "c"}, "A(quarterly)1980": {0: "d", 1: "e", 2: "f"}, "B(quarterly)1970": {0: 2.5, 1: 1.2, 2: 0.7}, "B(quarterly)1980": {0: 3.2, 1: 1.3, 2: 0.1}, "X": dict(zip(range(3), x)), } ) df["id"] = df.index exp_data = { "X": x.tolist() + x.tolist(), "A(quarterly)": ["a", "b", "c", "d", "e", "f"], "B(quarterly)": [2.5, 1.2, 0.7, 3.2, 1.3, 0.1], "year": [1970, 1970, 1970, 1980, 1980, 1980], "id": [0, 1, 2, 0, 1, 2], } expected = DataFrame(exp_data) expected = expected.set_index(["id", "year"])[ ["X", "A(quarterly)", "B(quarterly)"] ] result = wide_to_long(df, ["A(quarterly)", "B(quarterly)"], i="id", j="year") tm.assert_frame_equal(result, expected) def test_unbalanced(self): # test that we can have a varying amount of time variables df = DataFrame( { "A2010": [1.0, 2.0], "A2011": [3.0, 4.0], "B2010": [5.0, 6.0], "X": ["X1", "X2"], } ) df["id"] = df.index exp_data = { "X": ["X1", "X2", "X1", "X2"], "A": [1.0, 2.0, 3.0, 4.0], "B": [5.0, 6.0, np.nan, np.nan], "id": [0, 1, 0, 1], "year": [2010, 2010, 2011, 2011], } expected = DataFrame(exp_data) expected = expected.set_index(["id", "year"])[["X", "A", "B"]] result = wide_to_long(df, ["A", "B"], i="id", j="year") tm.assert_frame_equal(result, expected) def test_character_overlap(self): # Test we handle overlapping characters in both id_vars and value_vars df = DataFrame( { "A11": ["a11", "a22", "a33"], "A12": ["a21", "a22", "a23"], "B11": ["b11", "b12", "b13"], "B12": ["b21", "b22", "b23"], "BB11": [1, 2, 3], "BB12": [4, 5, 6], "BBBX": [91, 92, 93], "BBBZ": [91, 92, 93], } ) df["id"] = df.index expected = DataFrame( { "BBBX": [91, 92, 93, 91, 92, 93], "BBBZ": [91, 92, 93, 91, 92, 93], "A": ["a11", "a22", "a33", "a21", "a22", "a23"], "B": ["b11", "b12", "b13", "b21", "b22", "b23"], "BB": [1, 2, 3, 4, 5, 6], "id": [0, 1, 2, 0, 1, 2], "year": [11, 11, 11, 12, 12, 12], } ) expected = expected.set_index(["id", "year"])[["BBBX", "BBBZ", "A", "B", "BB"]] result = wide_to_long(df, ["A", "B", "BB"], i="id", j="year") tm.assert_frame_equal(result.sort_index(axis=1), expected.sort_index(axis=1)) def test_invalid_separator(self): # if an invalid separator is supplied a empty data frame is returned sep = "nope!" df = DataFrame( { "A2010": [1.0, 2.0], "A2011": [3.0, 4.0], "B2010": [5.0, 6.0], "X": ["X1", "X2"], } ) df["id"] = df.index exp_data = { "X": "", "A2010": [], "A2011": [], "B2010": [], "id": [], "year": [], "A": [], "B": [], } expected = DataFrame(exp_data).astype({"year": "int"}) expected = expected.set_index(["id", "year"])[ ["X", "A2010", "A2011", "B2010", "A", "B"] ] expected.index = expected.index.set_levels([0, 1], level=0) result = wide_to_long(df, ["A", "B"], i="id", j="year", sep=sep) tm.assert_frame_equal(result.sort_index(axis=1), expected.sort_index(axis=1)) def test_num_string_disambiguation(self): # Test that we can disambiguate number value_vars from # string value_vars df = DataFrame( { "A11": ["a11", "a22", "a33"], "A12": ["a21", "a22", "a23"], "B11": ["b11", "b12", "b13"], "B12": ["b21", "b22", "b23"], "BB11": [1, 2, 3], "BB12": [4, 5, 6], "Arating": [91, 92, 93], "Arating_old": [91, 92, 93], } ) df["id"] = df.index expected = DataFrame( { "Arating": [91, 92, 93, 91, 92, 93], "Arating_old": [91, 92, 93, 91, 92, 93], "A": ["a11", "a22", "a33", "a21", "a22", "a23"], "B": ["b11", "b12", "b13", "b21", "b22", "b23"], "BB": [1, 2, 3, 4, 5, 6], "id": [0, 1, 2, 0, 1, 2], "year": [11, 11, 11, 12, 12, 12], } ) expected = expected.set_index(["id", "year"])[ ["Arating", "Arating_old", "A", "B", "BB"] ] result = wide_to_long(df, ["A", "B", "BB"], i="id", j="year") tm.assert_frame_equal(result.sort_index(axis=1), expected.sort_index(axis=1)) def test_invalid_suffixtype(self): # If all stubs names end with a string, but a numeric suffix is # assumed, an empty data frame is returned df = DataFrame( { "Aone": [1.0, 2.0], "Atwo": [3.0, 4.0], "Bone": [5.0, 6.0], "X": ["X1", "X2"], } ) df["id"] = df.index exp_data = { "X": "", "Aone": [], "Atwo": [], "Bone": [], "id": [], "year": [], "A": [], "B": [], } expected =
DataFrame(exp_data)
pandas.DataFrame
import numpy as np import pandas as pd from dateutil.parser import parse def index_ts_mapper(start, interval, timestamp): """ takes time series index (timestamp) and return the integer index in model """ if isinstance(start, (int, np.integer)): return int((timestamp-start)/(interval)) elif isinstance(start, (pd.Timestamp)): return int((timestamp.value-start.value)/(interval*10**9)) else: raise Exception('start value for the mapper must either be integers or pd.timestamp') def index_ts_inv_mapper(start, interval, index): """ takes integer index in model (index) and return the time series index """ if isinstance(start, (int, np.integer)): return int((index *interval) + start) elif isinstance(start, (pd.Timestamp)): return pd.to_datetime(float(index*(interval*10**9)+start.tz_localize(None).value)) else: raise Exception('start value for the inv_mapper must either be integers or pd.timestamp') def index_exists(interface, index_name ): """ :return: """ return interface.table_exists(index_name+'_meta') def get_bound_time(interface, time_series_table, time_column, exterme = 'min'): min_ = interface.get_extreme_value(time_series_table, time_column, exterme) if isinstance(min_, (int, np.integer)): return min_ else: min_ = parse(min_) return
pd.to_datetime(min_)
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Apr 4 06:03:28 2019 @author: tanujsinghal """ import numpy as np import pandas as pd import matplotlib matplotlib.use('agg') import matplotlib.pyplot as plt from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split import re import copy from sklearn.metrics import jaccard_similarity_score,confusion_matrix from sklearn.externals import joblib import os import pathlib import pickle if __name__=='__main__': hin=pd.read_csv("Hinglish_Profanity_List.csv") train = pd.read_csv("train.csv") test = pd.read_csv("test.csv") columns = ['obscene','insult','toxic','severe_toxic','identity_hate','threat'] hin_bad_words = hin.iloc[:,0].values.tolist() bad_words_to_english = hin.iloc[:,1].values.tolist() hin = hin.iloc[:,:-1].values.tolist() train, test = train_test_split(train, test_size=0.2) labels = train.iloc[:,2:] train_data = train.iloc[:,1] test_data = test.iloc[:,1] features = 5000 ngram = (1,2) vectorizer = TfidfVectorizer(stop_words='english',\ token_pattern = "\w*[a-z]\w*",\ ngram_range=ngram,\ max_features=features) train_features = vectorizer.fit_transform(train_data) filename='vect' pickle.dump(vectorizer, open(filename, 'wb')) test_features = vectorizer.transform(test_data) logreg = LogisticRegression(C=10,solver="liblinear") models={} logistic_results = pd.DataFrame(columns=columns) cnt=0 for i in columns: y = train[i] models[i]=copy.copy(logreg.fit(train_features, y)) filename = "model_"+ str(cnt) pickle.dump(models[i], open(filename, 'wb')) ypred_X = logreg.predict(train_features) testy_prob = logreg.predict_proba(test_features)[:,1] logistic_results[i] = testy_prob cnt+=1 def abusive_hinglish_to_english(data): hin=pd.read_csv("Hinglish_Profanity_List.csv") hin_bad_words = hin.iloc[:,0].values.tolist() bad_words_to_english = hin.iloc[:,1].values.tolist() hin = hin.iloc[:,:-1].values.tolist() cnt=0 for sentence in data: wordList = sentence.split() for word in hin_bad_words: if word in wordList: x=wordList.index(word) wordList[x]=bad_words_to_english[hin_bad_words.index(word)] sentence = ' '.join(wordList) data[cnt]=sentence cnt+=1 return data def check_dir(directory): if not os.path.exists(directory): os.makedirs(directory) def myinput(vectorizer,model,val): sent="Thank you for understanding. I think very highly of you and would not revert without discussion." sent2="Yo bitch Ja Rule is more succesful then you'll ever be whats up with you and hating you sad mofuckas...i should bitch slap ur pethedic white faces and get you to kiss my ass you guys sicken me. Ja rule is about pride in da music man. dont diss that shit on him. and nothin is wrong bein like tupac he was a brother too...fuckin white boys get things right next time.," sen3="Explanation Why the edits made under my username Hardcore Metallica Fan were reverted? They weren't vandalisms, just closure on some GAs after I voted at New York Dolls FAC. And please don't remove the template from the talk page since I'm retired now.172.16.17.32" sen4="COCKSUCKER BEFORE YOU PISS AROUND ON MY WORK" sen5="While booking during rush hour, it is always advisable to check this box ON. It will deduct your FULL ticket amount first. After that it check whether confirmed ticket available or not. If confirmed ticket not available it will show ticket not available. Within 2 days will get your full amount Refund." sen6="<NAME>" sent7='F**K YOU!good day' l=[sent,sent2,sen3,sen4,sen5,sen6,sent7] l=abusive_hinglish_to_english(l) df = pd.DataFrame(l) user_data = vectorizer.transform(l) results2 = pd.DataFrame(columns=columns) for i in columns: user_results = models[i].predict_proba(user_data)[:,1] results2[i] = user_results y=results2.iloc[val].values x = columns plt.ylim(0, 100) plt.tight_layout() plt.bar(x, height= y) plt.show() plt.savefig('foo.png') return df,results2 def myinput_network(text): columns = ['obscene','insult','toxic','severe_toxic','identity_hate','threat'] sent="Thank you for understanding. I think very highly of you and would not revert without discussion." sent2="Yo bitch Ja Rule is more succesful then you'll ever be whats up with you and hating you sad mofuckas...i should bitch slap ur pethedic white faces and get you to kiss my ass you guys sicken me. Ja rule is about pride in da music man. dont diss that shit on him. and nothin is wrong bein like tupac he was a brother too...fuckin white boys get things right next time.," sen3="Explanation Why the edits made under my username Hardcore Metallica Fan were reverted? They weren't vandalisms, just closure on some GAs after I voted at New York Dolls FAC. And please don't remove the template from the talk page since I'm retired now.172.16.17.32" sen4="COCKSUCKER BEFORE YOU PISS AROUND ON MY WORK" sen5="While booking during rush hour, it is always advisable to check this box ON. It will deduct your FULL ticket amount first. After that it check whether confirmed ticket available or not. If confirmed ticket not available it will show ticket not available. Within 2 days will get your full amount Refund." sen6="<NAME>" sent7='F**K YOU!good day' l=[sent,sent2,sen3,sen4,sen5,sen6,sent7,text] l=[text,sent2] if len(text)>1 and type(text) is list: l=text res,x=myinput_network2(l) return res,x l=abusive_hinglish_to_english(l) df = pd.DataFrame(l) f='vect' vect= pickle.load(open(f, 'rb')) user_data = vect.transform(l) results2 = pd.DataFrame(columns=columns) cnt=0 mymodels={} for i in range(6): filename='model_'+str(i) mymodels[columns[i]]= pickle.load(open(filename, 'rb')) for i in range(6): user_results = mymodels[columns[i]].predict_proba(user_data)[:,1] results2[columns[i]] = user_results x = columns return results2.iloc[0].values,x def myinput_network2(text): columns = ['obscene','insult','toxic','severe_toxic','identity_hate','threat'] x = columns if len(text)>1: l=text print(l) print(type(l)) l=abusive_hinglish_to_english(l) df = pd.DataFrame(l) f='vect' vect= pickle.load(open(f, 'rb')) user_data = vect.transform(l) results2 =
pd.DataFrame(columns=columns)
pandas.DataFrame
from pathlib import Path from unicodedata import normalize import sys from itertools import chain sys.path.append("c:\\Users\\kpdav\\machine_learning\\projects\\PGA-portfolio-optimizer\\config") import config import requests from bs4 import BeautifulSoup import pandas as pd def pgatour_tournament_ids(url): """Find pgatour.com tournament ids on webpage Args: url (str) : pgatour.com stats webpage Returns: tournament_ids, with entires of (tournament_id, tournament_name) """ page = requests.get(url) soup = BeautifulSoup(page.content, "lxml") season = int(url[url.rfind("y") + 1:url.rfind(".")]) headers = soup.find("section", class_="statistics-details-content") tournaments_info = [] if headers is not None: tournament_parent = headers.find_all("div", class_="statistics-details-select-wrap tournament") if tournament_parent is not None: tournaments = tournament_parent[0].find_all("option") for tourn in tournaments: tournaments_info.append((tourn["value"], tourn.text, season)) return tournaments_info def get_pgatour_ids(start, end): """Get pgatour.com tournament ids for a range of seasons Args: start (int) : start season end (int): end season Returns: pgatour tournament ids """ seasons = [year for year in range(start, end+1)] # same tournament id's for all stat pages on pgatour.com urls = [f"https://www.pgatour.com/content/pgatour/stats/stat.328.y{season}.html" for season in seasons] pgatour_ids = [pgatour_tournament_ids(url) for url in urls] # flatten data pgatour_ids = list(chain.from_iterable(pgatour_ids)) return pgatour_ids def save_pgatour_ids(file_p): """Save pgatour tournament ids in given file path Args: file_p (str) : file path """ pgatour_data = get_pgatour_ids(2017, 2020) df = pd.DataFrame(pgatour_data, columns=["tournament_id", "tournament_name", "season"]) df.to_csv(file_p, index=False) def get_espn_tournaments(start, end=None, all_tournaments=False): """Get espn tournaments for given season(s). Notes: if all_tournaments is left as False, the dataframe of tournaments will contain only valid tournamets. Otherwise tournaments that have not been cancelled will be given (this includes tournaments of match play, charity events, etc.) Args: start (int) : starting pga season end (int) : ending pga season, optional all_tournaments (bool) : get all or valid tournaments Returns: dataframe of tournaments for specified season(s) """ if all_tournaments: pass else: # change path to point to 2011 to 2016 espn tournaments valid_tournaments_path = str(Path(config.TOURNAMENTS_DIR, "valid_espn_tournaments_2011_2016.csv")) df = pd.read_csv(valid_tournaments_path, date_parser=["date"]) if end is not None: season_df = df[(df.season_id >= start) & (df.season_id <= end)] else: season_df = df[df.season_id == start] return season_df def pgatour_statistic(url): """Get data on give pgatour statistic Args: url (str) : pgatour statistic url Returns: data of pgatour statistic """ with requests.Session() as session: page = session.get(url) soup = BeautifulSoup(page.content, "lxml") print(f"Fetching: {url}") data = [] data_keys = [] # meta-information pga_stat_id = url[url.rfind("stat.") + 5 : url.rfind(".y")] pga_tourn_id = url[url.rfind("off.") + 4 : url.rfind(".")] pga_season_id = url[url.rfind("y") + 1: url.rfind(".eoff")] statistic_name = soup.select("section.statistics-details-content") if statistic_name is not None: name_header = statistic_name[0].find("div", class_="header") name = name_header.find("h1") if name is not None: pga_stat_name = name.text pga_stat_name = pga_stat_name.replace(" ", "_") statistic_table = soup.select("div.details-table-wrap") if statistic_table is not None: header = statistic_table[0].find("thead") if header is not None: header_cols = header.find_all("th") for h_col in header_cols: col_str = h_col.text col_str = normalize('NFKD',col_str) col_str = col_str.strip() col_str = col_str.replace(" ", "_") data_keys.append(col_str) body = statistic_table[0].find("tbody") if body is not None: players = body.find_all("tr") for player in players: p_data = player.find_all("td") player_dict = {} player_dict["pga_stat_name"] = pga_stat_name player_dict["pga_stat_id"] = pga_stat_id player_dict["pga_tourn_id"] = pga_tourn_id player_dict["pga_season_id"] = pga_season_id key_counter = 0 for col in p_data: player_dict[data_keys[key_counter]] = col.text.strip() key_counter += 1 data.append(player_dict) return data def get_pgatour_statistic(url, start, end=None): """Get pgatour statistic over given range of season(s) Args: url (str) : base url for pga statistic start (int) : start season end (int) : end season Returns: dataframe of pgatour statistic over given range of season(s) """ front_url = url[:url.rfind("html")] end_url = url[url.rfind("."): ] if end is not None: base_urls = [front_url + "y" + str(season) for season in range(start, end+1)] pgatour_tournaments_path = str(Path(config.RAW_DATA_DIR, "PGATOUR_tournament_ids_2017_2020.csv")) pgatour_ids = pd.read_csv(pgatour_tournaments_path) pgatour_stat_urls = [] for url in base_urls: season_id = int(url[url.rfind("y")+1:]) tournament_id_list = pgatour_ids["tournament_id"][pgatour_ids["season"] == season_id] for t_id in tournament_id_list: stat_url = url + ".eoff." + t_id + end_url # print(stat_url) pgatour_stat_urls.append(stat_url) # tournament_id_list = pgatour_ids["tournament_id"][(pgatour_ids["season"] <= end) & (pgatour_ids["season"] >= start)].tolist() stat_data = [pgatour_statistic(url) for url in pgatour_stat_urls] # flatten data stat_data = list(chain.from_iterable(stat_data)) df =
pd.DataFrame(stat_data)
pandas.DataFrame
from geographiclib.geodesic import Geodesic from LatLon23 import string2latlon, LatLon from geomag import declination import pandas as pd from openpyxl import load_workbook import numpy as np import config import pynmea2 import subprocess import os import xlrd def Vector2Polar(N,E): Mag = np.sqrt(N**2 + E**2) Az = 90 - np.arctan2(N, E) * 180/np.pi if Az <= 0: Az = Az + 360 return(Az, Mag) def bullcalculate(Lat, Long): if config.becoord is None: bull = '' else: if len(Lat)>0 and len(Long)>0: try: coord1 = config.becoord coord2 = string2latlon(Lat, Long, 'H% %d% %M') rbg = Geodesic.WGS84.Inverse(float(coord1.lat), float(coord1.lon), float(coord2.lat), float(coord2.lon)) bulldist = round(rbg['s12']*0.000539957) # meters to NM bullaz = round(rbg['azi1'] - declination(float(coord1.lat), float(coord1.lon))) if bullaz < 0: bullaz = 360 + bullaz bull = str(bullaz) + '/' + str(bulldist) except: bull = '' else: bull = '' return bull def append_df_to_excel(filename, df, sheet_name, startrow=0,truncate_sheet=False,**to_excel_kwargs): """ Append a DataFrame [df] to existing Excel file [filename] into [sheet_name] Sheet. If [filename] doesn't exist, then this function will create it. Parameters: filename : File path or existing ExcelWriter (Example: '/path/to/file.xlsx') df : dataframe to save to workbook sheet_name : Name of sheet which will contain DataFrame. (default: 'Sheet1') startrow : upper left cell row to dump data frame. Per default (startrow=None) calculate the last row in the existing DF and write to the next row... truncate_sheet : truncate (remove and recreate) [sheet_name] before writing DataFrame to Excel file to_excel_kwargs : arguments which will be passed to `DataFrame.to_excel()` [can be dictionary] Returns: None """ # ignore [engine] parameter if it was passed if 'engine' in to_excel_kwargs: to_excel_kwargs.pop('engine') writer = pd.ExcelWriter(filename, engine='openpyxl') # Python 2.x: define [FileNotFoundError] exception if it doesn't exist try: FileNotFoundError except NameError: FileNotFoundError = IOError try: # try to open an existing workbook writer.book = load_workbook(filename) # get the last row in the existing Excel sheet # if it was not specified explicitly if startrow is None and sheet_name in writer.book.sheetnames: startrow = writer.book[sheet_name].max_row # truncate sheet if truncate_sheet and sheet_name in writer.book.sheetnames: # index of [sheet_name] sheet idx = writer.book.sheetnames.index(sheet_name) # remove [sheet_name] writer.book.remove(writer.book.worksheets[idx]) # create an empty sheet [sheet_name] using old index writer.book.create_sheet(sheet_name, idx) # copy existing sheets writer.sheets = {ws.title:ws for ws in writer.book.worksheets} except FileNotFoundError: # file does not exist yet, we will create it pass if startrow is None: startrow = 0 # write out the new sheet df.to_excel(writer, sheet_name, startrow=startrow, **to_excel_kwargs) ws = writer.book[sheet_name] for column_cells in ws.columns: length = max(map(lambda cell: len(str(cell.value)) if cell.value else 0, column_cells)) ws.column_dimensions[column_cells[0].column_letter].width = length+3 # save the workbook writer.save() def updatefillins(filename): try: # try to open an existing workbook writer = pd.ExcelWriter(filename, engine='openpyxl') writer.book = load_workbook(filename) benamerng = writer.book.defined_names['BEname'] cells = [] for title, coord in benamerng.destinations: ws = writer.book[title] ws[coord] = config.bename.upper() for title, coord in writer.book.defined_names['BELat'].destinations: ws = writer.book[title] ws[coord] = str(config.belat) for title, coord in writer.book.defined_names['BELong'].destinations: ws = writer.book[title] ws[coord] = str(config.belong) if len(config.csname)>0: for title, coord in writer.book.defined_names['cs'].destinations: ws = writer.book[title] ws[coord] = str(config.csname) # copy existing sheets writer.sheets = {ws.title:ws for ws in writer.book.worksheets} except: # file does not exist yet, we will create it print('Error writing Fill In Values') # save the workbook writer.save() def to_gpsnmea(df,filename): df = df.rename(columns={"Time (UTC)": "TIME"}) df['LAT'] = df['LAT'].str.replace(" ", '') df['LONG'] = df['LONG'].str.replace(" ", '') filename = filename.replace('Debrief Card','GPS Trail').replace('xlsx','gps') gpsfile = open(filename, 'a') for index, row in df.iterrows(): mvar = float(row.THDG) - float(row.MHDG) if mvar < 0: mvarH = 'W' else: mvarH = 'E' GS = f'{row.GS:05.1f}' GTRK = f'{row.GTRK:05.1f}' MHDG = f'{row.MHDG:05.1f}' dtime = row.TIME.strftime('%H%M%S') ddate = row.TIME.strftime('%d%m%y') alt = str(round(float(row.ALT) * 0.3048)) RMC = pynmea2.ZDA('GP', 'RMC', (dtime, 'A', row.LAT[1:], row.LAT[0], row.LONG[1:], row.LONG[0], GS, GTRK, ddate, f'{mvar:05.1f}', mvarH)) GGA = pynmea2.GGA('GP', 'GGA', (dtime, row.LAT[1:], row.LAT[0], row.LONG[1:], row.LONG[0], '1', '', '', alt, 'M', '', '', '', '0')) VTG = pynmea2.GGA('GP', 'VTG', (GTRK, 'T', MHDG, 'M', f'{row.GS:06.2f}', 'N', '', 'K')) gpsfile.write(str(RMC) + "\n") gpsfile.write(str(GGA) + "\n") gpsfile.write(str(VTG) + "\n") gpsfile.close() #os.system('cmd .\output\GPSBabel\gpsbabel -i nmea -f ' + filename + ' -x interpolate,time=10 -o nmea -F "testtrack.gps"') #subprocess.Popen(r'explorer /select,'+ filename ) os.startfile(filename, 'open') def jassm_report_match(debrief_filename, jassm_report): jreport = pd.ExcelFile(jassm_report) wpngroups = [] for sheet in jreport.sheet_names: if 'JASSMGRP' in sheet: #print(sheet) df = jreport.parse(sheet, skiprows=5, index_col=None, na_values=['NA']) df['wpngroup'] = str(sheet) + " " + 'MSN'+ df['Msn'].astype(str) wpngroups.append(df) if len(wpngroups)>0: wpns = pd.read_excel(debrief_filename, sheet_name='Combined',index_col=None, na_values=['NA']) wpns.astype({'TGT LAT':str,'TGT LONG':str,'TGT ELEV':str,'BULL':str}).dtypes wpns['TGT LAT'] = wpns['TGT LAT'].astype(str) wpns['TGT LONG'] = wpns['TGT LONG'].astype(str) wpns['TGT ELEV'] = wpns['TGT ELEV'].astype(str) wpns['BULL'] = wpns['BULL'].astype(str) for i, row in wpns.iterrows(): for group in wpngroups: for j, rows in group.iterrows(): if wpns.at[i,'TGT Name'] == group.at[j,'wpngroup']: wpns.at[i, 'TGT Name'] = group.at[j,'Mission Name'] wpns.at[i, 'TGT LAT'] = group.at[j, 'Tgt Latitude'] wpns.at[i, 'TGT LONG'] = group.at[j,'Tgt Longitude'] wpns.at[i, 'TGT ELEV'] = str(group.at[j,'Tgt Elev (HAE)']) + "' HAE" try: wpns.at[i, 'BULL'] = bullcalculate(wpns.at[i, 'TGT LAT'], wpns.at[i, 'TGT LONG']) except: wpns.at[i, 'BULL'] = '' wpns = wpns.fillna('') wpns = wpns.replace('nan', '', regex=True) return wpns else: return pd.DataFrame() def jassm_report_match(debrief_filename='none', jassm_report='jrep.xlsm'): if debrief_filename == 'none': debrief_filename = QFileDialog.getOpenFileName(self, 'Open Debrief Card Excel File', os.path.join(os.path.join(os.environ['USERPROFILE']), 'Desktop'), "Excel File (*.xlsx)") if jassm_report == 'none': jassm_report = QFileDialog.getOpenFileName(self, 'Open JMPS JASSM Report Excel File', os.path.join(os.path.join(os.environ['USERPROFILE']), 'Desktop'), "Excel File (*.xlsx)") jreport =
pd.ExcelFile(jassm_report)
pandas.ExcelFile
# -*- coding: utf-8 -*- from __future__ import print_function from datetime import datetime, timedelta import functools import itertools import numpy as np import numpy.ma as ma import numpy.ma.mrecords as mrecords from numpy.random import randn import pytest from pandas.compat import ( PY3, PY36, OrderedDict, is_platform_little_endian, lmap, long, lrange, lzip, range, zip) from pandas.core.dtypes.cast import construct_1d_object_array_from_listlike from pandas.core.dtypes.common import is_integer_dtype import pandas as pd from pandas import ( Categorical, DataFrame, Index, MultiIndex, Series, Timedelta, Timestamp, compat, date_range, isna) from pandas.tests.frame.common import TestData import pandas.util.testing as tm MIXED_FLOAT_DTYPES = ['float16', 'float32', 'float64'] MIXED_INT_DTYPES = ['uint8', 'uint16', 'uint32', 'uint64', 'int8', 'int16', 'int32', 'int64'] class TestDataFrameConstructors(TestData): def test_constructor(self): df = DataFrame() assert len(df.index) == 0 df = DataFrame(data={}) assert len(df.index) == 0 def test_constructor_mixed(self): index, data = tm.getMixedTypeDict() # TODO(wesm), incomplete test? indexed_frame = DataFrame(data, index=index) # noqa unindexed_frame = DataFrame(data) # noqa assert self.mixed_frame['foo'].dtype == np.object_ def test_constructor_cast_failure(self): foo = DataFrame({'a': ['a', 'b', 'c']}, dtype=np.float64) assert foo['a'].dtype == object # GH 3010, constructing with odd arrays df = DataFrame(np.ones((4, 2))) # this is ok df['foo'] = np.ones((4, 2)).tolist() # this is not ok pytest.raises(ValueError, df.__setitem__, tuple(['test']), np.ones((4, 2))) # this is ok df['foo2'] = np.ones((4, 2)).tolist() def test_constructor_dtype_copy(self): orig_df = DataFrame({ 'col1': [1.], 'col2': [2.], 'col3': [3.]}) new_df = pd.DataFrame(orig_df, dtype=float, copy=True) new_df['col1'] = 200. assert orig_df['col1'][0] == 1. def test_constructor_dtype_nocast_view(self): df = DataFrame([[1, 2]]) should_be_view = DataFrame(df, dtype=df[0].dtype) should_be_view[0][0] = 99 assert df.values[0, 0] == 99 should_be_view = DataFrame(df.values, dtype=df[0].dtype) should_be_view[0][0] = 97 assert df.values[0, 0] == 97 def test_constructor_dtype_list_data(self): df = DataFrame([[1, '2'], [None, 'a']], dtype=object) assert df.loc[1, 0] is None assert df.loc[0, 1] == '2' def test_constructor_list_frames(self): # see gh-3243 result = DataFrame([DataFrame([])]) assert result.shape == (1, 0) result = DataFrame([DataFrame(dict(A=lrange(5)))]) assert isinstance(result.iloc[0, 0], DataFrame) def test_constructor_mixed_dtypes(self): def _make_mixed_dtypes_df(typ, ad=None): if typ == 'int': dtypes = MIXED_INT_DTYPES arrays = [np.array(np.random.rand(10), dtype=d) for d in dtypes] elif typ == 'float': dtypes = MIXED_FLOAT_DTYPES arrays = [np.array(np.random.randint( 10, size=10), dtype=d) for d in dtypes] zipper = lzip(dtypes, arrays) for d, a in zipper: assert(a.dtype == d) if ad is None: ad = dict() ad.update({d: a for d, a in zipper}) return DataFrame(ad) def _check_mixed_dtypes(df, dtypes=None): if dtypes is None: dtypes = MIXED_FLOAT_DTYPES + MIXED_INT_DTYPES for d in dtypes: if d in df: assert(df.dtypes[d] == d) # mixed floating and integer coexinst in the same frame df = _make_mixed_dtypes_df('float') _check_mixed_dtypes(df) # add lots of types df = _make_mixed_dtypes_df('float', dict(A=1, B='foo', C='bar')) _check_mixed_dtypes(df) # GH 622 df = _make_mixed_dtypes_df('int') _check_mixed_dtypes(df) def test_constructor_complex_dtypes(self): # GH10952 a = np.random.rand(10).astype(np.complex64) b = np.random.rand(10).astype(np.complex128) df = DataFrame({'a': a, 'b': b}) assert a.dtype == df.a.dtype assert b.dtype == df.b.dtype def test_constructor_dtype_str_na_values(self, string_dtype): # https://github.com/pandas-dev/pandas/issues/21083 df = DataFrame({'A': ['x', None]}, dtype=string_dtype) result = df.isna() expected = DataFrame({"A": [False, True]}) tm.assert_frame_equal(result, expected) assert df.iloc[1, 0] is None df = DataFrame({'A': ['x', np.nan]}, dtype=string_dtype) assert np.isnan(df.iloc[1, 0]) def test_constructor_rec(self): rec = self.frame.to_records(index=False) if PY3: # unicode error under PY2 rec.dtype.names = list(rec.dtype.names)[::-1] index = self.frame.index df = DataFrame(rec) tm.assert_index_equal(df.columns, pd.Index(rec.dtype.names)) df2 = DataFrame(rec, index=index) tm.assert_index_equal(df2.columns, pd.Index(rec.dtype.names)) tm.assert_index_equal(df2.index, index) rng = np.arange(len(rec))[::-1] df3 = DataFrame(rec, index=rng, columns=['C', 'B']) expected = DataFrame(rec, index=rng).reindex(columns=['C', 'B']) tm.assert_frame_equal(df3, expected) def test_constructor_bool(self): df = DataFrame({0: np.ones(10, dtype=bool), 1: np.zeros(10, dtype=bool)}) assert df.values.dtype == np.bool_ def test_constructor_overflow_int64(self): # see gh-14881 values = np.array([2 ** 64 - i for i in range(1, 10)], dtype=np.uint64) result = DataFrame({'a': values}) assert result['a'].dtype == np.uint64 # see gh-2355 data_scores = [(6311132704823138710, 273), (2685045978526272070, 23), (8921811264899370420, 45), (long(17019687244989530680), 270), (long(9930107427299601010), 273)] dtype = [('uid', 'u8'), ('score', 'u8')] data = np.zeros((len(data_scores),), dtype=dtype) data[:] = data_scores df_crawls = DataFrame(data) assert df_crawls['uid'].dtype == np.uint64 @pytest.mark.parametrize("values", [np.array([2**64], dtype=object), np.array([2**65]), [2**64 + 1], np.array([-2**63 - 4], dtype=object), np.array([-2**64 - 1]), [-2**65 - 2]]) def test_constructor_int_overflow(self, values): # see gh-18584 value = values[0] result = DataFrame(values) assert result[0].dtype == object assert result[0][0] == value def test_constructor_ordereddict(self): import random nitems = 100 nums = lrange(nitems) random.shuffle(nums) expected = ['A%d' % i for i in nums] df = DataFrame(OrderedDict(zip(expected, [[0]] * nitems))) assert expected == list(df.columns) def test_constructor_dict(self): frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}) # col2 is padded with NaN assert len(self.ts1) == 30 assert len(self.ts2) == 25 tm.assert_series_equal(self.ts1, frame['col1'], check_names=False) exp = pd.Series(np.concatenate([[np.nan] * 5, self.ts2.values]), index=self.ts1.index, name='col2') tm.assert_series_equal(exp, frame['col2']) frame = DataFrame({'col1': self.ts1, 'col2': self.ts2}, columns=['col2', 'col3', 'col4']) assert len(frame) == len(self.ts2) assert 'col1' not in frame assert isna(frame['col3']).all() # Corner cases assert len(DataFrame({})) == 0 # mix dict and array, wrong size - no spec for which error should raise # first with pytest.raises(ValueError): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # Length-one dict micro-optimization frame = DataFrame({'A': {'1': 1, '2': 2}}) tm.assert_index_equal(frame.index, pd.Index(['1', '2'])) # empty dict plus index idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx) assert frame.index is idx # empty with index and columns idx = Index([0, 1, 2]) frame = DataFrame({}, index=idx, columns=idx) assert frame.index is idx assert frame.columns is idx assert len(frame._series) == 3 # with dict of empty list and Series frame = DataFrame({'A': [], 'B': []}, columns=['A', 'B']) tm.assert_index_equal(frame.index, Index([], dtype=np.int64)) # GH 14381 # Dict with None value frame_none = DataFrame(dict(a=None), index=[0]) frame_none_list = DataFrame(dict(a=[None]), index=[0]) with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none.get_value(0, 'a') is None with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): assert frame_none_list.get_value(0, 'a') is None tm.assert_frame_equal(frame_none, frame_none_list) # GH10856 # dict with scalar values should raise error, even if columns passed msg = 'If using all scalar values, you must pass an index' with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}) with pytest.raises(ValueError, match=msg): DataFrame({'a': 0.7}, columns=['a']) @pytest.mark.parametrize("scalar", [2, np.nan, None, 'D']) def test_constructor_invalid_items_unused(self, scalar): # No error if invalid (scalar) value is in fact not used: result = DataFrame({'a': scalar}, columns=['b']) expected = DataFrame(columns=['b']) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [2, np.nan, None, float('nan')]) def test_constructor_dict_nan_key(self, value): # GH 18455 cols = [1, value, 3] idx = ['a', value] values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = DataFrame(data).sort_values(1).sort_values('a', axis=1) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values('a', axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("value", [np.nan, None, float('nan')]) def test_constructor_dict_nan_tuple_key(self, value): # GH 18455 cols = Index([(11, 21), (value, 22), (13, value)]) idx = Index([('a', value), (value, 2)]) values = [[0, 3], [1, 4], [2, 5]] data = {cols[c]: Series(values[c], index=idx) for c in range(3)} result = (DataFrame(data) .sort_values((11, 21)) .sort_values(('a', value), axis=1)) expected = DataFrame(np.arange(6, dtype='int64').reshape(2, 3), index=idx, columns=cols) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx).sort_values(('a', value), axis=1) tm.assert_frame_equal(result, expected) result = DataFrame(data, index=idx, columns=cols) tm.assert_frame_equal(result, expected) @pytest.mark.skipif(not PY36, reason='Insertion order for Python>=3.6') def test_constructor_dict_order_insertion(self): # GH19018 # initialization ordering: by insertion order if python>= 3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ba')) tm.assert_frame_equal(frame, expected) @pytest.mark.skipif(PY36, reason='order by value for Python<3.6') def test_constructor_dict_order_by_values(self): # GH19018 # initialization ordering: by value if python<3.6 d = {'b': self.ts2, 'a': self.ts1} frame = DataFrame(data=d) expected = DataFrame(data=d, columns=list('ab')) tm.assert_frame_equal(frame, expected) def test_constructor_multi_index(self): # GH 4078 # construction error with mi and all-nan frame tuples = [(2, 3), (3, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() tuples = [(3, 3), (2, 3), (3, 3)] mi = MultiIndex.from_tuples(tuples) df = DataFrame(index=mi, columns=mi) assert pd.isna(df).values.ravel().all() def test_constructor_error_msgs(self): msg = "Empty data passed with indices specified." # passing an empty array with columns specified. with pytest.raises(ValueError, match=msg): DataFrame(np.empty(0), columns=list('abc')) msg = "Mixing dicts with non-Series may lead to ambiguous ordering." # mix dict and array, wrong size with pytest.raises(ValueError, match=msg): DataFrame({'A': {'a': 'a', 'b': 'b'}, 'B': ['a', 'b', 'c']}) # wrong size ndarray, GH 3105 msg = r"Shape of passed values is \(3, 4\), indices imply \(3, 3\)" with pytest.raises(ValueError, match=msg): DataFrame(np.arange(12).reshape((4, 3)), columns=['foo', 'bar', 'baz'], index=pd.date_range('2000-01-01', periods=3)) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(np.zeros((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # wrong size axis labels msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(3, 1\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B', 'C'], index=[1]) msg = ("Shape of passed values " r"is \(3, 2\), indices " r"imply \(2, 2\)") with pytest.raises(ValueError, match=msg): DataFrame(np.random.rand(2, 3), columns=['A', 'B'], index=[1, 2]) msg = ("If using all scalar " "values, you must pass " "an index") with pytest.raises(ValueError, match=msg): DataFrame({'a': False, 'b': True}) def test_constructor_with_embedded_frames(self): # embedded data frames df1 = DataFrame({'a': [1, 2, 3], 'b': [3, 4, 5]}) df2 = DataFrame([df1, df1 + 10]) df2.dtypes str(df2) result = df2.loc[0, 0] tm.assert_frame_equal(result, df1) result = df2.loc[1, 0] tm.assert_frame_equal(result, df1 + 10) def test_constructor_subclass_dict(self): # Test for passing dict subclass to constructor data = {'col1': tm.TestSubDict((x, 10.0 * x) for x in range(10)), 'col2': tm.TestSubDict((x, 20.0 * x) for x in range(10))} df = DataFrame(data) refdf = DataFrame({col: dict(compat.iteritems(val)) for col, val in compat.iteritems(data)}) tm.assert_frame_equal(refdf, df) data = tm.TestSubDict(compat.iteritems(data)) df = DataFrame(data) tm.assert_frame_equal(refdf, df) # try with defaultdict from collections import defaultdict data = {} self.frame['B'][:10] = np.nan for k, v in compat.iteritems(self.frame): dct = defaultdict(dict) dct.update(v.to_dict()) data[k] = dct frame = DataFrame(data) tm.assert_frame_equal(self.frame.sort_index(), frame) def test_constructor_dict_block(self): expected = np.array([[4., 3., 2., 1.]]) df = DataFrame({'d': [4.], 'c': [3.], 'b': [2.], 'a': [1.]}, columns=['d', 'c', 'b', 'a']) tm.assert_numpy_array_equal(df.values, expected) def test_constructor_dict_cast(self): # cast float tests test_data = { 'A': {'1': 1, '2': 2}, 'B': {'1': '1', '2': '2', '3': '3'}, } frame = DataFrame(test_data, dtype=float) assert len(frame) == 3 assert frame['B'].dtype == np.float64 assert frame['A'].dtype == np.float64 frame = DataFrame(test_data) assert len(frame) == 3 assert frame['B'].dtype == np.object_ assert frame['A'].dtype == np.float64 # can't cast to float test_data = { 'A': dict(zip(range(20), tm.makeStringIndex(20))), 'B': dict(zip(range(15), randn(15))) } frame = DataFrame(test_data, dtype=float) assert len(frame) == 20 assert frame['A'].dtype == np.object_ assert frame['B'].dtype == np.float64 def test_constructor_dict_dont_upcast(self): d = {'Col1': {'Row1': 'A String', 'Row2': np.nan}} df = DataFrame(d) assert isinstance(df['Col1']['Row2'], float) dm = DataFrame([[1, 2], ['a', 'b']], index=[1, 2], columns=[1, 2]) assert isinstance(dm[1][1], int) def test_constructor_dict_of_tuples(self): # GH #1491 data = {'a': (1, 2, 3), 'b': (4, 5, 6)} result = DataFrame(data) expected = DataFrame({k: list(v) for k, v in compat.iteritems(data)}) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_dict_multiindex(self): def check(result, expected): return tm.assert_frame_equal(result, expected, check_dtype=True, check_index_type=True, check_column_type=True, check_names=True) d = {('a', 'a'): {('i', 'i'): 0, ('i', 'j'): 1, ('j', 'i'): 2}, ('b', 'a'): {('i', 'i'): 6, ('i', 'j'): 5, ('j', 'i'): 4}, ('b', 'c'): {('i', 'i'): 7, ('i', 'j'): 8, ('j', 'i'): 9}} _d = sorted(d.items()) df = DataFrame(d) expected = DataFrame( [x[1] for x in _d], index=MultiIndex.from_tuples([x[0] for x in _d])).T expected.index = MultiIndex.from_tuples(expected.index) check(df, expected) d['z'] = {'y': 123., ('i', 'i'): 111, ('i', 'j'): 111, ('j', 'i'): 111} _d.insert(0, ('z', d['z'])) expected = DataFrame( [x[1] for x in _d], index=Index([x[0] for x in _d], tupleize_cols=False)).T expected.index = Index(expected.index, tupleize_cols=False) df = DataFrame(d) df = df.reindex(columns=expected.columns, index=expected.index) check(df, expected) def test_constructor_dict_datetime64_index(self): # GH 10160 dates_as_str = ['1984-02-19', '1988-11-06', '1989-12-03', '1990-03-15'] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(dates_as_str)} data_datetime64 = create_data(np.datetime64) data_datetime = create_data(lambda x: datetime.strptime(x, '%Y-%m-%d')) data_Timestamp = create_data(Timestamp) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timestamp(dt) for dt in dates_as_str]) result_datetime64 = DataFrame(data_datetime64) result_datetime = DataFrame(data_datetime) result_Timestamp = DataFrame(data_Timestamp) tm.assert_frame_equal(result_datetime64, expected) tm.assert_frame_equal(result_datetime, expected) tm.assert_frame_equal(result_Timestamp, expected) def test_constructor_dict_timedelta64_index(self): # GH 10160 td_as_int = [1, 2, 3, 4] def create_data(constructor): return {i: {constructor(s): 2 * i} for i, s in enumerate(td_as_int)} data_timedelta64 = create_data(lambda x: np.timedelta64(x, 'D')) data_timedelta = create_data(lambda x: timedelta(days=x)) data_Timedelta = create_data(lambda x: Timedelta(x, 'D')) expected = DataFrame([{0: 0, 1: None, 2: None, 3: None}, {0: None, 1: 2, 2: None, 3: None}, {0: None, 1: None, 2: 4, 3: None}, {0: None, 1: None, 2: None, 3: 6}], index=[Timedelta(td, 'D') for td in td_as_int]) result_timedelta64 = DataFrame(data_timedelta64) result_timedelta = DataFrame(data_timedelta) result_Timedelta = DataFrame(data_Timedelta) tm.assert_frame_equal(result_timedelta64, expected) tm.assert_frame_equal(result_timedelta, expected) tm.assert_frame_equal(result_Timedelta, expected) def test_constructor_period(self): # PeriodIndex a = pd.PeriodIndex(['2012-01', 'NaT', '2012-04'], freq='M') b = pd.PeriodIndex(['2012-02-01', '2012-03-01', 'NaT'], freq='D') df = pd.DataFrame({'a': a, 'b': b}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype # list of periods df = pd.DataFrame({'a': a.astype(object).tolist(), 'b': b.astype(object).tolist()}) assert df['a'].dtype == a.dtype assert df['b'].dtype == b.dtype def test_nested_dict_frame_constructor(self): rng = pd.period_range('1/1/2000', periods=5) df = DataFrame(randn(10, 5), columns=rng) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(col, {})[row] = df.get_value(row, col) result = DataFrame(data, columns=rng) tm.assert_frame_equal(result, df) data = {} for col in df.columns: for row in df.index: with tm.assert_produces_warning(FutureWarning, check_stacklevel=False): data.setdefault(row, {})[col] = df.get_value(row, col) result = DataFrame(data, index=rng).T tm.assert_frame_equal(result, df) def _check_basic_constructor(self, empty): # mat: 2d matrix with shape (3, 2) to input. empty - makes sized # objects mat = empty((2, 3), dtype=float) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 # 1-D input frame = DataFrame(empty((3,)), columns=['A'], index=[1, 2, 3]) assert len(frame.index) == 3 assert len(frame.columns) == 1 # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # wrong size axis labels msg = r'Shape of passed values is \(3, 2\), indices imply \(3, 1\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B', 'C'], index=[1]) msg = r'Shape of passed values is \(3, 2\), indices imply \(2, 2\)' with pytest.raises(ValueError, match=msg): DataFrame(mat, columns=['A', 'B'], index=[1, 2]) # higher dim raise exception with pytest.raises(ValueError, match='Must pass 2-d input'): DataFrame(empty((3, 3, 3)), columns=['A', 'B', 'C'], index=[1]) # automatic labeling frame = DataFrame(mat) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, index=[1, 2]) tm.assert_index_equal(frame.columns, pd.Index(lrange(3))) frame = DataFrame(mat, columns=['A', 'B', 'C']) tm.assert_index_equal(frame.index, pd.Index(lrange(2))) # 0-length axis frame = DataFrame(empty((0, 3))) assert len(frame.index) == 0 frame = DataFrame(empty((3, 0))) assert len(frame.columns) == 0 def test_constructor_ndarray(self): self._check_basic_constructor(np.ones) frame = DataFrame(['foo', 'bar'], index=[0, 1], columns=['A']) assert len(frame) == 2 def test_constructor_maskedarray(self): self._check_basic_constructor(ma.masked_all) # Check non-masked values mat = ma.masked_all((2, 3), dtype=float) mat[0, 0] = 1.0 mat[1, 2] = 2.0 frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert 1.0 == frame['A'][1] assert 2.0 == frame['C'][2] # what is this even checking?? mat = ma.masked_all((2, 3), dtype=float) frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert np.all(~np.asarray(frame == frame)) def test_constructor_maskedarray_nonfloat(self): # masked int promoted to float mat = ma.masked_all((2, 3), dtype=int) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.float64) assert frame.values.dtype == np.float64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'][1] assert 2 == frame['C'][2] # masked np.datetime64 stays (use NaT as null) mat = ma.masked_all((2, 3), dtype='M8[ns]') # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert isna(frame).values.all() # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=np.int64) assert frame.values.dtype == np.int64 # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = 1 mat2[1, 2] = 2 frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert 1 == frame['A'].view('i8')[1] assert 2 == frame['C'].view('i8')[2] # masked bool promoted to object mat = ma.masked_all((2, 3), dtype=bool) # 2-D input frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2]) assert len(frame.index) == 2 assert len(frame.columns) == 3 assert np.all(~np.asarray(frame == frame)) # cast type frame = DataFrame(mat, columns=['A', 'B', 'C'], index=[1, 2], dtype=object) assert frame.values.dtype == object # Check non-masked values mat2 = ma.copy(mat) mat2[0, 0] = True mat2[1, 2] = False frame = DataFrame(mat2, columns=['A', 'B', 'C'], index=[1, 2]) assert frame['A'][1] is True assert frame['C'][2] is False def test_constructor_mrecarray(self): # Ensure mrecarray produces frame identical to dict of masked arrays # from GH3479 assert_fr_equal = functools.partial(tm.assert_frame_equal, check_index_type=True, check_column_type=True, check_frame_type=True) arrays = [ ('float', np.array([1.5, 2.0])), ('int', np.array([1, 2])), ('str', np.array(['abc', 'def'])), ] for name, arr in arrays[:]: arrays.append(('masked1_' + name, np.ma.masked_array(arr, mask=[False, True]))) arrays.append(('masked_all', np.ma.masked_all((2,)))) arrays.append(('masked_none', np.ma.masked_array([1.0, 2.5], mask=False))) # call assert_frame_equal for all selections of 3 arrays for comb in itertools.combinations(arrays, 3): names, data = zip(*comb) mrecs = mrecords.fromarrays(data, names=names) # fill the comb comb = {k: (v.filled() if hasattr(v, 'filled') else v) for k, v in comb} expected = DataFrame(comb, columns=names) result = DataFrame(mrecs) assert_fr_equal(result, expected) # specify columns expected = DataFrame(comb, columns=names[::-1]) result = DataFrame(mrecs, columns=names[::-1]) assert_fr_equal(result, expected) # specify index expected = DataFrame(comb, columns=names, index=[1, 2]) result = DataFrame(mrecs, index=[1, 2]) assert_fr_equal(result, expected) def test_constructor_corner_shape(self): df = DataFrame(index=[]) assert df.values.shape == (0, 0) @pytest.mark.parametrize("data, index, columns, dtype, expected", [ (None, lrange(10), ['a', 'b'], object, np.object_), (None, None, ['a', 'b'], 'int64', np.dtype('int64')), (None, lrange(10), ['a', 'b'], int, np.dtype('float64')), ({}, None, ['foo', 'bar'], None, np.object_), ({'b': 1}, lrange(10), list('abc'), int, np.dtype('float64')) ]) def test_constructor_dtype(self, data, index, columns, dtype, expected): df = DataFrame(data, index, columns, dtype) assert df.values.dtype == expected def test_constructor_scalar_inference(self): data = {'int': 1, 'bool': True, 'float': 3., 'complex': 4j, 'object': 'foo'} df = DataFrame(data, index=np.arange(10)) assert df['int'].dtype == np.int64 assert df['bool'].dtype == np.bool_ assert df['float'].dtype == np.float64 assert df['complex'].dtype == np.complex128 assert df['object'].dtype == np.object_ def test_constructor_arrays_and_scalars(self): df = DataFrame({'a': randn(10), 'b': True}) exp = DataFrame({'a': df['a'].values, 'b': [True] * 10}) tm.assert_frame_equal(df, exp) with pytest.raises(ValueError, match='must pass an index'): DataFrame({'a': False, 'b': True}) def test_constructor_DataFrame(self): df = DataFrame(self.frame) tm.assert_frame_equal(df, self.frame) df_casted = DataFrame(self.frame, dtype=np.int64) assert df_casted.values.dtype == np.int64 def test_constructor_more(self): # used to be in test_matrix.py arr = randn(10) dm = DataFrame(arr, columns=['A'], index=np.arange(10)) assert dm.values.ndim == 2 arr = randn(0) dm = DataFrame(arr) assert dm.values.ndim == 2 assert dm.values.ndim == 2 # no data specified dm = DataFrame(columns=['A', 'B'], index=np.arange(10)) assert dm.values.shape == (10, 2) dm = DataFrame(columns=['A', 'B']) assert dm.values.shape == (0, 2) dm = DataFrame(index=np.arange(10)) assert dm.values.shape == (10, 0) # can't cast mat = np.array(['foo', 'bar'], dtype=object).reshape(2, 1) with pytest.raises(ValueError, match='cast'): DataFrame(mat, index=[0, 1], columns=[0], dtype=float) dm = DataFrame(DataFrame(self.frame._series)) tm.assert_frame_equal(dm, self.frame) # int cast dm = DataFrame({'A': np.ones(10, dtype=int), 'B': np.ones(10, dtype=np.float64)}, index=np.arange(10)) assert len(dm.columns) == 2 assert dm.values.dtype == np.float64 def test_constructor_empty_list(self): df = DataFrame([], index=[]) expected = DataFrame(index=[]) tm.assert_frame_equal(df, expected) # GH 9939 df = DataFrame([], columns=['A', 'B']) expected = DataFrame({}, columns=['A', 'B']) tm.assert_frame_equal(df, expected) # Empty generator: list(empty_gen()) == [] def empty_gen(): return yield df = DataFrame(empty_gen(), columns=['A', 'B']) tm.assert_frame_equal(df, expected) def test_constructor_list_of_lists(self): # GH #484 df = DataFrame(data=[[1, 'a'], [2, 'b']], columns=["num", "str"]) assert is_integer_dtype(df['num']) assert df['str'].dtype == np.object_ # GH 4851 # list of 0-dim ndarrays expected = DataFrame({0: np.arange(10)}) data = [np.array(x) for x in range(10)] result = DataFrame(data) tm.assert_frame_equal(result, expected) def test_constructor_sequence_like(self): # GH 3783 # collections.Squence like class DummyContainer(compat.Sequence): def __init__(self, lst): self._lst = lst def __getitem__(self, n): return self._lst.__getitem__(n) def __len__(self, n): return self._lst.__len__() lst_containers = [DummyContainer([1, 'a']), DummyContainer([2, 'b'])] columns = ["num", "str"] result = DataFrame(lst_containers, columns=columns) expected = DataFrame([[1, 'a'], [2, 'b']], columns=columns) tm.assert_frame_equal(result, expected, check_dtype=False) # GH 4297 # support Array import array result = DataFrame({'A': array.array('i', range(10))}) expected = DataFrame({'A': list(range(10))}) tm.assert_frame_equal(result, expected, check_dtype=False) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([array.array('i', range(10)), array.array('i', range(10))]) tm.assert_frame_equal(result, expected, check_dtype=False) def test_constructor_iterable(self): # GH 21987 class Iter(): def __iter__(self): for i in range(10): yield [1, 2, 3] expected = DataFrame([[1, 2, 3]] * 10) result = DataFrame(Iter()) tm.assert_frame_equal(result, expected) def test_constructor_iterator(self): expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([range(10), range(10)]) tm.assert_frame_equal(result, expected) def test_constructor_generator(self): # related #2305 gen1 = (i for i in range(10)) gen2 = (i for i in range(10)) expected = DataFrame([list(range(10)), list(range(10))]) result = DataFrame([gen1, gen2]) tm.assert_frame_equal(result, expected) gen = ([i, 'a'] for i in range(10)) result = DataFrame(gen) expected = DataFrame({0:
range(10)
pandas.compat.range
""" Glue code for conducting experiment 1 """ import os # os.environ["TF_MIN_GPU_MULTIPROCESSOR_COUNT"] = "4" # No verbose logging from TF os.environ["TF_CPP_MIN_LOG_LEVEL"] = "1" import time import random import argparse import signal import numpy as np from pathlib import Path import pandas from ensemble_experiments.datagen2d import CLASS_A, CLASS_B def entropy_variance(stats: pandas.DataFrame, L: int): """ Entropy Measure for Variance Parameters: stats: DataFrame with 'correct_count' and 'incorrect_count' columns detailing the number of networks that correctly and incorrectly classified each validation point respectively L: The number of networks in the ensemble """ if L == 1: return 0 N = len(stats) minimum_counts = stats.loc[:, ('correct_count', 'incorrect_count')].min(axis=1) coeff = 1/(L - np.ceil(L / 2)) mult = coeff * minimum_counts summation = mult.sum() E = summation / N return E def train(train_df, test_df, save_dir, epochs, verbose, net_number, learn_rate, hidden_nodes, patience): save_net = save_dir / "net.h5" save_overtrained_net = save_dir / "overtrained_net.h5" import keras from keras.callbacks import EarlyStopping from keras.models import Sequential from keras.layers import Dense from keras.optimizers import SGD start_time = time.time() if save_net.exists() and save_overtrained_net.exists(): print(f"Models already exist for {save_net}") else: print(f"Training for {save_net}") train_classes = train_df["class"].values test_classes = test_df["class"].values train_data = train_df.as_matrix(columns=("x", "y")) test_data = test_df.as_matrix(columns=("x", "y")) stopper = EarlyStopping( monitor="val_acc", patience=patience, verbose=verbose, ) model = Sequential([ Dense(hidden_nodes, input_shape=(2,), activation="sigmoid"), Dense(1, activation="sigmoid") ]) model.compile( loss="binary_crossentropy", optimizer=SGD(lr=learn_rate), metrics=["accuracy"] ) hist = model.fit( train_data, train_classes, verbose=verbose, epochs=epochs, validation_data=(test_data, test_classes), callbacks=[stopper] ) model.save(save_net) op_epochs = len(hist.epoch) ot_epochs = op_epochs * 10 print(f"Trained to {op_epochs} epochs as determined by early exit, saved to {save_net}\n" f"Beginning overtrain to {ot_epochs} epochs") train_time = time.time() print(f">> Train Time: {train_time-start_time:.2f} seconds") model.fit( train_data, train_classes, verbose=verbose, epochs=ot_epochs, initial_epoch=op_epochs, validation_data=(test_data, test_classes) ) model.save(save_overtrained_net) print(f"Overtrained to {ot_epochs} epochs, saved to {save_overtrained_net}") end_time = time.time() print(f">> Overtrain Time: {end_time-train_time:.2f} seconds") print(f">>>> Total Time: {end_time-start_time:.2f} seconds") # Avoid Memory Leak https://github.com/keras-team/keras/issues/2102 keras.backend.clear_session() return { "id": net_number, "dir": save_dir, "net": save_net, "ot_net": save_overtrained_net } def main(args): print("Running Experiment") import ensemble_experiments.datagen2d as dg print(f"BEGIN RUN FOR ERROR RATE {args.error_rate}%") ratedir = args.save_dir / f"error-{args.error_rate}" ratedir.mkdir(exist_ok=True, parents=True) data_csv = ratedir / "data.csv" if not data_csv.exists(): data = dg.generate_data(args.data_size, args.error_rate) data.to_csv(data_csv) else: data = pandas.read_csv(data_csv) val_data_csv = ratedir / "validation.csv" if not val_data_csv.exists(): val_data = dg.generate_data(args.val_data_size, args.error_rate) val_data.to_csv(val_data_csv) else: val_data =
pandas.read_csv(val_data_csv)
pandas.read_csv
# Multiple Linear Regression # Importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd # Importing the dataset from sklearn.datasets import load_boston dataset = load_boston() df =
pd.DataFrame(dataset.data)
pandas.DataFrame
import pandas as pd from unittest import TestCase, main from metapool.amplipool import assign_emp_index, _load_emp_indices class AmplipoolTests(TestCase): def setUp(self): self.plate_metadata = pd.DataFrame([ { 'Plate Position': '1', 'Primer Plate #': '1', 'Plating': 'SF', 'Extraction Kit Lot': '166032128', 'Extraction Robot': 'Carmen_HOWE_KF3', 'TM1000 8 Tool': '109379Z', 'Primer Date': '2021-08-17', 'MasterMix Lot': '978215', 'Water Lot': 'RNBJ0628', 'Processing Robot': 'Echo550', 'Sample Plate': 'THDMI_UK_Plate_2', 'Project_Name': 'THDMI UK', 'Original Name': '' }, { 'Plate Position': '2', 'Primer Plate #': '2', 'Plating': 'AS', 'Extraction Kit Lot': '166032128', 'Extraction Robot': 'Carmen_HOWE_KF4', 'TM1000 8 Tool': '109379Z', 'Primer Date': '2021-08-17', 'MasterMix Lot': '978215', 'Water Lot': 'RNBJ0628', 'Processing Robot': 'Echo550', 'Sample Plate': 'THDMI_UK_Plate_3', 'Project_Name': 'THDMI UK', 'Original Name': '' }, { 'Plate Position': '3', 'Primer Plate #': '3', 'Plating': 'MB_SF', 'Extraction Kit Lot': '166032128', 'Extraction Robot': 'Carmen_HOWE_KF3', 'TM1000 8 Tool': '109379Z', 'Primer Date': '2021-08-17', 'MasterMix Lot': '978215', 'Water Lot': 'RNBJ0628', 'Processing Robot': 'Echo550', 'Sample Plate': 'THDMI_UK_Plate_4', 'Project_Name': 'THDMI UK', 'Original Name': '' }, { 'Plate Position': '4', 'Primer Plate #': '4', 'Plating': 'AS', 'Extraction Kit Lot': '166032128', 'Extraction Robot': 'Carmen_HOWE_KF4', 'TM1000 8 Tool': '109379Z', 'Primer Date': '2021-08-17', 'MasterMix Lot': '978215', 'Water Lot': 'RNBJ0628', 'Processing Robot': 'Echo550', 'Sample Plate': 'THDMI_US_Plate_6', 'Project_Name': 'THDMI US', 'Original Name': '' } ]) columns = ['Sample', 'Row', 'Col', 'Blank', 'Project Plate', 'Project Name', 'Compressed Plate Name', 'Well'] data = [ ['X00180471', 'A', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'A1'], ['X00180199', 'C', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'C1'], ['X00179789', 'E', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'E1'], ['X00180201', 'G', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'G1'], ['X00180464', 'I', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'I1'], ['X00179796', 'K', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'K1']] self.df = pd.DataFrame(columns=columns, data=data) self.seqtype = '16S' def test_assign_emp_index_position_one(self): obs = assign_emp_index(self.df, self.plate_metadata, self.seqtype) data = [ ['X00180471', 'A', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'A1', '1', '1', 'SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_2', 'THDMI UK', '', '1', 'A1', '515rcbc0', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'AGCCTTCGTCGC', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAGATCTACACGCTAG' 'CCTTCGTCGCTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')], ['X00180199', 'C', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'C1', '1', '1', 'SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_2', 'THDMI UK', '', '1', 'B1', '515rcbc12', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'CGTATAAATGCG', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAGATCTACACGCTCG' 'TATAAATGCGTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')], ['X00179789', 'E', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'E1', '1', '1', 'SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_2', 'THDMI UK', '', '1', 'C1', '515rcbc24', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'TGACTAATGGCC', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAGATCTACACGCTTGAC' 'TAATGGCCTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')], ['X00180201', 'G', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'G1', '1', '1', 'SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_2', 'THDMI UK', '', '1', 'D1', '515rcbc36', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'GTGGAGTCTCAT', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAGATCTACACGC' 'TGTGGAGTCTCATTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')], ['X00180464', 'I', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'I1', '1', '1', 'SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_2', 'THDMI UK', '', '1', 'E1', '515rcbc48', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'TGATGTGCTAAG', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAGATCTACACGCTTGATGTG' 'CTAAGTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')], ['X00179796', 'K', 1, False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'K1', '1', '1', 'SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_2', 'THDMI UK', '', '1', 'F1', '515rcbc60', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'TGTGCACGCCAT', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAG' 'ATCTACACGCTTGTGCACGCCATTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')] ] exp = pd.DataFrame( columns=['Sample', 'Row', 'Col', 'Blank', 'Project Plate', 'Project Name', 'Compressed Plate Name', 'Well', 'Plate Position', 'Primer Plate #', 'Plating', 'Extraction Kit Lot', 'Extraction Robot', 'TM1000 8 Tool', 'Primer Date', 'MasterMix Lot', 'Water Lot', 'Processing Robot', 'Sample Plate', 'Project_Name', 'Original Name', 'Plate', 'EMP Primer Plate Well', 'Name', "Illumina 5prime Adapter", 'Golay Barcode', 'Forward Primer Pad', 'Forward Primer Linker', '515FB Forward Primer (Parada)', 'Primer For PCR'], data=data ) pd.testing.assert_frame_equal(obs, exp) def test_assign_emp_index_multiple_positions(self): # change some of the well ids and their primer plates to spot check # that correct barcodes are retrieved from the EMP indices file # position 1 gets primer plate 5 self.plate_metadata.loc[0, 'Primer Plate #'] = '5' self.df.loc[0, 'Row'] = 'A' self.df.loc[0, 'Col'] = '1' self.df.loc[0, 'Well'] = 'A1' # position 2 gets primer plate 6 self.plate_metadata.loc[1, 'Primer Plate #'] = '6' self.df.loc[1, 'Row'] = 'A' self.df.loc[1, 'Col'] = '4' self.df.loc[1, 'Well'] = 'A4' # position 3 gets primer plate 9 self.plate_metadata.loc[2, 'Primer Plate #'] = '9' self.df.loc[2, 'Row'] = 'D' self.df.loc[2, 'Col'] = '7' self.df.loc[2, 'Well'] = 'D7' self.df.loc[3, 'Row'] = 'F' self.df.loc[3, 'Col'] = '9' self.df.loc[3, 'Well'] = 'F9' # position 4 gets primer plate 10 self.plate_metadata.loc[3, 'Primer Plate #'] = '10' self.df.loc[4, 'Row'] = 'B' self.df.loc[4, 'Col'] = '6' self.df.loc[4, 'Well'] = 'B6' self.df.loc[5, 'Row'] = 'F' self.df.loc[5, 'Col'] = '10' self.df.loc[5, 'Well'] = 'F10' obs1 = assign_emp_index(self.df, self.plate_metadata, '16S') obs2 = assign_emp_index(self.df, self.plate_metadata, '18S') obs3 = assign_emp_index(self.df, self.plate_metadata, 'ITS') data1 = [ ['X00180471', 'A', '1', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'A1', '1', '5', 'SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_2', 'THDMI UK', '', '5', 'A1', '515rcbc384', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'ATGTTAGGGAAT', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAGATCTACACGCTATGTTAGG' 'GAATTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')], ['X00180199', 'A', '4', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'A4', '2', '6', 'AS', '166032128', 'Carmen_HOWE_KF4', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_3', 'THDMI UK', '', '6', 'A2', '515rcbc481', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'CTACCGATTGCG', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAGATCTACACGCTCTACCGAT' 'TGCGTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')], ['X00179789', 'D', '7', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'D7', '3', '9', 'MB_SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_4', 'THDMI UK', '', '9', 'B4', '515rcbc783', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'GGTTACGGTTAC', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAGATCTACACGCTGGTTACGG' 'TTACTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')], ['X00180201', 'F', '9', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'F9', '3', '9', 'MB_SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_4', 'THDMI UK', '', '9', 'C5', '515rcbc796', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'GATCTGCGATCC', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAGATCTACACGCTGATCTGCG' 'ATCCTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')], ['X00180464', 'B', '6', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'B6', '4', '10', 'AS', '166032128', 'Carmen_HOWE_KF4', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_US_Plate_6', 'THDMI US', '', '10', 'A3', '515rcbc866', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'TTGACGACATCG', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAGATCTACACGCTTTGACGAC' 'ATCGTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')], ['X00179796', 'F', '10', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'F10', '4', '10', 'AS', '166032128', 'Carmen_HOWE_KF4', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_US_Plate_6', 'THDMI US', '', '10', 'C5', '515rcbc892', 'AATGATACGGCGACCACCGAGATCTACACGCT', 'TAGAGGCGTAGG', 'TATGGTAATT', 'GT', 'GTGYCAGCMGCCGCGGTAA', ('AATGATACGGCGACCACCGAGATCTACACGCTTAGAGGCG' 'TAGGTATGGTAATTGTGTGYCAGCMGCCGCGGTAA')] ] data2 = [ ['X00180471', 'A', '1', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'A1', '1', '5', 'SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_2', 'THDMI UK', '', '5', 'A1', 'EukBr_Hiseq_0411', 'CAAGCAGAAGACGGCATACGAGAT', 'AACAAACTGCCA', 'AGTCAGTCAG', 'CA', 'TGATCCTTCTGCAGGTTCACCTAC', ('CAAGCAGAAGACGGCATACGAGATAACAAACTGCCAAGTCAG' 'TCAGCATGATCCTTCTGCAGGTTCACCTAC')], ['X00180199', 'A', '4', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'A4', '2', '6', 'AS', '166032128', 'Carmen_HOWE_KF4', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_3', 'THDMI UK', '', '6', 'A2', 'EukBr_Hiseq_0508', 'CAAGCAGAAGACGGCATACGAGAT', 'GGAGAGATCACG', 'AGTCAGTCAG', 'CA', 'TGATCCTTCTGCAGGTTCACCTAC', ('CAAGCAGAAGACGGCATACGAGATGGAGAGATCACGAGTCAG' 'TCAGCATGATCCTTCTGCAGGTTCACCTAC')], ['X00179789', 'D', '7', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'D7', '3', '9', 'MB_SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_4', 'THDMI UK', '', '9', 'B4', 'EukBr_Hiseq_0810', 'CAAGCAGAAGACGGCATACGAGAT', 'CATTTGACGACG', 'AGTCAGTCAG', 'CA', 'TGATCCTTCTGCAGGTTCACCTAC', ('CAAGCAGAAGACGGCATACGAGATCATTTGACGACGAGTCAG' 'TCAGCATGATCCTTCTGCAGGTTCACCTAC')], ['X00180201', 'F', '9', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'F9', '3', '9', 'MB_SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_4', 'THDMI UK', '', '9', 'C5', 'EukBr_Hiseq_0823', 'CAAGCAGAAGACGGCATACGAGAT', 'CACGTTTATTCC', 'AGTCAGTCAG', 'CA', 'TGATCCTTCTGCAGGTTCACCTAC', ('CAAGCAGAAGACGGCATACGAGATCACGTTTATTCCAGTCAG' 'TCAGCATGATCCTTCTGCAGGTTCACCTAC')], ['X00180464', 'B', '6', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'B6', '4', '10', 'AS', '166032128', 'Carmen_HOWE_KF4', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_US_Plate_6', 'THDMI US', '', '10', 'A3', 'EukBr_Hiseq_0893', 'CAAGCAGAAGACGGCATACGAGAT', 'GTATGGAGCTAT', 'AGTCAGTCAG', 'CA', 'TGATCCTTCTGCAGGTTCACCTAC', ('CAAGCAGAAGACGGCATACGAGATGTATGGAGCTATAGTCAG' 'TCAGCATGATCCTTCTGCAGGTTCACCTAC')], ['X00179796', 'F', '10', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'F10', '4', '10', 'AS', '166032128', 'Carmen_HOWE_KF4', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_US_Plate_6', 'THDMI US', '', '10', 'C5', 'EukBr_Hiseq_0919', 'CAAGCAGAAGACGGCATACGAGAT', 'CAGCCTGCAAAT', 'AGTCAGTCAG', 'CA', 'TGATCCTTCTGCAGGTTCACCTAC', ('CAAGCAGAAGACGGCATACGAGATCAGCCTGCAAATAGTCAG' 'TCAGCATGATCCTTCTGCAGGTTCACCTAC')] ] data3 = [ ['X00180471', 'A', '1', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'A1', '1', '5', 'SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_2', 'THDMI UK', '', '5', 'A1', 'kabir_ITS2rcbc384', 'CAAGCAGAAGACGGCATACGAGAT', 'GGAATTATCGGT', '', 'CG', 'GCTGCGTTCTTCATCGATGC', ('CAAGCAGAAGACGGCATACGAGATGGAATTAT' 'CGGTCGGCTGCGTTCTTCATCGATGC')], ['X00180199', 'A', '4', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'A4', '2', '6', 'AS', '166032128', 'Carmen_HOWE_KF4', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_3', 'THDMI UK', '', '6', 'A2', 'kabir_ITS2rcbc481', 'CAAGCAGAAGACGGCATACGAGAT', 'TGACGTAGAACT', '', 'CG', 'GCTGCGTTCTTCATCGATGC', ('CAAGCAGAAGACGGCATACGAGATTGACGTAG' 'AACTCGGCTGCGTTCTTCATCGATGC')], ['X00179789', 'D', '7', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'D7', '3', '9', 'MB_SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_4', 'THDMI UK', '', '9', 'B4', 'kabir_ITS2rcbc783', 'CAAGCAGAAGACGGCATACGAGAT', 'ATCGATCCACAG', '', 'CG', 'GCTGCGTTCTTCATCGATGC', ('CAAGCAGAAGACGGCATACGAGATATCGATCC' 'ACAGCGGCTGCGTTCTTCATCGATGC')], ['X00180201', 'F', '9', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'F9', '3', '9', 'MB_SF', '166032128', 'Carmen_HOWE_KF3', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_UK_Plate_4', 'THDMI UK', '', '9', 'C5', 'kabir_ITS2rcbc796', 'CAAGCAGAAGACGGCATACGAGAT', 'TCCAGGGCTATA', '', 'CG', 'GCTGCGTTCTTCATCGATGC', ('CAAGCAGAAGACGGCATACGAGATTCCAGGGC' 'TATACGGCTGCGTTCTTCATCGATGC')], ['X00180464', 'B', '6', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'B6', '4', '10', 'AS', '166032128', 'Carmen_HOWE_KF4', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_US_Plate_6', 'THDMI US', '', '10', 'A3', 'kabir_ITS2rcbc866', 'CAAGCAGAAGACGGCATACGAGAT', 'ACATGTCACGTG', '', 'CG', 'GCTGCGTTCTTCATCGATGC', ('CAAGCAGAAGACGGCATACGAGATACATGTCA' 'CGTGCGGCTGCGTTCTTCATCGATGC')], ['X00179796', 'F', '10', False, 'THDMI_10317_PUK2', 'THDMI_10317', 'THDMI_10317_UK2-US6', 'F10', '4', '10', 'AS', '166032128', 'Carmen_HOWE_KF4', '109379Z', '2021-08-17', '978215', 'RNBJ0628', 'Echo550', 'THDMI_US_Plate_6', 'THDMI US', '', '10', 'C5', 'kabir_ITS2rcbc892', 'CAAGCAGAAGACGGCATACGAGAT', 'ACGTGAGGAACG', '', 'CG', 'GCTGCGTTCTTCATCGATGC', ('CAAGCAGAAGACGGCATACGAGATACGTGAGG' 'AACGCGGCTGCGTTCTTCATCGATGC')] ] exp1 = pd.DataFrame( columns=['Sample', 'Row', 'Col', 'Blank', 'Project Plate', 'Project Name', 'Compressed Plate Name', 'Well', 'Plate Position', 'Primer Plate #', 'Plating', 'Extraction Kit Lot', 'Extraction Robot', 'TM1000 8 Tool', 'Primer Date', 'MasterMix Lot', 'Water Lot', 'Processing Robot', 'Sample Plate', 'Project_Name', 'Original Name', 'Plate', 'EMP Primer Plate Well', 'Name', "Illumina 5prime Adapter", 'Golay Barcode', 'Forward Primer Pad', 'Forward Primer Linker', '515FB Forward Primer (Parada)', 'Primer For PCR'], data=data1 ) exp2 = pd.DataFrame( columns=['Sample', 'Row', 'Col', 'Blank', 'Project Plate', 'Project Name', 'Compressed Plate Name', 'Well', 'Plate Position', 'Primer Plate #', 'Plating', 'Extraction Kit Lot', 'Extraction Robot', 'TM1000 8 Tool', 'Primer Date', 'MasterMix Lot', 'Water Lot', 'Processing Robot', 'Sample Plate', 'Project_Name', 'Original Name', 'Plate', 'EMP Primer Plate Well', 'Name', 'Reverse complement of 3prime Illumina Adapter', 'Golay Barcode', 'Reverse Primer Pad', 'Reverse Primer Linker', 'Reverse primer (EukBr)', 'Primer For PCR'], data=data2 ) exp3 = pd.DataFrame( columns=['Sample', 'Row', 'Col', 'Blank', 'Project Plate', 'Project Name', 'Compressed Plate Name', 'Well', 'Plate Position', 'Primer Plate #', 'Plating', 'Extraction Kit Lot', 'Extraction Robot', 'TM1000 8 Tool', 'Primer Date', 'MasterMix Lot', 'Water Lot', 'Processing Robot', 'Sample Plate', 'Project_Name', 'Original Name', 'Plate', 'EMP Primer Plate Well', 'Name', 'Reverse complement of 3prime Illumina Adapter', 'Golay Barcode', 'Reverse Primer Pad', 'Reverse Primer Linker', 'ITS2 Reverse Primer', 'Primer For PCR'], data=data3 ) pd.testing.assert_frame_equal(obs1, exp1)
pd.testing.assert_frame_equal(obs2, exp2)
pandas.testing.assert_frame_equal
# coding=utf-8 import os import os.path import matplotlib.pyplot as plt import numpy as np import pandas as pd from loganalysis.const import * class Log(object): ''' 调度模块Log分析接口类 主要提供如下3类功能: a) 信息呈现 b)问题发现 c)问题定位 要求所有文件命名符合EI命名格式:子系统_时间.csv ''' def __init__(self, directory, time_interval=None, product_type='Micro'): '''初始化Log实例,把所有Log按照类型分类 Args: directory: Log所在目录 time_interval: 时间范围[start, end],格式为yyyymmddhhmmss product_type:产品类型['Macro', 'Micro'],默认为micro ''' self._directory = directory self._product_type = product_type self._logfiles={} self._time_interval = time_interval @property def product_type(self): return self._product_type @property def directory(self): return self._directory def _filenames_of_type(self, filetype): '''获取指定文件类型的所有文件名 Args: filetype:文件类型 time_interval: 时间范围[start, end],格式为yyyymmddhhmmss Returns: 文件名列表 ''' names_of_filetype = [] for name in np.sort(os.listdir(self._directory)): if not name.endswith(r'.csv'): continue if -1 == name.find(filetype): continue if self._time_interval: time = np.uint64(name.rsplit(r'.')[0].rsplit(r'_')[-1]) if time < self._time_interval[0] or time > self._time_interval[1]: continue names_of_filetype.append(name) return names_of_filetype def describle(self): '''当前目录下相关Log文件总体描述,每类Log文件合并为一个文件 输出文件名,大小,行数,时间范围,airtime范围等,每个Log文件一列 ''' df = pd.DataFrame() for type, logfile in self._logfiles.items(): df.at[type, 'size'] = logfile.size df.at[type, 'num_of_files'] = len(logfile.files) df.at[type, 'num_of_lines'] = logfile.lines df.at[type, 'pctime_start'] = logfile.pctimes[0] df.at[type, 'pctime_end'] = logfile.pctimes[1] df.at[type, 'airtime_start'] = logfile.airtimes[0] df.at[type, 'airtime_end'] = logfile.airtimes[1] df.index.name = 'filename' return df class LogFile(object): '''Log文件接口类''' def __init__(self, type, directory, files, id_filter=None): '''初始化Log实例,把所有Log按照类型分类 Args: file: 文件名 type: log类型 ''' self._files = files self._type = type self._directory = directory self._id_filter = id_filter self._time_filter = None self._size = sum([os.path.getsize(os.path.join(directory, file)) for file in files]) self._pctimes = [-1, -1] self._airtimes = [-1, -1] self._lines = 0 cols = ['LocalTime', 'AirTime'] for data in self.gen_of_cols(cols): if len(data.index) == 0: self._lines = 0 return self._lines = self._lines + data.index.max() if self._pctimes[0] == -1: self._pctimes[0] = data.iat[0, 0] self._pctimes[1] = data.iat[-1, 0] if self._airtimes[0] == -1: self._airtimes[0] = data.iat[0, 1] self._airtimes[1] = data.iat[-1, 1] @property def type(self): return self._type @property def files(self): return self._files @property def size(self): return self._size @property def id_filter(self): return self._id_filter @property def lines(self): '''获取文件总行数''' return self._lines @property def pctimes(self): '''PC时间范围''' return tuple(self._pctimes) @property def airtimes(self): '''AirTime时间范围''' return tuple(self._airtimes) @staticmethod def addtime(time1, time2): time1 = np.uint32(time1) time2 = np.uint32(time2) frm = time1 // 16 + time2 // 16 subfrm = time1 % 16 + time2 % 16 if subfrm >= 10: subfrm -= 10 frm += 1 return frm % 0x10000000 * 16 + subfrm @staticmethod def difftime(time1, time2): time1 = np.uint32(time1) time2 = np.uint32(time2) subfrm1 = time1 % 16 subfrm2 = time2 % 16 frm = time1 // 16 + 0x10000000 - time2 // 16 if subfrm1 >= subfrm2: subfrm = subfrm1 - subfrm2 else: subfrm = subfrm1 + 10 - subfrm2 frm = frm - 1 frm = frm % 0x10000000 return frm * 16 + subfrm @staticmethod def dectime(hextime): hextime = np.uint32(hextime) return hextime // 16 * 10 + hextime % 16 @staticmethod def hextime(dectime): dectime = np.uint32(dectime) return dectime // 10 * 16 + dectime % 10 def gen_of_cols(self, cols=None, val_filter=None): '''获取指定列的生成器 Args: cols: 列名列表,如果为None,表示获取全部列 col_val_filter: 过滤条件,字典格式{'colname': [val1,]} Yields: 生成器格式 ''' filters = {} if val_filter: filters.update(val_filter) if self._id_filter: filters.update(self._id_filter) totcols = cols aircol = 'AirTime' if self._time_filter and aircol not in totcols : totcols.append(aircol) if cols is not None: totcols = list(set.union(set(filters), set(cols))) for file in self._files: filename = os.path.join(self._directory, file) data = pd.read_csv(filename, na_values='-', usecols=totcols) if self._time_filter: start, end = self._time_filter data = data[(start<= data[aircol]) & (data[aircol]<=end)] if not filters: yield data continue mask = data[list(filters.keys())].isin(filters).all(1) if cols is not None: yield data[mask][cols] else: yield data[mask] def get_filename_by_airtime(self, airtime): '''根据指定时间获取文件名 Args: airtime: Returns: 文件名 ''' col = ['AirTime'] for file in self._files: filename = os.path.join(self._directory, file) data = pd.read_csv(filename, na_values='-', usecols=col)[col[0]] if airtime < data.iat[0] or airtime > data.iat[-1]: continue return file def get_data_between_airtimes(self, start_airtime, end_airtime, cols=None, val_filter=None): '''获取指定时间范围内的数据 Args: start_airtime:起始时间 end_airtime:截止时间 cols: 列名列表,如果为None,表示获取全部列 col_val_filter: 过滤条件,字典格式{'colname': [val1,]} Returns: 数据,DataFrame格式 ''' assert(start_airtime <= end_airtime) rlt = pd.DataFrame() if cols is not None: totcols = list(set(cols + ['AirTime'])) else: totcols = None for data in self.gen_of_cols(cols=totcols, val_filter=val_filter): airtime = data['AirTime'].astype(np.uint32) if start_airtime > airtime.iat[-1] or end_airtime < airtime.iat[0]: continue data = data[(airtime <= end_airtime) & (airtime >= start_airtime)] rlt = pd.concat([rlt, data], ignore_index=True) return rlt def set_airtimes_interval(self, start, end): '''指定当前log的时间范围 Args: start:起始时间 end:截止时间 Returns: 无 ''' assert(start <= end) self._time_filter = (start, end) return def reset_airtimes_interval(self): '''重置当前log的时间范围 Args: 无 Returns: 无 ''' self._time_filter = None return def get_data_of_cols(self, cols, val_filter=None): '''获取指定cols的数据 Args: cols: 列名列表 col_val_filter: 过滤条件,字典格式{'colname': [val1,]} Returns: 数据,DataFrame格式 ''' rlt =
pd.DataFrame()
pandas.DataFrame
import math import matplotlib.pyplot as plt import numpy as np import pandas as pd from scipy.optimize import curve_fit def importSHGdata(names,inputpath,outputpath): #open file for writing scans to fScans = open(outputpath+'scans.txt','w+') #initialize data frames to hold data countsA = pd.DataFrame() countsB =
pd.DataFrame()
pandas.DataFrame
import logging import pandas as pd from lib.constant import Datasets from lib.features.dtypes import dtypes_clean, dtypes_featured # features computing functions def _compute_acc_severity(acc_severities: pd.Series) -> str: """Groupby method. Return the worst victim state for each accident. """ # all_severity in ['safe', inj_light', 'inj_hosp', 'killed'] acc_severities_unique = acc_severities.unique() if 'killed' in acc_severities_unique: max_severity = 'killed' elif 'inj_hosp' in acc_severities_unique: max_severity = 'inj_hosp' elif 'inj_light' in acc_severities_unique: max_severity = 'inj_light' else: max_severity = 'safe' return max_severity def get_pct_drivers_by_sex(drivers_count: pd.DataFrame) -> pd.DataFrame: """Nombre de conducteur dans la population en pourcentage par sex.""" pct_drivers_sex = drivers_count \ .mean()[['prop_drive_male', 'prop_drive_female']] \ .mul(100).round(1) return pct_drivers_sex def get_summary_by_sex(drivers: pd.DataFrame, pct_drivers_sex: pd.DataFrame) -> pd.DataFrame: summary = pd.crosstab(index=drivers['acc_severity'], columns=drivers['sexe'], margins=True, normalize=0) \ .mul(100).round(1) \ .append(pd.DataFrame({'female': pct_drivers_sex['prop_drive_female'], 'male': pct_drivers_sex['prop_drive_male']}, index=['Prop. conducteurs'])) \ .rename({'All': 'Tous accidents', 'killed': 'Acc. mortel', 'inj_light': 'Acc. leger', 'inj_hosp': 'Acc.grave'}, axis=0) \ .rename({'female': 'Femmes', 'male': 'Hommes'}, axis=1) return summary def get_drivers(acc_severity: pd.DataFrame, users: pd.DataFrame) -> pd.DataFrame: """Retourne l'ensemble des conducteurs impliqué dans un accident. on ajoute à la table des usager la colonne correspondant au type d'accident dans lequel il est impliqué (= état de la victime la plus grave) on ne récupère de cette table que les usagers conducteurs """ drivers = pd.merge(acc_severity, users.loc[users['catu'] == 'driver', :], on='Num_Acc', how='left') \ .loc[:, ['Num_Acc', 'acc_severity', 'sexe', 'trajet']] return drivers # build new datasets def build_accidents_dataset(caracs: pd.DataFrame, locations: pd.DataFrame, users: pd.DataFrame, dtypes_base_path: str = '') -> pd.DataFrame: logging.info('merge caracs with locations (1 accident = 1 carac = 1 location)') acc_df = pd.merge(caracs, locations, on='Num_Acc', how='inner') logging.info('add nb victims by severity (4 columns)') vict_by_severity_cnt = pd.merge(caracs, users, on='Num_Acc', how='inner') \ .groupby(by=['Num_Acc', 'grav']).count().reset_index()[['Num_Acc', 'grav', 'year']] \ .rename({'year': 'victims_nb'}, axis=1) \ .fillna({'victims_nb': 0}) \ .pivot(index='Num_Acc', columns='grav') vict_by_severity_cnt.columns = vict_by_severity_cnt.columns.get_level_values(1) vict_by_severity_cnt.rename(columns=str).reset_index() acc_df = pd.merge(acc_df, vict_by_severity_cnt, on='Num_Acc', how='inner') logging.info('add total victims number column') victims_nb_by_acc = pd.merge(caracs, users, on='Num_Acc', how='inner') \ .groupby(by=['Num_Acc']).count().reset_index()[['Num_Acc', 'year']] \ .rename({'year': 'victims_nb'}, axis=1) acc_df = pd.merge(acc_df, victims_nb_by_acc, on='Num_Acc', how='inner') logging.info('add acc_severity column') acc_severity = pd.merge(acc_df, users, on='Num_Acc', how='inner') \ .loc[:, ['Num_Acc', 'grav']] \ .groupby(by='Num_Acc') \ .agg(acc_severity=pd.NamedAgg(column='grav', aggfunc=_compute_acc_severity)) \ .reset_index() \ .astype({'acc_severity': 'category', 'Num_Acc': 'string'}) acc_df =
pd.merge(acc_df, acc_severity, on='Num_Acc', how='inner')
pandas.merge
# -*- coding: utf-8 -*- """ Created on Wed Feb 12 16:15:46 2020 @author: navarrenhn """ import pandas as pd def feed_demand(groups, Lancet_diet): Region_demands = {} for name, group in groups: d = Lancet_diet.copy() d["GROUP"] = name #print(d) ##create animal product demands: d.loc[["beef and lamb"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["pork"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["chicken and other poultry"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["fish"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Fishandseafood", "Total"].min()) #d = d.drop(["fish"]) #d.loc[["whole milk or derivative equivalents"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Milk", "Total"].min()) #d.loc[["eggs"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Milk", "Total"].min()) ##create feed demands: ##need to determine oil production from soymeal production for feed ##feed required for 1 dairy cow per day ##similar feed is assumed for beef cattle being reared on mixed system (pasture/crop-fed) ##all concentrates except corn and soy assumed to be by-products ##soymeal in concentrate equals 0.8 times fresh soybeans in weight (soymeal.org) ##corn equals sum of fresh and corn in concentrate ##corn (maize grain) in concentrate equals 0.86 times fresh yield? Based on dry mass? cow_dict = {"type": ["grass", "corn", "soybean meal"], ##"citrus pulp concentrate", "palm kernel meal concentrate", "rapeseed meal concentrate", "beet pulp concentrate", "wheat concentrate", "rest products"], "gram": [41250, 13750 + (1250*0.86), 750*0.8 ]}##, 500, 500, 500, 250, 250, 1000]} cow_Lancet_diet_per_day = pd.DataFrame(cow_dict) cow_Lancet_diet_per_day = cow_Lancet_diet_per_day.set_index(["type"]) cow_feed_per_g_milk = cow_Lancet_diet_per_day["gram"]/25000 ##beef production from dairy cows and dairy calf rearing calf_per_g_milk = (1.5/(25000*365*6)) ##3 calves per cow divided by two as only males are used(?) ##Type A calf of Nguyen 2010 using 8438 kg of feed per 1000 kg carcass weight (= per 660kg edible meat) ##(significantly more soymeal --> look into, maybe change Lancet_diet) g_calf_per_g_milk = calf_per_g_milk * 214880 cow_feed_per_g_calf = ((cow_Lancet_diet_per_day["gram"]/55000)*8438000)/660000 ##One 680 kg Holstein dairy cow delivers 224.52 kg of meat (excluding offal and bones) ##what to do with offal? g_dairycow_beef_per_g_milk = 224520.0 / 36500000.0 #36500000 g milk in her milk giving time of 4 years g_beef_per_g_milk = g_calf_per_g_milk + g_dairycow_beef_per_g_milk ##feed demand from classic suckler-cow rearing systems is 20863 kg of feed per 1000kg carcass weight (= per 660kg edible meat) (Nguyen 2010) cow_feed_per_g_suckler_beef = ((cow_Lancet_diet_per_day["gram"]/55000)*20863000)/660000 ##required extra beef production besides dairy cows and their calves to reach demand required_extra_beef_production = max(d.loc[["beef and lamb"], ["BMI" , "EAT", "Org"]].values[0][0] - (d.loc[["whole milk or derivative equivalents"], ["BMI" , "EAT", "Org"]].values[0][0] * g_beef_per_g_milk), 0) ##this needs a lamb factor total_feed_cows_for_Lancet_diet_per_day = (d.loc[["whole milk or derivative equivalents"], ["BMI" , "EAT", "Org"]].values[0][0] * g_calf_per_g_milk * cow_feed_per_g_calf) + (d.loc[["whole milk or derivative equivalents"], ["BMI" , "EAT", "Org"]].values[0][0] * cow_feed_per_g_milk) + (required_extra_beef_production * cow_feed_per_g_suckler_beef) ##one dutch cow delivers on average 25 liter milk per day and eats 55kg of feed a day ##assuming 3 calves per dairy cow of which half is male so used for slaughter ##one dutch dairy cow is culled after 6 years on average ##if not, how much feed does a meat cow need? ##how much manure do the cows produce? (for effect on N input ratio) ##soybean meal assumed to equal 0.8 times fresh soybean weight as in cow Lancet_diet ##whole grains assumed here ##one dutch egg-laying chicken lays 0.85232877 egg per day amounting to 19400/311.1 = 62.35937 gram egg per day ##one dutch chicken eats 121.3 gram feed per day (both broiler and egg) ##chicken feed based on Rezaei et al (high protein organic Lancet_diet) and ratios based on 1/3 of feeds used in first and 2/3 of last stages of life, byproducts and supplements (under 3%) placed in "other" ##one dutch broiler chicken lives 6 weeks, averages 2446g and delivers 166+547+243+520 = 1476 gram of meat ##is chicken manure used as fertilizer? How much manure does a chicken produce? chicken_dict = {"type": ["wheat", "soybean meal", "rapeseed", "oats", "peas"], ##"other"], "gram": [45.95, 21.62*0.8, 4.04, 23.15, 9.7]} ##, 16.84]} chicken_Lancet_diet_per_day = pd.DataFrame(chicken_dict) chicken_Lancet_diet_per_day = chicken_Lancet_diet_per_day.set_index(["type"]) chicken_feed_per_g_meat = (chicken_Lancet_diet_per_day["gram"]*42)/1476 chicken_feed_per_g_egg = chicken_Lancet_diet_per_day["gram"]/62.35937 total_feed_meat_chickens_for_Lancet_diet_per_day = chicken_feed_per_g_meat * d.loc[["chicken and other poultry"], ["BMI" , "EAT", "Org"]].values[0][0] total_feed_egg_chickens_for_Lancet_diet_per_day = chicken_feed_per_g_egg * d.loc[["eggs"], ["BMI" , "EAT", "Org"]].values[0][0] ##feed required for 1 lamb per day ##all concentrates except corn and soy assumed to be by-products ##soymeal in concentrate equals 0.8 times fresh soybeans in weight (soymeal.org) ##corn (maize grain) in concentrate equals 0.86 times fresh yield? Based on dry mass? ##one lamb gives 35.24% of its original weight as meat. One slaughtered lamb weighs 40kg so 40* 0.3524 = 14.096 kg meat per lamb ##feed composition assumed to be similar to milk cow (both pasture raised and ruminants).Feed requirement about 1kg a day (Bello et al, 2016) ##manure production lamb_dict = {"type": ["grass", "corn", "soybean meal"], ##"citrus pulp concentrate", "palm kernel meal concentrate", "rapeseed meal concentrate", "beet pulp concentrate", "wheat concentrate", "rest products"], "gram": [687.5, 312.5 + (20.8*0.86), 12.5*0.8]} ##, 8.33, 8.33, 8.33, 4.15, 4.15, 16.66]} lamb_Lancet_diet_per_day = pd.DataFrame(lamb_dict) lamb_Lancet_diet_per_day = lamb_Lancet_diet_per_day.set_index(["type"]) lamb_feed_per_g_meat = (lamb_Lancet_diet_per_day["gram"]*365)/14096 total_feed_lamb_for_Lancet_diet_per_day = lamb_feed_per_g_meat * d.loc[["beef and lamb"], ["BMI" , "EAT", "Org"]].values[0][0] ##need to add beef/lamb ratio ##one slaughtered pig gives on average 57% of its live weight as meat, slaughtered weight is 95.2kg so 95.2*0.57 = 54.264kg meat per fattening pig ##one pig lives 88 days (based on BINternet growth per day) and uses 185,064kg of feed in its life (based on BINternet feed conversion) so eats 2,103kg of feed a day ##feed requirement based on byproducts scenario of Lassaletta et al 2016 ##manure production ##swill and molasses assumed to be by-products ##are brans a by-product? Do they require extra production? Assumed to be about 10% of original crop (Feedipedia) pig_dict = {"type": ["corn", "barley", "brans", "wheat"], ##"swill", "molasses"], "gram": [378.54, 147.21, 525.75, 630.9]} ##, 210.3, 210.3]} pig_Lancet_diet_per_day = pd.DataFrame(pig_dict) pig_Lancet_diet_per_day = pig_Lancet_diet_per_day.set_index(["type"]) pig_feed_per_g_meat = (pig_Lancet_diet_per_day["gram"]*88)/54264 total_feed_pig_for_Lancet_diet_per_day = pig_feed_per_g_meat * d.loc[["pork"], ["BMI" , "EAT", "Org"]].values[0][0] ##create crop demands including demand for feed crops: ##assuming no waste in feedcrops d.loc[["rice wheat corn and other"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Cereals", "Total"].min()) d.loc[["rice wheat corn and other"], ["BMI" , "EAT", "Org"]] += total_feed_cows_for_Lancet_diet_per_day.loc["corn"] + total_feed_meat_chickens_for_Lancet_diet_per_day.loc["wheat"] + total_feed_meat_chickens_for_Lancet_diet_per_day.loc["oats"] + total_feed_egg_chickens_for_Lancet_diet_per_day.loc["wheat"] + total_feed_egg_chickens_for_Lancet_diet_per_day.loc["oats"] + total_feed_lamb_for_Lancet_diet_per_day.loc["corn"] + total_feed_pig_for_Lancet_diet_per_day.loc["corn"] + total_feed_pig_for_Lancet_diet_per_day.loc["barley"] + total_feed_pig_for_Lancet_diet_per_day.loc["wheat"] d.loc[["potatoes and cassava"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Rootsandtubers", "Total"].min()) d.loc[["dry beans lentils and peas"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) d.loc[["dry beans lentils and peas"], ["BMI" , "EAT", "Org"]] += total_feed_meat_chickens_for_Lancet_diet_per_day.loc["peas"] + total_feed_egg_chickens_for_Lancet_diet_per_day.loc["peas"] d.loc[["soy foods"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) d.loc[["soy foods"], ["BMI" , "EAT", "Org"]] += total_feed_cows_for_Lancet_diet_per_day.loc["soybean meal"] + total_feed_lamb_for_Lancet_diet_per_day.loc["soybean meal"] + total_feed_meat_chickens_for_Lancet_diet_per_day.loc["soybean meal"] + total_feed_egg_chickens_for_Lancet_diet_per_day.loc["soybean meal"] d.loc[["peanuts"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) d.loc[["tree nuts"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) #d.loc[["palm oil"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) d.loc[["unsaturated oils"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Oilseedsandpulses", "Total"].min()) d.loc[["unsaturated oils"], ["BMI" , "EAT", "Org"]] += total_feed_meat_chickens_for_Lancet_diet_per_day.loc["rapeseed"] + total_feed_egg_chickens_for_Lancet_diet_per_day.loc["rapeseed"] d.loc[["all fruit"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Fruitsandvegetables", "Total"].min()) #d.loc[["all vegetables"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Fruitsandvegetables", "Total"].min()) d.loc[["dark green vegetables"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Fruitsandvegetables", "Total"].min()) d.loc[["red and orange vegetables"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Fruitsandvegetables", "Total"].min()) Region_demands[name] = d.loc[(Lancet_diet["GROUP"] == name)] return Region_demands def feed_remove(groups, Lancet_diet): Region_demands = {} for name, group in groups: d = Lancet_diet.copy() d["GROUP"] = name #print(d) ##create animal product demands: d.loc[["beef and lamb"], ["Org_nf"]] *= (1 - group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["pork"], ["Org_nf"]] *= (1 - group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["chicken and other poultry"], ["Org_nf"]] *= (1 - group.loc[group["Foodtype"] == "Meat", "Total"].min()) d.loc[["fish"], ["Org_nf"]] *= (1 - group.loc[group["Foodtype"] == "Fishandseafood", "Total"].min()) #d = d.drop(["fish"]) #d.loc[["whole milk or derivative equivalents"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Milk", "Total"].min()) #d.loc[["eggs"], ["BMI" , "EAT", "Org"]] *= (1 + group.loc[group["Foodtype"] == "Milk", "Total"].min()) ##create feed demands: ##need to determine oil production from soymeal production for feed ##feed required for 1 dairy cow per day ##similar feed is assumed for beef cattle being reared on mixed system (pasture/crop-fed) ##all concentrates except corn and soy assumed to be by-products ##soymeal in concentrate equals 0.8 times fresh soybeans in weight (soymeal.org) ##corn equals sum of fresh and corn in concentrate ##corn (maize grain) in concentrate equals 0.86 times fresh yield? Based on dry mass? cow_dict = {"type": ["grass", "corn", "soybean meal"], ##"citrus pulp concentrate", "palm kernel meal concentrate", "rapeseed meal concentrate", "beet pulp concentrate", "wheat concentrate", "rest products"], "gram": [41250, 13750 + (1250/0.86), 750/0.8 ]}##, 500, 500, 500, 250, 250, 1000]} cow_Lancet_diet_per_day = pd.DataFrame(cow_dict) cow_Lancet_diet_per_day = cow_Lancet_diet_per_day.set_index(["type"]) cow_feed_per_g_milk = cow_Lancet_diet_per_day["gram"]/25000 ##beef production from dairy cows and dairy calf rearing calf_per_g_milk = (1.5/(25000*365*6)) ##3 calves per cow divided by two as only males are used(?) ##Type A calf of Nguyen 2010 using 8438 kg of feed per 1000 kg carcass weight (= per 660kg edible meat) ##(significantly more soymeal --> look into, maybe change Lancet_diet) g_calf_per_g_milk = calf_per_g_milk * 214880 cow_feed_per_g_calf = ((cow_Lancet_diet_per_day["gram"]/55000)*8438000)/660000 ##One 680 kg Holstein dairy cow delivers 224.52 kg of meat (excluding offal and bones) ##what to do with offal? g_dairycow_beef_per_g_milk = 224520.0 / 36500000.0 #36500000 g milk in her milk giving time of 4 years g_beef_per_g_milk = g_calf_per_g_milk + g_dairycow_beef_per_g_milk ##feed demand from classic suckler-cow rearing systems is 20863 kg of feed per 1000kg carcass weight (= per 660kg edible meat) (Nguyen 2010) cow_feed_per_g_suckler_beef = ((cow_Lancet_diet_per_day["gram"]/55000)*20863000)/660000 ##required extra beef production besides dairy cows and their calves to reach demand required_extra_beef_production = max(d.loc[["beef and lamb"], ["Org_nf"]].values[0][0] - (d.loc[["whole milk or derivative equivalents"], ["Org_nf"]].values[0][0] * g_beef_per_g_milk), 0) ##this needs a lamb factor total_feed_cows_for_Lancet_diet_per_day = (d.loc[["whole milk or derivative equivalents"], ["Org_nf"]].values[0][0] * g_calf_per_g_milk * cow_feed_per_g_calf) + (d.loc[["whole milk or derivative equivalents"], ["Org_nf"]].values[0][0] * cow_feed_per_g_milk) + (required_extra_beef_production * cow_feed_per_g_suckler_beef) ##one dutch cow delivers on average 25 liter milk per day and eats 55kg of feed a day ##assuming 3 calves per dairy cow of which half is male so used for slaughter ##one dutch dairy cow is culled after 6 years on average ##if not, how much feed does a meat cow need? ##how much manure do the cows produce? (for effect on N input ratio) ##soybean meal assumed to equal 0.8 times fresh soybean weight as in cow Lancet_diet ##whole grains assumed here ##one dutch egg-laying chicken lays 0.85232877 egg per day amounting to 19400/311.1 = 62.35937 gram egg per day ##one dutch chicken eats 121.3 gram feed per day (both broiler and egg) ##chicken feed based on Rezaei et al (high protein organic Lancet_diet) and ratios based on 1/3 of feeds used in first and 2/3 of last stages of life, byproducts and supplements (under 3%) placed in "other" ##one dutch broiler chicken lives 6 weeks, averages 2446g and delivers 166+547+243+520 = 1476 gram of meat ##is chicken manure used as fertilizer? How much manure does a chicken produce? chicken_dict = {"type": ["wheat", "soybean meal", "rapeseed", "oats", "peas"], ##"other"], "gram": [45.95, 21.62/0.8, 4.04, 23.15, 9.7]} ##, 16.84]} chicken_Lancet_diet_per_day = pd.DataFrame(chicken_dict) chicken_Lancet_diet_per_day = chicken_Lancet_diet_per_day.set_index(["type"]) chicken_feed_per_g_meat = (chicken_Lancet_diet_per_day["gram"]*42)/1476 chicken_feed_per_g_egg = chicken_Lancet_diet_per_day["gram"]/62.35937 total_feed_meat_chickens_for_Lancet_diet_per_day = chicken_feed_per_g_meat * d.loc[["chicken and other poultry"], ["Org_nf"]].values[0][0] total_feed_egg_chickens_for_Lancet_diet_per_day = chicken_feed_per_g_egg * d.loc[["eggs"], ["Org_nf"]].values[0][0] ##feed required for 1 lamb per day ##all concentrates except corn and soy assumed to be by-products ##soymeal in concentrate equals 0.8 times fresh soybeans in weight (soymeal.org) ##corn (maize grain) in concentrate equals 0.86 times fresh yield? Based on dry mass? ##one lamb gives 35.24% of its original weight as meat. One slaughtered lamb weighs 40kg so 40* 0.3524 = 14.096 kg meat per lamb ##feed composition assumed to be similar to milk cow (both pasture raised and ruminants).Feed requirement about 1kg a day (Bello et al, 2016) ##manure production lamb_dict = {"type": ["grass", "corn", "soybean meal"], ##"citrus pulp concentrate", "palm kernel meal concentrate", "rapeseed meal concentrate", "beet pulp concentrate", "wheat concentrate", "rest products"], "gram": [687.5, 312.5 + (20.8/0.86), 12.5/0.8]} ##, 8.33, 8.33, 8.33, 4.15, 4.15, 16.66]} lamb_Lancet_diet_per_day =
pd.DataFrame(lamb_dict)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Fri Dec 13 15:21:55 2019 @author: raryapratama """ #%% #Step (1): Import Python libraries, set land conversion scenarios general parameters import numpy as np import matplotlib.pyplot as plt from scipy.integrate import quad import seaborn as sns import pandas as pd #PF_FP_S1 Scenario ##Set parameters #Parameters for primary forest initAGB = 233 #source: van Beijma et al. (2018) initAGB_min = 233-72 initAGB_max = 233 + 72 #parameters for timber plantation. Source: Khasanah et al. (2015) tf = 201 a = 0.082 b = 2.53 #%% #Step (2_1): C loss from the harvesting/clear cut df1 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_S1') #df2 = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL.xlsx', 'RIL_S2') dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E') t = range(0,tf,1) c_firewood_energy_S1 = df1['Firewood_other_energy_use'].values #c_loss_S2 = df2['C_loss'].values c_firewood_energy_E = dfE['Firewood_other_energy_use'].values #%% #Step (2_2): C loss from the harvesting/clear cut as wood pellets dfE = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E') c_pellets_E = dfE['Wood_pellets'].values #%% #Step (3): Aboveground biomass (AGB) decomposition #S1 df = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_S1') tf = 201 t = np.arange(tf) def decomp_S1(t,remainAGB_S1): return (1-(1-np.exp(-a*t))**b)*remainAGB_S1 #set zero matrix output_decomp_S1 = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_S1 in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_S1[i:,i] = decomp_S1(t[:len(t)-i],remain_part_S1) print(output_decomp_S1[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_S1 = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_S1[:,i] = np.diff(output_decomp_S1[:,i]) i = i + 1 print(subs_matrix_S1[:,:4]) print(len(subs_matrix_S1)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_S1 = subs_matrix_S1.clip(max=0) print(subs_matrix_S1[:,:4]) #make the results as absolute values subs_matrix_S1 = abs(subs_matrix_S1) print(subs_matrix_S1[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_S1 = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_S1) subs_matrix_S1 = np.vstack((zero_matrix_S1, subs_matrix_S1)) print(subs_matrix_S1[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_S1 = (tf,1) decomp_tot_S1 = np.zeros(matrix_tot_S1) i = 0 while i < tf: decomp_tot_S1[:,0] = decomp_tot_S1[:,0] + subs_matrix_S1[:,i] i = i + 1 print(decomp_tot_S1[:,0]) #S1_C df = pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_C_S1') tf = 201 t = np.arange(tf) def decomp_S1_C(t,remainAGB_S1_C): return (1-(1-np.exp(-a*t))**b)*remainAGB_S1_C #set zero matrix output_decomp_S1_C = np.zeros((len(t),len(df['C_remainAGB'].values))) for i,remain_part_S1_C in enumerate(df['C_remainAGB'].values): #print(i,remain_part) output_decomp_S1_C[i:,i] = decomp_S1_C(t[:len(t)-i],remain_part_S1_C) print(output_decomp_S1_C[:,:4]) #find the yearly emissions from decomposition by calculating the differences between elements in list 'decomp_tot_S1' #(https://stackoverflow.com/questions/5314241/difference-between-consecutive-elements-in-list) # https://stackoverflow.com/questions/11095892/numpy-difference-between-neighboring-elements #difference between element, subs_matrix_S1_C = np.zeros((len(t)-1,len(df['C_remainAGB'].values-1))) i = 0 while i < tf: subs_matrix_S1_C[:,i] = np.diff(output_decomp_S1_C[:,i]) i = i + 1 print(subs_matrix_S1_C[:,:4]) print(len(subs_matrix_S1_C)) #since there is no carbon emission from decomposition at the beginning of the year (esp. from 'year 1' onward), #we have to replace the positive numbers with 0 values (https://stackoverflow.com/questions/36310897/how-do-i-change-all-negative-numbers-to-zero-in-python/36310913) subs_matrix_S1_C = subs_matrix_S1_C.clip(max=0) print(subs_matrix_S1_C[:,:4]) #make the results as absolute values subs_matrix_S1_C = abs(subs_matrix_S1_C) print(subs_matrix_S1_C[:,:4]) #insert row of zeros into the first row of the subs_matrix zero_matrix_S1_C = np.zeros((len(t)-200,len(df['C_remainAGB'].values))) print(zero_matrix_S1_C) subs_matrix_S1_C = np.vstack((zero_matrix_S1_C, subs_matrix_S1_C)) print(subs_matrix_S1_C[:,:4]) #sum every column of the subs_matrix into one vector matrix matrix_tot_S1_C = (tf,1) decomp_tot_S1_C = np.zeros(matrix_tot_S1_C) i = 0 while i < tf: decomp_tot_S1_C[:,0] = decomp_tot_S1_C[:,0] + subs_matrix_S1_C[:,i] i = i + 1 print(decomp_tot_S1_C[:,0]) #E df =
pd.read_excel('C:\\Work\\Programming\\Practice\\RIL_EC.xlsx', 'RIL_E')
pandas.read_excel
#Download the libraries import sys import nltk import re import pandas as pd import numpy as np import csv import os import random import numpy as np #from collections import Counter from sklearn.externals import joblib from nltk.sentiment.vader import SentimentIntensityAnalyzer from collections import Counter from textblob import TextBlob from textblob import Blobber from textblob.sentiments import NaiveBayesAnalyzer data_t = sys.argv[1] data_t = data_t.decode('ascii', 'replace') data_t = data_t.lower() # In[23]: #Abbriviation translation with open('./ML/Python/abbrev.csv', mode='r') as infile: reader = csv.reader(infile) replacement = {rows[0].lower(): rows[1].lower() for rows in reader} # In[24]: result = pd.DataFrame() result = data_t # In[25]: for i in range(len(result)): data_t = ' '.join([replacement.get(w, w) for w in data_t.split()]) # In[26]: #lowercase data_t = data_t.lower() #Remove urls data_t = data_t.replace( r'(http.*) |(http.*)$|\n', "", ) #Remove twitter handles data_t = data_t.replace(r"@\\w+", "") #remove htmls data_t = data_t.replace(r'<.*?>', "") #Remove citations data_t = data_t.replace(r'@[a-zA-Z0-9]*', "") #remove _ #data_t = data_t.str.replace(r'\_+',"") # In[27]: vec = joblib.load('./ML/Python/sentiment/vec.pkl') # In[28]: data_tt = data_t # In[29]: data_tt = data_tt.split(" ") data_text = pd.DataFrame(data_tt) old = len(data_text) names = vec.get_feature_names() names_text = pd.DataFrame(names) new = len(data_text.merge(names_text, how='inner')) # In[ ]: if (old == new): sclf = joblib.load('./ML/Python/sentiment/stacking.pkl') #Vectorization of the string df3 =
pd.Series(data_t)
pandas.Series
""" Created on Sun Mar 18 11:17:53 2018 @author: Mehul """ import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import MinMaxScaler ## Load data data_train =
pd.read_csv('../dataset/Google_Stock_Price_Train.csv')
pandas.read_csv
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import division import pandas as pd import numpy as np import seaborn as sns import matplotlib import matplotlib.pyplot as plt from matplotlib.ticker import FuncFormatter from sklearn import preprocessing from . import utils from . import timeseries from . import pos from . import txn from .utils import APPROX_BDAYS_PER_MONTH from functools import wraps def plotting_context(func): """Decorator to set plotting context during function call.""" @wraps(func) def call_w_context(*args, **kwargs): set_context = kwargs.pop('set_context', True) if set_context: with context(): return func(*args, **kwargs) else: return func(*args, **kwargs) return call_w_context def context(context='notebook', font_scale=1.5, rc=None): """Create pyfolio default plotting style context. Under the hood, calls and returns seaborn.plotting_context() with some custom settings. Usually you would use in a with-context. Parameters ---------- context : str, optional Name of seaborn context. font_scale : float, optional Scale font by factor font_scale. rc : dict, optional Config flags. By default, {'lines.linewidth': 1.5, 'axes.facecolor': '0.995', 'figure.facecolor': '0.97'} is being used and will be added to any rc passed in, unless explicitly overriden. Returns ------- seaborn plotting context Example ------- >>> with pyfolio.plotting.context(font_scale=2): >>> pyfolio.create_full_tear_sheet() See also -------- For more information, see seaborn.plotting_context(). """ if rc is None: rc = {} rc_default = {'lines.linewidth': 1.5, 'axes.facecolor': '0.995', 'figure.facecolor': '0.97'} # Add defaults if they do not exist for name, val in rc_default.items(): rc.setdefault(name, val) return sns.plotting_context(context=context, font_scale=font_scale, rc=rc) def plot_rolling_fama_french( returns, factor_returns=None, rolling_window=APPROX_BDAYS_PER_MONTH * 6, legend_loc='best', ax=None, **kwargs): """Plots rolling Fama-French single factor betas. Specifically, plots SMB, HML, and UMD vs. date with a legend. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. factor_returns : pd.DataFrame, optional data set containing the Fama-French risk factors. See utils.load_portfolio_risk_factors. rolling_window : int, optional The days window over which to compute the beta. legend_loc : matplotlib.loc, optional The location of the legend on the plot. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() num_months_str = '%.0f' % (rolling_window / APPROX_BDAYS_PER_MONTH) ax.set_title( "Rolling Fama-French Single Factor Betas (" + num_months_str + '-month)') ax.set_ylabel('beta') rolling_beta = timeseries.rolling_fama_french( returns, factor_returns=factor_returns, rolling_window=rolling_window) rolling_beta.plot(alpha=0.7, ax=ax, **kwargs) ax.axhline(0.0, color='black') ax.legend(['Small-Caps (SMB)', 'High-Growth (HML)', 'Momentum (UMD)'], loc=legend_loc) ax.set_ylim((-2.0, 2.0)) y_axis_formatter = FuncFormatter(utils.one_dec_places) ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter)) ax.axhline(0.0, color='black') ax.set_xlabel('') return ax def plot_monthly_returns_heatmap(returns, ax=None, **kwargs): """ Plots a heatmap of returns by month. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to seaborn plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() monthly_ret_table = timeseries.aggregate_returns(returns, 'monthly') monthly_ret_table = monthly_ret_table.unstack() monthly_ret_table = np.round(monthly_ret_table, 3) sns.heatmap( monthly_ret_table.fillna(0) * 100.0, annot=True, annot_kws={ "size": 9}, alpha=1.0, center=0.0, cbar=False, cmap=matplotlib.cm.RdYlGn, ax=ax, **kwargs) ax.set_ylabel('Year') ax.set_xlabel('Month') ax.set_title("Monthly Returns (%)") return ax def plot_annual_returns(returns, ax=None, **kwargs): """ Plots a bar graph of returns by year. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() x_axis_formatter = FuncFormatter(utils.percentage) ax.xaxis.set_major_formatter(FuncFormatter(x_axis_formatter)) ax.tick_params(axis='x', which='major', labelsize=10) ann_ret_df = pd.DataFrame( timeseries.aggregate_returns( returns, 'yearly')) ax.axvline( 100 * ann_ret_df.values.mean(), color='steelblue', linestyle='--', lw=4, alpha=0.7) (100 * ann_ret_df.sort_index(ascending=False) ).plot(ax=ax, kind='barh', alpha=0.70, **kwargs) ax.axvline(0.0, color='black', linestyle='-', lw=3) ax.set_ylabel('Year') ax.set_xlabel('Returns') ax.set_title("Annual Returns") ax.legend(['mean']) return ax def plot_monthly_returns_dist(returns, ax=None, **kwargs): """ Plots a distribution of monthly returns. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() x_axis_formatter = FuncFormatter(utils.percentage) ax.xaxis.set_major_formatter(FuncFormatter(x_axis_formatter)) ax.tick_params(axis='x', which='major', labelsize=10) monthly_ret_table = timeseries.aggregate_returns(returns, 'monthly') ax.hist( 100 * monthly_ret_table, color='orangered', alpha=0.80, bins=20, **kwargs) ax.axvline( 100 * monthly_ret_table.mean(), color='gold', linestyle='--', lw=4, alpha=1.0) ax.axvline(0.0, color='black', linestyle='-', lw=3, alpha=0.75) ax.legend(['mean']) ax.set_ylabel('Number of months') ax.set_xlabel('Returns') ax.set_title("Distribution of Monthly Returns") return ax def plot_holdings(returns, positions, legend_loc='best', ax=None, **kwargs): """Plots total amount of stocks with an active position, either short or long. Displays daily total, daily average per month, and all-time daily average. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. positions : pd.DataFrame, optional Daily net position values. - See full explanation in tears.create_full_tear_sheet. legend_loc : matplotlib.loc, optional The location of the legend on the plot. ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() positions = positions.copy().drop('cash', axis='columns') df_holdings = positions.apply(lambda x: np.sum(x != 0), axis='columns') df_holdings_by_month = df_holdings.resample('1M', how='mean') df_holdings.plot(color='steelblue', alpha=0.6, lw=0.5, ax=ax, **kwargs) df_holdings_by_month.plot( color='orangered', alpha=0.5, lw=2, ax=ax, **kwargs) ax.axhline( df_holdings.values.mean(), color='steelblue', ls='--', lw=3, alpha=1.0) ax.set_xlim((returns.index[0], returns.index[-1])) ax.legend(['Daily holdings', 'Average daily holdings, by month', 'Average daily holdings, net'], loc=legend_loc) ax.set_title('Holdings per Day') ax.set_ylabel('Amount of holdings per day') ax.set_xlabel('') return ax def plot_drawdown_periods(returns, top=10, ax=None, **kwargs): """ Plots cumulative returns highlighting top drawdown periods. Parameters ---------- returns : pd.Series Daily returns of the strategy, noncumulative. - See full explanation in tears.create_full_tear_sheet. top : int, optional Amount of top drawdowns periods to plot (default 10). ax : matplotlib.Axes, optional Axes upon which to plot. **kwargs, optional Passed to plotting function. Returns ------- ax : matplotlib.Axes The axes that were plotted on. """ if ax is None: ax = plt.gca() y_axis_formatter = FuncFormatter(utils.one_dec_places) ax.yaxis.set_major_formatter(FuncFormatter(y_axis_formatter)) df_cum_rets = timeseries.cum_returns(returns, starting_value=1.0) df_drawdowns = timeseries.gen_drawdown_table(returns, top=top) df_cum_rets.plot(ax=ax, **kwargs) lim = ax.get_ylim() colors = sns.cubehelix_palette(len(df_drawdowns))[::-1] for i, (peak, recovery) in df_drawdowns[ ['peak date', 'recovery date']].iterrows(): if
pd.isnull(recovery)
pandas.isnull
# %% import pandas as pd import numpy as np # %% data = pd.read_csv("All Menu (Various Versions)/국방부메뉴_v2.0.csv", index_col=0) data # %% # 기준열량을 활용하여 영양성분 값을 바꿀꺼여서 기준양은 삭제합니다. data = data.drop(columns=['기준양']) data # %% # 테스트 행을 삭제합니다. data = data.drop(1412) data = data.reset_index(drop=True) data # %% # 열량 값이 없는 메뉴는 기준열량을 가져옵니다. for index, row in data.iterrows(): if row['열량'] is np.NAN: data['열량'][index] = row['기준열량'] data # %% # 열량 열도 int 타입으로 바꿔줍니다. for index, row in data.iterrows(): cal = str(row['열량']) if cal[-4:] == 'kcal': cal = cal[:-4] if cal[0] == '*': cal = cal[2:] if cal == '0': cal = row['기준열량'] cal = cal.replace(',', '') data['열량'][index] = int(round(float(cal))) data['열량'] = pd.to_numeric(data['열량']) data # %% # 기준열량, 탄수화물, 지방, 단백질, 나트륨, 콜레스트롤 열을 다 int 타입으로 바꿔줍니다. for index, row in data.iterrows(): data['기준열량'][index] = row['기준열량'].replace(',', '') data['탄수화물'][index] = row['탄수화물'].replace('-', '0') data['지방'][index] = row['지방'].replace('-', '0') data['단백질'][index] = row['단백질'].replace('-', '0') data['나트륨'][index] = row['나트륨'].replace('-', '0') data['나트륨'][index] = row['나트륨'].replace(',', '') data['콜레스트롤'][index] = row['콜레스트롤'].replace('-', '0') data['콜레스트롤'][index] = row['콜레스트롤'].replace(',', '') if row['나트륨'] == '--': data['나트륨'][index] = '0' if row['콜레스트롤'] == '--': data['콜레스트롤'][index] = '0' data['기준열량'] = pd.to_numeric(data['기준열량']) data['탄수화물'] = pd.to_numeric(data['탄수화물']) data['지방'] = pd.to_numeric(data['지방']) data['단백질'] = pd.to_
numeric(data['단백질'])
pandas.to_numeric
import pandas as pd import numpy as np import math import os from scipy.interpolate import interp1d import time from sklearn.ensemble import RandomForestRegressor import xgboost as xgb from lightgbm import LGBMRegressor from catboost import CatBoostRegressor from information_measures import * from joblib import Parallel, delayed #from arch import arch_model def rmspe(y_true, y_pred): return (np.sqrt(np.mean(np.square((y_true - y_pred) / y_true)))) def log_return(list_stock_prices): # Stock prices are estimated through wap values return np.log(list_stock_prices).diff() def realized_volatility(series_log_return): return np.sqrt(np.sum(series_log_return**2)) def compute_wap(book_pd): wap = (book_pd['bid_price1'] * book_pd['ask_size1'] + book_pd['ask_price1'] * book_pd['bid_size1']) / (book_pd['bid_size1']+ book_pd['ask_size1']) return wap def realized_volatility_from_book_pd(book_stock_time): wap = compute_wap(book_stock_time) returns = log_return(wap) volatility = realized_volatility(returns) return volatility def realized_volatility_per_time_id(file_path, prediction_column_name): df_book_data = pd.read_parquet(file_path) # Estimate stock price per time point df_book_data['wap'] = compute_wap(df_book_data) # Compute log return from wap values per time_id df_book_data['log_return'] = df_book_data.groupby(['time_id'])['wap'].apply(log_return) df_book_data = df_book_data[~df_book_data['log_return'].isnull()] # Compute the square root of the sum of log return squared to get realized volatility df_realized_vol_per_stock = pd.DataFrame(df_book_data.groupby(['time_id'])['log_return'].agg(realized_volatility)).reset_index() # Formatting df_realized_vol_per_stock = df_realized_vol_per_stock.rename(columns = {'log_return':prediction_column_name}) stock_id = file_path.split('=')[1] df_realized_vol_per_stock['row_id'] = df_realized_vol_per_stock['time_id'].apply(lambda x:f'{stock_id}-{x}') return df_realized_vol_per_stock[['row_id',prediction_column_name]] def past_realized_volatility_per_stock(list_file,prediction_column_name): df_past_realized = pd.DataFrame() for file in list_file: df_past_realized = pd.concat([df_past_realized, realized_volatility_per_time_id(file,prediction_column_name)]) return df_past_realized def stupidForestPrediction(book_path_train,prediction_column_name,train_targets_pd,book_path_test): naive_predictions_train = past_realized_volatility_per_stock(list_file=book_path_train,prediction_column_name=prediction_column_name) df_joined_train = train_targets_pd.merge(naive_predictions_train[['row_id','pred']], on = ['row_id'], how = 'left') X = np.array(df_joined_train['pred']).reshape(-1,1) y = np.array(df_joined_train['target']).reshape(-1,) regr = RandomForestRegressor(random_state=0) regr.fit(X, y) naive_predictions_test = past_realized_volatility_per_stock(list_file=book_path_test,prediction_column_name='target') yhat = regr.predict(np.array(naive_predictions_test['target']).reshape(-1,1)) updated_predictions = naive_predictions_test.copy() updated_predictions['target'] = yhat return updated_predictions def garch_fit_predict_volatility(returns_series, N=10000): model = arch_model(returns_series * N, p=1, q=1) model_fit = model.fit(update_freq=0, disp='off') yhat = model_fit.forecast(horizon=600, reindex=False) pred_volatility = np.sqrt(np.sum(yhat.variance.values)) / N return pred_volatility def garch_volatility_per_time_id(file_path, prediction_column_name): # read the data df_book_data = pd.read_parquet(file_path) # calculate the midprice (not the WAP) df_book_data['midprice'] =(df_book_data['bid_price1'] + df_book_data['ask_price1'])/2 # leave only WAP for now df_book_data = df_book_data[['time_id', 'seconds_in_bucket', 'midprice']] df_book_data = df_book_data.sort_values('seconds_in_bucket') # make the book updates evenly spaced df_book_data_evenly = pd.DataFrame({'time_id':np.repeat(df_book_data['time_id'].unique(), 600), 'second':np.tile(range(0,600), df_book_data['time_id'].nunique())}) df_book_data_evenly['second'] = df_book_data_evenly['second'].astype(np.int16) df_book_data_evenly = df_book_data_evenly.sort_values('second') df_book_data_evenly = pd.merge_asof(df_book_data_evenly, df_book_data, left_on='second',right_on='seconds_in_bucket', by = 'time_id') # Ordering for easier use df_book_data_evenly = df_book_data_evenly[['time_id', 'second', 'midprice']] df_book_data_evenly = df_book_data_evenly.sort_values(['time_id','second']).reset_index(drop=True) # calculate log returns df_book_data_evenly['log_return'] = df_book_data_evenly.groupby(['time_id'])['midprice'].apply(log_return) df_book_data_evenly = df_book_data_evenly[~df_book_data_evenly['log_return'].isnull()] # fit GARCH(1, 1) and predict the volatility of returns df_garch_vol_per_stock = \ pd.DataFrame(df_book_data_evenly.groupby(['time_id'])['log_return'].agg(garch_fit_predict_volatility)).reset_index() df_garch_vol_per_stock = df_garch_vol_per_stock.rename(columns = {'log_return':prediction_column_name}) # add row_id column to the data stock_id = file_path.split('=')[1] df_garch_vol_per_stock['row_id'] = df_garch_vol_per_stock['time_id'].apply(lambda x:f'{stock_id}-{x}') # return the result return df_garch_vol_per_stock[['row_id', prediction_column_name]] def garch_volatility_per_stock(list_file, prediction_column_name): df_garch_predicted = pd.DataFrame() for file in list_file: df_garch_predicted = pd.concat([df_garch_predicted, garch_volatility_per_time_id(file, prediction_column_name)]) return df_garch_predicted def entropy_from_book(book_stock_time,last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 3: return 0 wap = compute_wap(book_stock_time) t_init = book_stock_time['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, wap, kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_wap(wap,seconds,last_seconds): if last_seconds < 600: idx = np.where(seconds >= last_seconds)[0] if len(idx) < 3: return 0 else: wap = wap[idx] seconds = seconds[idx] # Closest neighbour interpolation (no changes in wap between lines) t_new = np.arange(np.min(seconds),np.max(seconds)) nearest = interp1d(seconds, wap, kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) # sampleEntropy = ApEn_new(resampled_wap,3,0.001) return sampleEntropy def linearFit(book_stock_time, last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 2: return 0 wap = np.array(compute_wap(book_stock_time)) t_init = book_stock_time['seconds_in_bucket'] return (wap[-1] - wap[0])/(np.max(t_init) - np.min(t_init)) def wapStat(book_stock_time, last_min): if last_min < 10: book_stock_time = book_stock_time[book_stock_time['seconds_in_bucket'] >= (600-last_min*60)] if book_stock_time.empty == True or book_stock_time.shape[0] < 2: return 0 wap = compute_wap(book_stock_time) t_init = book_stock_time['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, wap, kind='nearest') resampled_wap = nearest(t_new) return np.std(resampled_wap) def entropy_Prediction(book_path_train,prediction_column_name,train_targets_pd,book_path_test,all_stocks_ids,test_file): # Compute features book_features_encoded_test = computeFeatures_1(book_path_test,'test',test_file,all_stocks_ids) book_features_encoded_train = computeFeatures_1(book_path_train,'train',train_targets_pd,all_stocks_ids) X = book_features_encoded_train.drop(['row_id','target','stock_id'],axis=1) y = book_features_encoded_train['target'] # Modeling catboost_default = CatBoostRegressor(verbose=0) catboost_default.fit(X,y) # Predict X_test = book_features_encoded_test.drop(['row_id','stock_id'],axis=1) yhat = catboost_default.predict(X_test) # Formatting yhat_pd = pd.DataFrame(yhat,columns=['target']) predictions = pd.concat([test_file,yhat_pd],axis=1) return predictions def computeFeatures_1(book_path,prediction_column_name,train_targets_pd,all_stocks_ids): book_all_features = pd.DataFrame() encoder = np.eye(len(all_stocks_ids)) stocks_id_list, row_id_list = [], [] volatility_list, entropy2_list = [], [] linearFit_list, linearFit5_list, linearFit2_list = [], [], [] wap_std_list, wap_std5_list, wap_std2_list = [], [], [] for file in book_path: start = time.time() book_stock = pd.read_parquet(file) stock_id = file.split('=')[1] print('stock id computing = ' + str(stock_id)) stock_time_ids = book_stock['time_id'].unique() for time_id in stock_time_ids: # Access book data at this time + stock book_stock_time = book_stock[book_stock['time_id'] == time_id] # Create feature matrix stocks_id_list.append(stock_id) row_id_list.append(str(f'{stock_id}-{time_id}')) volatility_list.append(realized_volatility_from_book_pd(book_stock_time=book_stock_time)) entropy2_list.append(entropy_from_book(book_stock_time=book_stock_time,last_min=2)) linearFit_list.append(linearFit(book_stock_time=book_stock_time,last_min=10)) linearFit5_list.append(linearFit(book_stock_time=book_stock_time,last_min=5)) linearFit2_list.append(linearFit(book_stock_time=book_stock_time,last_min=2)) wap_std_list.append(wapStat(book_stock_time=book_stock_time,last_min=10)) wap_std5_list.append(wapStat(book_stock_time=book_stock_time,last_min=5)) wap_std2_list.append(wapStat(book_stock_time=book_stock_time,last_min=2)) print('Computing one stock entropy took', time.time() - start, 'seconds for stock ', stock_id) # Merge targets stocks_id_pd = pd.DataFrame(stocks_id_list,columns=['stock_id']) row_id_pd = pd.DataFrame(row_id_list,columns=['row_id']) volatility_pd = pd.DataFrame(volatility_list,columns=['volatility']) entropy2_pd = pd.DataFrame(entropy2_list,columns=['entropy2']) linearFit_pd = pd.DataFrame(linearFit_list,columns=['linearFit_coef']) linearFit5_pd = pd.DataFrame(linearFit5_list,columns=['linearFit_coef5']) linearFit2_pd = pd.DataFrame(linearFit2_list,columns=['linearFit_coef2']) wap_std_pd = pd.DataFrame(wap_std_list,columns=['wap_std']) wap_std5_pd = pd.DataFrame(wap_std5_list,columns=['wap_std5']) wap_std2_pd = pd.DataFrame(wap_std2_list,columns=['wap_std2']) book_all_features = pd.concat([stocks_id_pd,row_id_pd,volatility_pd,entropy2_pd,linearFit_pd,linearFit5_pd,linearFit2_pd, wap_std_pd,wap_std5_pd,wap_std2_pd],axis=1) # This line makes sure the predictions are aligned with the row_id in the submission file book_all_features = train_targets_pd.merge(book_all_features, on = ['row_id']) # Add encoded stock encoded = list() for i in range(book_all_features.shape[0]): stock_id = book_all_features['stock_id'][i] encoded_stock = encoder[np.where(all_stocks_ids == int(stock_id))[0],:] encoded.append(encoded_stock) encoded_pd = pd.DataFrame(np.array(encoded).reshape(book_all_features.shape[0],np.array(all_stocks_ids).shape[0])) book_all_features_encoded = pd.concat([book_all_features, encoded_pd],axis=1) return book_all_features_encoded def calc_wap(df): return (df['bid_price1'] * df['ask_size1'] + df['ask_price1'] * df['bid_size1']) / (df['bid_size1'] + df['ask_size1']) def calc_wap2(df): return (df['bid_price2'] * df['ask_size2'] + df['ask_price2'] * df['bid_size2']) / (df['bid_size2'] + df['ask_size2']) def calc_wap3(df): return (df['bid_price2'] * df['bid_size2'] + df['ask_price2'] * df['ask_size2']) / (df['bid_size2'] + df['ask_size2']) def calc_wap4(df): return (df['bid_price1'] * df['bid_size1'] + df['ask_price1'] * df['ask_size1']) / (df['bid_size1'] + df['ask_size1']) def mid_price(df): return df['bid_price1'] /2 + df['ask_price1'] / 2 def calc_rv_from_wap_numba(values, index): log_return = np.diff(np.log(values)) realized_vol = np.sqrt(np.sum(np.square(log_return[1:]))) return realized_vol def load_book_data_by_id(stock_id,datapath,train_test): file_to_read = os.path.join(datapath,'book_' + str(train_test) + str('.parquet'),'stock_id=' + str(stock_id)) df = pd.read_parquet(file_to_read) return df def load_trades_data_by_id(stock_id,datapath,train_test): file_to_read = os.path.join(datapath,'trade_' + str(train_test) + str('.parquet'),'stock_id=' + str(stock_id)) df = pd.read_parquet(file_to_read) return df def entropy_from_df(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_df2(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap2'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy # sampleEntropy = nolds.sampen(resampled_wap) sampleEntropy = sampen(resampled_wap) return sampleEntropy def entropy_from_df3(df): if df.shape[0] < 3: return 0 t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap3'], kind='nearest') resampled_wap = nearest(t_new) # Compute sample entropy sampleEntropy = sampen(resampled_wap) return sampleEntropy def financial_metrics(df): wap_imbalance = np.mean(df['wap'] - df['wap2']) price_spread = np.mean((df['ask_price1'] - df['bid_price1']) / ((df['ask_price1'] + df['bid_price1'])/2)) bid_spread = np.mean(df['bid_price1'] - df['bid_price2']) ask_spread = np.mean(df['ask_price1'] - df['ask_price2']) # Abs to take total_volume = np.mean((df['ask_size1'] + df['ask_size2']) + (df['bid_size1'] + df['bid_size2'])) volume_imbalance = np.mean(abs((df['ask_size1'] + df['ask_size2']) - (df['bid_size1'] + df['bid_size2']))) return [wap_imbalance,price_spread,bid_spread,ask_spread,total_volume,volume_imbalance] def financial_metrics_2(df): wap_imbalance = df['wap'] - df['wap2'] price_spread = (df['ask_price1'] - df['bid_price1']) / ((df['ask_price1'] + df['bid_price1'])/2) bid_spread = df['bid_price1'] - df['bid_price2'] ask_spread = df['ask_price1'] - df['ask_price2'] # Abs to take total_volume = (df['ask_size1'] + df['ask_size2']) + (df['bid_size1'] + df['bid_size2']) volume_imbalance = abs((df['ask_size1'] + df['ask_size2']) - (df['bid_size1'] + df['bid_size2'])) # New features here wap_imbalance_mean = np.mean(wap_imbalance) wap_imbalance_sum = np.sum(wap_imbalance) wap_imbalance_std = np.std(wap_imbalance) wap_imbalance_max = np.max(wap_imbalance) wap_imbalance_min = np.min(wap_imbalance) price_spread_mean = np.mean(price_spread) price_spread_sum = np.sum(price_spread) price_spread_std = np.std(price_spread) price_spread_max = np.max(price_spread) price_spread_min = np.min(price_spread) bid_spread_mean = np.mean(bid_spread) bid_spread_sum = np.sum(bid_spread) bid_spread_std = np.std(bid_spread) bid_spread_max = np.max(bid_spread) bid_spread_min = np.min(bid_spread) ask_spread_mean = np.mean(ask_spread) ask_spread_sum = np.sum(ask_spread) ask_spread_std = np.std(ask_spread) ask_spread_max = np.max(ask_spread) ask_spread_min = np.min(ask_spread) total_volume_mean = np.mean(total_volume) total_volume_sum = np.sum(total_volume) total_volume_std = np.std(total_volume) total_volume_max = np.max(total_volume) total_volume_min = np.min(total_volume) volume_imbalance_mean = np.mean(volume_imbalance) volume_imbalance_sum = np.sum(volume_imbalance) volume_imbalance_std = np.std(volume_imbalance) volume_imbalance_max = np.max(volume_imbalance) volume_imbalance_min = np.min(volume_imbalance) return [wap_imbalance_mean,price_spread_mean,bid_spread_mean,ask_spread_mean,total_volume_mean,volume_imbalance_mean, wap_imbalance_sum,price_spread_sum,bid_spread_sum,ask_spread_sum,total_volume_sum,volume_imbalance_sum, wap_imbalance_std,price_spread_std,bid_spread_std,ask_spread_std,total_volume_std,volume_imbalance_std, wap_imbalance_max,price_spread_max,bid_spread_max,ask_spread_max,total_volume_max,volume_imbalance_max, wap_imbalance_min,price_spread_min,bid_spread_min,ask_spread_min,total_volume_min,volume_imbalance_min] def other_metrics(df): if df.shape[0] < 2: linearFit = 0 linearFit2 = 0 linearFit3 = 0 std_1 = 0 std_2 = 0 std_3 = 0 else: linearFit = (df['wap'].iloc[-1] - df['wap'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) linearFit2 = (df['wap2'].iloc[-1] - df['wap2'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) linearFit3 = (df['wap3'].iloc[-1] - df['wap3'].iloc[0]) / ((np.max(df['seconds_in_bucket']) - np.min(df['seconds_in_bucket']))) # Resampling t_init = df['seconds_in_bucket'] t_new = np.arange(np.min(t_init),np.max(t_init)) # Closest neighbour interpolation (no changes in wap between lines) nearest = interp1d(t_init, df['wap'], kind='nearest') nearest2 = interp1d(t_init, df['wap2'], kind='nearest') nearest3 = interp1d(t_init, df['wap3'], kind='nearest') std_1 = np.std(nearest(t_new)) std_2 = np.std(nearest2(t_new)) std_3 = np.std(nearest3(t_new)) return [linearFit, linearFit2, linearFit3, std_1, std_2, std_3] def load_book_data_by_id_kaggle(stock_id,train_test): df = pd.read_parquet(f'../input/optiver-realized-volatility-prediction/book_{train_test}.parquet/stock_id={stock_id}') return df def load_trades_data_by_id_kaggle(stock_id,train_test): df = pd.read_parquet(f'../input/optiver-realized-volatility-prediction/trade_{train_test}.parquet/stock_id={stock_id}') return df def computeFeatures_wEntropy(machine, dataset, all_stocks_ids, datapath): list_rv, list_rv2, list_rv3 = [], [], [] list_ent, list_fin, list_fin2 = [], [], [] list_others, list_others2, list_others3 = [], [], [] for stock_id in range(127): start = time.time() if machine == 'local': try: book_stock = load_book_data_by_id(stock_id,datapath,dataset) except: continue elif machine == 'kaggle': try: book_stock = load_book_data_by_id_kaggle(stock_id,dataset) except: continue # Useful all_time_ids_byStock = book_stock['time_id'].unique() # Calculate wap for the book book_stock['wap'] = calc_wap(book_stock) book_stock['wap2'] = calc_wap2(book_stock) book_stock['wap3'] = calc_wap3(book_stock) # Calculate realized volatility df_sub = book_stock.groupby('time_id')['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2 = book_stock.groupby('time_id')['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3 = book_stock.groupby('time_id')['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub['time_id']] df_sub = pd.concat([df_sub,df_sub2['wap2'],df_sub3['wap3']],axis=1) df_sub = df_sub.rename(columns={'time_id':'row_id','wap': 'rv', 'wap2': 'rv2', 'wap3': 'rv3'}) # Calculate realized volatility last 5 min isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_5['time_id']] df_sub_5 = pd.concat([df_sub_5,df_sub2_5['wap2'],df_sub3_5['wap3']],axis=1) df_sub_5 = df_sub_5.rename(columns={'time_id':'row_id','wap': 'rv_5', 'wap2': 'rv2_5', 'wap3': 'rv3_5'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_5']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_5']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_5']) df_sub_5 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) # Calculate realized volatility last 2 min isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_sub_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_2['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_2['time_id']] df_sub_2 = pd.concat([df_sub_2,df_sub2_2['wap2'],df_sub3_2['wap3']],axis=1) df_sub_2 = df_sub_2.rename(columns={'time_id':'row_id','wap': 'rv_2', 'wap2': 'rv2_2', 'wap3': 'rv3_2'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_2']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_2']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_2']) df_sub_2 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) list_rv.append(df_sub) list_rv2.append(df_sub_5) list_rv3.append(df_sub_2) # Calculate other financial metrics from book df_sub_book_feats = book_stock.groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats = df_sub_book_feats.rename(columns={0:'embedding'}) df_sub_book_feats[['wap_imbalance','price_spread','bid_spread','ask_spread','total_vol','vol_imbalance']] = pd.DataFrame(df_sub_book_feats.embedding.tolist(), index=df_sub_book_feats.index) df_sub_book_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats['time_id']] df_sub_book_feats = df_sub_book_feats.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_book_feats5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats5 = df_sub_book_feats5.rename(columns={0:'embedding'}) df_sub_book_feats5[['wap_imbalance5','price_spread5','bid_spread5','ask_spread5','total_vol5','vol_imbalance5']] = pd.DataFrame(df_sub_book_feats5.embedding.tolist(), index=df_sub_book_feats5.index) df_sub_book_feats5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats5['time_id']] df_sub_book_feats5 = df_sub_book_feats5.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['wap_imbalance5']) temp2 = pd.DataFrame([0],columns=['price_spread5']) temp3 = pd.DataFrame([0],columns=['bid_spread5']) temp4 = pd.DataFrame([0],columns=['ask_spread5']) temp5 = pd.DataFrame([0],columns=['total_vol5']) temp6 = pd.DataFrame([0],columns=['vol_imbalance5']) df_sub_book_feats5 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_fin.append(df_sub_book_feats) list_fin2.append(df_sub_book_feats5) # Compute entropy isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_ent = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df).to_frame().reset_index().fillna(0) df_ent2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df2).to_frame().reset_index().fillna(0) df_ent3 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(entropy_from_df3).to_frame().reset_index().fillna(0) df_ent['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_ent['time_id']] df_ent = df_ent.rename(columns={'time_id':'row_id',0:'entropy'}) df_ent2 = df_ent2.rename(columns={0:'entropy2'}).drop(['time_id'],axis=1) df_ent3 = df_ent3.rename(columns={0:'entropy3'}).drop(['time_id'],axis=1) df_ent = pd.concat([df_ent,df_ent2,df_ent3],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['entropy']) temp2 = pd.DataFrame([0],columns=['entropy2']) temp3 = pd.DataFrame([0],columns=['entropy3']) df_ent = pd.concat([times_pd,temp,temp2,temp3],axis=1) list_ent.append(df_ent) # Compute other metrics df_others = book_stock.groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others = df_others.rename(columns={0:'embedding'}) df_others[['linearFit1_1','linearFit1_2','linearFit1_3','wap_std1_1','wap_std1_2','wap_std1_3']] = pd.DataFrame(df_others.embedding.tolist(), index=df_others.index) df_others['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others['time_id']] df_others = df_others.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_others.append(df_others) isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_others2 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others2 = df_others2.rename(columns={0:'embedding'}) df_others2[['linearFit2_1','linearFit2_2','linearFit2_3','wap_std2_1','wap_std2_2','wap_std2_3']] = pd.DataFrame(df_others2.embedding.tolist(), index=df_others2.index) df_others2['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others2['time_id']] df_others2 = df_others2.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['linearFit2_1']) temp2 = pd.DataFrame([0],columns=['linearFit2_2']) temp3 = pd.DataFrame([0],columns=['linearFit2_3']) temp4 = pd.DataFrame([0],columns=['wap_std2_1']) temp5 = pd.DataFrame([0],columns=['wap_std2_2']) temp6 = pd.DataFrame([0],columns=['wap_std2_3']) df_others2 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_others2.append(df_others2) isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_others3 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others3 = df_others3.rename(columns={0:'embedding'}) df_others3[['linearFit3_1','linearFit3_2','linearFit3_3','wap_std3_1','wap_std3_2','wap_std3_3']] = pd.DataFrame(df_others3.embedding.tolist(), index=df_others3.index) df_others3['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others3['time_id']] df_others3 = df_others3.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['linearFit3_1']) temp2 = pd.DataFrame([0],columns=['linearFit3_2']) temp3 = pd.DataFrame([0],columns=['linearFit3_3']) temp4 = pd.DataFrame([0],columns=['wap_std3_1']) temp5 = pd.DataFrame([0],columns=['wap_std3_2']) temp6 = pd.DataFrame([0],columns=['wap_std3_3']) df_others3 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_others3.append(df_others3) print('Computing one stock took', time.time() - start, 'seconds for stock ', stock_id) # Create features dataframe df_submission = pd.concat(list_rv) df_submission2 = pd.concat(list_rv2) df_submission3 = pd.concat(list_rv3) df_ent_concat = pd.concat(list_ent) df_fin_concat = pd.concat(list_fin) df_fin2_concat = pd.concat(list_fin2) df_others = pd.concat(list_others) df_others2 = pd.concat(list_others2) df_others3 = pd.concat(list_others3) df_book_features = df_submission.merge(df_submission2, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_submission3, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_ent_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin2_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others2, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others3, on = ['row_id'], how='left').fillna(0) # Add encoded stock encoder = np.eye(len(all_stocks_ids)) encoded = list() for i in range(df_book_features.shape[0]): stock_id = int(df_book_features['row_id'][i].split('-')[0]) encoded_stock = encoder[np.where(all_stocks_ids == int(stock_id))[0],:] encoded.append(encoded_stock) encoded_pd = pd.DataFrame(np.array(encoded).reshape(df_book_features.shape[0],np.array(all_stocks_ids).shape[0])) df_book_features_encoded = pd.concat([df_book_features, encoded_pd],axis=1) return df_book_features_encoded def computeFeatures_july(machine, dataset, all_stocks_ids, datapath): list_rv, list_rv2, list_rv3 = [], [], [] list_ent, list_fin, list_fin2 = [], [], [] list_others, list_others2, list_others3 = [], [], [] for stock_id in range(127): start = time.time() if machine == 'local': try: book_stock = load_book_data_by_id(stock_id,datapath,dataset) except: continue elif machine == 'kaggle': try: book_stock = load_book_data_by_id_kaggle(stock_id,dataset) except: continue # Useful all_time_ids_byStock = book_stock['time_id'].unique() # Calculate wap for the book book_stock['wap'] = calc_wap(book_stock) book_stock['wap2'] = calc_wap2(book_stock) book_stock['wap3'] = calc_wap3(book_stock) # Calculate realized volatility df_sub = book_stock.groupby('time_id')['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2 = book_stock.groupby('time_id')['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3 = book_stock.groupby('time_id')['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub['time_id']] df_sub = pd.concat([df_sub,df_sub2['wap2'],df_sub3['wap3']],axis=1) df_sub = df_sub.rename(columns={'time_id':'row_id','wap': 'rv', 'wap2': 'rv2', 'wap3': 'rv3'}) # Calculate realized volatility last 5 min isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_5['time_id']] df_sub_5 = pd.concat([df_sub_5,df_sub2_5['wap2'],df_sub3_5['wap3']],axis=1) df_sub_5 = df_sub_5.rename(columns={'time_id':'row_id','wap': 'rv_5', 'wap2': 'rv2_5', 'wap3': 'rv3_5'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_5']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_5']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_5']) df_sub_5 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) # Calculate realized volatility last 2 min isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_sub_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_2 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_2['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_2['time_id']] df_sub_2 = pd.concat([df_sub_2,df_sub2_2['wap2'],df_sub3_2['wap3']],axis=1) df_sub_2 = df_sub_2.rename(columns={'time_id':'row_id','wap': 'rv_2', 'wap2': 'rv2_2', 'wap3': 'rv3_2'}) else: # 0 volatility times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_2']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_2']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_2']) df_sub_2 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3],axis=1) list_rv.append(df_sub) list_rv2.append(df_sub_5) list_rv3.append(df_sub_2) # Calculate other financial metrics from book df_sub_book_feats = book_stock.groupby(['time_id']).apply(financial_metrics_2).to_frame().reset_index() df_sub_book_feats = df_sub_book_feats.rename(columns={0:'embedding'}) df_sub_book_feats[['wap_imbalance','price_spread','bid_spread','ask_spread','total_vol','vol_imbalance']] = pd.DataFrame(df_sub_book_feats.embedding.tolist(), index=df_sub_book_feats.index) df_sub_book_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats['time_id']] df_sub_book_feats = df_sub_book_feats.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_sub_book_feats5 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(financial_metrics_2).to_frame().reset_index() df_sub_book_feats5 = df_sub_book_feats5.rename(columns={0:'embedding'}) df_sub_book_feats5[['wap_imbalance5','price_spread5','bid_spread5','ask_spread5','total_vol5','vol_imbalance5']] = pd.DataFrame(df_sub_book_feats5.embedding.tolist(), index=df_sub_book_feats5.index) df_sub_book_feats5['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats5['time_id']] df_sub_book_feats5 = df_sub_book_feats5.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['wap_imbalance5']) temp2 = pd.DataFrame([0],columns=['price_spread5']) temp3 = pd.DataFrame([0],columns=['bid_spread5']) temp4 = pd.DataFrame([0],columns=['ask_spread5']) temp5 = pd.DataFrame([0],columns=['total_vol5']) temp6 = pd.DataFrame([0],columns=['vol_imbalance5']) df_sub_book_feats5 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_fin.append(df_sub_book_feats) list_fin2.append(df_sub_book_feats5) # Compute other metrics df_others = book_stock.groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others = df_others.rename(columns={0:'embedding'}) df_others[['linearFit1_1','linearFit1_2','linearFit1_3','wap_std1_1','wap_std1_2','wap_std1_3']] = pd.DataFrame(df_others.embedding.tolist(), index=df_others.index) df_others['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others['time_id']] df_others = df_others.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_others.append(df_others) isEmpty = book_stock.query(f'seconds_in_bucket >= 300').empty if isEmpty == False: df_others2 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others2 = df_others2.rename(columns={0:'embedding'}) df_others2[['linearFit2_1','linearFit2_2','linearFit2_3','wap_std2_1','wap_std2_2','wap_std2_3']] = pd.DataFrame(df_others2.embedding.tolist(), index=df_others2.index) df_others2['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others2['time_id']] df_others2 = df_others2.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['linearFit2_1']) temp2 = pd.DataFrame([0],columns=['linearFit2_2']) temp3 = pd.DataFrame([0],columns=['linearFit2_3']) temp4 = pd.DataFrame([0],columns=['wap_std2_1']) temp5 = pd.DataFrame([0],columns=['wap_std2_2']) temp6 = pd.DataFrame([0],columns=['wap_std2_3']) df_others2 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_others2.append(df_others2) isEmpty = book_stock.query(f'seconds_in_bucket >= 480').empty if isEmpty == False: df_others3 = book_stock.query(f'seconds_in_bucket >= 480').groupby(['time_id']).apply(other_metrics).to_frame().reset_index().fillna(0) df_others3 = df_others3.rename(columns={0:'embedding'}) df_others3[['linearFit3_1','linearFit3_2','linearFit3_3','wap_std3_1','wap_std3_2','wap_std3_3']] = pd.DataFrame(df_others3.embedding.tolist(), index=df_others3.index) df_others3['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_others3['time_id']] df_others3 = df_others3.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['linearFit3_1']) temp2 = pd.DataFrame([0],columns=['linearFit3_2']) temp3 = pd.DataFrame([0],columns=['linearFit3_3']) temp4 = pd.DataFrame([0],columns=['wap_std3_1']) temp5 = pd.DataFrame([0],columns=['wap_std3_2']) temp6 = pd.DataFrame([0],columns=['wap_std3_3']) df_others3 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_others3.append(df_others3) print('Computing one stock took', time.time() - start, 'seconds for stock ', stock_id) # Create features dataframe df_submission = pd.concat(list_rv) df_submission2 = pd.concat(list_rv2) df_submission3 = pd.concat(list_rv3) df_ent_concat = pd.concat(list_ent) df_fin_concat = pd.concat(list_fin) df_fin2_concat = pd.concat(list_fin2) df_others = pd.concat(list_others) df_others2 = pd.concat(list_others2) df_others3 = pd.concat(list_others3) df_book_features = df_submission.merge(df_submission2, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_submission3, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_ent_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin2_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others2, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_others3, on = ['row_id'], how='left').fillna(0) # Add encoded stock encoder = np.eye(len(all_stocks_ids)) encoded = list() for i in range(df_book_features.shape[0]): stock_id = int(df_book_features['row_id'][i].split('-')[0]) encoded_stock = encoder[np.where(all_stocks_ids == int(stock_id))[0],:] encoded.append(encoded_stock) encoded_pd = pd.DataFrame(np.array(encoded).reshape(df_book_features.shape[0],np.array(all_stocks_ids).shape[0])) df_book_features_encoded = pd.concat([df_book_features, encoded_pd],axis=1) return df_book_features_encoded def computeFeatures_newTest_Laurent(machine, dataset, all_stocks_ids, datapath): list_rv, list_rv2, list_rv3 = [], [], [] list_ent, list_fin, list_fin2 = [], [], [] list_others, list_others2, list_others3 = [], [], [] for stock_id in range(127): start = time.time() if machine == 'local': try: book_stock = load_book_data_by_id(stock_id,datapath,dataset) except: continue elif machine == 'kaggle': try: book_stock = load_book_data_by_id_kaggle(stock_id,dataset) except: continue # Useful all_time_ids_byStock = book_stock['time_id'].unique() # Calculate wap for the entire book book_stock['wap'] = calc_wap(book_stock) book_stock['wap2'] = calc_wap2(book_stock) book_stock['wap3'] = calc_wap3(book_stock) book_stock['wap4'] = calc_wap2(book_stock) book_stock['mid_price'] = calc_wap3(book_stock) # Calculate past realized volatility per time_id df_sub = book_stock.groupby('time_id')['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2 = book_stock.groupby('time_id')['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3 = book_stock.groupby('time_id')['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4 = book_stock.groupby('time_id')['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5 = book_stock.groupby('time_id')['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub['time_id']] df_sub = df_sub.rename(columns={'time_id':'row_id'}) df_sub = pd.concat([df_sub,df_sub2['wap2'],df_sub3['wap3'], df_sub4['wap4'], df_sub5['mid_price']],axis=1) df_sub = df_sub.rename(columns={'wap': 'rv', 'wap2': 'rv2', 'wap3': 'rv3', 'wap4':'rv4','mid_price':'rv5'}) list_rv.append(df_sub) # Query segments bucketQuery480 = book_stock.query(f'seconds_in_bucket >= 480') isEmpty480 = bucketQuery480.empty bucketQuery300 = book_stock.query(f'seconds_in_bucket >= 300') isEmpty300 = bucketQuery300.empty times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) # Calculate past realized volatility per time_id and query subset if isEmpty300 == False: df_sub_300 = bucketQuery300.groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_300 = bucketQuery300.groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_300 = bucketQuery300.groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4_300 = bucketQuery300.groupby(['time_id'])['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5_300 = bucketQuery300.groupby(['time_id'])['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_300 = pd.concat([times_pd,df_sub_300['wap'],df_sub2_300['wap2'],df_sub3_300['wap3'],df_sub4_300['wap4'],df_sub5_300['mid_price']],axis=1) df_sub_300 = df_sub_300.rename(columns={'wap': 'rv_300', 'wap2_300': 'rv2', 'wap3_300': 'rv3', 'wap4':'rv4_300','mid_price':'rv5_300'}) else: # 0 volatility zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_300']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_300']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_300']) zero_rv4 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv4_300']) zero_rv5 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv5_300']) df_sub_300 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3,zero_rv4,zero_rv5],axis=1) list_rv2.append(df_sub_300) # Calculate realized volatility last 2 min if isEmpty480 == False: df_sub_480 = bucketQuery480.groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_480 = bucketQuery480.groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_480 = bucketQuery480.groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4_480 = bucketQuery480.groupby(['time_id'])['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5_480 = bucketQuery480.groupby(['time_id'])['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_480 = pd.concat([times_pd,df_sub_480['wap'],df_sub2_480['wap2'],df_sub3_480['wap3'],df_sub4_480['wap4'],df_sub5_480['mid_price']],axis=1) df_sub_480 = df_sub_480.rename(columns={'wap': 'rv_480', 'wap2_480': 'rv2', 'wap3_480': 'rv3', 'wap4':'rv4_480','mid_price':'rv5_480'}) else: # 0 volatility zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_480']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_480']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_480']) zero_rv4 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv4_480']) zero_rv5 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv5_480']) df_sub_480 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3,zero_rv4,zero_rv5],axis=1) list_rv3.append(df_sub_480) # Calculate other financial metrics from book df_sub_book_feats = book_stock.groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats = df_sub_book_feats.rename(columns={0:'embedding'}) df_sub_book_feats[['wap_imbalance','price_spread','bid_spread','ask_spread','total_vol','vol_imbalance']] = pd.DataFrame(df_sub_book_feats.embedding.tolist(), index=df_sub_book_feats.index) df_sub_book_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats['time_id']] df_sub_book_feats = df_sub_book_feats.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_fin.append(df_sub_book_feats) if isEmpty300 == False: df_sub_book_feats_300 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats_300 = df_sub_book_feats_300.rename(columns={0:'embedding'}) df_sub_book_feats_300[['wap_imbalance5','price_spread5','bid_spread5','ask_spread5','total_vol5','vol_imbalance5']] = pd.DataFrame(df_sub_book_feats_300.embedding.tolist(), index=df_sub_book_feats_300.index) df_sub_book_feats_300['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats_300['time_id']] df_sub_book_feats_300 = df_sub_book_feats_300.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['wap_imbalance5']) temp2 = pd.DataFrame([0],columns=['price_spread5']) temp3 = pd.DataFrame([0],columns=['bid_spread5']) temp4 = pd.DataFrame([0],columns=['ask_spread5']) temp5 = pd.DataFrame([0],columns=['total_vol5']) temp6 = pd.DataFrame([0],columns=['vol_imbalance5']) df_sub_book_feats_300 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_fin2.append(df_sub_book_feats_300) print('Computing one stock took', time.time() - start, 'seconds for stock ', stock_id) # Create features dataframe df_submission = pd.concat(list_rv) df_submission2 = pd.concat(list_rv2) df_submission3 = pd.concat(list_rv3) df_fin_concat = pd.concat(list_fin) df_fin2_concat = pd.concat(list_fin2) df_book_features = df_submission.merge(df_submission2, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_submission3, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin_concat, on = ['row_id'], how='left').fillna(0) df_book_features = df_book_features.merge(df_fin2_concat, on = ['row_id'], how='left').fillna(0) # Add encoded stock encoder = np.eye(len(all_stocks_ids)) encoded = list() for i in range(df_book_features.shape[0]): stock_id = int(df_book_features['row_id'][i].split('-')[0]) encoded_stock = encoder[np.where(all_stocks_ids == int(stock_id))[0],:] encoded.append(encoded_stock) encoded_pd = pd.DataFrame(np.array(encoded).reshape(df_book_features.shape[0],np.array(all_stocks_ids).shape[0])) df_book_features_encoded = pd.concat([df_book_features, encoded_pd],axis=1) return df_book_features_encoded def computeFeatures_newTest_Laurent_noCode(machine, dataset, all_stocks_ids, datapath): list_rv, list_rv2, list_rv3 = [], [], [] list_ent, list_fin, list_fin2 = [], [], [] list_others, list_others2, list_others3 = [], [], [] for stock_id in range(127): start = time.time() if machine == 'local': try: book_stock = load_book_data_by_id(stock_id,datapath,dataset) except: continue elif machine == 'kaggle': try: book_stock = load_book_data_by_id_kaggle(stock_id,dataset) except: continue # Useful all_time_ids_byStock = book_stock['time_id'].unique() # Calculate wap for the entire book book_stock['wap'] = calc_wap(book_stock) book_stock['wap2'] = calc_wap2(book_stock) book_stock['wap3'] = calc_wap3(book_stock) book_stock['wap4'] = calc_wap2(book_stock) book_stock['mid_price'] = calc_wap3(book_stock) # Calculate past realized volatility per time_id df_sub = book_stock.groupby('time_id')['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2 = book_stock.groupby('time_id')['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3 = book_stock.groupby('time_id')['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4 = book_stock.groupby('time_id')['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5 = book_stock.groupby('time_id')['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub['time_id']] df_sub = df_sub.rename(columns={'time_id':'row_id'}) df_sub = pd.concat([df_sub,df_sub2['wap2'],df_sub3['wap3'], df_sub4['wap4'], df_sub5['mid_price']],axis=1) df_sub = df_sub.rename(columns={'wap': 'rv', 'wap2': 'rv2', 'wap3': 'rv3', 'wap4':'rv4','mid_price':'rv5'}) list_rv.append(df_sub) # Query segments bucketQuery480 = book_stock.query(f'seconds_in_bucket >= 480') isEmpty480 = bucketQuery480.empty bucketQuery300 = book_stock.query(f'seconds_in_bucket >= 300') isEmpty300 = bucketQuery300.empty times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) # Calculate past realized volatility per time_id and query subset if isEmpty300 == False: df_sub_300 = bucketQuery300.groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_300 = bucketQuery300.groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_300 = bucketQuery300.groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4_300 = bucketQuery300.groupby(['time_id'])['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5_300 = bucketQuery300.groupby(['time_id'])['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_300 = pd.concat([times_pd,df_sub_300['wap'],df_sub2_300['wap2'],df_sub3_300['wap3'],df_sub4_300['wap4'],df_sub5_300['mid_price']],axis=1) df_sub_300 = df_sub_300.rename(columns={'wap': 'rv_300', 'wap2_300': 'rv2', 'wap3_300': 'rv3', 'wap4':'rv4_300','mid_price':'rv5_300'}) else: # 0 volatility zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_300']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_300']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_300']) zero_rv4 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv4_300']) zero_rv5 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv5_300']) df_sub_300 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3,zero_rv4,zero_rv5],axis=1) list_rv2.append(df_sub_300) # Calculate realized volatility last 2 min if isEmpty480 == False: df_sub_480 = bucketQuery480.groupby(['time_id'])['wap'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub2_480 = bucketQuery480.groupby(['time_id'])['wap2'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub3_480 = bucketQuery480.groupby(['time_id'])['wap3'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub4_480 = bucketQuery480.groupby(['time_id'])['wap4'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub5_480 = bucketQuery480.groupby(['time_id'])['mid_price'].agg(calc_rv_from_wap_numba, engine='numba').to_frame().reset_index() df_sub_480 = pd.concat([times_pd,df_sub_480['wap'],df_sub2_480['wap2'],df_sub3_480['wap3'],df_sub4_480['wap4'],df_sub5_480['mid_price']],axis=1) df_sub_480 = df_sub_480.rename(columns={'wap': 'rv_480', 'wap2_480': 'rv2', 'wap3_480': 'rv3', 'wap4':'rv4_480','mid_price':'rv5_480'}) else: # 0 volatility zero_rv = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv_480']) zero_rv2 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv2_480']) zero_rv3 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv3_480']) zero_rv4 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv4_480']) zero_rv5 = pd.DataFrame(np.zeros((1,times_pd.shape[0])),columns=['rv5_480']) df_sub_480 = pd.concat([times_pd,zero_rv,zero_rv2,zero_rv3,zero_rv4,zero_rv5],axis=1) list_rv3.append(df_sub_480) # Calculate other financial metrics from book df_sub_book_feats = book_stock.groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats = df_sub_book_feats.rename(columns={0:'embedding'}) df_sub_book_feats[['wap_imbalance','price_spread','bid_spread','ask_spread','total_vol','vol_imbalance']] = pd.DataFrame(df_sub_book_feats.embedding.tolist(), index=df_sub_book_feats.index) df_sub_book_feats['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats['time_id']] df_sub_book_feats = df_sub_book_feats.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) list_fin.append(df_sub_book_feats) if isEmpty300 == False: df_sub_book_feats_300 = book_stock.query(f'seconds_in_bucket >= 300').groupby(['time_id']).apply(financial_metrics).to_frame().reset_index() df_sub_book_feats_300 = df_sub_book_feats_300.rename(columns={0:'embedding'}) df_sub_book_feats_300[['wap_imbalance5','price_spread5','bid_spread5','ask_spread5','total_vol5','vol_imbalance5']] = pd.DataFrame(df_sub_book_feats_300.embedding.tolist(), index=df_sub_book_feats_300.index) df_sub_book_feats_300['time_id'] = [f'{stock_id}-{time_id}' for time_id in df_sub_book_feats_300['time_id']] df_sub_book_feats_300 = df_sub_book_feats_300.rename(columns={'time_id':'row_id'}).drop(['embedding'],axis=1) else: times_pd = pd.DataFrame(all_time_ids_byStock,columns=['time_id']) times_pd['time_id'] = [f'{stock_id}-{time_id}' for time_id in times_pd['time_id']] times_pd = times_pd.rename(columns={'time_id':'row_id'}) temp = pd.DataFrame([0],columns=['wap_imbalance5']) temp2 = pd.DataFrame([0],columns=['price_spread5']) temp3 = pd.DataFrame([0],columns=['bid_spread5']) temp4 = pd.DataFrame([0],columns=['ask_spread5']) temp5 = pd.DataFrame([0],columns=['total_vol5']) temp6 = pd.DataFrame([0],columns=['vol_imbalance5']) df_sub_book_feats_300 = pd.concat([times_pd,temp,temp2,temp3,temp4,temp5,temp6],axis=1) list_fin2.append(df_sub_book_feats_300) print('Computing one stock took', time.time() - start, 'seconds for stock ', stock_id) # Create features dataframe df_submission =
pd.concat(list_rv)
pandas.concat
import pandas as pd import logging import electricitylci.model_config as config formatter = logging.Formatter( "%(levelname)s:%(filename)s:%(funcName)s:%(message)s" ) logging.basicConfig( format="%(levelname)s:%(filename)s:%(funcName)s:%(message)s", level=logging.INFO, ) logger = logging.getLogger("electricitylci") def get_generation_process_df(regions=None, **kwargs): """ Create a dataframe of emissions from power generation by fuel type in each region. kwargs would include the upstream emissions dataframe (upstream_df) if upstream emissions are being included. Parameters ---------- regions : str, optional Regions to include in the analysis (the default is None, which uses the value read from a settings YAML file). Other options include "eGRID", "NERC", "BA", "US", "FERC", and "EIA" Returns ------- DataFrame Each row represents information about a single emission from a fuel category in a single region. Columns are: 'Subregion', 'FuelCategory', 'FlowName', 'FlowUUID', 'Compartment', 'Year', 'Source', 'Unit', 'ElementaryFlowPrimeContext', 'TechnologicalCorrelation', 'TemporalCorrelation', 'DataCollection', 'Emission_factor', 'Reliability_Score', 'GeographicalCorrelation', 'GeomMean', 'GeomSD', 'Maximum', 'Minimum' """ from electricitylci.generation import create_generation_process_df from electricitylci.combinator import concat_clean_upstream_and_plant if config.model_specs.include_renewable_generation is True: generation_process_df=get_gen_plus_netl() else: generation_process_df = create_generation_process_df() if config.model_specs.include_netl_water is True: import electricitylci.plant_water_use as water water_df = water.generate_plant_water_use(config.model_specs.eia_gen_year) generation_process_df=concat_clean_upstream_and_plant(generation_process_df,water_df) if config.model_specs.include_upstream_processes is True: try: upstream_df = kwargs['upstream_df'] upstream_dict = kwargs['upstream_dict'] except KeyError: print( "A kwarg named 'upstream_dict' must be included if include_upstream_processes" "is True" ) # upstream_dict = write_upstream_process_database_to_dict( # upstream_df # ) # upstream_dict = write_upstream_dicts_to_jsonld(upstream_dict) combined_df, canadian_gen = combine_upstream_and_gen_df( generation_process_df, upstream_df ) gen_plus_fuels = add_fuels_to_gen( generation_process_df, upstream_df, canadian_gen, upstream_dict ) else: import electricitylci.import_impacts as import_impacts canadian_gen_df = import_impacts.generate_canadian_mixes(generation_process_df) generation_process_df = pd.concat([generation_process_df, canadian_gen_df], ignore_index=True) gen_plus_fuels=generation_process_df #This change has been made to accomodate the new method of generating #consumption mixes for FERC regions. They now pull BAs to provide #a more accurate inventory. The tradeoff here is that it's no longer possible #to make a FERC region generation mix and also provide the consumption mix. #Or it could be possible but would requir running through aggregate twice. # generation_process_df = aggregate_gen( # gen_plus_fuels, subregion=regions # ) if regions is None: regions = config.model_specs.regional_aggregation if regions in ["BA","FERC","US"]: generation_process_df = aggregate_gen( gen_plus_fuels, subregion="BA" ) else: generation_process_df = aggregate_gen( gen_plus_fuels, subregion=regions ) return generation_process_df def get_generation_mix_process_df(regions=None): """ Create a dataframe of generation mixes by fuel type in each subregion. This function imports and uses the parameter 'replace_egrid' and 'gen_mix_from_model_generation_data' from model_config.py. If 'replace_egrid' is true or the specified 'regions' is true, then the generation mix will come from EIA 923 data. If 'replace_egrid' is false then the generation mix will either come from the eGRID reference data ('gen_mix_from_model_generation_data' is false) or from the generation data from this model ('gen_mix_from_model_generation_data' is true). Parameters ---------- regions : str, optional Which regions to include (the default is 'all', which includes all eGRID subregions) Returns ------- DataFrame Sample output: >>> all_gen_mix_db.head() Subregion FuelCategory Electricity NERC Generation_Ratio 0 AKGD COAL 5.582922e+05 ASCC 0.116814 22 AKGD OIL 3.355753e+05 ASCC 0.070214 48 AKGD GAS 3.157474e+06 ASCC 0.660651 90 AKGD HYDRO 5.477350e+05 ASCC 0.114605 114 AKGD BIOMASS 5.616577e+04 ASCC 0.011752 """ from electricitylci.egrid_filter import ( electricity_for_selected_egrid_facilities, ) from electricitylci.generation_mix import ( create_generation_mix_process_df_from_model_generation_data, create_generation_mix_process_df_from_egrid_ref_data, ) from electricitylci.eia923_generation import build_generation_data if regions is None: regions = config.model_specs.regional_aggregation if config.model_specs.replace_egrid or regions in ["BA","FERC","US"]: # assert regions == 'BA' or regions == 'NERC', 'Regions must be BA or NERC' if regions in ["BA","FERC","US"] and not config.model_specs.replace_egrid: logger.info( f"EIA923 generation data is being used for the generation mix " f"despite replace_egrid = False. The reference eGrid electricity " f"data cannot be reorgnznied to match BA or FERC regions. For " f"the US region, the function for generating US mixes does not " f"support aggregating to the US." ) print("EIA923 generation data is used when replacing eGRID") generation_data = build_generation_data( generation_years=[config.model_specs.eia_gen_year] ) generation_mix_process_df = create_generation_mix_process_df_from_model_generation_data( generation_data, regions ) else: if config.model_specs.gen_mix_from_model_generation_data: generation_mix_process_df = create_generation_mix_process_df_from_model_generation_data( electricity_for_selected_egrid_facilities, regions ) else: generation_mix_process_df = create_generation_mix_process_df_from_egrid_ref_data( regions ) return generation_mix_process_df def write_generation_process_database_to_dict(gen_database, regions=None): """ Create olca formatted dictionaries of individual processes Parameters ---------- gen_database : DataFrame Each row represents information about a single emission from a fuel category in a single region. regions : str, optional Not currently used (the default is 'all', which [default_description]) Returns ------- dict A dictionary of dictionaries, each of which contains information about emissions from a single fuel type in a single region. """ from electricitylci.generation import olcaschema_genprocess if regions is None: regions = config.model_specs.regional_aggregation gen_dict = olcaschema_genprocess(gen_database, subregion=regions) return gen_dict def write_generation_mix_database_to_dict( genmix_database, gen_dict, regions=None ): from electricitylci.generation_mix import olcaschema_genmix if regions is None: regions = config.model_specs.regional_aggregation if regions in ["FERC","US","BA"]: genmix_dict = olcaschema_genmix( genmix_database, gen_dict, subregion="BA" ) else: genmix_dict = olcaschema_genmix( genmix_database, gen_dict, subregion=regions ) return genmix_dict def write_surplus_pool_and_consumption_mix_dict(): """ Create olca formatted dictionaries for the consumption mix as calculated by consumption_mix.py. Note that this funcion directly pulls the dataframes, converts the data into the dictionary and then returns the dictionary. Returns ------- dictionary The surplus pool and consumption mixes for the various regions. """ from electricitylci.consumption_mix import surplus_dict from electricitylci.consumption_mix import consumption_dict surplus_pool_and_con_mix = {**surplus_dict, **consumption_dict} return surplus_pool_and_con_mix def write_distribution_dict(): from electricitylci.distribution import distribution_mix_dictionary return distribution_mix_dictionary() def write_process_dicts_to_jsonld(*process_dicts): """ Send one or more process dictionaries to be written to json-ld """ from electricitylci.olca_jsonld_writer import write all_process_dicts = dict() for d in process_dicts: all_process_dicts = {**all_process_dicts, **d} olca_dicts = write(all_process_dicts, config.model_specs.namestr) return olca_dicts def get_upstream_process_df(eia_gen_year): """ Automatically load all of the upstream emissions data from the various modules. Will return a dataframe with upstream emissions from coal, natural gas, petroleum, nuclear, and plant construction. """ import electricitylci.coal_upstream as coal import electricitylci.natural_gas_upstream as ng import electricitylci.petroleum_upstream as petro import electricitylci.nuclear_upstream as nuke import electricitylci.power_plant_construction as const from electricitylci.combinator import concat_map_upstream_databases print("Generating upstream inventories...") coal_df = coal.generate_upstream_coal(eia_gen_year) ng_df = ng.generate_upstream_ng(eia_gen_year) petro_df = petro.generate_petroleum_upstream(eia_gen_year) nuke_df = nuke.generate_upstream_nuc(eia_gen_year) const = const.generate_power_plant_construction(eia_gen_year) #coal and ng already conform to mapping so no mapping needed upstream_df = concat_map_upstream_databases(eia_gen_year, petro_df, nuke_df, const ) upstream_df=pd.concat([upstream_df,coal_df,ng_df],sort=False,ignore_index=True) return upstream_df def write_upstream_process_database_to_dict(upstream_df): """ Convert the upstream dataframe generated by get_upstream_process_df to dictionaries to be written to json-ld. Parameters ---------- upstream_df : dataframe Combined dataframe as generated by gen_upstream_process_df Returns ------- dictionary """ import electricitylci.upstream_dict as upd print("Writing upstream processes to dictionaries") upstream_dicts = upd.olcaschema_genupstream_processes(upstream_df) return upstream_dicts def write_upstream_dicts_to_jsonld(upstream_dicts): """ Write the upstream dictionary to jsonld. Parameters ---------- upstream_dicts : dictionary The dictioanary of upstream unit processes generated by electricitylci.write_upstream_database_to_dict. """ upstream_dicts = write_process_dicts_to_jsonld(upstream_dicts) return upstream_dicts def combine_upstream_and_gen_df(gen_df, upstream_df): """ Combine the generation and upstream dataframes into a single dataframe. The emissions represented here are the annutal emissions for all power plants. This dataframe would be suitable for further analysis. Parameters ---------- gen_df : dataframe The generator dataframe, generated by get_gen_plus_netl or get_generation_process_df. Note that get_generation_process_df returns two dataframes. The intention would be to send the second returned dataframe (plant-level emissions) to this routine. upstream_df : dataframe The upstream dataframe, generated by get_upstream_process_df """ import electricitylci.combinator as combine import electricitylci.import_impacts as import_impacts print("Combining upstream and generation inventories") combined_df = combine.concat_clean_upstream_and_plant(gen_df, upstream_df) canadian_gen = import_impacts.generate_canadian_mixes(combined_df) combined_df =
pd.concat([combined_df, canadian_gen], ignore_index=True)
pandas.concat
''' Functions for processing BC Hydro observation files. *Raw files are in PST with daylight savings. ''' import numpy as np import pandas as pd from os.path import basename from datetime import datetime, timedelta def flag_out(dataframe, col, flag_col, flag_val): ''' Preserve values that have qc_code=`flag_val`; flag out the rest. 'PREC_INST_RAW_QC' should have flag_val='200' 'PREC_INST_QC_QC' should have flag_val='50' ''' temp_data = dataframe[col].values temp_flag = dataframe[flag_col].values temp_data[temp_flag!=flag_val] = np.nan dataframe[col] = temp_data return dataframe def BCH_txt_preprocess(filename_input, filename_output, cols_num, qc_code, verbose=True): ''' Converting BC Hydro (old) txt observation files into pandas HDF5. Input ---------- filename_input: a list of raw txt file names filename_output: the output filename, a string, e.g., 'NRT_2016_2018.hdf' cols_num: list of namea of numerical columns, e.g., 'PREC_INST_QC' verbose: True for print outs qc_code: code of good quality, the same length as cols_num Output ---------- keys: a list of stations been processed keys_stored: a list of stations been stored (have non-NaN values) ''' cols_need = [] for col in cols_num: cols_need.append(col) cols_need.append(col+'_QC') # add qc code into extracted cols cols_need = ['datetime',] + cols_need keys = []; keys_stored = [] with pd.HDFStore(filename_output, 'w') as hdf_io: # loop over txt files for name in filename_input: # Assuming good at the begining Bad = False # txt to pandas data = pd.read_csv(name, sep='\t', skiprows=[0]) # use filename (first three letters) as hdf variable keys key = basename(name)[0:3] keys.append(key); if verbose: print(key) # collection all detected columns cols = list(data.columns) # rename the datetime column cols[1] = 'datetime' data.columns = cols # check missing in the needed columns for col_need in cols_need: if np.logical_not(col_need in cols): if verbose: print('\t"{}" missing'.format(col_need)) Bad = True; if Bad: if verbose: print('\tInsufficient data') continue; # subset to needed columns data_subset = data[cols_need].copy() # collecting numerical values from needed columns L = len(data_subset) for col_num in cols_num: temp_data = np.empty(L) # allocation temp_string = data_subset[col_num] for i, string in enumerate(temp_string): # column could be a 'float number' or '+' for NaN try: temp_data[i] = np.float(string) except: # "try: failed = got "+" symbol temp_data[i] = np.nan # replace raw strings by the converted values data_subset[col_num] = temp_data # flag out values based on the qc code if qc_code is not None: for i, col in enumerate(cols_num): data_subset = flag_out(data_subset, col, col+'_QC', flag_val=qc_code[i]) # drop rows that contain NaN values data_subset = data_subset.dropna(how='any') # if found "0.0" in datetime col, mark as NaN and drop the row for i, date_vals in enumerate(data_subset['datetime']): if date_vals == "0.0": if verbose: print("\tFound bad datetime values, drop row {}".format(i)) data_subset = data_subset.drop(data_subset.index[i]) # converting datetime string to pandas datetime after cleaning data_subset['datetime'] = pd.to_datetime(data_subset['datetime']) # check the number of remained columns L = len(data_subset) if L < 2: if verbose: print('\tInsufficient data after value cleaning, L={}'.format(L)) continue; # observational times as ending times # calculating the time diff for resmapling freq = np.empty(L) for i in range(L-1): freq[i+1] = (data_subset['datetime'].iloc[i+1] - data_subset['datetime'].iloc[i]).total_seconds() freq[0] = freq[1] data_subset['FREQ'] = freq # dropna changes index, here reset the pandas index data_out = data_subset.reset_index().drop(['index'], axis=1) # rename all pre-processed columns data_out.columns = cols_need + ['FREQ',] # save into the hdf hdf_io[key] = data_out keys_stored.append(key) return keys, keys_stored def BCH_xls_preprocess(filename_input, filename_output, cols_num, verbose=True): ''' Converting BC Hydro xls observation files into pandas HDF5. Input ---------- filename_input: a list of xls file names filename_output: the output filename, a string, e.g., 'NRT_2019.hdf' cols_num: name of the single numerical column, e.g., 'PREC_INST_QC' verbose: True for print outs Output ---------- keys: a list of stations been processed ''' keys = [] with pd.HDFStore(filename_output, 'w') as hdf_io: for name in filename_input: pd_temp =
pd.read_excel(name)
pandas.read_excel
from tutorial.main.stepbystep.stepbysteputils.pgconnector import create_engine_ready from suricate.data.companies import getsource, gettarget import pandas as pd import numpy as np engine = create_engine_ready() # filefolder = '~/' # leftpath = 'source.csv' # rightpath = 'target.csv' # df_source = pd.read_csv(filefolder + leftpath, index_col=0, sep='|', encoding='utf-8') # df_target = pd.read_csv(filefolder + rightpath, index_col=0, sep='|', encoding='utf-8') df_source_raw = getsource(nrows=500) df_target_raw = gettarget(nrows=None) from sklearn.model_selection import train_test_split def rebuild_ytrue(ix): y_true_saved = pd.read_sql(sql="SELECT * FROM y_true WHERE y_true.y_true = 1", con=engine).set_index( ['ix_source', 'ix_target'], drop=True)['y_true'] y = pd.Series(index=ix, data = np.zeros(shape=len(ix)), name='y_true') ix_common = y_true_saved.index.intersection(ix) y.loc[ix_common] = y_true_saved.loc[ix_common] return y def prepare_source(df): """ Args: df: Returns: pd.DataFrame """ df2 = df return df2 def prepare_target(df): """ Args: df: Returns: pd.DataFrame """ df2 = df return df2 df_source = prepare_source(df_source_raw) df_target = prepare_target(df_target_raw) assert df_source.columns.equals(df_target.columns) print(pd.datetime.now(),' | ', 'number of rows on left:{}'.format(df_source.shape[0])) print(pd.datetime.now(),' | ', 'number of rows on right:{}'.format(df_target.shape[0])) import pandas as pd from tutorial.main.stepbystep.stepbysteputils.esconnector import getesconnector escon = getesconnector() from suricate.sbstransformers import SbsApplyComparator from sklearn.pipeline import FeatureUnion _sbs_score_list = [ ('name_fuzzy', SbsApplyComparator(on='name', comparator='simple')), ('street_fuzzy', SbsApplyComparator(on='street', comparator='simple')), ('name_token', SbsApplyComparator(on='name', comparator='token')), ('street_token', SbsApplyComparator(on='street', comparator='token')), ('city_fuzzy', SbsApplyComparator(on='city', comparator='simple')), ('postalcode_fuzzy', SbsApplyComparator(on='postalcode', comparator='simple')), ('postalcode_contains', SbsApplyComparator(on='postalcode', comparator='contains')) ] scorer_sbs = FeatureUnion(transformer_list=_sbs_score_list) from suricate.pipeline import PartialClf from sklearn.pipeline import Pipeline from sklearn.impute import SimpleImputer from sklearn.preprocessing import Normalizer from sklearn.decomposition import PCA from sklearn.ensemble import GradientBoostingClassifier from sklearn.metrics import precision_score, recall_score, accuracy_score pipe = Pipeline(steps=[ ('Impute', SimpleImputer(strategy='constant', fill_value=0)), ('Scaler', Normalizer()), ('PCA', PCA(n_components=4)), ('Predictor', GradientBoostingClassifier(n_estimators=2000)) ]) pred = PartialClf(classifier=pipe) left_train, left_test = train_test_split(df_source_raw, train_size=0.5) Xst_train = escon.fit_transform(X=left_train) ix_con_train = Xst_train.index Xsbs_train = escon.getsbs(X=left_train, on_ix=ix_con_train) scores_further_train = scorer_sbs.fit_transform(X=Xsbs_train) scores_further_train = pd.DataFrame(data=scores_further_train, index=ix_con_train, columns=[c[0] for c in _sbs_score_list]) scores_further_train = pd.concat([Xst_train[['es_score']], scores_further_train], axis=1, ignore_index=False) y_true_train = rebuild_ytrue(ix=ix_con_train) pred.fit(X=scores_further_train, y=y_true_train) y_pred_train = pred.predict(X=scores_further_train) print(pd.datetime.now(),' | ', 'Scores on training data') print(pd.datetime.now(),' | ', 'accuracy: {}'.format(accuracy_score(y_true=y_true_train, y_pred=y_pred_train))) print(pd.datetime.now(),' | ', 'precision: {}'.format(precision_score(y_true=y_true_train, y_pred=y_pred_train))) print(pd.datetime.now(),' | ', 'recall: {}'.format(recall_score(y_true=y_true_train, y_pred=y_pred_train))) Xst_test = escon.transform(X=left_test) ix_con_test = Xst_test.index Xsbs_test = escon.getsbs(X=left_test, on_ix=ix_con_test) scores_further_test = scorer_sbs.transform(X=Xsbs_test) scores_further_test = pd.DataFrame(data=scores_further_test, index=ix_con_test, columns=[c[0] for c in _sbs_score_list]) scores_further_test = pd.concat([Xst_test[['es_score']], scores_further_test], axis=1, ignore_index=False) y_true_test = rebuild_ytrue(ix=ix_con_test) y_pred_test = pred.predict(X=scores_further_test) print(pd.datetime.now(),' | ', 'Scores on testing data') print(pd.datetime.now(),' | ', 'accuracy: {}'.format(accuracy_score(y_true=y_true_test, y_pred=y_pred_test))) print(pd.datetime.now(),' | ', 'precision: {}'.format(precision_score(y_true=y_true_test, y_pred=y_pred_test))) print(
pd.datetime.now()
pandas.datetime.now