prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
#!/usr/bin/env python # -*- coding: utf-8 -*- import pandas as pd from datetime import datetime, timedelta import numpy as np from scipy.stats import pearsonr # from mpl_toolkits.axes_grid1 import host_subplot # import mpl_toolkits.axisartist as AA # import matplotlib import matplotlib.pyplot as plt import matplotlib.ticker as tck import matplotlib.font_manager as fm import math as m import matplotlib.dates as mdates import netCDF4 as nc from netCDF4 import Dataset id import itertools import datetime from scipy.stats import ks_2samp Estacion = '6001' df1 = pd.read_table('/home/nacorreasa/Maestria/Datos_Tesis/Piranometro/6001Historico.txt', parse_dates=[2]) Theoric_rad_method = 'GIS_Model' ##-->> PARA QUE USE EL MODELO DE Gis DEBE SER 'GIS_Model' resolucion = 'diaria' ##-->> LAS OPCIONES SON 'diaria' U 'horaria' #----------------------------------------------------------------------------- # Rutas para las fuentes ----------------------------------------------------- prop = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Heavy.otf' ) prop_1 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Book.otf') prop_2 = fm.FontProperties(fname='/home/nacorreasa/SIATA/Cod_Califi/AvenirLTStd-Black.otf') ## ---CALCULO DE LA RADIACIÓN TEORICA--- ## def daterange(start_date, end_date): 'Para el ajuste de las fechas en el modelo de Kumar cada 10 min. Las fechas final e inicial son en str: %Y-%m-%d' start_date = datetime.datetime.strptime(start_date, '%Y-%m-%d') end_date = datetime.datetime.strptime(end_date, '%Y-%m-%d') delta = timedelta(minutes=10) while start_date <= end_date: yield start_date start_date += delta def serie_Kumar_Model_hora(estacion): 'Retorna un dataframe horario con la radiacion teórico con las recomendacione de Kumar elaborado por <NAME> ' \ 'para el AMVA y su tesis. El dataframe original se le ordenan los datos a 12 meses ascendentes (2018), aunque pueden ' \ 'pertencer a años difernetes. El resultado es para el punto seleccionado y con el archivo de Total_Timeseries.csv' data_Model = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Radiacion_GIS/Teoricos_nati/Total_Timeseries.csv', sep=',') fecha_hora = [pd.to_datetime(data_Model['Unnamed: 0'], format="%Y-%m-%d %H:%M:%S")[i].to_pydatetime() for i in range(len(data_Model['Unnamed: 0']))] data_Model.index = fecha_hora data_Model = data_Model.sort_index() data_Model['Month'] = np.array(data_Model.index.month) data_Model = data_Model.sort_values(by="Month") fechas = [] for i in daterange('2018-01-01', '2019-01-01'): fechas.append(i) fechas = fechas[0:-1] if estacion == '6001': punto = data_Model['TS_kumar'] elif estacion == '6002': punto = data_Model['CI_kumar'] elif estacion == '6003': punto = data_Model['JV_kumar'] Rad_teorica = [] for i in range(len(fechas)): mes = fechas[i].month hora = fechas[i].hour mint = fechas[i].minute rad = \ np.where((data_Model.index.month == mes) & (data_Model.index.hour == hora) & (data_Model.index.minute == mint))[ 0] if len(rad) == 0: Rad_teorica.append(np.nan) else: Rad_teorica.append(punto.iloc[rad].values[0]) data_Theorical = pd.DataFrame() data_Theorical['fecha_hora'] = fechas data_Theorical['Radiacion_Teo'] = Rad_teorica data_Theorical.index = data_Theorical['fecha_hora'] df_hourly_theoric = data_Theorical.groupby(pd.Grouper(freq="H")).mean() df_hourly_theoric = df_hourly_theoric[df_hourly_theoric['Radiacion_Teo'] > 0] return df_hourly_theoric def Elevation_RadiationTA(n, lat, lon, start): 'Para obtener la radiación en W/m2 y el ángulo de elevación del sol en grados horariamente para un número "n" de ' \ 'días aun punto en una latitud y longitud determinada ( "lat-lon"como flotantes) a partir de una fecha de inicio ' \ '"start" como por ejemplo datetime.datetime(2018, 1, 1, 8).' import pysolar import pytz import datetime timezone = pytz.timezone("America/Bogota") start_aware = timezone.localize(start) # Calculate radiation every hour for 365 days nhr = 24*n dates, altitudes_deg, radiations = list(), list(), list() for ihr in range(nhr): date = start_aware + datetime.timedelta(hours=ihr) altitude_deg = pysolar.solar.get_altitude(lat, lon, date) if altitude_deg <= 0: radiation = 0. else: radiation = pysolar.radiation.get_radiation_direct(date, altitude_deg) dates.append(date) altitudes_deg.append(altitude_deg) radiations.append(radiation) days = [ihr/24 for ihr in range(nhr)] return days, altitudes_deg, radiations if Theoric_rad_method != 'GIS_Model' and Estacion == '6001': days, altitudes_deg, Io_hora = Elevation_RadiationTA(365, 6.259, -75.588, datetime.datetime(2018, 1, 1, 0)) print('Teorica con pysolar') elif Theoric_rad_method != 'GIS_Model' and Estacion == '6002': days, altitudes_deg, Io_hora = Elevation_RadiationTA(365, 6.168, -75.644, datetime.datetime(2018, 1, 1, 0)) print('Teorica con pysolar') elif Theoric_rad_method != 'GIS_Model' and Estacion == '6003': days, altitudes_deg, Io_hora = Elevation_RadiationTA(365, 6.255, -75.542, datetime.datetime(2018, 1, 1, 0)) print('Teorica con pysolar') elif Theoric_rad_method == 'GIS_Model': Io_hora = serie_Kumar_Model_hora(Estacion) print('Teorica con el modelo de KUMAR') ############################################################################### ##--------------EFICIENCIAS TEORICAS COMO PROXI DE TRANSPARENCIA-------------## ############################################################################### 'Calculo de la eficiencias teorica como proxi de la transparencia de la atmosfera' 'Para esto se hace uso de la información del piranometro y de la radiación teórica' 'de <NAME>, con esto se prentenden obtener las caracteristicas que deriven' 'del análisis estocastico, similar al de <NAME> en su tesis de doctorado.' ##------------------LECTURA DE LOS DATOS DEL EXPERIMENTO----------------------## df_P975 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel975.txt', sep=',', index_col =0) df_P350 = pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel350.txt', sep=',', index_col =0) df_P348 =
pd.read_csv('/home/nacorreasa/Maestria/Datos_Tesis/Experimentos_Panel/Panel348.txt', sep=',', index_col =0)
pandas.read_csv
from world_viewer.world import World import pandas as pd import numpy as np import warnings # from sensible_raw.loaders import loader import json from math import ceil import os os.environ['R_HOME'] = '/home/<EMAIL>/master/lib/R' class CNSWorld(World): PICKLE_PATH = './pickle/' # path for cached data RELATION_NET_PICKLE = 'CNS_relation_net' OPINIONS_PICKLE = 'CNS_opinions' LIKE_MINDEDNESS_PICKLE = 'CNS_like_mindedness' CNS_TIME_BEGIN = pd.Timestamp(pd.datetime(2013, 9, 2)) # first timestamp CNS_TIME_END = pd.Timestamp(pd.datetime(2014, 12, 31)) # last timestamp sigma = pd.to_timedelta(3, unit='d').total_seconds() two_sigma_sqr = 2* sigma * sigma def __init__(self, path='', start=pd.datetime(2013, 9, 2), end=pd.datetime(2014, 12, 31)): super().__init__() self.path = path self.CNS_TIME_BEGIN = start self.CNS_TIME_END = end def load_world(self, opinions = ['smoking'], relation_agg = 2, read_cached = False, stop=False, write_pickle = True, continous_op = False): self.name = "CNS" + '-'.join(opinions) self.type = "CNS" if continous_op: warnings.warn("No comparison of continous opinions implementet yet!") pickle_relation_net_filename = self.RELATION_NET_PICKLE \ + "_" + str(relation_agg) \ + ".pkl" pickle_opinions_filename = self.OPINIONS_PICKLE \ + "_" + '-'.join(opinions) \ + ".pkl" pickle_like_mindedness_filename = self.LIKE_MINDEDNESS_PICKLE \ + "_" + '-'.join(opinions) \ + ".pkl" ## 0. Load time #time = pd.DataFrame(pd.date_range(self.CNS_TIME_BEGIN, self.CNS_TIME_END, freq='W-MON'),columns=['time']) time = pd.DataFrame(pd.date_range(self.CNS_TIME_BEGIN, self.CNS_TIME_END, freq='d'),columns=['time']) self.time = time ## 1. Load opinions if read_cached: opinions_cached = False try: op_nodes = pd.read_pickle(self.PICKLE_PATH + pickle_opinions_filename) opinions_cached = True except FileNotFoundError: warnings.warn("No cached opinions found, read opinions from file.") opinions_cached = False if not (read_cached and opinions_cached): op_nodes = pd.DataFrame() # general opinion dataframe if len(list(set(opinions) & set(["smoking","physical"]))) > 0: op_data = pd.DataFrame() # df for loaded data # load data for survey in np.arange(1,4): print('Load survey ' + str(survey)) data_s = loader.load_data("questionnaires", "survey_"+str(survey), as_dataframe=True) data_s = data_s[data_s.user < 1000] #clean strange users op_time = self._get_op_time(survey) data_s = data_s.set_index('user').join(op_time) data_s = data_s[data_s.time.astype('int') > 10] data_s[data_s.time < self.CNS_TIME_BEGIN] = self.CNS_TIME_BEGIN data_s[data_s.time > self.CNS_TIME_END] = self.CNS_TIME_END data_s['survey'] = survey data_s.reset_index(inplace=True) op_data = pd.concat([op_data,data_s],sort=False) #possibilitie that users filled out more than one questionaires in one week op_data.drop_duplicates(['user','time','variable_name'], keep='last', inplace=True) # process opinions for opinion in opinions: # load smoking opinions if opinion == "smoking": print("Process opinion data for variable: smoking") opinion = "op_" + opinion smoking = op_data[op_data.variable_name == b'smoke_freq'].copy() smoking[opinion] = (smoking.response != b'nej_jeg_har_aldrig_r') \ & (smoking.response != b'nej_men_jeg_har_rget') smoking.reset_index(inplace=True) smoking = smoking[['user', 'time', opinion, 'survey' ]] smoking.rename(columns={'user':'node_id'},inplace=True) smoking = self._add_time_to_op_nodes(smoking, time, opinion) # write into general dataframe if op_nodes.empty: op_nodes = smoking else: op_nodes = op_nodes.set_index(['node_id','time']).join(smoking.set_index(['node_id','time']), how='outer') op_nodes.reset_index(inplace=True) # load physical opinions elif opinion == "physical": print("Process opinion data for variable: physical") opinion = "op_" + opinion physical = op_data[op_data.variable_name == b'physical_activity'].copy() physical.response.replace(b'ingen',0,inplace=True) physical.response.replace(b'ca__time_om_ugen',0,inplace=True) physical.response.replace(b'ca_1-2_timer_om_ugen',1,inplace=True) physical.response.replace(b'ca_3-4_timer_om_ugen',2,inplace=True) physical.response.replace(b'ca_5-6_timer_om_ugen',3,inplace=True) physical.response.replace(b'7_timer_om_ugen_elle',4,inplace=True) physical.rename(columns={'response':opinion, 'user':'node_id'},inplace=True) physical = physical[['node_id', 'time', opinion, 'survey' ]] physical = self._add_time_to_op_nodes(physical, time, opinion) # write into general dataframe if op_nodes.empty: op_nodes = physical else: op_nodes = op_nodes.set_index(['node_id','time','survey']) \ .join(physical.set_index(['node_id','time','survey']), how='outer') op_nodes.reset_index(inplace=True) elif opinion == "fitness": print("Process opinion data for variable: fitness") opinion = "op_" + opinion fitness = pd.read_pickle('data/op_fitness.pkl').reset_index() fitness = fitness[['node_id','time','op_fitness_abs']] fitness = fitness.rename(columns={"op_fitness_abs":"fitness"}) fitness["op_fitness"] = 0 fitness.sort_values(['node_id', 'time'], inplace=True) fitness = fitness[fitness.time >= self.CNS_TIME_BEGIN] fitness = fitness[fitness.time <= self.CNS_TIME_END] fitness.set_index('node_id', inplace=True) fitness.reset_index(inplace=True) # discretize opinion fitness.loc[fitness.fitness >= 1, "op_fitness"] = True fitness.loc[fitness.fitness < 1, "op_fitness"] = False # write into general dataframe if op_nodes.empty: op_nodes = fitness else: op_nodes = op_nodes.set_index(['node_id','time','survey']) \ .join(fitness.set_index(['node_id','time','survey']), how='outer') op_nodes.reset_index(inplace=True) else: raise ValueError('The opinion "' + opinion + '" is unknown.') if write_pickle: op_nodes.to_pickle(self.PICKLE_PATH + pickle_opinions_filename) #save opinions as instance variable self.op_nodes = op_nodes if stop: return 0 ## 3. Load relation network relations = pd.read_pickle("data/relations.pkl") relations.reset_index(inplace=True) relations = relations[relations.time >= self.CNS_TIME_BEGIN] relations = relations[relations.time <= self.CNS_TIME_END] # take only nodes for which the opinion is known relations = relations[relations.id_A.isin(self.op_nodes.node_id)] relations = relations[relations.id_B.isin(self.op_nodes.node_id)] self.a_ij = relations[['id_A', 'id_B', 'time', 'edge']] def _get_op_time(self, survey): with open('user_scores'+str(survey)+'.json') as f: op_time = json.load(f) op_time = pd.DataFrame(op_time).loc['ts'].to_frame() op_time.index.name = 'user' op_time.reset_index(inplace=True) op_time.user = op_time.user.astype('int') op_time.set_index('user',inplace=True) op_time.rename(columns={'ts':'time'},inplace=True) op_time.time = pd.to_datetime(op_time.time, unit='s').dt.to_period('W').dt.to_timestamp() return op_time def load_edges_from_bluetooth2(self, proxi, time, verbose=True): #, threshold = None, verbose=True): proxi = proxi.copy() # take both directions id_A->id_B, id_B->id_A proxi_inv = proxi.rename(columns={'id_A':'id_B','id_B':'id_A'}) proxi = pd.concat([proxi, proxi_inv], sort=False) proxi.drop_duplicates(['id_A','id_B','time'],inplace=True) # dont count edges twice proxi = proxi[proxi.id_A < proxi.id_B] proxi.time = proxi.time.dt.round('D') # count encounters per day proxi['encounter'] = 1 proxi = proxi.groupby(['id_A','id_B','time']).encounter.sum().reset_index() print("before") print(proxi) #insert time steps with no recorded encounter proxi = proxi.groupby(['id_A','id_B'])[['time','encounter']] \ .apply( lambda p: \ pd.DataFrame(p).set_index(['time']).join(time.set_index(['time']), how='outer') \ ) proxi.reset_index(inplace=True) # fill unknown encounters with 0 proxi.fillna(0,inplace=True) print("after") print(proxi) # weighted sum over a week proxi = proxi.groupby(['id_A','id_B'])['time','encounter'].apply(self._calc_interaction) proxi.reset_index(inplace=True) proxi.time = pd.to_datetime(proxi.time, unit='s')#.dt.to_period('W').dt.to_timestamp() #proxi = proxi.groupby(['id_A','id_B','time']).mean() self.meetings = proxi.reset_index() #determine edges #if threshold: # proxi['edge'] = proxi.encounter > threshold # print("Use a_ij threshold: " + threshold) #else: # proxi['edge'] = proxi.encounter > proxi.encounter.describe()['25%'] return proxi.reset_index() def _calc_interaction(self,proxi_slice): proxi = proxi_slice.copy() proxi.time = proxi.time.astype('int')/1000000000.0 # to seconds time_matrix = np.array([proxi.time.values]*len(proxi.time)) diff = time_matrix - time_matrix.transpose() matrix = np.exp(-(diff * diff)/self.two_sigma_sqr) filter_past = np.tril(np.ones_like(diff)) matrix *= filter_past proxi.encounter = np.dot(matrix, proxi.encounter) return proxi.set_index('time') def load_edges_from_bluetooth(self, proxi, encounter_offset, freq = 'weekly', time_format = 'ms'): proximity = proxi.copy() proximity['encounter'] = 1 if freq == 'monthly': # convert time to datetime format proximity.time = pd.to_datetime(proximity.time, unit=time_format) # aggregate monthly proximity = proximity.groupby(['id_A','id_B', pd.Grouper(key='time', freq='M')]).encounter \ .sum() \ .reset_index() \ .sort_values('time') elif freq == 'weekly': # substract 6 days, because pd.Grouper counts strange proximity.time = pd.to_datetime(proximity.time, unit=time_format) -
pd.to_timedelta(6, unit='d')
pandas.to_timedelta
import requests, re, json, csv import numpy as np import pandas as pd from bs4 import BeautifulSoup confirmed_CSV_URL = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Confirmed.csv' deaths_CSV_URL = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Deaths.csv' recovered_CSV_URL = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/time_series_19-covid-Recovered.csv' confirmed_total_data = [] deaths_total_data = [] recovered_total_data = [] with requests.Session() as s: download = s.get(confirmed_CSV_URL) decoded_content = download.content.decode('utf-8') cr = csv.reader(decoded_content.splitlines(), delimiter=',') my_list = list(cr) for row in my_list: confirmed_total_data.append(row) with requests.Session() as s: download = s.get(deaths_CSV_URL) decoded_content = download.content.decode('utf-8') cr = csv.reader(decoded_content.splitlines(), delimiter=',') my_list = list(cr) for row in my_list: deaths_total_data.append(row) with requests.Session() as s: download = s.get(recovered_CSV_URL) decoded_content = download.content.decode('utf-8') cr = csv.reader(decoded_content.splitlines(), delimiter=',') my_list = list(cr) for row in my_list: recovered_total_data.append(row) # confirmed_total_data[0] confirmed_df = pd.DataFrame(confirmed_total_data[1:], columns=confirmed_total_data[0]) deaths_df = pd.DataFrame(deaths_total_data, columns=deaths_total_data[0]) recovered_total_data =
pd.DataFrame(recovered_total_data, columns=recovered_total_data[0])
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm import matplotlib.colors as mcolors from scipy import stats from statsmodels.formula.api import ols import argparse import os import glob import warnings import config_utils from functools import reduce import random SMALL_SIZE = 14 MEDIUM_SIZE = 16 BIGGER_SIZE = 18 plt.rc('font', size=SMALL_SIZE) # controls default text sizes plt.rc('axes', titlesize=SMALL_SIZE) # fontsize of the axes title plt.rc('axes', labelsize=MEDIUM_SIZE) # fontsize of the x and y labels plt.rc('xtick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('ytick', labelsize=SMALL_SIZE) # fontsize of the tick labels plt.rc('legend', fontsize=SMALL_SIZE) # legend fontsize plt.rc('figure', titlesize=BIGGER_SIZE) # Which params were sampled logarithmically? plot_logarithmic = ['learning_rate', 'weight_decay'] parser = argparse.ArgumentParser() parser.add_argument('-l', '--logdir', type=str, help='directory containing log files', default=None) parser.add_argument('-c', '--csv', type=str, help='csv file from previously read log files', default=None) parser.add_argument('-i', '--id', type=str, help='Identifier for this analysis and subdirectory to output results to.', default='temp') parser.add_argument('-r', '--recursive', action='store_true', help='to also read any log files in sub*directories of --log') parser.add_argument('-p', '--showplots', action='store_true', help='to show each plot prior to saving and continuing') parser.add_argument('-t', '--histories', action='store_true', help='to plot loss histories (warning: requires slow rereading of log files).') parser.add_argument('-f', '--full_samples', action='store_true', help='to compute results for all runs of each group; otherwise subsample for fair comparison.') parser.add_argument('-s', '--score', default='macro_f1', help='validation score of interest', choices=['acc', 'macro_f1', 'macro_f1_main']) maxima_of_interest = ['val_loss', 'val_acc', 'val_macro_f1', 'val_macro_f1_main', 'train_acc', 'train_macro_f1', 'train_macro_f1_main'] groupings_of_interest = [ ['static', 'dynamic'], ['static', 'weights', 'noweights'], ['weights', 'noweights'], ['valueweights', 'valuezeros'], ['dot', 'cos', 'mlp'], ['softmax', 'nosoftmax'], ['keys', 'nokeys'], ['noweights_nokeys', 'weights_nokeys'], ] # Which main categories to compare hyperparams_of_interest = { # 'all': [ # 'entity_library', # 'gate_type', # 'entlib_weights', # 'gate_nonlinearity', # 'gate_sum_keys_values', # 'gate_softmax', # 'entlib_normalization', # ], # 'noweights': [ # 'gate_type', # 'gate_nonlinearity', # 'gate_softmax', # 'entlib_normalization', # ], # 'noweights_nokeys': [ # 'gate_type', # 'gate_nonlinearity', # 'gate_softmax', # 'entlib_normalization', # ], # 'weights_nokeys': [ # 'gate_type', # 'gate_nonlinearity', # 'gate_softmax', # 'entlib_normalization', # ], # 'dynamic': [ # 'entlib_dim', # 'gate_type', # 'entlib_weights', # 'gate_nonlinearity', # 'gate_sum_keys_values', # 'gate_softmax', # 'entlib_normalization', # ], # 'static': [ # 'gate_type', # 'gate_nonlinearity', # 'gate_softmax', # ], } num_best_to_plot_individually = 5 num_best_to_plot_jointly_per_value = 30 def _main(): global groupings_of_interest global hyperparams_of_interest args = parser.parse_args() score = 'val_' + args.score out_path = os.path.join(args.logdir or os.path.dirname(args.csv), args.id) os.makedirs(out_path, exist_ok=True) print('Results of analysis will be output to {0}.'.format(out_path)) # Read new results from log directory if given, and write to csv (else read straight from csv): if args.logdir is not None: # TODO If csv file already exist, ask for confirmation first to regenerate it (takes long!). print('Log directory given.') log_dir = args.logdir logs = read_logs(log_dir, recursive=args.recursive) if len(logs) == 0: print("No complete logs found. Quitting.") quit() args.csv = os.path.join(log_dir, 'scores.csv') write_logs_to_csv(logs, args.csv) # Read results from csv into dafaframe and organize by group df = read_csv(args.csv) dfs = data_groups(df) # dictionary of dataframes # Remove empty groups from consideration empty_groups = [group for grouping in groupings_of_interest for group in grouping if len(dfs[group]) == 0] empty_groups.extend([key for key in hyperparams_of_interest.keys() if len(dfs[key]) == 0]) empty_groups = list(set(empty_groups)) groupings_of_interest = [[x for x in grouping if x not in empty_groups] for grouping in groupings_of_interest] hyperparams_of_interest = {key: hyperparams_of_interest[key] for key in hyperparams_of_interest.keys() if key not in empty_groups} if [] in groupings_of_interest: groupings_of_interest.remove([]) print('groupings_of_interest =', groupings_of_interest) print('hyperparams_of_interest =', hyperparams_of_interest) print(' (removed empty groups: {0}.)'.format(', '.join(empty_groups))) # Output basic stats write_summary(dfs) print() if args.histories: # Create separate history loss & score plot for best logs print('Plotting top {0} training histories.'.format(num_best_to_plot_individually)) best_model_names = dfs['all'].nlargest(num_best_to_plot_individually, score)['model_name'] best_log_paths = ['/logs/'.join(os.path.split(name)) + '.log' for name in best_model_names] best_logs = read_logs(best_log_paths) for i, log in enumerate(best_logs): plot_loss_and_acc_history(log, out_path, score=score, index=i, show_plot=False) print() # Create boxplot of mean score per group print('Plotting boxplots of {0}.'.format(', '.join([str(grouping) for grouping in groupings_of_interest]))) for grouping in groupings_of_interest: # Equal number of models for each group of interest (for fair comparison) print(grouping, [len(dfs[key]) for key in grouping]) dfs_equalized_by_group = {} min_sample_size = min([len(dfs[key]) for key in grouping]) for key in grouping: if len(dfs[key]) > min_sample_size: print(' Subsampling {0} from {1} runs in group {2}'.format(min_sample_size, len(dfs[key]), key)) dfs_equalized_by_group[key] = dfs[key].sample(min_sample_size) else: dfs_equalized_by_group[key] = dfs[key] boxplot_means(dfs if args.full_samples else dfs_equalized_by_group, grouping, out_path, best_per_value=30, score=score, axes_ylim=None, show_plot=args.showplots) print() if args.histories: print('Plotting history plots of {0} given specified hyperparams.'.format(', '.join(hyperparams_of_interest.keys()))) # For each group, each parameter of interest for that group, draw all histories in single plot: for group in hyperparams_of_interest.keys(): for param in hyperparams_of_interest[group]: # See if param_name should be plotted as caterogical or continuous: plot_categorical = False unique_values = list(dfs[group][param].unique()) if isinstance(unique_values[0], str) or isinstance(unique_values[0], np.bool_): plot_categorical = True if None in unique_values: unique_values.remove(None) if 'None' in unique_values: unique_values.remove('None') if len(unique_values) > 1: print(' Plotting', group, 'given', param, unique_values, '(categorical)' if plot_categorical else '(continuous)') # If categorical, first downsample to equally many samples for each param value if plot_categorical: dfs_per_value = [dfs[group].loc[df[param] == value] for value in unique_values] if plot_categorical and not args.full_samples: min_size = min([len(d) for d in dfs_per_value]) dfs_equalized_by_value = [d.sample(min_size) for d in dfs_per_value] dfs_to_plot = dfs_equalized_by_value else: dfs_to_plot = [dfs[group]] # Then optionally take only top N best runs: if plot_categorical and num_best_to_plot_jointly_per_value: dfs_to_plot = [df.nlargest(num_best_to_plot_jointly_per_value, score) for df in dfs_to_plot] model_names_per_value = [df['model_name'] for df in dfs_to_plot] # Plotting function wants a plain list of logs: model_names_to_plot = [model_name for model_names in model_names_per_value for model_name in model_names] log_paths_to_plot = ['/logs/'.join(os.path.split(name)) + '.log' for name in model_names_to_plot] logs_to_plot = read_logs(log_paths_to_plot) plot_history_per_hyperparam(logs_to_plot, param, out_path, score=score, plot_categorical=plot_categorical, show_plot=args.showplots, id=group) # plt.hist([dfs['static']['val_macro_f1'], dfs['noentlib']['val_macro_f1']]) # plt.show() def read_logs(log_path, recursive=True): if isinstance(log_path, str): if recursive: log_paths = glob.glob(os.path.join(log_path, '**', '*.log'), recursive=True) else: log_paths = glob.glob(os.path.join(log_path, '*.log'), recursive=False) else: log_paths = log_path # i.e., it's already a list of paths. print(' Reading {0} log files...'.format(len(log_paths))) # Read all logs into dataframes, collect only those that are non-empty. logs = [] for log_name in log_paths: log = _read_log(log_name) if len(log.index) != 0 and (len(log.folds) == log.params['folds']): logs.append(log) return logs def write_logs_to_csv(logs, csv_path): print('Writing log file summaries to', csv_path + '.') # Store the settings and maxima from ALL logs in scores.csv file: with open(csv_path, "w", encoding="utf-8") as outf: param_names = list(logs[0].params.keys()) score_names = list(logs[0].maxima.keys()) param_names.sort() score_names.sort() print(','.join(param_names)+','+','.join(score_names) + ',model_name', file=outf) for log in logs: values = [str(log.params[param]) for param in param_names] maxima = [str(log.maxima[score]) for score in score_names] print(','.join(values) + ',' + ','.join(maxima) + ',' + log.log_name[:-4].replace('/logs/', '/'), file=outf) outf.close() def read_csv(csv_path): print('Reading results from', csv_path + '.') df =
pd.read_csv(csv_path)
pandas.read_csv
import pandas as pd from product.anaiproduct import AnAIProduct from datetime import timedelta import pytz from tqdm import tqdm pd.options.mode.chained_assignment = None from modeler.modeler import Modeler as m from datetime import datetime, timedelta, timezone import numpy as np import math import pickle from sklearn.preprocessing import OneHotEncoder class StockCategory(AnAIProduct): def __init__(self,params): super().__init__("stock_category", {"market":{"preload":True,"tables":{"prices":
pd.DataFrame([{}])
pandas.DataFrame
from .card import Card from copy import deepcopy from pandas import DataFrame location_in_cell_dict = { 'references':[], 'location':[], 'note':None, } def is_location_in_cell_dict(item): output = False if type(item) is dict: if set(location_in_cell_dict)==set(item): output = True return output class LocationInCellCard(Card): def __init__(self, item=None): super().__init__() self.card_type = 'location in cell' if is_location_in_cell_dict(item): for key, value in item.items(): setattr(self,key,value) else: for key, value in location_in_cell_dict.items(): setattr(self, key, value) def to_dict(self): output = deepcopy(location_in_cell_dict) for key in output: output[key]=getattr(self, key) return output def to_pandas_DataFrame(self, with_evidences=True): aux_dict = self.to_dict() for key in aux_dict: aux_dict[key]=[aux_dict[key]] if not with_evidences: for key in aux_dict: try: aux_dict[key]=aux_dict[key][0].value except: continue df =
DataFrame(aux_dict)
pandas.DataFrame
import functools from threading import Thread from contextlib import contextmanager import signal from scipy.stats._continuous_distns import _distn_names import scipy import importlib from hydroDL.master import basins from hydroDL.app import waterQuality from hydroDL import kPath, utils from hydroDL.model import trainTS from hydroDL.data import gageII, usgs from hydroDL.post import axplot, figplot import torch import os import json import pandas as pd import numpy as np import matplotlib.pyplot as plt import time import scipy wqData = waterQuality.DataModelWQ('rbWN5') siteNoLst = wqData.siteNoLst dirSel = os.path.join(kPath.dirData, 'USGS', 'inventory', 'siteSel') with open(os.path.join(dirSel, 'dictRB_Y30N5.json')) as f: dictSite = json.load(f) dirWRTDS = os.path.join(kPath.dirWQ, 'modelStat', 'WRTDS-W', 'All') dirOut = os.path.join(dirWRTDS, 'output') dirPar = os.path.join(dirWRTDS, 'params') # read a temp file saveFile = os.path.join(dirOut, siteNoLst[0]) dfP =
pd.read_csv(saveFile, index_col=None)
pandas.read_csv
from ..data import platemap_to_dataframe, scale_plate import pandas as pd def read_multiple_plates(tables, read_single, platemap=None, **kwargs): """Reads data for one or more plates, then merges the data together. This function simplifies reading and data reduction where you have either 1. multiple plates, each containing separate samples, and/or 2. each sample has multiple parameters measured (e.g OD600, A450, etc). This function produces a ``DataFrame`` where each such ``measure`` (e.g. OD600, FITC, A450, etc.) is in a separate column, and each physical well is in a single row. For each entry in ``table``, this function reads each of the ``measures`` in that table and joins those measures horizontally (one measure per column); then it concatenates ``table``\ s vertically, such that there is one row per well. Each ``dict`` in ``tables`` represents a single plate, which may have multiple ``measures``. Each of the ``measures`` will be read and joined by well. The union of parameters in each ``measure`` and ``table`` will be passed as ``**kwargs`` to ``read_single``. Each ``table`` can have several keys which serve special functions. Other keys will be passed as ``kwargs`` to ``read_single`` as above * ``measures``: list of dicts, each representing a different variable. Will be merged with ``table`` (values in the ``measure`` overwrite those in the ``table``) and passed as ``**kwargs`` to ``read_single``. * ``platemap``: dict containing platemap metadata that will be passed to :func:`~microplates.data.platemap_to_dataframe`. The metadata from the ``platemap`` argument and from this key will be merged * ``transform``: function that will be called with the ``DataFrame`` and ``table``, and should return a new, possibly modified ``DataFrame`` * ``scale``: tuple ``(from_wells, to_wells)``; will be used to call :func:`data.scale_plate` Examples -------- # single plate, multiple measures (OD600, FITC), each measure is in a # separate tab of the spreadsheet >>> read_multiple_plates([ ... { 'io': 'plate1.xlsx', 'measures': [ ... { 'sheet_name':'OD600', 'measure':'OD600' }, ... { 'sheet_name':'FITC', 'measure':'FITC' } ... ]} ... ], read_single = pd.read_excel ) # multiple plates, in separate excel files >>> read_multiple_plates([ ... { 'io': 'plate1.xlsx', 'measure':'OD600', 'data': {'plate':1} }, ... { 'io': 'plate2.xlsx', 'measure':'OD600', 'data': {'plate':2} } ... ], read_single = pd.read_excel ) # multiple plates in different tabs of the same excel file >>> read_multiple_plates([ ... { 'sheet_name': 'plate1', 'measure':'OD600', 'data': {'plate':1} }, ... { 'sheet_name': 'plate2', 'measure':'OD600', 'data': {'plate':2} } ... ], read_single = pd.read_excel, io='plates.xlsx', measure='OD600' ) # multiple plates in same excel file; can read using a function from # a submodule of microplates.io: >>> read_multiple_plates([ ... { 'sheet_name': 'plate1', 'measure':'OD600', 'data': {'plate':1} }, ... { 'sheet_name': 'plate2', 'measure':'OD600', 'data': {'plate':2} } ... ], ... read_single=microplates.io.tecan.read_single, ... path='plates.xlsx', measure='OD600' ) Parameters ---------- tables : list of dicts See examples read_single : function Function to read a single plate. Generally will be a function from the `io` submodule. The values for a single `measure` or `table` will be used as `**kwargs` for `read_single` platemap : dict Platemap; will be evaluated by `data.platemap_to_dataframe` and joined to each `table` **kwargs : dict, optional Additional arguments will be merged into each ``table``, with values from the ``table`` overwriting those in ``**kwargs``. Returns ------- int Description of anonymous integer return value. """ dfs = [] special_keys = set(["data","measures","transform","platemap","convert"]) if platemap is None: platemap = {} platemap = platemap_to_dataframe(platemap) # for each file for table in tables: table = {**kwargs, **table} # extract metadata to add as constant column if "data" in table: table_metadata = table["data"] else: table_metadata = {} # if multiple tables are included in the file if "measures" in table: measures = table["measures"] else: measures = [table] # if there is a function to modify this table, extract it if "transform" in table: transform = table["transform"] else: transform = None # if there is a per-table platefile, grab it if "platemap" in table: table_platemap = table["platemap"] else: table_platemap = {} table_platemap = platemap_to_dataframe(table_platemap) # if instructions to broadcast the per-table mapfile from # one microplate shape to another (e.g. 96 to 384), do the conversion if "scale" in table: convert_from, convert_to = table["scale"] table_platemap = scale_plate(table_platemap, convert_from, convert_to) table = {x: table[x] for x in table if x not in special_keys} # for each table in the file measure_dfs = [] for measure in measures: measure_df = read_single(**{ **table, **measure }) measure_dfs.append(measure_df) # concatenate different tables in this file, matching the wells df = pd.concat(measure_dfs, join='inner', axis=1) df =
pd.merge(left=table_platemap, right=df, left_index=True, right_index=True)
pandas.merge
#!/usr/bin/env python """ Represent connectivity pattern using pandas DataFrame. """ from collections import OrderedDict import itertools import re from future.utils import iteritems from past.builtins import basestring import networkx as nx import numpy as np import pandas as pd from .plsel import Selector, SelectorMethods from .pm import BasePortMapper class Interface(object): """ Container for set of interface comprising ports. This class contains information about a set of interfaces comprising path-like identifiers and the attributes associated with them. By default, each port must have at least the following attributes; other attributes may be added: - interface - indicates which interface a port is associated with. - io - indicates whether the port receives input ('in') or emits output ('out'). - type - indicates whether the port emits/receives spikes or graded potentials. All port identifiers in an interface must be unique. For two interfaces to be deemed compatible, they must contain the same port identifiers and their identifiers' 'io' attributes must be the inverse of each other (i.e., every 'in' port in one interface must be mirrored by an 'out' port in the other interface. Examples -------- >>> i = Interface('/foo[0:4],/bar[0:3]') >>> i['/foo[0:2]', 'interface', 'io', 'type'] = [0, 'in', 'spike'] >>> i['/foo[2:4]', 'interface', 'io', 'type'] = [1, 'out', 'spike'] Attributes ---------- data : pandas.DataFrame Port attribute data. index : pandas.MultiIndex Index of port identifiers. Parameters ---------- selector : str, unicode, or sequence Selector string (e.g., 'foo[0:2]') or sequence of token sequences (e.g., [['foo', (0, 2)]]) describing the port identifiers comprised by the interface. columns : list, default = ['interface', 'io', 'type'] Data column names. See Also -------- plsel.SelectorMethods """ def __init__(self, selector='', columns=['interface', 'io', 'type']): # All ports in an interface must contain at least the following # attributes: assert set(columns).issuperset(['interface', 'io', 'type']) self.sel = SelectorMethods() assert not(self.sel.is_ambiguous(selector)) self.num_levels = self.sel.max_levels(selector) names = [i for i in range(self.num_levels)] idx = self.sel.make_index(selector, names) self.__validate_index__(idx) self.data = pd.DataFrame(index=idx, columns=columns, dtype=object) # Dictionary containing mappers for different port types: self.pm = {} def __validate_index__(self, idx): """ Raise an exception if the specified index will result in an invalid interface. """ if idx.duplicated().any(): raise ValueError('Duplicate interface index entries detected.') def __getitem__(self, key): if type(key) == tuple and len(key) > 1: return self.sel.select(self.data[list(key[1:])], key[0]) else: return self.sel.select(self.data, key) def __setitem__ambiguous__(self, key, value): if type(key) == tuple: selector = key[0] else: selector = key # Ensure that the specified selector can actually be used against the # Interface's internal DataFrame: try: idx = self.sel.get_index(self.data, selector, names=self.data.index.names) except ValueError: raise ValueError('cannot create index with ' 'selector %s and column names %s' \ % (selector, str(self.data.index.names))) # If the data specified is not a dict, convert it to a dict: if type(key) == tuple and len(key) > 1: if np.isscalar(value): data = {k:value for k in key[1:]} elif type(value) == dict: data = value elif np.iterable(value) and len(value) <= len(key[1:]): data={k:v for k, v in zip(key[1:], value)} else: raise ValueError('cannot assign specified value') else: if np.isscalar(value): data = {self.data.columns[0]: value} elif type(value) == dict: data = value elif np.iterable(value) and len(value) <= len(self.data.columns): data={k:v for k, v in zip(self.data.columns, value)} else: raise ValueError('cannot assign specified value') for k, v in iteritems(data): self.data[k].loc[idx] = v def __setitem__(self, key, value): if type(key) == tuple: selector = key[0] else: selector = key # Fall back to slower method if the selector is ambiguous: if self.sel.is_ambiguous(selector): self.__setitem__ambiguous__(key, value) return else: selector = Selector(selector) # Don't waste time trying to do anything if the selector is empty: if not selector.nonempty: return # If the number of specified identifiers doesn't exceed the size of the # data array, enlargement by specifying identifiers that are not in # the index will not occur: assert len(selector) <= len(self.data) # If the data specified is not a dict, convert it to a dict: if type(key) == tuple and len(key) > 1: if np.isscalar(value): data = {k:value for k in key[1:]} elif type(value) == dict: data = value elif np.iterable(value) and len(value) <= len(key[1:]): data={k:v for k, v in zip(key[1:], value)} else: raise ValueError('cannot assign specified value') else: if np.isscalar(value): data = {self.data.columns[0]: value} elif type(value) == dict: data = value elif np.iterable(value) and len(value) <= len(self.data.columns): data={k:v for k, v in zip(self.data.columns, value)} else: raise ValueError('cannot assign specified value') if selector.max_levels == 1: s = [i for i in itertools.chain(*selector.expanded)] else: s = self.sel.pad_selector(selector.expanded, len(self.index.levshape)) for k, v in iteritems(data): self.data[k].loc[s] = v @property def index(self): """ Interface index. """ return self.data.index @index.setter def index(self, i): self.data.index = i @property def interface_ids(self): """ Interface identifiers. """ return set(self.data['interface']) @property def io_inv(self): """ Returns new Interface instance with inverse input-output attributes. Returns ------- i : Interface Interface instance whose 'io' attributes are the inverse of those of the current instance. """ data_inv = self.data.copy() f = lambda x: 'out' if x == 'in' else \ ('in' if x == 'out' else x) data_inv['io'] = data_inv['io'].apply(f) return self.from_df(data_inv) @property def idx_levels(self): """ Number of levels in Interface index. """ if isinstance(self.data.index, pd.MultiIndex): return len(self.index.levels) else: return 1 def clear(self): """ Clear all ports in class instance. """ self.data.drop(self.data.index, inplace=True) def data_select(self, f, inplace=False): """ Restrict Interface data with a selection function. Returns an Interface instance containing only those rows whose data is passed by the specified selection function. Parameters ---------- f : function Selection function with a single dict argument whose keys are the Interface's data column names. inplace : bool, default=False If True, update and return the given Interface instance. Otherwise, return a new instance. Returns ------- i : Interface Interface instance containing data selected by `f`. """ assert callable(f) result = self.data[f(self.data)] if inplace: self.data = result return self else: return Interface.from_df(result) @classmethod def from_df(cls, df): """ Create an Interface from a properly formatted DataFrame. Examples -------- >>> import plsel, pattern >>> import pandas >>> idx = plsel.SelectorMethods.make_index('/foo[0:2]') >>> data = [[0, 'in', 'spike'], [1, 'out', 'gpot']] >>> columns = ['interface', 'io', 'type'] >>> df = pandas.DataFrame(data, index=idx, columns=columns) >>> i = pattern.Interface.from_df(df) Parameters ---------- df : pandas.DataFrame DataFrame with a MultiIndex and data columns 'interface', 'io', and 'type' (additional columns may also be present). Returns ------- i : Interface Generated Interface instance. Notes ----- The contents of the specified DataFrame instance are copied into the new Interface instance. """ assert set(df.columns).issuperset(['interface', 'io', 'type']) if isinstance(df.index, pd.MultiIndex): if len(df.index): i = cls(df.index.tolist(), df.columns) else: i = cls([()], df.columns) elif isinstance(df.index, pd.Index): if len(df.index): i = cls([(s,) for s in df.index.tolist()], df.columns) else: i = cls([()], df.columns) else: raise ValueError('invalid index type') i.data = df.copy() i.__validate_index__(i.index) return i @classmethod def from_csv(cls, file_name, **kwargs): """ Create an Interface from a properly formatted CSV file. Parameters ---------- file_name : str File name of CSV file containing interface data. kwargs : dict Options to pass to `DataFrame.from_csv()` Returns ------- i : Interface Generated Interface instance. """ df = pd.DataFrame.from_csv(file_name, **kwargs) return cls.from_df(df) @classmethod def from_dict(cls, d): """ Create an Interface from a dictionary of selectors and data values. Examples -------- >>> d = {'/foo[0]': [0, 'in', 'gpot'], '/foo[1]': [1, 'in', 'gpot']} >>> i = Interface.from_dict(d) Parameters ---------- d : dict Dictionary that maps selectors to the data that should be associated with the corresponding ports. If a scalar, the data is assigned to the first attribute; if an iterable, the data is assigned to the attributes in order. Returns ------- i : Interface Generated interface instance. """ i = cls(','.join(d.keys())) for k, v in iteritems(d): i[k] = v i.data.sort_index(inplace=True) return i @classmethod def from_graph(cls, g): """ Create an Interface from a NetworkX graph. Examples -------- >>> import networkx as nx >>> g = nx.Graph() >>> g.add_node('/foo[0]', interface=0, io='in', type='gpot') >>> g.add_node('/foo[1]', interface=0, io='in', type='gpot') >>> i = Interface.from_graph(g) Parameters ---------- g : networkx.Graph Graph whose node IDs are path-like port identifiers. The node attributes are assigned to the ports. Returns ------- i : Interface Generated interface instance. """ assert isinstance(g, nx.Graph) return cls.from_dict(g.node) @classmethod def from_selectors(cls, sel, sel_in='', sel_out='', sel_spike='', sel_gpot='', *sel_int_list): """ Create an Interface instance from selectors. Parameters ---------- sel : str, unicode, or sequence Selector describing all ports comprised by interface. sel_in : str, unicode, or sequence Selector describing the interface's input ports. sel_out : str, unicode, or sequence Selector describing the interface's output ports. sel_spike : str, unicode, or sequence Selector describing the interface's spiking ports. sel_gpot : str, unicode, or sequence Selector describing the interface's graded potential ports. sel_int_list : list of str, unicode, or sequence Selectors consecutively describing the ports associated with interface 0, interface 1, etc. Returns ------- i : Interface Generated interface instance. """ i = cls(sel) i[sel_in, 'io'] = 'in' i[sel_out, 'io'] = 'out' i[sel_spike, 'type'] = 'spike' i[sel_gpot, 'type'] = 'gpot' for n, sel_int in enumerate(sel_int_list): i[sel_int, 'interface'] = n return i def gpot_ports(self, i=None, tuples=False): """ Restrict Interface ports to graded potential ports. Parameters ---------- i : int Interface identifier. If None, return all graded potential ports. tuples : bool If True, return a list of tuples; if False, return an Interface instance. Returns ------- interface : Interface or list of tuples Either an Interface instance containing all graded potential ports and their attributes in the specified interface, or a list of tuples corresponding to the expanded ports. """ if i is None: try: df = self.data[self.data['type'] == 'gpot'] except: df = None else: try: df = self.data[(self.data['type'] == 'gpot') & \ (self.data['interface'] == i)] except: df = None if tuples: if df is None: return [] else: return df.index.tolist() else: if df is None: return Interface() else: return self.from_df(df) def in_ports(self, i=None, tuples=False): """ Restrict Interface ports to input ports. Parameters ---------- i : int Interface identifier. If None, return all input ports. tuples : bool If True, return a list of tuples; if False, return an Interface instance. Returns ------- interface : Interface or list of tuples Either an Interface instance containing all input ports and their attributes in the specified interface, or a list of tuples corresponding to the expanded ports. """ if i is None: try: df = self.data[self.data['io'] == 'in'] except: df = None else: try: df = self.data[(self.data['io'] == 'in') & \ (self.data['interface'] == i)] except: df = None if tuples: if df is None: return [] else: return df.index.tolist() else: if df is None: return Interface() else: return self.from_df(df) def interface_ports(self, i=None, tuples=False): """ Restrict Interface ports to specific interface. Parameters ---------- i : int Interface identifier. If None, return all ports. tuples : bool If True, return a list of tuples; if False, return an Interface instance. Returns ------- interface : Interface Either an Interface instance containing all ports and their attributes in the specified interface, or a list of tuples corresponding to the expanded ports. """ if i is None: if tuples: return self.index.tolist() else: return self.copy() else: try: df = self.data[self.data['interface'] == i] except: df = None if tuples: if df is None: return [] else: return df.index.tolist() else: if df is None: return Interface() else: return self.from_df(df) def _merge_on_interfaces(self, a, i, b): """ Merge contents of this and another Interface instance. Notes ----- If the number of levels in one Interface instance's DataFrame index is greater than that of the other, the number of levels in the index of the merged DataFrames instances is set to the former and the index with the smaller number is padded with blank entries to enable Panda's merge mechanism to function properly. """ assert isinstance(i, Interface) df_left = self.data[self.data['interface'] == a] df_right = i.data[i.data['interface'] == b] n_left_names = len(self.data.index.names) n_right_names = len(i.data.index.names) # Pandas' merge mechanism fails if the number of levels in each of the # merged MultiIndex indices differs and there is overlap of more than # one level; we therefore pad the index with the smaller number of # levels before attempting the merge: if n_left_names > n_right_names: for n in range(i.num_levels, i.num_levels+(n_left_names-n_right_names)): new_col = str(n) df_right[new_col] = '' df_right.set_index(new_col, append=True, inplace=True) elif n_left_names < n_right_names: for n in range(self.num_levels, self.num_levels+(n_right_names-n_left_names)): new_col = str(n) df_left[new_col] = '' df_left.set_index(new_col, append=True, inplace=True) return pd.merge(df_left, df_right, left_index=True, right_index=True) def get_common_ports(self, a, i, b, t=None): """ Get port identifiers common to this and another Interface instance. Parameters ---------- a : int Identifier of interface in the current instance. i : Interface Interface instance containing the other interface. b : int Identifier of interface in instance `i`. t : str or unicode If not None, restrict output to those identifiers with the specified port type. Returns ------- result : list of tuple Expanded port identifiers shared by the two specified Interface instances. Notes ----- The number of levels of the returned port identifiers is equal to the maximum number of levels of this Interface instance. The order of the returned port identifiers is not guaranteed. """ if t is None: x = self.data[self.data['interface'] == a] y = i.data[i.data['interface'] == b] else: x = self.data[(self.data['interface'] == a) & (self.data['type'] == t)] y = i.data[(i.data['interface'] == b) & (i.data['type'] == t)] if isinstance(x.index, pd.MultiIndex): x_list = [tuple(a for a in b if a != '') \ for b in x.index] else: x_list = [(a,) for a in x.index] if isinstance(y.index, pd.MultiIndex): y_list = [tuple(a for a in b if a != '') \ for b in y.index] else: y_list = [(a,) for a in y.index] return list(set(x_list).intersection(y_list)) def is_compatible(self, a, i, b, allow_subsets=False): """ Check whether two interfaces can be connected. Compares an interface in the current Interface instance with one in another instance to determine whether their ports can be connected. Parameters ---------- a : int Identifier of interface in the current instance. i : Interface Interface instance containing the other interface. b : int Identifier of interface in instance `i`. allow_subsets : bool If True, interfaces that contain a compatible subset of ports are deemed to be compatible; otherwise, all ports in the two interfaces must be compatible. Returns ------- result : bool True if both interfaces comprise the same identifiers, the set 'type' attributes for each matching pair of identifiers in the two interfaces match, and each identifier with an 'io' attribute set to 'out' in one interface has its 'io' attribute set to 'in' in the other interface. Notes ----- Assumes that the port identifiers in both interfaces are sorted in the same order. """ # Merge the interface data on their indices (i.e., their port identifiers): data_merged = self._merge_on_interfaces(a, i, b) # Check whether there are compatible subsets, i.e., at least one pair of # ports from the two interfaces that are compatible with each other: if allow_subsets: # If the interfaces share no identical port identifiers, they are # incompatible: if not len(data_merged): return False # Compatible identifiers must have the same non-null 'type' # attribute and their non-null 'io' attributes must be the inverse # of each other: if not data_merged.apply(lambda row: \ ((row['type_x'] == row['type_y']) or \ (pd.isnull(row['type_x']) and pd.isnull(row['type_y']))) and \ ((row['io_x'] == 'out' and row['io_y'] == 'in') or \ (row['io_x'] == 'in' and row['io_y'] == 'out') or \ (pd.isnull(row['io_x']) and pd.isnull(row['io_y']))), axis=1).any(): return False # Require that all ports in the two interfaces be compatible: else: # If one interface contains identifiers not in the other, they are # incompatible: if len(data_merged) < max(len(self.data[self.data['interface'] == a]), len(i.data[i.data['interface'] == b])): return False # Compatible identifiers must have the same non-null 'type' # attribute and their non-null 'io' attributes must be the inverse # of each other: if not data_merged.apply(lambda row: \ ((row['type_x'] == row['type_y']) or \ (pd.isnull(row['type_x']) and pd.isnull(row['type_y']))) and \ ((row['io_x'] == 'out' and row['io_y'] == 'in') or \ (row['io_x'] == 'in' and row['io_y'] == 'out') or \ (pd.isnull(row['io_x']) and pd.isnull(row['io_y']))), axis=1).all(): return False # All tests passed: return True def is_in_interfaces(self, s): """ Check whether ports comprised by a selector are in the stored interfaces. Parameters ---------- s : str or unicode Port selector. Returns ------- result : bool True if the comprised ports are in any of the stored interfaces. """ try: # Pad the expanded selector with blanks to prevent pandas from # spurious matches such as mistakenly validating '/foo' as being in # an Interface that only contains the ports '/foo[0:2]': idx = self.sel.expand(s, self.idx_levels) if not isinstance(self.data.index, pd.MultiIndex): idx = [x[0] for x in idx] d = self.data['interface'].loc[idx] if isinstance(d, int): return True if np.any(d.isnull().tolist()): return False else: return True except: return self.sel.is_in(s, self.index.tolist()) def out_ports(self, i=None, tuples=False): """ Restrict Interface ports to output ports. Parameters ---------- i : int Interface identifier. If None, return all output ports. tuples : bool If True, return a list of tuples; if False, return an Interface instance. Returns ------- interface : Interface or list of tuples Either an Interface instance containing all output ports and their attributes in the specified interface, or a list of tuples corresponding to the expanded ports. """ if i is None: try: df = self.data[self.data['io'] == 'out'] except: df = None else: try: df = self.data[(self.data['io'] == 'out') & \ (self.data['interface'] == i)] except: df = None if tuples: if df is None: return [] else: return df.index.tolist() else: if df is None: return Interface() else: return self.from_df(df) def port_select(self, f, inplace=False): """ Restrict Interface ports with a selection function. Returns an Interface instance containing only those rows whose ports are passed by the specified selection function. Parameters ---------- f : function Selection function with a single tuple argument containing the various columns of the Interface instance's MultiIndex. inplace : bool, default=False If True, update and return the given Interface instance. Otherwise, return a new instance. Returns ------- i : Interface Interface instance containing ports selected by `f`. """ assert callable(f) if inplace: self.data = self.data.select(f) return self else: return Interface.from_df(self.data.select(f)) def spike_ports(self, i=None, tuples=False): """ Restrict Interface ports to spiking ports. Parameters ---------- i : int Interface identifier. If None, return all spiking ports. tuples : bool If True, return a list of tuples; if False, return an Interface instance. Returns ------- interface : Interface or list of tuples Either an Interface instance containing all spiking ports and their attributes in the specified interface, or a list of tuples corresponding to the expanded ports. """ if i is None: try: df = self.data[self.data['type'] == 'spike'] except: df = None else: try: df = self.data[(self.data['type'] == 'spike') & \ (self.data['interface'] == i)] except: df = None if tuples: if df is None: return [] else: return df.index.tolist() else: if df is None: return Interface() else: return self.from_df(df) def to_selectors(self, i=None): """ Retrieve Interface's port identifiers as list of path-like selectors. Parameters ---------- i : int Interface identifier. If set to None, return all port identifiers. Returns ------- selectors : list of str List of selector strings corresponding to each port identifier. """ ids = self.to_tuples(i) result = [] for t in ids: selector = '' for s in t: if isinstance(s, basestring): selector += '/'+s else: selector += '[%s]' % s result.append(selector) return result def to_tuples(self, i=None): """ Retrieve Interface's port identifiers as list of tuples. Parameters ---------- i : int Interface identifier. If set to None, return all port identifiers. Returns ------- result : list of tuple List of token tuples corresponding to each port identifier. """ if i is None: if isinstance(self.index, pd.MultiIndex): return self.index.tolist() else: return [(t,) for t in self.index] try: if isinstance(self.index, pd.MultiIndex): return self.data[self.data['interface'] == i].index.tolist() else: return [(t,) for t in self.data[self.data['interface'] == i].index] except: return [] def which_int(self, s): """ Return the interface containing the identifiers comprised by a selector. Parameters ---------- selector : str or unicode Port selector. Returns ------- i : set Set of identifiers for interfaces that contain ports comprised by the selector. """ try: idx = self.sel.expand(s, self.idx_levels) if not isinstance(self.data.index, pd.MultiIndex): idx = [x[0] for x in idx] d = self.data['interface'].loc[idx] s = set(d) s.discard(np.nan) return s except: try: s = set(self[s, 'interface'].values.flatten()) # Ignore unset entries: s.discard(np.nan) return s except KeyError: return set() def __copy__(self): """ Make a copy of this object. """ return self.from_df(self.data) copy = __copy__ copy.__doc__ = __copy__.__doc__ def set_pm(self, t, pm): """ Set port mapper associated with a specific port type. Parameters ---------- t : str or unicode Port type. pm : neurokernel.plsel.BasePortMapper Port mapper to save. """ # Ensure that the ports in the specified port mapper are a subset of # those in the interface associated with the specified type: assert isinstance(pm, BasePortMapper) if not self.sel.is_in(pm.index.tolist(), self.pm[t].index.tolist()): raise ValueError('cannot set mapper using undefined selectors') self.pm[t] = pm.copy() def equals(self, other): """ Check whether this interface is equivalent to another interface. Parameters ---------- other : neurokernel.pattern.Interface Interface instance to compare to this Interface. Returns ------- result : bool True if the interfaces are identical. Notes ----- Interfaces containing the same rows in different orders are not regarded as equivalent. """ assert isinstance(other, Interface) return self.data.equals(other.data) def __len__(self): return self.data.__len__() def __repr__(self): return 'Interface\n---------\n'+self.data.__repr__() class Pattern(object): """ Connectivity pattern linking sets of interface ports. This class represents connection mappings between interfaces comprising sets of ports. Ports are represented using path-like identifiers; the presence of a row linking the two identifiers in the class' internal index indicates the presence of a connection. A single data attribute ('conn') associated with defined connections is created by default. Specific attributes may be accessed by specifying their names after the port identifiers; if a nonexistent attribute is specified when a sequential value is assigned, a new column for that attribute is automatically created: :: p['/x[0]', '/y[0]', 'conn', 'x'] = [1, 'foo'] The direction of connections between ports in a class instance determines whether they are input or output ports. Ports may not both receive input or emit output. Patterns may contain fan-out connections, i.e., one source port connected to multiple destination ports, but not fan-in connections, i.e., multiple source ports connected to a single destination port. Examples -------- >>> p = Pattern('/x[0:3]','/y[0:4]') >>> p['/x[0]', '/y[0:2]'] = 1 >>> p['/y[2]', '/x[1]'] = 1 >>> p['/y[3]', '/x[2]'] = 1 Attributes ---------- data : pandas.DataFrame Connection attribute data. index : pandas.MultiIndex Index of connections. interface : Interface Interfaces containing port identifiers and attributes. Parameters ---------- sel0, sel1, ...: str, unicode, or sequence Selectors defining the sets of ports potentially connected by the pattern. These selectors must be disjoint, i.e., no identifier comprised by one selector may be in any other selector. columns : sequence of str Data column names. See Also -------- plsel.SelectorMethods """ def __init__(self, *selectors, **kwargs): columns = kwargs.get('columns', ['conn']) self.sel = SelectorMethods() # Force sets of identifiers to be disjoint so that no identifier can # denote a port in more than one set: assert self.sel.are_disjoint(*selectors) # Collect all of the selectors: selector = [] for s in selectors: if isinstance(s, Selector) and len(s) != 0: selector.extend(s.expanded) elif isinstance(s, basestring): selector.extend(self.sel.parse(s)) elif np.iterable(s): selector.extend(s) else: raise ValueError('invalid selector type') # Create Interface instance containing the ports comprised by all of the # specified selectors: self.interface = Interface(selector) # Set the interface identifiers associated with each of the selectors # consecutively: for i, s in enumerate(selectors): self.interface[s, 'interface'] = i # Create a MultiIndex that can store mappings between identifiers in the # two interfaces: self.num_levels = {'from': self.interface.num_levels, 'to': self.interface.num_levels} names = ['from_%s' % i for i in range(self.num_levels['from'])]+ \ ['to_%s' %i for i in range(self.num_levels['to'])] levels = [[] for i in range(len(names))] labels = [[] for i in range(len(names))] idx = pd.MultiIndex(levels=levels, codes=labels, names=names) self.data = pd.DataFrame(index=idx, columns=columns, dtype=object) @property def from_slice(self): """ Slice of pattern index row corresponding to source port(s). """ return slice(0, self.num_levels['from']) @property def to_slice(self): """ Slice of pattern index row corresponding to destination port(s). """ return slice(self.num_levels['from'], self.num_levels['from']+self.num_levels['to']) @property def index(self): """ Pattern index. """ return self.data.index @index.setter def index(self, i): self.data.index = i @property def interface_ids(self): """ Interface identifiers. """ return self.interface.interface_ids @classmethod def _create_from(cls, *selectors, **kwargs): """ Create a Pattern instance from the specified selectors. Parameters ---------- sel0, sel1, ...: str Selectors defining the sets of ports potentially connected by the pattern. These selectors must be disjoint, i.e., no identifier comprised by one selector may be in any other selector, and non-empty. from_sel, to_sel : str Selectors that describe the pattern's initial index. If specified, both selectors must be set. If no selectors are set, the index is initially empty. gpot_sel, spike_sel : str Selectors that describe the graded potential and spiking ports in a pattern's initial index. data : numpy.ndarray, dict, or pandas.DataFrame Data to load store in class instance. columns : sequence of str Data column names. comp_op : str Operator to use to combine selectors into single selector that comprises both the source and destination ports in a pattern. validate : bool If True, validate the index of the Pattern's DataFrame. Returns ------- result : Pattern Pattern instance. """ from_sel = kwargs.get('from_sel', None) to_sel = kwargs.get('to_sel', None) gpot_sel = kwargs.get('gpot_sel', None) spike_sel = kwargs.get('spike_sel', None) data = kwargs.get('data', None) columns = kwargs.get('columns', ['conn']) comb_op = kwargs.get('comb_op', '+') validate = kwargs.get('validate', True) # Create empty pattern: for s in selectors: if not len(s): raise ValueError('cannot create pattern with empty selector %s' % s) p = cls(*selectors, columns=columns) # Construct index from concatenated selectors if specified: names = p.data.index.names if (from_sel is None and to_sel is None): levels = [[] for i in range(len(names))] labels = [[] for i in range(len(names))] idx = pd.MultiIndex(levels=levels, codes=labels, names=names) elif isinstance(from_sel, Selector) and isinstance(to_sel, Selector): if comb_op == '.+': idx = p.sel.make_index(Selector.concat(from_sel, to_sel), names) elif comb_op == '+': idx = p.sel.make_index(Selector.prod(from_sel, to_sel), names) else: raise ValueError('incompatible selectors specified') else: idx = p.sel.make_index('(%s)%s(%s)' % (from_sel, comb_op, to_sel), names) if validate: p.__validate_index__(idx) # Replace the pattern's DataFrame: p.data = pd.DataFrame(data=data, index=idx, columns=columns, dtype=object) # Update the `io` attributes of the pattern's interfaces: p.interface[from_sel, 'io'] = 'in' p.interface[to_sel, 'io'] = 'out' # Update the `type` attributes of the pattern's interface: if gpot_sel is not None: p.interface[gpot_sel, 'type'] = 'gpot' if spike_sel is not None: p.interface[spike_sel, 'type'] = 'spike' return p def clear(self): """ Clear all connections in class instance. """ self.interface.clear() self.data.drop(self.data.index, inplace=True) @classmethod def from_df(cls, df_int, df_pat): """ Create a Pattern from properly formatted DataFrames. Parameters ---------- df_int : pandas.DataFrame DataFrame with a MultiIndex and data columns 'interface', 'io', and 'type' (additional columns may also be present) that describes the pattern's interfaces. The index's rows must correspond to individual port identifiers. df_pat : pandas.DataFrame DataFrame with a MultiIndex and a data column 'conn' (additional columns may also be present) that describes the connections between ports in the pattern's interfaces. The index's level names must be 'from_0'..'from_N', 'to_0'..'to_M', where N and M are the maximum number of levels in the pattern's two interfaces. """ # Create pattern with phony selectors: pat = cls('/foo[0]', '/bar[0]') # Check that the 'interface' column of the interface DataFrame is set: if any(df_int['interface'].isnull()): raise ValueError('interface column must be set') # Create interface: pat.interface = Interface.from_df(df_int) # The pattern DataFrame's index must contain at least two levels: assert isinstance(df_pat.index, pd.MultiIndex) # Check that pattern DataFrame index levels are named correctly, # i.e., from_0..from_N and to_0..to_N, where N is equal to # pat.interface.num_levels: num_levels = pat.interface.num_levels if df_pat.index.names != ['from_%i' % i for i in range(num_levels)]+\ ['to_%i' % i for i in range(num_levels)]: raise ValueError('incorrectly named pattern index levels') for t in df_pat.index.tolist(): from_t = t[0:num_levels] to_t = t[num_levels:2*num_levels] if from_t not in df_int.index or to_t not in df_int.index: raise ValueError('pattern DataFrame contains identifiers ' 'not in interface DataFrame') pat.data = df_pat.copy() return pat @classmethod def from_product(cls, *selectors, **kwargs): """ Create pattern from the product of identifiers comprised by two selectors. For example: :: p = Pattern.from_product('/foo[0:2]', '/bar[0:2]', from_sel='/foo[0:2]', to_sel='/bar[0:2]', data=1) results in a pattern with the following connections: :: '/foo[0]' -> '/bar[0]' '/foo[0]' -> '/bar[1]' '/foo[1]' -> '/bar[0]' '/foo[1]' -> '/bar[1]' Parameters ---------- sel0, sel1, ...: str Selectors defining the sets of ports potentially connected by the pattern. These selectors must be disjoint, i.e., no identifier comprised by one selector may be in any other selector. from_sel, to_sel : str Selectors that describe the pattern's initial index. If specified, both selectors must be set; the 'io' attribute of the ports comprised by these selectors is respectively set to 'out' and 'in'. If no selectors are set, the index is initially empty. gpot_sel, spike_sel : str Selectors that describe the graded potential and spiking ports in a pattern's initial index. If specified, the 'type' attribute of the ports comprised by these selectors is respectively set to 'gpot' and 'spike'. data : numpy.ndarray, dict, or pandas.DataFrame Data to load store in class instance. columns : sequence of str Data column names. validate : bool If True, validate the index of the Pattern's DataFrame. Returns ------- result : Pattern Pattern instance. """ from_sel = kwargs.get('from_sel', None) to_sel = kwargs.get('to_sel', None) gpot_sel = kwargs.get('gpot_sel', None) spike_sel = kwargs.get('spike_sel', None) data = kwargs.get('data', None) columns = kwargs.get('columns', ['conn']) validate = kwargs.get('validate', True) return cls._create_from(*selectors, from_sel=from_sel, to_sel=to_sel, gpot_sel=gpot_sel, spike_sel=spike_sel, data=data, columns=columns, comb_op='+', validate=validate) def gpot_ports(self, i=None, tuples=False): return self.interface.gpot_ports(i, tuples) gpot_ports.__doc__ = Interface.gpot_ports.__doc__ def in_ports(self, i=None, tuples=False): return self.interface.in_ports(i, tuples) in_ports.__doc__ = Interface.in_ports.__doc__ def interface_ports(self, i=None, tuples=False): return self.interface.interface_ports(i, tuples) interface_ports.__doc__ = Interface.interface_ports.__doc__ def out_ports(self, i=None, tuples=False): return self.interface.out_ports(i, tuples) out_ports.__doc__ = Interface.out_ports.__doc__ def spike_ports(self, i=None, tuples=False): return self.interface.spike_ports(i, tuples) spike_ports.__doc__ = Interface.spike_ports.__doc__ def connected_ports(self, i=None, tuples=False): """ Return ports that are connected by the pattern. Parameters ---------- i : int Interface identifier. tuples : bool If True, return a list of tuples; if False, return an Interface instance. Returns ------- interface : Interface Either an Interface instance containing all connected ports and their attributes in the specified interface, or a list of tuples corresponding to the expanded ports. Notes ----- Returned ports are listed in lexicographic order. """ # Use sets to accumulate the expanded ports to avoid passing duplicates # to DataFrame.ix.__getitem__(): ports = set() for t in self.data.index: ports.add(t[0:self.num_levels['from']]) ports.add(t[self.num_levels['from']:self.num_levels['from']+self.num_levels['to']]) # Sort the expanded ports so that the results are returned in # lexicographic order: df = self.interface.data.loc[sorted(ports)] if i is None: if tuples: return df.index.tolist() else: return Interface.from_df(df) else: if tuples: return df[df['interface'] == i].index.tolist() else: return Interface.from_df(df[df['interface'] == i]) @classmethod def from_concat(cls, *selectors, **kwargs): """ Create pattern from the concatenation of identifers in two selectors. For example: :: p = Pattern.from_concat('/foo[0:2]', '/bar[0:2]', from_sel='/foo[0:2]', to_sel='/bar[0:2]', data=1) results in a pattern with the following connections: :: '/foo[0]' -> '/bar[0]' '/foo[1]' -> '/bar[1]' Parameters ---------- data : numpy.ndarray, dict, or pandas.DataFrame Data to load store in class instance. from_sel, to_sel : str Selectors that describe the pattern's initial index. If specified, both selectors must be set; the 'io' attribute of the ports comprised by these selectors is respectively set to 'out' and 'in'. If no selectors are set, the index is initially empty. gpot_sel, spike_sel : str Selectors that describe the graded potential and spiking ports in a pattern's initial index. If specified, the 'type' attribute of the ports comprised by these selectors is respectively set to 'gpot' and 'spike'. columns : sequence of str Data column names. validate : bool If True, validate the index of the Pattern's DataFrame. Returns ------- result : Pattern Pattern instance. """ from_sel = kwargs.get('from_sel', None) to_sel = kwargs.get('to_sel', None) gpot_sel = kwargs.get('gpot_sel', None) spike_sel = kwargs.get('spike_sel', None) data = kwargs.get('data', None) columns = kwargs.get('columns', ['conn']) validate = kwargs.get('validate', True) return cls._create_from(*selectors, from_sel=from_sel, to_sel=to_sel, gpot_sel=gpot_sel, spike_sel=spike_sel, data=data, columns=columns, comb_op='.+', validate=validate) def __validate_index__(self, idx): """ Raise an exception if the specified index will result in an invalid pattern. """ # Prohibit duplicate connections: if idx.duplicated().any(): raise ValueError('Duplicate pattern entries detected.') # Prohibit fan-in connections (i.e., patterns whose index has duplicate # 'from' port identifiers): from_idx, to_idx = self.split_multiindex(idx, self.from_slice, self.to_slice) if to_idx.duplicated().any(): raise ValueError('Fan-in pattern entries detected.') # Prohibit ports that both receive input and send output: if set(from_idx).intersection(to_idx): raise ValueError('Ports cannot both receive input and send output.') def which_int(self, s): return self.interface.which_int(s) which_int.__doc__ = Interface.which_int.__doc__ def is_in_interfaces(self, selector): """ Check whether a selector is supported by any stored interface. """ return self.interface.is_in_interfaces(selector) if len(self.interface[selector]) > 0: return True else: return False def connected_port_pairs(self, as_str=False): """ Return connections as pairs of port identifiers. Parameters ---------- as_str : bool If True, return connections as a list of identifier string pairs. Otherwise, return them as pairs of token tuples. """ if as_str: return [(self.sel.tokens_to_str(row[self.from_slice]), self.sel.tokens_to_str(row[self.to_slice])) \ for row in self.data.index] else: return [(row[self.from_slice], row[self.to_slice]) \ for row in self.data.index] def __setitem__(self, key, value): # Must pass more than one argument to the [] operators: assert type(key) == tuple # Ensure that specified selectors refer to ports in the # pattern's interfaces: assert self.is_in_interfaces(key[0]) assert self.is_in_interfaces(key[1]) # Ensure that the ports are in different interfaces: assert self.which_int(key[0]) != self.which_int(key[1]) # Expand and pad the specified 'from' and 'to' selectors: key_0_exp = self.sel.expand(key[0], self.num_levels['from']) key_1_exp = self.sel.expand(key[1], self.num_levels['to']) # Concatenate the selectors: selector = tuple(tuple(j for j in itertools.chain(*i)) \ for i in itertools.product(key_0_exp, key_1_exp)) # Try using the selector to select data from the internal DataFrame: try: idx = self.sel.get_index(self.data, selector, names=self.data.index.names) # If the select fails, try to create new rows with the index specified # by the selector and load them with the specified data: except: try: idx = self.sel.make_index(selector, self.data.index.names) except: raise ValueError('cannot create new rows for ambiguous selector %s' % selector) else: found = False else: found = True # Ensure that data to set is in dict form: if len(key) > 2: if np.isscalar(value): data = {k:value for k in key[2:]} elif type(value) == dict: data = value elif np.iterable(value) and len(value) <= len(key[2:]): data={k:v for k, v in zip(key[2:], value)} else: raise ValueError('cannot assign specified value') else: if np.isscalar(value): data = {self.data.columns[0]: value} elif type(value) == dict: data = value elif np.iterable(value) and len(value) <= len(self.data.columns): data={k:v for k, v in zip(self.data.columns, value)} else: raise ValueError('cannot assign specified value') # If the specified selectors correspond to existing entries, # set their attributes: if found: for k, v in iteritems(data): self.data[k].loc[idx] = v # Otherwise, populate a new DataFrame with the specified attributes: else: new_data = self.data.append(pd.DataFrame(data=data, index=idx, dtype=object)) # Validate updated DataFrame's index before updating the instance's # data attribute: self.__validate_index__(new_data.index) self.data = new_data self.data.sort_index(inplace=True) # Update the `io` attributes of the pattern's interfaces: self.interface[key[0], 'io'] = 'in' self.interface[key[1], 'io'] = 'out' def __getitem__(self, key): assert len(key) >= 2 sel_0 = self.sel.expand(key[0]) sel_1 = self.sel.expand(key[1]) selector = [f+t for f, t in itertools.product(sel_0, sel_1)] if len(key) > 2: return self.sel.select(self.data[list(key[2:])], selector=selector) else: return self.sel.select(self.data, selector=selector) def src_idx(self, src_int, dest_int, src_type=None, dest_type=None, dest_ports=None, duplicates=False): """ Retrieve source ports connected to the specified destination ports. Examples -------- >>> p = Pattern('/foo[0:4]', '/bar[0:4]') >>> p['/foo[0]', '/bar[0]'] = 1 >>> p['/foo[1]', '/bar[1]'] = 1 >>> p['/foo[2]', '/bar[2]'] = 1 >>> p['/bar[3]', '/foo[3]'] = 1 >>> all(p.src_idx(0, 1, dest_ports='/bar[0,1]') == [('foo', 0), ('foo', 1)]) True Parameters ---------- src_int, dest_int : int Source and destination interface identifiers. src_type, dest_type : str Types of source and destination ports as listed in their respective interfaces. dest_ports : str Path-like selector corresponding to ports in destination interface. If not specified, all ports in the destination interface are considered. duplicates : bool If True, include duplicate ports in output. Returns ------- idx : list of tuple Source ports connected to the specified destination ports. """ assert src_int != dest_int assert src_int in self.interface.interface_ids and \ dest_int in self.interface.interface_ids # Filter destination ports by specified type: if dest_type is None: to_int = self.interface.interface_ports(dest_int) else: if dest_type == 'gpot': to_int = self.interface.gpot_ports(dest_int) elif dest_type == 'spike': to_int = self.interface.spike_ports(dest_int) else: to_f = lambda x: x['type'] == dest_type to_int = self.interface.interface_ports(dest_int).data_select(to_f) # Filter destination ports by specified ports: if dest_ports is None: to_idx = set(to_int.index) else: to_idx = set(to_int[dest_ports].index) # Filter source ports by specified type: if src_type is None: from_int = self.interface.interface_ports(src_int) else: if src_type == 'gpot': from_int = self.interface.gpot_ports(src_int) elif src_type == 'spike': from_int = self.interface.spike_ports(src_int) else: from_f = lambda x: x['type'] == src_type from_int = self.interface.interface_ports(src_int).data_select(from_f) from_idx = set(from_int.index) idx = [] for x in self.data.index: tmp1 = x[self.from_slice] if tmp1 in from_idx: if x[self.to_slice] in to_idx: idx.append(tmp1) if not duplicates: # Remove duplicate tuples from output without perturbing the order # of the remaining tuples: return list(OrderedDict.fromkeys(idx).keys()) else: return idx def dest_idx(self, src_int, dest_int, src_type=None, dest_type=None, src_ports=None): """ Retrieve destination ports connected to the specified source ports. Examples -------- >>> p = Pattern('/foo[0:4]', '/bar[0:4]') >>> p['/foo[0]', '/bar[0]'] = 1 >>> p['/foo[1]', '/bar[1]'] = 1 >>> p['/foo[2]', '/bar[2]'] = 1 >>> p['/bar[3]', '/foo[3]'] = 1 >>> all(p.dest_idx(0, 1, src_ports='/foo[0,1]') == [('bar', 0), ('bar', 1)]) True Parameters ---------- src_int, dest_int : int Source and destination interface identifiers. src_type, dest_type : str Types of source and destination ports as listed in their respective interfaces. src_ports : str Path-like selector corresponding to ports in source interface. If not specified, all ports in the source interface are considered. Returns ------- idx : list of tuple Destination ports connected to the specified source ports. Notes ----- No `duplicates` parameter is provided because fan-in from multiple source ports to a single destination port is not permitted. """ assert src_int != dest_int assert src_int in self.interface.interface_ids and \ dest_int in self.interface.interface_ids # Filter source ports by specified type: if src_type is None: from_int = self.interface.interface_ports(src_int) else: if src_type == 'gpot': from_int = self.interface.gpot_ports(src_int) elif dest_type == 'spike': from_int = self.interface.spike_ports(src_int) else: from_f = lambda x: x['type'] == src_type from_int = self.interface.interface_ports(src_int).data_select(from_f) # Filter source ports by specified ports: if src_ports is None: from_idx = set(from_int.index) else: from_idx = set(from_int[src_ports].index) # Filter destination ports by specified type: if dest_type is None: to_int = self.interface.interface_ports(dest_int) else: if dest_type == 'gpot': to_int = self.interface.gpot_ports(dest_int) elif dest_type == 'spike': to_int = self.interface.spike_ports(dest_int) else: to_f = lambda x: x['type'] == dest_type to_int = self.interface.interface_ports(dest_int).data_select(to_f) to_idx = set(to_int.index) idx = [] for x in self.data.index: tmp1 = x[self.to_slice] if tmp1 in to_idx: if x[self.from_slice] in from_idx: idx.append(tmp1) # Remove duplicate tuples from output without perturbing the order # of the remaining tuples: return list(OrderedDict.fromkeys(idx).keys()) def __len__(self): return self.data.__len__() def __repr__(self): return 'Pattern\n-------\n'+self.data.__repr__() def is_connected(self, from_int, to_int): """ Check whether the specified interfaces are connected. Parameters ---------- from_int, to_int : int Interface identifiers; must be in `self.interface.keys()`. Returns ------- result : bool True if at least one connection from a port identifier in interface `from_int` to a port identifier in interface `to_int` exists. """ assert from_int != to_int assert from_int in self.interface.interface_ids assert to_int in self.interface.interface_ids # Get indices of the 'from' and 'to' interfaces as lists to speed up the # check below [*]: from_idx = set(self.interface.data[self.interface.data['interface'] == from_int].index.tolist()) to_idx = set(self.interface.data[self.interface.data['interface'] == to_int].index.tolist()) # Get index of all defined connections: idx = self.data[self.data['conn'] != 0].index for t in idx: # Split tuple into 'from' and 'to' identifiers; since the interface # index for a 'from' or 'to' identifier is an Index rather than a # MultiIndex, we need to extract a scalar rather than a tuple in the # former case: if self.num_levels['from'] == 1: from_id = t[0] else: from_id = t[0:self.num_levels['from']] if self.num_levels['to'] == 1: to_id = t[self.num_levels['from']] else: to_id = t[self.num_levels['from']:self.num_levels['from']+self.num_levels['to']] # Check whether port identifiers are in the interface indices [*]: if from_id in from_idx and to_id in to_idx: return True return False def from_csv(self, file_name, **kwargs): """ Read connectivity data from CSV file. Given N 'from' levels and M 'to' levels in the internal index, the method assumes that the first N+M columns in the file specify the index levels. See Also -------- pandas.read_csv """ # XXX this should refuse to load identifiers that are not in any of the # sets of ports comprised by the pattern: data_names = self.data.columns index_names = self.data.index.names kwargs['names'] = data_names kwargs['index_col'] = range(len(index_names)) data = pd.read_csv(file_name, **kwargs) self.data = data # Restore MultiIndex level names: self.data.index.names = index_names @classmethod def from_graph(cls, g, return_key_order = False): """Convert a NetworkX directed graph into a Pattern instance. Parameters ---------- g : networkx.DiGraph Graph to convert. The node identifiers must be port identifiers. return_key_order : bool Whether to return the keys of all identifiers Returns ------- p : Pattern Pattern instance. key : List A list of keys of identifier, of which the order determines the numbering of interfaces Notes ----- The nodes in the specified graph must contain an 'interface' attribute. Port attributes other than 'interface', 'io', and 'type' are not stored in the created Pattern instance's interface. """ assert type(g) == nx.DiGraph # Group port identifiers by interface number and whether the ports are # graded potential, or spiking: ports_by_int = {} ports_gpot = [] ports_spike = [] ports_from = [] ports_to = [] for n, data in g.nodes(data=True): assert SelectorMethods.is_identifier(n) assert 'interface' in data if not data['interface'] in ports_by_int: ports_by_int[data['interface']] = [] ports_by_int[data['interface']].append(n) if 'type' in data: if data['type'] == 'gpot': ports_gpot.append(n) elif data['type'] == 'spike': ports_spike.append(n) # Use connection direction to determine whether ports are source or # destination (XXX should this check whether the io attributes are # consistent with the connection directions?): for f, t in g.edges(): ports_from.append(f) ports_to.append(t) # Create selectors for each interface number: selector_list = [] key_order = sorted(ports_by_int.keys()) for interface in key_order: selector_list.append(','.join(ports_by_int[interface])) p = cls.from_concat(*selector_list, from_sel=','.join(ports_from), to_sel=','.join(ports_to), gpot_sel=','.join(ports_gpot), spike_sel=','.join(ports_spike), data=1) p.data.sort_index(inplace=True) p.interface.data.sort_index(inplace=True) if return_key_order: return p, key_order else: return p @classmethod def split_multiindex(cls, idx, a, b): """ Split a single MultiIndex into two instances. Parameters ---------- idx : pandas.MultiIndex MultiIndex to split. a, b : slice Ranges of index columns to include in the two resulting instances. Returns ------- idx_a, idx_b : pandas.MultiIndex Resulting MultiIndex instances. """ t_list = idx.tolist() idx_a = pd.MultiIndex.from_tuples([t[a] for t in t_list]) idx_b =
pd.MultiIndex.from_tuples([t[b] for t in t_list])
pandas.MultiIndex.from_tuples
import streamlit as st import pandas as pd import matplotlib.pyplot as plt import datetime def app(): st.title('Syllabus') st.write('This page will show the graphs and tables based on the Faculty Particpation in Syllabus') data = st.file_uploader("Upload your relevant excel file") df =
pd.read_csv(data)
pandas.read_csv
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 交易日历处理 """ __author__ = 'mayanqiong' import os from datetime import date, datetime from typing import Union, List import pandas as pd import requests rest_days_df = None chinese_holidays_range = None def _init_chinese_rest_days(headers=None): global rest_days_df, chinese_holidays_range if rest_days_df is None: url = os.getenv("TQ_CHINESE_HOLIDAY_URL", "https://files.shinnytech.com/shinny_chinese_holiday.json") rsp = requests.get(url, timeout=30, headers=headers) chinese_holidays = rsp.json() _first_day = date(int(chinese_holidays[0].split('-')[0]), 1, 1) # 首个日期所在年份的第一天 _last_day = date(int(chinese_holidays[-1].split('-')[0]), 12, 31) # 截止日期所在年份的最后一天 chinese_holidays_range = (_first_day, _last_day) rest_days_df = pd.DataFrame(data={'date': pd.Series(pd.to_datetime(chinese_holidays, format='%Y-%m-%d'))}) rest_days_df['trading_restdays'] = False # 节假日为 False return chinese_holidays_range def _get_trading_calendar(start_dt: date, end_dt: date, headers=None): """ 获取一段时间内,每天是否是交易日 :return: DataFrame date trading 2019-12-05 True 2019-12-06 True 2019-12-07 False 2019-12-08 False 2019-12-09 True """ _init_chinese_rest_days(headers=headers) df = pd.DataFrame() df['date'] = pd.Series(pd.date_range(start=start_dt, end=end_dt, freq="D")) df['trading'] = df['date'].dt.dayofweek.lt(5) result =
pd.merge(rest_days_df, df, sort=True, how="right", on="date")
pandas.merge
import sys sys.path.append("../utils") import random import time from collections import Counter from typing import Callable import numpy as np import pandas as pd import torch import torch.optim as optim import torch.utils.data import torchvision from data_prep import machine_translation from modelsummary import summary from sklearn.model_selection import train_test_split from sklearn.utils import shuffle from torch.cuda.amp import GradScaler from torch.utils.data import DataLoader, TensorDataset from transformers import BertModel, BertTokenizer, logging from utils import ( ImbalancedDatasetSampler, language_model_preprocessing, translated_preprocessing, ) from bertGRU import BERTGRUSentiment from train_model import epoch_time, evaluate, train device = "cuda:0" if torch.cuda.is_available() else "cpu" print(f"Device for training: {device}") logging.set_verbosity_error() ########## HYPER-PARAMETERS ########## BATCH_SIZE = 128 LEARNING_RATE = 0.0005 WEIGHT_DECAY = 0.1 N_EPOCHS = 100 SEED = 0 use_sampling = True classes = 3 ###################################### # Control sources of randomness random.seed(SEED) np.random.seed(SEED) torch.manual_seed(SEED) torch.cuda.manual_seed_all(SEED) logging.set_verbosity_error() # Load dataset dataset =
pd.read_csv("../data/dataset.csv", index_col=False, sep="\t")
pandas.read_csv
"""Тесты для таблицы с торгуемыми ценными бумагами.""" from datetime import date import pandas as pd import pytest from poptimizer.data import ports from poptimizer.data.domain import events from poptimizer.data.domain.tables import base, securities from poptimizer.shared import col TICKER_CASES = ( ("1", 0), ("2", 1), ("D", 0), ("a", None), ) @pytest.mark.parametrize("ticker, answer", TICKER_CASES) def test_ticker_type(ticker, answer): """Проверка, что тикер соответствует обыкновенной акции.""" if answer is None: with pytest.raises(securities.WrongTickerTypeError): securities._ticker_type(ticker) else: assert securities._ticker_type(ticker) is answer @pytest.fixture(scope="function", name="table") def create_table(): """Создает пустую таблицу для тестов.""" id_ = base.create_id(ports.SECURITIES) return securities.Securities(id_) def test_update_cond(table): """Обновление происходит всегда при поступлении события.""" assert table._update_cond(object()) @pytest.mark.asyncio async def test_load_and_format_df(table, mocker): """Данные загружаются и добавляется колонка с названием рынка.""" fake_gateway = mocker.AsyncMock() fake_gateway.return_value =
pd.DataFrame([[10]], columns=[col.TICKER_TYPE])
pandas.DataFrame
import logging import itertools import re import copy from pandas import DataFrame, concat from scipy.spatial.distance import pdist, squareform from pylie.model.liebase import LIEDataFrameBase from pylie.methods.fileio import PDBParser, MOL2Parser, _open_anything from pylie.methods.data import METALS, STRUCTURE_DATA_INFO from pylie.methods.geometry import * logger = logging.getLogger('pylie') DEFAULT_CONTACT_COLUMN_NAMES = {'atnum': 'atnum', 'atname': 'atname', 'atalt': 'atalt', 'attype': 'attype', 'resname': 'resname', 'chain': 'chain', 'model': 'model', 'label': 'label', 'resnum': 'resnum', 'resext': 'resext', 'xcoor': 'xcoor', 'ycoor': 'ycoor', 'zcoor': 'zcoor', 'occ': 'occ', 'b': 'b', 'segid': 'segid', 'elem': 'elem', 'charge': 'charge', 'group': 'group'} # Initiate chemical information dictionary as pandas DataFrame cheminfo =
DataFrame(STRUCTURE_DATA_INFO)
pandas.DataFrame
import pandas as pd import os import matplotlib as mpl import matplotlib.pyplot as plt import numpy as np import tensorflow as tf import random from sklearn import svm from keras.optimizers import Adam from keras.layers import LeakyReLU from nltk.stem import WordNetLemmatizer import operator from textblob import TextBlob from nltk.tokenize import sent_tokenize, word_tokenize import nltk import re from wordcloud import WordCloud from nltk.stem import PorterStemmer from nltk.stem import LancasterStemmer from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt import seaborn as sns from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from keras.models import Model from keras.layers import LSTM, Activation, Dense, Dropout, Input, Embedding from keras.preprocessing.text import Tokenizer from keras.preprocessing import sequence from keras.callbacks import EarlyStopping class MBTI(): def __init__(self): self.csv_path = "mbti_1.csv" self.df = pd.read_csv(self.csv_path) self.original_df = self.df.copy() self.porter = PorterStemmer() self.lancaster = LancasterStemmer() self.lemmatizer = WordNetLemmatizer() self.all_words = {} def store_clean_df(self): self.df.to_csv('clean.csv') def load_clean_df(self): self.df = pd.read_csv('clean.csv') def transform_df(self): # Transform the df into four different df - one for each subproblem (IE,JP,NS,TF) transformed_df = self.df.copy() transformed_df['posts'] = transformed_df['posts'].apply(lambda x: x.replace('|||', '')) transformed_df['posts'] = transformed_df['posts'].apply(lambda x: ''.join([i for i in x if not i.isdigit()])) counter = 0 print(transformed_df.size) transformed_df['posts'] = transformed_df.apply(lambda row: nltk.word_tokenize(row['posts']), axis=1) for row_posts in transformed_df['posts'].tolist(): print(counter) print(row_posts) counter+=1 for feature in row_posts: try: self.all_words[feature] += 1 except: self.all_words[feature] = 0 print('Features found') self.all_words = dict(sorted(self.all_words.items(), key=operator.itemgetter(1), reverse=True)) keys = list(self.all_words.keys())[:5000] exists = {} counter = 0 for word in keys: counter +=1 print(counter) exists[word] = [] for row_posts in transformed_df['posts'].tolist(): features = row_posts exists[word].append(features.count(word)) for word in exists: transformed_df[word]= exists[word] del transformed_df['type'] del transformed_df['posts'] IE_df = transformed_df.copy() del IE_df['JP'] del IE_df['TF'] del IE_df['NS'] del IE_df['Unnamed: 0'] JP_df = transformed_df.copy() del JP_df['IE'] del JP_df['TF'] del JP_df['NS'] del JP_df['Unnamed: 0'] TF_df = transformed_df.copy() del TF_df['JP'] del TF_df['IE'] del TF_df['NS'] del TF_df['Unnamed: 0'] NS_df = transformed_df.copy() del NS_df['JP'] del NS_df['IE'] del NS_df['TF'] del NS_df['Unnamed: 0'] print('Finished') return IE_df, JP_df, TF_df, NS_df def post_cleaner(self, post): post = post.lower() post = re.sub( r'''(?i)\b((?:https?://|www\d{0,3}[.]|[a-z0-9.\-]+[.][a-z]{2,4}/)(?:[^\s()<>]+|\(([^\s()<>]+|(\([^\s()<>]+\)))*\))+(?:\(([^\s()<>]+|(\([^\s()<>]+\)))*\)|[^\s`!()\[\]{};:'".,<>?«»“”‘’]))''', '', post, flags=re.MULTILINE) puncs1 = ['@', '#', '$', '%', '^', '&', '*', '(', ')', '-', '_', '+', '=', '{', '}', '[', ']', '\\', '"', "'", ';', ':', '<', '>', '/'] for punc in puncs1: post = post.replace(punc, '') puncs2 = [',', '.', '?', '!', '\n'] for punc in puncs2: post = post.replace(punc, ' ') post = re.sub('\s+', ' ', post).strip() return post def perform_eda(self): # ++++++ Print information and description of the data #print("+++++++++++ self.df.info:") print(self.df.info()) types = self.df.type.tolist() pd.Series(types).value_counts().plot(kind="bar") plt.savefig("plot1.png") def stemSentence(self, sentence): token_words = word_tokenize(sentence) stem_sentence = [] for word in token_words: stem_sentence.append(self.lemmatizer.lemmatize(word)) stem_sentence.append(" ") return "".join(stem_sentence) def prepare_df(self): posts = self.df.posts.tolist() #clean posts = [self.post_cleaner(post) for post in posts] #lemmatize posts = [self.stemSentence(post) for post in posts] self.df['posts'] = posts #print(self.df.head(1)) # Create 4 more columns for binary classification - LABEL ENCODING, ONE-HOT ENCODING map1 = {"I": 0, "E": 1} map2 = {"N": 0, "S": 1} map3 = {"T": 0, "F": 1} map4 = {"J": 0, "P": 1} self.df['IE'] = self.df['type'].astype(str).str[0] self.df['IE'] = self.df['IE'].map(map1) self.df['NS'] = self.df['type'].astype(str).str[1] self.df['NS'] = self.df['NS'].map(map2) self.df['TF'] = self.df['type'].astype(str).str[2] self.df['TF'] = self.df['TF'].map(map3) self.df['JP'] = self.df['type'].astype(str).str[3] self.df['JP'] = self.df['JP'].map(map4) def add_features(self): # Add new features, such as words per comment, links per comment, images per comment... self.df['ellipsis_per_comment'] = self.df['posts'].apply(lambda x: x.count('...') / (x.count("|||") + 1)) self.df['words_per_comment'] = self.df['posts'].apply(lambda x: x.count(' ') / (x.count("|||") + 1)) self.df['words'] = self.df['posts'].apply(lambda x: x.count(' ')) self.df['link_per_comment'] = self.df['posts'].apply(lambda x: x.count('http') / (x.count("|||") + 1)) self.df['smiles_per_comment'] = self.df['posts'].apply(lambda x: (x.count(':-)') + x.count(':)') + x.count(':-D') + x.count(':D')) / (x.count("|||") + 1)) self.df['sad'] = self.df['posts'].apply(lambda x: (x.count(':(') + x.count('):') ) / (x.count("|||") + 1)) self.df['heart'] = self.df['posts'].apply(lambda x: x.count('<3') / (x.count("|||") + 1)) self.df['smiling'] = self.df['posts'].apply(lambda x: x.count(';)') / (x.count("|||") + 1)) self.df['exclamation_mark_per_comment'] = self.df['posts'].apply(lambda x: x.count("!") / (x.count("|||") + 1)) self.df['question_mark_per_comment'] = self.df['posts'].apply(lambda x: x.count("?") / (x.count("|||") + 1)) self.df['polarity'] = self.df['posts'].apply(lambda x: TextBlob(x).sentiment.polarity) def plot(self): # Plot each category to see if it is balanced - We observe that IE and NS are fairly imbalanced. binary1 = self.df.IE.tolist() pd.Series(binary1).value_counts().plot(kind="bar", title="0=I, 1=E") # plt.show() plt.savefig("IE.png") binary1 = self.df.NS.tolist() pd.Series(binary1).value_counts().plot(kind="bar", title="0=N, 1=S") # plt.show() plt.savefig("NS.png") binary1 = self.df.TF.tolist() pd.Series(binary1).value_counts().plot(kind="bar", title="0=T, 1=F") # plt.show() plt.savefig("TF.png") binary1 = self.df.JP.tolist() pd.Series(binary1).value_counts().plot(kind="bar", title="0=J, 1=P") # plt.show() plt.savefig("JP.png") # PLOT 2 plt.figure(figsize=(15, 10)) sns.swarmplot("type", "words_per_comment", data=self.df) plt.savefig("plot2.png") # PLOT 3 plt.figure(figsize=(15, 10)) sns.jointplot("variance_of_word_counts", "words_per_comment", data=self.df, kind="hex") # plt.show() plt.savefig("plot3.png") def wordcloud(self): fig, ax = plt.subplots(len(self.df['type'].unique()), sharex=True, figsize=(15,10*len(self.df['type'].unique()))) k = 0 for i in self.df['type'].unique(): df_4 = self.df[self.df['type'] == i] wordcloud = WordCloud().generate(df_4['posts'].to_string()) ax[k].imshow(wordcloud) ax[k].set_title(i) ax[k].axis("off") k+=1 wordcloud.to_file('N.png') def create_clean_df(self): self.perform_eda() self.add_features() self.prepare_df() self.store_clean_df() def create_transformed_df(self): self.load_clean_df() IE_df, JP_df, TF_df, NS_df = self.transform_df() IE_df.to_csv('IE_df.csv') JP_df.to_csv('JP_df.csv') TF_df.to_csv('TF_df.csv') NS_df.to_csv('NS_df.csv') def remove_bars(self): self.df['posts'] = self.df['posts'].apply(lambda x: x.replace('|||', '')) def svm(self): IE_df = pd.read_csv('IE_df.csv') y = IE_df['IE'] del IE_df['IE'] x_train, x_test, y_train, y_test = train_test_split(IE_df, y, test_size=0.20, random_state=1, stratify=y) IE_accuracy = self.perform_svm(x_train, x_test, y_train, y_test) print('IE') print(IE_accuracy) JP_df = pd.read_csv('JP_df.csv') y = JP_df['JP'] del JP_df['JP'] x_train, x_test, y_train, y_test = train_test_split(JP_df, y, test_size=0.20, random_state=1, stratify=y) JP_accuracy = self.perform_svm(x_train, x_test, y_train, y_test) print('JP') print(JP_accuracy) TF_df =
pd.read_csv('TF_df.csv')
pandas.read_csv
# Import the required packages import os import numpy as np import pandas as pd import matplotlib.pyplot as plt import math import streamlit as st import pickle from pickle import load from PIL import Image import seaborn as sns import statsmodels.api as sm import lime.lime_tabular from sklearn.model_selection import train_test_split import string import sklearn from sklearn.feature_extraction.text import TfidfVectorizer # Set Recursion Limit import sys sys.setrecursionlimit(40000) import re import nltk import regex as re from nltk.corpus import stopwords from sklearn.pipeline import make_pipeline from sklearn.metrics import accuracy_score import lightgbm as lgb from lightgbm import LGBMClassifier import streamlit.components.v1 as components import tweepy from collections import Counter from wordcloud import WordCloud import datetime import plotly.express as px import time import pydeck as pdk import SessionState # Assuming SessionState.py lives on this folder st.sidebar.title('Dashboard Control') control = st.sidebar.radio('Navigation Bar', ('Home', 'Live Tweet Feed', 'Time Series Analysis', 'XAI')) if control == 'Home': ### Sentiment Code goes here st.markdown('<h1 style="color:#8D3DAF;text-align:center;font-family: Garamond, serif;"><b>RAKSHAK</b></h1>',unsafe_allow_html=True) st.markdown('<h2 style="color:#E07C24;text-align:center;font-family: Georgia, serif;"><b>Time Series Sentiment Analysis Of Natural Hazard Relief Operations Through Social Media Data</b></h2>',unsafe_allow_html=True) #st.markdown("The dashboard will help the government and humanitarian aid agencies to plan and coordinate the natural disaster relief efforts, resulting in more people being saved and more effective distribution of emergency supplies during a natural hazard") st.header("Natural Hazard Data Collected Sample") # Dataset # Load the Dataset tweets1 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/nepal_mix_1.csv")[['text','type']] tweets2 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/italy_mix_1.csv")[['text','type']] tweets3 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/Covid-19.csv")[['text','type']] names = [tweets1,tweets2,tweets3] # Concatenate the datasets tweets = pd.concat(names,ignore_index = True) # Reshuffle the dataset tweets = tweets.sample(frac = 1) # Reindex the dataset tweets['index'] = list(range(0,tweets.shape[0],1)) tweets.set_index('index', inplace=True) tweets['type'] = tweets['type'].map({0: 'Need', 1: 'Availability', 2: 'Other'}) # Change column names for consistency tweets.columns = ['text', 'type'] # Dataset Description h = st.sidebar.slider('Select the number of tweets using the slider', 1, 100, 10) data_tweets = tweets.sample(h) data_tweets['index'] = list(range(0, h, 1)) data_tweets.set_index('index', inplace=True) st.table(data_tweets) # Checking for class balancing and get unique labels: st.header("Count Of Tweets In Each Class") chart_visual_class_balancing = st.sidebar.checkbox('Class Labels', True) if chart_visual_class_balancing==True: fig = plt.figure(figsize=(8, 4)) #sns.countplot(y=tweets.loc[:, 'type'],data=tweets).set_title("Count of tweets in each class") fig = px.histogram(tweets, x="type",color="type",title="Count of tweets in each class") st.plotly_chart(fig) # Wordclouds # Selection of Input & Output Variables X = tweets.loc[:, 'text'] Y = tweets.loc[:, 'type'] X = list(X) def preprocess_dataset(d): # Define count variables cnt=0 punctuation_count = 0 digit_count = 0 # Convert the corpus to lowercase lower_corpus = [] for i in range(len(d)): lower_corpus.append(" ".join([word.lower() for word in d[i].split()])) # Remove any special symbol or punctuation without_punctuation_corpus = [] for i in range(len(lower_corpus)): p = [] for ch in lower_corpus[i]: if ch not in string.punctuation: p.append(ch) else: p.append(" ") # Count of punctuation marks removed punctuation_count += 1 x = ''.join(p) if len(x) > 0: without_punctuation_corpus.append(x) # Remove urls with http, https or www and Retweets RT without_url_corpus = [] for i in range(len(without_punctuation_corpus)): text = without_punctuation_corpus[i] text = re.sub(r"http\S*||www\S*", "", text) text = re.sub(r"RT ", "", text) without_url_corpus.append(text) # Remove special characters and numbers from the corpus without_digit_corpus = [] for i in range(len(without_url_corpus)): p = [] for word in without_url_corpus[i].split(): if word.isalpha(): p.append(word) else: # Count of punctuation marks removed digit_count += 1 x = ' '.join(p) without_digit_corpus.append(x) # Tokenize the corpus # word_tokenize(s): Tokenize a string to split off punctuation other than periods # With the help of nltk.tokenize.word_tokenize() method, we are able to extract the tokens # from string of characters by using tokenize.word_tokenize() method. # Tokenization was done to support efficient removal of stopwords total_count = 0 tokenized_corpus = [] for i in without_digit_corpus: tokenized_tweet = nltk.word_tokenize(i) tokenized_corpus.append(tokenized_tweet) # Count the length of tokenized corpus total_count += len(list(tokenized_tweet)) # Remove Stopwords stopw = stopwords.words('english') count = 0 tokenized_corpus_no_stopwords = [] for i,c in enumerate(tokenized_corpus): tokenized_corpus_no_stopwords.append([]) for word in c: if word not in stopw: tokenized_corpus_no_stopwords[i].append(word) else: count += 1 # lemmatization and removing words that are too large and small lemmatized_corpus = [] from nltk.stem import WordNetLemmatizer lemmatizer = WordNetLemmatizer() ct = 0 cnt_final=0 dictt = {} for i in range(0,len(tokenized_corpus_no_stopwords)): lemmatized_corpus.append([]) for w in tokenized_corpus_no_stopwords[i]: # lematizing only those words whose length >= 2 and <=10 # Considering words with length greater than or equal to 2 and less than or equal to 10 if(len(w)>2 and len(w)<=10): lemmatized_corpus[i].append(lemmatizer.lemmatize(w)) cnt_final+=1 # Count of final corpus # This is the length of total corpus that went through the process of lematization ct+=1 ############## Removing words of large and small length # Doing a survey to find out the length of words so we can remove the too small and too large words from the Corpus # plt.bar(*zip(*dictt.items())) # plt.show() # Punctuation Preprocessing preprocessed_corpus = [] for i,c in enumerate(lemmatized_corpus): preprocessed_corpus.append([]) for word in c: x = ''.join([ch for ch in word if ch not in string.punctuation]) if len(x) > 0: preprocessed_corpus[i].append(x) # Clear unwanted data variables to save RAM due to memory limitations del lower_corpus del without_punctuation_corpus del without_digit_corpus del tokenized_corpus del tokenized_corpus_no_stopwords del lemmatized_corpus return preprocessed_corpus # Preprocess the Input Variables preprocessed_corpus = preprocess_dataset(X) data_corpus = [] for i in preprocessed_corpus: data_corpus.append(" ".join([w for w in i])) # Creating a word cloud st.header("Wordclouds For Dataset") fig, axes = plt.subplots(1, 2) # Worcloud for processed dataset words1 = ' '.join([tweet for tweet in X]) words2 = ' '.join([tweet for tweet in data_corpus]) wordCloud1 = WordCloud(background_color ='black').generate(words1) wordCloud2 = WordCloud(background_color ='black').generate(words2) # Display the generated image: axes[0].title.set_text("Raw Dataset") axes[0].imshow(wordCloud1) axes[0].axis("off") axes[1].title.set_text("Processed Dataset") axes[1].imshow(wordCloud2) axes[1].axis("off") st.pyplot(fig) # Create most used hashtags st.header("Top Hashtag Used in the Datasets") fig, axes = plt.subplots(1, 3) tweets1 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/nepal_mix_1.csv")[['text','type']] tweets2 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/italy_mix_1.csv")[['text','type']] tweets3 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/Covid-19.csv")[['text','type']] X1 = list(tweets1.loc[:, 'text']) X2 = list(tweets2.loc[:, 'text']) X3 = list(tweets3.loc[:, 'text']) dc1 = [] pd1 = preprocess_dataset(X1) for i in pd1: dc1 += i c1 = Counter(dc1) mfw1 = c1.most_common(10) df1 = pd.DataFrame(mfw1) df1.columns = ['Word', 'Count'] axes[0] = px.line(df1, x='Word', y='Count',title='Nepal Earthquake 2015',labels={'Word':'Hashtag', 'Count':'Number of Hashtag tweeted'}) st.plotly_chart(axes[0]) dc2 = [] pd2 = preprocess_dataset(X2) for i in pd2: dc2 += i c2 = Counter(dc2) mfw2 = c2.most_common(10) df2 = pd.DataFrame(mfw2) df2.columns = ['Word', 'Count'] axes[1] = px.line(df2, x='Word', y='Count',title='Italy Earthquake 2016', labels={'Word':'Hashtag', 'Count':'Number of Hashtag tweeted'}) st.plotly_chart(axes[1]) dc3 = [] pd3 = preprocess_dataset(X3) for i in pd3: dc3 += i c3 = Counter(dc3) mfw3 = c3.most_common(10) df3 = pd.DataFrame(mfw3) df3.columns = ['Word', 'Count'] axes[2] = px.line(df3, x='Word', y='Count',title='COVID-19',labels={'Word':'Hashtag', 'Count':'Number of Hashtag tweeted'}) st.plotly_chart(axes[2]) #df3.set_index('Word', inplace=True) #axes[2].plot(df3['Count'], marker='o', linewidth=0.5,ls='solid', c='blue') #axes[2].tick_params(axis ='x', rotation =-90) #axes[2].set_xlabel('Hashtag') #axes[2].set_ylabel('Number of Hashtag tweeted') #axes[2].title.set_text("COVID-19") st.header("Sentiments of Tweets Collected") st.caption("Select Start & End Date to display Sentiments of tweets collected") s_date = st.date_input("Start Date", min_value=datetime.datetime(2021, 4, 1), max_value=datetime.datetime(2021, 4, 30), value=datetime.datetime(2021, 4, 1)) e_date = st.date_input("End Date", min_value=datetime.datetime(2021, 4, 1), max_value=datetime.datetime(2021, 4, 30), value=datetime.datetime(2021, 4, 30)) data = pd.read_csv('sentiment_april.csv')[['Need','Availability']] data_T = data.T date1 = int(str(s_date)[8:])-1 date2 = int(str(e_date)[8:]) data_T["sum"] = data_T[list(range(date1,date2,1))].sum(axis=1) l_name = ['Need', 'Availability'] l_value = data_T['sum'] pie_dict = {'name': l_name, 'value': l_value} pie_df = pd.DataFrame(pie_dict) fig_pie = px.pie(pie_df, values='value', names='name', title='Sentiments of tweet collected between '+str(s_date)+' and '+str(e_date)) st.plotly_chart(fig_pie) # Show locations for tweets st.header("Map for Location of Each User") df = pd.read_csv('lat-long.csv') df.columns = ['lat', 'lon', 'country'] st.map(df) elif control == 'Live Tweet Feed': ### Libe Tweet feed goes here st.markdown('<h1 style="color:#E07C24;;text-align:center;"><b>Live Tweet Feed</b></h1>',unsafe_allow_html=True) st.header("Live Tweet Feed Sample") hashtag = str(st.text_input("Enter the keyword or hashtag for live twitter fee", "#coronavirus")) fetch_tweets = st.button("Fetch Tweets") ####input your credentials here consumer_key = "IE5dmFVlYdg5aNrsNnZiXZVPa" consumer_secret = "<KEY>" access_token = "<KEY>" access_token_secret = "<KEY>" auth = tweepy.OAuthHandler(consumer_key, consumer_secret) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth,wait_on_rate_limit=True) if fetch_tweets: # Current Time current_time = time.time() diff = 0 real_time = 0 live_tweet_text = [] live_tweet_date = [] live_tweet_id = [] lt_user_name = [] lt_user_location = [] lt_user_screenname=[] lt_followers = [] lt_following = [] while(diff < 10): for tweet in tweepy.Cursor(api.search_tweets,q=hashtag,count=10,lang="en",since="2021-12-11").items(): real_time = time.time() diff = real_time - current_time if diff >10: break if (not tweet.retweeted) and ('RT @' not in tweet.text): #print(tweet,"\n\n\n\n\n") live_tweet_text.append(tweet.text) live_tweet_date.append(tweet.created_at) live_tweet_id.append(tweet.id) lt_user_name.append(tweet.user.name) lt_user_location.append(tweet.user.location) lt_user_screenname.append(tweet.user.screen_name) lt_followers.append(str(tweet.user.followers_count)) lt_following.append(str(tweet.user.friends_count)) live_tweet_feed_dict = {'Tweet ID':live_tweet_id, 'Tweet': live_tweet_text, 'Date & Time': live_tweet_date, 'Username': lt_user_screenname, 'User Full Name': lt_user_name, 'Location': lt_user_location, 'Follower Count': lt_followers, 'Following Count': lt_following} live_tweet_feed = pd.DataFrame(live_tweet_feed_dict) st.dataframe(live_tweet_feed) elif control == 'Time Series Analysis': ### Streamlit code starts here st.markdown('<h1 style="color:#E07C24;;text-align:center;"><b>Time Series Analysis of Disaster Tweets</b></h1>',unsafe_allow_html=True) ### Time Series Code goes here # Dataset # Load the Dataset tweets1 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/nepal_mix_1.csv")[['text','type']] tweets2 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/italy_mix_1.csv")[['text','type']] tweets3 = pd.read_csv("https://raw.githubusercontent.com/anidevhere/Temp/main/Covid-19.csv")[['text','type']] names = [tweets1,tweets2,tweets3] # Concatenate the datasets tweets = pd.concat(names,ignore_index = True) # Reshuffle the dataset tweets = tweets.sample(frac = 1) # Reindex the dataset tweets['index'] = list(range(0,tweets.shape[0],1)) tweets.set_index('index', inplace=True) tweets['type'] = tweets['type'].map({0: 'Need', 1: 'Availability', 2: 'Other'}) # Change column names for consistency tweets.columns = ['text', 'type'] tweets['type'] = tweets['type'].map({'Need':0, 'Availability':1,'Other':2}) # Get all the labels used in the labelling column label = tweets.type.unique() print("Labels:", label) # Remove label 2 from the list because not required for time series analysis label = np.delete(label,np.where(label == 2)) print("Labels:", label) # Add names to the numerical labels label_name = [] for i in label: if i == 0: label_name.append("Need") elif i == 1: label_name.append("Availability") # Choose interval interval = 30 start_date = "2021-04-01" # Create Timestamps with intervals ds = pd.date_range(start=start_date, periods=interval) dates = [] for i in ds: dates.append(i.strftime('%m-%d-%Y')) del ds # Divide the Dataset into intervals # Divide the dataset into the given number of intervals num_of_tweets_per_interval = math.floor(tweets.shape[0]/interval) # Create Time Series with intervals data = [] count_of_data = [] for i in label: count_of_data.append([]) for i in range(1,interval+1,1): # Draw a sample from the tweets tw = tweets.sample(n=num_of_tweets_per_interval, random_state=10, replace=False) # Append the statistics of the drawn sample to the list stat = dict() for j in range(0,len(label)): stat[label[j]] = list(tw['type']).count(label[j]) count_of_data[j].append(list(tw['type']).count(label[j])) data.append(stat) # Remove the already drawn tweets from the dataset tweets.drop(labels=list(tw.index.values),inplace=True) # Real Time Series starts here # Load Dataset df =
pd.DataFrame(count_of_data)
pandas.DataFrame
import logging import multiprocessing as mp from multiprocessing.pool import Pool import pandas as pd import numpy as np from ..algorithms import Recommender from .. import util _logger = logging.getLogger(__name__) _rec_context = None class MPRecContext: def __init__(self, algo, candidates, size): self.algo = algo self.candidates = candidates self.size = size def __enter__(self): global _rec_context _logger.debug('installing context for %s', self.algo) _rec_context = self return self def __exit__(self, *args, **kwargs): global _rec_context _logger.debug('uninstalling context for %s', self.algo) _rec_context = None def _recommend_user(algo, user, n, candidates): _logger.debug('generating recommendations for %s', user) watch = util.Stopwatch() res = algo.recommend(user, n, candidates) _logger.debug('%s recommended %d/%d items for %s in %s', algo, len(res), n, user, watch) res['user'] = user res['rank'] = np.arange(1, len(res) + 1) return res def _recommend_seq(algo, users, n, candidates): if isinstance(candidates, dict): candidates = candidates.get algo = Recommender.adapt(algo) results = [_recommend_user(algo, user, n, candidates(user)) for user in users] return results def _recommend_worker(user): candidates = _rec_context.candidates(user) algo = Recommender.adapt(_rec_context.algo) res = _recommend_user(algo, user, _rec_context.size, candidates) return res.to_msgpack() def recommend(algo, users, n, candidates, ratings=None, nprocs=None): """ Batch-recommend for multiple users. The provided algorithm should be a :py:class:`algorithms.Recommender` or :py:class:`algorithms.Predictor` (which will be converted to a top-N recommender). Args: algo: the algorithm model: The algorithm model users(array-like): the users to recommend for n(int): the number of recommendations to generate (None for unlimited) candidates: the users' candidate sets. This can be a function, in which case it will be passed each user ID; it can also be a dictionary, in which case user IDs will be looked up in it. ratings(pandas.DataFrame): if not ``None``, a data frame of ratings to attach to recommendations when available. Returns: A frame with at least the columns ``user``, ``rank``, and ``item``; possibly also ``score``, and any other columns returned by the recommender. """ if nprocs and nprocs > 1 and mp.get_start_method() == 'fork': _logger.info('starting recommend process with %d workers', nprocs) with MPRecContext(algo, candidates, n), Pool(nprocs) as pool: results = pool.map(_recommend_worker, users) results = [pd.read_msgpack(r) for r in results] else: _logger.info('starting sequential recommend process') results = _recommend_seq(algo, users, n, candidates) results =
pd.concat(results, ignore_index=True)
pandas.concat
# SageMaker deployment -- Final project (PyTorch and SageMaker) # # Pure Python version (no Jupyter notebook) corresponding # to SageMakekr Project.ipynb. # Non AWS version for quick prototyping. # # # %% Get the data # Only execute that once. # !wget -O ../data/aclImdb_v1.tar.gz http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz # !tar -zxf ../data/aclImdb_v1.tar.gz -C ../data # %% Prepare and process the data (1/6) import os import glob def read_imdb_data(data_dir='../data/aclImdb'): data = {} labels = {} for data_type in ['train', 'test']: data[data_type] = {} labels[data_type] = {} for sentiment in ['pos', 'neg']: data[data_type][sentiment] = [] labels[data_type][sentiment] = [] path = os.path.join(data_dir, data_type, sentiment, '*.txt') files = glob.glob(path) for f in files: with open(f) as review: data[data_type][sentiment].append(review.read()) # Here we represent a positive review by '1' and a negative review by '0' labels[data_type][sentiment].append(1 if sentiment == 'pos' else 0) assert len(data[data_type][sentiment]) == len(labels[data_type][sentiment]), \ "{}/{} data size does not match labels size".format(data_type, sentiment) return data, labels # %% Prepare and process (2/6) data, labels = read_imdb_data() print("IMDB reviews: train = {} pos / {} neg, test = {} pos / {} neg".format( len(data['train']['pos']), len(data['train']['neg']), len(data['test']['pos']), len(data['test']['neg']))) # %% Prepare and process (3/6) from sklearn.utils import shuffle def prepare_imdb_data(data, labels): """Prepare training and test sets from IMDb movie reviews.""" #Combine positive and negative reviews and labels data_train = data['train']['pos'] + data['train']['neg'] data_test = data['test']['pos'] + data['test']['neg'] labels_train = labels['train']['pos'] + labels['train']['neg'] labels_test = labels['test']['pos'] + labels['test']['neg'] #Shuffle reviews and corresponding labels within training and test sets data_train, labels_train = shuffle(data_train, labels_train) data_test, labels_test = shuffle(data_test, labels_test) # Return a unified training data, test data, training labels, test labets return data_train, data_test, labels_train, labels_test # %% Prepare and process (4/6) train_X, test_X, train_y, test_y = prepare_imdb_data(data, labels) print("IMDb reviews (combined): train = {}, test = {}".format(len(train_X), len(test_X))) # %% Prepare and process (5/6) print(train_X[100]) print(train_y[100]) # %% Prepare and process (6/6) import nltk from nltk.corpus import stopwords from nltk.stem.porter import * import re from bs4 import BeautifulSoup def review_to_words(review): nltk.download("stopwords", quiet=True) stemmer = PorterStemmer() text = BeautifulSoup(review, "html.parser").get_text() # Remove HTML tags text = re.sub(r"[^a-zA-Z0-9]", " ", text.lower()) # Convert to lower case words = text.split() # Split string into words words = [w for w in words if w not in stopwords.words("english")] # Remove stopwords words = [PorterStemmer().stem(w) for w in words] # stem return words # %% TODO: Apply review_to_words to a review (train_X[100] or any other review) print(review_to_words(train_X[100])) # Answer to question: # Apart from removing the HTML tags and performing stemming, # the review_to_words also removes # special characters such as punctuation and English # stopwords such as "I", "me", "they", "but", etc. # Furthermore, it converts the entire text to lowercase. # %% Perform actual preprocessing and store locally in the cache import pickle cache_dir = os.path.join("../cache", "sentiment_analysis") # where to store cache files os.makedirs(cache_dir, exist_ok=True) # ensure cache directory exists def preprocess_data(data_train, data_test, labels_train, labels_test, cache_dir=cache_dir, cache_file="preprocessed_data.pkl"): """Convert each review to words; read from cache if available.""" # If cache_file is not None, try to read from it first cache_data = None if cache_file is not None: try: with open(os.path.join(cache_dir, cache_file), "rb") as f: cache_data = pickle.load(f) print("Read preprocessed data from cache file:", cache_file) except: pass # unable to read from cache, but that's okay # If cache is missing, then do the heavy lifting if cache_data is None: # Preprocess training and test data to obtain words for each review #words_train = list(map(review_to_words, data_train)) #words_test = list(map(review_to_words, data_test)) words_train = [review_to_words(review) for review in data_train] words_test = [review_to_words(review) for review in data_test] # Write to cache file for future runs if cache_file is not None: cache_data = dict(words_train=words_train, words_test=words_test, labels_train=labels_train, labels_test=labels_test) with open(os.path.join(cache_dir, cache_file), "wb") as f: pickle.dump(cache_data, f) print("Wrote preprocessed data to cache file:", cache_file) else: # Unpack data loaded from cache file words_train, words_test, labels_train, labels_test = (cache_data['words_train'], cache_data['words_test'], cache_data['labels_train'], cache_data['labels_test']) return words_train, words_test, labels_train, labels_test # Preprocess data train_X, test_X, train_y, test_y = preprocess_data(train_X, test_X, train_y, test_y) # %% Transform the data import numpy as np def build_dict(data, vocab_size = 5000): """Construct and return a dictionary mapping each of the most frequently appearing words to a unique integer.""" # TODO: Determine how often each word appears in `data`. Note that `data` is a list of sentences and that a # sentence is a list of words. all_words = [word for sentence in data for word in sentence] all_words_set = set(all_words) # A dict storing the words that appear in the reviews along with how often they occur word_count = {w:0 for w in all_words_set} for word in all_words: word_count[word] += 1 # TODO: Sort the words found in `data` so that sorted_words[0] is the most frequently appearing word and # sorted_words[-1] is the least frequently appearing word. word_count_pairs = [(k,v) for k,v in word_count.items()] word_count_pairs_sorted = sorted(word_count_pairs, key=lambda pair: pair[1], reverse=True) sorted_words = [k for k, v in word_count_pairs_sorted] print(sorted_words[:10]) word_dict = {} # This is what we are building, a dictionary that translates words into integers for idx, word in enumerate(sorted_words[:vocab_size - 2]): # The -2 is so that we save room for the 'no word' word_dict[word] = idx + 2 # 'infrequent' labels return word_dict # %% Build the dictionary word_dict = build_dict(train_X) # Answer to question word_dict_reverse={idx:w for w,idx in word_dict.items()} for ii in range(5): print(f'{word_dict_reverse[ii++2]}') # The five most frequently appearing words are # movi # film # one # like # time # # Given that we are dealing with movie (or film) reviews, this # seems to make perfect sense. # It seems to cover typical reviews such as # 'This movie is one of the best in all time', or # 'That film is like one of the worst ever'. # # As we removed stopwords, we do not find common words such # as "the" leading this list. # # %% Save word dict data_dir = '../data/pytorch' # The folder we will use for storing data if not os.path.exists(data_dir): # Make sure that the folder exists os.makedirs(data_dir) with open(os.path.join(data_dir, 'word_dict.pkl'), "wb") as f: pickle.dump(word_dict, f) # %% Transform the reviews def convert_and_pad(word_dict, sentence, pad=500): NOWORD = 0 # We will use 0 to represent the 'no word' category INFREQ = 1 # and we use 1 to represent the infrequent words, i.e., words not appearing in word_dict working_sentence = [NOWORD] * pad for word_index, word in enumerate(sentence[:pad]): if word in word_dict: working_sentence[word_index] = word_dict[word] else: working_sentence[word_index] = INFREQ return working_sentence, min(len(sentence), pad) def convert_and_pad_data(word_dict, data, pad=500): result = [] lengths = [] for sentence in data: converted, leng = convert_and_pad(word_dict, sentence, pad) result.append(converted) lengths.append(leng) return np.array(result), np.array(lengths) # %% Actual transforming train_X, train_X_len = convert_and_pad_data(word_dict, train_X) test_X, test_X_len = convert_and_pad_data(word_dict, test_X) # %% Sanity check # Use this cell to examine one of the processed reviews to make sure # everything is working as intended. review_reconstructed = [word_dict_reverse[i] for i in train_X[20,:] if i >= 2] print('Reconstructed review') print(review_reconstructed) print(f'Sentiment is ' + ('pos' if train_y[20] else 'neg')) # %% Question (same methods for training and testing data set) # This is not a problem and in fact makes sense. # We need to prepare the (user-written) input in a form that we # can pass to our model. That actually needs to be done in the # same way for training and testing. # We do not augment data (which we would only do with training data), # therefore it is not a problem if we apply it to the test data. # As we convert all data separately, we are also not at risk # of mixing any test data into our training data set. # %% Upload the data to S3 # This cannot be done outside of AWS, but we can # nevertheless save the data locally. import pandas as pd pd.concat([pd.DataFrame(train_y),
pd.DataFrame(train_X_len)
pandas.DataFrame
# -*- coding: utf-8 -*- import pandas as pd from sklearn.base import BaseEstimator, TransformerMixin class ToDenseTransformer(BaseEstimator,TransformerMixin): # here you define the operation it should perform def transform(self, X, y=None, **fit_params): return X.todense() # just return self def fit(self, X, y=None, **fit_params): return self class SelectColumnsTransfomer(BaseEstimator, TransformerMixin): """ Select dataframe columns """ def __init__(self, columns=None, ravel=None): if columns is None: self.columns = [] elif type(columns) is not list: self.columns = [columns] else: self.columns = columns if ravel is None: self.ravel = False else: self.ravel = ravel def transform(self, X, **transform_params): cpy_df = X[self.columns].copy() if self.ravel: return cpy_df.values.ravel() else: return cpy_df def fit(self, X, y=None, **fit_params): return self class DataframeFunctionTransformer(BaseEstimator, TransformerMixin): """ Apply an arbitrary function to a Dataframe column, as you would use a `map` funcion """ def __init__(self, column_name, func, none_treatment=None): """ :param column_name: the name of the dataframe column to which the function will be applied :param func: the function object, e.g. lambda :param none_treatment: what to do with NaN, Nones, etc. Default behaviour is to perform no special treatment, i.e. the function itself should treat nulls. Other options: 'return_none', returns the input itself in case it's null-lie (as per pd.isnull) """ self.column_name = column_name self.func = func self.none_treatment = none_treatment def transform(self, in_df, **transform_params): cpy_df = in_df.copy() if self.column_name not in cpy_df.columns.values: raise ValueError('Provided column name is not part of the dataframe: "{}" '.format(self.column_name)) if self.none_treatment is None: cpy_df[self.column_name] = cpy_df[self.column_name].map(self.func) elif self.none_treatment.upper() == "RETURN_NONE": cpy_df[self.column_name] = cpy_df[self.column_name].map(lambda x: x if
pd.isnull(x)
pandas.isnull
# coding:utf-8 # # The MIT License (MIT) # # Copyright (c) 2016-2020 # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import re from datetime import datetime import json import logging import webbrowser import numpy as np import pandas as pd from czsc.Data.data_fq import data_stock_to_fq from czsc.Fetch.mongo import FACTOR_DATABASE from czsc.Fetch.tdx import get_bar from czsc.Indicator import IndicatorSet from czsc.Utils.echarts_plot import kline_pro from czsc.Utils.logs import util_log_info from czsc.Utils.trade_date import TradeDate, util_get_real_date, util_get_next_day from czsc.Utils.transformer import DataEncoder def identify_direction(v1, v2): if v1 > v2: # 前面几根可能都是包含,这里直接初始赋值-1,上升趋势为正数 direction = 1 else: direction = -1 return direction def update_fx(bars, new_bars: list, fx_list: list, trade_date: list): """更新分型序列 k线中有direction,fx中没有direction字段 分型记对象样例: { 'date': Timestamp('2020-11-26 00:00:00'), 'fx_mark': -1, 低点用—1表示 'value': 138.0, 'fx_start': Timestamp('2020-11-25 00:00:00'), 'fx_end': Timestamp('2020-11-27 00:00:00'), } { 'date': Timestamp('2020-11-26 00:00:00'), 'fx_mark': +1, 高点用+1表示 'value': 150.67, 'fx_start': Timestamp('2020-11-25 00:00:00'), 'fx_end': Timestamp('2020-11-27 00:00:00'), } """ assert len(bars) > 0 bar = bars[-1].copy() if len(trade_date) > 1: if TradeDate(bar['date']) < TradeDate(trade_date[-1]): util_log_info('{} data is older than {} !'.format(bar['date'], trade_date[-1])) return trade_date.append(bar['date']) # 第1根K线没有方向,不需要任何处理 if len(bars) < 2: new_bars.append(bar) return False last_bar = new_bars[-1] cur_h, cur_l = bar['high'], bar['low'] last_h, last_l, last_dt = last_bar['high'], last_bar['low'], last_bar['date'] # 处理过包含关系,只需要用一个值识别趋势 direction = identify_direction(cur_h, last_h) # 第2根K线只需要更新方向 if len(bars) < 3: bar.update(direction=direction) new_bars.append(bar) return False last_direction = last_bar.get('direction') # 没有包含关系,需要进行分型识别,趋势有可能改变 if (cur_h > last_h and cur_l > last_l) or (cur_h < last_h and cur_l < last_l): new_bars.append(bar) # 分型识别 if last_direction * direction < 0: bar.update(direction=direction) if direction < 0: fx = { "date": last_bar['date'], "fx_mark": 1, "value": last_bar['high'], "fx_start": new_bars[-3]['date'], # 记录分型的开始和结束时间 "fx_end": bar['date'], # "direction": bar['direction'], } else: fx = { "date": last_bar['date'], "fx_mark": -1, "value": last_bar['low'], "fx_start": new_bars[-3]['date'], # 记录分型的开始和结束时间 "fx_end": bar['date'], # "direction": bar['direction'], } fx_list.append(fx) return True bar.update(direction=last_direction + np.sign(last_direction)) return False # 有包含关系,不需要进行分型识别,趋势不改变,direction数值增加 bar.update(direction=last_direction + np.sign(last_direction)) new_bars.pop(-1) # 有包含关系的前一根数据被删除,这里是个技巧 # 有包含关系,按方向分别处理,同时需要更新日期 if last_direction > 0: if cur_h < last_h: bar.update(high=last_h, date=last_dt) if cur_l < last_l: bar.update(low=last_l) elif last_direction < 0: if cur_l > last_l: bar.update(low=last_l, date=last_dt) if cur_h > last_h: bar.update(high=last_h) else: logging.error('{} last_direction: {} is wrong'.format(last_dt, last_direction)) raise ValueError new_bars.append(bar) return False class XdList(object): """存放线段""" def __init__(self, bars, indicators, trade_date): # 传入的是地址,不要修改 self.bars = bars self.indicators = indicators self.trade_date = trade_date # item存放数据元素 self.xd_list = [] # 否则指向同一个地址 # 低级别的中枢 self.zs_list = [] self.sig_list = [] # next是低一级别的线段 self.next = None # prev 指向高一级别的线段 self.prev = None def __len__(self): return len(self.xd_list) def __getitem__(self, item): return self.xd_list[item] def __setitem__(self, key, value): self.xd_list[key] = value def append(self, value): self.xd_list.append(value) def update_zs(self): """ { 'zs_start': 进入段的起点 'zs_end': 离开段的终点 'ZG': 中枢高点, 'ZD': 中枢低点, 'GG': 中枢最低点, 'DD': 中枢最高点, 'xd_list': list[dict] 'location': 中枢位置 } """ xd_list = self.xd_list if len(xd_list) < 3: return False zs_list = self.zs_list if len(zs_list) < 1: assert len(xd_list) < 4 zg = xd_list[0] if xd_list[0]['fx_mark'] > 0 else xd_list[1] zd = xd_list[0] if xd_list[0]['fx_mark'] < 0 else xd_list[1] zs = { 'ZG': zg, 'ZD': zd, 'GG': [zg], # 初始用list储存,记录高低点的变化过程,中枢完成时可能会回退 'DD': [zd], # 根据最高最低点的变化过程可以识别时扩散,收敛,向上还是向下的形态 'xd_list': xd_list[:2], 'weight': 1, # 记录中枢中段的数量 'location': 0, # 初始状态为0,说明没有方向, -1 表明下降第1个中枢, +2 表明上升第2个中枢 'real_loc': 0 # 除去只有一段的中枢 } zs_list.append(zs) return False # 确定性的笔参与中枢构建 last_zs = zs_list[-1] xd = xd_list[-2] if TradeDate(last_zs['xd_list'][-1]['date']) >= TradeDate(xd['date']): # 已经计算过中枢 return False if xd['fx_mark'] > 0: # 三卖 ,滞后,实际出现了一买信号 if xd['value'] < last_zs['ZD']['value']: zs_end = last_zs['xd_list'].pop(-1) if zs_end['date'] == last_zs['DD'][-1]['date']: last_zs['DD'].pop(-1) last_zs.update( zs_end=zs_end, weight=last_zs['weight'] - 1, DD=last_zs['DD'], real_loc=last_zs['real_loc'] + 1 if last_zs['weight'] == 2 else last_zs['real_loc'] ) zs = { 'zs_start': xd_list[-4], 'ZG': xd, 'ZD': zs_end, 'GG': [xd], 'DD': [zs_end], 'xd_list': [zs_end, xd], 'weight': 1, 'location': -1 if last_zs['location'] >= 0 else last_zs['location'] - 1, 'real_loc': -1 if last_zs['real_loc'] >= 0 else last_zs['real_loc'] - 1, } zs_list.append(zs) return True elif xd['value'] < last_zs['ZG']['value']: last_zs.update(ZG=xd) # 有可能成为离开段 elif xd['value'] > last_zs['GG'][-1]['value']: last_zs['GG'].append(xd) elif xd['fx_mark'] < 0: # 三买,滞后,实际出现了一卖信号 if xd['value'] > last_zs['ZG']['value']: zs_end = last_zs['xd_list'].pop(-1) if zs_end['date'] == last_zs['GG'][-1]['date']: last_zs['GG'].pop(-1) last_zs.update( zs_end=zs_end, weight=last_zs['weight'] - 1, GG=last_zs['GG'], real_loc=last_zs['real_loc'] - 1 if last_zs['weight'] == 2 else last_zs['real_loc'] ) zs = { 'zs_start': xd_list[-4], 'ZG': zs_end, 'ZD': xd, 'GG': [zs_end], 'DD': [xd], 'xd_list': [zs_end, xd], 'weight': 1, 'location': 1 if last_zs['location'] <= 0 else last_zs['location'] + 1, 'real_loc': 1 if last_zs['real_loc'] <= 0 else last_zs['real_loc'] + 1, } zs_list.append(zs) return True elif xd['value'] > last_zs['ZD']['value']: last_zs.update(ZD=xd) # 有可能成为离开段 elif xd['value'] < last_zs['DD'][-1]['value']: last_zs['DD'].append(xd) else: raise ValueError last_zs['xd_list'].append(xd) last_zs['weight'] = last_zs['weight'] + 1 return False def update_xd_eigenvalue(self): trade_date = self.trade_date xd = self.xd_list[-1] last_xd = self.xd_list[-2] # xd.update(pct_change=(xd['value'] - last_xd['value']) / last_xd['value']) # start = trade_date.index(last_xd['date']) end = trade_date.index(xd['date']) kn = end - start + 1 fx_mark = kn * np.sign(xd.get('fx_mark', xd.get('direction', 0))) dif = self.indicators.macd[end]['dif'] macd = sum([x['macd'] for x in self.indicators.macd[start: end + 1] if fx_mark * x['macd'] > 0]) xd.update(fx_mark=fx_mark, dif=dif, macd=macd) # xd.update(fx_mark=fx_mark, dif=dif, avg_macd=macd/kn) def update_xd(self): """更新笔分型序列 分型记对象样例: { 'date': Timestamp('2020-11-26 00:00:00'), 'fx_mark': -8, 低点,负数,表示下降趋势持续的K线根数 'value': 138.0, 'fx_start': Timestamp('2020-11-25 00:00:00'), 'fx_end': Timestamp('2020-11-27 00:00:00'), } { 'date': Timestamp('2020-11-26 00:00:00'), 'fx_mark': 7, 高点, 正数,表示上升趋势持续的根数 'value': 150.67, 'fx_start': Timestamp('2020-11-25 00:00:00'), 'fx_end': Timestamp('2020-11-27 00:00:00'), } """ # 至少3根同类型分型才可能出现线段,最后1根bi不确定,因此最后一段也不确定 if self.next is None: self.next = XdList(self.bars, self.indicators, self.trade_date) bi_list = self.xd_list xd_list = self.next if len(bi_list) < 4: return False if len(xd_list) < 1: # 线段不存在,初始化线段,找4个点的最高和最低点组成线段 bi_list = bi_list[:-1].copy() bi_list = sorted(bi_list, key=lambda x: x['value'], reverse=False) if TradeDate(bi_list[0]['date']) < TradeDate(bi_list[-1]['date']): xd_list.append(bi_list[0]) xd_list.append(bi_list[-1]) else: xd_list.append(bi_list[-1]) xd_list.append(bi_list[0]) xd_list.update_xd_eigenvalue() return True bi3 = bi_list[-3] xd = bi_list[-1].copy() last_xd = xd_list[-1] xd2 = xd_list[-2] # if xd['date'] > pd.to_datetime('2016-07-12'): # print('test') # 非分型结尾段,直接替换成分型, 没有新增段,后续不需要处理,同一个端点确认 if 'direction' in last_xd or xd['date'] == last_xd['date']: xd_list[-1] = xd # 日期相等的情况是否已经在内存中修改过了? xd_list.update_xd_eigenvalue() return True # assert xd['date'] > last_xd['date'] if TradeDate(xd['date']) <= TradeDate(last_xd['date']): util_log_info('The {} quotes bar input maybe wrong!'.format(xd['date'])) if bi3['fx_mark'] > 0: # -1和-3笔的方向相同,-1笔由于是未确认笔,可能没有fx_mark字段 # 同向延续 if last_xd['fx_mark'] > 0 and xd['value'] > last_xd['value']: xd_list[-1] = xd xd_list.update_xd_eigenvalue() return True # 反向判断 elif last_xd['fx_mark'] < 0: # 价格判断 if xd['value'] > xd2['value']: xd_list.append(xd) xd_list.update_xd_eigenvalue() return True # 出现三笔破坏线段,连续两笔,一笔比一笔高,寻找段之间的最高点 elif TradeDate(bi3['date']) > TradeDate(last_xd['date']) and xd['value'] > bi3['value']: index = -5 bi = bi_list[index] # # 连续两个高点没有碰到段前面一个低点 # try: # if TradeDate(bi['date']) < TradeDate(last_xd['date']) and \ # bi_list[index - 1]['value'] > bi3['value'] and \ # bi_list[index]['value'] > xd['value']: # return False # except Exception as err: # pass # # util_log_info('Last xd {}:{}'.format(last_xd['date'], err)) while TradeDate(bi['date']) > TradeDate(last_xd['date']): if xd['value'] < bi['value']: xd = bi index = index - 2 bi = bi_list[index] xd_list.append(xd) xd_list.update_xd_eigenvalue() return True elif bi3['fx_mark'] < 0: # 同向延续 if last_xd['fx_mark'] < 0 and xd['value'] < last_xd['value']: xd_list[-1] = xd xd_list.update_xd_eigenvalue() return True # 反向判断 elif last_xd['fx_mark'] > 0: # 价格判断 if xd['value'] < xd2['value']: xd_list.append(xd) xd_list.update_xd_eigenvalue() return True # 出现三笔破坏线段,连续两笔,一笔比一笔低,将最低的一笔作为段的起点,避免出现最低点不是端点的问题 elif TradeDate(bi3['date']) > TradeDate(last_xd['date']) and xd['value'] < bi3['value']: index = -5 bi = bi_list[index] # 连续两个个低点没有碰到段前面一高低点 # try: # if TradeDate(bi['date']) < TradeDate(last_xd['date']) and \ # bi_list[index - 1]['value'] < bi3['value'] and \ # bi_list[index]['value'] < xd['value']: # return False # except Exception as err: # pass # # util_log_info('Last xd {}:{}'.format(last_xd['date'], err)) while TradeDate(bi['date']) > TradeDate(last_xd['date']): if xd['value'] > bi['value']: xd = bi index = index - 2 bi = bi_list[index] xd_list.append(xd) xd_list.update_xd_eigenvalue() return True return False def update_sig(self): """ 线段更新后调用,判断是否出现买点 """ if len(self.zs_list) < 1: return False zs = self.zs_list[-1] xd = self.xd_list[-1] xd_list = zs['xd_list'].copy() if 'zs_start' in zs: xd_list.insert(0, zs['zs_start']) sig = { 'date': self.bars[-1]['date'], 'real_loc': zs['real_loc'], 'location': zs['location'], 'weight': zs['weight'], # 'fx_mark': xd['fx_mark'], # 'last_mark': last_xd['fx_mark'], # 'time_ratio': abs(xd['fx_mark'] / last_xd['fx_mark']) * 100, # 'pct_change': xd['pct_change'] * 100, # 'macd': xd['macd'], # 'avg_macd': xd['avg_macd'], } # if sig['date'] >= pd.to_datetime('2021-07-28'): # print(sig['date']) if xd['fx_mark'] > 0: # 上升趋势 # sig.update(GG_macd=zs['GG'][-1].get('macd', np.nan), GG_avg_macd=zs['GG'][-1].get('avg_macd', np.nan)) # if zs['location'] > 0 and zs.get('zs_start', False): # sig.update(start_macd=zs['zs_start']['macd'], start_avg_macd=zs['zs_start']['avg_macd']) sig.update(boll=self.indicators.boll[-1].get('UB', np.nan) / self.bars[-1]['high'] * 100 - 100) if xd['value'] > zs['GG'][-1]['value']: xd_mark = -1 # 如果weight=1, 背驰,有可能1卖 # resistance = np.nan # support = zs['GG'][-1]['value'] / xd['value'] - 1 elif xd['value'] > zs['ZG']['value']: xd_mark = -2 # 如果weight=1, 背驰,有可能2卖 # resistance = zs['GG'][-1]['value'] / xd['value'] - 1 # support = zs['ZG']['value'] / xd['value'] - 1 elif xd['value'] > zs['ZD']['value']: if sig['weight'] == 1: xd_mark = -2 else: xd_mark = -2.5 # resistance = zs['ZG']['value'] / xd['value'] - 1 # support = zs['ZD']['value'] / xd['value'] - 1 elif xd['value'] > zs['DD'][-1]['value']: xd_mark = -3 # 三卖 # resistance = zs['ZD']['value'] / xd['value'] - 1 # support = zs['DD'][-1]['value'] / xd['value'] - 1 else: xd_mark = -4 # 三卖 # resistance = zs['DD'][-1]['value'] / xd['value'] - 1 # support = np.nan elif xd['fx_mark'] < 0: # 下降趋势 # sig.update(DD_macd=zs['DD'][-1].get('macd', np.nan), DD_avg_macd=zs['DD'][-1].get('avg_macd', np.nan)) # if zs['location'] < 0 and zs.get('zs_start', False): # sig.update(start_macd=zs['zs_start']['macd'], start_avg_macd=zs['zs_start']['avg_macd']) sig.update(boll=100 - self.indicators.boll[-1].get('LB', np.nan) / self.bars[-1]['low'] * 100) if xd['value'] > zs['GG'][-1]['value']: # >GG的情况不会出现,因为当3买没有确认时,离开段的最高点也归属于当前中枢 xd_mark = 4 # 三买 # resistance = np.nan # support = zs['GG'][-1]['value'] / xd['value'] - 1 elif xd['value'] > zs['ZG']['value']: xd_mark = 3 # resistance = zs['GG'][-1]['value'] / xd['value'] - 1 # support = zs['ZG']['value'] / xd['value'] - 1 elif xd['value'] > zs['ZD']['value']: if sig['weight'] == 1: xd_mark = 2 else: xd_mark = 2.5 # resistance = zs['ZG']['value'] / xd['value'] - 1 # support = zs['ZD']['value'] / xd['value'] - 1 elif xd['value'] >= zs['DD'][-1]['value']: # 如果和中枢最低点的值相同,归为2买,因为段没有升级 xd_mark = 2 # 如果weight=1, 背驰,有可能2买 # resistance = zs['ZD']['value'] / xd['value'] - 1 # support = zs['DD'][-1]['value'] / xd['value'] - 1 else: xd_mark = 1 # 如果weight=1, 背驰,有可能1买 # resistance = zs['DD'][-1]['value'] / xd['value'] - 1 # support = np.nan else: raise ValueError # sig.update(xd_mark=xd_mark, support=support * 100, resistance=resistance * 100) sig.update(xd_mark=xd_mark) start_xd = xd_list[-1] # 当前线段持续的时间和幅度,下跌趋势回撤的比例 sig.update(valueback=(self.bars[-1]['close'] / start_xd['value'] - 1) * 100) sig.update(timeback=xd['fx_mark']) if xd_mark in [3, -3, 4, -4]: # 3买卖点,macd指标比较没有意义 sig.update(start=start_xd['fx_start'], dif=0, macd=0) self.sig_list.append(sig) return direction = np.sign(xd['fx_mark']) xd_list.reverse() # 寻找段的起点,比较背离,一般是中枢+进入段的最高点或者最点 for idx, _xd in enumerate(xd_list[1:]): if idx % 2 == 0: # 同向段 if _xd['value'] * direction > xd['value'] * direction: break else: if _xd['value'] * direction < start_xd['value'] * direction: start_xd = _xd # break sig.update(start=start_xd['fx_start']) index = xd_list.index(start_xd) - 1 if index < 0: # 只有当前一笔,无法比较 sig.update(dif=0, macd=0) self.sig_list.append(sig) return cmp_xd = xd_list[index] compare_dif = cmp_xd.get('dif') compare_macd = cmp_xd.get('macd') dif = xd.get('dif') macd = xd.get('macd') if compare_dif and dif: if dif * direction > compare_dif * direction: sig.update(dif=-1) else: sig.update(dif=1) if compare_macd and macd: if macd * direction > compare_macd * direction: sig.update(macd=-1) else: sig.update(macd=1) self.sig_list.append(sig) def update(self): self.update_zs() # 计算对应买卖点 self.update_sig() return self.update_xd() def update_bi(new_bars: list, fx_list: list, bi_list: XdList, trade_date: list): """更新笔序列 笔标记对象样例:和分型标记序列结构一样 { 'date': Timestamp('2020-11-26 00:00:00'), 'code': code, 'fx_mark': 'd', 'value': 138.0, 'fx_start': Timestamp('2020-11-25 00:00:00'), 'fx_end': Timestamp('2020-11-27 00:00:00'), } { 'date': Timestamp('2020-11-26 00:00:00'), 'code': code, 'fx_mark': 'g', 'value': 150.67, 'fx_start': Timestamp('2020-11-25 00:00:00'), 'fx_end': Timestamp('2020-11-27 00:00:00'), } return: True 笔的数据出现更新,包括新增笔或者笔的延续 """ # 每根k线都要对bi进行判断 bar = new_bars[-1].copy() if TradeDate(bar['date']) < TradeDate(trade_date[-1]): # 包含的K线,不会改变bi的状态,不需要处理 return False if len(fx_list) < 2: return False bi = fx_list[-1].copy() # 没有笔时.最开始两个分型作为第一笔,增量更新时从数据库取出两个端点构成的笔时确定的 if len(bi_list) < 1: bi2 = fx_list[-2].copy() bi_list.append(bi2) bi_list.append(bi) bi_list.update_xd_eigenvalue() return False last_bi = bi_list[-1] bar.update(value=bar['high'] if bar['direction'] > 0 else bar['low']) # if bar['date'] > pd.to_datetime('2020-09-08'): # print('error') # k 线确认模式,当前K线的日期比分型K线靠后,说明进来的数据时K线 if TradeDate(bar['date']) > TradeDate(bi['fx_end']): if 'direction' not in last_bi: # bi的结尾是分型 # 趋势延续替代,首先确认是否延续, 由于处理过包含,高低点可能不正确,反趋势的极值点会忽略 # 下一根继续趋势,端点后移,如果继续反趋势,该点忽略 # todo 处理过包含的bar,有一个判断是多余的,直接用bar['value] 参与判断 if (last_bi['fx_mark'] > 0 and bar['high'] > last_bi['value']) \ or (last_bi['fx_mark'] < 0 and bar['low'] < last_bi['value']): bi_list[-1] = bar bi_list.update_xd_eigenvalue() return True try: kn_inside = trade_date.index(bar['date']) - trade_date.index(last_bi['fx_end']) - 1 except: print('error') # todo 至少2根k线, 时间确认必须被和前一笔方向相反,会出现端点不是极值点的情况 if kn_inside > 1 and bar['direction'] * last_bi['fx_mark'] < 0: # 寻找同向的第一根分型 index = -1 while TradeDate(bi['date']) > TradeDate(last_bi['date']): if bar['direction'] * bi['fx_mark'] > 0: break index = index - 1 bi = fx_list[index] if (bar['direction'] * bi['fx_mark'] > 0) \ and (np.sign(bar['direction']) * bar['value'] < bi['fx_mark'] * bi['value']): bi['fx_end'] = bar['date'] # 影响似乎不大? bi_list.append(bi) else: bi_list.append(bar) bi_list.update_xd_eigenvalue() return True # 只有一个端点,没有价格确认 if len(bi_list) < 2: return False # 价格确认 # todo 处理过包含的bar,有一个判断是多余的,直接用bar['value] 参与判断 if (last_bi['fx_mark'] < 0 and bar['high'] > bi_list[-2]['value']) \ or (last_bi['fx_mark'] > 0 and bar['low'] < bi_list[-2]['value']): bi_list.append(bar) bi_list.update_xd_eigenvalue() return True else: # 原有未出现分型笔的延续 assert bar['direction'] * last_bi['direction'] > 0 # if bar['direction'] * last_bi['direction'] < 0: # print('error') # return False bi_list[-1] = bar bi_list.update_xd_eigenvalue() return True return False # 非分型结尾笔,直接替换成分型, 没有新增笔,后续不需要处理,同一个端点确认 if 'direction' in last_bi or bi['date'] == last_bi['date']: bi_list[-1] = bi bi_list.update_xd_eigenvalue() return True # fx_end处理,分型处理完后,因为分型确认滞后,所以还需要对fx_end 也就是当前K线进行处理,否则会出现缺失或者识别滞后的问题 # 由于时分型,只需要判断延续的问题,因此K线的方向要和上一笔一致 def handle_fx_end(): assert bar['date'] == bi['fx_end'] if bar['direction'] * last_bi['fx_mark'] < 0: return False if last_bi['fx_mark'] * bar['value'] > last_bi['fx_mark'] * last_bi['value']: bi_list[-1] = bar bi_list.update_xd_eigenvalue() return True # 分型处理,连续高低点处理,只判断是否后移,没有增加笔 # bi的fx_mark不一定为+1或者-1,因为要用sign函数取符号 # todo 为什么用 and 连接两个 if 结果错误 if last_bi['fx_mark'] * bi['fx_mark'] > 0: if np.sign(last_bi['fx_mark']) * last_bi['value'] < bi['fx_mark'] * bi['value']: bi_list[-1] = bi bi_list.update_xd_eigenvalue() return True else: # 笔确认是条件1、时间破坏,两个不同分型间至少有一根K线,2、价格破坏,向下的一笔破坏了上一笔的低点 kn_inside = trade_date.index(bi['fx_start']) - trade_date.index(last_bi['fx_end']) - 1 if kn_inside > 0: # 两个分型间至少有1根k线,端点有可能不是高低点 index = -2 while TradeDate(fx_list[index]['date']) > TradeDate(last_bi['date']): # 分析的fx_mark取值为-1和+1 if (bi['fx_mark'] * fx_list[index]['fx_mark'] > 0) \ and (bi['fx_mark'] * bi['value'] < fx_list[index]['fx_mark'] * fx_list[index]['value']): bi = fx_list[index].copy() # 分型结尾不变 bi['fx_end'] = fx_list[-1]['fx_end'] index = index - 1 bi_list.append(bi) bi_list.update_xd_eigenvalue() return True # 只有一个端点,没有价格确认 if len(bi_list) < 2: return False # 价格确认 # todo 处理过包含的bar,有一个判断是多余的,直接用bar['value] 参与判断 if (bi['fx_mark'] > 0 and bi['value'] > bi_list[-2]['value']) \ or (bi['fx_mark'] < 0 and bi['value'] < bi_list[-2]['value']): bi_list.append(bi) bi_list.update_xd_eigenvalue() return True return handle_fx_end() class CzscBase: def __init__(self): # self.freq = freq # assert isinstance(code, str) # self.code = code.upper() self.trade_date = [] # 用来查找索引 self.bars = [] self.indicators = IndicatorSet(self.bars) # self.indicators = None self.new_bars = [] self.fx_list = [] self.xd_list = XdList(self.bars, self.indicators, self.trade_date) # bi作为线段的head self.sig_list = [] def update(self): # 有包含关系时,不可能有分型出现,不出现分型时才需要 self.indicators.update() try: update_fx(bars=self.bars, new_bars=self.new_bars, fx_list=self.fx_list, trade_date=self.trade_date) except: print('error') if not update_bi( new_bars=self.new_bars, fx_list=self.fx_list, bi_list=self.xd_list, trade_date=self.trade_date ): return # 新增确定性的笔才处理段 xd_list = self.xd_list result = True index = 0 while result: result = xd_list.update() # 计算对应买卖点 if len(xd_list.sig_list) > 0: signal = xd_list.sig_list[-1] # signal.update(xd=index) # self.sig_list.append(signal) if index == 0: signal.update(xd=0) self.sig_list.append(signal) else: # 有趋势或者中枢段升级 if xd_list.zs_list[-1]['location'] != 0 or xd_list.zs_list[-1]['weight'] > 7: last_sig = self.sig_list[-1] last_sig.update(xd=index, xd_mark=signal['xd_mark']) last_sig['real_loc'] = signal['real_loc'] last_sig['location'] = signal['location'] last_sig['weight'] = signal['weight'] last_sig['valueback'] = signal['valueback'] last_sig['timeback'] = signal['timeback'] # if signal['xd_mark'] in [1, -1]: last_sig['dif{}'.format(index)] = signal.get('dif') last_sig['macd{}'.format(index)] = signal.get('macd') # else: # util_log_info('High level xd {} == low level xd {}'.format(index, index - 1)) temp_list = xd_list xd_list = xd_list.next xd_list.prev = temp_list index = index + 1 # 必须实现,每次输入一个行情数据,然后调用update看是否需要更新 def on_bar(self, bar): """ 输入数据格式 Index(['open', 'high', 'low', 'close', 'amount', 'volume', 'date', 'code'], dtype='object') 'date' 未 timestamp volume用来画图 """ raise NotImplementedError class CzscMongo(CzscBase): def __init__(self, code='rul8', data=None, start=None, end=None, freq='day', exchange=None): # 只处理一个品种 super().__init__() self.code = code self.freq = freq self.exchange = exchange # self._bi_list = fetch_future_bi_day(self.code, limit=2, format='dict') self._bi_list = [] self.old_count = len(self._bi_list) if len(self._bi_list) > 0: # self.fx_list = self._bi_list start = self._bi_list[-1]['fx_end'] elif start is None: start = '1990-01-01' if data is None: self.data = get_bar(code, start=start, end=end, freq=freq, exchange=exchange) # self.data = get_bar(code, start, end='2020-12-09', freq=freq, exchange=exchange) else: self.data = data def draw(self, chart_path=None): if len(self.bars) < 1: return chart = kline_pro( kline=self.bars, fx=self.fx_list, bs=[], xd=self.xd_list, # title=self.code + '_' + self.freq, width='1520px', height='580px' title=self.code + '_' + self.freq, width='2540px', height='850px' ) if not chart_path: chart_path = 'E:\\signal\\{}_{}.html'.format(self.code, self.freq) chart.render(chart_path) webbrowser.open(chart_path) def on_bar(self, bar): """ bar 格式 date 默认为 Timestamp,主要时画图函数使用 """ bar = bar.to_dict() # if 'trade' in bar: # bar['vol'] = bar.pop('trade') # bar['date'] = pd.to_datetime(bar['date']) self.bars.append(bar) try: self.update() except Exception as error: util_log_info(error) def run(self, start=None, end=None): if self.data is None or self.data.empty: util_log_info('{} {} quote data is empty'.format(self.code, self.freq)) return self.data.apply(self.on_bar, axis=1) # self.save() def save(self, collection=FACTOR_DATABASE.future_bi_day): try: logging.info('Now Saving Future_BI_DAY==== {}'.format(str(self.code))) code = self.code old_count = self.old_count new_count = len(self._bi_list) # 更新的数据,最后一个数据是未确定数据 update_count = new_count - old_count if update_count < 2: return bi_list = self._bi_list[old_count:new_count - 1] start = bi_list[0]['date'] end = bi_list[-1]['date'] logging.info( 'UPDATE_Future_BI_DAY \n Trying updating {} from {} to {}'.format(code, start, end), ) collection.insert_many(bi_list) except Exception as error: print(error) def save_sig(self, collection=FACTOR_DATABASE.czsz_sig_day): try: logging.info('Now Saving CZSC_SIG_DAY==== {}'.format(str(self.code))) code = self.code xd = self.xd_list index = 0 sig = [] while xd: df = pd.DataFrame(xd.sig_list) df['xd'] = index df['code'] = code df['exchange'] = self.exchange sig.append(df) xd = xd.next index = index + 1 sig_df = pd.concat(sig).set_index(['date', 'xd']).sort_index() old_count = self.old_count new_count = len(self._bi_list) # 更新的数据,最后一个数据是未确定数据 update_count = new_count - old_count if update_count < 2: return bi_list = self._bi_list[old_count:new_count - 1] start = bi_list[0]['date'] end = bi_list[-1]['date'] logging.info( 'UPDATE_Future_BI_DAY \n Trying updating {} from {} to {}'.format(code, start, end), ) collection.insert_many(bi_list) except Exception as error: print(error) def to_csv(self): if len(self.sig_list) < 1: return sig_df = pd.DataFrame(self.sig_list).set_index('date') filename = 'E:\\signal\\{}_{}_{}.csv'.format(self.code, self.freq, sig_df.index[-1].strftime('%Y-%m-%d')) sig_df.to_csv(filename) def to_df(self): xd = self.xd_list index = 0 sig = [] while xd: df = pd.DataFrame(xd.sig_list) df['xd'] = index df['code'] = self.code df['exchange'] = self.exchange sig.append(df) xd = xd.next index = index + 1 try: sig_df = pd.concat(sig).set_index(['date', 'xd']).sort_index() return sig_df except: util_log_info("{} signal is empty!".format(self.code)) return pd.DataFrame() def to_json(self): xd = self.xd_list if len(xd) < 1: return index = 0 data = [] while xd: data.append( { 'xd{}'.format(index): xd.xd_list, 'zs{}'.format(index): xd.zs_list, 'sig{}'.format(index): xd.sig_list } ) xd = xd.next index = index + 1 with open("{}_{}.json".format(self.code, self.freq), "w") as write_file: json.dump(data, write_file, indent=4, sort_keys=True, cls=DataEncoder) def calculate_bs_signals(security_df: pd.DataFrame, last_trade_date=None): sig_list = [] if len(security_df) < 1: util_log_info("=============Security list is empty!==========") return class_name = security_df.iloc[0]['class'] if last_trade_date is None: last_trade_date = util_get_real_date(datetime.today().strftime('%Y-%m-%d')) # last_trade_time = pd.to_datetime(util_get_next_day(last_trade_date)) last_trade_date = pd.to_datetime(last_trade_date) index = 0 for code, item in security_df.iterrows(): exchange = item['exchange'] util_log_info("============={} {} Signal==========".format(code, exchange)) try: hq = get_bar(code, end=last_trade_date, freq='day', exchange=exchange) except: util_log_info("============={} {} read hq incorrectly!==========".format(code, exchange)) continue # future流动性过滤,成交量过滤 if class_name == 'future': amount = hq.iloc[-1]['volume'] if amount < 10000: util_log_info( "===={} {} volume is few!====".format(code, exchange) ) continue else: amount = hq.iloc[-1]['amount'] # 可转债价格过滤 if class_name == 'convertible': if hq.iloc[-1]['close'] > 130: util_log_info( "===={} {} price is too high!====".format(code, exchange) ) continue if amount < 1000000: # 100万 util_log_info( "===={} {} amount is few!====".format(code, exchange) ) continue elif class_name == 'hkconnect': try: amount = hq.iloc[-1]['hk_stock_amount'] except: util_log_info( "===={} {} KeyError: 'hk_stock_amount'====".format(code, exchange) ) amount = hq.iloc[-1]['volume'] * hq.iloc[-1]['close'] * 100 if amount < 10000000: # 1000万 util_log_info( "===={} {} amount is few!====".format(code, exchange) ) continue else: if amount < 10000000: # 1000万 util_log_info( "===={} {} amount is few!====".format(code, exchange) ) continue try: # 复权处理 if class_name in ['stock', 'ETF']: hq = data_stock_to_fq(hq, fqtype='qfq') czsc_day = CzscMongo(code=code, data=hq, freq='day', exchange=exchange) except Exception as error: util_log_info("{} : {}".format(code, error)) continue if len(czsc_day.data) < 1: util_log_info("==========={} {} 0 Quotes==========".format(code, exchange)) continue if czsc_day.data.iloc[-1]['date'] < last_trade_date: util_log_info( "=={} {} last trade date {}==".format( code, exchange, czsc_day.data.iloc[-1]['date'].strftime('%Y-%m-%d')) ) continue czsc_day.run() sig_day_list = czsc_day.sig_list if len(sig_day_list) < 1: continue last_day_sig = sig_day_list[-1] if last_day_sig['date'] < last_trade_date: util_log_info( "===={} {} last Signal {}====".format(code, exchange, last_day_sig['date'].strftime('%Y-%m-%d')) ) continue # 笔中枢走势的起点,如果是上升趋势的买点,从当前中枢的最高点开始计算,如果是卖点,从上升趋势的起点开始 xd_list = czsc_day.xd_list zs_list = xd_list.zs_list if len(zs_list) < 1: continue xd_mark = last_day_sig['xd_mark'] if xd_mark < 0: # 只考虑做多 continue # if xd_mark < 0: # xd = zs_list[-1]['DD'][-1] # else: # xd = zs_list[-1]['GG'][-1] # # start = xd.get('fx_start') last_day_sig.update(deviation=last_day_sig.get('dif') + last_day_sig.get('macd', 0)) for idx in range(1, last_day_sig['xd'] + 1): dif = 0 if np.isnan(last_day_sig.get('dif{}'.format(idx))) else last_day_sig.get('dif{}'.format(idx)) macd = 0 if np.isnan(last_day_sig.get('macd{}'.format(idx))) else last_day_sig.get('macd{}'.format(idx)) deviation = last_day_sig.get('deviation', 0) last_day_sig.update(deviation=deviation + dif + macd) start = xd_list.sig_list[-1]['start'] hq = get_bar(code, start=start, end=last_trade_date, freq='5min', exchange=exchange) # 复权处理 if class_name in ['stock', 'ETF']: hq = data_stock_to_fq(hq, fqtype='qfq') czsc_min = CzscMongo(code=code, data=hq, freq='5min', exchange=exchange) try: if len(czsc_min.data) < 1: util_log_info("========={} {} 0 5min Quotes========".format(code, exchange)) continue except: util_log_info("========={} {} 5min Quotes file is not exists!========".format(code, exchange)) continue if czsc_min.data.iloc[-1]['date'] < last_trade_date: util_log_info( "==Please Update {} {} 5min Quotes from {}==".format( code, exchange, czsc_day.data.iloc[-1]['date'].strftime('%Y-%m-%d')) ) continue czsc_min.run() sig_min_list = czsc_min.sig_list if len(sig_min_list) < 1: continue last_min_sig = sig_min_list[-1] if last_min_sig['date'] < last_trade_date: continue df =
pd.DataFrame(sig_min_list)
pandas.DataFrame
# coding=utf-8 # Author: <NAME> # Date: April 06, 2020 # # Description: Information on FPKM genes and how much it maps to protein coding genes # # import math import numpy as np import pandas as pd pd.set_option('display.max_rows', 100)
pd.set_option('display.max_columns', 500)
pandas.set_option
import unittest import itertools import os import pandas as pd import platform import numpy as np import numba import hpat from hpat.tests.test_utils import (count_array_REPs, count_parfor_REPs, count_parfor_OneDs, count_array_OneDs, dist_IR_contains) from hpat.hiframes.rolling import supported_rolling_funcs LONG_TEST = (int(os.environ['HPAT_LONG_ROLLING_TEST']) != 0 if 'HPAT_LONG_ROLLING_TEST' in os.environ else False) test_funcs = ('mean', 'max',) if LONG_TEST: # all functions except apply, cov, corr test_funcs = supported_rolling_funcs[:-3] class TestRolling(unittest.TestCase): def test_fixed1(self): # test sequentially with manually created dfs wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(df, w, c):\n return df.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = hpat.jit(test_impl) for args in itertools.product(wins, centers): df = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) df = pd.DataFrame({'B': [0, 1, 2, -2, 4]}) pd.testing.assert_frame_equal(hpat_func(df, *args), test_impl(df, *args)) def test_fixed2(self): # test sequentially with generated dfs sizes = (121,) wins = (3,) if LONG_TEST: sizes = (1, 2, 10, 11, 121, 1000) wins = (2, 3, 5) centers = (False, True) for func_name in test_funcs: func_text = "def test_impl(df, w, c):\n return df.rolling(w, center=c).{}()\n".format(func_name) loc_vars = {} exec(func_text, {}, loc_vars) test_impl = loc_vars['test_impl'] hpat_func = hpat.jit(test_impl) for n, w, c in itertools.product(sizes, wins, centers): df = pd.DataFrame({'B': np.arange(n)}) pd.testing.assert_frame_equal(hpat_func(df, w, c), test_impl(df, w, c)) def test_fixed_apply1(self): # test sequentially with manually created dfs def test_impl(df, w, c): return df.rolling(w, center=c).apply(lambda a: a.sum()) hpat_func = hpat.jit(test_impl) wins = (3,) if LONG_TEST: wins = (2, 3, 5) centers = (False, True) for args in itertools.product(wins, centers): df =
pd.DataFrame({'B': [0, 1, 2, np.nan, 4]})
pandas.DataFrame
import os import pandas as pd from subprocess import call import re benchmarks = ['Celecoxib rediscovery', 'Troglitazone rediscovery', 'Thiothixene rediscovery', 'Aripiprazole similarity', 'Albuterol similarity', 'Mestranol similarity', 'C11H24', 'C9H10N2O2PF2Cl', 'Median molecules 1', 'Median molecules 2', 'Osimertinib MPO', 'Fexofenadine MPO', 'Ranolazine MPO', 'Perindopril MPO', 'Amlodipine MPO', 'Sitagliptin MPO', 'Zaleplon MPO', 'Valsartan SMARTS', 'Scaffold Hop', 'Deco Hop'] selected_lengths = [1, 1, 1, 100, 100, 100, 159, 250, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100] top_100_lengths = [100] * 20 def scrub_population_scores(nohup): """Use to remove population scores from nohup when they don't need to appear in graph""" lines = open(nohup, 'r').readlines() lines_out = [] for line in lines: if 'Population mean' not in line: lines_out.append(line) open(nohup, 'w').writelines(lines_out) def break_into_many(f_name, rule='selected_output_smiles'): """Separate output smiles into many files to use rd_filters""" new_path = re.sub(os.path.basename(f_name), rule, f_name) os.makedirs(new_path, exist_ok=True) if rule == 'selected_output_smiles': rules = selected_lengths elif rule == 'top_100_output_smiles': rules = top_100_lengths else: raise UnboundLocalError with open(f_name, 'r') as f: lines = f.readlines() line_no = 0 for name, l in zip(benchmarks, rules): try: write_lines = ''.join(lines[line_no:line_no + l]) except IndexError: print(f_name + ' failed at ' + name) break line_no += l new_name = re.sub(' ', '_', name) + '_smiles.smi' new_name = os.path.join(new_path, new_name) with open(new_name, 'w') as w: w.write(write_lines) w.close() f.close() def describe_failures(f_name): """Use alert collection csv to figure out what rule set tripped a failure.""" alerts =
pd.read_csv('data/alert_collection.csv')
pandas.read_csv
# -*- coding: utf-8 -*- """ __file__ preprocess.py __description__ pre-processing the data: - text cleaning - merging synonyms - stemming - cleaning attribute - building attribute_description - extracting brand and size for products __author__ <NAME> """ from __future__ import print_function from nlp_utils import * import cPickle import pandas as pd import project_params as pp import sys from spell_corr import spell_check_dict import re def prog(): print(".",end='') sys.stdout.flush() def longprog(): print("....",end='') sys.stdout.flush() def clean_attributes(df): def cat_text(x): res = '%s %s' % (x['name'], x['value']) return res df['attribute_description'] = list(df.apply(cat_text, axis=1)); prog() remove_bullet = lambda x: re.sub(r'(bullet\d+)', r' ', x) df['attribute_description'] = df['attribute_description'].map(remove_bullet); prog() def has_size_attribute(x): if ('height' in x) | ('width' in x) | ('length' in x) | ('depth' in x): return True else: return False df['has_size'] = df['name'].map(has_size_attribute); prog() dfSize = df.loc[df.has_size, ['product_uid','value']] df = df.drop(['has_size'],axis=1) all_sizes = dfSize.groupby('product_uid').agg(lambda x : ' '.join(x)) indx = all_sizes.index.map(int) dfSize = pd.DataFrame({'product_uid':list(indx), 'size_attribute':list(all_sizes['value'])}) prog() dfBrand = df.loc[df['name'] == 'MFG Brand Name',['product_uid','value']].rename(columns={"value": "brand"}) dfBrand['brand']= dfBrand['brand'].map(lambda x: x.lower()) all_descr = df[['product_uid','attribute_description']].groupby('product_uid').agg(lambda x: ' '.join(x)) indx = all_descr.index.map(int) prog() df = pd.DataFrame({'product_uid':list(indx), 'attribute_description':list(all_descr['attribute_description'])}) df = pd.merge(df,dfSize,on='product_uid',how='left') df = df.fillna(u'unknownsize') df = pd.merge(df,dfBrand,on='product_uid',how='left') df = df.fillna(u'unknownbrand') return df def extra_clean(word): word = word.replace('kholerhighland', 'kohler highline') word = word.replace('smart', ' smart ') word = word.replace('residential', ' residential ') word = word.replace('whirlpool', ' whirlpool ') word = word.replace('alexandrea',' alexandria ') word = word.replace('bicycle',' bicycle ') word = word.replace('non',' non ') word = word.replace('replacement',' replacement') word = word.replace('mowerectrical', 'mow electrical') word = word.replace('dishwaaher', 'dishwasher') word = word.replace('fairfield',' fairfield ') word = word.replace('hooverwindtunnel','hoover windtunnel') word = word.replace('airconditionerwith','airconditioner with ') word = word.replace('pfistersaxton', 'pfister saxton') word = word.replace('eglimgton','ellington') word = word.replace('chrome', ' chrome ') word = word.replace('foot', ' foot ') word = word.replace('samsung', ' samsung ') word = word.replace('galvanised', ' galvanised ') word = word.replace('exhaust', ' exhaust ') word = word.replace('reprobramable', 'reprogramable') word = word.replace('rackcloset', 'rack closet ') word = word.replace('hamptonbay', ' hampton bay ') word = word.replace('cadet', ' cadet ') word = word.replace('weatherstripping', 'weather stripping') word = word.replace('poyurethane', 'polyurethane') word = word.replace('refrigeratorators','refrigerator') word = word.replace('baxksplash','backsplash') word = word.replace('inches',' inch ') word = word.replace('conditioner',' conditioner ') word = word.replace('landscasping',' landscaping ') word = word.replace('discontinuedbrown',' discontinued brown ') word = word.replace('drywall',' drywall ') word = word.replace('carpet', ' carpet ') word = word.replace('less', ' less ') word = word.replace('tub', ' tub') word = word.replace('tubs', ' tub ') word = word.replace('marble',' marble ') word = word.replace('replaclacemt',' replacement ') word = word.replace('non',' non ') word = word.replace('soundfroofing', 'sound proofing') return word def str_clean_stem_lower(s): try: s = s.lower() s = extra_clean(s) s = re.sub(r"(\w)\.([A-Z])", r"\1 \2", s) s = re.sub(r"([0-9]+)( *)(inches|inch|in|')\.?", r"\1in. ", s) s = re.sub(r"([0-9]+)( *)(foot|feet|ft|'')\.?", r"\1ft. ", s) s = re.sub(r"([0-9]+)( *)(pounds|pound|lbs|lb)\.?", r"\1lb. ", s) s = re.sub(r"([0-9]+)( *)(square|sq) ?\.?(feet|foot|ft)\.?", r"\1sq.ft. ", s) s = re.sub(r"([0-9]+)( *)(gallons|gallon|gal)\.?", r"\1gal. ", s) s = re.sub(r"([0-9]+)( *)(ounces|ounce|oz)\.?", r"\1oz. ", s) s = re.sub(r"([0-9]+)( *)(centimeters|cm)\.?", r"\1cm. ", s) s = re.sub(r"([0-9]+)( *)(milimeters|mm)\.?", r"\1mm. ", s) s = re.sub(r"([0-9]+)( *)(degrees|degree)\.?", r"\1deg. ", s) s = re.sub(r"([0-9]+)( *)(volts|volt)\.?", r"\1volt. ", s) s = re.sub(r"([0-9]+)( *)(watts|watt)\.?", r"\1watt. ", s) s = re.sub(r"([0-9]+)( *)(amperes|ampere|amps|amp)\.?", r"\1amp. ", s) s = s.replace(" x "," xby ") s = s.replace("*"," xby ") s = s.replace(" by "," xby") s = s.replace("x0"," xby 0") s = s.replace("x1"," xby 1") s = s.replace("x2"," xby 2") s = s.replace("x3"," xby 3") s = s.replace("x4"," xby 4") s = s.replace("x5"," xby 5") s = s.replace("x6"," xby 6") s = s.replace("x7"," xby 7") s = s.replace("x8"," xby 8") s = s.replace("x9"," xby 9") s = s.replace("0x","0 xby ") s = s.replace("1x","1 xby ") s = s.replace("2x","2 xby ") s = s.replace("3x","3 xby ") s = s.replace("4x","4 xby ") s = s.replace("5x","5 xby ") s = s.replace("6x","6 xby ") s = s.replace("7x","7 xby ") s = s.replace("8x","8 xby ") s = s.replace("9x","9 xby ") s = s.replace("whirpool","whirlpool") s = s.replace("whirlpoolga", "whirlpool") s = s.replace("whirlpoolstainless","whirlpool stainless") s = s.replace(" "," ") # using default stemmer from nlp_utils: s = (' ').join([stemmer.stem(z) for z in s.split(' ')]) if s == '': s = u'null' return s.lower() except: return u'null' if __name__ == '__main__': ######### reading csv files ############# print("Loading data.",end='') dfTrain = pd.read_csv(pp.train_raw_file,encoding=pp.encoding); prog() dfTest = pd.read_csv(pp.test_raw_file,encoding=pp.encoding); prog() dfAttribute = pd.read_csv(pp.attribute_raw_file,encoding=pp.encoding); prog() dfProdDescription = pd.read_csv(pp.description_raw_file,encoding=pp.encoding); prog() dfSynTrain =
pd.read_csv(pp.synonyms_train_raw_file,encoding=pp.encoding)
pandas.read_csv
from __future__ import division import numpy as np import pandas import math import os import types import h5py from six.moves import cPickle as pickle import seaborn as sns import matplotlib.pyplot as plt sns.set_style("white") from ML_Tools.Plotting_And_Evaluation.Plotters import * from ML_Tools.General.Misc_Functions import * from ML_Tools.General.Ensemble_Functions import ensemblePredict, loadModel from ML_Tools.General.Batch_Train import getFeature, batchEnsemblePredict from keras.models import Sequential,model_from_json, load_model from sklearn.model_selection import StratifiedKFold dirLoc = "../Data/" wFactor = 250000/50000 def AMS(s, b): """ Approximate Median Significance defined as: AMS = sqrt( 2 { (s + b + b_r) log[1 + (s/(b+b_r))] - s} ) where b_r = 10, b = background, s = signal, log is natural logarithm """ br = 10.0 radicand = 2 *( (s+b+br) * math.log (1.0 + s/(b+br)) -s) if radicand < 0: print('radicand is negative. Exiting') exit() else: return math.sqrt(radicand) def amsScan(inData, scale=False): best = [0,-1] ams = [] for index, row in inData.iterrows(): s = scale[0]*np.sum(inData.loc[(inData['pred_class'] >= row['pred_class']) & (inData['gen_target'] == 1), 'gen_weight']) b = scale[1]*np.sum(inData.loc[(inData['pred_class'] >= row['pred_class']) & (inData['gen_target'] == 0), 'gen_weight']) ams.append(AMS(s, b)) if ams[-1] > best[1]: best = [row['pred_class'], ams[-1]] print(best) return ams, best def foldAMSScan(inData, N=10): kf = StratifiedKFold(n_splits=N, shuffle=True) folds = kf.split(inData, inData['gen_target']) bests = [] for i, (train, test) in enumerate(folds): bests.append(amsScan(inData.iloc[test], (np.sum(inData[(inData['gen_target'] == 1)]['gen_weight']), np.sum(inData[(inData['gen_target'] == 0)]['gen_weight'])))[1]) print("Fold {}, best AMS {} at cut of {}. Total weights Signal:Bkg. {}:{}".format(i, bests[-1][1], bests[-1][0], np.sum(inData.iloc[test][inData.gen_target == 1]['gen_weight']), np.sum(inData.iloc[test][inData.gen_target == 0]['gen_weight']))) print("Mean cut", np.average([x[0] for x in bests], weights=[1/x[1] for x in bests]), "mean AMS", np.average([x[1] for x in bests], weights=[1/x[1] for x in bests])) return bests def amsScanQuick(inData, wFactor=250000./50000.): s = np.sum(inData.loc[inData['gen_target'] == 1, 'gen_weight']) b = np.sum(inData.loc[inData['gen_target'] == 0, 'gen_weight']) tIIs = inData['pred_class'].argsort() amss = np.empty([len(tIIs)]) amsMax = 0 threshold = 0.0 for tI in range(len(tIIs)): # don't forget to renormalize the weights to the same sum # as in the complete training set amss[tI] = AMS(max(0,s * wFactor),max(0,b * wFactor)) if amss[tI] > amsMax: amsMax = amss[tI] threshold = inData['pred_class'].values[tIIs[tI]] #print tI,threshold if inData.loc[:, 'gen_target'].values[tIIs[tI]]: s -= inData.loc[:, 'gen_weight'].values[tIIs[tI]] else: b -= inData.loc[:, 'gen_weight'].values[tIIs[tI]] print (amsMax, threshold) return amsMax, threshold def scoreTest(ensemble, weights): testData = h5py.File(dirLoc + 'testing.hdf5', "r+") batchEnsemblePredict(ensemble, weights, testData, ensembleSize=10, verbose=1) def saveTest(cut, name): testData = h5py.File(dirLoc + 'testing.hdf5', "r+") data =
pandas.DataFrame()
pandas.DataFrame
# %% import pandas as pd from Bio import SeqIO from Bio.SeqRecord import SeqRecord def get_regions(records, threshold=0.25, min_skips=6): df_aas = pd.DataFrame( [ list( f.seq ) for f in records] ) df_aas.columns += 1 df_aas["z"] = "-" # sr_gaprate = df_aas.apply( lambda x:x.value_counts()['-'] , axis=0) / len( df_aas) sr_gaprate = df_aas.apply( lambda x:x.value_counts() ).fillna(0).loc['-'] / len( df_aas) targets = sr_gaprate.loc[ sr_gaprate <= threshold ].index.to_frame(name='pos') targets['diff'] = targets.diff() if len( targets) == 0: print('warning : target is not found !') return
pd.DataFrame({'start':[], 'end':[]})
pandas.DataFrame
#### ## Title: Precipitable Water Data Extraction Module ## Author: <NAME> / <NAME> ## Documentation Page: https://git.io/fjVHo #### import os import csv import sys import requests from numpy import * import pandas as pd import time import datetime from datetime import date as dte from datetime import datetime as dt from metpy.units import units from siphon.simplewebservice.wyoming import WyomingUpperAir from mesowest import MesoWest from rich import print, box from rich.panel import Panel from rich.table import Table from rich.progress import track from rich.progress import BarColumn, TextColumn, TimeRemainingColumn, Progress, track progress = Progress(TextColumn("[bold blue]{task.fields[filename]}", justify="right"), BarColumn(bar_width=None), "[progress.percentage]{task.percentage:>3.1f}%", TimeRemainingColumn()) progress.print(Panel( "[bold deep_sky_blue2]Good Morning\nWelcome to the Data Extraction Module of the Precipitable Water Model. For more information about the model and the purpose of this tool, please visit the [link=https://git.io/fj5Xr]documentation page[/link]")) ## Timeout Retry REQUESTS_MAX_RETRIES = int(os.getenv("REQUESTS_MAX_RETRIES", 10)) adapter = requests.adapters.HTTPAdapter(max_retries=REQUESTS_MAX_RETRIES) ## Imports Wyoming and MesoWest Site IDs config = "../../data/import.conf" cnfg = loadtxt(config, dtype=str, delimiter=":") ## Imports Sensor information instr = "../../data/instruments.conf" intr = loadtxt(instr, dtype=str, delimiter=",", unpack=True)[0] ## Data file used for model input fname = '../../data/master_data.csv' ## Data file used for user input wname = '../../data/cool_data.csv' ## Stations used wy_station = cnfg[1][1].split(",") mw_station = cnfg[0][1].split(",") ## Hours to pull hour = [00, 12] ## Retrives column index for sensors headr = pd.read_csv(wname, delimiter=",").columns indx = [[], []] for i in range(len(headr)): if "Sky" in headr[i]: indx[0].append(i) elif "Ground" in headr[i] or "Standard" in headr[i]: indx[1].append(i) ## A function that computes the closest value def closest(lst, K, d): lst = asarray(lst) list = [] tmp2 = dt.combine(d, K) for i in range(len(lst)): list.append(abs(dt.combine(d, lst[i]) - tmp2)) idx = asarray(list).argmin() return lst[idx] ## Imports Wyoming Data for specified site and date def wyoming_import(end_date, station): try: df_12 = WyomingUpperAir.request_data(dt.combine(end_date, datetime.time(12, 0)), station) pw12 = df_12.pw[0] except (ValueError, IndexError): pw12 = "NaN" except requests.exceptions.HTTPError: pw12 = "Error" try: df_00 = WyomingUpperAir.request_data(end_date + datetime.timedelta(days=1), station) pw00 = df_00.pw[0] except (ValueError, IndexError): pw00 = "NaN" except requests.exceptions.HTTPError: pw00 = "Error" return [station, [end_date, pw12, pw00]] def mesowest_import(end_date, station, in_time): df_mw = MesoWest.request_data(end_date + datetime.timedelta(days=1), station.strip(" ")) mw_header = df_mw.columns for i in range(len(mw_header)): if "time(" in mw_header[i]: tau = i else: continue if (str(in_time) in ['00:00:00', 'NaT']) or (str(df_mw[mw_header[tau]][0]) == 'NaT'): rh = "NaN" temp = "NaN" thyme = "NaT" else: df_tm = df_mw.loc[(df_mw[mw_header[tau]] == closest(df_mw[mw_header[tau]], in_time, end_date))] thyme = df_tm[mw_header[tau]].values[0] rh = df_tm['relative_humidity'].values[0] temp = round((float(df_tm['temperature'].values[0]) * units.degF).to(units.degC).magnitude, 2) if str(rh) == "nan": rh = "NaN" if str(temp) == "nan": temp = "NaN" return [thyme, rh, temp] def impt(end_date, idx): cool_data = [] with filew as csvfile: next(csv.reader(csvfile, delimiter=",")) for row in readw: sky = [[] for _ in range(len(indx[0]))] gro = [[] for _ in range(len(indx[1]))] mtime = row[1].split('/') condition = row[2].split('/') for j in range(len(indx[0])): sky[j] = row[indx[0][j]].split('/') for k in range(len(indx[1])): gro[k] = row[indx[1][k]].split('/') comments = row[-1].split('/') cool_data.append([mtime, condition, sky, gro, comments]) i = 0 wy_data = [] for j in wy_station: i = 0 wy_out = wyoming_import(end_date, j.strip(" ")) while "Error" in wy_out[1]: progress.console.log("[bold yellow] (001) Wyoming Sever Disconnected") time.sleep(100) wy_out = wyoming_import(end_date, j.strip(" ")) i = + 1 wy_data.append(wy_out) neat = [] for i in range(idx, idx + 1): neat.append(cool_data[i]) neat = neat[::-1] mw_data = [] for j in mw_station: mw_data.append(mesowest_import(end_date, j,
pd.to_datetime(neat[0][0][0])
pandas.to_datetime
import unittest import pytest import pandas as pd from analitico.schema import generate_schema, apply_schema from .test_mixin import TestMixin # pylint: disable=no-member @pytest.mark.django_db class DatasetTests(unittest.TestCase, TestMixin): """ Unit testing of Dataset functionality, reading, converting, transforms, saving, etc """ ## Test creations def test_dataset_csv1_basics(self): """ Test empty dataset creation """ try: ds = self.read_dataset_asset("ds_test_1.json") self.assertEqual(ds.id, "ds_1") df = ds.get_dataframe() self.assertTrue(isinstance(df, pd.DataFrame)) self.assertEqual(len(df), 3) self.assertEqual(df.columns[0], "First") self.assertEqual(df.columns[1], "Second") self.assertEqual(df.columns[2], "Third") self.assertEqual(df.iloc[0, 0], 10) self.assertEqual(df.iloc[1, 1], 21) self.assertEqual(df.iloc[2, 2], 32) except Exception as exc: raise exc def test_dataset_csv2_types_default(self): """ Test standard data type conversions """ try: ds = self.read_dataset_asset("ds_test_2.json") self.assertEqual(ds.id, "ds_2") df = ds.get_dataframe() self.assertEqual(df.dtypes[0], "int64") self.assertEqual(df.dtypes[1], "O") self.assertEqual(df.dtypes[2], "float64") except Exception as exc: raise exc def test_dataset_csv3_types_cast_float(self): """ Test forcing integers to be floating point instead """ try: df = self.read_dataframe_asset("ds_test_3_cast_float.json") # would normally be int, but was forced to float self.assertEqual(df.dtypes[0], "float64") self.assertEqual(df.dtypes[1], "O") self.assertEqual(df.dtypes[2], "float64") except Exception as exc: raise exc def test_dataset_csv3_types_cast_string(self): """ Test forcing float column to string """ try: df = self.read_dataframe_asset("ds_test_3_cast_string.json") self.assertEqual(df.dtypes[0], "int64") self.assertEqual(df.dtypes[1], "O") # third column would be float, but is cast to string self.assertEqual(df.dtypes[2], "O") self.assertEqual(df.iloc[2, 2], "32.50") except Exception as exc: raise exc def test_dataset_csv4_applyschema_rename(self): """ Test reading a table then renaming a column """ try: df = self.read_dataframe_asset("ds_test_4.json") schema = generate_schema(df) columns = schema["columns"] self.assertEqual(len(columns), 3) self.assertEqual(df.columns[1], "Second") schema["columns"][1]["rename"] = "Secondo" df = apply_schema(df, schema) columns = df.columns self.assertEqual(df.columns[1], "Secondo") except Exception as exc: raise exc def test_dataset_csv4_applyschema_index(self): """ Test reading a table then making a column its index """ try: df = self.read_dataframe_asset("ds_test_4.json") schema = generate_schema(df) columns = schema["columns"] self.assertEqual(len(columns), 3) self.assertEqual(df.index.name, None) schema["columns"][0]["index"] = True df = apply_schema(df, schema) columns = df.columns self.assertEqual(df.index.name, "First") except Exception as exc: raise exc def test_dataset_csv4_applyschema_index_rename(self): """ Test reading a table then making a column its index then renaming it """ try: df = self.read_dataframe_asset("ds_test_4.json") schema = generate_schema(df) columns = schema["columns"] self.assertEqual(len(columns), 3) self.assertEqual(df.index.name, None) schema["columns"][0]["index"] = True schema["columns"][0]["rename"] = "Primo" df = apply_schema(df, schema) columns = df.columns self.assertEqual(df.index.name, "Primo") self.assertEqual(df.columns[0], "Primo") except Exception as exc: raise exc def test_dataset_csv4_types_datetime_iso8601(self): """ Test reading datetime in ISO8601 format """ try: df = self.read_dataframe_asset("ds_test_4.json") self.assertEqual(df.dtypes[0], "int64") self.assertEqual(df.dtypes[1], "O") self.assertTrue(isinstance(df.iloc[0, 2], pd.Timestamp)) self.assertTrue(isinstance(df.iloc[1, 2], pd.Timestamp)) self.assertTrue(isinstance(df.iloc[2, 2], pd.Timestamp)) self.assertTrue(isinstance(df.iloc[3, 2], pd.Timestamp)) self.assertEqual(df.iloc[0, 2], pd.Timestamp("2019-01-20 00:00:00")) self.assertEqual(df.iloc[1, 2], pd.Timestamp("2019-01-20 16:30:15")) self.assertEqual(df.iloc[2, 2], pd.Timestamp("2019-02-01 00:00:00")) self.assertEqual(df.iloc[3, 2], pd.Timestamp("2019-01-01 00:00:00")) # Timezones are state machines from row to row... # 2019-09-15T15:53:00 self.assertEqual(df.iloc[4, 2], pd.Timestamp("2019-09-15 15:53:00")) # 2019-09-15T15:53:00+05:00 (changes timezone) self.assertEqual(df.iloc[5, 2], pd.Timestamp("2019-09-15 10:53:00")) # 2019-09-15T15:53:00 (maintains +5 timezone) self.assertEqual(df.iloc[6, 2], pd.Timestamp("2019-09-15 15:53:00")) # 2019-09-15T15:53:00+00 (reverts timezone) self.assertEqual(df.iloc[7, 2], pd.Timestamp("2019-09-15 15:53:00")) # 2019-09-15T15:53:00-01:30 (changes timezone) self.assertEqual(df.iloc[8, 2], pd.Timestamp("2019-09-15 17:23:00")) # 20080915T155300Z (zulu time) self.assertEqual(df.iloc[9, 2], pd.Timestamp("2008-09-15 15:53:00")) # Time only uses today's date: 15:53:00.322348 self.assertEqual(df.iloc[10, 2], pd.Timestamp("15:53:00.322348")) # Examples: # http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a003169814.htm except Exception as exc: raise exc def test_dataset_csv5_category_no_schema(self): """ Test reading categorical data without a schema """ try: df = self.read_dataframe_asset("ds_test_5_category_no_schema.json") self.assertEqual(len(df.columns), 10) self.assertEqual(df.columns[0], "id") self.assertEqual(df.columns[1], "name") self.assertEqual(df.columns[2], "slug") self.assertEqual(df.columns[3], "parent_id") self.assertEqual(df.columns[4], "depth") self.assertEqual(df.columns[5], "priority") self.assertEqual(df.columns[6], "max_weight") self.assertEqual(df.columns[7], "frozen") self.assertEqual(df.columns[8], "rate") self.assertEqual(df.columns[9], "has_ingredients_book") # Column types self.assertEqual(df.dtypes[0], "int") # id self.assertEqual(df.dtypes[1], "O") # name self.assertEqual(df.dtypes[2], "O") # slug self.assertEqual(df.dtypes[3], "float") # parent_id self.assertEqual(df.dtypes[7], "int") # frozen # Items types self.assertEqual(type(df.iloc[0, 1]).__name__, "str") # name self.assertEqual(type(df.iloc[0, 2]).__name__, "str") # slug self.assertEqual(type(df.iloc[0, 3]).__name__, "float64") # parent_id except Exception as exc: raise exc def test_dataset_csv5_category_with_schema(self): """ Test reading categorical data with a schema, check types """ try: df = self.read_dataframe_asset("ds_test_5_category_with_schema.json") self.assertEqual(len(df.columns), 10) self.assertEqual(df.columns[0], "id") self.assertEqual(df.columns[1], "name") self.assertEqual(df.columns[2], "slug") self.assertEqual(df.columns[3], "parent_id") self.assertEqual(df.columns[4], "depth") self.assertEqual(df.columns[5], "priority") self.assertEqual(df.columns[6], "max_weight") self.assertEqual(df.columns[7], "frozen") self.assertEqual(df.columns[8], "rate") self.assertEqual(df.columns[9], "has_ingredients_book") # Column types self.assertEqual(df.dtypes[0], "int") # id self.assertEqual(df.dtypes[1], "category") # name self.assertEqual(df.dtypes[2], "category") # slug self.assertEqual(df.dtypes[3], "float") # parent_id self.assertEqual(df.dtypes[7], "bool") # frozen except Exception as exc: raise exc def test_dataset_csv5_category_check_values(self): """ Test reading categorical data, check values """ try: df = self.read_dataframe_asset("ds_test_5_category_with_schema.json") # Items types self.assertEqual(type(df.iloc[0, 1]).__name__, "str") # name self.assertEqual(type(df.iloc[0, 2]).__name__, "str") # slug self.assertEqual(type(df.iloc[0, 3]).__name__, "float64") # parent_id self.assertEqual(type(df.iloc[0, 7]).__name__, "bool_") # frozen except Exception as exc: raise exc def test_dataset_csv5_category_no_index(self): """ Test reading categorical data, check index column """ try: df1 = self.read_dataframe_asset("ds_test_5_category_with_schema.json") # By default the index column is the row number. # If the dataset has an index or id row it is just like # any other row and is not used to index the pandas dataset self.assertFalse(df1.loc[205, "frozen"]) self.assertEqual(df1.loc[205, "slug"], "sughi-pronti-primi-piatti") self.assertEqual(df1.loc[205, "parent_id"], 100150) # Apply the correct index column manually df2 = df1.set_index("id", drop=False) self.assertFalse(df2.loc[205, "frozen"]) self.assertEqual(df2.loc[205, "slug"], "carne-tacchino") self.assertEqual(df2.loc[205, "parent_id"], 100102) except Exception as exc: raise exc def test_dataset_csv5_category_with_index(self): """ Test reading categorical data, check explicit index column """ try: df = self.read_dataframe_asset("ds_test_5_category_with_index.json") self.assertFalse(df.loc[205, "frozen"]) self.assertEqual(df.loc[205, "slug"], "carne-tacchino") self.assertEqual(df.loc[205, "parent_id"], 100102) except Exception as exc: raise exc def test_dataset_csv6_weird_index_no_attr(self): """ Test reading table with 'weird' index column explicitly marked in schema """ try: df = self.read_dataframe_asset("ds_test_6_weird_index_no_attr.json") self.assertEqual(df.loc[8, "slug"], "pasta-riso-cereali") self.assertEqual(df.loc[27, "slug"], "2-alt-pasta") except Exception as exc: raise exc def test_dataset_csv6_weird_index_with_attr(self): """ Test reading table with 'weird' index column explicitly marked in schema """ try: df = self.read_dataframe_asset("ds_test_6_weird_index_with_attr.json") self.assertEqual(df.index.name, "indice") self.assertEqual(df.loc[8, "slug"], "pane-pasticceria") self.assertEqual(df.loc[27, "slug"], "sughi-scatolame-condimenti") self.assertEqual(df.loc[100598, "slug"], "2-alt-salumi") except Exception as exc: raise exc def test_dataset_csv7_timedelta(self): """ Test timespan to timedelta automatic conversion """ try: df = self.read_dataframe_asset("ds_test_7_autoschema.json") # index is from column 'indice' self.assertEqual(df.loc[1, "elapsed"], pd.Timedelta("1 day")) self.assertEqual(df.loc[3, "elapsed"], pd.Timedelta("2 days")) self.assertEqual(df.loc[4, "elapsed"],
pd.Timedelta("3 days")
pandas.Timedelta
import pytest import numpy as np import pandas as pd from pandas import Categorical, Series, CategoricalIndex from pandas.core.dtypes.concat import union_categoricals from pandas.util import testing as tm class TestUnionCategoricals(object): def test_union_categorical(self): # GH 13361 data = [ (list('abc'), list('abd'), list('abcabd')), ([0, 1, 2], [2, 3, 4], [0, 1, 2, 2, 3, 4]), ([0, 1.2, 2], [2, 3.4, 4], [0, 1.2, 2, 2, 3.4, 4]), (['b', 'b', np.nan, 'a'], ['a', np.nan, 'c'], ['b', 'b', np.nan, 'a', 'a', np.nan, 'c']), (pd.date_range('2014-01-01', '2014-01-05'), pd.date_range('2014-01-06', '2014-01-07'), pd.date_range('2014-01-01', '2014-01-07')), (pd.date_range('2014-01-01', '2014-01-05', tz='US/Central'), pd.date_range('2014-01-06', '2014-01-07', tz='US/Central'), pd.date_range('2014-01-01', '2014-01-07', tz='US/Central')), (pd.period_range('2014-01-01', '2014-01-05'), pd.period_range('2014-01-06', '2014-01-07'), pd.period_range('2014-01-01', '2014-01-07')), ] for a, b, combined in data: for box in [Categorical, CategoricalIndex, Series]: result = union_categoricals([box(Categorical(a)), box(Categorical(b))]) expected = Categorical(combined) tm.assert_categorical_equal(result, expected, check_category_order=True) # new categories ordered by appearance s = Categorical(['x', 'y', 'z']) s2 = Categorical(['a', 'b', 'c']) result = union_categoricals([s, s2]) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['x', 'y', 'z', 'a', 'b', 'c']) tm.assert_categorical_equal(result, expected) s = Categorical([0, 1.2, 2], ordered=True) s2 = Categorical([0, 1.2, 2], ordered=True) result = union_categoricals([s, s2]) expected = Categorical([0, 1.2, 2, 0, 1.2, 2], ordered=True) tm.assert_categorical_equal(result, expected) # must exactly match types s = Categorical([0, 1.2, 2]) s2 = Categorical([2, 3, 4]) msg = 'dtype of categories must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([s, s2]) msg = 'No Categoricals to union' with tm.assert_raises_regex(ValueError, msg): union_categoricals([]) def test_union_categoricals_nan(self): # GH 13759 res = union_categoricals([pd.Categorical([1, 2, np.nan]), pd.Categorical([3, 2, np.nan])]) exp = Categorical([1, 2, np.nan, 3, 2, np.nan]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical(['A', 'B']), pd.Categorical(['B', 'B', np.nan])]) exp = Categorical(['A', 'B', 'B', 'B', np.nan]) tm.assert_categorical_equal(res, exp) val1 = [pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.NaT] val2 = [pd.NaT, pd.Timestamp('2011-01-01'), pd.Timestamp('2011-02-01')] res = union_categoricals([pd.Categorical(val1), pd.Categorical(val2)]) exp = Categorical(val1 + val2, categories=[pd.Timestamp('2011-01-01'), pd.Timestamp('2011-03-01'), pd.Timestamp('2011-02-01')]) tm.assert_categorical_equal(res, exp) # all NaN res = union_categoricals([pd.Categorical([np.nan, np.nan]), pd.Categorical(['X'])]) exp = Categorical([np.nan, np.nan, 'X']) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical([np.nan, np.nan]), pd.Categorical([np.nan, np.nan])]) exp = Categorical([np.nan, np.nan, np.nan, np.nan]) tm.assert_categorical_equal(res, exp) def test_union_categoricals_empty(self): # GH 13759 res = union_categoricals([pd.Categorical([]), pd.Categorical([])]) exp = Categorical([]) tm.assert_categorical_equal(res, exp) res = union_categoricals([pd.Categorical([]), pd.Categorical([1.0])]) exp = Categorical([1.0]) tm.assert_categorical_equal(res, exp) # to make dtype equal nanc = pd.Categorical(np.array([np.nan], dtype=np.float64)) res = union_categoricals([nanc, pd.Categorical([])]) tm.assert_categorical_equal(res, nanc) def test_union_categorical_same_category(self): # check fastpath c1 = Categorical([1, 2, 3, 4], categories=[1, 2, 3, 4]) c2 = Categorical([3, 2, 1, np.nan], categories=[1, 2, 3, 4]) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, 4, 3, 2, 1, np.nan], categories=[1, 2, 3, 4]) tm.assert_categorical_equal(res, exp) c1 = Categorical(['z', 'z', 'z'], categories=['x', 'y', 'z']) c2 = Categorical(['x', 'x', 'x'], categories=['x', 'y', 'z']) res = union_categoricals([c1, c2]) exp = Categorical(['z', 'z', 'z', 'x', 'x', 'x'], categories=['x', 'y', 'z']) tm.assert_categorical_equal(res, exp) def test_union_categoricals_ordered(self): c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) msg = 'Categorical.ordered must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) res = union_categoricals([c1, c1]) exp = Categorical([1, 2, 3, 1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2]) exp = Categorical([1, 2, 3, np.nan, 3, 2], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) msg = "to union ordered Categoricals, all categories must be the same" with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) def test_union_categoricals_ignore_order(self): # GH 15219 c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], ordered=False) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) msg = 'Categorical.ordered must be the same' with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2], ignore_order=False) res = union_categoricals([c1, c1], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c1, c1], ignore_order=False) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3], ordered=True) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3, np.nan], ordered=True) c2 = Categorical([3, 2], categories=[1, 2, 3], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, np.nan, 3, 2]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([1, 2, 3], categories=[3, 2, 1], ordered=True) res = union_categoricals([c1, c2], ignore_order=True) exp = Categorical([1, 2, 3, 1, 2, 3]) tm.assert_categorical_equal(res, exp) res = union_categoricals([c2, c1], ignore_order=True, sort_categories=True) exp = Categorical([1, 2, 3, 1, 2, 3], categories=[1, 2, 3]) tm.assert_categorical_equal(res, exp) c1 = Categorical([1, 2, 3], ordered=True) c2 = Categorical([4, 5, 6], ordered=True) result = union_categoricals([c1, c2], ignore_order=True) expected = Categorical([1, 2, 3, 4, 5, 6]) tm.assert_categorical_equal(result, expected) msg = "to union ordered Categoricals, all categories must be the same" with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2], ignore_order=False) with tm.assert_raises_regex(TypeError, msg): union_categoricals([c1, c2]) def test_union_categoricals_sort(self): # GH 13846 c1 = Categorical(['x', 'y', 'z']) c2 = Categorical(['a', 'b', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['x', 'y', 'z', 'a', 'b', 'c'], categories=['a', 'b', 'c', 'x', 'y', 'z']) tm.assert_categorical_equal(result, expected) # fastpath c1 = Categorical(['a', 'b'], categories=['b', 'a', 'c']) c2 = Categorical(['b', 'c'], categories=['b', 'a', 'c']) result = union_categoricals([c1, c2], sort_categories=True) expected = Categorical(['a', 'b', 'b', 'c'], categories=['a', 'b', 'c'])
tm.assert_categorical_equal(result, expected)
pandas.util.testing.assert_categorical_equal
#!/usr/bin/env python # coding: utf-8 # In[133]: import pandas as pd import numpy as np import matplotlib.pyplot as plt from gluonts.model.deepar import DeepAREstimator from gluonts.trainer import Trainer from gluonts.model.forecast import SampleForecast # In[134]: df=pd.read_csv('data_share.csv', sep=',', index_col = 0, parse_dates=True) # In[135]: df['y'] =
pd.to_numeric(df["y"], downcast="float")
pandas.to_numeric
from __future__ import print_function from .barcode import BarcodeSeqLib from .barcodevariant import BcvSeqLib from .barcodeid import BcidSeqLib from .basic import BasicSeqLib from .idonly import IdOnlySeqLib from .overlap import OverlapSeqLib from .config_check import seqlib_type from .storemanager import StoreManager import os import pandas as pd import numpy as np import logging import statsmodels.api as sm import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import scipy.stats as stats from .sfmap import sfmap_plot from .plots import ( fit_axes, fit_axes_text, volcano_plot, configure_axes, plot_colors, weights_plot, ) from .constants import WILD_TYPE_VARIANT, SYNONYMOUS_VARIANT from .variant import protein_variant from .dataframe import singleton_dataframe #: map class names to class definitions to avoid use of globals() SEQLIB_CLASSES = { "BarcodeSeqLib": BarcodeSeqLib, "BcvSeqLib": BcvSeqLib, "BcidSeqLib": BcidSeqLib, "BasicSeqLib": BasicSeqLib, "IdOnlySeqLib": IdOnlySeqLib, "OverlapSeqLib": OverlapSeqLib, } def regression_apply(row, timepoints, weighted): """ :py:meth:`pandas.DataFrame.apply` apply function for calculating enrichment using linear regression. If *weighted* is ``True`` perform weighted least squares; else perform ordinary least squares. Weights for weighted least squares are included in *row*. Returns a :py:class:`pandas.Series` containing regression coefficients, residuals, and statistics. """ # retrieve log ratios from the row y = row[["L_{}".format(t) for t in timepoints]] # re-scale the x's to fall within [0, 1] xvalues = [x / float(max(timepoints)) for x in timepoints] # perform the fit X = sm.add_constant(xvalues) # fit intercept if weighted: W = row[["W_{}".format(t) for t in timepoints]] fit = sm.WLS(y, X, weights=W).fit() else: fit = sm.OLS(y, X).fit() # re-format as a data frame row values = np.concatenate( [fit.params, [fit.bse["x1"], fit.tvalues["x1"], fit.pvalues["x1"]], fit.resid] ) index = ["intercept", "slope", "SE_slope", "t", "pvalue_raw"] + [ "e_{}".format(t) for t in timepoints ] return pd.Series(data=values, index=index) class Selection(StoreManager): """ Class for a single selection replicate, consisting of multiple timepoints. This class coordinates :py:class:`~seqlib.seqlib.SeqLib` objects. """ store_suffix = "sel" treeview_class_name = "Selection" def __init__(self): StoreManager.__init__(self) self.libraries = dict() self.barcode_maps = dict() self._wt = None self.logger = logging.getLogger("{}.{}".format(__name__, self.__class__)) def _children(self): """ Return the :py:class:`~seqlib.seqlib.SeqLib` objects as a list, sorted by timepoint and then by name. """ libs = list() for tp in self.timepoints: libs.extend(sorted(self.libraries[tp], key=lambda x: x.name)) return libs def remove_child_id(self, tree_id): """ Remove the reference to a :py:class:`~seqlib.seqlib.SeqLib` with Treeview id *tree_id*. Deletes empty time points. """ empty = None for tp in self.libraries: tp_ids = [lib.treeview_id for lib in self.libraries[tp]] if tree_id in tp_ids: del self.libraries[tp][tp_ids.index(tree_id)] if len(self.libraries[tp]) == 0: empty = tp break # found the id, stop looking if empty is not None: del self.libraries[empty] @property def timepoints(self): return sorted(self.libraries.keys()) @property def wt(self): if self.has_wt_sequence(): if self._wt is None: self._wt = self.children[0].wt.duplicate(self.name) return self._wt else: if self._wt is not None: raise ValueError( "Selection should not contain wild type sequence [{}]".format( self.name ) ) else: return None def configure(self, cfg, configure_children=True): """ Set up the :py:class:`~selection.Selection` using the *cfg* object, usually from a ``.json`` configuration file. If *configure_children* is false, do not configure the children in *cfg*. """ StoreManager.configure(self, cfg) self.logger = logging.getLogger( "{}.{} - {}".format(__name__, self.__class__.__name__, self.name) ) if configure_children: if "libraries" not in cfg: raise KeyError( "Missing required config value {} [{}]".format( "libraries", self.name ) ) for lib_cfg in cfg["libraries"]: libtype = seqlib_type(lib_cfg) if libtype is None: raise ValueError("Unrecognized SeqLib config") elif libtype in ("BcvSeqLib", "BcidSeqLib"): lib = SEQLIB_CLASSES[libtype]() # don't re-parse the barcode maps if possible mapfile = lib_cfg["barcodes"]["map file"] if mapfile in self.barcode_maps.keys(): lib.configure(lib_cfg, barcode_map=self.barcode_maps[mapfile]) else: lib.configure(lib_cfg) self.barcode_maps[mapfile] = lib.barcode_map self.add_child(lib) else: # requires that the SeqLib derived classes be imported into the # module namespace using "from x import y" style lib = SEQLIB_CLASSES[libtype]() lib.configure(lib_cfg) self.add_child(lib) def validate(self): """ Raises an informative ``ValueError`` if the time points in the analysis are not suitable. Calls validate method on all child SeqLibs. """ # check the time points if 0 not in self.timepoints: raise ValueError("Missing timepoint 0 [{}]".format(self.name)) if self.timepoints[0] != 0: raise ValueError("Invalid negative timepoint [{}]".format(self.name)) if len(self.timepoints) < 2: raise ValueError("Multiple timepoints required [{}]".format(self.name)) elif len(self.timepoints) < 3 and self.scoring_method in ("WLS", "OLS"): raise ValueError( "Insufficient number of timepoints for regression scoring [{}]".format( self.name ) ) # check the wild type sequences if self.has_wt_sequence(): for child in self.children[1:]: if self.children[0].wt != child.wt: self.logger.warning("Inconsistent wild type sequences") break # check that we're not doing wild type normalization on something with no wild type # if not self.has_wt_sequence() and self.logr_method == "wt": # raise ValueError("No wild type sequence for wild type normalization [{}]".format(self.name)) # validate children for child in self.children: child.validate() def serialize(self): """ Format this object (and its children) as a config object suitable for dumping to a config file. """ cfg = StoreManager.serialize(self) cfg["libraries"] = [child.serialize() for child in self.children] return cfg def add_child(self, child): if child.name in self.child_names(): raise ValueError( "Non-unique sequencing library name '{}' [{}]".format( child.name, self.name ) ) child.parent = self # add it to the libraries dictionary try: self.libraries[child.timepoint].append(child) except KeyError: self.libraries[child.timepoint] = [child] def is_barcodevariant(self): """ Return ``True`` if all :py:class:`~seqlib.seqlib.SeqLib` in the :py:class:`~selection.Selection` are :py:class:`~barcodevariant.BcvSeqLib` objects with the same barcode map, else ``False``. """ return ( all(isinstance(lib, BcvSeqLib) for lib in self.children) and len(self.barcode_maps.keys()) == 1 ) def is_barcodeid(self): """ Return ``True`` if all :py:class:`~seqlib.SeqLib` in the :py:class:`~selection.Selection` are :py:class:`~barcodeid.BcidSeqLib` objects with the same barcode map, else ``False``. """ return ( all(isinstance(lib, BcidSeqLib) for lib in self.children) and len(self.barcode_maps.keys()) == 1 ) def is_coding(self): """ Return ``True`` if the all :py:class:`~seqlib.seqlib.SeqLib` in the :py:class:`~selection.Selection` count protein-coding variants, else ``False``. """ return all(x.is_coding() for x in self.children) def has_wt_sequence(self): """ Return ``True`` if the all :py:class:`~seqlib.seqlib.SeqLib` in the :py:class:`~selection.Selection` have a wild type sequence, else ``False``. """ return all(x.has_wt_sequence() for x in self.children) def merge_counts_unfiltered(self, label): """ Counts :py:class:`~seqlib.seqlib.SeqLib` objects and tabulates counts for each timepoint. :py:class:`~seqlib.seqlib.SeqLib` objects from the same timepoint are combined by summing the counts. Stores the unfiltered counts under ``/main/label/counts_unfiltered``. """ if self.check_store("/main/{}/counts_unfiltered".format(label)): return # calculate counts for each SeqLib self.logger.info("Counting for each time point ({})".format(label)) for lib in self.children: lib.calculate() # combine all libraries for a given timepoint self.logger.info("Aggregating SeqLib data") destination = "/main/{}/counts_unfiltered".format(label) if destination in self.store.keys(): # need to remove the current destination table because we are using append # append is required because it takes the "min_itemsize" argument, and put doesn't self.logger.info("Replacing existing '{}'".format(destination)) self.store.remove(destination) # seqlib count table name for this element type lib_table = "/main/{}/counts".format(label) # create an index of all elements in the analysis complete_index = pd.Index([]) for tp in self.timepoints: for lib in self.libraries[tp]: complete_index = complete_index.union( pd.Index(lib.store.select_column(lib_table, "index")) ) self.logger.info( "Created shared index for count data ({} {})".format( len(complete_index), label ) ) # min_itemsize value max_index_length = complete_index.map(len).max() # perform operation in chunks tp_frame = None for i in xrange(0, len(complete_index), self.chunksize): # don't duplicate the index if the chunksize is large if self.chunksize < len(complete_index): index_chunk = complete_index[i : i + self.chunksize] else: index_chunk = complete_index self.logger.info( "Merging counts for chunk {} ({} rows)".format( i / self.chunksize + 1, len(index_chunk) ) ) for tp in self.timepoints: c = self.libraries[tp][0].store.select(lib_table, "index = index_chunk") for lib in self.libraries[tp][1:]: c = c.add( lib.store.select(lib_table, "index = index_chunk"), fill_value=0 ) c.columns = ["c_{}".format(tp)] if tp == 0: tp_frame = c else: tp_frame = tp_frame.join(c, how="outer") # save the unfiltered counts if "/main/{}/counts_unfiltered".format(label) not in self.store: self.store.append( "/main/{}/counts_unfiltered".format(label), tp_frame.astype(float), min_itemsize={"index": max_index_length}, data_columns=list(tp_frame.columns), ) else: self.store.append( "/main/{}/counts_unfiltered".format(label), tp_frame.astype(float) ) def filter_counts(self, label): """ Converts unfiltered counts stored in ``/main/label/counts_unfiltered`` into filtered counts calculated from complete cases (elements with a non-zero count in each time point). For the most basic element type (variant or barcode, depending on the experimental design), the result of this operation simply drops any rows that have missing counts. For other element types, such as synonymous variants, the counts are re-aggregated using only the complete cases in the underlying element type. """ if (self.is_barcodeid() or self.is_barcodevariant()) and label != "barcodes": # calculate proper combined counts # df = self.store.select("/main/barcodes/counts") # this should exist because of the order of label calculations # redo the barcode->variant/id mapping with the filtered counts # NOT YET IMPLEMENTED df = self.store.select( "/main/{}/counts_unfiltered".format(label) ) # just do this for now else: df = self.store.select("/main/{}/counts_unfiltered".format(label)) df.dropna(axis="index", how="any", inplace=True) self.store.put( "/main/{}/counts".format(label), df.astype(float), format="table", data_columns=df.columns, ) def combine_barcode_maps(self): if self.check_store("/main/barcodemap"): return bcm = None for lib in self.children: if bcm is None: bcm = lib.store["/raw/barcodemap"] else: bcm = bcm.join( lib.store["/raw/barcodemap"], rsuffix=".drop", how="outer" ) new = bcm.loc[pd.isnull(bcm)["value"]] bcm.loc[new.index, "value"] = new["value.drop"] bcm.drop("value.drop", axis="columns", inplace=True) bcm.sort_values("value", inplace=True) self.store.put( "/main/barcodemap", bcm, format="table", data_columns=bcm.columns ) def calculate(self): """ Wrapper method to calculate counts and enrichment scores for all data in the :py:class:`~selection.Selection`. """ if len(self.labels) == 0: raise ValueError( "No data present across all sequencing libraries [{}]".format(self.name) ) for label in self.labels: self.merge_counts_unfiltered(label) self.filter_counts(label) if self.is_barcodevariant() or self.is_barcodeid(): self.combine_barcode_maps() if self.scoring_method == "counts": pass elif self.scoring_method == "ratios": for label in self.labels: self.calc_ratios(label) elif self.scoring_method == "simple": for label in self.labels: self.calc_simple_ratios(label) elif self.scoring_method in ("WLS", "OLS"): if len(self.timepoints) <= 2: raise ValueError( "Regression-based scoring requires three or more time points." ) for label in self.labels: self.calc_log_ratios(label) if self.scoring_method == "WLS": self.calc_weights(label) self.calc_regression(label) else: raise ValueError( 'Invalid scoring method "{}" [{}]'.format( self.scoring_method, self.name ) ) if self.scoring_method in ("ratios", "WLS", "OLS") and self.component_outliers: if self.is_barcodevariant() or self.is_barcodeid(): self.calc_outliers("barcodes") if self.is_coding(): self.calc_outliers("variants") def calc_simple_ratios(self, label): """ Calculate simplified (original Enrich) ratios scores. This method does not produce standard errors. """ if self.check_store("/main/{}/scores".format(label)): return self.logger.info("Calculating simple ratios ({})".format(label)) c_last = "c_{}".format(self.timepoints[-1]) df = self.store.select( "/main/{}/counts".format(label), "columns in ['c_0', c_last]" ) # perform operations on the numpy values of the data frame for easier broadcasting ratios = (df[c_last].values.astype("float") / df[c_last].sum(axis="index")) / ( df["c_0"].values.astype("float") / df["c_0"].sum(axis="index") ) # make it a data frame again ratios =
pd.DataFrame(data=ratios, index=df.index, columns=["ratio"])
pandas.DataFrame
from hydroDL import kPath, utils from hydroDL.data import ntn import pandas as pd import numpy as np import os import time import importlib # save ntn data to csv files dirNTN = os.path.join(kPath.dirData, 'EPA', 'NTN') tabData = ntn.readDataRaw() ntnIdLst = tabData['siteID'].unique().tolist() varLst = ntn.varLst td = pd.date_range(start='1979-01-01', end='2019-12-31') tw = pd.date_range(start='1979-01-01', end='2019-12-31', freq='W-TUE') ntnFolderD = os.path.join(dirNTN, 'csv', 'daily') ntnFolderW = os.path.join(dirNTN, 'csv', 'weekly') tt0 = time.time() for kk, ntnId in enumerate(ntnIdLst): tt1 = time.time() tab = tabData[tabData['siteID'] == ntnId] dfD = pd.DataFrame(index=td, columns=varLst, dtype=np.float32) dfW = pd.DataFrame(index=tw, columns=varLst, dtype=np.float32) for k in range(len(tab)): t1 = pd.to_datetime(tab.iloc[k]['dateon']).date() t2 =
pd.to_datetime(tab.iloc[k]['dateoff'])
pandas.to_datetime
import dash import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc import plotly.graph_objs as go import pandas as pd import sqlite3 from dash.dependencies import Input, Output, State import time # import datetime from datetime import datetime from pandas import Series from scipy import stats from scipy.stats import norm from numpy import arange,array,ones import dash_table app = dash.Dash(external_stylesheets=[dbc.themes.BOOTSTRAP]) app.config['suppress_callback_exceptions']=True current_year = datetime.now().year current_day = datetime.now().day today = time.strftime("%Y-%m-%d") dayofyear = time.strftime("%j") dayofyear = int(dayofyear) # daily normal temperatures df_norms_max = pd.read_csv('./daily_normal_max.csv') df_norms_min = pd.read_csv('./daily_normal_min.csv') df_norms_max_ly = pd.read_csv('./daily_normal_max_ly.csv') df_norms_min_ly =
pd.read_csv('./daily_normal_min_ly.csv')
pandas.read_csv
''' DERIVED FROM:https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/sklearn/README.rst Preparing the Scikit-learn training script Your Scikit-learn training script must be a Python 2.7 or 3.5 compatible source file. The training script is very similar to a training script you might run outside of SageMaker, but you can access useful properties about the training environment through various environment variables, such as - SM_MODEL_DIR: A string representing the path to the directory to write model artifacts to. These artifacts are uploaded to S3 for model hosting. - SM_OUTPUT_DATA_DIR: A string representing the filesystem path to write output artifacts to. Output artifacts may include checkpoints, graphs, and other files to save, not including model artifacts. These artifacts are compressed and uploaded to S3 to the same S3 prefix as the model artifacts. Supposing two input channels, 'train' and 'test', were used in the call to the Scikit-learn estimator's fit() method, the following will be set, following the format "SM_CHANNEL_[channel_name]": - SM_CHANNEL_TRAIN: A string representing the path to the directory containing data in the 'train' channel - SM_CHANNEL_TEST: Same as above, but for the 'test' channel. A typical training script loads data from the input channels, configures training with hyperparameters, trains a model, and saves a model to model_dir so that it can be hosted later. Hyperparameters are passed to your script as arguments and can be retrieved with an argparse.ArgumentParser instance. For example, a training script might start with the following: Because the SageMaker imports your training script, you should put your training code in a main guard (if __name__=='__main__':) if you are using the same script to host your model, so that SageMaker does not inadvertently run your training code at the wrong point in execution. For more on training environment variables, please visit https://github.com/aws/sagemaker-containers. ''' import argparse import pandas as pd import os # GradientBoosting Regressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.externals import joblib # Pipeline and StandardScaler from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline if __name__ == '__main__': parser = argparse.ArgumentParser() # Hyperparameters are described here. In this simple example we are just including one hyperparameter. parser.add_argument('--learning_rate', type=float, default=0.1) parser.add_argument('--n_estimators', type=int, default=100) # Sagemaker specific arguments. Defaults are set in the environment variables. parser.add_argument('--output-data-dir', type=str, default=os.environ['SM_OUTPUT_DATA_DIR']) parser.add_argument('--model-dir', type=str, default=os.environ['SM_MODEL_DIR']) parser.add_argument('--train', type=str, default=os.environ['SM_CHANNEL_TRAIN']) args = parser.parse_args() # Take the set of files and read them all into a single pandas dataframe input_files = [os.path.join(args.train, file) for file in os.listdir(args.train) ] if len(input_files) == 0: raise ValueError(('There are no files in {}.\n' + 'This usually indicates that the channel ({}) was incorrectly specified,\n' + 'the data specification in S3 was incorrectly specified or the role specified\n' + 'does not have permission to access the data.').format(args.train, "train")) raw_data = [
pd.read_csv(file, header=None, engine="python")
pandas.read_csv
#!/usr/bin/env python """ make a summary of the project wrapper output of goldclip pipeline create stats and plots ## figure1.reads_mapping_stat.pdf number of reads: raw, clean, no_dup, spikein, genome, unmap, ... ## figure2.reads_annotation_stat.pdf number of reads: RNA categories, ... ## figure3.reads_correlation.pdf ## figure4.rtstop_correlation.pdf ## figure5.peak_number.pdf ## figure6.peak_length.pdf ## figure7.peak_annotation.pdf ## figure8.peak_motif.pdf ## figure9.peak_conservation.pdf ## figure10.hexmer_zscore.pdf ## figure11.peak_overlap.pdf functions """ __author__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "2018-12-25" __version__ = "0.1" import os import re import random import logging import pandas as pd # import numpy as np from goldclip.helper import * from goldclip.bin.bed_fixer import Bed_parser from goldclip.bin.bed_motif import bed2motif from goldclip.bin.bed_annotation import bed_annotator from goldclip.goldcliplib.log_parser import * from goldclip.goldcliplib.log_parser import Json_file class Goldclip_report(object): """Record the output of Goldclip output directory structure of goldclip output 01.trimming 02.genome_mapping 03.call_peaks 04.call_rtstops 05.report """ def __init__(self, project_path, project_name, genome, group='homer', window=10000, threads=8, **kwargs): self.project_path = project_path self.project_name = project_name self.genome = genome # self.group = group self.window = window # bam correlation self.threads = threads ## directory structure path_keys = [ 'trim_path', 'align_path', 'peak_path', 'rtstop_path', 'report_path'] path_values = [ '01.trimming', '02.genome_mapping', '03.call_peaks', '04.call_rtstops', '05.report'] path_values = [os.path.join(self.project_path, i) for i in path_values] self.project_subpath = dict(zip(path_keys, path_values)) def get_trim_stat(self): """Return the reads processing of fastq files groups: raw, too_short, PCR_dup, no_dup """ path_trim = self.project_subpath['trim_path'] dfx = [] # list of pd.DataFrame if os.path.exists(path_trim): with os.scandir(path_trim) as it: for entry in it: if not entry.name.endswith('.cutadapt.json'): continue name = re.sub(r'.cutadapt.json', '', entry.name) fn = os.path.join(path_trim, entry.name) dd = Json_file(fn).json_reader() # clean fn_nodup = os.path.join(path_trim, name + '.clean_reads.txt') with open(fn_nodup) as fi: dd['nodup'] = next(fi).strip() dd['too_short'] = int(dd['total']) - int(dd['clean']) dd['dup'] = int(dd['clean']) - int(dd['nodup']) dx = pd.DataFrame({'group': ['raw_count', 'too_short', 'PCR_dup', 'no_dup'], name: [dd['total'], dd['too_short'], dd['dup'], dd['nodup']]}) dx.set_index('group', inplace=True) dfx.append(dx) df = pd.DataFrame() if len(dfx) > 0: df = pd.concat(dfx, axis=1) df = df.apply(pd.to_numeric) df.insert(0, self.project_name, df.sum(axis=1)) return df def get_map_stat(self): """Return the reads mapping categories """ path_map = self.project_subpath['align_path'] dfx = [] with os.scandir(path_map) as it: for entry in it: if not entry.name.endswith('.mapping_stat.csv'): continue name = re.sub(r'.mapping_stat.csv', '', entry.name) fn = os.path.join(path_map, entry.name) # skip merged if name == self.project_name: continue dx1 = pd.read_csv(fn, '\t') dx1 = dx1.rename(index=str, columns={'Unnamed: 0': 'name'}) dx2 = pd.melt(dx1, id_vars=['name'], var_name='group', value_name='count') dx3 = dx2[['group', 'count']].set_index('group').rename(index=str, columns={'count': name}) dfx.append(dx3) df = pd.concat(dfx, axis=1) df.insert(0, self.project_name, df.sum(axis=1)) return df def get_bam_file(self, bam2bed=False, rep_only=False, merge_only=False): path_map = self.project_subpath['align_path'] bam_files = [] with os.scandir(path_map) as it: for entry in it: if merge_only and not entry.name == self.project_name: continue elif rep_only and entry.name == self.project_name: continue else: pass bam = os.path.join(path_map, entry.name, entry.name + '.bam') bed = os.path.join(path_map, entry.name, entry.name + '.bed') if not os.path.exists(bam): continue if bam2bed: if not os.path.exists(bed): BAM(bam).to_bed() bam_files.append(bed) else: bam_files.append(bam) return bam_files def get_peak_file(self, rep_only=False, merge_only=False): path_peak = self.project_subpath['peak_path'] peak_files = [] with os.scandir(path_peak) as tools: for tool in tools: path_tool = os.path.join(path_peak, tool.name) with os.scandir(path_tool) as smps: for smp in smps: if merge_only and not smp.name == self.project_name: continue elif rep_only and smp.name == self.project_name: continue else: pass fn = os.path.join(path_tool, smp.name, smp.name + '.fixed.bed') if os.path.exists(fn): peak_files.append(fn) return peak_files def get_rtstop_file(self, rep_only=False, merge_only=False, rt_reads=False): path_rtstop = self.project_subpath['rtstop_path'] rtstop_files = [] with os.scandir(path_rtstop) as it: for entry in it: if merge_only and not entry.name == self.project_name: continue elif rep_only and entry.name == self.project_name: continue else: pass fn_ext = '.RTRead.bed' if rt_reads else '.RTStop.bed' fn = os.path.join(path_rtstop, entry.name, entry.name + fn_ext) if os.path.exists(fn): rtstop_files.append(fn) return rtstop_files ##---------------------------------## ## statistics for figures ##---------------------------------## def figure1_trim_map(self): """Trim, PCR_dup, mapped reads """ logging.info('figure1 reads mapping') path_report = self.project_subpath['report_path'] project_name = self.project_name figure1_path = os.path.join(path_report, 'read_mapping') figure1_txt = os.path.join(figure1_path, 'read_mapping.txt') assert is_path(figure1_path) df1 = self.get_trim_stat() df2 = self.get_map_stat() df = pd.concat([df1, df2], axis=0, sort=False) df.to_csv(figure1_txt, '\t', header=True, index=True) return df def figure2_read_anno(self, genome, group='homer'): """Return categories of mapped reads # function df = bed_annotator(args.i.name, args.g, args.t, path_data) """ logging.info('figure2 reads annotation') path_report = self.project_subpath['report_path'] project_name = self.project_name figure2_path = os.path.join(path_report, 'read_annotation') figure2_txt = os.path.join(figure2_path, 'read_annotation.txt') assert is_path(figure2_path) bed_files = self.get_bam_file(bam2bed=True) if len(bed_files) == 0: logging.error('failed, bed files not found: %s' % path) return None # annotate files dfx = [] for bed in bed_files: df_anno = bed_annotator(bed, genome, group).drop(columns=['sample']) dfx.append(df_anno) df =
pd.concat(dfx, axis=1)
pandas.concat
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda: self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] self.assertEqual(result, expected) result = s.iloc[0] self.assertEqual(result, expected) result = s['a'] self.assertEqual(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] self.assertEqual(result, expected) s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] self.assertEqual(result, expected) s2 = s.copy() s2['a'] = expected result = s2['a'] self.assertEqual(result, expected) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-11-06 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert (s.shape == rs.shape) assert (rs is not s) # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # GH 9731 s = Series(np.arange(10), dtype='int64') mask = s > 5 values = [2.5, 3.5, 4.5, 5.5] s[mask] = values expected = Series(lrange(6) + values, dtype='float64') assert_series_equal(s, expected) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5, 4, 3, 2, 1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4]) assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] self.assertTrue(isnull(result)) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isnull(s)] expected = Series(np.nan, index=[9])
assert_series_equal(result, expected)
pandas.util.testing.assert_series_equal
import pandas as pd import altair as alt from microsetta_public_api.repo._alpha_repo import AlphaRepo from microsetta_public_api.repo._metadata_repo import MetadataRepo from microsetta_public_api.models._alpha import Alpha from microsetta_public_api.api.metadata import _format_query, \ _validate_query, _filter_matching_ids from microsetta_public_api.utils._utils import jsonify def plot_alpha_filtered(alpha_metric=None, percentiles=None, sample_id=None, **kwargs): repo = MetadataRepo() query = _format_query(kwargs) is_invalid = _validate_query(kwargs, repo) if is_invalid: return is_invalid return _plot_alpha_percentiles_querybuilder(alpha_metric, percentiles, query, repo, sample_id) def plot_alpha_filtered_json_query(body, alpha_metric=None, percentiles=None, sample_id=None): repo = MetadataRepo() return _plot_alpha_percentiles_querybuilder(alpha_metric, percentiles, body, repo, sample_id) def _plot_alpha_percentiles_querybuilder(alpha_metric, percentiles, query, repo, sample_id): error_code, error_response, matching_ids = _filter_ids(repo, alpha_metric, query, sample_id) # TODO ideally these would raise an exception lower in the stack and # then be handled by an exception handler, but for now they are clunky # to refactor due to execution flow interruption if error_response: return error_response, error_code if len(matching_ids) <= 1: return jsonify(text='Did not find more than 1 ID\'s matching ' 'request. Plot would be nonsensical.'), 422 alpha_summary, sample_diversity = _get_alpha_info(alpha_metric, matching_ids, percentiles, sample_id) chart = _plot_percentiles_plot(alpha_metric, alpha_summary, sample_diversity) return jsonify(**chart.to_dict()), 200 def _plot_percentiles_plot(metric, summary, sample_value=None): df = pd.DataFrame({'percentile': summary['percentile'], 'values': summary['percentile_values'], } ) chart = alt.Chart(df).encode( x=alt.X("values", stack=None, title=metric), y=alt.Y("percentile", title='Percentile'), ) chart = chart.mark_area(opacity=0.3) + chart.mark_line() + \ chart.mark_point() if sample_value: # get_alpha_diversity returns a pd.Series, so subset it sample_df =
pd.DataFrame({'sample-value': [sample_value]})
pandas.DataFrame
import os import ast import math import json import logging import pathlib import numpy as np import pandas as pd import opendssdirect as dss from .pydss_parameters import * from jade.utils.timing_utils import track_timing, Timer from disco import timer_stats_collector from disco.enums import LoadMultiplierType from disco.exceptions import ( OpenDssCompileError, OpenDssConvergenceError, UpgradesExternalCatalogRequired, UpgradesExternalCatalogMissingObjectDefinition, InvalidOpenDssElementError, ) logger = logging.getLogger(__name__) @track_timing(timer_stats_collector) def reload_dss_circuit(dss_file_list, commands_list=None, **kwargs): """This function clears the circuit and loads dss files and commands. Also solves the circuit and checks for convergence errors Parameters ---------- dss_file_list commands_list Returns ------- """ logger.info("-> Reloading OpenDSS circuit") check_dss_run_command("clear") if dss_file_list is None: raise Exception("No OpenDSS files have been passed to be loaded.") for dss_file in dss_file_list: logger.info(f"Redirecting {dss_file}.") check_dss_run_command(f"Redirect {dss_file}") dc_ac_ratio = kwargs.get('dc_ac_ratio', None) if dc_ac_ratio is not None: change_pv_pctpmpp(dc_ac_ratio=dc_ac_ratio) if commands_list is not None: logger.info(f"Running {len(commands_list)} dss commands") for command_string in commands_list: check_dss_run_command(command_string) if "new " in command_string.lower(): check_dss_run_command("CalcVoltageBases") enable_pydss_solve = kwargs.get("enable_pydss_solve", False) if enable_pydss_solve: pydss_params = define_initial_pydss_settings(**kwargs) circuit_solve_and_check(raise_exception=True, **pydss_params) return pydss_params else: circuit_solve_and_check(raise_exception=True) return kwargs def run_selective_master_dss(master_filepath, **kwargs): """This function executes master.dss file line by line and ignores some commands that Solve yearly mode, export or plot data. Parameters ---------- master_filepath Returns ------- """ run_dir = os.getcwd() check_dss_run_command("Clear") # logger.info("-->Redirecting master file:") # check_dss_run_command(f"Redirect {master_filepath}") # do this instead of redirect master to ignore some lines (e.g., that solve for the whole year) os.chdir(os.path.dirname(master_filepath)) logger.debug(master_filepath) with open(master_filepath, "r") as fr: tlines = fr.readlines() for line in tlines: if ('Solve'.lower() in line.lower()) or ('Export'.lower() in line.lower()) or ('Plot'.lower() in line.lower()): logger.info(f"Skipping this line: {line}") continue else: check_dss_run_command(f"{line}") circuit_solve_and_check(raise_exception=True, **kwargs) os.chdir(run_dir) return @track_timing(timer_stats_collector) def circuit_solve_and_check(raise_exception=False, **kwargs): """This function solves the circuit (both OpenDSS and PyDSS-if enabled) and can raise exception if convergence error occurs Parameters ---------- raise_exception kwargs Returns ------- """ calcvoltagebases = kwargs.pop("calcvoltagebases", False) if calcvoltagebases: check_dss_run_command("CalcVoltageBases") dss_pass_flag = dss_solve_and_check(raise_exception=raise_exception) pass_flag = dss_pass_flag enable_pydss_solve = kwargs.get("enable_pydss_solve", False) if enable_pydss_solve: # if pydss solver is also to be used pydss_pass_flag = pydss_solve_and_check(raise_exception=raise_exception, **kwargs) pass_flag = dss_pass_flag and pydss_pass_flag return pass_flag def dss_solve_and_check(raise_exception=False): """This function solves OpenDSS and returns bool flag which shows if it has converged or not. Parameters ---------- raise_exception Returns ------- bool """ dss.Solution.Solve() logger.debug("Solving circuit using OpenDSS") # check_dss_run_command('CalcVoltageBases') dss_pass_flag = dss.Solution.Converged() if not dss_pass_flag: logger.info(f"OpenDSS Convergence Error") if raise_exception: raise OpenDssConvergenceError("OpenDSS solution did not converge") return dss_pass_flag def dss_run_command_list(command_list): for command_string in command_list: check_dss_run_command(command_string) return def write_text_file(string_list, text_file_path): """This function writes the string contents of a list to a text file Parameters ---------- string_list text_file_path Returns ------- """ pathlib.Path(text_file_path).write_text("\n".join(string_list)) def create_upgraded_master_dss(dss_file_list, upgraded_master_dss_filepath): """Function to create master dss with redirects to upgrades dss file. The redirect paths in this file are relative to the file""" command_list = [] for filename in dss_file_list: rel_filename = os.path.relpath(filename, os.path.dirname(upgraded_master_dss_filepath)) command_list.append(f"Redirect {rel_filename}") return command_list def create_dataframe_from_nested_dict(user_dict, index_names): """This function creates dataframe from a nested dictionary Parameters ---------- user_dict index_names Returns ------- DataFrame """ df = pd.DataFrame.from_dict({(i, j): user_dict[i][j] for i in user_dict.keys() for j in user_dict[i].keys()}, orient='index') df.index.names = index_names return df.reset_index() def get_dictionary_of_duplicates(df, subset, index_field): """This creates a mapping dictionary of duplicate indices in a dataframe Parameters ---------- df subset index_field Returns ------- Dictionary """ df.set_index(index_field, inplace=True) df = df[df.duplicated(keep=False, subset=subset)] tuple_list = df.groupby(subset).apply(lambda x: tuple(x.index)).tolist() mapping_dict = {v: tup[0] for tup in tuple_list for v in tup} return mapping_dict def get_scenario_name(enable_pydss_solve, pydss_volt_var_model): """This function determines the controller scenario Parameters ---------- enable_pydss_solve : bool pydss_volt_var_model Returns ------- str """ if enable_pydss_solve: # scenario = pydss_volt_var_model.control1 # TODO can read in name instead scenario = "control_mode" else: scenario = "pf1" return scenario @track_timing(timer_stats_collector) def change_pv_pctpmpp(dc_ac_ratio): """This function changes PV system pctpmpp based on passed dc-ac ratio newpctpmpp = oldpctpmpp / dc_ac_ratio """ dss.PVsystems.First() for i in range(dss.PVsystems.Count()): newpctpmpp = int(dss.Properties.Value('%Pmpp')) / dc_ac_ratio command_string = f"Edit PVSystem.{dss.PVsystems.Name()} %Pmpp={newpctpmpp}" check_dss_run_command(command_string) dss.PVsystems.Next() def get_feeder_stats(dss): """This function gives metadata stats for a feeder Parameters ---------- dss Returns ------- dict """ load_kw = 0 load_kVABase = 0 pv_kw = 0 pv_kVARated = 0 load_df = dss.utils.loads_to_dataframe() if len(load_df) > 0: load_kw = load_df['kW'].sum() load_kVABase = load_df['kVABase'].sum() pv_df = dss.utils.pvsystems_to_dataframe() if len(pv_df) > 0: pv_kw = pv_df['kW'].sum() pv_kVARated = pv_df['kVARated'].sum() data_dict = { 'total_load(kVABase)': load_kVABase, 'total_load(kW)': load_kw, 'total_PV(kW)': pv_kw, 'total_PV(kVARated)': pv_kVARated, } return data_dict def get_upgrade_stage_stats(dss, upgrade_stage, upgrade_type, xfmr_loading_df, line_loading_df, bus_voltages_df, **kwargs): """This function gives upgrade stage stats for a feeder upgrade_stage can be Initial or Final upgrade_type can be thermal or voltage """ final_dict = {"stage": upgrade_stage, "upgrade_type": upgrade_type} ckt_info_dict = get_circuit_info() final_dict["feeder_components"] = ckt_info_dict final_dict["feeder_components"].update({ "num_nodes": dss.Circuit.NumNodes(), "num_loads": dss.Loads.Count(), "num_lines": dss.Lines.Count(), "num_transformers": dss.Transformers.Count(), "num_pv_systems": dss.PVsystems.Count(), "num_capacitors": dss.Capacitors.Count(), "num_regulators": dss.RegControls.Count(), } ) equipment_dict = combine_equipment_health_stats(xfmr_loading_df, line_loading_df, bus_voltages_df, **kwargs) final_dict.update(equipment_dict) return final_dict def combine_equipment_health_stats(xfmr_loading_df, line_loading_df, bus_voltages_df, **kwargs): line_properties = kwargs.get("line_properties", None) xfmr_properties = kwargs.get("xfmr_properties", None) voltage_properties = kwargs.get("voltage_properties", None) final_dict = {} if line_properties is None: line_properties = ['name', 'phases','normamps', 'kV', 'line_placement', 'length', 'units', 'max_amp_loading', 'max_per_unit_loading', 'status'] if xfmr_properties is None: xfmr_properties = ['name', 'phases', 'windings', 'conns', 'kVs', 'kVAs', 'amp_limit_per_phase','max_amp_loading', 'max_per_unit_loading', 'status'] if voltage_properties is None: voltage_properties = ['name', 'Max per unit voltage', 'Min per unit voltage', 'Overvoltage violation', 'Max voltage_deviation', 'Undervoltage violation', 'Min voltage_deviation'] # some file reformatting if "conns" in xfmr_properties: xfmr_loading_df["conns"] = xfmr_loading_df["conns"].apply(ast.literal_eval) if "kVs" in xfmr_properties: xfmr_loading_df["kVs"] = xfmr_loading_df["kVs"].apply(ast.literal_eval) if "windings" in xfmr_properties: xfmr_loading_df["windings"] = xfmr_loading_df["windings"].astype(int) final_dict.update({"transformer_loading": xfmr_loading_df[xfmr_properties].to_dict(orient="records")}) final_dict.update({"line_loading": line_loading_df[line_properties].to_dict(orient="records")}) final_dict.update({"bus_voltage": bus_voltages_df[voltage_properties].to_dict(orient="records")}) return final_dict def get_circuit_info(): """This collects circuit information: source bus, feeder head info, substation xfmr information Returns ------- Dictionary """ data_dict = {} dss.Vsources.First() data_dict['source_bus'] = dss.CktElement.BusNames()[0].split(".")[0] data_dict["feeder_head_name"] = dss.Circuit.Name() dss.Circuit.SetActiveBus(data_dict['source_bus']) data_dict["feeder_head_basekv"] = dss.Bus.kVBase() data_dict["source_num_nodes"] = dss.Bus.NumNodes() data_dict["total_num_buses_in_circuit"] = len(dss.Circuit.AllBusNames()) if data_dict["source_num_nodes"] > 1: data_dict["feeder_head_basekv"] = round(data_dict["feeder_head_basekv"] * math.sqrt(3), 1) data_dict["substation_xfmr"] = None all_xfmr_df = get_thermal_equipment_info(compute_loading=False, equipment_type="transformer") all_xfmr_df["substation_xfmr_flag"] = all_xfmr_df.apply(lambda x: int( data_dict["source_bus"].lower() in x['bus_names_only']), axis=1) if len(all_xfmr_df.loc[all_xfmr_df["substation_xfmr_flag"] == True]) > 0: data_dict["substation_xfmr"] = all_xfmr_df.loc[all_xfmr_df["substation_xfmr_flag"] == True].to_dict(orient='records')[0] data_dict["substation_xfmr"]["kVs"] = ast.literal_eval(data_dict["substation_xfmr"]["kVs"]) # this checks if the voltage kVs are the same for the substation transformer data_dict["substation_xfmr"]["is_autotransformer_flag"] = len(set(data_dict["substation_xfmr"]["kVs"])) <= 1 return data_dict def create_opendss_definition(config_definition_dict, action_type="New", property_list=None): """This function creates an opendss element definition for any generic equipment Returns ------- str """ command_string = f"{action_type} {config_definition_dict['equipment_type']}.{config_definition_dict['name']}" logger.debug(f"New {config_definition_dict['equipment_type']}.{config_definition_dict['name']} being defined") # these properties contain data (refer OpenDSS manual for more information on these parameters) if property_list is None: property_list = list(set(config_definition_dict.keys()) - {"name", "equipment_type"}) empty_field_values = ["----", "nan", "NaN", "None", None, np.nan] for property_name in property_list: if isinstance(config_definition_dict[property_name], float): if np.isnan(config_definition_dict[property_name]): continue if config_definition_dict[property_name] in empty_field_values: continue # if the value is not empty and is not nan, only then add it into the command string temp_s = f" {property_name}={config_definition_dict[property_name]}" command_string = command_string + temp_s return command_string def ensure_line_config_exists(chosen_option, new_config_type, external_upgrades_technical_catalog): """This function check if a line config exists in the network. If it doesn't exist, it checks the external catalog (if available) and returns a new dss definition string. Returns ------- str """ existing_config_dict = {"linecode": get_line_code(), "geometry": get_line_geometry()} new_config_name = chosen_option[new_config_type].lower() # if linecode or linegeometry is not present in existing network definitions if not existing_config_dict[new_config_type]["name"].str.lower().isin([new_config_name]).any(): # add definition for linecode or linegeometry if external_upgrades_technical_catalog is None: raise UpgradesExternalCatalogRequired(f"External upgrades technical catalog not available to determine line config type") external_config_df = pd.DataFrame(external_upgrades_technical_catalog[new_config_type]) if external_config_df["name"].str.lower().isin([new_config_name]).any(): config_definition_df = external_config_df.loc[external_config_df["name"] == new_config_name] config_definition_dict = dict(config_definition_df.iloc[0]) if config_definition_dict["normamps"] != chosen_option["normamps"]: logger.warning(f"Mismatch between noramps for linecode {new_config_name} and chosen upgrade option normamps: {chosen_option['name']}") # check format of certain fields matrix_fields = [s for s in config_definition_dict.keys() if 'matrix' in s] for field in matrix_fields: config_definition_dict[field] = config_definition_dict[field].replace("'","") config_definition_dict[field] = config_definition_dict[field].replace("[","(") config_definition_dict[field] = config_definition_dict[field].replace("]",")") command_string = create_opendss_definition(config_definition_dict=config_definition_dict) else: raise UpgradesExternalCatalogMissingObjectDefinition( f"{new_config_type} definition for {new_config_name} not found in external catalog." ) else: command_string = None return command_string def get_present_loading_condition(): """ Get present loading condition for all loads Returns ------- DataFrame """ load_dict = {} dss.Circuit.SetActiveClass("Load") flag = dss.ActiveClass.First() while flag > 0: # Get the name of the load load_dict[dss.CktElement.Name()] = { 'Num_phases': float(dss.Properties.Value("phases")), 'kV': float(dss.Properties.Value("kV")), 'kVA': float(dss.Properties.Value("kVA")), 'kW': float(dss.Properties.Value("kW")), 'pf': dss.Properties.Value("pf"), 'Bus1': dss.Properties.Value("bus1"), 'Powers': dss.CktElement.Powers(), 'NetPower': sum(dss.CktElement.Powers()[::2]), } # Move on to the next Load... flag = dss.ActiveClass.Next() load_df = pd.DataFrame.from_dict(load_dict, "index") return load_df def get_present_storage_condition(): """ Get present operating condition for all storage Returns ------- DataFrame """ storage_dict = {} dss.Circuit.SetActiveClass('Storage') flag = dss.ActiveClass.First() while flag > 0: # Get the name of the load storage_dict[dss.CktElement.Name()] = { 'Num_phases': float(dss.Properties.Value("phases")), 'kV': float(dss.Properties.Value("kV")), 'kVA': float(dss.Properties.Value("kVA")), 'kW': float(dss.Properties.Value("kW")), 'pf': dss.Properties.Value("pf"), 'Bus1': dss.Properties.Value("bus1"), 'Powers': dss.CktElement.Powers(), 'NetPower': sum(dss.CktElement.Powers()[::2]), } # Move on to the next ... flag = dss.ActiveClass.Next() storage_df = pd.DataFrame.from_dict(storage_dict, "index") return storage_df def get_present_pvgeneration(): """ Get present generation for all pv systems Returns ------- DataFrame """ pv_dict = {} dss.Circuit.SetActiveClass("PVSystem") flag = dss.ActiveClass.First() while flag: pv_dict[dss.CktElement.Name()] = { 'Num_phases': float(dss.Properties.Value("phases")), 'kV': float(dss.Properties.Value("kV")), 'kVA': float(dss.Properties.Value("kVA")), 'kvar': float(dss.Properties.Value("kvar")), 'Irradiance': float(dss.Properties.Value("Irradiance")), 'connection': dss.Properties.Value("conn"), 'Pmpp': float(dss.Properties.Value("Pmpp")), 'Powers': dss.CktElement.Powers(), 'NetPower': sum(dss.CktElement.Powers()[::2]), 'pf': dss.Properties.Value("pf"), 'Bus1': dss.Properties.Value("bus1"), 'Voltages': dss.CktElement.Voltages(), 'VoltagesMagAng': dss.CktElement.VoltagesMagAng(), 'VoltagesMag': float(dss.CktElement.VoltagesMagAng()[0]), } flag = dss.ActiveClass.Next() > 0 pv_df = pd.DataFrame.from_dict(pv_dict, "index") return pv_df def get_all_transformer_info_instance(upper_limit=None, compute_loading=True): """This collects transformer information Returns ------- DataFrame """ all_df = dss.utils.class_to_dataframe("transformer") if len(all_df) == 0: return pd.DataFrame() all_df["name"] = all_df.index.str.split(".").str[1] all_df["equipment_type"] = all_df.index.str.split(".").str[0] # extract only enabled lines all_df = all_df.loc[all_df["enabled"] == True] all_df[["wdg", "phases"]] = all_df[["wdg", "phases"]].astype(int) float_fields = ["kV", "kVA", "normhkVA", "emerghkVA", "%loadloss", "%noloadloss", "XHL", "XHT", "XLT", "%R", "Rneut", "Xneut", "X12", "X13", "X23", "RdcOhms"] all_df[float_fields] = all_df[float_fields].astype(float) # define empty new columns all_df['bus_names_only'] = None all_df["amp_limit_per_phase"] = np.nan if compute_loading: all_df["max_amp_loading"] = np.nan all_df["max_per_unit_loading"] = np.nan all_df["status"] = "" for index, row in all_df.iterrows(): # convert type from list to tuple since they are hashable objects (and can be indexed) all_df.at[index, "kVs"] = [float(a) for a in row["kVs"]] all_df.at[index, "kVAs"] = [float(a) for a in row["kVAs"]] all_df.at[index, "Xscarray"] = [float(a) for a in row["Xscarray"]] all_df.at[index, "%Rs"] = [float(a) for a in row["%Rs"]] all_df.at[index, "bus_names_only"] = [a.split(".")[0].lower() for a in row["buses"]] # first winding is considered primary winding primary_kv = float(row["kVs"][0]) primary_kva = float(row["kVAs"][0]) if row["phases"] > 1: amp_limit_per_phase = primary_kva / (primary_kv * math.sqrt(3)) elif row["phases"] == 1: amp_limit_per_phase = primary_kva / primary_kv else: raise InvalidOpenDssElementError(f"Incorrect number of phases for transformer {row['name']}") all_df.at[index, "amp_limit_per_phase"] = amp_limit_per_phase if compute_loading: if upper_limit is None: raise Exception("Transformer upper limit is to be passed to function to compute transformer loading") dss.Circuit.SetActiveElement("Transformer.{}".format(row["name"])) extract_magang = dss.CktElement.CurrentsMagAng()[: 2 * row["phases"]] # extract elements based on num of ph xfmr_current_magnitude = extract_magang[::2] max_amp_loading = max(xfmr_current_magnitude) max_per_unit_loading = round(max_amp_loading / amp_limit_per_phase, 4) all_df.at[index, "max_amp_loading"] = max_amp_loading all_df.at[index, "max_per_unit_loading"] = max_per_unit_loading if max_per_unit_loading > upper_limit: all_df.at[index, "status"] = "overloaded" elif max_per_unit_loading == 0: all_df.at[index, "status"] = "unloaded" else: all_df.at[index, "status"] = "normal" # convert lists to string type (so they can be set as dataframe index later) all_df[['conns', 'kVs']] = all_df[['conns', 'kVs']].astype(str) all_df = all_df.reset_index(drop=True).set_index('name') return all_df.reset_index() def add_info_line_definition_type(all_df): all_df["line_definition_type"] = "line_definition" all_df.loc[all_df["linecode"] != "", "line_definition_type"] = "linecode" all_df.loc[all_df["geometry"] != "", "line_definition_type"] = "geometry" return all_df def determine_line_placement(line_series): """ Distinguish between overhead and underground cables currently there is no way to distinguish directy using opendssdirect/pydss etc. It is done here using property 'height' parameter and if string present in name Parameters ---------- line_series Returns ------- dict """ info_dict = {} info_dict["line_placement"] = None if line_series["line_definition_type"] == "geometry": dss.Circuit.SetActiveClass("linegeometry") dss.ActiveClass.Name(line_series["geometry"]) h = float(dss.Properties.Value("h")) info_dict["h"] = 0 if h >= 0: info_dict["line_placement"] = "overhead" else: info_dict["line_placement"] = "underground" else: if ("oh" in line_series["geometry"].lower()) or ("oh" in line_series["linecode"].lower()): info_dict["line_placement"] = "overhead" elif ("ug" in line_series["geometry"].lower()) or ("ug" in line_series["linecode"].lower()): info_dict["line_placement"] = "underground" else: info_dict["line_placement"] = None return info_dict def get_all_line_info_instance(upper_limit=None, compute_loading=True, ignore_switch=True): """This collects line information Returns ------- DataFrame """ all_df = dss.utils.class_to_dataframe("line") if len(all_df) == 0: return pd.DataFrame() all_df["name"] = all_df.index.str.split(".").str[1] all_df["equipment_type"] = all_df.index.str.split(".").str[0] # extract only enabled lines all_df = all_df.loc[all_df["enabled"] == True] all_df["phases"] = all_df["phases"].astype(int) all_df[["normamps", "length"]] = all_df[["normamps", "length"]].astype(float) all_df = add_info_line_definition_type(all_df) # define empty new columns all_df["kV"] = np.nan all_df["h"] = np.nan all_df["line_placement"] = "" if compute_loading: all_df["max_amp_loading"] = np.nan all_df["max_per_unit_loading"] = np.nan all_df["status"] = "" for index, row in all_df.iterrows(): dss.Circuit.SetActiveBus(row["bus1"]) kv_b1 = dss.Bus.kVBase() dss.Circuit.SetActiveBus(row["bus2"]) kv_b2 = dss.Bus.kVBase() dss.Circuit.SetActiveElement("Line.{}".format(row["name"])) if round(kv_b1) != round(kv_b2): raise InvalidOpenDssElementError("To and from bus voltages ({} {}) do not match for line {}".format( kv_b2, kv_b1, row['name'])) all_df.at[index, "kV"] = kv_b1 # Distinguish between overhead and underground cables # currently there is no way to distinguish directy using opendssdirect/pydss etc. # It is done here using property 'height' parameter and if string present in name placement_dict = determine_line_placement(row) for key in placement_dict.keys(): all_df.at[index, key] = placement_dict[key] # if line loading is to be computed if compute_loading: if upper_limit is None: raise Exception("Line upper limit is to be passed to function to compute line loading") dss.Circuit.SetActiveElement("Line.{}".format(row["name"])) extract_magang = dss.CktElement.CurrentsMagAng()[: 2 * row["phases"]] line_current = extract_magang[::2] max_amp_loading = max(line_current) max_per_unit_loading = round(max_amp_loading / row["normamps"], 4) all_df.at[index, "max_amp_loading"] = max_amp_loading all_df.at[index, "max_per_unit_loading"] = max_per_unit_loading if max_per_unit_loading > upper_limit: all_df.at[index, "status"] = "overloaded" elif max_per_unit_loading == 0: all_df.at[index, "status"] = "unloaded" else: all_df.at[index, "status"] = "normal" all_df = all_df.reset_index(drop=True).set_index('name') all_df["kV"] = all_df["kV"].round(5) # add units to switch length (needed to plot graph). By default, length of switch is taken as max all_df.loc[(all_df.units == 'none') & (all_df.Switch == True), 'units'] = 'm' # if switch is to be ignored if ignore_switch: all_df = all_df.loc[all_df['Switch'] == False] return all_df.reset_index() def compare_multiple_dataframes(comparison_dict, deciding_column_name, comparison_type="max"): """This function compares all dataframes in a given dictionary based on a deciding column name Returns ------- Dataframe """ summary_df = pd.DataFrame() for df_name in comparison_dict.keys(): summary_df[df_name] = comparison_dict[df_name][deciding_column_name] if comparison_type == "max": label_df = summary_df.idxmax(axis=1) # find dataframe name that has max elif comparison_type == "min": label_df = summary_df.idxmax(axis=1) # find dataframe name that has min else: raise Exception(f"Unknown comparison type {comparison_type} passed.") final_list = [] for index, label in label_df.iteritems(): # index is element name temp_dict = dict(comparison_dict[label].loc[index]) temp_dict.update({"name": index}) final_list.append(temp_dict) final_df = pd.DataFrame(final_list) return final_df @track_timing(timer_stats_collector) def get_thermal_equipment_info(compute_loading, equipment_type, upper_limit=None, ignore_switch=False, **kwargs): """This function determines the thermal equipment loading (line, transformer), based on timepoint multiplier Returns ------- DataFrame """ timepoint_multipliers = kwargs.get("timepoint_multipliers", None) multiplier_type = kwargs.get("multiplier_type", LoadMultiplierType.ORIGINAL) # if there are no multipliers, run on rated load i.e. multiplier=1. 0 # if compute_loading is false, then just run once (no need to check multipliers) if (timepoint_multipliers is None) or (not compute_loading) or (multiplier_type == LoadMultiplierType.ORIGINAL): if compute_loading and multiplier_type != LoadMultiplierType.ORIGINAL: apply_uniform_timepoint_multipliers(multiplier_name=1, field="with_pv", **kwargs) if equipment_type == "line": loading_df = get_all_line_info_instance(compute_loading=compute_loading, upper_limit=upper_limit, ignore_switch=ignore_switch) elif equipment_type == "transformer": loading_df = get_all_transformer_info_instance(compute_loading=compute_loading, upper_limit=upper_limit) return loading_df if multiplier_type == LoadMultiplierType.UNIFORM: comparison_dict = {} for pv_field in timepoint_multipliers["load_multipliers"].keys(): logger.debug(pv_field) for multiplier_name in timepoint_multipliers["load_multipliers"][pv_field]: logger.debug("Multipler name: %s", multiplier_name) # this changes the dss network load and pv apply_uniform_timepoint_multipliers(multiplier_name=multiplier_name, field=pv_field, **kwargs) if equipment_type.lower() == "line": deciding_column_name = "max_per_unit_loading" loading_df = get_all_line_info_instance(compute_loading=compute_loading, upper_limit=upper_limit, ignore_switch=ignore_switch) elif equipment_type.lower() == "transformer": deciding_column_name = "max_per_unit_loading" loading_df = get_all_transformer_info_instance(compute_loading=compute_loading, upper_limit=upper_limit) loading_df.set_index("name", inplace=True) comparison_dict[pv_field+"_"+str(multiplier_name)] = loading_df # compare all dataframe, and create one that contains all worst loading conditions (across all multiplier conditions) loading_df = compare_multiple_dataframes(comparison_dict, deciding_column_name, comparison_type="max") else: raise Exception(f"Undefined multiplier_type {multiplier_type} passed.") return loading_df def get_regcontrol_info(correct_PT_ratio=False, nominal_voltage=None): """This collects enabled regulator control information. If correcting PT ratio, the following information is followed (based on OpenDSS documentation) PT ratio: # If the winding is Wye, the line-to-neutral voltage is used. Else, the line-to-line voltage is used. # Here, bus kV is taken from Bus.kVBase Bus base kV: Returns L-L voltages for 2- and 3-phase. Else for 1-ph, return L-N voltage Returns ------- DataFrame """ all_df = dss.utils.class_to_dataframe("regcontrol") if len(all_df) == 0: return pd.DataFrame() all_df["name"] = all_df.index.str.split(".").str[1] all_df["equipment_type"] = all_df.index.str.split(".").str[0] float_columns = ['winding', 'vreg', 'band', 'ptratio', 'delay'] all_df[float_columns] = all_df[float_columns].astype(float) all_df['at_substation_xfmr_flag'] = False # by default, reg control is considered to be not at substation xfmr ckt_info_dict = get_circuit_info() sub_xfmr_present = False sub_xfmr_name = None if ckt_info_dict['substation_xfmr'] is not None: sub_xfmr_present = True sub_xfmr_name = ckt_info_dict['substation_xfmr']['name'] if correct_PT_ratio: if nominal_voltage is None: raise Exception("Nominal voltage not provided to correct regcontrol PT ratio.") all_df['old_ptratio'] = all_df['ptratio'] for index, row in all_df.iterrows(): dss.Circuit.SetActiveElement("Regcontrol.{}".format(row["name"])) reg_bus = dss.CktElement.BusNames()[0].split(".")[0] all_df.at[index, "reg_bus"] = reg_bus dss.Circuit.SetActiveBus(reg_bus) all_df.at[index, "bus_num_phases"] = dss.CktElement.NumPhases() all_df.at[index, "bus_kv"] = dss.Bus.kVBase() dss.Circuit.SetActiveElement("Transformer.{}".format(row["transformer"])) all_df.at[index, "transformer_kva"] = float(dss.Properties.Value("kva")) dss.Transformers.Wdg(1) # setting winding to 1, to get kV for winding 1 all_df.at[index, "transformer_kv"] = dss.Transformers.kV() all_df.at[index, "transformer_conn"] = dss.Properties.Value("conn").replace(" ", "") # opendss returns conn with a space all_df.at[index, "transformer_bus1"] = dss.CktElement.BusNames()[0].split(".")[0] all_df.at[index, "transformer_bus2"] = dss.CktElement.BusNames()[1].split(".")[0] if correct_PT_ratio: if (all_df.loc[index]["bus_num_phases"] > 1) and (all_df.loc[index]["transformer_conn"].lower() == "wye"): kV_to_be_used = all_df.loc[index]["transformer_kv"] * 1000 / math.sqrt(3) else: kV_to_be_used = all_df.loc[index]["transformer_kv"] * 1000 # kV_to_be_used = dss.Bus.kVBase() * 1000 all_df.at[index, "ptratio"] = kV_to_be_used / nominal_voltage if sub_xfmr_present and (row["transformer"] == sub_xfmr_name): # if reg control is at substation xfmr all_df.at[index, 'at_substation_xfmr_flag'] = True all_df = all_df.reset_index(drop=True).set_index('name') all_df = all_df.loc[all_df['enabled'] == True] return all_df.reset_index() def get_capacitor_info(nominal_voltage=None, correct_PT_ratio=False): """ This collects capacitor information. For correcting PT ratio, the following information and definitions are followed: # cap banks are 3 phase, 2 phase or 1 phase. 1 phase caps will have LN voltage # PT ratio: Ratio of the PT that converts the monitored voltage to the control voltage. # If the capacitor is Wye, the 1st phase line-to-neutral voltage is monitored. # Else, the line-to-line voltage (1st - 2nd phase) is monitored. # Capacitor kv: Rated kV of the capacitor (not necessarily same as bus rating). # For Phases=2 or Phases=3, it is line-to-line (phase-to-phase) rated voltage. # For all other numbers of phases, it is actual rating. (For Delta connection this is always line-to-line rated voltage). This function doesnt currently check if object is "enabled". Returns ------- DataFrame """ all_df = dss.utils.class_to_dataframe("capacitor") if len(all_df) == 0: return pd.DataFrame() all_df["capacitor_name"] = all_df.index.str.split(".").str[1] all_df["equipment_type"] = all_df.index.str.split(".").str[0] float_columns = ["phases", "kv"] all_df[float_columns] = all_df[float_columns].astype(float) all_df = all_df.reset_index(drop=True).set_index("capacitor_name") # collect capcontrol information to combine with capcontrols capcontrol_df = get_cap_control_info() capcontrol_df.rename(columns={'name': 'capcontrol_name', 'capacitor': 'capacitor_name', 'type': 'capcontrol_type', 'equipment_type': 'capcontrol_present'}, inplace=True) capcontrol_df = capcontrol_df.set_index("capacitor_name") # with capacitor name as index, concatenate capacitor information with cap controls # TODO are any other checks needed before concatenating dataframes? i.e. if capacitor is not present all_df = pd.concat([all_df, capcontrol_df], axis=1) all_df.index.name = 'capacitor_name' all_df = all_df.reset_index().set_index('capacitor_name') if correct_PT_ratio and (len(capcontrol_df) > 0): if nominal_voltage is None: raise Exception("Nominal voltage not provided to correct capacitor bank PT ratio.") all_df['old_PTratio'] = all_df['PTratio'] # iterate over all capacitors for index, row in all_df.iterrows(): all_df.at[index, "kvar"] = [float(a) for a in row["kvar"]][0] # if capcontrol type is empty, then that capacitor does not have controls # correct PT ratios for existing cap controls if correct_PT_ratio and (len(capcontrol_df) > 0): if row["phases"] > 1 and row["conn"].lower() == "wye": kv_to_be_used = (row['kv'] * 1000) / math.sqrt(3) else: kv_to_be_used = row['kv'] * 1000 all_df.at[index, "PTratio"] = kv_to_be_used / nominal_voltage return all_df.reset_index() def get_cap_control_info(): """This collects capacitor control information Returns ------- DataFrame """ all_df = dss.utils.class_to_dataframe("capcontrol") if len(all_df) == 0: capcontrol_columns = ['name', 'capacitor', 'type', 'equipment_type'] return pd.DataFrame(columns=capcontrol_columns) all_df["name"] = all_df.index.str.split(".").str[1] all_df["equipment_type"] = all_df.index.str.split(".").str[0] float_columns = ["CTPhase", "CTratio", "DeadTime", "Delay", "DelayOFF", "OFFsetting", "ONsetting", "PTratio", "Vmax", "Vmin"] all_df[float_columns] = all_df[float_columns].astype(float) all_df = all_df.reset_index(drop=True).set_index("name") return all_df.reset_index() def get_line_geometry(): """This collects all line geometry information Returns ------- DataFrame """ active_class_name = 'linegeometry' all_df = dss.utils.class_to_dataframe(active_class_name) if len(all_df) == 0: return pd.DataFrame() all_df['name'] = all_df.index.str.split('.').str[1] all_df['equipment_type'] = all_df.index.str.split('.').str[0] all_df.reset_index(inplace=True, drop=True) return all_df def get_line_code(): """This collects all line codes information Returns ------- DataFrame """ active_class_name = 'linecode' all_df = dss.utils.class_to_dataframe(active_class_name) if len(all_df) == 0: return
pd.DataFrame()
pandas.DataFrame
""" Test output formatting for Series/DataFrame, including to_string & reprs """ from datetime import datetime from io import StringIO import itertools from operator import methodcaller import os from pathlib import Path import re from shutil import get_terminal_size import sys import textwrap import dateutil import numpy as np import pytest import pytz from pandas.compat import ( IS64, is_platform_windows, ) import pandas.util._test_decorators as td import pandas as pd from pandas import ( DataFrame, Index, MultiIndex, NaT, Series, Timestamp, date_range, get_option, option_context, read_csv, reset_option, set_option, ) import pandas._testing as tm import pandas.io.formats.format as fmt import pandas.io.formats.printing as printing use_32bit_repr = is_platform_windows() or not IS64 @pytest.fixture(params=["string", "pathlike", "buffer"]) def filepath_or_buffer_id(request): """ A fixture yielding test ids for filepath_or_buffer testing. """ return request.param @pytest.fixture def filepath_or_buffer(filepath_or_buffer_id, tmp_path): """ A fixture yielding a string representing a filepath, a path-like object and a StringIO buffer. Also checks that buffer is not closed. """ if filepath_or_buffer_id == "buffer": buf = StringIO() yield buf assert not buf.closed else: assert isinstance(tmp_path, Path) if filepath_or_buffer_id == "pathlike": yield tmp_path / "foo" else: yield str(tmp_path / "foo") @pytest.fixture def assert_filepath_or_buffer_equals( filepath_or_buffer, filepath_or_buffer_id, encoding ): """ Assertion helper for checking filepath_or_buffer. """ def _assert_filepath_or_buffer_equals(expected): if filepath_or_buffer_id == "string": with open(filepath_or_buffer, encoding=encoding) as f: result = f.read() elif filepath_or_buffer_id == "pathlike": result = filepath_or_buffer.read_text(encoding=encoding) elif filepath_or_buffer_id == "buffer": result = filepath_or_buffer.getvalue() assert result == expected return _assert_filepath_or_buffer_equals def curpath(): pth, _ = os.path.split(os.path.abspath(__file__)) return pth def has_info_repr(df): r = repr(df) c1 = r.split("\n")[0].startswith("<class") c2 = r.split("\n")[0].startswith(r"&lt;class") # _repr_html_ return c1 or c2 def has_non_verbose_info_repr(df): has_info = has_info_repr(df) r = repr(df) # 1. <class> # 2. Index # 3. Columns # 4. dtype # 5. memory usage # 6. trailing newline nv = len(r.split("\n")) == 6 return has_info and nv def has_horizontally_truncated_repr(df): try: # Check header row fst_line = np.array(repr(df).splitlines()[0].split()) cand_col = np.where(fst_line == "...")[0][0] except IndexError: return False # Make sure each row has this ... in the same place r = repr(df) for ix, l in enumerate(r.splitlines()): if not r.split()[cand_col] == "...": return False return True def has_vertically_truncated_repr(df): r = repr(df) only_dot_row = False for row in r.splitlines(): if re.match(r"^[\.\ ]+$", row): only_dot_row = True return only_dot_row def has_truncated_repr(df): return has_horizontally_truncated_repr(df) or has_vertically_truncated_repr(df) def has_doubly_truncated_repr(df): return has_horizontally_truncated_repr(df) and has_vertically_truncated_repr(df) def has_expanded_repr(df): r = repr(df) for line in r.split("\n"): if line.endswith("\\"): return True return False @pytest.mark.filterwarnings("ignore::FutureWarning:.*format") class TestDataFrameFormatting: def test_eng_float_formatter(self, float_frame): df = float_frame df.loc[5] = 0 fmt.set_eng_float_format() repr(df) fmt.set_eng_float_format(use_eng_prefix=True) repr(df) fmt.set_eng_float_format(accuracy=0) repr(df) tm.reset_display_options() def test_show_null_counts(self): df = DataFrame(1, columns=range(10), index=range(10)) df.iloc[1, 1] = np.nan def check(show_counts, result): buf = StringIO() df.info(buf=buf, show_counts=show_counts) assert ("non-null" in buf.getvalue()) is result with option_context( "display.max_info_rows", 20, "display.max_info_columns", 20 ): check(None, True) check(True, True) check(False, False) with option_context("display.max_info_rows", 5, "display.max_info_columns", 5): check(None, False) check(True, False) check(False, False) # GH37999 with tm.assert_produces_warning( FutureWarning, match="null_counts is deprecated.+" ): buf = StringIO() df.info(buf=buf, null_counts=True) assert "non-null" in buf.getvalue() # GH37999 with pytest.raises(ValueError, match=r"null_counts used with show_counts.+"): df.info(null_counts=True, show_counts=True) def test_repr_truncation(self): max_len = 20 with option_context("display.max_colwidth", max_len): df = DataFrame( { "A": np.random.randn(10), "B": [ tm.rands(np.random.randint(max_len - 1, max_len + 1)) for i in range(10) ], } ) r = repr(df) r = r[r.find("\n") + 1 :] adj = fmt.get_adjustment() for line, value in zip(r.split("\n"), df["B"]): if adj.len(value) + 1 > max_len: assert "..." in line else: assert "..." not in line with option_context("display.max_colwidth", 999999): assert "..." not in repr(df) with option_context("display.max_colwidth", max_len + 2): assert "..." not in repr(df) def test_repr_deprecation_negative_int(self): # TODO(2.0): remove in future version after deprecation cycle # Non-regression test for: # https://github.com/pandas-dev/pandas/issues/31532 width = get_option("display.max_colwidth") with tm.assert_produces_warning(FutureWarning): set_option("display.max_colwidth", -1) set_option("display.max_colwidth", width) def test_repr_chop_threshold(self): df = DataFrame([[0.1, 0.5], [0.5, -0.1]]) reset_option("display.chop_threshold") # default None assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" with option_context("display.chop_threshold", 0.2): assert repr(df) == " 0 1\n0 0.0 0.5\n1 0.5 0.0" with option_context("display.chop_threshold", 0.6): assert repr(df) == " 0 1\n0 0.0 0.0\n1 0.0 0.0" with option_context("display.chop_threshold", None): assert repr(df) == " 0 1\n0 0.1 0.5\n1 0.5 -0.1" def test_repr_chop_threshold_column_below(self): # GH 6839: validation case df = DataFrame([[10, 20, 30, 40], [8e-10, -1e-11, 2e-9, -2e-11]]).T with option_context("display.chop_threshold", 0): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 -1.000000e-11\n" "2 30.0 2.000000e-09\n" "3 40.0 -2.000000e-11" ) with option_context("display.chop_threshold", 1e-8): assert repr(df) == ( " 0 1\n" "0 10.0 0.000000e+00\n" "1 20.0 0.000000e+00\n" "2 30.0 0.000000e+00\n" "3 40.0 0.000000e+00" ) with option_context("display.chop_threshold", 5e-11): assert repr(df) == ( " 0 1\n" "0 10.0 8.000000e-10\n" "1 20.0 0.000000e+00\n" "2 30.0 2.000000e-09\n" "3 40.0 0.000000e+00" ) def test_repr_obeys_max_seq_limit(self): with option_context("display.max_seq_items", 2000): assert len(printing.pprint_thing(list(range(1000)))) > 1000 with option_context("display.max_seq_items", 5): assert len(printing.pprint_thing(list(range(1000)))) < 100 with option_context("display.max_seq_items", 1): assert len(printing.pprint_thing(list(range(1000)))) < 9 def test_repr_set(self): assert printing.pprint_thing({1}) == "{1}" def test_repr_is_valid_construction_code(self): # for the case of Index, where the repr is traditional rather than # stylized idx = Index(["a", "b"]) res = eval("pd." + repr(idx)) tm.assert_series_equal(Series(res), Series(idx)) def test_repr_should_return_str(self): # https://docs.python.org/3/reference/datamodel.html#object.__repr__ # "...The return value must be a string object." # (str on py2.x, str (unicode) on py3) data = [8, 5, 3, 5] index1 = ["\u03c3", "\u03c4", "\u03c5", "\u03c6"] cols = ["\u03c8"] df = DataFrame(data, columns=cols, index=index1) assert type(df.__repr__()) == str # both py2 / 3 def test_repr_no_backslash(self): with option_context("mode.sim_interactive", True): df = DataFrame(np.random.randn(10, 4)) assert "\\" not in repr(df) def test_expand_frame_repr(self): df_small = DataFrame("hello", index=[0], columns=[0]) df_wide = DataFrame("hello", index=[0], columns=range(10)) df_tall = DataFrame("hello", index=range(30), columns=range(5)) with option_context("mode.sim_interactive", True): with option_context( "display.max_columns", 10, "display.width", 20, "display.max_rows", 20, "display.show_dimensions", True, ): with option_context("display.expand_frame_repr", True): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_truncated_repr(df_wide) assert has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert has_expanded_repr(df_tall) with option_context("display.expand_frame_repr", False): assert not has_truncated_repr(df_small) assert not has_expanded_repr(df_small) assert not has_horizontally_truncated_repr(df_wide) assert not has_expanded_repr(df_wide) assert has_vertically_truncated_repr(df_tall) assert not has_expanded_repr(df_tall) def test_repr_non_interactive(self): # in non interactive mode, there can be no dependency on the # result of terminal auto size detection df = DataFrame("hello", index=range(1000), columns=range(5)) with option_context( "mode.sim_interactive", False, "display.width", 0, "display.max_rows", 5000 ): assert not has_truncated_repr(df) assert not has_expanded_repr(df) def test_repr_truncates_terminal_size(self, monkeypatch): # see gh-21180 terminal_size = (118, 96) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) index = range(5) columns = MultiIndex.from_tuples( [ ("This is a long title with > 37 chars.", "cat"), ("This is a loooooonger title with > 43 chars.", "dog"), ] ) df = DataFrame(1, index=index, columns=columns) result = repr(df) h1, h2 = result.split("\n")[:2] assert "long" in h1 assert "loooooonger" in h1 assert "cat" in h2 assert "dog" in h2 # regular columns df2 = DataFrame({"A" * 41: [1, 2], "B" * 41: [1, 2]}) result = repr(df2) assert df2.columns[0] in result.split("\n")[0] def test_repr_truncates_terminal_size_full(self, monkeypatch): # GH 22984 ensure entire window is filled terminal_size = (80, 24) df = DataFrame(np.random.rand(1, 7)) monkeypatch.setattr( "pandas.io.formats.format.get_terminal_size", lambda: terminal_size ) assert "..." not in str(df) def test_repr_truncation_column_size(self): # dataframe with last column very wide -> check it is not used to # determine size of truncation (...) column df = DataFrame( { "a": [108480, 30830], "b": [12345, 12345], "c": [12345, 12345], "d": [12345, 12345], "e": ["a" * 50] * 2, } ) assert "..." in str(df) assert " ... " not in str(df) def test_repr_max_columns_max_rows(self): term_width, term_height = get_terminal_size() if term_width < 10 or term_height < 10: pytest.skip(f"terminal size too small, {term_width} x {term_height}") def mkframe(n): index = [f"{i:05d}" for i in range(n)] return DataFrame(0, index, index) df6 = mkframe(6) df10 = mkframe(10) with option_context("mode.sim_interactive", True): with option_context("display.width", term_width * 2): with option_context("display.max_rows", 5, "display.max_columns", 5): assert not has_expanded_repr(mkframe(4)) assert not has_expanded_repr(mkframe(5)) assert not has_expanded_repr(df6) assert has_doubly_truncated_repr(df6) with option_context("display.max_rows", 20, "display.max_columns", 10): # Out off max_columns boundary, but no extending # since not exceeding width assert not has_expanded_repr(df6) assert not has_truncated_repr(df6) with option_context("display.max_rows", 9, "display.max_columns", 10): # out vertical bounds can not result in expanded repr assert not has_expanded_repr(df10) assert has_vertically_truncated_repr(df10) # width=None in terminal, auto detection with option_context( "display.max_columns", 100, "display.max_rows", term_width * 20, "display.width", None, ): df = mkframe((term_width // 7) - 2) assert not has_expanded_repr(df) df = mkframe((term_width // 7) + 2) printing.pprint_thing(df._repr_fits_horizontal_()) assert has_expanded_repr(df) def test_repr_min_rows(self): df = DataFrame({"a": range(20)}) # default setting no truncation even if above min_rows assert ".." not in repr(df) assert ".." not in df._repr_html_() df = DataFrame({"a": range(61)}) # default of max_rows 60 triggers truncation if above assert ".." in repr(df) assert ".." in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 4): # truncated after first two rows assert ".." in repr(df) assert "2 " not in repr(df) assert "..." in df._repr_html_() assert "<td>2</td>" not in df._repr_html_() with option_context("display.max_rows", 12, "display.min_rows", None): # when set to None, follow value of max_rows assert "5 5" in repr(df) assert "<td>5</td>" in df._repr_html_() with option_context("display.max_rows", 10, "display.min_rows", 12): # when set value higher as max_rows, use the minimum assert "5 5" not in repr(df) assert "<td>5</td>" not in df._repr_html_() with option_context("display.max_rows", None, "display.min_rows", 12): # max_rows of None -> never truncate assert ".." not in repr(df) assert ".." not in df._repr_html_() def test_str_max_colwidth(self): # GH 7856 df = DataFrame( [ { "a": "foo", "b": "bar", "c": "uncomfortably long line with lots of stuff", "d": 1, }, {"a": "foo", "b": "bar", "c": "stuff", "d": 1}, ] ) df.set_index(["a", "b", "c"]) assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably long line with lots of stuff 1\n" "1 foo bar stuff 1" ) with option_context("max_colwidth", 20): assert str(df) == ( " a b c d\n" "0 foo bar uncomfortably lo... 1\n" "1 foo bar stuff 1" ) def test_auto_detect(self): term_width, term_height = get_terminal_size() fac = 1.05 # Arbitrary large factor to exceed term width cols = range(int(term_width * fac)) index = range(10) df = DataFrame(index=index, columns=cols) with option_context("mode.sim_interactive", True): with option_context("display.max_rows", None): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) with option_context("display.max_rows", 0): with option_context("display.max_columns", 0): # Truncate with auto detection. assert has_horizontally_truncated_repr(df) index = range(int(term_height * fac)) df = DataFrame(index=index, columns=cols) with option_context("display.max_rows", 0): with option_context("display.max_columns", None): # Wrap around with None assert has_expanded_repr(df) # Truncate vertically assert has_vertically_truncated_repr(df) with option_context("display.max_rows", None): with option_context("display.max_columns", 0): assert has_horizontally_truncated_repr(df) def test_to_string_repr_unicode(self): buf = StringIO() unicode_values = ["\u03c3"] * 10 unicode_values = np.array(unicode_values, dtype=object) df = DataFrame({"unicode": unicode_values}) df.to_string(col_space=10, buf=buf) # it works! repr(df) idx = Index(["abc", "\u03c3a", "aegdvg"]) ser = Series(np.random.randn(len(idx)), idx) rs = repr(ser).split("\n") line_len = len(rs[0]) for line in rs[1:]: try: line = line.decode(get_option("display.encoding")) except AttributeError: pass if not line.startswith("dtype:"): assert len(line) == line_len # it works even if sys.stdin in None _stdin = sys.stdin try: sys.stdin = None repr(df) finally: sys.stdin = _stdin def test_east_asian_unicode_false(self): # not aligned properly because of east asian width # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あああああ あ\n" "bb い いいい\nc う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\nあああ あああああ あ\n" "いいいいいい い いいい\nうう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n0 あああああ ... さ\n" ".. ... ... ...\n3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\nあああ あああああ ... さ\n" ".. ... ... ...\naaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected def test_east_asian_unicode_true(self): # Enable Unicode option ----------------------------------------- with option_context("display.unicode.east_asian_width", True): # mid col df = DataFrame( {"a": ["あ", "いいい", "う", "ええええええ"], "b": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na あ 1\n" "bb いいい 222\nc う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # last col df = DataFrame( {"a": [1, 222, 33333, 4], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\na 1 あ\n" "bb 222 いいい\nc 33333 う\n" "ddd 4 ええええええ" ) assert repr(df) == expected # all col df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["a", "bb", "c", "ddd"], ) expected = ( " a b\n" "a あああああ あ\n" "bb い いいい\n" "c う う\n" "ddd えええ ええええええ" ) assert repr(df) == expected # column name df = DataFrame( {"b": ["あ", "いいい", "う", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "ddd"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c う 33333\n" "ddd ええええええ 4" ) assert repr(df) == expected # index df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=["あああ", "いいいいいい", "うう", "え"], ) expected = ( " a b\n" "あああ あああああ あ\n" "いいいいいい い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # index name df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=Index(["あ", "い", "うう", "え"], name="おおおお"), ) expected = ( " a b\n" "おおおお \n" "あ あああああ あ\n" "い い いいい\n" "うう う う\n" "え えええ ええええええ" ) assert repr(df) == expected # all df = DataFrame( {"あああ": ["あああ", "い", "う", "えええええ"], "いいいいい": ["あ", "いいい", "う", "ええ"]}, index=Index(["あ", "いいい", "うう", "え"], name="お"), ) expected = ( " あああ いいいいい\n" "お \n" "あ あああ あ\n" "いいい い いいい\n" "うう う う\n" "え えええええ ええ" ) assert repr(df) == expected # MultiIndex idx = MultiIndex.from_tuples( [("あ", "いい"), ("う", "え"), ("おおお", "かかかか"), ("き", "くく")] ) df = DataFrame( {"a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"]}, index=idx, ) expected = ( " a b\n" "あ いい あああああ あ\n" "う え い いいい\n" "おおお かかかか う う\n" "き くく えええ ええええええ" ) assert repr(df) == expected # truncate with option_context("display.max_rows", 3, "display.max_columns", 3): df = DataFrame( { "a": ["あああああ", "い", "う", "えええ"], "b": ["あ", "いいい", "う", "ええええええ"], "c": ["お", "か", "ききき", "くくくくくく"], "ああああ": ["さ", "し", "す", "せ"], }, columns=["a", "b", "c", "ああああ"], ) expected = ( " a ... ああああ\n" "0 あああああ ... さ\n" ".. ... ... ...\n" "3 えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected df.index = ["あああ", "いいいい", "う", "aaa"] expected = ( " a ... ああああ\n" "あああ あああああ ... さ\n" "... ... ... ...\n" "aaa えええ ... せ\n" "\n[4 rows x 4 columns]" ) assert repr(df) == expected # ambiguous unicode df = DataFrame( {"b": ["あ", "いいい", "¡¡", "ええええええ"], "あああああ": [1, 222, 33333, 4]}, index=["a", "bb", "c", "¡¡¡"], ) expected = ( " b あああああ\n" "a あ 1\n" "bb いいい 222\n" "c ¡¡ 33333\n" "¡¡¡ ええええええ 4" ) assert repr(df) == expected def test_to_string_buffer_all_unicode(self): buf = StringIO() empty = DataFrame({"c/\u03c3": Series(dtype=object)}) nonempty = DataFrame({"c/\u03c3": Series([1, 2, 3])}) print(empty, file=buf) print(nonempty, file=buf) # this should work buf.getvalue() def test_to_string_with_col_space(self): df = DataFrame(np.random.random(size=(1, 3))) c10 = len(df.to_string(col_space=10).split("\n")[1]) c20 = len(df.to_string(col_space=20).split("\n")[1]) c30 = len(df.to_string(col_space=30).split("\n")[1]) assert c10 < c20 < c30 # GH 8230 # col_space wasn't being applied with header=False with_header = df.to_string(col_space=20) with_header_row1 = with_header.splitlines()[1] no_header = df.to_string(col_space=20, header=False) assert len(with_header_row1) == len(no_header) def test_to_string_with_column_specific_col_space_raises(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) msg = ( "Col_space length\\(\\d+\\) should match " "DataFrame number of columns\\(\\d+\\)" ) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40]) with pytest.raises(ValueError, match=msg): df.to_string(col_space=[30, 40, 50, 60]) msg = "unknown column" with pytest.raises(ValueError, match=msg): df.to_string(col_space={"a": "foo", "b": 23, "d": 34}) def test_to_string_with_column_specific_col_space(self): df = DataFrame(np.random.random(size=(3, 3)), columns=["a", "b", "c"]) result = df.to_string(col_space={"a": 10, "b": 11, "c": 12}) # 3 separating space + each col_space for (id, a, b, c) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) result = df.to_string(col_space=[10, 11, 12]) assert len(result.split("\n")[1]) == (3 + 1 + 10 + 11 + 12) def test_to_string_truncate_indices(self): for index in [ tm.makeStringIndex, tm.makeUnicodeIndex, tm.makeIntIndex, tm.makeDateIndex, tm.makePeriodIndex, ]: for column in [tm.makeStringIndex]: for h in [10, 20]: for w in [10, 20]: with option_context("display.expand_frame_repr", False): df = DataFrame(index=index(h), columns=column(w)) with option_context("display.max_rows", 15): if h == 20: assert has_vertically_truncated_repr(df) else: assert not has_vertically_truncated_repr(df) with option_context("display.max_columns", 15): if w == 20: assert has_horizontally_truncated_repr(df) else: assert not (has_horizontally_truncated_repr(df)) with option_context( "display.max_rows", 15, "display.max_columns", 15 ): if h == 20 and w == 20: assert has_doubly_truncated_repr(df) else: assert not has_doubly_truncated_repr(df) def test_to_string_truncate_multilevel(self): arrays = [ ["bar", "bar", "baz", "baz", "foo", "foo", "qux", "qux"], ["one", "two", "one", "two", "one", "two", "one", "two"], ] df = DataFrame(index=arrays, columns=arrays) with option_context("display.max_rows", 7, "display.max_columns", 7): assert has_doubly_truncated_repr(df) def test_truncate_with_different_dtypes(self): # 11594, 12045 # when truncated the dtypes of the splits can differ # 11594 import datetime s = Series( [datetime.datetime(2012, 1, 1)] * 10 + [datetime.datetime(1012, 1, 2)] + [datetime.datetime(2012, 1, 3)] * 10 ) with option_context("display.max_rows", 8): result = str(s) assert "object" in result # 12045 df = DataFrame({"text": ["some words"] + [None] * 9}) with option_context("display.max_rows", 8, "display.max_columns", 3): result = str(df) assert "None" in result assert "NaN" not in result def test_truncate_with_different_dtypes_multiindex(self): # GH#13000 df = DataFrame({"Vals": range(100)}) frame = pd.concat([df], keys=["Sweep"], names=["Sweep", "Index"]) result = repr(frame) result2 = repr(frame.iloc[:5]) assert result.startswith(result2) def test_datetimelike_frame(self): # GH 12211 df = DataFrame({"date": [Timestamp("20130101").tz_localize("UTC")] + [NaT] * 5}) with option_context("display.max_rows", 5): result = str(df) assert "2013-01-01 00:00:00+00:00" in result assert "NaT" in result assert "..." in result assert "[6 rows x 1 columns]" in result dts = [Timestamp("2011-01-01", tz="US/Eastern")] * 5 + [NaT] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00-05:00 1\n" "1 2011-01-01 00:00:00-05:00 2\n" ".. ... ..\n" "8 NaT 9\n" "9 NaT 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [NaT] * 5 + [Timestamp("2011-01-01", tz="US/Eastern")] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 NaT 1\n" "1 NaT 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected dts = [Timestamp("2011-01-01", tz="Asia/Tokyo")] * 5 + [ Timestamp("2011-01-01", tz="US/Eastern") ] * 5 df = DataFrame({"dt": dts, "x": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]}) with option_context("display.max_rows", 5): expected = ( " dt x\n" "0 2011-01-01 00:00:00+09:00 1\n" "1 2011-01-01 00:00:00+09:00 2\n" ".. ... ..\n" "8 2011-01-01 00:00:00-05:00 9\n" "9 2011-01-01 00:00:00-05:00 10\n\n" "[10 rows x 2 columns]" ) assert repr(df) == expected @pytest.mark.parametrize( "start_date", [ "2017-01-01 23:59:59.999999999", "2017-01-01 23:59:59.99999999", "2017-01-01 23:59:59.9999999", "2017-01-01 23:59:59.999999", "2017-01-01 23:59:59.99999", "2017-01-01 23:59:59.9999", ], ) def test_datetimeindex_highprecision(self, start_date): # GH19030 # Check that high-precision time values for the end of day are # included in repr for DatetimeIndex df = DataFrame({"A": date_range(start=start_date, freq="D", periods=5)}) result = str(df) assert start_date in result dti = date_range(start=start_date, freq="D", periods=5) df = DataFrame({"A": range(5)}, index=dti) result = str(df.index) assert start_date in result def test_nonunicode_nonascii_alignment(self): df = DataFrame([["aa\xc3\xa4\xc3\xa4", 1], ["bbbb", 2]]) rep_str = df.to_string() lines = rep_str.split("\n") assert len(lines[1]) == len(lines[2]) def test_unicode_problem_decoding_as_ascii(self): dm = DataFrame({"c/\u03c3": Series({"test": np.nan})}) str(dm.to_string()) def test_string_repr_encoding(self, datapath): filepath = datapath("io", "parser", "data", "unicode_series.csv") df = read_csv(filepath, header=None, encoding="latin1") repr(df) repr(df[1]) def test_repr_corner(self): # representing infs poses no problems df = DataFrame({"foo": [-np.inf, np.inf]}) repr(df) def test_frame_info_encoding(self): index = ["'Til There Was You (1997)", "ldum klaka (Cold Fever) (1994)"] fmt.set_option("display.max_rows", 1) df = DataFrame(columns=["a", "b", "c"], index=index) repr(df) repr(df.T) fmt.set_option("display.max_rows", 200) def test_wide_repr(self): with option_context( "mode.sim_interactive", True, "display.show_dimensions", True, "display.max_columns", 20, ): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) assert f"10 rows x {max_cols - 1} columns" in rep_str set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 120): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_columns(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): df = DataFrame( np.random.randn(5, 3), columns=["a" * 90, "b" * 90, "c" * 90] ) rep_str = repr(df) assert len(rep_str.splitlines()) == 20 def test_wide_repr_named(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) df.index.name = "DataFrame Index" set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "DataFrame Index" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) max_cols = get_option("display.max_columns") df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1)), index=midx) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) for line in wide_repr.splitlines()[1::13]: assert "Level 0 Level 1" in line reset_option("display.expand_frame_repr") def test_wide_repr_multiindex_cols(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = get_option("display.max_columns") midx = MultiIndex.from_arrays(tm.rands_array(5, size=(2, 10))) mcols = MultiIndex.from_arrays(tm.rands_array(3, size=(2, max_cols - 1))) df = DataFrame( tm.rands_array(25, (10, max_cols - 1)), index=midx, columns=mcols ) df.index.names = ["Level 0", "Level 1"] set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150, "display.max_columns", 20): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_unicode(self): with option_context("mode.sim_interactive", True, "display.max_columns", 20): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) set_option("display.expand_frame_repr", False) rep_str = repr(df) set_option("display.expand_frame_repr", True) wide_repr = repr(df) assert rep_str != wide_repr with option_context("display.width", 150): wider_repr = repr(df) assert len(wider_repr) < len(wide_repr) reset_option("display.expand_frame_repr") def test_wide_repr_wide_long_columns(self): with option_context("mode.sim_interactive", True): df = DataFrame({"a": ["a" * 30, "b" * 30], "b": ["c" * 70, "d" * 80]}) result = repr(df) assert "ccccc" in result assert "ddddd" in result def test_long_series(self): n = 1000 s = Series( np.random.randint(-50, 50, n), index=[f"s{x:04d}" for x in range(n)], dtype="int64", ) import re str_rep = str(s) nmatches = len(re.findall("dtype", str_rep)) assert nmatches == 1 def test_index_with_nan(self): # GH 2850 df = DataFrame( { "id1": {0: "1a3", 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: "78d", 1: "79d"}, "value": {0: 123, 1: 64}, } ) # multi-index y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # index y = df.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nd67 9h4 79d 64" ) assert result == expected # with append (this failed in 0.12) y = df.set_index(["id1", "id2"]).set_index("id3", append=True) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "1a3 NaN 78d 123\n9h4 d67 79d 64" ) assert result == expected # all-nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index("id2") result = y.to_string() expected = ( " id1 id3 value\nid2 \n" "NaN 1a3 78d 123\nNaN 9h4 79d 64" ) assert result == expected # partial nan in mi df2 = df.copy() df2.loc[:, "id2"] = np.nan y = df2.set_index(["id2", "id3"]) result = y.to_string() expected = ( " id1 value\nid2 id3 \n" "NaN 78d 1a3 123\n 79d 9h4 64" ) assert result == expected df = DataFrame( { "id1": {0: np.nan, 1: "9h4"}, "id2": {0: np.nan, 1: "d67"}, "id3": {0: np.nan, 1: "79d"}, "value": {0: 123, 1: 64}, } ) y = df.set_index(["id1", "id2", "id3"]) result = y.to_string() expected = ( " value\nid1 id2 id3 \n" "NaN NaN NaN 123\n9h4 d67 79d 64" ) assert result == expected def test_to_string(self): # big mixed biggie = DataFrame( {"A": np.random.randn(200), "B": tm.makeStringIndex(200)}, index=np.arange(200), ) biggie.loc[:20, "A"] = np.nan biggie.loc[:20, "B"] = np.nan s = biggie.to_string() buf = StringIO() retval = biggie.to_string(buf=buf) assert retval is None assert buf.getvalue() == s assert isinstance(s, str) # print in right order result = biggie.to_string( columns=["B", "A"], col_space=17, float_format="%.5f".__mod__ ) lines = result.split("\n") header = lines[0].strip().split() joined = "\n".join([re.sub(r"\s+", " ", x).strip() for x in lines[1:]]) recons = read_csv(StringIO(joined), names=header, header=None, sep=" ") tm.assert_series_equal(recons["B"], biggie["B"]) assert recons["A"].count() == biggie["A"].count() assert (np.abs(recons["A"].dropna() - biggie["A"].dropna()) < 0.1).all() # expected = ['B', 'A'] # assert header == expected result = biggie.to_string(columns=["A"], col_space=17) header = result.split("\n")[0].strip().split() expected = ["A"] assert header == expected biggie.to_string(columns=["B", "A"], formatters={"A": lambda x: f"{x:.1f}"}) biggie.to_string(columns=["B", "A"], float_format=str) biggie.to_string(columns=["B", "A"], col_space=12, float_format=str) frame = DataFrame(index=np.arange(200)) frame.to_string() def test_to_string_no_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=False) expected = "0 1 4\n1 2 5\n2 3 6" assert df_s == expected def test_to_string_specified_header(self): df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(header=["X", "Y"]) expected = " X Y\n0 1 4\n1 2 5\n2 3 6" assert df_s == expected msg = "Writing 2 cols but got 1 aliases" with pytest.raises(ValueError, match=msg): df.to_string(header=["X"]) def test_to_string_no_index(self): # GH 16839, GH 13032 df = DataFrame({"x": [11, 22], "y": [33, -44], "z": ["AAA", " "]}) df_s = df.to_string(index=False) # Leading space is expected for positive numbers. expected = " x y z\n11 33 AAA\n22 -44 " assert df_s == expected df_s = df[["y", "x", "z"]].to_string(index=False) expected = " y x z\n 33 11 AAA\n-44 22 " assert df_s == expected def test_to_string_line_width_no_index(self): # GH 13998, GH 22505 df = DataFrame({"x": [1, 2, 3], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 1 \n 2 \n 3 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, 33], "y": [4, 5, 6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n11 \n22 \n33 \n\n y \n 4 \n 5 \n 6 " assert df_s == expected df = DataFrame({"x": [11, 22, -33], "y": [4, 5, -6]}) df_s = df.to_string(line_width=1, index=False) expected = " x \\\n 11 \n 22 \n-33 \n\n y \n 4 \n 5 \n-6 " assert df_s == expected def test_to_string_float_formatting(self): tm.reset_display_options() fmt.set_option( "display.precision", 5, "display.column_space", 12, "display.notebook_repr_html", False, ) df = DataFrame( {"x": [0, 0.25, 3456.000, 12e45, 1.64e6, 1.7e8, 1.253456, np.pi, -1e6]} ) df_s = df.to_string() if _three_digit_exp(): expected = ( " x\n0 0.00000e+000\n1 2.50000e-001\n" "2 3.45600e+003\n3 1.20000e+046\n4 1.64000e+006\n" "5 1.70000e+008\n6 1.25346e+000\n7 3.14159e+000\n" "8 -1.00000e+006" ) else: expected = ( " x\n0 0.00000e+00\n1 2.50000e-01\n" "2 3.45600e+03\n3 1.20000e+46\n4 1.64000e+06\n" "5 1.70000e+08\n6 1.25346e+00\n7 3.14159e+00\n" "8 -1.00000e+06" ) assert df_s == expected df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string() expected = " x\n0 3234.000\n1 0.253" assert df_s == expected tm.reset_display_options() assert get_option("display.precision") == 6 df = DataFrame({"x": [1e9, 0.2512]}) df_s = df.to_string() if _three_digit_exp(): expected = " x\n0 1.000000e+009\n1 2.512000e-001" else: expected = " x\n0 1.000000e+09\n1 2.512000e-01" assert df_s == expected def test_to_string_float_format_no_fixed_width(self): # GH 21625 df = DataFrame({"x": [0.19999]}) expected = " x\n0 0.200" assert df.to_string(float_format="%.3f") == expected # GH 22270 df = DataFrame({"x": [100.0]}) expected = " x\n0 100" assert df.to_string(float_format="%.0f") == expected def test_to_string_small_float_values(self): df = DataFrame({"a": [1.5, 1e-17, -5.5e-7]}) result = df.to_string() # sadness per above if _three_digit_exp(): expected = ( " a\n" "0 1.500000e+000\n" "1 1.000000e-017\n" "2 -5.500000e-007" ) else: expected = ( " a\n" "0 1.500000e+00\n" "1 1.000000e-17\n" "2 -5.500000e-07" ) assert result == expected # but not all exactly zero df = df * 0 result = df.to_string() expected = " 0\n0 0\n1 0\n2 -0" def test_to_string_float_index(self): index = Index([1.5, 2, 3, 4, 5]) df = DataFrame(np.arange(5), index=index) result = df.to_string() expected = " 0\n1.5 0\n2.0 1\n3.0 2\n4.0 3\n5.0 4" assert result == expected def test_to_string_complex_float_formatting(self): # GH #25514, 25745 with option_context("display.precision", 5): df = DataFrame( { "x": [ (0.4467846931321966 + 0.0715185102060818j), (0.2739442392974528 + 0.23515228785438969j), (0.26974928742135185 + 0.3250604054898979j), (-1j), ] } ) result = df.to_string() expected = ( " x\n0 0.44678+0.07152j\n" "1 0.27394+0.23515j\n" "2 0.26975+0.32506j\n" "3 -0.00000-1.00000j" ) assert result == expected def test_to_string_ascii_error(self): data = [ ( "0 ", " .gitignore ", " 5 ", " \xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2\xe2\x80\xa2", ) ] df = DataFrame(data) # it works! repr(df) def test_to_string_int_formatting(self): df = DataFrame({"x": [-15, 20, 25, -35]}) assert issubclass(df["x"].dtype.type, np.integer) output = df.to_string() expected = " x\n0 -15\n1 20\n2 25\n3 -35" assert output == expected def test_to_string_index_formatter(self): df = DataFrame([range(5), range(5, 10), range(10, 15)]) rs = df.to_string(formatters={"__index__": lambda x: "abc"[x]}) xp = """\ 0 1 2 3 4 a 0 1 2 3 4 b 5 6 7 8 9 c 10 11 12 13 14\ """ assert rs == xp def test_to_string_left_justify_cols(self): tm.reset_display_options() df = DataFrame({"x": [3234, 0.253]}) df_s = df.to_string(justify="left") expected = " x \n0 3234.000\n1 0.253" assert df_s == expected def test_to_string_format_na(self): tm.reset_display_options() df = DataFrame( { "A": [np.nan, -1, -2.1234, 3, 4], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0000 foo\n" "2 -2.1234 foooo\n" "3 3.0000 fooooo\n" "4 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [np.nan, -1.0, -2.0, 3.0, 4.0], "B": [np.nan, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 NaN NaN\n" "1 -1.0 foo\n" "2 -2.0 foooo\n" "3 3.0 fooooo\n" "4 4.0 bar" ) assert result == expected def test_to_string_format_inf(self): # Issue #24861 tm.reset_display_options() df = DataFrame( { "A": [-np.inf, np.inf, -1, -2.1234, 3, 4], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0000 foo\n" "3 -2.1234 foooo\n" "4 3.0000 fooooo\n" "5 4.0000 bar" ) assert result == expected df = DataFrame( { "A": [-np.inf, np.inf, -1.0, -2.0, 3.0, 4.0], "B": [-np.inf, np.inf, "foo", "foooo", "fooooo", "bar"], } ) result = df.to_string() expected = ( " A B\n" "0 -inf -inf\n" "1 inf inf\n" "2 -1.0 foo\n" "3 -2.0 foooo\n" "4 3.0 fooooo\n" "5 4.0 bar" ) assert result == expected def test_to_string_decimal(self): # Issue #23614 df = DataFrame({"A": [6.0, 3.1, 2.2]}) expected = " A\n0 6,0\n1 3,1\n2 2,2" assert df.to_string(decimal=",") == expected def test_to_string_line_width(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) s = df.to_string(line_width=80) assert max(len(line) for line in s.split("\n")) == 80 def test_show_dimensions(self): df = DataFrame(123, index=range(10, 15), columns=range(30)) with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", True, ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", False, ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() with option_context( "display.max_rows", 2, "display.max_columns", 2, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" in str(df) assert "5 rows" in df._repr_html_() with option_context( "display.max_rows", 10, "display.max_columns", 40, "display.width", 500, "display.expand_frame_repr", "info", "display.show_dimensions", "truncate", ): assert "5 rows" not in str(df) assert "5 rows" not in df._repr_html_() def test_repr_html(self, float_frame): df = float_frame df._repr_html_() fmt.set_option("display.max_rows", 1, "display.max_columns", 1) df._repr_html_() fmt.set_option("display.notebook_repr_html", False) df._repr_html_() tm.reset_display_options() df = DataFrame([[1, 2], [3, 4]]) fmt.set_option("display.show_dimensions", True) assert "2 rows" in df._repr_html_() fmt.set_option("display.show_dimensions", False) assert "2 rows" not in df._repr_html_() tm.reset_display_options() def test_repr_html_mathjax(self): df = DataFrame([[1, 2], [3, 4]]) assert "tex2jax_ignore" not in df._repr_html_() with option_context("display.html.use_mathjax", False): assert "tex2jax_ignore" in df._repr_html_() def test_repr_html_wide(self): max_cols = 20 df = DataFrame(tm.rands_array(25, size=(10, max_cols - 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() wide_df = DataFrame(tm.rands_array(25, size=(10, max_cols + 1))) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in wide_df._repr_html_() def test_repr_html_wide_multiindex_cols(self): max_cols = 20 mcols = MultiIndex.from_product( [np.arange(max_cols // 2), ["foo", "bar"]], names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) reg_repr = df._repr_html_() assert "..." not in reg_repr mcols = MultiIndex.from_product( (np.arange(1 + (max_cols // 2)), ["foo", "bar"]), names=["first", "second"] ) df = DataFrame(tm.rands_array(25, size=(10, len(mcols))), columns=mcols) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_repr_html_long(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) reg_repr = df._repr_html_() assert ".." not in reg_repr assert str(41 + max_rows // 2) in reg_repr h = max_rows + 1 df = DataFrame({"A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h)}) long_repr = df._repr_html_() assert ".." in long_repr assert str(41 + max_rows // 2) not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_float(self): with option_context("display.max_rows", 60): max_rows = get_option("display.max_rows") h = max_rows - 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") reg_repr = df._repr_html_() assert ".." not in reg_repr assert f"<td>{40 + h}</td>" in reg_repr h = max_rows + 1 df = DataFrame( { "idx": np.linspace(-10, 10, h), "A": np.arange(1, 1 + h), "B": np.arange(41, 41 + h), } ).set_index("idx") long_repr = df._repr_html_() assert ".." in long_repr assert "<td>31</td>" not in long_repr assert f"{h} rows " in long_repr assert "2 columns" in long_repr def test_repr_html_long_multiindex(self): max_rows = 60 max_L1 = max_rows // 2 tuples = list(itertools.product(np.arange(max_L1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame(np.random.randn(max_L1 * 2, 2), index=idx, columns=["A", "B"]) with option_context("display.max_rows", 60, "display.max_columns", 20): reg_repr = df._repr_html_() assert "..." not in reg_repr tuples = list(itertools.product(np.arange(max_L1 + 1), ["foo", "bar"])) idx = MultiIndex.from_tuples(tuples, names=["first", "second"]) df = DataFrame( np.random.randn((max_L1 + 1) * 2, 2), index=idx, columns=["A", "B"] ) long_repr = df._repr_html_() assert "..." in long_repr def test_repr_html_long_and_wide(self): max_cols = 20 max_rows = 60 h, w = max_rows - 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." not in df._repr_html_() h, w = max_rows + 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) with option_context("display.max_rows", 60, "display.max_columns", 20): assert "..." in df._repr_html_() def test_info_repr(self): # GH#21746 For tests inside a terminal (i.e. not CI) we need to detect # the terminal size to ensure that we try to print something "too big" term_width, term_height = get_terminal_size() max_rows = 60 max_cols = 20 + (max(term_width, 80) - 80) // 4 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_vertically_truncated_repr(df) with option_context("display.large_repr", "info"): assert has_info_repr(df) # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert has_horizontally_truncated_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert has_info_repr(df) def test_info_repr_max_cols(self): # GH #6939 df = DataFrame(np.random.randn(10, 5)) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 4, ): assert has_non_verbose_info_repr(df) with option_context( "display.large_repr", "info", "display.max_columns", 1, "display.max_info_columns", 5, ): assert not has_non_verbose_info_repr(df) # test verbose overrides # fmt.set_option('display.max_info_columns', 4) # exceeded def test_info_repr_html(self): max_rows = 60 max_cols = 20 # Long h, w = max_rows + 1, max_cols - 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert r"&lt;class" not in df._repr_html_() with option_context("display.large_repr", "info"): assert r"&lt;class" in df._repr_html_() # Wide h, w = max_rows - 1, max_cols + 1 df = DataFrame({k: np.arange(1, 1 + h) for k in np.arange(w)}) assert "<class" not in df._repr_html_() with option_context( "display.large_repr", "info", "display.max_columns", max_cols ): assert "&lt;class" in df._repr_html_() def test_fake_qtconsole_repr_html(self, float_frame): df = float_frame def get_ipython(): return {"config": {"KernelApp": {"parent_appname": "ipython-qtconsole"}}} repstr = df._repr_html_() assert repstr is not None fmt.set_option("display.max_rows", 5, "display.max_columns", 2) repstr = df._repr_html_() assert "class" in repstr # info fallback tm.reset_display_options() def test_pprint_pathological_object(self): """ If the test fails, it at least won't hang. """ class A: def __getitem__(self, key): return 3 # obviously simplified df = DataFrame([A()]) repr(df) # just don't die def test_float_trim_zeros(self): vals = [ 2.08430917305e10, 3.52205017305e10, 2.30674817305e10, 2.03954217305e10, 5.59897817305e10, ] skip = True for line in repr(DataFrame({"A": vals})).split("\n")[:-2]: if line.startswith("dtype:"): continue if _three_digit_exp(): assert ("+010" in line) or skip else: assert ("+10" in line) or skip skip = False @pytest.mark.parametrize( "data, expected", [ (["3.50"], "0 3.50\ndtype: object"), ([1.20, "1.00"], "0 1.2\n1 1.00\ndtype: object"), ([np.nan], "0 NaN\ndtype: float64"), ([None], "0 None\ndtype: object"), (["3.50", np.nan], "0 3.50\n1 NaN\ndtype: object"), ([3.50, np.nan], "0 3.5\n1 NaN\ndtype: float64"), ([3.50, np.nan, "3.50"], "0 3.5\n1 NaN\n2 3.50\ndtype: object"), ([3.50, None, "3.50"], "0 3.5\n1 None\n2 3.50\ndtype: object"), ], ) def test_repr_str_float_truncation(self, data, expected): # GH#38708 series = Series(data) result = repr(series) assert result == expected @pytest.mark.parametrize( "float_format,expected", [ ("{:,.0f}".format, "0 1,000\n1 test\ndtype: object"), ("{:.4f}".format, "0 1000.0000\n1 test\ndtype: object"), ], ) def test_repr_float_format_in_object_col(self, float_format, expected): # GH#40024 df = Series([1000.0, "test"]) with option_context("display.float_format", float_format): result = repr(df) assert result == expected def test_dict_entries(self): df = DataFrame({"A": [{"a": 1, "b": 2}]}) val = df.to_string() assert "'a': 1" in val assert "'b': 2" in val def test_categorical_columns(self): # GH35439 data = [[4, 2], [3, 2], [4, 3]] cols = ["aaaaaaaaa", "b"] df = DataFrame(data, columns=cols) df_cat_cols = DataFrame(data, columns=pd.CategoricalIndex(cols)) assert df.to_string() == df_cat_cols.to_string() def test_period(self): # GH 12615 df = DataFrame( { "A": pd.period_range("2013-01", periods=4, freq="M"), "B": [
pd.Period("2011-01", freq="M")
pandas.Period
import pycurl from io import BytesIO import json import datetime import pandas as pd myaddress = input('Enter Bitcoin Address: ') btcval = 100000000.0 # in santoshis block_time_in_min = 10 block_time_in_sec = block_time_in_min*60 def getBalance(address: str): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/unspent?active=%s" % (address)) getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() balance = 0.0 # print("getreq = %s" % (getreq.getvalue())) allunspenttx = json.loads(strbuf.getvalue())['unspent_outputs'] for eachtx in allunspenttx: balance += eachtx['value'] return balance def getTxnHistoryOfAddress(address: str): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/address/%s?format=json" % (address)) getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() new_txn_list = [] alltxns = json.loads(strbuf.getvalue())['txs'] for eachtxn in alltxns: new_txn = {} input_list = eachtxn['inputs'] input_value = 0 address_input_value = 0 for each_input in input_list: input_value += each_input['prev_out']['value'] if each_input['prev_out']['addr'] == address: address_input_value += each_input['prev_out']['value'] output_list = eachtxn['out'] output_value = 0 address_output_value = 0 for each_output in output_list: output_value += each_output['value'] if each_output['addr'] == address: address_output_value += each_output['value'] if address_input_value > address_output_value: new_txn['credit_in_btc'] = (address_input_value - address_output_value) / btcval else: new_txn['debit_in_btc'] = (address_output_value - address_input_value) / btcval network_fees = input_value - output_value new_txn['network_fees'] = network_fees / btcval new_txn['network_fees_in_inr'] = new_txn['network_fees'] * getCurrentSellPriceInInr() dt = datetime.datetime.fromtimestamp(eachtxn['time']) new_txn['date_time'] = dt.strftime("%d-%B-%Y %H:%M:%S") new_txn_list.append(new_txn) return new_txn_list def getCurrentBlockHeight(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/blocks?format=json") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() current_block_height = json.loads(strbuf.getvalue())['blocks'][0]['height'] return current_block_height def getTxCountInBlock(block_height: int): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/block-height/%d?format=json" % (block_height)) getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() txlist = json.loads(strbuf.getvalue())['blocks'][0]['tx'] return len(txlist) #def getListOfTxnsOnAddress(address: str): # #def getInputBitcoinInTx(txn: str): # #def getOutputBitcoinInTx(txn: str): # #def getChangeInTx(txn: str): # #def getNetworkFeesInTxn(txn: str): def getTxRate(tx_count_in_block: int): return tx_count_in_block/block_time_in_sec # return block_time_in_sec/tx_count_in_block def getAverageTxRateInLast24Hrs(): current_block_height = getCurrentBlockHeight() min_in_a_day = 60*24 blocks_in_a_day = int(min_in_a_day/block_time_in_min) sum_tx_rate = 0 print("Transaction rate::") for block_height in range(current_block_height - blocks_in_a_day, current_block_height): tx_count = getTxCountInBlock(block_height) tx_rate = getTxRate(tx_count) sum_tx_rate += tx_rate print("block height %d ===> Tx Rate %.6f" % (block_height, tx_rate)) average_tx_rate = sum_tx_rate / blocks_in_a_day return average_tx_rate def getAverageTxRateInLastWeek(): current_block_height = getCurrentBlockHeight() min_in_a_week = 60*24*7 blocks_in_a_week = int(min_in_a_week/block_time_in_min) sum_tx_rate = 0 print("Transaction rate::") for block_height in range(current_block_height - blocks_in_a_week, current_block_height): tx_count = getTxCountInBlock(block_height) tx_rate = getTxRate(tx_count) sum_tx_rate += tx_rate print("block height %d ===> Tx Rate %.6f" % (block_height, tx_rate)) average_tx_rate = sum_tx_rate / blocks_in_a_week return average_tx_rate def getAverageTxRateInLastMonth(): current_block_height = getCurrentBlockHeight() min_in_a_month = 60*24*7 blocks_in_a_month = int(min_in_a_month/block_time_in_min) sum_tx_rate = 0 print("Transaction rate::") for block_height in range(current_block_height - blocks_in_a_month, current_block_height): tx_count = getTxCountInBlock(block_height) tx_rate = getTxRate(tx_count) sum_tx_rate += tx_rate print("block height %d ===> Tx Rate %.6f" % (block_height, tx_rate)) average_tx_rate = sum_tx_rate / blocks_in_a_month return average_tx_rate def getCurrentNetworkHashRate(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/q/hashrate") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: text/plain']) getreq.perform() getreq.close() current_network_hash_rate = int(strbuf.getvalue()) * 10**9 return current_network_hash_rate def getCurrentBlockReward(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/q/bcperblock") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: text/plain']) getreq.perform() getreq.close() block_reward_abs = int(strbuf.getvalue()) block_reward = block_reward_abs / btcval return block_reward def getCurrentBuyPriceInInr(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://www.zebapi.com/api/v1/market/ticker-new/btc/inr") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() current_buy_rate_in_inr = int(json.loads(strbuf.getvalue())['buy']) return current_buy_rate_in_inr def getCurrentSellPriceInInr(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://www.zebapi.com/api/v1/market/ticker-new/btc/inr") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() current_buy_rate_in_inr = int(json.loads(strbuf.getvalue())['sell']) return current_buy_rate_in_inr def getCurrentValueOfBitcoinInAddressInInr(address: str): btc = getBalance(address) / btcval price_in_inr = getCurrentSellPriceInInr() value = btc * price_in_inr return value def getUnconfirmedTransactionCount(): strbuf = BytesIO() getreq = pycurl.Curl() getreq.setopt(getreq.URL, "https://blockchain.info/q/unconfirmedcount") getreq.setopt(getreq.WRITEDATA, strbuf) getreq.setopt(getreq.HTTPHEADER, ['Accept: application/json']) getreq.perform() getreq.close() unconfirmed_transaction_count = int(strbuf.getvalue()) return unconfirmed_transaction_count def convertToRupeeFormat(num: float): numstr = "%.2f" % (num) # print("numstr = %s" % (numstr)) # print("numstr len = %s" % (len(numstr))) commaloc = 6 while commaloc < len(numstr): numstr = numstr[:-commaloc] + ',' + numstr[-commaloc:] commaloc += 3 rupees = "\u20B9%s" % (numstr) return rupees electricity_rates = {"rate_slabs": [{"min": 1, "max": 30, "unit_price": 3.25}, {"min": 31, "max": 100, "unit_price": 4.7}, {"min": 101, "max": 200, "unit_price": 6.25}, {"min": 201, "unit_price": 7.3}]} def getPriceFromUnit(unit: float): rate_slabs = electricity_rates['rate_slabs'] price = 0 for slab in rate_slabs: if slab['min'] > unit: countinue elif ('max' in slab and slab['max']) > unit or 'max' not in slab: # if 'max' in slab: # print("min = %.2f, max = %.2f, unit = %.2f" % (slab['min'], slab['max'], unit)) # else: # print("min = %.2f, unit = %.2f" % (slab['min'], unit)) price += (unit - slab['min']) * slab['unit_price'] else: price += (slab['max'] - slab['min']) * slab['unit_price'] return price def getUnitFromPower(power: float): unit = power * 24 * 30 / 1000 return unit def getBlockMiningRatePer10Min(hashrate: int): network_hashrate = getCurrentNetworkHashRate() block_mining_rate = hashrate/network_hashrate return block_mining_rate def getBitcoinMiningRate(hashrate: int): block_mining_rate = getBlockMiningRatePer10Min(hashrate) mining_reward = getCurrentBlockReward() bitcoin_mining_rate = block_mining_rate * mining_reward return bitcoin_mining_rate def getMiningPowerExpense(power: float): unit = getUnitFromPower(power) expense = getPriceFromUnit(unit) return expense def getBitcoinMinedPerMonth(hashrate: int): bitcoin_mined_per_month = getBitcoinMiningRate(hashrate) * 6 * 24 * 30 return bitcoin_mined_per_month def miningReturn(power: float, hashrate: int): expense = getMiningPowerExpense(power) bitcoin_mined_per_month = getBitcoinMinedPerMonth(hashrate) revenue = bitcoin_mined_per_month * getCurrentSellPriceInInr() profit = revenue - expense return profit def costOfMiningBitcoin(power: float, hashrate: int): unit = getUnitFromPower(power) price_per_month = getPriceFromUnit(unit) bitcoin_mined_per_month = getBitcoinMiningRate(hashrate) * 6 * 24 * 30 cost_of_mining_bitcoin = price_per_month/bitcoin_mined_per_month return cost_of_mining_bitcoin if __name__ == "__main__": balance = getBalance(myaddress) / btcval print("Current Bitcoin balance = %.8f at Address = %s" % (balance, myaddress)) value = getCurrentValueOfBitcoinInAddressInInr(myaddress) print("Current Value of Bitcoin = %.2f for Address = %s" % (value, myaddress)) current_block_height = getCurrentBlockHeight() print("current block height = %d" % (current_block_height)) tx_count_in_last_block = getTxCountInBlock(current_block_height) print("Number of transactions in last block = %d" % (tx_count_in_last_block)) tx_rate = getTxRate(tx_count_in_last_block) print("Current transaction rate = %.6f" % (tx_rate)) # average_tx_rate = getAverageTxRateInLast24Hrs() # print("Average Transaction Rate in last 24 Hrs = %.6f" % (average_tx_rate)) current_network_hash_rate = getCurrentNetworkHashRate() print("Current Network Hash Rate = %d" % (current_network_hash_rate)) block_reward = getCurrentBlockReward() print("Current Block Reward = %.8f" % (block_reward)) current_buy_rate_in_inr = getCurrentBuyPriceInInr() current_buy_rate_in_rupees = convertToRupeeFormat(current_buy_rate_in_inr) print("Current Buy Rate in Indian Rupees = %s" % (current_buy_rate_in_rupees)) miner_hashrate = 13.5 * 10**12 print("Miner hashrate = %d" % (miner_hashrate)) miner_power = 1323 print ("Miner Power in Watt = %f" % (miner_power)) expense = getMiningPowerExpense(miner_power) print ("Miner Power Expense Per Month = %.2f" % (expense)) bitcoin_mined_per_month = getBitcoinMinedPerMonth(miner_hashrate) print("Bitcoin Mined Per Month = %.8f from Miner with hashrate = %d" % (bitcoin_mined_per_month, miner_hashrate)) mining_return = miningReturn(miner_power, miner_hashrate) print("Mining Return Per Month = %s" % (mining_return)) cost_of_mining_bitcoin = costOfMiningBitcoin(miner_power, miner_hashrate) print("Cost of Mining Bitcoin = %.2f" % (cost_of_mining_bitcoin)) unconfirmed_transaction_count = getUnconfirmedTransactionCount() print("Total Unconfirmed Transaction Count = %d" % (unconfirmed_transaction_count)) txn_history = getTxnHistoryOfAddress(myaddress) txn_history_table =
pd.DataFrame(txn_history)
pandas.DataFrame
""" October 2020 Updated: August 2021 Software version: Python 3.7 This code retrieves the calculation of building material demand and embodied greenhouse gas emissions in 26 global regions between 2020-2060. For the original code & latest updates, see: https://github.com/oucxiaoyang/GloBUME The building material model is based on the BUMA model developed by <NAME>, Leiden University, the Netherlands. For the original code & latest updates, see: https://github.com/SPDeetman/BUMA The dynamic stock model is based on the ODYM model developed by <NAME>, Uni Freiburg, Germany. For the original code & latest updates, see: https://github.com/IndEcol/ODYM @author: <NAME>; <EMAIL> <NAME>; <EMAIL> <NAME>; <EMAIL> contributions from: <NAME> *NOTE: Insert location of the GloBUME-main folder in 'dir_path' (line 28) to run the code. """ #%% GENERAL SETTING & STATEMENTS import pandas as pd import numpy as np import os import ctypes import math # set current directory dir_path = "" os.chdir(dir_path) # Set general constants regions = 26 #26 IMAGE regions res_building_types = 4 #4 residential building types: detached, semi-detached, appartments & high-rise area = 2 #2 areas: rural & urban materials = 7 #7 materials: Steel, brick, Concrete, Wood, Copper, Aluminium, Glass inflation = 1.2423 # gdp/cap inflation correction between 2005 (IMAGE data) & 2016 (commercial calibration) according to https://www.bls.gov/data/inflation_calculator.htm # Set Flags for sensitivity analysis flag_alpha = 0 # switch for the sensitivity analysis on alpha, if 1 the maximum alpha is 10% above the maximum found in the data flag_ExpDec = 0 # switch to choose between Gompertz and Exponential Decay function for commercial floorspace demand (0 = Gompertz, 1 = Expdec) flag_Normal = 0 # switch to choose between Weibull and Normal lifetime distributions (0 = Weibull, 1 = Normal) flag_Mean = 0 # switch to choose between material intensity settings (0 = regular regional, 1 = mean, 2 = high, 3 = low, 4 = median) #%%Load files & arrange tables ---------------------------------------------------- if flag_Mean == 0: file_addition = '' elif flag_Mean == 1: file_addition = '_mean' elif flag_Mean == 2: file_addition = '_high' elif flag_Mean == 3: file_addition = '_low' else: file_addition = '_median' # Load Population, Floor area, and Service value added (SVA) Database csv-files pop = pd.read_csv('files_population/pop.csv', index_col = [0]) # Pop; unit: million of people; meaning: global population (over time, by region) rurpop = pd.read_csv('files_population/rurpop.csv', index_col = [0]) # rurpop; unit: %; meaning: the share of people living in rural areas (over time, by region) housing_type = pd.read_csv('files_population\Housing_type.csv') # Housing_type; unit: %; meaning: the share of the NUMBER OF PEOPLE living in a particular building type (by region & by area) floorspace = pd.read_csv('files_floor_area/res_Floorspace.csv') # Floorspace; unit: m2/capita; meaning: the average m2 per capita (over time, by region & area) floorspace = floorspace[floorspace.Region != regions + 1] # Remove empty region 27 avg_m2_cap = pd.read_csv('files_floor_area\Average_m2_per_cap.csv') # Avg_m2_cap; unit: m2/capita; meaning: average square meters per person (by region & area (rural/urban) & building type) sva_pc_2005 = pd.read_csv('files_GDP/sva_pc.csv', index_col = [0]) sva_pc = sva_pc_2005 * inflation # we use the inflation corrected SVA to adjust for the fact that IMAGE provides gdp/cap in 2005 US$ # load material density data csv-files building_materials = pd.read_csv('files_material_density\Building_materials' + file_addition + '.csv') # Building_materials; unit: kg/m2; meaning: the average material use per square meter (by building type, by region & by area) materials_commercial = pd.read_csv('files_material_density\materials_commercial' + file_addition + '.csv') # 7 building materials in 4 commercial building types; unit: kg/m2; meaning: the average material use per square meter (by commercial building type) # Load fitted regression parameters for comercial floor area estimate if flag_alpha == 0: gompertz = pd.read_csv('files_floor_area//files_commercial/Gompertz_parameters.csv', index_col = [0]) else: gompertz = pd.read_csv('files_floor_area//files_commercial/Gompertz_parameters_alpha.csv', index_col = [0]) # Ensure full time series for pop & rurpop (interpolation, some years are missing) rurpop2 = rurpop.reindex(list(range(1970,2061,1))).interpolate() pop2 = pop.reindex(list(range(1970,2061,1))).interpolate() # Remove 1st year, to ensure same Table size as floorspace data (from 1971) pop2 = pop2.iloc[1:] rurpop2 = rurpop2.iloc[1:] # pre-calculate urban population urbpop = 1 - rurpop2 # urban population is 1 - the fraction of people living in rural areas (rurpop) # Restructure the tables to regions as columns; for floorspace floorspace_rur = floorspace.pivot(index = "t", columns = "Region", values = "Rural") floorspace_urb = floorspace.pivot(index = "t", columns = "Region", values = "Urban") # Restructuring for square meters (m2/cap) avg_m2_cap_urb = avg_m2_cap.loc[avg_m2_cap['Area'] == 'Urban'].drop('Area', 1).T # Remove area column & Transpose avg_m2_cap_urb.columns = list(map(int,avg_m2_cap_urb.iloc[0])) # name columns according to the row containing the region-labels avg_m2_cap_urb2 = avg_m2_cap_urb.drop(['Region']) # Remove idle row avg_m2_cap_rur = avg_m2_cap.loc[avg_m2_cap['Area'] == 'Rural'].drop('Area', 1).T # Remove area column & Transpose avg_m2_cap_rur.columns = list(map(int,avg_m2_cap_rur.iloc[0])) # name columns according to the row containing the region-labels avg_m2_cap_rur2 = avg_m2_cap_rur.drop(['Region']) # Remove idle row # Restructuring for the Housing types (% of population living in them) housing_type_urb = housing_type.loc[housing_type['Area'] == 'Urban'].drop('Area', 1).T # Remove area column & Transpose housing_type_urb.columns = list(map(int,housing_type_urb.iloc[0])) # name columns according to the row containing the region-labels housing_type_urb2 = housing_type_urb.drop(['Region']) # Remove idle row housing_type_rur = housing_type.loc[housing_type['Area'] == 'Rural'].drop('Area', 1).T # Remove area column & Transpose housing_type_rur.columns = list(map(int,housing_type_rur.iloc[0])) # name columns according to the row containing the region-labels housing_type_rur2 = housing_type_rur.drop(['Region']) # Remove idle row #%% COMMERCIAL building space demand (stock) calculated from Gomperz curve (fitted, using separate regression model) # Select gompertz curve paramaters for the total commercial m2 demand (stock) alpha = gompertz['All']['a'] if flag_ExpDec == 0 else 25.601 beta = gompertz['All']['b'] if flag_ExpDec == 0 else 28.431 gamma = gompertz['All']['c'] if flag_ExpDec == 0 else 0.0415 # find the total commercial m2 stock (in Millions of m2) commercial_m2_cap = pd.DataFrame(index = range(1971,2061), columns = range(1,27)) for year in range(1971,2061): for region in range(1,27): if flag_ExpDec == 0: commercial_m2_cap[region][year] = alpha * math.exp(-beta * math.exp((-gamma/1000) * sva_pc[str(region)][year])) else: commercial_m2_cap[region][year] = max(0.542, alpha - beta * math.exp((-gamma/1000) * sva_pc[str(region)][year])) # Subdivide the total across Offices, Retail+, Govt+ & Hotels+ commercial_m2_cap_office = pd.DataFrame(index = range(1971,2061), columns = range(1,27)) # Offices commercial_m2_cap_retail = pd.DataFrame(index = range(1971,2061), columns = range(1,27)) # Retail & Warehouses commercial_m2_cap_hotels = pd.DataFrame(index = range(1971,2061), columns = range(1,27)) # Hotels & Restaurants commercial_m2_cap_govern = pd.DataFrame(index = range(1971,2061), columns = range(1,27)) # Hospitals, Education, Government & Transportation minimum_com_office = 25 minimum_com_retail = 25 minimum_com_hotels = 25 minimum_com_govern = 25 for year in range(1971,2061): for region in range(1,27): # get the square meter per capita floorspace for 4 commercial applications office = gompertz['Office']['a'] * math.exp(-gompertz['Office']['b'] * math.exp((-gompertz['Office']['c']/1000) * sva_pc[str(region)][year])) retail = gompertz['Retail+']['a'] * math.exp(-gompertz['Retail+']['b'] * math.exp((-gompertz['Retail+']['c']/1000) * sva_pc[str(region)][year])) hotels = gompertz['Hotels+']['a'] * math.exp(-gompertz['Hotels+']['b'] * math.exp((-gompertz['Hotels+']['c']/1000) * sva_pc[str(region)][year])) govern = gompertz['Govt+']['a'] * math.exp(-gompertz['Govt+']['b'] * math.exp((-gompertz['Govt+']['c']/1000) * sva_pc[str(region)][year])) #calculate minimum values for later use in historic tail(Region 20: China @ 134 $/cap SVA) minimum_com_office = office if office < minimum_com_office else minimum_com_office minimum_com_retail = retail if retail < minimum_com_retail else minimum_com_retail minimum_com_hotels = hotels if hotels < minimum_com_hotels else minimum_com_hotels minimum_com_govern = govern if govern < minimum_com_govern else minimum_com_govern # Then use the ratio's to subdivide the total commercial floorspace into 4 categories commercial_sum = office + retail + hotels + govern commercial_m2_cap_office[region][year] = commercial_m2_cap[region][year] * (office/commercial_sum) commercial_m2_cap_retail[region][year] = commercial_m2_cap[region][year] * (retail/commercial_sum) commercial_m2_cap_hotels[region][year] = commercial_m2_cap[region][year] * (hotels/commercial_sum) commercial_m2_cap_govern[region][year] = commercial_m2_cap[region][year] * (govern/commercial_sum) #%% Add historic tail (1720-1970) + 100 yr initial ----------------------------------------------------------- # load historic population development hist_pop = pd.read_csv('files_initial_stock\hist_pop.csv', index_col = [0]) # initial population as a percentage of the 1970 population; unit: %; according to the Maddison Project Database (MPD) 2018 (Groningen University) # Determine the historical average global trend in floorspace/cap & the regional rural population share based on the last 10 years of IMAGE data floorspace_urb_trend_by_region = [0 for j in range(0,26)] floorspace_rur_trend_by_region = [0 for j in range(0,26)] rurpop_trend_by_region = [0 for j in range(0,26)] commercial_m2_cap_office_trend = [0 for j in range(0,26)] commercial_m2_cap_retail_trend = [0 for j in range(0,26)] commercial_m2_cap_hotels_trend = [0 for j in range(0,26)] commercial_m2_cap_govern_trend = [0 for j in range(0,26)] # For the RESIDENTIAL & COMMERCIAL floorspace: Derive the annual trend (in m2/cap) over the initial 10 years of IMAGE data for region in range(1,27): floorspace_urb_trend_by_year = [0 for i in range(0,10)] floorspace_rur_trend_by_year = [0 for i in range(0,10)] commercial_m2_cap_office_trend_by_year = [0 for j in range(0,10)] commercial_m2_cap_retail_trend_by_year = [0 for i in range(0,10)] commercial_m2_cap_hotels_trend_by_year = [0 for j in range(0,10)] commercial_m2_cap_govern_trend_by_year = [0 for i in range(0,10)] # Get the growth by year (for the first 10 years) for year in range(1970,1980): floorspace_urb_trend_by_year[year-1970] = floorspace_urb[region][year+1]/floorspace_urb[region][year+2] floorspace_rur_trend_by_year[year-1970] = floorspace_rur[region][year+1]/floorspace_rur[region][year+2] commercial_m2_cap_office_trend_by_year[year-1970] = commercial_m2_cap_office[region][year+1]/commercial_m2_cap_office[region][year+2] commercial_m2_cap_retail_trend_by_year[year-1970] = commercial_m2_cap_retail[region][year+1]/commercial_m2_cap_retail[region][year+2] commercial_m2_cap_hotels_trend_by_year[year-1970] = commercial_m2_cap_hotels[region][year+1]/commercial_m2_cap_hotels[region][year+2] commercial_m2_cap_govern_trend_by_year[year-1970] = commercial_m2_cap_govern[region][year+1]/commercial_m2_cap_govern[region][year+2] rurpop_trend_by_region[region-1] = ((1 - (rurpop[str(region)][1980]/rurpop[str(region)][1970]))/10)*100 floorspace_urb_trend_by_region[region-1] = sum(floorspace_urb_trend_by_year)/10 floorspace_rur_trend_by_region[region-1] = sum(floorspace_rur_trend_by_year)/10 commercial_m2_cap_office_trend[region-1] = sum(commercial_m2_cap_office_trend_by_year)/10 commercial_m2_cap_retail_trend[region-1] = sum(commercial_m2_cap_retail_trend_by_year)/10 commercial_m2_cap_hotels_trend[region-1] = sum(commercial_m2_cap_hotels_trend_by_year)/10 commercial_m2_cap_govern_trend[region-1] = sum(commercial_m2_cap_govern_trend_by_year)/10 # Average global annual decline in floorspace/cap in %, rural: 1%; urban 1.2%; commercial: 1.26-2.18% /yr floorspace_urb_trend_global = (1 - (sum(floorspace_urb_trend_by_region)/26))*100 # in % decrease per annum floorspace_rur_trend_global = (1 - (sum(floorspace_rur_trend_by_region)/26))*100 # in % decrease per annum commercial_m2_cap_office_trend_global = (1 - (sum(commercial_m2_cap_office_trend)/26))*100 # in % decrease per annum commercial_m2_cap_retail_trend_global = (1 - (sum(commercial_m2_cap_retail_trend)/26))*100 # in % decrease per annum commercial_m2_cap_hotels_trend_global = (1 - (sum(commercial_m2_cap_hotels_trend)/26))*100 # in % decrease per annum commercial_m2_cap_govern_trend_global = (1 - (sum(commercial_m2_cap_govern_trend)/26))*100 # in % decrease per annum # define historic floorspace (1820-1970) in m2/cap floorspace_urb_1820_1970 = pd.DataFrame(index = range(1820,1971), columns = floorspace_urb.columns) floorspace_rur_1820_1970 = pd.DataFrame(index = range(1820,1971), columns = floorspace_rur.columns) rurpop_1820_1970 = pd.DataFrame(index = range(1820,1971), columns = rurpop.columns) pop_1820_1970 = pd.DataFrame(index = range(1820,1971), columns = pop2.columns) commercial_m2_cap_office_1820_1970 = pd.DataFrame(index = range(1820,1971), columns = commercial_m2_cap_office.columns) commercial_m2_cap_retail_1820_1970 = pd.DataFrame(index = range(1820,1971), columns = commercial_m2_cap_retail.columns) commercial_m2_cap_hotels_1820_1970 = pd.DataFrame(index = range(1820,1971), columns = commercial_m2_cap_hotels.columns) commercial_m2_cap_govern_1820_1970 = pd.DataFrame(index = range(1820,1971), columns = commercial_m2_cap_govern.columns) # Find minumum or maximum values in the original IMAGE data (Just for residential, commercial minimum values have been calculated above) minimum_urb_fs = floorspace_urb.values.min() # Region 20: China minimum_rur_fs = floorspace_rur.values.min() # Region 20: China maximum_rurpop = rurpop.values.max() # Region 9 : Eastern Africa # Calculate the actual values used between 1820 & 1970, given the trends & the min/max values for region in range(1,regions+1): for year in range(1820,1971): # MAX of 1) the MINimum value & 2) the calculated value floorspace_urb_1820_1970[region][year] = max(minimum_urb_fs, floorspace_urb[region][1971] * ((100-floorspace_urb_trend_global)/100)**(1971-year)) # single global value for average annual Decrease floorspace_rur_1820_1970[region][year] = max(minimum_rur_fs, floorspace_rur[region][1971] * ((100-floorspace_rur_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_office_1820_1970[region][year] = max(minimum_com_office, commercial_m2_cap_office[region][1971] * ((100-commercial_m2_cap_office_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_retail_1820_1970[region][year] = max(minimum_com_retail, commercial_m2_cap_retail[region][1971] * ((100-commercial_m2_cap_retail_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_hotels_1820_1970[region][year] = max(minimum_com_hotels, commercial_m2_cap_hotels[region][1971] * ((100-commercial_m2_cap_hotels_trend_global)/100)**(1971-year)) # single global value for average annual Decrease commercial_m2_cap_govern_1820_1970[region][year] = max(minimum_com_govern, commercial_m2_cap_govern[region][1971] * ((100-commercial_m2_cap_govern_trend_global)/100)**(1971-year)) # single global value for average annual Decrease # MIN of 1) the MAXimum value & 2) the calculated value rurpop_1820_1970[str(region)][year] = min(maximum_rurpop, rurpop[str(region)][1970] * ((100 + rurpop_trend_by_region[region - 1])/100)**(1970 - year)) # average annual INcrease by region # just add the tail to the population (no min/max & trend is pre-calculated in hist_pop) pop_1820_1970[str(region)][year] = hist_pop[str(region)][year] * pop[str(region)][1970] urbpop_1820_1970 = 1 - rurpop_1820_1970 # To avoid full model setup in 1820 (all required stock gets built in yr 1) we assume another tail that linearly increases to the 1820 value over a 100 year time period, so 1720 = 0 floorspace_urb_1721_1820 = pd.DataFrame(index = range(1721,1820), columns = floorspace_urb.columns) floorspace_rur_1721_1820 = pd.DataFrame(index = range(1721,1820), columns = floorspace_rur.columns) rurpop_1721_1820 = pd.DataFrame(index = range(1721,1820), columns = rurpop.columns) urbpop_1721_1820 = pd.DataFrame(index = range(1721,1820), columns = urbpop.columns) pop_1721_1820 = pd.DataFrame(index = range(1721,1820), columns = pop2.columns) commercial_m2_cap_office_1721_1820 = pd.DataFrame(index = range(1721,1820), columns = commercial_m2_cap_office.columns) commercial_m2_cap_retail_1721_1820 = pd.DataFrame(index = range(1721,1820), columns = commercial_m2_cap_retail.columns) commercial_m2_cap_hotels_1721_1820 = pd.DataFrame(index = range(1721,1820), columns = commercial_m2_cap_hotels.columns) commercial_m2_cap_govern_1721_1820 = pd.DataFrame(index = range(1721,1820), columns = commercial_m2_cap_govern.columns) for region in range(1,27): for time in range(1721,1820): # MAX(0,...) Because of floating point deviations, leading to negative stock in some cases floorspace_urb_1721_1820[int(region)][time] = max(0.0, floorspace_urb_1820_1970[int(region)][1820] - (floorspace_urb_1820_1970[int(region)][1820]/100)*(1820-time)) floorspace_rur_1721_1820[int(region)][time] = max(0.0, floorspace_rur_1820_1970[int(region)][1820] - (floorspace_rur_1820_1970[int(region)][1820]/100)*(1820-time)) rurpop_1721_1820[str(region)][time] = max(0.0, rurpop_1820_1970[str(region)][1820] - (rurpop_1820_1970[str(region)][1820]/100)*(1820-time)) urbpop_1721_1820[str(region)][time] = max(0.0, urbpop_1820_1970[str(region)][1820] - (urbpop_1820_1970[str(region)][1820]/100)*(1820-time)) pop_1721_1820[str(region)][time] = max(0.0, pop_1820_1970[str(region)][1820] - (pop_1820_1970[str(region)][1820]/100)*(1820-time)) commercial_m2_cap_office_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_office_1820_1970[region][1820] - (commercial_m2_cap_office_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_retail_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_retail_1820_1970[region][1820] - (commercial_m2_cap_retail_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_hotels_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_hotels_1820_1970[region][1820] - (commercial_m2_cap_hotels_1820_1970[region][1820]/100)*(1820-time)) commercial_m2_cap_govern_1721_1820[int(region)][time] = max(0.0, commercial_m2_cap_govern_1820_1970[region][1820] - (commercial_m2_cap_govern_1820_1970[region][1820]/100)*(1820-time)) # combine historic with IMAGE data here rurpop_tail = rurpop_1820_1970.append(rurpop2, ignore_index = False) urbpop_tail = urbpop_1820_1970.append(urbpop, ignore_index = False) pop_tail = pop_1820_1970.append(pop2, ignore_index = False) floorspace_urb_tail = floorspace_urb_1820_1970.append(floorspace_urb, ignore_index = False) floorspace_rur_tail = floorspace_rur_1820_1970.append(floorspace_rur, ignore_index = False) commercial_m2_cap_office_tail = commercial_m2_cap_office_1820_1970.append(commercial_m2_cap_office, ignore_index = False) commercial_m2_cap_retail_tail = commercial_m2_cap_retail_1820_1970.append(commercial_m2_cap_retail, ignore_index = False) commercial_m2_cap_hotels_tail = commercial_m2_cap_hotels_1820_1970.append(commercial_m2_cap_hotels, ignore_index = False) commercial_m2_cap_govern_tail = commercial_m2_cap_govern_1820_1970.append(commercial_m2_cap_govern, ignore_index = False) rurpop_tail = rurpop_1721_1820.append(rurpop_1820_1970.append(rurpop2, ignore_index = False), ignore_index = False) urbpop_tail = urbpop_1721_1820.append(urbpop_1820_1970.append(urbpop, ignore_index = False), ignore_index = False) pop_tail = pop_1721_1820.append(pop_1820_1970.append(pop2, ignore_index = False), ignore_index = False) floorspace_urb_tail = floorspace_urb_1721_1820.append(floorspace_urb_1820_1970.append(floorspace_urb, ignore_index = False), ignore_index = False) floorspace_rur_tail = floorspace_rur_1721_1820.append(floorspace_rur_1820_1970.append(floorspace_rur, ignore_index = False), ignore_index = False) commercial_m2_cap_office_tail = commercial_m2_cap_office_1721_1820.append(commercial_m2_cap_office_1820_1970.append(commercial_m2_cap_office, ignore_index = False), ignore_index = False) commercial_m2_cap_retail_tail = commercial_m2_cap_retail_1721_1820.append(commercial_m2_cap_retail_1820_1970.append(commercial_m2_cap_retail, ignore_index = False), ignore_index = False) commercial_m2_cap_hotels_tail = commercial_m2_cap_hotels_1721_1820.append(commercial_m2_cap_hotels_1820_1970.append(commercial_m2_cap_hotels, ignore_index = False), ignore_index = False) commercial_m2_cap_govern_tail = commercial_m2_cap_govern_1721_1820.append(commercial_m2_cap_govern_1820_1970.append(commercial_m2_cap_govern, ignore_index = False), ignore_index = False) #%% FLOOR AREA STOCK ----------------------------------------------------------- # adjust the share for urban/rural only (shares in csv are as percantage of the total(Rur + Urb), we needed to adjust the urban shares to add up to 1, same for rural) housing_type_rur3 = housing_type_rur2/housing_type_rur2.sum() housing_type_urb3 = housing_type_urb2/housing_type_urb2.sum() # calculte the total rural/urban population (pop2 = millions of people, rurpop2 = % of people living in rural areas) people_rur = pd.DataFrame(rurpop_tail.values*pop_tail.values, columns = pop_tail.columns, index = pop_tail.index) people_urb = pd.DataFrame(urbpop_tail.values*pop_tail.values, columns = pop_tail.columns, index = pop_tail.index) # calculate the total number of people (urban/rural) BY HOUSING TYPE (the sum of det,sem,app & hig equals the total population e.g. people_rur) people_det_rur = pd.DataFrame(housing_type_rur3.iloc[0].values*people_rur.values, columns = people_rur.columns, index = people_rur.index) people_sem_rur = pd.DataFrame(housing_type_rur3.iloc[1].values*people_rur.values, columns = people_rur.columns, index = people_rur.index) people_app_rur = pd.DataFrame(housing_type_rur3.iloc[2].values*people_rur.values, columns = people_rur.columns, index = people_rur.index) people_hig_rur = pd.DataFrame(housing_type_rur3.iloc[3].values*people_rur.values, columns = people_rur.columns, index = people_rur.index) people_det_urb = pd.DataFrame(housing_type_urb3.iloc[0].values*people_urb.values, columns = people_urb.columns, index = people_urb.index) people_sem_urb = pd.DataFrame(housing_type_urb3.iloc[1].values*people_urb.values, columns = people_urb.columns, index = people_urb.index) people_app_urb = pd.DataFrame(housing_type_urb3.iloc[2].values*people_urb.values, columns = people_urb.columns, index = people_urb.index) people_hig_urb = pd.DataFrame(housing_type_urb3.iloc[3].values*people_urb.values, columns = people_urb.columns, index = people_urb.index) # calculate the total m2 (urban/rural) BY HOUSING TYPE (= nr. of people * OWN avg m2, so not based on IMAGE) m2_unadjusted_det_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[0].values * people_det_rur.values, columns = people_det_rur.columns, index = people_det_rur.index) m2_unadjusted_sem_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[1].values * people_sem_rur.values, columns = people_sem_rur.columns, index = people_sem_rur.index) m2_unadjusted_app_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[2].values * people_app_rur.values, columns = people_app_rur.columns, index = people_app_rur.index) m2_unadjusted_hig_rur = pd.DataFrame(avg_m2_cap_rur2.iloc[3].values * people_hig_rur.values, columns = people_hig_rur.columns, index = people_hig_rur.index) m2_unadjusted_det_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[0].values * people_det_urb.values, columns = people_det_urb.columns, index = people_det_urb.index) m2_unadjusted_sem_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[1].values * people_sem_urb.values, columns = people_sem_urb.columns, index = people_sem_urb.index) m2_unadjusted_app_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[2].values * people_app_urb.values, columns = people_app_urb.columns, index = people_app_urb.index) m2_unadjusted_hig_urb = pd.DataFrame(avg_m2_cap_urb2.iloc[3].values * people_hig_urb.values, columns = people_hig_urb.columns, index = people_hig_urb.index) # Define empty dataframes for m2 adjustments total_m2_adj_rur = pd.DataFrame(index = m2_unadjusted_det_rur.index, columns = m2_unadjusted_det_rur.columns) total_m2_adj_urb = pd.DataFrame(index = m2_unadjusted_det_urb.index, columns = m2_unadjusted_det_urb.columns) # Sum all square meters in Rural area for j in range(1721,2061,1): for i in range(1,27,1): total_m2_adj_rur.loc[j,str(i)] = m2_unadjusted_det_rur.loc[j,str(i)] + m2_unadjusted_sem_rur.loc[j,str(i)] + m2_unadjusted_app_rur.loc[j,str(i)] + m2_unadjusted_hig_rur.loc[j,str(i)] # Sum all square meters in Urban area for j in range(1721,2061,1): for i in range(1,27,1): total_m2_adj_urb.loc[j,str(i)] = m2_unadjusted_det_urb.loc[j,str(i)] + m2_unadjusted_sem_urb.loc[j,str(i)] + m2_unadjusted_app_urb.loc[j,str(i)] + m2_unadjusted_hig_urb.loc[j,str(i)] # average square meter per person implied by our OWN data avg_m2_cap_adj_rur = pd.DataFrame(total_m2_adj_rur.values / people_rur.values, columns = people_rur.columns, index = people_rur.index) avg_m2_cap_adj_urb = pd.DataFrame(total_m2_adj_urb.values / people_urb.values, columns = people_urb.columns, index = people_urb.index) # factor to correct square meters per capita so that we respect the IMAGE data in terms of total m2, but we use our own distinction between Building types m2_cap_adj_fact_rur = pd.DataFrame(floorspace_rur_tail.values / avg_m2_cap_adj_rur.values, columns = floorspace_rur_tail.columns, index = floorspace_rur_tail.index) m2_cap_adj_fact_urb = pd.DataFrame(floorspace_urb_tail.values / avg_m2_cap_adj_urb.values, columns = floorspace_urb_tail.columns, index = floorspace_urb_tail.index) # All m2 by region (in millions), Building_type & year (using the correction factor, to comply with IMAGE avg m2/cap) m2_det_rur = pd.DataFrame(m2_unadjusted_det_rur.values * m2_cap_adj_fact_rur.values, columns = m2_cap_adj_fact_rur.columns, index = m2_cap_adj_fact_rur.index) m2_sem_rur = pd.DataFrame(m2_unadjusted_sem_rur.values * m2_cap_adj_fact_rur.values, columns = m2_cap_adj_fact_rur.columns, index = m2_cap_adj_fact_rur.index) m2_app_rur = pd.DataFrame(m2_unadjusted_app_rur.values * m2_cap_adj_fact_rur.values, columns = m2_cap_adj_fact_rur.columns, index = m2_cap_adj_fact_rur.index) m2_hig_rur = pd.DataFrame(m2_unadjusted_hig_rur.values * m2_cap_adj_fact_rur.values, columns = m2_cap_adj_fact_rur.columns, index = m2_cap_adj_fact_rur.index) m2_det_urb = pd.DataFrame(m2_unadjusted_det_urb.values * m2_cap_adj_fact_urb.values, columns = m2_cap_adj_fact_urb.columns, index = m2_cap_adj_fact_urb.index) m2_sem_urb = pd.DataFrame(m2_unadjusted_sem_urb.values * m2_cap_adj_fact_urb.values, columns = m2_cap_adj_fact_urb.columns, index = m2_cap_adj_fact_urb.index) m2_app_urb = pd.DataFrame(m2_unadjusted_app_urb.values * m2_cap_adj_fact_urb.values, columns = m2_cap_adj_fact_urb.columns, index = m2_cap_adj_fact_urb.index) m2_hig_urb = pd.DataFrame(m2_unadjusted_hig_urb.values * m2_cap_adj_fact_urb.values, columns = m2_cap_adj_fact_urb.columns, index = m2_cap_adj_fact_urb.index) # Add a checksum to see if calculations based on adjusted OWN avg m2 (by building type) now match the total m2 according to IMAGE. m2_sum_rur_OWN = m2_det_rur + m2_sem_rur + m2_app_rur + m2_hig_rur m2_sum_rur_IMAGE = pd.DataFrame(floorspace_rur_tail.values*people_rur.values, columns = m2_sum_rur_OWN.columns, index = m2_sum_rur_OWN.index) m2_checksum = m2_sum_rur_OWN - m2_sum_rur_IMAGE if m2_checksum.sum().sum() > 0.0000001 or m2_checksum.sum().sum() < -0.0000001: ctypes.windll.user32.MessageBoxW(0, "IMAGE & OWN m2 sums do not match", "Warning", 1) # Total RESIDENTIAL square meters by region m2 = m2_det_rur + m2_sem_rur + m2_app_rur + m2_hig_rur + m2_det_urb + m2_sem_urb + m2_app_urb + m2_hig_urb # Total m2 for COMMERCIAL Buildings commercial_m2_office = pd.DataFrame(commercial_m2_cap_office_tail.values * pop_tail.values, columns = m2_cap_adj_fact_urb.columns, index = m2_cap_adj_fact_urb.index) commercial_m2_retail = pd.DataFrame(commercial_m2_cap_retail_tail.values * pop_tail.values, columns = m2_cap_adj_fact_urb.columns, index = m2_cap_adj_fact_urb.index) commercial_m2_hotels = pd.DataFrame(commercial_m2_cap_hotels_tail.values * pop_tail.values, columns = m2_cap_adj_fact_urb.columns, index = m2_cap_adj_fact_urb.index) commercial_m2_govern = pd.DataFrame(commercial_m2_cap_govern_tail.values * pop_tail.values, columns = m2_cap_adj_fact_urb.columns, index = m2_cap_adj_fact_urb.index) #%% FLOOR AREA INFLOW & OUTFLOW import sys sys.path.append(dir_path) import dynamic_stock_model from dynamic_stock_model import DynamicStockModel as DSM idx = pd.IndexSlice # needed for slicing multi-index # define a function for calculating the floor area inflow and outflow def inflow_outflown(shape, scale, stock, length): # length is the number of years in the entire period out_oc_reg = pd.DataFrame(index = range(1721,2061), columns = pd.MultiIndex.from_product([list(range(1,27)), list(range(1721,2061))])) # Multi-index columns (region & years), to contain a matrix of years*years for each region out_i_reg = pd.DataFrame(index = range(1721,2061), columns = range(1,27)) out_s_reg = pd.DataFrame(index = range(1721,2061), columns = range(1,27)) out_o_reg = pd.DataFrame(index = range(1721,2061), columns = range(1,27)) for region in range(1,27): shape_list = shape.loc[region] scale_list = scale.loc[region] if flag_Normal == 0: DSMforward = DSM(t = np.arange(0,length,1), s = np.array(stock[region]), lt = {'Type': 'Weibull', 'Shape': np.array(shape_list), 'Scale': np.array(scale_list)}) else: DSMforward = DSM(t = np.arange(0,length,1), s = np.array(stock[region]), lt = {'Type': 'FoldNorm', 'Mean': np.array(shape_list), 'StdDev': np.array(scale_list)}) # shape & scale list are actually Mean & StDev here out_sc, out_oc, out_i = DSMforward.compute_stock_driven_model(NegativeInflowCorrect = True) out_i_reg[region] = out_i out_oc[out_oc < 0] = 0 # remove negative outflow, replace by 0 out_oc_reg.loc[:,idx[region,:]] = out_oc # If you are only interested in the total outflow, you can sum the outflow by cohort out_o_reg[region] = out_oc.sum(axis = 1) out_o_reg_corr = out_o_reg._get_numeric_data() out_o_reg_corr[out_o_reg_corr < 0] = 0 out_s_reg[region] = out_sc.sum(axis = 1) #Stock return out_i_reg, out_oc_reg length = len(m2_hig_urb[1]) # = 340 #nindex = np.arange(0,26) #% lifetime parameters (shape & scale) lifetimes = pd.read_csv(dir_path + '/files_lifetimes/lifetimes.csv') lifetimes_comm = pd.read_csv(dir_path + '/files_lifetimes/lifetimes_comm.csv') # separate shape from scale lifetimes_shape = lifetimes[['Region','Building_type','Area','Shape']] lifetimes_scale = lifetimes[['Region','Building_type','Area','Scale']] shape_comm = lifetimes_comm[['Region','Shape']] scale_comm = lifetimes_comm[['Region','Scale']] # generate time-series data structure for i in range(1721,2061): lifetimes_shape[i] = lifetimes_shape['Shape'] lifetimes_scale[i] = lifetimes_scale['Scale'] shape_comm[i] = shape_comm['Shape'] scale_comm[i] = scale_comm['Scale'] # *NOTE: here we have created these multiple-dimentional structures where the region, building type, and year are specified so that scenario analyses of e.g., the lifetime extension can be easily done using either Python or excel. # For example, one can easily create a well-structured excel file 'lifetimes_scale.csv' with customised scale parameter changes and then upload this excel (.CSV) file. # parameters by building type lifetimes_shape = lifetimes_shape.drop(['Shape'],axis = 1) lifetimes_scale = lifetimes_scale.drop(['Scale'],axis = 1) shape_comm = shape_comm.drop(['Shape'],axis = 1).set_index('Region') scale_comm = scale_comm.drop(['Scale'],axis = 1).set_index('Region') shape_det_rur = lifetimes_shape.loc[(lifetimes_shape['Area'] == 'Rural') & (lifetimes_shape['Building_type'] == 'Detached')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) shape_sem_rur = lifetimes_shape.loc[(lifetimes_shape['Area'] == 'Rural') & (lifetimes_shape['Building_type'] == 'Semi-detached')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) shape_app_rur = lifetimes_shape.loc[(lifetimes_shape['Area'] == 'Rural') & (lifetimes_shape['Building_type'] == 'Appartments')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) shape_hig_rur = lifetimes_shape.loc[(lifetimes_shape['Area'] == 'Rural') & (lifetimes_shape['Building_type'] == 'High-rise')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) shape_det_urb = lifetimes_shape.loc[(lifetimes_shape['Area'] == 'Urban') & (lifetimes_shape['Building_type'] == 'Detached')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) shape_sem_urb = lifetimes_shape.loc[(lifetimes_shape['Area'] == 'Urban') & (lifetimes_shape['Building_type'] == 'Semi-detached')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) shape_app_urb = lifetimes_shape.loc[(lifetimes_shape['Area'] == 'Urban') & (lifetimes_shape['Building_type'] == 'Appartments')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) shape_hig_urb = lifetimes_shape.loc[(lifetimes_shape['Area'] == 'Urban') & (lifetimes_shape['Building_type'] == 'High-rise')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) scale_det_rur = lifetimes_scale.loc[(lifetimes_scale['Area'] == 'Rural') & (lifetimes_scale['Building_type'] == 'Detached')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) scale_sem_rur = lifetimes_scale.loc[(lifetimes_scale['Area'] == 'Rural') & (lifetimes_scale['Building_type'] == 'Semi-detached')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) scale_app_rur = lifetimes_scale.loc[(lifetimes_scale['Area'] == 'Rural') & (lifetimes_scale['Building_type'] == 'Appartments')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) scale_hig_rur = lifetimes_scale.loc[(lifetimes_scale['Area'] == 'Rural') & (lifetimes_scale['Building_type'] == 'High-rise')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) scale_det_urb = lifetimes_scale.loc[(lifetimes_scale['Area'] == 'Urban') & (lifetimes_scale['Building_type'] == 'Detached')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) scale_sem_urb = lifetimes_scale.loc[(lifetimes_scale['Area'] == 'Urban') & (lifetimes_scale['Building_type'] == 'Semi-detached')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) scale_app_urb = lifetimes_scale.loc[(lifetimes_scale['Area'] == 'Urban') & (lifetimes_scale['Building_type'] == 'Appartments')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) scale_hig_urb = lifetimes_scale.loc[(lifetimes_scale['Area'] == 'Urban') & (lifetimes_scale['Building_type'] == 'High-rise')].set_index('Region').drop(['Building_type', 'Area'],axis = 1) # call the defined model to calculate inflow & outflow based on stock & lifetime m2_det_rur_i, m2_det_rur_oc = inflow_outflown(shape_det_rur, scale_det_rur, m2_det_rur, length) m2_sem_rur_i, m2_sem_rur_oc = inflow_outflown(shape_sem_rur, scale_sem_rur, m2_sem_rur, length) m2_app_rur_i, m2_app_rur_oc = inflow_outflown(shape_app_rur, scale_app_rur, m2_app_rur, length) m2_hig_rur_i, m2_hig_rur_oc = inflow_outflown(shape_hig_rur, scale_hig_rur, m2_hig_rur, length) m2_det_urb_i, m2_det_urb_oc = inflow_outflown(shape_det_urb, scale_det_urb, m2_det_urb, length) m2_sem_urb_i, m2_sem_urb_oc = inflow_outflown(shape_sem_urb, scale_sem_urb, m2_sem_urb, length) m2_app_urb_i, m2_app_urb_oc = inflow_outflown(shape_app_urb, scale_app_urb, m2_app_urb, length) m2_hig_urb_i, m2_hig_urb_oc = inflow_outflown(shape_hig_urb, scale_hig_urb, m2_hig_urb, length) m2_office_i, m2_office_oc = inflow_outflown(shape_comm, scale_comm, commercial_m2_office, length) m2_retail_i, m2_retail_oc = inflow_outflown(shape_comm, scale_comm, commercial_m2_retail, length) m2_hotels_i, m2_hotels_oc = inflow_outflown(shape_comm, scale_comm, commercial_m2_hotels, length) m2_govern_i, m2_govern_oc = inflow_outflown(shape_comm, scale_comm, commercial_m2_govern, length) # total MILLIONS of square meters inflow m2_res_i = m2_det_rur_i + m2_sem_rur_i + m2_app_rur_i + m2_hig_rur_i + m2_det_urb_i + m2_sem_urb_i + m2_app_urb_i + m2_hig_urb_i m2_comm_i = m2_office_i + m2_retail_i + m2_hotels_i + m2_govern_i #%% MATERIAL INTENSITY RESTRUCTURING (to become consistent with floor area dataset)----------------------------------------------------------- # separate different materials building_materials_steel = building_materials[['Region','Building_type','steel']] building_materials_brick_rural = building_materials[['Region','Building_type','brick_rural']] building_materials_brick_urban = building_materials[['Region','Building_type','brick_urban']] building_materials_concrete = building_materials[['Region','Building_type','concrete']] building_materials_wood = building_materials[['Region','Building_type','wood']] building_materials_copper = building_materials[['Region','Building_type','copper']] building_materials_aluminium = building_materials[['Region','Building_type','aluminium']] building_materials_glass = building_materials[['Region','Building_type','glass']] materials_commercial_steel = materials_commercial[['Region','Building_type','steel']] materials_commercial_brick = materials_commercial[['Region','Building_type','brick']] materials_commercial_concrete = materials_commercial[['Region','Building_type','concrete']] materials_commercial_wood = materials_commercial[['Region','Building_type','wood']] materials_commercial_copper = materials_commercial[['Region','Building_type','copper']] materials_commercial_aluminium = materials_commercial[['Region','Building_type','aluminium']] materials_commercial_glass = materials_commercial[['Region','Building_type','glass']] # generate time-series data structure for i in range(1721,2061): building_materials_steel[i] = building_materials_steel['steel'] building_materials_concrete[i] = building_materials_concrete['concrete'] building_materials_brick_rural[i] = building_materials_brick_rural['brick_rural'] building_materials_brick_urban[i] = building_materials_brick_urban['brick_urban'] building_materials_wood[i] = building_materials_wood['wood'] building_materials_copper[i] = building_materials_copper['copper'] building_materials_aluminium[i] = building_materials_aluminium['aluminium'] building_materials_glass[i] = building_materials_glass['glass'] materials_commercial_steel[i] = materials_commercial_steel['steel'] materials_commercial_brick[i] = materials_commercial_brick['brick'] materials_commercial_concrete[i] = materials_commercial_concrete['concrete'] materials_commercial_wood[i] = materials_commercial_wood['wood'] materials_commercial_copper[i] = materials_commercial_copper['copper'] materials_commercial_aluminium[i] = materials_commercial_aluminium['aluminium'] materials_commercial_glass[i] = materials_commercial_glass['glass'] building_materials_steel = building_materials_steel.drop(['steel'],axis = 1) building_materials_concrete = building_materials_concrete.drop(['concrete'],axis = 1) building_materials_brick_rural = building_materials_brick_rural.drop(['brick_rural'],axis = 1) building_materials_brick_urban = building_materials_brick_urban.drop(['brick_urban'],axis = 1) building_materials_wood = building_materials_wood.drop(['wood'],axis = 1) building_materials_copper = building_materials_copper.drop(['copper'],axis = 1) building_materials_aluminium = building_materials_aluminium.drop(['aluminium'],axis = 1) building_materials_glass = building_materials_glass.drop(['glass'],axis = 1) materials_commercial_steel = materials_commercial_steel.drop(['steel'],axis = 1) materials_commercial_brick = materials_commercial_brick.drop(['brick'],axis = 1) materials_commercial_concrete = materials_commercial_concrete.drop(['concrete'],axis = 1) materials_commercial_wood = materials_commercial_wood.drop(['wood'],axis = 1) materials_commercial_copper = materials_commercial_copper.drop(['copper'],axis = 1) materials_commercial_aluminium = materials_commercial_aluminium.drop(['aluminium'],axis = 1) materials_commercial_glass = materials_commercial_glass.drop(['glass'],axis = 1) # *NOTE: here we have created these multiple-dimentional structures where the region, building type, and year are specified so that scenario analyses of e.g., light-weighting / substitution can be easily done using either Python or excel. # For example, one can easily create a well-structured excel file 'building_materials_steel.csv' with customised material intensity changes and then upload this excel (.CSV) file. # steel intensity material_steel_det = building_materials_steel.loc[(building_materials_steel['Building_type']=='Detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_det_rur.index) material_steel_sem = building_materials_steel.loc[(building_materials_steel['Building_type']=='Semi-detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_sem_rur.index) material_steel_app = building_materials_steel.loc[(building_materials_steel['Building_type']=='Appartments')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_app_rur.index) material_steel_hig = building_materials_steel.loc[(building_materials_steel['Building_type']=='High-rise')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_hig_rur.index) materials_steel_office = materials_commercial_steel.loc[(materials_commercial_steel['Building_type']=='Offices')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_office.index) materials_steel_retail = materials_commercial_steel.loc[(materials_commercial_steel['Building_type']=='Retail+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_retail.index) materials_steel_hotels = materials_commercial_steel.loc[(materials_commercial_steel['Building_type']=='Hotels+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_hotels.index) materials_steel_govern = materials_commercial_steel.loc[(materials_commercial_steel['Building_type']=='Govt+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_govern.index) # brick intensity material_brick_det_rural = building_materials_brick_rural.loc[(building_materials_brick_rural['Building_type']=='Detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_det_rur.index) material_brick_sem_rural = building_materials_brick_rural.loc[(building_materials_brick_rural['Building_type']=='Semi-detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_sem_rur.index) material_brick_app_rural = building_materials_brick_rural.loc[(building_materials_brick_rural['Building_type']=='Appartments')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_app_rur.index) material_brick_hig_rural = building_materials_brick_rural.loc[(building_materials_brick_rural['Building_type']=='High-rise')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_hig_rur.index) material_brick_det_urban = building_materials_brick_urban.loc[(building_materials_brick_urban['Building_type']=='Detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_det_urb.index) material_brick_sem_urban = building_materials_brick_urban.loc[(building_materials_brick_urban['Building_type']=='Semi-detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_sem_urb.index) material_brick_app_urban = building_materials_brick_urban.loc[(building_materials_brick_urban['Building_type']=='Appartments')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_app_urb.index) material_brick_hig_urban = building_materials_brick_urban.loc[(building_materials_brick_urban['Building_type']=='High-rise')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_hig_urb.index) materials_brick_office = materials_commercial_brick.loc[(materials_commercial_brick['Building_type']=='Offices')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_office.index) materials_brick_retail = materials_commercial_brick.loc[(materials_commercial_brick['Building_type']=='Retail+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_retail.index) materials_brick_hotels = materials_commercial_brick.loc[(materials_commercial_brick['Building_type']=='Hotels+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_hotels.index) materials_brick_govern = materials_commercial_brick.loc[(materials_commercial_brick['Building_type']=='Govt+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_govern.index) # concrete intensity material_concrete_det = building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_det_rur.index) material_concrete_sem = building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Semi-detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_sem_rur.index) material_concrete_app = building_materials_concrete.loc[(building_materials_concrete['Building_type']=='Appartments')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_app_rur.index) material_concrete_hig = building_materials_concrete.loc[(building_materials_concrete['Building_type']=='High-rise')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_hig_rur.index) materials_concrete_office = materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Offices')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_office.index) materials_concrete_retail = materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Retail+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_retail.index) materials_concrete_hotels = materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Hotels+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_hotels.index) materials_concrete_govern = materials_commercial_concrete.loc[(materials_commercial_concrete['Building_type']=='Govt+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_govern.index) # wood intensity material_wood_det = building_materials_wood.loc[(building_materials_wood['Building_type']=='Detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_det_rur.index) material_wood_sem = building_materials_wood.loc[(building_materials_wood['Building_type']=='Semi-detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_sem_rur.index) material_wood_app = building_materials_wood.loc[(building_materials_wood['Building_type']=='Appartments')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_app_rur.index) material_wood_hig = building_materials_wood.loc[(building_materials_wood['Building_type']=='High-rise')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_hig_rur.index) materials_wood_office = materials_commercial_wood.loc[(materials_commercial_wood['Building_type']=='Offices')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_office.index) materials_wood_retail = materials_commercial_wood.loc[(materials_commercial_wood['Building_type']=='Retail+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_retail.index) materials_wood_hotels = materials_commercial_wood.loc[(materials_commercial_wood['Building_type']=='Hotels+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_hotels.index) materials_wood_govern = materials_commercial_wood.loc[(materials_commercial_wood['Building_type']=='Govt+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_govern.index) # copper intensity material_copper_det = building_materials_copper.loc[(building_materials_copper['Building_type']=='Detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_det_rur.index) material_copper_sem = building_materials_copper.loc[(building_materials_copper['Building_type']=='Semi-detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_sem_rur.index) material_copper_app = building_materials_copper.loc[(building_materials_copper['Building_type']=='Appartments')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_app_rur.index) material_copper_hig = building_materials_copper.loc[(building_materials_copper['Building_type']=='High-rise')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_hig_rur.index) materials_copper_office = materials_commercial_copper.loc[(materials_commercial_copper['Building_type']=='Offices')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_office.index) materials_copper_retail = materials_commercial_copper.loc[(materials_commercial_copper['Building_type']=='Retail+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_retail.index) materials_copper_hotels = materials_commercial_copper.loc[(materials_commercial_copper['Building_type']=='Hotels+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_hotels.index) materials_copper_govern = materials_commercial_copper.loc[(materials_commercial_copper['Building_type']=='Govt+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_govern.index) # aluminium intensity material_aluminium_det = building_materials_aluminium.loc[(building_materials_aluminium['Building_type']=='Detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_det_rur.index) material_aluminium_sem = building_materials_aluminium.loc[(building_materials_aluminium['Building_type']=='Semi-detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_sem_rur.index) material_aluminium_app = building_materials_aluminium.loc[(building_materials_aluminium['Building_type']=='Appartments')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_app_rur.index) material_aluminium_hig = building_materials_aluminium.loc[(building_materials_aluminium['Building_type']=='High-rise')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_hig_rur.index) materials_aluminium_office = materials_commercial_aluminium.loc[(materials_commercial_aluminium['Building_type']=='Offices')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_office.index) materials_aluminium_retail = materials_commercial_aluminium.loc[(materials_commercial_aluminium['Building_type']=='Retail+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_retail.index) materials_aluminium_hotels = materials_commercial_aluminium.loc[(materials_commercial_aluminium['Building_type']=='Hotels+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_hotels.index) materials_aluminium_govern = materials_commercial_aluminium.loc[(materials_commercial_aluminium['Building_type']=='Govt+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_govern.index) # glass intensity material_glass_det = building_materials_glass.loc[(building_materials_glass['Building_type']=='Detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_det_rur.index) material_glass_sem = building_materials_glass.loc[(building_materials_glass['Building_type']=='Semi-detached')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_sem_rur.index) material_glass_app = building_materials_glass.loc[(building_materials_glass['Building_type']=='Appartments')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_app_rur.index) material_glass_hig = building_materials_glass.loc[(building_materials_glass['Building_type']=='High-rise')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(m2_hig_rur.index) materials_glass_office = materials_commercial_glass.loc[(materials_commercial_glass['Building_type']=='Offices')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_office.index) materials_glass_retail = materials_commercial_glass.loc[(materials_commercial_glass['Building_type']=='Retail+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_retail.index) materials_glass_hotels = materials_commercial_glass.loc[(materials_commercial_glass['Building_type']=='Hotels+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_hotels.index) materials_glass_govern = materials_commercial_glass.loc[(materials_commercial_glass['Building_type']=='Govt+')].set_index('Region').drop(['Building_type'],axis = 1).T.set_index(commercial_m2_govern.index) #%% Material inflow & outflow #% Material inflow (Millions of kgs = *1000 tons) # steel kg_det_rur_steel_i = m2_det_rur_i * material_steel_det kg_sem_rur_steel_i = m2_sem_rur_i * material_steel_sem kg_app_rur_steel_i = m2_app_rur_i * material_steel_app kg_hig_rur_steel_i = m2_hig_rur_i * material_steel_hig kg_det_urb_steel_i = m2_det_urb_i * material_steel_det kg_sem_urb_steel_i = m2_sem_urb_i * material_steel_sem kg_app_urb_steel_i = m2_app_urb_i * material_steel_app kg_hig_urb_steel_i = m2_hig_urb_i * material_steel_hig kg_office_steel_i = m2_office_i * materials_steel_office kg_retail_steel_i = m2_retail_i * materials_steel_retail kg_hotels_steel_i = m2_hotels_i * materials_steel_hotels kg_govern_steel_i = m2_govern_i * materials_steel_govern # brick kg_det_rur_brick_i = m2_det_rur_i * material_brick_det_rural kg_sem_rur_brick_i = m2_sem_rur_i * material_brick_sem_rural kg_app_rur_brick_i = m2_app_rur_i * material_brick_app_rural kg_hig_rur_brick_i = m2_hig_rur_i * material_brick_hig_rural kg_det_urb_brick_i = m2_det_urb_i * material_brick_det_urban kg_sem_urb_brick_i = m2_sem_urb_i * material_brick_sem_urban kg_app_urb_brick_i = m2_app_urb_i * material_brick_app_urban kg_hig_urb_brick_i = m2_hig_urb_i * material_brick_hig_urban kg_office_brick_i = m2_office_i * materials_brick_office kg_retail_brick_i = m2_retail_i * materials_brick_retail kg_hotels_brick_i = m2_hotels_i * materials_brick_hotels kg_govern_brick_i = m2_govern_i * materials_brick_govern # concrete kg_det_rur_concrete_i = m2_det_rur_i * material_concrete_det kg_sem_rur_concrete_i = m2_sem_rur_i * material_concrete_sem kg_app_rur_concrete_i = m2_app_rur_i * material_concrete_app kg_hig_rur_concrete_i = m2_hig_rur_i * material_concrete_hig kg_det_urb_concrete_i = m2_det_urb_i * material_concrete_det kg_sem_urb_concrete_i = m2_sem_urb_i * material_concrete_sem kg_app_urb_concrete_i = m2_app_urb_i * material_concrete_app kg_hig_urb_concrete_i = m2_hig_urb_i * material_concrete_hig kg_office_concrete_i = m2_office_i * materials_concrete_office kg_retail_concrete_i = m2_retail_i * materials_concrete_retail kg_hotels_concrete_i = m2_hotels_i * materials_concrete_hotels kg_govern_concrete_i = m2_govern_i * materials_concrete_govern # wood kg_det_rur_wood_i = m2_det_rur_i * material_wood_det kg_sem_rur_wood_i = m2_sem_rur_i * material_wood_sem kg_app_rur_wood_i = m2_app_rur_i * material_wood_app kg_hig_rur_wood_i = m2_hig_rur_i * material_wood_hig kg_det_urb_wood_i = m2_det_urb_i * material_wood_det kg_sem_urb_wood_i = m2_sem_urb_i * material_wood_sem kg_app_urb_wood_i = m2_app_urb_i * material_wood_app kg_hig_urb_wood_i = m2_hig_urb_i * material_wood_hig kg_office_wood_i = m2_office_i * materials_wood_office kg_retail_wood_i = m2_retail_i * materials_wood_retail kg_hotels_wood_i = m2_hotels_i * materials_wood_hotels kg_govern_wood_i = m2_govern_i * materials_wood_govern # copper kg_det_rur_copper_i = m2_det_rur_i * material_copper_det kg_sem_rur_copper_i = m2_sem_rur_i * material_copper_sem kg_app_rur_copper_i = m2_app_rur_i * material_copper_app kg_hig_rur_copper_i = m2_hig_rur_i * material_copper_hig kg_det_urb_copper_i = m2_det_urb_i * material_copper_det kg_sem_urb_copper_i = m2_sem_urb_i * material_copper_sem kg_app_urb_copper_i = m2_app_urb_i * material_copper_app kg_hig_urb_copper_i = m2_hig_urb_i * material_copper_hig kg_office_copper_i = m2_office_i * materials_copper_office kg_retail_copper_i = m2_retail_i * materials_copper_retail kg_hotels_copper_i = m2_hotels_i * materials_copper_hotels kg_govern_copper_i = m2_govern_i * materials_copper_govern # aluminium kg_det_rur_aluminium_i = m2_det_rur_i * material_aluminium_det kg_sem_rur_aluminium_i = m2_sem_rur_i * material_aluminium_sem kg_app_rur_aluminium_i = m2_app_rur_i * material_aluminium_app kg_hig_rur_aluminium_i = m2_hig_rur_i * material_aluminium_hig kg_det_urb_aluminium_i = m2_det_urb_i * material_aluminium_det kg_sem_urb_aluminium_i = m2_sem_urb_i * material_aluminium_sem kg_app_urb_aluminium_i = m2_app_urb_i * material_aluminium_app kg_hig_urb_aluminium_i = m2_hig_urb_i * material_aluminium_hig kg_office_aluminium_i = m2_office_i * materials_aluminium_office kg_retail_aluminium_i = m2_retail_i * materials_aluminium_retail kg_hotels_aluminium_i = m2_hotels_i * materials_aluminium_hotels kg_govern_aluminium_i = m2_govern_i * materials_aluminium_govern # glass kg_det_rur_glass_i = m2_det_rur_i * material_glass_det kg_sem_rur_glass_i = m2_sem_rur_i * material_glass_sem kg_app_rur_glass_i = m2_app_rur_i * material_glass_app kg_hig_rur_glass_i = m2_hig_rur_i * material_glass_hig kg_det_urb_glass_i = m2_det_urb_i * material_glass_det kg_sem_urb_glass_i = m2_sem_urb_i * material_glass_sem kg_app_urb_glass_i = m2_app_urb_i * material_glass_app kg_hig_urb_glass_i = m2_hig_urb_i * material_glass_hig kg_office_glass_i = m2_office_i * materials_glass_office kg_retail_glass_i = m2_retail_i * materials_glass_retail kg_hotels_glass_i = m2_hotels_i * materials_glass_hotels kg_govern_glass_i = m2_govern_i * materials_glass_govern #% Material outflow (Millions of kgs = *1000 tons) # first define a function for calculating the material outflow by cohort def material_outflow(m2_outflow_cohort,material_density): emp = [] for i in range(0,26): md = material_density.iloc[:,i] m2 = m2_outflow_cohort.loc[:,(i+1,1721):(i+1,2060)] m2.columns = md.index material_outflow_cohort = m2*md material_outflow_cohort_sum = material_outflow_cohort.sum(1) emp.append(material_outflow_cohort_sum) result = pd.DataFrame(emp) result.index = range(1, 27) return result.T # steel outflow kg_det_rur_steel_o = material_outflow(m2_det_rur_oc, material_steel_det) kg_sem_rur_steel_o = material_outflow(m2_sem_rur_oc, material_steel_sem) kg_app_rur_steel_o = material_outflow(m2_app_rur_oc, material_steel_app) kg_hig_rur_steel_o = material_outflow(m2_hig_rur_oc, material_steel_hig) kg_det_urb_steel_o = material_outflow(m2_det_urb_oc, material_steel_det) kg_sem_urb_steel_o = material_outflow(m2_sem_urb_oc, material_steel_sem) kg_app_urb_steel_o = material_outflow(m2_app_urb_oc, material_steel_app) kg_hig_urb_steel_o = material_outflow(m2_hig_urb_oc, material_steel_hig) kg_office_steel_o = material_outflow(m2_office_oc, materials_steel_office) kg_retail_steel_o = material_outflow(m2_retail_oc, materials_steel_retail) kg_hotels_steel_o = material_outflow(m2_hotels_oc, materials_steel_hotels) kg_govern_steel_o = material_outflow(m2_govern_oc, materials_steel_govern) # brick outflow kg_det_rur_brick_o = material_outflow(m2_det_rur_oc, material_brick_det_rural) kg_sem_rur_brick_o = material_outflow(m2_sem_rur_oc, material_brick_sem_rural) kg_app_rur_brick_o = material_outflow(m2_app_rur_oc, material_brick_app_rural) kg_hig_rur_brick_o = material_outflow(m2_hig_rur_oc, material_brick_hig_rural) kg_det_urb_brick_o = material_outflow(m2_det_urb_oc, material_brick_det_urban) kg_sem_urb_brick_o = material_outflow(m2_sem_urb_oc, material_brick_sem_urban) kg_app_urb_brick_o = material_outflow(m2_app_urb_oc, material_brick_app_urban) kg_hig_urb_brick_o = material_outflow(m2_hig_urb_oc, material_brick_hig_urban) kg_office_brick_o = material_outflow(m2_office_oc, materials_brick_office) kg_retail_brick_o = material_outflow(m2_retail_oc, materials_brick_retail) kg_hotels_brick_o = material_outflow(m2_hotels_oc, materials_brick_hotels) kg_govern_brick_o = material_outflow(m2_govern_oc, materials_brick_govern) # concrete outflow kg_det_rur_concrete_o = material_outflow(m2_det_rur_oc,material_concrete_det) kg_sem_rur_concrete_o = material_outflow(m2_sem_rur_oc, material_concrete_sem) kg_app_rur_concrete_o = material_outflow(m2_app_rur_oc, material_concrete_app) kg_hig_rur_concrete_o = material_outflow(m2_hig_rur_oc, material_concrete_hig) kg_det_urb_concrete_o = material_outflow(m2_det_urb_oc, material_concrete_det) kg_sem_urb_concrete_o = material_outflow(m2_sem_urb_oc, material_concrete_sem) kg_app_urb_concrete_o = material_outflow(m2_app_urb_oc, material_concrete_app) kg_hig_urb_concrete_o = material_outflow(m2_hig_urb_oc, material_concrete_hig) kg_office_concrete_o = material_outflow(m2_office_oc, materials_concrete_office) kg_retail_concrete_o = material_outflow(m2_retail_oc, materials_concrete_retail) kg_hotels_concrete_o = material_outflow(m2_hotels_oc, materials_concrete_hotels) kg_govern_concrete_o = material_outflow(m2_govern_oc, materials_concrete_govern) # wood outflow kg_det_rur_wood_o = material_outflow(m2_det_rur_oc, material_wood_det) kg_sem_rur_wood_o = material_outflow(m2_sem_rur_oc, material_wood_sem) kg_app_rur_wood_o = material_outflow(m2_app_rur_oc, material_wood_app) kg_hig_rur_wood_o = material_outflow(m2_hig_rur_oc, material_wood_hig) kg_det_urb_wood_o = material_outflow(m2_det_urb_oc, material_wood_det) kg_sem_urb_wood_o = material_outflow(m2_sem_urb_oc, material_wood_sem) kg_app_urb_wood_o = material_outflow(m2_app_urb_oc, material_wood_app) kg_hig_urb_wood_o = material_outflow(m2_hig_urb_oc, material_wood_hig) kg_office_wood_o = material_outflow(m2_office_oc, materials_wood_office) kg_retail_wood_o = material_outflow(m2_retail_oc, materials_wood_retail) kg_hotels_wood_o = material_outflow(m2_hotels_oc, materials_wood_hotels) kg_govern_wood_o = material_outflow(m2_govern_oc, materials_wood_govern) # copper outflow kg_det_rur_copper_o = material_outflow(m2_det_rur_oc, material_copper_det) kg_sem_rur_copper_o = material_outflow(m2_sem_rur_oc, material_copper_sem) kg_app_rur_copper_o = material_outflow(m2_app_rur_oc, material_copper_app) kg_hig_rur_copper_o = material_outflow(m2_hig_rur_oc, material_copper_hig) kg_det_urb_copper_o = material_outflow(m2_det_urb_oc, material_copper_det) kg_sem_urb_copper_o = material_outflow(m2_sem_urb_oc, material_copper_sem) kg_app_urb_copper_o = material_outflow(m2_app_urb_oc, material_copper_app) kg_hig_urb_copper_o = material_outflow(m2_hig_urb_oc, material_copper_hig) kg_office_copper_o = material_outflow(m2_office_oc, materials_copper_office) kg_retail_copper_o = material_outflow(m2_retail_oc, materials_copper_retail) kg_hotels_copper_o = material_outflow(m2_hotels_oc, materials_copper_hotels) kg_govern_copper_o = material_outflow(m2_govern_oc, materials_copper_govern) # aluminium outflow kg_det_rur_aluminium_o = material_outflow(m2_det_rur_oc, material_aluminium_det) kg_sem_rur_aluminium_o = material_outflow(m2_sem_rur_oc, material_aluminium_sem) kg_app_rur_aluminium_o = material_outflow(m2_app_rur_oc, material_aluminium_app) kg_hig_rur_aluminium_o = material_outflow(m2_hig_rur_oc, material_aluminium_hig) kg_det_urb_aluminium_o = material_outflow(m2_det_urb_oc, material_aluminium_det) kg_sem_urb_aluminium_o = material_outflow(m2_sem_urb_oc, material_aluminium_sem) kg_app_urb_aluminium_o = material_outflow(m2_app_urb_oc, material_aluminium_app) kg_hig_urb_aluminium_o = material_outflow(m2_hig_urb_oc, material_aluminium_hig) kg_office_aluminium_o = material_outflow(m2_office_oc, materials_aluminium_office) kg_retail_aluminium_o = material_outflow(m2_retail_oc, materials_aluminium_retail) kg_hotels_aluminium_o = material_outflow(m2_hotels_oc, materials_aluminium_hotels) kg_govern_aluminium_o = material_outflow(m2_govern_oc, materials_aluminium_govern) # glass outflow kg_det_rur_glass_o = material_outflow(m2_det_rur_oc, material_glass_det) kg_sem_rur_glass_o = material_outflow(m2_sem_rur_oc, material_glass_sem) kg_app_rur_glass_o = material_outflow(m2_app_rur_oc, material_glass_app) kg_hig_rur_glass_o = material_outflow(m2_hig_rur_oc, material_glass_hig) kg_det_urb_glass_o = material_outflow(m2_det_urb_oc, material_glass_det) kg_sem_urb_glass_o = material_outflow(m2_sem_urb_oc, material_glass_sem) kg_app_urb_glass_o = material_outflow(m2_app_urb_oc, material_glass_app) kg_hig_urb_glass_o = material_outflow(m2_hig_urb_oc, material_glass_hig) kg_office_glass_o = material_outflow(m2_office_oc, materials_glass_office) kg_retail_glass_o = material_outflow(m2_retail_oc, materials_glass_retail) kg_hotels_glass_o = material_outflow(m2_hotels_oc, materials_glass_hotels) kg_govern_glass_o = material_outflow(m2_govern_oc, materials_glass_govern) #%% CSV output (material inflow & outflow) # first, define a function to transpose + combine all variables & add columns to identify material, area & appartment type. Only for csv output length = 2 tag = ['inflow', 'outflow'] def preprocess(inflow, outflow, area, building, material): output_combined = [[]] * length output_combined[0] = inflow.transpose() output_combined[1] = outflow.transpose() for item in range(0,length): output_combined[item].insert(0,'material', [material] * 26) output_combined[item].insert(0,'area', [area] * 26) output_combined[item].insert(0,'type', [building] * 26) output_combined[item].insert(0,'flow', [tag[item]] * 26) return output_combined # steel output kg_det_rur_steel_out = preprocess(kg_det_rur_steel_i, kg_det_rur_steel_o, 'rural','detached', 'steel') kg_sem_rur_steel_out = preprocess(kg_sem_rur_steel_i, kg_sem_rur_steel_o, 'rural','semi-detached', 'steel') kg_app_rur_steel_out = preprocess(kg_app_rur_steel_i, kg_app_rur_steel_o, 'rural','appartments', 'steel') kg_hig_rur_steel_out = preprocess(kg_hig_rur_steel_i, kg_hig_rur_steel_o, 'rural','high-rise', 'steel') kg_det_urb_steel_out = preprocess(kg_det_urb_steel_i, kg_det_urb_steel_o, 'urban','detached', 'steel') kg_sem_urb_steel_out = preprocess(kg_sem_urb_steel_i, kg_sem_urb_steel_o, 'urban','semi-detached', 'steel') kg_app_urb_steel_out = preprocess(kg_app_urb_steel_i, kg_app_urb_steel_o, 'urban','appartments', 'steel') kg_hig_urb_steel_out = preprocess(kg_hig_urb_steel_i, kg_hig_urb_steel_o, 'urban','high-rise', 'steel') kg_office_steel_out = preprocess(kg_office_steel_i, kg_office_steel_o, 'commercial','office', 'steel') kg_retail_steel_out = preprocess(kg_retail_steel_i, kg_retail_steel_o, 'commercial','retail', 'steel') kg_hotels_steel_out = preprocess(kg_hotels_steel_i, kg_hotels_steel_o, 'commercial','hotels', 'steel') kg_govern_steel_out = preprocess(kg_govern_steel_i, kg_govern_steel_o, 'commercial','govern', 'steel') # brick output kg_det_rur_brick_out = preprocess(kg_det_rur_brick_i, kg_det_rur_brick_o, 'rural','detached', 'brick') kg_sem_rur_brick_out = preprocess(kg_sem_rur_brick_i, kg_sem_rur_brick_o, 'rural','semi-detached', 'brick') kg_app_rur_brick_out = preprocess(kg_app_rur_brick_i, kg_app_rur_brick_o, 'rural','appartments', 'brick') kg_hig_rur_brick_out = preprocess(kg_hig_rur_brick_i, kg_hig_rur_brick_o, 'rural','high-rise', 'brick') kg_det_urb_brick_out = preprocess(kg_det_urb_brick_i, kg_det_urb_brick_o, 'urban','detached', 'brick') kg_sem_urb_brick_out = preprocess(kg_sem_urb_brick_i, kg_sem_urb_brick_o, 'urban','semi-detached', 'brick') kg_app_urb_brick_out = preprocess(kg_app_urb_brick_i, kg_app_urb_brick_o, 'urban','appartments', 'brick') kg_hig_urb_brick_out = preprocess(kg_hig_urb_brick_i, kg_hig_urb_brick_o, 'urban','high-rise', 'brick') kg_office_brick_out = preprocess(kg_office_brick_i, kg_office_brick_o, 'commercial','office', 'brick') kg_retail_brick_out = preprocess(kg_retail_brick_i, kg_retail_brick_o, 'commercial','retail', 'brick') kg_hotels_brick_out = preprocess(kg_hotels_brick_i, kg_hotels_brick_o, 'commercial','hotels', 'brick') kg_govern_brick_out = preprocess(kg_govern_brick_i, kg_govern_brick_o, 'commercial','govern', 'brick') # concrete output kg_det_rur_concrete_out = preprocess(kg_det_rur_concrete_i, kg_det_rur_concrete_o, 'rural','detached', 'concrete') kg_sem_rur_concrete_out = preprocess(kg_sem_rur_concrete_i, kg_sem_rur_concrete_o, 'rural','semi-detached', 'concrete') kg_app_rur_concrete_out = preprocess(kg_app_rur_concrete_i, kg_app_rur_concrete_o, 'rural','appartments', 'concrete') kg_hig_rur_concrete_out = preprocess(kg_hig_rur_concrete_i, kg_hig_rur_concrete_o, 'rural','high-rise', 'concrete') kg_det_urb_concrete_out = preprocess(kg_det_urb_concrete_i, kg_det_urb_concrete_o, 'urban','detached', 'concrete') kg_sem_urb_concrete_out = preprocess(kg_sem_urb_concrete_i, kg_sem_urb_concrete_o, 'urban','semi-detached', 'concrete') kg_app_urb_concrete_out = preprocess(kg_app_urb_concrete_i, kg_app_urb_concrete_o, 'urban','appartments', 'concrete') kg_hig_urb_concrete_out = preprocess(kg_hig_urb_concrete_i, kg_hig_urb_concrete_o, 'urban','high-rise', 'concrete') kg_office_concrete_out = preprocess(kg_office_concrete_i, kg_office_concrete_o, 'commercial','office', 'concrete') kg_retail_concrete_out = preprocess(kg_retail_concrete_i, kg_retail_concrete_o, 'commercial','retail', 'concrete') kg_hotels_concrete_out = preprocess(kg_hotels_concrete_i, kg_hotels_concrete_o, 'commercial','hotels', 'concrete') kg_govern_concrete_out = preprocess(kg_govern_concrete_i, kg_govern_concrete_o, 'commercial','govern', 'concrete') # wood output kg_det_rur_wood_out = preprocess(kg_det_rur_wood_i, kg_det_rur_wood_o, 'rural','detached', 'wood') kg_sem_rur_wood_out = preprocess(kg_sem_rur_wood_i, kg_sem_rur_wood_o, 'rural','semi-detached', 'wood') kg_app_rur_wood_out = preprocess(kg_app_rur_wood_i, kg_app_rur_wood_o, 'rural','appartments', 'wood') kg_hig_rur_wood_out = preprocess(kg_hig_rur_wood_i, kg_hig_rur_wood_o, 'rural','high-rise', 'wood') kg_det_urb_wood_out = preprocess(kg_det_urb_wood_i, kg_det_urb_wood_o, 'urban','detached', 'wood') kg_sem_urb_wood_out = preprocess(kg_sem_urb_wood_i, kg_sem_urb_wood_o, 'urban','semi-detached', 'wood') kg_app_urb_wood_out = preprocess(kg_app_urb_wood_i, kg_app_urb_wood_o, 'urban','appartments', 'wood') kg_hig_urb_wood_out = preprocess(kg_hig_urb_wood_i, kg_hig_urb_wood_o, 'urban','high-rise', 'wood') kg_office_wood_out = preprocess(kg_office_wood_i, kg_office_wood_o, 'commercial','office', 'wood') kg_retail_wood_out = preprocess(kg_retail_wood_i, kg_retail_wood_o, 'commercial','retail', 'wood') kg_hotels_wood_out = preprocess(kg_hotels_wood_i, kg_hotels_wood_o, 'commercial','hotels', 'wood') kg_govern_wood_out = preprocess(kg_govern_wood_i, kg_govern_wood_o, 'commercial','govern', 'wood') # copper output kg_det_rur_copper_out = preprocess(kg_det_rur_copper_i, kg_det_rur_copper_o, 'rural','detached', 'copper') kg_sem_rur_copper_out = preprocess(kg_sem_rur_copper_i, kg_sem_rur_copper_o, 'rural','semi-detached', 'copper') kg_app_rur_copper_out = preprocess(kg_app_rur_copper_i, kg_app_rur_copper_o, 'rural','appartments', 'copper') kg_hig_rur_copper_out = preprocess(kg_hig_rur_copper_i, kg_hig_rur_copper_o, 'rural','high-rise', 'copper') kg_det_urb_copper_out = preprocess(kg_det_urb_copper_i, kg_det_urb_copper_o, 'urban','detached', 'copper') kg_sem_urb_copper_out = preprocess(kg_sem_urb_copper_i, kg_sem_urb_copper_o, 'urban','semi-detached', 'copper') kg_app_urb_copper_out = preprocess(kg_app_urb_copper_i, kg_app_urb_copper_o, 'urban','appartments', 'copper') kg_hig_urb_copper_out = preprocess(kg_hig_urb_copper_i, kg_hig_urb_copper_o, 'urban','high-rise', 'copper') kg_office_copper_out = preprocess(kg_office_copper_i, kg_office_copper_o, 'commercial','office', 'copper') kg_retail_copper_out = preprocess(kg_retail_copper_i, kg_retail_copper_o, 'commercial','retail', 'copper') kg_hotels_copper_out = preprocess(kg_hotels_copper_i, kg_hotels_copper_o, 'commercial','hotels', 'copper') kg_govern_copper_out = preprocess(kg_govern_copper_i, kg_govern_copper_o, 'commercial','govern', 'copper') # aluminium output kg_det_rur_aluminium_out = preprocess(kg_det_rur_aluminium_i, kg_det_rur_aluminium_o, 'rural','detached', 'aluminium') kg_sem_rur_aluminium_out = preprocess(kg_sem_rur_aluminium_i, kg_sem_rur_aluminium_o, 'rural','semi-detached', 'aluminium') kg_app_rur_aluminium_out = preprocess(kg_app_rur_aluminium_i, kg_app_rur_aluminium_o, 'rural','appartments', 'aluminium') kg_hig_rur_aluminium_out = preprocess(kg_hig_rur_aluminium_i, kg_hig_rur_aluminium_o, 'rural','high-rise', 'aluminium') kg_det_urb_aluminium_out = preprocess(kg_det_urb_aluminium_i, kg_det_urb_aluminium_o, 'urban','detached', 'aluminium') kg_sem_urb_aluminium_out = preprocess(kg_sem_urb_aluminium_i, kg_sem_urb_aluminium_o, 'urban','semi-detached', 'aluminium') kg_app_urb_aluminium_out = preprocess(kg_app_urb_aluminium_i, kg_app_urb_aluminium_o, 'urban','appartments', 'aluminium') kg_hig_urb_aluminium_out = preprocess(kg_hig_urb_aluminium_i, kg_hig_urb_aluminium_o, 'urban','high-rise', 'aluminium') kg_office_aluminium_out = preprocess(kg_office_aluminium_i, kg_office_aluminium_o, 'commercial','office', 'aluminium') kg_retail_aluminium_out = preprocess(kg_retail_aluminium_i, kg_retail_aluminium_o, 'commercial','retail', 'aluminium') kg_hotels_aluminium_out = preprocess(kg_hotels_aluminium_i, kg_hotels_aluminium_o, 'commercial','hotels', 'aluminium') kg_govern_aluminium_out = preprocess(kg_govern_aluminium_i, kg_govern_aluminium_o, 'commercial','govern', 'aluminium') # glass output kg_det_rur_glass_out = preprocess(kg_det_rur_glass_i, kg_det_rur_glass_o, 'rural','detached', 'glass') kg_sem_rur_glass_out = preprocess(kg_sem_rur_glass_i, kg_sem_rur_glass_o, 'rural','semi-detached', 'glass') kg_app_rur_glass_out = preprocess(kg_app_rur_glass_i, kg_app_rur_glass_o, 'rural','appartments', 'glass') kg_hig_rur_glass_out = preprocess(kg_hig_rur_glass_i, kg_hig_rur_glass_o, 'rural','high-rise', 'glass') kg_det_urb_glass_out = preprocess(kg_det_urb_glass_i, kg_det_urb_glass_o, 'urban','detached', 'glass') kg_sem_urb_glass_out = preprocess(kg_sem_urb_glass_i, kg_sem_urb_glass_o, 'urban','semi-detached', 'glass') kg_app_urb_glass_out = preprocess(kg_app_urb_glass_i, kg_app_urb_glass_o, 'urban','appartments', 'glass') kg_hig_urb_glass_out = preprocess(kg_hig_urb_glass_i, kg_hig_urb_glass_o, 'urban','high-rise', 'glass') kg_office_glass_out = preprocess(kg_office_glass_i, kg_office_glass_o, 'commercial','office', 'glass') kg_retail_glass_out = preprocess(kg_retail_glass_i, kg_retail_glass_o, 'commercial','retail', 'glass') kg_hotels_glass_out = preprocess(kg_hotels_glass_i, kg_hotels_glass_o, 'commercial','hotels', 'glass') kg_govern_glass_out = preprocess(kg_govern_glass_i, kg_govern_glass_o, 'commercial','govern', 'glass') # stack into 1 dataframe frames = [kg_det_rur_steel_out[0], kg_det_rur_brick_out[0], kg_det_rur_concrete_out[0], kg_det_rur_wood_out[0], kg_det_rur_copper_out[0], kg_det_rur_aluminium_out[0], kg_det_rur_glass_out[0], kg_sem_rur_steel_out[0], kg_sem_rur_brick_out[0], kg_sem_rur_concrete_out[0], kg_sem_rur_wood_out[0], kg_sem_rur_copper_out[0], kg_sem_rur_aluminium_out[0], kg_sem_rur_glass_out[0], kg_app_rur_steel_out[0], kg_app_rur_brick_out[0], kg_app_rur_concrete_out[0], kg_app_rur_wood_out[0], kg_app_rur_copper_out[0], kg_app_rur_aluminium_out[0], kg_app_rur_glass_out[0], kg_hig_rur_steel_out[0], kg_hig_rur_brick_out[0], kg_hig_rur_concrete_out[0], kg_hig_rur_wood_out[0], kg_hig_rur_copper_out[0], kg_hig_rur_aluminium_out[0], kg_hig_rur_glass_out[0], kg_det_urb_steel_out[0], kg_det_urb_brick_out[0], kg_det_urb_concrete_out[0], kg_det_urb_wood_out[0], kg_det_urb_copper_out[0], kg_det_urb_aluminium_out[0], kg_det_urb_glass_out[0], kg_sem_urb_steel_out[0], kg_sem_urb_brick_out[0], kg_sem_urb_concrete_out[0], kg_sem_urb_wood_out[0], kg_sem_urb_copper_out[0], kg_sem_urb_aluminium_out[0], kg_sem_urb_glass_out[0], kg_app_urb_steel_out[0], kg_app_urb_brick_out[0], kg_app_urb_concrete_out[0], kg_app_urb_wood_out[0], kg_app_urb_copper_out[0], kg_app_urb_aluminium_out[0], kg_app_urb_glass_out[0], kg_hig_urb_steel_out[0], kg_hig_urb_brick_out[0], kg_hig_urb_concrete_out[0], kg_hig_urb_wood_out[0], kg_hig_urb_copper_out[0], kg_hig_urb_aluminium_out[0], kg_hig_urb_glass_out[0], kg_office_steel_out[0], kg_office_brick_out[0], kg_office_concrete_out[0], kg_office_wood_out[0], kg_office_copper_out[0], kg_office_aluminium_out[0], kg_office_glass_out[0], kg_retail_steel_out[0], kg_retail_brick_out[0], kg_retail_concrete_out[0], kg_retail_wood_out[0], kg_retail_copper_out[0], kg_retail_aluminium_out[0], kg_retail_glass_out[0], kg_hotels_steel_out[0], kg_hotels_brick_out[0], kg_hotels_concrete_out[0], kg_hotels_wood_out[0], kg_hotels_copper_out[0], kg_hotels_aluminium_out[0], kg_hotels_glass_out[0], kg_govern_steel_out[0], kg_govern_brick_out[0], kg_govern_concrete_out[0], kg_govern_wood_out[0], kg_govern_copper_out[0], kg_govern_aluminium_out[0], kg_govern_glass_out[0], kg_det_rur_steel_out[1], kg_det_rur_brick_out[1], kg_det_rur_concrete_out[1], kg_det_rur_wood_out[1], kg_det_rur_copper_out[1], kg_det_rur_aluminium_out[1], kg_det_rur_glass_out[1], kg_sem_rur_steel_out[1], kg_sem_rur_brick_out[1], kg_sem_rur_concrete_out[1], kg_sem_rur_wood_out[1], kg_sem_rur_copper_out[1], kg_sem_rur_aluminium_out[1], kg_sem_rur_glass_out[1], kg_app_rur_steel_out[1], kg_app_rur_brick_out[1], kg_app_rur_concrete_out[1], kg_app_rur_wood_out[1], kg_app_rur_copper_out[1], kg_app_rur_aluminium_out[1], kg_app_rur_glass_out[1], kg_hig_rur_steel_out[1], kg_hig_rur_brick_out[1], kg_hig_rur_concrete_out[1], kg_hig_rur_wood_out[1], kg_hig_rur_copper_out[1], kg_hig_rur_aluminium_out[1], kg_hig_rur_glass_out[1], kg_det_urb_steel_out[1], kg_det_urb_brick_out[1], kg_det_urb_concrete_out[1], kg_det_urb_wood_out[1], kg_det_urb_copper_out[1], kg_det_urb_aluminium_out[1], kg_det_urb_glass_out[1], kg_sem_urb_steel_out[1], kg_sem_urb_brick_out[1], kg_sem_urb_concrete_out[1], kg_sem_urb_wood_out[1], kg_sem_urb_copper_out[1], kg_sem_urb_aluminium_out[1], kg_sem_urb_glass_out[1], kg_app_urb_steel_out[1], kg_app_urb_brick_out[1], kg_app_urb_concrete_out[1], kg_app_urb_wood_out[1], kg_app_urb_copper_out[1], kg_app_urb_aluminium_out[1], kg_app_urb_glass_out[1], kg_hig_urb_steel_out[1], kg_hig_urb_brick_out[1], kg_hig_urb_concrete_out[1], kg_hig_urb_wood_out[1], kg_hig_urb_copper_out[1], kg_hig_urb_aluminium_out[1], kg_hig_urb_glass_out[1], kg_office_steel_out[1], kg_office_brick_out[1], kg_office_concrete_out[1], kg_office_wood_out[1], kg_office_copper_out[1], kg_office_aluminium_out[1], kg_office_glass_out[1], kg_retail_steel_out[1], kg_retail_brick_out[1], kg_retail_concrete_out[1], kg_retail_wood_out[1], kg_retail_copper_out[1], kg_retail_aluminium_out[1], kg_retail_glass_out[1], kg_hotels_steel_out[1], kg_hotels_brick_out[1], kg_hotels_concrete_out[1], kg_hotels_wood_out[1], kg_hotels_copper_out[1], kg_hotels_aluminium_out[1], kg_hotels_glass_out[1], kg_govern_steel_out[1], kg_govern_brick_out[1], kg_govern_concrete_out[1], kg_govern_wood_out[1], kg_govern_copper_out[1], kg_govern_aluminium_out[1], kg_govern_glass_out[1] ] material_output =
pd.concat(frames)
pandas.concat
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import PerformanceWarning import pandas as pd from pandas import Period, PeriodIndex, Series, period_range from pandas.core import ops from pandas.core.arrays import TimedeltaArray import pandas.util.testing as tm from pandas.tseries.frequencies import to_offset # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", 2017]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != per, exp) tm.assert_equal(per != base, exp) exp = np.array([False, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > per, exp) tm.assert_equal(per < base, exp) exp = np.array([True, False, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < per, exp) tm.assert_equal(per > base, exp) exp = np.array([False, True, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= per, exp) tm.assert_equal(per <= base, exp) exp = np.array([True, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= per, exp) tm.assert_equal(per >= base, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) # TODO: could also box idx? idx = PeriodIndex(["2011-02", "2011-01", "2011-03", "2011-05"], freq=freq) exp = np.array([False, False, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == idx, exp) exp = np.array([True, True, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != idx, exp) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > idx, exp) exp = np.array([True, False, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < idx, exp) exp = np.array([False, True, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= idx, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= idx, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi_mismatched_freq_raises(self, freq, box_with_array): # GH#13200 # different base freq base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) msg = "Input has different freq=A-DEC from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="A") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="A") >= base # TODO: Could parametrize over boxes for idx? idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="A") rev_msg = ( r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=A-DEC\)" ) idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx # Different frequency msg = "Input has different freq=4M from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="4M") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="4M") >= base idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="4M") rev_msg = r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=4M\)" idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) result = idx1 > Period("2011-02", freq=freq) exp = np.array([False, False, False, True]) tm.assert_numpy_array_equal(result, exp) result = Period("2011-02", freq=freq) < idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 == Period("NaT", freq=freq) exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) == idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 != Period("NaT", freq=freq) exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) != idx1 tm.assert_numpy_array_equal(result, exp) idx2 = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq=freq) result = idx1 < idx2 exp = np.array([True, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx2 exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx2 exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx1 exp = np.array([True, True, False, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx1 exp = np.array([False, False, True, False]) tm.assert_numpy_array_equal(result, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat_mismatched_freq_raises(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) diff = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq="4M") msg = "Input has different freq=4M from Period(Array|Index)" with pytest.raises(IncompatibleFrequency, match=msg): idx1 > diff with pytest.raises(IncompatibleFrequency, match=msg): idx1 == diff # TODO: De-duplicate with test_pi_cmp_nat @pytest.mark.parametrize("dtype", [object, None]) def test_comp_nat(self, dtype): left = pd.PeriodIndex( [pd.Period("2011-01-01"), pd.NaT, pd.Period("2011-01-03")] ) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period("2011-01-03")]) if dtype is not None: left = left.astype(dtype) right = right.astype(dtype) result = left == right expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = left != right expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == right, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(left != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != left, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > left, expected) class TestPeriodSeriesComparisons: def test_cmp_series_period_series_mixed_freq(self): # GH#13200 base = Series( [ Period("2011", freq="A"), Period("2011-02", freq="M"), Period("2013", freq="A"), Period("2011-04", freq="M"), ] ) ser = Series( [ Period("2012", freq="A"), Period("2011-01", freq="M"), Period("2013", freq="A"), Period("2011-05", freq="M"), ] ) exp = Series([False, False, True, False]) tm.assert_series_equal(base == ser, exp) exp = Series([True, True, False, True]) tm.assert_series_equal(base != ser, exp) exp = Series([False, True, False, False]) tm.assert_series_equal(base > ser, exp) exp = Series([True, False, False, True]) tm.assert_series_equal(base < ser, exp) exp = Series([False, True, True, False]) tm.assert_series_equal(base >= ser, exp) exp = Series([True, False, True, True]) tm.assert_series_equal(base <= ser, exp) class TestPeriodIndexSeriesComparisonConsistency: """ Test PeriodIndex and Period Series Ops consistency """ # TODO: needs parametrization+de-duplication def _check(self, values, func, expected): # Test PeriodIndex and Period Series Ops consistency idx = pd.PeriodIndex(values) result = func(idx) # check that we don't pass an unwanted type to tm.assert_equal assert isinstance(expected, (pd.Index, np.ndarray)) tm.assert_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_comp_period(self): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.Period("2011-03", freq="M") exp = np.array([False, False, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) def test_pi_comp_period_nat(self): idx = PeriodIndex( ["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x == pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: x != pd.NaT exp = np.array([True, True, True, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x < pd.Period("2011-03", freq="M") exp = np.array([True, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT >= x exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) # ------------------------------------------------------------------ # Arithmetic class TestPeriodFrameArithmetic: def test_ops_frame_period(self): # GH#13043 df = pd.DataFrame( { "A": [pd.Period("2015-01", freq="M"), pd.Period("2015-02", freq="M")], "B": [pd.Period("2014-01", freq="M"), pd.Period("2014-02", freq="M")], } ) assert df["A"].dtype == "Period[M]" assert df["B"].dtype == "Period[M]" p = pd.Period("2015-03", freq="M") off = p.freq # dtype will be object because of original dtype exp = pd.DataFrame( { "A": np.array([2 * off, 1 * off], dtype=object), "B": np.array([14 * off, 13 * off], dtype=object), } ) tm.assert_frame_equal(p - df, exp) tm.assert_frame_equal(df - p, -1 * exp) df2 = pd.DataFrame( { "A": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], "B": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], } ) assert df2["A"].dtype == "Period[M]" assert df2["B"].dtype == "Period[M]" exp = pd.DataFrame( { "A": np.array([4 * off, 4 * off], dtype=object), "B": np.array([16 * off, 16 * off], dtype=object), } ) tm.assert_frame_equal(df2 - df, exp) tm.assert_frame_equal(df - df2, -1 * exp) class TestPeriodIndexArithmetic: # --------------------------------------------------------------- # __add__/__sub__ with PeriodIndex # PeriodIndex + other is defined for integers and timedelta-like others # PeriodIndex - other is defined for integers, timedelta-like others, # and PeriodIndex (with matching freq) def test_parr_add_iadd_parr_raises(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) # An earlier implementation of PeriodIndex addition performed # a set operation (union). This has since been changed to # raise a TypeError. See GH#14164 and GH#13077 for historical # reference. with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other def test_pi_sub_isub_pi(self): # GH#20049 # For historical reference see GH#14164, GH#13077. # PeriodIndex subtraction originally performed set difference, # then changed to raise TypeError before being implemented in GH#20049 rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) off = rng.freq expected = pd.Index([-5 * off] * 5) result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_sub_pi_with_nat(self): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = rng[1:].insert(0, pd.NaT) assert other[1:].equals(rng[1:]) result = rng - other off = rng.freq expected = pd.Index([pd.NaT, 0 * off, 0 * off, 0 * off, 0 * off]) tm.assert_index_equal(result, expected) def test_parr_sub_pi_mismatched_freq(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="H", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) with pytest.raises(IncompatibleFrequency): rng - other @pytest.mark.parametrize("n", [1, 2, 3, 4]) def test_sub_n_gt_1_ticks(self, tick_classes, n): # GH 23878 p1_d = "19910905" p2_d = "19920406" p1 = pd.PeriodIndex([p1_d], freq=tick_classes(n)) p2 = pd.PeriodIndex([p2_d], freq=tick_classes(n)) expected = pd.PeriodIndex([p2_d], freq=p2.freq.base) - pd.PeriodIndex( [p1_d], freq=p1.freq.base ) tm.assert_index_equal((p2 - p1), expected) @pytest.mark.parametrize("n", [1, 2, 3, 4]) @pytest.mark.parametrize( "offset, kwd_name", [ (pd.offsets.YearEnd, "month"), (pd.offsets.QuarterEnd, "startingMonth"), (pd.offsets.MonthEnd, None), (pd.offsets.Week, "weekday"), ], ) def test_sub_n_gt_1_offsets(self, offset, kwd_name, n): # GH 23878 kwds = {kwd_name: 3} if kwd_name is not None else {} p1_d = "19910905" p2_d = "19920406" freq = offset(n, normalize=False, **kwds) p1 = pd.PeriodIndex([p1_d], freq=freq) p2 = pd.PeriodIndex([p2_d], freq=freq) result = p2 - p1 expected = pd.PeriodIndex([p2_d], freq=freq.base) - pd.PeriodIndex( [p1_d], freq=freq.base ) tm.assert_index_equal(result, expected) # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize("other", [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub]) def test_parr_add_sub_float_raises(self, op, other, box_with_array): dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") pi = dti.to_period("D") pi = tm.box_expected(pi, box_with_array) with pytest.raises(TypeError): op(pi, other) @pytest.mark.parametrize( "other", [ # datetime scalars pd.Timestamp.now(), pd.Timestamp.now().to_pydatetime(), pd.Timestamp.now().to_datetime64(), # datetime-like arrays pd.date_range("2016-01-01", periods=3, freq="H"), pd.date_range("2016-01-01", periods=3, tz="Europe/Brussels"), pd.date_range("2016-01-01", periods=3, freq="S")._data, pd.date_range("2016-01-01", periods=3, tz="Asia/Tokyo")._data, # Miscellaneous invalid types ], ) def test_parr_add_sub_invalid(self, other, box_with_array): # GH#23215 rng = pd.period_range("1/1/2000", freq="D", periods=3) rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): other + rng with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): other - rng # ----------------------------------------------------------------- # __add__/__sub__ with ndarray[datetime64] and ndarray[timedelta64] def test_pi_add_sub_td64_array_non_tick_raises(self): rng = pd.period_range("1/1/2000", freq="Q", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values with pytest.raises(IncompatibleFrequency): rng + tdarr with pytest.raises(IncompatibleFrequency): tdarr + rng with pytest.raises(IncompatibleFrequency): rng - tdarr with pytest.raises(TypeError): tdarr - rng def test_pi_add_sub_td64_array_tick(self): # PeriodIndex + Timedelta-like is allowed only with # tick-like frequencies rng = pd.period_range("1/1/2000", freq="90D", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = pd.period_range("12/31/1999", freq="90D", periods=3) result = rng + tdi tm.assert_index_equal(result, expected) result = rng + tdarr tm.assert_index_equal(result, expected) result = tdi + rng tm.assert_index_equal(result, expected) result = tdarr + rng tm.assert_index_equal(result, expected) expected = pd.period_range("1/2/2000", freq="90D", periods=3) result = rng - tdi tm.assert_index_equal(result, expected) result = rng - tdarr tm.assert_index_equal(result, expected) with pytest.raises(TypeError): tdarr - rng with pytest.raises(TypeError): tdi - rng # ----------------------------------------------------------------- # operations with array/Index of DateOffset objects @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_add_offset_array(self, box): # GH#18849 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) offs = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = pd.PeriodIndex([pd.Period("2015Q2"), pd.Period("2015Q4")]) with tm.assert_produces_warning(PerformanceWarning): res = pi + offs tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = offs + pi tm.assert_index_equal(res2, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) # addition/subtraction ops with incompatible offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi + unanchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): unanchored + pi @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_sub_offset_array(self, box): # GH#18824 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) other = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = PeriodIndex([pi[n] - other[n] for n in range(len(pi))]) with tm.assert_produces_warning(PerformanceWarning): res = pi - other tm.assert_index_equal(res, expected) anchored = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi - anchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): anchored - pi def test_pi_add_iadd_int(self, one): # Variants of `one` for #19012 rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng + one expected = pd.period_range("2000-01-01 10:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) def test_pi_sub_isub_int(self, one): """ PeriodIndex.__sub__ and __isub__ with several representations of the integer 1, e.g. int, np.int64, np.uint8, ... """ rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng - one expected = pd.period_range("2000-01-01 08:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng -= one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize("five", [5, np.array(5, dtype=np.int64)]) def test_pi_sub_intlike(self, five): rng = period_range("2007-01", periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_pi_sub_isub_offset(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng - pd.offsets.YearEnd(5) expected = pd.period_range("2009", "2019", freq="A") tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) rng = pd.period_range("2014-01", "2016-12", freq="M") result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range("2013-08", "2016-07", freq="M") tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_offset_n_gt1(self, box_transpose_fail): # GH#23215 # add offset to PeriodIndex with freq.n > 1 box, transpose = box_transpose_fail per = pd.Period("2016-01", freq="2M") pi = pd.PeriodIndex([per]) expected = pd.PeriodIndex(["2016-03"], freq="2M") pi = tm.box_expected(pi, box, transpose=transpose) expected = tm.box_expected(expected, box, transpose=transpose) result = pi + per.freq tm.assert_equal(result, expected) result = per.freq + pi tm.assert_equal(result, expected) def test_pi_add_offset_n_gt1_not_divisible(self, box_with_array): # GH#23215 # PeriodIndex with freq.n > 1 add offset with offset.n % freq.n != 0 pi = pd.PeriodIndex(["2016-01"], freq="2M") expected = pd.PeriodIndex(["2016-04"], freq="2M") # FIXME: with transposing these tests fail pi = tm.box_expected(pi, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = pi + to_offset("3M") tm.assert_equal(result, expected) result = to_offset("3M") + pi tm.assert_equal(result, expected) # --------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_pi_add_intarray(self, int_holder, op): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = op(pi, other) expected = pd.PeriodIndex([pd.Period("2016Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_pi_sub_intarray(self, int_holder): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = pi - other expected = pd.PeriodIndex([
pd.Period("2014Q1")
pandas.Period
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((
pd.Timestamp("2015-01-15", tz="utc")
pandas.Timestamp
import os import time import uuid import yaml import logging import shutil import numpy as np import pandas as pd import multiprocessing as mp from functools import partial from astropy.time import Time from .config import Config from .config import Configuration from .clusters import find_clusters, filter_clusters_by_length from .cell import Cell from .orbit import TestOrbit from .orbits import Orbits from .orbits import generateEphemeris from .orbits import initialOrbitDetermination from .orbits import differentialCorrection from .orbits import mergeAndExtendOrbits from .observatories import getObserverState from .utils import _initWorker from .utils import _checkParallel os.environ['OPENBLAS_NUM_THREADS'] = '1' os.environ['MKL_NUM_THREADS'] = '1' logger = logging.getLogger("thor") __all__ = [ "rangeAndShift_worker", "rangeAndShift", "clusterVelocity", "clusterVelocity_worker", "clusterAndLink", "runTHOROrbit", "runTHOR", ] def rangeAndShift_worker(observations, ephemeris, cell_area=10): assert len(observations["mjd_utc"].unique()) == 1 assert len(ephemeris["mjd_utc"].unique()) == 1 assert observations["mjd_utc"].unique()[0] == ephemeris["mjd_utc"].unique()[0] observation_time = observations["mjd_utc"].unique()[0] # Create Cell centered on the sky-plane location of the # test orbit cell = Cell( ephemeris[["RA_deg", "Dec_deg"]].values[0], observation_time, area=cell_area, ) # Grab observations within cell cell.getObservations(observations) if len(cell.observations) != 0: # Create test orbit with state of orbit at visit time test_orbit = TestOrbit( ephemeris[["obj_x", "obj_y", "obj_z", "obj_vx", "obj_vy", "obj_vz"]].values[0], observation_time ) # Prepare rotation matrices test_orbit.prepare() # Apply rotation matrices and transform observations into the orbit's # frame of motion. test_orbit.applyToObservations(cell.observations) projected_observations = cell.observations else: projected_observations = pd.DataFrame() return projected_observations def clusterVelocity( obs_ids, x, y, dt, vx, vy, eps=0.005, min_obs=5, min_arc_length=1.0, alg="hotspot_2d", ): """ Clusters THOR projection with different velocities in the projection plane using `~scipy.cluster.DBSCAN`. Parameters ---------- obs_ids : `~numpy.ndarray' (N) Observation IDs. x : `~numpy.ndarray' (N) Projection space x coordinate in degrees or radians. y : `~numpy.ndarray' (N) Projection space y coordinate in degrees or radians. dt : `~numpy.ndarray' (N) Change in time from 0th exposure in units of MJD. vx : `~numpy.ndarray' (N) Projection space x velocity in units of degrees or radians per day in MJD. vy : `~numpy.ndarray' (N) Projection space y velocity in units of degrees or radians per day in MJD. eps : float, optional The maximum distance between two samples for them to be considered as in the same neighborhood. See: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.dbscan.html [Default = 0.005] min_obs : int, optional The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. See: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.dbscan.html [Default = 5] min_arc_length : float, optional Minimum arc length in units of days for a cluster to be accepted. Returns ------- list If clusters are found, will return a list of numpy arrays containing the observation IDs for each cluster. If no clusters are found, will return np.NaN. """ logger.debug(f"cluster: vx={vx} vy={vy} n_obs={len(obs_ids)}") xx = x - vx * dt yy = y - vy * dt X = np.stack((xx, yy), 1) clusters = find_clusters(X, eps, min_obs, alg=alg) clusters = filter_clusters_by_length( clusters, dt, min_obs, min_arc_length, ) cluster_ids = [] for cluster in clusters: cluster_ids.append(obs_ids[cluster]) if len(cluster_ids) == 0: cluster_ids = np.NaN return cluster_ids def clusterVelocity_worker( vx, vy, obs_ids=None, x=None, y=None, dt=None, eps=None, min_obs=None, min_arc_length=None, alg=None ): """ Helper function to multiprocess clustering. """ cluster_ids = clusterVelocity( obs_ids, x, y, dt, vx, vy, eps=eps, min_obs=min_obs, min_arc_length=min_arc_length, alg=alg ) return cluster_ids def rangeAndShift( observations, orbit, cell_area=10, backend="PYOORB", backend_kwargs={}, num_jobs=1, parallel_backend="mp" ): """ Propagate the orbit to all observation times in observations. At each epoch gather a circular region of observations of size cell_area centered about the location of the orbit on the sky-plane. Transform and project each of the gathered observations into the frame of motion of the test orbit. Parameters ---------- observations : `~pandas.DataFrame` DataFrame containing preprocessed observations. Should contain the following columns: obs_id : observation IDs RA_deg : Right Ascension in degrees. Dec_deg : Declination in degrees. RA_sigma_deg : 1-sigma uncertainty for Right Ascension in degrees. Dec_sigma_deg : 1-sigma uncertainty for Declination in degrees. observatory_code : MPC observatory code orbit : `~numpy.ndarray` (6) Orbit to propagate. If backend is 'THOR', then these orbits must be expressed as heliocentric ecliptic cartesian elements. If backend is 'PYOORB' orbits may be expressed in keplerian, cometary or cartesian elements. cell_area : float, optional Cell's area in units of square degrees. [Default = 10] backend : {'THOR', 'PYOORB'}, optional Which backend to use. backend_kwargs : dict, optional Settings and additional parameters to pass to selected backend. num_jobs : int, optional Number of jobs to launch. parallel_backend : str, optional Which parallelization backend to use {'ray', 'mp'}. Defaults to using Python's multiprocessing module ('mp'). Returns ------- projected_observations : {`~pandas.DataFrame`, -1} Observations dataframe (from cell.observations) with columns containing projected coordinates. """ time_start = time.time() logger.info("Running range and shift...") logger.info("Assuming r = {} au".format(orbit.cartesian[0, :3])) logger.info("Assuming v = {} au per day".format(orbit.cartesian[0, 3:])) # Build observers dictionary: keys are observatory codes with exposure times (as astropy.time objects) # as values observers = {} for code in observations["observatory_code"].unique(): observers[code] = Time( observations[observations["observatory_code"].isin([code])]["mjd_utc"].unique(), format="mjd", scale="utc" ) # Propagate test orbit to all times in observations ephemeris = generateEphemeris( orbit, observers, backend=backend, backend_kwargs=backend_kwargs, chunk_size=1, num_jobs=1, parallel_backend=parallel_backend ) if backend == "FINDORB": observer_states = [] for observatory_code, observation_times in observers.items(): observer_states.append( getObserverState( [observatory_code], observation_times, frame='ecliptic', origin='heliocenter', ) ) observer_states = pd.concat(observer_states) observer_states.reset_index( inplace=True, drop=True ) ephemeris = ephemeris.join(observer_states[["obs_x", "obs_y", "obs_z", "obs_vx", "obs_vy", "obs_vz"]]) velocity_cols = [] if backend != "PYOORB": velocity_cols = ["obs_vx", "obs_vy", "obs_vz"] observations = observations.merge( ephemeris[["mjd_utc", "observatory_code", "obs_x", "obs_y", "obs_z"] + velocity_cols], left_on=["mjd_utc", "observatory_code"], right_on=["mjd_utc", "observatory_code"] ) # Split the observations into a single dataframe per unique observatory code and observation time # Basically split the observations into groups of unique exposures observations_grouped = observations.groupby(by=["observatory_code", "mjd_utc"]) observations_split = [observations_grouped.get_group(g) for g in observations_grouped.groups] # Do the same for the test orbit's ephemerides ephemeris_grouped = ephemeris.groupby(by=["observatory_code", "mjd_utc"]) ephemeris_split = [ephemeris_grouped.get_group(g) for g in ephemeris_grouped.groups] parallel, num_workers = _checkParallel(num_jobs, parallel_backend) if parallel: if parallel_backend == "ray": import ray if not ray.is_initialized(): ray.init(address="auto") rangeAndShift_worker_ray = ray.remote(rangeAndShift_worker) rangeAndShift_worker_ray = rangeAndShift_worker_ray.options( num_returns=1, num_cpus=1 ) p = [] for observations_i, ephemeris_i in zip(observations_split, ephemeris_split): p.append( rangeAndShift_worker_ray.remote( observations_i, ephemeris_i, cell_area=cell_area ) ) projected_dfs = ray.get(p) else: # parallel_backend == "mp" p = mp.Pool( processes=num_workers, initializer=_initWorker, ) projected_dfs = p.starmap( partial( rangeAndShift_worker, cell_area=cell_area ), zip( observations_split, ephemeris_split, ) ) p.close() else: projected_dfs = [] for observations_i, ephemeris_i in zip(observations_split, ephemeris_split): projected_df = rangeAndShift_worker( observations_i, ephemeris_i, cell_area=cell_area ) projected_dfs.append(projected_df) projected_observations = pd.concat(projected_dfs) if len(projected_observations) > 0: projected_observations.sort_values(by=["mjd_utc", "observatory_code"], inplace=True) projected_observations.reset_index(inplace=True, drop=True) else: projected_observations = pd.DataFrame( columns=[ 'obs_id', 'mjd_utc', 'RA_deg', 'Dec_deg', 'RA_sigma_deg', 'Dec_sigma_deg', 'observatory_code', 'obs_x', 'obs_y', 'obs_z', 'obj_x', 'obj_y', 'obj_z', 'theta_x_deg', 'theta_y_deg' ] ) time_end = time.time() logger.info("Found {} observations.".format(len(projected_observations))) logger.info("Range and shift completed in {:.3f} seconds.".format(time_end - time_start)) return projected_observations def clusterAndLink( observations, vx_range=[-0.1, 0.1], vy_range=[-0.1, 0.1], vx_bins=100, vy_bins=100, vx_values=None, vy_values=None, eps=0.005, min_obs=5, min_arc_length=1.0, alg="dbscan", num_jobs=1, parallel_backend="mp" ): """ Cluster and link correctly projected (after ranging and shifting) detections. Parameters ---------- observations : `~pandas.DataFrame` DataFrame containing post-range and shift observations. vx_range : {None, list or `~numpy.ndarray` (2)} Maximum and minimum velocity range in x. Will not be used if vx_values are specified. [Default = [-0.1, 0.1]] vy_range : {None, list or `~numpy.ndarray` (2)} Maximum and minimum velocity range in y. Will not be used if vy_values are specified. [Default = [-0.1, 0.1]] vx_bins : int, optional Length of x-velocity grid between vx_range[0] and vx_range[-1]. Will not be used if vx_values are specified. [Default = 100] vy_bins: int, optional Length of y-velocity grid between vy_range[0] and vy_range[-1]. Will not be used if vy_values are specified. [Default = 100] vx_values : {None, `~numpy.ndarray`}, optional Values of velocities in x at which to cluster and link. [Default = None] vy_values : {None, `~numpy.ndarray`}, optional Values of velocities in y at which to cluster and link. [Default = None] eps : float, optional The maximum distance between two samples for them to be considered as in the same neighborhood. See: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.dbscan.html [Default = 0.005] min_obs : int, optional The number of samples (or total weight) in a neighborhood for a point to be considered as a core point. This includes the point itself. See: http://scikit-learn.org/stable/modules/generated/sklearn.cluster.dbscan.html [Default = 5] alg: str Algorithm to use. Can be "dbscan" or "hotspot_2d". num_jobs : int, optional Number of jobs to launch. parallel_backend : str, optional Which parallelization backend to use {'ray', 'mp'}. Defaults to using Python's multiprocessing module ('mp'). Returns ------- clusters : `~pandas.DataFrame` DataFrame with the cluster ID, the number of observations, and the x and y velocity. cluster_members : `~pandas.DataFrame` DataFrame containing the cluster ID and the observation IDs of its members. Notes ----- The algorithm chosen can have a big impact on performance and accuracy. alg="dbscan" uses the DBSCAN algorithm of Ester et. al. It's relatively slow but works with high accuracy; it is certain to find all clusters with at least min_obs points that are separated by at most eps. alg="hotspot_2d" is much faster (perhaps 10-20x faster) than dbscan, but it may miss some clusters, particularly when points are spaced a distance of 'eps' apart. """ time_start_cluster = time.time() logger.info("Running velocity space clustering...") # Extract useful quantities obs_ids = observations["obs_id"].values theta_x = observations["theta_x_deg"].values theta_y = observations["theta_y_deg"].values mjd = observations["mjd_utc"].values # Select detections in first exposure first = np.where(mjd == mjd.min())[0] mjd0 = mjd[first][0] dt = mjd - mjd0 if vx_values is None and vx_range is not None: vx = np.linspace(*vx_range, num=vx_bins) elif vx_values is None and vx_range is None: raise ValueError("Both vx_values and vx_range cannot be None.") else: vx = vx_values vx_range = [vx_values[0], vx_values[-1]] vx_bins = len(vx) if vy_values is None and vy_range is not None: vy = np.linspace(*vy_range, num=vy_bins) elif vy_values is None and vy_range is None: raise ValueError("Both vy_values and vy_range cannot be None.") else: vy = vy_values vy_range = [vy_values[0], vy_values[-1]] vy_bins = len(vy) if vx_values is None and vy_values is None: vxx, vyy = np.meshgrid(vx, vy) vxx = vxx.flatten() vyy = vyy.flatten() elif vx_values is not None and vy_values is not None: vxx = vx vyy = vy else: raise ValueError("") logger.debug("X velocity range: {}".format(vx_range)) if vx_values is not None: logger.debug("X velocity values: {}".format(vx_bins)) else: logger.debug("X velocity bins: {}".format(vx_bins)) logger.debug("Y velocity range: {}".format(vy_range)) if vy_values is not None: logger.debug("Y velocity values: {}".format(vy_bins)) else: logger.debug("Y velocity bins: {}".format(vy_bins)) if vx_values is not None: logger.debug("User defined x velocity values: True") else: logger.debug("User defined x velocity values: False") if vy_values is not None: logger.debug("User defined y velocity values: True") else: logger.debug("User defined y velocity values: False") if vx_values is None and vy_values is None: logger.debug("Velocity grid size: {}".format(vx_bins * vy_bins)) else: logger.debug("Velocity grid size: {}".format(vx_bins)) logger.info("Max sample distance: {}".format(eps)) logger.info("Minimum samples: {}".format(min_obs)) possible_clusters = [] parallel, num_workers = _checkParallel(num_jobs, parallel_backend) if parallel: if parallel_backend == "ray": import ray if not ray.is_initialized(): ray.init(address="auto") clusterVelocity_worker_ray = ray.remote(clusterVelocity_worker) clusterVelocity_worker_ray = clusterVelocity_worker_ray.options( num_returns=1, num_cpus=1 ) # Put all arrays (which can be large) in ray's # local object store ahead of time obs_ids_oid = ray.put(obs_ids) theta_x_oid = ray.put(theta_x) theta_y_oid = ray.put(theta_y) dt_oid = ray.put(dt) p = [] for vxi, vyi in zip(vxx, vyy): p.append( clusterVelocity_worker_ray.remote( vxi, vyi, obs_ids=obs_ids_oid, x=theta_x_oid, y=theta_y_oid, dt=dt_oid, eps=eps, min_obs=min_obs, min_arc_length=min_arc_length, alg=alg ) ) possible_clusters = ray.get(p) else: # parallel_backend == "mp" p = mp.Pool( processes=num_workers, initializer=_initWorker ) possible_clusters = p.starmap( partial( clusterVelocity_worker, obs_ids=obs_ids, x=theta_x, y=theta_y, dt=dt, eps=eps, min_obs=min_obs, min_arc_length=min_arc_length, alg=alg ), zip(vxx, vyy) ) p.close() else: possible_clusters = [] for vxi, vyi in zip(vxx, vyy): possible_clusters.append( clusterVelocity( obs_ids, theta_x, theta_y, dt, vxi, vyi, eps=eps, min_obs=min_obs, min_arc_length=min_arc_length, alg=alg ) ) time_end_cluster = time.time() logger.info("Clustering completed in {:.3f} seconds.".format(time_end_cluster - time_start_cluster)) logger.info("Restructuring clusters...") time_start_restr = time.time() possible_clusters =
pd.DataFrame({"clusters": possible_clusters})
pandas.DataFrame
import argparse import numpy as np import pandas as pd import os import pickle import langdetect as lang import time from datetime import datetime import json directory = 'data/twitter' outfile = 'output.csv' verbose = False def parse_arguments(): parser = argparse.ArgumentParser() parser.add_argument('directory', type=str, default = directory) parser.add_argument('outfile', type=str, default=outfile) args = parser.parse_args() return args def DF_to_Dict(df, saveAs=''): dict = {} try: dict['date'] = np.array(df['date'].tolist()) dict['retweets'] = np.array(df['retweets'].tolist()) dict['favorites'] = np.array(df['favorites'].tolist()) dict['text'] = np.array(df['text'].tolist()) dict['hashtags'] = np.array(df['hashtags'].tolist()) dict['id'] = np.array(df['id'].tolist()) dict['permalink'] = np.array(df['permalink'].tolist()) except: dict['id'] = np.array(df['id'].tolist()) dict['date'] = np.array(df['date'].tolist()) dict['text'] = np.array(df['text'].tolist()) dict['upvotes'] = np.array(df['upvotes'].tolist()) if saveAs != '': pickle.dump(dict, open(saveAs, 'wb')) return dict def get_files_of_type(type, directory): if type[0] != '.': type = '.' + type return [os.path.join(directory, f) for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f)) and os.path.splitext(f)[1] == type] def json_to_csv(jsonfile, saveAs='output.csv', index=0, opt='w'): with open(jsonfile) as file: data = json.load(file) csv = open(saveAs, opt) if opt == 'w': csv.write('id;date;text;upvotes') for submission in data: d = str(datetime.fromtimestamp(submission['SubmissionTime'])) t = '"' + str(submission['SubmissionTitle']) + '"' u = str(submission['SubmitUpvotes']) csv.write('\n' + ";".join([str(index), d, t, u])) index += 1 for comment in submission['Comments']: d = str(datetime.fromtimestamp(comment['CommentTime'])) t = '"' + str(comment['CommentText']) + '"' u = str(comment['CommentUpvotes']) csv.write('\n' + ";".join([str(index), d, t, u])) index += 1 csv.close() return index def json_to_Dict(jsonfile, dict={}, saveAs=''): with open(jsonfile) as file: data = json.load(file) if len(list(dict.keys())) == 0: dict['id'] = np.array([]) dict['date'] = np.array([]) dict['text'] = np.array([]) dict['upvotes'] = np.array([]) index = len(dict['id']) newids = [] newdates = [] newtext = [] newupvotes = [] for submission in data: # newids += [index] # newdates += [datetime.fromtimestamp(submission['SubmissionTime'])] # newtext += [submission['SubmissionTitle']] # newupvotes += [submission['SubmitUpvotes']] # index += 1 for comment in submission['Comments']: newids += [int(index)] newdates += [float(comment['CommentTime'])] newtext += [comment['CommentText']] newupvotes += [int(comment['CommentUpvotes'])] index += 1 if index > 100: break dict['id'] = np.concatenate((dict['id'], np.array(newids))) dict['date'] = np.concatenate((dict['date'], np.array(newdates))) dict['text'] = np.concatenate((dict['text'], np.array(newtext))) dict['upvotes'] = np.concatenate((dict['upvotes'], np.array(newupvotes))) if saveAs != '': pickle.dump(dict, open(saveAs, 'wb')) return dict def merge(directory, fileType='csv', saveAs=''): if verbose: print("Merging files...", flush=True) files = get_files_of_type(fileType, directory) if 'csv' in fileType.lower(): split = os.path.split(saveAs) csvFile = os.path.join(split[0], split[1].split('.')[0]) + '.csv' df = pd.read_csv(files[0], header=0, sep=";", quoting=1, quotechar='"', error_bad_lines=False, warn_bad_lines=False) for i in range(1, len(files)): add = pd.read_csv(files[i], header=0, delimiter=";", quoting=1, quotechar='"', error_bad_lines=False, warn_bad_lines=False) df = pd.concat([df, add]) df.to_csv(csvFile, sep=';', index=False, quoting=2) if verbose: print("Successfully merged {} files with {} lines.".format(len(files), df.shape[0]), flush=True) dict = DF_to_Dict(df) if 'json' in fileType.lower(): split = os.path.split(saveAs) csvFile = os.path.join(split[0], split[1].split('.')[0]) + '.csv' index = json_to_csv(files[0], saveAs=csvFile) dict = json_to_Dict(files[0]) for i in range(1, len(files)): index = json_to_csv(files[i], saveAs=csvFile, index=index, opt='a') dict = json_to_Dict(files[i], dict=dict) if 'dict' in fileType.lower(): dict = pickle.load(open(files[0], 'rb')) keys = list(dict.keys()) for i in range(1, len(files)): add = pickle.load(open(files[i], 'rb')) for key in keys: dict[key] = np.concatenate((dict[key], add[key])) if saveAs != '': pickle.dump(dict, open(saveAs, 'wb')) return dict def filter(dict, with_words=[], without_words=[], language = 'en', saveAs='', startFrame=-1, endFrame=-1): d = dict.copy() keys = list(d.keys()) if startFrame != -1 and endFrame != -1: for key in keys: d[key] = d[key][startFrame:] text = d['text'] remove_indices = np.zeros(len(text), dtype=bool) start = len(text) if verbose: print("Filtering file with {} entries...".format(start), flush=True) # if verbose: print("Time estimated to filter: {:.0f} minutes.".format(start*.011//60+1), flush=True) language_filter = [] i = 0 z = 0 startTime = time.time() for t in text: try: language_filter.append(lang.detect(t) != language) except: language_filter.append(True) i += 1 if verbose and (time.time()-startTime)//60 > z: z += 1 print("{:.2f}% of text filtered after {} minutes. Estimated {:.0f} minutes remaining.".format(i/start*100, z, (start-i)/i * z+1), flush=True) remove_indices += language_filter if len(with_words) != 0: for word in with_words: remove_indices += [word not in t for t in text] if len(without_words) != 0: for word in without_words: remove_indices += [word in t for t in text] for key in keys: d[key] = d[key][~remove_indices] if saveAs != '': pickle.dump(d, open(saveAs, 'wb')) end = len(d[keys[0]]) if verbose: print("Successfully filtered file from {} entries to {}.".format(start,end), flush=True) return d def merge_stocks(directory, saveAs=''): files = get_files_of_type('csv', directory) split = os.path.split(saveAs) csvFile = os.path.join(split[0], split[1].split('.')[0]) + '.csv' cols = ['time', 'open', 'high', 'low', 'close', 'volume'] df = pd.read_csv(files[0], index_col=0, header=None, sep=',') df.columns = cols df['volume'] *= ((df['close'] - df['open']) / 2 + df['open']) for i in range(1, len(files)): add = pd.read_csv(files[i], index_col=0, header=None, sep=',') add.columns = cols add['volume'] *= ((add['close'] - add['open']) / 2 + add['open']) df = df.add(add, fill_value=0) df.to_csv(csvFile, sep=',', index=True,index_label='date', quoting=3) if saveAs != '': pickle.dump(df, open(saveAs, 'wb')) return df def stock_to_DF(stockCSVFile, saveAs=''): df =
pd.read_csv(stockCSVFile, header=0, sep=',')
pandas.read_csv
""" Tests that skipped rows are properly handled during parsing for all of the parsers defined in parsers.py """ from datetime import datetime from io import StringIO import numpy as np import pytest from pandas.errors import EmptyDataError from pandas import DataFrame, Index import pandas.util.testing as tm @pytest.mark.parametrize("skiprows", [list(range(6)), 6]) def test_skip_rows_bug(all_parsers, skiprows): # see gh-505 parser = all_parsers text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ result = parser.read_csv( StringIO(text), skiprows=skiprows, header=None, index_col=0, parse_dates=True ) index = Index( [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], name=0 ) expected = DataFrame( np.arange(1.0, 10.0).reshape((3, 3)), columns=[1, 2, 3], index=index ) tm.assert_frame_equal(result, expected) def test_deep_skip_rows(all_parsers): # see gh-4382 parser = all_parsers data = "a,b,c\n" + "\n".join( [",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)] ) condensed_data = "a,b,c\n" + "\n".join( [",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]] ) result = parser.read_csv(StringIO(data), skiprows=[6, 8]) condensed_result = parser.read_csv(StringIO(condensed_data)) tm.assert_frame_equal(result, condensed_result) def test_skip_rows_blank(all_parsers): # see gh-9832 parser = all_parsers text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = parser.read_csv( StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True ) index = Index( [datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)], name=0 ) expected = DataFrame( np.arange(1.0, 10.0).reshape((3, 3)), columns=[1, 2, 3], index=index ) tm.assert_frame_equal(data, expected) @pytest.mark.parametrize( "data,kwargs,expected", [ ( """id,text,num_lines 1,"line 11 line 12",2 2,"line 21 line 22",2 3,"line 31",1""", dict(skiprows=[1]), DataFrame( [[2, "line 21\nline 22", 2], [3, "line 31", 1]], columns=["id", "text", "num_lines"], ), ), ( "a,b,c\n~a\n b~,~e\n d~,~f\n f~\n1,2,~12\n 13\n 14~", dict(quotechar="~", skiprows=[2]), DataFrame([["a\n b", "e\n d", "f\n f"]], columns=["a", "b", "c"]), ), ( ( "Text,url\n~example\n " "sentence\n one~,url1\n~" "example\n sentence\n two~,url2\n~" "example\n sentence\n three~,url3" ), dict(quotechar="~", skiprows=[1, 3]), DataFrame([["example\n sentence\n two", "url2"]], columns=["Text", "url"]), ), ], ) def test_skip_row_with_newline(all_parsers, data, kwargs, expected): # see gh-12775 and gh-10911 parser = all_parsers result = parser.read_csv(StringIO(data), **kwargs) tm.assert_frame_equal(result, expected) def test_skip_row_with_quote(all_parsers): # see gh-12775 and gh-10911 parser = all_parsers data = """id,text,num_lines 1,"line '11' line 12",2 2,"line '21' line 22",2 3,"line '31' line 32",1""" exp_data = [[2, "line '21' line 22", 2], [3, "line '31' line 32", 1]] expected = DataFrame(exp_data, columns=["id", "text", "num_lines"]) result = parser.read_csv(StringIO(data), skiprows=[1]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "data,exp_data", [ ( """id,text,num_lines 1,"line \n'11' line 12",2 2,"line \n'21' line 22",2 3,"line \n'31' line 32",1""", [[2, "line \n'21' line 22", 2], [3, "line \n'31' line 32", 1]], ), ( """id,text,num_lines 1,"line '11\n' line 12",2 2,"line '21\n' line 22",2 3,"line '31\n' line 32",1""", [[2, "line '21\n' line 22", 2], [3, "line '31\n' line 32", 1]], ), ( """id,text,num_lines 1,"line '11\n' \r\tline 12",2 2,"line '21\n' \r\tline 22",2 3,"line '31\n' \r\tline 32",1""", [[2, "line '21\n' \r\tline 22", 2], [3, "line '31\n' \r\tline 32", 1]], ), ], ) def test_skip_row_with_newline_and_quote(all_parsers, data, exp_data): # see gh-12775 and gh-10911 parser = all_parsers result = parser.read_csv(StringIO(data), skiprows=[1]) expected = DataFrame(exp_data, columns=["id", "text", "num_lines"]) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize( "line_terminator", ["\n", "\r\n", "\r"] # "LF" # "CRLF" # "CR" ) def test_skiprows_lineterminator(all_parsers, line_terminator): # see gh-9079 parser = all_parsers data = "\n".join( [ "SMOSMANIA ThetaProbe-ML2X ", "2007/01/01 01:00 0.2140 U M ", "2007/01/01 02:00 0.2141 M O ", "2007/01/01 04:00 0.2142 D M ", ] ) expected = DataFrame( [ ["2007/01/01", "01:00", 0.2140, "U", "M"], ["2007/01/01", "02:00", 0.2141, "M", "O"], ["2007/01/01", "04:00", 0.2142, "D", "M"], ], columns=["date", "time", "var", "flag", "oflag"], ) if parser.engine == "python" and line_terminator == "\r": pytest.skip("'CR' not respect with the Python parser yet") data = data.replace("\n", line_terminator) result = parser.read_csv( StringIO(data), skiprows=1, delim_whitespace=True, names=["date", "time", "var", "flag", "oflag"], ) tm.assert_frame_equal(result, expected) def test_skiprows_infield_quote(all_parsers): # see gh-14459 parser = all_parsers data = 'a"\nb"\na\n1' expected =
DataFrame({"a": [1]})
pandas.DataFrame
''' #Recommendation System GOAL - 1. Features cast, director, country, rating and genres ''' import numpy as np import pandas as pd import re netflix = pd.read_csv(r"/content/drive/MyDrive/Colab Notebooks/netflix_titles.csv",index_col="show_id") netflix.head() netflix.groupby('type').count() #Remove unwanted columns netflix = netflix.dropna(subset=['cast', 'country', 'rating']) #Developing Recommendation Engine using cast, director, country, rating and genres movies_df = netflix[netflix['type'] == 'Movie'].reset_index() movies_df = movies_df.drop(['show_id', 'type', 'date_added', 'release_year', 'duration', 'description'], axis=1) movies_df.head() #TV_Shows tv_df = netflix[netflix['type'] == 'TV Show'].reset_index() tv_df = tv_df.drop(['show_id', 'type', 'date_added', 'release_year', 'duration', 'description'], axis=1) tv_df.head() #Generating Binary data for Recommendations actors = [] for i in movies_df['cast']: actor = re.split(r', \s*', i) actors.append(actor) print(actors) flat_list = [] for sublist in actors: for item in sublist: flat_list.append(item) print(flat_list) actors_list = sorted(set(flat_list)) print(actors_list) binary_actors = [[0] * 0 for i in range(len(set(flat_list)))] print(binary_actors) for i in movies_df['cast']: k = 0 for j in actors_list: if j in i: binary_actors[k].append(1.0) else: binary_actors[k].append(0.0) k+=1 binary_actors =
pd.DataFrame(binary_actors)
pandas.DataFrame
import sys import sklearn.preprocessing as pp from concurrent.futures import ProcessPoolExecutor from multiprocessing import cpu_count from measures import * from scipy import spatial from math import sqrt import jsonlines import operator import scipy import pickle import numpy as np import pandas as pd import time import json THREADS = 16 def tuple_dict_from_ratings(data): ratings_dict = dict() for film_id in list(data.keys()): for ratings in data[film_id]: tuple_key = (film_id, ratings["user_id"]) ratings_dict[tuple_key] = int(ratings["user_rating"]) return ratings_dict def map_aspect_values_to_movies(x): (film, meta), aspect = x aspects = dict() if aspect == "director": aspects[meta[aspect]] = 1 else: for g in meta[aspect]: aspects[g] = 1 return film, meta, aspects def dict_movie_aspect(paper_films, aspect): paper_films_aspect_prepended = map(lambda e: (e, aspect), list(paper_films.items())) aspect_dict = dict() with ProcessPoolExecutor(max_workers=THREADS) as executor: results = executor.map(map_aspect_values_to_movies, paper_films_aspect_prepended) for film, meta, aspects in results: aspect_dict[film + "_" + meta["title"]] = aspects return aspect_dict def map_user_profile_normalized(x): df, user, movies_aspect_values = x user_movies = df.loc[:, user] profile = user_movies.dot(movies_aspect_values) for name in list(movies_aspect_values.columns): mav = movies_aspect_values.loc[:, name] assert len(mav) == len(user_movies) seen = 0 for i in range(len(mav)): if mav[i] != 0 and user_movies[i] != 0: seen += 1 if seen != 0: profile[name] /= seen return user, profile.to_dict() def users_movie_aspect_preferences(movies_aspect_values, movies_watched, users): df = pd.DataFrame.from_dict(movies_watched, orient='index') df = df.replace(np.nan, 0) users_aspects_prefs = dict() with ProcessPoolExecutor(max_workers=THREADS) as executor: results = executor.map(map_user_profile_normalized, [(df, user, movies_aspect_values) for user in users]) for user, user_profile in results: users_aspects_prefs[user] = user_profile return users_aspects_prefs def viewed_matrix(ratings_cold_start, all_films): user_ids = ratings_cold_start["userID"] item_ids = ratings_cold_start["itemID"] train_ratings = ratings_cold_start["rating"] assert len(user_ids) == len(item_ids) == len(train_ratings) movies_watched = dict() for uid in all_films.keys(): movies_watched[uid + "_" + all_films[uid]["title"]] = dict() for i in range(len(item_ids)): current_user_id = user_ids[i] current_item_id = item_ids[i] current_rating = int(train_ratings[i]) try: movies_watched[current_item_id + "_" + all_films[current_item_id]["title"]][current_user_id] = current_rating except Exception: print ('item id missing %s' % current_item_id) ## possibly the movies lacking info such as actors which are discarded return movies_watched def filter_unseen_movies(movies_genres, movies_watched): seen_movie_genres = dict() for k, v in movies_watched.items(): if movies_watched[k]: seen_movie_genres[k] = movies_genres[k] return seen_movie_genres def user_prefs(movies_watched, movies_aspects, users, aspect_type): movies_aspects = filter_unseen_movies(movies_aspects, movies_watched) movies_aspects = pd.DataFrame.from_dict(movies_aspects, dtype='int64', orient='index') movies_aspects = movies_aspects.replace(np.nan, 0) return users_movie_aspect_preferences(movies_aspects, movies_watched, users) def user_sim(users_genres_prefs): users_genres_prefs = pd.DataFrame.from_dict(users_genres_prefs, orient='index') user_ids_in_matrix = users_genres_prefs.index.values users_genres_prefs = users_genres_prefs.T users_genres_prefs = scipy.sparse.csc_matrix(users_genres_prefs.values) normalized_matrix_by_column = pp.normalize(users_genres_prefs.tocsc(), norm='l2', axis=0) cosine_sims = normalized_matrix_by_column.T * normalized_matrix_by_column sims = dict() for i in user_ids_in_matrix: sims[i] = [] cosine_sims = cosine_sims.todok().items() for ((row,col), sim) in cosine_sims: if row != col: sims[user_ids_in_matrix[row]].append((user_ids_in_matrix[col], sim)) return sims def film_strength(user_id, film_id, films, ratings, all_actors, all_directors, all_genres, all_similarities, testing_users_cold_start_for_user, movies_genres, movies_directors, movies_actors): nSimUsers = 20 # number of similar users to use users_actors_prefs = testing_users_cold_start_for_user["actors"] users_directors_prefs = testing_users_cold_start_for_user["directors"] users_genres_prefs = testing_users_cold_start_for_user["genres"] similarities_for_new_user = testing_users_cold_start_for_user["sims"] simsSorted = sorted(similarities_for_new_user, key = operator.itemgetter(1), reverse = True) sims = simsSorted[:nSimUsers] film = films[film_id] # mu constants for this user MUR = 0.7 MUG = 0.8 MUA = 0.1 MUD = 0.1 # take an average of each of the the genre's average ratings nGenres = 0 dGenres = 0 if type(film['genre']) is str: film['genre'] = [film['genre']] for genre in film['genre']: aspect_value = movies_genres.loc[genre].to_dict() movie_ids_with_aspect_value = [k.split("_")[0] for k,v in aspect_value.items() if v == 1] # get the average rating for each film of that genre and take an average nGenre = 0 dGenre = 0 for genrefilm in movie_ids_with_aspect_value: avg_rat = average_rating(sims, genrefilm, ratings) if avg_rat: dGenre += avg_rat nGenre += 1 if nGenre > 0: avGenre = dGenre / nGenre cmbGenre = ((((users_genres_prefs[genre]- 1) / 2)-1) + (MUR*avGenre)) / (1+MUR) else: cmbGenre = (((users_genres_prefs[genre]- 1) / 2)-1) dGenres += cmbGenre nGenres += 1 if nGenres > 0: avgGenreRating = dGenres / nGenres else: avgGenreRating = 0 # take an average of each of the the actor's average ratings nActors = 0 dActors = 0 if type(film['actors']) is str: film['actors'] = [film['actors']] for actor in film['actors']: aspect_value = movies_actors.loc[actor].to_dict() movie_ids_with_aspect_value = [k.split("_")[0] for k,v in aspect_value.items() if v == 1] # get the average rating for each film with that actor and take an average nActor = 0 dActor = 0 for actorfilm in movie_ids_with_aspect_value: avg_rat = average_rating(sims, actorfilm, ratings) if avg_rat: dActor += avg_rat nActor += 1 if nActor > 0: avActor = dActor / nActor cmbActor = ((((users_actors_prefs[actor]- 1) / 2)-1) + (MUR*avActor)) / (1+MUR) else: cmbActor = (((users_actors_prefs[actor]- 1) / 2)-1) dActors += cmbActor nActors += 1 if nActors > 0: avgActorRating = dActors / nActors else: avgActorRating = 0 # take an average of each of the the director's average ratings nDirectors = 0 dDirectors = 0 if type(film['director']) is str: film['director'] = [film['director']] for director in film['director']: aspect_value = movies_directors.loc[director].to_dict() movie_ids_with_aspect_value = [k.split("_")[0] for k,v in aspect_value.items() if v == 1] # get the average rating for each film with that actor and take an average nDirector = 0 dDirector = 0 for directorfilm in movie_ids_with_aspect_value: avg_rat = average_rating(sims, directorfilm, ratings) if avg_rat: dDirector += avg_rat nDirector += 1 if nDirector > 0: avDirector = dDirector / nDirector cmbDirector = ((((users_directors_prefs[director]- 1) / 2)-1) + (MUR*avDirector)) / (1+MUR) else: cmbDirector = (((users_directors_prefs[director]- 1) / 2)-1) dDirectors += cmbDirector nDirectors += 1 if nDirectors > 0: avgDirectorRating = dDirectors / nDirectors else: avgDirectorRating = 0 # calculates the item strength avg_rat = average_rating(sims, film_id, ratings) if avg_rat is None: item_strength = ((MUG * avgGenreRating) + (MUA * avgActorRating)+ (MUD * avgDirectorRating)) / (MUG + MUA + MUD) else: item_strength = ((MUR * avg_rat) + (MUG * avgGenreRating) + (MUA * avgActorRating)+ (MUD * avgDirectorRating)) / (MUR + MUG + MUA + MUD) return (((item_strength + 1)*2)+1) def average_rating(sims, film_id, ratings): # counts and totals for each type of aspect nRatings = 0 dRatings = 0 # cycles through each of the similar users for sim in sims: user_id = sim[0] similarity = sim[1] # if a rating exists by this user on the film if (film_id, user_id) in ratings.keys(): user_rating = ratings[(film_id, user_id)] scaled_rating = ((user_rating - 1) / 2)-1 dRatings += scaled_rating * similarity nRatings += 1 if nRatings == 0: avg_rat = None else: avg_rat = dRatings / nRatings return avg_rat if __name__ == "__main__": start = time.time() ratings = pickle.load(open("data/NETFLIX/movie_ratings_500_id.pkl","rb")) films = pickle.load(open("data/NETFLIX/movie_metadata.pkl","rb")) # create dict indexed by user for the rated movies user_movie_ratings = dict() for mid, uratings in ratings.items(): for urating in uratings: uid = urating['user_id'] if uid not in user_movie_ratings: user_movie_ratings[uid] = [] user_movie_ratings[uid].append((mid, urating['user_rating'])) train_ratings_dict = dict() train_ratings_dict["userID"] = [] train_ratings_dict["itemID"] = [] train_ratings_dict["rating"] = [] compressed_test_ratings_dict = dict() # if user rated >30, use 30 movies for testing and the remaining for training # if user rated 10<=30, use 10 for testing and the remaining for training for umv, fratings in user_movie_ratings.items(): if len(fratings) > 30: for i in range(len(fratings)-30): train_ratings_dict["userID"].append(umv) train_ratings_dict["itemID"].extend([m for (m,r) in fratings[30:]]) train_ratings_dict["rating"].extend([r for (m,r) in fratings[30:]]) compressed_test_ratings_dict[umv] = fratings[:30] elif len(fratings) <= 30 and len(fratings) > 10: for i in range(len(fratings)-10): train_ratings_dict["userID"].append(umv) train_ratings_dict["itemID"].extend([m for (m,r) in fratings[10:]]) train_ratings_dict["rating"].extend([r for (m,r) in fratings[10:]]) compressed_test_ratings_dict[umv] = fratings[:10] sample_users = set(train_ratings_dict["userID"]) print ('NR USERS %d' % len(sample_users)) movies_genres = dict_movie_aspect(films, "genre") movies_genres =
pd.DataFrame.from_dict(movies_genres, dtype='int64', orient='index')
pandas.DataFrame.from_dict
# Copyright (c) 2018-2021, NVIDIA CORPORATION. import array as arr import datetime import io import operator import random import re import string import textwrap from copy import copy import cupy import numpy as np import pandas as pd import pyarrow as pa import pytest from numba import cuda import cudf from cudf.core._compat import PANDAS_GE_110, PANDAS_GE_120 from cudf.core.column import column from cudf.tests import utils from cudf.tests.utils import ( ALL_TYPES, DATETIME_TYPES, NUMERIC_TYPES, assert_eq, assert_exceptions_equal, does_not_raise, gen_rand, ) def test_init_via_list_of_tuples(): data = [ (5, "cats", "jump", np.nan), (2, "dogs", "dig", 7.5), (3, "cows", "moo", -2.1, "occasionally"), ] pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def _dataframe_na_data(): return [ pd.DataFrame( { "a": [0, 1, 2, np.nan, 4, None, 6], "b": [np.nan, None, "u", "h", "d", "a", "m"], }, index=["q", "w", "e", "r", "t", "y", "u"], ), pd.DataFrame({"a": [0, 1, 2, 3, 4], "b": ["a", "b", "u", "h", "d"]}), pd.DataFrame( { "a": [None, None, np.nan, None], "b": [np.nan, None, np.nan, None], } ), pd.DataFrame({"a": []}), pd.DataFrame({"a": [np.nan], "b": [None]}), pd.DataFrame({"a": ["a", "b", "c", None, "e"]}), pd.DataFrame({"a": ["a", "b", "c", "d", "e"]}), ] @pytest.mark.parametrize("rows", [0, 1, 2, 100]) def test_init_via_list_of_empty_tuples(rows): data = [()] * rows pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq( pdf, gdf, check_like=True, check_column_type=False, check_index_type=False, ) @pytest.mark.parametrize( "dict_of_series", [ {"a": pd.Series([1.0, 2.0, 3.0])}, {"a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 4.0], index=[1, 2, 3]), }, {"a": [1, 2, 3], "b": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6])}, { "a": pd.Series([1.0, 2.0, 3.0], index=["a", "b", "c"]), "b": pd.Series([1.0, 2.0, 4.0], index=["c", "d", "e"]), }, { "a": pd.Series( ["a", "b", "c"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), "b": pd.Series( ["a", " b", "d"], index=pd.MultiIndex.from_tuples([(1, 2), (1, 3), (2, 3)]), ), }, ], ) def test_init_from_series_align(dict_of_series): pdf = pd.DataFrame(dict_of_series) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) for key in dict_of_series: if isinstance(dict_of_series[key], pd.Series): dict_of_series[key] = cudf.Series(dict_of_series[key]) gdf = cudf.DataFrame(dict_of_series) assert_eq(pdf, gdf) @pytest.mark.parametrize( ("dict_of_series", "expectation"), [ ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 5, 6]), }, pytest.raises( ValueError, match="Cannot align indices with non-unique values" ), ), ( { "a": pd.Series(["a", "b", "c"], index=[4, 4, 5]), "b": pd.Series(["a", "b", "c"], index=[4, 4, 5]), }, does_not_raise(), ), ], ) def test_init_from_series_align_nonunique(dict_of_series, expectation): with expectation: gdf = cudf.DataFrame(dict_of_series) if expectation == does_not_raise(): pdf = pd.DataFrame(dict_of_series) assert_eq(pdf, gdf) def test_init_unaligned_with_index(): pdf = pd.DataFrame( { "a": pd.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": pd.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) gdf = cudf.DataFrame( { "a": cudf.Series([1.0, 2.0, 3.0], index=[4, 5, 6]), "b": cudf.Series([1.0, 2.0, 3.0], index=[1, 2, 3]), }, index=[7, 8, 9], ) assert_eq(pdf, gdf, check_dtype=False) def test_series_basic(): # Make series from buffer a1 = np.arange(10, dtype=np.float64) series = cudf.Series(a1) assert len(series) == 10 np.testing.assert_equal(series.to_array(), np.hstack([a1])) def test_series_from_cupy_scalars(): data = [0.1, 0.2, 0.3] data_np = np.array(data) data_cp = cupy.array(data) s_np = cudf.Series([data_np[0], data_np[2]]) s_cp = cudf.Series([data_cp[0], data_cp[2]]) assert_eq(s_np, s_cp) @pytest.mark.parametrize("a", [[1, 2, 3], [1, 10, 30]]) @pytest.mark.parametrize("b", [[4, 5, 6], [-11, -100, 30]]) def test_append_index(a, b): df = pd.DataFrame() df["a"] = a df["b"] = b gdf = cudf.DataFrame() gdf["a"] = a gdf["b"] = b # Check the default index after appending two columns(Series) expected = df.a.append(df.b) actual = gdf.a.append(gdf.b) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) expected = df.a.append(df.b, ignore_index=True) actual = gdf.a.append(gdf.b, ignore_index=True) assert len(expected) == len(actual) assert_eq(expected.index, actual.index) def test_series_init_none(): # test for creating empty series # 1: without initializing sr1 = cudf.Series() got = sr1.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() # 2: Using `None` as an initializer sr2 = cudf.Series(None) got = sr2.to_string() expect = "Series([], dtype: float64)" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_basic(): np.random.seed(0) df = cudf.DataFrame() # Populate with cuda memory df["keys"] = np.arange(10, dtype=np.float64) np.testing.assert_equal(df["keys"].to_array(), np.arange(10)) assert len(df) == 10 # Populate with numpy array rnd_vals = np.random.random(10) df["vals"] = rnd_vals np.testing.assert_equal(df["vals"].to_array(), rnd_vals) assert len(df) == 10 assert tuple(df.columns) == ("keys", "vals") # Make another dataframe df2 = cudf.DataFrame() df2["keys"] = np.array([123], dtype=np.float64) df2["vals"] = np.array([321], dtype=np.float64) # Concat df = cudf.concat([df, df2]) assert len(df) == 11 hkeys = np.asarray(np.arange(10, dtype=np.float64).tolist() + [123]) hvals = np.asarray(rnd_vals.tolist() + [321]) np.testing.assert_equal(df["keys"].to_array(), hkeys) np.testing.assert_equal(df["vals"].to_array(), hvals) # As matrix mat = df.as_matrix() expect = np.vstack([hkeys, hvals]).T np.testing.assert_equal(mat, expect) # test dataframe with tuple name df_tup = cudf.DataFrame() data = np.arange(10) df_tup[(1, "foobar")] = data np.testing.assert_equal(data, df_tup[(1, "foobar")].to_array()) df = cudf.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) pdf = pd.DataFrame(pd.DataFrame({"a": [1, 2, 3], "c": ["a", "b", "c"]})) assert_eq(df, pdf) gdf = cudf.DataFrame({"id": [0, 1], "val": [None, None]}) gdf["val"] = gdf["val"].astype("int") assert gdf["val"].isnull().all() @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "columns", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_columns(pdf, columns, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(columns=columns, inplace=inplace) actual = gdf.drop(columns=columns, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_0(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=0, inplace=inplace) actual = gdf.drop(labels=labels, axis=0, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "index", [[1], [0], 1, 5, [5, 9], pd.Index([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_index(pdf, index, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace) actual = gdf.drop(index=index, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5}, index=pd.MultiIndex( levels=[ ["lama", "cow", "falcon"], ["speed", "weight", "length"], ], codes=[ [0, 0, 0, 1, 1, 1, 2, 2, 2, 1], [0, 1, 2, 0, 1, 2, 0, 1, 2, 1], ], ), ) ], ) @pytest.mark.parametrize( "index,level", [ ("cow", 0), ("lama", 0), ("falcon", 0), ("speed", 1), ("weight", 1), ("length", 1), pytest.param( "cow", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "lama", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), pytest.param( "falcon", None, marks=pytest.mark.xfail( reason="https://github.com/pandas-dev/pandas/issues/36293" ), ), ], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_multiindex(pdf, index, level, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(index=index, inplace=inplace, level=level) actual = gdf.drop(index=index, inplace=inplace, level=level) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "pdf", [ pd.DataFrame({"a": range(10), "b": range(10, 20), "c": range(1, 11)}), pd.DataFrame( {"a": range(10), "b": range(10, 20), "d": ["a", "v"] * 5} ), ], ) @pytest.mark.parametrize( "labels", [["a"], ["b"], "a", "b", ["a", "b"]], ) @pytest.mark.parametrize("inplace", [True, False]) def test_dataframe_drop_labels_axis_1(pdf, labels, inplace): pdf = pdf.copy() gdf = cudf.from_pandas(pdf) expected = pdf.drop(labels=labels, axis=1, inplace=inplace) actual = gdf.drop(labels=labels, axis=1, inplace=inplace) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) def test_dataframe_drop_error(): df = cudf.DataFrame({"a": [1], "b": [2], "c": [3]}) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "d"}), rfunc_args_and_kwargs=([], {"columns": "d"}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), rfunc_args_and_kwargs=([], {"columns": ["a", "d", "b"]}), expected_error_message="column 'd' does not exist", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), rfunc_args_and_kwargs=(["a"], {"columns": "a", "axis": 1}), expected_error_message="Cannot specify both", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"axis": 1}), rfunc_args_and_kwargs=([], {"axis": 1}), expected_error_message="Need to specify at least", ) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([[2, 0]],), rfunc_args_and_kwargs=([[2, 0]],), expected_error_message="One or more values not found in axis", ) def test_dataframe_drop_raises(): df = cudf.DataFrame( {"a": [1, 2, 3], "c": [10, 20, 30]}, index=["x", "y", "z"] ) pdf = df.to_pandas() assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=(["p"],), rfunc_args_and_kwargs=(["p"],), expected_error_message="One or more values not found in axis", ) # label dtype mismatch assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([3],), rfunc_args_and_kwargs=([3],), expected_error_message="One or more values not found in axis", ) expect = pdf.drop("p", errors="ignore") actual = df.drop("p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"columns": "p"}), rfunc_args_and_kwargs=([], {"columns": "p"}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(columns="p", errors="ignore") actual = df.drop(columns="p", errors="ignore") assert_eq(actual, expect) assert_exceptions_equal( lfunc=pdf.drop, rfunc=df.drop, lfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), rfunc_args_and_kwargs=([], {"labels": "p", "axis": 1}), expected_error_message="column 'p' does not exist", ) expect = pdf.drop(labels="p", axis=1, errors="ignore") actual = df.drop(labels="p", axis=1, errors="ignore") assert_eq(actual, expect) def test_dataframe_column_add_drop_via_setitem(): df = cudf.DataFrame() data = np.asarray(range(10)) df["a"] = data df["b"] = data assert tuple(df.columns) == ("a", "b") del df["a"] assert tuple(df.columns) == ("b",) df["c"] = data assert tuple(df.columns) == ("b", "c") df["a"] = data assert tuple(df.columns) == ("b", "c", "a") def test_dataframe_column_set_via_attr(): data_0 = np.asarray([0, 2, 4, 5]) data_1 = np.asarray([1, 4, 2, 3]) data_2 = np.asarray([2, 0, 3, 0]) df = cudf.DataFrame({"a": data_0, "b": data_1, "c": data_2}) for i in range(10): df.c = df.a assert assert_eq(df.c, df.a, check_names=False) assert tuple(df.columns) == ("a", "b", "c") df.c = df.b assert assert_eq(df.c, df.b, check_names=False) assert tuple(df.columns) == ("a", "b", "c") def test_dataframe_column_drop_via_attr(): df = cudf.DataFrame({"a": []}) with pytest.raises(AttributeError): del df.a assert tuple(df.columns) == tuple("a") @pytest.mark.parametrize("axis", [0, "index"]) def test_dataframe_index_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper={1: 5, 2: 6}, axis=axis) got = gdf.rename(mapper={1: 5, 2: 6}, axis=axis) assert_eq(expect, got) expect = pdf.rename(index={1: 5, 2: 6}) got = gdf.rename(index={1: 5, 2: 6}) assert_eq(expect, got) expect = pdf.rename({1: 5, 2: 6}) got = gdf.rename({1: 5, 2: 6}) assert_eq(expect, got) # `pandas` can support indexes with mixed values. We throw a # `NotImplementedError`. with pytest.raises(NotImplementedError): gdf.rename(mapper={1: "x", 2: "y"}, axis=axis) def test_dataframe_MI_rename(): gdf = cudf.DataFrame( {"a": np.arange(10), "b": np.arange(10), "c": np.arange(10)} ) gdg = gdf.groupby(["a", "b"]).count() pdg = gdg.to_pandas() expect = pdg.rename(mapper={1: 5, 2: 6}, axis=0) got = gdg.rename(mapper={1: 5, 2: 6}, axis=0) assert_eq(expect, got) @pytest.mark.parametrize("axis", [1, "columns"]) def test_dataframe_column_rename(axis): pdf = pd.DataFrame({"a": [1, 2, 3], "b": [4, 5, 6], "c": [7, 8, 9]}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.rename(mapper=lambda name: 2 * name, axis=axis) got = gdf.rename(mapper=lambda name: 2 * name, axis=axis) assert_eq(expect, got) expect = pdf.rename(columns=lambda name: 2 * name) got = gdf.rename(columns=lambda name: 2 * name) assert_eq(expect, got) rename_mapper = {"a": "z", "b": "y", "c": "x"} expect = pdf.rename(columns=rename_mapper) got = gdf.rename(columns=rename_mapper) assert_eq(expect, got) def test_dataframe_pop(): pdf = pd.DataFrame( {"a": [1, 2, 3], "b": ["x", "y", "z"], "c": [7.0, 8.0, 9.0]} ) gdf = cudf.DataFrame.from_pandas(pdf) # Test non-existing column error with pytest.raises(KeyError) as raises: gdf.pop("fake_colname") raises.match("fake_colname") # check pop numeric column pdf_pop = pdf.pop("a") gdf_pop = gdf.pop("a") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check string column pdf_pop = pdf.pop("b") gdf_pop = gdf.pop("b") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check float column and empty dataframe pdf_pop = pdf.pop("c") gdf_pop = gdf.pop("c") assert_eq(pdf_pop, gdf_pop) assert_eq(pdf, gdf) # check empty dataframe edge case empty_pdf = pd.DataFrame(columns=["a", "b"]) empty_gdf = cudf.DataFrame(columns=["a", "b"]) pb = empty_pdf.pop("b") gb = empty_gdf.pop("b") assert len(pb) == len(gb) assert empty_pdf.empty and empty_gdf.empty @pytest.mark.parametrize("nelem", [0, 3, 100, 1000]) def test_dataframe_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df["a"].dtype is np.dtype(np.int32) df["b"] = df["a"].astype(np.float32) assert df["b"].dtype is np.dtype(np.float32) np.testing.assert_equal(df["a"].to_array(), df["b"].to_array()) @pytest.mark.parametrize("nelem", [0, 100]) def test_index_astype(nelem): df = cudf.DataFrame() data = np.asarray(range(nelem), dtype=np.int32) df["a"] = data assert df.index.dtype is np.dtype(np.int64) df.index = df.index.astype(np.float32) assert df.index.dtype is np.dtype(np.float32) df["a"] = df["a"].astype(np.float32) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) df["b"] = df["a"] df = df.set_index("b") df["a"] = df["a"].astype(np.int16) df.index = df.index.astype(np.int16) np.testing.assert_equal(df.index.to_array(), df["a"].to_array()) def test_dataframe_to_string(): pd.options.display.max_rows = 5 pd.options.display.max_columns = 8 # Test basic df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) string = str(df) assert string.splitlines()[-1] == "[6 rows x 2 columns]" # Test skipped columns df = cudf.DataFrame( { "a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16], "c": [11, 12, 13, 14, 15, 16], "d": [11, 12, 13, 14, 15, 16], } ) string = df.to_string() assert string.splitlines()[-1] == "[6 rows x 4 columns]" # Test masked df = cudf.DataFrame( {"a": [1, 2, 3, 4, 5, 6], "b": [11, 12, 13, 14, 15, 16]} ) data = np.arange(6) mask = np.zeros(1, dtype=cudf.utils.utils.mask_dtype) mask[0] = 0b00101101 masked = cudf.Series.from_masked_array(data, mask) assert masked.null_count == 2 df["c"] = masked # check data values = masked.copy() validids = [0, 2, 3, 5] densearray = masked.to_array() np.testing.assert_equal(data[validids], densearray) # valid position is corret for i in validids: assert data[i] == values[i] # null position is correct for i in range(len(values)): if i not in validids: assert values[i] is cudf.NA pd.options.display.max_rows = 10 got = df.to_string() expect = """ a b c 0 1 11 0 1 2 12 <NA> 2 3 13 2 3 4 14 3 4 5 15 <NA> 5 6 16 5 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_to_string_wide(monkeypatch): monkeypatch.setenv("COLUMNS", "79") # Test basic df = cudf.DataFrame() for i in range(100): df["a{}".format(i)] = list(range(3)) pd.options.display.max_columns = 0 got = df.to_string() expect = """ a0 a1 a2 a3 a4 a5 a6 a7 ... a92 a93 a94 a95 a96 a97 a98 a99 0 0 0 0 0 0 0 0 0 ... 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 ... 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2 [3 rows x 100 columns] """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_empty_to_string(): # Test for printing empty dataframe df = cudf.DataFrame() got = df.to_string() expect = "Empty DataFrame\nColumns: []\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_emptycolumns_to_string(): # Test for printing dataframe having empty columns df = cudf.DataFrame() df["a"] = [] df["b"] = [] got = df.to_string() expect = "Empty DataFrame\nColumns: [a, b]\nIndex: []\n" # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy(): # Test for copying the dataframe using python copy pkg df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = copy(df) df2["b"] = [4, 5, 6] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_copy_shallow(): # Test for copy dataframe using class method df = cudf.DataFrame() df["a"] = [1, 2, 3] df2 = df.copy() df2["b"] = [4, 2, 3] got = df.to_string() expect = """ a 0 1 1 2 2 3 """ # values should match despite whitespace difference assert got.split() == expect.split() def test_dataframe_dtypes(): dtypes = pd.Series( [np.int32, np.float32, np.float64], index=["c", "a", "b"] ) df = cudf.DataFrame( {k: np.ones(10, dtype=v) for k, v in dtypes.iteritems()} ) assert df.dtypes.equals(dtypes) def test_dataframe_add_col_to_object_dataframe(): # Test for adding column to an empty object dataframe cols = ["a", "b", "c"] df = pd.DataFrame(columns=cols, dtype="str") data = {k: v for (k, v) in zip(cols, [["a"] for _ in cols])} gdf = cudf.DataFrame(data) gdf = gdf[:0] assert gdf.dtypes.equals(df.dtypes) gdf["a"] = [1] df["a"] = [10] assert gdf.dtypes.equals(df.dtypes) gdf["b"] = [1.0] df["b"] = [10.0] assert gdf.dtypes.equals(df.dtypes) def test_dataframe_dir_and_getattr(): df = cudf.DataFrame( { "a": np.ones(10), "b": np.ones(10), "not an id": np.ones(10), "oop$": np.ones(10), } ) o = dir(df) assert {"a", "b"}.issubset(o) assert "not an id" not in o assert "oop$" not in o # Getattr works assert df.a.equals(df["a"]) assert df.b.equals(df["b"]) with pytest.raises(AttributeError): df.not_a_column @pytest.mark.parametrize("order", ["C", "F"]) def test_empty_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() # Check fully empty dataframe. mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 0) df = cudf.DataFrame() nelem = 123 for k in "abc": df[k] = np.random.random(nelem) # Check all columns in empty dataframe. mat = df.head(0).as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (0, 3) @pytest.mark.parametrize("order", ["C", "F"]) def test_dataframe_as_gpu_matrix(order): df = cudf.DataFrame() nelem = 123 for k in "abcd": df[k] = np.random.random(nelem) # Check all columns mat = df.as_gpu_matrix(order=order).copy_to_host() assert mat.shape == (nelem, 4) for i, k in enumerate(df.columns): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) # Check column subset mat = df.as_gpu_matrix(order=order, columns=["a", "c"]).copy_to_host() assert mat.shape == (nelem, 2) for i, k in enumerate("ac"): np.testing.assert_array_equal(df[k].to_array(), mat[:, i]) def test_dataframe_as_gpu_matrix_null_values(): df = cudf.DataFrame() nelem = 123 na = -10000 refvalues = {} for k in "abcd": df[k] = data = np.random.random(nelem) bitmask = utils.random_bitmask(nelem) df[k] = df[k].set_mask(bitmask) boolmask = np.asarray( utils.expand_bits_to_bytes(bitmask)[:nelem], dtype=np.bool_ ) data[~boolmask] = na refvalues[k] = data # Check null value causes error with pytest.raises(ValueError) as raises: df.as_gpu_matrix() raises.match("column 'a' has null values") for k in df.columns: df[k] = df[k].fillna(na) mat = df.as_gpu_matrix().copy_to_host() for i, k in enumerate(df.columns): np.testing.assert_array_equal(refvalues[k], mat[:, i]) def test_dataframe_append_empty(): pdf = pd.DataFrame( { "key": [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4], "value": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], } ) gdf = cudf.DataFrame.from_pandas(pdf) gdf["newcol"] = 100 pdf["newcol"] = 100 assert len(gdf["newcol"]) == len(pdf) assert len(pdf["newcol"]) == len(pdf) assert_eq(gdf, pdf) def test_dataframe_setitem_from_masked_object(): ary = np.random.randn(100) mask = np.zeros(100, dtype=bool) mask[:20] = True np.random.shuffle(mask) ary[mask] = np.nan test1_null = cudf.Series(ary, nan_as_null=True) assert test1_null.nullable assert test1_null.null_count == 20 test1_nan = cudf.Series(ary, nan_as_null=False) assert test1_nan.null_count == 0 test2_null = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=True ) assert test2_null["a"].nullable assert test2_null["a"].null_count == 20 test2_nan = cudf.DataFrame.from_pandas( pd.DataFrame({"a": ary}), nan_as_null=False ) assert test2_nan["a"].null_count == 0 gpu_ary = cupy.asarray(ary) test3_null = cudf.Series(gpu_ary, nan_as_null=True) assert test3_null.nullable assert test3_null.null_count == 20 test3_nan = cudf.Series(gpu_ary, nan_as_null=False) assert test3_nan.null_count == 0 test4 = cudf.DataFrame() lst = [1, 2, None, 4, 5, 6, None, 8, 9] test4["lst"] = lst assert test4["lst"].nullable assert test4["lst"].null_count == 2 def test_dataframe_append_to_empty(): pdf = pd.DataFrame() pdf["a"] = [] pdf["b"] = [1, 2, 3] gdf = cudf.DataFrame() gdf["a"] = [] gdf["b"] = [1, 2, 3] assert_eq(gdf, pdf) def test_dataframe_setitem_index_len1(): gdf = cudf.DataFrame() gdf["a"] = [1] gdf["b"] = gdf.index._values np.testing.assert_equal(gdf.b.to_array(), [0]) def test_empty_dataframe_setitem_df(): gdf1 = cudf.DataFrame() gdf2 = cudf.DataFrame({"a": [1, 2, 3, 4, 5]}) gdf1["a"] = gdf2["a"] assert_eq(gdf1, gdf2) def test_assign(): gdf = cudf.DataFrame({"x": [1, 2, 3]}) gdf2 = gdf.assign(y=gdf.x + 1) assert list(gdf.columns) == ["x"] assert list(gdf2.columns) == ["x", "y"] np.testing.assert_equal(gdf2.y.to_array(), [2, 3, 4]) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000]) def test_dataframe_hash_columns(nrows): gdf = cudf.DataFrame() data = np.asarray(range(nrows)) data[0] = data[-1] # make first and last the same gdf["a"] = data gdf["b"] = gdf.a + 100 out = gdf.hash_columns(["a", "b"]) assert isinstance(out, cupy.ndarray) assert len(out) == nrows assert out.dtype == np.int32 # Check default out_all = gdf.hash_columns() np.testing.assert_array_equal(cupy.asnumpy(out), cupy.asnumpy(out_all)) # Check single column out_one = cupy.asnumpy(gdf.hash_columns(["a"])) # First matches last assert out_one[0] == out_one[-1] # Equivalent to the cudf.Series.hash_values() np.testing.assert_array_equal(cupy.asnumpy(gdf.a.hash_values()), out_one) @pytest.mark.parametrize("nrows", [3, 10, 100, 1000]) @pytest.mark.parametrize("nparts", [1, 2, 8, 13]) @pytest.mark.parametrize("nkeys", [1, 2]) def test_dataframe_hash_partition(nrows, nparts, nkeys): np.random.seed(123) gdf = cudf.DataFrame() keycols = [] for i in range(nkeys): keyname = "key{}".format(i) gdf[keyname] = np.random.randint(0, 7 - i, nrows) keycols.append(keyname) gdf["val1"] = np.random.randint(0, nrows * 2, nrows) got = gdf.partition_by_hash(keycols, nparts=nparts) # Must return a list assert isinstance(got, list) # Must have correct number of partitions assert len(got) == nparts # All partitions must be DataFrame type assert all(isinstance(p, cudf.DataFrame) for p in got) # Check that all partitions have unique keys part_unique_keys = set() for p in got: if len(p): # Take rows of the keycolumns and build a set of the key-values unique_keys = set(map(tuple, p.as_matrix(columns=keycols))) # Ensure that none of the key-values have occurred in other groups assert not (unique_keys & part_unique_keys) part_unique_keys |= unique_keys assert len(part_unique_keys) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_value(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["val"] = gdf["val"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.key]) expected_value = row.key + 100 if valid else np.nan got_value = row.val assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("nrows", [3, 10, 50]) def test_dataframe_hash_partition_masked_keys(nrows): gdf = cudf.DataFrame() gdf["key"] = np.arange(nrows) gdf["val"] = np.arange(nrows) + 100 bitmask = utils.random_bitmask(nrows) bytemask = utils.expand_bits_to_bytes(bitmask) gdf["key"] = gdf["key"].set_mask(bitmask) parted = gdf.partition_by_hash(["key"], nparts=3, keep_index=False) # Verify that the valid mask is correct for p in parted: df = p.to_pandas() for row in df.itertuples(): valid = bool(bytemask[row.val - 100]) # val is key + 100 expected_value = row.val - 100 if valid else np.nan got_value = row.key assert (expected_value == got_value) or ( np.isnan(expected_value) and np.isnan(got_value) ) @pytest.mark.parametrize("keep_index", [True, False]) def test_dataframe_hash_partition_keep_index(keep_index): gdf = cudf.DataFrame( {"val": [1, 2, 3, 4], "key": [3, 2, 1, 4]}, index=[4, 3, 2, 1] ) expected_df1 = cudf.DataFrame( {"val": [1], "key": [3]}, index=[4] if keep_index else None ) expected_df2 = cudf.DataFrame( {"val": [2, 3, 4], "key": [2, 1, 4]}, index=[3, 2, 1] if keep_index else range(1, 4), ) expected = [expected_df1, expected_df2] parts = gdf.partition_by_hash(["key"], nparts=2, keep_index=keep_index) for exp, got in zip(expected, parts): assert_eq(exp, got) def test_dataframe_hash_partition_empty(): gdf = cudf.DataFrame({"val": [1, 2], "key": [3, 2]}, index=["a", "b"]) parts = gdf.iloc[:0].partition_by_hash(["key"], nparts=3) assert len(parts) == 3 for part in parts: assert_eq(gdf.iloc[:0], part) @pytest.mark.parametrize("dtype1", utils.supported_numpy_dtypes) @pytest.mark.parametrize("dtype2", utils.supported_numpy_dtypes) def test_dataframe_concat_different_numerical_columns(dtype1, dtype2): df1 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype1))) df2 = pd.DataFrame(dict(x=pd.Series(np.arange(5)).astype(dtype2))) if dtype1 != dtype2 and "datetime" in dtype1 or "datetime" in dtype2: with pytest.raises(TypeError): cudf.concat([df1, df2]) else: pres = pd.concat([df1, df2]) gres = cudf.concat([cudf.from_pandas(df1), cudf.from_pandas(df2)]) assert_eq(cudf.from_pandas(pres), gres) def test_dataframe_concat_different_column_types(): df1 = cudf.Series([42], dtype=np.float64) df2 = cudf.Series(["a"], dtype="category") with pytest.raises(ValueError): cudf.concat([df1, df2]) df2 = cudf.Series(["a string"]) with pytest.raises(TypeError): cudf.concat([df1, df2]) @pytest.mark.parametrize( "df_1", [cudf.DataFrame({"a": [1, 2], "b": [1, 3]}), cudf.DataFrame({})] ) @pytest.mark.parametrize( "df_2", [cudf.DataFrame({"a": [], "b": []}), cudf.DataFrame({})] ) def test_concat_empty_dataframe(df_1, df_2): got = cudf.concat([df_1, df_2]) expect = pd.concat([df_1.to_pandas(), df_2.to_pandas()], sort=False) # ignoring dtypes as pandas upcasts int to float # on concatenation with empty dataframes assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "df1_d", [ {"a": [1, 2], "b": [1, 2], "c": ["s1", "s2"], "d": [1.0, 2.0]}, {"b": [1.9, 10.9], "c": ["s1", "s2"]}, {"c": ["s1"], "b": [None], "a": [False]}, ], ) @pytest.mark.parametrize( "df2_d", [ {"a": [1, 2, 3]}, {"a": [1, None, 3], "b": [True, True, False], "c": ["s3", None, "s4"]}, {"a": [], "b": []}, {}, ], ) def test_concat_different_column_dataframe(df1_d, df2_d): got = cudf.concat( [cudf.DataFrame(df1_d), cudf.DataFrame(df2_d), cudf.DataFrame(df1_d)], sort=False, ) expect = pd.concat( [pd.DataFrame(df1_d), pd.DataFrame(df2_d), pd.DataFrame(df1_d)], sort=False, ) # numerical columns are upcasted to float in cudf.DataFrame.to_pandas() # casts nan to 0 in non-float numerical columns numeric_cols = got.dtypes[got.dtypes != "object"].index for col in numeric_cols: got[col] = got[col].astype(np.float64).fillna(np.nan) assert_eq(got, expect, check_dtype=False) @pytest.mark.parametrize( "ser_1", [pd.Series([1, 2, 3]), pd.Series([], dtype="float64")] ) @pytest.mark.parametrize("ser_2", [pd.Series([], dtype="float64")]) def test_concat_empty_series(ser_1, ser_2): got = cudf.concat([cudf.Series(ser_1), cudf.Series(ser_2)]) expect = pd.concat([ser_1, ser_2]) assert_eq(got, expect) def test_concat_with_axis(): df1 = pd.DataFrame(dict(x=np.arange(5), y=np.arange(5))) df2 = pd.DataFrame(dict(a=np.arange(5), b=np.arange(5))) concat_df = pd.concat([df1, df2], axis=1) cdf1 = cudf.from_pandas(df1) cdf2 = cudf.from_pandas(df2) # concat only dataframes concat_cdf = cudf.concat([cdf1, cdf2], axis=1) assert_eq(concat_cdf, concat_df) # concat only series concat_s = pd.concat([df1.x, df1.y], axis=1) cs1 = cudf.Series.from_pandas(df1.x) cs2 = cudf.Series.from_pandas(df1.y) concat_cdf_s = cudf.concat([cs1, cs2], axis=1) assert_eq(concat_cdf_s, concat_s) # concat series and dataframes s3 = pd.Series(np.random.random(5)) cs3 = cudf.Series.from_pandas(s3) concat_cdf_all = cudf.concat([cdf1, cs3, cdf2], axis=1) concat_df_all = pd.concat([df1, s3, df2], axis=1) assert_eq(concat_cdf_all, concat_df_all) # concat manual multi index midf1 = cudf.from_pandas(df1) midf1.index = cudf.MultiIndex( levels=[[0, 1, 2, 3], [0, 1]], codes=[[0, 1, 2, 3, 2], [0, 1, 0, 1, 0]] ) midf2 = midf1[2:] midf2.index = cudf.MultiIndex( levels=[[3, 4, 5], [2, 0]], codes=[[0, 1, 2], [1, 0, 1]] ) mipdf1 = midf1.to_pandas() mipdf2 = midf2.to_pandas() assert_eq(cudf.concat([midf1, midf2]), pd.concat([mipdf1, mipdf2])) assert_eq(cudf.concat([midf2, midf1]), pd.concat([mipdf2, mipdf1])) assert_eq( cudf.concat([midf1, midf2, midf1]), pd.concat([mipdf1, mipdf2, mipdf1]) ) # concat groupby multi index gdf1 = cudf.DataFrame( { "x": np.random.randint(0, 10, 10), "y": np.random.randint(0, 10, 10), "z": np.random.randint(0, 10, 10), "v": np.random.randint(0, 10, 10), } ) gdf2 = gdf1[5:] gdg1 = gdf1.groupby(["x", "y"]).min() gdg2 = gdf2.groupby(["x", "y"]).min() pdg1 = gdg1.to_pandas() pdg2 = gdg2.to_pandas() assert_eq(cudf.concat([gdg1, gdg2]), pd.concat([pdg1, pdg2])) assert_eq(cudf.concat([gdg2, gdg1]), pd.concat([pdg2, pdg1])) # series multi index concat gdgz1 = gdg1.z gdgz2 = gdg2.z pdgz1 = gdgz1.to_pandas() pdgz2 = gdgz2.to_pandas() assert_eq(cudf.concat([gdgz1, gdgz2]), pd.concat([pdgz1, pdgz2])) assert_eq(cudf.concat([gdgz2, gdgz1]), pd.concat([pdgz2, pdgz1])) @pytest.mark.parametrize("nrows", [0, 3, 10, 100, 1000]) def test_nonmatching_index_setitem(nrows): np.random.seed(0) gdf = cudf.DataFrame() gdf["a"] = np.random.randint(2147483647, size=nrows) gdf["b"] = np.random.randint(2147483647, size=nrows) gdf = gdf.set_index("b") test_values = np.random.randint(2147483647, size=nrows) gdf["c"] = test_values assert len(test_values) == len(gdf["c"]) assert ( gdf["c"] .to_pandas() .equals(cudf.Series(test_values).set_index(gdf._index).to_pandas()) ) def test_from_pandas(): df = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) gdf = cudf.DataFrame.from_pandas(df) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = df.x gs = cudf.Series.from_pandas(s) assert isinstance(gs, cudf.Series) assert_eq(s, gs) @pytest.mark.parametrize("dtypes", [int, float]) def test_from_records(dtypes): h_ary = np.ndarray(shape=(10, 4), dtype=dtypes) rec_ary = h_ary.view(np.recarray) gdf = cudf.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) df = pd.DataFrame.from_records(rec_ary, columns=["a", "b", "c", "d"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame.from_records(rec_ary) df = pd.DataFrame.from_records(rec_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) @pytest.mark.parametrize("columns", [None, ["first", "second", "third"]]) @pytest.mark.parametrize( "index", [ None, ["first", "second"], "name", "age", "weight", [10, 11], ["abc", "xyz"], ], ) def test_from_records_index(columns, index): rec_ary = np.array( [("Rex", 9, 81.0), ("Fido", 3, 27.0)], dtype=[("name", "U10"), ("age", "i4"), ("weight", "f4")], ) gdf = cudf.DataFrame.from_records(rec_ary, columns=columns, index=index) df = pd.DataFrame.from_records(rec_ary, columns=columns, index=index) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_construction_from_cupy_arrays(): h_ary = np.array([[1, 2, 3], [4, 5, 6]], np.int32) d_ary = cupy.asarray(h_ary) gdf = cudf.DataFrame(d_ary, columns=["a", "b", "c"]) df = pd.DataFrame(h_ary, columns=["a", "b", "c"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) df = pd.DataFrame(h_ary) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary, index=["a", "b"]) df = pd.DataFrame(h_ary, index=["a", "b"]) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=0, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=0, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) gdf = cudf.DataFrame(d_ary) gdf = gdf.set_index(keys=1, drop=False) df = pd.DataFrame(h_ary) df = df.set_index(keys=1, drop=False) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) def test_dataframe_cupy_wrong_dimensions(): d_ary = cupy.empty((2, 3, 4), dtype=np.int32) with pytest.raises( ValueError, match="records dimension expected 1 or 2 but found: 3" ): cudf.DataFrame(d_ary) def test_dataframe_cupy_array_wrong_index(): d_ary = cupy.empty((2, 3), dtype=np.int32) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index=["a"]) with pytest.raises( ValueError, match="Length mismatch: Expected axis has 2 elements, " "new values have 1 elements", ): cudf.DataFrame(d_ary, index="a") def test_index_in_dataframe_constructor(): a = pd.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) b = cudf.DataFrame({"x": [1, 2, 3]}, index=[4.0, 5.0, 6.0]) assert_eq(a, b) assert_eq(a.loc[4:], b.loc[4:]) dtypes = NUMERIC_TYPES + DATETIME_TYPES + ["bool"] @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) padf = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) gdf = cudf.DataFrame.from_arrow(padf) assert isinstance(gdf, cudf.DataFrame) assert_eq(df, gdf) s = pa.Array.from_pandas(df.a) gs = cudf.Series.from_arrow(s) assert isinstance(gs, cudf.Series) # For some reason PyArrow to_pandas() converts to numpy array and has # better type compatibility np.testing.assert_array_equal(s.to_pandas(), gs.to_array()) @pytest.mark.parametrize("nelem", [0, 2, 3, 100, 1000]) @pytest.mark.parametrize("data_type", dtypes) def test_to_arrow(nelem, data_type): df = pd.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) pa_i = pa.Array.from_pandas(df.index) pa_gi = gdf.index.to_arrow() assert isinstance(pa_gi, pa.Array) assert pa.Array.equals(pa_i, pa_gi) @pytest.mark.parametrize("data_type", dtypes) def test_to_from_arrow_nulls(data_type): if data_type == "longlong": data_type = "int64" if data_type == "bool": s1 = pa.array([True, None, False, None, True], type=data_type) else: dtype = np.dtype(data_type) if dtype.type == np.datetime64: time_unit, _ = np.datetime_data(dtype) data_type = pa.timestamp(unit=time_unit) s1 = pa.array([1, None, 3, None, 5], type=data_type) gs1 = cudf.Series.from_arrow(s1) assert isinstance(gs1, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s1.buffers()[0]).view("u1")[0], gs1._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s1, gs1.to_arrow()) s2 = pa.array([None, None, None, None, None], type=data_type) gs2 = cudf.Series.from_arrow(s2) assert isinstance(gs2, cudf.Series) # We have 64B padded buffers for nulls whereas Arrow returns a minimal # number of bytes, so only check the first byte in this case np.testing.assert_array_equal( np.asarray(s2.buffers()[0]).view("u1")[0], gs2._column.mask_array_view.copy_to_host().view("u1")[0], ) assert pa.Array.equals(s2, gs2.to_arrow()) def test_to_arrow_categorical(): df = pd.DataFrame() df["a"] = pd.Series(["a", "b", "c"], dtype="category") gdf = cudf.DataFrame.from_pandas(df) pa_df = pa.Table.from_pandas( df, preserve_index=False ).replace_schema_metadata(None) pa_gdf = gdf.to_arrow(preserve_index=False).replace_schema_metadata(None) assert isinstance(pa_gdf, pa.Table) assert pa.Table.equals(pa_df, pa_gdf) pa_s = pa.Array.from_pandas(df.a) pa_gs = gdf["a"].to_arrow() assert isinstance(pa_gs, pa.Array) assert pa.Array.equals(pa_s, pa_gs) def test_from_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert_eq( pd.Series(pa_cat.to_pandas()), # PyArrow returns a pd.Categorical gd_cat.to_pandas(), ) def test_to_arrow_missing_categorical(): pd_cat = pd.Categorical(["a", "b", "c"], categories=["a", "b"]) pa_cat = pa.array(pd_cat, from_pandas=True) gd_cat = cudf.Series(pa_cat) assert isinstance(gd_cat, cudf.Series) assert pa.Array.equals(pa_cat, gd_cat.to_arrow()) @pytest.mark.parametrize("data_type", dtypes) def test_from_scalar_typing(data_type): if data_type == "datetime64[ms]": scalar = ( np.dtype("int64") .type(np.random.randint(0, 5)) .astype("datetime64[ms]") ) elif data_type.startswith("datetime64"): scalar = np.datetime64(datetime.date.today()).astype("datetime64[ms]") data_type = "datetime64[ms]" else: scalar = np.dtype(data_type).type(np.random.randint(0, 5)) gdf = cudf.DataFrame() gdf["a"] = [1, 2, 3, 4, 5] gdf["b"] = scalar assert gdf["b"].dtype == np.dtype(data_type) assert len(gdf["b"]) == len(gdf["a"]) @pytest.mark.parametrize("data_type", NUMERIC_TYPES) def test_from_python_array(data_type): np_arr = np.random.randint(0, 100, 10).astype(data_type) data = memoryview(np_arr) data = arr.array(data.format, data) gs = cudf.Series(data) np.testing.assert_equal(gs.to_array(), np_arr) def test_series_shape(): ps = pd.Series([1, 2, 3, 4]) cs = cudf.Series([1, 2, 3, 4]) assert ps.shape == cs.shape def test_series_shape_empty(): ps = pd.Series(dtype="float64") cs = cudf.Series([]) assert ps.shape == cs.shape def test_dataframe_shape(): pdf = pd.DataFrame({"a": [0, 1, 2, 3], "b": [0.1, 0.2, None, 0.3]}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.shape == gdf.shape def test_dataframe_shape_empty(): pdf = pd.DataFrame() gdf = cudf.DataFrame() assert pdf.shape == gdf.shape @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) @pytest.mark.parametrize("dtype", dtypes) @pytest.mark.parametrize("nulls", ["none", "some", "all"]) def test_dataframe_transpose(nulls, num_cols, num_rows, dtype): pdf = pd.DataFrame() null_rep = np.nan if dtype in ["float32", "float64"] else None for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(np.random.randint(0, 26, num_rows).astype(dtype)) if nulls == "some": idx = np.random.choice( num_rows, size=int(num_rows / 2), replace=False ) data[idx] = null_rep elif nulls == "all": data[:] = null_rep pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function) assert_eq(expect, got_property) @pytest.mark.parametrize("num_cols", [1, 2, 10]) @pytest.mark.parametrize("num_rows", [1, 2, 20]) def test_dataframe_transpose_category(num_cols, num_rows): pdf = pd.DataFrame() for i in range(num_cols): colname = string.ascii_lowercase[i] data = pd.Series(list(string.ascii_lowercase), dtype="category") data = data.sample(num_rows, replace=True).reset_index(drop=True) pdf[colname] = data gdf = cudf.DataFrame.from_pandas(pdf) got_function = gdf.transpose() got_property = gdf.T expect = pdf.transpose() assert_eq(expect, got_function.to_pandas()) assert_eq(expect, got_property.to_pandas()) def test_generated_column(): gdf = cudf.DataFrame({"a": (i for i in range(5))}) assert len(gdf) == 5 @pytest.fixture def pdf(): return pd.DataFrame({"x": range(10), "y": range(10)}) @pytest.fixture def gdf(pdf): return cudf.DataFrame.from_pandas(pdf) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize( "func", [ lambda df, **kwargs: df.min(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.product(**kwargs), lambda df, **kwargs: df.cummin(**kwargs), lambda df, **kwargs: df.cummax(**kwargs), lambda df, **kwargs: df.cumsum(**kwargs), lambda df, **kwargs: df.cumprod(**kwargs), lambda df, **kwargs: df.mean(**kwargs), lambda df, **kwargs: df.sum(**kwargs), lambda df, **kwargs: df.max(**kwargs), lambda df, **kwargs: df.std(ddof=1, **kwargs), lambda df, **kwargs: df.var(ddof=1, **kwargs), lambda df, **kwargs: df.std(ddof=2, **kwargs), lambda df, **kwargs: df.var(ddof=2, **kwargs), lambda df, **kwargs: df.kurt(**kwargs), lambda df, **kwargs: df.skew(**kwargs), lambda df, **kwargs: df.all(**kwargs), lambda df, **kwargs: df.any(**kwargs), ], ) @pytest.mark.parametrize("skipna", [True, False, None]) def test_dataframe_reductions(data, func, skipna): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf, skipna=skipna), func(gdf, skipna=skipna)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("func", [lambda df: df.count()]) def test_dataframe_count_reduction(data, func): pdf = pd.DataFrame(data=data) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(func(pdf), func(gdf)) @pytest.mark.parametrize( "data", [ {"x": [np.nan, 2, 3, 4, 100, np.nan], "y": [4, 5, 6, 88, 99, np.nan]}, {"x": [1, 2, 3], "y": [4, 5, 6]}, {"x": [np.nan, np.nan, np.nan], "y": [np.nan, np.nan, np.nan]}, {"x": [], "y": []}, {"x": []}, ], ) @pytest.mark.parametrize("ops", ["sum", "product", "prod"]) @pytest.mark.parametrize("skipna", [True, False, None]) @pytest.mark.parametrize("min_count", [-10, -1, 0, 1, 2, 3, 10]) def test_dataframe_min_count_ops(data, ops, skipna, min_count): psr = pd.DataFrame(data) gsr = cudf.DataFrame(data) if PANDAS_GE_120 and psr.shape[0] * psr.shape[1] < min_count: pytest.xfail("https://github.com/pandas-dev/pandas/issues/39738") assert_eq( getattr(psr, ops)(skipna=skipna, min_count=min_count), getattr(gsr, ops)(skipna=skipna, min_count=min_count), check_dtype=False, ) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_df(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf, pdf) g = binop(gdf, gdf) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_df(pdf, gdf, binop): d = binop(pdf, pdf + 1) g = binop(gdf, gdf + 1) assert_eq(d, g) @pytest.mark.parametrize( "binop", [ operator.add, operator.mul, operator.floordiv, operator.truediv, operator.mod, operator.pow, operator.eq, operator.lt, operator.le, operator.gt, operator.ge, operator.ne, ], ) def test_binops_series(pdf, gdf, binop): pdf = pdf + 1.0 gdf = gdf + 1.0 d = binop(pdf.x, pdf.y) g = binop(gdf.x, gdf.y) assert_eq(d, g) @pytest.mark.parametrize("binop", [operator.and_, operator.or_, operator.xor]) def test_bitwise_binops_series(pdf, gdf, binop): d = binop(pdf.x, pdf.y + 1) g = binop(gdf.x, gdf.y + 1) assert_eq(d, g) @pytest.mark.parametrize("unaryop", [operator.neg, operator.inv, operator.abs]) def test_unaryops_df(pdf, gdf, unaryop): d = unaryop(pdf - 5) g = unaryop(gdf - 5) assert_eq(d, g) @pytest.mark.parametrize( "func", [ lambda df: df.empty, lambda df: df.x.empty, lambda df: df.x.fillna(123, limit=None, method=None, axis=None), lambda df: df.drop("x", axis=1, errors="raise"), ], ) def test_unary_operators(func, pdf, gdf): p = func(pdf) g = func(gdf) assert_eq(p, g) def test_is_monotonic(gdf): pdf = pd.DataFrame({"x": [1, 2, 3]}, index=[3, 1, 2]) gdf = cudf.DataFrame.from_pandas(pdf) assert not gdf.index.is_monotonic assert not gdf.index.is_monotonic_increasing assert not gdf.index.is_monotonic_decreasing def test_iter(pdf, gdf): assert list(pdf) == list(gdf) def test_iteritems(gdf): for k, v in gdf.iteritems(): assert k in gdf.columns assert isinstance(v, cudf.Series) assert_eq(v, gdf[k]) @pytest.mark.parametrize("q", [0.5, 1, 0.001, [0.5], [], [0.005, 0.5, 1]]) @pytest.mark.parametrize("numeric_only", [True, False]) def test_quantile(q, numeric_only): ts = pd.date_range("2018-08-24", periods=5, freq="D") td = pd.to_timedelta(np.arange(5), unit="h") pdf = pd.DataFrame( {"date": ts, "delta": td, "val": np.random.randn(len(ts))} ) gdf = cudf.DataFrame.from_pandas(pdf) assert_eq(pdf["date"].quantile(q), gdf["date"].quantile(q)) assert_eq(pdf["delta"].quantile(q), gdf["delta"].quantile(q)) assert_eq(pdf["val"].quantile(q), gdf["val"].quantile(q)) if numeric_only: assert_eq(pdf.quantile(q), gdf.quantile(q)) else: q = q if isinstance(q, list) else [q] assert_eq( pdf.quantile( q if isinstance(q, list) else [q], numeric_only=False ), gdf.quantile(q, numeric_only=False), ) def test_empty_quantile(): pdf = pd.DataFrame({"x": []}) df = cudf.DataFrame({"x": []}) actual = df.quantile() expected = pdf.quantile() assert_eq(actual, expected) def test_from_pandas_function(pdf): gdf = cudf.from_pandas(pdf) assert isinstance(gdf, cudf.DataFrame) assert_eq(pdf, gdf) gdf = cudf.from_pandas(pdf.x) assert isinstance(gdf, cudf.Series) assert_eq(pdf.x, gdf) with pytest.raises(TypeError): cudf.from_pandas(123) @pytest.mark.parametrize("preserve_index", [True, False]) def test_arrow_pandas_compat(pdf, gdf, preserve_index): pdf["z"] = range(10) pdf = pdf.set_index("z") gdf["z"] = range(10) gdf = gdf.set_index("z") pdf_arrow_table = pa.Table.from_pandas(pdf, preserve_index=preserve_index) gdf_arrow_table = gdf.to_arrow(preserve_index=preserve_index) assert pa.Table.equals(pdf_arrow_table, gdf_arrow_table) gdf2 = cudf.DataFrame.from_arrow(pdf_arrow_table) pdf2 = pdf_arrow_table.to_pandas() assert_eq(pdf2, gdf2) @pytest.mark.parametrize("nrows", [1, 8, 100, 1000, 100000]) def test_series_hash_encode(nrows): data = np.asarray(range(nrows)) # Python hash returns different value which sometimes # results in enc_with_name_arr and enc_arr to be same. # And there is no other better way to make hash return same value. # So using an integer name to get constant value back from hash. s = cudf.Series(data, name=1) num_features = 1000 encoded_series = s.hash_encode(num_features) assert isinstance(encoded_series, cudf.Series) enc_arr = encoded_series.to_array() assert np.all(enc_arr >= 0) assert np.max(enc_arr) < num_features enc_with_name_arr = s.hash_encode(num_features, use_name=True).to_array() assert enc_with_name_arr[0] != enc_arr[0] @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) def test_cuda_array_interface(dtype): np_data = np.arange(10).astype(dtype) cupy_data = cupy.array(np_data) pd_data = pd.Series(np_data) cudf_data = cudf.Series(cupy_data) assert_eq(pd_data, cudf_data) gdf = cudf.DataFrame() gdf["test"] = cupy_data pd_data.name = "test" assert_eq(pd_data, gdf["test"]) @pytest.mark.parametrize("nelem", [0, 2, 3, 100]) @pytest.mark.parametrize("nchunks", [1, 2, 5, 10]) @pytest.mark.parametrize("data_type", dtypes) def test_from_arrow_chunked_arrays(nelem, nchunks, data_type): np_list_data = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array = pa.chunked_array(np_list_data) expect = pd.Series(pa_chunk_array.to_pandas()) got = cudf.Series(pa_chunk_array) assert_eq(expect, got) np_list_data2 = [ np.random.randint(0, 100, nelem).astype(data_type) for i in range(nchunks) ] pa_chunk_array2 = pa.chunked_array(np_list_data2) pa_table = pa.Table.from_arrays( [pa_chunk_array, pa_chunk_array2], names=["a", "b"] ) expect = pa_table.to_pandas() got = cudf.DataFrame.from_arrow(pa_table) assert_eq(expect, got) @pytest.mark.skip(reason="Test was designed to be run in isolation") def test_gpu_memory_usage_with_boolmask(): ctx = cuda.current_context() def query_GPU_memory(note=""): memInfo = ctx.get_memory_info() usedMemoryGB = (memInfo.total - memInfo.free) / 1e9 return usedMemoryGB cuda.current_context().deallocations.clear() nRows = int(1e8) nCols = 2 dataNumpy = np.asfortranarray(np.random.rand(nRows, nCols)) colNames = ["col" + str(iCol) for iCol in range(nCols)] pandasDF = pd.DataFrame(data=dataNumpy, columns=colNames, dtype=np.float32) cudaDF = cudf.core.DataFrame.from_pandas(pandasDF) boolmask = cudf.Series(np.random.randint(1, 2, len(cudaDF)).astype("bool")) memory_used = query_GPU_memory() cudaDF = cudaDF[boolmask] assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col0"].index._values.data_array_view.device_ctypes_pointer ) assert ( cudaDF.index._values.data_array_view.device_ctypes_pointer == cudaDF["col1"].index._values.data_array_view.device_ctypes_pointer ) assert memory_used == query_GPU_memory() def test_boolmask(pdf, gdf): boolmask = np.random.randint(0, 2, len(pdf)) > 0 gdf = gdf[boolmask] pdf = pdf[boolmask] assert_eq(pdf, gdf) @pytest.mark.parametrize( "mask_shape", [ (2, "ab"), (2, "abc"), (3, "ab"), (3, "abc"), (3, "abcd"), (4, "abc"), (4, "abcd"), ], ) def test_dataframe_boolmask(mask_shape): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.random.randint(0, 10, 3) pdf_mask = pd.DataFrame() for col in mask_shape[1]: pdf_mask[col] = np.random.randint(0, 2, mask_shape[0]) > 0 gdf = cudf.DataFrame.from_pandas(pdf) gdf_mask = cudf.DataFrame.from_pandas(pdf_mask) gdf = gdf[gdf_mask] pdf = pdf[pdf_mask] assert np.array_equal(gdf.columns, pdf.columns) for col in gdf.columns: assert np.array_equal( gdf[col].fillna(-1).to_pandas().values, pdf[col].fillna(-1).values ) @pytest.mark.parametrize( "mask", [ [True, False, True], pytest.param( cudf.Series([True, False, True]), marks=pytest.mark.xfail( reason="Pandas can't index a multiindex with a Series" ), ), ], ) def test_dataframe_multiindex_boolmask(mask): gdf = cudf.DataFrame( {"w": [3, 2, 1], "x": [1, 2, 3], "y": [0, 1, 0], "z": [1, 1, 1]} ) gdg = gdf.groupby(["w", "x"]).count() pdg = gdg.to_pandas() assert_eq(gdg[mask], pdg[mask]) def test_dataframe_assignment(): pdf = pd.DataFrame() for col in "abc": pdf[col] = np.array([0, 1, 1, -2, 10]) gdf = cudf.DataFrame.from_pandas(pdf) gdf[gdf < 0] = 999 pdf[pdf < 0] = 999 assert_eq(gdf, pdf) def test_1row_arrow_table(): data = [pa.array([0]), pa.array([1])] batch = pa.RecordBatch.from_arrays(data, ["f0", "f1"]) table = pa.Table.from_batches([batch]) expect = table.to_pandas() got = cudf.DataFrame.from_arrow(table) assert_eq(expect, got) def test_arrow_handle_no_index_name(pdf, gdf): gdf_arrow = gdf.to_arrow() pdf_arrow = pa.Table.from_pandas(pdf) assert pa.Table.equals(pdf_arrow, gdf_arrow) got = cudf.DataFrame.from_arrow(gdf_arrow) expect = pdf_arrow.to_pandas() assert_eq(expect, got) @pytest.mark.parametrize("num_rows", [1, 3, 10, 100]) @pytest.mark.parametrize("num_bins", [1, 2, 4, 20]) @pytest.mark.parametrize("right", [True, False]) @pytest.mark.parametrize("dtype", NUMERIC_TYPES + ["bool"]) @pytest.mark.parametrize("series_bins", [True, False]) def test_series_digitize(num_rows, num_bins, right, dtype, series_bins): data = np.random.randint(0, 100, num_rows).astype(dtype) bins = np.unique(np.sort(np.random.randint(2, 95, num_bins).astype(dtype))) s = cudf.Series(data) if series_bins: s_bins = cudf.Series(bins) indices = s.digitize(s_bins, right) else: indices = s.digitize(bins, right) np.testing.assert_array_equal( np.digitize(data, bins, right), indices.to_array() ) def test_series_digitize_invalid_bins(): s = cudf.Series(np.random.randint(0, 30, 80), dtype="int32") bins = cudf.Series([2, None, None, 50, 90], dtype="int32") with pytest.raises( ValueError, match="`bins` cannot contain null entries." ): _ = s.digitize(bins) def test_pandas_non_contiguious(): arr1 = np.random.sample([5000, 10]) assert arr1.flags["C_CONTIGUOUS"] is True df = pd.DataFrame(arr1) for col in df.columns: assert df[col].values.flags["C_CONTIGUOUS"] is False gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.to_pandas(), df) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) @pytest.mark.parametrize("null_type", [np.nan, None, "mixed"]) def test_series_all_null(num_elements, null_type): if null_type == "mixed": data = [] data1 = [np.nan] * int(num_elements / 2) data2 = [None] * int(num_elements / 2) for idx in range(len(data1)): data.append(data1[idx]) data.append(data2[idx]) else: data = [null_type] * num_elements # Typecast Pandas because None will return `object` dtype expect = pd.Series(data, dtype="float64") got = cudf.Series(data) assert_eq(expect, got) @pytest.mark.parametrize("num_elements", [0, 2, 10, 100]) def test_series_all_valid_nan(num_elements): data = [np.nan] * num_elements sr = cudf.Series(data, nan_as_null=False) np.testing.assert_equal(sr.null_count, 0) def test_series_rename(): pds = pd.Series([1, 2, 3], name="asdf") gds = cudf.Series([1, 2, 3], name="asdf") expect = pds.rename("new_name") got = gds.rename("new_name") assert_eq(expect, got) pds = pd.Series(expect) gds = cudf.Series(got) assert_eq(pds, gds) pds = pd.Series(expect, name="name name") gds = cudf.Series(got, name="name name") assert_eq(pds, gds) @pytest.mark.parametrize("data_type", dtypes) @pytest.mark.parametrize("nelem", [0, 100]) def test_head_tail(nelem, data_type): def check_index_equality(left, right): assert left.index.equals(right.index) def check_values_equality(left, right): if len(left) == 0 and len(right) == 0: return None np.testing.assert_array_equal(left.to_pandas(), right.to_pandas()) def check_frame_series_equality(left, right): check_index_equality(left, right) check_values_equality(left, right) gdf = cudf.DataFrame( { "a": np.random.randint(0, 1000, nelem).astype(data_type), "b": np.random.randint(0, 1000, nelem).astype(data_type), } ) check_frame_series_equality(gdf.head(), gdf[:5]) check_frame_series_equality(gdf.head(3), gdf[:3]) check_frame_series_equality(gdf.head(-2), gdf[:-2]) check_frame_series_equality(gdf.head(0), gdf[0:0]) check_frame_series_equality(gdf["a"].head(), gdf["a"][:5]) check_frame_series_equality(gdf["a"].head(3), gdf["a"][:3]) check_frame_series_equality(gdf["a"].head(-2), gdf["a"][:-2]) check_frame_series_equality(gdf.tail(), gdf[-5:]) check_frame_series_equality(gdf.tail(3), gdf[-3:]) check_frame_series_equality(gdf.tail(-2), gdf[2:]) check_frame_series_equality(gdf.tail(0), gdf[0:0]) check_frame_series_equality(gdf["a"].tail(), gdf["a"][-5:]) check_frame_series_equality(gdf["a"].tail(3), gdf["a"][-3:]) check_frame_series_equality(gdf["a"].tail(-2), gdf["a"][2:]) def test_tail_for_string(): gdf = cudf.DataFrame() gdf["id"] = cudf.Series(["a", "b"], dtype=np.object_) gdf["v"] = cudf.Series([1, 2]) assert_eq(gdf.tail(3), gdf.to_pandas().tail(3)) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index(pdf, gdf, drop): assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_named_index(pdf, gdf, drop): pdf.index.name = "cudf" gdf.index.name = "cudf" assert_eq( pdf.reset_index(drop=drop, inplace=False), gdf.reset_index(drop=drop, inplace=False), ) assert_eq( pdf.x.reset_index(drop=drop, inplace=False), gdf.x.reset_index(drop=drop, inplace=False), ) @pytest.mark.parametrize("drop", [True, False]) def test_reset_index_inplace(pdf, gdf, drop): pdf.reset_index(drop=drop, inplace=True) gdf.reset_index(drop=drop, inplace=True) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ { "a": [1, 2, 3, 4, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize( "index", [ "a", ["a", "b"], pd.CategoricalIndex(["I", "II", "III", "IV", "V"]), pd.Series(["h", "i", "k", "l", "m"]), ["b", pd.Index(["I", "II", "III", "IV", "V"])], ["c", [11, 12, 13, 14, 15]], pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), # corner case [pd.Series(["h", "i", "k", "l", "m"]), pd.RangeIndex(0, 5)], [ pd.MultiIndex( levels=[ ["I", "II", "III", "IV", "V"], ["one", "two", "three", "four", "five"], ], codes=[[0, 1, 2, 3, 4], [4, 3, 2, 1, 0]], names=["col1", "col2"], ), pd.RangeIndex(0, 5), ], ], ) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) def test_set_index(data, index, drop, append, inplace): gdf = cudf.DataFrame(data) pdf = gdf.to_pandas() expected = pdf.set_index(index, inplace=inplace, drop=drop, append=append) actual = gdf.set_index(index, inplace=inplace, drop=drop, append=append) if inplace: expected = pdf actual = gdf assert_eq(expected, actual) @pytest.mark.parametrize( "data", [ { "a": [1, 1, 2, 2, 5], "b": ["a", "b", "c", "d", "e"], "c": [1.0, 2.0, 3.0, 4.0, 5.0], } ], ) @pytest.mark.parametrize("index", ["a", pd.Index([1, 1, 2, 2, 3])]) @pytest.mark.parametrize("verify_integrity", [True]) @pytest.mark.xfail def test_set_index_verify_integrity(data, index, verify_integrity): gdf = cudf.DataFrame(data) gdf.set_index(index, verify_integrity=verify_integrity) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("nelem", [10, 200, 1333]) def test_set_index_multi(drop, nelem): np.random.seed(0) a = np.arange(nelem) np.random.shuffle(a) df = pd.DataFrame( { "a": a, "b": np.random.randint(0, 4, size=nelem), "c": np.random.uniform(low=0, high=4, size=nelem), "d": np.random.choice(["green", "black", "white"], nelem), } ) df["e"] = df["d"].astype("category") gdf = cudf.DataFrame.from_pandas(df) assert_eq(gdf.set_index("a", drop=drop), gdf.set_index(["a"], drop=drop)) assert_eq( df.set_index(["b", "c"], drop=drop), gdf.set_index(["b", "c"], drop=drop), ) assert_eq( df.set_index(["d", "b"], drop=drop), gdf.set_index(["d", "b"], drop=drop), ) assert_eq( df.set_index(["b", "d", "e"], drop=drop), gdf.set_index(["b", "d", "e"], drop=drop), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_0(copy): # TODO (ptaylor): pandas changes `int` dtype to `float64` # when reindexing and filling new label indices with NaN gdf = cudf.datasets.randomdata( nrows=6, dtypes={ "a": "category", # 'b': int, "c": float, "d": str, }, ) pdf = gdf.to_pandas() # Validate reindex returns a copy unmodified assert_eq(pdf.reindex(copy=True), gdf.reindex(copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_1(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis defaults to 0 assert_eq(pdf.reindex(index, copy=True), gdf.reindex(index, copy=copy)) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_2(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(index, axis=0, copy=True), gdf.reindex(index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_3(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=0 assert_eq( pdf.reindex(columns, axis=1, copy=True), gdf.reindex(columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_4(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis=0 assert_eq( pdf.reindex(labels=index, axis=0, copy=True), gdf.reindex(labels=index, axis=0, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_5(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis=1 assert_eq( pdf.reindex(labels=columns, axis=1, copy=True), gdf.reindex(labels=columns, axis=1, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_6(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as index when axis='index' assert_eq( pdf.reindex(labels=index, axis="index", copy=True), gdf.reindex(labels=index, axis="index", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_7(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate labels are used as columns when axis='columns' assert_eq( pdf.reindex(labels=columns, axis="columns", copy=True), gdf.reindex(labels=columns, axis="columns", copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_8(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes labels when index=labels assert_eq( pdf.reindex(index=index, copy=True), gdf.reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_9(copy): columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes column names when columns=labels assert_eq( pdf.reindex(columns=columns, copy=True), gdf.reindex(columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_10(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_dataframe_reindex_change_dtype(copy): if PANDAS_GE_110: kwargs = {"check_freq": False} else: kwargs = {} index = pd.date_range("12/29/2009", periods=10, freq="D") columns = ["a", "b", "c", "d", "e"] gdf = cudf.datasets.randomdata( nrows=6, dtypes={"a": "category", "c": float, "d": str} ) pdf = gdf.to_pandas() # Validate reindexes both labels and column names when # index=index_labels and columns=column_labels assert_eq( pdf.reindex(index=index, columns=columns, copy=True), gdf.reindex(index=index, columns=columns, copy=copy), **kwargs, ) @pytest.mark.parametrize("copy", [True, False]) def test_series_categorical_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"a": "category"}) pdf = gdf.to_pandas() assert_eq(pdf["a"].reindex(copy=True), gdf["a"].reindex(copy=copy)) assert_eq( pdf["a"].reindex(index, copy=True), gdf["a"].reindex(index, copy=copy) ) assert_eq( pdf["a"].reindex(index=index, copy=True), gdf["a"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_float_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"c": float}) pdf = gdf.to_pandas() assert_eq(pdf["c"].reindex(copy=True), gdf["c"].reindex(copy=copy)) assert_eq( pdf["c"].reindex(index, copy=True), gdf["c"].reindex(index, copy=copy) ) assert_eq( pdf["c"].reindex(index=index, copy=True), gdf["c"].reindex(index=index, copy=copy), ) @pytest.mark.parametrize("copy", [True, False]) def test_series_string_reindex(copy): index = [-3, 0, 3, 0, -2, 1, 3, 4, 6] gdf = cudf.datasets.randomdata(nrows=6, dtypes={"d": str}) pdf = gdf.to_pandas() assert_eq(pdf["d"].reindex(copy=True), gdf["d"].reindex(copy=copy)) assert_eq( pdf["d"].reindex(index, copy=True), gdf["d"].reindex(index, copy=copy) ) assert_eq( pdf["d"].reindex(index=index, copy=True), gdf["d"].reindex(index=index, copy=copy), ) def test_to_frame(pdf, gdf): assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = "foo" gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(pdf.x.to_frame(), gdf.x.to_frame()) name = False gdf_new_name = gdf.x.to_frame(name=name) pdf_new_name = pdf.x.to_frame(name=name) assert_eq(gdf_new_name, pdf_new_name) assert gdf_new_name.columns[0] is name def test_dataframe_empty_sort_index(): pdf = pd.DataFrame({"x": []}) gdf = cudf.DataFrame.from_pandas(pdf) expect = pdf.sort_index() got = gdf.sort_index() assert_eq(expect, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_sort_index( axis, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( {"b": [1, 3, 2], "a": [1, 4, 3], "c": [4, 1, 5]}, index=[3.0, 1.0, np.nan], ) gdf = cudf.DataFrame.from_pandas(pdf) expected = pdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) got = gdf.sort_index( axis=axis, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: assert_eq(pdf, gdf) else: assert_eq(expected, got) @pytest.mark.parametrize("axis", [0, 1, "index", "columns"]) @pytest.mark.parametrize( "level", [ 0, "b", 1, ["b"], "a", ["a", "b"], ["b", "a"], [0, 1], [1, 0], [0, 2], None, ], ) @pytest.mark.parametrize("ascending", [True, False]) @pytest.mark.parametrize("ignore_index", [True, False]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("na_position", ["first", "last"]) def test_dataframe_mulitindex_sort_index( axis, level, ascending, inplace, ignore_index, na_position ): pdf = pd.DataFrame( { "b": [1.0, 3.0, np.nan], "a": [1, 4, 3], 1: ["a", "b", "c"], "e": [3, 1, 4], "d": [1, 2, 8], } ).set_index(["b", "a", 1]) gdf = cudf.DataFrame.from_pandas(pdf) # ignore_index is supported in v.1.0 expected = pdf.sort_index( axis=axis, level=level, ascending=ascending, inplace=inplace, na_position=na_position, ) if ignore_index is True: expected = expected got = gdf.sort_index( axis=axis, level=level, ascending=ascending, ignore_index=ignore_index, inplace=inplace, na_position=na_position, ) if inplace is True: if ignore_index is True: pdf = pdf.reset_index(drop=True) assert_eq(pdf, gdf) else: if ignore_index is True: expected = expected.reset_index(drop=True) assert_eq(expected, got) @pytest.mark.parametrize("dtype", dtypes + ["category"]) def test_dataframe_0_row_dtype(dtype): if dtype == "category": data = pd.Series(["a", "b", "c", "d", "e"], dtype="category") else: data = np.array([1, 2, 3, 4, 5], dtype=dtype) expect = cudf.DataFrame() expect["x"] = data expect["y"] = data got = expect.head(0) for col_name in got.columns: assert expect[col_name].dtype == got[col_name].dtype expect = cudf.Series(data) got = expect.head(0) assert expect.dtype == got.dtype @pytest.mark.parametrize("nan_as_null", [True, False]) def test_series_list_nanasnull(nan_as_null): data = [1.0, 2.0, 3.0, np.nan, None] expect = pa.array(data, from_pandas=nan_as_null) got = cudf.Series(data, nan_as_null=nan_as_null).to_arrow() # Bug in Arrow 0.14.1 where NaNs aren't handled expect = expect.cast("int64", safe=False) got = got.cast("int64", safe=False) assert pa.Array.equals(expect, got) def test_column_assignment(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float} ) new_cols = ["q", "r", "s"] gdf.columns = new_cols assert list(gdf.columns) == new_cols def test_select_dtype(): gdf = cudf.datasets.randomdata( nrows=20, dtypes={"a": "category", "b": int, "c": float, "d": str} ) pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("float64"), gdf.select_dtypes("float64")) assert_eq(pdf.select_dtypes(np.float64), gdf.select_dtypes(np.float64)) assert_eq( pdf.select_dtypes(include=["float64"]), gdf.select_dtypes(include=["float64"]), ) assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["int64", "float64"]), gdf.select_dtypes(include=["int64", "float64"]), ) assert_eq( pdf.select_dtypes(include=np.number), gdf.select_dtypes(include=np.number), ) assert_eq( pdf.select_dtypes(include=[np.int64, np.float64]), gdf.select_dtypes(include=[np.int64, np.float64]), ) assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(exclude=np.number), gdf.select_dtypes(exclude=np.number), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=([], {"includes": ["Foo"]}), rfunc_args_and_kwargs=([], {"includes": ["Foo"]}), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, lfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), rfunc_args_and_kwargs=( [], {"exclude": np.number, "include": np.number}, ), ) gdf = cudf.DataFrame( {"A": [3, 4, 5], "C": [1, 2, 3], "D": ["a", "b", "c"]} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["object", "int", "category"]), gdf.select_dtypes(include=["object", "int", "category"]), ) assert_eq( pdf.select_dtypes(include=["object"], exclude=["category"]), gdf.select_dtypes(include=["object"], exclude=["category"]), ) gdf = cudf.DataFrame({"a": range(10), "b": range(10, 20)}) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(include=["category"]), gdf.select_dtypes(include=["category"]), ) assert_eq( pdf.select_dtypes(include=["float"]), gdf.select_dtypes(include=["float"]), ) assert_eq( pdf.select_dtypes(include=["object"]), gdf.select_dtypes(include=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"]), gdf.select_dtypes(include=["int"]) ) assert_eq( pdf.select_dtypes(exclude=["float"]), gdf.select_dtypes(exclude=["float"]), ) assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) assert_exceptions_equal( lfunc=pdf.select_dtypes, rfunc=gdf.select_dtypes, ) gdf = cudf.DataFrame( {"a": cudf.Series([], dtype="int"), "b": cudf.Series([], dtype="str")} ) pdf = gdf.to_pandas() assert_eq( pdf.select_dtypes(exclude=["object"]), gdf.select_dtypes(exclude=["object"]), ) assert_eq( pdf.select_dtypes(include=["int"], exclude=["object"]), gdf.select_dtypes(include=["int"], exclude=["object"]), ) def test_select_dtype_datetime(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_eq(pdf.select_dtypes("datetime64"), gdf.select_dtypes("datetime64")) assert_eq( pdf.select_dtypes(np.dtype("datetime64")), gdf.select_dtypes(np.dtype("datetime64")), ) assert_eq( pdf.select_dtypes(include="datetime64"), gdf.select_dtypes(include="datetime64"), ) def test_select_dtype_datetime_with_frequency(): gdf = cudf.datasets.timeseries( start="2000-01-01", end="2000-01-02", freq="3600s", dtypes={"x": int} ) gdf = gdf.reset_index() pdf = gdf.to_pandas() assert_exceptions_equal( pdf.select_dtypes, gdf.select_dtypes, (["datetime64[ms]"],), (["datetime64[ms]"],), ) def test_array_ufunc(): gdf = cudf.DataFrame({"x": [2, 3, 4.0], "y": [9.0, 2.5, 1.1]}) pdf = gdf.to_pandas() assert_eq(np.sqrt(gdf), np.sqrt(pdf)) assert_eq(np.sqrt(gdf.x), np.sqrt(pdf.x)) @pytest.mark.parametrize("nan_value", [-5, -5.0, 0, 5, 5.0, None, "pandas"]) def test_series_to_gpu_array(nan_value): s = cudf.Series([0, 1, None, 3]) np.testing.assert_array_equal( s.to_array(nan_value), s.to_gpu_array(nan_value).copy_to_host() ) def test_dataframe_describe_exclude(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(exclude=["float"]) pdf_results = pdf.describe(exclude=["float"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_include(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(include=["int"]) pdf_results = pdf.describe(include=["int"]) assert_eq(gdf_results, pdf_results) def test_dataframe_describe_default(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe() pdf_results = pdf.describe() assert_eq(pdf_results, gdf_results) def test_series_describe_include_all(): np.random.seed(12) data_length = 10000 df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["x"] = df.x.astype("int64") df["y"] = np.random.normal(10, 1, data_length) df["animal"] = np.random.choice(["dog", "cat", "bird"], data_length) pdf = df.to_pandas() gdf_results = df.describe(include="all") pdf_results = pdf.describe(include="all") assert_eq(gdf_results[["x", "y"]], pdf_results[["x", "y"]]) assert_eq(gdf_results.index, pdf_results.index) assert_eq(gdf_results.columns, pdf_results.columns) assert_eq( gdf_results[["animal"]].fillna(-1).astype("str"), pdf_results[["animal"]].fillna(-1).astype("str"), ) def test_dataframe_describe_percentiles(): np.random.seed(12) data_length = 10000 sample_percentiles = [0.0, 0.1, 0.33, 0.84, 0.4, 0.99] df = cudf.DataFrame() df["x"] = np.random.normal(10, 1, data_length) df["y"] = np.random.normal(10, 1, data_length) pdf = df.to_pandas() gdf_results = df.describe(percentiles=sample_percentiles) pdf_results = pdf.describe(percentiles=sample_percentiles) assert_eq(pdf_results, gdf_results) def test_get_numeric_data(): pdf = pd.DataFrame( {"x": [1, 2, 3], "y": [1.0, 2.0, 3.0], "z": ["a", "b", "c"]} ) gdf = cudf.from_pandas(pdf) assert_eq(pdf._get_numeric_data(), gdf._get_numeric_data()) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_shift(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) shifted_outcome = gdf.a.shift(period).fillna(0) expected_outcome = pdf.a.shift(period).fillna(0).astype(dtype) if data_empty: assert_eq(shifted_outcome, expected_outcome, check_index_type=False) else: assert_eq(shifted_outcome, expected_outcome) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("period", [-1, -5, -10, -20, 0, 1, 5, 10, 20]) @pytest.mark.parametrize("data_empty", [False, True]) def test_diff(dtype, period, data_empty): if data_empty: data = None else: if dtype == np.int8: # to keep data in range data = gen_rand(dtype, 100000, low=-2, high=2) else: data = gen_rand(dtype, 100000) gdf = cudf.DataFrame({"a": cudf.Series(data, dtype=dtype)}) pdf = pd.DataFrame({"a": pd.Series(data, dtype=dtype)}) expected_outcome = pdf.a.diff(period) diffed_outcome = gdf.a.diff(period).astype(expected_outcome.dtype) if data_empty: assert_eq(diffed_outcome, expected_outcome, check_index_type=False) else: assert_eq(diffed_outcome, expected_outcome) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_isnull_isna(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.isnull(), gdf.isnull()) assert_eq(df.isna(), gdf.isna()) # Test individual columns for col in df: assert_eq(df[col].isnull(), gdf[col].isnull()) assert_eq(df[col].isna(), gdf[col].isna()) @pytest.mark.parametrize("df", _dataframe_na_data()) @pytest.mark.parametrize("nan_as_null", [True, False, None]) def test_dataframe_notna_notnull(df, nan_as_null): gdf = cudf.DataFrame.from_pandas(df, nan_as_null=nan_as_null) assert_eq(df.notnull(), gdf.notnull()) assert_eq(df.notna(), gdf.notna()) # Test individual columns for col in df: assert_eq(df[col].notnull(), gdf[col].notnull()) assert_eq(df[col].notna(), gdf[col].notna()) def test_ndim(): pdf = pd.DataFrame({"x": range(5), "y": range(5, 10)}) gdf = cudf.DataFrame.from_pandas(pdf) assert pdf.ndim == gdf.ndim assert pdf.x.ndim == gdf.x.ndim s = pd.Series(dtype="float64") gs = cudf.Series() assert s.ndim == gs.ndim @pytest.mark.parametrize( "decimals", [ -3, 0, 5, pd.Series([1, 4, 3, -6], index=["w", "x", "y", "z"]), cudf.Series([-4, -2, 12], index=["x", "y", "z"]), {"w": -1, "x": 15, "y": 2}, ], ) def test_dataframe_round(decimals): pdf = pd.DataFrame( { "w": np.arange(0.5, 10.5, 1), "x": np.random.normal(-100, 100, 10), "y": np.array( [ 14.123, 2.343, np.nan, 0.0, -8.302, np.nan, 94.313, -112.236, -8.029, np.nan, ] ), "z": np.repeat([-0.6459412758761901], 10), } ) gdf = cudf.DataFrame.from_pandas(pdf) if isinstance(decimals, cudf.Series): pdecimals = decimals.to_pandas() else: pdecimals = decimals result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) # with nulls, maintaining existing null mask for c in pdf.columns: arr = pdf[c].to_numpy().astype("float64") # for pandas nulls arr.ravel()[np.random.choice(10, 5, replace=False)] = np.nan pdf[c] = gdf[c] = arr result = gdf.round(decimals) expected = pdf.round(pdecimals) assert_eq(result, expected) for c in gdf.columns: np.array_equal(gdf[c].nullmask.to_array(), result[c].to_array()) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: all does not " "support columns of object dtype." ) ], ), ], ) def test_all(data): # Pandas treats `None` in object type columns as True for some reason, so # replacing with `False` if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data).replace( [None], False ) gdata = cudf.Series.from_pandas(pdata) else: pdata = pd.DataFrame(data, columns=["a", "b"]).replace([None], False) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.all(bool_only=True) expected = pdata.all(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.all(bool_only=False) with pytest.raises(NotImplementedError): gdata.all(level="a") got = gdata.all() expected = pdata.all() assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [0, 1, 2, 3], [-2, -1, 2, 3, 5], [-2, -1, 0, 3, 5], [0, 0, 0, 0, 0], [0, 0, None, 0], [True, False, False], [True], [False], [], [True, None, False], [True, True, None], [None, None], [[0, 5], [1, 6], [2, 7], [3, 8], [4, 9]], [[1, True], [2, False], [3, False]], pytest.param( [["a", True], ["b", False], ["c", False]], marks=[ pytest.mark.xfail( reason="NotImplementedError: any does not " "support columns of object dtype." ) ], ), ], ) @pytest.mark.parametrize("axis", [0, 1]) def test_any(data, axis): if np.array(data).ndim <= 1: pdata = cudf.utils.utils._create_pandas_series(data=data) gdata = cudf.Series.from_pandas(pdata) if axis == 1: with pytest.raises(NotImplementedError): gdata.any(axis=axis) else: got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) else: pdata = pd.DataFrame(data, columns=["a", "b"]) gdata = cudf.DataFrame.from_pandas(pdata) # test bool_only if pdata["b"].dtype == "bool": got = gdata.any(bool_only=True) expected = pdata.any(bool_only=True) assert_eq(got, expected) else: with pytest.raises(NotImplementedError): gdata.any(bool_only=False) with pytest.raises(NotImplementedError): gdata.any(level="a") got = gdata.any(axis=axis) expected = pdata.any(axis=axis) assert_eq(got, expected) @pytest.mark.parametrize("axis", [0, 1]) def test_empty_dataframe_any(axis): pdf = pd.DataFrame({}, columns=["a", "b"]) gdf = cudf.DataFrame.from_pandas(pdf) got = gdf.any(axis=axis) expected = pdf.any(axis=axis) assert_eq(got, expected, check_index_type=False) @pytest.mark.parametrize("indexed", [False, True]) def test_dataframe_sizeof(indexed): rows = int(1e6) index = list(i for i in range(rows)) if indexed else None gdf = cudf.DataFrame({"A": [8] * rows, "B": [32] * rows}, index=index) for c in gdf._data.columns: assert gdf._index.__sizeof__() == gdf._index.__sizeof__() cols_sizeof = sum(c.__sizeof__() for c in gdf._data.columns) assert gdf.__sizeof__() == (gdf._index.__sizeof__() + cols_sizeof) @pytest.mark.parametrize("a", [[], ["123"]]) @pytest.mark.parametrize("b", ["123", ["123"]]) @pytest.mark.parametrize( "misc_data", ["123", ["123"] * 20, 123, [1, 2, 0.8, 0.9] * 50, 0.9, 0.00001], ) @pytest.mark.parametrize("non_list_data", [123, "abc", "zyx", "rapids", 0.8]) def test_create_dataframe_cols_empty_data(a, b, misc_data, non_list_data): expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = b actual["b"] = b assert_eq(actual, expected) expected = pd.DataFrame({"a": []}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = misc_data actual["b"] = misc_data assert_eq(actual, expected) expected = pd.DataFrame({"a": a}) actual = cudf.DataFrame.from_pandas(expected) expected["b"] = non_list_data actual["b"] = non_list_data assert_eq(actual, expected) def test_empty_dataframe_describe(): pdf = pd.DataFrame({"a": [], "b": []}) gdf = cudf.from_pandas(pdf) expected = pdf.describe() actual = gdf.describe() assert_eq(expected, actual) def test_as_column_types(): col = column.as_column(cudf.Series([])) assert_eq(col.dtype, np.dtype("float64")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float64")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="float32") assert_eq(col.dtype, np.dtype("float32")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="float32")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="str") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="str")) assert_eq(pds, gds) col = column.as_column(cudf.Series([]), dtype="object") assert_eq(col.dtype, np.dtype("object")) gds = cudf.Series(col) pds = pd.Series(pd.Series([], dtype="object")) assert_eq(pds, gds) pds = pd.Series(np.array([1, 2, 3]), dtype="float32") gds = cudf.Series(column.as_column(np.array([1, 2, 3]), dtype="float32")) assert_eq(pds, gds) pds = pd.Series([1, 2, 3], dtype="float32") gds = cudf.Series([1, 2, 3], dtype="float32") assert_eq(pds, gds) pds = pd.Series([], dtype="float64") gds = cudf.Series(column.as_column(pds)) assert_eq(pds, gds) pds = pd.Series([1, 2, 4], dtype="int64") gds = cudf.Series(column.as_column(cudf.Series([1, 2, 4]), dtype="int64")) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="float32") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="float32") ) assert_eq(pds, gds) pds = pd.Series([1.2, 18.0, 9.0], dtype="str") gds = cudf.Series( column.as_column(cudf.Series([1.2, 18.0, 9.0]), dtype="str") ) assert_eq(pds, gds) pds = pd.Series(pd.Index(["1", "18", "9"]), dtype="int") gds = cudf.Series( cudf.core.index.StringIndex(["1", "18", "9"]), dtype="int" ) assert_eq(pds, gds) def test_one_row_head(): gdf = cudf.DataFrame({"name": ["carl"], "score": [100]}, index=[123]) pdf = gdf.to_pandas() head_gdf = gdf.head() head_pdf = pdf.head() assert_eq(head_pdf, head_gdf) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric(dtype, as_dtype): psr = pd.Series([1, 2, 4, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize("as_dtype", NUMERIC_TYPES) def test_series_astype_numeric_to_numeric_nulls(dtype, as_dtype): data = [1, 2, None, 3] sr = cudf.Series(data, dtype=dtype) got = sr.astype(as_dtype) expect = cudf.Series([1, 2, None, 3], dtype=as_dtype) assert_eq(expect, got) @pytest.mark.parametrize("dtype", NUMERIC_TYPES) @pytest.mark.parametrize( "as_dtype", [ "str", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_numeric_to_other(dtype, as_dtype): psr = pd.Series([1, 2, 3], dtype=dtype) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "str", "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_string_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05"] else: data = ["1", "2", "3"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "as_dtype", [ "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", ], ) def test_series_astype_datetime_to_other(as_dtype): data = ["2001-01-01", "2002-02-02", "2001-01-05"] psr = pd.Series(data) gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize( "inp", [ ("datetime64[ns]", "2011-01-01 00:00:00.000000000"), ("datetime64[us]", "2011-01-01 00:00:00.000000"), ("datetime64[ms]", "2011-01-01 00:00:00.000"), ("datetime64[s]", "2011-01-01 00:00:00"), ], ) def test_series_astype_datetime_to_string(inp): dtype, expect = inp base_date = "2011-01-01" sr = cudf.Series([base_date], dtype=dtype) got = sr.astype(str)[0] assert expect == got @pytest.mark.parametrize( "as_dtype", [ "int32", "uint32", "float32", "category", "datetime64[s]", "datetime64[ms]", "datetime64[us]", "datetime64[ns]", "str", ], ) def test_series_astype_categorical_to_other(as_dtype): if "datetime64" in as_dtype: data = ["2001-01-01", "2002-02-02", "2000-01-05", "2001-01-01"] else: data = [1, 2, 3, 1] psr = pd.Series(data, dtype="category") gsr = cudf.from_pandas(psr) assert_eq(psr.astype(as_dtype), gsr.astype(as_dtype)) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_to_categorical_ordered(ordered): psr = pd.Series([1, 2, 3, 1], dtype="category") gsr = cudf.from_pandas(psr) ordered_dtype_pd = pd.CategoricalDtype( categories=[1, 2, 3], ordered=ordered ) ordered_dtype_gd = cudf.CategoricalDtype.from_pandas(ordered_dtype_pd) assert_eq( psr.astype("int32").astype(ordered_dtype_pd).astype("int32"), gsr.astype("int32").astype(ordered_dtype_gd).astype("int32"), ) @pytest.mark.parametrize("ordered", [True, False]) def test_series_astype_cat_ordered_to_unordered(ordered): pd_dtype = pd.CategoricalDtype(categories=[1, 2, 3], ordered=ordered) pd_to_dtype = pd.CategoricalDtype( categories=[1, 2, 3], ordered=not ordered ) gd_dtype = cudf.CategoricalDtype.from_pandas(pd_dtype) gd_to_dtype = cudf.CategoricalDtype.from_pandas(pd_to_dtype) psr = pd.Series([1, 2, 3], dtype=pd_dtype) gsr = cudf.Series([1, 2, 3], dtype=gd_dtype) expect = psr.astype(pd_to_dtype) got = gsr.astype(gd_to_dtype) assert_eq(expect, got) def test_series_astype_null_cases(): data = [1, 2, None, 3] # numerical to other assert_eq(cudf.Series(data, dtype="str"), cudf.Series(data).astype("str")) assert_eq( cudf.Series(data, dtype="category"), cudf.Series(data).astype("category"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="int32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="uint32").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data).astype("datetime64[ms]"), ) # categorical to other assert_eq( cudf.Series(data, dtype="str"), cudf.Series(data, dtype="category").astype("str"), ) assert_eq( cudf.Series(data, dtype="float32"), cudf.Series(data, dtype="category").astype("float32"), ) assert_eq( cudf.Series(data, dtype="datetime64[ms]"), cudf.Series(data, dtype="category").astype("datetime64[ms]"), ) # string to other assert_eq( cudf.Series([1, 2, None, 3], dtype="int32"), cudf.Series(["1", "2", None, "3"]).astype("int32"), ) assert_eq( cudf.Series( ["2001-01-01", "2001-02-01", None, "2001-03-01"], dtype="datetime64[ms]", ), cudf.Series(["2001-01-01", "2001-02-01", None, "2001-03-01"]).astype( "datetime64[ms]" ), ) assert_eq( cudf.Series(["a", "b", "c", None], dtype="category").to_pandas(), cudf.Series(["a", "b", "c", None]).astype("category").to_pandas(), ) # datetime to other data = [ "2001-01-01 00:00:00.000000", "2001-02-01 00:00:00.000000", None, "2001-03-01 00:00:00.000000", ] assert_eq( cudf.Series(data), cudf.Series(data, dtype="datetime64[us]").astype("str"), ) assert_eq( pd.Series(data, dtype="datetime64[ns]").astype("category"), cudf.from_pandas(pd.Series(data, dtype="datetime64[ns]")).astype( "category" ), ) def test_series_astype_null_categorical(): sr = cudf.Series([None, None, None], dtype="category") expect = cudf.Series([None, None, None], dtype="int32") got = sr.astype("int32") assert_eq(expect, got) @pytest.mark.parametrize( "data", [ ( pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ), [ pd.Series([3, 3.0]), pd.Series([2.3, 3.9]), pd.Series([1.5, 3.9]), pd.Series([1.0, 2]), ], ], ) def test_create_dataframe_from_list_like(data): pdf = pd.DataFrame(data, index=["count", "mean", "std", "min"]) gdf = cudf.DataFrame(data, index=["count", "mean", "std", "min"]) assert_eq(pdf, gdf) pdf = pd.DataFrame(data) gdf = cudf.DataFrame(data) assert_eq(pdf, gdf) def test_create_dataframe_column(): pdf = pd.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) gdf = cudf.DataFrame(columns=["a", "b", "c"], index=["A", "Z", "X"]) assert_eq(pdf, gdf) pdf = pd.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) gdf = cudf.DataFrame( {"a": [1, 2, 3], "b": [2, 3, 5]}, columns=["a", "b", "c"], index=["A", "Z", "X"], ) assert_eq(pdf, gdf) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pd.Categorical(["a", "b", "c"]), ["m", "a", "d", "v"], ], ) def test_series_values_host_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) np.testing.assert_array_equal(pds.values, gds.values_host) @pytest.mark.parametrize( "data", [ [1, 2, 4], [], [5.0, 7.0, 8.0], pytest.param( pd.Categorical(["a", "b", "c"]), marks=pytest.mark.xfail(raises=NotImplementedError), ), pytest.param( ["m", "a", "d", "v"], marks=pytest.mark.xfail(raises=NotImplementedError), ), ], ) def test_series_values_property(data): pds = cudf.utils.utils._create_pandas_series(data=data) gds = cudf.Series(data) gds_vals = gds.values assert isinstance(gds_vals, cupy.ndarray) np.testing.assert_array_equal(gds_vals.get(), pds.values) @pytest.mark.parametrize( "data", [ {"A": [1, 2, 3], "B": [4, 5, 6]}, {"A": [1.0, 2.0, 3.0], "B": [4.0, 5.0, 6.0]}, {"A": [1, 2, 3], "B": [1.0, 2.0, 3.0]}, {"A": np.float32(np.arange(3)), "B": np.float64(np.arange(3))}, pytest.param( {"A": [1, None, 3], "B": [1, 2, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [None, None, None], "B": [None, None, None]}, marks=pytest.mark.xfail( reason="Nulls not supported by as_gpu_matrix" ), ), pytest.param( {"A": [], "B": []}, marks=pytest.mark.xfail(reason="Requires at least 1 row"), ), pytest.param( {"A": [1, 2, 3], "B": ["a", "b", "c"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), pytest.param( {"A": pd.Categorical(["a", "b", "c"]), "B": ["d", "e", "f"]}, marks=pytest.mark.xfail( reason="str or categorical not supported by as_gpu_matrix" ), ), ], ) def test_df_values_property(data): pdf = pd.DataFrame.from_dict(data) gdf = cudf.DataFrame.from_pandas(pdf) pmtr = pdf.values gmtr = gdf.values.get() np.testing.assert_array_equal(pmtr, gmtr) def test_value_counts(): pdf = pd.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) gdf = cudf.DataFrame( { "numeric": [1, 2, 3, 4, 5, 6, 1, 2, 4] * 10, "alpha": ["u", "h", "d", "a", "m", "u", "h", "d", "a"] * 10, } ) assert_eq( pdf.numeric.value_counts().sort_index(), gdf.numeric.value_counts().sort_index(), check_dtype=False, ) assert_eq( pdf.alpha.value_counts().sort_index(), gdf.alpha.value_counts().sort_index(), check_dtype=False, ) @pytest.mark.parametrize( "data", [ [], [0, 12, 14], [0, 14, 12, 12, 3, 10, 12, 14], np.random.randint(-100, 100, 200), pd.Series([0.0, 1.0, None, 10.0]), [None, None, None, None], [np.nan, None, -1, 2, 3], ], ) @pytest.mark.parametrize( "values", [ np.random.randint(-100, 100, 10), [], [np.nan, None, -1, 2, 3], [1.0, 12.0, None, None, 120], [0, 14, 12, 12, 3, 10, 12, 14, None], [None, None, None], ["0", "12", "14"], ["0", "12", "14", "a"], ], ) def test_isin_numeric(data, values): index = np.random.randint(0, 100, len(data)) psr = cudf.utils.utils._create_pandas_series(data=data, index=index) gsr = cudf.Series.from_pandas(psr, nan_as_null=False) expected = psr.isin(values) got = gsr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["2018-01-01", "2019-04-03", None, "2019-12-30"], dtype="datetime64[ns]", ), pd.Series( [ "2018-01-01", "2019-04-03", None, "2019-12-30", "2018-01-01", "2018-01-01", ], dtype="datetime64[ns]", ), ], ) @pytest.mark.parametrize( "values", [ [], [1514764800000000000, 1577664000000000000], [ 1514764800000000000, 1577664000000000000, 1577664000000000000, 1577664000000000000, 1514764800000000000, ], ["2019-04-03", "2019-12-30", "2012-01-01"], [ "2012-01-01", "2012-01-01", "2012-01-01", "2019-04-03", "2019-12-30", "2012-01-01", ], ], ) def test_isin_datetime(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["this", "is", None, "a", "test"]), pd.Series(["test", "this", "test", "is", None, "test", "a", "test"]), pd.Series(["0", "12", "14"]), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [None, None, None], ["12", "14", "19"], pytest.param( [12, 14, 19], marks=pytest.mark.xfail( not PANDAS_GE_120, reason="pandas's failure here seems like a bug(in < 1.2) " "given the reverse succeeds", ), ), ["is", "this", "is", "this", "is"], ], ) def test_isin_string(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series(["a", "b", "c", "c", "c", "d", "e"], dtype="category"), pd.Series(["a", "b", None, "c", "d", "e"], dtype="category"), pd.Series([0, 3, 10, 12], dtype="category"), pd.Series([0, 3, 10, 12, 0, 10, 3, 0, 0, 3, 3], dtype="category"), ], ) @pytest.mark.parametrize( "values", [ [], ["a", "b", None, "f", "words"], ["0", "12", None, "14"], [0, 10, 12, None, 39, 40, 1000], [0, 0, 0, 0, 3, 3, 3, None, 1, 2, 3], ], ) def test_isin_categorical(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.isin(values) expected = psr.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ [], pd.Series( ["this", "is", None, "a", "test"], index=["a", "b", "c", "d", "e"] ), pd.Series([0, 15, 10], index=[0, None, 9]), pd.Series( range(25), index=pd.date_range( start="2019-01-01", end="2019-01-02", freq="H" ), ), ], ) @pytest.mark.parametrize( "values", [ [], ["this", "is"], [0, 19, 13], ["2019-01-01 04:00:00", "2019-01-01 06:00:00", "2018-03-02"], ], ) def test_isin_index(data, values): psr = cudf.utils.utils._create_pandas_series(data=data) gsr = cudf.Series.from_pandas(psr) got = gsr.index.isin(values) expected = psr.index.isin(values) assert_eq(got, expected) @pytest.mark.parametrize( "data", [ pd.MultiIndex.from_arrays( [[1, 2, 3], ["red", "blue", "green"]], names=("number", "color") ), pd.MultiIndex.from_arrays([[], []], names=("number", "color")), pd.MultiIndex.from_arrays( [[1, 2, 3, 10, 100], ["red", "blue", "green", "pink", "white"]], names=("number", "color"), ), ], ) @pytest.mark.parametrize( "values,level,err", [ (["red", "orange", "yellow"], "color", None), (["red", "white", "yellow"], "color", None), ([0, 1, 2, 10, 11, 15], "number", None), ([0, 1, 2, 10, 11, 15], None, TypeError), (pd.Series([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 10, 11, 15]), None, TypeError), (pd.Index([0, 1, 2, 8, 11, 15]), "number", None), (
pd.Index(["red", "white", "yellow"])
pandas.Index
# -*- coding: utf-8 -*- """ docstring goes here. :copyright: Copyright 2014 by the Elephant team, see AUTHORS.txt. :license: Modified BSD, see LICENSE.txt for details. """ from __future__ import division, print_function import unittest from itertools import chain from neo.test.generate_datasets import fake_neo import numpy as np from numpy.testing.utils import assert_array_equal import quantities as pq try: import pandas as pd from pandas.util.testing import assert_frame_equal, assert_index_equal except ImportError: HAVE_PANDAS = False else: import elephant.pandas_bridge as ep HAVE_PANDAS = True @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class MultiindexFromDictTestCase(unittest.TestCase): def test__multiindex_from_dict(self): inds = {'test1': 6.5, 'test2': 5, 'test3': 'test'} targ = pd.MultiIndex(levels=[[6.5], [5], ['test']], labels=[[0], [0], [0]], names=['test1', 'test2', 'test3']) res0 = ep._multiindex_from_dict(inds) self.assertEqual(targ.levels, res0.levels) self.assertEqual(targ.names, res0.names) self.assertEqual(targ.labels, res0.labels) def _convert_levels(levels): """Convert a list of levels to the format pandas returns for a MultiIndex. Parameters ---------- levels : list The list of levels to convert. Returns ------- list The the level in `list` converted to values like what pandas will give. """ levels = list(levels) for i, level in enumerate(levels): if hasattr(level, 'lower'): try: level = unicode(level) except NameError: pass elif hasattr(level, 'date'): levels[i] = pd.DatetimeIndex(data=[level]) continue elif level is None: levels[i] = pd.Index([]) continue levels[i] = pd.Index([level]) return levels @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class ConvertValueSafeTestCase(unittest.TestCase): def test__convert_value_safe__float(self): targ = 5.5 value = targ res = ep._convert_value_safe(value) self.assertIs(res, targ) def test__convert_value_safe__str(self): targ = 'test' value = targ res = ep._convert_value_safe(value) self.assertIs(res, targ) def test__convert_value_safe__bytes(self): targ = 'test' value = b'test' res = ep._convert_value_safe(value) self.assertEqual(res, targ) def test__convert_value_safe__numpy_int_scalar(self): targ = 5 value = np.array(5) res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_float_scalar(self): targ = 5. value = np.array(5.) res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_unicode_scalar(self): targ = u'test' value = np.array('test', dtype='U') res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__numpy_str_scalar(self): targ = u'test' value = np.array('test', dtype='S') res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res, 'dtype')) def test__convert_value_safe__quantity_scalar(self): targ = (10., 'ms') value = 10. * pq.ms res = ep._convert_value_safe(value) self.assertEqual(res, targ) self.assertFalse(hasattr(res[0], 'dtype')) self.assertFalse(hasattr(res[0], 'units')) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class SpiketrainToDataframeTestCase(unittest.TestCase): def test__spiketrain_to_dataframe__parents_empty(self): obj = fake_neo('SpikeTrain', seed=0) res0 = ep.spiketrain_to_dataframe(obj) res1 = ep.spiketrain_to_dataframe(obj, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, child_first=False) res3 = ep.spiketrain_to_dataframe(obj, parents=True) res4 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=True) res5 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=False) res6 = ep.spiketrain_to_dataframe(obj, parents=False) res7 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=True) res8 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) self.assertEqual(len(obj), len(res3.index)) self.assertEqual(len(obj), len(res4.index)) self.assertEqual(len(obj), len(res5.index)) self.assertEqual(len(obj), len(res6.index)) self.assertEqual(len(obj), len(res7.index)) self.assertEqual(len(obj), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) assert_array_equal(targindex, res4.index) assert_array_equal(targindex, res5.index) assert_array_equal(targindex, res6.index) assert_array_equal(targindex, res7.index) assert_array_equal(targindex, res8.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(['spike_number'], res3.index.names) self.assertEqual(['spike_number'], res4.index.names) self.assertEqual(['spike_number'], res5.index.names) self.assertEqual(['spike_number'], res6.index.names) self.assertEqual(['spike_number'], res7.index.names) self.assertEqual(['spike_number'], res8.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__noparents(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj, parents=False) res1 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, parents=False, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj) res1 = ep.spiketrain_to_dataframe(obj, child_first=True) res2 = ep.spiketrain_to_dataframe(obj, parents=True) res3 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=True) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) self.assertEqual(len(obj), len(res2.index)) self.assertEqual(len(obj), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(['spike_number'], res2.index.names) self.assertEqual(['spike_number'], res3.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__spiketrain_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=0) obj = blk.list_children_by_class('SpikeTrain')[0] res0 = ep.spiketrain_to_dataframe(obj, child_first=False) res1 = ep.spiketrain_to_dataframe(obj, parents=True, child_first=False) targvalues = pq.Quantity(obj.magnitude, units=obj.units) targvalues = targvalues.rescale('s').magnitude[np.newaxis].T targindex = np.arange(len(targvalues)) attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(len(obj), len(res0.index)) self.assertEqual(len(obj), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) self.assertEqual(['spike_number'], res0.index.names) self.assertEqual(['spike_number'], res1.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class EventToDataframeTestCase(unittest.TestCase): def test__event_to_dataframe__parents_empty(self): obj = fake_neo('Event', seed=42) res0 = ep.event_to_dataframe(obj) res1 = ep.event_to_dataframe(obj, child_first=True) res2 = ep.event_to_dataframe(obj, child_first=False) res3 = ep.event_to_dataframe(obj, parents=True) res4 = ep.event_to_dataframe(obj, parents=True, child_first=True) res5 = ep.event_to_dataframe(obj, parents=True, child_first=False) res6 = ep.event_to_dataframe(obj, parents=False) res7 = ep.event_to_dataframe(obj, parents=False, child_first=True) res8 = ep.event_to_dataframe(obj, parents=False, child_first=False) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res3.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res4.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res5.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res6.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res7.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) assert_array_equal(targindex, res4.index) assert_array_equal(targindex, res5.index) assert_array_equal(targindex, res6.index) assert_array_equal(targindex, res7.index) assert_array_equal(targindex, res8.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(['times'], res3.index.names) self.assertEqual(['times'], res4.index.names) self.assertEqual(['times'], res5.index.names) self.assertEqual(['times'], res6.index.names) self.assertEqual(['times'], res7.index.names) self.assertEqual(['times'], res8.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__noparents(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj, parents=False) res1 = ep.event_to_dataframe(obj, parents=False, child_first=False) res2 = ep.event_to_dataframe(obj, parents=False, child_first=True) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj) res1 = ep.event_to_dataframe(obj, child_first=True) res2 = ep.event_to_dataframe(obj, parents=True) res3 = ep.event_to_dataframe(obj, parents=True, child_first=True) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) assert_array_equal(targindex, res2.index) assert_array_equal(targindex, res3.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(['times'], res2.index.names) self.assertEqual(['times'], res3.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__event_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Event')[0] res0 = ep.event_to_dataframe(obj, child_first=False) res1 = ep.event_to_dataframe(obj, parents=True, child_first=False) targvalues = obj.labels[:len(obj.times)][np.newaxis].T.astype('U') targindex = obj.times[:len(obj.labels)].rescale('s').magnitude attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.labels)), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targindex, res0.index) assert_array_equal(targindex, res1.index) self.assertEqual(['times'], res0.index.names) self.assertEqual(['times'], res1.index.names) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) @unittest.skipUnless(HAVE_PANDAS, 'requires pandas') class EpochToDataframeTestCase(unittest.TestCase): def test__epoch_to_dataframe__parents_empty(self): obj = fake_neo('Epoch', seed=42) res0 = ep.epoch_to_dataframe(obj) res1 = ep.epoch_to_dataframe(obj, child_first=True) res2 = ep.epoch_to_dataframe(obj, child_first=False) res3 = ep.epoch_to_dataframe(obj, parents=True) res4 = ep.epoch_to_dataframe(obj, parents=True, child_first=True) res5 = ep.epoch_to_dataframe(obj, parents=True, child_first=False) res6 = ep.epoch_to_dataframe(obj, parents=False) res7 = ep.epoch_to_dataframe(obj, parents=False, child_first=True) res8 = ep.epoch_to_dataframe(obj, parents=False, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(1, len(res4.columns)) self.assertEqual(1, len(res5.columns)) self.assertEqual(1, len(res6.columns)) self.assertEqual(1, len(res7.columns)) self.assertEqual(1, len(res8.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res3.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res4.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res5.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res6.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res7.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res8.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) assert_array_equal(targvalues, res4.values) assert_array_equal(targvalues, res5.values) assert_array_equal(targvalues, res6.values) assert_array_equal(targvalues, res7.values) assert_array_equal(targvalues, res8.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual(keys, res4.columns.names) self.assertEqual(keys, res5.columns.names) self.assertEqual(keys, res6.columns.names) self.assertEqual(keys, res7.columns.names) self.assertEqual(keys, res8.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual([u'durations', u'times'], res3.index.names) self.assertEqual([u'durations', u'times'], res4.index.names) self.assertEqual([u'durations', u'times'], res5.index.names) self.assertEqual([u'durations', u'times'], res6.index.names) self.assertEqual([u'durations', u'times'], res7.index.names) self.assertEqual([u'durations', u'times'], res8.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) self.assertEqual(2, len(res3.index.levels)) self.assertEqual(2, len(res4.index.levels)) self.assertEqual(2, len(res5.index.levels)) self.assertEqual(2, len(res6.index.levels)) self.assertEqual(2, len(res7.index.levels)) self.assertEqual(2, len(res8.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) assert_array_equal(targindex, res3.index.levels) assert_array_equal(targindex, res4.index.levels) assert_array_equal(targindex, res5.index.levels) assert_array_equal(targindex, res6.index.levels) assert_array_equal(targindex, res7.index.levels) assert_array_equal(targindex, res8.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res4.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res5.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res6.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res7.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res8.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__noparents(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj, parents=False) res1 = ep.epoch_to_dataframe(obj, parents=False, child_first=True) res2 = ep.epoch_to_dataframe(obj, parents=False, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=False, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__parents_childfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj) res1 = ep.epoch_to_dataframe(obj, child_first=True) res2 = ep.epoch_to_dataframe(obj, parents=True) res3 = ep.epoch_to_dataframe(obj, parents=True, child_first=True) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=True) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(1, len(res2.columns)) self.assertEqual(1, len(res3.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res2.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res3.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) assert_array_equal(targvalues, res2.values) assert_array_equal(targvalues, res3.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual(keys, res2.columns.names) self.assertEqual(keys, res3.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual([u'durations', u'times'], res2.index.names) self.assertEqual([u'durations', u'times'], res3.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) self.assertEqual(2, len(res2.index.levels)) self.assertEqual(2, len(res3.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) assert_array_equal(targindex, res2.index.levels) assert_array_equal(targindex, res3.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res2.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res3.columns.levels): assert_index_equal(value, level) def test__epoch_to_dataframe__parents_parentfirst(self): blk = fake_neo('Block', seed=42) obj = blk.list_children_by_class('Epoch')[0] res0 = ep.epoch_to_dataframe(obj, child_first=False) res1 = ep.epoch_to_dataframe(obj, parents=True, child_first=False) minlen = min([len(obj.times), len(obj.durations), len(obj.labels)]) targvalues = obj.labels[:minlen][np.newaxis].T.astype('U') targindex = np.vstack([obj.durations[:minlen].rescale('s').magnitude, obj.times[:minlen].rescale('s').magnitude]) targvalues = targvalues[targindex.argsort()[0], :] targindex.sort() attrs = ep._extract_neo_attrs_safe(obj, parents=True, child_first=False) keys, values = zip(*sorted(attrs.items())) values = _convert_levels(values) self.assertEqual(1, len(res0.columns)) self.assertEqual(1, len(res1.columns)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res0.index)) self.assertEqual(min(len(obj.times), len(obj.durations), len(obj.labels)), len(res1.index)) assert_array_equal(targvalues, res0.values) assert_array_equal(targvalues, res1.values) self.assertEqual(keys, res0.columns.names) self.assertEqual(keys, res1.columns.names) self.assertEqual([u'durations', u'times'], res0.index.names) self.assertEqual([u'durations', u'times'], res1.index.names) self.assertEqual(2, len(res0.index.levels)) self.assertEqual(2, len(res1.index.levels)) assert_array_equal(targindex, res0.index.levels) assert_array_equal(targindex, res1.index.levels) for value, level in zip(values, res0.columns.levels): assert_index_equal(value, level) for value, level in zip(values, res1.columns.levels):
assert_index_equal(value, level)
pandas.util.testing.assert_index_equal
# Utilities for dealing with survey data import pandas as pd # The below mapping works only with Corona dataset. Adjust them to your own need. PHQ2_MAP = { 'Little interest or pleasure in doing things.' : 'PHQ2_1', 'Feeling down; depressed or hopeless.' : 'PHQ2_2', } PSQI_MAP = { 'Currently; is your sleep typically interrupted? (For example; for attending to a child or due to loud neighbours or medical reasons.)' : 'PSQI_1', 'During the past month; how often have you taken medicine (prescribed or “over the counter”) to help you sleep?' : 'PSQI_2', 'During the past month; how often have you had trouble staying awake while driving; eating meals; or engaging in social activity?' : 'PSQI_3', 'During the past month; how much of a problem has it been for you to keep up enthusiasm to get things done?' : 'PSQI_4', 'During the past month; how would you rate your sleep quality overall?' : 'PSQI_5', 'When have you usually gone to bed? (hh:mm)' : 'PSQI_6', 'What time have you usually gotten up in the morning? (hh:mm)' : 'PSQI_7', 'How long (in minutes) has it taken you to fall asleep each night?' : 'PSQI_8', 'How many hours of actual sleep did you get at night?' : 'PSQI_9', } PSS10_MAP = { 'In the last month; how often have you been upset because of something that happened unexpectedly?' : 'PSS10_1', 'In the last month; how often have you felt that you were unable to control the important things in your life?' : 'PSS10_2', 'In the last month; how often have you felt nervous and “stressed”?' : 'PSS10_3', 'In the last month; how often have you felt confident about your ability to handle your personal problems?' : 'PSS10_4', 'In the last month; how often have you felt that things were going your way?' : 'PSS10_5', 'In the last month; how often have you been able to control irritations in your life?' : 'PSS10_6', 'In the last month; how often have you felt that you were on top of things?' : 'PSS10_7', 'In the last month; how often have you been angered because of things that were outside of your control?' : 'PSS10_8', 'In the last month; how often have you felt difficulties were piling up so high that you could not overcome them?' : 'PSS10_9', } PANAS_MAP = { 'Upset': 'pre_upset', 'Hostile': 'pre_hostile', 'Alert': 'pre_alert', 'Ashamed': 'pre_ashamed', 'Inspired': 'pre_inspired', 'Nervous': 'pre_nervous', 'Determined': 'pre_determined', 'Attentive': 'pre_attentive', 'Afraid': 'pre_afraid', 'Active': 'pre_active', 'Upset.1': 'during_upset', 'Hostile.1': 'during_hostile', 'Alert.1': 'during_alert', 'Ashamed.1': 'during_ashamed', 'Inspired.1': 'during_inspired', 'Nervous.1': 'during_nervous', 'Determined.1': 'during_determined', 'Attentive.1': 'during_attentive', 'Afraid.1': 'during_afraid', 'Active.1': 'during_active' } GAD2_MAP = { 'Feeling nervous; anxious or on edge.': 'GAD2_1', 'Not being able to stop or control worrying.': 'GAD2_2' } PSS_ANSWER_MAP = { 'never': 0, 'almost-never': 1, 'sometimes': 2, 'fairly-often': 3, 'very-often': 4 } PHQ2_ANSWER_MAP = { 'not-at-all': 0, 'several-days': 1, 'more-than-half-the-days': 2, 'nearly-every-day': 3 } # use this mapping for prefix option, so that multiple question id's can be processed # simultaneuously ID_MAP_PREFIX = {'PSS' : PSS_ANSWER_MAP, 'PHQ2' : PHQ2_ANSWER_MAP, 'GAD2' : PHQ2_ANSWER_MAP} # use this mapping if you want to explicitly specify the mapping for each question ID_MAP = {'PSS10_1' : PSS_ANSWER_MAP, 'PSS10_2' : PSS_ANSWER_MAP, 'PSS10_3' : PSS_ANSWER_MAP, 'PSS10_4' : PSS_ANSWER_MAP, 'PSS10_5' : PSS_ANSWER_MAP, 'PSS10_6' : PSS_ANSWER_MAP, 'PSS10_7' : PSS_ANSWER_MAP, 'PSS10_8' : PSS_ANSWER_MAP, 'PSS10_9' : PSS_ANSWER_MAP} def survey_convert_to_numerical_answer(df, answer_col, question_id, id_map, use_prefix=False): """Convert text answers into numerical value (assuming a long dataframe). Use answer mapping dictionaries provided by the uses to convert the answers. Can convert multiple questions having same prefix (e.g., PSS10_1, PSS10_2, ...,PSS10_9) at same time if prefix mapping is provided. Function returns original values for the answers that have not been specified for conversion. Parameters ---------- df : pandas dataframe Dataframe containing the questions answer_col : str Name of the column containing the answers question_id : str Name of the column containing the question id. id_map : dictionary Dictionary containing answer mappings (value) for each question_id (key), or a dictionary containing a map for each question id prefix if use_prefix option is used. use_prefix : boolean If False, uses given map (id_map) to convert questions. The default is False. If True, use question id prefix map, so that multiple question_id's having the same prefix may be converted on the same time. Returns ------- result : pandas series Series containing converted values and original values for aswers hat are not supposed to be converted. """ assert isinstance(df, pd.DataFrame), "df is not a pandas dataframe." assert isinstance(answer_col, str), "answer_col is not a string." assert isinstance(question_id, str), "question_id is not a string." assert isinstance(id_map, dict), "id_map is not a dictionary." assert isinstance(use_prefix, bool), "use_prefix is not a bool." # copy original answers result = df[answer_col] for key,value in id_map.items(): if use_prefix == True: temp = df[df[question_id].str.startswith(key)][answer_col] else: temp = df[df[question_id] == key][answer_col] temp = temp.replace(value) result.loc[temp.index] = temp[:] del temp return result def survey_print_statistic(df, question_id = 'id', answer_col = 'answer', prefix=None, group=None): ''' Return survey statistic. The statistic includes min, max, average and s.d values. :param df: DataFrame contains survey score. :param question_id: string. Column contains question id. :param answer: Column contains answer in numerical values. :param prefix: list. List contains survey prefix. If None is given, search question_id for all possible categories. Return: dict A dictionary contains summary of each questionaire category. Example: {'PHQ9': {'min': 3, 'max': 8, 'avg': 4.5, 'std': 2}} ''' def calculate_statistic(df, prefix, answer_col, group=None): d = {} if group: assert isinstance(group, str),"group is not given in string format" # Groupby, aggregate and extract statistic from answer column agg_df = df.groupby(['user', group]) \ .agg({'answer': sum}) \ .groupby(group) \ .agg({'answer': ['mean', 'min', 'max','std']}) agg_df.columns = agg_df.columns.get_level_values(1) #flatten columns agg_df = agg_df.rename(columns={'': group}).reset_index() # reassign group column lst = [] for index, row in agg_df.iterrows(): temp = {'min': row['min'], 'max': row['max'], 'avg': row['mean'], 'std': row['std']} d[(prefix,row[group])] = temp else: agg_df = df.groupby('user').agg({answer_col: sum}) d[prefix] = {'min': agg_df[answer_col].min(), 'max': agg_df[answer_col].max(), 'avg': agg_df[answer_col].mean(), 'std': agg_df[answer_col].std()} return d res = {} # Collect questions with the given prefix. Otherwise, collect all prefix, assuming that # the question id follows this format: {prefix}_id. if prefix: if isinstance(prefix, str): temp = df[df[question_id].str.startswith(prefix)] return calculate_statistic(temp, prefix, answer_col, group) elif isinstance(prefix, list): for pr in prefix: temp = df[df[question_id].str.startswith(pr)] d = calculate_statistic(temp, prefix, answer_col, group) res.update(d) else: raise ValueError('prefix should be either list or string') else: # Search for all possible prefix (extract everything before the '_' delimimeter) # Then compute statistic as usual prefix_lst = list(set(df[question_id].str.split('_').str[0])) for pr in prefix_lst: temp = df[df[question_id].str.startswith(pr)] d = calculate_statistic(temp, pr, answer_col, group) res.update(d) return res def survey_sum_scores(df, survey_prefix, answer_column='answer', id_column='id'): """Sum all columns (like ``PHQ9_*``) to get a survey score. Input dataframe: has a DateTime index, an answer_column with numeric scores, and an id_column with question IDs like "PHQ9_1", "PHQ9_2", etc. The given survey_prefix is the "PHQ9" (no underscore) part which selects the right questions (rows not matching this prefix won't be included). This assumes that all surveys have a different time. survey: The survey prefix in the 'id' column, e.g. 'PHQ9'. An '_' is appended. """ if survey_prefix is not None: answers = df[df[id_column].str.startswith(survey_prefix+'_')] else: answers = df answers[answer_column] = pd.to_numeric(answers[answer_column]) # Group by both user and indxe. I make this groupby_columns to be # able to select both the index and the user, when you don't know # what name the index might have. groupby_columns = [ ] if 'user' in answers.columns: groupby_columns.append(df['user']) groupby_columns.append(df.index) # survey_score = answers.groupby(groupby_columns)[answer_column].apply(lambda x: x.sum(skipna=False)) survey_score = survey_score.to_frame() survey_score = survey_score.rename({'answer': 'score'}, axis='columns') return survey_score # Move to analysis layer def daily_affect_variability(questions, subject=None): """ Returns two DataFrames corresponding to the daily affect variability and mean daily affect, both measures defined in the OLO paper available in 10.1371/journal.pone.0110907. In brief, the mean daily affect computes the mean of each of the 7 questions (e.g. sad, cheerful, tired) asked in a likert scale from 0 to 7. Conversely, the daily affect viariability computes the standard deviation of each of the 7 questions. NOTE: This function aggregates data by day. Parameters ---------- questions: DataFrame with subject data (or database for backwards compatibility) subject: string, optional (backwards compatibility only, in the future do filtering before). Returns ------- DLA_mean: mean of the daily affect DLA_std: standard deviation of the daily affect """ # TODO: The daily summary (mean/std) seems useful, can we generalize? # Backwards compatibilty if a database was passed if isinstance(questions, niimpy.database.Data1): questions = questions.raw(table='AwareHyksConverter', user=subject) # Maintain backwards compatibility in the case subject was passed and # questions was *not* a dataframe. elif isinstance(subject, string): questions = questions[questions['user'] == subject] questions=questions[(questions['id']=='olo_1_1') | (questions['id']=='olo_1_2') | (questions['id']=='olo_1_3') | (questions['id']=='olo_1_4') | (questions['id']=='olo_1_5') | (questions['id']=='olo_1_6') | (questions['id']=='olo_1_7') | (questions['id']=='olo_1_8')] questions['answer']=
pd.to_numeric(questions['answer'])
pandas.to_numeric
# -*- coding: utf-8 -*- """ Created on Thu Nov 7 10:35:24 2019 @author: Elkoumy """ import sys import pandas as pd import time from datetime import datetime def to_list(s): return list(s) def parse_time(x): res=0 try: res=int(time.mktime(datetime.strptime(x,"%Y-%m-%d %H:%M:%S.%f%z").timetuple())) except: res=int(time.mktime(datetime.strptime(x,"%Y-%m-%d %H:%M:%S%z").timetuple())) return res #input_file = sys.argv[1] #output_file = sys.argv[2] input_file=r"C:\Gamal Elkoumy\PhD\OneDrive - Tartu Ülikool\Secure MPC\Business Process Mining SourceCode\Github\SecureMPCBPM\data_and_preprocessing\BPI_Challenge_2017_3_columns.csv" output_dir=r"C:\Gamal Elkoumy\PhD\OneDrive - Tartu Ülikool\Secure MPC\Business Process Mining SourceCode\Github\SecureMPCBPM\data_and_preprocessing" data = pd.read_csv(input_file) new_case_ids = pd.Index(data['case'].unique()) data['case'] = data['case'].apply(lambda x: new_case_ids.get_loc(x)) #df['event'] = pd.util.hash_pandas_object(df['event'],index=False) """ generating relative time""" #data['completeTime'] = data['completeTime'].apply(lambda x: int(time.mktime(datetime.strptime(x,"%Y-%m-%d %H:%M:%S.%f%z").timetuple()))) data['completeTime'] = data['completeTime'].apply(parse_time) data.completeTime=data.completeTime-min(data.completeTime) """ Generating binary representation of the events """ #moving event to the last column data=data[['case','completeTime','event']] unique_events = list(data.event.unique()) # ini_binary = "0"*(len(unique_events)-1)+"1" event_idx= {} for event in unique_events: event_idx[event]= ini_binary ini_binary= ini_binary[1:]+"0" bits_column_names=["b"+str(i) for i in range(0,len(unique_events))] data.event=data.event.apply(lambda x: event_idx[x]) temp= data.event.apply(to_list) temp= pd.DataFrame.from_items(zip(temp.index, temp.values)).T data[bits_column_names]=temp """ splitting the file over partyA and partyB """ party_A=pd.DataFrame() party_B=pd.DataFrame() party_A=data[~data.event.isin(['00000000000000001000000000','00000000000000001000000000','00000000000000010000000000'])] party_B=data[data.event.isin(['00000000000000001000000000','00000000000000001000000000','00000000000000010000000000'])] """ performing padding """ ''' party A ''' counts = party_A.groupby("case").count().event max_count= counts.max() need_increase=counts[counts<max_count] difference=max_count-need_increase padded_value=[] for i in difference.index: temp= difference[i] *[[i,0,0]] padded_value=padded_value+temp padded_value=pd.DataFrame.from_records(padded_value) for i in range(0, len(unique_events)): padded_value['b'+str(i)]=0 padded_value.columns=party_A.columns party_A= party_A.append(padded_value , ignore_index=True) party_A= party_A.sort_values(by=['case', 'completeTime']) ''' party B''' counts = party_B.groupby("case").count().event max_count= counts.max() need_increase=counts[counts<max_count] difference=max_count-need_increase padded_value=[] for i in difference.index: temp= difference[i] *[[i,0,0]] padded_value=padded_value+temp padded_value=
pd.DataFrame.from_records(padded_value)
pandas.DataFrame.from_records
from datetime import datetime import re import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, _testing as tm, ) def test_extract_expand_kwarg_wrong_type_raises(any_string_dtype): # TODO: should this raise TypeError values = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) with pytest.raises(ValueError, match="expand must be True or False"): values.str.extract(".*(BAD[_]+).*(BAD)", expand=None) def test_extract_expand_kwarg(any_string_dtype): s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) expected = DataFrame(["BAD__", np.nan, np.nan], dtype=any_string_dtype) result = s.str.extract(".*(BAD[_]+).*") tm.assert_frame_equal(result, expected) result = s.str.extract(".*(BAD[_]+).*", expand=True) tm.assert_frame_equal(result, expected) expected = DataFrame( [["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=False) tm.assert_frame_equal(result, expected) def test_extract_expand_False_mixed_object(): ser = Series( ["aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0] ) # two groups result = ser.str.extract(".*(BAD[_]+).*(BAD)", expand=False) er = [np.nan, np.nan] # empty row expected = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er]) tm.assert_frame_equal(result, expected) # single group result = ser.str.extract(".*(BAD[_]+).*BAD", expand=False) expected = Series( ["BAD_", np.nan, "BAD_", np.nan, np.nan, np.nan, np.nan, np.nan, np.nan] ) tm.assert_series_equal(result, expected) def test_extract_expand_index_raises(): # GH9980 # Index only works with one regex group since # multi-group would expand to a frame idx = Index(["A1", "A2", "A3", "A4", "B5"]) msg = "only one regex group is supported with Index" with pytest.raises(ValueError, match=msg): idx.str.extract("([AB])([123])", expand=False) def test_extract_expand_no_capture_groups_raises(index_or_series, any_string_dtype): s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) msg = "pattern contains no capture groups" # no groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("[ABC][123]", expand=False) # only non-capturing groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("(?:[AB]).*", expand=False) def test_extract_expand_single_capture_group(index_or_series, any_string_dtype): # single group renames series/index properly s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=False) expected = index_or_series(["A", "A"], name="uno", dtype=any_string_dtype) if index_or_series == Series: tm.assert_series_equal(result, expected) else: tm.assert_index_equal(result, expected) def test_extract_expand_capture_groups(any_string_dtype): s = Series(["A1", "B2", "C3"], dtype=any_string_dtype) # one group, no matches result = s.str.extract("(_)", expand=False) expected = Series([np.nan, np.nan, np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two groups, no matches result = s.str.extract("(_)(_)", expand=False) expected = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one group, some matches result = s.str.extract("([AB])[123]", expand=False) expected = Series(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two groups, some matches result = s.str.extract("([AB])([123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one named group result = s.str.extract("(?P<letter>[AB])", expand=False) expected = Series(["A", "B", np.nan], name="letter", dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two named groups result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # mix named and unnamed groups result = s.str.extract("([AB])(?P<number>[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=[0, "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group, one non-capturing group result = s.str.extract("([AB])(?:[123])", expand=False) expected = Series(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_series_equal(result, expected) # two normal groups, one non-capturing group s = Series(["A11", "B22", "C33"], dtype=any_string_dtype) result = s.str.extract("([AB])([123])(?:[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one optional group followed by one normal group s = Series(["A1", "B2", "3"], dtype=any_string_dtype) result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, "3"]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group followed by one optional group s = Series(["A1", "B2", "C"], dtype=any_string_dtype) result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_expand_capture_groups_index(index, any_string_dtype): # https://github.com/pandas-dev/pandas/issues/6348 # not passing index to the extractor data = ["A1", "B2", "C"] if len(index) < len(data): pytest.skip("Index too short") index = index[: len(data)] s = Series(data, index=index, dtype=any_string_dtype) result = s.str.extract(r"(\d)", expand=False) expected = Series(["1", "2", np.nan], index=index, dtype=any_string_dtype) tm.assert_series_equal(result, expected) result = s.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=False) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], index=index, dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_single_series_name_is_preserved(any_string_dtype): s = Series(["a3", "b3", "c2"], name="bob", dtype=any_string_dtype) result = s.str.extract(r"(?P<sue>[a-z])", expand=False) expected = Series(["a", "b", "c"], name="sue", dtype=any_string_dtype) tm.assert_series_equal(result, expected) def test_extract_expand_True(any_string_dtype): # Contains tests like those in test_match and some others. s = Series(["fooBAD__barBAD", np.nan, "foo"], dtype=any_string_dtype) result = s.str.extract(".*(BAD[_]+).*(BAD)", expand=True) expected = DataFrame( [["BAD__", "BAD"], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) def test_extract_expand_True_mixed_object(): er = [np.nan, np.nan] # empty row mixed = Series( [ "aBAD_BAD", np.nan, "BAD_b_BAD", True, datetime.today(), "foo", None, 1, 2.0, ] ) result = mixed.str.extract(".*(BAD[_]+).*(BAD)", expand=True) expected = DataFrame([["BAD_", "BAD"], er, ["BAD_", "BAD"], er, er, er, er, er, er]) tm.assert_frame_equal(result, expected) def test_extract_expand_True_single_capture_group_raises( index_or_series, any_string_dtype ): # these should work for both Series and Index # no groups s_or_idx = index_or_series(["A1", "B2", "C3"], dtype=any_string_dtype) msg = "pattern contains no capture groups" with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("[ABC][123]", expand=True) # only non-capturing groups with pytest.raises(ValueError, match=msg): s_or_idx.str.extract("(?:[AB]).*", expand=True) def test_extract_expand_True_single_capture_group(index_or_series, any_string_dtype): # single group renames series/index properly s_or_idx = index_or_series(["A1", "A2"], dtype=any_string_dtype) result = s_or_idx.str.extract(r"(?P<uno>A)\d", expand=True) expected_dtype = "object" if index_or_series is Index else any_string_dtype expected = DataFrame({"uno": ["A", "A"]}, dtype=expected_dtype) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("name", [None, "series_name"]) def test_extract_series(name, any_string_dtype): # extract should give the same result whether or not the series has a name. s = Series(["A1", "B2", "C3"], name=name, dtype=any_string_dtype) # one group, no matches result = s.str.extract("(_)", expand=True) expected = DataFrame([np.nan, np.nan, np.nan], dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two groups, no matches result = s.str.extract("(_)(_)", expand=True) expected = DataFrame( [[np.nan, np.nan], [np.nan, np.nan], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one group, some matches result = s.str.extract("([AB])[123]", expand=True) expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two groups, some matches result = s.str.extract("([AB])([123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one named group result = s.str.extract("(?P<letter>[AB])", expand=True) expected = DataFrame({"letter": ["A", "B", np.nan]}, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) # two named groups result = s.str.extract("(?P<letter>[AB])(?P<number>[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # mix named and unnamed groups result = s.str.extract("([AB])(?P<number>[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], columns=[0, "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group, one non-capturing group result = s.str.extract("([AB])(?:[123])", expand=True) expected = DataFrame(["A", "B", np.nan], dtype=any_string_dtype) tm.assert_frame_equal(result, expected) def test_extract_optional_groups(any_string_dtype): # two normal groups, one non-capturing group s = Series(["A11", "B22", "C33"], dtype=any_string_dtype) result = s.str.extract("([AB])([123])(?:[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, np.nan]], dtype=any_string_dtype ) tm.assert_frame_equal(result, expected) # one optional group followed by one normal group s = Series(["A1", "B2", "3"], dtype=any_string_dtype) result = s.str.extract("(?P<letter>[AB])?(?P<number>[123])", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], [np.nan, "3"]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) # one normal group followed by one optional group s = Series(["A1", "B2", "C"], dtype=any_string_dtype) result = s.str.extract("(?P<letter>[ABC])(?P<number>[123])?", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], dtype=any_string_dtype, ) tm.assert_frame_equal(result, expected) def test_extract_dataframe_capture_groups_index(index, any_string_dtype): # GH6348 # not passing index to the extractor data = ["A1", "B2", "C"] if len(index) < len(data): pytest.skip("Index too short") index = index[: len(data)] s = Series(data, index=index, dtype=any_string_dtype) result = s.str.extract(r"(\d)", expand=True) expected = DataFrame(["1", "2", np.nan], index=index, dtype=any_string_dtype) tm.assert_frame_equal(result, expected) result = s.str.extract(r"(?P<letter>\D)(?P<number>\d)?", expand=True) expected = DataFrame( [["A", "1"], ["B", "2"], ["C", np.nan]], columns=["letter", "number"], index=index, dtype=any_string_dtype, )
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
import numpy as np import json from os.path import join import pandas as pd import torch import logging import tempfile import subprocess as sp from datetime import timedelta from time import time from itertools import combinations from pyrouge import Rouge155 from pyrouge.utils import log from rouge import Rouge from fastNLP.core.losses import LossBase from fastNLP.core.metrics import MetricBase _ROUGE_PATH = './ROUGE-1.5.5' class MarginRankingLoss(LossBase): def __init__(self, margin, score=None, summary_score=None): super(MarginRankingLoss, self).__init__() self._init_param_map(score=score, summary_score=summary_score) self.margin = margin self.loss_func = torch.nn.MarginRankingLoss(margin) def get_loss(self, score, summary_score): # equivalent to initializing TotalLoss to 0 # here is to avoid that some special samples will not go into the following for loop ones = torch.ones(score.size()).cuda(score.device) loss_func = torch.nn.MarginRankingLoss(0.0) TotalLoss = loss_func(score, score, ones) # candidate loss n = score.size(1) for i in range(1, n): pos_score = score[:, :-i] neg_score = score[:, i:] pos_score = pos_score.contiguous().view(-1) neg_score = neg_score.contiguous().view(-1) ones = torch.ones(pos_score.size()).cuda(score.device) loss_func = torch.nn.MarginRankingLoss(self.margin * i) TotalLoss += loss_func(pos_score, neg_score, ones) # gold summary loss pos_score = summary_score.unsqueeze(-1).expand_as(score) neg_score = score pos_score = pos_score.contiguous().view(-1) neg_score = neg_score.contiguous().view(-1) ones = torch.ones(pos_score.size()).cuda(score.device) loss_func = torch.nn.MarginRankingLoss(0.0) TotalLoss += loss_func(pos_score, neg_score, ones) return TotalLoss class ValidMetric(MetricBase): def __init__(self, save_path, data, score=None): super(ValidMetric, self).__init__() self._init_param_map(score=score) self.save_path = save_path self.data = data self.top1_correct = 0 self.top6_correct = 0 self.top10_correct = 0 self.rouge = Rouge() self.ROUGE = 0.0 self.Error = 0 self.cur_idx = 0 # an approximate method of calculating ROUGE def fast_rouge(self, dec, ref): if dec == '' or ref == '': return 0.0 scores = self.rouge.get_scores(dec, ref) return (scores[0]['rouge-1']['f'] + scores[0]['rouge-2']['f'] + scores[0]['rouge-l']['f']) / 3 def evaluate(self, score): batch_size = score.size(0) self.top1_correct += int(torch.sum(torch.max(score, dim=1).indices == 0)) self.top6_correct += int(torch.sum(torch.max(score, dim=1).indices <= 5)) self.top10_correct += int(torch.sum(torch.max(score, dim=1).indices <= 9)) # Fast ROUGE for i in range(batch_size): max_idx = int(torch.max(score[i], dim=0).indices) if max_idx >= len(self.data[self.cur_idx]['indices']): self.Error += 1 # Check if the candidate summary generated by padding is selected self.cur_idx += 1 continue ext_idx = self.data[self.cur_idx]['indices'][max_idx] ext_idx.sort() dec = [] ref = ' '.join(self.data[self.cur_idx]['summary']) for j in ext_idx: dec.append(self.data[self.cur_idx]['text'][j]) dec = ' '.join(dec) self.ROUGE += self.fast_rouge(dec, ref) self.cur_idx += 1 def get_metric(self, reset=True): top1_accuracy = self.top1_correct / self.cur_idx top6_accuracy = self.top6_correct / self.cur_idx top10_accuracy = self.top10_correct / self.cur_idx ROUGE = self.ROUGE / self.cur_idx eval_result = {'top1_accuracy': top1_accuracy, 'top6_accuracy': top6_accuracy, 'top10_accuracy': top10_accuracy, 'Error': self.Error, 'ROUGE': ROUGE} with open(join(self.save_path, 'train_info.txt'), 'a') as f: print('top1_accuracy = {}, top6_accuracy = {}, top10_accuracy = {}, Error = {}, ROUGE = {}'.format( top1_accuracy, top6_accuracy, top10_accuracy, self.Error, ROUGE), file=f) if reset: self.top1_correct = 0 self.top6_correct = 0 self.top10_correct = 0 self.ROUGE = 0.0 self.Error = 0 self.cur_idx = 0 return eval_result class MatchRougeMetric(MetricBase): def __init__(self, data, save_path, n_total, score=None): super(MatchRougeMetric, self).__init__() self._init_param_map(score=score) self.data = data self.save_path = save_path self.n_total = n_total self.cur_idx = 0 self.ext = [] self.start = time() def evaluate(self, score): ext = int(torch.max(score, dim=1).indices) # batch_size = 1 self.ext.append(ext) self.cur_idx += 1 print('{}/{} ({:.2f}%) decoded in {} seconds\r'.format( self.cur_idx, self.n_total, self.cur_idx/self.n_total*100, timedelta(seconds=int(time()-self.start)) ), end='') def get_metric(self, reset=True): gold = [] pred = [] print('\nStart writing files !!!') for i, ext in enumerate(self.ext): sent_ids = self.data[i]['indices'][ext] dec, ref = [], [] for j in sent_ids: dec.append(self.data[i]['text'][j]) for sent in self.data[i]['summary']: ref.append(sent) pred.append("\n".join(dec)) gold.append("\n".join(ref)) hypo_path = self.save_path + '/matchsum_hypo.csv' ref_path = self.save_path + '/matchsum_ref.csv' hypo_df = pd.DataFrame(pred, columns=["hypothesis"]) hypo_df.to_csv(hypo_path, index=False) ref_df =
pd.DataFrame(gold, columns=["references"])
pandas.DataFrame
import time import numpy as np import pandas as pd from ai4good.models.cm.simulator import AGE_SEP DIGIT_SEP = ' to ' # em dash to separate from minus sign def timing(f): def wrap(*args): time1 = time.time() ret = f(*args) time2 = time.time() print('%s function took %0.1f s' % (f.__name__, (time2-time1))) return ret return wrap def load_report(mr, params) -> pd.DataFrame: return normalize_report(mr.get('report'), params) def normalize_report(df, params): df = df.copy() if 'R0' in df.columns: df.R0 = df.R0.apply(lambda x: round(complex(x).real, 1)) df_temp = df.drop(['Time', 'R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'], axis=1) else: df_temp = df.drop(['Time', 'iteration'], axis=1) df_temp = df_temp * params.population df.update(df_temp) return df @timing def prevalence_all_table(df): # calculate Peak Day IQR and Peak Number IQR for each of the 'incident' variables to table if 'iteration' in df.columns: df = df.filter(regex='^Time$|^iteration$|^Infected \(symptomatic\)$|^Hospitalised$|^Critical$|^Change in Deaths$') groupby_columns = ['iteration'] else: df = df.filter(regex='^Time$|^R0$|^latentRate$|^removalRate$|^hospRate$|^deathRateICU$|^deathRateNoIcu$|^Infected \(symptomatic\)$|^Hospitalised$|^Critical$|^Change in Deaths$') groupby_columns = ['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'] grouped = df.groupby(groupby_columns) indices_to_drop = groupby_columns + ['Time'] peak_days = get_quantile_report(grouped.apply(lambda x: x.set_index('Time').idxmax()), indices_to_drop) peak_numbers = get_quantile_report(grouped.max(), indices_to_drop) resultdf = pd.DataFrame.from_dict({'Peak Day IQR': peak_days, 'Peak Number IQR': peak_numbers}) resultdf.index.name = 'Outcome' table_columns = {'Infected (symptomatic)': 'Prevalence of Symptomatic Cases', 'Hospitalised': 'Hospitalisation Demand', 'Critical': 'Critical Care Demand', 'Change in Deaths': 'Prevalence of Deaths'} return resultdf.reindex(index=table_columns.keys()).rename(index=table_columns).reset_index() def get_quantile_report(x, indices_to_drop): return x.stack().groupby(level=-1).quantile([.25, .75])\ .apply(round).astype(int).astype(str).groupby(level=0).apply(lambda x: DIGIT_SEP.join(x.values)).drop(index = indices_to_drop, errors='ignore') @timing def prevalence_age_table(df): # calculate age specific Peak Day IQR and Peak Number IQR for each of the 'prevalent' variables to contruct table if 'iteration' in df.columns: df = df.filter(regex='^Time$|^iteration$|^Infected \(symptomatic\)|^Hospitalised|^Critical') groupby_columns = ['iteration'] else: df = df.filter(regex='^Time$|^R0$|^latentRate$|^removalRate$|^hospRate$|^deathRateICU$|^deathRateNoIcu$|^Infected \(symptomatic\)|^Hospitalised|^Critical') groupby_columns = ['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'] grouped = df.groupby(groupby_columns) indices_to_drop = groupby_columns + ['Time'] peak_days = get_quantile_report(grouped.apply(lambda x: x.set_index('Time').idxmax()), indices_to_drop) peak_numbers = get_quantile_report(grouped.max(), indices_to_drop) resultdf = pd.DataFrame.from_dict({'Peak Day, IQR': peak_days, 'Peak Number, IQR': peak_numbers}) arrays = [np.array(['Incident Cases']*9 + ['Hospital Demand']*9 + ['Critical Demand']*9), np.array( ['all ages', '<9 years', '10-19 years', '20-29 years', '30-39 years', '40-49 years', '50-59 years', '60-69 years', '70+ years']*3)] sorted_index = resultdf.sort_index().index.values my_comp_order = ['Infected (symptomatic)', 'Hospitalised', 'Critical'] my_sorted_index = sum([list(filter(lambda column: comp in column, sorted_index)) for comp in my_comp_order], []) sortedresultdf = resultdf.reindex(index=my_sorted_index) sortedresultdf.index = pd.MultiIndex.from_arrays(arrays) return sortedresultdf @timing def cumulative_all_table(df, population, camp_params): # now we try to calculate the total count # cases: (N-exposed)*0.5 since the asymptomatic rate is 0.5 # hopistal days: cumulative count of hospitalisation bucket # critical days: cumulative count of critical days # deaths: we already have that from the frame if 'iteration' in df.columns: df = df.filter(regex='^Time$|^iteration$|Susceptible' + AGE_SEP + '|^Deaths$|^Hospitalised$|^Critical$|^Deaths$') groupby_columns = ['iteration'] else: df = df.filter(regex='^Time$|^R0$|^latentRate$|^removalRate$|^hospRate$|^deathRateICU$|^deathRateNoIcu$|Susceptible' + AGE_SEP + '|^Deaths$|^Hospitalised$|^Critical$|^Deaths$') groupby_columns = ['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'] groups = df.groupby(groupby_columns) groups_tails = groups.apply(lambda x: x.set_index('Time').tail(1)) susceptible = groups_tails.filter(like='Susceptible'+AGE_SEP).rename(columns=lambda x: x.split(AGE_SEP)[1])[camp_params['Age']] susceptible = ((population * camp_params['Population_structure'].values / 100 - susceptible) * camp_params['p_symptomatic'].values).sum(axis=1) susceptible.index = susceptible.index.droplevel('Time') deaths = groups_tails['Deaths'] deaths.index = deaths.index.droplevel('Time') cumulative = { 'Susceptible': susceptible, 'Hospitalised': groups['Hospitalised'].sum(), 'Critical': groups['Critical'].sum(), 'Deaths': deaths } cumulative_all = pd.DataFrame(cumulative) cumulative_count = cumulative_all.quantile([.25, .75]).apply(round).astype(int).astype(str).apply(lambda x: DIGIT_SEP.join(x.values), axis=0).values data = {'Totals': ['Symptomatic Cases', 'Hospital Person-Days', 'Critical Person-days', 'Deaths'], 'Counts': cumulative_count} return pd.DataFrame.from_dict(data) @timing def cumulative_age_table(df, camp_params): # need to have an age break down for this as well # 1 month 3 month and 6 month breakdown arrays = [np.array( ['Symptomatic Cases'] * 9 + ['Hospital Person-Days'] * 9 + ['Critical Person-days'] * 9 + ['Deaths'] * 9), np.array( ['all ages', '<9 years', '10-19 years', '20-29 years', '30-39 years', '40-49 years', '50-59 years', '60-69 years', '70+ years'] * 4)] params_select = ['Susceptible:', 'Deaths'] params_accu = ['Hospitalised', 'Critical'] columns_to_acc, columns_to_select, multipliers = collect_columns(df.columns, params_accu, params_select, camp_params) if 'iteration' in df.columns: groupby_columns = ['iteration'] else: groupby_columns = ['R0', 'latentRate', 'removalRate', 'hospRate', 'deathRateICU', 'deathRateNoIcu'] first_month_diff = df.groupby(groupby_columns)[ columns_to_select + ['Time']].apply(find_first_month_diff) third_month_diff = df.groupby(groupby_columns)[ columns_to_select + ['Time']].apply(find_third_month_diff) sixth_month_diff = df.groupby(groupby_columns)[ columns_to_select + ['Time']].apply(find_sixth_month_diff) first_month_select = first_month_diff[columns_to_select].mul(multipliers).quantile([.25, .75]) three_month_select = third_month_diff[columns_to_select].mul(multipliers).quantile([.25, .75]) six_month_select = sixth_month_diff[columns_to_select].mul(multipliers).quantile([.25, .75]) first_month_select['Susceptible'] = first_month_select.filter(like='Susceptible:').sum(axis=1) three_month_select['Susceptible'] = three_month_select.filter(like='Susceptible:').sum(axis=1) six_month_select['Susceptible'] = six_month_select.filter(like='Susceptible:').sum(axis=1) one_month_cumsum = df.groupby(groupby_columns)[ columns_to_acc + ['Time']].apply(find_one_month) three_month_cumsum = df.groupby(groupby_columns)[ columns_to_acc + ['Time']].apply(find_three_months) six_month_cumsum = df.groupby(groupby_columns)[ columns_to_acc + ['Time']].apply(find_six_months) first_month_accu = one_month_cumsum[columns_to_acc].quantile([.25, .75]) three_month_accu = three_month_cumsum[columns_to_acc].quantile([.25, .75]) six_month_accu = six_month_cumsum[columns_to_acc].quantile([.25, .75]) first_month = pd.concat([first_month_select, first_month_accu], axis=1) third_month = pd.concat([three_month_select, three_month_accu], axis=1) sixth_month = pd.concat([six_month_select, six_month_accu], axis=1) sorted_columns = first_month.columns.sort_values() my_comp_order = ['Susceptible', 'Hospitalised', 'Critical', 'Deaths'] my_sorted_columns = sum([list(filter(lambda column: comp in column, sorted_columns)) for comp in my_comp_order], []) first_month_count = first_month[my_sorted_columns]\ .apply(round).astype(int).astype(str) \ .apply(lambda x: DIGIT_SEP.join(x.values), axis=0).values three_month_count = third_month[my_sorted_columns]\ .apply(round).astype(int).astype(str) \ .apply(lambda x: DIGIT_SEP.join(x.values), axis=0).values six_month_count = sixth_month[my_sorted_columns]\ .apply(round).astype(int).astype(str) \ .apply(lambda x: DIGIT_SEP.join(x.values), axis=0).values d = {'First month': first_month_count, 'First three months': three_month_count, 'First six months': six_month_count} return pd.DataFrame(data=d, index=arrays) def collect_columns(columns, params_accu, params_select, camp_params): columns_to_select = list(filter(lambda column: any(column.startswith(s) for s in params_select), columns)) columns_to_acc = list(filter(lambda column: any(column.startswith(s) for s in params_accu), columns)) multipliers = list( map(lambda column: -camp_params[camp_params['Age'].apply(lambda x: x in column)]['p_symptomatic'].values[0] if 'Susceptible:' in column else 1, columns_to_select)) return columns_to_acc, columns_to_select, multipliers def diff_table(baseline, intervention, N): t1 = effectiveness_cum_table(baseline, intervention, N) t2 = effectiveness_peak_table(baseline, intervention) r1 = [ 'Symptomatic Cases', t1.loc['Symptomatic Cases']['Reduction'], t2.loc['Prevalence of Symptomatic Cases']['Delay in Peak Day'], t2.loc['Prevalence of Symptomatic Cases']['Reduction in Peak Number'] ] r2 = [ 'Hospital Person-Days', t1.loc['Hospital Person-Days']['Reduction'], t2.loc['Hospitalisation Demand']['Delay in Peak Day'], t2.loc['Hospitalisation Demand']['Reduction in Peak Number'] ] r3 = [ 'Critical Person-days', t1.loc['Critical Person-days']['Reduction'], t2.loc['Critical Care Demand']['Delay in Peak Day'], t2.loc['Critical Care Demand']['Reduction in Peak Number'] ] r4 = [ 'Deaths', t1.loc['Deaths']['Reduction'], t2.loc['Prevalence of Deaths']['Delay in Peak Day'], t2.loc['Prevalence of Deaths']['Reduction in Peak Number'] ] df = pd.DataFrame([r1, r2, r3, r4], columns=['Outcome', 'Overall reduction', 'Delay in Peak Day', 'Reduction in Peak Number']) return df def effectiveness_cum_table(baseline, intervention, N): table_params = ['Symptomatic Cases', 'Hospital Person-Days', 'Critical Person-days', 'Deaths'] cum_table_baseline = cumulative_all_table(baseline, N) # print("CUM: "+str(cum_table_baseline.loc[:, 'Counts'])) baseline_numbers = cum_table_baseline.loc[:, 'Counts'].apply(lambda x: [int(i) for i in x.split(DIGIT_SEP)]) baseline_numbers_separate = pd.DataFrame(baseline_numbers.tolist(), columns=['25%', '75%']) comparisonTable = {} cumTable = cumulative_all_table(intervention, N) # print("Counts: \n"+str(cumTable.loc[:, 'Counts'])) intervention_numbers = pd.DataFrame( cumTable.loc[:, 'Counts'].apply(lambda x: [int(i) for i in x.split(DIGIT_SEP)]).tolist(), columns=['25%', '75%']) differencePercentage = (baseline_numbers_separate - intervention_numbers) / baseline_numbers_separate * 100 prettyOutput = [] for _, row in differencePercentage.round(0).astype(int).iterrows(): output1, output2 = row['25%'], row['75%'] prettyOutput.append(format_diff_row(output1, output2)) comparisonTable['Reduction'] = prettyOutput comparisonTable['Total'] = table_params return
pd.DataFrame.from_dict(comparisonTable)
pandas.DataFrame.from_dict
import os from tqdm import tqdm from datetime import datetime import pandas as pd import numpy as np from scipy.io import wavfile import tensorflow as tf from tensorflow.keras.layers import Conv2D, MaxPool2D, Flatten from tensorflow.keras.layers import LSTM, TimeDistributed from tensorflow.keras.layers import Dropout, SpatialDropout2D, Dense from tensorflow.keras.models import Sequential from tensorflow.keras.callbacks import ModelCheckpoint, TensorBoard from tensorflow.keras.utils import to_categorical from sklearn.utils.class_weight import compute_class_weight from sklearn.model_selection import train_test_split from sklearn.decomposition import PCA import pickle from python_speech_features import mfcc import librosa from librosa.feature import melspectrogram from cfg import Config from buildfeats import build_rand_feat def get_conv_model(): model = Sequential() model.add(Conv2D(filters=16, kernel_size=(3, 3), activation='relu', strides=(1,1), padding='same', input_shape=input_shape)) model.add(Conv2D(16, (3, 3), activation='relu', strides=(1,1),padding='same')) model.add(Conv2D(32, (3, 3), activation='relu', strides=(1,1),padding='same')) # model.add(Conv2D(128, (3, 3), activation='relu', strides=(1,1), padding='same')) model.add(MaxPool2D((2,2))) model.add(Dropout(0.5)) model.add(Flatten()) # model.add(Dense(128, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(32, activation='relu')) # model.add(Dropout(0.5)) model.add(Dense(5, activation='softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model def get_recurrent_model(): #shape of data for RNN is (n, time, feat) model = Sequential() model.add(LSTM(128, return_sequences=True, input_shape=input_shape)) model.add(LSTM(128, return_sequences=True)) model.add(Dropout(0.5)) model.add(TimeDistributed(Dense(64, activation='relu'))) model.add(TimeDistributed(Dense(32, activation='relu'))) model.add(TimeDistributed(Dense(16, activation='relu'))) model.add(TimeDistributed(Dense(8, activation='relu'))) model.add(Flatten()) model.add(Dense(5, activation='softmax')) model.summary() model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) return model config = Config(mode='conv') cur_df = pd.read_csv('data/train/roadsound_labels.csv', index_col=0) noisy_df = pd.read_csv('data/train_noisy/roadsound_labels.csv', index_col=0) df =
pd.concat([cur_df, noisy_df], sort=True)
pandas.concat
import numpy as np import pandas as pd from sklearn.decomposition import PCA from sklearn.preprocessing import Imputer from sklearn import linear_model from sklearn.ensemble import BaggingRegressor, RandomForestRegressor from sklearn import svm from sklearn.ensemble import AdaBoostRegressor from sklearn.metrics import make_scorer, r2_score from sklearn.model_selection import GridSearchCV, cross_val_score, KFold import tflearn import tensorflow as tf import warnings import matplotlib.pyplot as plt warnings.filterwarnings('ignore') def lets_try(train, labels): results = {} def test_model(clf): cv = KFold(n_splits=5, shuffle=True, random_state=45) r2 = make_scorer(r2_score) r2_val_score = cross_val_score(clf, train, labels, cv=cv, scoring=r2) scores = [r2_val_score.mean()] return scores clf = linear_model.LinearRegression() results["Linear"] = test_model(clf) clf = linear_model.Ridge() results["Ridge"] = test_model(clf) clf = linear_model.BayesianRidge() results["Bayesian Ridge"] = test_model(clf) clf = linear_model.HuberRegressor() results["Hubber"] = test_model(clf) clf = linear_model.Lasso(alpha=1e-4) results["Lasso"] = test_model(clf) clf = BaggingRegressor() results["Bagging"] = test_model(clf) clf = RandomForestRegressor() results["RandomForest"] = test_model(clf) clf = AdaBoostRegressor() results["AdaBoost"] = test_model(clf) clf = svm.SVR() results["SVM RBF"] = test_model(clf) clf = svm.SVR(kernel="linear") results["SVM Linear"] = test_model(clf) results =
pd.DataFrame.from_dict(results, orient='index')
pandas.DataFrame.from_dict
########################### # # SizeTools # # Tools to work with data of different sizes # import pandas as pd import numpy as np import re ################## # # Stats and Computations # # def subsample_time(myPSD,start_time,end_time): good_samples = (myPSD.sampleTimes > start_time) & (myPSD.sampleTimes < end_time) shorteneddata_PSD = myPSD.dNdlogDp[good_samples,:] return shorteneddata_PSD def compute_stats_sampletime(myPSD,start_time,end_time): shorteneddata = subsample_time(myPSD,start_time,end_time) sd_mean = np.nanmean(shorteneddata,axis=0) sd_std = np.nanstd(shorteneddata,axis=0) return sd_mean,sd_std ################## # # Plotting # # def nicePalette(): nicepalette = ["#999999", "#E69F00", "#56B4E9", "#009E73", "#F0E442", "#0072B2", "#D55E00", "#CC79A7"] return nicepalette def plot_format(fs=16,ls=10): import matplotlib.pyplot as plt plt.rcdefaults() fSize = fs fName = 'Arial' fWght = 'bold' defLW = 2 #Format the plots font = {'family' : 'normal', 'weight' : fWght, 'size' : fSize} plt.rc('font', **font) plt.rc('legend',fontsize=10) plt.rc('axes',linewidth=defLW) plt.rc('axes',labelsize=fSize) plt.rc('axes',labelweight=fWght) #plt.rc('axes',edgecolor=[0.1,0.1,0.1])#,color='black') plt.rc('lines',linewidth = defLW) def plot_3dTS(myPSD,savename): import matplotlib.pyplot as plt plt.figure() #plt.pcolormesh(myPSD.Time_HOD,myPSD.binEdges,myPSD.data.transpose(),vmin=0,vmax=5) plt.pcolormesh(myPSD.Time_HOD,myPSD.binEdges,myPSD.dNdlogDp.transpose(),vmin=0,vmax=50) plt.colorbar() plt.yticks(myPSD.binCenters) plt.ylim([0.25,12]) plt.xlim([np.nanmin(myPSD.Time_HOD),np.nanmax(myPSD.Time_HOD)]) plt.xlabel('Hour of Day (EST)') plt.ylabel('Size (um)') plt.title('Concentration (Dn/DlogDp), #/cm^-3') plt.savefig(savename) ################## # # Loading # # def load_APS(file_load,delim=','): myTSI = TSI() df = pd.read_table(file_load,header=6,parse_dates=[[1,2]],index_col=0,delimiter=delim) #Handle Bin Edges bin_edges_aps = np.array([0.4870,0.5228,0.5624,0.6039,0.6492,0.6975,0.7495,0.8055,0.8663,0.9309,1.0004,1.0746,1.1547,1.2406,1.3332,1.4335,1.5396,1.6544,1.7779,1.9110,2.0538,2.2071,2.3711,2.5486,2.7387,2.9432,3.1622,3.3985,3.6522,3.9242,4.2165,4.5320,4.8696,5.2333,5.6230,6.0426,6.4941,6.9784,7.4993,8.0588,8.6598,9.3061,10.0035,10.7463,11.5470,12.4055,13.3316,14.3349,15.3960,16.5439,17.7787,19.1099,20.5353]) dLogDp = np.diff(np.log10(bin_edges_aps)) myTSI.binEdges = bin_edges_aps logbe = np.log10(myTSI.binEdges) bdiff = np.divide(np.diff(logbe),2) logbc = logbe[0:-1] + bdiff myTSI.binCenters = np.power(10,logbc) #Handle Times myTSI.sampleTimes = pd.to_datetime(df.index) myTSI.Time_HOD = myTSI.Time_HOD = np.array([(time.hour + np.true_divide(time.minute,60) + np.true_divide(time.second,3600)) for time in myTSI.sampleTimes]) #Check type and compute data values if df['Aerodynamic Diameter'][1] == 'dN': myTSI.data=df.ix[:,2:54].as_matrix() myTSI.dNdlogDp = np.divide(myTSI.data,dLogDp) return myTSI def load_3330(input_file): myTSI = TSI() with open(input_file,'r') as f: myTSI.instrName = f.readline().strip().split(',')[1] myTSI.modelNum = int(f.readline().strip().split(',')[1]) myTSI.serialNum = int(f.readline().strip().split(',')[1]) myTSI.firmware = f.readline().strip().split(',')[1] myTSI.calDate = f.readline().strip().split(',')[1] myTSI.protocolName = f.readline().strip().split(',')[1] myTSI.testStartTime = f.readline().strip().split(',')[1] myTSI.testStartDate = f.readline().strip().split(',')[1] myTSI.testLength = f.readline().strip().split(',')[1] myTSI.sampleInterval= f.readline().strip().split(',')[1] myTSI.numChannels= int(f.readline().strip().split(',')[1])+1 myTSI.ChannelNum = np.arange(0,myTSI.numChannels,1) myTSI.cutPoint = np.zeros(myTSI.numChannels) for channel in myTSI.ChannelNum: myTSI.cutPoint[channel] = float(f.readline().strip().split(',')[1]) myTSI.alarm = f.readline().strip().split(',')[1] myTSI.Density = float(f.readline().strip().split(',')[1]) myTSI.refractiveIndex = f.readline().strip().split(',')[1] myTSI.sizeCorrFac = float(f.readline().strip().split(',')[1]) myTSI.flowCal = float(f.readline().strip().split(',')[1]) myTSI.deadTimeCorrFac = float(f.readline().strip().split(',')[1]) myTSI.errors = f.readline().strip().split(',')[1] myTSI.numSamples = int(f.readline().strip().split(',')[1]) test = f.readline().strip() if test != ',': print("Error on the read") print(test) myTSI.columnNames = f.readline().strip().split(',') #PreAllocateNumpyArrays: myTSI.elapsedTime = np.zeros(myTSI.numSamples) myTSI.rawdata = np.zeros((myTSI.numSamples,myTSI.numChannels)) myTSI.deadTime = np.zeros(myTSI.numSamples) myTSI.T = np.zeros(myTSI.numSamples) myTSI.RH = np.zeros(myTSI.numSamples) myTSI.P = np.zeros(myTSI.numSamples) myTSI.alarms = [] myTSI.errors = [] nC = myTSI.numChannels nS = myTSI.numSamples myTSI.rawdata[:] = np.NaN datastr = '%i,' + ' %04d,'*nC + '%i,%04d,%04d,%04d,%s,%s' for i in range(0,myTSI.numSamples): data = f.readline().strip().split(',') myTSI.elapsedTime[i] = int(data[0]) myTSI.rawdata[i,:] = np.asarray(data[1:nC + 1],dtype=np.float32) myTSI.deadTime[i] = float(data[nC + 1]) myTSI.T[i] = float(data[nC + 2] ) myTSI.RH[i] = float(data[nC + 3]) myTSI.P[i] = float(data[nC + 4]) myTSI.alarms.append(data[nC + 5]) myTSI.errors.append(data[nC + 6]) myTSI.binEdges = myTSI.cutPoint #Note: We do not do any serious work with the largest bin #We do not know how big the particles are ##Test analysis: #this uses the equation in 5.5. #We currently do not applythe deadtime correction factor. #Concentration Factor #This is the concentration! #Get sample interval in seconds siv = np.asarray(myTSI.sampleInterval.split(':'),dtype='float') samp_time = siv[0]*3600+siv[1]*60+siv[2] samp_time_corr = np.subtract(samp_time,np.multiply(myTSI.deadTimeCorr,myTSI.deadTime)) concentration_factor = np.multiply(myTSI.flowRate,samp_time) myTSI.data = np.divide(myTSI.rawdata,concentration_factor) sumparts = np.nansum(myTSI.data[:,:],axis=1) #Now for the good stuff #Convert sizes to DnDlogDp #Discard the last size bin because it counts but does not size particles larger than 10 micron #Not actually bin center myTSI.binCenters = myTSI.cutPoint[0:-1] + np.divide(np.diff(myTSI.cutPoint),2) logvs = np.log10(myTSI.cutPoint) dlogDp = np.diff(logvs) myTSI.dNdlogDp = np.divide(myTSI.data[:,0:-1],dlogDp) leftloc = myTSI.cutPoint[0:-1] width = np.diff(myTSI.cutPoint) myTSI.startDateTime = pd.to_datetime(myTSI.testStartDate + ' ' + myTSI.testStartTime) myTSI.sampleTimes = myTSI.startDateTime + pd.to_timedelta(myTSI.elapsedTime,'s') myTSI.Time_HOD = np.array([(time.hour + np.true_divide(time.minute,60) + np.true_divide(time.second,3600)) for time in myTSI.sampleTimes]) return myTSI def load_EDM164(input_file): myGRM = GRIMM() average=False nC = 0 nc = 0 current_time = [] grimm_sample_duration = pd.Timedelta('6 seconds') with open(input_file,'r') as f: alldata = f.readlines() for line in alldata: #for line in f.readlines(): # print line data = line.strip() #print data #Handle scenarios where there's no data if len(data) == 0: #no data in line continue if (not current_time) & (data[0] != 'P'): #we started the file in the middle of a read and don't know the time continue if data == 'POWER OFF': #Power turned off. Could confuse with the 'P' command continue if data[0] == 'P': #It is a new measurement, parse the new measurement #Clean, strip the 'p , split by tabs' p_clean = re.sub(r'[P_]','',data).split() #Date and date string #print p_clean datestr = p_clean[1] + '/' + p_clean[2] + '/20' +p_clean[0] + ' ' +p_clean[3] + ':' +p_clean[4] current_time =
pd.to_datetime(datestr)
pandas.to_datetime
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ @author: valengo """ import sys from collections import defaultdict from math import sqrt from multiprocessing import cpu_count from typing import Union import pysam import numpy as np from pandas import DataFrame from amplicnv.tsvparser import CoverageFileParser from ..bedloader import ROI from ..commons import ChromDF as cdf from ..graphics import scatter from ..mphandler import MPPoolHandler from ..stats import above_range from ..stats import below_range from ..stats import classify_by_count from ..stats import compute_metric from ..stats import filter_by_cutoff from ..stats import iqr from ..utils import ConfigfileParser from ..utils import NumberProperty from ..utils import Region from ..utils import appenddir from ..utils import createdir from ..utils import overrides from ..utils import validstr def readcount(region_list: list, filename: str) -> list: """ Count the number of reads in regions using pysam.AlignmentFile.count method :param list region_list: regions in the format: 'chr1:1000-10000' :param str filename: path to bamfile :return counters: list of number of reads in regions """ try: with pysam.AlignmentFile(filename, 'rb') as bamfile: counters = [] for region in region_list: try: counters.append(bamfile.count(region=region)) except ValueError: print("Failed counting the number of reads in {} from {}".format(region, filename)) counters.append(None) return counters except OSError: sys.exit("Failed counting the number of reads in region from {}".format(filename)) def attr_from_header(line): if line.startswith('#'): return line.split(':', 1)[1].strip() else: print('{0} is not a header line'.format(line)) return None def metric2label(counters, q1, q3, metric, interval_range): labels = [] for counter in counters: if below_range(counter, metric, q1, interval_range): labels.append('-') elif above_range(counter, metric, q3, interval_range): labels.append('+') else: labels.append('o') return labels @validstr('bedfile', empty_allowed=True) @validstr('bamfile', empty_allowed=True) @validstr('region', empty_allowed=True) class NRR(object): """ NRR stands for "Number of Reads in Region" loaded from a BAM file :param str bedfile: path to bedfile where amplicons are listed in :param str bamfile: path to alignment file (bam format) :param str region: limit target definition to a given region. It should be in the form: chr1:10000-90000 :param list counters: list of read depth counters :param ROI bed: amplicons already loaded in memory :param bool parallel: whether to count target read depth in parallel :param bool to_label: whether to label targets regarding each target read depth in comparison to the mean :param str covfile: path to amplicon.cov file """ def __init__(self, bedfile: str = None, bamfile: str = None, region: str = None, counters: list = [], bed: Union[ROI, CoverageFileParser] = None, parallel: bool = True, to_label: bool = False, covfile: str = None): self.covfile = covfile self.bedfile = bedfile self.bamfile = bamfile self.region = region self._counters = self.counters = counters self._bed = self.bed = bed self.reads_by_pool = defaultdict(int) self._nreads = self.nreads = 0 self.normalized_counters = [] self.labels = None self.labels_by_pool = None # load or count rd if self.covfile is not None: self.bed = CoverageFileParser(self.covfile) self.counters = self.bed.counters elif self.load(self.bamfile + '.txt') is None: self.count(parallel=parallel) self.save() if self.counters: self.reads_by_pool = self.__count_pools() self.normalized_counters = self.__norm() if len(self.counters) > 0 and to_label: print('Labeling targets') self.labels = self.__label_targets(mode='log') self.labels_by_pool = self.count_label_by_pool() @property def bed(self): return self._bed @bed.setter def bed(self, value): if (value is None and self.bedfile is not None and self.covfile is None): self._bed = ROI(self.bedfile) else: self._bed = value @property def counters(self): return self._counters @counters.setter def counters(self, value): self._counters = value @property def nreads(self): return self._nreads @nreads.setter def nreads(self, value): self._nreads = value def count(self, cores: int = None, parallel: bool = False): """ For each defined target, count read depth :param int cores: number of cores to be used when counting in parallel mode. Default: all available :param bool parallel: whether to count read depth in parallel """ if parallel: if cores is None: cores = cpu_count() self.counters = self.__parallel_count(cores) else: self.counters = self.__count() def load(self, filename: str) -> Union[int, None]: """ Load a single NRR from a text file :param str filename: path to count file. Normally something like: bamfile.bam.txt :return: 1 when data loading is successful, None otherwise """ print('Loading {0} read counters'.format(filename)) try: with open(filename, 'r') as file: lines = file.readlines() except IOError: print('There is no counter file for {0} file'.format(self.bamfile)) return None try: self.bamfile = attr_from_header(lines[0]) self.bedfile = attr_from_header(lines[1]) self.region = attr_from_header(lines[2]) if self.region == 'None': self.region = None except IndexError: print('Not enough information on {} header'.format(filename)) print('Aborting!') return None print('Extracting read counters from file') counters = [] for line in lines: if line.startswith('chr'): counters.append(int(line.split('\t')[4].strip())) self.counters = counters if self.bed is None: self.bed = ROI(self.bedfile) return 1 def save(self, filename: str = None): """ Save a single NRR on a text file :param str filename: path to output """ print('Saving {0} read counters'.format(self.bamfile)) if filename is None: filename = self.bamfile + '.txt' try: with open(filename, 'w') as file: file.write('# BAM source: {0}\n'.format(self.bamfile)) file.write('# bed source: {0}\n'.format(self.bedfile)) file.write('# Regions: {0}\n'.format(self.region)) t = list(self.bed.targets.itertuples()) for i in range(len(t)): file.write('{0}\t{1}\t{2}\t{3}\t{4}\n'.format(t[i][1], t[i][2], t[i][3], t[i][5], self.counters [i])) print('Done!') except IOError as error: print(error) def __count(self): try: bamfile = pysam.AlignmentFile(self.bamfile, 'rb') except OSError as error: print(error) return None print('Counting number of reads of {}'.format( self.bamfile)) read_counters = [] for row in self.bed.targets.itertuples(): read_counters.append(bamfile.count(row[1], row[2], row[3])) return read_counters def __parallel_count(self, cores: int): print('Counting number of reads of {}, using {} cores'.format( self.bamfile, cores)) # get target regions targets = self.bed.targets # row[2] + 1 -> faking that we use one based index region_list = ['{}:{}-{}'.format(row[1], row[2] + 1, row[3]) for row in targets.itertuples()] # define chunksize and create chunks chunksize, extra = divmod(len(region_list), cores * 4) if extra: chunksize += 1 chunks = [] for i in range(0, len(region_list), chunksize): chunks.append(region_list[i:i + chunksize]) # define tasks tasks = [(readcount, chunk, self.bamfile) for chunk in chunks] with pysam.AlignmentFile(self.bamfile, 'rb'): counters = MPPoolHandler(tasks, cores).run() if counters: counters = [c for counter in counters for c in counter] return counters def __count_pools(self): """ Count number of reads per pool. This method is used when loading a NRR from a file """ print('Counting reads by pools') targets = list(self.bed.targets.itertuples()) if len(targets) != len(self.counters): print(f'Number of targets N={len(targets)} and their read counters N={len(self.counters)} differ.') print('Aborting!') return None reads_by_pool = defaultdict(int) for i, target in enumerate(targets): pools = target.pools.unique_flattened() for pool in pools: reads_by_pool[pool] += self.counters[i] / len(pools) self.nreads = sum(self.counters) return reads_by_pool def __norm(self, mag: int = 1000000): print('Normalizing counters') normalized = [] targets = list(self.bed.targets.itertuples()) if len(targets) != len(self.counters): print('Number of targets and their read counters differ.') print('Aborting!') return None for i, target in enumerate(targets): current_pools_counter = [] pools = target.pools.unique_flattened() for pool in pools: current_pools_counter.append((self.counters[i] / self.reads_by_pool[pool])) normalized.append(mag * (sum(current_pools_counter) / len(pools))) return normalized def __label_targets(self, iqr_range: float = 1.5, std_range: float = 1.5, mode: str = 'normalized') -> list: """ Label targets considering IQR on counters (normalized or not - user's choice) for discovering whether a target is in the lower (-) quartile, upper (+) quartile, or middle (o) :param float iqr_range: value to multiply IQR by :param float std_range: value to multiply std by :param str mode: 'normalized' for employing self.normalized_counters; 'log' for log(self.normalized_counters) :return: labels (list) a list of size (len.counters) representing the labels for the targets """ # compute metric (IQR) if mode == 'normalized': counters = self.normalized_counters elif mode == 'log': counters = np.log(self.normalized_counters) else: counters = self.counters df =
DataFrame(counters)
pandas.DataFrame
import json from numpy.core.numeric import NaN import pandas as pd from telegram import ChatAction import telegram from telegram.ext.conversationhandler import ConversationHandler DATA_ANALISIS_ALL_MEMBER = 0 DATA_DESCRIPTION = 0 DATA_ANALISIS_ONE_MEMBER = 0 ENABLE_ANALISIS = 0 def enable_analisis(update, context): if(update.message.chat["type"] == "group" or update.message.chat["type"] == "supergroup"): with open('data.json', 'r+') as file: data = json.load(file) group_id = str(update.message.chat["id"]) if(data["Grupos"].get(group_id, False) != False): user_id = str(update.message.from_user.id) username = str(update.message.from_user.username) verification = data["Grupos"][group_id]["Usuarios"].get(username, False) if(verification == -1): data["Grupos"][group_id]["Usuarios"][username] = user_id data["Grupos"][group_id]["Administradores"].append(user_id) if(user_id in data["Grupos"][group_id]["Administradores"]): data["Analisis_Para_Administradores"][user_id] = group_id telegram.Bot('2082442589:AAH3MNzWrZVcqXWkHNBvq5Y0edK15AWWvRM').sendMessage(user_id, "Para pedir el análisis de los miembros del grupo presione \n /mostrar_analisis") file.seek(0) json.dump(data, file, indent=4) file.truncate() def analisis(update, context): if(update.message.chat["type"] == "private"): with open('data.json', 'r+') as file: data = json.load(file) user_id = str(update.message.from_user.id) if(user_id in data["Analisis_Para_Administradores"].keys()): group_id = data["Analisis_Para_Administradores"][user_id] if(data["Grupos"].get(group_id, False) != False and user_id in data["Grupos"][group_id]["Administradores"]): group_analisis = data["Grupos"][group_id]["Integrantes"] keys = group_analisis.keys() questions = data["Preguntas"] sub = {"Pregunta":[], "NumeroPregunta":[], "IndiceSubcategoria":[], "Subcategoria":[], "Categoria":[]} for question in questions: for column in question: sub[column].append(question[column]) df = {"Nombre": []} for q in sub["NumeroPregunta"]: df[q] = [] for id in keys: df["Nombre"].append(group_analisis[id]["Usuario"]) for i in range(60): str_i = str(i) if str_i in group_analisis[id].keys(): df[i+1].append(group_analisis[id][str_i]) else: df[i+1].append(NaN) df = pd.DataFrame(df) sub = pd.DataFrame(sub) preproc = pd.DataFrame() preproc["Nombre"] = df["Nombre"] categoria = sub.groupby(['Categoria']) for i in categoria: preproc[i[0]] = df.loc[:,list(categoria.get_group(i[0])["NumeroPregunta"])].sum(axis=1) preproc["Porcentaje " + i[0]] =(df.loc[:,list(categoria.get_group(i[0])["NumeroPregunta"])].sum(axis=1))/80*100 preproc["Media " + i[0]] = df.loc[:,list(categoria.get_group(i[0])["NumeroPregunta"])].mean(axis=1) subcategoria = sub.groupby(['Subcategoria']) for i in subcategoria: preproc[i[0]] = df.loc[:,list(subcategoria.get_group(i[0])["NumeroPregunta"])].mean(axis=1) result = preproc.loc[:,"Alegria":].sum()/df["Nombre"].count() moda = { "Alegria" : { "valor": "-", "porcentaje": "-" }, "Seriedad" : { "valor": "-", "porcentaje": "-" }, "Mal humor": { "valor": "-", "porcentaje": "-" } } if not preproc["Media Alegria"].empty and not pd.isna(preproc["Media Alegria"].round().mode(dropna=False)[0]): moda["Alegria"]["valor"] = preproc["Media Alegria"].round().mode(dropna=False)[0] moda["Alegria"]["porcentaje"] = preproc["Media Alegria"].round().value_counts(normalize=True).max()*100 if not preproc["Media Seriedad"].empty and not pd.isna(preproc["Media Seriedad"].round().mode(dropna=False)[0]): moda["Seriedad"]["valor"] = preproc["Media Seriedad"].round().mode(dropna=False)[0] moda["Seriedad"]["porcentaje"] = preproc["Media Seriedad"].round().value_counts(normalize=True).max()*100 if not preproc["Media Mal humor"].empty and not pd.isna(preproc["Media Mal humor"].round().mode(dropna=False)[0]): moda["Mal humor"]["valor"] = preproc["Media Mal humor"].round().mode(dropna=False)[0] moda["Mal humor"]["porcentaje"] = preproc["Media Mal humor"].round().value_counts(normalize=True).max()*100 descr = { "descripcion": preproc.to_json(), "resultado": result.to_json(), "moda": moda, } data["Resultados"][group_id] = descr file.seek(0) json.dump(data, file, indent=4) file.truncate() def Show_Data_Analisis_All_Member(update, context): if(update.callback_query.message.chat["type"] == "private"): with open('data.json', 'r+') as file: data = json.load(file) user_id = str(update.callback_query.from_user.id) if(user_id in data["Analisis_Para_Administradores"].keys()): group_id = data["Analisis_Para_Administradores"][user_id] if(data["Grupos"].get(group_id, False) != False and user_id in data["Grupos"][group_id]["Administradores"]): general = pd.DataFrame(json.loads(data["Resultados"][group_id]["descripcion"])) general = general.loc[:, "Nombre": "Media Seriedad"] general.to_csv("CSV/Resultados en el grupo.csv") update.callback_query.message.chat.send_action( action = ChatAction.UPLOAD_DOCUMENT, timeout = None ) update.callback_query.message.chat.send_document( document = open("CSV/Resultados en el grupo.csv", 'rb') ) file.seek(0) json.dump(data, file, indent=4) file.truncate() def Show_Data_Analisis_One_Member(update, context): if(update.callback_query.message.chat["type"] == "private"): with open('data.json', 'r+') as file: data = json.load(file) user_id = str(update.callback_query.from_user.id) if(user_id in data["Analisis_Para_Administradores"].keys()): group_id = data["Analisis_Para_Administradores"][user_id] if(data["Grupos"].get(group_id, False) != False and user_id in data["Grupos"][group_id]["Administradores"]): data["Grupos"][group_id]["Analisis"] = user_id update.callback_query.message.reply_text("Escriba el username de la persona de la que desea ver sus datos (con / antes del nombre y sin @)") file.seek(0) json.dump(data, file, indent=4) file.truncate() return DATA_ANALISIS_ONE_MEMBER else: file.seek(0) json.dump(data, file, indent=4) file.truncate() def Show_Data_Analisis_One_Member_Enter(update, context): if(update.message.chat["type"] == "private"): with open('data.json', 'r+') as file: data = json.load(file) user_id = str(update.message.from_user.id) if(user_id in data["Analisis_Para_Administradores"].keys()): group_id = data["Analisis_Para_Administradores"][user_id] if(data["Grupos"].get(group_id, False) != False and user_id in data["Grupos"][group_id]["Administradores"] and data["Grupos"][group_id]["Analisis"] == user_id): data["Grupos"][group_id]["Analisis"] = 0 name = update.message.text if(name[0] != "/"): file.seek(0) json.dump(data, file, indent=4) file.truncate() return ConversationHandler.END name = name[1:len(name)] preproc = pd.DataFrame(json.loads(data["Resultados"][group_id]["descripcion"])) personal = preproc[(preproc["Nombre"] == name)] personal.to_csv("CSV/Resultados en la persona" + ".csv", sep=',') update.message.reply_text("Resultados de la encuesta de: \n @" + name) update.message.chat.send_action( action = ChatAction.UPLOAD_DOCUMENT, timeout = None ) update.message.chat.send_document( document = open("CSV/Resultados en la persona" + ".csv", 'rb') ) file.seek(0) json.dump(data, file, indent=4) file.truncate() return ConversationHandler.END def Data_Description(update, context): if(update.callback_query.message.chat["type"] == "private"): with open('data.json', 'r+') as file: data = json.load(file) user_id = str(update.callback_query.from_user.id) if(user_id in data["Analisis_Para_Administradores"].keys()): group_id = data["Analisis_Para_Administradores"][user_id] if(data["Grupos"].get(group_id, False) != False and user_id in data["Grupos"][group_id]["Administradores"]): result = json.loads(data["Resultados"][group_id]["resultado"]) moda = data["Resultados"][group_id]["moda"] message_text = "" message_text = "Medias: \n" for d in result: if
pd.isna(result[d])
pandas.isna
# Color Corrections Functions import os import cv2 import numpy as np from plantcv.plantcv import params from plantcv.plantcv import outputs from plantcv.plantcv import plot_image from plantcv.plantcv.roi import circle from plantcv.plantcv import print_image from plantcv.plantcv import fatal_error def get_color_matrix(rgb_img, mask): """ Calculate the average value of pixels in each color chip for each color channel. Inputs: rgb_img = RGB image with color chips visualized mask = a gray-scale img with unique values for each segmented space, representing unique, discrete color chips. Outputs: color_matrix = a 22x4 matrix containing the average red value, average green value, and average blue value for each color chip. headers = a list of 4 headers corresponding to the 4 columns of color_matrix respectively :param rgb_img: numpy.ndarray :param mask: numpy.ndarray :return headers: string array :return color_matrix: numpy.ndarray """ # Check for RGB input if len(np.shape(rgb_img)) != 3: fatal_error("Input rgb_img is not an RGB image.") # Check mask for gray-scale if len(np.shape(mask)) != 2: fatal_error("Input mask is not an gray-scale image.") # create empty color_matrix color_matrix = np.zeros((len(np.unique(mask))-1, 4)) # create headers headers = ["chip_number", "r_avg", "g_avg", "b_avg"] # declare row_counter variable and initialize to 0 row_counter = 0 # for each unique color chip calculate each average RGB value for i in np.unique(mask): if i != 0: chip = rgb_img[np.where(mask == i)] color_matrix[row_counter][0] = i color_matrix[row_counter][1] = np.mean(chip[:, 2]) color_matrix[row_counter][2] = np.mean(chip[:, 1]) color_matrix[row_counter][3] = np.mean(chip[:, 0]) row_counter += 1 return headers, color_matrix def get_matrix_m(target_matrix, source_matrix): """ Calculate Moore-Penrose inverse matrix for use in calculating transformation_matrix Inputs: target_matrix = a 22x4 matrix containing the average red value, average green value, and average blue value for each color chip. source_matrix = a 22x4 matrix containing the average red value, average green value, and average blue value for each color chip. Outputs: matrix_a = a concatenated 22x9 matrix of source_matrix red, green, and blue values to the powers 1, 2, 3 matrix_m = a 9x22 Moore-Penrose inverse matrix matrix_b = a 22x9 matrix of linear, square, and cubic rgb values from target_img :param target_matrix: numpy.ndarray :param source_matrix: numpy.ndarray :return matrix_a: numpy.ndarray :return matrix_m: numpy.ndarray :return matrix_b: numpy.ndarray """ # if the number of chips in source_img match the number of chips in target_matrix if np.shape(target_matrix) == np.shape(source_matrix): t_cc, t_r, t_g, t_b = np.split(target_matrix, 4, 1) s_cc, s_r, s_g, s_b = np.split(source_matrix, 4, 1) else: combined_matrix = np.zeros((np.ma.size(source_matrix, 0), 7)) row_count = 0 for r in range(0, np.ma.size(target_matrix, 0)): for i in range(0, np.ma.size(source_matrix, 0)): if target_matrix[r][0] == source_matrix[i][0]: combined_matrix[row_count][0] = target_matrix[r][0] combined_matrix[row_count][1] = target_matrix[r][1] combined_matrix[row_count][2] = target_matrix[r][2] combined_matrix[row_count][3] = target_matrix[r][3] combined_matrix[row_count][4] = source_matrix[i][1] combined_matrix[row_count][5] = source_matrix[i][2] combined_matrix[row_count][6] = source_matrix[i][3] row_count += 1 t_cc, t_r, t_g, t_b, s_r, s_g, s_b = np.split(combined_matrix, 7, 1) t_r2 = np.square(t_r) t_r3 = np.power(t_r, 3) t_g2 = np.square(t_g) t_g3 = np.power(t_g, 3) t_b2 = np.square(t_b) t_b3 = np.power(t_b, 3) s_r2 = np.square(s_r) s_r3 = np.power(s_r, 3) s_g2 = np.square(s_g) s_g3 = np.power(s_g, 3) s_b2 = np.square(s_b) s_b3 = np.power(s_b, 3) # create matrix_a matrix_a = np.concatenate((s_r, s_g, s_b, s_b2, s_g2, s_r2, s_b3, s_g3, s_r3), 1) # create matrix_m matrix_m = np.linalg.solve(np.matmul(matrix_a.T, matrix_a), matrix_a.T) # create matrix_b matrix_b = np.concatenate((t_r, t_r2, t_r3, t_g, t_g2, t_g3, t_b, t_b2, t_b3), 1) return matrix_a, matrix_m, matrix_b def calc_transformation_matrix(matrix_m, matrix_b): """ Calculates transformation matrix (transformation_matrix). Inputs: matrix_m = a 9x22 Moore-Penrose inverse matrix matrix_b = a 22x9 matrix of linear, square, and cubic rgb values from target_img Outputs: 1-t_det = "deviance" the measure of how greatly the source image deviates from the target image's color space. Two images of the same color space should have a deviance of ~0. transformation_matrix = a 9x9 matrix of linear, square, and cubic transformation coefficients :param matrix_m: numpy.ndarray :param matrix_b: numpy.ndarray :return red: numpy.ndarray :return blue: numpy.ndarray :return green: numpy.ndarray :return 1-t_det: float :return transformation_matrix: numpy.ndarray """ # check matrix_m and matrix_b are matrices if len(np.shape(matrix_b)) != 2 or len(np.shape(matrix_m)) != 2: fatal_error("matrix_m and matrix_b must be n x m matrices such that m,n != 1.") # check matrix_b has 9 columns if np.shape(matrix_b)[1] != 9: fatal_error("matrix_b must have 9 columns.") # check matrix_m and matrix_b for multiplication if np.shape(matrix_m)[0] != np.shape(matrix_b)[1] or np.shape(matrix_m)[1] != np.shape(matrix_b)[0]: fatal_error("Cannot multiply matrices.") t_r, t_r2, t_r3, t_g, t_g2, t_g3, t_b, t_b2, t_b3 = np.split(matrix_b, 9, 1) # multiply each 22x1 matrix from target color space by matrix_m red = np.matmul(matrix_m, t_r) green = np.matmul(matrix_m, t_g) blue = np.matmul(matrix_m, t_b) red2 = np.matmul(matrix_m, t_r2) green2 = np.matmul(matrix_m, t_g2) blue2 = np.matmul(matrix_m, t_b2) red3 = np.matmul(matrix_m, t_r3) green3 = np.matmul(matrix_m, t_g3) blue3 = np.matmul(matrix_m, t_b3) # concatenate each product column into 9X9 transformation matrix transformation_matrix = np.concatenate((red, green, blue, red2, green2, blue2, red3, green3, blue3), 1) # find determinant of transformation matrix t_det = np.linalg.det(transformation_matrix) return 1-t_det, transformation_matrix def apply_transformation_matrix(source_img, target_img, transformation_matrix): """ Apply the transformation matrix to the source_image. Inputs: source_img = an RGB image to be corrected to the target color space target_img = an RGB image with the target color space transformation_matrix = a 9x9 matrix of tranformation coefficients Outputs: corrected_img = an RGB image in correct color space :param source_img: numpy.ndarray :param target_img: numpy.ndarray :param transformation_matrix: numpy.ndarray :return corrected_img: numpy.ndarray """ # check transformation_matrix for 9x9 if np.shape(transformation_matrix) != (9, 9): fatal_error("transformation_matrix must be a 9x9 matrix of transformation coefficients.") # Check for RGB input if len(np.shape(source_img)) != 3: fatal_error("Source_img is not an RGB image.") # Autoincrement the device counter params.device += 1 # split transformation_matrix red, green, blue, red2, green2, blue2, red3, green3, blue3 = np.split(transformation_matrix, 9, 1) # find linear, square, and cubic values of source_img color channels source_b, source_g, source_r = cv2.split(source_img) source_b2 = np.square(source_b) source_b3 = np.power(source_b, 3) source_g2 = np.square(source_g) source_g3 = np.power(source_g, 3) source_r2 = np.square(source_r) source_r3 = np.power(source_r, 3) # apply linear model to source color channels b = 0 + source_r * blue[0] + source_g * blue[1] + source_b * blue[2] + source_r2 * blue[3] + source_g2 * blue[ 4] + source_b2 * blue[5] + source_r3 * blue[6] + source_g3 * blue[7] + source_b3 * blue[8] g = 0 + source_r * green[0] + source_g * green[1] + source_b * green[2] + source_r2 * green[3] + source_g2 * green[ 4] + source_b2 * green[5] + source_r3 * green[6] + source_g3 * green[7] + source_b3 * green[8] r = 0 + source_r * red[0] + source_g * red[1] + source_b * red[2] + source_r2 * red[3] + source_g2 * red[ 4] + source_b2 * red[5] + source_r3 * red[6] + source_g3 * red[7] + source_b3 * red[8] # merge corrected color channels onto source_image bgr = [b, g, r] corrected_img = cv2.merge(bgr) # round corrected_img elements to be within range and of the correct data type corrected_img = np.rint(corrected_img) corrected_img[np.where(corrected_img > 255)] = 255 corrected_img = corrected_img.astype(np.uint8) if params.debug == "print": # If debug is print, save the image to a file print_image(corrected_img, os.path.join(params.debug_outdir, str(params.device) + "_corrected.png")) elif params.debug == "plot": # If debug is plot, print a horizontal view of source_img, corrected_img, and target_img to the plotting device # plot horizontal comparison of source_img, corrected_img (with rounded elements) and target_img plot_image(np.hstack([source_img, corrected_img, target_img])) # return corrected_img return corrected_img def save_matrix(matrix, filename): """ Serializes a matrix as an numpy.ndarray object and save to a .npz file. Inputs: matrix = a numpy.matrix filename = name of file to which matrix will be saved. Must end in .npz :param matrix: numpy.ndarray :param filename: string ending in ".npz" """ if ".npz" not in filename: fatal_error("File must be an .npz file.") # Autoincrement the device counter params.device += 1 np.savez(filename, matrix) def load_matrix(filename): """ Deserializes from file an numpy.ndarray object as a matrix Inputs: filename = .npz file to which a numpy.matrix or numpy.ndarray is saved Outputs: matrix = a numpy.matrix :param filename: string ending in ".npz" :return matrix: numpy.matrix """ matrix_file = np.load(filename, encoding="latin1") matrix = matrix_file['arr_0'] np.asmatrix(matrix) return matrix def correct_color(target_img, target_mask, source_img, source_mask, output_directory): """Takes a target_img with preferred color_space and converts source_img to that color_space. Inputs: target_img = an RGB image with color chips visualized source_img = an RGB image with color chips visualized target_mask = a gray-scale image with color chips and background each represented with unique values target_mask = a gray-scale image with color chips and background each represented as unique values output_directory = a file path to which outputs will be saved Outputs: target_matrix = saved in .npz file, a 22x4 matrix containing the average red value, average green value, and average blue value for each color chip. source_matrix = saved in .npz file, a 22x4 matrix containing the average red value, average green value, and average blue value for each color chip. transformation_matrix = saved in .npz file, a 9x9 transformation matrix corrected_img = the source_img converted to the correct color space. :param target_img: numpy.ndarray :param source_img: numpy.ndarray :param target_mask: numpy.ndarray :param source_mask: numpy.ndarray :param output_directory: string :return target_matrix: numpy.matrix :return source_matrix: numpy.matrix :return transformation_matrix: numpy.matrix :return corrected_img: numpy.ndarray """ # check output_directory, if it does not exist, create if not os.path.exists(output_directory): os.mkdir(output_directory) # get color matrices for target and source images target_headers, target_matrix = get_color_matrix(target_img, target_mask) source_headers, source_matrix = get_color_matrix(source_img, source_mask) # save target and source matrices save_matrix(target_matrix, os.path.join(output_directory, "target_matrix.npz")) save_matrix(source_matrix, os.path.join(output_directory, "source_matrix.npz")) # get matrix_m matrix_a, matrix_m, matrix_b = get_matrix_m(target_matrix=target_matrix, source_matrix=source_matrix) # calculate transformation_matrix and save deviance, transformation_matrix = calc_transformation_matrix(matrix_m, matrix_b) save_matrix(transformation_matrix, os.path.join(output_directory, "transformation_matrix.npz")) # apply transformation corrected_img = apply_transformation_matrix(source_img, target_img, transformation_matrix) return target_matrix, source_matrix, transformation_matrix, corrected_img def create_color_card_mask(rgb_img, radius, start_coord, spacing, nrows, ncols, exclude=[]): """Create a labeled mask for color card chips Inputs: rgb_img = Input RGB image data containing a color card. radius = Radius of color masks. start_coord = Two-element tuple of the first chip mask starting x and y coordinate. spacing = Two-element tuple of the horizontal and vertical spacing between chip masks. nrows = Number of chip rows. ncols = Number of chip columns. exclude = Optional list of chips to exclude. Returns: mask = Labeled mask of chips :param rgb_img: numpy.ndarray :param radius: int :param start_coord: tuple :param spacing: tuple :param nrows: int :param ncols: int :param exclude: list :return mask: numpy.ndarray """ # Autoincrement the device counter params.device += 1 # Initialize chip list chips = [] # Loop over each color card row for i in range(0, nrows): # The upper left corner is the y starting coordinate + the chip offset * the vertical spacing between chips y = start_coord[1] + i * spacing[1] # Loop over each column for j in range(0, ncols): # The upper left corner is the x starting coordinate + the chip offset * the # horizontal spacing between chips x = start_coord[0] + j * spacing[0] # Create a chip ROI chips.append(circle(img=rgb_img, x=x, y=y, r=radius)) # Sort excluded chips from largest to smallest exclude.sort(reverse=True) # Remove any excluded chips for chip in exclude: del chips[chip] # Create mask mask = np.zeros(shape=np.shape(rgb_img)[:2], dtype=np.uint8()) # Mask label index i = 1 # Draw labeled chip boxes on the mask for chip in chips: mask = cv2.drawContours(mask, chip[0], -1, (i * 10), -1) i += 1 if params.debug is not None: # Create a copy of the input image for plotting canvas = np.copy(rgb_img) # Draw chip ROIs on the canvas image for chip in chips: cv2.drawContours(canvas, chip[0], -1, (255, 255, 0), params.line_thickness) if params.debug == "print": print_image(img=canvas, filename=os.path.join(params.debug_outdir, str(params.device) + "_color_card_mask_rois.png")) print_image(img=mask, filename=os.path.join(params.debug_outdir, str(params.device) + "_color_card_mask.png")) elif params.debug == "plot": plot_image(canvas) return mask def quick_color_check(target_matrix, source_matrix, num_chips): """ Quickly plot target matrix values against source matrix values to determine over saturated color chips or other issues. Inputs: source_matrix = an nrowsXncols matrix containing the avg red, green, and blue values for each color chip of the source image target_matrix = an nrowsXncols matrix containing the avg red, green, and blue values for each color chip of the target image num_chips = number of color card chips included in the matrices (integer) :param source_matrix: numpy.ndarray :param target_matrix: numpy.ndarray :param num_chips: int """ # Imports from plotnine import ggplot, geom_point, geom_smooth, theme_seaborn, facet_grid, geom_label, scale_x_continuous, \ scale_y_continuous, scale_color_manual, aes import pandas as pd # Extract and organize matrix info tr = target_matrix[:num_chips, 1:2] tg = target_matrix[:num_chips, 2:3] tb = target_matrix[:num_chips, 3:4] sr = source_matrix[:num_chips, 1:2] sg = source_matrix[:num_chips, 2:3] sb = source_matrix[:num_chips, 3:4] # Create columns of color labels red = [] blue = [] green = [] for i in range(num_chips): red.append('red') blue.append('blue') green.append('green') # Make a column of chip numbers chip = np.arange(0, num_chips).reshape((num_chips, 1)) chips = np.row_stack((chip, chip, chip)) # Combine info color_data_r = np.column_stack((sr, tr, red)) color_data_g = np.column_stack((sg, tg, green)) color_data_b = np.column_stack((sb, tb, blue)) all_color_data = np.row_stack((color_data_b, color_data_g, color_data_r)) # Create a dataframe with headers dataset = pd.DataFrame({'source': all_color_data[:, 0], 'target': all_color_data[:, 1], 'color': all_color_data[:, 2]}) # Add chip numbers to the dataframe dataset['chip'] = chips dataset = dataset.astype({'color': str, 'chip': str, 'target': float, 'source': float}) # Make the plot p1 = ggplot(dataset, aes(x='target', y='source', color='color', label='chip')) + \ geom_point(show_legend=False, size=2) + \ geom_smooth(method='lm', size=.5, show_legend=False) + \ theme_seaborn() + facet_grid('.~color') + \ geom_label(angle=15, size=7, nudge_y=-.25, nudge_x=.5, show_legend=False) + \ scale_x_continuous(limits=(-5, 270)) + scale_y_continuous(limits=(-5, 275)) + \ scale_color_manual(values=['blue', 'green', 'red']) # Autoincrement the device counter params.device += 1 # Reset debug if params.debug is not None: if params.debug == 'print': p1.save(os.path.join(params.debug_outdir, 'color_quick_check.png'), verbose=False) elif params.debug == 'plot': print(p1) def find_color_card(rgb_img, threshold_type='adaptgauss', threshvalue=125, blurry=False, background='dark', record_chip_size="median"): """Automatically detects a color card and output info to use in create_color_card_mask function Algorithm written by <NAME>. Updated and implemented into PlantCV by <NAME>. Inputs: rgb_img = Input RGB image data containing a color card. threshold_type = Threshold method, either 'normal', 'otsu', or 'adaptgauss', optional (default 'adaptgauss') threshvalue = Thresholding value, optional (default 125) blurry = Bool (default False) if True then image sharpening applied background = Type of image background either 'dark' or 'light' (default 'dark'); if 'light' then histogram expansion applied to better detect edges, but histogram expansion will be hindered if there is a dark background record_chip_size = Optional str for choosing chip size measurement to be recorded, either "median", "mean", or None Returns: df = Dataframe containing information about the filtered contours start_coord = Two element tuple of starting coordinates, location of the top left pixel detected spacing = Two element tuple of spacing between centers of chips :param rgb_img: numpy.ndarray :param threshold_type: str :param threshvalue: int :param blurry: bool :param background: str :param record_chip_size: str :return df: pandas.core.frame.DataFrame :return start_coord: tuple :return spacing: tuple """ # Imports import skimage import pandas as pd from scipy.spatial.distance import squareform, pdist # Get image attributes height, width, channels = rgb_img.shape total_pix = float(height * width) # Minimum and maximum square size based upon 12 MP image min_area = 1000. / 12000000. * total_pix max_area = 8000000. / 12000000. * total_pix # Create gray image for further processing gray_img = cv2.cvtColor(rgb_img, cv2.COLOR_BGR2GRAY) # Laplacian Fourier Transform detection of blurriness blurfactor = cv2.Laplacian(gray_img, cv2.CV_64F).var() # If image is blurry then try to deblur using kernel if blurry: # from https://www.packtpub.com/mapt/book/Application+Development/9781785283932/2/ch02lvl1sec22/Sharpening kernel = np.array([[-1, -1, -1, -1, -1], [-1, 2, 2, 2, -1], [-1, 2, 8, 2, -1], [-1, 2, 2, 2, -1], [-1, -1, -1, -1, -1]]) / 8.0 # Store result back out for further processing gray_img = cv2.filter2D(gray_img, -1, kernel) # In darker samples, the expansion of the histogram hinders finding the squares due to problems with the otsu # thresholding. If your image has a bright background then apply if background == 'light': clahe = cv2.createCLAHE(clipLimit=3.25, tileGridSize=(4, 4)) # apply CLAHE histogram expansion to find squares better with canny edge detection gray_img = clahe.apply(gray_img) elif background != 'dark': fatal_error('Background parameter ' + str(background) + ' is not "light" or "dark"!') # Thresholding if threshold_type.upper() == "OTSU": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU) elif threshold_type.upper() == "NORMAL": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (5, 5), 0) ret, threshold = cv2.threshold(gaussian, threshvalue, 255, cv2.THRESH_BINARY) elif threshold_type.upper() == "ADAPTGAUSS": # Blur slightly so defects on card squares and background patterns are less likely to be picked up gaussian = cv2.GaussianBlur(gray_img, (11, 11), 0) threshold = cv2.adaptiveThreshold(gaussian, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 51, 2) else: fatal_error('Input threshold_type=' + str(threshold_type) + ' but should be "otsu", "normal", or "adaptgauss"!') # Apply automatic Canny edge detection using the computed median canny_edges = skimage.feature.canny(threshold) canny_edges.dtype = 'uint8' # Compute contours to find the squares of the card contours, hierarchy = cv2.findContours(canny_edges, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)[-2:] # Variable of which contour is which mindex = [] # Variable to store moments mu = [] # Variable to x,y coordinates in tuples mc = [] # Variable to x coordinate as integer mx = [] # Variable to y coordinate as integer my = [] # Variable to store area marea = [] # Variable to store whether something is a square (1) or not (0) msquare = [] # Variable to store square approximation coordinates msquarecoords = [] # Variable to store child hierarchy element mchild = [] # Fitted rectangle height mheight = [] # Fitted rectangle width mwidth = [] # Ratio of height/width mwhratio = [] # Extract moments from contour image for x in range(0, len(contours)): mu.append(cv2.moments(contours[x])) marea.append(cv2.contourArea(contours[x])) mchild.append(int(hierarchy[0][x][2])) mindex.append(x) # Cycle through moment data and compute location for each moment for m in mu: if m['m00'] != 0: # This is the area term for a moment mc.append((int(m['m10'] / m['m00']), int(m['m01']) / m['m00'])) mx.append(int(m['m10'] / m['m00'])) my.append(int(m['m01'] / m['m00'])) else: mc.append((0, 0)) mx.append((0)) my.append((0)) # Loop over our contours and extract data about them for index, c in enumerate(contours): # Area isn't 0, but greater than min-area and less than max-area if marea[index] != 0 and min_area < marea[index] < max_area: peri = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.1 * peri, True) center, wh, angle = cv2.minAreaRect(c) # Rotated rectangle mwidth.append(wh[0]) mheight.append(wh[1]) # In different versions of OpenCV, width and height can be listed in a different order # To normalize the ratio we sort them and take the ratio of the longest / shortest wh_sorted = list(wh) wh_sorted.sort() mwhratio.append(wh_sorted[1] / wh_sorted[0]) msquare.append(len(approx)) # If the approx contour has 4 points then we can assume we have 4-sided objects if len(approx) == 4 or len(approx) == 5: msquarecoords.append(approx) else: # It's not square # msquare.append(0) msquarecoords.append(0) else: # Contour has area of 0, not interesting msquare.append(0) msquarecoords.append(0) mwidth.append(0) mheight.append(0) mwhratio.append(0) # Make a pandas df from data for filtering out junk all_contours = {'index': mindex, 'x': mx, 'y': my, 'width': mwidth, 'height': mheight, 'res_ratio': mwhratio, 'area': marea, 'square': msquare, 'child': mchild} df = pd.DataFrame(all_contours) # Add calculated blur factor to output df['blurriness'] = blurfactor # Filter df for attributes that would isolate squares of reasonable size df = df[(df['area'] > min_area) & (df['area'] < max_area) & (df['child'] != -1) & (df['square'].isin([4, 5])) & (df['res_ratio'] < 1.2) & (df['res_ratio'] > 0.85)] # Filter nested squares from dataframe, was having issues with median being towards smaller nested squares df = df[~(df['index'].isin(df['index'] + 1))] # Count up squares that are within a given radius, more squares = more likelihood of them being the card # Median width of square time 2.5 gives proximity radius for searching for similar squares median_sq_width_px = df["width"].median() # Squares that are within 6 widths of the current square pixeldist = median_sq_width_px * 6 # Computes euclidean distance matrix for the x and y contour centroids distmatrix = pd.DataFrame(squareform(pdist(df[['x', 'y']]))) # Add up distances that are less than ones have distance less than pixeldist pixels distmatrixflat = distmatrix.apply(lambda dist: dist[dist <= pixeldist].count() - 1, axis=1) # Append distprox summary to dataframe df = df.assign(distprox=distmatrixflat.values) # Compute how similar in area the squares are. lots of similar values indicates card isolate area measurements filtered_area = df['area'] # Create empty matrix for storing comparisons sizecomp = np.zeros((len(filtered_area), len(filtered_area))) # Double loop through all areas to compare to each other for p in range(0, len(filtered_area)): for o in range(0, len(filtered_area)): big = max(filtered_area.iloc[p], filtered_area.iloc[o]) small = min(filtered_area.iloc[p], filtered_area.iloc[o]) pct = 100. * (small / big) sizecomp[p][o] = pct # How many comparisons given 90% square similarity sizematrix =
pd.DataFrame(sizecomp)
pandas.DataFrame
# -*- coding:utf-8 -*- """ 股票技术指标接口 Created on 2018/07/26 @author: Wangzili @group : ** @contact: <EMAIL> 所有指标中参数df为通过get_k_data获取的股票数据 """ import pandas as pd import numpy as np import itertools def ma(df, n=10): """ 移动平均线 Moving Average MA(N)=(第1日收盘价+第2日收盘价—+……+第N日收盘价)/N """ pv = pd.DataFrame() pv['date'] = df['date'] pv['v'] = df.close.rolling(n).mean() return pv def _ma(series, n): """ 移动平均 """ return series.rolling(n).mean() def md(df, n=10): """ 移动标准差 STD=S(CLOSE,N)=[∑(CLOSE-MA(CLOSE,N))^2/N]^0.5 """ _md = pd.DataFrame() _md['date'] = df.date _md["md"] = df.close.rolling(n).std(ddof=0) return _md def _md(series, n): """ 标准差MD """ return series.rolling(n).std(ddof=0) # 有时候会用ddof=1 def ema(df, n=12): """ 指数平均数指标 Exponential Moving Average 今日EMA(N)=2/(N+1)×今日收盘价+(N-1)/(N+1)×昨日EMA(N) EMA(X,N)=[2×X+(N-1)×EMA(ref(X),N]/(N+1) """ _ema = pd.DataFrame() _ema['date'] = df['date'] _ema['ema'] = df.close.ewm(ignore_na=False, span=n, min_periods=0, adjust=False).mean() return _ema def _ema(series, n): """ 指数平均数 """ return series.ewm(ignore_na=False, span=n, min_periods=0, adjust=False).mean() def macd(df, n=12, m=26, k=9): """ 平滑异同移动平均线(Moving Average Convergence Divergence) 今日EMA(N)=2/(N+1)×今日收盘价+(N-1)/(N+1)×昨日EMA(N) DIFF= EMA(N1)- EMA(N2) DEA(DIF,M)= 2/(M+1)×DIF +[1-2/(M+1)]×DEA(REF(DIF,1),M) MACD(BAR)=2×(DIF-DEA) return: osc: MACD bar / OSC 差值柱形图 DIFF - DEM diff: 差离值 dea: 讯号线 """ _macd = pd.DataFrame() _macd['date'] = df['date'] _macd['diff'] = _ema(df.close, n) - _ema(df.close, m) _macd['dea'] = _ema(_macd['diff'], k) _macd['macd'] = _macd['diff'] - _macd['dea'] return _macd def kdj(df, n=9): """ 随机指标KDJ N日RSV=(第N日收盘价-N日内最低价)/(N日内最高价-N日内最低价)×100% 当日K值=2/3前1日K值+1/3×当日RSV=SMA(RSV,M1) 当日D值=2/3前1日D值+1/3×当日K= SMA(K,M2) 当日J值=3 ×当日K值-2×当日D值 """ _kdj = pd.DataFrame() _kdj['date'] = df['date'] rsv = (df.close - df.low.rolling(n).min()) / (df.high.rolling(n).max() - df.low.rolling(n).min()) * 100 _kdj['k'] = sma(rsv, 3) _kdj['d'] = sma(_kdj.k, 3) _kdj['j'] = 3 * _kdj.k - 2 * _kdj.d return _kdj def rsi(df, n=6): """ 相对强弱指标(Relative Strength Index,简称RSI LC= REF(CLOSE,1) RSI=SMA(MAX(CLOSE-LC,0),N,1)/SMA(ABS(CLOSE-LC),N1,1)×100 SMA(C,N,M)=M/N×今日收盘价+(N-M)/N×昨日SMA(N) """ # pd.set_option('display.max_rows', 1000) _rsi = pd.DataFrame() _rsi['date'] = df['date'] px = df.close - df.close.shift(1) px[px < 0] = 0 _rsi['rsi'] = sma(px, n) / sma((df['close'] - df['close'].shift(1)).abs(), n) * 100 # def tmax(x): # if x < 0: # x = 0 # return x # _rsi['rsi'] = sma((df['close'] - df['close'].shift(1)).apply(tmax), n) / sma((df['close'] - df['close'].shift(1)).abs(), n) * 100 return _rsi def vrsi(df, n=6): """ 量相对强弱指标 VRSI=SMA(最大值(成交量-REF(成交量,1),0),N,1)/SMA(ABS((成交量-REF(成交量,1),N,1)×100% """ _vrsi = pd.DataFrame() _vrsi['date'] = df['date'] px = df['volume'] - df['volume'].shift(1) px[px < 0] = 0 _vrsi['vrsi'] = sma(px, n) / sma((df['volume'] - df['volume'].shift(1)).abs(), n) * 100 return _vrsi def boll(df, n=26, k=2): """ 布林线指标BOLL boll(26,2) MID=MA(N) 标准差MD=根号[∑(CLOSE-MA(CLOSE,N))^2/N] UPPER=MID+k×MD LOWER=MID-k×MD """ _boll = pd.DataFrame() _boll['date'] = df.date _boll['mid'] = _ma(df.close, n) _mdd = _md(df.close, n) _boll['up'] = _boll.mid + k * _mdd _boll['low'] = _boll.mid - k * _mdd return _boll def bbiboll(df, n=10, k=3): """ BBI多空布林线 bbiboll(10,3) BBI={MA(3)+ MA(6)+ MA(12)+ MA(24)}/4 标准差MD=根号[∑(BBI-MA(BBI,N))^2/N] UPR= BBI+k×MD DWN= BBI-k×MD """ # pd.set_option('display.max_rows', 1000) _bbiboll = pd.DataFrame() _bbiboll['date'] = df.date _bbiboll['bbi'] = (_ma(df.close, 3) + _ma(df.close, 6) + _ma(df.close, 12) + _ma(df.close, 24)) / 4 _bbiboll['md'] = _md(_bbiboll.bbi, n) _bbiboll['upr'] = _bbiboll.bbi + k * _bbiboll.md _bbiboll['dwn'] = _bbiboll.bbi - k * _bbiboll.md return _bbiboll def wr(df, n=14): """ 威廉指标 w&r WR=[最高值(最高价,N)-收盘价]/[最高值(最高价,N)-最低值(最低价,N)]×100% """ _wr = pd.DataFrame() _wr['date'] = df['date'] higest = df.high.rolling(n).max() _wr['wr'] = (higest - df.close) / (higest - df.low.rolling(n).min()) * 100 return _wr def bias(df, n=12): """ 乖离率 bias bias=[(当日收盘价-12日平均价)/12日平均价]×100% """ _bias = pd.DataFrame() _bias['date'] = df.date _mav = df.close.rolling(n).mean() _bias['bias'] = (np.true_divide((df.close - _mav), _mav)) * 100 # _bias["bias"] = np.vectorize(lambda x: round(Decimal(x), 4))(BIAS) return _bias def asi(df, n=5): """ 振动升降指标(累计震动升降因子) ASI # 同花顺给出的公式不完整就不贴出来了 """ _asi = pd.DataFrame() _asi['date'] = df.date _m = pd.DataFrame() _m['a'] = (df.high - df.close.shift()).abs() _m['b'] = (df.low - df.close.shift()).abs() _m['c'] = (df.high - df.low.shift()).abs() _m['d'] = (df.close.shift() - df.open.shift()).abs() _m['r'] = _m.apply(lambda x: x.a + 0.5 * x.b + 0.25 * x.d if max(x.a, x.b, x.c) == x.a else ( x.b + 0.5 * x.a + 0.25 * x.d if max(x.a, x.b, x.c) == x.b else x.c + 0.25 * x.d ), axis=1) _m['x'] = df.close - df.close.shift() + 0.5 * (df.close - df.open) + df.close.shift() - df.open.shift() _m['k'] = np.maximum(_m.a, _m.b) _asi['si'] = 16 * (_m.x / _m.r) * _m.k _asi["asi"] = _ma(_asi.si, n) return _asi def vr_rate(df, n=26): """ 成交量变异率 vr or vr_rate VR=(AVS+1/2CVS)/(BVS+1/2CVS)×100 其中: AVS:表示N日内股价上涨成交量之和 BVS:表示N日内股价下跌成交量之和 CVS:表示N日内股价不涨不跌成交量之和 """ _vr = pd.DataFrame() _vr['date'] = df['date'] _m = pd.DataFrame() _m['volume'] = df.volume _m['cs'] = df.close - df.close.shift(1) _m['avs'] = _m.apply(lambda x: x.volume if x.cs > 0 else 0, axis=1) _m['bvs'] = _m.apply(lambda x: x.volume if x.cs < 0 else 0, axis=1) _m['cvs'] = _m.apply(lambda x: x.volume if x.cs == 0 else 0, axis=1) _vr["vr"] = (_m.avs.rolling(n).sum() + 1 / 2 * _m.cvs.rolling(n).sum() ) / (_m.bvs.rolling(n).sum() + 1 / 2 * _m.cvs.rolling(n).sum()) * 100 return _vr def vr(df, n=5): """ 开市后平均每分钟的成交量与过去5个交易日平均每分钟成交量之比 量比:=V/REF(MA(V,5),1); 涨幅:=(C-REF(C,1))/REF(C,1)*100; 1)量比大于1.8,涨幅小于2%,现价涨幅在0—2%之间,在盘中选股的 选股:量比>1.8 AND 涨幅>0 AND 涨幅<2; """ _vr = pd.DataFrame() _vr['date'] = df.date _vr['vr'] = df.volume / _ma(df.volume, n).shift(1) _vr['rr'] = (df.close - df.close.shift(1)) / df.close.shift(1) * 100 return _vr def arbr(df, n=26): """ 人气意愿指标 arbr(26) N日AR=N日内(H-O)之和除以N日内(O-L)之和 其中,H为当日最高价,L为当日最低价,O为当日开盘价,N为设定的时间参数,一般原始参数日设定为26日 N日BR=N日内(H-CY)之和除以N日内(CY-L)之和 其中,H为当日最高价,L为当日最低价,CY为前一交易日的收盘价,N为设定的时间参数,一般原始参数日设定为26日。 """ _arbr = pd.DataFrame() _arbr['date'] = df.date _arbr['ar'] = (df.high - df.open).rolling(n).sum() / (df.open - df.low).rolling(n).sum() * 100 _arbr['br'] = (df.high - df.close.shift(1)).rolling(n).sum() / (df.close.shift() - df.low).rolling(n).sum() * 100 return _arbr def dpo(df, n=20, m=6): """ 区间震荡线指标 dpo(20,6) DPO=CLOSE-MA(CLOSE, N/2+1) MADPO=MA(DPO,M) """ _dpo = pd.DataFrame() _dpo['date'] = df['date'] _dpo['dpo'] = df.close - _ma(df.close, int(n / 2 + 1)) _dpo['dopma'] = _ma(_dpo.dpo, m) return _dpo def trix(df, n=12, m=20): """ 三重指数平滑平均 TRIX(12) TR= EMA(EMA(EMA(CLOSE,N),N),N),即进行三次平滑处理 TRIX=(TR-昨日TR)/ 昨日TR×100 TRMA=MA(TRIX,M) """ _trix = pd.DataFrame() _trix['date'] = df.date tr = _ema(_ema(_ema(df.close, n), n), n) _trix['trix'] = (tr - tr.shift()) / tr.shift() * 100 _trix['trma'] = _ma(_trix.trix, m) return _trix def bbi(df): """ 多空指数 BBI(3,6,12,24) BBI=(3日均价+6日均价+12日均价+24日均价)/4 """ _bbi = pd.DataFrame() _bbi['date'] = df['date'] _bbi['bbi'] = (_ma(df.close, 3) + _ma(df.close, 6) + _ma(df.close, 12) + _ma(df.close, 24)) / 4 return _bbi def mtm(df, n=6, m=5): """ 动力指标 MTM(6,5) MTM(N日)=C-REF(C,N)式中,C=当日的收盘价,REF(C,N)=N日前的收盘价;N日是只计算交易日期,剔除掉节假日。 MTMMA(MTM,N1)= MA(MTM,N1) N表示间隔天数,N1表示天数 """ _mtm = pd.DataFrame() _mtm['date'] = df.date _mtm['mtm'] = df.close - df.close.shift(n) _mtm['mtmma'] = _ma(_mtm.mtm, m) return _mtm def obv(df): """ 能量潮 On Balance Volume 多空比率净额= [(收盘价-最低价)-(最高价-收盘价)] ÷( 最高价-最低价)×V # 同花顺貌似用的下面公式 主公式:当日OBV=前一日OBV+今日成交量 1.基期OBV值为0,即该股上市的第一天,OBV值为0 2.若当日收盘价>上日收盘价,则当日OBV=前一日OBV+今日成交量 3.若当日收盘价<上日收盘价,则当日OBV=前一日OBV-今日成交量 4.若当日收盘价=上日收盘价,则当日OBV=前一日OBV """ _obv = pd.DataFrame() _obv["date"] = df['date'] # tmp = np.true_divide(((df.close - df.low) - (df.high - df.close)), (df.high - df.low)) # _obv['obvv'] = tmp * df.volume # _obv["obv"] = _obv.obvv.expanding(1).sum() / 100 _m = pd.DataFrame() _m['date'] = df.date _m['cs'] = df.close - df.close.shift() _m['v'] = df.volume _m['vv'] = _m.apply(lambda x: x.v if x.cs > 0 else (-x.v if x.cs < 0 else 0), axis=1) _obv['obv'] = _m.vv.expanding(1).sum() return _obv def cci(df, n=14): """ 顺势指标 TYP:=(HIGH+LOW+CLOSE)/3 CCI:=(TYP-MA(TYP,N))/(0.015×AVEDEV(TYP,N)) """ _cci = pd.DataFrame() _cci["date"] = df['date'] typ = (df.high + df.low + df.close) / 3 _cci['cci'] = ((typ - typ.rolling(n).mean()) / (0.015 * typ.rolling(min_periods=1, center=False, window=n).apply( lambda x: np.fabs(x - x.mean()).mean()))) return _cci def priceosc(df, n=12, m=26): """ 价格振动指数 PRICEOSC=(MA(C,12)-MA(C,26))/MA(C,12) * 100 """ _c = pd.DataFrame() _c['date'] = df['date'] man = _ma(df.close, n) _c['osc'] = (man - _ma(df.close, m)) / man * 100 return _c def sma(a, n, m=1): """ 平滑移动指标 Smooth Moving Average """ ''' # 方法一,此方法有缺陷 _sma = [] for index, value in enumerate(a): if index == 0 or pd.isna(value) or np.isnan(value): tsma = 0 else: # Y=(M*X+(N-M)*Y')/N tsma = (m * value + (n - m) * tsma) / n _sma.append(tsma) return pd.Series(_sma) ''' ''' # 方法二 results = np.nan_to_num(a).copy() # FIXME this is very slow for i in range(1, len(a)): results[i] = (m * results[i] + (n - m) * results[i - 1]) / n # results[i] = ((n - 1) * results[i - 1] + results[i]) / n # return results ''' # b = np.nan_to_num(a).copy() # return ((n - m) * a.shift(1) + m * a) / n a = a.fillna(0) b = a.ewm(min_periods=0, ignore_na=False, adjust=False, alpha=m/n).mean() return b def dbcd(df, n=5, m=16, t=76): """ 异同离差乖离率 dbcd(5,16,76) BIAS=(C-MA(C,N))/MA(C,N) DIF=(BIAS-REF(BIAS,M)) DBCD=SMA(DIF,T,1) =(1-1/T)×SMA(REF(DIF,1),T,1)+ 1/T×DIF MM=MA(DBCD,5) """ _dbcd = pd.DataFrame() _dbcd['date'] = df.date man = _ma(df.close, n) _bias = (df.close - man) / man _dif = _bias - _bias.shift(m) _dbcd['dbcd'] = sma(_dif, t) _dbcd['mm'] = _ma(_dbcd.dbcd, n) return _dbcd def roc(df, n=12, m=6): """ 变动速率 roc(12,6) ROC=(今日收盘价-N日前的收盘价)/ N日前的收盘价×100% ROCMA=MA(ROC,M) ROC:(CLOSE-REF(CLOSE,N))/REF(CLOSE,N)×100 ROCMA:MA(ROC,M) """ _roc = pd.DataFrame() _roc['date'] = df['date'] _roc['roc'] = (df.close - df.close.shift(n))/df.close.shift(n) * 100 _roc['rocma'] = _ma(_roc.roc, m) return _roc def vroc(df, n=12): """ 量变动速率 VROC=(当日成交量-N日前的成交量)/ N日前的成交量×100% """ _vroc = pd.DataFrame() _vroc['date'] = df['date'] _vroc['vroc'] = (df.volume - df.volume.shift(n)) / df.volume.shift(n) * 100 return _vroc def cr(df, n=26): """ 能量指标 CR=∑(H-PM)/∑(PM-L)×100 PM:上一交易日中价((最高、最低、收盘价的均值) H:当天最高价 L:当天最低价 """ _cr = pd.DataFrame() _cr['date'] = df.date # pm = ((df['high'] + df['low'] + df['close']) / 3).shift(1) pm = (df[['high', 'low', 'close']]).mean(axis=1).shift(1) _cr['cr'] = (df.high - pm).rolling(n).sum()/(pm - df.low).rolling(n).sum() * 100 return _cr def psy(df, n=12): """ 心理指标 PSY(12) PSY=N日内上涨天数/N×100 PSY:COUNT(CLOSE>REF(CLOSE,1),N)/N×100 MAPSY=PSY的M日简单移动平均 """ _psy = pd.DataFrame() _psy['date'] = df.date p = df.close - df.close.shift() p[p <= 0] = np.nan _psy['psy'] = p.rolling(n).count() / n * 100 return _psy def wad(df, n=30): """ 威廉聚散指标 WAD(30) TRL=昨日收盘价与今日最低价中价格最低者;TRH=昨日收盘价与今日最高价中价格最高者 如果今日的收盘价>昨日的收盘价,则今日的A/D=今日的收盘价-今日的TRL 如果今日的收盘价<昨日的收盘价,则今日的A/D=今日的收盘价-今日的TRH 如果今日的收盘价=昨日的收盘价,则今日的A/D=0 WAD=今日的A/D+昨日的WAD;MAWAD=WAD的M日简单移动平均 """ def dmd(x): if x.c > 0: y = x.close - x.trl elif x.c < 0: y = x.close - x.trh else: y = 0 return y _wad = pd.DataFrame() _wad['date'] = df['date'] _ad = pd.DataFrame() _ad['trl'] = np.minimum(df.low, df.close.shift(1)) _ad['trh'] = np.maximum(df.high, df.close.shift(1)) _ad['c'] = df.close - df.close.shift() _ad['close'] = df.close _ad['ad'] = _ad.apply(dmd, axis=1) _wad['wad'] = _ad.ad.expanding(1).sum() _wad['mawad'] = _ma(_wad.wad, n) return _wad def mfi(df, n=14): """ 资金流向指标 mfi(14) MF=TYP×成交量;TYP:当日中价((最高、最低、收盘价的均值) 如果当日TYP>昨日TYP,则将当日的MF值视为当日PMF值。而当日NMF值=0 如果当日TYP<=昨日TYP,则将当日的MF值视为当日NMF值。而当日PMF值=0 MR=∑PMF/∑NMF MFI=100-(100÷(1+MR)) """ _mfi = pd.DataFrame() _mfi['date'] = df.date _m = pd.DataFrame() _m['typ'] = df[['high', 'low', 'close']].mean(axis=1) _m['mf'] = _m.typ * df.volume _m['typ_shift'] = _m.typ - _m.typ.shift(1) _m['pmf'] = _m.apply(lambda x: x.mf if x.typ_shift > 0 else 0, axis=1) _m['nmf'] = _m.apply(lambda x: x.mf if x.typ_shift <= 0 else 0, axis=1) # _mfi['mfi'] = 100 - (100 / (1 + _m.pmf.rolling(n).sum() / _m.nmf.rolling(n).sum())) _m['mr'] = _m.pmf.rolling(n).sum() / _m.nmf.rolling(n).sum() _mfi['mfi'] = 100 * _m.mr / (1 + _m.mr) # 同花顺自己给出的公式和实际用的公式不一样,真操蛋,浪费两个小时时间 return _mfi def pvt(df): """ pvt 量价趋势指标 pvt 如果设x=(今日收盘价—昨日收盘价)/昨日收盘价×当日成交量, 那么当日PVT指标值则为从第一个交易日起每日X值的累加。 """ _pvt =
pd.DataFrame()
pandas.DataFrame
import cv2 from PIL import Image from pathlib import Path import torch from config import get_config from api import face_recognize from utils.utils import draw_box_name import glob import argparse from tqdm import tqdm import pandas as pd import time import os if __name__ == '__main__': base_folder = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) parser = argparse.ArgumentParser(description="face recognition") parser.add_argument('-image',type=str,help="-image path image") # parser.add_argument('-path',type=str,help="-path path folder list image") parser.add_argument('-csv',type=str,help="-path path to annotation.csv", default='%s/dataset/annotation.csv'%base_folder) parser.add_argument('-path',type=str,help="-path path to image folder", default='%s/dataset/public_test'%base_folder) parser.add_argument('-threshold', '--threshold',type=float,help="-threshold threshold", default=1.2) parser.add_argument('-use_mtcnn', '--use_mtcnn',type=float,help="using mtcnn", default=1) args = parser.parse_args() conf = get_config(net_size = 'large', net_mode = 'ir_se',threshold = args.threshold, use_mtcnn = args.use_mtcnn) face_recognize = face_recognize(conf) targets , names = face_recognize.load_single_face(args.image) submiter = [['image','x1','y1','x2','y2','result']] sample_df = pd.read_csv(args.csv) sample_list = list(sample_df.image) for img in tqdm(sample_list): temp = [img.split('/')[-1], 0, 0, 0, 0, 0] for tp in ['.jpg', '.png', '.jpeg','.img', '.JPG', '.PNG', '.IMG', '.JPEG']: img_path = '%s/%s%s'%(args.path, img, tp) if os.path.isfile(img_path): break image = Image.open(img_path) try: bboxes, faces = face_recognize.align_multi(image) except: bboxes = [] faces = [] if len(bboxes) > 0: bboxes = bboxes[:,:-1] bboxes = bboxes.astype(int) bboxes = bboxes + [-1,-1,1,1] results, score, _ = face_recognize.infer(faces, targets) for id,(re, sc) in enumerate(zip(results, score)): if re != -1: temp = [img.split('/')[-1].replace('.png', '.jpg'), bboxes[id][0], bboxes[id][1], bboxes[id][2], bboxes[id][3], 1] print(img_path, results) break submiter.append(temp) df = pd.DataFrame.from_records(submiter) headers = df.iloc[0] df =
pd.DataFrame(df.values[1:], columns=headers)
pandas.DataFrame
from itertools import product import numpy as np from numpy.testing import assert_allclose import pandas as pd from pandas import DataFrame from pandas.testing import assert_frame_equal, assert_series_equal import pytest from linearmodels.system.model import IV3SLS from linearmodels.tests.system._utility import ( generate_3sls_data, generate_3sls_data_v2, simple_3sls, ) nexog = [3, [1, 2, 3, 4, 5]] nendog = [2, [1, 2, 1, 2, 1]] ninstr = [3, 2, [2, 3, 2, 3, 2]] const = [True, False] rho = [0.8, 0.0] common_exog = [True, False] included_weights = [True, False] output_dict = [True, False] params = list( product( nexog, nendog, ninstr, const, rho, common_exog, included_weights, output_dict ) ) nexog = [[0, 1, 2]] nendog = [[1, 0, 1]] ninstr = [[2, 0, 1]] # Explicitly test variables that have no columns add_params = list( product( nexog, nendog, ninstr, const, rho, common_exog, included_weights, output_dict ) ) params += add_params def gen_id(param): idstr = "homo" if isinstance(param[0], list) else "hetero" idstr += "-homo_endog" if isinstance(param[1], list) else "-hetero_endog" idstr += "-homo_instr" if isinstance(param[2], list) else "-hetero_instr" idstr += "-const" if param[3] else "" idstr += "-correl" if param[4] != 0 else "" idstr += "-common" if param[5] else "" idstr += "-weights" if param[6] else "" idstr += "-dict" if param[7] else "-tuple" return idstr ids = [gen_id(param) for param in params] @pytest.fixture(params=params, ids=ids) def data(request): p, en, instr, const, rho, common_exog, included_weights, output_dict = request.param list_like = isinstance(p, list) or isinstance(en, list) or isinstance(instr, list) k = 4 if common_exog and list_like: p = 3 en = 2 instr = 3 elif list_like: def safe_len(a): a = np.array(a) if a.ndim == 0: return 0 return len(a) k = max(map(safe_len, [p, en, instr])) return generate_3sls_data( n=250, k=k, p=p, en=en, instr=instr, const=const, rho=rho, common_exog=common_exog, included_weights=included_weights, output_dict=output_dict, ) def test_direct_simple(data): mod = IV3SLS(data) res = mod.fit(cov_type="unadjusted") y = [] x = [] z = [] for key in data: val = data[key] if isinstance(val, tuple): y.append(val[0]) nobs = val[0].shape[0] v1 = val[1] if val[1] is not None else np.empty((nobs, 0)) v2 = val[2] if val[2] is not None else np.empty((nobs, 0)) v3 = val[3] if val[3] is not None else np.empty((nobs, 0)) x.append(np.concatenate([v1, v2], 1)) z.append(np.concatenate([v1, v3], 1)) if len(val) == 5: return # weighted else: y.append(val["dependent"]) nobs = val["dependent"].shape[0] vexog = val["exog"] if val["exog"] is not None else np.empty((nobs, 0)) vendog = val["endog"] if val["endog"] is not None else np.empty((nobs, 0)) vinstr = ( val["instruments"] if val["instruments"] is not None else np.empty((nobs, 0)) ) x.append(np.concatenate([vexog, vendog], 1)) z.append(np.concatenate([vexog, vinstr], 1)) if "weights" in val: return # weighted out = simple_3sls(y, x, z) assert_allclose(res.params.values, out.beta1.squeeze()) assert_allclose(res.sigma, out.sigma) assert_allclose(np.asarray(res.resids), out.eps, atol=1e-4) assert_allclose(np.diag(res.cov), np.diag(out.cov)) def test_single_equation(data): key = list(data.keys())[0] data = {key: data[key]} mod = IV3SLS(data) res = mod.fit(cov_type="unadjusted") y = [] x = [] z = [] for key in data: val = data[key] if isinstance(val, tuple): y.append(val[0]) x.append(np.concatenate([val[1], val[2]], 1)) z.append(np.concatenate([val[1], val[3]], 1)) if len(val) == 5: return # weighted else: y.append(val["dependent"]) x.append(np.concatenate([val["exog"], val["endog"]], 1)) z.append(np.concatenate([val["exog"], val["instruments"]], 1)) if "weights" in val: return # weighted out = simple_3sls(y, x, z) assert_allclose(res.params.values, out.beta1.squeeze()) assert_allclose(res.sigma, out.sigma) assert_allclose(np.asarray(res.resids), out.eps) assert_allclose(np.diag(res.cov), np.diag(out.cov)) def test_too_few_instruments(): n = 200 dep = np.random.standard_normal((n, 2)) exog = np.random.standard_normal((n, 3)) endog = np.random.standard_normal((n, 2)) instr = np.random.standard_normal((n, 1)) eqns = {} for i in range(2): eqns["eqn.{0}".format(i)] = (dep[:, i], exog, endog, instr) with pytest.raises(ValueError): IV3SLS(eqns) def test_redundant_instruments(): n = 200 dep = np.random.standard_normal((n, 2)) exog = np.random.standard_normal((n, 3)) endog = np.random.standard_normal((n, 2)) instr = np.random.standard_normal((n, 1)) instr = np.concatenate([exog, instr], 1) eqns = {} for i in range(2): eqns["eqn.{0}".format(i)] = (dep[:, i], exog, endog, instr) with pytest.raises(ValueError): IV3SLS(eqns) def test_too_many_instruments(): n = 50 dep = np.random.standard_normal((n, 2)) exog = np.random.standard_normal((n, 3)) endog = np.random.standard_normal((n, 2)) instr = np.random.standard_normal((n, n + 1)) eqns = {} for i in range(2): eqns["eqn.{0}".format(i)] = (dep[:, i], exog, endog, instr) with pytest.raises(ValueError): IV3SLS(eqns) def test_wrong_input_type(): n = 200 dep = np.random.standard_normal((n, 2)) exog = np.random.standard_normal((n, 3)) endog = np.random.standard_normal((n, 2)) instr = np.random.standard_normal((n, 1)) instr = np.concatenate([exog, instr], 1) eqns = [] for i in range(2): eqns.append((dep[:, i], exog, endog, instr)) with pytest.raises(TypeError): IV3SLS(eqns) eqns = {} for i in range(2): eqns[i] = (dep[:, i], exog, endog, instr) with pytest.raises(ValueError): IV3SLS(eqns) def test_multivariate_iv(): n = 250 dep = np.random.standard_normal((n, 2)) exog = np.random.standard_normal((n, 3)) exog = DataFrame(exog, columns=["exog.{0}".format(i) for i in range(3)]) endog = np.random.standard_normal((n, 2)) endog = DataFrame(endog, columns=["endog.{0}".format(i) for i in range(2)]) instr = np.random.standard_normal((n, 3)) instr = DataFrame(instr, columns=["instr.{0}".format(i) for i in range(3)]) eqns = {} for i in range(2): eqns["dependent.{0}".format(i)] = (dep[:, i], exog, endog, instr) mod = IV3SLS(eqns) res = mod.fit() common_mod = IV3SLS.multivariate_iv(dep, exog, endog, instr) common_res = common_mod.fit() assert_series_equal(res.params, common_res.params) def test_multivariate_iv_bad_data(): n = 250 dep = np.random.standard_normal((n, 2)) instr = np.random.standard_normal((n, 3)) instr = DataFrame(instr, columns=["instr.{0}".format(i) for i in range(3)]) with pytest.raises(ValueError): IV3SLS.multivariate_iv(dep, None, None, instr) def test_fitted(data): mod = IV3SLS(data) res = mod.fit() expected = [] for i, key in enumerate(res.equations): eq = res.equations[key] fv = res.fitted_values[key].copy() fv.name = "fitted_values" assert_series_equal(eq.fitted_values, fv) b = eq.params.values direct = mod._x[i] @ b expected.append(direct[:, None]) assert_allclose(eq.fitted_values, direct, atol=1e-8) expected = np.concatenate(expected, 1) expected = DataFrame( expected, index=mod._dependent[i].pandas.index, columns=[key for key in res.equations], ) assert_frame_equal(expected, res.fitted_values) def test_no_exog(): data = generate_3sls_data_v2(nexog=0, const=False) mod = IV3SLS(data) res = mod.fit() data = generate_3sls_data_v2(nexog=0, const=False, omitted="drop") mod = IV3SLS(data) res2 = mod.fit() data = generate_3sls_data_v2(nexog=0, const=False, omitted="empty") mod = IV3SLS(data) res3 = mod.fit() data = generate_3sls_data_v2(nexog=0, const=False, output_dict=False) mod = IV3SLS(data) res4 = mod.fit() data = generate_3sls_data_v2( nexog=0, const=False, output_dict=False, omitted="empty" ) mod = IV3SLS(data) res5 = mod.fit() assert_series_equal(res.params, res2.params) assert_series_equal(res.params, res3.params) assert_series_equal(res.params, res4.params)
assert_series_equal(res.params, res5.params)
pandas.testing.assert_series_equal
import os from unittest import mock import pandas as pd import pytest from great_expectations.core import ExpectationSuite from great_expectations.core.batch import Batch from great_expectations.dataset import SqlAlchemyDataset from great_expectations.dataset.sqlalchemy_dataset import SqlAlchemyBatchReference from great_expectations.datasource import SqlAlchemyDatasource from great_expectations.validator.validator import Validator from ruamel.yaml import YAML yaml = YAML() @pytest.fixture def test_db_connection_string(tmp_path_factory, test_backends): if "sqlite" not in test_backends: pytest.skip("skipping fixture because sqlite not selected") df1 = pd.DataFrame({"col_1": [1, 2, 3, 4, 5], "col_2": ["a", "b", "c", "d", "e"]}) df2 = pd.DataFrame({"col_1": [0, 1, 2, 3, 4], "col_2": ["b", "c", "d", "e", "f"]}) import sqlalchemy as sa basepath = str(tmp_path_factory.mktemp("db_context")) path = os.path.join(basepath, "test.db") engine = sa.create_engine("sqlite:///" + str(path)) df1.to_sql("table_1", con=engine, index=True) df2.to_sql("table_2", con=engine, index=True, schema="main") # Return a connection string to this newly-created db return "sqlite:///" + str(path) def test_sqlalchemy_datasource_custom_data_asset( data_context, test_db_connection_string ): name = "test_sqlalchemy_datasource" class_name = "SqlAlchemyDatasource" data_asset_type_config = { "module_name": "custom_sqlalchemy_dataset", "class_name": "CustomSqlAlchemyDataset", } data_context.add_datasource( name, class_name=class_name, credentials={"connection_string": test_db_connection_string}, data_asset_type=data_asset_type_config, batch_kwargs_generators={ "default": {"class_name": "TableBatchKwargsGenerator"} }, ) # We should now see updated configs with open( os.path.join(data_context.root_directory, "great_expectations.yml"), "r" ) as data_context_config_file: data_context_file_config = yaml.load(data_context_config_file) assert ( data_context_file_config["datasources"][name]["data_asset_type"]["module_name"] == "custom_sqlalchemy_dataset" ) assert ( data_context_file_config["datasources"][name]["data_asset_type"]["class_name"] == "CustomSqlAlchemyDataset" ) # We should be able to get a dataset of the correct type from the datasource. data_context.create_expectation_suite("table_1.boo") batch = data_context.get_batch( data_context.build_batch_kwargs( "test_sqlalchemy_datasource", "default", "table_1" ), "table_1.boo", ) assert type(batch).__name__ == "CustomSqlAlchemyDataset" res = batch.expect_column_func_value_to_be("col_1", 1) assert res.success is True def test_standalone_sqlalchemy_datasource(test_db_connection_string, sa): datasource = SqlAlchemyDatasource( "SqlAlchemy", connection_string=test_db_connection_string, echo=False, batch_kwargs_generators={ "default": {"class_name": "TableBatchKwargsGenerator"} }, ) assert set(datasource.get_available_data_asset_names()["default"]["names"]) == { ("main.table_1", "table"), ("main.table_2", "table"), } batch_kwargs = datasource.build_batch_kwargs("default", "main.table_1") batch = datasource.get_batch(batch_kwargs=batch_kwargs) assert isinstance(batch, Batch) assert isinstance(batch.data, SqlAlchemyBatchReference) dataset = SqlAlchemyDataset(**batch.data.get_init_kwargs()) assert len(dataset.head(10)) == 5 def test_create_sqlalchemy_datasource(data_context): name = "test_sqlalchemy_datasource" # type_ = "sqlalchemy" class_name = "SqlAlchemyDatasource" # Use sqlite so we don't require postgres for this test. connection_kwargs = {"credentials": {"drivername": "sqlite"}} # It should be possible to create a sqlalchemy source using these params without # saving substitution variables data_context.add_datasource(name, class_name=class_name, **connection_kwargs) data_context_config = data_context.get_config() assert name in data_context_config["datasources"] assert data_context_config["datasources"][name]["class_name"] == class_name # We should be able to get it in this session even without saving the config source = data_context.get_datasource(name) assert isinstance(source, SqlAlchemyDatasource) var_name = "test_sqlalchemy_datasource" data_context.save_config_variable(var_name, connection_kwargs["credentials"]) # But we should be able to add a source using a substitution variable name = "second_source" data_context.add_datasource( name, class_name=class_name, credentials="${" + var_name + "}" ) data_context_config = data_context.get_config() assert name in data_context_config["datasources"] assert data_context_config["datasources"][name]["class_name"] == class_name assert ( data_context_config["datasources"][name]["credentials"] == "${" + var_name + "}" ) source = data_context.get_datasource(name) assert isinstance(source, SqlAlchemyDatasource) # Finally, we should be able to confirm that the folder structure is as expected with open( os.path.join(data_context.root_directory, "uncommitted/config_variables.yml"), "r", ) as credentials_file: substitution_variables = yaml.load(credentials_file) assert substitution_variables == { var_name: dict(**connection_kwargs["credentials"]) } def test_sqlalchemy_source_templating(sqlitedb_engine): datasource = SqlAlchemyDatasource( engine=sqlitedb_engine, batch_kwargs_generators={"foo": {"class_name": "QueryBatchKwargsGenerator"}}, ) generator = datasource.get_batch_kwargs_generator("foo") generator.add_query("test", "select 'cat' as ${col_name};") batch = datasource.get_batch( generator.build_batch_kwargs( "test", query_parameters={"col_name": "animal_name"} ) ) dataset = Validator( batch, expectation_suite=ExpectationSuite("test"), expectation_engine=SqlAlchemyDataset, ).get_dataset() res = dataset.expect_column_to_exist("animal_name") assert res.success is True res = dataset.expect_column_values_to_be_in_set("animal_name", ["cat"]) assert res.success is True def test_sqlalchemy_source_limit(sqlitedb_engine): df1 =
pd.DataFrame({"col_1": [1, 2, 3, 4, 5], "col_2": ["a", "b", "c", "d", "e"]})
pandas.DataFrame
import pandas import os from locale import * import locale locale.setlocale(LC_NUMERIC, '') fs = pandas.read_csv('./Ares.csv', sep=';', encoding='cp1252', parse_dates=[1,3,5,7,9,11], dayfirst=True) # Separar por pares de columnas materia_organica = pandas.DataFrame(fs[[fs.columns[0], fs.columns[1]]]) conductividad = pandas.DataFrame(fs[[fs.columns[2], fs.columns[3]]]) amonio = pandas.DataFrame(fs[[fs.columns[4], fs.columns[5]]]) solidos = pandas.DataFrame(fs[[fs.columns[6], fs.columns[7]]]) temperatura = pandas.DataFrame(fs[[fs.columns[8], fs.columns[9]]]) lluvias =
pandas.DataFrame(fs[[fs.columns[10], fs.columns[11]]])
pandas.DataFrame
from flask import render_template, request, redirect, url_for, session from app import app from model import * from model.main import * import json import pandas as pd import numpy as np class DataStore(): model=None model_month=None sale_model=None data = DataStore() @app.route('/', methods=["GET"]) def home(): percent=percentageMethod() total_month=totalMonth() file1=pd.read_json('total_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['total']) with open('percent.json') as f: file2 = json.load(f) labels=file2['index'] data=file2['data'] if "username" in session: return render_template('index.html', last_year=lastYear(), last_month=lastMonth(),dataset=data, label=labels, percent=percent, month_index=month_index, month_data=month_data) else: return render_template('login.html') # Register new user @app.route('/register', methods=["GET", "POST"]) def register(): if request.method == "GET": return render_template("register.html") elif request.method == "POST": registerUser() return redirect(url_for("login")) #Check if email already exists in the registratiion page @app.route('/checkusername', methods=["POST"]) def check(): return checkusername() # Everything Login (Routes to renderpage, check if username exist and also verifypassword through Jquery AJAX request) @app.route('/login', methods=["GET"]) def login(): if request.method == "GET": if "username" not in session: return render_template("login.html") else: return redirect(url_for("home")) @app.route('/checkloginusername', methods=["POST"]) def checkUserlogin(): return checkloginusername() @app.route('/checkloginpassword', methods=["POST"]) def checkUserpassword(): return checkloginpassword() #The admin logout @app.route('/logout', methods=["GET"]) # URL for logout def logout(): # logout function session.pop('username', None) # remove user session return redirect(url_for("home")) # redirect to home page with message #Forgot Password @app.route('/forgot-password', methods=["GET"]) def forgotpassword(): return render_template('forgot-password.html') #404 Page @app.route('/404', methods=["GET"]) def errorpage(): return render_template("404.html") #Blank Page @app.route('/blank', methods=["GET"]) def blank(): return render_template('blank.html') @app.route('/totalyear', methods=["GET"]) def total_year(): total_year=totalYear() file1=pd.read_json('total_year.json',orient='index') year_index=np.array(file1['year']) year_data=np.array(file1['total']) return render_template("total_year.html",year_index=year_index, year_data=year_data) @app.route('/totalmonth', methods=["GET"]) def total_month(): total_month=totalMonth() file1=pd.read_json('total_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['total']) num=6 # Fit model model=fit_model() data.model_month=model predict_rs, fitted_data=predict(model,6) pred_index=np.array(predict_rs['month_year']) pred_data=np.array(predict_rs['total']) #Test model test_rs= test(pred_data[0], fitted_data) return render_template("total_month.html",month_index=month_index, month_data=month_data, stationary=check_stationary(), model=model, pred_index=pred_index, pred_data=pred_data, test_rs=test_rs, num=num) def check_stationary(): total_month=totalMonth() data1=total_month[['month_year','total']] data1.set_index('month_year', inplace=True) result=stationary(data1) return result def fit_model(): total_month=totalMonth() data1=total_month[['month_year','total']] data1.set_index('month_year', inplace=True) data=data1['total'] stationary=check_stationary() p=stationary[1] if (p<0.05): result1 = fit_model_stationary(data) else: result1 = fit_model_non_stationary(data) return result1 def predict(model,num_predict): if num_predict==0: num_predict=6 fitted_month, confint_month = model.predict(n_periods=num_predict, return_conf_int=True) df2=df[['total', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data=total_day[['date','total']] data.set_index('date', inplace=True) date = pd.date_range(data.index[-1], periods=num_predict, freq='MS') fitted_seri_month = pd.Series(fitted_month, index=date) dff=pd.DataFrame(fitted_seri_month) dff=dff.reset_index() dff.columns=['date','total'] dff['month_year'] = pd.to_datetime(dff['date']).dt.to_period('M') pred=dff[['month_year','total']] return pred, fitted_month def test(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) # print('Sai số bình phương trung bình MSE: {}'.format(mse)) # print('Root Mean Square Error: {}'.format(rmse)) # print('Mean Absolute Error: {}'.format(mae)) # print('Mean Absolute Percentage Error: {}'.format(mape)) return mse, rmse, mae, mape @app.route('/totalmonth', methods=["POST"]) def total_month_num(): total_month=totalMonth() file1=pd.read_json('total_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['total']) #Get data if request.method == "POST": num = int(request.form.get("num_month")) predict_rs, fitted_data=predict(data.model_month,num) pred_index=np.array(predict_rs['month_year']) pred_data=np.array(predict_rs['total']) #Test model test_rs= test(pred_data[0], fitted_data) return render_template("total_month.html",month_index=month_index, month_data=month_data, stationary=check_stationary(), model=data.model_month, pred_index=pred_index, pred_data=pred_data, test_rs=test_rs, num=num) def check_stationary(): total_month=totalMonth() data1=total_month[['month_year','total']] data1.set_index('month_year', inplace=True) result=stationary(data1) return result def predict(model,num_predict): if num_predict==0: num_predict=6 fitted_month, confint_month = model.predict(n_periods=num_predict, return_conf_int=True) df2=df[['total', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data2=total_day[['date','total']] data2.set_index('date', inplace=True) date = pd.date_range(data2.index[-1], periods=num_predict, freq='MS') fitted_seri_month =
pd.Series(fitted_month, index=date)
pandas.Series
# Copyright 2021 ETH Zurich, Media Technology Center # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import pickle import implicit import pandas as pd from scipy import sparse import os import sys sys.path.append(os.getcwd()) from preprocessing import load_data_cv, transform_horizontal_to_vertical, get_metadata from evaluation import evaluate import random def pop_predict(model, grouped_train, N=10): now = datetime.datetime.now() prediction=model[:N]['article_id'].values.tolist() predictions = pd.DataFrame(grouped_train) predictions['predictions'] = pd.Series([prediction] * len(predictions) ,index=predictions.index) predictions['read_articles'] = grouped_train isnull = predictions['read_articles'].isnull() if isnull.sum() > 0: predictions.loc[isnull, 'read_articles'] = [[[]] * isnull.sum()] predictions['predictions'] = [[article for article in x[1] if article not in x[0]] for x in zip(predictions['read_articles'], predictions['predictions'])] print(f"Pop prediction done in {datetime.datetime.now() - now}") return predictions def random_predict(articles, grouped_train, N=10): now = datetime.datetime.now() predictions =
pd.DataFrame(grouped_train)
pandas.DataFrame
import pandas as pd from sklearn.feature_extraction.text import HashingVectorizer from sklearn.cluster import MeanShift, estimate_bandwidth from sklearn.decomposition import PCA import jellyfish # for distance functions from fuzzywuzzy import fuzz # for distance functions import numpy as np # to process numeric arrays # calculate the distance between two given strings def get_distance(string_a, string_b): # similarity scores given by edit distance functions are reversed to turn them into distances lev = 1 - fuzz.ratio(string_a, string_b) / 100 # given value is normalized in range 1-100, not in 0-1 jar = 1 - jellyfish.jaro_distance(string_a, string_b) jw = 1 - jellyfish.jaro_winkler(string_a, string_b) score = (lev + jar + jw) / 3 # calculate mean value of all distances return score # drop the duplicates from the given cluster; a tuple is dropped if its similarity score with another tuple # with same label is above the given threshold def drop_duplicates_threshold(dataset_cluster, threshold): row_num = dataset_cluster.shape[0] for a in range(0, row_num): if a >= row_num: break row1 = dataset_cluster.iloc[a] for b in range(0, row_num): if a == b: continue if b >= row_num: break row2 = dataset_cluster.iloc[b] sim_sum = 0 col_num = len(dataset_cluster.columns) - 1 for i in range(0, col_num): sim_sum += 1-get_distance(str(row1[dataset_cluster.columns[i]]), str(row2[dataset_cluster.columns[i]])) score = col_num - sim_sum max_score = col_num - threshold*col_num if score <= max_score: dataset_cluster = dataset_cluster.drop(dataset_cluster.index[b]) row_num -= 1 b -= 1 # row_num = dataset.shape[0] l = dataset_cluster.shape[0] return dataset_cluster # vectorize dataset values, turning each tuple into the feature values using the Bag of Word approach # Hashing vectorizing implements "feature hashing" technique: instead of building a hash table of the features # encountered in training, as the vectorizers do, a hash function is applied to the features to determine their # column index in sample matrices directly. It uses BoW for the initial feature extraction, but using the hashing # trick allows to greatly optimize the performance, which makes this approach the best candidate to be used in the # implementation of clustering workflow. def vectorize_dataset(dataset): feature_matrix = [] # define vectorizer vectorizer = HashingVectorizer(n_features=dataset.shape[1]*2) # iterate through all rows in the dataset for i in range(0, dataset.shape[0]): # extract row values row_values = list(dataset.iloc[i].astype(str)) # vectorize the row vector = vectorizer.transform(row_values) # transform the created feature matrix from sparse to dense form dense_vector = vector.todense() # flatten the feature matrix, turning it into a single row dense_vector = np.array(dense_vector) flatten_vector = np.ndarray.flatten(dense_vector) # add feature row to the dataset feature matrix feature_matrix.append(list(flatten_vector)) return feature_matrix # cluster the veсtorized dataset using the Mean Shift algorithm # The algorithms starts from initializing random seed and choosing the size of the window; the "center of mass" is # detected by calculating the mean, and the search window is shifted towards this center; the process is repeated until # convergence. For the clustering, the whole space is tessellated with the search windows, and all the point which are # in the attraction basin (region where all trajectories lead to the same mode) belong to the same cluster # # prior to the clustering, the dimensionality of feature matrix is reduced using conventional PCA # It identifies an "optimal" data projection to low-dimensional space, maximizing the data variance by finding new # coordinate system. The method is based on the solving of the eigenvalue problem for the covariance matrix of the # data (either calculating it directly or using Singular Value Decomposition in cases where the number of dimension # is far greater than the number of data examples). The solution produces the eigenvectors and eigenvalues; the # eigenvectors are ranked according to their eigenvalues (in the descending order of the eigenvalues), and top-N # (called principal components) are chosen to be the coordinate axis of the new low-dimensional space. The matrix # composed of these chosen eigenvectors is used on the data to transform it from high-dimensional to low-dimensional # space. def cluster_data(dataset, pca_comp, shift_quantile): cluster_data = vectorize_dataset(dataset) pca = PCA(n_components=pca_comp) pca.fit(cluster_data) pca_data = pca.transform(cluster_data) bandwidth = estimate_bandwidth(pca_data, quantile=shift_quantile, n_samples=500) ms = MeanShift(bandwidth=bandwidth, bin_seeding=True) ms.fit(cluster_data) labels = ms.labels_ label_df = pd.DataFrame(labels) new_data = dataset.join(label_df) label_col = list(new_data.columns)[len(new_data.columns)-1] new_data = new_data.rename(columns={label_col: 'label'}) new_data.sort_values(by='label') return new_data # drop the duplicates from the given clustered dataset, using the given distance threshold value def drop_duplicates_clusters(dataset, distance_threshold): # extract labels, i.e. extract the clusters labels_unique = np.unique(dataset['label']) new_dataset =
pd.DataFrame(columns=dataset.columns)
pandas.DataFrame
#%% import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.lines import Line2D import prot.viz import prot.size as size colors, palette = prot.viz.bokeh_theme() dataset_colors = {'li_2014':colors['purple'], 'schmidt_2016':colors['light_blue'], 'peebo_2015':colors['green'], 'valgepea_2013':colors['red']} prot.viz.plotting_style() ###################### # plot configuration # ###################### fig = plt.figure(constrained_layout=True) widths = [6, 7] heights = [2, 0.5, 0.1, 0.65] spec = fig.add_gridspec(ncols=2, nrows=4, width_ratios=widths, height_ratios=heights) ax1 = fig.add_subplot(spec[0, 0]) # ax2 = fig.add_subplot(spec[0, 1]) ax3 = fig.add_subplot(spec[2:, 0]) ax4 = fig.add_subplot(spec[:3, 1]) # Parameters and calculations # ############################### # use estimates of E. coli rod cell size based # on the values used from Si et al. (2017,2019); # Use our fit of that data as fcn of growth rate # to determine cell size, length, width, and surface area. # gr = np.linspace(0.01, 4.4, 100) V = np.linspace(0.5,50, 500) # V = size.lambda2size(gr) # print(V) # w = size.lambda2width(gr) # l = size.lambda2length(gr) # SA_rod = size.rod_SA(l, w, V) SA_rod = 2 * np.pi * V**(2/3) SA_V_ratio_rod = SA_rod / V # Sphere V = (4/3) pi r**3 # Sphere SA = 4 pi r**2 SA_sphere = V**(2/3) * ((4/3) * np.pi)**(-2/3) * 4 * np.pi SA_V_ratio_sphere = SA_sphere / V # ATP equivalents demand w.r.t. volume ; 1E6 ATP/(um3 s) Pv = 1E6 * V # ATP max - half surface area devoted to respiration Ps_um_resp = ((3)/ (1E-6)) Ps_resp_rod = Ps_um_resp * SA_rod * 0.5 Ps_resp_sphere = Ps_um_resp * SA_sphere * 0.5 # # ATP max - half surface area devoted to fermentation # Ps_um_ferm= ((180*2)/ (50E-6)) # Ps_ferm_rod = Ps_um_ferm * SA_rod * 0.5 # Ps_ferm_sphere = Ps_um_ferm * SA_sphere * 0.5 #### for Fill_between, need common x-axis array SA_ = np.linspace(np.min(SA_sphere), np.max(SA_rod), 500) V_sphere = (SA_/(((4/3) * np.pi)**(-2/3) * 4 * np.pi))**(3/2) SA_V_ratio_sphere_ = SA_/V_sphere V_rod = (SA_/(2 * np.pi))**(3/2) SA_V_ratio_rod_ = SA_/V_rod # ATP max - half surface area devoted to respiration Ps_um_resp = ((3)/ (1E-6)) Ps_resp_ = Ps_um_resp * SA_ * 0.5 ###################### # Plot 1, S/V scaling # ###################### ax1.plot(Pv, SA_V_ratio_rod, color=colors['dark_green'], label='rod', alpha=0.9, lw = 0.5, ls = '-.') ax1.plot(Pv, SA_V_ratio_sphere, color=colors['dark_green'], label='sphere', alpha=0.9, lw = 0.5, ls = '--') ax1.fill_between(Pv, y1 = SA_V_ratio_sphere, y2=SA_V_ratio_rod, color=colors['dark_green'],alpha=0.2, lw = 0) # plot the max for respiration ax1.plot(Ps_resp_rod, SA_V_ratio_rod, color=colors['blue'], label='rod', alpha=0.9, lw = 0.5, ls = '-.') ax1.plot(Ps_resp_sphere, SA_V_ratio_sphere, color=colors['blue'], label='sphere', alpha=0.9, lw = 0.5, ls = '--') ax1.fill_between(Ps_resp_, y1 = SA_V_ratio_sphere_, y2 = SA_V_ratio_rod_, color=colors['blue'],alpha=0.2, lw = 0) # # Populate second plot with growth rates # S/V for E. coli datasets # Load the data set data = pd.read_csv('../../data/compiled_absolute_measurements.csv') for g, d in data.groupby(['dataset', 'condition', 'growth_rate_hr']): V = size.lambda2size(g[2]) # ATP equivalents demand w.r.t. volume ; 1E6 ATP/(um3 s) Pv = 1E6 * V # assume aspect ratio of 4 (length/width), which is # appoximately correct for E. coli SA_rod = 2 * np.pi * V**(2/3) SV = SA_rod/V ax1.plot(Pv, SV, 'o', color=dataset_colors[g[0]], alpha=0.75, markeredgecolor='k', markeredgewidth=0.25, label = g[2], ms=4, zorder=10) # Format the axes for a in [ax1]:#,ax2]: a.xaxis.set_tick_params(labelsize=5) a.yaxis.set_tick_params(labelsize=5) a.set_xscale('log') a.set_ylim([1.5, 8.0]) # a.legend(fontsize=5, loc='lower right') ax1.set_xlim([np.min(Pv), np.max(Ps_resp_)]) ax1.set_xlabel('ATP equivalents per s', fontsize=6) ax1.set_ylabel('S/V ratio [$\mu$m$^{-1}$]', fontsize=6) legend_elements = [Line2D([0], [0], marker='o', color='gray', lw = 0, alpha=0.5, markeredgecolor='k', markeredgewidth=0.25, label = 'estimated for\n$E. coli$ data', ms=4), Line2D([0], [0], ls = '-.', color='gray', label='rod (aspect\nratio = 4)', alpha = 1.0, lw = 0.5, markeredgewidth=0.0, markeredgecolor='k'), Line2D([0], [0], ls = '--', color='gray', label='sphere', alpha = 1.0, lw = 0.5, markeredgewidth=0.0, markeredgecolor='k')] legend = ax1.legend(handles = legend_elements, loc = 'upper right', fontsize = 5) ax1.add_artist(legend) ###################### # Plot 2 ###################### # total fg per cell of inner membrane proteins, GO:0005886 data_membrane = data[data.go_terms.str.contains('GO:0005886')] data_membrane_fg_summary =
pd.DataFrame()
pandas.DataFrame
""" Methods to run Auto-WEKA """ import pathlib import time, warnings, os, math, gc import pandas as pd import numpy as np import psutil from psutil import virtual_memory from autogluon.utils.tabular.utils.loaders import load_pd from autogluon.utils.tabular.ml.constants import BINARY, MULTICLASS, REGRESSION from autogluon import TabularPrediction as task from ..process_data import processData from .csv2arff import Csv2Arff def autoweka_fit_predict(train_data, test_data, label_column, problem_type, output_directory, autoweka_path=None, eval_metric = None, runtime_sec = 60, random_state = 0, num_cores = 1): """ Specify different output_directory for each run. Args: autoweka_path : str Folder containing lib/autoweka/autoweka.jar installed during execution of autoweka/setup.sh (must end with / character). Returns: tuple (num_models_trained, num_models_ensemble, fit_time, y_pred, y_prob, predict_time, class_order) where num_models_trained = num_models_ensemble = None, class_order indicates the ordering of classes corresponding to columns of y_prob (2D numpy array of predicted probabilties), y_pred = pandas Series of predicted classes for test data. """ # if problem_type == REGRESSION: # raise NotImplementedError('Regression is not supported yet') if autoweka_path is None: working_directory = str(pathlib.Path().absolute()) autoweka_abs_path = str(pathlib.Path(__file__).parent.absolute()) autoweka_path = str(os.path.relpath(autoweka_abs_path, working_directory)) + '/' # First need to ensure unique labels appear in test data in same order as in training data: print("original train_data[label_column]: ", train_data[label_column]) # Replace test labels with dummies test_data, dummy_class = dummy_test_labels(train_data, test_data, label_column, problem_type) train_data, test_data, class_prefix, labels_are_int = ag_preprocess(train_data, test_data, label_column, problem_type, eval_metric) """ Use this instead of processData if you prefer to run on raw data. # However is very error-prone, eg. will error if there are new feature categories at test-time. # Weka to requires target as the last attribute: if train_data.columns[-1] != label_column: y_train = train_data[label_column] train_data.drop([label_column], axis=1, inplace=True) train_data[label_column] = y_train if test_data.columns[-1] != label_column: y_test = test_data[label_column] test_data.drop([label_column], axis=1, inplace=True) test_data[label_column] = y_test """ class_order, train_file_path, test_file_path = data_to_file(train_data, test_data, output_directory, label_column, problem_type) fit_predict_time, weka_file, weka_model_file, cmd_root = autoweka_fit(train_file_path=train_file_path, test_file_path=test_file_path, eval_metric=eval_metric, autoweka_path=autoweka_path, output_directory=output_directory, num_cores=num_cores, runtime_sec=runtime_sec, random_state=random_state) y_pred, y_prob = get_predictions(problem_type=problem_type, weka_file=weka_file, class_prefix=class_prefix, labels_are_int=labels_are_int, eval_metric=eval_metric) fit_time, predict_time = time_predictions(fit_predict_time=fit_predict_time, test_file_path=test_file_path, weka_model_file=weka_model_file, cmd_root=cmd_root) num_models_ensemble = None num_models_trained = None # TODO: hard to get these if class_order is not None and len(class_order) > 0: if class_order[0].startswith(class_prefix): class_order = [clss[len(class_prefix):] for clss in class_order] if labels_are_int: print("converting classes back to int") class_order = [int(clss) for clss in class_order] return (num_models_trained, num_models_ensemble, fit_time, y_pred, y_prob, predict_time, class_order) def dummy_test_labels(train_data, test_data, label_column, problem_type): """ Returns copy of test data with dummy test labels for use with auto-weka """ print("Applying dummy_test_labels...") train_label_subset = train_data[label_column].iloc[:len(test_data)].copy() dummy_class = train_data[label_column].iloc[0] # placeholder class to use for imputing. row = 0 while pd.isnull(dummy_class): row += 1 if row >= len(train_data): raise ValueError("All training labels are missing") dummy_class = train_data[label_column].iloc[row].copy() if len(train_label_subset) < len(test_data): num_extra = len(test_data) - len(train_label_subset) extra_labels = pd.Series([dummy_class] * num_extra) train_label_subset =
pd.concat((train_label_subset, extra_labels))
pandas.concat
# coding: utf-8 import numpy as np import matplotlib import matplotlib.pyplot as plt import pandas as pd import random import seaborn as sns from sklearn import preprocessing from sklearn.preprocessing import StandardScaler import glob, os import errno from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import KFold import warnings from sklearn.model_selection import cross_val_predict from sklearn.model_selection import cross_val_score, cross_validate from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, classification_report, confusion_matrix from sklearn.svm import SVC from sklearn import svm from sklearn.model_selection import GridSearchCV path = r'D:\ml\BAtestdata' files = glob.glob(os.path.join(path, "*.csv")) df_ba = [] nr_files = len(files) print(nr_files) for i in range(len(files)): file = files[i] df_ba.append(pd.read_csv(file,index_col=0)) print(files) collected_data =
pd.read_csv('DatasetThesis.csv',index_col=0)
pandas.read_csv
import pandas as pd from xgboost import XGBClassifier import data_transformation as dt import feature_engineering as fe import pickle import matplotlib.pyplot as plt import numpy as np import xgboost as xgb from pathlib import Path from testing.predictiveAccuracy import metric from testing.predictiveAccuracy import custom_scorer_metric from sklearn.metrics import mean_squared_error from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import TimeSeriesSplit, GridSearchCV from sklearn.metrics import make_scorer from sklearn import linear_model load = False ############## # xgboost # ############## clean_path = Path(Path(__file__).parent.absolute(), 'data', 'clean_data.csv') if load: df = pd.read_csv(clean_path) df.Date =
pd.to_datetime(df.Date, format='%Y-%m-%d')
pandas.to_datetime
import pandas as pd import datatable as dt import zipfile import re import os import time from datetime import timedelta import sys def pd_options(): desired_width = 300 pd.set_option('display.width', desired_width) pd.set_option('display.max_columns', None) import warnings warnings.filterwarnings('ignore') def directory(directory_path): """Puts you in the right directory. Gives you list of files in path""" os.chdir(re.findall("^(.*[\\\/])", directory_path)[0]) csv_files = os.listdir(directory_path) return csv_files def get_csv_names_from_list(paths): if not isinstance(paths, list): raise TypeError('We need a list of csv file paths here') dfs = [] for i in paths: if i.endswith('.csv'): df_name = re.findall("\w+(?=\.)", i)[0] dfs.append(df_name) print(str(",".join(dfs))) print(str(".shape,".join(dfs)), ".shape", sep='') def read_data(path_ending_with_filename=None, return_df=False, method=None, dataframes=None): """ e.g. read_data(path) sample_submission, test, train = read_data(path, True) --- Reads single csv or list of csvs or csvs in zip. Available methods: 'dt' = Datatable fread TODO: Add to read methods. i.e., parquet, pickle, arrow, etc. """ dt.options.progress.enabled = True if isinstance(path_ending_with_filename, str): if path_ending_with_filename.endswith('.zip'): zf = zipfile.ZipFile(path_ending_with_filename) if dataframes: dataframes = [x.strip(" ") for x in dataframes.split(",")] if len(dataframes) == 1: x = dataframes[0] + '.csv' dfs = {} start_time = time.monotonic() if method == 'dt': dfs["{0}".format(re.findall("\w+(?=\.)", x)[0])] = dt.fread(zf.open(x)).to_pandas() else: dfs["{0}".format(re.findall("\w+(?=\.)", x)[0])] = pd.read_csv(zf.open(x)) end_time = time.monotonic() print(timedelta(seconds=end_time - start_time)) keys = list(dfs.keys()) values = list(dfs.values()) for i, k in enumerate(dfs): print(i + 1, ".", " ", k, " ", "=", " ", "(", f"{values[i].shape[0]:,}", " ", ":", " ", f"{values[i].shape[1]:,}", ")", sep="") if return_df: return pd.DataFrame.from_dict(values[0]) else: files = [x + '.csv' for x in dataframes] else: files = zf.namelist() if return_df: dfs = {} start_time = time.monotonic() for x in files: if x.endswith('.csv'): if method == 'dt': dfs["{0}".format(re.findall("\w+(?=\.)", x)[0])] = dt.fread(zf.open(x)).to_pandas() else: dfs["{0}".format(re.findall("\w+(?=\.)", x)[0])] = pd.read_csv(zf.open(x)) end_time = time.monotonic() print(timedelta(seconds=end_time - start_time)) keys = list(dfs.keys()) values = list(dfs.values()) for i, k in enumerate(dfs): print(i + 1, ".", " ", k, " ", "=", " ", "(", f"{values[i].shape[0]:,}", " ", ":", " ", f"{values[i].shape[1]:,}", ")", sep="") return dfs.values() else: if not dataframes: csv_file_names = [format(re.findall("\w+(?=\.)", zf.namelist()[i])[0]) for i in range(len(zf.namelist())) if zf.namelist()[i].endswith('.csv')] # if dataframes: # # file_pos = [i for i, x in enumerate(csv_file_names)] # else: file_pos = [i for i, x in enumerate(zf.namelist()) if x.endswith('.csv')] uncompressed_dir = [f"{(zf.filelist[i].file_size / 1024 ** 2):.2f} Mb" for i in file_pos] compressed = [f"{(zf.filelist[i].compress_size / 1024 ** 2):.2f} Mb" for i in file_pos] print(pd.concat([
pd.Series(csv_file_names)
pandas.Series
import numpy as np import pandas as pd import json as json_package import requests from bs4 import BeautifulSoup # import json import logging # Add and format time stamp in logging messages logging.basicConfig( format="%(asctime)s %(levelname)s %(message)s", level=logging.INFO, datefmt="%c", ) # Mute numexpr threads info logging.getLogger("numexpr").setLevel(logging.WARNING) # Custom functions from .utils import rest_query, get_uniprot_info, wrap_cols_func # Constants from .constants import ENSEMBL_REST_API, UNIPROT_REST_API, NCBI_URL ## gget info def info(ens_ids, wrap_text=False, expand=False, json=False, verbose=True, save=False): """ Fetch gene and transcript metadata using Ensembl IDs. Args: - ens_ids One or more Ensembl IDs to look up (string or list of strings). Also supports WormBase and Flybase IDs. - wrap_text If True, displays data frame with wrapped text for easy reading. Default: False. - json If True, returns results in json/dictionary format instead of data frame. Default: False. - verbose True/False whether to print progress information. Default True. - save True/False wether to save csv with query results in current working directory. Default: False. Returns a data frame containing the requested information. Deprecated arguments: 'expand' (gget info now always returns all of the available information) """ # Handle deprecated arguments if expand: logging.info( "'expand' argument deprecated! gget info now always returns all of the available information." ) # Define Ensembl REST API server server = ENSEMBL_REST_API # Define type of returned content from REST content_type = "application/json" ## Clean up Ensembl IDs # If single Ensembl ID passed as string, convert to list if type(ens_ids) == str: ens_ids = [ens_ids] # Remove Ensembl ID version if passed ens_ids_clean = [] temp = 0 for ensembl_ID in ens_ids: # But only for Ensembl ID (and not for flybase/wormbase IDs) if ensembl_ID.startswith("ENS"): ens_ids_clean.append(ensembl_ID.split(".")[0]) if "." in ensembl_ID and temp == 0: if verbose is True: logging.info( "We noticed that you may have passed a version number with your Ensembl ID.\n" "Please note that gget info will always return information linked to the latest Ensembl ID version (see 'ensembl_id')." ) temp = +1 else: ens_ids_clean.append(ensembl_ID) # Remove duplicates in the Ensembl ID list without changing their order ens_ids_clean = sorted(set(ens_ids_clean), key=ens_ids_clean.index) # Create second clean list of Ensembl IDs which will not include IDs that were not found ens_ids_clean_2 = ens_ids_clean.copy() # Initiate dictionary to save results for all IDs in master_dict = {} # Query REST APIs from https://rest.ensembl.org/ for ensembl_ID in ens_ids_clean: # Create dict to save query results results_dict = {ensembl_ID: {}} # Define the REST query query = "lookup/id/" + ensembl_ID + "?" + "expand=1" # Submit query try: df_temp = rest_query(server, query, content_type) try: # Add Ensembl ID with latest version number to df_temp ensembl_id_dict = { "ensembl_id": str(df_temp["id"]) + "." + str(df_temp["version"]) } df_temp.update(ensembl_id_dict) except KeyError: # Just add Ensembl ID if no version found ensembl_id_dict = {"ensembl_id": str(df_temp["id"])} df_temp.update(ensembl_id_dict) # If query returns in an error: except RuntimeError: # Try submitting query without expand (expand does not work for exons and translation IDs) try: query = "lookup/id/" + ensembl_ID + "?" df_temp = rest_query(server, query, content_type) # Add Ensembl ID with latest version number to df_temp ensembl_id_dict = { "ensembl_id": str(df_temp["id"]) + "." + str(df_temp["version"]) } df_temp.update(ensembl_id_dict) # Log error if this also did not work except RuntimeError: if verbose is True: logging.warning( f"ID '{ensembl_ID}' not found. Please double-check spelling/arguments and try again." ) # Remove IDs that were not found from ID list ens_ids_clean_2.remove(ensembl_ID) continue # Add results to master dict results_dict[ensembl_ID].update(df_temp) master_dict.update(results_dict) # Return None if none of the Ensembl IDs were found if len(master_dict) == 0: return None ## Build data frame from dictionary df = pd.DataFrame.from_dict(master_dict) # Rename indeces df = df.rename( index={ "description": "ensembl_description", "Parent": "parent_gene", "display_name": "ensembl_gene_name", } ) ## For genes and transcripts, get gene names and descriptions from UniProt df_temp = pd.DataFrame() for ens_id, id_type in zip(ens_ids_clean_2, df.loc["object_type"].values): if id_type == "Gene" or id_type == "Transcript": # Check if this is a wrombase ID: if ens_id.startswith("WB"): df_uniprot = get_uniprot_info( UNIPROT_REST_API, ens_id, id_type="WB_Gene", verbose=verbose ) elif ens_id.startswith("T"): df_uniprot = get_uniprot_info( UNIPROT_REST_API, ".".join( ens_id.split(".")[:-1] ), # Remove the version number from WormBase TRS IDs for submission to UniProt id_type="WB_Transcript", verbose=verbose, ) # Check if this is a flybase ID: elif ens_id.startswith("FB"): if id_type == "Gene": df_uniprot = get_uniprot_info( UNIPROT_REST_API, ens_id, id_type="FB_Gene", verbose=verbose ) else: df_uniprot = get_uniprot_info( UNIPROT_REST_API, ens_id, id_type="FB_Transcript", verbose=verbose, ) else: df_uniprot = get_uniprot_info( UNIPROT_REST_API, ens_id, id_type=id_type, verbose=verbose ) if not isinstance(df_uniprot, type(None)): # If two different UniProt IDs for a single query ID are returned, they should be merged into one column # So len(df_uniprot) should always be 1 if len(df_uniprot) > 1: # If the above somehow failed, we will only return the first result. df_uniprot = df_uniprot.iloc[[0]] if verbose is True: logging.warning( f"More than one UniProt match was found for ID {ens_id}. Only the first match and its associated information will be returned." ) else: if verbose is True: logging.warning(f"No UniProt entry was found for ID {ens_id}.") ## Get NCBI gene ID and description (for genes only) url = NCBI_URL + f"/gene/?term={ens_id}" html = requests.get(url) # Raise error if status code not "OK" Response if html.status_code != 200: raise RuntimeError( f"NCBI returned error status code {html.status_code}. Please try again." ) ## Web scrape NCBI website for gene ID, synonyms and description soup = BeautifulSoup(html.text, "html.parser") # Check if NCBI gene ID is available try: ncbi_gene_id = soup.find("input", {"id": "gene-id-value"}).get("value") except: ncbi_gene_id = np.nan # Check if NCBI description is available try: ncbi_description = ( soup.find("div", class_="section", id="summaryDiv") .find("dt", text="Summary") .find_next_sibling("dd") .text ) except: ncbi_description = np.nan # Check if NCBI synonyms are available try: ncbi_synonyms = ( soup.find("div", class_="section", id="summaryDiv") .find("dt", text="Also known as") .find_next_sibling("dd") .text ) # Split NCBI synonyms ncbi_synonyms = ncbi_synonyms.split("; ") except: ncbi_synonyms = None # If both NCBI and UniProt synonyms available, # final synonyms list will be combined a set of both lists if ncbi_synonyms is not None and not isinstance(df_uniprot, type(None)): # Collect and flatten UniProt synonyms uni_synonyms = df_uniprot["uni_synonyms"].values[0] synonyms = list(set().union(uni_synonyms, ncbi_synonyms)) # Add only UniProt synonyms if NCBI syns not available elif ncbi_synonyms is None and not isinstance(df_uniprot, type(None)): synonyms = df_uniprot["uni_synonyms"].values[0] else: synonyms = np.nan # Sort synonyms alphabetically (is sortable) try: synonyms = sorted(synonyms) except: None # Save NCBI info to data frame df_ncbi = pd.DataFrame( { "ncbi_gene_id": [ncbi_gene_id], "ncbi_description": [ncbi_description], "synonyms": [synonyms], }, ) # Transpost NCBI df and add Ensembl ID as column name df_ncbi = df_ncbi.T df_ncbi.columns = [ens_id] ## Add NCBI and UniProt info to data frame if not isinstance(df_uniprot, type(None)): # Transpose UniProt data frame and add Ensembl ID as column name df_uniprot = df_uniprot.T df_uniprot.columns = [ens_id] # Combine Ensembl and NCBI info df_uni_ncbi = pd.concat([df_uniprot, df_ncbi]) # Append NCBI and UniProt info to df_temp df_temp = pd.concat([df_temp, df_uni_ncbi], axis=1) else: # Add only NCBI info to df_temp df_temp = pd.concat([df_temp, df_ncbi], axis=1) # Append UniProt and NCBI info to df df =
pd.concat([df, df_temp])
pandas.concat
# This files contains your custom actions which can be used to run # custom Python code. # # See this guide on how to implement these action: # https://rasa.com/docs/rasa/core/actions/#custom-actions/ # This is a simple example for a custom action which utters "Hello World!" import re import io import ast import requests import numpy as np import pandas as pd import random import multiprocessing import threading, queue from decimal import Decimal from ttictoc import tic, toc from typing import Any, Text, Dict, List, Union, Optional from rasa_sdk import Action, Tracker from rasa_sdk import FormValidationAction from rasa_sdk.events import SlotSet, FollowupAction from rasa_sdk.types import DomainDict from rasa_sdk.executor import CollectingDispatcher import warnings from statistics import mean from os import path, getenv from datetime import datetime import matplotlib.pyplot as plt from botocore.exceptions import ClientError from boto3.exceptions import S3UploadFailedError import boto3 from sqlalchemy import create_engine import sqlalchemy.types as sql_types DB_AWS_ACCESS_KEY_ID = getenv('DB_AWS_ACCESS_KEY_ID') DB_AWS_SECRET_ACCESS_KEY = getenv('DB_AWS_SECRET_ACCESS_KEY') DB_AWS_BUCKET = 'journeypic' # ------------------------------------------------------------------ def connect_to_server(params_dict, logging_func=print, debug=False): connit = params_dict['connit_type'] + '://' + params_dict['connit_user'] + ':' \ + params_dict['connit_pass'] + '@' \ + params_dict['connit_host'] + ':' \ + params_dict['connit_port'] + '/' \ + params_dict['connit_db'] if debug: logging_func(connit) sql_engine = create_engine(connit, echo=False) try: sql_engine.connect() logging_func("Connected Successfully") except Exception as e: logging_func("Error connecting to SQL server!\n\n%s\n" % str(e)) raise (e) return sql_engine def read_table(sql_engine, sql_query, logging_func=print, debug=False): df = pd.read_sql(sql_query, sql_engine) if debug: match1 = search('FROM (.*) ORDER', sql_query) match2 = search('FROM (.*) LIMIT', sql_query) table_name = "Data" if match1: table_name = match1.group(1) elif match2: table_name = match2.group(1) logging_func('\n%s %s:' % (table_name, str(df.shape))) logging_func(df.head().to_string()) return df # ------------------------------------------------------------------ def res_timer(res, tracker): timer_state = tracker.get_slot('timer_state') if tracker.get_slot('timer_state') else 'n/a' if timer_state == 'on': res += '\nElapsed time: %.2f sec' % toc() return res # ------------------------------------------------------------------ def res_error(res, tracker, e): timer_state = tracker.get_slot('timer_state') if tracker.get_slot('timer_state') else 'n/a' if timer_state == 'on': res += '\nERROR: %s' % e return res # ------------------------------------------------------------------ def simpleQuestionAnswer(tracker, entity, db_dict, user_intent=""): lut_df = db_dict['lut'] custom_df = db_dict['nutrients_qna'] feature = lut_df['Entity'][entity] try: if feature in custom_df.index: res = custom_df.loc[feature][user_intent] else: res = custom_df[[str(s) in feature for s in custom_df.index.tolist()]][user_intent][0] if 'slot#' in res: res_list = res.split(' ') for k, el in enumerate(res_list): if 'slot#' in el: res_list[k] = str(tracker.get_slot(el.split('#')[1])) res = ' '.join(res_list) res_list = re.findall('\{.*?\}', res) for match in res_list: res = res.replace(match, str(eval(match[1:-1]))) except: res = "אין לי מושג, מצטער!" return res def checkPrecentinres(title, x): precent_position = None listNumbers = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] if 'אחוז' in title: precent_position = title.find('אחוז') if '%' in title: precent_position = title.find('%') if precent_position is not None: if title[precent_position - 2] == '0' and title[precent_position - 3] not in listNumbers: title = title[:title.find(x)] title += x return title # ------------------------------------------------------------------ def upload_file_to_s3(local_file, s3_folder, s3_file, aws_access_key_id, aws_secret_access_key, aws_bucket, debug_en=False): """ upload a given file to given location on Amazon-S3 """ success = True HTTP_OK = 200 # Connect to Amazon-S3 client: s3_client = boto3.client('s3', aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key) # Make a new directory on S3 (if not already exists): if s3_folder + '/' in [x['Key'] for x in s3_client.list_objects(Bucket=aws_bucket)['Contents']]: pass elif not debug_en: res = s3_client.put_object(Bucket=aws_bucket, Key='%s/' % s3_folder) success = res['ResponseMetadata']['HTTPStatusCode'] == HTTP_OK if not success: return success, "" # Upload local_file to S3: x = 3 if not debug_en: try: if path.exists(local_file): s3_client.upload_file(local_file, aws_bucket, path.join(s3_folder, s3_file)) s3_client.put_object_acl(ACL='public-read', Bucket=aws_bucket, Key=path.join(s3_folder, s3_file)) except (ClientError, S3UploadFailedError) as e: success = False, "" return success, "https://%s.s3.eu-central-1.amazonaws.com/%s/%s" % (aws_bucket, s3_folder, s3_file) # ------------------------------------------------------------------ def donut_generator(names, sizes, radius=0.7, textstr_title='', colors=None, figname="image.png"): CARBS_GRAMS_CALOIRES = 4 PROTEIN_GRAMS_CALOIRES = 4 FAT_GRAMS_CALOIRES = 9 if colors is None: colors = [] my_circle = plt.Circle((0, 0), radius, color='white') fig, ax = plt.subplots() labels = [':' + k1 + '\nםרג ' + str(round(k2, 2)) for k1, k2 in zip(names, sizes)] if colors: ax.pie(sizes, colors=colors) else: ax.pie(sizes) plt.legend(bbox_to_anchor=(1.0, 0.88), fontsize=18, labels=labels) p = plt.gcf() p.gca().add_artist(my_circle) if textstr_title: ax.text(0.34, 1.05, textstr_title, transform=ax.transAxes, weight='bold', fontsize=30, verticalalignment='center_baseline') sizes[0] *= PROTEIN_GRAMS_CALOIRES sizes[1] *= CARBS_GRAMS_CALOIRES sizes[2] *= FAT_GRAMS_CALOIRES sum2 = round(sum(sizes), 2) textstr_center1 = str(sum2) textstr_center2 = 'קלוריות'[::-1] ax.text(0.39, 0.56, textstr_center1, transform=ax.transAxes, weight='bold', fontsize=24, verticalalignment='center_baseline') ax.text(0.37, 0.44, textstr_center2, transform=ax.transAxes, fontsize=18, verticalalignment='center_baseline') if figname: fig.patch.set_facecolor('white') fig.savefig(figname, bbox_inches='tight', facecolor='white') else: plt.show() # ------------------------------------------------------------------ def donut_generator_wrapper(title, data): names = [x[::-1] for x in list(data.keys())] sizes = list(data.values()) colors = ['darkorange', 'lightgreen', 'blue'] textstr_title = title[::-1] figname = "donut_image1.png" donut_generator(names=names, sizes=sizes, radius=0.7, textstr_title=textstr_title, colors=colors, figname=figname) return figname # ------------------------------------------------------------------ def iniliatize_Diagram(title, data): unique_filename = lambda fname: "%s_%s%s" % (path.splitext(fname)[0], datetime.now().strftime("%m%d%Y_%H%M%S"), path.splitext(fname)[1]) figname = donut_generator_wrapper(title, data) res, figure_url = upload_file_to_s3(local_file=figname, s3_folder="auto_generated", s3_file=unique_filename(figname), aws_access_key_id=DB_AWS_ACCESS_KEY_ID, aws_secret_access_key=DB_AWS_SECRET_ACCESS_KEY, aws_bucket=DB_AWS_BUCKET) return figure_url # ------------------------------------------------------------------ def activate_load_db(name, table, dic): dic[name] = load_db(table) def get_tables(bits): table_dict = {'0x1': 'tzameret', '0x2': 'lut', '0x4': 'nutrients_qna', '0x8': 'food_qna', '0x10': 'common_food', '0x20': 'food_ranges', '0x40': 'micro_nutrients', '0x80': 'food_units', '0x100': 'bloodtest_vals', '0x200': 'food_units_aliases', '0x400': 'food_units_features', '0x800': 'subs_tags_alias', '0x1000': 'Weights_and_measures'} scale = 16 bits_binary = bin(int(bits, scale))[2:].zfill(len(bits) * 4) numbers_zero = '' numbers = [] for digit in reversed(bits_binary): if digit != '1': numbers_zero += digit else: numbers.append('1' + numbers_zero) numbers_zero += '0' for i, value in enumerate(numbers): decimal_representation = int(value, 2) temp = hex(decimal_representation) temp = int(temp, 16) numbers[i] = hex(temp) manager = multiprocessing.Manager() db_dict = manager.dict() jobs = [] for value in numbers: # Pass the user at position i instead of the whole list p = multiprocessing.Process(target=activate_load_db, args=(table_dict[value], value, db_dict)) jobs.append(p) p.start() for proc in jobs: proc.join() return db_dict def load_db(db_bitmap, read_databse_en=True): # available_tables_df=read_database sql_params = {'connit_type': 'postgresql', 'connit_user': 'newtrds', 'connit_pass': '<PASSWORD>!', 'connit_host': 'newt-tzameret-db.c1ub7aqk5fah.eu-central-1.rds.amazonaws.com', 'connit_port': '5432', 'connit_db': 'postgres', 'max_records': 1000} sql_engine = connect_to_server(sql_params) if db_bitmap == '0x1': tzameret = read_table(sql_engine, "SELECT * FROM tzameret_entity") return tzameret # "Zameret_hebrew_features" - entities aliases if db_bitmap == '0x2': lut = read_table(sql_engine, "SELECT * FROM rasa_lut_entity") lut = lut.set_index('Entity Alias') return lut # "Zameret_hebrew_features" - nutrients_questions if db_bitmap == '0x4': nutrients_qna = read_table(sql_engine, "SELECT * FROM rasa_nutrients_qna_entity") nutrients_qna = nutrients_qna.set_index('Entity') return nutrients_qna # "Zameret_hebrew_features" - Food questions if db_bitmap == '0x8': food_qna = read_table(sql_engine, "SELECT * FROM rasa_food_qna_entity") food_qna = food_qna.set_index('nutrition_density') return food_qna # "Zameret_hebrew_features" - List of common foods if db_bitmap == '0x10': common_food = read_table(sql_engine, "SELECT * FROM common_food_entity") common_food = common_food.set_index('common_name') return common_food # "Newt Machine Readable" - FoodItemRanges if db_bitmap == '0x20': food_ranges = read_table(sql_engine, "SELECT * FROM food_ranges_entity") food_ranges = food_ranges.set_index('Nutrient') return food_ranges # "Newt Machine Readable" - MicroNutrients if db_bitmap == '0x40': micro_nutrients = read_table(sql_engine, "SELECT * FROM micronutrients_entity") return micro_nutrients # "Newt Machine Readable" - MicroNutrients if db_bitmap == '0x80': food_units = read_table(sql_engine, "SELECT * FROM food_units_entity") return food_units # "Newt Machine Readable" - BloodTestValues if db_bitmap == '0x100': bloodtest_vals = read_table(sql_engine, "SELECT * FROM bloodtest_vals_entity") return bloodtest_vals # "Zameret_hebrew_features" - Weight aliases if db_bitmap == '0x200': food_units_aliases = read_table(sql_engine, "SELECT * FROM food_units_aliases_entity") return food_units_aliases # "Zameret_hebrew_features" - For Noa if db_bitmap == '0x400': food_units_features_df = read_table(sql_engine, "SELECT * FROM tzameret_newt_entity") food_units_features = food_units_features_df.dropna(axis=0, how='all') food_units_features = food_units_features.rename({'Primary_SN': 'smlmitzrach'}, axis=1) return food_units_features # "Zameret_hebrew_features" - subs_tags_alias if db_bitmap == '0x800': subs_tags_alias = read_table(sql_engine, "SELECT * FROM subs_tags_aliases_entity") subs_tags_alias = subs_tags_alias.set_index('Entity Alias').fillna(0) return subs_tags_alias if db_bitmap == '0x1000': Weights_and_measures = read_table(sql_engine, "SELECT * FROM weights_measures") return Weights_and_measures def load_db_googleSheet(db_bitmap): db_dict = {} # "Zameret food list 22_JAN_2020" if (db_bitmap & 0x1) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=84892416" s = requests.get(url).content db_dict['tzameret'] = pd.read_csv(io.StringIO(s.decode('utf-8'))).fillna(0) # "Zameret_hebrew_features" - entities aliases if (db_bitmap & 0x2) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=1805881936" s = requests.get(url).content db_dict['lut'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["Entity Alias"], usecols=["Entity Alias", "Entity", "Units", "Entity name", "RDA name", "action_simple_question", "action_nutrition_howmanyxiny_x", "action_nutrition_howmanyxiny_y", "action_nutrition_is_food_healthy", "action_nutrition_is_food_recommended", "action_nutrition_what_is_healthier_x", "action_nutrition_what_is_healthier_y", "action_nutrition_get_rda", "action_nutrition_bloodtest_generic", "action_nutrition_bloodtest_value", "action_nutrition_food_substitute", "action_nutrition_compare_foods", "action_nutrition_howmanyxyinz"]).fillna(0) # "Zameret_hebrew_features" - nutrients_questions if (db_bitmap & 0x4) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=1706335378" s = requests.get(url).content db_dict['nutrients_qna'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["Entity"]).fillna(0) # "Zameret_hebrew_features" - Food questions if (db_bitmap & 0x8) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=1099284657" s = requests.get(url).content db_dict['food_qna'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["nutrition_density"], usecols=["nutrition_density", "energy_density", "description_density"]).fillna(0) # "Zameret_hebrew_features" - List of common foods if (db_bitmap & 0x10) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=495295419" s = requests.get(url).content db_dict['common_food'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["common_name"], usecols=["common_name", "shmmitzrach", "smlmitzrach"]).fillna(0) # "Newt Machine Readable" - FoodItemRanges if (db_bitmap & 0x20) > 0: url = "https://docs.google.com/spreadsheets/d/1IPTflCe6shaP-FBAuXWSFCX5hSuAo7bMGczNMTSTYY0/export?format=csv&gid=885087351" s = requests.get(url).content db_dict['food_ranges'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, index_col=["Nutrient"], usecols=["Nutrient", "Medium - threshold per 100gr", "High - threshold per 100gr", "good_or_bad", "tzameret_name", "hebrew_name"]).fillna(0) # "Newt Machine Readable" - MicroNutrients if (db_bitmap & 0x40) > 0: url = "https://docs.google.com/spreadsheets/d/1IPTflCe6shaP-FBAuXWSFCX5hSuAo7bMGczNMTSTYY0/export?format=csv&gid=222801095" s = requests.get(url).content micro_nutrients_df = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0).fillna(0) db_dict['micro_nutrients'] = micro_nutrients_df # "Newt Machine Readable" - MicroNutrients if (db_bitmap & 0x80) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=1373096469" s = requests.get(url).content food_units_df = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0).fillna(0) db_dict['food_units'] = food_units_df # "Newt Machine Readable" - BloodTestValues if (db_bitmap & 0x100) > 0: url = "https://docs.google.com/spreadsheets/d/1IPTflCe6shaP-FBAuXWSFCX5hSuAo7bMGczNMTSTYY0/export?format=csv&gid=1011022304" s = requests.get(url).content bloodtest_df = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, nrows=19, usecols=range(11)).fillna(0) db_dict['bloodtest_vals'] = bloodtest_df # "Zameret_hebrew_features" - Weight aliases if (db_bitmap & 0x200) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=623521836" s = requests.get(url).content food_units_aliases_df = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0) db_dict['food_units_aliases'] = food_units_aliases_df # "Zameret_hebrew_features" - For Noa if (db_bitmap & 0x400) > 0: url = "https://docs.google.com/spreadsheets/d/19rYDpki0jgGeNlKLPnINiDGye8QEfQ4IEEWSkLFo83Y/export?format=csv&gid=2106834268" s = requests.get(url).content food_units_features_df = pd.read_csv(io.StringIO(s.decode('utf-8')), header=1) db_dict['food_units_features'] = food_units_features_df.dropna(axis=0, how='all') db_dict['food_units_features'] = db_dict['food_units_features'].rename({'Primary_SN': 'smlmitzrach'}, axis=1) # "Zameret_hebrew_features" - subs_tags_alias if (db_bitmap & 0x800) > 0: url = "https://docs.google.com/spreadsheets/d/1VvXmu5l58XwcDDtqz0bkHIl_dC92x3eeVdZo2uni794/export?format=csv&gid=458428667" s = requests.get(url).content db_dict['subs_tags_alias'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0, usecols=["Entity Alias", "Entity", "Show_stopers"]).set_index( 'Entity Alias') if (db_bitmap & 0x1000) > 0: url = "https://docs.google.com/spreadsheets/d/19rYDpki0jgGeNlKLPnINiDG<KEY>EWSkLFo83Y/export?format=csv&gid=428717261" s = requests.get(url).content db_dict['Weights_and_measures'] = pd.read_csv(io.StringIO(s.decode('utf-8')), header=0) return db_dict # ------------------------------------------------------------------ def import_sheets(debug=False): '''Import the df noa and tzameret food group tabs from the suggested meal planning sheet as a DataFrame. Import weights and measures, and tzameret food list from Tzameret DB as a DataFrame''' # df = load_db_googleSheet(0x481) df = get_tables('0x481') sheet_id = '19rYDpki0jgGeNlKLPnINiDGye8QEfQ4IEEWSkLFo83Y' gid_2 = '428717261' df_tzameret_food_group = pd.read_csv( f"https://docs.google.com/spreadsheets/d/{sheet_id}/export?format=csv&gid={gid_2}") df_nutrition = df['tzameret'] df_nutrition.fillna(0, inplace=True) df_nutrition.rename(columns={'carbohydrates': 'carbs'}, inplace=True) df_weights = df['food_units'] df_weights.head() df_noa_pre_1 = df['food_units_features'] # df_tzameret_food_group = ['Weights_and_measures'] df_noa = df['food_units_features'] header = list(df_noa_pre_1.columns.values) df_noa.loc[-1] = header # adding a row df_noa.index = df_noa.index + 1 # shifting index df_noa = df_noa.sort_index() # sorting by index df_noa.head() df_noa.columns = df_noa.columns.str.lower() df_noa = df_noa.iloc[1:] # df_noa doesn not have the first row with the numbers to make it easier to filter data df_noa['lactose_free'] = df_noa['lactose_free'].replace({'Low Lactose': 'Yes', 'Lactose Free': 'Yes'}) df_noa['food_category'] = df_noa['food_category'].replace({'N/A': 'Savoury_Snacks'}) df_noa.dropna(subset=["food_name"], inplace=True) # dropping all meals that don't have a meal name to get complete list of actual meals df_noa = df_noa.rename(columns={'smlmitzrach': 'primary_sn'}) df_noa['sn_1'] = df_noa['primary_sn'].astype(str).str[:1] df_noa['sn_2'] = df_noa['primary_sn'].astype(str).str[1:2] return df_noa, df_tzameret_food_group, df_weights, df_nutrition # ------------------------------------------------------------------ def get_rda(name, tracker, nutrient_temp="", intent_upper=False): actions_list = ['action_nutrition_howmanyxyinz', 'action_nutrition_compare_foods'] # db_dict = load_db_googleSheet(0x46) db_dict = get_tables('0x46') lut_df = db_dict['lut'] micro_nutrients_df = db_dict['micro_nutrients'] if intent_upper: micro_nutrients_df = micro_nutrients_df[micro_nutrients_df['Type'] == "Upper Limit"] else: micro_nutrients_df = micro_nutrients_df[micro_nutrients_df['Type'] == "RDA"] status = "match" if not (tracker.get_slot('gender') and tracker.get_slot('age') and tracker.get_slot( 'weight') and tracker.get_slot( 'height')): status = "default" nutrient = None if name in actions_list: nutrient = nutrient_temp else: x = tracker.get_slot('x') if tracker.get_slot('x') else None if x is not None and x is not "": nutrient = x else: for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[name].values: nutrient = ent['value'] break if nutrient is None: nutrient = nutrient_temp try: feature = lut_df['Entity'][nutrient] feature_rda = lut_df['RDA name'][lut_df['Entity name'] == feature][0] gender = "Male" if tracker.get_slot('gender') == "זכר": gender = "Male" elif tracker.get_slot('gender') == "נקבה": gender = "Female" user_vars = {} user_vars['age'] = tracker.get_slot('age') if tracker.get_slot('age') else "40" user_vars['weight'] = tracker.get_slot('weight') if tracker.get_slot('weight') else "80" user_vars['height'] = tracker.get_slot('height') if tracker.get_slot('height') else "180" rda_row = micro_nutrients_df[(micro_nutrients_df['Micronutrient'] == feature_rda) & \ ((micro_nutrients_df['Gender'] == "ANY") | ( micro_nutrients_df['Gender'] == gender)) & \ ((micro_nutrients_df['Pregnancy'] == "ANY") | ( micro_nutrients_df['Pregnancy'] == "No")) & \ ((micro_nutrients_df['Lactating'] == "ANY") | ( micro_nutrients_df['Lactating'] == "No")) & \ ((micro_nutrients_df['Age Min'] == "ANY") | ( micro_nutrients_df['Age Min'].astype(float) <= int( user_vars['age']))) & \ ((micro_nutrients_df['Age Max'] == "ANY") | ( micro_nutrients_df['Age Max'].astype(float) > int(user_vars['age'])))] rda_text = str(rda_row['Free Text'].values[0]) rda_value = str(rda_row['Value'].values[0]) rda_units = rda_row['Units'].values[0] rda_Image = rda_row['Image'].values[0] if 'slot#' in rda_value: rda_value_list = rda_value.split(' ') for k, el in enumerate(rda_value_list): if 'slot#' in el and el.split('#')[1] in user_vars: rda_value_list[k] = user_vars[el.split('#')[1]] strs = ' '.join([str(elem) for elem in rda_value_list]) # rda_value = eval(' '.join(rda_value_list)) rda_value = eval(str(strs)) rda_value = float(rda_value) if 'slot#' in rda_text: rda_text_list = rda_text.split(' ') for k, el in enumerate(rda_text_list): if 'slot#' in el: rda_text_list[k] = tracker.get_slot(el.split('#')[1]) rda_text = ' '.join(rda_text_list) rda_text_list = re.findall('\{.*?\}', rda_text) for match in rda_text_list: rda_text = rda_text.replace(match, str(eval(match[1:-1]))) if rda_text == "0": rda_text = "" return rda_value, rda_units, rda_text, status, nutrient, rda_Image except: return -1, -1, "", "missmatch", nutrient, "" # ------------------------------------------------------------------ def get_personal_str(rda_status, tracker): age = tracker.get_slot('age') if tracker.get_slot('age') and rda_status == "match" else '40' gender = tracker.get_slot('gender') if tracker.get_slot('gender') and rda_status == "match" else 'זכר' weight = tracker.get_slot('weight') if tracker.get_slot('weight') and rda_status == "match" else '80' height = tracker.get_slot('height') if tracker.get_slot('height') and rda_status == "match" else '180' if rda_status == "default": personal_str = "עבור %s בגיל %s במשקל %s ובגובה %s" % (gender, age, weight, height) else: personal_str = "עבורך (%s בגיל %s במשקל %s ובגובה %s)" % (gender, age, weight, height) return personal_str # ------------------------------------------------------------------ def get_food_nutrition_density(food, food_ranges_db): # Nutrition Density is defined in Tzameret: density_normalized = float(food["Nutrition density normalized"]) # Thresholds are defined in Machine-Readable: density = food_ranges_db[food_ranges_db.index == "Nutrition density"] density_med = float(density["Medium - threshold per 100gr"]) density_high = float(density["High - threshold per 100gr"]) # Binning: res = "high" if density_normalized < density_med: res = "low" elif density_normalized < density_high: res = "med" return density, res # ------------------------------------------------------------------ def get_food_energy_density(food, food_ranges_db): # Energy Density is defined in Tzameret: density_normalized = float(food["Energy density"]) # Thresholds are defined in Machine-Readable: density = food_ranges_db[food_ranges_db.index == "Energy density"] density_med = float(density["Medium - threshold per 100gr"]) density_high = float(density["High - threshold per 100gr"]) # Binning: res = "high" if density_normalized < density_med: res = "low" elif density_normalized < density_high: res = "med" return density, res # ------------------------------------------------------------------ def getcolums_FromDataFrame(db, colum): res = '' index_temp = 1 for index, row in db.iterrows(): res = res + str(index_temp) + '. ' + row[colum] + '\n' index_temp += 1 return res def get_entity_filters(entity_fromrasa, negative_words_list, lut): entities_temp = {} entity = re.sub('וו|-|מנה|ארוחה|גם|הוא|שהוא|שהיא|[,?/123456789]|והיא|והוא', '', entity_fromrasa) entity = entity.replace(' ', ' ') entities = entity.split(' ') for index, ent in enumerate(entities): filter_type_word = False ent = ent.strip() if ent[0] == 'ו': ent = ent[1:] entities_temp[ent] = fliter_type(ent, lut, filter_type_word) if ent == '' or ent == ' ' or ent in negative_words_list or len(ent) <= 2: continue if index == 0 and ent in negative_words_list: continue if index == 0: entities_temp[ent] = fliter_type(ent, lut, filter_type_word) else: if entities[index - 1] in negative_words_list: filter_type_word = True entities_temp[ent] = fliter_type(ent, lut, filter_type_word) return entities_temp def fliter_type(entity, lut, type_filter): # get the entity alias for the Zameret if 'פלאו' in entity or 'פליאו' in entity: entity = "Paleo" elif 'טבעוני' in entity or 'טבעונית' in entity or 'טבעוניים' in entity or 'טבעונים' in entity: entity = "Vegan" elif 'צמחוני' in entity or 'צמחוניים' in entity or 'צמחונית' or 'צמחונים' in entity: entity = "Vegetarian" else: entity = lut[lut.index == entity]['Entity'].iloc[0] if entity == 'Dairy' and type_filter is False: return entity, 'No' if entity == 'Fish_Free' and type_filter is False: return entity, 'No' elif entity == 'Fish_Free': return entity, 'Yes' return entity, 'Yes' def how_many_x_in_y_core(x, y, food_units, name, tracker): # db_dict = load_db_googleSheet(0x293) db_dict = get_tables('0x293') y_common = y if y in db_dict['common_food'].index: y_common = db_dict['common_food'][db_dict['common_food'].index == y]['shmmitzrach'][0] else: y_food = ' '.join(y.split(' ')[1:]) food_units = db_dict['food_units_aliases'][db_dict['food_units_aliases']['Unit Alias'] == y.split(' ')[0]][ 'Zameret unit'] if food_units.empty: food_units = y.split(' ')[0] else: food_units = food_units.values[0] if y_food in db_dict['common_food'].index: y_common = db_dict['common_food'][db_dict['common_food'].index == y_food]['shmmitzrach'][0] else: y_common = y_food food = db_dict['tzameret'][db_dict['tzameret']['shmmitzrach'].str.contains(y_common)].iloc[0, :] feature = db_dict['lut'][db_dict['lut'].index == x]["Entity"][0] units = db_dict['lut'][db_dict['lut'].index == x]["Units"][0] food_units_row = pd.Series() if food_units: food_units_row = db_dict['food_units'][(db_dict['food_units']['smlmitzrach'] == food['smlmitzrach']) & (db_dict['food_units']['shmmida'] == food_units)] is_food_units_match = not food_units_row.empty or food_units == "100 גרם" food_units_factor = 1.0 if not food_units_row.empty: food_units_factor = food_units_row['mishkal'].values[0] / 100 val = food[feature] * food_units_factor if units == 0: res = "ב-%s של %s יש %.2f %s" % (food_units, food['shmmitzrach'], float(val), x) else: res = "" if not is_food_units_match: res = "לא הצלחתי למצוא נתונים במאגר על היחידה %s עליה שאלת\n" % food_units res += "היחידות הבאות קיימות במאגר, עבור %s:\n" % food['shmmitzrach'] res += ', '.join(db_dict['food_units'][db_dict['food_units']['smlmitzrach'] == food['smlmitzrach']][ 'shmmida'].to_list()) res += "\n" food_units = "100 גרם" res += "ב-%s של %s יש %.2f %s %s" % (food_units, food['shmmitzrach'], float(val), units, x) rda_val, rda_units, rda_text, rda_status, nutrient, x_1 = get_rda(name, tracker, x) if rda_val > 0 and units not in ['יחב"ל']: # rda = 100 * float(val) / rda_val res += "\n" res += "שהם כ-%d אחוז מהקצובה היומית המומלצת %s" % (int(rda), get_personal_str(rda_status, tracker)) if rda_text and rda_text != '0': res += '\n' + rda_text return val, res def reverse_number(n): rev = 0 while (n > 0): a = n % 10 rev = rev * 10 + a n = n // 10 return rev # ------------------------------------------------------------------ # ____ _ _ _ __ __ _ # | __ ) _ _(_) | __| | | \/ | ___ __ _| | # | _ \| | | | | |/ _` | | |\/| |/ _ \/ _` | | # | |_) | |_| | | | (_| | | | | | __/ (_| | | # |____/ \__,_|_|_|\__,_| |_| |_|\___|\__,_|_| # Dictionary that is equivalent to user inputs and filters the df_noa Database based on the inputs def get_coupling(meals_bank, coupling, caloires, can_grams, amount, df, item_type): # type float of the coupling is always nan if isinstance(coupling, float): return 0, False, 0, 0, 0, 0, 0, '' if 'NaN' in coupling or 'nan' in coupling or coupling == '': return 0, False, 0, 0, 0, 0, 0, '' coupling = str(coupling) couling_list = coupling.split(',') if couling_list == []: return 0, False, 0, 0, 0, 0, 0, '' # get random number for the coupling end = len(couling_list) - 1 if '\n' or 'r' in couling_list[len(couling_list) - 1]: end = len(couling_list) - 2 if len(couling_list) == 1: coupling_foods = meals_bank[meals_bank['#'] == int(couling_list[0])] else: couling_number = random.randint(0, end) coupling_foods = meals_bank[meals_bank['#'] == int(couling_list[0])] serial_sn = coupling_foods['primary_sn'].values food_name = coupling_foods['food_name'].values if len(serial_sn) <= 0 or len(food_name) <= 0: return 0, False, 0, 0, 0, 0, 0, '' coupling_foods_serial = int(serial_sn[0]) # get the mida of the coupling food candidate_units = candidate_units_amounts(df, coupling_foods_serial, item_type) candidate_grams = candidate_units[0] for can_grams in candidate_grams: calories_couple, weight, grams, x, y = get_item_property(coupling_foods_serial, can_grams, amount) if caloires < 0: caloires = caloires * -1 if calories_couple <= caloires: return calories_couple, True, coupling_foods_serial, weight, grams, x, y, food_name[0] return 0, False, 0, 0, 0, 0, 0, '' def checkDoublePattern(sentence, pattern): temp = sentence.count(pattern) if temp == 2: return sentence[:sentence.find(pattern) + len(pattern)] return sentence def update_budgets(daily_budget, meals_num, snacks_num, weights): '''Takes total budget, number of meals and snacks, and weights as paramters. Returns budget for each category for every meal''' # change 0.3 to a user params budgets = {} div = (meals_num + inputs.get( 'budget_var') * snacks_num) # Is this supposed to be budget_var(0.3) times snacks num or budget_var times meals_num if div > 0: budgets['meal'] = round(daily_budget / div, 1) budgets['snack'] = round(inputs.get('budget_var') * daily_budget / div, 1) budgets['Carbs'] = round(weights[0] * budgets['meal'], 1) budgets['Protein'] = round(weights[1] * budgets['meal'], 1) budgets['Vegetables'] = round(weights[2] * budgets['meal'], 1) budgets['Fruits'] = round(weights[3] * budgets['snack'], 1) budgets['Fat'] = round(weights[4] * budgets['snack'], 1) budgets['Fat_meal'] = round(weights[4] * budgets['meal'], 1) budgets['Savoury_Snacks'] = round(weights[5] * budgets['snack'], 1) budgets['Sweets'] = round(weights[6] * budgets['snack'], 1) budgets['all'] = round(daily_budget, 1) return budgets def filter_meals_by_features(user_params, df_feature): '''Takes user inputs and a Dataframe as parameters and returns a DataFrame filtered by the user inputs''' for k, v in user_params.items(): if (v == 'Yes') and (debug['debug_en']): df_feature = df_feature.loc[df_feature[k] == v] return df_feature def filter_meals_by_meal_type(df, meal_type): '''Filters the DataFrame by the meal type to be used in making a scoreboard for each meal like breakfast, lunch etc.''' if debug: return df.loc[(df['il_' + meal_type] == 'Yes')] def candidate_units_amounts(item, sn, items_type): '''Returns the different options for mida amount and servings for each amount''' sn_1 = int(item['sn_1'].values[0]) df_max_meal = df_tzameret_food_group.loc[df_tzameret_food_group['ספרה ראשונה בקוד'] == sn_1] units_intersection = [] amounts_intersection = [] if items_type != 'snack': df_max_meal = df_tzameret_food_group.loc[df_tzameret_food_group['ספרה ראשונה בקוד'] == sn_1] max_amount_meal = df_max_meal['mida_maxAmount_meal'].values[0].replace(' ', '').split(',') min_amount_meal = df_max_meal['mida_minAmount_meal'].values[0].replace(' ', '').split(',') df_weights_list = df_weights[df_weights['smlmitzrach'] == sn] weights_list = df_weights_list['mida'].tolist() min_max_amount_meal_units = [int(value.split('_')[0]) for value in max_amount_meal] min_max_amount_meal_amounts = [list(range(int(min_val.split('_')[1]), int(max_val.split('_')[1]) + 1)) for min_val, max_val in zip(min_amount_meal, max_amount_meal)] for k, value in enumerate(min_max_amount_meal_units): if value in weights_list: units_intersection.append(value) amounts_intersection.append(min_max_amount_meal_amounts[k]) else: max_amount_snack = df_max_meal['mida_maxAmount_snack'].values[0].replace(' ', '').split(',') df_weights_list = df_weights[df_weights['smlmitzrach'] == sn] weights_list = df_weights_list['mida'].tolist() max_amount_snack_units = [int(value.split('_')[0]) for value in max_amount_snack] max_amount_snack_amounts = [list(range(1, int(value.split('_')[1]) + 1)) for value in max_amount_snack] for k, value in enumerate(max_amount_snack_units): if value in weights_list: units_intersection.append(value) amounts_intersection.append(max_amount_snack_amounts[k]) return units_intersection, amounts_intersection def get_item_property(sn, grams, serving): '''Returns the total item calories for each item''' # if the mida is 700 then multiply by 100, if any other number divide by 100 weights = df_weights[(df_weights['smlmitzrach'] == sn) & (df_weights['mida'] == grams)] mishkal = weights.iloc[0]['mishkal'] if mishkal == 700: mishkal = mishkal * 100 else: mishkal = mishkal / 100 attribute = df_nutrition.loc[df_nutrition['smlmitzrach'] == str(int(sn))] attribute_total = attribute.iloc[0]['food_energy'] total = attribute_total * mishkal * serving return total, weights.iloc[0]['shmmida'], weights.iloc[0]['mishkal'], weights, serving def update_calorie_budgets(candidate_calories, item_type, bud): '''Updates the calories budget based on how many calories were already used''' bud[item_type] = bud[item_type] - candidate_calories return bud def check_item_type_if_exist_already(meals, df_noa): if meals == [] or len(meals) == 1: return True for item in meals: sn = item['primary_sn'].values[0] item_temp = df_noa[df_noa['primary_sn'] == str(sn)] if item_temp['beef_chicken_fish'].iloc[0] == 'No': return False return True def build_meal(meals_bank, meal_type, budget): # make histogram without penalty score of runnning the simulator 50 times and picking the winners. Run it again with the penalty score '''Builds a meal taking a DataFrame, meal type and budget as parameters. Meal takes item from each category (Carbs, Protein etc.) and returns the meal, weighted average score and total meal calories''' budget_weights = {**budget_weights_meals, **budget_weights_snacks_fruits_fat, **budget_weights_savoury_snacks, **budget_weights_sweets} bud = {} meal_similarity_list = [] df_health = df_nutrition.iloc[1:] max_meal_items = inputs.get('max_items_snack') if meal_type == 'snack' else inputs.get('max_items_meal') nutrition_density_list = [] energy_density_list = [] meal_score = 0 score_list = [] uti_score = [] ind_score = [] score = 0 meals = [] meal_cals = 0 types = [] total_budget = budget.copy() item_types = {'breakfast': ['Carbs', 'Protein', 'Vegetables'], 'lunch': ['Carbs', 'Protein', 'Vegetables'], 'dinner': ['Carbs', 'Protein', 'Vegetables'], 'snack': ['Fat']} if (snacks.get('sweets') == 'Yes') & (len(meals_bank.loc[meals_bank['food_category'] == 'Sweets']) > 0): item_types['snack'].append('Sweets') if (snacks.get('Savoury_Snacks') == 'Yes') & ( len(meals_bank.loc[meals_bank['food_category'] == 'Savoury_Snacks']) > 0): item_types['snack'].append('Savoury_Snacks') if (user_params.get('fruits') == 'No') & (len(meals_bank.loc[meals_bank['food_category'] == 'Fruits']) > 0): item_types['snack'].append('Fruits') for k in range(max_meal_items): for item_type in item_types[meal_type]: success = False if (len(meals_bank.loc[meals_bank['food_category'] == item_type]) > 0): df = meals_bank.loc[meals_bank['food_category'] == item_type].sample() # get the item primary sn sn = int(df['primary_sn'].values[0]) df['primary_sn'] = sn candidate_units = candidate_units_amounts(df, int(df['primary_sn'].values[0]), item_type) candidate_grams = candidate_units[0] for can_grams in candidate_grams: sn = float(df['primary_sn'].values[0]) for candidate_amount in candidate_units[1]: for amount in reversed(candidate_amount): calories, weight, grams, x, y = get_item_property(int(sn), can_grams, amount) can_cals = getattr(calories, "tolist", lambda: candidate_calories)() coupling_numbers = df['coupling'].values[0] coupling_cals, coupling_boolean, coupling_food_primary_sn, weight_coupling, grams_coupling, x, y, food_name_coupling = get_coupling( meals_bank, coupling_numbers, budget[item_type] - can_cals, can_grams, amount, df, item_type) can_cals += coupling_cals if can_cals < budget[item_type]: success = True if success: if success: # check if item of meal type is exist in the meal already if check_item_type_if_exist_already(meals, df_noa): sn_int = int(df['primary_sn'].astype(str).str[:1]) sn1 = int(df['primary_sn'].values[0]) calories1, weight, grams, x, y = get_item_property(sn1, can_grams, amount) bud[item_type] = getattr(calories1, "tolist", lambda: candidate_calories)() units_priority = candidate_grams.index(can_grams) + 1 meal_score += 1 / units_priority df_sn1 = df_tzameret_food_group.loc[ df_tzameret_food_group['ספרה ראשונה בקוד'] == sn_int] df_fish = df_noa.loc[df_noa['primary_sn'] == str(sn1)] food_group = df_sn1['קבוצת המזון'] if sn_int == 2: if df_fish['fish_free'].iloc[0] == 'Yes': meal_similarity_list.append(2.1) else: meal_similarity_list.append(2.2) else: meal_similarity_list.append(sn_int) item_score = (bud[item_type]) / (budget[item_type]) df['score'] = item_score score_list.append(item_score) types.append(df['food_category']) nutrition_density_normalized = df_nutrition.loc[ df_nutrition['smlmitzrach'] == str( int(sn1)), 'Nutrition density normalized'] energy_density = df_health.loc[ df_health['smlmitzrach'] == str(int(sn1)), 'Energy density'] nutrition_density_normalized = nutrition_density_normalized.astype(float) energy_density = energy_density.astype(float) if coupling_boolean: name = df['food_name'].values[0] name += ' עם ' + food_name_coupling df['food_name'] = name dataframe = df[['food_name', 'primary_sn']] dataframe.insert(2, 'Weight', [grams]) dataframe.insert(3, 'Unit', [weight]) dataframe.insert(4, 'Amount', [amount]) meals.append(dataframe) nutrition_density_list.append(nutrition_density_normalized.values.tolist()) energy_density_list.append(energy_density.values.tolist()) meal_cals = meal_cals + calories1 budget = update_calorie_budgets(can_cals, item_type, budget) else: continue break if success or budget[item_type] < units_thr[item_type] or len(meals) >= max_meal_items: break if success or budget[item_type] < type_thr[item_type] or len(meals) >= max_meal_items: break if budget['all'] < inputs['item_thr'] or len(meals) >= max_meal_items: break if len(meals) >= max_meal_items: break types_list_no_duplicates = np.unique([x.values[0] for x in types]).tolist() for each_type in reversed(types_list_no_duplicates): each_score = (float(total_budget.get(each_type)) - float(budget.get(each_type))) / float( total_budget.get(each_type)) ind_score.append(each_score) uti_score.append(budget_weights.get(each_type)) if (len(ind_score) < len(item_types[meal_type])): ind_score.append(0.000001) uti_score.append(.35) if (min(ind_score) < 0.7) and (meal_type != 'snack'): extra_penalty = inputs.get('extra_penalty') else: extra_penalty = 0 if (len(meals)) > 4: meal_penalty_length = (len(meals) - 4) * inputs.get('meal_penalty_length') else: meal_penalty_length = 0 total_utilization = sum(x * y for x, y in zip(ind_score, uti_score)) / sum(uti_score) if len(meal_similarity_list) != len(set(meal_similarity_list)): meal_similarity_penalty = inputs.get('meal_similarity_penalty') else: meal_similarity_penalty = 0 nutrition_density_list = [float(x) for [x] in nutrition_density_list] try: avg_nutrition = round(mean(nutrition_density_list), 4) except: avg_nutrition = nutrition_density_list energy_density_list = [float(x) for [x] in energy_density_list] avg_energy = round(mean(energy_density_list), 4) penalty_score = 1 - meal_score / len(meals) nutrition_boost = avg_nutrition * inputs.get('nutrition_bonus') energy_boost = avg_energy * inputs.get('energy_bonus') if scoring.get('legacy'): score = total_utilization - ( penalty_score * inputs.get('penalty_weight')) - extra_penalty - meal_penalty_length elif scoring.get('legacy_nut'): score = total_utilization - (penalty_score * inputs.get( 'penalty_weight')) - extra_penalty - meal_penalty_length + nutrition_boost elif scoring.get('legacy_ene'): total_utilization - ( penalty_score * inputs.get('penalty_weight')) - extra_penalty - meal_penalty_length + energy_boost else: score = total_utilization - (penalty_score * inputs.get( 'penalty_weight')) - extra_penalty - meal_penalty_length + energy_boost + nutrition_boost return meals, score, meal_cals, ind_score, meal_penalty_length, avg_nutrition, avg_energy, meal_similarity_penalty, meal_similarity_list def build_meal_wrapper(): energy_density_listy = 0.0 meal_similarity_listy = [] nutrition_density_listy = [] meal_similarity_penaltyy = [] nutrition_density_listx = [] energy_density_listx = 0.0 meal_similarity_penaltyx = [] meal_similarity_listx = [] penalty_lengthy = [] # Builds and populates a scoreboard that sorts the meals based on their score x = -3 pd.set_option('precision', 2) max_iterations = inputs.get('max_iter') budget_weights = {**budget_weights_meals, **budget_weights_snacks_fruits_fat, **budget_weights_savoury_snacks, **budget_weights_sweets} budget_weights_list = [] for k, v in budget_weights.items(): budget_weights_list.append(v) score_tracker = -2 total_cals = 0 meals = {} user_meals_num = inputs.get('meals_num') user_snacks_num = inputs.get('snacks_num') filler = [] meal_types = ['breakfast', 'lunch', 'dinner'] for k in range(inputs.get('snacks_num')): meal_types.append('snack') features = filter_meals_by_features(user_params, df_noa) for meal_type in meal_types: bank = filter_meals_by_meal_type(features, meal_type) x += 1 scoreboard = {} for k in range(inputs.get('max_iter')): budgets_dynamic = update_budgets(inputs.get('total_cals'), inputs.get('meals_num'), inputs.get('snacks_num'), budget_weights_list) meal_budget = update_budgets(inputs.get('total_cals'), inputs.get('meals_num'), inputs.get('snacks_num'), budget_weights_list) if meal_type != 'snack': mealy, scorey, calsy, ut_scorey, penalty_lengthy, nutrition_density_listy, energy_density_listy, meal_similarity_penaltyy, meal_similarity_listy = build_meal( bank, meal_type, budgets_dynamic) if mealy and scorey and min(ut_scorey) > 0: scoreboard[meal_type] = mealy, scorey, calsy if scoreboard[meal_type][1] > score_tracker: score_tracker = scoreboard[meal_type][1] total_cals = scoreboard[meal_type][2] else: mealx, scorex, calsx, ut_scorex, penalty_lengthx, nutrition_density_listx, energy_density_listx, meal_similarity_penaltyx, meal_similarity_listx = build_meal( bank, meal_type, meal_budget) if mealx: scoreboard[ meal_type] = mealx, scorex, calsx, nutrition_density_listx, energy_density_listx, meal_similarity_penaltyx, meal_similarity_listx if scoreboard: meals[meal_type] = scoreboard[meal_type] for meal_name, whole_meal in scoreboard.items(): df = pd.concat(whole_meal[0]) df = pd.DataFrame(df.values.reshape(1, -1)) df['score'] = float(scoreboard[meal_type][1]) df['meal_cals'] = scoreboard[meal_type][2] if meal_name != 'snack': df['name'] = meal_name df['budget per meal'] = meal_budget.get('meal') df['meal budget utilization'] = (df['meal_cals'] / df['budget per meal']) df['average nutrtition'] = nutrition_density_listy df['average energy'] = energy_density_listy df['meal_similarity_penalty'] = meal_similarity_penaltyy df['meal_similarity_list'] = pd.Series([meal_similarity_listy]) df.set_index('name', drop=True, inplace=True) else: df['name'] = meal_name + " " + str(x) df['budget per snack'] = budgets_dynamic.get('snack') df['snack budget utilization'] = (df['meal_cals'] / df['budget per snack']) df['average nutrtition'] = nutrition_density_listx df['average energy'] = energy_density_listx df['meal_similarity_penalty'] = meal_similarity_penaltyx df['meal_similarity_list'] = pd.Series([meal_similarity_listx]) df.set_index('name', drop=True, inplace=True) if meal_name != 'snack': # rename all the budget as budget leftover so its carbs budget leftover etc. df['meal penalty length'] = penalty_lengthy df['carb budget per meal'] = int(meal_budget.get('Carbs')) df['carbs budget remaining'] = budgets_dynamic.get('Carbs') df['carb budget utilization'] = (meal_budget.get('Carbs') - budgets_dynamic.get( 'Carbs')) / meal_budget.get('Carbs') df['protein budget per meal'] = meal_budget.get('Protein') df['protein budget remaining'] = budgets_dynamic.get('Protein') df['protein budget utilization'] = (meal_budget.get('Protein') - budgets_dynamic.get( 'Protein')) / meal_budget.get('Protein') df['vegetable budget per meal'] = meal_budget.get('Vegetables') df['vegetable budget remaining'] = budgets_dynamic.get('Vegetables') df['vegetable budget utilization'] = (meal_budget.get('Vegetables') - budgets_dynamic.get( 'Vegetables')) / meal_budget.get('Vegetables') df['fat budget per meal'] = meal_budget.get('Fat_meal') df['fat budget remaining'] = budgets_dynamic.get('Fat_meal') df['fat budget utilization'] = (meal_budget.get('Fat_meal') - budgets_dynamic.get( 'Fat_meal')) / meal_budget.get('Fat_meal') else: if snacks.get('sweets') == "Yes": df['sweets budget per snack'] = meal_budget.get('Sweets') df['sweets budget remaining'] = budgets_dynamic.get('Sweets') df['sweets budget utilization'] = (meal_budget.get('Sweets') - budgets_dynamic.get( 'Sweets')) / meal_budget.get('Sweets') if snacks.get('Savoury_Snacks') == 'Yes': df['savoury budget per snack'] = meal_budget.get('Savoury_Snacks') df['savoury budget remaining'] = budgets_dynamic.get('Savoury_Snacks') df['savoury budget utilization'] = (meal_budget.get('Savoury_Snacks') - budgets_dynamic.get( 'Savoury_Snacks')) / meal_budget.get('Savoury_Snacks') if user_params.get('fruits') == 'No': df['fruits budget per snack'] = meal_budget.get('Fruits') df['fruits budget remaining'] = budgets_dynamic.get('Fruits') df['fruits budget utilization'] = (meal_budget.get('Fruits') - budgets_dynamic.get( 'Fruits')) / meal_budget.get('Fruits') df['fat budget per snack'] = meal_budget.get('Fat') df['fat budget remaining'] = budgets_dynamic.get('Fat') df['fat budget utilization'] = (meal_budget.get('Fat') - budgets_dynamic.get( 'Fat')) / meal_budget.get('Fat') filler.append(df) if meal_type == 'snack': user_snacks_num -= 1 else: user_meals_num -= 1 budgets_dynamic = update_budgets(float(inputs.get('total_cals') - total_cals), user_meals_num, user_snacks_num, budget_weights_list) df_meals = pd.concat(filler) df_final = df_meals.sort_values(by=['name', 'score'], ascending=[True, False]) df_final.rename(columns={0: "Item 1", 1: "Primary SN 1", 2: "Weight", 3: "Unit1", 4: "Amount1", 5: "Item 2", 6: "Primary SN 2", 7: "Weight", 8: "Unit2", 9: "Amount2", 10: "Item 3", 11: "Primary SN 3", 12: "Weight", 13: "Unit3", 14: "Amount3", 15: "Item 4", 16: "Primary SN 4", 17: "Weight", 18: "Unit4", 19: "Amount4"} , inplace=True) return df_final def displayMeal(data, mealType, items_meal_number, sncack_numbers, df_nutrition): menu = "" calories = 0 # hole day menu carbs = 0 protein = 0 fat = 0 if len(mealType) > 1: for meal in mealType: items, temp_calories, temp_carbs, temp_protein, temp_fat = getMeal(data, meal, items_meal_number, df_nutrition) calories += temp_calories menu = menu + items carbs = carbs + temp_carbs protein = protein + temp_protein fat = fat + temp_fat # one meal for the user else: menu, calories, carbs, protein, fat = getMeal(data, mealType[0], items_meal_number, df_nutrition) return menu, carbs, protein, fat snacks, calories_snack, carbs_temp, temp_protein, temp_fat = getSnack(data, sncack_numbers, df_nutrition) carbs = carbs + carbs_temp protein = protein + temp_protein fat = fat + temp_fat menu = menu + snacks calories += calories_snack menu = menu + "\n*סך הכל קלוריות -> " + str(round(calories, 2)) + '*' return menu, carbs, protein, fat def getMeal(data, meal_type, meal_items_nubmer, df_nutrition): # item[0]-> food name # item[1]-> serail number # item[2]-> unit # item[3]-> amount # item[4]-> Weight dic = {'breakfast': 'ארוחת בוקר', 'lunch': 'ארוחת צהריים', 'dinner': 'ארוחת ערב'} global temp_meal temp_meal = data[data.index == meal_type] index_number = 1 for index, row in temp_meal.iterrows(): if isinstance(row['Item 3'], str) and isinstance(row['Item 2'], str) and isinstance( row['Item 1'], str): temp_meal = temp_meal.head(index_number).tail(1) break index_number += 1 if len(temp_meal.index) > 1: temp_meal = temp_meal.head(1) items, items_number = get_items(temp_meal, meal_items_nubmer) protein, fat, carbs, calories = get_calories(df_nutrition, items) if items_number == 4: return "*" + dic[meal_type] + "*:\n1. " + buildItem(items['item1']) + "\n2. " + buildItem( items["item2"]) + "\n3. " + buildItem( items['item3']) + "\n4. " + buildItem( items['item4']) + "\nכמות קלוריות ->" + str(calories) + "\n\n", calories, carbs, protein, fat return "*" + dic[meal_type] + "*:\n1. " + buildItem(items['item1']) + "\n2. " + buildItem( items["item2"]) + "\n3. " + buildItem( items['item3']) + "\nכמות קלוריות ->" + str(calories) + "\n\n", calories, carbs, protein, fat def get_items(temp_meal, items_number): meal = {} items_number_temp = None for index in range(1, items_number + 1): item = temp_meal['Item ' + str(index)].iloc[0] if isinstance(item, str): items_number_temp = index meal['item' + str(index)] = [temp_meal['Item ' + str(index)].iloc[0], temp_meal['Primary SN ' + str(index)].iloc[0], temp_meal['Unit' + str(index)].iloc[0], int(temp_meal['Amount' + str(index)].iloc[0]), float(temp_meal['Weight'].values[0][index - 1])] else: break return meal, items_number_temp def getSnack(snackData, snack_number, df_nutrition): # get the line of each snack snack1 = snackData[snackData.index == "snack 1"] snack2 = snackData[snackData.index == "snack 2"] # get the items snack1_, x = get_items(snack1, snack_number) snack2_, y = get_items(snack2, snack_number) protein1, fat1, carb1, snack1_calories = get_calories(df_nutrition, snack1_) protein2, fat2, carb2, snack2_calories = get_calories(df_nutrition, snack2_) carb1 = int(carb1) protein1 = int(protein1) fat1 = int(fat1) snack1_calories = int(snack1_calories) carb2 = int(carb2) protein2 = int(protein2) fat1 = int(fat1) snack2_calories = int(snack2_calories) if snack_number == 2: return "*ארוחת ביניים 1*:\n1. " + buildItem(snack1_['item1']) + "\n2. " + buildItem( snack1_['item2']) + "\nכמות קלוריות -> " + str(snack1_calories) + "\n\n*ארוחת ביניים 2*:\n1." + buildItem( snack2_['item1']) + "\n2. " + buildItem( snack2_['item2']) + "\nכמות קלוריות -> " + str( snack2_calories) + "\n\n", snack1_calories + snack2_calories, carb1 + carb2, protein1 + protein2, fat1 + fat2 return "*ארוחת ביניים *:\n1. " + buildItem(snack1_['item1']) + "\n2. " + buildItem( snack2_['item1']) + "\nכמות קלוריות -> " + str( snack1_calories) + "\n", snack1_calories, carb1, protein1, fat1 def buildItem(item): if item[0] is not 'NaN' and item[2] is not 'Nan' and item[0] is not 'nan' and item[2] is not 'nan': item_temp = item[0] amount = str(item[4]) if ' ' in item[2]: unit_temp = item[2].split(' ')[0] else: unit_temp = item[2] if '.0' in amount: amount = amount[:amount.find('.')] return str(item[0]) + " " + str(item[3]) + " " + unitHebrew(item[2], item[ 3]) + ' (' + unit_temp + ' אחת -> ' + amount + ' גרם)' def unitHebrew(unit, amount): unit_dic = {"כף": 'כפות', "מנה": 'מנות', "יחידה קטנה": 'יחידות קטנות', "פרח": 'פרחים', "פרוסה בינונית": 'פרוסות בינונוית', "יחידה": 'יחידות', "כף גדושה": 'כפות גדושות', "פרוסה": 'פרוסות', "מנה קטנה": 'מנות קטנות', "יחידה בינונית": 'יחידות בינוניות', "כפית": 'כפיות', "כוס": 'כוסות', "כוס קצוץ": 'כוסות'} if unit not in unit_dic: return unit if amount > 1: unit_temp = unit_dic[unit].strip() if unit_temp.count(' ') == 1: return unit_temp unit_temp = unit_temp.replace(' ', '') unit_temp = unit_temp.replace(' ', '') unit_temp = unit_temp[:unit_temp.find('ת') + 1] + ' ' + unit_temp[unit_temp.find('ת') + 1:] # one word if unit_temp.count('ת') == 1: return unit_temp.strip() return unit_temp return unit def get_calories(df_nutrition, items): # calculating the cake diagram feature # 1 gram fat is 9 calories # 1 gram protein is 4 calories # 1 gram carb is 4 calories # item[0]-> food name # item[1]-> serail number # item[2]-> unit # item[3]-> amount # item[4]-> Weight CARBS_GRAMS_CALOIRES = 4 PROTEIN_GRAMS_CALOIRES = 4 FAT_GRAMS_CALOIRES = 9 carbs = 0 protein = 0 fat = 0 count = 1 for _, item in items.items(): item_serail_number = str(item[1]) nutritional_value = item[3] * (item[4] / 100) carbs_temp = df_nutrition[df_nutrition['smlmitzrach'] == item_serail_number]['carbs'].iloc[0] protein_temp = df_nutrition[df_nutrition['smlmitzrach'] == item_serail_number]['protein'].iloc[0] fat_temp = df_nutrition[df_nutrition['smlmitzrach'] == item_serail_number]['total_fat'].iloc[0] carbs += carbs_temp * nutritional_value protein += protein_temp * nutritional_value fat += fat_temp * nutritional_value count += 1 # calulate the Nutritional values of the meal carbs = int(carbs) protein = int(protein) fat = int(fat) calories = round(carbs * CARBS_GRAMS_CALOIRES + protein * PROTEIN_GRAMS_CALOIRES + fat * FAT_GRAMS_CALOIRES, 2) return protein, fat, carbs, calories def core_fun(meal_type, title=""): global snacks, user_params, units_thr, type_thr, budget_weights_meals, budget_weights_snacks_fruits_fat, budget_weights_savoury_snacks, budget_weights_sweets, inputs, display_user_parameter, debug global user_meals_num, total_cals, user_snacks_num, candidate_calories, scoring global df_noa, df_tzameret_food_group, df_weights, df_nutrition pd.set_option("display.precision", 2) warnings.filterwarnings("ignore") # Dictionary that is equivalent to user inputs and filters the df_noa Database based on the inputs user_params = {'eggs': 'No', # If eggs = Yes, filters out all the meals with eggs 'vegetables': 'No', # If vegetables = Yes, fiters out all meals with vegetables 'fruits': 'No', # If fruits = Yes, filters out all snacks and meals with fruits and snacks don't have fruits as a category 'dairy': 'No', # If dairy = Yes, filters out all the dairy items 'beef_chicken_fish': 'No', # If beef_chicken_fish = Yes, filters out all the meals with beef chicken or fish # For remaining if Yes, filters only the food its for (i.e if kosher = Yes, only shows kosher food) 'kosher': 'Yes', 'halal': 'Yes', 'vegetarian': 'No', 'vegan': 'No', 'ketogenic': 'No', 'paleo': 'No', 'mediterranean': 'No', 'lactose_free': 'No', 'gluten_free': 'No', 'milk_free': 'No', 'wheat_free': 'No', 'egg_free': 'No', 'soy_free': 'No', 'tree_nut_free': 'No', 'peanut_free': 'No', 'fish_free': 'No', 'shellfish_free': 'No'} # Dictionary to see if want to add certain snack elements to the snacks on the scoreboard snacks = {'sweets': 'No', 'Savoury_Snacks': 'Yes'} # Threshold for the build meal to stop looking for another item (If there are only 20 Carb calories left the meal exits the Carb code and moves to Protein): units_thr = {'Carbs': 25, 'Protein': 10, 'Vegetables': 10, 'Fat': 25, 'Fruits': 25, 'Sweets': 25, 'Savoury_Snacks': 25} # Another threshold for build meal to stop looking for another item in the category if there is less budget than the threshold: type_thr = {'Carbs': 25, 'Protein': 10, 'Vegetables': 10, 'Fat': 25, 'Fruits': 25, 'Sweets': 25, 'Savoury_Snacks': 25} # For snacks its either fruits and fat or savoury or sweets budget_weights_meals = {'Carbs': 0.4, 'Protein': 0.5, 'Vegetables': 0.2} budget_weights_snacks_fruits_fat = {'Fruits': 0.7, 'Fat': 0.4} budget_weights_savoury_snacks = {'Savoury_Snacks': 1.1} budget_weights_sweets = {'Sweets': 1.1} scoring = {'legacy': False, # legacy scoring system composed of budget utilization 'legacy_nut': True, # legacy scoring system with a bonus based on average nutritional density 'legacy_ene': False, # legacy scroing system with a bonus based on higher energy density 'legacy_nut_ene': False # legacy scoring system with a bonus based on nutrtion density and energy density with higher density the better } # User inputs that control different variables: inputs = {'for_noa_gid': 2106834268, # Gid that controls which for noa tab is shown, to switch just paste another Gid 'budget_var': 0.3, # Budget variable to see the weighting for snacks and individual meals 'item_thr': 4, # Threshold used to decided when to break code if there is less than 5 total budget left 'max_items_meal': 4, # Max amount of items per meal 'max_items_snack': 2, # Max amount of items per snack 'penalty_weight': 1, # Penalty weight for the meal score if the meal doesnt take the first option at the intersection of mida max amount meal 'nutrition_bonus': 0.1, # Bonus multiplier for the average nutrition density 'energy_bonus': 0.2, # Bonus multiplier for the average energy density 'meal_similarity_penalty': 0.3, # Penalty for having mutliple of the same category of meal items in the same meal 'max_iter': 7, # Number of meals for each meal type in the scoreboard 'meals_num': 3, # Number of different meal types and meals - will always be 3 'snacks_num': 2, # number of snacks in the final scoreboard 'meat_egg_same_day_penalty': 0.2, # Peanlty if the top meal has eggs or meat and another meal the same day also has eggs and meat 'extra_penalty': 0.2, # Penalty if there is less than 0.7 of each category for the budget is used 'meal_penalty_length': 0.1, # Penalty given if a meal is longer than 4 items and this is the weighting 'total_cals': 2000 # total calories in the budget for the day } debug = {'debug_en': True} # Used for finding bugs in code. Set to True for code to run properly # Toggle to show the user values in a DataFrame display_user_parameter = {'display_user_parameter': False} df_noa, df_tzameret_food_group, df_weights, df_nutrition = import_sheets(False) df_main = build_meal_wrapper() items, carbs, protein, fat = displayMeal(df_main, meal_type, inputs['max_items_meal'], inputs['max_items_snack'], df_nutrition) data = {'חלבון': protein, 'פחמימות': carbs, 'שומן': fat} items_temp = items.split('\n') items2 = '' for line in items_temp: if 'nan' not in line and 'nan nan nan' not in line: if 'ארוחת' in line or 'סך' in line: line = '\n' + line items2 += line + '\n' url = iniliatize_Diagram(title, data) return items, url def check_intent_key(tracker, max_iter=10): list_intents = [] check_intent = ['nutrition_meal_question', 'nutrition_many_xy_in_food'] index = 1 for event in tracker.events: if event.get("event") == "user": intent = event.get("parse_data").get("intent").get("name") list_intents.append(intent) if index == max_iter: break for intent in reversed(list_intents): if intent in check_intent: return intent return '' # ------------------------------------------------------------------ class OtherOptions(Action): def name(self) -> Text: return "action_nutrition_other_options" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: intents_dict = {"nutrition_many_xy_in_food": "action_nutrition_many_xy_in_food", "nutrition_meal_question": "action_nutrition_meal_question"} next_action = None previous_intent = None intent = check_intent_key(tracker) if intent == 'nutrition_meal_question': previous_intent = intent next_action = intents_dict[previous_intent] if intent == 'nutrition_many_xy_in_food': previous_intent = intent next_action = intents_dict[previous_intent] return [FollowupAction(next_action), SlotSet("previous_intent", previous_intent)] # ------------------------------------------------------------------ class Actionnutritionalvalues(Action): def name(self) -> Text: return "action_nutritional_values_food" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() prediction = tracker.latest_message entity = prediction['entities'][0]['value'] # db_dict = load_db_googleSheet(0x13) db_dict = get_tables('0x13') dietary_fiber_dict = {'food_energy': ['אנרגיה', 'קלוריות'], 'total_fat': ['שומן', 'גרם'], 'carbohydrates': ['פחמימות', 'גרם'], 'protein': ['חלבון ', 'גרם'], 'total_sugars': ['סוכר', 'גרם'], 'iron': ['ברזל', 'מ"ג'], 'calcium': ['סידן', 'מ"ג'], 'sodium': ['נתרן ', 'מ"ג'], 'total_dietary_fiber': ['סיבים תזונתיים', 'גרם'], 'vitamin_c': ['ויטמין סי', 'מ"ג'], 'vitamin_b12': ['ויטמין בי 12', 'מק"ג']} db_df = db_dict['tzameret'] entity_name = db_dict['common_food'][db_dict['common_food'].index == entity]['shmmitzrach'].iloc[0] res = '*ערכים תזונתיים של ' + entity_name + ' ל100 גרם ' + ':*\n' smlmitzrach_number = int( db_dict['common_food'][db_dict['common_food'].index == entity]['smlmitzrach'].iloc[0]) values = db_df[db_df['smlmitzrach'] == str(smlmitzrach_number)].iloc[0] for dietary, list in dietary_fiber_dict.items(): value = values[dietary] res += '- ' + list[0] + ': ' + str(round(value, 1)) + ' ' + list[1] + '\n' res = res_timer(res, tracker) except Exception as e: res = 'אין לי מושג כמה, מצטער!' res = res_error(res, tracker, e) dispatcher.utter_message(res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class Actionnutritionmanyxyinfood(Action): def name(self) -> Text: return "action_nutrition_many_xy_in_food" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: user_intent = tracker.latest_message.get('intent').get('name') db_dict = load_db_googleSheet(0x3) # db_dict = get_tables('0x3') lut = db_dict['lut'] tzameret = db_dict['tzameret'] user_msg = tracker.latest_message.get('text') count = 1 iteation_count = 1 index = 1 food_groups_numbers_tzameret_dict = {} start = 0 number_of_food = 35 food_list_babies = ['מטרנה', 'סימילק', 'תמ"ל', 'תמ"י', 'תמל', 'תמי', 'סימילאק', 'אבקה'] # get the indexes of the foods for serail in tzameret['smlmitzrach']: index += 1 if iteation_count == 1: start = index iteation_count += 1 else: serail_temp = int(serail) serail_temp += 1 serail_temp = str(serail_temp) if serail_temp[0] != str(count): end = index food_groups_numbers_tzameret_dict[count] = [start, end] count += 1 iteation_count = 1 if serail_temp[0] == 8 or serail_temp[0] == 9: break try: if user_intent != "nutrition_many_xy_in_food": x = tracker.get_slot('x') if tracker.get_slot('x') else None nut1_temp = x[0] nut2_temp = x[1] else: prediction = tracker.latest_message entity = prediction['entities'][0]['value'] # get the entity from the question if entity is None: if 'יש' in user_msg: entity = user_msg[user_msg.find('יש') + 2:] if 'הרבה' in user_msg: entity = user_msg[user_msg.find('הרבה') + 4:] for r in (("יש", ""), ("הרבה", ""), ("וגם", ""), (" ", " "), ("בהם", "")): entity = entity.replace(*r).strip() if ' ' in entity: entity = entity.replace(' ', ' ') if entity.count(' ') > 1: list = entity.split(' ') if 'ויטמין' == list[0]: nut1 = list[0] + ' ' + list[1] nut2 = list[2] if 'ויטמין' == list[1]: nut1 = list[1] + ' ' + list[2] nut2 = list[0] else: nut1, nut2 = entity.split(' ') if nut2[0] == 'ו': nut2 = nut2[1:] nut1_temp = nut1.strip() nut2_temp = nut2.strip() # get the entity in english nut1 = lut[lut.index == nut1_temp]['Entity'].values[0] nut2 = lut[lut.index == nut2_temp]['Entity'].values[0] tzameret = tzameret[['shmmitzrach', nut1, nut2]] df = [] for i in range(1, len(food_groups_numbers_tzameret_dict) + 1): for j in range(1, number_of_food): index_temp = random.randint(food_groups_numbers_tzameret_dict[i][0], food_groups_numbers_tzameret_dict[i][1]) db_food_temp = tzameret[tzameret.index == index_temp] item_name = db_food_temp['shmmitzrach'].iloc[0] if any(x in item_name for x in food_list_babies): continue else: nut1_value = db_food_temp[nut1].values[0] nut2_value = db_food_temp[nut2].values[0] if nut1_value != 0 and nut2_value != 0: db_food_temp.insert(3, 'sum', db_food_temp[nut1].values[0] + db_food_temp[nut2].values[0]) df.append(db_food_temp) db_food = pd.concat(df) db_food = db_food.drop_duplicates(subset='shmmitzrach') db_food_nut1 = db_food.sort_values(by=[nut1], ascending=False).head(5) db_food_nut2 = db_food.sort_values(by=[nut2], ascending=False).head(5) db_food_nut1_nut2 = db_food.sort_values(by=['sum'], ascending=False).head(5) res1 = ' במאכלים הבאים יש הרבה ' + nut1_temp + '\n' res2 = ' במאכלים הבאים יש הרבה ' + nut2_temp + '\n' res3 = ' במאכלים הבאים יש הרבה ' + nut1_temp + ' ו' + nut2_temp + '\n' res1 += getcolums_FromDataFrame(db_food_nut1, 'shmmitzrach') res2 += getcolums_FromDataFrame(db_food_nut2, 'shmmitzrach') res3 += getcolums_FromDataFrame(db_food_nut1_nut2, 'shmmitzrach') res = res1 + '\n\n' + res2 + '\n\n' + res3 res = res_timer(res, tracker) except Exception as e: res = "אין לי מושג כמה, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(res) return [SlotSet("x", [nut1_temp, nut2_temp]), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class Actionhowmanyxyinz(Action): def name(self) -> Text: return "action_nutrition_howmanyxyinz" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() user_msg = tracker.latest_message.get('text') two_nutrient = None z = None # db_dict = load_db_googleSheet(0x293) db_dict = get_tables('0x293') prediction = tracker.latest_message two_nutrient = prediction['entities'][0]['value'] x, y = two_nutrient.split(' ו') x = x.strip() y = y.strip() regex_res = re.search('כמה (.*) יש ב(.*)', user_msg.replace('?', '')) if regex_res: if two_nutrient is None: x, y = regex_res.group(1) x = x.strip() y = y.strip() z = regex_res.group(2) regex_res = re.search('כמה (.*) ב(.*)', user_msg.replace('?', '')) if regex_res: if two_nutrient is None: x, y = regex_res.group(1) x = x.strip() y = y.strip() z = regex_res.group(2) regex_res = re.search('מה הכמות של (.*) ב(.*)', user_msg.replace('?', '')) if regex_res: if two_nutrient is None: x, y = regex_res.group(1) x = x.strip() y = y.strip() z = regex_res.group(2) y = y[:len(y)] # get the units from the user message user_msg_temp = user_msg[user_msg.find(two_nutrient) + len(two_nutrient) + 1:len(user_msg)].replace('?', '') food1_units = "100 גרם" regex_units_res1 = re.search('ב(.*) של', user_msg_temp) regex_units_res2 = re.search(' (.*) של', user_msg_temp) if regex_units_res1: food1_units = regex_units_res1.group(1) elif regex_units_res2: food1_units = regex_units_res2.group(1) if food1_units in db_dict['food_units_aliases']['Unit Alias'].values: food1_units = db_dict['food_units_aliases'][db_dict['food_units_aliases']['Unit Alias'] == food1_units][ 'Zameret unit'].values[0] val1, res1 = how_many_x_in_y_core(x, z, food1_units, self.name(), tracker) val2, res2 = how_many_x_in_y_core(y, z, food1_units, self.name(), tracker) res1 = checkDoublePattern(res1, 'קלוריות') res2 = checkDoublePattern(res2, 'קלוריות') res1 = checkPrecentinres(res1, x) res2 = checkPrecentinres(res2, y) res = '' res += res1 res += "\n" res += res2 res = res_timer(res, tracker) except Exception as e: res = "אין לי מושג כמה, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class Actioncompartiontwofoods(Action): def name(self) -> Text: return "action_nutrition_compare_foods" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() user_msg = tracker.latest_message.get('text') entities = tracker.latest_message.get('entities') x = None y1 = None y2 = None more_or_less = 'יותר' if 'יותר' in user_msg else 'פחות' # db_dict = load_db_googleSheet(0x293) db_dict = get_tables('0x293') for ent in entities: if ent['entity'] in db_dict['lut']["action_nutrition_compare_foods"].values: x = ent['value'] elif ent['entity'] in db_dict['lut']["action_nutrition_compare_foods"].values: y1, y2 = ent['value'].split('או') y1 = y1.strip() y2 = y2.strip() y1, y2 = user_msg[user_msg.find(x) + len(x):len(user_msg)].replace('?', '').split(' או ') y1 = y1.strip() y2 = y2.strip() if '-' in user_msg: y1 = y1[2:] else: y1 = y1[1:] if 'בב' in y1 or (y1[0] == 'ב' and y1[1] != 'ב' and 'בשר' not in y1): y1 = y1[1:len(y1)] if 'בב' in y2 or (y2[0] == 'ב' and y2[1] != 'ב' and 'בשר' not in y2): y2 = y2[1:len(y2)] if not y1 or not y2: regex_res = re.search('במה יש (פחות|יותר) .* ב(.*)', user_msg.replace('?', '')) if regex_res: more_or_less = regex_res.group(1) y1, y2 = regex_res.group(2).split('או') y1 = y1.strip() y2 = y2.strip() food1_units = "100 גרם" food2_units = "100 גרם" for k, y in enumerate([y1, y2]): regex_units_res = re.search('(.*) של (.*)', y) if regex_units_res: if k == 0: food1_units = regex_units_res.group(1) y1 = regex_units_res.group(2) else: food2_units = regex_units_res.group(1) y2 = regex_units_res.group(2) if food1_units in db_dict['food_units_aliases']['Unit Alias'].values: food1_units = \ db_dict['food_units_aliases'][db_dict['food_units_aliases']['Unit Alias'] == food1_units][ 'Zameret unit'].values[0] if food2_units in db_dict['food_units_aliases']['Unit Alias'].values: food2_units = \ db_dict['food_units_aliases'][db_dict['food_units_aliases']['Unit Alias'] == food2_units][ 'Zameret unit'].values[0] val1, res1 = how_many_x_in_y_core(x, y1, food1_units, self.name(), tracker) val2, res2 = how_many_x_in_y_core(x, y2, food1_units, self.name(), tracker) res1 = checkDoublePattern(res1, 'קלוריות') res2 = checkDoublePattern(res2, 'קלוריות') ys = (y1, y2) vals = (val1, val2) res = 'ב%s יש %s %s' % (ys[np.argmax(vals) if more_or_less == 'יותר' else np.argmin(vals)], more_or_less, x) if 'ב ב' in res and 'בבשר' not in res: res = res[1:] res += "\n" res += res1 res += "\n" res += res2 res = res_timer(res, tracker) except Exception as e: res = "אין לי מושג כמה, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class Actionwhataboutx(Action): def name(self) -> Text: return "action_nutrition_and_what_about_x" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: # get the right actions according to the intent intens_dict = {"nutrition_howmanyxiny": "action_nutrition_howmanyxiny", "nutrition_meal_question": "action_nutrition_meal_question", "nutrition_is_food_healthy": "action_nutrition_is_food_healthy", "nutrition_get_rda": "action_nutrition_get_rda", "nutrition_get_upper_limit": "action_nutrition_get_rda"} user_messge = tracker.latest_message.get('text') previous_intent = tracker.get_slot('previous_intent') entity_value = None slot = "x" next_action = intens_dict[previous_intent] # meal question if previous_intent == "nutrition_meal_question": return [FollowupAction(next_action), SlotSet(slot, user_messge), SlotSet('previous_intent', 'nutrition_and_what_about_x')] # ------------------------------------------------ entity = None entity_value = None # db_dict = load_db_googleSheet(0x2) db_dict = get_tables('0x2') lut_df = db_dict['lut'] nutrients = lut_df['Entity'].head(79) # check if rasa detect the entity if len(tracker.latest_message.get('entities')) != 0: prediction = tracker.latest_message entity_value = prediction['entities'][0]['value'] entity = prediction['entities'][0]['entity'] if entity_value is None: if 'ברזל' in user_messge: entity_value = 'ברזל' entity = 'nutrient' elif user_messge[0] == 'ו' and user_messge[1] != 'ב': entity_value = user_messge[1:] else: entity_value = user_messge[2:] if entity_value is None or entity_value == "": entity_value = user_messge # how many x in y if previous_intent == "nutrition_howmanyxiny": # rasa succeed to detect the entity if entity is not None: if entity == 'nutrient': slot = "x" else: slot = "y" # the entity value is taken from the user message else: if entity_value in nutrients: slot = "x" else: slot = "y" return [FollowupAction(next_action), SlotSet(slot, entity_value), SlotSet('previous_intent', 'nutrition_and_what_about_x')] return [FollowupAction(next_action), SlotSet(slot, entity_value)] except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class ActionWhatXCanBeInY(Action): def name(self) -> Text: return "action_nutrition_what_xcanbeiny" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() negative_words_list = ['ללא', 'לא', 'בלי', 'וללא'] entities_temp = {} meal = "" # db_dict = load_db_googleSheet(0x402) db_dict = get_tables('0x402') lut = db_dict['lut'] df_noa = db_dict['food_units_features'] message = tracker.latest_message.get('text') # get the meal type if 'בוקר' in message: meal = "IL_Breakfast" if 'צהריים' in message or 'צהרים' in message: meal = "IL_Lunch" if 'ערב' in message: meal = 'IL_Dinner' # get the entity value from the bot prediction = tracker.latest_message entities_list = prediction['entities'] if len(entities_list) == 1: entity = entities_list[0]['value'] if ' ' not in entity: entities = [entity] filter_type = any(ele in message for ele in negative_words_list) for index, ent in enumerate(entities): entities_temp[index] = fliter_type(ent, lut, filter_type) else: entities_temp = get_entity_filters(entity, negative_words_list, lut) else: for index in range(len(entities_list)): entity = entities_list[index]['value'] entities_temp_2 = get_entity_filters(entity, negative_words_list, lut) entities_temp.update(entities_temp_2) # get the food accroding to the user selection items = df_noa.loc[df_noa[meal] == 'Yes'] for key, value in entities_temp.items(): items = items.loc[items[value[0]] == value[1]] # get the items by ranmdom 5 of them indeX = items.index.tolist() res = "" for i in range(1, 7): temp = random.randint(0, len(items) - 1) res += str(i) + ". " + str(items[items.index == indeX[temp]]['Food_Name'].values[0]) + "\n" res = res_timer(res, tracker) dispatcher.utter_message(text=res) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class ActionMealQuestion(Action): def name(self) -> Text: return "action_nutrition_meal_question" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() meal = [] previous_intent = "" message = None words = ['בוקר', 'צהריים', 'ערב', 'יומי', 'יום', 'תפריט'] user_intent = tracker.latest_message.get('intent').get('name') if user_intent != "nutrition_meal_question": x = tracker.get_slot('x') if tracker.get_slot('x') else None if x is not None: if tracker.get_slot('previous_intent') == "nutrition_other_options" and any( ele in string for ele in words): message = x else: message = tracker.latest_message.get('text') if tracker.latest_message.get('text') else None title = '' if message is None: # get the message from the user in the meal action message = tracker.get_slot('x') if tracker.get_slot('x') else None if message is not None: if 'בוקר' in message: meal = ['breakfast'] title = 'ארוחת בוקר' elif 'צהריים' in message or 'צהרים' in message: meal = ['lunch'] title = 'ארוחת צהריים' elif 'ערב' in message: meal = ['dinner'] title = 'ארוחת ערב' elif 'יומי' in message or 'תפריט' in message or 'יום' in message or 'תפריט' in message: meal = ['breakfast', 'lunch', 'dinner'] title = 'תפריט יומי' res, url = core_fun(meal, title) res = res_timer(res, tracker) dispatcher.utter_message(text="%s" % res, image=url) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", title), SlotSet("y", None), SlotSet("previous_intent", "nutrition_meal_question")] # ------------------------------------------------------------------ class ActionTimer(Action): def name(self) -> Text: return "action_timer" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: timer_state_str = "n/a" for ent in tracker.latest_message.get('entities'): if ent['entity'] == 'timer_state': timer_state_str = ent['value'] break if tracker.latest_message.get('intent').get('name') == 'timer_start': timer_state_str = 'on' dispatcher.utter_message(text="מצב הטיימר עודכן בהצלחה (%s)" % timer_state_str) return [SlotSet("timer_state", timer_state_str)] # ------------------------------------------------------------------ class ActionSimpleQuestion(Action): def name(self) -> Text: return "action_simple_question" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() # db_dict = load_db_googleSheet(0x6) db_dict = get_tables('0x6') lut_df = db_dict['lut'] user_intent = tracker.latest_message.get('intent').get('name') simple_entity = None for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name()].values and ent['value'] in lut_df['Entity']: simple_entity = ent['value'] res = simpleQuestionAnswer(tracker, simple_entity, db_dict, user_intent) res = res_timer(res, tracker) dispatcher.utter_message(text="%s" % res) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class ActionGetRDAQuestion(Action): def name(self) -> Text: return "action_nutrition_get_rda" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() user_intent = tracker.latest_message.get('intent').get('name') intent_upper = user_intent == 'nutrition_get_upper_limit' previous_intent = tracker.get_slot('previous_intent') if tracker.get_slot('previous_intent') else None if previous_intent == "nutrition_get_upper_limit" or previous_intent == "nutrition_get_rda": intent = previous_intent else: intent = user_intent rda_val, rda_units, rda_text, rda_status, nutrient, image = get_rda(self.name(), tracker, intent_upper) if rda_val > 0: intent_upper_str = "המקסימלית" if intent_upper else "המומלצת" res = "הקצובה היומית %s של %s %s היא\r %.2f %s" % \ (intent_upper_str, nutrient, get_personal_str(rda_status, tracker), rda_val, rda_units) res += "\r" res += rda_text if rda_text else "" else: if rda_text: res = rda_text else: res = "אין לי מושג, מצטער!" res = res_timer(res, tracker) dispatcher.utter_message(text="%s" % res, image=image) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("previous_intent", intent), SlotSet("x", ""), SlotSet("y", "")] # ------------------------------------------------------------------ class ActionNutritionHowManyXinY(Action): def name(self) -> Text: return "action_nutrition_howmanyxiny" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() db_dict = get_tables('0x293') # db_dict = load_db_googleSheet(0x293) df_tzameret_food_group = pd.read_csv( "https://docs.google.com/spreadsheets/d/19rYDpki0jgGeNlKLPnINiDGye8QEfQ4IEEWSkLFo83Y/export?format=csv&gid=428717261") db_df = db_dict['tzameret'] lut_df = db_dict['lut'] common_df = db_dict['common_food'] units_df = db_dict['food_units'] units_aliases_df = db_dict['food_units_aliases'] y = None x = None user_msg = tracker.latest_message.get('text') user_intent = tracker.latest_message.get('intent').get('name') intent_upper = user_intent == 'nutrition_get_upper_limit' # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- # Fetch X and Y (from slots, from entities or from regex): if tracker.get_slot('previous_intent') == 'nutrition_and_what_about_x': x = tracker.get_slot('x') if tracker.get_slot('x') else None if tracker.latest_message.get('entities') or tracker.get_slot('y'): y = tracker.get_slot('y') if tracker.get_slot('y') else None name_xy = self.name() + "_x" for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name() + "_x"].values: x = ent['value'] name_xy = self.name() + "_x" elif ent['entity'] in lut_df[self.name() + "_y"].values: y = ent['value'] name_xy = self.name() + "_y" regex_res = re.search('כמה (.*) יש ב(.*)', user_msg.replace('?', '')) if regex_res: x = regex_res.group(1) y = regex_res.group(2).strip() if not y: regex_res = re.search('.* ב(.*)', user_msg.replace('?', '')) if regex_res: y = regex_res.group(1).strip() if not y or not x: user_msg_temp = user_msg[user_msg.find('כמה') + 3:] regex_res = re.search('(.*) ב(.*)', user_msg_temp.replace('?', '')) if regex_res: x = regex_res.group(1).strip() y = regex_res.group(2).strip() food_units = "גרם" regex_units_res = re.search('(.*) של (.*)', y) if y else None if regex_units_res: food_units = regex_units_res.group(1) y = regex_units_res.group(2) if food_units in units_aliases_df['Unit Alias'].values: food_units = units_aliases_df[units_aliases_df['Unit Alias'] == food_units]['Zameret unit'].values[ 0] # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- y_common = y if y in common_df.index: y_common = common_df[common_df.index == y]['shmmitzrach'][0] else: y_food = ' '.join(y.split(' ')[1:]) food_units = units_aliases_df[units_aliases_df['Unit Alias'] == y.split(' ')[0]]['Zameret unit'] if food_units.empty: food_units = y.split(' ')[0] else: food_units = food_units.values[0] if y_food in common_df.index: y_common = common_df[common_df.index == y_food]['shmmitzrach'][0] else: y_common = y_food food = db_df[db_df['shmmitzrach'].str.contains(y_common)].iloc[0, :] feature = lut_df[lut_df.index == x]["Entity"][0] units = lut_df[lut_df.index == x]["Units"][0] first_digit_in_smlmitzrach = int(food['smlmitzrach'][0]) mida = \ df_tzameret_food_group[df_tzameret_food_group['ספרה ראשונה בקוד'] == first_digit_in_smlmitzrach].iloc[ 0][ 'mida_maxAmount_meal'] mida = re.sub('_[123456789]', '', mida) mida = mida.replace(' ', '') mida = mida.split(',') units_df = units_df[units_df['smlmitzrach'] == int(food['smlmitzrach'])] shmmida = '' mishkal = '' for i in mida: if int(i) in units_df['mida'].values: shmmida = units_df[units_df['mida'] == int(i)]['shmmida'].iloc[0] mishkal = units_df[units_df['mida'] == int(i)]['mishkal'].iloc[0] food_units_factor = int(mishkal) / 100 fat_calories = round(food['total_fat'] * food_units_factor, 2) protein_calories = round(food['protein'] * food_units_factor, 2) carbs_calories = round(food['carbohydrates'] * food_units_factor, 2) data = {'חלבון': protein_calories, 'פחמימה': carbs_calories, 'שומן': fat_calories} if x == 'קלוריות': val = fat_calories * 9 + protein_calories * 4 + carbs_calories * 4 else: val = food[feature] * food_units_factor val = round(val, 2) food_units = "גרם" mishkal = int(mishkal) res = 'ב' + shmmida + ' (' + str(int(mishkal)) + ' ' + food_units + ')' + ' של ' + y_common + ' יש ' mishkal = int(mishkal) mishkal = str(mishkal) mishkal = mishkal[::-1] title = 'ב' + shmmida + ' )' + mishkal + ' ' + food_units + '(' + ' של ' + y_common + ' יש ' title = title[:title.find(',')] res += str(val) + ' ' + units + ' ' + x rda_val, rda_units, rda_text, rda_status, nutrient, x_1 = get_rda(name_xy, tracker, intent_upper) if rda_val > 0 and units not in ['יחב"ל']: rda = 100 * float(val) / rda_val intent_upper_str = "המקסימלית" if intent_upper else "המומלצת" res += "\r" res += "שהם כ-%d אחוז מהקצובה היומית %s %s" % ( int(rda), intent_upper_str, get_personal_str(rda_status, tracker)) res += "\r" res += rda_text if rda_text else "" res = checkDoublePattern(res, 'קלוריות') res = res_timer(res, tracker) res = checkPrecentinres(res, x) if ' ' in y.strip(): title = 'ב' + y else: title = re.sub('[1234567890%)(]', '', title) title = title.replace('גרם', '') title = title.replace('גרמים', '') title = title.replace('יש', '') title = title[title.find('של') + 2:] title = re.sub(' ', '', title) title = title.strip() title = 'ב' + title title = title.strip() url = iniliatize_Diagram(title, data) dispatcher.utter_message(text="%s" % res, image=url) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", x), SlotSet("y", y), SlotSet("previous_intent", "nutrition_howmanyxiny")] # ------------------------------------------------------------------ class ActionIsFoodHealthyQuestion(Action): def name(self) -> Text: return "action_nutrition_is_food_healthy" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() # db_dict = load_db_googleSheet(0x33) db_dict = get_tables('0x33') db_df = db_dict['tzameret'] lut_df = db_dict['lut'] common_df = db_dict['common_food'] food_ranges_df = db_dict['food_ranges'] food = "" food_entity = "" x = tracker.get_slot('x') if tracker.get_slot('x') else None if x is not None and x is not "": food = x food_entity = x else: for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name()].values: food_entity = ent['value'] food = food_entity break if food in common_df.index: food = common_df[common_df.index == food]['shmmitzrach'][0] food = db_df[db_df['shmmitzrach'].str.contains(food)].iloc[0, :] _, nutrition_density_res = get_food_nutrition_density(food, food_ranges_df) advantages = [] disadvantages = [] for idx, row in food_ranges_df.iterrows(): if row["tzameret_name"]: if row["good_or_bad"] == "good": value = float(food[row["tzameret_name"]]) if idx == "Protein": threshold = 250 else: threshold = float(row["Medium - threshold per 100gr"]) if value > threshold: advantages.append(row["hebrew_name"]) elif row["good_or_bad"] == "bad": value = float(food[row["tzameret_name"]]) if idx == "Protein": threshold = 250 else: threshold = float(row["High - threshold per 100gr"]) if value > threshold: disadvantages.append(row["hebrew_name"]) nutrition_density_normalized = float(food["Nutrition density normalized"]) if nutrition_density_res == "low": res = "ב%s יש צפיפות תזונתית (רכיבים תזונתיים טובים ביחס לקלוריות) נמוכה" % food_entity elif nutrition_density_res == "med": res = "ב%s יש צפיפות תזונתית (רכיבים תזונתיים טובים ביחס לקלוריות) בינונית" % food_entity elif nutrition_density_res == "high": res = "ב%s יש צפיפות תזונתית (רכיבים תזונתיים טובים ביחס לקלוריות) גבוהה" % food_entity if disadvantages: res += ". " res += "החסרונות של %s הם הרבה %s" % (food_entity, ", ".join(disadvantages)) if advantages: res += ". " res += "היתרונות של %s הם הרבה %s" % (food_entity, ", ".join(advantages)) res = res_timer(res, tracker) dispatcher.utter_message(text="%s" % res) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("previous_intent", "nutrition_is_food_healthy"), SlotSet("x", ""), SlotSet("y", "")] # ------------------------------------------------------------------ class ActionWhatIsHealthierQuestion(Action): def name(self) -> Text: return "action_nutrition_what_is_healthier" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() # db_dict = load_db_googleSheet(0x33) db_dict = get_tables('0x33') db_df = db_dict['tzameret'] lut_df = db_dict['lut'] common_df = db_dict['common_food'] food_ranges_df = db_dict['food_ranges'] user_msg = tracker.latest_message.get('text') food_entity1 = None food_entity2 = None for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name() + "_x"].values: food_entity1 = ent['value'] elif ent['entity'] in lut_df[self.name() + "_y"].values: food_entity2 = ent['value'] if not food_entity2: regex_res = re.search('.* או (.*)', user_msg.replace('?', '')) if regex_res: food_entity2 = regex_res.group(1).strip() nutrition_density_cmp = [] advantages_cmp = [] disadvantages_cmp = [] for food_entity in (food_entity1, food_entity2): food = food_entity if food in common_df.index: food = common_df[common_df.index == food]['shmmitzrach'][0] food = db_df[db_df['shmmitzrach'].str.contains(food)].iloc[0, :] nutrition_density, _ = get_food_nutrition_density(food, food_ranges_df) advantages = [] disadvantages = [] for idx, row in food_ranges_df.iterrows(): if row["tzameret_name"]: if row["good_or_bad"] == "good": value = float(food[row["tzameret_name"]]) if idx == "Protein": threshold = 250 else: threshold = float(row["Medium - threshold per 100gr"]) if value > threshold: advantages.append(row["hebrew_name"]) elif row["good_or_bad"] == "bad": value = float(food[row["tzameret_name"]]) if idx == "Protein": threshold = 250 else: threshold = float(row["High - threshold per 100gr"]) if value > threshold: disadvantages.append(row["hebrew_name"]) nutrition_density_cmp.append(float(food["Nutrition density normalized"])) if disadvantages: res_temp = '*החסרונות של ' + food_entity + '*\n' res_temp += "%s" % (", ".join(disadvantages)) disadvantages_cmp.append(res_temp + '\n\n') if advantages: res_temp = '*היתרונות של ' + food_entity + '*\n' res_temp += "%s" % (", ".join(advantages)) advantages_cmp.append(res_temp + '\n\n') if nutrition_density_cmp[0] > nutrition_density_cmp[1]: res_temp = "לפי צפיפות תזונתית %s עדיף על פני %s\r" % (food_entity1, food_entity2) elif nutrition_density_cmp[0] < nutrition_density_cmp[1]: res_temp = "לפי צפיפות תזונתית %s עדיף על פני %s\r" % (food_entity2, food_entity1) else: res_temp = "לפי צפיפות תזונתית %s ו-%s שקולים\r" % (food_entity1, food_entity2) if nutrition_density_cmp[0] < nutrition_density_cmp[1]: advantages_cmp.reverse() disadvantages_cmp.reverse() res = res_temp res += '\n\n\n' for advantage in advantages_cmp: if advantage: res += "%s\n\r" % advantage for disadvantage in disadvantages_cmp: if disadvantage: res += "%s\n\r" % disadvantage res = res_timer(res, tracker) dispatcher.utter_message(text="%s" % res) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class ActionWhatIsRecommendedQuestion(Action): def name(self) -> Text: return "action_nutrition_is_food_recommended" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() # db_dict = load_db_googleSheet(0x3b) db_dict = get_tables('0x3b') db_df = db_dict['tzameret'] lut_df = db_dict['lut'] food_qna_df = db_dict['food_qna'] common_df = db_dict['common_food'] food_ranges_df = db_dict['food_ranges'] for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name()].values: food_entity = ent['value'] break food = food_entity if food in common_df.index: food = common_df[common_df.index == food]['shmmitzrach'][0] food = db_df[db_df['shmmitzrach'].str.contains(food)].iloc[0, :] _, nutrition_density_res = get_food_nutrition_density(food, food_ranges_df) _, nutrition_energy_res = get_food_energy_density(food, food_ranges_df) description_density_row = food_qna_df[(food_qna_df.index == nutrition_density_res) & (food_qna_df.energy_density == nutrition_energy_res)] res = description_density_row['description_density'].values[0] res = res.replace('var#food', food_entity) res = res_timer(res, tracker) dispatcher.utter_message(text="%s" % res) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class ActionEatBeforeTrainingQuestion(Action): def name(self) -> Text: return "action_eat_before_training" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() # db_dict = load_db_googleSheet(0x10) db_dict = get_tables('0x10') custom_df = db_dict['common_food'] user_intent = tracker.latest_message.get('intent').get('name') training_type = tracker.get_slot("training_type") training_duration = tracker.get_slot("training_duration") if training_type == 'ריצת אינטרוולים': if training_duration: res = custom_df['Entity'][training_type + ' מעל ' + training_duration][0] else: res = custom_df['Entity'][training_type][0] res = res_timer(res, tracker) dispatcher.utter_message(text="%s" % res) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class ActionBloodtestGenericQuestion(Action): def name(self) -> Text: return "action_nutrition_bloodtest_generic" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() # db_dict = load_db_googleSheet(0x102) db_dict = get_tables('0x102') lut_df = db_dict['lut'] bloodtest_df = db_dict['bloodtest_vals'] for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name()].values: bloodtest_entity = ent['value'] break feature = db_dict['lut']['Entity'][bloodtest_entity] gender_str = "Male" if tracker.get_slot('gender') == "זכר": gender_str = "Male" elif tracker.get_slot('gender') == "נקבה": gender_str = "Female" age = float(tracker.get_slot('age') if tracker.get_slot('age') else "40") bloodtest_row = bloodtest_df[(bloodtest_df['Element'] == feature) & \ ((bloodtest_df['Gender'] == "ANY") | ( bloodtest_df['Gender'] == gender_str)) & \ ((bloodtest_df['Age min'] == "ANY") | ( bloodtest_df['Age min'].replace('ANY', -1).astype(float) <= age)) & \ ((bloodtest_df['Age Max'] == "ANY") | ( bloodtest_df['Age Max'].replace('ANY', -1).astype(float) > age))] bloodtest_type = int(bloodtest_row['Graph type'].values[0]) bloodtest_min = bloodtest_row['Min'].values[0] bloodtest_thr1 = bloodtest_row['Threshold 1'].values[0] bloodtest_thr2 = bloodtest_row['Threshold 2'].values[0] bloodtest_max = bloodtest_row['Max'].values[0] if bloodtest_type == 1: res = 'ערך תקין עבור בדיקת %s בין %.2f ועד %.2f, ערך מעל %.2f נחשב חריג' % ( bloodtest_entity, bloodtest_min, bloodtest_thr1, bloodtest_thr2) elif bloodtest_type == 2: res = 'ערך תקין עבור בדיקת %s בין %.2f ועד %.2f, ערך מתחת %.2f נחשב חריג' % ( bloodtest_entity, bloodtest_thr2, bloodtest_max, bloodtest_thr1) elif bloodtest_type == 3: res = 'ערך תקין עבור בדיקת %s בין %.2f ועד %.2f' % ( bloodtest_entity, bloodtest_thr1, bloodtest_thr2) res = res_timer(res, tracker) dispatcher.utter_message(text="%s" % res) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class ActionBloodtestValueQuestion(Action): def name(self) -> Text: return "action_nutrition_bloodtest_value" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() # db_dict = load_db_googleSheet(0x102) db_dict = get_tables('0x102') lut_df = db_dict['lut'] bloodtest_df = db_dict['bloodtest_vals'] user_msg = tracker.latest_message.get('text') for ent in tracker.latest_message.get('entities'): if ent['entity'] in [x for x in lut_df[self.name()].values if x != 0]: if ent['entity'] == 'integer': val = ent['value'] else: bloodtest_entity = ent['value'] if not val: regex_res = re.search('האם (.*) הוא .*', user_msg.replace('?', '')) if regex_res: val = regex_res.group(1).strip() if not val: raise Exception() feature = db_dict['lut']['Entity'][bloodtest_entity] gender_str = "Male" if tracker.get_slot('gender') == "זכר": gender_str = "Male" elif tracker.get_slot('gender') == "נקבה": gender_str = "Female" age = float(tracker.get_slot('age') if tracker.get_slot('age') else "40") bloodtest_row = bloodtest_df[(bloodtest_df['Element'] == feature) & \ ((bloodtest_df['Gender'] == "ANY") | ( bloodtest_df['Gender'] == gender_str)) & \ ((bloodtest_df['Age min'] == "ANY") | ( bloodtest_df['Age min'].replace('ANY', -1).astype(float) <= age)) & \ ((bloodtest_df['Age Max'] == "ANY") | ( bloodtest_df['Age Max'].replace('ANY', -1).astype(float) > age))] bloodtest_type = int(bloodtest_row['Graph type'].values[0]) bloodtest_min = bloodtest_row['Min'].values[0] bloodtest_thr1 = bloodtest_row['Threshold 1'].values[0] bloodtest_thr2 = bloodtest_row['Threshold 2'].values[0] bloodtest_max = bloodtest_row['Max'].values[0] if bloodtest_type == 1: if bloodtest_min <= float(val) <= bloodtest_thr1: res = 'כן, זהו ערך תקין עבור בדיקת %s היות והוא נופל בטווח בין %.2f ועד %.2f. ערך מעל %.2f נחשב לחריג' % ( bloodtest_entity, bloodtest_min, bloodtest_thr1, bloodtest_thr2) else: res = 'לא, זהו אינו ערך תקין עבור בדיקת %s. ערך תקין הינו בטווח בין %.2f ועד %.2f. ערך מעל %.2f נחשב לחריג' % ( bloodtest_entity, bloodtest_min, bloodtest_thr1, bloodtest_thr2) elif bloodtest_type == 2: if bloodtest_thr2 <= float(val) <= bloodtest_max: res = 'כן, זהו ערך תקין עבור בדיקת %s היות והוא נופל בטווח בין %.2f ועד %.2f. ערך מתחת %.2f נחשב לחריג' % ( bloodtest_entity, bloodtest_thr2, bloodtest_max, bloodtest_thr1) else: res = 'לא, זהו אינו ערך תקין עבור בדיקת %s. ערך תקין הינו בטווח בין %.2f ועד %.2f. ערך מתחת %.2f נחשב לחריג' % ( bloodtest_entity, bloodtest_thr2, bloodtest_max, bloodtest_thr1) elif bloodtest_type == 3: if bloodtest_thr1 <= float(val) <= bloodtest_thr2: res = 'כן, זהו ערך תקין עבור בדיקת %s היות והוא נופל בטווח בין %.2f ועד %.2f' % ( bloodtest_entity, bloodtest_thr1, bloodtest_thr2) else: res = 'לא, זהו אינו ערך תקין עבור בדיקת %s. ערך תקין הינו בטווח בין %.2f ועד %.2f.' % ( bloodtest_entity, bloodtest_thr1, bloodtest_thr2) else: raise Exception() res = res_timer(res, tracker) dispatcher.utter_message(text="%s" % res) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class ActionFoodSubstituteQuestion(Action): def name(self) -> Text: return "action_nutrition_food_substitute" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: tic() # db_dict = load_db_googleSheet(0xc33) db_dict = get_tables('0xc33') db_df = db_dict['tzameret'] lut_df = db_dict['lut'] features_df = db_dict['food_units_features'] common_df = db_dict['common_food'] food_ranges_df = db_dict['food_ranges'] subs_tags_alias_df = db_dict['subs_tags_alias'] features_df = features_df.drop(index=0) user_msg = tracker.latest_message.get('text') food_entity = "" for ent in tracker.latest_message.get('entities'): if ent['entity'] in lut_df[self.name()].values: food_entity = ent['value'] break if food_entity == "" or food_entity is None: prediction = tracker.latest_message food_entity = prediction['entities'][0]['value'] tzameret_groups_lut = {} tzameret_groups_lut['1'] = ['1', '4'] # Milk tzameret_groups_lut['2'] = ['1', '2', '3', '4'] # Meat tzameret_groups_lut['3'] = ['1', '2', '3', '4'] # Eggs tzameret_groups_lut['4'] = ['1', '4'] # Dairy tzameret_groups_lut['5'] = ['5', '6', '7', '9'] # Snacks tzameret_groups_lut['6'] = ['5', '6', '7', '9'] # Fruits tzameret_groups_lut['7'] = ['5', '6', '7', '9'] # Vegetables tzameret_groups_lut['8'] = ['8', '4'] # Fat tzameret_groups_lut['9'] = ['5', '6', '7', '9'] # Beverages food_energy_thr = 0.05 def get_advantages(food): advantages = [] for idx, row in food_ranges_df.iterrows(): if row["tzameret_name"] and row["tzameret_name"] in food: if row["good_or_bad"] == "good": value = float(food[row["tzameret_name"]]) if idx == "Protein": threshold = 250 else: threshold = float(row["Medium - threshold per 100gr"]) if value > threshold: advantages.append(row["hebrew_name"]) return advantages def get_advantages_score(food): act = food['advantages'] ref = ast.literal_eval(food['advantages_ref']) intersection = [] if isinstance(act, list) and isinstance(ref, list): intersection = list(set(act) & set(ref)) return len(intersection) food = food_entity if food in common_df.index: food = common_df[common_df.index == food]['shmmitzrach'][0] food_tzameret = db_df[db_df['shmmitzrach'].str.contains(food)].iloc[0, :] tzameret_code = int(food_tzameret['smlmitzrach']) tzameret_code_msb = food_tzameret['smlmitzrach'][0] food_energy = food_tzameret['food_energy'] food_features = features_df[features_df['smlmitzrach'].fillna(0).astype(int) == tzameret_code] user_msg_feature_v = [] user_msg_feature_k = list( set(subs_tags_alias_df.index.to_list()) & set(user_msg.replace(',', '').split(" "))) for tag in user_msg_feature_k: tag_df = subs_tags_alias_df[subs_tags_alias_df.index == tag]['Entity'] if tag_df.any: user_msg_feature_v.append(tag_df.values[0]) food_filter_1 = db_df[db_df['smlmitzrach'].str[0].isin(tzameret_groups_lut[tzameret_code_msb])] food_filter_2 = db_df[abs(db_df['food_energy'] - food_energy) / food_energy < food_energy_thr] food_filter_1_2 = pd.merge(food_filter_1, food_filter_2, how='inner') food_filter_1_2['smlmitzrach'] = food_filter_1_2['smlmitzrach'].astype(float) features_df['smlmitzrach'] = features_df['smlmitzrach'].astype(float) food_filter = features_df[features_df['smlmitzrach'].isin(food_filter_1_2['smlmitzrach'].to_list())] food_filter = food_filter[~food_filter['Food_Name'].str.contains(food_entity)] for tag in user_msg_feature_v: food_filter = food_filter[food_filter[tag] == 'Yes'] food_filter = food_filter.reset_index(drop=True) if food_features.empty: food_filter['features_score'] = 0 else: food_features_compact = food_features.iloc[:, 5:-4] food_filter_compact = food_filter.iloc[:, 5:-4].reset_index(drop=True) food_features_compact_shaped = pd.DataFrame( np.repeat(food_features_compact.values, len(food_filter_compact), axis=0)) food_features_compact_shaped.reset_index(drop=True) food_features_compact_shaped.columns = food_features_compact.columns food_features_score_df = (food_filter_compact == food_features_compact_shaped).astype(int) food_filter['features_score'] = food_features_score_df.sum(axis=1) food_advantages = get_advantages(food_tzameret) food_filter['advantages'] = food_filter_1_2.apply(get_advantages, axis=1) food_filter['advantages_ref'] = str(food_advantages) food_filter['advantages_score'] = food_filter.apply(get_advantages_score, axis=1) food_filter = food_filter.sort_values(['features_score', 'advantages_score'], ascending=False) res = "להלן 5 התחליפים הקרובים ביותר עבור %s" % food_entity res += "\n" res += '\n'.join(list(food_filter['Food_Name'].values[:5])) res = res_timer(res, tracker) dispatcher.utter_message(text="%s" % res) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class ActionPersonalizationList(Action): def name(self) -> Text: return "action_personlization_list" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: pkl_db = './persons.pkl' if path.exists(pkl_db): df = pd.read_pickle(pkl_db) dispatcher.utter_message(text="%s" % df.to_string()) except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class ActionPersonalizationRemove(Action): def name(self) -> Text: return "action_personlization_remove" def run(self, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any]) -> List[Dict[Text, Any]]: try: pkl_db = './persons.pkl' if path.exists(pkl_db): df = pd.read_pickle(pkl_db) phone_slot = tracker.get_slot("phone") if phone_slot in df.index: df = df.drop(tracker.get_slot("phone")) df.to_pickle(pkl_db) dispatcher.utter_message(text="רישומך הוסר מן המערכת") else: dispatcher.utter_message(text="אינך מופיע במערכת, לכן אין צורך בהסרת רישום") except Exception as e: res = "אין לי מושג, מצטער!" res = res_error(res, tracker, e) dispatcher.utter_message(text=res) return [SlotSet("x", None), SlotSet("y", None), SlotSet("previous_intent", None)] # ------------------------------------------------------------------ class ProfileFormValidator(FormValidationAction): """ProfileForm Validator""" def name(self) -> Text: return "validate_profile_form" # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- async def required_slots( self, slots_mapped_in_domain: List[Text], dispatcher: "CollectingDispatcher", tracker: "Tracker", domain: "DomainDict", ) -> Optional[List[Text]]: required_slots = ["phone", "username", "gender", "age", "weight", "height"] return required_slots # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- def slot_mappings(self) -> Dict[Text, Union[Dict, List[Dict]]]: """A dictionary to map required slots to - an extracted entity - intent: value pairs - a whole message or a list of them, where a first match will be picked""" return { "phone": [ self.from_entity(entity="integer", role="phone"), self.from_entity(entity="integer"), self.from_text(), ], "username": [ self.from_entity(entity="name"), self.from_text(), ], "gender": [ self.from_entity(entity="gender"), ], "age": [ self.from_entity(entity="integer", role="age"), self.from_entity(entity="integer"), self.from_text(), ], "weight": [ self.from_entity(entity="integer", role="weight"), self.from_entity(entity="integer"), self.from_text(), ], "height": [ self.from_entity(entity="integer", role="height"), self.from_entity(entity="integer"), self.from_text(), ], } # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- def validate_phone( self, value: Text, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any], ) -> Dict[Text, Any]: """Validate phone value.""" requested_slot = tracker.get_slot("requested_slot") phone_slot = tracker.get_slot("phone") phone_value = None if requested_slot == "phone": phone_value = value.replace('-', '').replace(' ', '') pkl_db = './persons.pkl' if path.exists(pkl_db): df = pd.read_pickle(pkl_db) if phone_value in df.index: dispatcher.utter_message( text="פרטיך נטענו בהצלחה, ברוכים השבים %s" % df.loc[phone_value].username) return {'phone': phone_value, 'username': df.loc[phone_value].username, 'gender': df.loc[phone_value].gender, 'age': df.loc[phone_value].age, 'weight': df.loc[phone_value].weight, 'height': df.loc[phone_value].height} else: df = pd.DataFrame(columns=["username", "gender", "age", "weight", "height"]) df.to_pickle(pkl_db) elif phone_slot: phone_value = phone_slot return {"phone": phone_value} # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- def validate_username( self, value: Text, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any], ) -> Dict[Text, Any]: """Validate username value.""" requested_slot = tracker.get_slot("requested_slot") username_slot = tracker.get_slot("username") username_value = None if requested_slot == "username": username_value = value elif username_slot: username_value = username_slot return {"username": username_value} # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- def validate_gender( self, value: Text, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any], ) -> Dict[Text, Any]: """Validate gender value.""" requested_slot = tracker.get_slot("requested_slot") gender_slot = tracker.get_slot("gender") gender_value = None if requested_slot == "gender": gender_value = value elif gender_slot: gender_value = gender_slot return {"gender": gender_value} # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- def validate_age( self, value: Text, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any], ) -> Dict[Text, Any]: """Validate age value.""" requested_slot = tracker.get_slot("requested_slot") age_slot = tracker.get_slot("age") age_value = None if requested_slot == "age": age_value = value elif age_slot: age_value = age_slot return {"age": age_value} # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- def validate_weight( self, value: Text, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any], ) -> Dict[Text, Any]: """Validate weight value.""" requested_slot = tracker.get_slot("requested_slot") weight_slot = tracker.get_slot("weight") weight_value = None if requested_slot == "weight": weight_value = value elif weight_slot: weight_value = weight_slot return {"weight": weight_value} # -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- def validate_height( self, value: Text, dispatcher: CollectingDispatcher, tracker: Tracker, domain: Dict[Text, Any], ) -> Dict[Text, Any]: """Validate height value.""" requested_slot = tracker.get_slot("requested_slot") height_slot = tracker.get_slot("height") height_value = None if requested_slot == "height": height_value = value pkl_db = './persons.pkl' if path.exists(pkl_db): df =
pd.read_pickle(pkl_db)
pandas.read_pickle
# -*- coding: utf-8 -*- # !/usr/bin/env python3 -u # copyright: sktime developers, BSD-3-Clause License (see LICENSE file) """Implements adapter for pmdarima forecasters to be used in sktime framework.""" __author__ = ["mloning", "hyang1996", "kejsitake", "fkiraly"] __all__ = ["_PmdArimaAdapter"] import pandas as pd from sktime.forecasting.base import BaseForecaster from sktime.forecasting.base._base import DEFAULT_ALPHA class _PmdArimaAdapter(BaseForecaster): """Base class for interfacing pmdarima.""" _tags = { "ignores-exogeneous-X": False, "capability:pred_int": True, "requires-fh-in-fit": False, "handles-missing-data": True, } def __init__(self): self._forecaster = None super(_PmdArimaAdapter, self).__init__() def _instantiate_model(self): raise NotImplementedError("abstract method") def _fit(self, y, X=None, fh=None): """Fit to training data. Parameters ---------- y : pd.Series Target time series to which to fit the forecaster. fh : int, list, np.array or ForecastingHorizon, optional (default=None) The forecasters horizon with the steps ahead to to predict. X : pd.DataFrame, optional (default=None) Exogenous variables are ignored Returns ------- self : returns an instance of self. """ self._forecaster = self._instantiate_model() self._forecaster.fit(y, X=X) return self def _predict(self, fh, X=None): """Make forecasts. Parameters ---------- fh : array-like The forecasters horizon with the steps ahead to to predict. Default is one-step ahead forecast, i.e. np.array([1]). Returns ------- y_pred : pandas.Series Returns series of predicted values. """ # distinguish between in-sample and out-of-sample prediction fh_oos = fh.to_out_of_sample(self.cutoff) fh_ins = fh.to_in_sample(self.cutoff) # all values are out-of-sample if fh.is_all_out_of_sample(self.cutoff): return self._predict_fixed_cutoff(fh_oos, X=X) # all values are in-sample elif fh.is_all_in_sample(self.cutoff): return self._predict_in_sample(fh_ins, X=X) # both in-sample and out-of-sample values else: y_ins = self._predict_in_sample(fh_ins, X=X) y_oos = self._predict_fixed_cutoff(fh_oos, X=X) return y_ins.append(y_oos) def _predict_in_sample( self, fh, X=None, return_pred_int=False, alpha=DEFAULT_ALPHA ): """Generate in sample predictions. Parameters ---------- fh : array-like The forecasters horizon with the steps ahead to to predict. Default is one-step ahead forecast, i.e. np.array([1]). Returns ------- y_pred : pandas.Series Returns series of predicted values. """ if hasattr(self, "order"): diff_order = self.order[1] else: diff_order = self._forecaster.model_.order[1] # Initialize return objects fh_abs = fh.to_absolute(self.cutoff).to_numpy() fh_idx = fh.to_indexer(self.cutoff, from_cutoff=False) y_pred = pd.Series(index=fh_abs) # for in-sample predictions, pmdarima requires zero-based integer indicies start, end = fh.to_absolute_int(self._y.index[0], self.cutoff)[[0, -1]] if start < 0: # Can't forecasts earlier to train starting point raise ValueError("Can't make predictions earlier to train starting point") elif start < diff_order: # Can't forecasts earlier to arima's differencing order # But we return NaN for these supposedly forecastable points start = diff_order if end < start: # since we might have forced `start` to surpass `end` end = diff_order # get rid of unforcastable points fh_abs = fh_abs[fh_idx >= diff_order] # reindex accordingly fh_idx = fh_idx[fh_idx >= diff_order] - diff_order result = self._forecaster.predict_in_sample( start=start, end=end, X=X, return_conf_int=False, alpha=DEFAULT_ALPHA, ) if return_pred_int: pred_ints = [] for a in alpha: pred_int = pd.DataFrame(index=fh_abs, columns=["lower", "upper"]) result = self._forecaster.predict_in_sample( start=start, end=end, X=X, return_conf_int=return_pred_int, alpha=a, ) pred_int.loc[fh_abs] = result[1][fh_idx, :] pred_ints.append(pred_int) # unpack results y_pred.loc[fh_abs] = result[0][fh_idx] return y_pred, pred_ints else: y_pred.loc[fh_abs] = result[fh_idx] return y_pred def _predict_fixed_cutoff( self, fh, X=None, return_pred_int=False, alpha=DEFAULT_ALPHA ): """Make predictions out of sample. Parameters ---------- fh : array-like The forecasters horizon with the steps ahead to to predict. Default is one-step ahead forecast, i.e. np.array([1]). Returns ------- y_pred : pandas.Series Returns series of predicted values. """ n_periods = int(fh.to_relative(self.cutoff)[-1]) result = self._forecaster.predict( n_periods=n_periods, X=X, return_conf_int=False, alpha=DEFAULT_ALPHA, ) fh_abs = fh.to_absolute(self.cutoff) fh_idx = fh.to_indexer(self.cutoff) if return_pred_int: pred_ints = [] for a in alpha: result = self._forecaster.predict( n_periods=n_periods, X=X, return_conf_int=True, alpha=a, ) pred_int = result[1] pred_int = pd.DataFrame( pred_int[fh_idx, :], index=fh_abs, columns=["lower", "upper"] ) pred_ints.append(pred_int) return result[0], pred_ints else: return
pd.Series(result[fh_idx], index=fh_abs)
pandas.Series
#!/usr/bin/env python3 """Script to get the classification performance.""" import argparse from pathlib import Path import random as rn import numpy as np import pandas as pd from sklearn.metrics import roc_auc_score from tqdm import tqdm from joblib import load from utils import COLUMNS_NAME, load_dataset PROJECT_ROOT = Path.cwd() def main(dataset_name, disease_label, evaluated_dataset): """Calculate the performance of the classifier in each iteration of the bootstrap method.""" # ---------------------------------------------------------------------------- n_bootstrap = 1000 participants_path = PROJECT_ROOT / 'data' / evaluated_dataset / 'participants.tsv' freesurfer_path = PROJECT_ROOT / 'data' / evaluated_dataset / 'freesurferData.csv' outputs_dir = PROJECT_ROOT / 'outputs' ids_path = outputs_dir / (evaluated_dataset + '_homogeneous_ids.csv') hc_label = 1 # ---------------------------------------------------------------------------- # Set random seed random_seed = 42 np.random.seed(random_seed) rn.seed(random_seed) classifier_dir = PROJECT_ROOT / 'outputs' / 'classifier_analysis' classifier_dataset_dir = classifier_dir / dataset_name classifier_dataset_analysis_dir = classifier_dataset_dir / '{:02d}_vs_{:02d}'.format(hc_label, disease_label) classifier_storage_dir = classifier_dataset_analysis_dir / 'models' generalization_dir = classifier_dataset_analysis_dir / 'generalization' generalization_dir.mkdir(exist_ok=True) evaluated_dataset_df = load_dataset(participants_path, ids_path, freesurfer_path) aucs_test = [] # ---------------------------------------------------------------------------- for i_bootstrap in tqdm(range(n_bootstrap)): rvm = load(classifier_storage_dir / '{:03d}_rvr.joblib'.format(i_bootstrap)) scaler = load(classifier_storage_dir / '{:03d}_scaler.joblib'.format(i_bootstrap)) x_data = evaluated_dataset_df[COLUMNS_NAME].values tiv = evaluated_dataset_df['EstimatedTotalIntraCranialVol'].values tiv = tiv[:, np.newaxis] x_data = (np.true_divide(x_data, tiv)).astype('float32') x_data = np.concatenate((x_data[evaluated_dataset_df['Diagn'] == hc_label], x_data[evaluated_dataset_df['Diagn'] == disease_label]), axis=0) y_data = np.concatenate((np.zeros(sum(evaluated_dataset_df['Diagn'] == hc_label)), np.ones(sum(evaluated_dataset_df['Diagn'] == disease_label)))) # Scaling using inter-quartile x_data = scaler.transform(x_data) pred = rvm.predict(x_data) predictions_proba = rvm.predict_proba(x_data) auc = roc_auc_score(y_data, predictions_proba[:, 1]) aucs_test.append(auc) aucs_df =
pd.DataFrame(columns=['AUCs'], data=aucs_test)
pandas.DataFrame
from math import nan import os import numpy as np import pandas as pd import warnings from scipy import signal as scisig from numpy import matlib import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from scipy.stats import binom from matplotlib.backends.backend_pdf import PdfPages import matplotlib.patches as mplpatches import matplotlib.ticker as ticker from matplotlib.ticker import LinearLocator import matplotlib.lines as lines import matplotlib.transforms as transforms import string import pdb import seaborn as sns import sys pd.options.mode.chained_assignment = None warnings.filterwarnings("ignore") def unique_py(seqlist): seen = set() seen_add = seen.add return [x for x in seqlist if not (x in seen or seen_add(x))] ##COMPUTATION OF INTERMUTATIONAL DISTANCE #check computation of IMD #major difference is whether its the closest breakpoint or the breakpoint immediately preceding it def calcIntermutDist2(subs_type,first_chrom_na=False): subs_type_processed = subs_type.copy() chr_list = unique_py(subs_type['chr']) pos_array_im = subs_type['position'].values index_orig_df = np.arange(len(subs_type_processed)) #args_pos_list = np.argsort(pos_array_im) args_pos_list=[] distPrev_list =[] prevPos_list =[] for c in chr_list: inds_chr = np.where(subs_type['chr']==c) pos_array_im_c = np.sort(pos_array_im[inds_chr]) index_orig_df[inds_chr] = index_orig_df[inds_chr][np.argsort(pos_array_im[inds_chr])] if first_chrom_na: prevPos_arr_c = np.hstack((np.NAN,pos_array_im_c.flatten()[:-1])) else: prevPos_arr_c = np.hstack((0,pos_array_im_c.flatten()[:-1])) distPrev_arr_c = pos_array_im_c - prevPos_arr_c distPrev_arr_c[distPrev_arr_c==0] = 1 distPrev_list = np.append(distPrev_list,distPrev_arr_c.astype(int)).flatten() prevPos_list = np.append(prevPos_list,prevPos_arr_c.astype(int)).flatten() prevPos_arr_c = [] distPrev_arr_c = [] subs_type_processed = subs_type_processed.reindex(index_orig_df).reset_index(drop=True) subs_type_processed['prevPos'] = prevPos_list subs_type_processed['distPrev'] = distPrev_list return subs_type_processed def calcIntermutDist(subs_type,first_chrom_na=False): subs_type_processed =
pd.DataFrame()
pandas.DataFrame
from datetime import timedelta import pandas as pd import numpy as np from exceptions import MatchCheckpointsException def find_acute(df, i, segment, near, epsilon): """ 1. Calculate the distance from the chekpoint to all consecutive points in the data. 2. Acute, For ck "i" if the angle between the lines ck:A and A:B acute. If so then ck is "between" A and B Epislon is the fudge factor """ point = (segment['location']['lat'], segment['location']['lon']) df[f'ck_to_A{i}'] = np.linalg.norm(df[['Latitude', 'Longitude']].values - point, axis=1) df[f'ck_to_B{i}'] = np.linalg.norm(df[['shift_Latitude', 'shift_Longitude']].values - point, axis=1) if df[f'ck_to_A{i}'].min() > near * 10: raise MatchCheckpointsException( f"It appears you never made it close to checkpoint {segment['segment_name']}") df['acute'] = df[f'ck_to_A{i}'] ** 2 + df['dist_to_next'] ** 2 <= df[ f'ck_to_B{i}'] ** 2 + epsilon def match_checkpoints(df, epsilon, near, segments): """ Identify the activity point the represents the arrival at the checkpoint find near points that form acute triangles """ row_slice = 0 for i, seg in enumerate(segments): try: find_acute(df, i, seg, near, epsilon) # assign segment number to first acute point near the point seg point) df.loc[ df[row_slice:][(df[row_slice:][f'ck_to_A{i}'] <= near) & (df[row_slice:].acute)].index[0], ['checkpoint', 'Segment_name']] = i, seg[ 'Segment_name'] # This removes the points we have past. row_slice = int(df[df.checkpoint == i].index[0]) # df['seg_duration'] = df[df.checkpoint >= 0]['Date_Time'].diff() except Exception as e: raise MatchCheckpointsException( f"Fail on checkpoint:{i} location: {(seg['location']['lat'], seg['location']['lon'])}\nDataframe columns:\n{df.columns}") def calculate_segment_times(df, segments): """ This is for fix distance segments, competing for time this selects only rows match to checkpoints. The calcs the diff in time. """ df['seg_duration'] = df[df.checkpoint >= 0]['Date_Time'].diff() df['segment'] = df.checkpoint.fillna(method='ffill') # Set everything at the end to nan df['segment'][df.segment >= len(segments) - 1] = np.nan # TODO Add segment metrics def calculate_segment_distance(df, segments): """ This is for fixed distance competeing for distance TicToc [{ 'segment_name': 'Event Start', 'location': {'lat': 39.737912, 'lon': -105.523881}, 'type_name': 'transport', 'type_args': {'time_limit': 1800} 'duration': Timedelta('0 days 00:24:21'), 'datetime': Timestamp('2012-07-21 09:18:13'), 'distance': 25677 'total_timed': datetime.timedelta(0), total_timed_types: {'uphill':Timedelta(123), 'gravel': Timedelta(321)} },] """ results = [] for i, seg in enumerate(segments): if seg['type_name'] == 'tictoc': seg_start_time = df[df.checkpoint == i].Date_Time.values[0] seg_end_time = seg_start_time + pd.Timedelta(minutes=seg['type_args']['tictoc']) seg_past_end = df[df.Date_Time >= seg_end_time].iloc[0] seg_before_end = df[df.Date_Time <= seg_end_time].iloc[-1] a = seg_before_end.distance b = seg_past_end.distance c = seg_before_end.Date_Time d = seg_past_end.Date_Time p = seg_end_time seg_finish = (b - a) * ((p - d) / (d - c)) + a seg_distance = seg_finish - df[df.checkpoint == i].distance.iloc[0] seg['distance'] = seg_distance seg['duration'] = timedelta(minutes=seg['type_args']['tictoc']) seg['datetime'] =
pd.to_datetime(seg_start_time)
pandas.to_datetime
import io import os from datetime import datetime import pandas as pd import scrapy from scrapy import Request from scrapy import signals from fooltrader.api.quote import get_security_list from fooltrader.contract.data_contract import KDATA_COLUMN_STOCK, KDATA_COLUMN_163 from fooltrader.contract.files_contract import get_kdata_path from fooltrader.utils import utils class FutureShfeSpider(scrapy.Spider): name = "future_shfe_spider" custom_settings = { # 'DOWNLOAD_DELAY': 2, # 'CONCURRENT_REQUESTS_PER_DOMAIN': 8, 'SPIDER_MIDDLEWARES': { 'fooltrader.middlewares.FoolErrorMiddleware': 1000, } } # 指定日期的话,是用来抓增量数据的 def yield_request(self, item, start_date=None, end_date=None): data_path = get_kdata_path(item, source='163') if start_date: start = start_date.strftime('%Y%m%d') else: start = item['listDate'].replace('-', '') if end_date: end = end_date.strftime('%Y%m%d') else: end = datetime.today().strftime('%Y%m%d') if not os.path.exists(data_path) or start_date or end_date: if item['exchange'] == 'sh': exchange_flag = 0 else: exchange_flag = 1 url = self.get_k_data_url(exchange_flag, item['code'], start, end) yield Request(url=url, meta={'path': data_path, 'item': item}, callback=self.download_day_k_data) def start_requests(self): item = self.settings.get("security_item") start_date = self.settings.get("start_date") end_date = self.settings.get("end_date") if item is not None: for request in self.yield_request(item, start_date, end_date): yield request else: for _, item in get_security_list().iterrows(): for request in self.yield_request(item): yield request def download_day_k_data(self, response): path = response.meta['path'] item = response.meta['item'] try: # 已经保存的csv数据 if os.path.exists(path): df_current =
pd.read_csv(path, dtype=str)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # # Analyze open data set of webstore Dream Market's "Cocaine" category # # Determine what are the factors that influence price of cocaine, based on the dataset from https://www.kaggle.com/everling/cocaine-listings # The dataset is approximately 1,400 cleaned and standardized product listings from Dream Market's "Cocaine" category. It was collected with web-scraping and text extraction techniques in July 2017. # # As bonus questions, we can also: # - Compare Australian market with rest of the world # - Determine if there is volume discount and how significant it is # # # # # Table of contents # The main parts of this notebook are: # 1. [Load data into DataFrames](#load) # 1. [Check the data](#check) # 1. [Data Analysis](#analysis) # 1. [Data visualisation to identity possible hypothesis](#raw_plots) # 1. [Correlation matrix](#corr) # 1. [Data distribution](#distribution) # 1. [Summary and hypothesis](#hyp) # # 1. [Data Transformation and features engineering](#eng) # 1. [Model and model evaluation](#model) # 1. [Model Result](#model_result) # 1. [Output Reports based on the model data](#summary) # 1. [Report 1 Gram of Q75 by Country of shipment](#rep_1) # 1. [Report 2 Cost per gram of Q90 by Grams Pack in Australia](#rep_2) # 1. [Report 3 Cost for 1 gram by Quality in AU](#rep_3) # 1. [Repot 4. Factor plot](#rep_4) # # 1. [Next steps](#next) # # In[3]: #imports import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn import linear_model, metrics import statsmodels.api as sm import seaborn as sns print() import warnings warnings.simplefilter('ignore') # <a name="load"></a> # ## Upload Dreamworld Data set # In[5]: from subprocess import check_output # Any results you write to the current directory are saved as output. filename = check_output(["ls", "../../../input/everling_cocaine-listings"]).decode("utf8").strip() df_raw = pd.read_csv("../../../input/everling_cocaine-listings/" + filename, thousands=",") df_raw.head() # <a name="analysis"></a> # ### Data Exploration # <a name="corr"></a> # ### Correlation matrix # Let's see how different variable correlated each other and see if we can make some initial conclusion out of the result # In[44]: #check correlation df_corr = df_raw[['grams', 'quality', 'btc_price', 'cost_per_gram', 'cost_per_gram_pure', 'rating']].corr() print (df_corr) print() # Ther is an expected *Correlation* between: # * cost per gram and cost per gram pure # * btc price and grams # # However what is interesting that no correlation between quality and cost per gram pure # # <a id="distribution"></a> # Let's dig now in categorical variables and see how different shipment_from countries impact the price of cocaine # In[10]: #visual on categorical variable ship from sns.factorplot( x='ships_from', y='cost_per_gram', data=df_raw, kind='box', size = 3, aspect=5 ) # *Result: The price is more or less the same across all countries except Australia, which has noticable difference in comarison to other countries. China has the least expecnsive, but it seems that number of offers is significantly lower* # In[11]: fg = sns.FacetGrid(df_raw[['quality', 'cost_per_gram', 'ships_from']], hue='ships_from',size=5, aspect=3) fg.map(plt.scatter, 'quality', 'cost_per_gram').add_legend() # *result: surprisingly, quality has no significant impact on the price of the product* # <a name="hyp"></a> # ### Results and hypotesis # Observations: # - Quality variable, despite on continues nature, has very strong patterns and has very limited options to select from. Due to the variable is not normal distributed I can assume that we can pack it into classes and analyse as categorical variable. For the sake of simplicity I use all of available quality options. # - Grams variable also has a very strong packing pattern. Most likely, use it as categorical variable will bring us better quality # - Quality has no correlation with other variables, even with Price # - Number of transactions in Europe is greater than in Australia, USA and significantly greater than in ASIA. My assumption is that the most trustful result should be about Europe. Reasonable assumptions may apply for other regions. # # Hypothesis: # # The most influenced factors on cocaine price are the shipment location and transaction volume, based on the dataset of the dream market web shop. # # In[ ]: # <a id="eng"></a> # ## Data Transformation and Feature engineering # In[14]: #Plot data distributions # Set up the matplotlib figure f, axes = plt.subplots(2, 3, figsize=(10, 10), sharex=False, sharey=False) sns.distplot(df_raw['cost_per_gram_pure'], ax=axes[0, 0]) sns.distplot(df_raw['cost_per_gram'], ax=axes[0, 1]) sns.distplot(df_raw['quality'], ax=axes[0, 2]) sns.distplot(df_raw['btc_price'], ax=axes[1,0]) sns.distplot(df_raw['grams'], ax=axes[1,1]) sns.distplot(df_raw['rating'], ax=axes[1,2]) # In[15]: df_raw[['grams', 'quality', 'btc_price', 'cost_per_gram', 'cost_per_gram_pure', 'rating']].skew() # Check skewness # *Result: the data is quite skewed. will see how reasonable the model performs. We may need to do some extra work on it:* # * dropping some the first peak in *cost per gram* # * Check if we can drop some variable from the model # # In[16]: df_raw[['grams', 'quality', 'btc_price', 'cost_per_gram', 'cost_per_gram_pure', 'rating']].kurt() # Check kurtosis # *Result: all results has a significant positive kurtosis. Some further actions may required* # In[18]: #Attemp to fix kurtosis and have better normal distribution by appling log function df_raw['btc_price_log'] = df_raw['btc_price'].apply(np.log) # In[19]: f, axes = plt.subplots(1, 2, figsize=(10, 7), sharex=False, sharey=False) sns.distplot(df_raw['btc_price'], ax=axes[0]) sns.distplot(df_raw['btc_price_log'], ax=axes[1]) # In[20]: df_raw[['btc_price', 'btc_price_log']].skew() # Check kurtosis # *result: Log function improves kurtosis quite significanly. btc_price_log will be used as outcome variable * # ### Add dummy Variables # In[ ]: # In[21]: print ("grams unique categories") print (df_raw['grams'].unique()) # In[22]: #Add dummy categories for grams df_raw['grams'].unique() dummy_rank =
pd.get_dummies(df_raw['grams'], prefix='grams', prefix_sep='_')
pandas.get_dummies
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # # License: BSD 3 clause #from ..datasets import public_dataset from sklearn.naive_bayes import BernoulliNB, MultinomialNB, GaussianNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.model_selection import train_test_split, GridSearchCV from textblob import TextBlob import pandas as pd import numpy as np from ..base import classifier from ..utils import convert_to_numpy_ndarray, convert_to_list from sklearn.utils import check_X_y from scipy.sparse import csr class Multinomial_NB_classifier_from_scratch(classifier): # reference: https://geoffruddock.com/naive-bayes-from-scratch-with-numpy/ # reference: http://kenzotakahashi.github.io/naive-bayes-from-scratch-in-python.html def __init__(self, alpha=1.0, verbose=False): super().__init__() self.alpha = alpha # to avoid having zero probabilities for words not seen in our training sample. self.y_classes = None # e.g., spam vs. no spam self.prob_y = None # Our prior belief in the probability of any randomly selected message belonging to a particular class self.prob_x_i_given_y = None # The likelihood of each word, conditional on message class. self.is_fitted = False self.verbose = verbose def fit(self, X_train: np.ndarray, y_train: np.ndarray, feature_names: list = None, document: list = None): """ X_train: a matrix of samples x features, such as documents (row) x words (col) """ document = convert_to_list(document) X_train = convert_to_numpy_ndarray(X_train) y_train = convert_to_numpy_ndarray(y_train) self.X_train, self.y_train = check_X_y(X_train, y_train) n_samples, n_features = X_train.shape if feature_names is None: self.feature_names = [f"word_{i}" for i in range(1,n_features+1)] else: self.feature_names = feature_names self.y_classes = np.unique(y_train) self.classes_ = self.y_classes columns = [f"y={c}" for c in self.y_classes] self.y_mapper = {} for idx, y_class in enumerate(self.y_classes): self.y_mapper[idx] = f"class_idx[{idx}]=[{y_class}]" X_train_by_y_class = np.array([X_train[y_train == this_y_class] for this_y_class in self.y_classes], dtype=object) self.prob_y = np.array([X_train_for_this_y_class.shape[0] / n_samples for X_train_for_this_y_class in X_train_by_y_class]) if self.verbose: print(f"\n------------------------------------------ fit() ------------------------------------------") print(f"\nStep 1. the input:\n{pd.concat([
pd.DataFrame(document,columns=['X_message_j',])
pandas.DataFrame
import os import tarfile import urllib import os import os os.chdir('/Users/xxx/PycharmProjects/handson-ml2/datasets') cwd = os.getcwd() #downloading dataset DOWNLOAD_ROOT = "https://raw.githubusercontent.com/ageron/handson-ml2/master/" HOUSING_PATH = os.path.join(cwd, "housing") HOUSING_URL = DOWNLOAD_ROOT + "datasets/housing/housing.tgz" def fetch_housing_data(housing_url=HOUSING_URL, housing_path=HOUSING_PATH): os.makedirs(housing_path, exist_ok=True) tgz_path = os.path.join(housing_path, "housing.tgz") urllib.request.urlretrieve(housing_url, tgz_path) housing_tgz = tarfile.open(tgz_path) housing_tgz.extractall(path=housing_path) housing_tgz.close() import pandas as pd def load_housing_data(housing_path=HOUSING_PATH): csv_path = os.path.join(housing_path, "housing.csv") return
pd.read_csv(csv_path)
pandas.read_csv
import time import argparse import datetime import numpy as np import pandas as pd import torch import itertools import yaml from src.utils.preprocess_utils import get_datasets, get_dataloaders from src.utils.utils import GRIDSEARCH_CSV from src.training.main import main def get_gridsearch_config(config_path): with open(config_path, "r") as ymlfile: config = yaml.load(ymlfile, Loader=yaml.FullLoader) hyperparameters = config['hyperparameters'] print('hyperparameters keys', list(hyperparameters.keys())) all_config_list = [] for param_name in hyperparameters.keys(): all_config_list.append(hyperparameters[param_name]) return all_config_list def gridsearch(config_path, training_data, testset_data, test_labels_data, do_save, device): all_config_list = get_gridsearch_config(config_path) training_remaining = np.prod([len(config) for config in all_config_list]) print('Training to do:', training_remaining) # Save gridsearch training to csv current_time = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') csv_path = GRIDSEARCH_CSV+'results_{}.csv'.format(current_time) results_dict = {'model_type': [], 'optimizer_type': [], 'loss_criterion': [], 'lr': [], 'epochs': [], 'batch_size': [], 'patience_es': [], 'scheduler_type': [], 'patience_lr': [], 'save_condition': [], 'fix_length': [], 'best_epoch': [], 'train_loss': [], 'val_loss': [], 'train_acc': [], 'val_acc': [], 'test_acc': [], 'end_time': []} # Start gridsearch prev_model_type = None start_time = time.time() for params in itertools.product(*all_config_list): # /!\ Has to be in the same order as in the config.yaml file /!\ # model_type, optimizer_type, \ loss_criterion, lr, epochs, \ batch_size, patience_es, \ scheduler_type, patience_lr, \ save_condition, fix_length, context_size, pyramid, fcs, batch_norm, alpha = params if prev_model_type != model_type: print("prev_model_type", prev_model_type) print("model_type", model_type) print("Changing tokenizer...") ENGLISH, tokenizer, train_data, val_data, test_data = get_datasets(training_data, testset_data, test_labels_data, model_type, fix_length) prev_model_type = model_type print('fix_length:', fix_length) print('batch_size:', batch_size) if model_type == 'PyramidCNN': print('context_size:', context_size) print('pyramid:', pyramid) print('fcs:', fcs) print('batch_norm:', batch_norm) print('alpha:', alpha) dataloaders = get_dataloaders(train_data, val_data, test_data, batch_size, device) history_training = main(dataloaders, ENGLISH, model_type, optimizer_type, loss_criterion, lr, batch_size, epochs, patience_es, do_save, device, do_print=False, training_remaining=training_remaining, scheduler_type=scheduler_type, patience_lr=patience_lr, save_condition=save_condition, fix_length=fix_length, context_size=context_size, pyramid=pyramid, fcs=fcs, batch_norm=batch_norm, alpha=alpha) # Save training results to csv best_epoch = history_training['best_epoch'] for key in results_dict.keys(): if key in ['train_loss', 'val_loss', 'train_acc', 'val_acc']: results_dict[key].append(history_training[key][best_epoch]) elif key == 'epochs': results_dict[key].append(epochs) elif key == 'batch_size': results_dict[key].append(batch_size) else: results_dict[key].append(history_training[key]) results_csv =
pd.DataFrame(data=results_dict)
pandas.DataFrame
import requests from model.parsers import model as m import pandas as pd import datetime dataset = m.initialize() unique_dates = list() raw_data = requests.get('https://api.covid19india.org/states_daily.json') raw_json = raw_data.json() for item in raw_json['states_daily']: if item['date'] not in unique_dates: unique_dates.append(item['date']) for date in unique_dates: for item in raw_json['states_daily']: if date == item['date']: for state in dataset: if date not in state: state[date] = dict() state[date][item['status']] = item[state['code']] def date_validate(date_text): try: datetime.datetime.strptime(date_text, '%d-%b-%y') except ValueError: print("Incorrect date format, should be dd-Mmm-yy") return 0 def state_code_validate(state_code): unique_states = list() for item in dataset: unique_states.append(item['code']) if state_code in unique_states: return 1 else: print('Please enter a valid state code') return 0 def needs_patch(date_to_fetch, state_code): if (date_to_fetch == '26-Mar-20' and state_code == 'ap') or (date_to_fetch == '16-Mar-20' and state_code == 'mp'): return True return False def apply_patch(date_to_fetch, state_code): if date_to_fetch == '26-Mar-20' and state_code == 'ap': return {'Confirmed': '1', 'Recovered': '0', 'Deceased': '0'} if date_to_fetch == '16-Mar-20' and state_code == 'mp': return {'Confirmed': '0', 'Recovered': '0', 'Deceased': '0'} def fetch_by_date_and_code(date_to_fetch, state_code): if(needs_patch(date_to_fetch, state_code)): return apply_patch(date_to_fetch, state_code) if date_to_fetch == '26-Mar-20' and state_code == 'ap': return {'Confirmed': '1', 'Recovered': '0', 'Deceased': '0'} if date_to_fetch == '16-Mar-20' and state_code == 'mp': return {'Confirmed': '0', 'Recovered': '0', 'Deceased': '0'} if date_to_fetch in unique_dates: for state in dataset: if state['code'] == state_code: if date_to_fetch in state: return state[date_to_fetch] else : print('date does not exist') def cumulative_datewise_data(date_to_fetch, state_code): should_stop = False for unique_date in unique_dates: if unique_date == date_to_fetch: should_stop = True print(unique_date, fetch_by_date_and_code(unique_date, state_code)) if should_stop: break def cumulative_data(date_to_fetch, state_code): should_stop = False cumulative_dict = dict() if date_to_fetch in unique_dates: for unique_date in unique_dates: if unique_date == date_to_fetch: should_stop = True returned_dict = fetch_by_date_and_code(unique_date, state_code) for key in returned_dict: if key in cumulative_dict: cumulative_dict[key] += int(returned_dict[key]) else: cumulative_dict[key] = int(returned_dict[key]) if should_stop: break return cumulative_dict else: return 0 def cumulative_series_datewise_data(date_to_fetch, state_code): should_stop = False cumulative_series_datewise_dict = dict() if date_to_fetch in unique_dates: for unique_date in unique_dates: if unique_date == date_to_fetch: should_stop = True cumulative_series_datewise_dict[unique_date] = cumulative_data(unique_date, state_code) if should_stop: break return cumulative_series_datewise_dict else: print('date does not exist') def cumulative_last_3_days(state_code, should_print = False): resultset = dict() for unique_date in unique_dates[-3:]: resultset[unique_date] = cumulative_data(unique_date, state_code) if should_print: print(unique_date, cumulative_data(unique_date, state_code)) return resultset def cumulative_last_3_days_all_states(choice): resultset = dict() for state in dataset: resultset[state['name']] = cumulative_last_3_days(state['code'], False) return resultset def total_count(state_code): cumulative_dict = dict() for unique_date in unique_dates: returned_dict = fetch_by_date_and_code(unique_date, state_code) for key in returned_dict: if key in cumulative_dict: cumulative_dict[key] += int(returned_dict[key]) else: cumulative_dict[key] = int(returned_dict[key]) return cumulative_dict def make_data_frame(): unique_states = list() confirmed_list = list() recovery_list = list() deceased_list = list() for state in dataset[:-1]: if state['name'] not in unique_states: unique_states.append(state['name']) for state in dataset[:-1]: status = total_count(state['code']) confirmed_list.append(status['Confirmed']) recovery_list.append(status['Recovered']) deceased_list.append(status['Deceased']) data = {'STATE/UT':unique_states, 'Confirmed':confirmed_list, 'Recovered':recovery_list, 'Deceased':deceased_list} df = pd.DataFrame(data, columns = ['STATE/UT', 'Confirmed', 'Recovered', 'Deceased']) return df def cumulative_last_3_days_confirmed_dataframe(choice): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) resultset = cumulative_last_3_days_all_states(choice) for state in resultset: for date in resultset[state]: if date not in date_dict: date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in resultset: for date in resultset[state]: dates[date].append(resultset[state][date]['Confirmed']) data = {'STATE/UT':unique_states, unique_dates[0]:dates[unique_dates[0]], unique_dates[1]:dates[unique_dates[1]], unique_dates[2]:dates[unique_dates[2]]} df = pd.DataFrame(data) return df def cumulative_last_3_days_recovered_dataframe(choice): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) resultset = cumulative_last_3_days_all_states(choice) for state in resultset: for date in resultset[state]: if date not in date_dict: date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in resultset: for date in resultset[state]: dates[date].append(resultset[state][date]['Recovered']) data = {'STATE/UT':unique_states, unique_dates[0]:dates[unique_dates[0]], unique_dates[1]:dates[unique_dates[1]], unique_dates[2]:dates[unique_dates[2]]} df = pd.DataFrame(data) return df def cumulative_last_3_days_deceased_dataframe(choice): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) resultset = cumulative_last_3_days_all_states(choice) for state in resultset: for date in resultset[state]: if date not in date_dict: date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in resultset: for date in resultset[state]: dates[date].append(resultset[state][date]['Deceased']) data = {'STATE/UT':unique_states, unique_dates[0]:dates[unique_dates[0]], unique_dates[1]:dates[unique_dates[1]], unique_dates[2]:dates[unique_dates[2]]} df = pd.DataFrame(data) return df def all_data_confirmed(): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) for state in dataset: for date in state: if date != 'code' and date != 'name': date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in dataset: for date in state: if date != 'code' and date != 'name': dates[date].append(state[date]['Confirmed']) data = {'STATE/UT':unique_states} for date in dates: data[date] = dates[date] df = pd.DataFrame(data) return df def all_data_recovered(): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) for state in dataset: for date in state: if date != 'code' and date != 'name': date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in dataset: for date in state: if date != 'code' and date != 'name': dates[date].append(state[date]['Recovered']) data = {'STATE/UT':unique_states} for date in dates: data[date] = dates[date] df = pd.DataFrame(data) return df def all_data_deceased(): unique_states = list() dates = dict() unique_dates = list() date_dict = dict() for state in dataset: if state['name'] not in unique_states: unique_states.append(state['name']) for state in dataset: for date in state: if date != 'code' and date != 'name': date_dict[date] = list() dates[date] = date_dict[date] unique_dates.append(date) for state in dataset: for date in state: if date != 'code' and date != 'name': dates[date].append(state[date]['Deceased']) data = {'STATE/UT':unique_states} for date in dates: data[date] = dates[date] df =
pd.DataFrame(data)
pandas.DataFrame
import warnings import numpy as np import pandas as pd import pytest import woodwork as ww from pandas.testing import assert_frame_equal from woodwork.logical_types import ( Boolean, Categorical, Double, Integer, NaturalLanguage, ) from rayml.pipelines.components import PerColumnImputer from rayml.utils.woodwork_utils import infer_feature_types @pytest.fixture def non_numeric_df(): X = pd.DataFrame( [ ["a", "a", "a", "a"], ["b", "b", "b", "b"], ["a", "a", "a", "a"], [np.nan, np.nan, np.nan, np.nan], ] ) X.columns = ["A", "B", "C", "D"] return X def test_invalid_parameters(): with pytest.raises(ValueError): strategies = ("impute_strategy", "mean") PerColumnImputer(impute_strategies=strategies) with pytest.raises(ValueError): strategies = ["mean"] PerColumnImputer(impute_strategies=strategies) def test_all_strategies(): X = pd.DataFrame( { "A": pd.Series([2, 4, 6, np.nan]), "B": pd.Series([4, 6, 4, np.nan]), "C": pd.Series([6, 8, 8, np.nan]), "D": pd.Series(["a", "a", "b", np.nan]), } ) X.ww.init(logical_types={"D": "categorical"}) X_expected = pd.DataFrame( { "A": pd.Series([2, 4, 6, 4]), "B": pd.Series([4, 6, 4, 4]), "C":
pd.Series([6, 8, 8, 100])
pandas.Series
from .base_analysis import * from scipy.stats import linregress import scipy.stats from scipy.sparse.linalg import svds from math import ceil import matplotlib.pyplot as pp from scipy import linspace, sin from scipy.interpolate import splrep, splev import numpy import numpy.random as npr import json from scipy.spatial.distance import pdist, squareform from scipy.cluster.hierarchy import linkage, dendrogram import pandas as pd from sbaas.resources.cookb_signalsmooth import smooth from sbaas.resources.legendre_smooth import legendre_smooth from Bio.Statistics import lowess class base_calculate(): def __init__(self): self.data=[]; # calculations # biomass normalization def calculate_gdw_CVSAndCVSUnitsAndODAndConversionAndConversionUnits(self,cvs_I,cvs_units_I,od600_I,conversion_I,conversion_units_I): # check units if (cvs_units_I == 'mL' and conversion_units_I == 'gDW*L-1*OD600-1'): gdw_O = cvs_I*1e-3*od600_I*conversion_I; gdw_units_O = 'gDW'; return gdw_O, gdw_units_O; else: print('biomass conversion units do not match!') exit(-1); def calculate_cellVolume_CVSAndCVSUnitsAndODAndConversionAndConversionUnits(self,cvs_I,cvs_units_I,od600_I,conversion_I,conversion_units_I): # check units if (cvs_units_I == 'mL' and conversion_units_I == 'uL*mL-1*OD600-1'): cellVolume_O = cvs_I*od600_I*conversion_I*1e-6; cellVolume_units_O = 'L'; return cellVolume_O, cellVolume_units_O; else: print('cell volume conversion units do not match!') exit(-1); def calculate_conc_concAndConcUnitsAndDilAndDilUnitsAndConversionAndConversionUnits(self,conc_I,conc_units_I,dil_I,dil_units_I,conversion_I,conversion_units_I): # check units if (conc_units_I == 'uM' and conversion_units_I == 'L' and dil_units_I == 'mL'): conc_O = (conc_I*1e-6)*(dil_I)*(1/conversion_I); conc_units_O = 'mM'; return conc_O, conc_units_O; elif (conc_units_I == 'uM' and conversion_units_I == 'gDW' and dil_units_I == 'mL'): conc_O = (conc_I*1e-3)*(dil_I)*(1/conversion_I); conc_units_O = 'umol*gDW-1'; return conc_O, conc_units_O; elif ((conc_units_I == 'height_ratio' or conc_units_I == 'area_ratio') and (conversion_units_I == 'L' or conversion_units_I == 'gDW') and dil_units_I == 'mL'): conc_O = (conc_I*1e-3)*(dil_I)*(1/conversion_I); conc_units_O = conc_units_I; return conc_O, conc_units_O; else: print('concentration normalization units do not match!') exit(-1); def calculate_cultureDensity_ODAndConversionAndConversionUnits(self,od600_I,conversion_I,conversion_units_I): cultureDensity_O = od600_I*conversion_I; cultureDensity_units_O = conversion_units_I.replace('*OD600-1',''); return cultureDensity_O, cultureDensity_units_O; def calculate_biomass_CVSAndCVSUnitsAndODAndConversionAndConversionUnits(self,cvs_I,cvs_units_I,od600_I,conversion_I,conversion_units_I): # check units if (cvs_units_I == 'mL' and conversion_units_I == 'gDW*L-1*OD600-1'): # return the biomass in gDW gdw_O = cvs_I*1e-3*od600_I*conversion_I; gdw_units_O = 'gDW'; return gdw_O, gdw_units_O; elif (cvs_units_I == 'mL' and conversion_units_I == 'uL*mL-1*OD600-1'): # return the cell volume in L cellVolume_O = cvs_I*od600_I*conversion_I*1e-6; cellVolume_units_O = 'L'; return cellVolume_O, cellVolume_units_O; else: print('biomass conversion units do not match!') exit(-1); # statistical analysis # calculate the geometric mean and variance: def calculate_ave_var_geometric(self,data_I): # calculate the geometric average and var of data # with 95% confidence intervals try: data_ave_O = 0.0 # calculate the average of the sample for c in data_I: data_ave_O += log(c); data_ave_O = exp(data_ave_O/len(data_I)); data_var_O = 0.0 #calculate the variance of the sample for c in data_I: data_var_O += pow(log(c/data_ave_O),2); data_var_O = data_var_O/(len(data_I)-1); #note: we will need to take the exp() # to get the final variance # but leaving it this way makes the # downstream calculations simpler #calculate the 95% confidence intervals data_se = sqrt(data_var_O/len(data_I)); data_lb_O = exp(log(data_ave_O) - 1.96*data_se); data_ub_O = exp(log(data_ave_O) + 1.96*data_se); #correct the variance for use in reporting data_var_O = exp(data_var_O); return data_ave_O, data_var_O, data_lb_O, data_ub_O; except Exception as e: print(e); exit(-1); # calculate the mean and variance: def calculate_ave_var(self,data_I,confidence_I = 0.95): # calculate the average and var of data # with 95% confidence intervals try: data = numpy.array(data_I); data_ave_O = 0.0 # calculate the average of the sample data_ave_O = numpy.mean(data); data_var_O = 0.0 #calculate the variance of the sample data_var_O = numpy.var(data); #calculate the standard error of the sample se = scipy.stats.sem(data) #calculate the 95% confidence intervals n = len(data); h = se * scipy.stats.t._ppf((1+confidence_I)/2., n-1) data_lb_O = data_ave_O - h; data_ub_O = data_ave_O + h; return data_ave_O, data_var_O, data_lb_O, data_ub_O; except Exception as e: print(e); exit(-1); # calculate the confidence intervals def calculate_ciFromPoints(self,data_I, alpha=0.05): """Calculate the confidence intervals from sampled points""" data_sorted = numpy.sort(data_I) n = len(data_sorted) lb = data_sorted[int((alpha/2.0)*n)] ub = data_sorted[int((1-alpha/2.0)*n)] return lb,ub def bootstrap(self,data, num_samples=100000, statistic=numpy.mean, alpha=0.05): """Returns bootstrap estimate of 100.0*(1-alpha) CI for statistic.""" n = len(data) idx = npr.randint(0, n, (num_samples, n)) samples = data[idx] stat = numpy.sort(statistic(samples, 1)) return (stat[int((alpha/2.0)*num_samples)], stat[int((1-alpha/2.0)*num_samples)]) # calculate the p-value difference def permutation_resampling(self,case, control, num_samples=50, statistic=numpy.mean): '''calculate the pvalue of two data sets using a resampling approach''' observed_diff = abs(statistic(case) - statistic(control)) num_case = len(case) combined = numpy.concatenate([case, control]) diffs = [] for i in range(num_samples): xs = npr.permutation(combined) diff = numpy.mean(xs[:num_case]) - numpy.mean(xs[num_case:]) diffs.append(diff) pval = (numpy.sum(diffs > observed_diff) + numpy.sum(diffs < -observed_diff))/float(num_samples) return pval, observed_diff, diffs def calculate_pvalue_permutation(self,data_1_I,data_2_I,n_permutations_I=10,n_resamples_I=10): '''calculate the pvalue of two data by determining the lack of overlap between sample points using a permutation test. If the sample points of the data sets is not equal, a subset of samples of matching length is resampled from the larger data set''' data_1 = None; #sample set with fewer points data_2 = None; #sample set with more points n_resamples = 0; # check the length of data_1 and data_2 if len(data_1_I)>len(data_2_I): data_1=numpy.array(data_2_I); data_2=numpy.array(data_1_I); n_resamples=n_resamples_I; elif len(data_1_I)<len(data_2_I): data_1=numpy.array(data_1_I); data_2=numpy.array(data_2_I); n_resamples=n_resamples_I; else: data_1=numpy.array(data_1_I); data_2=numpy.array(data_2_I); n_samples_min = len(data_1); vals = [] for i in range(0,n_permutations_I): if n_resamples==0: cond1 = numpy.random.permutation(data_1) cond2 = numpy.random.permutation(data_2) z = cond1 - cond2 x = len(z[z>0]) + 1 y = len(z[z<0]) + 1 k = min(x,y) vals.append(k) else: cond1 = numpy.random.permutation(data_1) cond2 = numpy.random.permutation(data_2) for resample in range(n_resamples): cond2_int = numpy.random.randint(0,n_samples_min); z = cond1 - cond2[cond2_int] x = len(z[z>0]) + 1 y = len(z[z<0]) + 1 k = min(x,y) vals.append(k) p = numpy.mean(vals)/len(data_1)*2 return p; # calculate the interquartiles def calculate_interquartiles(self,data_I,iq_range_I = [25,75]): '''compute the interquartiles and return the min, max, median, iq1 and iq3''' min_O = numpy.min(data_I); max_O = numpy.max(data_I); iq_1_O, iq_2_O = numpy.percentile(data_I, iq_range_I) median_O = numpy.median(data_I); return min_O, max_O, median_O, iq_1_O, iq_2_O; # linear regression def calculate_regressionParameters(self,concentrations_I,ratios_I,dilution_factors_I,fit_I,weighting_I,use_area_I): '''calculate regression parameters for a given component NOTE: intended to be used in a loop''' # input: # concentrations_I # ratios_I # dilution_factors_I # fit_I # weighting_I # use_area_I # ouput: # slope # intercept # correlation # lloq # uloq # points # note need to make complimentary method to query concentrations, ratios, and dilution factors # for each component prior to calling this function #TODO return def calculate_growthRate(self,time_I,biomass_I): '''calculate exponential growth''' x = numpy.array(time_I); y = numpy.log(biomass_I); #weight the biomass by the natural logarithmn slope, intercept, r_value, p_value, std_err = linregress(x,y); r2 = r_value**2; #coefficient of determination return slope, intercept, r2, p_value, std_err; def interpolate_biomass(self,time_I, slope, intercept): '''interpolate the biomass from an exponential fit of the growth rate''' biomass = []; for t in time_I: biomass.append(t*slope+intercept); return biomass; def calculate_uptakeAndSecretionRate(self,dcw_I,conc_I,gr_I): '''calculate uptake and secretion rates''' x = numpy.array(dcw_I); y = numpy.array(conc_I); slope, intercept, r_value, p_value, std_err = linregress(x,y); r2 = r_value**2; #coefficient of determination rate = slope*gr_I; return slope, intercept, r2, p_value, std_err, rate; def interpolate_biomass(self,time_I, slope, intercept): '''interpolate the biomass from an exponential fit of the growth rate''' biomass = []; for t in time_I: biomass.append(t*slope+intercept); return biomass; # smoothing functions def fit_trajectories(self,x_I,y_I,fit_func_I='lowess',plot_textLabels_I=None,plot_fit_I=False): '''fit trajectory growth rate data to a smoothing function''' #Input: # x_I = ale_time # y_I = growth_rate #Output: # x_O = ale_time_fitted # y_O = growth_rate_fitted #cnt = 1; x = []; y = []; x = x_I; y = y_I; if fit_func_I=='spline': #spline tck = splrep(x,y,k=3,s=.025) #no smoothing factor #tck = splrep(x,y,k=3,task=-1,t=10) #no smoothing factor x2 = linspace(min(x),max(x),500) y2_spline= splev(x2,tck) y2 = numpy.zeros_like(y2_spline); for i,y2s in enumerate(y2_spline): if i==0: y2[i] = y2s; elif i!=0 and y2s<y2[i-1]: y2[i] = y2[i-1]; else: y2[i] = y2s; elif fit_func_I=='movingWindow': #moving window filter x2 = numpy.array(x); y2 = smooth(numpy.array(y),window_len=10, window='hanning'); elif fit_func_I=='legendre': #legendre smoothing optimization smooth = legendre_smooth(len(x),1,1e-4,25) x2 = numpy.array(x); y2 = smooth.fit(numpy.array(y)) elif fit_func_I=='lowess': #lowess x2 = numpy.array(x); y2_lowess = lowess.lowess(x2,numpy.array(y),f=0.1,iter=100) y2 = numpy.zeros_like(y2_lowess); for i,y2s in enumerate(y2_lowess): if i==0: y2[i] = y2s; elif i!=0 and y2s<y2[i-1]: y2[i] = y2[i-1]; else: y2[i] = y2s; else: print("fit function not recongnized"); if plot_fit_I: ##QC plot using MatPlotLib # Create a Figure object. fig = pp.figure(); # Create an Axes object. ax = fig.add_subplot(1,1,1) # one row, one column, first plot ## Add a title. #ax.set_title(k['sample_label']) # Set the axis pp.axis([0,max(x),0,max(y)+0.1]); # Add axis labels. ax.set_xlabel('Time [days]') ax.set_ylabel('GR [hr-1]') ## Label data points #tck = splrep(x,y,k=3,s=1.); #spline fit with very high smoothing factor #x_days = ALEsKOs_textLabels[k['sample_name_abbreviation']]['day'] #y_days = splev(x_days,tck) #for i,txt in enumerate(ALEsKOs_textLabels[k['sample_name_abbreviation']]['dataType']): # ax.annotate(txt, (x_days[i],y_days[i]-.15)) # Create the plot #pp.plot(x_days,y_days,'rx',x,y,'b.',x2,y2,'g') pp.plot(x,y,'b.',x2,y2,'g') #display the plot pp.show() #record x_O = []; y_O = []; x_O = x2; y_O = y2; #cnt += 1; return x_O, y_O; # other def null(self, A, eps=1e-6): u, s, vh = numpy.linalg.svd(A,full_matrices=1,compute_uv=1) null_rows = []; rank = numpy.linalg.matrix_rank(A) for i in range(A.shape[1]): if i<rank: null_rows.append(False); else: null_rows.append(True); null_space = scipy.compress(null_rows, vh, axis=0) return null_space.T # heatmap def heatmap(self,data_I,row_labels_I,column_labels_I, row_pdist_metric_I='euclidean',row_linkage_method_I='complete', col_pdist_metric_I='euclidean',col_linkage_method_I='complete'): '''Generate a heatmap using pandas and scipy''' """dendrogram documentation: linkage Methods: single(y) Performs single/min/nearest linkage on the condensed distance matrix y complete(y) Performs complete/max/farthest point linkage on a condensed distance matrix average(y) Performs average/UPGMA linkage on a condensed distance matrix weighted(y) Performs weighted/WPGMA linkage on the condensed distance matrix. centroid(y) Performs centroid/UPGMC linkage. median(y) Performs median/WPGMC linkage. ward(y) Performs Ward's linkage on a condensed or redundant distance matrix. Output: 'color_list': A list of color names. The k?th element represents the color of the k?th link. 'icoord' and 'dcoord': Each of them is a list of lists. Let icoord = [I1, I2, ..., Ip] where Ik = [xk1, xk2, xk3, xk4] and dcoord = [D1, D2, ..., Dp] where Dk = [yk1, yk2, yk3, yk4], then the k?th link painted is (xk1, yk1) - (xk2, yk2) - (xk3, yk3) - (xk4, yk4). 'ivl': A list of labels corresponding to the leaf nodes. 'leaves': For each i, H[i] == j, cluster node j appears in position i in the left-to-right traversal of the leaves, where \(j < 2n-1\) and \(i < n\). If j is less than n, the i-th leaf node corresponds to an original observation. Otherwise, it corresponds to a non-singleton cluster.""" #parse input into col_labels and row_labels #TODO: pandas is not needed for this. mets_data =
pd.DataFrame(data=data_I, index=row_labels_I, columns=column_labels_I)
pandas.DataFrame
#!/usr/bin/env python # -*- coding: utf-8 -*- import matplotlib matplotlib.rcParams['figure.dpi'] = 160 matplotlib.use('Agg') import matplotlib.pyplot as plt import pandas as pd import seaborn as sns import multiprocessing from singlecellmultiomics.bamProcessing.bamBinCounts import generate_commands, count_methylation_binned import argparse from colorama import Fore, Style from singlecellmultiomics.utils import dataframe_to_wig from singlecellmultiomics.methylation import MethylationCountMatrix from singlecellmultiomics.bamProcessing.bamFunctions import get_reference_from_pysam_alignmentFile from colorama import Fore,Style from collections import defaultdict, Counter from multiprocessing import Pool from datetime import datetime import pysam from singlecellmultiomics.bamProcessing import get_contig_sizes, get_contig_size from singlecellmultiomics.bamProcessing.bamBinCounts import generate_commands, read_counts def sample_dict(): return defaultdict(Counter) def methylation_to_cut_histogram(args): (alignments_path, bin_size, max_fragment_size, \ contig, start, end, \ min_mq, alt_spans, key_tags, dedup, kwargs) = args distance_methylation = defaultdict(sample_dict) # sample - > distance -> context(ZzHhXx) : obs max_dist = 1000 # Define which reads we want to count: known = set() if 'known' in kwargs and kwargs['known'] is not None: # Only ban the very specific TAPS conversions: try: with pysam.VariantFile(kwargs['known']) as variants: for record in variants.fetch(contig, start, end): if record.ref=='C' and 'T' in record.alts: known.add( record.pos) if record.ref=='G' and 'A' in record.alts: known.add(record.pos) except ValueError: # This happends on contigs not present in the vcf pass p = 0 start_time = datetime.now() with pysam.AlignmentFile(alignments_path, threads=4) as alignments: # Obtain size of selected contig: contig_size = get_contig_size(alignments, contig) if contig_size is None: raise ValueError('Unknown contig') # Determine where we start looking for fragments: f_start = max(0, start - max_fragment_size) f_end = min(end + max_fragment_size, contig_size) for p, read in enumerate(alignments.fetch(contig=contig, start=f_start, stop=f_end)): if p%50==0 and 'maxtime' in kwargs and kwargs['maxtime'] is not None: if (datetime.now() - start_time).total_seconds() > kwargs['maxtime']: print(f'Gave up on {contig}:{start}-{end}') break if not read_counts(read, min_mq=min_mq, dedup=dedup): continue tags = dict(read.tags) for i, (qpos, methylation_pos) in enumerate(read.get_aligned_pairs(matches_only=True)): # Don't count sites outside the selected bounds if methylation_pos < start or methylation_pos >= end: continue call = tags['XM'][i] if call=='.': continue sample = read.get_tag('SM') distance = abs(read.get_tag('DS') - methylation_pos) if distance>max_dist: continue distance_methylation[sample][(read.is_read1, read.is_reverse, distance)][call] +=1 return distance_methylation threads = None def get_distance_methylation(bam_path, bp_per_job: int, min_mapping_qual: int = None, skip_contigs: set = None, known_variants: str = None, maxtime: int = None, head: int=None, threads: int = None, **kwargs ): all_kwargs = {'known': known_variants, 'maxtime': maxtime, 'threads':threads } all_kwargs.update(kwargs) commands = generate_commands( alignments_path=bam_path, key_tags=None, max_fragment_size=0, dedup=True, head=head, bin_size=bp_per_job, bins_per_job= 1, min_mq=min_mapping_qual, kwargs=all_kwargs, skip_contigs=skip_contigs ) distance_methylation = defaultdict(sample_dict) # sample - > distance -> context(ZzHhXx) : obs with Pool(threads) as workers: for result in workers.imap_unordered(methylation_to_cut_histogram, commands): for sample, data_for_sample in result.items(): for distance, context_obs in data_for_sample.items(): distance_methylation[sample][distance] += context_obs return distance_methylation if __name__ == '__main__': argparser = argparse.ArgumentParser( formatter_class=argparse.ArgumentDefaultsHelpFormatter, description="""Extract methylation levels relative to cut site (DS tag) from bam file""") argparser.add_argument('bamfile', metavar='bamfile', type=str) argparser.add_argument('-bp_per_job', default=5_000_000, type=int, help='Amount of basepairs to be processed per thread per chunk') argparser.add_argument('-threads', default=None, type=int, help='Amount of threads to use for counting, None to use the amount of available threads') fi = argparser.add_argument_group("Filters") fi.add_argument('-min_mapping_qual', default=40, type=int) fi.add_argument('-head', default=None, type=int,help='Process the first n bins') fi.add_argument('-skip_contigs', type=str, help='Comma separated contigs to skip', default='MT,chrM') fi.add_argument('-known_variants', help='VCF file with known variants, will be not taken into account as methylated/unmethylated', type=str) og = argparser.add_argument_group("Output") og.add_argument('-prefix', default='distance_calls', type=str, help='Prefix for output files') args = argparser.parse_args() print('Obtaining counts ', end="") r = get_distance_methylation(bam_path = args.bamfile, bp_per_job = args.bp_per_job, known_variants = args.known_variants, skip_contigs = args.skip_contigs.split(','), min_mapping_qual=args.min_mapping_qual, head = args.head, threads=args.threads, ) print(f" [ {Fore.GREEN}OK{Style.RESET_ALL} ] ") for ctx in 'zhx': beta = {} met = {} un = {} for sample, sample_data in r.items(): beta[sample] = {} met[sample] = {} un[sample] = {} for distance, contexts in sample_data.items(): if ctx in contexts or ctx.upper() in contexts: beta[sample][distance] = contexts[ctx.upper()]/(contexts[ctx.upper()]+contexts[ctx]) met[sample][distance] = contexts[ctx.upper()] un[sample][distance] = contexts[ctx] pd.DataFrame(beta).sort_index().T.sort_index().to_csv(f'{args.prefix}_beta_{ctx}.csv')
pd.DataFrame(beta)
pandas.DataFrame
def three_way_factorial_ANOVA(df_lists): # 繰返し数、因子1,2,3の長さを取得 df_lists_len = len(df_lists) f1_len = len(df_lists[0][0].columns) f2_len = len(df_lists[0][0].index) f3_len = len(df_lists[0]) # それぞれの因子の効果を求める f1_mean = sum([df[i].sum(axis=1) for df in df_lists for i in range(df_lists_len)]) / (f1_len*f3_len*df_lists_len) f2_mean = sum([df[i].sum() for df in df_lists for i in range(df_lists_len)]) / (f2_len*f3_len*df_lists_len) f3_mean = sum([pd.Series([df[i].mean().mean() for i in range(df_lists_len)]) for df in df_lists]) / f3_len f_mean = sum([df[i].sum().sum() for df in df_lists for i in range(df_lists_len)]) / (f1_len*f2_len*f3_len*df_lists_len) f1_effect, f2_effect, f3_effect = f1_mean - f_mean, f2_mean - f_mean, f3_mean - f_mean # 因子変動S1,S2,S3を求める S1 = ((f1_effect**2) * (f1_len*f3_len*df_lists_len)).sum() S2 = ((f2_effect**2) * (f2_len*f3_len*df_lists_len)).sum() S3 = ((f3_effect**2) * (f1_len*f2_len*df_lists_len)).sum() # 繰返し分を全て平均したテーブルを作成する df_ave = [0 for i in range(f3_len)] for i in range(f3_len): for j in range(df_lists_len): df_ave[i] += df_lists[j][i] df_ave[i] /= df_lists_len # 因子1,2の交互作用による変動S12を求める df_12 = (sum(df_ave) / f3_len) - f_mean S1_2 = (df_12**2).sum().sum() * (f3_len*df_lists_len) S12 = S1_2 - S1 - S2 # 因子1,3の交互作用による変動S13を求める df_13 = pd.DataFrame([df.mean(axis=1) for df in df_ave]) - f_mean S1_3 = (df_13**2).sum().sum() * (f1_len*df_lists_len) S13 = S1_3 - S1 - S3 # 因子2,3の交互作用による変動S23を求める df_23 = pd.DataFrame([df.mean() for df in df_ave]) - f_mean S2_3 = (df_23**2).sum().sum() * (f2_len*df_lists_len) S23 = S2_3 - S2 - S3 # 因子1,2,3の交互作用による変動S123を求める df_123 = df_ave - f_mean S1_2_3 = (df_123**2).sum().sum() * df_lists_len S123 = S1_2_3 - S1 - S2 - S3 - S12 - S13 - S23 # 誤差変動Seを求める St = sum([((df_lists[i][j]-f_mean)**2).sum().sum() for i in range(df_lists_len) for j in range(f3_len)]) Se = St - S1 - S2 - S3 - S12 - S13 - S23 - S123 # 自由度dfを求める df1 = f2_len - 1 df2 = f1_len - 1 df3 = f3_len - 1 df12 = df1 * df2 df13 = df1 * df3 df23 = df2 * df3 df123 = df1 * df2 * df3 dfe = f1_len*f2_len*f3_len*(df_lists_len - 1) dft = df1 + df2 + df3 + df12 + df13 + df23 + df123 + dfe # 不偏分散Vを求める V1 = S1 / df1 V2 = S2 / df2 V3 = S3 / df3 V12 = S12 / df12 V13 = S13 / df13 V23 = S23 / df23 V123 = S123 / df123 Ve = Se / dfe # F値を求める F1 = V1 / Ve F2 = V2 / Ve F3 = V3 / Ve F12 = V12 / Ve F13 = V13 / Ve F23 = V23 / Ve F123 = V123 / Ve # p値を求める p1 = 1 - st.f.cdf(F1, dfn=df1, dfd=dfe) p2 = 1 - st.f.cdf(F2, dfn=df2, dfd=dfe) p3 = 1 - st.f.cdf(F3, dfn=df3, dfd=dfe) p12 = 1 - st.f.cdf(F12, dfn=df12, dfd=dfe) p13 = 1 - st.f.cdf(F13, dfn=df13, dfd=dfe) p23 = 1 - st.f.cdf(F23, dfn=df23, dfd=dfe) p123 = 1 - st.f.cdf(F123, dfn=df123, dfd=dfe) # 分散分析表を作成する df_S = pd.Series([S1, S2, S3, S12, S13, S23, S123, Se, St]) df_df = pd.Series([df1, df2, df3, df12, df13, df23, df123, dfe, dft]) df_V = pd.Series([V1, V2, V3, V12, V13, V23, V123, Ve]) df_F = pd.Series([F1, F2, F3, F12, F13, F23, F123]) df_p = pd.DataFrame([p1, p2, p3, p12, p13, p23, p123], columns=['p']) df_p['sign'] = df_p['p'].apply(lambda x : '**' if x < 0.01 else '*' if x < 0.05 else '') df_ANOVA = pd.concat([df_S, df_df, df_V, df_F, df_p], axis=1).set_axis(['S','df','V','F','p','sign'], axis=1).set_axis(['Indexes', 'Columns', 'Tables', 'Indexes*Columns', 'Indexes*Tables', 'Columns*Tables', 'Indexes*Columns*Tables', 'Error', 'Total']).rename_axis('ANOVA_table', axis=1).fillna('') # 因子の効果をデータフレームにまとめる df_effect_indexes = pd.DataFrame(f1_effect).set_axis(['mean'], axis=1) df_effect_columns =
pd.DataFrame(f2_effect)
pandas.DataFrame
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import mplfinance as mpl plt.rcParams['legend.facecolor'] = 'darkgray' ############################## RETAIL SALES ############################## def process_retailsales(path): data = pd.read_csv(path, index_col=0, parse_dates=True) data = data.drop('Date', axis=1) data.IsHoliday = data.IsHoliday.apply(lambda x : int(x) if not pd.isna(x) else np.nan) return data def plot_retialsales(data, style='ggplot'): plt.rcParams['figure.dpi'] = 100 plt.rcParams['figure.figsize'] = (15,7) plt.style.use(style) _=data.groupby('Store').Weekly_Sales.plot(title='Weekly Sales all stores') _=plt.xlabel('Dates') _=plt.ylabel('Qty') ############################## SUNSPOTS ############################## def process_sunspots(path): data=pd.read_csv(path, index_col=[0], usecols=[1,2], parse_dates=True) data.index.name = 'Month' data.columns = ['MMTS'] data = data.sort_index() return data def plot_sunspots(data, style='ggplot'): plt.rcParams['figure.dpi'] = 100 plt.rcParams['figure.figsize'] = (15,7) plt.style.use(style) _=data.plot(title='Monthly Mean of Sunspots observed') _=plt.title('Sunspots') _=plt.ylabel('Mean Sunspots Numbers') ############################## USA ECONOMIC ############################## def process_usaeconomic(path): data = pd.read_csv(path, index_col=0, parse_dates=True) data.index.name = 'Date' return data def plot_usaeconomic(data, style='ggplot'): plt.rcParams['figure.dpi'] = 100 plt.rcParams['figure.figsize'] = (15,7) plt.style.use(style) _=data.plot(title='USA-Consumption, Income, Production, Savings & Unemployment Pct Changes') ############################## VISITORS TO 20 REGIONS ############################## def process_20rvisitors(path): data = pd.read_csv(path, index_col=0, parse_dates=True) data.index=pd.to_datetime(data.index.str.replace(' ','')) data.columns = ['Regions', 'Visitors'] data.index.name = 'Quarter' return data def plot_20rvisitors(data, style='ggplot'): plt.rcParams['figure.dpi'] = 100 plt.rcParams['figure.figsize'] = (15,7) plt.style.use(style) _=sns.lineplot(x='Quarter', y='Visitors', hue='Regions', data=data.reset_index()) _=plt.title('Quaterly Vistors to 20 regions in Australlia') _=plt.ylabel('Visitors (Million)') ############################## ELECTRICITY PRODUCTION ############################## def process_electricityprod(path): data =
pd.read_csv(path, index_col=0, parse_dates=True)
pandas.read_csv
#!/home/eee/ug/15084015/miniconda3/envs/btp/bin/python from subprocess import call import pdb import pandas as pd from datetime import datetime, timedelta def scp(directory, date): cmd = ( "scp -i /home/eee/ug/15084015/.ssh/btp.pem predictions/%s/%s.csv [email protected]:/var/www/html/btech_project/server/predictions/%s/" % (directory, date, directory) ) call(cmd.split(" ")) """Simple Moving Average (SMA)""" # pdb.set_trace() p = 5 # number of days to take average of n = 24 * 12 # hours * number of values per hour time = ['%02d:%02d' % (x, y) for x in range(24) for y in range(0, 60, 5)] #time = ['00:00', '00:05'... data = pd.read_csv( "monthdata.csv", header=None, index_col=["datetime"], names=["datetime", "load"], parse_dates=["datetime"], infer_datetime_format=True, ) # import pdb; pdb.set_trace() print(data.index[-1]) date = datetime.today().date().strftime("%d-%m-%Y") print('date today:', date) load = data["load"].values pred = [0] * n for i in range(n): forecast = 0 for j in range(1, p + 1): forecast += load[-(j * n) + i] / p pred[i] = (time[i], forecast) df = pd.DataFrame.from_records(pred, columns=["time", "load"]) df.to_csv("predictions/SMA/%s.csv" % date, index=False) scp("SMA", date) """Simple Exponential Smoothing (SES)""" dict = {} m = int(len(data) / n) alpha = [0] * n alphamin = [0] * n forecast = [0] * len(data) forecast[:n] = [load[j] for j in range(n)] for j in range(n): mse = [0] * 9 for k in range(1, 10): alpha[j] = k * 0.1 mse[k - 1] += (forecast[j] - load[n + j]) ** 2 for i in range(2, m): forecast[((i - 1) * n) + j] = (alpha[j] * load[((i - 1) * n) + j]) + ( (1 - alpha[j]) * forecast[((i - 2) * n) + j] ) mse[k - 1] += (forecast[((i - 1) * n) + j] - load[(i * n) + j]) ** 2 min = mse[0] alphamin[j] = 0.1 for i in range(1, 9): if mse[i] < min: min = mse[i] alphamin[j] = (i + 1) * 0.1 a = 10 forecast2 = [0] * (a * n) forecast2[:n] = [load[i - (a * n)] for i in range(n)] for j in range(1, a): for i in range(n): forecast2[i + (j * n)] = (alphamin[i] * load[i - (a * n) + (j * n)]) + ( (1 - alphamin[i]) * forecast2[i + (j * n) - n] ) pred = [0] * n for i in range(n): pred[i] = (time[i], forecast2[-n:][i]) labels = ["time", "load"] df = pd.DataFrame.from_records(pred, columns=labels) df.to_csv("predictions/SES/%s.csv" % date, index=False) scp("SES", date) """Weighted Moving Average (WMA)""" weights = [0.8019, 0.0426, 0.0226, -0.0169, 0.1497] pred = [0] * n for i in range(n): forecast = 0 for j in range(1, len(weights) + 1): forecast += load[-(j * n) + i] * weights[j - 1] pred[i] = (time[i], forecast) labels = ["time", "load"] df =
pd.DataFrame.from_records(pred, columns=labels)
pandas.DataFrame.from_records
from __future__ import division #brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest print("Python version: " + sys.version) print("Numpy version: " + np.__version__) # #find parent directory and import model # parent_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) # sys.path.append(parent_dir) from ..trex_exe import Trex test = {} class TestTrex(unittest.TestCase): """ Unit tests for T-Rex model. """ print("trex unittests conducted at " + str(datetime.datetime.today())) def setUp(self): """ Setup routine for trex unit tests. :return: """ pass # setup the test as needed # e.g. pandas to open trex qaqc csv # Read qaqc csv and create pandas DataFrames for inputs and expected outputs def tearDown(self): """ Teardown routine for trex unit tests. :return: """ pass # teardown called after each test # e.g. maybe write test results to some text file def create_trex_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty trex object trex_empty = Trex(df_empty, df_empty) return trex_empty def test_app_rate_parsing(self): """ unittest for function app_rate_testing: method extracts 1st and maximum from each list in a series of lists of app rates """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([], dtype="object") result = pd.Series([], dtype="object") expected_results = [[0.34, 0.78, 2.34], [0.34, 3.54, 2.34]] try: trex_empty.app_rates = pd.Series([[0.34], [0.78, 3.54], [2.34, 1.384, 2.22]], dtype='object') # trex_empty.app_rates = ([[0.34], [0.78, 3.54], [2.34, 1.384, 2.22]]) # parse app_rates Series of lists trex_empty.app_rate_parsing() result = [trex_empty.first_app_rate, trex_empty.max_app_rate] npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_initial(self): """ unittest for function conc_initial: conc_0 = (app_rate * self.frac_act_ing * food_multiplier) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = [12.7160, 9.8280, 11.2320] try: # specify an app_rates Series (that is a series of lists, each list representing # a set of application rates for 'a' model simulation) trex_empty.app_rates = pd.Series([[0.34, 1.384, 13.54], [0.78, 11.34, 3.54], [2.34, 1.384, 3.4]], dtype='float') trex_empty.food_multiplier_init_sg = pd.Series([110., 15., 240.], dtype='float') trex_empty.frac_act_ing = pd.Series([0.34, 0.84, 0.02], dtype='float') for i in range(len(trex_empty.frac_act_ing)): result[i] = trex_empty.conc_initial(i, trex_empty.app_rates[i][0], trex_empty.food_multiplier_init_sg[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_conc_timestep(self): """ unittest for function conc_timestep: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = [6.25e-5, 0.039685, 7.8886e-30] try: trex_empty.foliar_diss_hlife = pd.Series([.25, 0.75, 0.01], dtype='float') conc_0 = pd.Series([0.001, 0.1, 10.0]) for i in range(len(conc_0)): result[i] = trex_empty.conc_timestep(i, conc_0[i]) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_percent_to_frac(self): """ unittest for function percent_to_frac: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([.04556, .1034, .9389], dtype='float') try: trex_empty.percent_incorp = pd.Series([4.556, 10.34, 93.89], dtype='float') result = trex_empty.percent_to_frac(trex_empty.percent_incorp) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_inches_to_feet(self): """ unittest for function inches_to_feet: """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() expected_results = pd.Series([0.37966, 0.86166, 7.82416], dtype='float') try: trex_empty.bandwidth = pd.Series([4.556, 10.34, 93.89], dtype='float') result = trex_empty.inches_to_feet(trex_empty.bandwidth) npt.assert_allclose(result,expected_results,rtol=1e-4, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_results] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_at_bird(self): """ unittest for function at_bird: adjusted_toxicity = self.ld50_bird * (aw_bird / self.tw_bird_ld50) ** (self.mineau_sca_fact - 1) """ # create empty pandas dataframes to create empty object for this unittest trex_empty = self.create_trex_object() result = pd.Series([], dtype = 'float') expected_results = pd.Series([69.17640, 146.8274, 56.00997], dtype='float') try: trex_empty.ld50_bird = pd.Series([100., 125., 90.], dtype='float') trex_empty.tw_bird_ld50 = pd.Series([175., 100., 200.], dtype='float') trex_empty.mineau_sca_fact = pd.Series([1.15, 0.9, 1.25], dtype='float') # following variable is unique to at_bird and is thus sent via arg list trex_empty.aw_bird_sm =
pd.Series([15., 20., 30.], dtype='float')
pandas.Series
# -*- coding: utf-8 -*- import os import pytest import pandas as pd from anacode.api import writers from anacode.agg import aggregation as agg @pytest.mark.parametrize('call_type,dataset_name,data', [ ('categories', 'categories', pd.DataFrame([1])), ('concepts', 'concepts', pd.DataFrame([2])), ('concepts', 'concepts_surface_strings',
pd.DataFrame([3])
pandas.DataFrame
import unittest import logging import cmapPy.pandasGEXpress.setup_GCToo_logger as setup_logger import os import numpy as np import pandas as pd import cmapPy.pandasGEXpress.GCToo as GCToo import cmapPy.pandasGEXpress.parse_gct as pg import cmapPy.pandasGEXpress.write_gct as wg FUNCTIONAL_TESTS_PATH = "../functional_tests" logger = logging.getLogger(setup_logger.LOGGER_NAME) class TestWriteGct(unittest.TestCase): @classmethod def setUpClass(cls): # Create dfs to be used by tests cls.data_df = pd.DataFrame( [[1, 2, 3], [5, 7, np.nan], [13, 17, -19], [0, 23, 29]], index=pd.Index(["rid1", "rid2", "rid3", "rid4"], name="rid"), columns=pd.Index(["cid1", "cid2", "cid3"], name="cid"), dtype=np.float32) cls.row_metadata_df = pd.DataFrame( [["Analyte 11", 11, "dp52"], ["Analyte 12", 12, "dp52"], ["Analyte 13", 13, "dp53"], ["Analyte 14", 14, "dp54"]], index=pd.Index(["rid1", "rid2", "rid3", "rid4"], name="rid"), columns=pd.Index(["pr_analyte_id", "pr_analyte_num", "pr_bset_id"], name="rhd")) cls.col_metadata_df = pd.DataFrame( [[8.38, np.nan, "DMSO", "24 h"], [7.7, np.nan, "DMSO", "24 h"], [8.18, np.nan, "DMSO", "24 h"]], index=pd.Index(["cid1", "cid2", "cid3"], name="cid"), columns=pd.Index(["qc_iqr", "pert_idose", "pert_iname", "pert_itime"], name="chd")) def test_write(self): out_name = os.path.join(FUNCTIONAL_TESTS_PATH, "test_write_out.gct") gctoo = GCToo.GCToo(data_df=self.data_df, row_metadata_df=self.row_metadata_df, col_metadata_df=self.col_metadata_df) wg.write(gctoo, out_name, data_null="NaN", metadata_null="-666", filler_null="-666") # Read in the gct and verify that it's the same as gctoo new_gct = pg.parse(out_name)
pd.util.testing.assert_frame_equal(new_gct.data_df, gctoo.data_df)
pandas.util.testing.assert_frame_equal
#%% import pickle import matplotlib.pyplot as plt from matplotlib import rcParams rcParams.update({'figure.autolayout': True}) import numpy as np import pandas as pd from itertools import product import seaborn as sns import matplotlib.gridspec as gridspec #%% def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def get_fte_bte(err, single_err): bte = [[] for i in range(10)] te = [[] for i in range(10)] fte = [] for i in range(10): for j in range(i,10): #print(err[j][i],j,i) bte[i].append(err[i][i]/err[j][i]) te[i].append(single_err[i]/err[j][i]) for i in range(10): fte.append(single_err[i]/err[i][i]) return fte,bte,te def calc_mean_bte(btes,task_num=10,reps=6): mean_bte = [[] for i in range(task_num)] for j in range(task_num): tmp = 0 for i in range(reps): tmp += np.array(btes[i][j]) tmp=tmp/reps mean_bte[j].extend(tmp) return mean_bte def calc_mean_te(tes,task_num=10,reps=6): mean_te = [[] for i in range(task_num)] for j in range(task_num): tmp = 0 for i in range(reps): tmp += np.array(tes[i][j]) tmp=tmp/reps mean_te[j].extend(tmp) return mean_te def calc_mean_fte(ftes,task_num=10,reps=6): fte = np.asarray(ftes) return list(np.mean(np.asarray(fte),axis=0)) def get_error_matrix(filename): multitask_df, single_task_df = unpickle(filename) err = [[] for _ in range(10)] for ii in range(10): err[ii].extend( 1 - np.array( multitask_df[multitask_df['base_task']==ii+1]['accuracy'] ) ) single_err = 1 - np.array(single_task_df['accuracy']) return single_err, err def stratified_scatter(te_dict,axis_handle,s,color): algo = list(te_dict.keys()) total_alg = len(algo) total_points = len(te_dict[algo[0]]) pivot_points = np.arange(-.25, (total_alg+1)*1, step=1) interval = .7/(total_points-1) for algo_no,alg in enumerate(algo): for no,points in enumerate(te_dict[alg]): axis_handle.scatter( pivot_points[algo_no]+interval*no, te_dict[alg][no], s=s, c=color[algo_no] ) #%% ### MAIN HYPERPARAMS ### ntrees = 10 slots = 10 task_num = 10 shifts = 6 total_alg = 9 alg_name = ['L2N','L2F','L2F-','Prog-NN', 'DF-CNN','LwF','EWC','O-EWC','SI'] model_file_500 = ['dnn0','fixed_uf10','uf10','Prog_NN','DF_CNN', 'LwF','EWC', 'Online_EWC', 'SI'] model_file_5000 = ['dnn0','fixed_uf5000_40','uf5000_40','Prog_NN','DF_CNN', 'LwF','EWC', 'Online_EWC', 'SI'] btes_500 = [[] for i in range(total_alg)] ftes_500 = [[] for i in range(total_alg)] tes_500 = [[] for i in range(total_alg)] btes_5000 = [[] for i in range(total_alg)] ftes_5000 = [[] for i in range(total_alg)] tes_5000 = [[] for i in range(total_alg)] ######################## #%% code for 5000 samples reps = shifts for alg in range(total_alg): count = 0 te_tmp = [[] for _ in range(reps)] bte_tmp = [[] for _ in range(reps)] fte_tmp = [[] for _ in range(reps)] for shift in range(shifts): if alg < 3: filename = 'result/result/'+model_file_5000[alg]+'_'+str(shift+1)+'_0'+'.pickle' else: filename = 'benchmarking_algorthms_result/'+model_file_5000[alg]+'_'+str(shift+1)+'.pickle' multitask_df, single_task_df = unpickle(filename) single_err, err = get_error_matrix(filename) fte, bte, te = get_fte_bte(err,single_err) te_tmp[count].extend(te) bte_tmp[count].extend(bte) fte_tmp[count].extend(fte) count+=1 tes_5000[alg].extend(calc_mean_te(te_tmp,reps=reps)) btes_5000[alg].extend(calc_mean_bte(bte_tmp,reps=reps)) ftes_5000[alg].extend(calc_mean_fte(fte_tmp,reps=reps)) #%% code for 500 samples reps = slots*shifts for alg in range(total_alg): count = 0 te_tmp = [[] for _ in range(reps)] bte_tmp = [[] for _ in range(reps)] fte_tmp = [[] for _ in range(reps)] for slot in range(slots): for shift in range(shifts): if alg < 3: filename = 'result/result/'+model_file_500[alg]+'_'+str(shift+1)+'_'+str(slot)+'.pickle' else: filename = 'benchmarking_algorthms_result/'+model_file_500[alg]+'_'+str(shift+1)+'_'+str(slot)+'.pickle' multitask_df, single_task_df = unpickle(filename) single_err, err = get_error_matrix(filename) fte, bte, te = get_fte_bte(err,single_err) te_tmp[count].extend(te) bte_tmp[count].extend(bte) fte_tmp[count].extend(fte) count+=1 tes_500[alg].extend(calc_mean_te(te_tmp,reps=reps)) btes_500[alg].extend(calc_mean_bte(bte_tmp,reps=reps)) ftes_500[alg].extend(calc_mean_fte(fte_tmp,reps=reps)) #%% te_500 = {'L2N':np.zeros(10,dtype=float), 'L2F':np.zeros(10,dtype=float),'L2Fc':np.zeros(10,dtype=float), 'Prog-NN':np.zeros(10,dtype=float), 'DF-CNN':np.zeros(10,dtype=float), 'LwF':np.zeros(10,dtype=float),'EWC':np.zeros(10,dtype=float), 'Online EWC':np.zeros(10,dtype=float), 'SI':np.zeros(10,dtype=float)} for count,name in enumerate(te_500.keys()): for i in range(10): te_500[name][i] = tes_500[count][i][9-i] df_500 = pd.DataFrame.from_dict(te_500) df_500 = pd.melt(df_500,var_name='Algorithms', value_name='Transfer Efficieny') '''mean_te = {'L2N':[np.mean(te['L2N'])],'L2F':[np.mean(te['L2F'])], 'L2Fc':[np.mean(te['L2Fc'])], 'Prog-NN':[np.mean(te['Prog-NN'])],'DF-CNN':[np.mean(te['DF-CNN'])], 'LwF':[np.mean(te['LwF'])],'EWC':[np.mean(te['EWC'])], 'Online EWC':[np.mean(te['Online EWC'])], 'SI':[np.mean(te['SI'])] } mean_df = pd.DataFrame.from_dict(mean_te) mean_df = pd.melt(mean_df,var_name='Algorithms', value_name='Transfer Efficieny')''' #%% te_5000 = {'L2N':np.zeros(10,dtype=float), 'L2F':np.zeros(10,dtype=float),'L2Fc':np.zeros(10,dtype=float), 'Prog-NN':np.zeros(10,dtype=float), 'DF-CNN':np.zeros(10,dtype=float), 'LwF':np.zeros(10,dtype=float),'EWC':np.zeros(10,dtype=float), 'Online EWC':np.zeros(10,dtype=float), 'SI':np.zeros(10,dtype=float)} for count,name in enumerate(te_5000.keys()): for i in range(10): te_5000[name][i] = tes_5000[count][i][9-i] df_5000 =
pd.DataFrame.from_dict(te_5000)
pandas.DataFrame.from_dict
import cv2 import numpy as np import base64 import pandas as pd import plotly.graph_objects as go from datetime import datetime, time, timedelta, date import wget from zipfile import ZipFile import os import json import plotly.express as px import joblib # pip install streamlit --upgrade # pip install streamlit==0.78.0 class Inference: def __init__(self,model_path="model/model.pkl"): self.nomi_regioni = ['Abruzzo', 'Basilicata', 'Calabria', 'Campania', 'Emilia-Romagna', '<NAME>', 'Lazio', 'Liguria', 'Lombardia', 'Marche', 'Molise', '<NAME>', '<NAME>', 'Piemonte', 'Puglia', 'Sardegna', 'Sicilia', 'Toscana', 'Umbria', "Valle d'Aosta", 'Veneto'] dict_names = {"bianca":0,"gialla": 1, "arancione": 2, "rossa": 3} self.names = list(dict_names) self.model = joblib.load(model_path) def predict(self,inputs, regione): idx = self.nomi_regioni.index(regione) v = [ 0 for i in range(0,len(self.nomi_regioni))] v[idx] = 1 inputs.extend(v) X = np.array(inputs,dtype=np.float).reshape(1,-1) Y_hat = self.model.predict(X) return self.names[int(Y_hat[0])] def fig_stats_variation(regione, data_inizio, data_fine,options): #select = ["deceduti","totale_casi","dimessi_guariti","terapia_intensiva","tamponi","isolamento_domiciliare"] df = None title = "Variazione Giornaliera" if regione=="Italia": df = get_data_nazione() df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] else: df = get_data_regioni() df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] df = df[df["denominazione_regione"]==regione] # Script to aggregate data # https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.resample.html dft = df.copy() dft = dft.set_index("data") dft["count"] = [1 for i in range(0,len(df))] agg = {"count" : "size"} for s in options: agg[s] = "median" dft = dft.resample('1D').agg(agg) # Variation daily df = {"data": dft.index[1:]} for s in options: start = dft[s][:-1].values end = dft[s][1:].values df[s] = ( end - start ) #df[s] = np.round( ( end / start -1 )*100,2) df = pd.DataFrame(df) df = df.set_index("data") #dft.dropna() #print(dft.head()) # Rolling average variation #df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] fig = go.Figure() for name in options: fig.add_trace(go.Scatter(x=df.index, y=df[name], mode='lines+markers',#mode='lines+markers', name=name.replace("_"," "), hoverlabel_namelength=-1)) fig.update_layout( showlegend=True, hovermode = "x", yaxis_title = "Persone", #paper_bgcolor = "rgb(0,0,0)" , #plot_bgcolor = "rgb(10,10,10)" , legend=dict(orientation="h",yanchor="bottom", y=1.02,xanchor="right", x=1,title_text=""), dragmode="pan", title=dict( x = 0.5, y = 0.05, text = title, font=dict( size = 20, color = "rgb(0,0,0)" ) ) ) return fig def fig_stats(regione, data_inizio, data_fine,options): #select = ["deceduti","totale_casi","dimessi_guariti","terapia_intensiva","tamponi","isolamento_domiciliare"] df = None title = "Andamento Cumulativo" if regione=="Italia": df = get_data_nazione() df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] df = df.set_index("data") else: df = get_data_regioni() df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] df = df[df["denominazione_regione"]==regione] df = df.set_index("data") #df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] fig = go.Figure() for name in options: fig.add_trace(go.Scatter(x=df.index, y=df[name], mode='lines+markers',#mode='lines+markers', name=name.replace("_"," "), hoverlabel_namelength=-1)) fig.update_layout( showlegend=True, hovermode = "x", yaxis_title = "Persone", #paper_bgcolor = "rgb(0,0,0)" , #plot_bgcolor = "rgb(10,10,10)" , legend=dict(orientation="h",yanchor="bottom", y=1.02,xanchor="right", x=1,title_text=""), dragmode="pan", title=dict( x = 0.5, y = 0.05, text = title, font=dict( size = 20, color = "rgb(0,0,0)" ) ) ) return fig def get_stats(regione,data_inizio, data_fine): select = ["deceduti","totale_casi","dimessi_guariti","variazione_totale_positivi"] df = None if regione=="Italia": df = get_data_nazione() else: df = get_data_regioni() df = df[df["denominazione_regione"]==regione] df = df[ (df["data"]>=data_inizio) & (df["data"]<=data_fine) ] incremento = ( df.iloc[-1,:][select] - df.iloc[-2,:][select] ) .to_dict() data = ( df.iloc[-1,:][select]) .to_dict() df = pd.DataFrame ([data,incremento],columns=select, index=["Situazione","Incremento"]) df = df.rename(columns={"deceduti": "Deceduti", "totale_casi": "Totale Casi", "dimessi_guariti": "Dimessi Guariti","variazione_totale_positivi" : "Var. Totale Positivi" }) return df def get_nomi_regioni(): df = get_data_regioni() #df["data"] = [ datetime.strptime(d, "%Y-%m-%dT%H:%M:%S") for d in df["data"]] return df["denominazione_regione"].unique().tolist() def get_options(): select = ["deceduti","totale_casi","dimessi_guariti","terapia_intensiva","tamponi","isolamento_domiciliare"] return select def get_date(): df = get_data_nazione() start = df["data"].tolist()[0] end= df["data"].tolist()[-1] d = end date = [] date.append(d.strftime("%Y-%m-%d")) while (d>start): t = d -timedelta(days=0, weeks=1) date.append(t.strftime("%Y-%m-%d")) d = t #date = [ d.strftime("%Y-%m-%d") for d in df["data"].dt.date] return date def get_data_nazione(): ''' Keys: ['data', 'stato', 'ricoverati_con_sintomi', 'terapia_intensiva', 'totale_ospedalizzati', 'isolamento_domiciliare', 'totale_positivi', 'variazione_totale_positivi', 'nuovi_positivi', 'dimessi_guariti', 'deceduti', 'casi_da_sospetto_diagnostico', 'casi_da_screening', 'totale_casi', 'tamponi', 'casi_testati', 'note', 'ingressi_terapia_intensiva', 'note_test', 'note_casi', 'totale_positivi_test_molecolare', 'totale_positivi_test_antigenico_rapido', 'tamponi_test_molecolare', 'tamponi_test_antigenico_rapido'] ''' #url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv" url = "data/dpc-covid19-ita-andamento-nazionale.csv" df = pd.read_csv(url) df["data"] = [ datetime.strptime(d, "%Y-%m-%dT%H:%M:%S") for d in df["data"]] return df def get_data_province(): ''' Keys: ['data', 'stato', 'codice_regione', 'denominazione_regione', 'codice_provincia', 'denominazione_provincia', 'sigla_provincia', 'lat', 'long', 'totale_casi', 'note', 'codice_nuts_1', 'codice_nuts_2', 'codice_nuts_3'] ''' #url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-province/dpc-covid19-ita-province.csv" url = "data/dpc-covid19-ita-province.csv" df = pd.read_csv(url) df["data"] = [ datetime.strptime(d, "%Y-%m-%dT%H:%M:%S") for d in df["data"]] return df def get_data_regioni(): ''' Keys: ['data', 'stato', 'codice_regione', 'denominazione_regione', 'lat', 'long', 'ricoverati_con_sintomi', 'terapia_intensiva', 'totale_ospedalizzati', 'isolamento_domiciliare', 'totale_positivi', 'variazione_totale_positivi', 'nuovi_positivi', 'dimessi_guariti', 'deceduti', 'casi_da_sospetto_diagnostico', 'casi_da_screening', 'totale_casi', 'tamponi', 'casi_testati', 'note', 'ingressi_terapia_intensiva', 'note_test', 'note_casi', 'totale_positivi_test_molecolare', 'totale_positivi_test_antigenico_rapido', 'tamponi_test_molecolare', 'tamponi_test_antigenico_rapido', 'codice_nuts_1', 'codice_nuts_2'] ''' #url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv" url = "data/dpc-covid19-ita-regioni.csv" df = pd.read_csv(url) df["data"] = [ datetime.strptime(d, "%Y-%m-%dT%H:%M:%S") for d in df["data"]] return df def create_dataset(df_p): # Data string to datetime # Le date sono codificate come stringhe. Le vogliamo come datetime df["data"] = [ datetime.strptime(d, "%Y-%m-%dT%H:%M:%S") for d in df["data"]] # Filtro emilia - romagna df = df[df["denomiazione_regione"]=="Emilia-Romagna"] # Dataset (ultime 4 settimane) data_end = df["data"].tolist()[-1] # data di oggi data_start = data_end - timedelta(days=0,weeks=2,hours=0,minutes=0) df_f = df[ (df["data"]>=data_start) & (df["data"]<=data_end) ] # Dataset (ultime 2 settimane) data_end = df["data"].tolist()[-1] # data di oggi data_start = data_end - timedelta(days=0,weeks=1,hours=0,minutes=0) df_ff = df[ (df["data"]>=data_start) & (df["data"]<=data_end) ] # Calcolo Indici Regionali Emilia Romagna # id1 Totale casi ultime 2 settimate i1 = df_f["totale_casi"] #id2 Ricoverati con sentomi utlime 2 settimane i2 = df_f["ricoverati_con_sintomi"] #id3 Terapia intensiva ultime 2 settimate i3 = df_f["terapia_intensiva"] #id4 Isolamento dociciliare i4 = df_f["isolamento_domiciliare"] # id7 % tamponi positivi i7 = ( df_f["totale_positivi_test_molecolare"] + df_f["totale_positivi_test_antigenico_rapido"] ) / df_f["tamponi"] # Numero di deceduti nelle 2 settimane e1 = df_f["deceduti"] i12 = df_f["casi_da_sospetto_diagnostico"] i13 = df_ff["totale_casi"] def get_data_locally(): url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-province/dpc-covid19-ita-province.csv" df = pd.read_csv(url) df.to_csv("data/dpc-covid19-ita-province.csv") url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv" df = pd.read_csv(url) df.to_csv("data/dpc-covid19-ita-regioni.csv") url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv" df = pd.read_csv(url) df.to_csv("data/dpc-covid19-ita-andamento-nazionale.csv") def get_input_prediction(regione): df = pd.read_csv("data/dpc-covid19-ita-regioni-zone.csv") df = df[df["denominazione_regione"]==regione] last = df.tail(1) ricoverati_con_sintomi = last["ricoverati_con_sintomi"].tolist()[0] terapia_intensiva = last["terapia_intensiva"].tolist()[0] totale_ospedalizzati = last["totale_ospedalizzati"].tolist()[0] totale_positivi = last["totale_positivi"].tolist()[0] isolamento_domiciliare = last["isolamento_domiciliare"].tolist()[0] deceduti = last["deceduti"].tolist()[0] dimessi_guariti = last["dimessi_guariti"].tolist()[0] nuovi_positivi = last["nuovi_positivi"].tolist()[0] totale_casi = last["totale_casi"].tolist()[0] tamponi = last["tamponi"].tolist()[0] return ricoverati_con_sintomi,terapia_intensiva,totale_ospedalizzati,totale_positivi,isolamento_domiciliare,deceduti,dimessi_guariti,nuovi_positivi,totale_casi,tamponi def get_map(): df = pd.read_csv("data/dpc-covid19-ita-regioni-zone.csv") df["data"] = [ datetime.strptime(d, "%Y-%m-%d %H:%M:%S") for d in df["data"]] update_date = df["data"].tolist()[-1] df = df[df["data"].dt.date==update_date] regions = df["denominazione_regione"].tolist() colors = df["zona"].tolist() # https://codicicolori.com/codici-colori-rgb color_discrete_map = {'unknown': 'rgb(125,125,0)', 'bianca': 'rgb(255,255,255)', 'gialla': 'rgb(255,255,108)', 'arancione': 'rgb(255,165,0)','rossa': 'rgb(255,0,0)'} df = pd.DataFrame(regions, columns=['Regione']) df['zona'] =colors with open('data/regioni.geojson') as f: italy_regions_geo = json.load(f) # Choropleth representing the length of region names fig = px.choropleth(data_frame=df, geojson=italy_regions_geo, locations='Regione', # name of dataframe column featureidkey='properties.NOME_REG', # path to field in GeoJSON feature object with which to match the values passed in to locations color="zona", color_discrete_map=color_discrete_map, scope="europe", ) fig.update_geos(showcountries=False, showcoastlines=False, showland=False, fitbounds="locations") title = "Situazione Italiana: " + update_date.strftime("%Y-%m-%d" ) fig.update_layout(title=title) #),margin={"r":0,"t":0,"l":0,"b":0}) return fig def get_zone_table(regione): #df = pd.read_csv("data/dpc-covid-19-aree.csv") df = pd.read_csv("data/dpc-covid19-ita-regioni-zone.csv") df["data"] = [ datetime.strptime(d, "%Y-%m-%d %H:%M:%S").date() for d in df["data"]] df = df.sort_values(by=["data"],ascending=False) if regione!="Italia": df = df[df["denominazione_regione"]==regione] inputs = ["data","denominazione_regione","zona","tamponi","deceduti","totale_casi","dimessi_guariti","totale_ospedalizzati","ricoverati_con_sintomi","totale_positivi","isolamento_domiciliare","terapia_intensiva","nuovi_positivi"] df = df[inputs] return df def collect_data(): url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-andamento-nazionale/dpc-covid19-ita-andamento-nazionale.csv" df = pd.read_csv(url) df.to_csv("data/dpc-covid19-ita-andamento-nazionale.csv") url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv" df = pd.read_csv(url) df.to_csv("data/dpc-covid19-ita-regioni.csv") url = "https://raw.githubusercontent.com/pcm-dpc/COVID-19/master/dati-province/dpc-covid19-ita-province.csv" df = pd.read_csv(url) df.to_csv("data/dpc-covid19-ita-province.csv") ''' # bash wget https://github.com/pcm-dpc/COVID-19/raw/master/aree/geojson/dpc-covid-19-aree-nuove-g-json.zip unzip dpc-covid-19-aree-nuove-g-json.zip ''' url = 'https://github.com/pcm-dpc/COVID-19/raw/master/aree/geojson/dpc-covid-19-aree-nuove-g-json.zip' filenameZip = wget.download(url,out="data/dpc-covid-19-aree-nuove-g-json.zip") with ZipFile(filenameZip, 'r') as zipObj: zipObj.extractall("data/") print('File is unzipped') zipObj.close() os.remove(filenameZip) # Process json file to retrieve data with open('data/dpc-covid-19-aree-nuove-g.json') as f: data = json.load(f) data_dict = { "regione" : [], "data_inizio": [], "data_fine": [], "colore" : [], "link": [] } color_dict = {"art.1": "gialla","art.2": "arancione","art.3": "rossa", "art.1 comma 11" : "bianca" } lista_regioni = [] for d in data["features"]: p = d["properties"] data_inizio = datetime.strptime(p["datasetIni"], "%d/%m/%Y") if p["datasetFin"]==" ": data_fine = datetime.now() #.date() else: data_fine = datetime.strptime(p["datasetFin"], "%d/%m/%Y") #.date() regione = p["nomeTesto"] colore = color_dict[ p["legSpecRif"] ] #if (data_inizio not in data_dict["data_inizio"]): data_dict["regione"].append(regione) data_dict["data_inizio"].append(data_inizio) data_dict["data_fine"].append(data_fine) data_dict["colore"].append(colore) data_dict["link"].append(p["legLink"]) df = pd.DataFrame(data_dict) df.to_csv("data/dpc-covid-19-aree.csv") # Update dataset Regioni df_r =
pd.read_csv("data/dpc-covid19-ita-regioni.csv")
pandas.read_csv
# -*- coding: utf-8 -*- """ Pipeline-GUI for Analysis with MNE-Python @author: <NAME> @email: <EMAIL> @github: https://github.com/marsipu/mne_pipeline_hd License: BSD (3-clause) Written on top of MNE-Python Copyright © 2011-2020, authors of MNE-Python (https://doi.org/10.3389/fnins.2013.00267) inspired by <NAME>. (2018) (https://doi.org/10.3389/fnins.2018.00006) """ from ast import literal_eval from datetime import datetime import pandas as pd from PyQt5.QtCore import QAbstractItemModel, QAbstractListModel, QAbstractTableModel, QModelIndex, Qt from PyQt5.QtGui import QBrush, QFont from PyQt5.QtWidgets import QStyle from mne_pipeline_hd.gui.gui_utils import get_std_icon class BaseListModel(QAbstractListModel): """ A basic List-Model Parameters ---------- data : list() input existing list here, otherwise defaults to empty list show_index : bool Set True if you want to display the list-index in front of each value drag_drop: bool Set True to enable Drag&Drop. """ def __init__(self, data=None, show_index=False, drag_drop=False, **kwargs): super().__init__(**kwargs) self.show_index = show_index self.drag_drop = drag_drop if data is None: self._data = list() else: self._data = data def getData(self, index): return self._data[index.row()] def data(self, index, role=None): if role == Qt.DisplayRole: if self.show_index: return f'{index.row()}: {self.getData(index)}' else: return str(self.getData(index)) elif role == Qt.EditRole: return str(self.getData(index)) def rowCount(self, index=QModelIndex()): return len(self._data) def insertRows(self, row, count, index=QModelIndex()): self.beginInsertRows(index, row, row + count - 1) n = 0 for pos in range(row, row + count): item_name = f'__new{n}__' while item_name in self._data: n += 1 item_name = f'__new{n}__' self._data.insert(pos, item_name) self.endInsertRows() return True def removeRows(self, row, count, index=QModelIndex()): self.beginRemoveRows(index, row, row + count - 1) for item in [self._data[i] for i in range(row, row + count)]: self._data.remove(item) self.endRemoveRows() return True def flags(self, index): default_flags = QAbstractListModel.flags(self, index) if self.drag_drop: if index.isValid(): return default_flags | Qt.ItemIsDragEnabled | Qt.ItemIsDropEnabled else: return default_flags | Qt.ItemIsDropEnabled else: return default_flags def supportedDragActions(self): if self.drag_drop: return Qt.CopyAction | Qt.MoveAction class EditListModel(BaseListModel): """An editable List-Model Parameters ---------- data : list() input existing list here, otherwise defaults to empty list show_index: bool Set True if you want to display the list-index in front of each value drag_drop: bool Set True to enable Drag&Drop. """ def __init__(self, data, show_index=False, drag_drop=False, **kwargs): super().__init__(data, show_index, drag_drop, **kwargs) def flags(self, index=QModelIndex()): default_flags = BaseListModel.flags(self, index) if index.isValid(): return default_flags | Qt.ItemIsEditable else: return default_flags def setData(self, index, value, role=None): if role == Qt.EditRole: try: self._data[index.row()] = literal_eval(value) except (ValueError, SyntaxError): self._data[index.row()] = value self.dataChanged.emit(index, index) return True return False class CheckListModel(BaseListModel): """ A Model for a Check-List Parameters ---------- data : list() list with content to be displayed, defaults to empty list checked : list() list which stores the checked items from data show_index: bool Set True if you want to display the list-index in front of each value drag_drop: bool Set True to enable Drag&Drop. """ def __init__(self, data, checked, one_check=False, show_index=False, drag_drop=False, **kwargs): super().__init__(data, show_index, drag_drop, **kwargs) self.one_check = one_check if data is None: self._data = list() else: self._data = data if checked is None: self._checked = list() else: self._checked = checked def getChecked(self, index=QModelIndex()): return self.checked[index.row()] def data(self, index, role=None): if role == Qt.DisplayRole: if self.show_index: return f'{index.row()}: {self.getData(index)}' else: return str(self.getData(index)) if role == Qt.CheckStateRole: if self.getData(index) in self._checked: return Qt.Checked else: return Qt.Unchecked def setData(self, index, value, role=None): if role == Qt.CheckStateRole: if value == Qt.Checked: if self.one_check: self._checked.clear() self._checked.append(self.getData(index)) else: if self.getData(index) in self._checked: self._checked.remove(self.getData(index)) self.dataChanged.emit(index, index) return True return False def flags(self, index=QModelIndex()): return QAbstractItemModel.flags(self, index) | Qt.ItemIsUserCheckable class CheckDictModel(BaseListModel): """ A Model for a list, which marks items which are present in a dictionary Parameters ---------- data : list() list with content to be displayed, defaults to empty list check_dict : dict() dictionary which may contain items from data as keys show_index: bool Set True if you want to display the list-index in front of each value drag_drop: bool Set True to enable Drag&Drop. yes_bt: str Supply the name for a qt-standard-icon to mark the items existing in check_dict no_bt: str Supply the name for a qt-standard-icon to mark the items not existing in check_dict Notes ----- Names for QT standard-icons: https://doc.qt.io/qt-5/qstyle.html#StandardPixmap-enum """ def __init__(self, data, check_dict, show_index=False, drag_drop=False, yes_bt=None, no_bt=None, **kwargs): super().__init__(data, show_index, drag_drop, **kwargs) self._check_dict = check_dict self.yes_bt = yes_bt or 'SP_DialogApplyButton' self.no_bt = no_bt or 'SP_DialogCancelButton' def data(self, index, role=None): if role == Qt.DisplayRole: if self.show_index: return f'{index.row()}: {self.getData(index)}' else: return str(self.getData(index)) elif role == Qt.EditRole: return str(self.getData(index)) elif role == Qt.DecorationRole: if self.getData(index) in self._check_dict: return get_std_icon(self.yes_bt) else: return get_std_icon(self.no_bt) class CheckDictEditModel(CheckDictModel, EditListModel): """An editable List-Model Parameters ---------- data : list() list with content to be displayed, defaults to empty list check_dict : dict() dictionary which may contain items from data as keys show_index: bool Set True if you want to display the list-index in front of each value drag_drop: bool Set True to enable Drag&Drop. yes_bt: str Supply the name for a qt-standard-icon to mark the items existing in check_dict no_bt: str Supply the name for a qt-standard-icon to mark the items not existing in check_dict Notes ----- Names for QT standard-icons: https://doc.qt.io/qt-5/qstyle.html#StandardPixmap-enum """ def __init__(self, data, check_dict, show_index=False, drag_drop=False, yes_bt=None, no_bt=None): super().__init__(data, check_dict, show_index, drag_drop, yes_bt, no_bt) # EditListModel doesn't have to be initialized because in __init__ of EditListModel # only BaseListModel is initialized which is already done in __init__ of CheckDictModel class BaseDictModel(QAbstractTableModel): """Basic Model for Dictonaries Parameters ---------- data : dict | OrderedDict | None Dictionary with keys and values to be displayed, default to empty Dictionary Notes ----- Python 3.7 is required to ensure order in dictionary when inserting a normal dict (or use OrderedDict) """ def __init__(self, data=None, **kwargs): super().__init__(**kwargs) if data is None: self._data = dict() else: self._data = data def getData(self, index=QModelIndex()): try: if index.column() == 0: return list(self._data.keys())[index.row()] elif index.column() == 1: return list(self._data.values())[index.row()] # Happens, when a duplicate key is entered except IndexError: self.layoutChanged.emit() return '' def data(self, index, role=None): if role == Qt.DisplayRole or role == Qt.EditRole: return str(self.getData(index)) def headerData(self, idx, orientation, role=None): if role == Qt.DisplayRole: if orientation == Qt.Horizontal: if idx == 0: return 'Key' elif idx == 1: return 'Value' elif orientation == Qt.Vertical: return str(idx) def rowCount(self, index=QModelIndex()): return len(self._data) def columnCount(self, index=QModelIndex()): return 2 class EditDictModel(BaseDictModel): """An editable model for Dictionaries Parameters ---------- data : dict | OrderedDict | None Dictionary with keys and values to be displayed, default to empty Dictionary only_edit : 'keys' | 'values' | None Makes only keys or only values editable. Both are editable if None. Notes ----- Python 3.7 is required to ensure order in dictionary when inserting a normal dict (or use OrderedDict) """ def __init__(self, data=None, only_edit=None, **kwargs): super().__init__(data, **kwargs) self.only_edit = only_edit def setData(self, index, value, role=None): if role == Qt.EditRole: try: value = literal_eval(value) except (SyntaxError, ValueError): pass if index.column() == 0: self._data[value] = self._data.pop(list(self._data.keys())[index.row()]) elif index.column() == 1: self._data[list(self._data.keys())[index.row()]] = value else: return False self.dataChanged.emit(index, index, [role]) return True return False def flags(self, index=QModelIndex()): if not self.only_edit: return QAbstractItemModel.flags(self, index) | Qt.ItemIsEditable elif index.column() == 0 and self.only_edit == 'keys': return QAbstractItemModel.flags(self, index) | Qt.ItemIsEditable elif index.column() == 1 and self.only_edit == 'values': return QAbstractItemModel.flags(self, index) | Qt.ItemIsEditable else: return QAbstractItemModel.flags(self, index) def insertRows(self, row, count, index=QModelIndex()): self.beginInsertRows(index, row, row + count - 1) for n in range(count): key_name = f'__new{n}__' while key_name in self._data.keys(): n += 1 key_name = f'__new{n}__' self._data[key_name] = '' self.endInsertRows() return True def removeRows(self, row, count, index=QModelIndex()): self.beginRemoveRows(index, row, row + count - 1) for n in range(count): self._data.pop(list(self._data.keys())[row + n]) self.endRemoveRows() return True class BasePandasModel(QAbstractTableModel): """Basic Model for pandas DataFrame Parameters ---------- data : pandas.DataFrame | None pandas DataFrame with contents to be displayed, defaults to empty DataFrame """ def __init__(self, data=None, **kwargs): super().__init__(**kwargs) if data is None: self._data = pd.DataFrame([]) else: self._data = data def getData(self, index=QModelIndex()): return self._data.iloc[index.row(), index.column()] def data(self, index, role=None): if role == Qt.DisplayRole or role == Qt.EditRole: return str(self.getData(index)) def headerData(self, idx, orientation, role=None): if role == Qt.DisplayRole: if orientation == Qt.Horizontal: return str(self._data.columns[idx]) elif orientation == Qt.Vertical: return str(self._data.index[idx]) def rowCount(self, index=QModelIndex()): return len(self._data.index) def columnCount(self, index=QModelIndex()): return len(self._data.columns) class EditPandasModel(BasePandasModel): """ Editable TableModel for Pandas DataFrames Parameters ---------- data : pandas.DataFrame | None pandas DataFrame with contents to be displayed, defaults to empty DataFrame Notes ----- The reference of the original input-DataFrame is lost when edited by this Model, you need to retrieve it directly from the model after editing """ def __init__(self, data=None, **kwargs): super().__init__(data, **kwargs) def setData(self, index, value, role=None): if role == Qt.EditRole: try: value = literal_eval(value) # List or Dictionary not allowed here as PandasDataFrame-Item if isinstance(value, dict) or isinstance(value, list): value = str(value) except (SyntaxError, ValueError): pass self._data.iloc[index.row(), index.column()] = value self.dataChanged.emit(index, index, [role]) return True return False def setHeaderData(self, index, orientation, value, role=Qt.EditRole): if role == Qt.EditRole: if orientation == Qt.Vertical: # DataFrame.rename does rename all duplicate indices if existent, # that's why the index is reassigned directly new_index = list(self._data.index) new_index[index] = value self._data.index = new_index self.headerDataChanged.emit(Qt.Vertical, index, index) return True elif orientation == Qt.Horizontal: # DataFrame.rename does rename all duplicate columns if existent, # that's why the columns are reassigned directly new_columns = list(self._data.columns) new_columns[index] = value self._data.columns = new_columns self.headerDataChanged.emit(Qt.Horizontal, index, index) return True return False def flags(self, index=QModelIndex()): return QAbstractItemModel.flags(self, index) | Qt.ItemIsEditable def insertRows(self, row, count, index=QModelIndex()): self.beginInsertRows(index, row, row + count - 1) add_data = pd.DataFrame(columns=self._data.columns, index=[r for r in range(count)]) if row == 0: self._data = pd.concat([add_data, self._data]) elif row == len(self._data.index): self._data = self._data.append(add_data) else: self._data = pd.concat([self._data.iloc[:row], add_data, self._data.iloc[row:]]) self.endInsertRows() return True def insertColumns(self, column, count, index=QModelIndex()): self.beginInsertColumns(index, column, column + count - 1) add_data = pd.DataFrame(index=self._data.index, columns=[c for c in range(count)]) if column == 0: self._data = pd.concat([add_data, self._data], axis=1) elif column == len(self._data.columns): self._data = pd.concat([self._data, add_data], axis=1) else: self._data = pd.concat([self._data.iloc[:, :column], add_data, self._data.iloc[:, column:]], axis=1) self.endInsertColumns() return True def removeRows(self, row, count, index=QModelIndex()): self.beginRemoveRows(index, row, row + count - 1) # Can't use DataFrame.drop() here, because there could be rows with similar index-labels if row == 0: self._data = self._data.iloc[row + count:] elif row + count >= len(self._data.index): self._data = self._data.iloc[:row] else: self._data = pd.concat([self._data.iloc[:row], self._data.iloc[row + count:]]) self.endRemoveRows() return True def removeColumns(self, column, count, index=QModelIndex()): self.beginRemoveColumns(index, column, column + count - 1) # Can't use DataFrame.drop() here, because there could be columns with similar column-labels if column == 0: self._data = self._data.iloc[:, column + count:] elif column + count >= len(self._data.columns): self._data = self._data.iloc[:, :column] else: self._data =
pd.concat([self._data.iloc[:, :column], self._data.iloc[:, column + count:]], axis=1)
pandas.concat
# Copyright 1999-2020 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd from mars.tests.core import ExecutorForTest, TestBase from mars.tensor import tensor from mars.dataframe import Series, DataFrame class Test(TestBase): def setUp(self) -> None: super().setUp() self.executor = ExecutorForTest('numpy') def testSeriesQuantileExecution(self): raw = pd.Series(np.random.rand(10), name='a') a = Series(raw, chunk_size=3) # q = 0.5, scalar r = a.quantile() result = self.executor.execute_dataframe(r, concat=True)[0] expected = raw.quantile() self.assertEqual(result, expected) # q is a list r = a.quantile([0.3, 0.7]) result = self.executor.execute_dataframe(r, concat=True)[0] expected = raw.quantile([0.3, 0.7]) pd.testing.assert_series_equal(result, expected) # test interpolation r = a.quantile([0.3, 0.7], interpolation='midpoint') result = self.executor.execute_dataframe(r, concat=True)[0] expected = raw.quantile([0.3, 0.7], interpolation='midpoint')
pd.testing.assert_series_equal(result, expected)
pandas.testing.assert_series_equal
#!/usr/bin/python3 # -*- coding: utf-8 -*- # *****************************************************************************/ # * Authors: <NAME> # *****************************************************************************/ """transformCSV.py This module contains the basic functions for creating the content of a configuration file from CSV. Args: --inFile: Path for the configuration file where the time series data values CSV --outFile: Path for the configuration file where the time series data values INI --debug: Boolean flag to activate verbose printing for debug use Example: Default usage: $ python transformCSV.py Specific usage: $ python transformCSV.py --inFile C:\raad\src\software\time-series.csv --outFile C:\raad\src\software\time-series.ini --debug True """ import sys import datetime import optparse import traceback import pandas import numpy import os import pprint import csv if sys.version_info.major > 2: import configparser as cF else: import ConfigParser as cF class TransformMetaData(object): debug = False fileName = None fileLocation = None columnsList = None analysisFrameFormat = None uniqueLists = None analysisFrame = None def __init__(self, inputFileName=None, debug=False, transform=False, sectionName=None, outFolder=None, outFile='time-series-madness.ini'): if isinstance(debug, bool): self.debug = debug if inputFileName is None: return elif os.path.exists(os.path.abspath(inputFileName)): self.fileName = inputFileName self.fileLocation = os.path.exists(os.path.abspath(inputFileName)) (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) = self.CSVtoFrame( inputFileName=self.fileName) self.analysisFrame = analysisFrame self.columnsList = columnNamesList self.analysisFrameFormat = analysisFrameFormat self.uniqueLists = uniqueLists if transform: passWrite = self.frameToINI(analysisFrame=analysisFrame, sectionName=sectionName, outFolder=outFolder, outFile=outFile) print(f"Pass Status is : {passWrite}") return def getColumnList(self): return self.columnsList def getAnalysisFrameFormat(self): return self.analysisFrameFormat def getuniqueLists(self): return self.uniqueLists def getAnalysisFrame(self): return self.analysisFrame @staticmethod def getDateParser(formatString="%Y-%m-%d %H:%M:%S.%f"): return (lambda x: pandas.datetime.strptime(x, formatString)) # 2020-06-09 19:14:00.000 def getHeaderFromFile(self, headerFilePath=None, method=1): if headerFilePath is None: return (None, None) if method == 1: fieldnames = pandas.read_csv(headerFilePath, index_col=0, nrows=0).columns.tolist() elif method == 2: with open(headerFilePath, 'r') as infile: reader = csv.DictReader(infile) fieldnames = list(reader.fieldnames) elif method == 3: fieldnames = list(pandas.read_csv(headerFilePath, nrows=1).columns) else: fieldnames = None fieldDict = {} for indexName, valueName in enumerate(fieldnames): fieldDict[valueName] = pandas.StringDtype() return (fieldnames, fieldDict) def CSVtoFrame(self, inputFileName=None): if inputFileName is None: return (None, None) # Load File print("Processing File: {0}...\n".format(inputFileName)) self.fileLocation = inputFileName # Create data frame analysisFrame = pandas.DataFrame() analysisFrameFormat = self._getDataFormat() inputDataFrame = pandas.read_csv(filepath_or_buffer=inputFileName, sep='\t', names=self._getDataFormat(), # dtype=self._getDataFormat() # header=None # float_precision='round_trip' # engine='c', # parse_dates=['date_column'], # date_parser=True, # na_values=['NULL'] ) if self.debug: # Preview data. print(inputDataFrame.head(5)) # analysisFrame.astype(dtype=analysisFrameFormat) # Cleanup data analysisFrame = inputDataFrame.copy(deep=True) analysisFrame.apply(pandas.to_numeric, errors='coerce') # Fill in bad data with Not-a-Number (NaN) # Create lists of unique strings uniqueLists = [] columnNamesList = [] for columnName in analysisFrame.columns: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', analysisFrame[columnName].values) if isinstance(analysisFrame[columnName].dtypes, str): columnUniqueList = analysisFrame[columnName].unique().tolist() else: columnUniqueList = None columnNamesList.append(columnName) uniqueLists.append([columnName, columnUniqueList]) if self.debug: # Preview data. print(analysisFrame.head(5)) return (analysisFrame, analysisFrameFormat, uniqueLists, columnNamesList) def frameToINI(self, analysisFrame=None, sectionName='Unknown', outFolder=None, outFile='nil.ini'): if analysisFrame is None: return False try: if outFolder is None: outFolder = os.getcwd() configFilePath = os.path.join(outFolder, outFile) configINI = cF.ConfigParser() configINI.add_section(sectionName) for (columnName, columnData) in analysisFrame: if self.debug: print('Column Name : ', columnName) print('Column Contents : ', columnData.values) print("Column Contents Length:", len(columnData.values)) print("Column Contents Type", type(columnData.values)) writeList = "[" for colIndex, colValue in enumerate(columnData): writeList = f"{writeList}'{colValue}'" if colIndex < len(columnData) - 1: writeList = f"{writeList}, " writeList = f"{writeList}]" configINI.set(sectionName, columnName, writeList) if not os.path.exists(configFilePath) or os.stat(configFilePath).st_size == 0: with open(configFilePath, 'w') as configWritingFile: configINI.write(configWritingFile) noErrors = True except ValueError as e: errorString = ("ERROR in {__file__} @{framePrintNo} with {ErrorFound}".format(__file__=str(__file__), framePrintNo=str( sys._getframe().f_lineno), ErrorFound=e)) print(errorString) noErrors = False return noErrors @staticmethod def _validNumericalFloat(inValue): """ Determines if the value is a valid numerical object. Args: inValue: floating-point value Returns: Value in floating-point or Not-A-Number. """ try: return numpy.float128(inValue) except ValueError: return numpy.nan @staticmethod def _calculateMean(x): """ Calculates the mean in a multiplication method since division produces an infinity or NaN Args: x: Input data set. We use a data frame. Returns: Calculated mean for a vector data frame. """ try: mean = numpy.float128(numpy.average(x, weights=numpy.ones_like(numpy.float128(x)) / numpy.float128(x.size))) except ValueError: mean = 0 pass return mean def _calculateStd(self, data): """ Calculates the standard deviation in a multiplication method since division produces a infinity or NaN Args: data: Input data set. We use a data frame. Returns: Calculated standard deviation for a vector data frame. """ sd = 0 try: n = numpy.float128(data.size) if n <= 1: return numpy.float128(0.0) # Use multiplication version of mean since numpy bug causes infinity. mean = self._calculateMean(data) sd = numpy.float128(mean) # Calculate standard deviation for el in data: diff = numpy.float128(el) - numpy.float128(mean) sd += (diff) ** 2 points = numpy.float128(n - 1) sd = numpy.float128(numpy.sqrt(numpy.float128(sd) / numpy.float128(points))) except ValueError: pass return sd def _determineQuickStats(self, dataAnalysisFrame, columnName=None, multiplierSigma=3.0): """ Determines stats based on a vector to get the data shape. Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. multiplierSigma: Sigma range for the stats. Returns: Set of stats. """ meanValue = 0 sigmaValue = 0 sigmaRangeValue = 0 topValue = 0 try: # Clean out anomoly due to random invalid inputs. if (columnName is not None): meanValue = self._calculateMean(dataAnalysisFrame[columnName]) if meanValue == numpy.nan: meanValue = numpy.float128(1) sigmaValue = self._calculateStd(dataAnalysisFrame[columnName]) if float(sigmaValue) is float(numpy.nan): sigmaValue = numpy.float128(1) multiplier = numpy.float128(multiplierSigma) # Stats: 1 sigma = 68%, 2 sigma = 95%, 3 sigma = 99.7 sigmaRangeValue = (sigmaValue * multiplier) if float(sigmaRangeValue) is float(numpy.nan): sigmaRangeValue = numpy.float128(1) topValue = numpy.float128(meanValue + sigmaRangeValue) print("Name:{} Mean= {}, Sigma= {}, {}*Sigma= {}".format(columnName, meanValue, sigmaValue, multiplier, sigmaRangeValue)) except ValueError: pass return (meanValue, sigmaValue, sigmaRangeValue, topValue) def _cleanZerosForColumnInFrame(self, dataAnalysisFrame, columnName='cycles'): """ Cleans the data frame with data values that are invalid. I.E. inf, NaN Args: dataAnalysisFrame: Dataframe to do analysis on. columnName: Column name of the data frame. Returns: Cleaned dataframe. """ dataAnalysisCleaned = None try: # Clean out anomoly due to random invalid inputs. (meanValue, sigmaValue, sigmaRangeValue, topValue) = self._determineQuickStats( dataAnalysisFrame=dataAnalysisFrame, columnName=columnName) # dataAnalysisCleaned = dataAnalysisFrame[dataAnalysisFrame[columnName] != 0] # When the cycles are negative or zero we missed cleaning up a row. # logicVector = (dataAnalysisFrame[columnName] != 0) # dataAnalysisCleaned = dataAnalysisFrame[logicVector] logicVector = (dataAnalysisCleaned[columnName] >= 1) dataAnalysisCleaned = dataAnalysisCleaned[logicVector] # These timed out mean + 2 * sd logicVector = (dataAnalysisCleaned[columnName] < topValue) # Data range dataAnalysisCleaned = dataAnalysisCleaned[logicVector] except ValueError: pass return dataAnalysisCleaned def _cleanFrame(self, dataAnalysisTemp, cleanColumn=False, columnName='cycles'): """ Args: dataAnalysisTemp: Dataframe to do analysis on. cleanColumn: Flag to clean the data frame. columnName: Column name of the data frame. Returns: cleaned dataframe """ try: replacementList = [pandas.NaT, numpy.Infinity, numpy.NINF, 'NaN', 'inf', '-inf', 'NULL'] if cleanColumn is True: dataAnalysisTemp = self._cleanZerosForColumnInFrame(dataAnalysisTemp, columnName=columnName) dataAnalysisTemp = dataAnalysisTemp.replace(to_replace=replacementList, value=numpy.nan) dataAnalysisTemp = dataAnalysisTemp.dropna() except ValueError: pass return dataAnalysisTemp @staticmethod def _getDataFormat(): """ Return the dataframe setup for the CSV file generated from server. Returns: dictionary data format for pandas. """ dataFormat = { "Serial_Number": pandas.StringDtype(), "LogTime0": pandas.StringDtype(), # @todo force rename "Id0": pandas.StringDtype(), # @todo force rename "DriveId": pandas.StringDtype(), "JobRunId": pandas.StringDtype(), "LogTime1": pandas.StringDtype(), # @todo force rename "Comment0": pandas.StringDtype(), # @todo force rename "CriticalWarning": pandas.StringDtype(), "Temperature": pandas.StringDtype(), "AvailableSpare": pandas.StringDtype(), "AvailableSpareThreshold": pandas.StringDtype(), "PercentageUsed": pandas.StringDtype(), "DataUnitsReadL": pandas.StringDtype(), "DataUnitsReadU": pandas.StringDtype(), "DataUnitsWrittenL": pandas.StringDtype(), "DataUnitsWrittenU": pandas.StringDtype(), "HostReadCommandsL": pandas.StringDtype(), "HostReadCommandsU": pandas.StringDtype(), "HostWriteCommandsL": pandas.StringDtype(), "HostWriteCommandsU": pandas.StringDtype(), "ControllerBusyTimeL": pandas.StringDtype(), "ControllerBusyTimeU": pandas.StringDtype(), "PowerCyclesL": pandas.StringDtype(), "PowerCyclesU": pandas.StringDtype(), "PowerOnHoursL": pandas.StringDtype(), "PowerOnHoursU": pandas.StringDtype(), "UnsafeShutdownsL": pandas.StringDtype(), "UnsafeShutdownsU": pandas.StringDtype(), "MediaErrorsL": pandas.StringDtype(), "MediaErrorsU": pandas.StringDtype(), "NumErrorInfoLogsL": pandas.StringDtype(), "NumErrorInfoLogsU": pandas.StringDtype(), "ProgramFailCountN": pandas.StringDtype(), "ProgramFailCountR": pandas.StringDtype(), "EraseFailCountN": pandas.StringDtype(), "EraseFailCountR": pandas.StringDtype(), "WearLevelingCountN": pandas.StringDtype(), "WearLevelingCountR": pandas.StringDtype(), "E2EErrorDetectCountN": pandas.StringDtype(), "E2EErrorDetectCountR": pandas.StringDtype(), "CRCErrorCountN": pandas.StringDtype(), "CRCErrorCountR": pandas.StringDtype(), "MediaWearPercentageN": pandas.StringDtype(), "MediaWearPercentageR": pandas.StringDtype(), "HostReadsN": pandas.StringDtype(), "HostReadsR": pandas.StringDtype(), "TimedWorkloadN": pandas.StringDtype(), "TimedWorkloadR": pandas.StringDtype(), "ThermalThrottleStatusN": pandas.StringDtype(), "ThermalThrottleStatusR": pandas.StringDtype(), "RetryBuffOverflowCountN": pandas.StringDtype(), "RetryBuffOverflowCountR": pandas.StringDtype(), "PLLLockLossCounterN": pandas.StringDtype(), "PLLLockLossCounterR": pandas.StringDtype(), "NandBytesWrittenN": pandas.StringDtype(), "NandBytesWrittenR": pandas.StringDtype(), "HostBytesWrittenN": pandas.StringDtype(), "HostBytesWrittenR": pandas.StringDtype(), "SystemAreaLifeRemainingN": pandas.StringDtype(), "SystemAreaLifeRemainingR": pandas.StringDtype(), "RelocatableSectorCountN": pandas.StringDtype(), "RelocatableSectorCountR": pandas.StringDtype(), "SoftECCErrorRateN": pandas.StringDtype(), "SoftECCErrorRateR": pandas.StringDtype(), "UnexpectedPowerLossN": pandas.StringDtype(), "UnexpectedPowerLossR": pandas.StringDtype(), "MediaErrorCountN": pandas.StringDtype(), "MediaErrorCountR": pandas.StringDtype(), "NandBytesReadN": pandas.StringDtype(), "NandBytesReadR": pandas.StringDtype(), "WarningCompTempTime": pandas.StringDtype(), "CriticalCompTempTime": pandas.StringDtype(), "TempSensor1": pandas.StringDtype(), "TempSensor2": pandas.StringDtype(), "TempSensor3": pandas.StringDtype(), "TempSensor4": pandas.StringDtype(), "TempSensor5": pandas.StringDtype(), "TempSensor6": pandas.StringDtype(), "TempSensor7": pandas.StringDtype(), "TempSensor8": pandas.StringDtype(), "ThermalManagementTemp1TransitionCount": pandas.StringDtype(), "ThermalManagementTemp2TransitionCount": pandas.StringDtype(), "TotalTimeForThermalManagementTemp1": pandas.StringDtype(), "TotalTimeForThermalManagementTemp2": pandas.StringDtype(), "Core_Num": pandas.StringDtype(), "Id1": pandas.StringDtype(), # @todo force rename "Job_Run_Id": pandas.StringDtype(), "Stats_Time": pandas.StringDtype(), "HostReads": pandas.StringDtype(), "HostWrites": pandas.StringDtype(), "NandReads": pandas.StringDtype(), "NandWrites": pandas.StringDtype(), "ProgramErrors": pandas.StringDtype(), "EraseErrors": pandas.StringDtype(), "ErrorCount": pandas.StringDtype(), "BitErrorsHost1": pandas.StringDtype(), "BitErrorsHost2": pandas.StringDtype(), "BitErrorsHost3": pandas.StringDtype(), "BitErrorsHost4": pandas.StringDtype(), "BitErrorsHost5": pandas.StringDtype(), "BitErrorsHost6": pandas.StringDtype(), "BitErrorsHost7": pandas.StringDtype(), "BitErrorsHost8": pandas.StringDtype(), "BitErrorsHost9": pandas.StringDtype(), "BitErrorsHost10": pandas.StringDtype(), "BitErrorsHost11": pandas.StringDtype(), "BitErrorsHost12": pandas.StringDtype(), "BitErrorsHost13": pandas.StringDtype(), "BitErrorsHost14": pandas.StringDtype(), "BitErrorsHost15": pandas.StringDtype(), "ECCFail": pandas.StringDtype(), "GrownDefects": pandas.StringDtype(), "FreeMemory": pandas.StringDtype(), "WriteAllowance": pandas.StringDtype(), "ModelString": pandas.StringDtype(), "ValidBlocks": pandas.StringDtype(), "TokenBlocks": pandas.StringDtype(), "SpuriousPFCount": pandas.StringDtype(), "SpuriousPFLocations1": pandas.StringDtype(), "SpuriousPFLocations2": pandas.StringDtype(), "SpuriousPFLocations3": pandas.StringDtype(), "SpuriousPFLocations4": pandas.StringDtype(), "SpuriousPFLocations5": pandas.StringDtype(), "SpuriousPFLocations6": pandas.StringDtype(), "SpuriousPFLocations7": pandas.StringDtype(), "SpuriousPFLocations8": pandas.StringDtype(), "BitErrorsNonHost1": pandas.StringDtype(), "BitErrorsNonHost2": pandas.StringDtype(), "BitErrorsNonHost3": pandas.StringDtype(), "BitErrorsNonHost4": pandas.StringDtype(), "BitErrorsNonHost5": pandas.StringDtype(), "BitErrorsNonHost6": pandas.StringDtype(), "BitErrorsNonHost7": pandas.StringDtype(), "BitErrorsNonHost8": pandas.StringDtype(), "BitErrorsNonHost9": pandas.StringDtype(), "BitErrorsNonHost10": pandas.StringDtype(), "BitErrorsNonHost11": pandas.StringDtype(), "BitErrorsNonHost12": pandas.StringDtype(), "BitErrorsNonHost13": pandas.StringDtype(), "BitErrorsNonHost14": pandas.StringDtype(), "BitErrorsNonHost15": pandas.StringDtype(), "ECCFailNonHost": pandas.StringDtype(), "NSversion": pandas.StringDtype(), "numBands": pandas.StringDtype(), "minErase": pandas.StringDtype(), "maxErase": pandas.StringDtype(), "avgErase": pandas.StringDtype(), "minMVolt": pandas.StringDtype(), "maxMVolt": pandas.StringDtype(), "avgMVolt": pandas.StringDtype(), "minMAmp": pandas.StringDtype(), "maxMAmp": pandas.StringDtype(), "avgMAmp": pandas.StringDtype(), "comment1": pandas.StringDtype(), # @todo force rename "minMVolt12v": pandas.StringDtype(), "maxMVolt12v": pandas.StringDtype(), "avgMVolt12v": pandas.StringDtype(), "minMAmp12v": pandas.StringDtype(), "maxMAmp12v": pandas.StringDtype(), "avgMAmp12v": pandas.StringDtype(), "nearMissSector": pandas.StringDtype(), "nearMissDefect": pandas.StringDtype(), "nearMissOverflow": pandas.StringDtype(), "replayUNC": pandas.StringDtype(), "Drive_Id": pandas.StringDtype(), "indirectionMisses": pandas.StringDtype(), "BitErrorsHost16": pandas.StringDtype(), "BitErrorsHost17": pandas.StringDtype(), "BitErrorsHost18": pandas.StringDtype(), "BitErrorsHost19": pandas.StringDtype(), "BitErrorsHost20": pandas.StringDtype(), "BitErrorsHost21": pandas.StringDtype(), "BitErrorsHost22": pandas.StringDtype(), "BitErrorsHost23": pandas.StringDtype(), "BitErrorsHost24": pandas.StringDtype(), "BitErrorsHost25": pandas.StringDtype(), "BitErrorsHost26": pandas.StringDtype(), "BitErrorsHost27": pandas.StringDtype(), "BitErrorsHost28": pandas.StringDtype(), "BitErrorsHost29": pandas.StringDtype(), "BitErrorsHost30": pandas.StringDtype(), "BitErrorsHost31": pandas.StringDtype(), "BitErrorsHost32": pandas.StringDtype(), "BitErrorsHost33": pandas.StringDtype(), "BitErrorsHost34": pandas.StringDtype(), "BitErrorsHost35": pandas.StringDtype(), "BitErrorsHost36": pandas.StringDtype(), "BitErrorsHost37": pandas.StringDtype(), "BitErrorsHost38": pandas.StringDtype(), "BitErrorsHost39": pandas.StringDtype(), "BitErrorsHost40": pandas.StringDtype(), "XORRebuildSuccess": pandas.StringDtype(), "XORRebuildFail": pandas.StringDtype(), "BandReloForError": pandas.StringDtype(), "mrrSuccess": pandas.StringDtype(), "mrrFail": pandas.StringDtype(), "mrrNudgeSuccess": pandas.StringDtype(), "mrrNudgeHarmless": pandas.StringDtype(), "mrrNudgeFail": pandas.StringDtype(), "totalErases": pandas.StringDtype(), "dieOfflineCount": pandas.StringDtype(), "curtemp": pandas.StringDtype(), "mintemp": pandas.StringDtype(), "maxtemp": pandas.StringDtype(), "oventemp": pandas.StringDtype(), "allZeroSectors": pandas.StringDtype(), "ctxRecoveryEvents": pandas.StringDtype(), "ctxRecoveryErases": pandas.StringDtype(), "NSversionMinor": pandas.StringDtype(), "lifeMinTemp": pandas.StringDtype(), "lifeMaxTemp": pandas.StringDtype(), "powerCycles": pandas.StringDtype(), "systemReads": pandas.StringDtype(), "systemWrites": pandas.StringDtype(), "readRetryOverflow": pandas.StringDtype(), "unplannedPowerCycles": pandas.StringDtype(), "unsafeShutdowns": pandas.StringDtype(), "defragForcedReloCount": pandas.StringDtype(), "bandReloForBDR": pandas.StringDtype(), "bandReloForDieOffline": pandas.StringDtype(), "bandReloForPFail": pandas.StringDtype(), "bandReloForWL": pandas.StringDtype(), "provisionalDefects": pandas.StringDtype(), "uncorrectableProgErrors": pandas.StringDtype(), "powerOnSeconds": pandas.StringDtype(), "bandReloForChannelTimeout": pandas.StringDtype(), "fwDowngradeCount": pandas.StringDtype(), "dramCorrectablesTotal": pandas.StringDtype(), "hb_id": pandas.StringDtype(), "dramCorrectables1to1": pandas.StringDtype(), "dramCorrectables4to1": pandas.StringDtype(), "dramCorrectablesSram": pandas.StringDtype(), "dramCorrectablesUnknown": pandas.StringDtype(), "pliCapTestInterval": pandas.StringDtype(), "pliCapTestCount": pandas.StringDtype(), "pliCapTestResult": pandas.StringDtype(), "pliCapTestTimeStamp": pandas.StringDtype(), "channelHangSuccess": pandas.StringDtype(), "channelHangFail": pandas.StringDtype(), "BitErrorsHost41": pandas.StringDtype(), "BitErrorsHost42": pandas.StringDtype(), "BitErrorsHost43": pandas.StringDtype(), "BitErrorsHost44": pandas.StringDtype(), "BitErrorsHost45": pandas.StringDtype(), "BitErrorsHost46": pandas.StringDtype(), "BitErrorsHost47": pandas.StringDtype(), "BitErrorsHost48": pandas.StringDtype(), "BitErrorsHost49": pandas.StringDtype(), "BitErrorsHost50": pandas.StringDtype(), "BitErrorsHost51": pandas.StringDtype(), "BitErrorsHost52": pandas.StringDtype(), "BitErrorsHost53": pandas.StringDtype(), "BitErrorsHost54": pandas.StringDtype(), "BitErrorsHost55": pandas.StringDtype(), "BitErrorsHost56": pandas.StringDtype(), "mrrNearMiss": pandas.StringDtype(), "mrrRereadAvg": pandas.StringDtype(), "readDisturbEvictions": pandas.StringDtype(), "L1L2ParityError": pandas.StringDtype(), "pageDefects": pandas.StringDtype(), "pageProvisionalTotal": pandas.StringDtype(), "ASICTemp": pandas.StringDtype(), "PMICTemp": pandas.StringDtype(), "size": pandas.StringDtype(), "lastWrite": pandas.StringDtype(), "timesWritten": pandas.StringDtype(), "maxNumContextBands": pandas.StringDtype(), "blankCount": pandas.StringDtype(), "cleanBands": pandas.StringDtype(), "avgTprog": pandas.StringDtype(), "avgEraseCount": pandas.StringDtype(), "edtcHandledBandCnt": pandas.StringDtype(), "bandReloForNLBA": pandas.StringDtype(), "bandCrossingDuringPliCount": pandas.StringDtype(), "bitErrBucketNum": pandas.StringDtype(), "sramCorrectablesTotal": pandas.StringDtype(), "l1SramCorrErrCnt": pandas.StringDtype(), "l2SramCorrErrCnt": pandas.StringDtype(), "parityErrorValue": pandas.StringDtype(), "parityErrorType": pandas.StringDtype(), "mrr_LutValidDataSize": pandas.StringDtype(), "pageProvisionalDefects": pandas.StringDtype(), "plisWithErasesInProgress": pandas.StringDtype(), "lastReplayDebug": pandas.StringDtype(), "externalPreReadFatals": pandas.StringDtype(), "hostReadCmd": pandas.StringDtype(), "hostWriteCmd": pandas.StringDtype(), "trimmedSectors": pandas.StringDtype(), "trimTokens": pandas.StringDtype(), "mrrEventsInCodewords": pandas.StringDtype(), "mrrEventsInSectors": pandas.StringDtype(), "powerOnMicroseconds": pandas.StringDtype(), "mrrInXorRecEvents": pandas.StringDtype(), "mrrFailInXorRecEvents": pandas.StringDtype(), "mrrUpperpageEvents": pandas.StringDtype(), "mrrLowerpageEvents": pandas.StringDtype(), "mrrSlcpageEvents": pandas.StringDtype(), "mrrReReadTotal": pandas.StringDtype(), "powerOnResets": pandas.StringDtype(), "powerOnMinutes": pandas.StringDtype(), "throttleOnMilliseconds": pandas.StringDtype(), "ctxTailMagic": pandas.StringDtype(), "contextDropCount": pandas.StringDtype(), "lastCtxSequenceId": pandas.StringDtype(), "currCtxSequenceId": pandas.StringDtype(), "mbliEraseCount": pandas.StringDtype(), "pageAverageProgramCount": pandas.StringDtype(), "bandAverageEraseCount": pandas.StringDtype(), "bandTotalEraseCount": pandas.StringDtype(), "bandReloForXorRebuildFail": pandas.StringDtype(), "defragSpeculativeMiss": pandas.StringDtype(), "uncorrectableBackgroundScan": pandas.StringDtype(), "BitErrorsHost57": pandas.StringDtype(), "BitErrorsHost58": pandas.StringDtype(), "BitErrorsHost59": pandas.StringDtype(), "BitErrorsHost60": pandas.StringDtype(), "BitErrorsHost61": pandas.StringDtype(), "BitErrorsHost62": pandas.StringDtype(), "BitErrorsHost63": pandas.StringDtype(), "BitErrorsHost64": pandas.StringDtype(), "BitErrorsHost65": pandas.StringDtype(), "BitErrorsHost66": pandas.StringDtype(), "BitErrorsHost67": pandas.StringDtype(), "BitErrorsHost68": pandas.StringDtype(), "BitErrorsHost69": pandas.StringDtype(), "BitErrorsHost70": pandas.StringDtype(), "BitErrorsHost71": pandas.StringDtype(), "BitErrorsHost72": pandas.StringDtype(), "BitErrorsHost73": pandas.StringDtype(), "BitErrorsHost74": pandas.StringDtype(), "BitErrorsHost75": pandas.StringDtype(), "BitErrorsHost76": pandas.StringDtype(), "BitErrorsHost77": pandas.StringDtype(), "BitErrorsHost78": pandas.StringDtype(), "BitErrorsHost79": pandas.StringDtype(), "BitErrorsHost80": pandas.StringDtype(), "bitErrBucketArray1": pandas.StringDtype(), "bitErrBucketArray2": pandas.StringDtype(), "bitErrBucketArray3": pandas.StringDtype(), "bitErrBucketArray4": pandas.StringDtype(), "bitErrBucketArray5": pandas.StringDtype(), "bitErrBucketArray6": pandas.StringDtype(), "bitErrBucketArray7": pandas.StringDtype(), "bitErrBucketArray8": pandas.StringDtype(), "bitErrBucketArray9": pandas.StringDtype(), "bitErrBucketArray10": pandas.StringDtype(), "bitErrBucketArray11": pandas.StringDtype(), "bitErrBucketArray12": pandas.StringDtype(), "bitErrBucketArray13": pandas.StringDtype(), "bitErrBucketArray14": pandas.StringDtype(), "bitErrBucketArray15": pandas.StringDtype(), "bitErrBucketArray16": pandas.StringDtype(), "bitErrBucketArray17": pandas.StringDtype(), "bitErrBucketArray18": pandas.StringDtype(), "bitErrBucketArray19": pandas.StringDtype(), "bitErrBucketArray20": pandas.StringDtype(), "bitErrBucketArray21": pandas.StringDtype(), "bitErrBucketArray22": pandas.StringDtype(), "bitErrBucketArray23": pandas.StringDtype(), "bitErrBucketArray24": pandas.StringDtype(), "bitErrBucketArray25": pandas.StringDtype(), "bitErrBucketArray26": pandas.StringDtype(), "bitErrBucketArray27": pandas.StringDtype(), "bitErrBucketArray28": pandas.StringDtype(), "bitErrBucketArray29": pandas.StringDtype(), "bitErrBucketArray30": pandas.StringDtype(), "bitErrBucketArray31": pandas.StringDtype(), "bitErrBucketArray32": pandas.StringDtype(), "bitErrBucketArray33": pandas.StringDtype(), "bitErrBucketArray34": pandas.StringDtype(), "bitErrBucketArray35": pandas.StringDtype(), "bitErrBucketArray36": pandas.StringDtype(), "bitErrBucketArray37": pandas.StringDtype(), "bitErrBucketArray38": pandas.StringDtype(), "bitErrBucketArray39": pandas.StringDtype(), "bitErrBucketArray40": pandas.StringDtype(), "bitErrBucketArray41": pandas.StringDtype(), "bitErrBucketArray42": pandas.StringDtype(), "bitErrBucketArray43": pandas.StringDtype(), "bitErrBucketArray44": pandas.StringDtype(), "bitErrBucketArray45": pandas.StringDtype(), "bitErrBucketArray46": pandas.StringDtype(), "bitErrBucketArray47": pandas.StringDtype(), "bitErrBucketArray48": pandas.StringDtype(), "bitErrBucketArray49": pandas.StringDtype(), "bitErrBucketArray50": pandas.StringDtype(), "bitErrBucketArray51": pandas.StringDtype(), "bitErrBucketArray52": pandas.StringDtype(), "bitErrBucketArray53": pandas.StringDtype(), "bitErrBucketArray54": pandas.StringDtype(), "bitErrBucketArray55": pandas.StringDtype(), "bitErrBucketArray56": pandas.StringDtype(), "bitErrBucketArray57": pandas.StringDtype(), "bitErrBucketArray58": pandas.StringDtype(), "bitErrBucketArray59": pandas.StringDtype(), "bitErrBucketArray60": pandas.StringDtype(), "bitErrBucketArray61": pandas.StringDtype(), "bitErrBucketArray62": pandas.StringDtype(), "bitErrBucketArray63": pandas.StringDtype(), "bitErrBucketArray64": pandas.StringDtype(), "bitErrBucketArray65": pandas.StringDtype(), "bitErrBucketArray66": pandas.StringDtype(), "bitErrBucketArray67": pandas.StringDtype(), "bitErrBucketArray68": pandas.StringDtype(), "bitErrBucketArray69": pandas.StringDtype(), "bitErrBucketArray70": pandas.StringDtype(), "bitErrBucketArray71": pandas.StringDtype(), "bitErrBucketArray72": pandas.StringDtype(), "bitErrBucketArray73": pandas.StringDtype(), "bitErrBucketArray74": pandas.StringDtype(), "bitErrBucketArray75": pandas.StringDtype(), "bitErrBucketArray76": pandas.StringDtype(), "bitErrBucketArray77": pandas.StringDtype(), "bitErrBucketArray78": pandas.StringDtype(), "bitErrBucketArray79": pandas.StringDtype(), "bitErrBucketArray80": pandas.StringDtype(), "mrr_successDistribution1": pandas.StringDtype(), "mrr_successDistribution2": pandas.StringDtype(), "mrr_successDistribution3": pandas.StringDtype(), "mrr_successDistribution4": pandas.StringDtype(), "mrr_successDistribution5": pandas.StringDtype(), "mrr_successDistribution6": pandas.StringDtype(), "mrr_successDistribution7": pandas.StringDtype(), "mrr_successDistribution8": pandas.StringDtype(), "mrr_successDistribution9": pandas.StringDtype(), "mrr_successDistribution10": pandas.StringDtype(), "mrr_successDistribution11": pandas.StringDtype(), "mrr_successDistribution12": pandas.StringDtype(), "mrr_successDistribution13": pandas.StringDtype(), "mrr_successDistribution14": pandas.StringDtype(), "mrr_successDistribution15": pandas.StringDtype(), "mrr_successDistribution16": pandas.StringDtype(), "mrr_successDistribution17": pandas.StringDtype(), "mrr_successDistribution18": pandas.StringDtype(), "mrr_successDistribution19": pandas.StringDtype(), "mrr_successDistribution20": pandas.StringDtype(), "mrr_successDistribution21": pandas.StringDtype(), "mrr_successDistribution22": pandas.StringDtype(), "mrr_successDistribution23": pandas.StringDtype(), "mrr_successDistribution24": pandas.StringDtype(), "mrr_successDistribution25": pandas.StringDtype(), "mrr_successDistribution26": pandas.StringDtype(), "mrr_successDistribution27": pandas.StringDtype(), "mrr_successDistribution28": pandas.StringDtype(), "mrr_successDistribution29": pandas.StringDtype(), "mrr_successDistribution30": pandas.StringDtype(), "mrr_successDistribution31": pandas.StringDtype(), "mrr_successDistribution32": pandas.StringDtype(), "mrr_successDistribution33": pandas.StringDtype(), "mrr_successDistribution34": pandas.StringDtype(), "mrr_successDistribution35": pandas.StringDtype(), "mrr_successDistribution36": pandas.StringDtype(), "mrr_successDistribution37": pandas.StringDtype(), "mrr_successDistribution38": pandas.StringDtype(), "mrr_successDistribution39": pandas.StringDtype(), "mrr_successDistribution40": pandas.StringDtype(), "mrr_successDistribution41": pandas.StringDtype(), "mrr_successDistribution42": pandas.StringDtype(), "mrr_successDistribution43": pandas.StringDtype(), "mrr_successDistribution44": pandas.StringDtype(), "mrr_successDistribution45": pandas.StringDtype(), "mrr_successDistribution46": pandas.StringDtype(), "mrr_successDistribution47": pandas.StringDtype(), "mrr_successDistribution48": pandas.StringDtype(), "mrr_successDistribution49": pandas.StringDtype(), "mrr_successDistribution50": pandas.StringDtype(), "mrr_successDistribution51": pandas.StringDtype(), "mrr_successDistribution52": pandas.StringDtype(), "mrr_successDistribution53": pandas.StringDtype(), "mrr_successDistribution54": pandas.StringDtype(), "mrr_successDistribution55": pandas.StringDtype(), "mrr_successDistribution56": pandas.StringDtype(), "mrr_successDistribution57": pandas.StringDtype(), "mrr_successDistribution58": pandas.StringDtype(), "mrr_successDistribution59": pandas.StringDtype(), "mrr_successDistribution60": pandas.StringDtype(), "mrr_successDistribution61": pandas.StringDtype(), "mrr_successDistribution62": pandas.StringDtype(), "mrr_successDistribution63": pandas.StringDtype(), "mrr_successDistribution64": pandas.StringDtype(), "blDowngradeCount": pandas.StringDtype(), "snapReads": pandas.StringDtype(), "pliCapTestTime": pandas.StringDtype(), "currentTimeToFreeSpaceRecovery": pandas.StringDtype(), "worstTimeToFreeSpaceRecovery": pandas.StringDtype(), "rspnandReads": pandas.StringDtype(), "cachednandReads": pandas.StringDtype(), "spnandReads": pandas.StringDtype(), "dpnandReads": pandas.StringDtype(), "qpnandReads": pandas.StringDtype(), "verifynandReads": pandas.StringDtype(), "softnandReads": pandas.StringDtype(), "spnandWrites": pandas.StringDtype(), "dpnandWrites": pandas.StringDtype(), "qpnandWrites": pandas.StringDtype(), "opnandWrites": pandas.StringDtype(), "xpnandWrites": pandas.StringDtype(), "unalignedHostWriteCmd": pandas.StringDtype(), "randomReadCmd": pandas.StringDtype(), "randomWriteCmd": pandas.StringDtype(), "secVenCmdCount": pandas.StringDtype(), "secVenCmdCountFails": pandas.StringDtype(), "mrrFailOnSlcOtfPages": pandas.StringDtype(), "mrrFailOnSlcOtfPageMarkedAsMBPD": pandas.StringDtype(), "lcorParitySeedErrors": pandas.StringDtype(), "fwDownloadFails": pandas.StringDtype(), "fwAuthenticationFails": pandas.StringDtype(), "fwSecurityRev": pandas.StringDtype(), "isCapacitorHealthly": pandas.StringDtype(), "fwWRCounter": pandas.StringDtype(), "sysAreaEraseFailCount": pandas.StringDtype(), "iusDefragRelocated4DataRetention": pandas.StringDtype(), "I2CTemp": pandas.StringDtype(), "lbaMismatchOnNandReads": pandas.StringDtype(), "currentWriteStreamsCount": pandas.StringDtype(), "nandWritesPerStream1": pandas.StringDtype(), "nandWritesPerStream2": pandas.StringDtype(), "nandWritesPerStream3": pandas.StringDtype(), "nandWritesPerStream4": pandas.StringDtype(), "nandWritesPerStream5": pandas.StringDtype(), "nandWritesPerStream6": pandas.StringDtype(), "nandWritesPerStream7": pandas.StringDtype(), "nandWritesPerStream8": pandas.StringDtype(), "nandWritesPerStream9": pandas.StringDtype(), "nandWritesPerStream10": pandas.StringDtype(), "nandWritesPerStream11": pandas.StringDtype(), "nandWritesPerStream12": pandas.StringDtype(), "nandWritesPerStream13": pandas.StringDtype(), "nandWritesPerStream14": pandas.StringDtype(), "nandWritesPerStream15": pandas.StringDtype(), "nandWritesPerStream16": pandas.StringDtype(), "nandWritesPerStream17": pandas.StringDtype(), "nandWritesPerStream18": pandas.StringDtype(), "nandWritesPerStream19": pandas.StringDtype(), "nandWritesPerStream20": pandas.StringDtype(), "nandWritesPerStream21": pandas.StringDtype(), "nandWritesPerStream22": pandas.StringDtype(), "nandWritesPerStream23": pandas.StringDtype(), "nandWritesPerStream24": pandas.StringDtype(), "nandWritesPerStream25": pandas.StringDtype(), "nandWritesPerStream26":
pandas.StringDtype()
pandas.StringDtype