prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
import pandas as pd import geopandas as gpd import os from osgeo import gdal import numpy as np import matplotlib.pyplot as plt import cv2 import csv np.random.seed(100) create_geo_files = False create_mask = False create_train_data = True seq_len = 20 base_path = "../datasets/Ushant-Traffic" texts_path = "../datasets/Ushant-Traffic/text_data" os.makedirs(texts_path, exist_ok=True) jsons_path = "../datasets/Ushant-Traffic/json_data" os.makedirs(jsons_path, exist_ok=True) trajs = os.listdir(texts_path) trajs_paths = [os.path.join(texts_path, traj_name) for traj_name in trajs] if create_geo_files: for path in trajs_paths: df = pd.read_csv(path, delimiter = ";") gdf = gpd.GeoDataFrame(df, geometry=(gpd.points_from_xy(df.x, df.y))) file_name = os.path.splitext(os.path.basename(path))[0] + ".json" gdf.to_file(os.path.join(jsons_path, file_name), driver="GeoJSON") if create_train_data: train_folder = os.path.join(base_path, 'train') os.makedirs(train_folder, exist_ok=True) valid_folder = os.path.join(base_path, 'valid') os.makedirs(valid_folder, exist_ok=True) test_folder = os.path.join(base_path, 'test') os.makedirs(test_folder, exist_ok=True) all_data = [] id = 1 for path in trajs_paths: df = pd.read_csv(path, delimiter=";") df = df.get(['x', 'y']) df_length = df.shape[0]//seq_len for idx in range(0, df_length*seq_len, seq_len): all_data.append(df.values[idx:idx+seq_len]) # Split data to train, valid and test train_length = int(0.7 * len(all_data)) test_length = int(0.2 * len(all_data)) valid_length = len(all_data) - train_length - test_length np.random.shuffle(all_data) # Create train train_temp = np.array(all_data[0:train_length]) train_data = np.zeros((train_temp.shape[0], 20, 4)) train_data[:, :, -2] = train_temp[:, :, 0] train_data[:, :, -1] = train_temp[:, :, 1] train_data = train_data.reshape((train_temp.shape[0]*seq_len, 4)) train_data[:, 0] = np.array(range(0, train_temp.shape[0]*seq_len, 1)) train_data[:, 1] = np.repeat(np.array(range(0, train_temp.shape[0], 1)), 20) pd.DataFrame(train_data).to_csv(os.path.join(train_folder, "train.csv"), sep="\t", index=False) # pd.read_csv(os.path.join(train_folder, "train.csv"), delimiter="\t", index_col=False) # Create test test_temp = np.array(all_data[train_length: train_length+test_length]) test_data = np.zeros((test_temp.shape[0], 20, 4)) test_data[:, :, -2] = test_temp[:, :, 0] test_data[:, :, -1] = test_temp[:, :, 1] test_data = test_data.reshape((test_temp.shape[0]*seq_len, 4)) test_data[:, 0] = np.array(range(0, test_temp.shape[0]*seq_len, 1)) test_data[:, 1] = np.repeat(np.array(range(0, test_temp.shape[0], 1)), 20)
pd.DataFrame(test_data)
pandas.DataFrame
from typing import List, Optional, Dict from pathlib import Path import pandas as pd import wfdb from .definitions import RespiratoryEventType, RespiratoryEvent, EnduringEvent, PhysioNetDataset, _Event, TransientEvent, \ SleepStageType, SleepStageEvent _SLEEP_STAGE_KEYWORDS = [s.value for s in SleepStageType] def _create_enduring_event(start: pd.Timedelta, end: pd.Timedelta, aux_note: str) -> EnduringEvent: """ Creates an EnduringEvent out of the given parameters. In certain cases, it chooses the sub-class ApneaEvent instead. """ if "pnea" in aux_note: if "centralapnea" in aux_note: event_type = RespiratoryEventType.CentralApnea elif "mixedapnea" in aux_note: event_type = RespiratoryEventType.MixedApnea elif "obstructiveapnea" in aux_note: event_type = RespiratoryEventType.ObstructiveApnea elif "hypopnea" in aux_note: event_type = RespiratoryEventType.Hypopnea else: raise RuntimeError(f"Unrecognized *pnea event aux_note: '{aux_note}'") return RespiratoryEvent(start=start, end=end, aux_note=aux_note, event_type=event_type) return EnduringEvent(start=start, end=end, aux_note=aux_note) def _create_transient_event(start: pd.Timedelta, aux_note: str) -> TransientEvent: if aux_note in _SLEEP_STAGE_KEYWORDS: sleep_stage_type = SleepStageType(aux_note) return SleepStageEvent(start=start, aux_note=aux_note, sleep_stage_type=sleep_stage_type) return TransientEvent(start=start, aux_note=aux_note) def read_physionet_dataset(dataset_folder: Path, dataset_filename_stem: str = None) -> PhysioNetDataset: """ Reads datasets of the [*PhysioNet Challenge 2018*](https://physionet.org/content/challenge-2018/1.0.0/). Reads samples and annotations from a given dataset folder. *Annotations are optional*, so only parsed when available in the given folder. :param dataset_folder: The folder containing our .mat, .hea and .arousal files :param dataset_filename_stem: Name that all the dataset files have in common. If None, we'll derive it from the folder name. :return: The Dataset instance. """ assert dataset_folder.is_dir() and dataset_folder.exists(), \ f"Given dataset folder {dataset_folder} either not exists or is no folder." if dataset_filename_stem is None: dataset_filename_stem = dataset_folder.name # Read the signal files (.hea & .mat) record = wfdb.rdrecord(record_name=str(dataset_folder / dataset_filename_stem)) sample_frequency = float(record.fs) index = pd.timedelta_range(start=0, periods=len(record.p_signal), freq=f"{1/sample_frequency*1_000_000}us") df_signals =
pd.DataFrame(data=record.p_signal, columns=record.sig_name, index=index, dtype="float32")
pandas.DataFrame
import pandas as pd from statsmodels.stats.multicomp import pairwise_tukeyhsd from statsmodels.stats.multicomp import MultiComparison import scipy as sp import numpy as np FULL_DATASET = True # Decide whether to run the old code with the full dataset or the new code # with selected peptides if (FULL_DATASET): # Load excel file of party processed data data_xls = pd.ExcelFile('./data/timeseries/merged_normalized.xlsx') # Create empty data frame for result data result_data = pd.DataFrame() # Load all of the sheets into a list sheet_list = {} index = 0 for sheet_name in data_xls.sheet_names: # Load sheet into list sheet_list[index] = data_xls.parse(sheet_name) index += 1 # Get rid of all rows except duplicates duplicate_data = sheet_list[0][(sheet_list[0]['peptide'].isin(sheet_list[1]['peptide']))].dropna().reset_index(drop=True) duplicate_data = duplicate_data[(duplicate_data['peptide'].isin(sheet_list[2]['peptide']))].dropna().reset_index(drop=True) # Trim the duplicate data to just the first four rows (information about peptides) result_data = duplicate_data.iloc[:,0:4] # Create variables for the data in A, B, and C data_A = sheet_list[0][(sheet_list[0]['peptide'].isin(duplicate_data['peptide']))].dropna().reset_index(drop=True) data_B = sheet_list[1][(sheet_list[1]['peptide'].isin(duplicate_data['peptide']))].dropna().reset_index(drop=True) data_C = sheet_list[2][(sheet_list[2]['peptide'].isin(duplicate_data['peptide']))].dropna().reset_index(drop=True) # Add the data from sheets A, B, and C respectively result_data = pd.concat([result_data, data_A.iloc[:,4:12]], axis=1, ignore_index=True) result_data =
pd.concat([result_data, data_B.iloc[:,4:12]], axis=1, ignore_index=True)
pandas.concat
# -------------- import pandas as pd import scipy.stats as stats import math import numpy as np import warnings warnings.filterwarnings('ignore') #Sample_Size sample_size=2000 #Z_Critical Score z_critical = stats.norm.ppf(q = 0.95) # path [File location variable] #Code starts here data=pd.read_csv(path) data_sample=data.sample(sample_size,random_state=0) sample_mean=data_sample['installment'].mean() sample_std=data_sample.installment.std() margin_of_error=z_critical*(sample_std/np.sqrt(sample_size)) confidence_interval=((sample_mean-margin_of_error),(sample_mean+margin_of_error)) true_mean=data.installment.mean() print('fall') if true_mean>confidence_interval[0] or true_mean<confidence_interval[1] else print('donot fall') # -------------- import matplotlib.pyplot as plt import numpy as np #Different sample sizes to take sample_size=np.array([20,50,100]) fix,axes=plt.subplots(nrows = 3 , ncols = 1,figsize=(10,7)) for i in range(len(sample_size)): m=[] for j in range(1000): data_Sample=data['installment'].sample(sample_size[i]) m.append(data_Sample.mean()) mean_series=
pd.Series(m)
pandas.Series
import pandas as pd def compact_non_binary_features(dir_dataset, features, new_feature, new_path, neutral=None): """ Args: dir_dataset (str) : path of the dataset features (list) : list of binary features to merge new_feature (str) : name of the new categorical feature new_path (str) : directory + filename (e.g. 'data/cleaned_dataset.csv') neutral (str) : str for a neutral combination (if all "non" positive have a meaning) Returns: Save the compacted dataset, for which we have a new column called "race", in which we add the race, given by the binary features """ df = pd.read_csv(dir_dataset) new_feature_list = [] # iterrows is very expansive # to do : try to use some more efficient workaround for index, row in df.iterrows(): found = False for feature in features: if row[feature] == 1: new_feature_list.append(feature) found = True if not found: new_feature_list.append(neutral) for feature in features: df.drop(columns=[feature], inplace=True) df[new_feature] =
pd.Series(new_feature_list)
pandas.Series
from scipy import signal import pandas as pd import numpy as np import datetime import re import feather import os, sys, argparse import plotnine as p9 from matplotlib import gridspec import matplotlib.pyplot as plt # custom cwt function because signal.cwt doesn't work on morlets... def cwt_time(data, frequencies, dt, axis, samplerate): import scipy from scipy.signal import morlet # wavelets can be complex so output is complex output = np.zeros((len(frequencies),) + data.shape, dtype=np.complex) # compute in time slices = [None for _ in data.shape] slices[axis] = slice(None) for ind, frequency in enumerate(frequencies): # number of points needed to capture wavelet n_sample_wavelet=int(20*samplerate/frequency) scale_factor = frequency*n_sample_wavelet/(2*5*samplerate) wavelet_data = morlet(n_sample_wavelet, 5, scale_factor) output[ind, :] = scipy.signal.fftconvolve(data,wavelet_data[tuple(slices)],mode='same') return output # Plots the cwt data on ax # Returns the cwt matrix def plot_cwt(small_data, feature, widths, a, b, samplerate, ax, use_quant): # Filter and cwt transform the data cwtmatr = cwt_time(signal.filtfilt(a, b, small_data[feature]-np.mean(small_data[feature])), widths, 1, 0, samplerate) # Only need magnitude component signal_mag = cwtmatr.real**2+cwtmatr.imag**2 # Plotting t = np.arange(small_data[feature].shape[0]) T, S = np.meshgrid(t, widths) vmin = np.min(signal_mag) vmax = np.max(signal_mag) if use_quant: vmin, vmax = np.quantile(signal_mag, [0.001,0.99]) c_levels = np.linspace(vmin, vmax, 50) _ = ax.contourf(T/samplerate, S, signal_mag, 100, levels=c_levels, extend='both') _ = ax.semilogy() _ = ax.set_ylabel('Frequency, Hz') _ = ax.set_title(feature) return cwtmatr, t def plot_video_clip(args): input_file = args.input_file if os.path.splitext(input_file)[1] == '.feather': data = feather.read_dataframe(input_file) elif os.path.splitext(input_file)[1] == '.csv': data = pd.read_csv(input_file) else: print('Input file format not recognized: ' + os.path.splitext(input_file)[1]) exit(1) # Run calculations, if not already present data['x'] = data['m10']/data['m00'] data['y'] = data['m01']/data['m00'] data['a'] = data['m20']/data['m00']-data['x']**2 data['b'] = 2*(data['m11']/data['m00'] - data['x']*data['y']) data['c'] = data['m02']/data['m00'] - data['y']**2 data['w'] = np.sqrt(8*(data['a']+data['c']-np.sqrt(data['b']**2+(data['a']-data['c'])**2)))/2 data['l'] = np.sqrt(8*(data['a']+data['c']+np.sqrt(data['b']**2+(data['a']-data['c'])**2)))/2 data['theta'] = 1/2.*np.arctan(2*data['b']/(data['a']-data['c'])) data['aspect_w/l'] = data['w']/data['l'] data['circularity'] = data['m00']*4*np.pi/data['perimeter']**2 data['rectangular'] = data['m00']/(data['w']*data['l']) data['eccentricity'] = np.sqrt(data['w']**2 + data['l']**2)/data['l'] data['elongation'] = (data['mu20'] + data['mu02'] + (4 * data['mu11']**2 + (data['mu20'] - data['mu02'])**2)**0.5) / (data['mu20'] + data['mu02'] - (4 * data['mu11']**2 + (data['mu20'] - data['mu02'])**2)**0.5) data['hu0'] = data['nu20'] + data['nu02'] data['hu1'] = (data['nu20']-data['nu02'])**2 + 4*data['nu11']**2 data['hu2'] = (data['nu30']-3*data['nu12'])**2 + (3*data['nu21']-data['nu03'])**2 data['hu3'] = (data['nu30']+data['nu12'])**2 + (data['nu21']+data['nu03'])**2 data['hu4'] = (data['nu30']-3*data['nu12'])*(data['nu30']+data['nu12'])*((data['nu30']+data['nu12'])**2-3*(data['nu21']+data['nu03'])**2) + (3*data['nu21']-data['nu03'])*(data['nu21']+data['nu03'])*(3*(data['nu30']+data['nu12'])**2-(data['nu21']+data['nu03'])**2) data['hu5'] = (data['nu20']-data['nu02'])*((data['nu03']+data['nu12'])**2) + 4*data['nu11']*(data['nu30']+data['nu12'])*(data['nu21']+data['nu03']) data['hu6'] = (3*data['nu21']-data['nu03'])*(data['nu21']+data['nu03'])*(3*(data['nu30']+data['nu12'])**2-(data['nu21']+data['nu03'])**2) + (data['nu30']-3*data['nu12'])*(data['nu21']+data['nu03'])*(3*(data['nu30']+data['nu12'])**2-(data['nu21']+data['nu03'])**2) # # Assumed capturing information samplerate = 30. # Bandpass filtering of signal if args.filter_breathing: a, b = signal.butter(7, [2*2./samplerate, 2*8./samplerate], 'bandpass') else: # Default to 0.5-14.5hz bandpass a, b = signal.butter(5, [1./samplerate, 29./samplerate], 'bandpass') widths = np.arange(1,15,0.01) # feature = args.feature if not (feature in data.keys()): print('Feature not available: ' + feature) print('Available features: ' + data.keys()) exit(1) # Start the chunking of the data... # Use "epochs" has_found_epochs = False if args.use_epochs == True: if 'unique_epoch_id' in data.keys(): has_found_epochs = True # Roughly clip chunks by epoch lengths... if args.num_samples > 0: num_epoch_per_plot = np.ceil(args.num_samples/300) else: num_epoch_per_plot = 1 data_groups = data.groupby('unique_epoch_id').groups # Grab indices for groupings data_chunks = [] cur_chunk_count = 0 cur_chunks = np.array([]) for i in data_groups: if cur_chunk_count == num_epoch_per_plot: data_chunks.append(np.reshape(cur_chunks, [-1])) cur_chunks = np.array([]) cur_chunk_count = 0 # Pull out only the indices to match old method... #cur_chunks = np.concatenate(cur_chunks, data_groups[i].values) cur_chunks = np.concatenate((cur_chunks, np.array(data_groups[i].values))) cur_chunk_count = cur_chunk_count + 1 # Old method (Plot constant durations) if not has_found_epochs: if args.num_samples < samplerate: data_chunks = [np.arange(len(data))] else: data_chunks = [np.arange(args.num_samples)+i*args.num_samples for i,x in enumerate(np.arange(len(data)//args.num_samples))] if (len(data)%args.num_samples) > samplerate: data_chunks.append(np.arange(len(data)%args.num_samples)-1+args.num_samples*len(data_chunks)) for i, chunk in enumerate(data_chunks): small_data = data.iloc[chunk,:] # Filter and cwt transform the data #fig = plt.figure(figsize=(12,9)) fig = (p9.ggplot()+p9.geom_blank(data=
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np from sklearn.impute import SimpleImputer from sklearn.preprocessing import MinMaxScaler def scal(): dataset = pd.read_csv('../train_cuting/train_cutting2_lstm_mean.csv') dataset['Timestamp'] = pd.to_datetime(dataset['Timestamp']) dataset = dataset.set_index('Timestamp') dataset.index.name = 'date' scaler = MinMaxScaler(feature_range=(0, 1)) values = dataset['Value'] values = values.values values = values.reshape(-1, 1) scaler.fit_transform(values) return scaler def data_process_lstm(path1=None, name1=None, path2=None, name2=None, scaler=None): if path1 == None: dataset = pd.read_csv(name1) else: dataset = pd.read_csv(path1 + '/' + name1) dataset['Timestamp'] = pd.to_datetime(dataset['Timestamp']) dataset = dataset.set_index('Timestamp') dataset.index.name = 'date' len = dataset['groups'].max() values = dataset['Value'] values = values.values values = values.reshape(-1, 1) values = scaler.fit_transform(values) dataset['Value'] = values for i in range(1, len+1): temp_data = dataset[dataset['groups'] == i] temp_data = temp_data['Value'] temp_values = temp_data.values temp_values = temp_values.astype('float32') temp_values = temp_values.reshape(-1, 1) reframed = series_to_supervised(temp_values, 24, 1) if i == 1: set = reframed else: set =
pd.concat([set, reframed])
pandas.concat
from datetime import datetime import codecs, re, csv, pandas as pd from django.db import connection, connections from .middleware import get_current_ngrp #from .forms import XDBX G_SDICT = {} G_DUPL = [] G_QNO = [] def to_test(ba): return str(len(ba)) def to_byte_str(ba): return str(ba)[2:-1] def to_bytes(bs): return bytes(codecs.decode(bs.strip(), 'unicode_escape'), 'iso_8859-1') def rstr_to_str_u(bs): return bytes(codecs.decode(bs.strip(), 'unicode_escape'), 'utf8').decode() def rstr_to_str(bs): return bytes(codecs.decode(bs.strip(), 'unicode_escape'), 'iso_8859-1').decode() def hex_to_int(bv): return str(int(bv, 16)) def hex_to_byte(hv): return bytes.fromhex(hv.strip()) def to_txt(bv): return bv.decode() def to_ipv4(bv): return ".".join(str(b) for b in bv) def to_intbit(bv, s, l): e = int.from_bytes(bv,byteorder='big') d = 2 ** s c = d * ((2 ** l) - 1) return str(int((e & c) / d)) def to_intbitn(bv, s, l): e = int.from_bytes(bv,byteorder='big') d = 2 ** s c = d * ((2 ** l) - 1) return int((e & c) / d) def to_hex(bv, d=None, n=None): if d == None: return bv.hex() else: a = bv.hex() return d.join(a[j:j+n] for j in range(0, len(a), n)) def to_intBE(bv,ed): return str(int.from_bytes(bv,byteorder=ed)) def to_intB(bv): return str(int.from_bytes(bv,byteorder='big')) def to_intBn(bv): return int.from_bytes(bv,byteorder='big') def to_pcap_ts(bv, ty, ed): s = int.from_bytes(bv[:4],byteorder=ed) ns = int.from_bytes(bv[4:],byteorder=ed) if ty == '128': ts = (s * 4294967296) + ns return (ts//1000000, ts%1000000) return (s, ns) def to_utc_d(val): return str(datetime.utcfromtimestamp(val)) def to_utc(bv,ed): e = int.from_bytes(bv,byteorder=ed) return str(datetime.utcfromtimestamp(e)) def to_sigp(pa,sm): for p in pa: for k,v in sm.items(): if p in k.split(','): return v return 'unk' def to_hdl(bv,s, l, hd): e = int.from_bytes(bv,byteorder='big') d = 2 ** s c = d * ((2 ** l) - 1) hl = 4 * int((e & c) / d) return hl - hd def i_var(iv): return str(iv) def i_vara(iv,dl): return dl.join(str(v) for v in iv) def to_paylen(bv,ver): if ver == 6: cv = to_intBn(bv[:2])-8 if bv[2] == b'44' else to_intBn(bv[:2]) elif ver == 4: cv = to_intBn(bv[2:]) - to_intbitn(bv[0:1],0,4)*4 return str(cv) def dupp(bv,bs): if bv in G_DUPL: return 'Y' if bs > 0: G_DUPL[G_QNO[0]] = bv G_QNO[0] = 0 if G_QNO[0] == bs else G_QNO[0] + 1 return 'N' def defrag(recs,rno,skb,bv,va,bs): tl = to_intBn(bv[2:4]) if tl == 0: return '0' if tl < len(bv): bv = bv[:tl] cv = str(bv[9]) ofs = to_intbitn(bv[6:8],0,13) mf = to_intbit(bv[6:7],5,1) hl = to_intbitn(bv[0:1],0,4)*4 fr0 = bv[8+hl:] if cv =='50' and ofs == 0 else bv[hl:] if cv =='50' and mf == '0': pl = bv[-14] + 14 fr0 = fr0[:-pl] cv = str(bv[-13]) if ofs == 0 and mf != '1': va.append([rno,fr0]) return cv rl = len(recs) clen = tl - hl pid0 = to_intB(bv[4:6]) frl = {ofs:[rno,fr0]} tlen = ofs*8 + clen if ofs != 0 and mf == '0' else 0 for i in range(1,20): rn = rno + i if rn >= rl: break if recs[rn][28+skb:30+skb:].hex() != '0800': continue rv = recs[rn][30+skb:] if rv in G_DUPL: continue tl = to_intBn(rv[2:4]) bv = rv[:tl] ofs = to_intbitn(bv[6:8],0,13) mf = to_intbit(bv[6:7],5,1) pid = to_intB(bv[4:6]) if pid == pid0: hl = to_intbitn(bv[0:1],0,4)*4 ipdl = tl - hl clen += ipdl if ofs != 0 and mf == '0': tlen = ofs*8 + ipdl nh = str(bv[9]) fr = bv[8+hl:] if nh =='50' and ofs == 0 else bv[hl:] if nh =='50' and mf == '0': pl = bv[-14] + 14 fr = fr[:-pl] cv = str(bv[-13]) frl.update({ofs:[rn, fr]}) G_DUPL[G_QNO[0]] = rv G_QNO[0] = 0 if G_QNO[0] == bs else G_QNO[0] + 1 if clen == tlen: break frs = dict(sorted(frl.items())) pid, ipd = '', b'' for k,v in frs.items(): pid += ',%s' % v[0] ipd += v[1] va.append([pid[1:],ipd]) return cv def defrag_g(recs,rno,bv,va,bs): cv = str(bv[9]) ofs = to_intbitn(bv[6:8],0,13) mf = to_intbit(bv[6:7],5,1) hl = to_intbitn(bv[0:1],0,4)*4 fr0 = bv[8+hl:] if cv =='50' and ofs == 0 else bv[hl:] if cv =='50' and mf == '0': pl = bv[-14] + 14 fr0 = fr0[:-pl] cv = str(bv[-13]) if ofs == 0 and mf != '1': va.append([recs.loc[rno,'pidxx'],fr0]) return cv rl = len(recs) clen = to_intBn(bv[2:4]) - hl pid0 = to_intB(bv[4:6]) frl = {ofs:[recs.loc[rno,'pidxx'],fr0]} tlen = ofs*8 + clen if ofs != 0 and mf == '0' else 0 for i in range(1,20): rn = rno + i if rn >= rl: break bv = to_bytes(recs.loc[rn,'apd']) ofs = to_intbitn(bv[6:8],0,13) mf = to_intbit(bv[6:7],5,1) pid = to_intB(bv[4:6]) if pid == pid0: hl = to_intbitn(bv[0:1],0,4)*4 ipdl = to_intBn(bv[2:4]) - hl clen += ipdl if ofs != 0 and mf == '0': tlen = ofs*8 + ipdl nh = str(bv[9]) fr = bv[8+hl:] if nh =='50' and ofs == 0 else bv[hl:] if nh =='50' and mf == '0': pl = bv[-14] + 14 fr = fr[:-pl] cv = str(bv[-13]) frl.update({ofs:[recs.loc[rn,'pidxx'], fr]}) G_DUPL[G_QNO[0]] = bv G_QNO[0] = 0 if G_QNO[0] == bs else G_QNO[0] + 1 if clen == tlen: break frs = dict(sorted(frl.items())) pid, ipd = '', b'' for k,v in frs.items(): pid += '-%s' % v[0] ipd += v[1] va.append([pid[1:],ipd]) return cv def defrag6(recs,rno,skb,bv,va,bs): cv = str(bv[6]) if cv != '44': if cv == '50': pl = len(bv) - bv[-14] - 14 fr0 = bv[48:pl] cv = str(bv[-13]) else: fr0 = bv[40:] va.append([rno,fr0]) return cv rl = len(recs) clen = to_intBn(bv[4:6]) - 8 pid0 = to_intB(bv[44:48]) ofs = to_intbitn(bv[42:44],3,13) mf = to_intbit(bv[43:44],0,1) cv = str(bv[40]) fr0 = bv[56:] if cv =='50' and ofs == 0 else bv[48:] if cv =='50' and mf == '0': pl = bv[-14] + 14 fr0 = fr0[:-pl] cv = str(bv[-13]) frl = {ofs:[rno,fr0]} tlen = ofs*8 + clen if ofs != 0 and mf == '0' else 0 for i in range(1,20): rn = rno + i if rn >= rl: break if recs[rn][28+skb:30+skb:].hex() != '86dd': continue bv = recs[rn][30+skb:] if bv in G_DUPL: continue if str(bv[6]) == '44': pid = to_intB(recs[rn][74+skb:78+skb]) if pid == pid0: ofs = to_intbitn(bv[42:44],3,13) mf = to_intbit(bv[43:44],0,1) ipdl = to_intBn(bv[4:6]) - 8 clen += ipdl if ofs != 0 and mf == '0': tlen = ofs*8 + ipdl nh = str(bv[40]) fr = bv[56:] if nh =='50' and ofs == 0 else bv[48:] if nh =='50' and mf == '0': pl = bv[-14] + 14 fr = fr[:-pl] cv = str(bv[-13]) frl.update({ofs:[rn, fr]}) G_DUPL[G_QNO[0]] = bv G_QNO[0] = 0 if G_QNO[0] == bs else G_QNO[0] + 1 if clen == tlen: break frs = dict(sorted(frl.items())) pid, ipd = '', b'' for k,v in frs.items(): pid += ',%s' % v[0] ipd += v[1] va.append([pid[1:],ipd]) return cv def defrag6g(recs,rno,bv,va,bs): cv = str(bv[6]) if cv != '44': if cv == '50': pl = len(bv) - bv[-14] - 14 fr0 = bv[48:pl] cv = str(bv[-13]) else: fr0 = bv[40:] va.append([recs.loc[rno,'pidxx'],fr0]) return cv rl = len(recs) clen = to_intBn(bv[4:6]) - 8 pid0 = to_intB(bv[44:48]) ofs = to_intbitn(bv[42:44],3,13) mf = to_intbit(bv[43:44],0,1) cv = str(bv[40]) fr0 = bv[56:] if cv =='50' and ofs == 0 else bv[48:] if cv =='50' and mf == '0': pl = bv[-14] + 14 fr0 = fr0[:-pl] cv = str(bv[-13]) frl = {ofs:[recs.loc[rno,'pidxx'],fr0]} tlen = ofs*8 + clen if ofs != 0 and mf == '0' else 0 for i in range(1,20): rn = rno + i if rn >= rl: break bv = to_bytes(recs.loc[rn,'apd']) if str(bv[6]) == '44': pid = to_intB(bv[44:48]) if pid == pid0: ofs = to_intbitn(bv[42:44],3,13) mf = to_intbit(bv[43:44],0,1) ipdl = to_intBn(bv[4:6]) - 8 clen += ipdl if ofs != 0 and mf == '0': tlen = ofs*8 + ipdl nh = str(bv[40]) fr = bv[56:] if nh =='50' and ofs == 0 else bv[48:] if nh =='50' and mf == '0': pl = bv[-14] + 14 fr = fr[:-pl] cv = str(bv[-13]) frl.update({ofs:[recs.loc[rn,'pidxx'], fr]}) G_DUPL[G_QNO[0]] = bv G_QNO[0] = 0 if G_QNO[0] == bs else G_QNO[0] + 1 if clen == tlen: break frs = dict(sorted(frl.items())) pid, ipd = '', b'' for k,v in frs.items(): pid += '-%s' % v[0] ipd += v[1] va.append([pid[1:],ipd]) return cv def apdata(bv,tt,sgnp,va): dl = len(bv) if tt == '132': sp = to_intBn(bv[14:16]) if bv[12] == 3 else 0 if dl > (12+sp) and bv[12+sp] == 0: va.append(bv[sp+28:]) va.append(to_intbitn(bv[sp+13:sp+14],0,4) % 2) va.append(to_intBn(bv[sp+16:sp+20])) va.append(dl - sp - 28) else: va.append('') elif tt == '6': flg = to_intbitn(bv[13:14],0,4) if flg == 0 or flg == 8: hl = to_intbitn(bv[12:13],4,4) * 4 va.append(bv[hl:]) va.append(flg) va.append(to_intBn(bv[4:8])) va.append(dl - hl) else: va.append('') else: va.append(bv[16:]) if sgnp == 'gtp' else va.append(bv[8:]) va.append('') va.append('') va.append(dl - 16) if sgnp == 'gtp' else va.append(dl - 8) return '' if va[0] == '' or va[3] == 0 else str(va[3]) def ap_msg(apd,sgnp='sip',dc=None): if sgnp == 'sip': m = re.search('(^(?=[A-Z]+\s(sip|tel):)|(?<=^SIP/2\.0\s))\S{3}', apd.decode('utf-8')) cv = 'NaN' if m == None else m[0] elif sgnp == 'dia': if apd[0] == 1 and to_intbitn(apd[4:5],0,4) == 0 and to_intbitn(apd[5:7],4,12) == 0: cc = to_intB(apd[5:8]) cv = '%s%s' % (dc[cc] if cc in dc else cc, 'R' if to_intbitn(apd[4:5],4,4) > 7 else 'A') else: cv = 'NaN' elif sgnp == 'gtp': cv = 'ipv%s' % to_intbit(apd[0:1],4,4) return cv def sipmsg(sipreq): m = re.search('(^(?=[A-Z]+\s(sip|tel):)|(?<=^SIP/2\.0\s))\S{3}', sipreq) return 'NaN' if m == None else m[0] def deseg(recs,rno,va,bs): fst,lst,apl = recs.loc[rno,'apmsg'], recs.loc[rno,'last'], recs.loc[rno,'appl'] sid0 = '%s%s%s%s' % (recs.loc[rno,'ip_s'], recs.loc[rno,'port_s'], recs.loc[rno,'ip_d'], recs.loc[rno,'port_d']) if fst != 'NaN' and lst == '8': va.append([recs.loc[rno,'pidxx'],recs.loc[rno,'apd']]) return apl mss, flen, rl = '', 0, len(recs) seg0 = recs.loc[rno,'segid'] if fst == 'NaN': for i in range(1,20): rn = rno + i if rn >= rl: break if recs.loc[rn,'ts_dt'][-5:] != recs.loc[rno,'ts_dt'][-5:]: break sid = '%s%s%s%s' % (recs.loc[rn,'ip_s'], recs.loc[rn,'port_s'], recs.loc[rn,'ip_d'], recs.loc[rn,'port_d']) seg = recs.loc[rn,'segid'] if sid+seg[:4] == sid0+seg0[:4]: if recs.loc[rn,'apmsg'] != 'NaN': mss, flen = recs.loc[rn,'appl'], int(seg) break else: mss, flen = apl, int(seg0) if mss == '': return '' if lst == '8' and fst == 'NaN': if apl == mss: lst = '0' tlen,clen = 0,0 frl = {seg0:[recs.loc[rno,'pidxx'],recs.loc[rno,'apd']]} appl = int(apl) if lst == '0': clen = appl else: tlen = int(seg0) for i in range(1,20): rn = rno + i if rn >= rl: break if recs.loc[rn,'ts_dt'][-5:] != recs.loc[rno,'ts_dt'][-5:]: break sid = '%s%s%s%s' % (recs.loc[rn,'ip_s'], recs.loc[rn,'port_s'], recs.loc[rn,'ip_d'], recs.loc[rn,'port_d']) seg = recs.loc[rn,'segid'] if sid+seg[:4] == sid0+seg0[:4]: fst,lst,apl = recs.loc[rn,'apmsg'], recs.loc[rn,'last'], recs.loc[rn,'appl'] if fst != 'NaN' and int(seg) > flen: break appl += int(apl) if fst == 'NaN' and lst == '8': if apl == mss: lst = '0' if lst == '0': clen += appl else: tlen = int(seg) frl.update({seg:[recs.loc[rn,'pidxx'], recs.loc[rn,'apd']]}) G_DUPL[G_QNO[0]] = seg G_QNO[0] = 0 if G_QNO[0] == bs else G_QNO[0] + 1 if flen + clen == tlen: break frs = dict(sorted(frl.items())) pid, ipd = '', '' for k,v in frs.items(): pid += '&%s' % v[0] ipd += v[1] va.append([pid[1:],ipd]) return str(appl) def deseg_s(recs,rno,va,bs): fst,lst,apl = recs.loc[rno,'apmsg'], recs.loc[rno,'last'], recs.loc[rno,'appl'] sid0 = '%s%s%s%s' % (recs.loc[rno,'ip_s'], recs.loc[rno,'port_s'], recs.loc[rno,'ip_d'], recs.loc[rno,'port_d']) if fst != 'NaN' and lst == '1': va.append([recs.loc[rno,'pidxx'],recs.loc[rno,'apd']]) return apl rl = len(recs) seg0 = recs.loc[rno,'segid'] frl = {seg0:[recs.loc[rno,'pidxx'],recs.loc[rno,'apd']]} appl = int(apl) flen = 0 if fst == 'NaN' else int(seg0) tlen = 0 if lst == '0' else int(seg0) for i in range(1,20): rn = rno + i if rn >= rl: break tid = int(recs.loc[rn,'segid']) if abs(tid - int(seg0)) < 10: if recs.loc[rn,'last'] == '1' and tlen == 0: tlen = tid elif recs.loc[rn,'apmsg'] != 'NaN' and flen == 0: flen = tid if flen > 0 and tlen > 0: break if tlen == 0 or flen == 0: return '' j = 0 for i in range(1,20): rn = rno + i if rn >= rl: break if recs.loc[rn,'ts_dt'][-5:] != recs.loc[rno,'ts_dt'][-5:]: break sid = '%s%s%s%s' % (recs.loc[rn,'ip_s'], recs.loc[rn,'port_s'], recs.loc[rn,'ip_d'], recs.loc[rn,'port_d']) seg = recs.loc[rn,'segid'] if flen <= int(seg) <= tlen and sid == sid0: appl += int(recs.loc[rn,'appl']) j += 1 frl.update({seg:[recs.loc[rn,'pidxx'], recs.loc[rn,'apd']]}) G_DUPL[G_QNO[0]] = seg G_QNO[0] = 0 if G_QNO[0] == bs else G_QNO[0] + 1 if flen + j == tlen: break frs = dict(sorted(frl.items())) pid, ipd = '', '' for k,v in frs.items(): pid += '&%s' % v[0] ipd += v[1] va.append([pid[1:],ipd]) return str(appl) def pcap_udp(recs,rno,va): va.append([recs.loc[rno,'pidxx'],recs.loc[rno,'apd']]) return recs.loc[rno,'appl'] def siphdr(sipmsg,sepr,eepr): hdr = '' m = re.search(sepr, sipmsg) if m != None: fs = m.end() m = re.search(eepr, sipmsg[fs:]) fe = fs + 10 if m == None else fs + m.start() hdr = sipmsg[fs:fe] return hdr def dumm(ep): return ep def conc(varr,d): return d.join(va for va in varr if va != '') def repstr(val,ostr,nstr): return re.sub(ostr,nstr,val) def x_col(val,dp,sp,ep,dl): return dl.join(r[sp:ep].strip() for r in val.split(dp)) def steps(n,s,d=','): cv = d.join('%s&&%s' % (x-s,x-1) for x in range(s,n+1,s)) l = n % s if l > 0: cv += '%s%s&&%s' % ('' if cv == '' else ',', n-l, n-1) return cv def x_grp(va,k,fc=['G'],dp=',',d=','): data = {} data.update({k:va[k].split(dp)}) if fc[0] == 'G': df = pd.DataFrame(data).sort_values(k).groupby(k).count() return d.join(idx for idx, row in df.iterrows()) data.update({fc[1]:va[fc[1]].split(dp) if fc[0] != 'S' else list(map(int, va[fc[1]].split(dp)))}) if fc[0] == 'C': df = pd.DataFrame(data).sort_values(k).groupby(k).count() elif fc[0] == 'S': df = pd.DataFrame(data).sort_values(k).groupby(k).sum() elif fc[0] == 'F': df =
pd.DataFrame(data)
pandas.DataFrame
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. import pandas as pd import plotly.tools as tls import plotly.graph_objs as go import statsmodels.api as sm import matplotlib.pyplot as plt from scipy import stats from ..graph import ScatterGraph, SubplotsGraph, BarGraph, HeatmapGraph def _group_return(pred_label: pd.DataFrame = None, reverse: bool = False, N: int = 5, **kwargs) -> tuple: """ :param pred_label: :param reverse: :param N: :return: """ if reverse: pred_label["score"] *= -1 pred_label = pred_label.sort_values("score", ascending=False) # Group1 ~ Group5 only consider the dropna values pred_label_drop = pred_label.dropna(subset=["score"]) # Group t_df = pd.DataFrame( { "Group%d" % (i + 1): pred_label_drop.groupby(level="datetime")["label"].apply( lambda x: x[len(x) // N * i : len(x) // N * (i + 1)].mean() ) for i in range(N) } ) t_df.index =
pd.to_datetime(t_df.index)
pandas.to_datetime
import pandas as pd import os import numpy as np from math import floor from math import ceil import soundfile as sf import ML.Utils.InvalidParameterError as InvalidParameterError def convert_to_letters(num): """Converts number to string of capital letters in Excel column name fashion, i.e. 1 -> A, 26 -> Z, 27 -> AA ....""" string_equiv = "" while num > 0: currNum = (num - 1) % 26 num = (num - 1) // 26 string_equiv = chr(currNum + ord("A")) + string_equiv return string_equiv def get_file_name(file_path, timestamp, outDir): file_name_without_ext = os.path.split(file_path)[-1] + "_Timestamp_{}".format(timestamp) file_name_without_ext = os.path.join(outDir, file_name_without_ext) file_extension = os.path.splitext(file_path)[-1] outpath = file_name_without_ext + file_extension i = 0 while os.path.exists(outpath): i += 1 outpath = file_name_without_ext + "({})".format(i) + file_extension with sf.SoundFile(file_path, "r") as f: sr = f.samplerate channels = f.channels start = int(max((timestamp - 2.5) * sr, 0)) end = int(min((timestamp + 2.5) * sr, len(f))) f.seek(start) data = f.read(frames=(end - start), always_2d=True) with sf.SoundFile(outpath, "w", samplerate=sr, channels=channels) as f: f.write(data) return outpath def create_flutter_output(outFrame, outDir): """ Auxiliary Function to create output for Flutter Frontend. """ map_from_type_to_files_with_secs = {} for i in outFrame.index: if outFrame["CallType"][i] not in map_from_type_to_files_with_secs.keys(): map_from_type_to_files_with_secs[outFrame["CallType"][i]] = [] map_from_type_to_files_with_secs[outFrame["CallType"][i]].append( (outFrame["FullPath"][i], outFrame["SecondDetected"][i]) ) final_output = { "CallType": [], "Number": [], "File1": [], "File2": [], "File3": [], "File4": [], "File5": [], } FileKeys = ["File1", "File2", "File3", "File4", "File5"] for callType in map_from_type_to_files_with_secs.keys(): final_output["CallType"].append(callType) final_output["Number"].append(str(len(map_from_type_to_files_with_secs[callType]))) if len(map_from_type_to_files_with_secs[callType]) < 5: for i in range(len(map_from_type_to_files_with_secs[callType])): file_name = get_file_name( *(map_from_type_to_files_with_secs[callType][i]), outDir ) final_output[FileKeys[i]].append(file_name) for i in range(len(map_from_type_to_files_with_secs[callType]), 5): final_output[FileKeys[i]].append(" ") else: idx = np.random.choice( len(map_from_type_to_files_with_secs[callType]), 5, replace=False ) for i in range(5): file_name = get_file_name( *(map_from_type_to_files_with_secs[callType][idx[i]]), outDir ) final_output[FileKeys[i]].append(file_name) final_output =
pd.DataFrame.from_dict(final_output)
pandas.DataFrame.from_dict
import os import glob import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt def load_dataset_file(dataset_file_path): """ This method loads dataset file. Currently supported formats are .csv and .json. :param dataset_file_path: path of the dataset file :return: pandas dataframe that contains dataset information """ _, file_extension = os.path.splitext(dataset_file_path) if file_extension == ".csv": data_info =
pd.read_csv(dataset_file_path)
pandas.read_csv
import numpy as np import pytest import pandas as pd from pandas import DataFrame, Series, Timestamp import pandas._testing as tm class TestDataFrameAppend: def test_append_empty_list(self): # GH 28769 df = DataFrame() result = df.append([]) expected = df tm.assert_frame_equal(result, expected) assert result is not df df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) result = df.append([]) expected = df tm.assert_frame_equal(result, expected) assert result is not df # .append() should return a new object def test_append_series_dict(self): df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) series = df.loc[4] msg = "Indexes have overlapping values" with pytest.raises(ValueError, match=msg): df.append(series, verify_integrity=True) series.name = None msg = "Can only append a Series if ignore_index=True" with pytest.raises(TypeError, match=msg): df.append(series, verify_integrity=True) result = df.append(series[::-1], ignore_index=True) expected = df.append( DataFrame({0: series[::-1]}, index=df.columns).T, ignore_index=True ) tm.assert_frame_equal(result, expected) # dict result = df.append(series.to_dict(), ignore_index=True) tm.assert_frame_equal(result, expected) result = df.append(series[::-1][:3], ignore_index=True) expected = df.append( DataFrame({0: series[::-1][:3]}).T, ignore_index=True, sort=True ) tm.assert_frame_equal(result, expected.loc[:, result.columns]) msg = "Can only append a dict if ignore_index=True" with pytest.raises(TypeError, match=msg): df.append(series.to_dict()) # can append when name set row = df.loc[4] row.name = 5 result = df.append(row) expected = df.append(df[-1:], ignore_index=True) tm.assert_frame_equal(result, expected) def test_append_list_of_series_dicts(self): df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) dicts = [x.to_dict() for idx, x in df.iterrows()] result = df.append(dicts, ignore_index=True) expected = df.append(df, ignore_index=True) tm.assert_frame_equal(result, expected) # different columns dicts = [ {"foo": 1, "bar": 2, "baz": 3, "peekaboo": 4}, {"foo": 5, "bar": 6, "baz": 7, "peekaboo": 8}, ] result = df.append(dicts, ignore_index=True, sort=True) expected = df.append(DataFrame(dicts), ignore_index=True, sort=True) tm.assert_frame_equal(result, expected) def test_append_missing_cols(self): # GH22252 # exercise the conditional branch in append method where the data # to be appended is a list and does not contain all columns that are in # the target DataFrame df = DataFrame(np.random.randn(5, 4), columns=["foo", "bar", "baz", "qux"]) dicts = [{"foo": 9}, {"bar": 10}] with tm.assert_produces_warning(None): result = df.append(dicts, ignore_index=True, sort=True) expected = df.append(DataFrame(dicts), ignore_index=True, sort=True) tm.assert_frame_equal(result, expected) def test_append_empty_dataframe(self): # Empty df append empty df df1 = DataFrame() df2 = DataFrame() result = df1.append(df2) expected = df1.copy() tm.assert_frame_equal(result, expected) # Non-empty df append empty df df1 = DataFrame(np.random.randn(5, 2)) df2 = DataFrame() result = df1.append(df2) expected = df1.copy() tm.assert_frame_equal(result, expected) # Empty df with columns append empty df df1 = DataFrame(columns=["bar", "foo"]) df2 = DataFrame() result = df1.append(df2) expected = df1.copy() tm.assert_frame_equal(result, expected) # Non-Empty df with columns append empty df df1 = DataFrame(np.random.randn(5, 2), columns=["bar", "foo"]) df2 = DataFrame() result = df1.append(df2) expected = df1.copy() tm.assert_frame_equal(result, expected) def test_append_dtypes(self): # GH 5754 # row appends of different dtypes (so need to do by-item) # can sometimes infer the correct type df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(5)) df2 = DataFrame() result = df1.append(df2) expected = df1.copy() tm.assert_frame_equal(result, expected) df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1)) df2 = DataFrame({"bar": "foo"}, index=range(1, 2)) result = df1.append(df2) expected = DataFrame({"bar": [Timestamp("20130101"), "foo"]}) tm.assert_frame_equal(result, expected) df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1)) df2 = DataFrame({"bar": np.nan}, index=range(1, 2)) result = df1.append(df2) expected = DataFrame( {"bar": Series([Timestamp("20130101"), np.nan], dtype="M8[ns]")} ) tm.assert_frame_equal(result, expected) df1 = DataFrame({"bar": Timestamp("20130101")}, index=range(1)) df2 = DataFrame({"bar": np.nan}, index=range(1, 2), dtype=object) result = df1.append(df2) expected = DataFrame( {"bar": Series([
Timestamp("20130101")
pandas.Timestamp
import os, glob import pandas as pd path = "/Users/saslan.19/Desktop/Programming/Music Recommendation/RYMScraper/examples/Exports" all_files = sorted(glob.glob(os.path.join(path, "*.csv"))) print(all_files) df_from_each_file = (pd.read_csv(f, sep=None) for f in all_files) df_merged =
pd.concat(df_from_each_file, ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- """ Created on Tue Apr 5 12:51:54 2016 @author: tkc """ import os, re, glob import pandas as pd import numpy as np from math import factorial # used by Savgol matrix from io import StringIO import datetime from scipy import optimize def rangefromstring(x): result = [] for part in x.split(','): if '-' in part: a, b = part.split('-') a, b = int(a), int(b) result.extend(range(a, b + 1)) else: a = int(part) result.append(a) return result def unpackfitregs(df): ''' Loaded data frame has ev range, list of background regions and fit type unpack from dataframe into list of each 1) fitrange is total ev range (i.e.0-100), 2 )backgroundregions are index #s (or energy in eV) of regions commonly without peaks 3) fittype (mostly parabola) and 4) threshold for derivative knockout add overlap range between adjacent fits''' Fitregions=[] overlapregs=[] # list of lists containing adjacent overlapping index ranges # TODO test to ensure that normal eV range corresponds to range of indices for i in range(0,len(df)): tempstr=df.iloc[i]['Backgroundregs'] indexrange=rangefromstring(tempstr) # converts string describing range to actual range Fitregions.append([df.iloc[i]['Fitrange'],indexrange,df.iloc[i]['Fittype'], df.iloc[i]['Threshold']]) return Fitregions def makesavgol(df): '''Perform python smooth-diff used to guide selection of background regions for SEM-EDX spectra ''' df['Savgol']=0.0 # add/initialize col for 2nd deriv Sav-gol thisdim=len(df) thisreg=df['Counts'] # convert to Series (keep these index) myarr=np.asarray(thisreg) # convert to numpy array window_size=11 deriv=2 order=2 # order of savgol fit rate=1 order_range = range(order+1) # range object half_window = (window_size -1) // 2 # type int # precompute coefficients b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)]) # b is matrix 3 by window size m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv) # series as long as array # linalg.pinv gets pseudo-inverse of a matrix (window-sized series) # .A of any matrix returns it as ndarray object # Pad the signal at the extremes with values taken from the signal itself firstvals = myarr[0] - np.abs(myarr[1:half_window+1][::-1] - myarr[0] ) lastvals = myarr[-1] + np.abs(myarr[-half_window-1:-1][::-1] - myarr[-1]) myarr= np.concatenate((firstvals, myarr, lastvals)) # Now convolve input signal and sav-gol processing 1D array .. thisreg is numpy array w/ savgol results myarr=np.convolve( myarr, m[::-1], mode='valid') thisreg=pd.Series(myarr) # convert array to series thisreg.loc[0:thisdim]=myarr # copies numpy array but keeps same indices df['Savgol']=thisreg # copy deriv column to dataframe return df # returns savitsky-golay smooth diff over same full region def openSEM(SEMfileName): '''Open csv as dataframe if it exists or if not strip header from psmsa/emsa and import as dataframe ''' csvname=str(SEMfileName.split('.')[0])+'.csv' try: SEMfile=pd.read_csv(csvname, encoding='cp437') except: # if csv doesn't exist, just open/strip psmsa with open(SEMfileName, 'r') as file: filedata = file.read() filedata =filedata.split('#SPECTRUM :')[1] filedata =filedata.split('#ENDOFDATA : ')[0] thisdata=StringIO(filedata) SEMfile=pd.read_csv(thisdata) try: SEMfile=SEMfile.drop(SEMfile.columns[[2]], axis=1) # drop erroneous 3rd column if present except: print('') # ignore error if 3rd column not present SEMfile.columns=['Energy','Counts'] return SEMfile # should return data as pandas dataframe def fitparabola(df, SEMfileName): '''Pass appropriate chunk from Auger spectral dataframe, perform polynomial/parabola fit return chunk with backfit column added ''' xcol=df['Energy'] ycol=df['Counts'] # Counts1, Counts2 or whatever # find relative minimum try: A,B,C=np.polyfit(xcol, ycol, 2) except: # deal with common problems with linregress print('Fitting error from ', "{0:.2f}".format(df.Energy.min()),'to ',"{0:.2f}".format(df.Energy.max()), ' in file ', SEMfileName) fitparams=('n/a','n/a','n/a') # return all n/a return df, fitparams fitparams=(A, B, C) # tuple to return coeffs of 2nd order poly fit for index,row in df.iterrows(): # write this fit into this chunk of data (redundant?) xval=df.loc[index]['Energy'] yval= A * xval**2+ B * xval + C df=df.set_value(index, 'Backfit', yval) return df, fitparams def findfitregion(df, fitregion, threshold): '''Passing single list of allowable index #s for background fits (no duplicates) remove those with high from list of allowable indices any that show high smoothed-derivatives (i.e. not good for background fitting ''' Backfitdf=df.ix[[x for x in fitregion]] # filter out those not in allowable background ranges # these are loaded from SEM_backfit_regions.csv Backfitdf=Backfitdf.dropna(subset=['Counts']) # drops above (set to na by ix) # now additionally filter out those with derivative above threshold value Backfitdf=Backfitdf[(Backfitdf['Savgol']<threshold) & (Backfitdf['Savgol']>-threshold)] return Backfitdf def findelemregions(Elements, SEMquantparams): ''' Takes element string and returns standard Elemdata for each elem symbol containing params needed for peak finding and quant tuple for integ peak is symbol, ideal peak index #, and integ kfactor don't apply energy shifts here... apply later when doing integrate''' Elemdata=[] try: for i, elem in enumerate(Elements): # find row in AESquantparams for this element thiselemdata=SEMquantparams[(SEMquantparams['element']==elem)] thiselemdata=thiselemdata.squeeze() # series with this elements params # integ peak position value is relative to negpeak in smooth-diff (i.e. -5 is 5 eV below ideal negpeak) idealindex=int((thiselemdata.energy+.01)*100) # ideal index value of SEM-EDX peak from energy in keV kfact=thiselemdata.kfactor # typical sensitivity k-factor associated with element for integration errkfact=thiselemdata.errkfact mass=thiselemdata.mass # full peak width in keV from SEMquantparams (usually 0.15keV or 15 channels at 0.1eV/chan) width=int(((thiselemdata.fullwidth*100)-1)/2) # integration width in channels for direct integration for this element # total # of channels in AESquantparams but include n-1/2 channels on either side of peak center (usually width is 8 channels) #Elemdata is a list (of length number of elements) containing length5 tuples elemtuple=(elem, idealindex, width, kfact, errkfact, mass) # add tuple with info for this element Elemdata.append(elemtuple) # now contains proper limits on fitting regions except: print('Quant parameters are not properly loaded.') return Elemdata def fitgauss(df, halfwidth, elem, SEMfileName, savegauss=True): ''' Gaussian fit of direct peaks (pass SEMfile just around peaks region no need to save Gaussian fit, just return width and other params integwidth pass from AESquantparams value''' # Remove any nan values from peak region (shouldn't be any though) df=df.dropna(subset=['Subdata']) # remove nan entries from peak # Estimate initial Gaussian parameters from data xc=df['Subdata'].idxmax() # estimate center based on peak max index xc=df.loc[xc]['Energy'] # associated energy value near center peakarea=df['Subdata'].sum() # decent area estimate y0=0 # width=0.01*(2*halfwidth+1) # full width estimate in keV from half-width in channels params0=[xc,width,peakarea,y0] # initial params list (first guess at gaussian params) xcol=df['Energy'] ycol=df['Subdata'] xcol=xcol.as_matrix() # convert both to numpy matrices ycol=ycol.as_matrix() # define standard gaussian funct (xc, width, area and yoffset are init params) gaussian=lambda params, x: params[3]+params[2]/(params[1]*np.sqrt(2*np.pi))*np.exp(-((x-params[0])**2/(2*params[1]**2))) # thisgauss= gaussian(params0,xcol) errfunc=lambda p, xcol, ycol: ycol- gaussian(p,xcol) # lambda error funct definition # sigma2FWHM = lambda sigma: sigma * sqrt(2 * log(2)) * 2 / sqrt(2) # convert Gaussian widths to FWHM? try: fitparams, cov, infodict, mesg, ier =optimize.leastsq(errfunc,params0,args=(xcol,ycol),full_output=True) ss_err=(infodict['fvec']**2).sum() ss_tot=((ycol-ycol.mean())**2).sum() rsquared=1-(ss_err/ss_tot) except: # fitting problem print('Gaussian fitting error for', elem, ' peak in file ', SEMfileName) fitparams=('n/a','n/a','n/a','n/a') # return all n/a rsquared='n/a' ier='n/a' return df, fitparams, rsquared, ier if savegauss==True: df['Gauss']='' # add col for gaussian fit for index,row in df.iterrows(): xval=df.loc[index]['Energy'] yval=fitparams[3]+fitparams[2]/(fitparams[1]*np.sqrt(2*np.pi))*np.exp(-((xval-fitparams[0])**2/(2*fitparams[1]**2))) df.set_value(index,'Gauss',yval) return df, fitparams, rsquared, ier def fitpeaks(SEMfile, Elemdata, logmatch, savegauss=True): ''' Gaussian fit of major peaks in single spectrum, shift is list of energy shifts of negpeak (same order as Eledata (opens source spectrum as SEMfile, fits peak backgrounds above and below using Elemdata, also saves linear fit params to logdataframe with position/amplitude/etc; desired elements out of data range are skipped (in prior findindices function) # Saving of gaussian fits of peaks could be stored as separate csv if this was ever desired... probably not ''' SEMfileName=logmatch.Filename # only used for error reporting # Create temp df to hold and pass linear fit data mycols=['Basename', 'Filenumber', 'Point','Filename', 'Filepath', 'Sample', 'Comments', 'Element', 'Xc', 'Width', 'Peakarea', 'Y0','Rsquared'] # for gaussian peak fits mycols2=['Basename','Filenumber', 'Point', 'Filename', 'Filepath', 'Sample', 'Comments', 'Element', 'Energy', 'Shift', 'Rawcounts', 'Backcounts', 'Subtractedcounts', 'Adj counts', '% err', 'Significance' , 'Basis', 'Errbasis',] # for integration results Peakfits=pd.DataFrame(columns=mycols) # blank df for this spectrum's peak fits Integresults=
pd.DataFrame(columns=mycols2)
pandas.DataFrame
import numpy as np import pandas if __name__ == "__main__": max_range = 20 stats = { "alpha": 1, "beta": 2, "gamma": 3, } series = {} for key, step in stats.items(): indices = np.array(list(range(0, max_range, step))) values = np.arange(len(indices)) series[key] = pandas.Series(values, indices) data =
pandas.DataFrame(series)
pandas.DataFrame
# coding=utf-8 import logging import functools import datetime import pandas as pd log = logging.getLogger(__name__) BOOKING_SPREADSHEET_NAME = "Family Camp Bookings" RESPONSE_SHEET_NAME = "Form responses 9" INVOICE_SHEET_NAME = "Invoicing" ACTIVITIES_SHEET_NAME = "Activities" MAX_NUM_OF_CAMPERS = 10 I_REF = "Group Ref" I_GROUP = "Group Name" I_TEL = "Tel" I_EMAIL = "Email" I_ADDR = "Address" I_NEED_HELP = "Need Help" I_WILLING_TO_HELP = "Willing to Help" I_ADULTS = "Num. Adults" I_CHILD = "Num. Children" I_INFANTS = "Num. Infants" I_TENTS = "Num. Tents" I_CARAVANS = "Num. Caravans" I_FIELDS = [I_REF, I_GROUP, I_TEL, I_EMAIL, I_ADDR, I_NEED_HELP, I_WILLING_TO_HELP, I_ADULTS, I_INFANTS, I_CHILD, I_TENTS, I_CARAVANS] I_IDX_OF_FIRST_NON_EMPTY_COLUMN = 14 # Amount Due # Exact text used in the "willing to help" question. WILLING_TO_HELP = "We are happy to provide help and advice "\ "to another family if they need us." NEED_HELP = "We would like to have another family on camp to "\ "support us if we need it." I_INVOICE_SENT = "Invoice Sent" I_AMOUNT_DUE = "Invoiced Total" REF = "Timestamp" FAMILY = "Family Name" EMAIL = "Email Address" ADDR = "Family Address" TEL = "Family Telephone Number" ASSO = "Family Association with 7th Lichfield" TENTS = "Family Number of Tents" CARAVANS = "Family Number of Caravans or Motorhomes" HELP = "Please indicate if you would like support or if "\ "you can provide support for another family." HOME_CONTACT = "Home Contact Name" HOME_NUMBER = "Home Contact Number" GROUP_FIELDS = [REF, FAMILY, EMAIL, ADDR, TEL, TENTS, CARAVANS, ASSO, HELP, HOME_CONTACT, HOME_NUMBER] NAME = "First Name{}" SURNAME = "Surname{}" DIET = "Dietary Requirements{}" OVER18 = "Over 18 at the start of the camp?{}" AGE = "Age at start of camp (if under 18){}" DBS = "DBS Status (if over 18){}" PRI = "Primary Activities{}" OTHER = "Other Activities{}" BASE_CAMPER_FIELDS = [ NAME, SURNAME, DIET, OVER18, AGE, DBS, PRI, OTHER] CAMPER_FIELDS = [field.format('') for field in BASE_CAMPER_FIELDS] A_IDX_OF_FIRST_NON_EMPTY_COLUMN = 20 # The last activity column # List of available actvities. # This must be consistent with the names on the form # and in the Activities tab on the spreadsheet. ACTIVITIES = ['Archery', 'Blindfold Trail', 'BMX Biking', 'Canoeing', 'Caving', 'Climbing', 'Crystal Maze', 'Fire Lighting', 'Pottery Painting', "It's a Knockout"] A_FIELDS = [I_REF, FAMILY] + CAMPER_FIELDS + ACTIVITIES def camper_fields(camper): return [ f.format(camper) for f in BASE_CAMPER_FIELDS] class Bookings(object): """Represents the bookings sheet that is populated by the booking form.""" def __init__(self, gs): self._gs = gs self._wks = self._gs.worksheet(RESPONSE_SHEET_NAME) self._df = pd.DataFrame(data=self._wks.get_all_values()[1:], columns=self._wks.row_values(1)) self._norm = self._normalize() self._campers = self._get_campers() def _normalize(self): "Take each of the camper field and move them so that we end up with" "a row for each camper." # Extract each camper. campers = [self._df[GROUP_FIELDS+camper_fields( " (Camper {})".format(i))] for i in range(1, MAX_NUM_OF_CAMPERS+1)] for camper in campers: camper.columns = [GROUP_FIELDS+camper_fields('')] norm =
pd.concat(campers)
pandas.concat
import warnings import numpy as np import pytest from pandas import ( DataFrame, Index, MultiIndex, Series, Timestamp, concat, date_range, isna, notna, ) import pandas._testing as tm import pandas.tseries.offsets as offsets def f(x): # suppress warnings about empty slices, as we are deliberately testing # with a 0-length Series with warnings.catch_warnings(): warnings.filterwarnings( "ignore", message=".*(empty slice|0 for slice).*", category=RuntimeWarning, ) return x[np.isfinite(x)].mean() @pytest.mark.parametrize("bad_raw", [None, 1, 0]) def test_rolling_apply_invalid_raw(bad_raw): with pytest.raises(ValueError, match="raw parameter must be `True` or `False`"): Series(range(3)).rolling(1).apply(len, raw=bad_raw) def test_rolling_apply_out_of_bounds(engine_and_raw): # gh-1850 engine, raw = engine_and_raw vals = Series([1, 2, 3, 4]) result = vals.rolling(10).apply(np.sum, engine=engine, raw=raw) assert result.isna().all() result = vals.rolling(10, min_periods=1).apply(np.sum, engine=engine, raw=raw) expected = Series([1, 3, 6, 10], dtype=float) tm.assert_almost_equal(result, expected) @pytest.mark.parametrize("window", [2, "2s"]) def test_rolling_apply_with_pandas_objects(window): # 5071 df = DataFrame( {"A": np.random.randn(5), "B": np.random.randint(0, 10, size=5)}, index=
date_range("20130101", periods=5, freq="s")
pandas.date_range
import torch from transformer.nn_transformer import TRANSFORMER from downstream.model import example_classifier, RnnClassifier, FeedForwardClassifier, example_DNN from downstream.solver import get_optimizer from downstream.dataloader_ds import SchizophreniaMMDataset import pandas as pd from sklearn.model_selection import KFold, StratifiedKFold from torch.utils.data import DataLoader import re from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_auc_score import numpy as np from sklearn.linear_model import LogisticRegression import torch.nn as nn import sys device = 'cuda' if torch.cuda.is_available() else 'cpu' def dict_acc(input_dict): cnt = 0 cor = 0 for key in input_dict.keys(): if(sum(input_dict[key])/len(input_dict[key]) >= 0.5): cor += 1 cnt += 1 return cor/cnt def duplicate(features, n_times, d_bool=False): if(d_bool): return torch.cat((features.reshape(-1,1),)*n_times, dim=1) return features def filter_files(root_files, list_files, drugCond=None): valid_info = [] if(drugCond is not None): drugcond_data = pd.read_excel("data/PORQ_drugUnblinding.xlsx").values for row in drugcond_data: if(row[3] == drugCond): valid_info.append(row[:-1]) output_files = [] for file in root_files: src_info = file.split("/")[-1].split(".npy")[0] for pos_file in list_files: if(src_info not in pos_file): continue participant_id = int(re.search(r'\d{4}', file)[0]) if(participant_id >= 8000): output_files.append(pos_file) continue keep = False for drugcondinf in valid_info: if(str(drugcondinf[0]) in pos_file and \ "Day" + str(drugcondinf[1]) in pos_file and \ str(drugcondinf[2])[:10] in pos_file): keep = True if(keep): output_files.append(pos_file) return output_files def reverse_pred(input_list): output_list = [] for x in range(len(input_list)): if(x == 0): output_list.append(1) else: output_list.append(0) return output_list #subsets = ["watch", "describe", "feel"] subsets = ["watch", "describe", "feel"] #model_name_dict = { #"result/result_transformer/flm_small/states-250000.ckpt":272, #"result/result_transformer/flm_base/states-250000.ckpt":272, #"result/result_transformer/flm_large_1mask/best_160_save.ckpt":544, #"result/result_transformer/flm_large/states-250000.ckpt":544, #} #model_name_flm = "../GoogleDrive/flm_models/states-250000.ckpt" #model_name_au = "../GoogleDrive/flm_models/au_base.ckpt" #model_name_gp = "../GoogleDrive/flm_models/gp_base.ckpt" model_name_flm = "result/result_transformer/flm_base/states-250000.ckpt" #model_name_au = "result/result_transformer/au_base/states-250000.ckpt" #model_name_gp = "result/result_transformer/gp_base/states-250000.ckpt" model_name_au = "result/result_transformer/au_aalbert_3L/states-200000.ckpt" model_name_gp = "result/result_transformer/gp_base_aalbert/states-200000.ckpt" model_name_gpau = "result/result_transformer/gpau_aalbert_3L/states-200000.ckpt" model_name_dict = {"flm":model_name_flm, "au":model_name_au, "gp":model_name_gp, "gpau":model_name_gpau} seeds = list(np.random.randint(0,1000,5)) drugconds = ["PL","OT"] pretrain_option = [True,False] sources = ["gpau"] output = [] for seed in seeds: for subset in subsets: for drugcond in drugconds: for pretrain in pretrain_option: if(pretrain): if(pretrain): #dim_dict = {"flm":272, "gp":88, "au":136} dim_dict = {"flm":272, "gp":84, "au":120, "gpau":144} inp_dim = sum([dim_dict[x] for x in sources]) else: dim_dict = {"flm":136, "gp":11, "au":17} inp_dim = sum([dim_dict[x] for x in sources]) config = { 'mode' : 'classification', 'sample_rate' : 1, 'hidden_size' : 128, 'pre_linear_dims' : [20], 'post_linear_dims': [20],'drop':0.2, 'concat': 1, 'layers': 3, 'linear': False, } torch.manual_seed(seed) n_fold = 10 sets = ["data/train-clean-schz_chunk_0.csv","data/train-clean-schz_chunk_1.csv"] tables = [pd.read_csv(s, header=None) for s in sets] table = pd.concat(tables, ignore_index=True).values name_sets = ["data/train-clean-360_chunk_0.csv","data/train-clean-360_chunk_1.csv"] tables_name = [
pd.read_csv(s, header=None)
pandas.read_csv
from utility import * import glob import pandas as pd import os def graph_construct(outputdir): path0 = os.path.join(os.getcwd(), outputdir) #' import processed data files1 = glob.glob(path0 + "/count_data/*.csv") files1.sort() count_list = [] for df in files1: print(df) count_list.append(pd.read_csv(df, index_col=0)) files2 = glob.glob(path0 + "/norm_data/*.csv") files2.sort() norm_list = [] for df in files2: print(df) norm_list.append(pd.read_csv(df, index_col=0)) files3 = glob.glob(path0 + "/scale_data/*.csv") files3.sort() scale_list = [] for df in files3: print(df) scale_list.append(pd.read_csv(df, index_col=0)) files4 = glob.glob(path0 + "/label_data/*.csv") files4.sort() label_list = [] for df in files4: print(df) label_list.append(pd.read_csv(df, index_col=0)) fpath = os.path.join(path0, 'sel_features.csv') features = pd.read_csv(fpath, index_col=False).values.flatten() #' graph construction import itertools N = len(count_list) if (N == 1): combine =
pd.Series([(0, 0)])
pandas.Series
import pandas as pd import numpy as np from sklearn.model_selection import KFold from utils.preprocessing import preprocess from utils.kfold import get_kfold import argparse import os random_state = 20191205 np.random.seed(random_state) def main(args): if not os.path.exists(args.save_dir): os.makedirs(args.save_dir) rpath = os.path.join(args.dir,args.rname) uatpath = os.path.join(args.dir,args.uatname) tpath = os.path.join(args.dir,args.tname) apath = os.path.join(args.dir,args.aname) ratings = pd.read_csv(rpath, sep='\t') tags =
pd.read_csv(uatpath, sep='\t')
pandas.read_csv
# models_persistence.py? """ Functions for persistence forecasts. Two kinds of persistence are supported: 1. Persistence of observed values in :py:func:`persistence_scalar` and :py:func:`persistence_interval` 2. Persistence of irradiance or power accounting for solar position in :py:func:`persistence_scalar_index` and :py:func:`persistence_interval_index` (?). Users of intraday persistence forecasts will typically want to use :py:func:`persistence_scalar` or :py:func:`persistence_scalar_index`. Users of day ahead persistence forecasts will typically want to use :py:func:`persistence_interval`. :py:func:`persistence_interval_index`? The functions accept a *load_data* keyword argument that allows users to change where the functions load the observation data from. This is most useful for users that would like to provide their own observation data rather than using the solarforecastarbiter database. """ from functools import partial import pandas as pd from solarforecastarbiter import datamodel, pvmodel def persistence_scalar(observation, data_start, data_end, forecast_start, forecast_end, interval_length, interval_label, load_data): r""" Make a persistence forecast using the mean value of the *observation* from *data_start* to *data_end*. In the example below, we use GHI to be concrete but the concept applies to any kind of observation data. The persistence forecast is: .. math:: GHI_{t_f} = \overline{GHI_{t_{start}} \ldots GHI_{t_{end}}} where :math:`t_f` is a forecast time, and the overline represents the average of all observations that occur between :math:`t_{start}` = *data_start* and :math:`t_{end}` = *data_end*. Parameters ---------- observation : datamodel.Observation data_start : pd.Timestamp Observation data start. Forecast is inclusive of this instant if observation.interval_label is *beginning* or *instant*. data_end : pd.Timestamp Observation data end. Forecast is inclusive of this instant if observation.interval_label is *ending* or *instant*. forecast_start : pd.Timestamp Forecast start. Forecast is inclusive of this instant if interval_label is *beginning* or *instant*. forecast_end : pd.Timestamp Forecast end. Forecast is inclusive of this instant if interval_label is *ending* or *instant*. interval_length : pd.Timedelta Forecast interval length interval_label : str instant, beginning, or ending load_data : function A function that loads the observation data. Must have the signature load_data(observation, data_start, data_end) and properly account for observation interval label. Returns ------- forecast : pd.Series The persistence forecast. """ obs = load_data(observation, data_start, data_end) persistence_quantity = obs.mean() closed = datamodel.CLOSED_MAPPING[interval_label] fx_index = pd.date_range(start=forecast_start, end=forecast_end, freq=interval_length, closed=closed) fx =
pd.Series(persistence_quantity, index=fx_index)
pandas.Series
from __future__ import division #brings in Python 3.0 mixed type calculation rules import datetime import inspect import numpy as np import numpy.testing as npt import os.path import pandas as pd import sys from tabulate import tabulate import unittest ##find parent directory and import model #parentddir = os.path.abspath(os.path.join(os.path.dirname(__file__), os.path.pardir)) #sys.path.append(parentddir) from ..agdrift_exe import Agdrift test = {} class TestAgdrift(unittest.TestCase): """ IEC unit tests. """ def setUp(self): """ setup the test as needed e.g. pandas to open agdrift qaqc csv Read qaqc csv and create pandas DataFrames for inputs and expected outputs :return: """ pass def tearDown(self): """ teardown called after each test e.g. maybe write test results to some text file :return: """ pass def create_agdrift_object(self): # create empty pandas dataframes to create empty object for testing df_empty = pd.DataFrame() # create an empty agdrift object agdrift_empty = Agdrift(df_empty, df_empty) return agdrift_empty def test_validate_sim_scenarios(self): """ :description determines if user defined scenarios are valid for processing :param application_method: type of Tier I application method employed :param aquatic_body_def: type of endpoint of concern (e.g., pond, wetland); implies whether : endpoint of concern parameters (e.g.,, pond width) are set (i.e., by user or EPA standard) :param drop_size_*: qualitative description of spray droplet size for aerial & ground applications :param boom_height: qualitative height above ground of spray boom :param airblast_type: type of orchard being sprayed :NOTE we perform an additional validation check related to distances later in the code just before integration :return """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() agdrift_empty.out_sim_scenario_chk = pd.Series([], dtype='object') expected_result = pd.Series([ 'Valid Tier I Aquatic Aerial Scenario', 'Valid Tier I Terrestrial Aerial Scenario', 'Valid Tier I Aquatic Aerial Scenario', 'Valid Tier I Terrestrial Aerial Scenario', 'Valid Tier I Aquatic Aerial Scenario', 'Valid Tier I Terrestrial Ground Scenario', 'Valid Tier I Aquatic Ground Scenario', 'Valid Tier I Terrestrial Ground Scenario', 'Valid Tier I Aquatic Ground Scenario', 'Valid Tier I Terrestrial Airblast Scenario', 'Valid Tier I Aquatic Airblast Scenario', 'Valid Tier I Terrestrial Airblast Scenario', 'Valid Tier I Aquatic Airblast Scenario', 'Valid Tier I Terrestrial Airblast Scenario', 'Invalid Tier I Aquatic Aerial Scenario', 'Invalid Tier I Aquatic Ground Scenario', 'Invalid Tier I Aquatic Airblast Scenario', 'Invalid Tier I Terrestrial Aerial Scenario', 'Valid Tier I Terrestrial Ground Scenario', 'Valid Tier I Terrestrial Airblast Scenario', 'Invalid scenario ecosystem_type', 'Invalid Tier I Aquatic Assessment application method', 'Invalid Tier I Terrestrial Assessment application method'],dtype='object') try: #set test data agdrift_empty.num_simulations = len(expected_result) agdrift_empty.application_method = pd.Series( ['tier_1_aerial', 'tier_1_aerial', 'tier_1_aerial', 'tier_1_aerial', 'tier_1_aerial', 'tier_1_ground', 'tier_1_ground', 'tier_1_ground', 'tier_1_ground', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_aerial', 'tier_1_ground', 'tier_1_airblast', 'tier_1_aerial', 'tier_1_ground', 'tier_1_airblast', 'tier_1_aerial', 'Tier II Aerial', 'Tier III Aerial'], dtype='object') agdrift_empty.ecosystem_type = pd.Series( ['aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'aquatic_assessment', 'aquatic_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'terrestrial_assessment', 'terrestrial_assessment', 'Field Assessment', 'aquatic_assessment', 'terrestrial_assessment'], dtype='object') agdrift_empty.aquatic_body_type = pd.Series( ['epa_defined_pond', 'NaN', 'epa_defined_wetland', 'NaN', 'user_defined_pond', 'NaN', 'user_defined_wetland', 'NaN', 'epa_defined_wetland', 'NaN', 'user_defined_pond', 'NaN', 'user_defined_wetland', 'NaN', 'Defined Pond', 'user_defined_pond', 'epa_defined_pond', 'NaN', 'NaN', 'NaN', 'epa_defined_pond', 'user_defined_wetland', 'user_defined_pond'], dtype='object') agdrift_empty.terrestrial_field_type = pd.Series( ['NaN', 'user_defined_terrestrial', 'NaN', 'epa_defined_terrestrial', 'NaN', 'user_defined_terrestrial', 'NaN', 'user_defined_terrestrial', 'NaN', 'epa_defined_terrestrial', 'NaN', 'user_defined_terrestrial', 'NaN', 'user_defined_terrestrial', 'NaN', 'NaN', 'NaN', 'user_defined_terrestrial', 'user_defined_terrestrial', 'user_defined_terrestrial', 'NaN', 'NaN', 'user_defined_terrestrial'], dtype='object') agdrift_empty.drop_size_aerial = pd.Series( ['very_fine_to_fine', 'fine_to_medium', 'medium_to_coarse', 'coarse_to_very_coarse', 'fine_to_medium', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'medium_to_coarse', 'NaN', 'very_fine_to_medium', 'NaN', 'very_fine Indeed', 'NaN', 'very_fine_to_medium', 'medium_to_coarse', 'NaN'], dtype='object') agdrift_empty.drop_size_ground = pd.Series( ['NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'very_fine', 'fine_to_medium-coarse', 'very_fine', 'fine_to_medium-coarse', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'very_fine', 'NaN', 'fine_to_medium-coarse', 'very_fine', 'NaN', 'very_fine_to_medium', 'NaN', 'very_fine'], dtype='object') agdrift_empty.boom_height = pd.Series( ['NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'high', 'low', 'high', 'low', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'high', 'NaN', 'NaN', 'NaN', 'NaN'],dtype='object') agdrift_empty.airblast_type = pd.Series( ['NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'normal', 'dense', 'sparse', 'orchard', 'vineyard', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'vineyard', 'NaN', 'NaN', 'NaN'], dtype='object') agdrift_empty.validate_sim_scenarios() result = agdrift_empty.out_sim_scenario_chk npt.assert_array_equal(result, expected_result, err_msg="", verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_set_sim_scenario_id(self): """ :description provides scenario ids per simulation that match scenario names (i.e., column_names) from SQL database :param out_sim_scenario_id: scenario name as assigned to individual simulations :param num_simulations: number of simulations to assign scenario names :param out_sim_scenario_chk: from previous method where scenarios were checked for validity :param application_method: application method of scenario :param drop_size_*: qualitative description of spray droplet size for aerial and ground applications :param boom_height: qualitative height above ground of spray boom :param airblast_type: type of airblast application (e.g., vineyard, orchard) :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series(['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard', 'Invalid'], dtype='object') try: agdrift_empty.num_simulations = len(expected_result) agdrift_empty.out_sim_scenario_chk = pd.Series(['Valid Tier I Aerial', 'Valid Tier I Aerial', 'Valid Tier I Aerial', 'Valid Tier I Aerial', 'Valid Tier I Ground', 'Valid Tier I Ground', 'Valid Tier I Ground', 'Valid Tier I Ground', 'Valid Tier I Airblast', 'Valid Tier I Airblast', 'Valid Tier I Airblast', 'Valid Tier I Airblast', 'Valid Tier I Airblast', 'Invalid Scenario'], dtype='object') agdrift_empty.application_method = pd.Series(['tier_1_aerial', 'tier_1_aerial', 'tier_1_aerial', 'tier_1_aerial', 'tier_1_ground', 'tier_1_ground', 'tier_1_ground', 'tier_1_ground', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_airblast', 'tier_1_aerial'], dtype='object') agdrift_empty.drop_size_aerial = pd.Series(['very_fine_to_fine', 'fine_to_medium', 'medium_to_coarse', 'coarse_to_very_coarse', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN'], dtype='object') agdrift_empty.drop_size_ground = pd.Series(['NaN', 'NaN', 'NaN', 'NaN', 'very_fine', 'fine_to_medium-coarse', 'very_fine', 'fine_to_medium-coarse', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN'], dtype='object') agdrift_empty.boom_height = pd.Series(['NaN', 'NaN', 'NaN', 'NaN', 'low', 'low', 'high', 'high', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN'], dtype='object') agdrift_empty.airblast_type = pd.Series(['NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'NaN', 'normal', 'dense', 'sparse', 'vineyard', 'orchard', 'NaN'], dtype='object') agdrift_empty.set_sim_scenario_id() result = agdrift_empty.out_sim_scenario_id npt.assert_array_equal(result, expected_result, err_msg="", verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_assign_column_names(self): """ :description assigns column names (except distaqnce column) from sql database to internal scenario names :param column_name: short name for pesiticide application scenario for which distance vs deposition data is provided :param scenario_name: internal variable for holding scenario names :param scenario_number: index for scenario_name (this method assumes the distance values could occur in any column :param distance_name: internal name for the column holding distance data :NOTE to test both outputs of this method I simply appended them together :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() agdrift_empty.scenario_name = pd.Series([], dtype='object') expected_result = pd.Series(['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard'], dtype='object') try: agdrift_empty.column_names = pd.Series(['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard', 'distance_ft']) #call method to assign scenario names agdrift_empty.assign_column_names() result = agdrift_empty.scenario_name npt.assert_array_equal(result, expected_result, err_msg="", verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_get_distances(self): """ :description retrieves distance values for deposition scenario datasets : all scenarios use same distances :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE any blank fields are filled with 'nan' :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) agdrift_empty.db_name = os.path.join(location, 'sqlite_agdrift_distance.db') agdrift_empty.db_table = 'output' expected_result = pd.Series([], dtype='float') try: expected_result = [0.,0.102525,0.20505,0.4101,0.8202,1.6404,3.2808,4.9212,6.5616,9.8424,13.1232,19.6848,26.2464, 32.808,39.3696,45.9312,52.4928,59.0544,65.616,72.1776,78.7392,85.3008,91.8624,98.424,104.9856, 111.5472,118.1088,124.6704,131.232,137.7936,144.3552,150.9168,157.4784,164.04,170.6016,177.1632, 183.7248,190.2864,196.848,203.4096,209.9712,216.5328,223.0944,229.656,236.2176,242.7792,249.3408, 255.9024,262.464,269.0256,275.5872,282.1488,288.7104,295.272,301.8336,308.3952,314.9568,321.5184, 328.08,334.6416,341.2032,347.7648,354.3264,360.888,367.4496,374.0112,380.5728,387.1344,393.696, 400.2576,406.8192,413.3808,419.9424,426.504,433.0656,439.6272,446.1888,452.7504,459.312,465.8736, 472.4352,478.9968,485.5584,492.12,498.6816,505.2432,511.8048,518.3664,524.928,531.4896,538.0512, 544.6128,551.1744,557.736,564.2976,570.8592,577.4208,583.9824,590.544,597.1056,603.6672,610.2288, 616.7904,623.352,629.9136,636.4752,643.0368,649.5984,656.16,662.7216,669.2832,675.8448,682.4064, 688.968,695.5296,702.0912,708.6528,715.2144,721.776,728.3376,734.8992,741.4608,748.0224,754.584, 761.1456,767.7072,774.2688,780.8304,787.392,793.9536,800.5152,807.0768,813.6384,820.2,826.7616, 833.3232,839.8848,846.4464,853.008,859.5696,866.1312,872.6928,879.2544,885.816,892.3776,898.9392, 905.5008,912.0624,918.624,925.1856,931.7472,938.3088,944.8704,951.432,957.9936,964.5552,971.1168, 977.6784,984.24,990.8016,997.3632] agdrift_empty.distance_name = 'distance_ft' agdrift_empty.num_db_values = len(expected_result) result = agdrift_empty.get_distances(agdrift_empty.num_db_values) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_get_scenario_deposition_data(self): """ :description retrieves deposition data for all scenarios from sql database : and checks that for each the first, last, and total number of values : are correct :param scenario: name of scenario for which data is to be retrieved :param num_values: number of values included in scenario datasets :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() #scenario_data = pd.Series([[]], dtype='float') result = pd.Series([], dtype='float') #changing expected values to the 161st expected_result = [0.50013,0.041273,161.0, #aerial_vf2f 0.49997,0.011741,161.0, #aerial_f2m 0.4999,0.0053241,161.0, #aerial_m2c 0.49988,0.0031189,161.0, #aerial_c2vc 1.019339,9.66E-04,161.0, #ground_low_vf 1.007885,6.13E-04,161.0, #ground_low_fmc 1.055205,1.41E-03,161.0, #ground_high_vf 1.012828,7.72E-04,161.0, #ground_high_fmc 8.91E-03,3.87E-05,161.0, #airblast_normal 0.1155276,4.66E-04,161.0, #airblast_dense 0.4762651,5.14E-05,161.0, #airblast_sparse 3.76E-02,3.10E-05,161.0, #airblast_vineyard 0.2223051,3.58E-04,161.0] #airblast_orchard try: agdrift_empty.num_db_values = 161 #set number of data values in sql db location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) agdrift_empty.db_name = os.path.join(location, 'sqlite_agdrift_distance.db') agdrift_empty.db_table = 'output' #agdrift_empty.db_name = 'sqlite_agdrift_distance.db' #this is the list of scenario names (column names) in sql db (the order here is important because #the expected values are ordered in this manner agdrift_empty.scenario_name = ['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard'] #cycle through reading scenarios and building result list for i in range(len(agdrift_empty.scenario_name)): #get scenario data scenario_data = agdrift_empty.get_scenario_deposition_data(agdrift_empty.scenario_name[i], agdrift_empty.num_db_values) print(scenario_data) #extract 1st and last values of scenario data and build result list (including how many values are #retrieved for each scenario if i == 0: #fix this result = [scenario_data[0], scenario_data[agdrift_empty.num_db_values - 1], float(len(scenario_data))] else: result.extend([scenario_data[0], scenario_data[agdrift_empty.num_db_values - 1], float(len(scenario_data))]) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_get_column_names(self): """ :description retrieves column names from sql database (sqlite_agdrift_distance.db) : (each column name refers to a specific deposition scenario; : the scenario name is used later to retrieve the deposition data) :parameter output name of sql database table from which to retrieve requested data :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) agdrift_empty.db_name = os.path.join(location, 'sqlite_agdrift_distance.db') agdrift_empty.db_table = 'output' result = pd.Series([], dtype='object') expected_result = ['distance_ft','aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard'] try: result = agdrift_empty.get_column_names() npt.assert_array_equal(result, expected_result, err_msg="", verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_filter_arrays(self): """ :description eliminate blank data cells (i.e., distances for which no deposition value is provided) (and thus reduce the number of x,y values to be used) :parameter x_in: array of distance values associated with values for a deposition scenario (e.g., Aerial/EPA Defined Pond) :parameter y_in: array of deposition values associated with a deposition scenario (e.g., Aerial/EPA Defined Pond) :parameter x_out: processed array of x_in values eliminating indices of blank distance/deposition values :parameter y_out: processed array of y_in values eliminating indices of blank distance/deposition values :NOTE y_in array is assumed to be populated by values >= 0. except for the blanks as 'nan' entries :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result_x = pd.Series([0.,1.,4.,5.,6.,7.], dtype='float') expected_result_y = pd.Series([10.,11.,14.,15.,16.,17.], dtype='float') try: x_in = pd.Series([0.,1.,2.,3.,4.,5.,6.,7.], dtype='float') y_in = pd.Series([10.,11.,'nan','nan',14.,15.,16.,17.], dtype='float') x_out, y_out = agdrift_empty.filter_arrays(x_in, y_in) result_x = x_out result_y = y_out npt.assert_allclose(result_x, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(result_y, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result_x, expected_result_x] tab = [result_y, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_list_sims_per_scenario(self): """ :description scan simulations and count number and indices of simulations that apply to each scenario :parameter num_scenarios number of deposition scenarios included in SQL database :parameter num_simulations number of simulations included in this model execution :parameter scenario_name name of deposition scenario as recorded in SQL database :parameter out_sim_scenario_id identification of deposition scenario specified per model run simulation :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_num_sims = pd.Series([2,2,2,2,2,2,2,2,2,2,2,2,2], dtype='int') expected_sim_indices = pd.Series([[0,13,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [1,14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [2,15,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [3,16,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [4,17,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [5,18,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [6,19,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [7,20,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [8,21,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [9,22,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [10,23,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [11,24,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0], [12,25,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]], dtype='int') try: agdrift_empty.scenario_name = pd.Series(['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard'], dtype='object') agdrift_empty.out_sim_scenario_id = pd.Series(['aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard','aerial_vf2f', 'aerial_f2m', 'aerial_m2c', 'aerial_c2vc', 'ground_low_vf', 'ground_low_fmc', 'ground_high_vf', 'ground_high_fmc', 'airblast_normal', 'airblast_dense', 'airblast_sparse', 'airblast_vineyard', 'airblast_orchard'], dtype='object') agdrift_empty.num_simulations = len(agdrift_empty.out_sim_scenario_id) agdrift_empty.num_scenarios = len(agdrift_empty.scenario_name) result_num_sims, result_sim_indices = agdrift_empty.list_sims_per_scenario() npt.assert_array_equal(result_num_sims, expected_num_sims, err_msg='', verbose=True) npt.assert_array_equal(result_sim_indices, expected_sim_indices, err_msg='', verbose=True) finally: tab = [result_num_sims, expected_num_sims, result_sim_indices, expected_sim_indices] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_determine_area_dimensions(self): """ :description determine relevant area/length/depth of waterbody or terrestrial area :param i: simulation number :param ecosystem_type: type of assessment to be conducted :param aquatic_body_type: source of dimensional data for area (EPA or User defined) :param terrestrial_field_type: source of dimensional data for area (EPA or User defined) :param *_width: default or user specified width of waterbody or terrestrial field :param *_length: default or user specified length of waterbody or terrestrial field :param *_depth: default or user specified depth of waterbody or terrestrial field :NOTE all areas, i.e., ponds, wetlands, and terrestrial fields are of 1 hectare size; the user can elect to specify a width other than the default width but it won't change the area size; thus for user specified areas the length is calculated and not specified by the user) :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_width = pd.Series([208.7, 208.7, 100., 400., 150., 0.], dtype='float') expected_length = pd.Series([515.8, 515.8, 1076.39, 269.098, 717.593, 0.], dtype='float') expected_depth = pd.Series([6.56, 0.4921, 7., 23., 0., 0.], dtype='float') try: agdrift_empty.ecosystem_type = pd.Series(['aquatic_assessment', 'aquatic_assessment', 'aquatic_assessment', 'aquatic_assessment', 'terrestrial_assessment', 'terrestrial_assessment'], dtype='object') agdrift_empty.aquatic_body_type = pd.Series(['epa_defined_pond', 'epa_defined_wetland', 'user_defined_pond', 'user_defined_wetland', 'NaN', 'NaN'], dtype='object') agdrift_empty.terrestrial_field_type = pd.Series(['NaN', 'NaN', 'NaN', 'NaN', 'user_defined_terrestrial', 'epa_defined_terrestrial'], dtype='object') num_simulations = len(agdrift_empty.ecosystem_type) agdrift_empty.default_width = 208.7 agdrift_empty.default_length = 515.8 agdrift_empty.default_pond_depth = 6.56 agdrift_empty.default_wetland_depth = 0.4921 agdrift_empty.user_pond_width = pd.Series(['NaN', 'NaN', 100., 'NaN', 'NaN', 'NaN'], dtype='float') agdrift_empty.user_pond_depth = pd.Series(['NaN', 'NaN', 7., 'NaN', 'NaN', 'NaN'], dtype='float') agdrift_empty.user_wetland_width = pd.Series(['NaN', 'NaN', 'NaN', 400., 'NaN', 'NaN'], dtype='float') agdrift_empty.user_wetland_depth = pd.Series(['NaN','NaN', 'NaN', 23., 'NaN', 'NaN'], dtype='float') agdrift_empty.user_terrestrial_width = pd.Series(['NaN', 'NaN', 'NaN', 'NaN', 150., 'NaN'], dtype='float') width_result = pd.Series(num_simulations * ['NaN'], dtype='float') length_result = pd.Series(num_simulations * ['NaN'], dtype='float') depth_result = pd.Series(num_simulations * ['NaN'], dtype='float') agdrift_empty.out_area_width = pd.Series(num_simulations * ['nan'], dtype='float') agdrift_empty.out_area_length = pd.Series(num_simulations * ['nan'], dtype='float') agdrift_empty.out_area_depth = pd.Series(num_simulations * ['nan'], dtype='float') agdrift_empty.sqft_per_hectare = 107639 for i in range(num_simulations): width_result[i], length_result[i], depth_result[i] = agdrift_empty.determine_area_dimensions(i) npt.assert_allclose(width_result, expected_width, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(length_result, expected_length, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(depth_result, expected_depth, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [width_result, expected_width, length_result, expected_length, depth_result, expected_depth] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_foa(self): """ :description calculation of average deposition over width of water body :param integration_result result of integration of deposition curve across the distance : beginning at the near distance and extending to the far distance of the water body :param integration_distance effectively the width of the water body :param avg_dep_foa average deposition rate across the width of the water body :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([0.1538462, 0.5, 240.]) try: integration_result = pd.Series([1.,125.,3e5], dtype='float') integration_distance = pd.Series([6.5,250.,1250.], dtype='float') result = agdrift_empty.calc_avg_dep_foa(integration_result, integration_distance) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_lbac(self): """ Deposition calculation. :param avg_dep_foa: average deposition over width of water body as fraction of applied :param application_rate: actual application rate :param avg_dep_lbac: average deposition over width of water body in lbs per acre :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([6.5, 3.125e4, 3.75e8]) try: avg_dep_foa = pd.Series([1.,125.,3e5], dtype='float') application_rate = pd.Series([6.5,250.,1250.], dtype='float') result = agdrift_empty.calc_avg_dep_lbac(avg_dep_foa, application_rate) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_foa_from_lbac(self): """ Deposition calculation. :param avg_dep_foa: average deposition over width of water body as fraction of applied :param application_rate: actual application rate :param avg_dep_lbac: average deposition over width of water body in lbs per acre :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([1.553846e-01, 8.8e-06, 4.e-08]) try: avg_dep_lbac = pd.Series([1.01, 0.0022, 0.00005], dtype='float') application_rate = pd.Series([6.5,250.,1250.], dtype='float') result = agdrift_empty.calc_avg_dep_foa_from_lbac(avg_dep_lbac, application_rate) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_lbac_from_gha(self): """ Deposition calculation. :param avg_dep_gha: average deposition over width of water body in units of grams/hectare :param gms_per_lb: conversion factor to convert lbs to grams :param acres_per_hectare: conversion factor to convert hectares to acres :param avg_dep_lbac: average deposition over width of water body in lbs per acre :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([0.01516739, 0.111524, 0.267659]) try: avg_dep_gha = pd.Series([17., 125., 3e2], dtype='float') agdrift_empty.gms_per_lb = 453.592 agdrift_empty.acres_per_hectare = 2.471 result = agdrift_empty.calc_avg_dep_lbac_from_gha(avg_dep_gha) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_lbac_from_waterconc_ngl(self): """ :description calculate the average deposition onto the pond/wetland/field :param avg_dep_lbac: average deposition over width of water body in lbs per acre :param area_width: average width of water body :parem area_length: average length of water body :param area_depth: average depth of water body :param gms_per_lb: conversion factor to convert lbs to grams :param ng_per_gram conversion factor :param sqft_per_acre conversion factor :param liters_per_ft3 conversion factor :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([2.311455e-05, 2.209479e-03, 2.447423e-03]) try: avg_waterconc_ngl = pd.Series([17., 125., 3e2], dtype='float') area_width = pd.Series([50., 200., 500.], dtype='float') area_length = pd.Series([6331., 538., 215.], dtype='float') area_depth = pd.Series([0.5, 6.5, 3.], dtype='float') agdrift_empty.liters_per_ft3 = 28.3168 agdrift_empty.sqft_per_acre = 43560. agdrift_empty.ng_per_gram = 1.e9 agdrift_empty.gms_per_lb = 453.592 agdrift_empty.acres_per_hectare = 2.471 result = agdrift_empty.calc_avg_dep_lbac_from_waterconc_ngl(avg_waterconc_ngl, area_width, area_length, area_depth) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_lbac_from_mgcm2(self): """ :description calculate the average deposition of pesticide over the terrestrial field in lbs/acre :param avg_dep_lbac: average deposition over width of water body in lbs per acre :param area_depth: average depth of water body :param gms_per_lb: conversion factor to convert lbs to grams :param mg_per_gram conversion factor :param sqft_per_acre conversion factor :param cm2_per_ft2 conversion factor :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([2.676538e-02, 2.2304486, 44.608973]) try: avg_fielddep_mgcm2 = pd.Series([3.e-4, 2.5e-2, 5.e-01]) agdrift_empty.sqft_per_acre = 43560. agdrift_empty.gms_per_lb = 453.592 agdrift_empty.cm2_per_ft2 = 929.03 agdrift_empty.mg_per_gram = 1.e3 result = agdrift_empty.calc_avg_dep_lbac_from_mgcm2(avg_fielddep_mgcm2) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_dep_gha(self): """ :description average deposition over width of water body in grams per acre :param avg_dep_lbac: average deposition over width of water body in lbs per acre :param gms_per_lb: conversion factor to convert lbs to grams :param acres_per_hectare: conversion factor to convert acres to hectares :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([1.401061, 0.3648362, 0.03362546]) try: avg_dep_lbac = pd.Series([1.25e-3,3.255e-4,3e-5], dtype='float') agdrift_empty.gms_per_lb = 453.592 agdrift_empty.acres_per_hectare = 2.47105 result = agdrift_empty.calc_avg_dep_gha(avg_dep_lbac) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_waterconc_ngl(self): """ :description calculate the average concentration of pesticide in the pond/wetland :param avg_dep_lbac: average deposition over width of water body in lbs per acre :param area_width: average width of water body :parem area_length: average length of water body :param area_depth: average depth of water body :param gms_per_lb: conversion factor to convert lbs to grams :param ng_per_gram conversion factor :param sqft_per_acre conversion factor :param liters_per_ft3 conversion factor :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([70.07119, 18.24654, 22.41823]) try: avg_dep_lbac = pd.Series([1.25e-3,3.255e-4,3e-5], dtype='float') area_width = pd.Series([6.56, 208.7, 997.], dtype='float') area_length = pd.Series([1.640838e4, 515.7595, 107.9629], dtype='float') area_depth = pd.Series([6.56, 6.56, 0.4921], dtype='float') agdrift_empty.ng_per_gram = 1.e9 agdrift_empty.liters_per_ft3 = 28.3168 agdrift_empty.gms_per_lb = 453.592 agdrift_empty.sqft_per_acre = 43560. result = agdrift_empty.calc_avg_waterconc_ngl(avg_dep_lbac ,area_width, area_length, area_depth) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_calc_avg_fielddep_mgcm2(self): """ :description calculate the average deposition of pesticide over the terrestrial field :param avg_dep_lbac: average deposition over width of water body in lbs per acre :param area_depth: average depth of water body :param gms_per_lb: conversion factor to convert lbs to grams :param mg_per_gram conversion factor :param sqft_per_acre conversion factor :param cm2_per_ft2 conversion factor :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result = pd.Series([1.401063e-5, 3.648369e-6, 3.362552e-7]) try: avg_dep_lbac = pd.Series([1.25e-3,3.255e-4,3e-5], dtype='float') agdrift_empty.gms_per_lb = 453.592 agdrift_empty.sqft_per_acre = 43560. agdrift_empty.mg_per_gram = 1.e3 agdrift_empty.cm2_per_ft2 = 929.03 result = agdrift_empty.calc_avg_fielddep_mgcm2(avg_dep_lbac) npt.assert_allclose(result, expected_result, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: tab = [result, expected_result] print("\n") print(inspect.currentframe().f_code.co_name) print(tabulate(tab, headers='keys', tablefmt='rst')) return def test_generate_running_avg(self): """ :description retrieves values for distance and the first deposition scenario from the sql database :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE any blank fields are filled with 'nan' :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() location = os.path.realpath(os.path.join(os.getcwd(), os.path.dirname(__file__))) agdrift_empty.db_name = os.path.join(location, 'sqlite_agdrift_distance.db') agdrift_empty.db_table = 'output' expected_result_x = pd.Series([], dtype='float') expected_result_y = pd.Series([], dtype='float') expected_result_npts = pd.Series([], dtype='object') x_array_in = pd.Series([], dtype='float') y_array_in = pd.Series([], dtype='float') x_array_out = pd.Series([], dtype='float') y_array_out = pd.Series([], dtype='float') try: expected_result_x = [0.,0.102525,0.20505,0.4101,0.8202,1.6404,3.2808,4.9212,6.5616,9.8424,13.1232,19.6848,26.2464, 32.808,39.3696,45.9312,52.4928,59.0544,65.616,72.1776,78.7392,85.3008,91.8624,98.424,104.9856, 111.5472,118.1088,124.6704,131.232,137.7936,144.3552,150.9168,157.4784,164.04,170.6016,177.1632, 183.7248,190.2864,196.848,203.4096,209.9712,216.5328,223.0944,229.656,236.2176,242.7792,249.3408, 255.9024,262.464,269.0256,275.5872,282.1488,288.7104,295.272,301.8336,308.3952,314.9568,321.5184, 328.08,334.6416,341.2032,347.7648,354.3264,360.888,367.4496,374.0112,380.5728,387.1344,393.696, 400.2576,406.8192,413.3808,419.9424,426.504,433.0656,439.6272,446.1888,452.7504,459.312,465.8736, 472.4352,478.9968,485.5584,492.12,498.6816,505.2432,511.8048,518.3664,524.928,531.4896,538.0512, 544.6128,551.1744,557.736,564.2976,570.8592,577.4208,583.9824,590.544,597.1056,603.6672,610.2288, 616.7904,623.352,629.9136,636.4752,643.0368,649.5984,656.16,662.7216,669.2832,675.8448,682.4064, 688.968,695.5296,702.0912,708.6528,715.2144,721.776,728.3376,734.8992,741.4608,748.0224,754.584, 761.1456,767.7072,774.2688,780.8304,787.392,793.9536,800.5152,807.0768,813.6384,820.2,826.7616, 833.3232,839.8848,846.4464,853.008,859.5696,866.1312,872.6928,879.2544,885.816,892.3776,898.9392, 905.5008,912.0624,918.624,925.1856,931.7472,938.3088,944.8704,951.432,957.9936,964.5552,971.1168, 977.6784,984.24,990.8016] expected_result_y = [0.364712246,0.351507467,0.339214283,0.316974687,0.279954504,0.225948786,0.159949625, 0.123048839,0.099781801,0.071666234,0.056352938,0.03860139,0.029600805,0.024150524, 0.020550354,0.01795028,0.015967703,0.014467663,0.013200146,0.01215011,0.011300098, 0.010550085,0.009905072,0.009345065,0.008845057,0.008400051,0.008000046,0.007635043, 0.007300039,0.007000034,0.006725033,0.00646503,0.006230027,0.006010027,0.005805023, 0.005615023,0.005435021,0.00527002,0.00511002,0.004960017,0.004820017,0.004685016, 0.004560015,0.004440015,0.004325013,0.004220012,0.004120012,0.004020012,0.003925011, 0.003835011,0.00375001,0.00367001,0.00359001,0.00351001,0.003435009,0.003365009, 0.003300007,0.003235009,0.003170007,0.003110007,0.003055006,0.003000007,0.002945006, 0.002895006,0.002845006,0.002795006,0.002745006,0.002695006,0.002650005,0.002610005, 0.002570005,0.002525006,0.002485004,0.002450005,0.002410005,0.002370005,0.002335004, 0.002300005,0.002265004,0.002235004,0.002205004,0.002175004,0.002145004,0.002115004, 0.002085004,0.002055004,0.002025004,0.002000002,0.001975004,0.001945004,0.001920002, 0.001900002,0.001875004,0.001850002,0.001830002,0.001805004,0.001780002,0.001760002, 0.001740002,0.001720002,0.001700002,0.001680002,0.001660002,0.001640002,0.001620002, 0.001605001,0.001590002,0.001570002,0.001550002,0.001535001,0.001520002,0.001500002, 0.001485001,0.001470002,0.001455001,0.001440002,0.001425001,0.001410002,0.001395001, 0.001385001,0.001370002,0.001355001,0.001340002,0.001325001,0.001315001,0.001305001, 0.001290002,0.001275001,0.001265001,0.001255001,0.001245001,0.001230002,0.001215001, 0.001205001,0.001195001,0.001185001,0.001175001,0.001165001,0.001155001,0.001145001, 0.001135001,0.001125001,0.001115001,0.001105001,0.001095001,0.001085001,0.001075001, 0.001065001,0.00106,0.001055001,0.001045001,0.001035001,0.001025001,0.001015001, 0.001005001,0.0009985,0.000993001,0.000985001,0.000977001,0.000969501] expected_result_npts = 160 x_dist = 6.56 agdrift_empty.distance_name = 'distance_ft' agdrift_empty.scenario_name = 'ground_low_vf' agdrift_empty.num_db_values = 161 x_array_in = agdrift_empty.get_distances(agdrift_empty.num_db_values) y_array_in = agdrift_empty.get_scenario_deposition_data(agdrift_empty.scenario_name, agdrift_empty.num_db_values) x_array_out, y_array_out, npts_out = agdrift_empty.generate_running_avg(agdrift_empty.num_db_values, x_array_in, y_array_in, x_dist) # write output arrays to excel file -- just for debugging agdrift_empty.write_arrays_to_csv(x_array_out, y_array_out, "output_array_generate.csv") npt.assert_array_equal(expected_result_npts, npts_out, verbose=True) npt.assert_allclose(x_array_out, expected_result_x, rtol=1e-5, atol=0, err_msg='', verbose=True) npt.assert_allclose(y_array_out, expected_result_y, rtol=1e-5, atol=0, err_msg='', verbose=True) finally: pass tab1 = [x_array_out, expected_result_x] tab2 = [y_array_out, expected_result_y] print("\n") print(inspect.currentframe().f_code.co_name) print('expected {0} number of points and got {1} points'.format(expected_result_npts, npts_out)) print("x_array result/x_array_expected") print(tabulate(tab1, headers='keys', tablefmt='rst')) print("y_array result/y_array_expected") print(tabulate(tab2, headers='keys', tablefmt='rst')) return def test_generate_running_avg1(self): """ :description creates a running average for a specified x axis width (e.g., 7-day average values of an array) :param x_array_in: array of x-axis values :param y_array_in: array of y-axis values :param num_db_values: number of points in the input arrays :param x_array_out: array of x-zxis values in output array :param y_array_out: array of y-axis values in output array :param npts_out: number of points in the output array :param x_dist: width in x_axis units of running weighted average :param num_db_values: number of distance values to be retrieved :param distance_name: name of column in sql database that contains the distance values :NOTE This test uses a uniformly spaced x_array and monotonically increasing y_array :return: """ # create empty pandas dataframes to create empty object for this unittest agdrift_empty = self.create_agdrift_object() expected_result_x = pd.Series([], dtype='float') expected_result_y = pd.Series([], dtype='float') expected_result_npts = pd.Series([], dtype='object') x_array_in =
pd.Series([], dtype='float')
pandas.Series
import pandas as pd import numpy as np #RUN WITH PYTHON 3 #<NAME>. and <NAME>., 1994. An introduction to the bootstrap. CRC press. #Bootstrap hypothesis testing def boostrapping_CI(metric, data ,nbr_runs=1000, verbose=False): if verbose: print("Computing bootstrap confidence intervals...") nbr_scans = len(data.index) list_results = [] # compute metric for each bootstrapped subset for r in range(nbr_runs): # sample random indexes ind = np.random.randint(nbr_scans ,size=nbr_scans) # select random subset data_bootstrapped = data.iloc[ind] # compute metrics result = metric(data_bootstrapped) list_results.append(result) # store variable in dictionary metric_stats = dict() metric_stats['avg_metric'] = np.average(list_results) metric_stats['metric_ci_lb'] = np.percentile(list_results, 5) metric_stats['metric_ci_ub'] = np.percentile(list_results, 95) if verbose: print("Bootstrap confidence intervals computed.") return metric_stats def bootstrap(metric, data_method1, data_method2, nbr_runs=100000, compute_bounds=True, verbose=False): # reset index data_method1_reindexed = data_method1.reset_index(drop=True) data_method2_reindexed = data_method2.reset_index(drop=True) # get length of each data n = len(data_method1_reindexed.index) m = len(data_method2_reindexed.index) total = n + m # compute the metric for both methods result_method1 = metric(data_method1_reindexed) result_method2 = metric(data_method2_reindexed) # compute statistic t t = abs(result_method1 - result_method2) # merge data from both methods data =
pd.concat([data_method1_reindexed, data_method2_reindexed])
pandas.concat
import time import numpy as np from collections import deque import torch import pandas as pd from utils.helpers import reset_experience def evaluator(args, global_logs, evaluator_logs, env_prototype, model_prototype, dqn): # env env = env_prototype(args.env_params, 0) env.eval() # model local_device = torch.device('cuda')#('cpu') evaluate_dqn = model_prototype(args.model_params, args.norm_val, args.state_shape, args.action_space, args.action_shape).to(local_device) evaluate_dqn.load_state_dict(dqn.state_dict()) evaluate_dqn.eval() torch.set_grad_enabled(False) last_eval_learner_step = 0 eval_csv_logs = [] while global_logs.learner_step.value < args.agent_params.steps: if global_logs.learner_step.value % 10000 == 0 and global_logs.learner_step.value > last_eval_learner_step: eval_record = [] # [step, eva 1, eva 2, ..., eva n, eva aver] last_eval_learner_step = global_logs.learner_step.value eval_record.append(last_eval_learner_step) # sync global model to local evaluate_dqn.load_state_dict(dqn.state_dict()) evaluate_dqn.eval() # main control loop experience = reset_experience() # counters step = 0 episode_steps = 0 episode_reward = 0. total_steps = 0 total_reward = 0. nepisodes = 0 nepisodes_solved = 0 # flags flag_reset = True # True when: terminal1 | episode_steps > self.early_stop while nepisodes < args.agent_params.evaluator_nepisodes: # deal w/ reset if flag_reset: # reset episode stats episode_steps = 0 episode_reward = 0. # reset game experience = env.reset() assert experience.state1 is not None # flags flag_reset = False with torch.no_grad(): action, qvalue, max_qvalue, qvalues = evaluate_dqn.get_action(experience.state1, 0, device=local_device) experience = env.step(action) if experience.terminal1: nepisodes_solved += 1 flag_reset = True if args.env_params.early_stop and (episode_steps + 1) >= args.env_params.early_stop: flag_reset = True # update counters & stats step += 1 episode_steps += 1 episode_reward += experience.reward if flag_reset: nepisodes += 1 total_steps += episode_steps total_reward += episode_reward eval_record.append(episode_reward) eval_record.append(total_reward / nepisodes) eval_csv_logs.append(eval_record) print("evaluation {}".format(eval_record)) df = pd.DataFrame(data=eval_csv_logs) df.to_csv(args.evaluation_csv_file) print("csv log was saved as {}".format(args.evaluation_csv_file)) # report stats # push local stats to logger with evaluator_logs.logger_lock.get_lock(): evaluator_logs.total_steps.value = total_steps evaluator_logs.total_reward.value = total_reward evaluator_logs.nepisodes.value = nepisodes evaluator_logs.nepisodes_solved.value = nepisodes_solved evaluator_logs.logger_lock.value = True # save model # print("Saving model " + args.model_name + " ...") # torch.save(local_model.state_dict(), args.model_name) # print("Saved model " + args.model_name + ".") df =
pd.DataFrame(data=eval_csv_logs)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 10 13:19:04 2019 @author: yujijun """ import pandas as pd import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import (AutoMinorLocator, MultipleLocator) import pyBigWig import collections import scipy.stats as ss # input index and sample name information basic_path = "/Users/yujijun/Documents/01-Work/02-HiglassProject/03-interpret/Output/index_info" # index_name = "Blood_index.txt" info_name = "Blood_info.txt" blood_index = pd.read_csv("%s/%s" %(basic_path,index_name),sep='\t',header=None,index_col=None) blood_info = pd.read_csv("%s/%s" %(basic_path,info_name),sep='\t',header=None,index_col=None) data = {"index":blood_index.iloc[:,0],"info":blood_info.iloc[:,0]} df = pd.DataFrame(data) choose_sample_20 = df.iloc[20,:] #input blood92 chromosome and choose special sample blood92_path = "/Users/yujijun/Documents/01-Work/02-HiglassProject/03-interpret/Output/bedfile_1000_blood92" blood92_chr1_name = "bedfile_1000_Blood92_chr1.csv" input_blood92 = pd.read_csv("%s/%s" %(blood92_path,blood92_chr1_name),sep='\t',header=0,index_col=None) start_index = input_blood92[input_blood92.start==62780000].index.values[0] end_index = input_blood92[input_blood92.start==62820000].index.values[0] choose_data = input_blood92.iloc[list(range(start_index,end_index)),27] fig, ax = plt.subplots(figsize=(15,5)) x = np.arange(start_index*1000, (end_index)*1000,1000) plt.plot(x,choose_data,color="#FF8C00") plt.xticks(rotation=90) #ax.xaxis.set_major_locator(MultipleLocator(1)) # #handle the TF data input_path = "/Users/yujijun/Documents/01-Work/02-HiglassProject/03-interpret/Input_file/DNase_bw_v2" sample_ID_list = [35477,36245,42217,43825,4550,46156,53417] correlation_list = [] for i in sample_ID_list: bigwig_file = "%s/%s_treat.bw" %(input_path,str(i)) print(bigwig_file) bw = pyBigWig.open(bigwig_file) resolution = 1000 chromo = "chr1" chromo_values = bw.values(chromo,0,bw.chroms(chromo)) chromo_values_split1000 = [chromo_values[i:i + resolution] for i in range(start_index*1000, end_index*1000, resolution)] def listmean(x): x_mean = np.mean(x) return(x_mean) chromo_values_split1000_mean = list(map(listmean,chromo_values_split1000)) whole_mean = np.nansum(chromo_values)/len(chromo_values) new_series = pd.Series(chromo_values_split1000_mean)/whole_mean new_list = new_series.tolist() #print(chromo_values_split16_mean[0:10]) chromo_values_split1000_mean_norm = new_list #add speed correlation = np.corrcoef(choose_data,chromo_values_split1000_mean_norm) correlation_list.append(correlation[1,0]) bw.close() data = {"sample_ID":sample_ID_list, "correlation":correlation_list} df_correlation = pd.DataFrame(data,index=range(len(sample_ID_list))) df_correlation.sort_values("correlation",inplace=True,ascending=False) #input summmit file sample_ID_list = [35477,36245,42217,43825,4550,46156,53417] correlation_list = [] for i in sample_ID_list: summit_file = "%s/%s_sort_summits.bed" %(input_path,str(i)) summit = pd.read_csv(summit_file,header=None, sep='\t') summit_chr1 = summit[summit.iloc[:,0] == "chr1"] summit_chr1 = summit_chr1[(start_index*1000) <= summit_chr1.iloc[:,1]] summit_chr1 = summit_chr1[summit_chr1.iloc[:,1] <= (end_index*1000)] peak_list = summit_chr1.iloc[:,1].tolist() x = np.arange(start_index*1000, (end_index)*1000,1000) peak_data = [0]*len(x) for i in peak_list: for j in range(len(x)-1): if i>=x[j] and i<x[j+1]: index_i = summit_chr1[summit_chr1.iloc[:,1] == i].index.values[0] peak_data[j] = summit_chr1.ix[index_i,4] correlation = np.corrcoef(choose_data,peak_data) correlation_list.append(correlation[1,0]) data = {"sample_ID":sample_ID_list, "correlation":correlation_list} df_correlation = pd.DataFrame(data,index=range(len(sample_ID_list))) df_correlation.sort_values("correlation",inplace=True,ascending=False) #define some of the function: def summit_allmean(sample_ID_list): summit_allmean_list = [] for i in sample_ID_list: summit_file = "%s/%s_sort_summits.bed" %(input_path,str(i)) summit =
pd.read_csv(summit_file,header=None, sep='\t')
pandas.read_csv
# -*- coding: utf-8 -*- """ Extract offshore inputs from exclusion layers """ import logging import numpy as np import pandas as pd from scipy.ndimage import center_of_mass from scipy.spatial import cKDTree from warnings import warn from reV.handlers.exclusions import ExclusionLayers from reV.utilities.exceptions import MultiFileExclusionError from reVX.utilities.utilities import log_versions, coordinate_distance from rex.resource import Resource from rex.utilities.utilities import parse_table, get_lat_lon_cols logger = logging.getLogger(__name__) class OffshoreInputs(ExclusionLayers): """ Class to extract offshore inputs from offshore inputs .h5 at desired offshore site gids. Mapping is based on the techmapping dataset (tm_dset). Offshore input values are taken from the array pixel closest to the center of mass of each offshore site gid. """ DEFAULT_INPUT_LAYERS = { 'array_efficiency': 'aeff', 'bathymetry': 'depth', 'dist_to_coast': 'dist_s_to_l', 'assembly_areas': 'dist_a_to_s', 'ports_operations': 'dist_op_to_s', 'ports_construction': 'dist_p_to_s', 'ports_construction_nolimits': 'dist_p_to_s_nolimit', 'weather_downtime_fixed_bottom': 'fixed_downtime', 'weather_downtime_floating': 'floating_downtime', 'weather_downtime_mean_wave_height_bouy': 'hs_average' } def __init__(self, inputs_fpath, offshore_sites, tm_dset='techmap_wtk'): """ Parameters ---------- inputs_fpath : str Path to offshore inputs .h5 file offshore_sites : str | list | tuple | ndarray |pandas.DataFrame - Path to .csv|.json file with offshore sites meta data - Path to a WIND Toolkit .h5 file to extact site meta from - List, tuple, or vector of offshore gids - Pre-extracted site meta DataFrame tm_dset : str, optional Dataset / layer name for wind toolkit techmap, by default 'techmap_wtk' """ log_versions(logger) super().__init__(inputs_fpath) self._offshore_meta = self._create_offshore_meta(offshore_sites, tm_dset) def __repr__(self): msg = "{} from {}".format(self.__class__.__name__, self.inputs_fpath) return msg @property def inputs_fpath(self): """ .h5 file containing offshore input layers Returns ------- str """ return self.h5_file @property def meta(self): """ Offshore site meta data including mapping to input layer row and column index Returns ------- pandas.DataFrame """ return self._offshore_meta @property def lat_lons(self): """ Offshore sites coordinates (lat, lons) Returns ------- ndarray """ lat_lon_cols = get_lat_lon_cols(self.meta) return self.meta[lat_lon_cols].values @property def row_ids(self): """ Input layer array row ids that correspond to desired offshore sites Returns ------- ndarray """ return self.meta['row_idx'].values @property def column_ids(self): """ Input layer array column ids that correspond to desired offshore sites Returns ------- ndarray """ return self.meta['col_idx'].values @staticmethod def _parse_offshore_sites(offshore_sites): """ Load offshore sites from disc if needed Parameters ---------- offshore_sites : str | list | tuple | ndarray |pandas.DataFrame - Path to .csv|.json file with offshore sites meta data - Path to a WIND Toolkit .h5 file to extact site meta from - List, tuple, or vector of offshore gids - Pre-extracted site meta DataFrame Returns ------- offshore_sites : pandas.DataFrame Offshore sites meta data """ if isinstance(offshore_sites, str): if offshore_sites.endswith('.h5'): with Resource(offshore_sites) as f: offshore_sites = f.meta if offshore_sites.index.name == 'gid': offshore_sites = offshore_sites.reset_index() else: offshore_sites = parse_table(offshore_sites) elif isinstance(offshore_sites, (tuple, list, np.ndarray)): offshore_sites =
pd.DataFrame({'gid': offshore_sites})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Wed Sep 25 16:14:12 2019 @author: <NAME> """ import pandas as pd import numpy as np import matplotlib.pyplot as plt #import graphviz import os import seaborn as sns from scipy.stats import chi2_contingency os.chdir("E:\PYTHON NOTES\projects\cab fare prediction") dataset_train=pd.read_csv("train_cab.csv") dataset_test=pd.read_csv("test.csv") dataset_train.describe() # dimension of data # dimension of data dataset_train.shape # Number of rows dataset_train.shape[0] # number of columns dataset_train.shape[1] # name of columns list(dataset_train) # data detailat dataset_train.info() dataset_train.isnull().sum() dataset_test.isnull().sum() sns.heatmap(dataset_train.isnull(),yticklabels=False,cbar=False, cmap='coolwarm') #datetime change into reqired format data=[dataset_train,dataset_test] for i in data: i["pickup_datetime"]=pd.to_datetime(i["pickup_datetime"],errors="coerce") dataset_train.info() dataset_test.info() dataset_train.isnull().sum() dataset_test.isna().sum() dataset_train=dataset_train.dropna(subset=["pickup_datetime"],how="all") dataset_train["fare_amount"]=dataset_train["fare_amount"].astype(float) np.where(dataset_train["fare_amount"]=="430-") dataset_train["fare_amount"].loc[1123]=430 dataset_train["fare_amount"]=dataset_train["fare_amount"].astype(float) #we will convery passanger count in to catogorical varibale ,cause passangor caount is not contineous varibale dataset_obj=["passenger_count"] dataset_int=["fare_amount","pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"] # data visulization import seaborn as sns import matplotlib.pyplot as plt #$stting up the sns for plots sns.set(style="darkgrid",palette="Set1") #some histogram plot from seaborn lib plt.figure(figsize=(20,20)) plt.subplot(321) _=sns.distplot(dataset_train["fare_amount"],bins=50) plt.subplot(322) _=sns.distplot(dataset_train["pickup_longitude"],bins=50) plt.subplot(323) _=sns.distplot(dataset_train["pickup_latitude"],bins=50) plt.subplot(324) _ = sns.distplot(dataset_train['dropoff_longitude'],bins=50) plt.subplot(325) _ = sns.distplot(dataset_train['dropoff_latitude'],bins=50) plt.show() plt.savefig('hist.png') import scipy.stats as stats #Some Bee Swarmplots # plt.title('Cab Fare w.r.t passenger_count') plt.figure(figsize=(25,25)) #_=sns.swarmplot(x="passenger_count",y="fare_amount",data=dataset_train) #Jointplots for Bivariate Analysis. #Here Scatter plot has regression line between 2 variables along with separate Bar plots of both variables. #Also its annotated with pearson correlation coefficient and p value. _=sns.jointplot(x="fare_amount",y="pickup_longitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) #plt.savefig("jointfplo.png") plt.show() _=sns.jointplot(x="fare_amount",y="pickup_latitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) _=sns.jointplot(x="fare_amount",y="dropoff_longitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) _=sns.jointplot(x="fare_amount",y="dropoff_latitude",data=dataset_train,kind="reg") _.annotate(stats.pearsonr) # some violineplots to see spread d variable plt.figure(figsize=(20,20)) plt.subplot(321) _=sns.violinplot(y="fare_amount",data=dataset_train) plt.subplot(322) _=sns.violinplot(y="pickup_longitude",data=dataset_train) plt.subplot(323) _ = sns.violinplot(y='pickup_latitude',data=dataset_train) plt.subplot(324) _ = sns.violinplot(y='dropoff_longitude',data=dataset_train) plt.subplot(325) _ = sns.violinplot(y='dropoff_latitude',data=dataset_train) plt.savefig("violine.png") plt.show() #pairplot for all numeric varibale _=sns.pairplot(dataset_train.loc[:,dataset_int],kind="scatter",dropna=True) _.fig.suptitle("pairwise plot all numeric varibale") #plt.savefig("pairwise.png") plt.show() #removing values which are not within the desired range outlier depanding upon basic understanding of dataset #1.Fare amount has a negative value, which doesn't make sense. A price amount cannot be -ve and also cannot be 0. So we will remove these fields. sum(dataset_train["fare_amount"]<1) dataset_train[dataset_train["fare_amount"]<1] dataset_train=dataset_train.drop(dataset_train[dataset_train["fare_amount"]<1].index,axis=0) #dataset_train.loc[dataset_train["fare_amount"]<1,"fare_amount"]=np.nan #2. passanger count varibale /// passanger count cound not increse more than 6 sum(dataset_train["passenger_count"]>6) for i in range (4,11): print("passanger_count_above"+ str(i)+ "={}".format(sum(dataset_train["passenger_count"]>i))) # so 20 observations of passenger_count is consistenly above from 6,7,8,9,10 passenger_counts, let's check them. dataset_train[dataset_train["passenger_count"]>6] #Also we need to see if there are any passenger_count<1 dataset_train[dataset_train["passenger_count"]<1] len(dataset_train[dataset_train["passenger_count"]<1]) dataset_test["passenger_count"].unique() # We will remove 20 observation which are above 6 value because a cab cannot hold these number of passengers. dataset_train=dataset_train.drop(dataset_train[dataset_train["passenger_count"]<1].index,axis=0) dataset_train=dataset_train.drop(dataset_train[dataset_train["passenger_count"]>6].index,axis=0) #dataset_train.loc[dataset_train["passenger_count"]<1,"passenger_count"]=np.nan #dataset_train.loc[dataset_train["passenger_count"]>6,"passenger_count"]=np.nan sum(dataset_train["passenger_count"]<1) #3.Latitudes range from -90 to 90.Longitudes range from -180 to 180. Removing which does not satisfy these ranges print("pickup_longitude above 180 ={}".format(sum(dataset_train["pickup_longitude"]>180))) print("pickup_longitude above -180 = {}".format(sum(dataset_train["pickup_longitude"]<-180))) print("pickup_latitude above 90 ={}".format(sum(dataset_train["pickup_latitude"]>90))) print("pickup_latitude above -90 ={}".format(sum(dataset_train["pickup_latitude"]<-90))) print('dropoff_longitude above 180={}'.format(sum(dataset_train['dropoff_longitude']>180))) print('dropoff_longitude below -180={}'.format(sum(dataset_train['dropoff_longitude']<-180))) print('dropoff_latitude below -90={}'.format(sum(dataset_train['dropoff_latitude']<-90))) print('dropoff_latitude above 90={}'.format(sum(dataset_train['dropoff_latitude']>90))) #for test data print("pickup_longitude above 180 ={}".format(sum(dataset_test["pickup_longitude"]>180))) print("pickup_longitude above -180 = {}".format(sum(dataset_test["pickup_longitude"]<-180))) print("pickup_latitude above 90 ={}".format(sum(dataset_test["pickup_latitude"]>90))) print("pickup_latitude above -90 ={}".format(sum(dataset_test["pickup_latitude"]<-90))) print('dropoff_longitude above 180={}'.format(sum(dataset_test['dropoff_longitude']>180))) print('dropoff_longitude below -180={}'.format(sum(dataset_test['dropoff_longitude']<-180))) print('dropoff_latitude below -90={}'.format(sum(dataset_test['dropoff_latitude']<-90))) print('dropoff_latitude above 90={}'.format(sum(dataset_test['dropoff_latitude']>90))) #There's only one outlier which is in variable pickup_latitude.So we will remove it with nan. #Also we will see if there are any values equal to 0. for i in ["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"]: print(i,"equal to 0={}".format(sum(dataset_train[i]==0))) #for test data for i in ["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"]: print(i,"equal to 0={}".format(sum(dataset_test[i]==0))) #there are values which are equal to 0. we will remove them. # There's only one outlier which is in variable pickup_latitude.So we will remove it with nan dataset_train=dataset_train.drop(dataset_train[dataset_train["pickup_latitude"]>90].index,axis=0) #there are values which are equal to 0. we will remove them. for i in ["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"]: dataset_train=dataset_train.drop(dataset_train[dataset_train[i]==0].index,axis=0) # for i in ['pickup_longitude','pickup_latitude','dropoff_longitude','dropoff_latitude']: # train.loc[train[i]==0,i] = np.nan # train.loc[train['pickup_latitude']>90,'pickup_latitude'] = np.nan dataset_train.shape #Missing Value Analysis missing_value=dataset_train.isnull().sum() missing_value = missing_value.reset_index() missing_value = missing_value.rename(columns = {'index': 'Variables', 0: 'Missing_percentage'}) missing_value #find out percentage of null value missing_value['Missing_percentage'] = (missing_value['Missing_percentage']/len(dataset_train))*100 missing_value = missing_value.sort_values('Missing_percentage', ascending = False).reset_index(drop = True) dataset_train.info() dataset_train["fare_amount"]=dataset_train["fare_amount"].fillna(dataset_train["fare_amount"].median()) dataset_train["passenger_count"]=dataset_train["passenger_count"].fillna(dataset_train["passenger_count"].mode()[0]) dataset_train.isnull().sum() dataset_train["passenger_count"]=dataset_train["passenger_count"].round().astype(object) dataset_train["passenger_count"].unique() #outliers analysis by box plot plt.figure(figsize=(20,5)) plt.xlim(0,100) sns.boxplot(x=dataset_train["fare_amount"],data=dataset_train,orient="h") # sum(dataset_train['fare_amount']<22.5)/len(dataset_train['fare_amount'])*100 #Bivariate Boxplots: Boxplot for Numerical Variable Vs Categorical Variable. plt.figure(figsize=(20,10)) plt.xlim(0,100) _=sns.boxplot(x=dataset_train["fare_amount"],y=dataset_train["passenger_count"],data=dataset_train,orient="h") def outlier_detect(df): for i in df.describe().columns: q1=df.describe().at["25%",i] q3=df.describe().at["75%",i] IQR=(q3-q1) ltv=(q1-1.5*IQR) utv=(q3+1.5*IQR) x=np.array(df[i]) p=[] for j in x: if j<ltv: p.append(ltv) elif j>utv: p.append(utv) else: p.append(j) df[i]=p return (df) dataset_int1=outlier_detect(dataset_train.loc[:,dataset_int]) dataset_test_obj=["passenger_count"] dataset_test_int=["pickup_longitude","pickup_latitude","dropoff_longitude","dropoff_latitude"] dataset_test1=outlier_detect(dataset_test.loc[:,dataset_test_int]) dataset_test1=pd.concat([dataset_test1,dataset_test["passenger_count"]],axis=1) dataset_test=pd.concat([dataset_test1,dataset_test["pickup_datetime"]],axis=1) #determine corr corr=dataset_int1.corr() f,ax=plt.subplots(figsize=(7,5)) sns.heatmap(corr,mask=np.zeros_like(corr,dtype=np.bool),cmap=sns.diverging_palette(220,10,as_cmap=True),square=True,ax=ax) # """feature engineering""" #1.we will derive new features from pickup_datetime variable #new features will be year,month,day_of_week,hour dataset_train1=pd.concat([dataset_int1,dataset_train["passenger_count"]],axis=1) dataset_train2=pd.concat([dataset_train1,dataset_train["pickup_datetime"]],axis=1) #dataset_train2.isna().sum() data=[dataset_train2,dataset_test] for i in data: i["year"]=i["pickup_datetime"].apply(lambda row:row.year) i["month"]=i["pickup_datetime"].apply(lambda row:row.month) i["day_of_week"] = i["pickup_datetime"].apply(lambda row: row.dayofweek) i["hour"] = i["pickup_datetime"].apply(lambda row: row.hour) # train2_nodummies=dataset_train2.copy() # dataset_train2=train2_nodummies.copy() plt.figure(figsize=(20,10)) sns.countplot(dataset_train2["year"]) # plt.savefig('year.png') plt.figure(figsize=(20,10)) sns.countplot(dataset_train2['month']) # plt.savefig('month.png') plt.figure(figsize=(20,10)) sns.countplot(dataset_train2['day_of_week']) # plt.savefig('day_of_week.png') plt.figure(figsize=(20,10)) sns.countplot(dataset_train2['hour']) # plt.savefig('hour.png') plt.show #Now we will use month,day_of_week,hour to derive new features like sessions in a day,seasons in a year,week:weekend/weekday # for sessions in a day using hour columns def f(x): if(x>=5) and (x<=11): return "morning" elif (x>=12) and (x<=16): return "afternoon" elif (x>=17) and (x<=20): return "evening" elif (x>=21) and (x<=23): return "night pm" elif (x>=0) and (x<=4): return "night am" dataset_train2["sessions"]=dataset_train2["hour"].apply(f) dataset_test['session'] = dataset_test['hour'].apply(f) #for seasons in a year using month column def g(x): if (x>=3) and (x<=5): return "spring" elif (x>=6) and (x<=8): return "summer" elif (x>=9) and (x<=11): return "fall" else : return "winter" dataset_train2['seasons'] = dataset_train2['month'].apply(g) dataset_test['seasons'] = dataset_test['month'].apply(g) #for week / weekend in a day of week columns def h(x): if (x>=0) and (x<=4): return "weekday" elif (x>=5) and (x<=6): return "weekend" dataset_train2['week'] = dataset_train2['day_of_week'].apply(h) dataset_test['week'] = dataset_test['day_of_week'].apply(h) dataset_train2['passenger_count'].describe() dataset_train2.isnull().sum() dataset_test.isna().sum() #creating dummy varibale temp=pd.get_dummies(dataset_train2["passenger_count"],prefix="passenger_count") dataset_train2=dataset_train2.join(temp) temp = pd.get_dummies(dataset_test['passenger_count'], prefix = 'passenger_count') dataset_test = dataset_test.join(temp) temp = pd.get_dummies(dataset_test['seasons'], prefix = 'seasons') dataset_test = dataset_test.join(temp) temp=pd.get_dummies(dataset_train2["seasons"],prefix = "season" ) dataset_train2=pd.concat([dataset_train2,temp],axis=1) temp = pd.get_dummies(dataset_train2['week'], prefix = 'week') dataset_train2=
pd.concat([dataset_train2,temp],axis=1)
pandas.concat
import os from pathlib import Path import pandas as pd def load_tables(): ##### LOAD THE RAW DATA ##### df = pd.DataFrame() parent = Path(__file__).parent.parent DATA_DIR = os.path.join(parent, 'data') WEEKDAYS = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] for f in os.listdir(DATA_DIR): if f.endswith('.csv') and '20210201' not in f: in_file = os.path.join(DATA_DIR, f) df = df.append(pd.read_csv(in_file, parse_dates=['Date Time (UTC)'])) df = df.reset_index().drop('index', axis=1) df = df[df['DEX'] == 'Uniswap v2'] weekday_map = dict(enumerate(WEEKDAYS, start=1)) df['Weekday'] = df['Date Time (UTC)'].apply(lambda row: weekday_map[row.isoweekday()]) df['Hour'] = df['Date Time (UTC)'].dt.hour df['Weekday + Hour'] = df['Weekday'] + '-' + df['Hour'].astype(str) ##### AGGREATE BY WEEKDAY ##### weekday_df = pd.DataFrame() weekday_df = weekday_df.append(df[df['Token (In)'] == ' HOPR'].groupby('Weekday').sum()[['Amount (In)']]) weekday_df = weekday_df.join(df[df['Token (Out)'] == ' HOPR'].groupby('Weekday').sum()[['Amount (Out)']]) weekday_df['Volume (HOPR)'] = weekday_df['Amount (In)'] + weekday_df['Amount (Out)'] weekday_df = weekday_df.loc[WEEKDAYS] weekday_df['Weekday'] = weekday_df.index transaction_count = [len(df[df['Weekday'] == day]) for day in WEEKDAYS] weekday_df['Transaction Count'] = transaction_count ##### AGGREATE BY HOUR ##### hour_df =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Feb 10 10:49:24 2020 @author: RC Validation test for comparing model outputs from python and cpp stationsim. We do this as follows: - Generate two random samples of models - Calculate corresponding Ripley's K (RK) curves for each model - Generate a data frame for the two populations of RK curves - Save said frame and analyse using panel regression in R. - Analysis determines whether the two groups are statistically indistinguishable. """ import numpy as np import sys import os import multiprocessing from astropy.stats import RipleysKEstimator # astropy's ripley's K import pandas as pd import glob import datetime sys.path.append("..") from stationsim_model import Model #python version of stationsim import matplotlib.pyplot as plt from seaborn import kdeplot class HiddenPrints: """stop unnecessary printing from stationsim We get a lot of `iterations : X` prints for a large number of stationsim runs. This stops the printing for tidiness. https://stackoverflow.com/questions/8391411/suppress-calls-to-print-python """ def __enter__(self): self._original_stdout = sys.stdout sys.stdout = open(os.devnull, 'w') def __exit__(self, exc_type, exc_val, exc_tb): sys.stdout.close() sys.stdout = self._original_stdout class stationsim_RipleysK(): """ Class for calculating Ripley' K curves on stationsim collisions and saving them as pandas dataframes. """ def generate_Model_Sample(self, n_runs, model_params, single_process = False): """ function for generating stationsim model runs to test Parameters ------ n_runs : int `n_runs`number of stationsim runs to generate. Must be positive intiger. model_params : dict `model_params` dictionary of model parameters required for stationsim to run. See stationsim_model.py for more details. single_process : bool (default False) whether to run the models as a single process or using multiple processes simultaneously. Returns ------ models : list a list of completed stationsim `models` given the required width, height, pop_total, and gate_speed. """ #placeholder list models = [] if n_runs > 1 and model_params["random_seed"] != None: raise Exception("Error: the 'random_seed' parameter is not None\ which means that all models generate the same results, which\ I'm sure isn't what you want!") elif n_runs < 1: raise Exception("Error: need one or more 'n_runs', not {}".format(n_runs)) #supress excessive printing with HiddenPrints(): if single_process or n_runs == 1: for _ in range(n_runs): #generate model and run til status goes back to 0 (finished) model = Model(**model_params) while model.status == 1: model.step() models.append(model) else: pool = multiprocessing.Pool() try: numcores = multiprocessing.cpu_count() models = pool.map(stationsim_RipleysK.run_model, [model_params for _ in range(n_runs)]) finally: pool.close() # Make sure whatever happens the processes are killed return models @staticmethod def run_model(model_params): """ Create a new stationsim model using `model_params` and step it until it has finished. Parameters ------ model_params : dict `model_params` dictionary of model parameters required for stationsim to run. See stationsim_model.py for more details. Returns ------ model : StaionSim object the finished model """ model = Model(**model_params) while model.status == 1: model.step() return model def ripleysKE(self, collisions, width, height): """ Generate Ripley's K (RK) curve for collisions in StationSim region. For more info on RK see: https://docs.astropy.org/en/stable/stats/ripley.html https://wiki.landscapetoolbox.org/doku.php/spatial_analysis_methods:ripley_s_k_and_pair_correlation_function" Parameters ------ collisions : list list of model `collisions` width, height : float `width` and `height` of stationsim model Returns ------ rkes, rs : list lists of radii `rs` and corresponding Ripley's K values `rkes` for a given set of model collisions. """ "define area of stationsim." "init astropy RKE class with stationsim boundaries/area" area = width * height rke = RipleysKEstimator(area = area, x_max = width, y_max = height, y_min = 0, x_min = 0) """generate list of radii to assess. We generate 10 between 0 and the root of half the total area. More radii would give a higher resolution but increases the computation time. see https://wiki.landscapetoolbox.org/doku.php/spatial_analysis_methods: ripley_s_k_and_pair_correlation_function for more details on this" """ r = np.linspace(0, np.sqrt(area/2), 10) "generate the full list of radii for data frame later." "just repeats r above for how many models we have" rs = [r]*len(collisions) "placeholder list for RK estimates" rkes = [] for i, collision in enumerate(collisions): """estimate RK curve given model collisions and list of radii Note mode arguement here for how to deal with common edge effect problem. Choice doesnt seem to have much effect in this case. Either none or translation recommended. """ #rkes.append(rke(collisions, radii=r, mode='none')) rkes.append(rke(collision, radii=r, mode='translation')) #rkes.append(rke(collisions, radii=r, mode='ohser')) #rkes.append(rke(collisions, radii=r, mode='var-width')) #rkes.append(ke(collisions, radii=r, mode='ripley')) "this can take a long time so here's a progess bar" print("\r" + str((i+1)/len(collisions)*100) + "% complete ", end = "") return rkes, rs def panel_Regression_Prep(self, rkes, rs, id_number): """ Build the list of model RKEs into a dataframe Output dataframe has 4 columns x: list of radii on which RK is estimated. Renamed to x for use in R regression later y: RKE curve corresponding to a given model's collisions and radii. Renamed to y for R regression later ids: identifies which specific model the row belongs to. This has format "A_B" it is the Bth model of batch A. For example if the id reads "0_8" it is from the eighth model of the 0th batch split: identifies which batch the row belongs to. Either 0 (control group) or 1 (test group) Parameters ------ rkes, rs : list list of lists of radii `rs` and corresponding RK estimates `rkes`. Each pair of sublists corresponds to an individual model. id_number : int Assign each row of the data frame a number 0 if it is a control group (e.g. python station results) or 1 if it is a test group (e.g. cpp results.) Returns ------ data : array_like assembled RK `data` from our list of models ready for fitting a regression in R. Should have 4 columns as defined above. """ "preprocessing" num_rs = len(rs[0]) rkes = np.ravel(rkes) rs = np.ravel(rs) data = pd.DataFrame([rs, rkes]).T "rename rs and rkes columns for regression later." data.columns = ["x", "y"] """generate individual model ID numbers. Each model has 10 entries (10 radii) so every 10 entrires belong to the ith model. Start with a list where every 10 values is one intiger (the model id). """ ids = (np.arange(len(rkes))//num_rs).tolist() """ Then prefix every id with the batch number e.g. model 8 from batch 0 becomes 0_8 . Allows unique IDs for every model such that panel regression in R can recognise "individuals". """ for i, item in enumerate(ids): ids[i] = str(id_number) + "_" + str(item) data["ids"] = ids """add a column with just the batch number. for batch 0 this is a column of 0s. 0 - control group. 1 - test group""" split = [id_number] * len(rkes) data["split"] = split return data def generate_Control_Frame(self, collisions, width, height): """generate a control group of RK curves to compare against - calculate RK curves of each model's collisions - store values in data frame. - save data frame as a control to load against in main Parameters ------ collisions : list list of finished stationsim models `collisions` between agents. Returns ------ data: array_like assembled RK `data` from our list of collisions ready for fitting a regression in R. Should have 4 columns as defined above in panel_regression_prep. """ rkes, rs = self.ripleysKE(collisions) data = self.panel_Regression_Prep(rkes, rs, 0) width = model_params["width"] height = model_params["height"] pop_total = model_params["pop_total"] gates_speed = model_params["gates_speed"] f_name = "RK_csvs/control_" + f"{width}_{height}_{pop_total}_{gates_speed}" f_name += ".csv" self.save_Frame(data, f_name) return data def generate_Test_Frame(self, collisions, width, height): """ Generate frame of test values to compare against Parameters ------ collisions : list list of finished stationsim models `collisions` between agents. Returns ------ data: array_like assembled RK `data` from our list of collisions ready for fitting a regression in R. Should have 4 columns as defined above in panel_regression_prep. """ rkes, rs = self.ripleysKE(collisions, width, height) data = self.panel_Regression_Prep(rkes, rs, 1) return data def save_Frame(self, data, f_name): """ Save a pandas data frame Parameters ------ data : array_like pandas `data` frame. usually from generate_Control/Test_Frame output f_name : str `f_name` file name """ data.to_csv(f_name, index = False) def load_Frame(self, f_name): """ Load a pandas data frame. Parameters ------ f_name : str `f_name` file name Returns ------ data : array_like Pandas `data` frame usually from generate_Control/Test_Frame output. """ return pd.read_csv(f_name) def collisions_kde(self, collisions, width, height): """ Plot spread of collisions through stationsim as a KDE plot Parameters ------ collisions : list some list of coordinates where `collisions` occur """ x = collisions[:,0] y = collisions[:,1] plt.figure() im = kdeplot(x, y) plt.xlim([0, width]) plt.ylim([0, height]) plt.xlabel("StationSim Width") plt.ylabel("StationSim Height") plt.title("KDE of Agent Collisions over StationSim") def spaghetti_RK_Plot(self, data): """plot RK trajectories for several models and control and test batches Parameters ------ data : array_like data frame from generate_Control/Test_Frame output """ colours = ["black", "orangered"] "0 black for control models" "1 orange for test models" f = plt.figure() for item in set(data["ids"]): sub_data = data.loc[data["ids"] == item] rs = sub_data["x"] rkes = sub_data["y"] split = (sub_data["split"]).values[0] plt.plot(rs,rkes, color = colours[split]) plt.plot(-1, -1, alpha = 1, color = colours[0], label = "Control Group RKs") plt.plot(-1, -1, alpha = 1, color = colours[1], label = "Test Group RKs") plt.xlabel("radius of RK circle") plt.ylabel("RK Score") plt.legend() def notebook_RK_Plot(self, data1, data2): """Plot for RK notebook showing two extreme examples of RK curves The idea is to have two frames with exactly one model in that show two extreme cases of collisions clustering. We have a tight clustering case in orange with a rapidly increasing RK score and a sparse case with a shallow linear RK score. Parameters ------ data1, data2 : array_like `data1` and `data2` are two RKE dataframes from generate_Control_Frame. They have a structure specified in said function. """ colours = ["black", "orangered"] "0 black for control models" "1 orange for test models" f = plt.figure() rs1 = data1["x"] rkes1 = data1["y"] plt.plot(rs1,rkes1, color = colours[0], label = "Dispersed Queueing Case") rs2 = data2["x"] rkes2 = data2["y"] plt.plot(rs2,rkes2, color = colours[1], label = "Clustered Queueing Case") plt.xlabel("radius of RK circle") plt.ylabel("RK Score") plt.legend() def main(self, test_collisions, model_params): """Main function for comparing python and cpp outputs. - Check a control file exists given specified model parameters - If it exists, load it. If not, generate one using 100 model runs - Generate control group data frame - Calculate RK curves of test models. - Generate corresponding test group data frame. - concat control and test frames and save for analysis in R using RK_population_modelling.R Parameters ------ test_collisions : list list of (nx2) array stationsim model 'collisions' Returns ------ data : array_like Joined pandas `data` frame for control and test groups. """ "generate control file name to load from model parameters" width = model_params["width"] height = model_params["height"] pop_total = model_params["pop_total"] gates_speed = model_params["gates_speed"] f_name = "RK_csvs/control_" + f"{width}_{height}_{pop_total}_{gates_speed}" + ".csv" "try loading said file. if no file make and save one." try: data_control = self.load_Frame(f_name) print("Control data found at: " + f_name) except: print("No control frame found for given parameters.") print("Generating control frame using large number of models (100).") print("This may take a while if you have a large population of agents") control_models = self.generate_Model_Sample(100, model_params) data_control = self.generate_Control_Frame(control_models, width, height) "generate data frame from test_collisions" data_test = self.generate_Test_Frame(test_collisions, width, height) "join control and test ferames and save as joined frame." data =
pd.concat([data_control, data_test])
pandas.concat
#!/usr/bin/env python # -*- coding: utf-8 -*- # This file is part of the # Apode Project (https://github.com/mchalela/apode). # Copyright (c) 2020, <NAME> and <NAME> # License: MIT # Full Text: https://github.com/ngrion/apode/blob/master/LICENSE.txt from apode import datasets from apode.basic import ApodeData import numpy as np import pandas as pd import pytest # ============================================================================= # TESTS COMMON # ============================================================================= def test_default_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("headcount", pline=pline) method_result = ad.poverty.headcount(pline=pline) assert call_result == method_result def test_invalid(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(AttributeError): ad.poverty("foo") def test_get_pline_none(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) # pline is None pline = 0.5 * np.median(ad.data.values) assert ad.poverty.headcount(pline=None) == ad.poverty.headcount( pline=pline ) def test_get_pline_factor(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) # factor < 0: with pytest.raises(ValueError): ad.poverty.hagenaars(pline=pline, factor=-3) with pytest.raises(ValueError): ad.poverty.chakravarty(pline=pline, factor=-3) with pytest.raises(ValueError): ad.poverty.hagenaars(pline=None, factor=-3) with pytest.raises(ValueError): ad.poverty.chakravarty(pline=None, factor=-3) def test_get_pline_median(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) factor = 0.3 pline = factor * np.median(ad.data.values) assert ad.poverty.headcount( pline="median", factor=factor ) == ad.poverty.headcount(pline=pline) def test_get_pline_mean(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) factor = 0.3 pline = factor * np.mean(ad.data.values) assert ad.poverty.headcount( pline="mean", factor=factor ) == ad.poverty.headcount(pline=pline) def test_get_pline_quantile(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) # pline = "quantile" q = 0.3 factor = 0.3 pline = factor * np.quantile(ad.data.values, q) assert ad.poverty.chakravarty( pline="quantile", factor=factor, q=q ) == ad.poverty.chakravarty(pline=pline) assert ad.poverty.hagenaars( pline="quantile", factor=factor, q=q ) == ad.poverty.hagenaars(pline=pline) # pline = "quantile", q out of range with pytest.raises(ValueError): ad.poverty.hagenaars(pline="quantile", q=1.2) with pytest.raises(ValueError): ad.poverty.hagenaars(pline="quantile", q=-0.2) # ============================================================================= # TESTS HEADCOUNT # ============================================================================= def test_headcount_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.headcount(pline=pline) == 0.27 def test_headcount_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("headcount", pline=pline) == 0.27 def test_headcount_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("headcount", pline=pline) method_result = ad.poverty.headcount(pline=pline) assert call_result == method_result def test_headcount_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("headcount", pline=-1) with pytest.raises(ValueError): ad.poverty("headcount", pline=0) def test_headcount_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=100, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("headcount", pline=pline_min) == 0 assert ad.poverty("headcount", pline=pline_max) == 1 def test_headcount_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="headcount", pline=pline) == ad2.poverty( method="headcount", pline=pline ) def test_headcount_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("headcount", pline=pline) == ad2.poverty( "headcount", pline=pline ) def test_headcount_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("headcount", pline=pline) == ad2.poverty( "headcount", pline=pline * k ) # ============================================================================= # TESTS GAP # ============================================================================= def test_gap_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.gap(pline=pline) == 0.13715275200855706 def test_gap_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("gap", pline=pline) == 0.13715275200855706 def test_gap_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("gap", pline=pline) method_result = ad.poverty.gap(pline=pline) assert call_result == method_result def test_gap_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("gap", pline=-1) def test_gap_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("gap", pline=pline_min) == 0 assert ad.poverty("gap", pline=pline_max) <= 1 def test_gap_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="gap", pline=pline) == ad2.poverty( method="gap", pline=pline ) def test_gap_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") np.testing.assert_allclose( ad.poverty("gap", pline=pline), ad2.poverty("gap", pline=pline) ) def test_gap_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("gap", pline=pline) == ad2.poverty( "gap", pline=pline * k ) # ============================================================================= # TESTS SEVERITY # ============================================================================= def test_severity_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.severity(pline=pline) == 0.0925444945807559 def test_severity_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("severity", pline=pline) == 0.0925444945807559 def test_severity_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("severity", pline=pline) method_result = ad.poverty.severity(pline=pline) assert call_result == method_result def test_severity_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("severity", pline=-1) def test_severity_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("severity", pline=pline_min) == 0 assert ad.poverty("severity", pline=pline_max) <= 1 def test_severity_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="severity", pline=pline) == ad2.poverty( method="severity", pline=pline ) def test_severity_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") np.testing.assert_allclose( ad.poverty("severity", pline=pline), ad2.poverty("severity", pline=pline), ) def test_severity_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("severity", pline=pline) == ad2.poverty( "severity", pline=pline * k ) # ============================================================================= # TESTS FGT # ============================================================================= def test_fgt_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.fgt(pline=pline) == 0.27 def test_fgt_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("fgt", pline=pline) == 0.27 def test_fgt_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("fgt", pline=pline) method_result = ad.poverty.fgt(pline=pline) assert call_result == method_result def test_fgt_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("fgt", pline=-1) with pytest.raises(ValueError): ad.poverty("fgt", pline=0) def test_fgt_valid_alpha(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty.fgt(pline=1, alpha=-2) def test_fgt_alpha_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) assert ad.poverty.fgt(pline=pline, alpha=1) == 0.26003924372489007 assert ad.poverty.fgt(pline=pline, alpha=0) == 0.4766666666666667 assert ad.poverty.fgt(pline=pline, alpha=10) == 0.049479474144909996 def test_fgt_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("fgt", pline=pline_min) == 0 assert ad.poverty("fgt", pline=pline_max) <= 1 def test_fgt_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="fgt", pline=pline) == ad2.poverty( method="fgt", pline=pline ) def test_fgt_replication(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = k * ad.data["x"].tolist() df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("fgt", pline=pline) == ad2.poverty("fgt", pline=pline) def test_fgt_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("fgt", pline=pline) == ad2.poverty( "fgt", pline=pline * k ) # ============================================================================= # TESTS SEN # ============================================================================= def test_sen_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.sen(pline=pline) == 0.1826297337125855 def test_sen_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("sen", pline=pline) == 0.1826297337125855 def test_sen_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("sen", pline=pline) method_result = ad.poverty.sen(pline=pline) assert call_result == method_result def test_sen_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("sen", pline=-1) with pytest.raises(ValueError): ad.poverty("sen", pline=0) def test_sen_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("sen", pline=pline_min) == 0 assert ad.poverty("sen", pline=pline_max) <= 1 def test_sen_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="sen", pline=pline) == ad2.poverty( method="sen", pline=pline ) def test_sen_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("sen", pline=pline) == ad2.poverty( "sen", pline=pline * k ) # ============================================================================= # TESTS SST # ============================================================================= def test_sst_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.sst(pline=pline) == 0.24950968072455512 def test_sst_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("sst", pline=pline) == 0.24950968072455512 def test_sst_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("sst", pline=pline) method_result = ad.poverty.sst(pline=pline) assert call_result == method_result def test_sst_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("sst", pline=-1) with pytest.raises(ValueError): ad.poverty("sst", pline=0) # @pytest.mark.xfail def test_sst_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 pline_max = np.max(ad.data.values) + 1 assert ad.poverty("sst", pline=pline_min) == 0 assert ad.poverty("sst", pline=pline_max) <= 1 # CHECK, fails def test_sst_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty(method="sst", pline=pline) == ad2.poverty( method="sst", pline=pline ) def test_sst_homogeneity(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) k = 2 # factor pline = np.mean(ad.data.values) y = ad.data["x"].tolist() y = [yi * k for yi in y] df2 = pd.DataFrame({"x": y}) ad2 = ApodeData(df2, income_column="x") assert ad.poverty("sst", pline=pline) == ad2.poverty( "sst", pline=pline * k ) # ============================================================================= # TESTS WATTS # ============================================================================= def test_watts_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty.watts(pline=pline) == 0.2724322042654472 def test_watts_call(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) assert ad.poverty("watts", pline=pline) == 0.2724322042654472 def test_watts_call_equal_method(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = 0.5 * np.median(ad.data.values) call_result = ad.poverty("watts", pline=pline) method_result = ad.poverty.watts(pline=pline) assert call_result == method_result def test_watts_valid_pline(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) with pytest.raises(ValueError): ad.poverty("watts", pline=-1) with pytest.raises(ValueError): ad.poverty("watts", pline=0) def test_watts_extreme_values(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline_min = np.min(ad.data.values) / 2 assert ad.poverty("watts", pline=pline_min) == 0 def test_watts_symmetry(): ad = datasets.make_uniform(seed=42, size=300, mu=1, nbin=None) pline = np.mean(ad.data.values) y = ad.data["x"].tolist() np.random.shuffle(y) df2 =
pd.DataFrame({"x": y})
pandas.DataFrame
import os, sys, platform, json, operator, multiprocessing, io, random, itertools, warnings, h5py, \ statistics, inspect, requests, validators, math, time, pprint, datetime, importlib, fsspec, scipy # Python utils. from textwrap import dedent # External utils. from tqdm import tqdm #progress bar. from natsort import natsorted #file sorting. import appdirs #os-agonistic folder. # ORM. from peewee import Model, CharField, IntegerField, BlobField, BooleanField, DateTimeField, ForeignKeyField from playhouse.sqlite_ext import SqliteExtDatabase, JSONField from playhouse.fields import PickleField import dill as dill #complex serialization. # ETL. import pandas as pd import numpy as np from PIL import Image as Imaje # Preprocessing & metrics. import sklearn from sklearn.model_selection import train_test_split, StratifiedKFold, KFold #mandatory separate import. from sklearn.feature_extraction.text import CountVectorizer # Deep learning. import keras import torch # Visualization. import plotly.graph_objects as go import plotly.express as px import plotly.figure_factory as ff from .configuration import setup_database, destroy_database, get_db name = "aiqc" """ https://docs.python.org/3/library/multiprocessing.html#contexts-and-start-methods - 'fork' makes all variables on main process available to child process. OS attempts not to duplicate all variables. - 'spawn' requires that variables be passed to child as args, and seems to play by pickle's rules (e.g. no func in func). - In Python 3.8, macOS changed default from 'fork' to 'spawn' , which is how I learned all this. - Windows does not support 'fork'. It supports 'spawn'. So basically I have to play by spawn/ pickle rules. - Spawn/ pickle dictates (1) where execute_jobs func is placed, (2) if MetricsCutoff func works, (3) if tqdm output is visible. - Update: now MetricsCutoff is not working in `fork` mode. - Wrote the `poll_progress` func for 'spawn' situations. - If everything hits the fan, `run_jobs(in_background=False)` for a normal for loop. - Tried `concurrent.futures` but it only works with `.py` from command line. """ if (os.name != 'nt'): # If `force=False`, then `importlib.reload(aiqc)` triggers `RuntimeError: context already set`. multiprocessing.set_start_method('fork', force=True) app_dir_no_trailing_slash = appdirs.user_data_dir("aiqc") # Adds either a trailing slash or backslashes depending on OS. app_dir = os.path.join(app_dir_no_trailing_slash, '') default_config_path = app_dir + "config.json" default_db_path = app_dir + "aiqc.sqlite3" #================================================== # CONFIGURATION #================================================== def setup(): setup_database([ File, Tabular, Image, Dataset, Label, Feature, Splitset, Featureset, Foldset, Fold, Encoderset, Labelcoder, Featurecoder, Algorithm, Hyperparamset, Hyperparamcombo, Queue, Jobset, Job, Predictor, Prediction, FittedEncoderset, FittedLabelcoder, Window ]) def destroy_db(confirm:bool=False, rebuild:bool=False): destroy_database([ File, Tabular, Image, Dataset, Label, Feature, Splitset, Featureset, Foldset, Fold, Encoderset, Labelcoder, Featurecoder, Algorithm, Hyperparamset, Hyperparamcombo, Queue, Jobset, Job, Predictor, Prediction, FittedEncoderset, FittedLabelcoder, Window ], confirm, rebuild) #================================================== # ORM #================================================== # --------- GLOBALS --------- categorical_encoders = [ 'OneHotEncoder', 'LabelEncoder', 'OrdinalEncoder', 'Binarizer', 'LabelBinarizer', 'MultiLabelBinarizer' ] # --------- HELPER FUNCTIONS --------- def listify(supposed_lst:object=None): """ - When only providing a single element, it's easy to forget to put it inside a list! """ if (supposed_lst is not None): if (not isinstance(supposed_lst, list)): supposed_lst = [supposed_lst] # If it was already a list, check it for emptiness and `None`. elif (isinstance(supposed_lst, list)): if (not supposed_lst): raise ValueError("Yikes - The list you provided is empty.") if (None in supposed_lst): raise ValueError(dedent( f"Yikes - The list you provided contained `None` as an element." \ f"{supposed_lst}" )) # Allow `is None` to pass through because we need it to trigger null conditions. return supposed_lst def dill_serialize(objekt:object): blob = io.BytesIO() dill.dump(objekt, blob) blob = blob.getvalue() return blob def dill_deserialize(blob:bytes): objekt = io.BytesIO(blob) objekt = dill.load(objekt) return objekt def dill_reveal_code(serialized_objekt:object, print_it:bool=True): code_str = ( dill.source.getsource( dill_deserialize(serialized_objekt).__code__ ) ) if (print_it == True): print(dedent(code_str)) return code_str def torch_batcher( features:object , labels:object , batch_size = 5 , enforce_sameSize:bool=False , allow_1Sample:bool=False ): features = torch.split(features, batch_size) labels = torch.split(labels, batch_size) features = torch_drop_invalid_batchSize(features) labels = torch_drop_invalid_batchSize(labels) return features, labels def torch_drop_invalid_batchSize( batched_data:object , batch_size = 5 , enforce_sameSize:bool=False , allow_1Sample:bool=False ): if (batch_size == 1): print("\nWarning - `batch_size==1` can lead to errors.\nE.g. running BatchNormalization on a single sample.\n") # Similar to a % remainder, this will only apply to the last element in the batch. last_batch_size = batched_data[-1].shape[0] if ( ((allow_1Sample == False) and (last_batch_size == 1)) or ((enforce_sameSize == True) and (batched_data[0].shape[0] != last_batch_size)) ): # So if there is a problem, just trim the last split. batched_data = batched_data[:-1] return batched_data def tf_batcher(features:object, labels:object, batch_size = 5): """ - `np.array_split` allows for subarrays to be of different sizes, which is rare. https://numpy.org/doc/stable/reference/generated/numpy.array_split.html - If there is a remainder, it will evenly distribute samples into the other arrays. - Have not tested this with >= 3D data yet. """ rows_per_batch = math.ceil(features.shape[0]/batch_size) batched_features = np.array_split(features, rows_per_batch) batched_features = np.array(batched_features, dtype=object) batched_labels = np.array_split(labels, rows_per_batch) batched_labels = np.array(batched_labels, dtype=object) return batched_features, batched_labels # --------- END HELPERS --------- class BaseModel(Model): """ - Runs when the package is imported. http://docs.peewee-orm.com/en/latest/peewee/models.html - ORM: by inheritting the BaseModel class, each Model class does not have to set Meta. """ class Meta: database = get_db() class Dataset(BaseModel): """ The sub-classes are not 1-1 tables. They simply provide namespacing for functions to avoid functions riddled with if statements about dataset_type and null parameters. """ dataset_type = CharField() #tabular, image, sequence, graph, audio. file_count = IntegerField() # only includes file_types that match the dataset_type. source_path = CharField(null=True) def make_label(id:int, columns:list): columns = listify(columns) l = Label.from_dataset(dataset_id=id, columns=columns) return l def make_feature( id:int , include_columns:list = None , exclude_columns:list = None ): include_columns = listify(include_columns) exclude_columns = listify(exclude_columns) feature = Feature.from_dataset( dataset_id = id , include_columns = include_columns , exclude_columns = exclude_columns ) return feature def to_pandas(id:int, columns:list=None, samples:list=None): dataset = Dataset.get_by_id(id) columns = listify(columns) samples = listify(samples) if (dataset.dataset_type == 'tabular'): df = Dataset.Tabular.to_pandas(id=dataset.id, columns=columns, samples=samples) elif (dataset.dataset_type == 'text'): df = Dataset.Text.to_pandas(id=dataset.id, columns=columns, samples=samples) elif ((dataset.dataset_type == 'image') or (dataset.dataset_type == 'sequence')): raise ValueError("\nYikes - `dataset_type={dataset.dataset_type}` does not have a `to_pandas()` method.\n") return df def to_numpy(id:int, columns:list=None, samples:list=None): dataset = Dataset.get_by_id(id) columns = listify(columns) samples = listify(samples) if (dataset.dataset_type == 'tabular'): arr = Dataset.Tabular.to_numpy(id=id, columns=columns, samples=samples) elif (dataset.dataset_type == 'image'): if (columns is not None): raise ValueError("\nYikes - `Dataset.Image.to_numpy` does not accept a `columns` argument.\n") arr = Dataset.Image.to_numpy(id=id, samples=samples) elif (dataset.dataset_type == 'text'): arr = Dataset.Text.to_numpy(id=id, columns=columns, samples=samples) elif (dataset.dataset_type == 'sequence'): arr = Dataset.Sequence.to_numpy(id=id, columns=columns, samples=samples) return arr def to_strings(id:int, samples:list=None): dataset = Dataset.get_by_id(id) samples = listify(samples) if (dataset.dataset_type == 'tabular' or dataset.dataset_type == 'image'): raise ValueError("\nYikes - This Dataset class does not have a `to_strings()` method.\n") elif (dataset.dataset_type == 'text'): return Dataset.Text.to_strings(id=dataset.id, samples=samples) def sorted_file_list(dir_path:str): if (not os.path.exists(dir_path)): raise ValueError(f"\nYikes - The path you provided does not exist according to `os.path.exists(dir_path)`:\n{dir_path}\n") path = os.path.abspath(dir_path) if (os.path.isdir(path) == False): raise ValueError(f"\nYikes - The path that you provided is not a directory:{path}\n") file_paths = os.listdir(path) # prune hidden files and directories. file_paths = [f for f in file_paths if not f.startswith('.')] file_paths = [f for f in file_paths if not os.path.isdir(f)] if not file_paths: raise ValueError(f"\nYikes - The directory that you provided has no files in it:{path}\n") # folder path is already absolute file_paths = [os.path.join(path, f) for f in file_paths] file_paths = natsorted(file_paths) return file_paths def get_main_file(id:int): dataset = Dataset.get_by_id(id) if (dataset.dataset_type == 'image'): raise ValueError("\n Dataset class does not support get_main_file() method for `image` data type,\n") file = File.select().join(Dataset).where( Dataset.id==id, File.file_type=='tabular', File.file_index==0 )[0] return file def get_main_tabular(id:int): """ Works on both `Dataset.Tabular`, `Dataset.Sequence`, and `Dataset.Text` """ file = Dataset.get_main_file(id) return file.tabulars[0] def arr_validate(ndarray): if (type(ndarray).__name__ != 'ndarray'): raise ValueError("\nYikes - The `ndarray` you provided is not of the type 'ndarray'.\n") if (ndarray.dtype.names is not None): raise ValueError(dedent(""" Yikes - Sorry, we do not support NumPy Structured Arrays. However, you can use the `dtype` dict and `column_names` to handle each column specifically. """)) if (ndarray.size == 0): raise ValueError("\nYikes - The ndarray you provided is empty: `ndarray.size == 0`.\n") class Tabular(): """ - Does not inherit the Dataset class e.g. `class Tabular(Dataset):` because then ORM would make a separate table for it. - It is just a collection of methods and default variables. """ dataset_type = 'tabular' file_index = 0 file_count = 1 def from_path( file_path:str , source_file_format:str , name:str = None , dtype:object = None , column_names:list = None , skip_header_rows:object = 'infer' , ingest:bool = True ): column_names = listify(column_names) accepted_formats = ['csv', 'tsv', 'parquet'] if (source_file_format not in accepted_formats): raise ValueError(f"\nYikes - Available file formats include csv, tsv, and parquet.\nYour file format: {source_file_format}\n") if (not os.path.exists(file_path)): raise ValueError(f"\nYikes - The path you provided does not exist according to `os.path.exists(file_path)`:\n{file_path}\n") if (not os.path.isfile(file_path)): raise ValueError(dedent( f"Yikes - The path you provided is a directory according to `os.path.isfile(file_path)`:" \ f"{file_path}" \ f"But `dataset_type=='tabular'` only supports a single file, not an entire directory.`" )) # Use the raw, not absolute path for the name. if (name is None): name = file_path source_path = os.path.abspath(file_path) dataset = Dataset.create( dataset_type = Dataset.Tabular.dataset_type , file_count = Dataset.Tabular.file_count , source_path = source_path , name = name ) try: File.Tabular.from_file( path = file_path , source_file_format = source_file_format , dtype = dtype , column_names = column_names , skip_header_rows = skip_header_rows , ingest = ingest , dataset_id = dataset.id ) except: dataset.delete_instance() # Orphaned. raise return dataset def from_pandas( dataframe:object , name:str = None , dtype:object = None , column_names:list = None ): column_names = listify(column_names) if (type(dataframe).__name__ != 'DataFrame'): raise ValueError("\nYikes - The `dataframe` you provided is not `type(dataframe).__name__ == 'DataFrame'`\n") dataset = Dataset.create( file_count = Dataset.Tabular.file_count , dataset_type = Dataset.Tabular.dataset_type , name = name , source_path = None ) try: File.Tabular.from_pandas( dataframe = dataframe , dtype = dtype , column_names = column_names , dataset_id = dataset.id ) except: dataset.delete_instance() # Orphaned. raise return dataset def from_numpy( ndarray:object , name:str = None , dtype:object = None , column_names:list = None ): column_names = listify(column_names) Dataset.arr_validate(ndarray) dimensions = len(ndarray.shape) if (dimensions > 2) or (dimensions < 1): raise ValueError(dedent(f""" Yikes - Tabular Datasets only support 1D and 2D arrays. Your array dimensions had <{dimensions}> dimensions. """)) dataset = Dataset.create( file_count = Dataset.Tabular.file_count , name = name , source_path = None , dataset_type = Dataset.Tabular.dataset_type ) try: File.Tabular.from_numpy( ndarray = ndarray , dtype = dtype , column_names = column_names , dataset_id = dataset.id ) except: dataset.delete_instance() # Orphaned. raise return dataset def to_pandas( id:int , columns:list = None , samples:list = None ): file = Dataset.get_main_file(id)#`id` belongs to dataset, not file columns = listify(columns) samples = listify(samples) df = File.Tabular.to_pandas(id=file.id, samples=samples, columns=columns) return df def to_numpy( id:int , columns:list = None , samples:list = None ): dataset = Dataset.get_by_id(id) columns = listify(columns) samples = listify(samples) # This calls the method above. It does not need `.Tabular` df = dataset.to_pandas(columns=columns, samples=samples) ndarray = df.to_numpy() return ndarray class Image(): dataset_type = 'image' def from_folder( folder_path:str , name:str = None , pillow_save:dict = {} , ingest:bool = True ): if ((pillow_save!={}) and (ingest==False)): raise ValueError("\nYikes - `pillow_save` cannot be defined if `ingest==False`.\n") if (name is None): name = folder_path source_path = os.path.abspath(folder_path) file_paths = Dataset.sorted_file_list(source_path) file_count = len(file_paths) dataset = Dataset.create( file_count = file_count , name = name , source_path = source_path , dataset_type = Dataset.Image.dataset_type ) #Make sure the shape and mode of each image are the same before writing the Dataset. sizes = [] modes = [] for i, path in enumerate(tqdm( file_paths , desc = "🖼️ Validating Images 🖼️" , ncols = 85 )): img = Imaje.open(path) sizes.append(img.size) modes.append(img.mode) if (len(set(sizes)) > 1): dataset.delete_instance()# Orphaned. raise ValueError(dedent(f""" Yikes - All images in the Dataset must be of the same width and height. `PIL.Image.size`\nHere are the unique sizes you provided:\n{set(sizes)} """)) elif (len(set(modes)) > 1): dataset.delete_instance()# Orphaned. raise ValueError(dedent(f""" Yikes - All images in the Dataset must be of the same mode aka colorscale. `PIL.Image.mode`\nHere are the unique modes you provided:\n{set(modes)} """)) try: for i, p in enumerate(tqdm( file_paths , desc = "🖼️ Ingesting Images 🖼️" , ncols = 85 )): File.Image.from_file( path = p , pillow_save = pillow_save , file_index = i , ingest = ingest , dataset_id = dataset.id ) except: dataset.delete_instance() raise return dataset def from_urls( urls:list , pillow_save:dict = {} , name:str = None , source_path:str = None , ingest:bool = True ): if ((pillow_save!={}) and (ingest==False)): raise ValueError("\nYikes - `pillow_save` cannot be defined if `ingest==False`.\n") urls = listify(urls) for u in urls: validation = validators.url(u) if (validation != True): #`== False` doesn't work. raise ValueError(f"\nYikes - Invalid url detected within `urls` list:\n'{u}'\n") file_count = len(urls) dataset = Dataset.create( file_count = file_count , name = name , dataset_type = Dataset.Image.dataset_type , source_path = source_path ) #Make sure the shape and mode of each image are the same before writing the Dataset. sizes = [] modes = [] for i, url in enumerate(tqdm( urls , desc = "🖼️ Validating Images 🖼️" , ncols = 85 )): img = Imaje.open( requests.get(url, stream=True).raw ) sizes.append(img.size) modes.append(img.mode) if (len(set(sizes)) > 1): raise ValueError(dedent(f""" Yikes - All images in the Dataset must be of the same width and height. `PIL.Image.size`\nHere are the unique sizes you provided:\n{set(sizes)} """)) elif (len(set(modes)) > 1): raise ValueError(dedent(f""" Yikes - All images in the Dataset must be of the same mode aka colorscale. `PIL.Image.mode`\nHere are the unique modes you provided:\n{set(modes)} """)) try: for i, url in enumerate(tqdm( urls , desc = "🖼️ Ingesting Images 🖼️" , ncols = 85 )): File.Image.from_url( url = url , pillow_save = pillow_save , file_index = i , ingest = ingest , dataset_id = dataset.id ) """ for i, url in enumerate(urls): file = File.Image.from_url( url = url , pillow_save = pillow_save , file_index = i , dataset_id = dataset.id ) """ except: dataset.delete_instance() # Orphaned. raise return dataset def to_pillow(id:int, samples:list=None): """ - This does not have `columns` attrbute because it is only for fetching images. - Have to fetch as image before feeding into numpy `numpy.array(Image.open())`. - Future: could return the tabular data along with it. - Might need this for Preprocess where rotate images and such. """ samples = listify(samples) files = Dataset.Image.get_image_files(id, samples=samples) images = [f.Image.to_pillow(f.id) for f in files] return images def to_numpy(id:int, samples:list=None): """ - Because Pillow works directly with numpy, there's no need for pandas right now. - But downstream methods are using pandas. """ samples = listify(samples) images = Dataset.Image.to_pillow(id, samples=samples) images = [np.array(img) for img in images] images = np.array(images) """ - Pixel values range from 0-255. - `np.set_printoptions(threshold=99999)` to inspect for yourself. - It will look like some are all 0, but that's just the black edges. """ images = images/255 return images def get_image_files(id:int, samples:list=None): samples = listify(samples) files = File.select().join(Dataset).where( Dataset.id==id, File.file_type=='image' ).order_by(File.file_index)# Ascending by default. # Select from list by index. if (samples is not None): files = [files[i] for i in samples] return files class Text(): dataset_type = 'text' file_count = 1 column_name = 'TextData' def from_strings( strings: list, name: str = None ): for expectedString in strings: if type(expectedString) != str: raise ValueError(f'\nThe input contains an object of type non-str type: {type(expectedString)}') dataframe = pd.DataFrame(strings, columns=[Dataset.Text.column_name], dtype="object") return Dataset.Text.from_pandas(dataframe, name) def from_pandas( dataframe:object, name:str = None, dtype:object = None, column_names:list = None ): if Dataset.Text.column_name not in list(dataframe.columns): raise ValueError("\nYikes - The `dataframe` you provided doesn't contain 'TextData' column. Please rename the column containing text data to 'TextData'`\n") if dataframe[Dataset.Text.column_name].dtypes != 'O': raise ValueError("\nYikes - The `dataframe` you provided contains 'TextData' column with incorrect dtype: column dtype != object\n") dataset = Dataset.Tabular.from_pandas(dataframe, name, dtype, column_names) dataset.dataset_type = Dataset.Text.dataset_type dataset.save() return dataset def from_path( file_path:str , source_file_format:str , name:str = None , dtype:object = None , column_names:list = None , skip_header_rows:object = 'infer' ): dataset = Dataset.Tabular.from_path(file_path, source_file_format, name, dtype, column_names, skip_header_rows) dataset.dataset_type = Dataset.Text.dataset_type dataset.save() return dataset def from_folder( folder_path:str, name:str = None ): if name is None: name = folder_path source_path = os.path.abspath(folder_path) input_files = Dataset.sorted_file_list(source_path) files_data = [] for input_file in input_files: with open(input_file, 'r') as file_pointer: files_data.extend([file_pointer.read()]) return Dataset.Text.from_strings(files_data, name) def to_pandas( id:int, columns:list = None, samples:list = None ): df = Dataset.Tabular.to_pandas(id, columns, samples) if Dataset.Text.column_name not in columns: return df word_counts, feature_names = Dataset.Text.get_feature_matrix(df) df = pd.DataFrame(word_counts.todense(), columns = feature_names) return df def to_numpy( id:int, columns:list = None, samples:list = None ): df = Dataset.Tabular.to_pandas(id, columns, samples) if Dataset.Text.column_name not in columns: return df.to_numpy() word_counts, feature_names = Dataset.Text.get_feature_matrix(df) return word_counts.todense() def get_feature_matrix( dataframe:object ): count_vect = CountVectorizer(max_features = 200) word_counts = count_vect.fit_transform(dataframe[Dataset.Text.column_name].tolist()) return word_counts, count_vect.get_feature_names() def to_strings( id:int, samples:list = None ): data_df = Dataset.Tabular.to_pandas(id, [Dataset.Text.column_name], samples) return data_df[Dataset.Text.column_name].tolist() class Sequence(): dataset_type = 'sequence' def from_numpy( ndarray3D_or_npyPath:object , name:str = None , dtype:object = None , column_names:list = None , ingest:bool = True ): if ((ingest==False) and (isinstance(dtype, dict))): raise ValueError("\nYikes - If `ingest==False` then `dtype` must be either a str or a single NumPy-based type.\n") # Fetch array from .npy if it is not an in-memory array. if (str(ndarray3D_or_npyPath.__class__) != "<class 'numpy.ndarray'>"): if (not isinstance(ndarray3D_or_npyPath, str)): raise ValueError("\nYikes - If `ndarray3D_or_npyPath` is not an array then it must be a string-based path.\n") if (not os.path.exists(ndarray3D_or_npyPath)): raise ValueError("\nYikes - The path you provided does not exist according to `os.path.exists(ndarray3D_or_npyPath)`\n") if (not os.path.isfile(ndarray3D_or_npyPath)): raise ValueError("\nYikes - The path you provided is not a file according to `os.path.isfile(ndarray3D_or_npyPath)`\n") source_path = ndarray3D_or_npyPath try: # `allow_pickle=False` prevented it from reading the file. ndarray_3D = np.load(file=ndarray3D_or_npyPath) except: print("\nYikes - Failed to `np.load(file=ndarray3D_or_npyPath)` with your `ndarray3D_or_npyPath`:\n") print(f"{ndarray3D_or_npyPath}\n") raise elif (str(ndarray3D_or_npyPath.__class__) == "<class 'numpy.ndarray'>"): source_path = None ndarray_3D = ndarray3D_or_npyPath column_names = listify(column_names) Dataset.arr_validate(ndarray_3D) dimensions = len(ndarray_3D.shape) if (dimensions != 3): raise ValueError(dedent(f""" Yikes - Sequence Datasets can only be constructed from 3D arrays. Your array dimensions had <{dimensions}> dimensions. """)) file_count = len(ndarray_3D) dataset = Dataset.create( file_count = file_count , name = name , dataset_type = Dataset.Sequence.dataset_type , source_path = source_path ) #Make sure the shape and mode of each image are the same before writing the Dataset. shapes = [] for i, arr in enumerate(tqdm( ndarray_3D , desc = "⏱️ Validating Sequences 🧬" , ncols = 85 )): shapes.append(arr.shape) if (len(set(shapes)) > 1): dataset.delete_instance()# Orphaned. raise ValueError(dedent(f""" Yikes - All 2D arrays in the Dataset must be of the shape. `ndarray.shape`\nHere are the unique sizes you provided:\n{set(shapes)} """)) try: for i, arr in enumerate(tqdm( ndarray_3D , desc = "⏱️ Ingesting Sequences 🧬" , ncols = 85 )): File.Tabular.from_numpy( ndarray = arr , dataset_id = dataset.id , column_names = column_names , dtype = dtype , _file_index = i , ingest = ingest ) except: dataset.delete_instance() # Orphaned. raise return dataset def to_numpy( id:int, columns:list = None, samples:list = None ): dataset = Dataset.get_by_id(id) columns = listify(columns) samples = listify(samples) if (samples is None): files = dataset.files elif (samples is not None): # Here the 'sample' is the entire file. Whereas, in 2D 'sample==row'. # So run a query to get those files: `<<` means `in`. files = File.select().join(Dataset).where( Dataset.id==dataset.id, File.file_index<<samples ) files = list(files) # Then call them with the column filter. # So don't pass `samples=samples` to the file. list_2D = [f.to_numpy(columns=columns) for f in files] arr_3D = np.array(list_2D) return arr_3D # Graph # handle nodes and edges as separate tabular types? # node_data is pretty much tabular sequence (varied length) data right down to the columns. # the only unique thing is an edge_data for each Graph file. # attach multiple file types to a file File(id=1).tabular, File(id=1).graph? class File(BaseModel): """ - Due to the fact that different types of Files have different attributes (e.g. File.Tabular columns=JSON or File.Graph nodes=Blob, edges=Blob), I am making each file type its own subclass and 1-1 table. This approach allows for the creation of custom File types. - If `blob=None` then isn't persisted therefore fetch from source_path or s3_path. - Note that `dtype` does not require every column to be included as a key in the dictionary. """ file_type = CharField() file_format = CharField() # png, jpg, parquet. file_index = IntegerField() # image, sequence, graph. shape = JSONField() is_ingested = BooleanField() skip_header_rows = PickleField(null=True) #Image does not have. source_path = CharField(null=True) # when `from_numpy` or `from_pandas`. blob = BlobField(null=True) # when `is_ingested==False`. dataset = ForeignKeyField(Dataset, backref='files') """ Classes are much cleaner than a knot of if statements in every method, and `=None` for every parameter. """ def to_numpy(id:int, columns:list=None, samples:list=None): file = File.get_by_id(id) columns = listify(columns) samples = listify(samples) if (file.file_type == 'tabular'): arr = File.Tabular.to_numpy(id=id, columns=columns, samples=samples) elif (file.file_type == 'image'): arr = File.Image.to_numpy(id=id, columns=columns, samples=samples) return arr class Tabular(): file_type = 'tabular' def from_pandas( dataframe:object , dataset_id:int , dtype:object = None # Accepts a single str for the entire df, but utlimate it gets saved as one dtype per column. , column_names:list = None , source_path:str = None # passed in via from_file, but not from_numpy. , ingest:bool = True # from_file() method overwrites this. , file_format:str = 'parquet' # from_file() method overwrites this. , skip_header_rows:int = 'infer' , _file_index:int = 0 # Dataset.Sequence overwrites this. ): column_names = listify(column_names) File.Tabular.df_validate(dataframe, column_names) # We need this metadata whether ingested or not. dataframe, columns, shape, dtype = File.Tabular.df_set_metadata( dataframe=dataframe, column_names=column_names, dtype=dtype ) if (ingest==True): blob = File.Tabular.df_to_compressed_parquet_bytes(dataframe) elif (ingest==False): blob = None dataset = Dataset.get_by_id(dataset_id) file = File.create( blob = blob , file_type = File.Tabular.file_type , file_format = file_format , file_index = _file_index , shape = shape , source_path = source_path , skip_header_rows = skip_header_rows , is_ingested = ingest , dataset = dataset ) try: Tabular.create( columns = columns , dtypes = dtype , file_id = file.id ) except: file.delete_instance() # Orphaned. raise return file def from_numpy( ndarray:object , dataset_id:int , column_names:list = None , dtype:object = None #Or single string. , _file_index:int = 0 , ingest:bool = True ): column_names = listify(column_names) """ Only supporting homogenous arrays because structured arrays are a pain when it comes time to convert them to dataframes. It complained about setting an index, scalar types, and dimensionality... yikes. Homogenous arrays keep dtype in `arr.dtype==dtype('int64')` Structured arrays keep column names in `arr.dtype.names==('ID', 'Ring')` Per column dtypes dtypes from structured array <https://stackoverflow.com/a/65224410/5739514> """ Dataset.arr_validate(ndarray) """ column_names and dict-based dtype will be handled by our `from_pandas()` method. `pd.DataFrame` method only accepts a single dtype str, or infers if None. """ df = pd.DataFrame(data=ndarray) file = File.Tabular.from_pandas( dataframe = df , dataset_id = dataset_id , dtype = dtype # Setting `column_names` will not overwrite the first row of homogenous array: , column_names = column_names , _file_index = _file_index , ingest = ingest ) return file def from_file( path:str , source_file_format:str , dataset_id:int , dtype:object = None , column_names:list = None , skip_header_rows:object = 'infer' , ingest:bool = True ): column_names = listify(column_names) df = File.Tabular.path_to_df( path = path , source_file_format = source_file_format , column_names = column_names , skip_header_rows = skip_header_rows ) file = File.Tabular.from_pandas( dataframe = df , dataset_id = dataset_id , dtype = dtype , column_names = None # See docstring above. , source_path = path , file_format = source_file_format , skip_header_rows = skip_header_rows , ingest = ingest ) return file def to_pandas( id:int , columns:list = None , samples:list = None ): """ This function could be optimized to read columns and rows selectively rather than dropping them after the fact. https://stackoverflow.com/questions/64050609/pyarrow-read-parquet-via-column-index-or-order """ file = File.get_by_id(id) columns = listify(columns) samples = listify(samples) if (file.is_ingested==False): # future: check if `query_fetcher` defined. df = File.Tabular.path_to_df( path = file.source_path , source_file_format = file.file_format , column_names = columns , skip_header_rows = file.skip_header_rows ) elif (file.is_ingested==True): df = pd.read_parquet( io.BytesIO(file.blob) , columns=columns ) # Ensures columns are rearranged to be in the correct order. if ((columns is not None) and (df.columns.to_list() != columns)): df = df.filter(columns) # Specific rows. if (samples is not None): df = df.iloc[samples] # Accepts dict{'column_name':'dtype_str'} or a single str. tab = file.tabulars[0] df_dtypes = tab.dtypes if (df_dtypes is not None): if (isinstance(df_dtypes, dict)): if (columns is None): columns = tab.columns # Prunes out the excluded columns from the dtype dict. df_dtype_cols = list(df_dtypes.keys()) for col in df_dtype_cols: if (col not in columns): del df_dtypes[col] elif (isinstance(df_dtypes, str)): pass #dtype just gets applied as-is. df = df.astype(df_dtypes) return df def to_numpy( id:int , columns:list = None , samples:list = None ): """ This is the only place where to_numpy() relies on to_pandas(). It does so because pandas is good with the parquet and dtypes. """ columns = listify(columns) samples = listify(samples) file = File.get_by_id(id) # Handles when Dataset.Sequence is stored as a single .npy file if ((file.dataset.dataset_type=='sequence') and (file.is_ingested==False)): # Subsetting a File via `samples` is irrelevant here because the entire File is 1 sample. # Subset the columns: if (columns is not None): col_indices = Job.colIndices_from_colNames( column_names = file.tabulars[0].columns , desired_cols = columns ) dtype = list(file.tabulars[0].dtypes.values())[0] #`ingest==False` only allows singular dtype. # Verified that it is lazy via `sys.getsizeof()` lazy_load = np.load(file.dataset.source_path) if (columns is not None): # First accessor[] gets the 2D. Second accessor[] gets the 2D. arr = lazy_load[file.file_index][:,col_indices].astype(dtype) else: arr = lazy_load[file.file_index].astype(dtype) else: df = File.Tabular.to_pandas(id=id, columns=columns, samples=samples) arr = df.to_numpy() return arr #Future: Add to_tensor and from_tensor? Or will numpy suffice? def pandas_stringify_columns(df, columns): """ - `columns` is user-defined. - Pandas will assign a range of int-based columns if there are no column names. So I want to coerce them to strings because I don't want both string and int-based column names for when calling columns programmatically, and more importantly, 'ValueError: parquet must have string column names' """ cols_raw = df.columns.to_list() if (columns is None): # in case the columns were a range of ints. cols_str = [str(c) for c in cols_raw] else: cols_str = columns # dict from 2 lists cols_dct = dict(zip(cols_raw, cols_str)) df = df.rename(columns=cols_dct) columns = df.columns.to_list() return df, columns def df_validate(dataframe:object, column_names:list): if (dataframe.empty): raise ValueError("\nYikes - The dataframe you provided is empty according to `df.empty`\n") if (column_names is not None): col_count = len(column_names) structure_col_count = dataframe.shape[1] if (col_count != structure_col_count): raise ValueError(dedent(f""" Yikes - The dataframe you provided has <{structure_col_count}> columns, but you provided <{col_count}> columns. """)) def df_set_metadata( dataframe:object , column_names:list = None , dtype:object = None ): shape = {} shape['rows'], shape['columns'] = dataframe.shape[0], dataframe.shape[1] """ - Passes in user-defined columns in case they are specified. - Pandas auto-assigns int-based columns return a range when `df.columns`, but this forces each column name to be its own str. """ dataframe, columns = File.Tabular.pandas_stringify_columns(df=dataframe, columns=column_names) """ - At this point, user-provided `dtype` can be either a dict or a singular string/ class. - But a Pandas dataframe in-memory only has `dtypes` dict not a singular `dtype` str. - So we will ensure that there is 1 dtype per column. """ if (dtype is not None): # Accepts dict{'column_name':'dtype_str'} or a single str. try: dataframe = dataframe.astype(dtype) except: raise ValueError("\nYikes - Failed to apply the dtypes you specified to the data you provided.\n") """ Check if any user-provided dtype against actual dataframe dtypes to see if conversions failed. Pandas dtype seems robust in comparing dtypes: Even things like `'double' == dataframe['col_name'].dtype` will pass when `.dtype==np.float64`. Despite looking complex, category dtype converts to simple 'category' string. """ if (not isinstance(dtype, dict)): # Inspect each column:dtype pair and check to see if it is the same as the user-provided dtype. actual_dtypes = dataframe.dtypes.to_dict() for col_name, typ in actual_dtypes.items(): if (typ != dtype): raise ValueError(dedent(f""" Yikes - You specified `dtype={dtype}, but Pandas did not convert it: `dataframe['{col_name}'].dtype == {typ}`. You can either use a different dtype, or try to set your dtypes prior to ingestion in Pandas. """)) elif (isinstance(dtype, dict)): for col_name, typ in dtype.items(): if (typ != dataframe[col_name].dtype): raise ValueError(dedent(f""" Yikes - You specified `dataframe['{col_name}']:dtype('{typ}'), but Pandas did not convert it: `dataframe['{col_name}'].dtype == {dataframe[col_name].dtype}`. You can either use a different dtype, or try to set your dtypes prior to ingestion in Pandas. """)) """ Testing outlandish dtypes: - `DataFrame.to_parquet(engine='auto')` fails on: 'complex', 'longfloat', 'float128'. - `DataFrame.to_parquet(engine='auto')` succeeds on: 'string', np.uint8, np.double, 'bool'. - But the new 'string' dtype is not a numpy type! so operations like `np.issubdtype` and `StringArray.unique().tolist()` fail. """ excluded_types = ['string', 'complex', 'longfloat', 'float128'] actual_dtypes = dataframe.dtypes.to_dict().items() for col_name, typ in actual_dtypes: for et in excluded_types: if (et in str(typ)): raise ValueError(dedent(f""" Yikes - You specified `dtype['{col_name}']:'{typ}', but aiqc does not support the following dtypes: {excluded_types} """)) """ Now, we take the all of the resulting dataframe dtypes and save them. Regardless of whether or not they were user-provided. Convert the classed `dtype('float64')` to a string so we can use it in `.to_pandas()` """ dtype = {k: str(v) for k, v in actual_dtypes} # Each object has the potential to be transformed so each object must be returned. return dataframe, columns, shape, dtype def df_to_compressed_parquet_bytes(dataframe:object): """ - The Parquet file format naturally preserves pandas/numpy dtypes. Originally, we were using the `pyarrow` engine, but it has poor timedelta dtype support. https://towardsdatascience.com/stop-persisting-pandas-data-frames-in-csvs-f369a6440af5 - Although `fastparquet` engine preserves timedelta dtype, but it does not work with BytesIO. https://github.com/dask/fastparquet/issues/586#issuecomment-861634507 """ fs = fsspec.filesystem("memory") temp_path = "memory://temp.parq" dataframe.to_parquet( temp_path , engine = "fastparquet" , compression = "gzip" , index = False ) blob = fs.cat(temp_path) fs.delete(temp_path) return blob def path_to_df( path:str , source_file_format:str , column_names:list , skip_header_rows:object ): """ Previously, I was using pyarrow for all tabular/ sequence file formats. However, it had worse support for missing column names and header skipping. So I switched to pandas for handling csv/tsv, but read_parquet() doesn't let you change column names easily, so using pyarrow for parquet. """ if (not os.path.exists(path)): raise ValueError(f"\nYikes - The path you provided does not exist according to `os.path.exists(path)`:\n{path}\n") if (not os.path.isfile(path)): raise ValueError(f"\nYikes - The path you provided is not a file according to `os.path.isfile(path)`:\n{path}\n") if (source_file_format == 'tsv') or (source_file_format == 'csv'): if (source_file_format == 'tsv') or (source_file_format is None): sep='\t' source_file_format = 'tsv' # Null condition. elif (source_file_format == 'csv'): sep=',' df = pd.read_csv( filepath_or_buffer = path , sep = sep , names = column_names , header = skip_header_rows ) elif (source_file_format == 'parquet'): if (skip_header_rows != 'infer'): raise ValueError(dedent(""" Yikes - The argument `skip_header_rows` is not supported for `source_file_format='parquet'` because Parquet stores column names as metadata.\n """)) df = pd.read_parquet(path=path, engine='fastparquet') df, columns = File.Tabular.pandas_stringify_columns(df=df, columns=column_names) return df class Image(): file_type = 'image' def from_file( path:str , file_index:int , dataset_id:int , pillow_save:dict = {} , ingest:bool = True ): if not os.path.exists(path): raise ValueError(f"\nYikes - The path you provided does not exist according to `os.path.exists(path)`:\n{path}\n") if not os.path.isfile(path): raise ValueError(f"\nYikes - The path you provided is not a file according to `os.path.isfile(path)`:\n{path}\n") path = os.path.abspath(path) img = Imaje.open(path) shape = { 'width': img.size[0] , 'height':img.size[1] } if (ingest==True): blob = io.BytesIO() img.save(blob, format=img.format, **pillow_save) blob = blob.getvalue() elif (ingest==False): blob = None dataset = Dataset.get_by_id(dataset_id) file = File.create( blob = blob , file_type = File.Image.file_type , file_format = img.format , file_index = file_index , shape = shape , source_path = path , is_ingested = ingest , dataset = dataset ) try: Image.create( mode = img.mode , size = img.size , file = file , pillow_save = pillow_save ) except: file.delete_instance() # Orphaned. raise return file def from_url( url:str , file_index:int , dataset_id:int , pillow_save:dict = {} , ingest:bool = True ): # URL format is validated in `from_urls`. try: img = Imaje.open( requests.get(url, stream=True).raw ) except: raise ValueError(f"\nYikes - Could not open file at this url with Pillow library:\n{url}\n") shape = { 'width': img.size[0] , 'height':img.size[1] } if (ingest==True): blob = io.BytesIO() img.save(blob, format=img.format, **pillow_save) blob = blob.getvalue() elif (ingest==False): blob = None dataset = Dataset.get_by_id(dataset_id) file = File.create( blob = blob , file_type = File.Image.file_type , file_format = img.format , file_index = file_index , shape = shape , source_path = url , is_ingested = ingest , dataset = dataset ) try: Image.create( mode = img.mode , size = img.size , file = file , pillow_save = pillow_save ) except: file.delete_instance() # Orphaned. raise return file def to_pillow(id:int): #https://pillow.readthedocs.io/en/stable/reference/Image.html#PIL.Image.open file = File.get_by_id(id) if (file.file_type != 'image'): raise ValueError(dedent(f""" Yikes - Only `file.file_type='image' can be converted to Pillow images. But you provided `file.file_type`: <{file.file_type}> """)) #`mode` must be 'r'": https://pillow.readthedocs.io/en/stable/reference/Image.html if (file.is_ingested==True): img_bytes = io.BytesIO(file.blob) img = Imaje.open(img_bytes, mode='r') elif (file.is_ingested==False): # Future: store `is_url`. try: img = Imaje.open(file.source_path, mode='r') except: img = Imaje.open( requests.get(file.source_path, stream=True).raw , mode='r' ) return img class Tabular(BaseModel): """ - Do not change `dtype=PickleField()` because we are stringifying the columns. I was tempted to do so for types like `np.float`, but we parse the final type that Pandas decides to use. """ # Is sequence just a subset of tabular with a file_index? columns = JSONField() dtypes = JSONField() file = ForeignKeyField(File, backref='tabulars') class Image(BaseModel): #https://pillow.readthedocs.io/en/stable/handbook/concepts.html#modes mode = CharField() size = PickleField() pillow_save = JSONField() file = ForeignKeyField(File, backref='images') class Label(BaseModel): """ - Label accepts multiple columns in case it is already OneHotEncoded (e.g. tensors). - At this point, we assume that the Label is always a tabular dataset. """ columns = JSONField() column_count = IntegerField() unique_classes = JSONField(null=True) # For categoricals and binaries. None for continuous. dataset = ForeignKeyField(Dataset, backref='labels') def from_dataset(dataset_id:int, columns:list): d = Dataset.get_by_id(dataset_id) columns = listify(columns) if (d.dataset_type != 'tabular' and d.dataset_type != 'text'): raise ValueError(dedent(f""" Yikes - Labels can only be created from `dataset_type='tabular' or 'text'`. But you provided `dataset_type`: <{d.dataset_type}> """)) d_cols = Dataset.get_main_tabular(dataset_id).columns # Check that the user-provided columns exist. all_cols_found = all(col in d_cols for col in columns) if not all_cols_found: raise ValueError("\nYikes - You specified `columns` that do not exist in the Dataset.\n") # Check for duplicates of this label that already exist. cols_aplha = sorted(columns) d_labels = d.labels count = d_labels.count() if (count > 0): for l in d_labels: l_id = str(l.id) l_cols = l.columns l_cols_alpha = sorted(l_cols) if (cols_aplha == l_cols_alpha): raise ValueError(f"\nYikes - This Dataset already has Label <id:{l_id}> with the same columns.\nCannot create duplicate.\n") column_count = len(columns) label_df = Dataset.to_pandas(id=dataset_id, columns=columns) """ - When multiple columns are provided, they must be OHE. - Figure out column count because classification_binary and associated metrics can't be run on > 2 columns. - Negative values do not alter type of numpy int64 and float64 arrays. """ if (column_count > 1): unique_values = [] for c in columns: uniques = label_df[c].unique() unique_values.append(uniques) if (len(uniques) == 1): print( f"Warning - There is only 1 unique value for this label column.\n" \ f"Unique value: <{uniques[0]}>\n" \ f"Label column: <{c}>\n" ) flat_uniques = np.concatenate(unique_values).ravel() all_uniques = np.unique(flat_uniques).tolist() for i in all_uniques: if ( ((i == 0) or (i == 1)) or ((i == 0.) or (i == 1.)) ): pass else: raise ValueError(dedent(f""" Yikes - When multiple columns are provided, they must be One Hot Encoded: Unique values of your columns were neither (0,1) or (0.,1.) or (0.0,1.0). The columns you provided contained these unique values: {all_uniques} """)) unique_classes = all_uniques del label_df # Now check if each row in the labels is truly OHE. label_arr = Dataset.to_numpy(id=dataset_id, columns=columns) for i, arr in enumerate(label_arr): if 1 in arr: arr = list(arr) arr.remove(1) if 1 in arr: raise ValueError(dedent(f""" Yikes - Label row <{i}> is supposed to be an OHE row, but it contains multiple hot columns where value is 1. """)) else: raise ValueError(dedent(f""" Yikes - Label row <{i}> is supposed to be an OHE row, but it contains no hot columns where value is 1. """)) elif (column_count == 1): # At this point, `label_df` is a single column df that needs to fected as a Series. col = columns[0] label_series = label_df[col] label_dtype = label_series.dtype if (np.issubdtype(label_dtype, np.floating)): unique_classes = None else: unique_classes = label_series.unique().tolist() class_count = len(unique_classes) if ( (np.issubdtype(label_dtype, np.signedinteger)) or (np.issubdtype(label_dtype, np.unsignedinteger)) ): if (class_count >= 5): print( f"Tip - Detected `unique_classes >= {class_count}` for an integer Label." \ f"If this Label is not meant to be categorical, then we recommend you convert to a float-based dtype." \ f"Although you'll still be able to bin these integers when it comes time to make a Splitset." ) if (class_count == 1): print( f"Tip - Only detected 1 unique label class. Should have 2 or more unique classes." \ f"Your Label's only class was: <{unique_classes[0]}>." ) l = Label.create( dataset = d , columns = columns , column_count = column_count , unique_classes = unique_classes ) return l def to_pandas(id:int, samples:list=None): samples = listify(samples) l_frame = Label.get_label(id=id, numpy_or_pandas='pandas', samples=samples) return l_frame def to_numpy(id:int, samples:list=None): samples = listify(samples) l_arr = Label.get_label(id=id, numpy_or_pandas='numpy', samples=samples) return l_arr def get_label(id:int, numpy_or_pandas:str, samples:list=None): samples = listify(samples) l = Label.get_by_id(id) l_cols = l.columns dataset_id = l.dataset.id if (numpy_or_pandas == 'numpy'): lf = Dataset.to_numpy( id = dataset_id , columns = l_cols , samples = samples ) elif (numpy_or_pandas == 'pandas'): lf = Dataset.to_pandas( id = dataset_id , columns = l_cols , samples = samples ) return lf def get_dtypes( id:int ): l = Label.get_by_id(id) dataset = l.dataset l_cols = l.columns tabular_dtype = Dataset.get_main_tabular(dataset.id).dtypes label_dtypes = {} for key,value in tabular_dtype.items(): for col in l_cols: if (col == key): label_dtypes[col] = value # Exit `col` loop early becuase matching `col` found. break return label_dtypes def make_labelcoder( id:int , sklearn_preprocess:object ): lc = Labelcoder.from_label( label_id = id , sklearn_preprocess = sklearn_preprocess ) return lc def get_latest_labelcoder(id:int): label = Label.get_by_id(id) labelcoders = list(label.labelcoders) # Check if list empty. if (not labelcoders): return None else: return labelcoders[-1] class Feature(BaseModel): """ - Remember, a Feature is just a record of the columns being used. - Decided not to go w subclasses of Unsupervised and Supervised because that would complicate the SDK for the user, and it essentially forked every downstream model into two subclasses. - PCA components vary across features. When different columns are used those columns have different component values. """ columns = JSONField(null=True) columns_excluded = JSONField(null=True) dataset = ForeignKeyField(Dataset, backref='features') def from_dataset( dataset_id:int , include_columns:list=None , exclude_columns:list=None #Future: runPCA #,run_pca:boolean=False # triggers PCA analysis of all columns ): """ As we get further away from the `Dataset.<Types>` they need less isolation. """ dataset = Dataset.get_by_id(dataset_id) include_columns = listify(include_columns) exclude_columns = listify(exclude_columns) if (dataset.dataset_type == 'image'): # Just passes the Dataset through for now. if (include_columns is not None) or (exclude_columns is not None): raise ValueError("\nYikes - The `Dataset.Image` classes supports neither the `include_columns` nor `exclude_columns` arguemnt.\n") columns = None columns_excluded = None elif (dataset.dataset_type == 'tabular' or dataset.dataset_type == 'text' or dataset.dataset_type == 'sequence'): d_cols = Dataset.get_main_tabular(dataset_id).columns if ((include_columns is not None) and (exclude_columns is not None)): raise ValueError("\nYikes - You can set either `include_columns` or `exclude_columns`, but not both.\n") if (include_columns is not None): # check columns exist all_cols_found = all(col in d_cols for col in include_columns) if (not all_cols_found): raise ValueError("\nYikes - You specified `include_columns` that do not exist in the Dataset.\n") # inclusion columns = include_columns # exclusion columns_excluded = d_cols for col in include_columns: columns_excluded.remove(col) elif (exclude_columns is not None): all_cols_found = all(col in d_cols for col in exclude_columns) if (not all_cols_found): raise ValueError("\nYikes - You specified `exclude_columns` that do not exist in the Dataset.\n") # exclusion columns_excluded = exclude_columns # inclusion columns = d_cols for col in exclude_columns: columns.remove(col) if (not columns): raise ValueError("\nYikes - You cannot exclude every column in the Dataset. For there will be nothing to analyze.\n") else: columns = d_cols columns_excluded = None """ - Check that this Dataset does not already have a Feature that is exactly the same. - There are less entries in `excluded_columns` so maybe it's faster to compare that. """ if columns_excluded is not None: cols_aplha = sorted(columns_excluded) else: cols_aplha = None d_features = dataset.features count = d_features.count() if (count > 0): for f in d_features: f_id = str(f.id) f_cols = f.columns_excluded if (f_cols is not None): f_cols_alpha = sorted(f_cols) else: f_cols_alpha = None if (cols_aplha == f_cols_alpha): raise ValueError(dedent(f""" Yikes - This Dataset already has Feature <id:{f_id}> with the same columns. Cannot create duplicate. """)) feature = Feature.create( dataset = dataset , columns = columns , columns_excluded = columns_excluded ) return feature def to_pandas(id:int, samples:list=None, columns:list=None): samples = listify(samples) columns = listify(columns) f_frame = Feature.get_feature( id = id , numpy_or_pandas = 'pandas' , samples = samples , columns = columns ) return f_frame def to_numpy(id:int, samples:list=None, columns:list=None): samples = listify(samples) columns = listify(columns) f_arr = Feature.get_feature( id = id , numpy_or_pandas = 'numpy' , samples = samples , columns = columns ) return f_arr def get_feature( id:int , numpy_or_pandas:str , samples:list = None , columns:list = None ): feature = Feature.get_by_id(id) samples = listify(samples) columns = listify(columns) f_cols = feature.columns if (columns is not None): for c in columns: if c not in f_cols: raise ValueError("\nYikes - Cannot fetch column '{c}' because it is not in `Feature.columns`.\n") f_cols = columns dataset_id = feature.dataset.id if (numpy_or_pandas == 'numpy'): f_data = Dataset.to_numpy( id = dataset_id , columns = f_cols , samples = samples ) elif (numpy_or_pandas == 'pandas'): f_data = Dataset.to_pandas( id = dataset_id , columns = f_cols , samples = samples ) return f_data def get_dtypes( id:int ): feature = Feature.get_by_id(id) dataset = feature.dataset if (dataset.dataset_type == 'image'): raise ValueError("\nYikes - `feature.dataset.dataset_type=='image'` does not have dtypes.\n") f_cols = feature.columns tabular_dtype = Dataset.get_main_tabular(dataset.id).dtypes feature_dtypes = {} for key,value in tabular_dtype.items(): for col in f_cols: if (col == key): feature_dtypes[col] = value # Exit `col` loop early becuase matching `col` found. break return feature_dtypes def make_splitset( id:int , label_id:int = None , size_test:float = None , size_validation:float = None , bin_count:int = None , unsupervised_stratify_col:str = None ): splitset = Splitset.from_feature( feature_id = id , label_id = label_id , size_test = size_test , size_validation = size_validation , bin_count = bin_count , unsupervised_stratify_col = unsupervised_stratify_col ) return splitset def make_encoderset( id:int , encoder_count:int = 0 , description:str = None ): encoderset = Encoderset.from_feature( feature_id = id , encoder_count = 0 , description = description ) return encoderset def get_latest_encoderset(id:int): feature = Feature.get_by_id(id) encodersets = list(feature.encodersets) # Check if list empty. if (not encodersets): return None else: return encodersets[-1] def make_window(id:int, size_window:int, size_shift:int): feature = Feature.get_by_id(id) window = Window.from_feature( size_window = size_window , size_shift = size_shift , feature_id = feature.id ) return window class Window(BaseModel): size_window = IntegerField() size_shift = IntegerField() feature = ForeignKeyField(Feature, backref='windows') def from_feature( feature_id:int , size_window:int , size_shift:int ): feature = Feature.get_by_id(feature_id) file_count = feature.dataset.file_count if ((size_window < 1) or (size_window > (file_count - size_shift))): raise ValueError("\nYikes - Failed: `(size_window < 1) or (size_window > (file_count - size_shift)`.\n") if ((size_shift < 1) or (size_shift > (file_count - size_window))): raise ValueError("\nYikes - Failed: `(size_shift < 1) or (size_shift > (file_count - size_window)`.\n") window = Window.create( size_window = size_window , size_shift = size_shift , feature_id = feature.id ) return window def shift_window_arrs(id:int, ndarray:object): window = Window.get_by_id(id) file_count = window.feature.dataset.file_count size_window = window.size_window size_shift = window.size_shift total_intervals = math.floor((file_count - size_shift) / size_window) #prune_shifted_lag = 0 prune_shifted_lead = file_count - (total_intervals * size_window) prune_unshifted_lag = -(size_shift) prune_unshifted_lead = file_count - (total_intervals * size_window) - size_shift arr_shifted = arr_shifted = ndarray[prune_shifted_lead:]#:prune_shifted_lag arr_unshifted = ndarray[prune_unshifted_lead:prune_unshifted_lag] arr_shifted_shapes = arr_shifted.shape arr_shifted = arr_shifted.reshape( total_intervals#3D , arr_shifted_shapes[1]*math.floor(arr_shifted_shapes[0] / total_intervals)#rows , arr_shifted_shapes[2]#cols ) arr_unshifted = arr_unshifted.reshape( total_intervals#3D , arr_shifted_shapes[1]*math.floor(arr_shifted_shapes[0] / total_intervals)#rows , arr_shifted_shapes[2]#cols ) return arr_shifted, arr_unshifted class Splitset(BaseModel): """ - Here the `samples_` attributes contain indices. -ToDo: store and visualize distributions of each column in training split, including label. -Future: is it useful to specify the size of only test for unsupervised learning? """ samples = JSONField() sizes = JSONField() supervision = CharField() has_test = BooleanField() has_validation = BooleanField() bin_count = IntegerField(null=True) unsupervised_stratify_col = CharField(null=True) label = ForeignKeyField(Label, deferrable='INITIALLY DEFERRED', null=True, backref='splitsets') # Featureset is a many-to-many relationship between Splitset and Feature. def make( feature_ids:list , label_id:int = None , size_test:float = None , size_validation:float = None , bin_count:float = None , unsupervised_stratify_col:str = None ): # The first feature_id is used for stratification, so it's best to use Tabular data in this slot. # --- Verify splits --- if (size_test is not None): if ((size_test <= 0.0) or (size_test >= 1.0)): raise ValueError("\nYikes - `size_test` must be between 0.0 and 1.0\n") # Don't handle `has_test` here. Need to check label first. if ((size_validation is not None) and (size_test is None)): raise ValueError("\nYikes - you specified a `size_validation` without setting a `size_test`.\n") if (size_validation is not None): if ((size_validation <= 0.0) or (size_validation >= 1.0)): raise ValueError("\nYikes - `size_test` must be between 0.0 and 1.0\n") sum_test_val = size_validation + size_test if sum_test_val >= 1.0: raise ValueError("\nYikes - Sum of `size_test` + `size_test` must be between 0.0 and 1.0 to leave room for training set.\n") """ Have to run train_test_split twice do the math to figure out the size of 2nd split. Let's say I want {train:0.67, validation:0.13, test:0.20} The first test_size is 20% which leaves 80% of the original data to be split into validation and training data. (1.0/(1.0-0.20))*0.13 = 0.1625 """ pct_for_2nd_split = (1.0/(1.0-size_test))*size_validation has_validation = True else: has_validation = False # --- Verify features --- feature_ids = listify(feature_ids) feature_lengths = [] for f_id in feature_ids: f = Feature.get_by_id(f_id) f_dataset = f.dataset f_dset_type = f_dataset.dataset_type if (f_dset_type == 'tabular' or f_dset_type == 'text'): f_length = Dataset.get_main_file(f_dataset.id).shape['rows'] elif (f_dset_type == 'image' or f_dset_type == 'sequence'): f_length = f_dataset.file_count feature_lengths.append(f_length) if (len(set(feature_lengths)) != 1): raise ValueError("Yikes - List of features you provided contain different amounts of samples: {set(feature_lengths)}") # --- Prepare for splitting --- feature = Feature.get_by_id(feature_ids[0]) f_dataset = feature.dataset f_dset_type = f_dataset.dataset_type f_cols = feature.columns """ Simulate an index to be split alongside features and labels in order to keep track of the samples being used in the resulting splits. """ if (f_dset_type=='tabular' or f_dset_type=='text' or f_dset_type=='sequence'): # Could get the row count via `f_dataset.get_main_file().shape['rows']`, but need array later. feature_array = f_dataset.to_numpy(columns=f_cols) #Used below for splitting. # Works on both 2D and 3D data. sample_count = feature_array.shape[0] elif (f_dset_type=='image'): sample_count = f_dataset.file_count arr_idx = np.arange(sample_count) samples = {} sizes = {} if (size_test is None): size_test = 0.30 # ------ Stratification prep ------ if (label_id is not None): has_test = True supervision = "supervised" if (unsupervised_stratify_col is not None): raise ValueError("\nYikes - `unsupervised_stratify_col` cannot be present is there is a Label.\n") # We don't need to prevent duplicate Label/Feature combos because Splits generate different samples each time. label = Label.get_by_id(label_id) # Check number of samples in Label vs Feature, because they can come from different Datasets. stratify_arr = label.to_numpy() l_length = label.dataset.get_main_file().shape['rows'] if (label.dataset.id != f_dataset.id): if (l_length != sample_count): raise ValueError("\nYikes - The Datasets of your Label and Feature do not contains the same number of samples.\n") # check for OHE cols and reverse them so we can still stratify ordinally. if (stratify_arr.shape[1] > 1): stratify_arr = np.argmax(stratify_arr, axis=1) # OHE dtype returns as int64 stratify_dtype = stratify_arr.dtype elif (label_id is None): has_test = False supervision = "unsupervised" label = None indices_lst_train = arr_idx.tolist() if (unsupervised_stratify_col is not None): if (f_dset_type=='image'): raise ValueError("\nYikes - `unsupervised_stratify_col` cannot be used with `dataset_type=='image'`.\n") column_names = f_dataset.get_main_tabular().columns col_index = Job.colIndices_from_colNames(column_names=column_names, desired_cols=[unsupervised_stratify_col])[0] stratify_arr = feature_array[:,:,col_index] stratify_dtype = stratify_arr.dtype if (f_dset_type=='sequence'): if (stratify_arr.shape[1] > 1): # We need a single value, so take the median or mode of each 1D array. if (np.issubdtype(stratify_dtype, np.number) == True): stratify_arr = np.median(stratify_arr, axis=1) if (np.issubdtype(stratify_dtype, np.number) == False): modes = [scipy.stats.mode(arr1D)[0][0] for arr1D in stratify_arr] stratify_arr = np.array(modes) # Now both are 1D so reshape to 2D. stratify_arr = stratify_arr.reshape(stratify_arr.shape[0], 1) elif (unsupervised_stratify_col is None): if (bin_count is not None): raise ValueError("\nYikes - `bin_count` cannot be set if `unsupervised_stratify_col is None` and `label_id is None`.\n") stratify_arr = None#Used in if statements below. # ------ Stratified vs Unstratified ------ if (stratify_arr is not None): """ - `sklearn.model_selection.train_test_split` = https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html - `shuffle` happens before the split. Although preserves a df's original index, we don't need to worry about that because we are providing our own indices. - Don't include the Dataset.Image.feature pixel arrays in stratification. """ # `bin_count` is only returned so that we can persist it. stratifier1, bin_count = Splitset.stratifier_by_dtype_binCount( stratify_dtype = stratify_dtype, stratify_arr = stratify_arr, bin_count = bin_count ) if (f_dset_type=='tabular' or f_dset_type=='text' or f_dset_type=='sequence'): features_train, features_test, stratify_train, stratify_test, indices_train, indices_test = train_test_split( feature_array, stratify_arr, arr_idx , test_size = size_test , stratify = stratifier1 , shuffle = True ) if (size_validation is not None): stratifier2, bin_count = Splitset.stratifier_by_dtype_binCount( stratify_dtype = stratify_dtype, stratify_arr = stratify_train, #This split is different from stratifier1. bin_count = bin_count ) features_train, features_validation, stratify_train, stratify_validation, indices_train, indices_validation = train_test_split( features_train, stratify_train, indices_train , test_size = pct_for_2nd_split , stratify = stratifier2 , shuffle = True ) elif (f_dset_type=='image'): # Differs in that the Features not fed into `train_test_split()`. stratify_train, stratify_test, indices_train, indices_test = train_test_split( stratify_arr, arr_idx , test_size = size_test , stratify = stratifier1 , shuffle = True ) if (size_validation is not None): stratifier2, bin_count = Splitset.stratifier_by_dtype_binCount( stratify_dtype = stratify_dtype, stratify_arr = stratify_train, #This split is different from stratifier1. bin_count = bin_count ) stratify_train, stratify_validation, indices_train, indices_validation = train_test_split( stratify_train, indices_train , test_size = pct_for_2nd_split , stratify = stratifier2 , shuffle = True ) elif (stratify_arr is None): if (f_dset_type=='tabular' or f_dset_type=='text' or f_dset_type=='sequence'): features_train, features_test, indices_train, indices_test = train_test_split( feature_array, arr_idx , test_size = size_test , shuffle = True ) if (size_validation is not None): features_train, features_validation, indices_train, indices_validation = train_test_split( features_train, indices_train , test_size = pct_for_2nd_split , shuffle = True ) elif (f_dset_type=='image'): # Differs in that the Features not fed into `train_test_split()`. indices_train, indices_test = train_test_split( arr_idx , test_size = size_test , shuffle = True ) if (size_validation is not None): indices_train, indices_validation = train_test_split( indices_train , test_size = pct_for_2nd_split , shuffle = True ) if (size_validation is not None): indices_lst_validation = indices_validation.tolist() samples["validation"] = indices_lst_validation indices_lst_train, indices_lst_test = indices_train.tolist(), indices_test.tolist() samples["train"] = indices_lst_train samples["test"] = indices_lst_test size_train = 1.0 - size_test if (size_validation is not None): size_train -= size_validation count_validation = len(indices_lst_validation) sizes["validation"] = {"percent": size_validation, "count": count_validation} count_test = len(indices_lst_test) count_train = len(indices_lst_train) sizes["test"] = {"percent": size_test, "count": count_test} sizes["train"] = {"percent": size_train, "count": count_train} splitset = Splitset.create( label = label , samples = samples , sizes = sizes , supervision = supervision , has_test = has_test , has_validation = has_validation , bin_count = bin_count , unsupervised_stratify_col = unsupervised_stratify_col ) try: for f_id in feature_ids: feature = Feature.get_by_id(f_id) Featureset.create(splitset=splitset, feature=feature) except: splitset.delete_instance() # Orphaned. raise return splitset def values_to_bins(array_to_bin:object, bin_count:int): """ Overwites continuous Label values with bin numbers for statification & folding. Switched to `pd.qcut` because `np.digitize` never had enough samples in the up the leftmost/right bin. """ # Make 1D for qcut. array_to_bin = array_to_bin.flatten() # For really unbalanced labels, I ran into errors where bin boundaries would be duplicates all the way down to 2 bins. # Setting `duplicates='drop'` to address this. bin_numbers = pd.qcut(x=array_to_bin, q=bin_count, labels=False, duplicates='drop') # Convert 1D array back to 2D for the rest of the program. bin_numbers = np.reshape(bin_numbers, (-1, 1)) return bin_numbers def stratifier_by_dtype_binCount(stratify_dtype:object, stratify_arr:object, bin_count:int=None): # Based on the dtype and bin_count determine how to stratify. # Automatically bin floats. if np.issubdtype(stratify_dtype, np.floating): if (bin_count is None): bin_count = 3 stratifier = Splitset.values_to_bins(array_to_bin=stratify_arr, bin_count=bin_count) # Allow ints to pass either binned or unbinned. elif ( (np.issubdtype(stratify_dtype, np.signedinteger)) or (np.issubdtype(stratify_dtype, np.unsignedinteger)) ): if (bin_count is not None): stratifier = Splitset.values_to_bins(array_to_bin=stratify_arr, bin_count=bin_count) elif (bin_count is None): # Assumes the int is for classification. stratifier = stratify_arr # Reject binned objs. elif (np.issubdtype(stratify_dtype, np.number) == False): if (bin_count is not None): raise ValueError(dedent(""" Yikes - Your Label is not numeric (neither `np.floating`, `np.signedinteger`, `np.unsignedinteger`). Therefore, you cannot provide a value for `bin_count`. \n""")) elif (bin_count is None): stratifier = stratify_arr return stratifier, bin_count def get_features(id:int): splitset = Splitset.get_by_id(id) features = list(Feature.select().join(Featureset).where(Featureset.splitset==splitset)) return features def make_foldset( id:int , fold_count:int = None , bin_count:int = None ): foldset = Foldset.from_splitset( splitset_id = id , fold_count = fold_count , bin_count = bin_count ) return foldset class Featureset(BaseModel): """Featureset is a many-to-many relationship between Splitset and Feature.""" splitset = ForeignKeyField(Splitset, backref='featuresets') feature = ForeignKeyField(Feature, backref='featuresets') class Foldset(BaseModel): """ - Contains aggregate summary statistics and evaluate metrics for all Folds. - Works the same for all dataset types because only the labels are used for stratification. """ fold_count = IntegerField() random_state = IntegerField() bin_count = IntegerField(null=True) # For stratifying continuous features. #ToDo: max_samples_per_bin = IntegerField() #ToDo: min_samples_per_bin = IntegerField() splitset = ForeignKeyField(Splitset, backref='foldsets') def from_splitset( splitset_id:int , fold_count:int = None , bin_count:int = None ): splitset = Splitset.get_by_id(splitset_id) new_random = False while new_random == False: random_state = random.randint(0, 4294967295) #2**32 - 1 inclusive matching_randoms = splitset.foldsets.select().where(Foldset.random_state==random_state) count_matches = matching_randoms.count() if count_matches == 0: new_random = True if (fold_count is None): fold_count = 5 # More likely than 4 to be evenly divisible. else: if (fold_count < 2): raise ValueError(dedent(f""" Yikes - Cross validation requires multiple folds. But you provided `fold_count`: <{fold_count}>. """)) elif (fold_count == 2): print("\nWarning - Instead of two folds, why not just use a validation split?\n") # Get the training indices. The actual values of the features don't matter, only label values needed for stratification. arr_train_indices = splitset.samples["train"] if (splitset.supervision=="supervised"): stratify_arr = splitset.label.to_numpy(samples=arr_train_indices) stratify_dtype = stratify_arr.dtype elif (splitset.supervision=="unsupervised"): if (splitset.unsupervised_stratify_col is not None): stratify_arr = splitset.get_features()[0].to_numpy( columns = splitset.unsupervised_stratify_col, samples = arr_train_indices ) stratify_dtype = stratify_arr.dtype if (stratify_arr.shape[1] > 1): # We need a single value, so take the median or mode of each 1D array. if (np.issubdtype(stratify_dtype, np.number) == True): stratify_arr = np.median(stratify_arr, axis=1) if (np.issubdtype(stratify_dtype, np.number) == False): modes = [scipy.stats.mode(arr1D)[0][0] for arr1D in stratify_arr] stratify_arr = np.array(modes) # Now both are 1D so reshape to 2D. stratify_arr = stratify_arr.reshape(stratify_arr.shape[0], 1) elif (splitset.unsupervised_stratify_col is None): if (bin_count is not None): raise ValueError("\nYikes - `bin_count` cannot be set if `unsupervised_stratify_col is None` and `label_id is None`.\n") stratify_arr = None#Used in if statements below. # If the Labels are binned *overwite* the values w bin numbers. Otherwise untouched. if (stratify_arr is not None): # Bin the floats. if (np.issubdtype(stratify_dtype, np.floating)): if (bin_count is None): bin_count = splitset.bin_count #Inherit. stratify_arr = Splitset.values_to_bins( array_to_bin = stratify_arr , bin_count = bin_count ) # Allow ints to pass either binned or unbinned. elif ( (np.issubdtype(stratify_dtype, np.signedinteger)) or (np.issubdtype(stratify_dtype, np.unsignedinteger)) ): if (bin_count is not None): if (splitset.bin_count is None): print(dedent(""" Warning - Previously you set `Splitset.bin_count is None` but now you are trying to set `Foldset.bin_count is not None`. This can result in incosistent stratification processes being used for training samples versus validation and test samples. \n""")) stratify_arr = Splitset.values_to_bins( array_to_bin = stratify_arr , bin_count = bin_count ) else: if (bin_count is not None): raise ValueError(dedent(""" Yikes - The column you are stratifying by is not a numeric dtype (neither `np.floating`, `np.signedinteger`, `np.unsignedinteger`). Therefore, you cannot provide a value for `bin_count`. \n""")) train_count = len(arr_train_indices) remainder = train_count % fold_count if (remainder != 0): print( f"Warning - The number of samples <{train_count}> in your training Split\n" \ f"is not evenly divisible by the `fold_count` <{fold_count}> you specified.\n" \ f"This can result in misleading performance metrics for the last Fold.\n" ) foldset = Foldset.create( fold_count = fold_count , random_state = random_state , bin_count = bin_count , splitset = splitset ) try: # Stratified vs Unstratified. if (stratify_arr is None): # Nothing to stratify with. kf = KFold( n_splits=fold_count , shuffle=True , random_state=random_state ) splitz_gen = kf.split(arr_train_indices) elif (stratify_arr is not None): skf = StratifiedKFold( n_splits=fold_count , shuffle=True , random_state=random_state ) splitz_gen = skf.split(arr_train_indices, stratify_arr) i = -1 for index_folds_train, index_fold_validation in splitz_gen: i+=1 fold_samples = {} fold_samples["folds_train_combined"] = index_folds_train.tolist() fold_samples["fold_validation"] = index_fold_validation.tolist() Fold.create( fold_index = i , samples = fold_samples , foldset = foldset ) except: foldset.delete_instance() # Orphaned. raise return foldset class Fold(BaseModel): """ - A Fold is 1 of many cross-validation sets generated as part of a Foldset. - The `samples` attribute contains the indices of `folds_train_combined` and `fold_validation`, where `fold_validation` is the rotating fold that gets left out. """ fold_index = IntegerField() # order within the Foldset. samples = JSONField() # contains_all_classes = BooleanField() foldset = ForeignKeyField(Foldset, backref='folds') class Encoderset(BaseModel): """ - Preprocessing should not happen prior to Dataset ingestion because you need to do it after the split to avoid bias. For example, encoder.fit() only on training split - then .transform() train, validation, and test. - Don't restrict a preprocess to a specific Algorithm. Many algorithms are created as different hyperparameters are tried. Also, Preprocess is somewhat predetermined by the dtypes present in the Label and Feature. - Although Encoderset seems uneccessary, you need something to sequentially group the Featurecoders onto. - In future, maybe Labelcoder gets split out from Encoderset and it becomes Featurecoderset. """ encoder_count = IntegerField() description = CharField(null=True) feature = ForeignKeyField(Feature, backref='encodersets') def from_feature( feature_id:int , encoder_count:int = 0 , description:str = None ): feature = Feature.get_by_id(feature_id) encoderset = Encoderset.create( encoder_count = encoder_count , description = description , feature = feature ) return encoderset def make_featurecoder( id:int , sklearn_preprocess:object , include:bool = True , verbose:bool = True , dtypes:list = None , columns:list = None ): dtypes = listify(dtypes) columns = listify(columns) fc = Featurecoder.from_encoderset( encoderset_id = id , sklearn_preprocess = sklearn_preprocess , include = include , dtypes = dtypes , columns = columns , verbose = verbose ) return fc class Labelcoder(BaseModel): """ - `is_fit_train` toggles if the encoder is either `.fit(<training_split/fold>)` to avoid bias or `.fit(<entire_dataset>)`. - Categorical (ordinal and OHE) encoders are best applied to entire dataset in case there are classes missing in the split/folds of validation/ test data. - Whereas numerical encoders are best fit only to the training data. - Because there's only 1 encoder that runs and it uses all columns, Labelcoder is much simpler to validate and run in comparison to Featurecoder. """ only_fit_train = BooleanField() is_categorical = BooleanField() sklearn_preprocess = PickleField() matching_columns = JSONField() # kinda unecessary, but maybe multi-label future. encoding_dimension = CharField() label = ForeignKeyField(Label, backref='labelcoders') def from_label( label_id:int , sklearn_preprocess:object ): label = Label.get_by_id(label_id) sklearn_preprocess, only_fit_train, is_categorical = Labelcoder.check_sklearn_attributes( sklearn_preprocess, is_label=True ) samples_to_encode = label.to_numpy() # 2. Test Fit. try: fitted_encoders, encoding_dimension = Labelcoder.fit_dynamicDimensions( sklearn_preprocess = sklearn_preprocess , samples_to_fit = samples_to_encode ) except: print(f"\nYikes - During a test encoding, failed to `fit()` instantiated `{sklearn_preprocess}` on `label.to_numpy())`.\n") raise # 3. Test Transform/ Encode. try: """ - During `Job.run`, it will touch every split/fold regardless of what it was fit on so just validate it on whole dataset. """ Labelcoder.transform_dynamicDimensions( fitted_encoders = fitted_encoders , encoding_dimension = encoding_dimension , samples_to_transform = samples_to_encode ) except: raise ValueError(dedent(""" During testing, the encoder was successfully `fit()` on the labels, but, it failed to `transform()` labels of the dataset as a whole. """)) else: pass lc = Labelcoder.create( only_fit_train = only_fit_train , sklearn_preprocess = sklearn_preprocess , encoding_dimension = encoding_dimension , matching_columns = label.columns , is_categorical = is_categorical , label = label ) return lc def check_sklearn_attributes(sklearn_preprocess:object, is_label:bool): #This function is used by Featurecoder too, so don't put label-specific things in here. if (inspect.isclass(sklearn_preprocess)): raise ValueError(dedent(""" Yikes - The encoder you provided is a class name, but it should be a class instance.\n Class (incorrect): `OrdinalEncoder` Instance (correct): `OrdinalEncoder()` """)) # Encoder parent modules vary: `sklearn.preprocessing._data` vs `sklearn.preprocessing._label` # Feels cleaner than this: https://stackoverflow.com/questions/14570802/python-check-if-object-is-instance-of-any-class-from-a-certain-module coder_type = str(type(sklearn_preprocess)) if ('sklearn.preprocessing' not in coder_type): raise ValueError(dedent(""" Yikes - At this point in time, only `sklearn.preprocessing` encoders are supported. https://scikit-learn.org/stable/modules/classes.html#module-sklearn.preprocessing """)) elif ('sklearn.preprocessing' in coder_type): if (not hasattr(sklearn_preprocess, 'fit')): raise ValueError(dedent(""" Yikes - The `sklearn.preprocessing` method you provided does not have a `fit` method.\n Please use one of the uppercase methods instead. For example: use `RobustScaler` instead of `robust_scale`. """)) if (hasattr(sklearn_preprocess, 'sparse')): if (sklearn_preprocess.sparse == True): try: sklearn_preprocess.sparse = False print(dedent(""" => Info - System overriding user input to set `sklearn_preprocess.sparse=False`. This would have generated 'scipy.sparse.csr.csr_matrix', causing Keras training to fail. """)) except: raise ValueError(dedent(f""" Yikes - Detected `sparse==True` attribute of {sklearn_preprocess}. System attempted to override this to False, but failed. FYI `sparse` is True by default if left blank. This would have generated 'scipy.sparse.csr.csr_matrix', causing Keras training to fail.\n Please try again with False. For example, `OneHotEncoder(sparse=False)`. """)) if (hasattr(sklearn_preprocess, 'copy')): if (sklearn_preprocess.copy == True): try: sklearn_preprocess.copy = False print(dedent(""" => Info - System overriding user input to set `sklearn_preprocess.copy=False`. This saves memory when concatenating the output of many encoders. """)) except: raise ValueError(dedent(f""" Yikes - Detected `copy==True` attribute of {sklearn_preprocess}. System attempted to override this to False, but failed. FYI `copy` is True by default if left blank, which consumes memory.\n Please try again with 'copy=False'. For example, `StandardScaler(copy=False)`. """)) if (hasattr(sklearn_preprocess, 'sparse_output')): if (sklearn_preprocess.sparse_output == True): try: sklearn_preprocess.sparse_output = False print(dedent(""" => Info - System overriding user input to set `sklearn_preprocess.sparse_output=False`. This would have generated 'scipy.sparse.csr.csr_matrix', causing Keras training to fail. """)) except: raise ValueError(dedent(f""" Yikes - Detected `sparse_output==True` attribute of {sklearn_preprocess}. System attempted to override this to True, but failed. Please try again with 'sparse_output=False'. This would have generated 'scipy.sparse.csr.csr_matrix', causing Keras training to fail.\n For example, `LabelBinarizer(sparse_output=False)`. """)) if (hasattr(sklearn_preprocess, 'order')): if (sklearn_preprocess.order == 'F'): try: sklearn_preprocess.order = 'C' print(dedent(""" => Info - System overriding user input to set `sklearn_preprocess.order='C'`. This changes the output shape of the """)) except: raise ValueError(dedent(f""" System attempted to override this to 'C', but failed. Yikes - Detected `order=='F'` attribute of {sklearn_preprocess}. Please try again with 'order='C'. For example, `PolynomialFeatures(order='C')`. """)) if (hasattr(sklearn_preprocess, 'encode')): if (sklearn_preprocess.encode == 'onehot'): # Multiple options here, so don't override user input. raise ValueError(dedent(f""" Yikes - Detected `encode=='onehot'` attribute of {sklearn_preprocess}. FYI `encode` is 'onehot' by default if left blank and it predictors in 'scipy.sparse.csr.csr_matrix', which causes Keras training to fail.\n Please try again with 'onehot-dense' or 'ordinal'. For example, `KBinsDiscretizer(encode='onehot-dense')`. """)) if ( (is_label==True) and (not hasattr(sklearn_preprocess, 'inverse_transform')) ): print(dedent(""" Warning - The following encoders do not have an `inverse_transform` method. It is inadvisable to use them to encode Labels during training, because you may not be able to programmatically decode your raw predictions when it comes time for inference (aka non-training predictions): [Binarizer, KernelCenterer, Normalizer, PolynomialFeatures] """)) """ - Binners like 'KBinsDiscretizer' and 'QuantileTransformer' will place unseen observations outside bounds into existing min/max bin. - I assume that someone won't use a custom FunctionTransformer, for categories when all of these categories are available. - LabelBinarizer is not threshold-based, it's more like an OHE. """ only_fit_train = True stringified_coder = str(sklearn_preprocess) is_categorical = False for c in categorical_encoders: if (stringified_coder.startswith(c)): only_fit_train = False is_categorical = True break return sklearn_preprocess, only_fit_train, is_categorical def fit_dynamicDimensions(sklearn_preprocess:object, samples_to_fit:object): """ - Future: optimize to make sure not duplicating numpy. especially append to lists + reshape after transpose. - There are 17 uppercase sklearn encoders, and 10 different data types across float, str, int when consider negatives, 2D multiple columns, 2D single columns. - Different encoders work with different data types and dimensionality. - This function normalizes that process by coercing the dimensionality that the encoder wants, and erroring if the wrong data type is used. The goal in doing so is to return that dimensionality for future use. - `samples_to_transform` is pre-filtered for the appropriate `matching_columns`. - The rub lies in that if you have many columns, but the encoder only fits 1 column at a time, then you return many fits for a single type of preprocess. - Remember this is for a single Featurecoder that is potential returning multiple fits. - UPDATE: after disabling LabelBinarizer and LabelEncoder from running on multiple columns, everything seems to be fitting as "2D_multiColumn", but let's keep the logic for new sklearn methods. """ fitted_encoders = [] incompatibilities = { "string": [ "KBinsDiscretizer", "KernelCenterer", "MaxAbsScaler", "MinMaxScaler", "PowerTransformer", "QuantileTransformer", "RobustScaler", "StandardScaler" ] , "float": ["LabelBinarizer"] , "numeric array without dimensions both odd and square (e.g. 3x3, 5x5)": ["KernelCenterer"] } with warnings.catch_warnings(record=True) as w: try: # aiqc `to_numpy()` always fetches 2D. # Remember, we are assembling `fitted_encoders` dict, not accesing it. fit_encoder = sklearn_preprocess.fit(samples_to_fit) fitted_encoders.append(fit_encoder) except: # At this point, "2D" failed. It had 1 or more columns. try: width = samples_to_fit.shape[1] if (width > 1): # Reshape "2D many columns" to “3D of 2D single columns.” samples_to_fit = samples_to_fit[None].T # "2D single column" already failed. Need it to fail again to trigger except. elif (width == 1): # Reshape "2D single columns" to “3D of 2D single columns.” samples_to_fit = samples_to_fit.reshape(1, samples_to_fit.shape[0], 1) # Fit against each 2D array within the 3D array. for i, arr in enumerate(samples_to_fit): fit_encoder = sklearn_preprocess.fit(arr) fitted_encoders.append(fit_encoder) except: # At this point, "2D single column" has failed. try: # So reshape the "3D of 2D_singleColumn" into "2D of 1D for each column." # This transformation is tested for both (width==1) as well as (width>1). samples_to_fit = samples_to_fit.transpose(2,0,1)[0] # Fit against each column in 2D array. for i, arr in enumerate(samples_to_fit): fit_encoder = sklearn_preprocess.fit(arr) fitted_encoders.append(fit_encoder) except: raise ValueError(dedent(f""" Yikes - Encoder failed to fit the columns you filtered.\n Either the data is dirty (e.g. contains NaNs), or the encoder might not accept negative values (e.g. PowerTransformer.method='box-cox'), or you used one of the incompatible combinations of data type and encoder seen below:\n {incompatibilities} """)) else: encoding_dimension = "1D" else: encoding_dimension = "2D_singleColumn" else: encoding_dimension = "2D_multiColumn" return fitted_encoders, encoding_dimension def if_1d_make_2d(array:object): if (len(array.shape) == 1): array = array.reshape(array.shape[0], 1) return array def transform_dynamicDimensions( fitted_encoders:list , encoding_dimension:str , samples_to_transform:object ): """ - UPDATE: after disabling LabelBinarizer and LabelEncoder from running on multiple columns, everything seems to be fitting as "2D_multiColumn", but let's keep the logic for new sklearn methods. """ if (encoding_dimension == '2D_multiColumn'): # Our `to_numpy` method fetches data as 2D. So it has 1+ columns. encoded_samples = fitted_encoders[0].transform(samples_to_transform) encoded_samples = Labelcoder.if_1d_make_2d(array=encoded_samples) elif (encoding_dimension == '2D_singleColumn'): # Means that `2D_multiColumn` arrays cannot be used as is. width = samples_to_transform.shape[1] if (width == 1): # It's already "2D_singleColumn" encoded_samples = fitted_encoders[0].transform(samples_to_transform) encoded_samples = Labelcoder.if_1d_make_2d(array=encoded_samples) elif (width > 1): # Data must be fed into encoder as separate '2D_singleColumn' arrays. # Reshape "2D many columns" to “3D of 2D singleColumns” so we can loop on it. encoded_samples = samples_to_transform[None].T encoded_arrs = [] for i, arr in enumerate(encoded_samples): encoded_arr = fitted_encoders[i].transform(arr) encoded_arr = Labelcoder.if_1d_make_2d(array=encoded_arr) encoded_arrs.append(encoded_arr) encoded_samples = np.array(encoded_arrs).T # From "3D of 2Ds" to "2D wide" # When `encoded_samples` was accidentally a 3D shape, this fixed it: """ if (len(encoded_samples.shape) == 3): encoded_samples = encoded_samples.transpose( 1,0,2 ).reshape( # where index represents dimension. encoded_samples.shape[1], encoded_samples.shape[0]*encoded_samples.shape[2] ) """ del encoded_arrs elif (encoding_dimension == '1D'): # From "2D_multiColumn" to "2D with 1D for each column" # This `.T` works for both single and multi column. encoded_samples = samples_to_transform.T # Since each column is 1D, we care about rows now. length = encoded_samples.shape[0] if (length == 1): encoded_samples = fitted_encoders[0].transform(encoded_samples) # Some of these 1D encoders also output 1D. # Need to put it back into 2D. encoded_samples = Labelcoder.if_1d_make_2d(array=encoded_samples) elif (length > 1): encoded_arrs = [] for i, arr in enumerate(encoded_samples): encoded_arr = fitted_encoders[i].transform(arr) # Check if it is 1D before appending. encoded_arr = Labelcoder.if_1d_make_2d(array=encoded_arr) encoded_arrs.append(encoded_arr) # From "3D of 2D_singleColumn" to "2D_multiColumn" encoded_samples = np.array(encoded_arrs).T del encoded_arrs return encoded_samples class Featurecoder(BaseModel): """ - An Encoderset can have a chain of Featurecoders. - Encoders are applied sequential, meaning the columns encoded by `featurecoder_index=0` are not available to `featurecoder_index=1`. - Much validation because real-life encoding errors are cryptic and deep for beginners. """ featurecoder_index = IntegerField() sklearn_preprocess = PickleField() matching_columns = JSONField() leftover_columns = JSONField() leftover_dtypes = JSONField() original_filter = JSONField() encoding_dimension = CharField() only_fit_train = BooleanField() is_categorical = BooleanField() encoderset = ForeignKeyField(Encoderset, backref='featurecoders') def from_encoderset( encoderset_id:int , sklearn_preprocess:object , include:bool = True , dtypes:list = None , columns:list = None , verbose:bool = True ): encoderset = Encoderset.get_by_id(encoderset_id) dtypes = listify(dtypes) columns = listify(columns) feature = encoderset.feature feature_cols = feature.columns feature_dtypes = feature.get_dtypes() existing_featurecoders = list(encoderset.featurecoders) dataset = feature.dataset dataset_type = dataset.dataset_type # 1. Figure out which columns have yet to be encoded. # Order-wise no need to validate filters if there are no columns left to filter. # Remember Feature columns are a subset of the Dataset columns. if (len(existing_featurecoders) == 0): initial_columns = feature_cols featurecoder_index = 0 elif (len(existing_featurecoders) > 0): # Get the leftover columns from the last one. initial_columns = existing_featurecoders[-1].leftover_columns featurecoder_index = existing_featurecoders[-1].featurecoder_index + 1 if (len(initial_columns) == 0): raise ValueError("\nYikes - All features already have encoders associated with them. Cannot add more Featurecoders to this Encoderset.\n") initial_dtypes = {} for key,value in feature_dtypes.items(): for col in initial_columns: if (col == key): initial_dtypes[col] = value # Exit `c` loop early becuase matching `c` found. break if (verbose == True): print(f"\n___/ featurecoder_index: {featurecoder_index} \\_________\n") # Intentionally no trailing `\n`. # 2. Validate the lists of dtypes and columns provided as filters. if (dataset_type == "image"): raise ValueError("\nYikes - `Dataset.dataset_type=='image'` does not support encoding Feature.\n") sklearn_preprocess, only_fit_train, is_categorical = Labelcoder.check_sklearn_attributes( sklearn_preprocess, is_label=False ) if (dtypes is not None): for typ in dtypes: if (typ not in set(initial_dtypes.values())): raise ValueError(dedent(f""" Yikes - dtype '{typ}' was not found in remaining dtypes. Remove '{typ}' from `dtypes` and try again. """)) if (columns is not None): for c in columns: if (col not in initial_columns): raise ValueError(dedent(f""" Yikes - Column '{col}' was not found in remaining columns. Remove '{col}' from `columns` and try again. """)) # 3a. Figure out which columns the filters apply to. if (include==True): # Add to this empty list via inclusion. matching_columns = [] if ((dtypes is None) and (columns is None)): raise ValueError("\nYikes - When `include==True`, either `dtypes` or `columns` must be provided.\n") if (dtypes is not None): for typ in dtypes: for key,value in initial_dtypes.items(): if (value == typ): matching_columns.append(key) # Don't `break`; there can be more than one match. if (columns is not None): for c in columns: # Remember that the dtype has already added some columns. if (c not in matching_columns): matching_columns.append(c) elif (c in matching_columns): # We know from validation above that the column existed in initial_columns. # Therefore, if it no longer exists it means that dtype_exclude got to it first. raise ValueError(dedent(f""" Yikes - The column '{c}' was already included by `dtypes`, so this column-based filter is not valid. Remove '{c}' from `columns` and try again. """)) elif (include==False): # Prune this list via exclusion. matching_columns = initial_columns.copy() if (dtypes is not None): for typ in dtypes: for key,value in initial_dtypes.items(): if (value == typ): matching_columns.remove(key) # Don't `break`; there can be more than one match. if (columns is not None): for c in columns: # Remember that the dtype has already pruned some columns. if (c in matching_columns): matching_columns.remove(c) elif (c not in matching_columns): # We know from validation above that the column existed in initial_columns. # Therefore, if it no longer exists it means that dtype_exclude got to it first. raise ValueError(dedent(f""" Yikes - The column '{c}' was already excluded by `dtypes`, so this column-based filter is not valid. Remove '{c}' from `dtypes` and try again. """)) if (len(matching_columns) == 0): if (include == True): inex_str = "inclusion" elif (include == False): inex_str = "exclusion" raise ValueError(f"\nYikes - There are no columns left to use after applying the dtype and column {inex_str} filters.\n") elif ( ( (str(sklearn_preprocess).startswith("LabelBinarizer")) or (str(sklearn_preprocess).startswith("LabelEncoder")) ) and (len(matching_columns) > 1) ): raise ValueError(dedent(""" Yikes - `LabelBinarizer` or `LabelEncoder` cannot be run on multiple columns at once. We have frequently observed inconsistent behavior where they often ouput incompatible array shapes that cannot be scalable concatenated, or they succeed in fitting, but fail at transforming. We recommend you either use these with 1 column at a time or switch to another encoder. """)) # 3b. Record the output. leftover_columns = list(set(initial_columns) - set(matching_columns)) # This becomes leftover_dtypes. for c in matching_columns: del initial_dtypes[c] original_filter = { 'include': include , 'dtypes': dtypes , 'columns': columns } # 4. Test fitting the encoder to matching columns. samples_to_encode = feature.to_numpy(columns=matching_columns) # Handles `Dataset.Sequence` by stacking the 2D arrays into a tall 2D array. features_shape = samples_to_encode.shape if (len(features_shape)==3): rows_2D = features_shape[0] * features_shape[1] samples_to_encode = samples_to_encode.reshape(rows_2D, features_shape[2]) fitted_encoders, encoding_dimension = Labelcoder.fit_dynamicDimensions( sklearn_preprocess = sklearn_preprocess , samples_to_fit = samples_to_encode ) # 5. Test encoding the whole dataset using fitted encoder on matching columns. try: Labelcoder.transform_dynamicDimensions( fitted_encoders = fitted_encoders , encoding_dimension = encoding_dimension , samples_to_transform = samples_to_encode ) except: raise ValueError(dedent(""" During testing, the encoder was successfully `fit()` on the features, but, it failed to `transform()` features of the dataset as a whole.\n """)) else: pass featurecoder = Featurecoder.create( featurecoder_index = featurecoder_index , only_fit_train = only_fit_train , is_categorical = is_categorical , sklearn_preprocess = sklearn_preprocess , matching_columns = matching_columns , leftover_columns = leftover_columns , leftover_dtypes = initial_dtypes#pruned , original_filter = original_filter , encoderset = encoderset , encoding_dimension = encoding_dimension ) if (verbose == True): print( f"=> The column(s) below matched your filter(s) and were ran through a test-encoding successfully.\n\n" \ f"{matching_columns}\n" ) if (len(leftover_columns) == 0): print( f"=> Done. All feature column(s) have encoder(s) associated with them.\n" \ f"No more Featurecoders can be added to this Encoderset.\n" ) elif (len(leftover_columns) > 0): print( f"=> The remaining column(s) and dtype(s) can be used in downstream Featurecoder(s):\n" \ f"{pprint.pformat(initial_dtypes)}\n" ) return featurecoder class Algorithm(BaseModel): """ - Remember, pytorch and mxnet handle optimizer/loss outside the model definition as part of the train. - Could do a `.py` file as an alternative to Pickle. - Currently waiting for coleifer to accept prospect of a DillField https://github.com/coleifer/peewee/issues/2385 """ library = CharField() analysis_type = CharField()#classification_multi, classification_binary, regression, clustering. fn_build = BlobField() fn_lose = BlobField() # null? do unsupervised algs have loss? fn_optimize = BlobField() fn_train = BlobField() fn_predict = BlobField() # --- used by `select_fn_lose()` --- def keras_regression_lose(**hp): loser = keras.losses.MeanAbsoluteError() return loser def keras_binary_lose(**hp): loser = keras.losses.BinaryCrossentropy() return loser def keras_multiclass_lose(**hp): loser = keras.losses.CategoricalCrossentropy() return loser def pytorch_binary_lose(**hp): loser = torch.nn.BCELoss() return loser def pytorch_multiclass_lose(**hp): # ptrckblck says `nn.NLLLoss()` will work too. loser = torch.nn.CrossEntropyLoss() return loser def pytorch_regression_lose(**hp): loser = torch.nn.L1Loss()#mean absolute error. return loser # --- used by `select_fn_optimize()` --- """ - Eventually could help the user select an optimizer based on topology (e.g. depth), but Adamax works great for me everywhere. - `**hp` needs to be included because that's how it is called in training loop. """ def keras_optimize(**hp): optimizer = keras.optimizers.Adamax(learning_rate=0.01) return optimizer def pytorch_optimize(model, **hp): optimizer = torch.optim.Adamax(model.parameters(),lr=0.01) return optimizer # --- used by `select_fn_predict()` --- def keras_multiclass_predict(model, samples_predict): # Shows the probabilities of each class coming out of softmax neurons: # array([[9.9990356e-01, 9.6374511e-05, 3.3754202e-10],...]) probabilities = model.predict(samples_predict['features']) # This is the official keras replacement for multiclass `.predict_classes()` # Returns one ordinal array per sample: `[[0][1][2][3]]` prediction = np.argmax(probabilities, axis=-1) return prediction, probabilities def keras_binary_predict(model, samples_predict): # Sigmoid output is between 0 and 1. # It's not technically a probability, but it is still easy to interpret. probability = model.predict(samples_predict['features']) # This is the official keras replacement for binary classes `.predict_classes()`. # Returns one array per sample: `[[0][1][0][1]]`. prediction = (probability > 0.5).astype("int32") return prediction, probability def keras_regression_predict(model, samples_predict): prediction = model.predict(samples_predict['features']) # ^ Output is a single value, not `probability, prediction` return prediction def pytorch_binary_predict(model, samples_predict): probability = model(samples_predict['features']) # Convert tensor back to numpy for AIQC metrics. probability = probability.detach().numpy() prediction = (probability > 0.5).astype("int32") # Both objects are numpy. return prediction, probability def pytorch_multiclass_predict(model, samples_predict): probabilities = model(samples_predict['features']) # Convert tensor back to numpy for AIQC metrics. probabilities = probabilities.detach().numpy() prediction = np.argmax(probabilities, axis=-1) # Both objects are numpy. return prediction, probabilities def pytorch_regression_predict(model, samples_predict): prediction = model(samples_predict['features']).detach().numpy() return prediction def select_fn_lose( library:str, analysis_type:str ): fn_lose = None if (library == 'keras'): if (analysis_type == 'regression'): fn_lose = Algorithm.keras_regression_lose elif (analysis_type == 'classification_binary'): fn_lose = Algorithm.keras_binary_lose elif (analysis_type == 'classification_multi'): fn_lose = Algorithm.keras_multiclass_lose elif (library == 'pytorch'): if (analysis_type == 'regression'): fn_lose = Algorithm.pytorch_regression_lose elif (analysis_type == 'classification_binary'): fn_lose = Algorithm.pytorch_binary_lose elif (analysis_type == 'classification_multi'): fn_lose = Algorithm.pytorch_multiclass_lose # After each of the predefined approaches above, check if it is still undefined. if fn_lose is None: raise ValueError(dedent(""" Yikes - You did not provide a `fn_lose`, and we don't have an automated function for your combination of 'library' and 'analysis_type' """)) return fn_lose def select_fn_optimize(library:str): fn_optimize = None if (library == 'keras'): fn_optimize = Algorithm.keras_optimize elif (library == 'pytorch'): fn_optimize = Algorithm.pytorch_optimize # After each of the predefined approaches above, check if it is still undefined. if (fn_optimize is None): raise ValueError(dedent(""" Yikes - You did not provide a `fn_optimize`, and we don't have an automated function for your 'library' """)) return fn_optimize def select_fn_predict( library:str, analysis_type:str ): fn_predict = None if (library == 'keras'): if (analysis_type == 'classification_multi'): fn_predict = Algorithm.keras_multiclass_predict elif (analysis_type == 'classification_binary'): fn_predict = Algorithm.keras_binary_predict elif (analysis_type == 'regression'): fn_predict = Algorithm.keras_regression_predict elif (library == 'pytorch'): if (analysis_type == 'classification_multi'): fn_predict = Algorithm.pytorch_multiclass_predict elif (analysis_type == 'classification_binary'): fn_predict = Algorithm.pytorch_binary_predict elif (analysis_type == 'regression'): fn_predict = Algorithm.pytorch_regression_predict # After each of the predefined approaches above, check if it is still undefined. if fn_predict is None: raise ValueError(dedent(""" Yikes - You did not provide a `fn_predict`, and we don't have an automated function for your combination of 'library' and 'analysis_type' """)) return fn_predict def make( library:str , analysis_type:str , fn_build:object , fn_train:object , fn_predict:object = None , fn_lose:object = None , fn_optimize:object = None , description:str = None ): library = library.lower() if ((library != 'keras') and (library != 'pytorch')): raise ValueError("\nYikes - Right now, the only libraries we support are 'keras' and 'pytorch'\nMore to come soon!\n") analysis_type = analysis_type.lower() supported_analyses = ['classification_multi', 'classification_binary', 'regression'] if (analysis_type not in supported_analyses): raise ValueError(f"\nYikes - Right now, the only analytics we support are:\n{supported_analyses}\n") if (fn_predict is None): fn_predict = Algorithm.select_fn_predict( library=library, analysis_type=analysis_type ) if (fn_optimize is None): fn_optimize = Algorithm.select_fn_optimize(library=library) if (fn_lose is None): fn_lose = Algorithm.select_fn_lose( library=library, analysis_type=analysis_type ) funcs = [fn_build, fn_optimize, fn_train, fn_predict, fn_lose] for i, f in enumerate(funcs): is_func = callable(f) if (not is_func): raise ValueError(f"\nYikes - The following variable is not a function, it failed `callable(variable)==True`:\n\n{f}\n") fn_build = dill_serialize(fn_build) fn_optimize = dill_serialize(fn_optimize) fn_train = dill_serialize(fn_train) fn_predict = dill_serialize(fn_predict) fn_lose = dill_serialize(fn_lose) algorithm = Algorithm.create( library = library , analysis_type = analysis_type , fn_build = fn_build , fn_optimize = fn_optimize , fn_train = fn_train , fn_predict = fn_predict , fn_lose = fn_lose , description = description ) return algorithm def make_hyperparamset( id:int , hyperparameters:dict , description:str = None , pick_count:int = None , pick_percent:float = None ): hyperparamset = Hyperparamset.from_algorithm( algorithm_id = id , hyperparameters = hyperparameters , description = description , pick_count = pick_count , pick_percent = pick_percent ) return hyperparamset def make_queue( id:int , splitset_id:int , repeat_count:int = 1 , hyperparamset_id:int = None , foldset_id:int = None , hide_test:bool = False ): queue = Queue.from_algorithm( algorithm_id = id , splitset_id = splitset_id , hyperparamset_id = hyperparamset_id , foldset_id = foldset_id , repeat_count = repeat_count , hide_test = hide_test ) return queue class Hyperparamset(BaseModel): """ - Not glomming this together with Algorithm and Preprocess because you can keep the Algorithm the same, while running many different queues of hyperparams. - An algorithm does not have to have a hyperparamset. It can used fixed parameters. - `repeat_count` is the number of times to run a model, sometimes you just get stuck at local minimas. - `param_count` is the number of paramets that are being hypertuned. - `possible_combos_count` is the number of possible combinations of parameters. - On setting kwargs with `**` and a dict: https://stackoverflow.com/a/29028601/5739514 """ description = CharField(null=True) hyperparamcombo_count = IntegerField() #strategy = CharField() # set to all by default #all/ random. this would generate a different dict with less params to try that should be persisted for transparency. hyperparameters = JSONField() algorithm = ForeignKeyField(Algorithm, backref='hyperparamsets') def from_algorithm( algorithm_id:int , hyperparameters:dict , description:str = None , pick_count:int = None , pick_percent:float = None ): if ((pick_count is not None) and (pick_percent is not None)): raise ValueError("Yikes - Either `pick_count` or `pick_percent` can be provided, but not both.") algorithm = Algorithm.get_by_id(algorithm_id) # Construct the hyperparameter combinations params_names = list(hyperparameters.keys()) params_lists = list(hyperparameters.values()) # Make sure they are actually lists. for i, pl in enumerate(params_lists): params_lists[i] = listify(pl) # From multiple lists, come up with every unique combination. params_combos = list(itertools.product(*params_lists)) hyperparamcombo_count = len(params_combos) params_combos_dicts = [] # Dictionary comprehension for making a dict from two lists. for params in params_combos: params_combos_dict = {params_names[i]: params[i] for i in range(len(params_names))} params_combos_dicts.append(params_combos_dict) # These are the random selection strategies. if (pick_count is not None): if (pick_count < 1): raise ValueError(f"\nYikes - pick_count:<{pick_count}> cannot be less than 1.\n") elif (pick_count > hyperparamcombo_count): print(f"\nInfo - pick_count:<{pick_count}> greater than the number of hyperparameter combinations:<{hyperparamcombo_count}>.\nProceeding with all combinations.\n") else: # `sample` handles replacement. params_combos_dicts = random.sample(params_combos_dicts, pick_count) hyperparamcombo_count = len(params_combos_dicts) elif (pick_percent is not None): if ((pick_percent > 1.0) or (pick_percent <= 0.0)): raise ValueError(f"\nYikes - pick_percent:<{pick_percent}> must be between 0.0 and 1.0.\n") else: select_count = math.ceil(hyperparamcombo_count * pick_percent) params_combos_dicts = random.sample(params_combos_dicts, select_count) hyperparamcombo_count = len(params_combos_dicts) # Now that we have the metadata about combinations hyperparamset = Hyperparamset.create( algorithm = algorithm , description = description , hyperparameters = hyperparameters , hyperparamcombo_count = hyperparamcombo_count ) for i, c in enumerate(params_combos_dicts): Hyperparamcombo.create( combination_index = i , favorite = False , hyperparameters = c , hyperparamset = hyperparamset ) return hyperparamset class Hyperparamcombo(BaseModel): combination_index = IntegerField() favorite = BooleanField() hyperparameters = JSONField() hyperparamset = ForeignKeyField(Hyperparamset, backref='hyperparamcombos') def get_hyperparameters(id:int, as_pandas:bool=False): hyperparamcombo = Hyperparamcombo.get_by_id(id) hyperparameters = hyperparamcombo.hyperparameters params = [] for k,v in hyperparameters.items(): param = {"param":k, "value":v} params.append(param) if (as_pandas==True): df = pd.DataFrame.from_records(params, columns=['param','value']) return df elif (as_pandas==False): return hyperparameters class Plot(): """ Data is prepared in the Queue and Predictor classes before being fed into the methods below. """ def __init__(self): self.plot_template = dict(layout=go.Layout( font=dict(family='Avenir', color='#FAFAFA'), title=dict(x=0.05, y=0.95), titlefont=dict(family='Avenir'), plot_bgcolor='#181B1E', paper_bgcolor='#181B1E', hovermode='closest', hoverlabel=dict( bgcolor="#0F0F0F", font=dict( family="Avenir", size=15 ) ))) def performance(self, dataframe:object): # The 2nd metric is the last name_metric_2 = dataframe.columns.tolist()[-1] if (name_metric_2 == "accuracy"): display_metric_2 = "Accuracy" elif (name_metric_2 == "r2"): display_metric_2 = "R²" else: raise ValueError(dedent(f""" Yikes - The name of the 2nd metric to plot was neither 'accuracy' nor 'r2'. You provided: {name_metric_2}. The 2nd metric is supposed to be the last column of the dataframe provided. """)) fig = px.line( dataframe , title = 'Models Metrics by Split' , x = 'loss' , y = name_metric_2 , color = 'predictor_id' , height = 600 , hover_data = ['predictor_id', 'split', 'loss', name_metric_2] , line_shape='spline' ) fig.update_traces( mode = 'markers+lines' , line = dict(width = 2) , marker = dict( size = 8 , line = dict( width = 2 , color = 'white' ) ) ) fig.update_layout( xaxis_title = "Loss" , yaxis_title = display_metric_2 , template = self.plot_template ) fig.update_xaxes(zeroline=False, gridcolor='#262B2F', tickfont=dict(color='#818487')) fig.update_yaxes(zeroline=False, gridcolor='#262B2F', tickfont=dict(color='#818487')) fig.show() def learning_curve(self, dataframe:object, analysis_type:str, loss_skip_15pct:bool=False): """Dataframe rows are epochs and columns are metric names.""" # Spline seems to crash with too many points. if (dataframe.shape[0] >= 400): line_shape = 'linear' elif (dataframe.shape[0] < 400): line_shape = 'spline' df_loss = dataframe[['loss','val_loss']] df_loss = df_loss.rename(columns={"loss": "train_loss", "val_loss": "validation_loss"}) df_loss = df_loss.round(3) if loss_skip_15pct: df_loss = df_loss.tail(round(df_loss.shape[0]*.85)) fig_loss = px.line( df_loss , title = 'Training History: Loss' , line_shape = line_shape ) fig_loss.update_layout( xaxis_title = "Epochs" , yaxis_title = "Loss" , legend_title = None , template = self.plot_template , height = 400 , yaxis = dict( side = "right" , tickmode = 'auto'# When loss is initially high, the 0.1 tickmarks are overwhelming. , tick0 = -1 , nticks = 9 ) , legend = dict( orientation="h" , yanchor="bottom" , y=1.02 , xanchor="right" , x=1 ) , margin = dict( t = 5 , b = 0 ), ) fig_loss.update_xaxes(zeroline=False, gridcolor='#262B2F', tickfont=dict(color='#818487')) fig_loss.update_yaxes(zeroline=False, gridcolor='#262B2F', tickfont=dict(color='#818487')) if ("classification" in analysis_type): df_acc = dataframe[['accuracy', 'val_accuracy']] df_acc = df_acc.rename(columns={"accuracy": "train_accuracy", "val_accuracy": "validation_accuracy"}) df_acc = df_acc.round(3) fig_acc = px.line( df_acc , title = 'Training History: Accuracy' , line_shape = line_shape ) fig_acc.update_layout( xaxis_title = "Epochs" , yaxis_title = "accuracy" , legend_title = None , height = 400 , template = self.plot_template , yaxis = dict( side = "right" , tickmode = 'linear' , tick0 = 0.0 , dtick = 0.05 ) , legend = dict( orientation="h" , yanchor="bottom" , y=1.02 , xanchor="right" , x=1 ) , margin = dict( t = 5 ), ) fig_acc.update_xaxes(zeroline=False, gridcolor='#262B2F', tickfont=dict(color='#818487')) fig_acc.update_yaxes(zeroline=False, gridcolor='#262B2F', tickfont=dict(color='#818487')) fig_acc.show() fig_loss.show() def confusion_matrix(self, cm_by_split, labels): for split, cm in cm_by_split.items(): # change each element of z to type string for annotations cm_text = [[str(y) for y in x] for x in cm] # set up figure fig = ff.create_annotated_heatmap( cm , x=labels , y=labels , annotation_text=cm_text , colorscale=px.colors.sequential.BuGn , showscale=True , colorbar={"title": 'Count'}) # add custom xaxis title fig.add_annotation(dict(font=dict(color="white", size=12), x=0.5, y=1.2, showarrow=False, text="Predicted Label", xref="paper", yref="paper")) # add custom yaxis title fig.add_annotation(dict(font=dict(color="white", size=12), x=-0.4, y=0.5, showarrow=False, text="Actual Label", textangle=-90, xref="paper", yref="paper")) fig.update_layout( title=f"Confusion Matrix: {split.capitalize()}" , legend_title='Sample Count' , template=self.plot_template , height=375 # if too small, it won't render in Jupyter. , width=850 , yaxis=dict( tickmode='linear' , tick0=0.0 , dtick=1.0 , tickfont = dict( size=10 ) ) , xaxis=dict( categoryorder='category descending', tickfont=dict( size=10 ) ) , margin=dict( r=325 , l=325 ) ) fig.update_traces(hovertemplate = """predicted: %{x}<br>actual: %{y}<br>count: %{z}<extra></extra>""") fig.show() def precision_recall(self, dataframe:object): fig = px.line( dataframe , x = 'recall' , y = 'precision' , color = 'split' , title = 'Precision-Recall Curves' ) fig.update_layout( legend_title = None , template = self.plot_template , height = 500 , yaxis = dict( side = "right" , tickmode = 'linear' , tick0 = 0.0 , dtick = 0.05 ) , legend = dict( orientation="h" , yanchor="bottom" , y=1.02 , xanchor="right" , x=1 ) ) fig.update_xaxes(zeroline=False, gridcolor='#262B2F', tickfont=dict(color='#818487')) fig.update_yaxes(zeroline=False, gridcolor='#262B2F', tickfont=dict(color='#818487')) fig.show() def roc_curve(self, dataframe:object): fig = px.line( dataframe , x = 'fpr' , y = 'tpr' , color = 'split' , title = 'Receiver Operating Characteristic (ROC) Curves' ) fig.update_layout( legend_title = None , template = self.plot_template , height = 500 , xaxis = dict( title = "False Positive Rate (FPR)" , tick0 = 0.00 , range = [-0.025,1] ) , yaxis = dict( title = "True Positive Rate (TPR)" , side = "left" , tickmode = 'linear' , tick0 = 0.00 , dtick = 0.05 , range = [0,1.05] ) , legend = dict( orientation="h" , yanchor="bottom" , y=1.02 , xanchor="right" , x=1 ) , shapes=[ dict( type = 'line' , y0=0, y1=1 , x0=0, x1=1 , line = dict(dash='dot', width=2, color='#3b4043') )] ) fig.update_xaxes(zeroline=False, gridcolor='#262B2F', tickfont=dict(color='#818487')) fig.update_yaxes(zeroline=False, gridcolor='#262B2F', tickfont=dict(color='#818487')) fig.show() class Queue(BaseModel): repeat_count = IntegerField() run_count = IntegerField() hide_test = BooleanField() algorithm = ForeignKeyField(Algorithm, backref='queues') splitset = ForeignKeyField(Splitset, backref='queues') hyperparamset = ForeignKeyField(Hyperparamset, deferrable='INITIALLY DEFERRED', null=True, backref='queues') foldset = ForeignKeyField(Foldset, deferrable='INITIALLY DEFERRED', null=True, backref='queues') def from_algorithm( algorithm_id:int , splitset_id:int , repeat_count:int = 1 , hide_test:bool=False , hyperparamset_id:int = None , foldset_id:int = None ): algorithm = Algorithm.get_by_id(algorithm_id) library = algorithm.library splitset = Splitset.get_by_id(splitset_id) if (foldset_id is not None): foldset = Foldset.get_by_id(foldset_id) # Future: since unsupervised won't have a Label for flagging the analysis type, I am going to keep the `Algorithm.analysis_type` attribute for now. if (splitset.supervision == 'supervised'): # Validate combinations of alg.analysis_type, lbl.col_count, lbl.dtype, split/fold.bin_count analysis_type = algorithm.analysis_type label_col_count = splitset.label.column_count label_dtypes = list(splitset.label.get_dtypes().values()) labelcoder = splitset.label.get_latest_labelcoder() if (labelcoder is not None): stringified_labelcoder = str(labelcoder.sklearn_preprocess) else: stringified_labelcoder = None if (label_col_count == 1): label_dtype = label_dtypes[0] if ('classification' in analysis_type): if (np.issubdtype(label_dtype, np.floating)): raise ValueError("Yikes - Cannot have `Algorithm.analysis_type!='regression`, when Label dtype falls under `np.floating`.") if (labelcoder is not None): if (labelcoder.is_categorical == False): raise ValueError(dedent(f""" Yikes - `Algorithm.analysis_type=='classification_*'`, but `Labelcoder.sklearn_preprocess={stringified_labelcoder}` was not found in known 'classification' encoders: {categorical_encoders} """)) if ('_binary' in analysis_type): # Prevent OHE w classification_binary if (stringified_labelcoder.startswith("OneHotEncoder")): raise ValueError(dedent(""" Yikes - `Algorithm.analysis_type=='classification_binary', but `Labelcoder.sklearn_preprocess.startswith('OneHotEncoder')`. This would result in a multi-column output, but binary classification needs a single column output. Go back and make a Labelcoder with single column output preprocess like `Binarizer()` instead. """)) elif ('_multi' in analysis_type): if (library == 'pytorch'): # Prevent OHE w pytorch. if (stringified_labelcoder.startswith("OneHotEncoder")): raise ValueError(dedent(""" Yikes - `(analysis_type=='classification_multi') and (library == 'pytorch')`, but `Labelcoder.sklearn_preprocess.startswith('OneHotEncoder')`. This would result in a multi-column OHE output. However, neither `nn.CrossEntropyLoss` nor `nn.NLLLoss` support multi-column input. Go back and make a Labelcoder with single column output preprocess like `OrdinalEncoder()` instead. """)) elif (not stringified_labelcoder.startswith("OrdinalEncoder")): print(dedent(""" Warning - When `(analysis_type=='classification_multi') and (library == 'pytorch')` We recommend you use `sklearn.preprocessing.OrdinalEncoder()` as a Labelcoder. """)) else: if (not stringified_labelcoder.startswith("OneHotEncoder")): print(dedent(""" Warning - When performing non-PyTorch, multi-label classification on a single column, we recommend you use `sklearn.preprocessing.OneHotEncoder()` as a Labelcoder. """)) elif ( (labelcoder is None) and ('_multi' in analysis_type) and (library != 'pytorch') ): print(dedent(""" Warning - When performing non-PyTorch, multi-label classification on a single column without using a Labelcoder, Algorithm must have user-defined `fn_lose`, `fn_optimize`, and `fn_predict`. We recommend you use `sklearn.preprocessing.OneHotEncoder()` as a Labelcoder instead. """)) if (splitset.bin_count is not None): print(dedent(""" Warning - `'classification' in Algorithm.analysis_type`, but `Splitset.bin_count is not None`. `bin_count` is meant for `Algorithm.analysis_type=='regression'`. """)) if (foldset_id is not None): # Not doing an `and` because foldset can't be accessed if it doesn't exist. if (foldset.bin_count is not None): print(dedent(""" Warning - `'classification' in Algorithm.analysis_type`, but `Foldset.bin_count is not None`. `bin_count` is meant for `Algorithm.analysis_type=='regression'`. """)) elif (analysis_type == 'regression'): if (labelcoder is not None): if (labelcoder.is_categorical == True): raise ValueError(dedent(f""" Yikes - `Algorithm.analysis_type=='regression'`, but `Labelcoder.sklearn_preprocess={stringified_labelcoder}` was found in known categorical encoders: {categorical_encoders} """)) if ( (not np.issubdtype(label_dtype, np.floating)) and (not np.issubdtype(label_dtype, np.unsignedinteger)) and (not np.issubdtype(label_dtype, np.signedinteger)) ): raise ValueError("Yikes - `Algorithm.analysis_type == 'regression'`, but label dtype was neither `np.floating`, `np.unsignedinteger`, nor `np.signedinteger`.") if (splitset.bin_count is None): print("Warning - `Algorithm.analysis_type == 'regression'`, but `bin_count` was not set when creating Splitset.") if (foldset_id is not None): if (foldset.bin_count is None): print("Warning - `Algorithm.analysis_type == 'regression'`, but `bin_count` was not set when creating Foldset.") if (splitset.bin_count is not None): print("Warning - `bin_count` was set for Splitset, but not for Foldset. This leads to inconsistent stratification across samples.") elif (foldset.bin_count is not None): if (splitset.bin_count is None): print("Warning - `bin_count` was set for Foldset, but not for Splitset. This leads to inconsistent stratification across samples.") # We already know these are OHE based on Label creation, so skip dtype, bin, and encoder checks. elif (label_col_count > 1): if (analysis_type != 'classification_multi'): raise ValueError("Yikes - `Label.column_count > 1` but `Algorithm.analysis_type != 'classification_multi'`.") elif ((splitset.supervision != 'supervised') and (hide_test==True)): raise ValueError("\nYikes - Cannot have `hide_test==True` if `splitset.supervision != 'supervised'`.\n") if (foldset_id is not None): foldset = Foldset.get_by_id(foldset_id) foldset_splitset = foldset.splitset if foldset_splitset != splitset: raise ValueError(f"\nYikes - The Foldset <id:{foldset_id}> and Splitset <id:{splitset_id}> you provided are not related.\n") folds = list(foldset.folds) else: # Just so we have an item to loop over as a null condition when creating Jobs. folds = [None] foldset = None if (hyperparamset_id is not None): hyperparamset = Hyperparamset.get_by_id(hyperparamset_id) combos = list(hyperparamset.hyperparamcombos) else: # Just so we have an item to loop over as a null condition when creating Jobs. combos = [None] hyperparamset = None # The null conditions set above (e.g. `[None]`) ensure multiplication by 1. run_count = len(combos) * len(folds) * repeat_count q = Queue.create( run_count = run_count , repeat_count = repeat_count , algorithm = algorithm , splitset = splitset , foldset = foldset , hyperparamset = hyperparamset , hide_test = hide_test ) for c in combos: if (foldset is not None): jobset = Jobset.create( repeat_count = repeat_count , queue = q , hyperparamcombo = c , foldset = foldset ) elif (foldset is None): jobset = None try: for f in folds: Job.create( queue = q , hyperparamcombo = c , fold = f , repeat_count = repeat_count , jobset = jobset ) except: if (foldset is not None): jobset.delete_instance() # Orphaned. raise return q def poll_statuses(id:int, as_pandas:bool=False): queue = Queue.get_by_id(id) repeat_count = queue.repeat_count statuses = [] for i in range(repeat_count): for j in queue.jobs: # Check if there is a Predictor with a matching repeat_index matching_predictor = Predictor.select().join(Job).join(Queue).where( Queue.id==queue.id, Job.id==j.id, Predictor.repeat_index==i ) if (len(matching_predictor) == 1): r_id = matching_predictor[0].id elif (len(matching_predictor) == 0): r_id = None job_dct = {"job_id":j.id, "repeat_index":i, "predictor_id": r_id} statuses.append(job_dct) if (as_pandas==True): df = pd.DataFrame.from_records(statuses, columns=['job_id', 'repeat_index', 'predictor_id']) return df.round() elif (as_pandas==False): return statuses def poll_progress(id:int, raw:bool=False, loop:bool=False, loop_delay:int=3): """ - For background_process execution where progress bar not visible. - Could also be used for cloud jobs though. """ if (loop==False): statuses = Queue.poll_statuses(id) total = len(statuses) done_count = len([s for s in statuses if s['predictor_id'] is not None]) percent_done = done_count / total if (raw==True): return percent_done elif (raw==False): done_pt05 = round(round(percent_done / 0.05) * 0.05, -int(math.floor(math.log10(0.05)))) bars_filled = int(done_pt05 * 20) bars_blank = 20 - bars_filled meter = '|' for i in range(bars_filled): meter += '██' for i in range(bars_blank): meter += '--' meter += '|' print(f"🔮 Training Models 🔮 {meter} {done_count}/{total} : {int(percent_done*100)}%") elif (loop==True): while (loop==True): statuses = Queue.poll_statuses(id) total = len(statuses) done_count = len([s for s in statuses if s['predictor_id'] is not None]) percent_done = done_count / total if (raw==True): return percent_done elif (raw==False): done_pt05 = round(round(percent_done / 0.05) * 0.05, -int(math.floor(math.log10(0.05)))) bars_filled = int(done_pt05 * 20) bars_blank = 20 - bars_filled meter = '|' for i in range(bars_filled): meter += '██' for i in range(bars_blank): meter += '--' meter += '|' print(f"🔮 Training Models 🔮 {meter} {done_count}/{total} : {int(percent_done*100)}%", end='\r') #print() if (done_count == total): loop = False os.system("say Model training completed") break time.sleep(loop_delay) def run_jobs(id:int, in_background:bool=False, verbose:bool=False): queue = Queue.get_by_id(id) # Quick check to make sure all predictors aren't already complete. run_count = queue.run_count predictor_count = Predictor.select().join(Job).join(Queue).where( Queue.id == queue.id).count() if (run_count == predictor_count): print("\nAll Jobs have already completed.\n") else: if (run_count > predictor_count > 0): print("\nResuming Jobs...\n") job_statuses = Queue.poll_statuses(id) if (in_background==True): proc_name = "aiqc_queue_" + str(queue.id) proc_names = [p.name for p in multiprocessing.active_children()] if (proc_name in proc_names): raise ValueError( f"\nYikes - Cannot start this Queue because multiprocessing.Process.name '{proc_name}' is already running." f"\nIf need be, you can kill the existing Process with `queue.stop_jobs()`.\n" ) # See notes at top of file about 'fork' vs 'spawn' proc = multiprocessing.Process( target = execute_jobs , name = proc_name , args = (job_statuses, verbose,) #Needs trailing comma. ) proc.start() # proc terminates when `execute_jobs` finishes. elif (in_background==False): try: for j in tqdm( job_statuses , desc = "🔮 Training Models 🔮" , ncols = 100 ): if (j['predictor_id'] is None): Job.run(id=j['job_id'], verbose=verbose, repeat_index=j['repeat_index']) except (KeyboardInterrupt): # So that we don't get nasty error messages when interrupting a long running loop. print("\nQueue was gracefully interrupted.\n") def stop_jobs(id:int): # SQLite is ACID (D = Durable). If transaction is interrupted mid-write, then it is rolled back. queue = Queue.get_by_id(id) proc_name = f"aiqc_queue_{queue.id}" current_procs = [p.name for p in multiprocessing.active_children()] if (proc_name not in current_procs): raise ValueError(f"\nYikes - Cannot terminate `multiprocessing.Process.name` '{proc_name}' because it is not running.\n") processes = multiprocessing.active_children() for p in processes: if (p.name == proc_name): try: p.terminate() except: raise Exception(f"\nYikes - Failed to terminate `multiprocessing.Process` '{proc_name}.'\n") else: print(f"\nKilled `multiprocessing.Process` '{proc_name}' spawned from aiqc.Queue <id:{queue.id}>\n") def metrics_to_pandas( id:int , selected_metrics:list=None , sort_by:list=None , ascending:bool=False ): queue = Queue.get_by_id(id) selected_metrics = listify(selected_metrics) sort_by = listify(sort_by) queue_predictions = Prediction.select().join( Predictor).join(Job).where(Job.queue==id ).order_by(Prediction.id) queue_predictions = list(queue_predictions) if (not queue_predictions): print(dedent(""" ~:: Patience, young Padawan ::~ Completed, your Jobs are not. So Predictors to be had, there are None. """)) return None metric_names = list(list(queue_predictions[0].metrics.values())[0].keys())#bad. if (selected_metrics is not None): for m in selected_metrics: if (m not in metric_names): raise ValueError(dedent(f""" Yikes - The metric '{m}' does not exist in `Predictor.metrics`. Note: the metrics available depend on the `Queue.analysis_type`. """)) elif (selected_metrics is None): selected_metrics = metric_names # Unpack the split data from each Predictor and tag it with relevant Queue metadata. split_metrics = [] for prediction in queue_predictions: predictor = prediction.predictor for split_name,metrics in prediction.metrics.items(): split_metric = {} if (predictor.job.hyperparamcombo is not None): split_metric['hyperparamcombo_id'] = predictor.job.hyperparamcombo.id elif (predictor.job.hyperparamcombo is None): split_metric['hyperparamcombo_id'] = None if (queue.foldset is not None): split_metric['jobset_id'] = predictor.job.jobset.id split_metric['fold_index'] = predictor.job.fold.fold_index split_metric['job_id'] = predictor.job.id if (predictor.job.repeat_count > 1): split_metric['repeat_index'] = predictor.repeat_index split_metric['predictor_id'] = prediction.id split_metric['split'] = split_name for metric_name,metric_value in metrics.items(): # Check whitelist. if metric_name in selected_metrics: split_metric[metric_name] = metric_value split_metrics.append(split_metric) column_names = list(split_metrics[0].keys()) if (sort_by is not None): for name in sort_by: if (name not in column_names): raise ValueError(f"\nYikes - Column '{name}' not found in metrics dataframe.\n") df = pd.DataFrame.from_records(split_metrics).sort_values( by=sort_by, ascending=ascending ) elif (sort_by is None): df = pd.DataFrame.from_records(split_metrics).sort_values( by=['predictor_id'], ascending=ascending ) return df def metrics_aggregate_to_pandas( id:int , ascending:bool=False , selected_metrics:list=None , selected_stats:list=None , sort_by:list=None ): selected_metrics = listify(selected_metrics) selected_stats = listify(selected_stats) sort_by = listify(sort_by) queue_predictions = Prediction.select().join( Predictor).join(Job).where(Job.queue==id ).order_by(Prediction.id) queue_predictions = list(queue_predictions) if (not queue_predictions): print("\n~:: Patience, young Padawan ::~\n\nThe Jobs have not completed yet, so there are no Predictors to be had.\n") return None metrics_aggregate = queue_predictions[0].metrics_aggregate metric_names = list(metrics_aggregate.keys()) stat_names = list(list(metrics_aggregate.values())[0].keys()) if (selected_metrics is not None): for m in selected_metrics: if (m not in metric_names): raise ValueError(dedent(f""" Yikes - The metric '{m}' does not exist in `Predictor.metrics_aggregate`. Note: the metrics available depend on the `Queue.analysis_type`. """)) elif (selected_metrics is None): selected_metrics = metric_names if (selected_stats is not None): for s in selected_stats: if (s not in stat_names): raise ValueError(f"\nYikes - The statistic '{s}' does not exist in `Predictor.metrics_aggregate`.\n") elif (selected_stats is None): selected_stats = stat_names predictions_stats = [] for prediction in queue_predictions: predictor = prediction.predictor for metric, stats in prediction.metrics_aggregate.items(): # Check whitelist. if (metric in selected_metrics): stats['metric'] = metric stats['predictor_id'] = prediction.id if (predictor.job.repeat_count > 1): stats['repeat_index'] = predictor.repeat_index if (predictor.job.fold is not None): stats['jobset_id'] = predictor.job.jobset.id stats['fold_index'] = predictor.job.fold.fold_index else: stats['job_id'] = predictor.job.id stats['hyperparamcombo_id'] = predictor.job.hyperparamcombo.id predictions_stats.append(stats) # Cannot edit dictionary while key-values are being accessed. for stat in stat_names: if (stat not in selected_stats): for s in predictions_stats: s.pop(stat)# Errors if not found. #Reverse the order of the dictionary keys. predictions_stats = [dict(reversed(list(d.items()))) for d in predictions_stats] column_names = list(predictions_stats[0].keys()) if (sort_by is not None): for name in sort_by: if (name not in column_names): raise ValueError(f"\nYikes - Column '{name}' not found in aggregate metrics dataframe.\n") df = pd.DataFrame.from_records(predictions_stats).sort_values( by=sort_by, ascending=ascending ) elif (sort_by is None): df = pd.DataFrame.from_records(predictions_stats) return df def plot_performance( id:int , max_loss:float=None , min_accuracy:float=None , min_r2:float=None ): """ Originally I had `min_metric_2` not `min_accuracy` and `min_r2`, but that would be confusing for users, so I went with informative erro messages instead. """ queue = Queue.get_by_id(id) analysis_type = queue.algorithm.analysis_type # Now we need to filter the df based on the specified criteria. if ("classification" in analysis_type): if (min_r2 is not None): raise ValueError("\nYikes - Cannot use argument `min_r2` if `'classification' in queue.analysis_type`.\n") if (min_accuracy is None): min_accuracy = 0.0 min_metric_2 = min_accuracy name_metric_2 = "accuracy" elif (analysis_type == 'regression'): if (min_accuracy is not None): raise ValueError("\nYikes - Cannot use argument `min_accuracy` if `queue.analysis_type='regression'`.\n") if (min_r2 is None): min_r2 = -1.0 min_metric_2 = min_r2 name_metric_2 = "r2" if (max_loss is None): max_loss = float('inf') df = queue.metrics_to_pandas() if (df is None): # Warning message handled by `metrics_to_pandas() above`. return None qry_str = "(loss >= {}) | ({} <= {})".format(max_loss, name_metric_2, min_metric_2) failed = df.query(qry_str) failed_runs = failed['predictor_id'].to_list() failed_runs_unique = list(set(failed_runs)) # Here the `~` inverts it to mean `.isNotIn()` df_passed = df[~df['predictor_id'].isin(failed_runs_unique)] df_passed = df_passed.round(3) dataframe = df_passed[['predictor_id', 'split', 'loss', name_metric_2]] if dataframe.empty: print("Yikes - There are no models that met the criteria specified.") else: Plot().performance(dataframe=dataframe) class Jobset(BaseModel): """ - Used to group cross-fold Jobs. - Union of Hyperparamcombo, Foldset, and Queue. """ repeat_count = IntegerField() foldset = ForeignKeyField(Foldset, backref='jobsets') hyperparamcombo = ForeignKeyField(Hyperparamcombo, backref='jobsets') queue = ForeignKeyField(Queue, backref='jobsets') class Job(BaseModel): """ - Gets its Algorithm through the Queue. - Saves its Model to a Predictor. """ repeat_count = IntegerField() #log = CharField() #catch & record stacktrace of failures and warnings? queue = ForeignKeyField(Queue, backref='jobs') hyperparamcombo = ForeignKeyField(Hyperparamcombo, deferrable='INITIALLY DEFERRED', null=True, backref='jobs') fold = ForeignKeyField(Fold, deferrable='INITIALLY DEFERRED', null=True, backref='jobs') jobset = ForeignKeyField(Jobset, deferrable='INITIALLY DEFERRED', null=True, backref='jobs') def split_classification_metrics(labels_processed, predictions, probabilities, analysis_type): if (analysis_type == "classification_binary"): average = "binary" roc_average = "micro" roc_multi_class = None elif (analysis_type == "classification_multi"): average = "weighted" roc_average = "weighted" roc_multi_class = "ovr" split_metrics = {} # Let the classification_multi labels hit this metric in OHE format. split_metrics['roc_auc'] = sklearn.metrics.roc_auc_score(labels_processed, probabilities, average=roc_average, multi_class=roc_multi_class) # Then convert the classification_multi labels ordinal format. if (analysis_type == "classification_multi"): labels_processed = np.argmax(labels_processed, axis=1) split_metrics['accuracy'] = sklearn.metrics.accuracy_score(labels_processed, predictions) split_metrics['precision'] = sklearn.metrics.precision_score(labels_processed, predictions, average=average, zero_division=0) split_metrics['recall'] = sklearn.metrics.recall_score(labels_processed, predictions, average=average, zero_division=0) split_metrics['f1'] = sklearn.metrics.f1_score(labels_processed, predictions, average=average, zero_division=0) return split_metrics def split_regression_metrics(labels, predictions): split_metrics = {} split_metrics['r2'] = sklearn.metrics.r2_score(labels, predictions) split_metrics['mse'] = sklearn.metrics.mean_squared_error(labels, predictions) split_metrics['explained_variance'] = sklearn.metrics.explained_variance_score(labels, predictions) return split_metrics def split_classification_plots(labels_processed, predictions, probabilities, analysis_type): predictions = predictions.flatten() probabilities = probabilities.flatten() split_plot_data = {} if (analysis_type == "classification_binary"): labels_processed = labels_processed.flatten() split_plot_data['confusion_matrix'] = sklearn.metrics.confusion_matrix(labels_processed, predictions) fpr, tpr, _ = sklearn.metrics.roc_curve(labels_processed, probabilities) precision, recall, _ = sklearn.metrics.precision_recall_curve(labels_processed, probabilities) elif (analysis_type == "classification_multi"): # Flatten OHE labels for use with probabilities. labels_flat = labels_processed.flatten() fpr, tpr, _ = sklearn.metrics.roc_curve(labels_flat, probabilities) precision, recall, _ = sklearn.metrics.precision_recall_curve(labels_flat, probabilities) # Then convert unflat OHE to ordinal format for use with predictions. labels_ordinal = np.argmax(labels_processed, axis=1) split_plot_data['confusion_matrix'] = sklearn.metrics.confusion_matrix(labels_ordinal, predictions) split_plot_data['roc_curve'] = {} split_plot_data['roc_curve']['fpr'] = fpr split_plot_data['roc_curve']['tpr'] = tpr split_plot_data['precision_recall_curve'] = {} split_plot_data['precision_recall_curve']['precision'] = precision split_plot_data['precision_recall_curve']['recall'] = recall return split_plot_data def encoder_fit_labels( arr_labels:object, samples_train:list, labelcoder:object ): """ - All Label columns are always used during encoding. - Rows determine what fit happens. """ if (labelcoder is not None): preproc = labelcoder.sklearn_preprocess if (labelcoder.only_fit_train == True): labels_to_fit = arr_labels[samples_train] elif (labelcoder.only_fit_train == False): labels_to_fit = arr_labels fitted_coders, encoding_dimension = Labelcoder.fit_dynamicDimensions( sklearn_preprocess = preproc , samples_to_fit = labels_to_fit ) # Save the fit. fitted_encoders = fitted_coders[0]#take out of list before adding to dict. return fitted_encoders def encoder_transform_labels( arr_labels:object, fitted_encoders:object, labelcoder:object ): encoding_dimension = labelcoder.encoding_dimension arr_labels = Labelcoder.transform_dynamicDimensions( fitted_encoders = [fitted_encoders] # `list(fitted_encoders)`, fails. , encoding_dimension = encoding_dimension , samples_to_transform = arr_labels ) return arr_labels def colIndices_from_colNames(column_names:list, desired_cols:list): desired_cols = listify(desired_cols) col_indices = [column_names.index(c) for c in desired_cols] return col_indices def cols_by_indices(arr:object, col_indices:list): # Input and output 2D array. Fetches a subset of columns using their indices. # In the future if this needs to be adjusted to handle 3D array `[:,col_indices,:]`. subset_arr = arr[:,col_indices] return subset_arr def encoderset_fit_features( arr_features:object, samples_train:list, encoderset:object ): featurecoders = list(encoderset.featurecoders) fitted_encoders = [] if (len(featurecoders) > 0): f_cols = encoderset.feature.columns # For each featurecoder: fetch, transform, & concatenate matching features. # One nested list per Featurecoder. List of lists. for featurecoder in featurecoders: preproc = featurecoder.sklearn_preprocess if (featurecoder.only_fit_train == True): features_to_fit = arr_features[samples_train] elif (featurecoder.only_fit_train == False): features_to_fit = arr_features # Handles `Dataset.Sequence` by stacking the 2D arrays into a tall 2D array. features_shape = features_to_fit.shape if (len(features_shape)==3): rows_2D = features_shape[0] * features_shape[1] features_to_fit = features_to_fit.reshape(rows_2D, features_shape[2]) # Only fit these columns. matching_columns = featurecoder.matching_columns # Get the indices of the desired columns. col_indices = Job.colIndices_from_colNames( column_names=f_cols, desired_cols=matching_columns ) # Filter the array using those indices. features_to_fit = Job.cols_by_indices(features_to_fit, col_indices) # Fit the encoder on the subset. fitted_coders, encoding_dimension = Labelcoder.fit_dynamicDimensions( sklearn_preprocess = preproc , samples_to_fit = features_to_fit ) fitted_encoders.append(fitted_coders) return fitted_encoders def encoderset_transform_features( arr_features:object, fitted_encoders:list, encoderset:object ): """ - Can't overwrite columns with data of different type (e.g. encoding object to int), so they have to be pieced together. """ featurecoders = list(encoderset.featurecoders) if (len(featurecoders) > 0): # Handle Sequence (part 1): reshape 3D to tall 2D for transformation. features_shape = arr_features.shape if (len(features_shape)==3): rows_2D = features_shape[0] * features_shape[1] arr_features = arr_features.reshape(rows_2D, features_shape[2]) f_cols = encoderset.feature.columns transformed_features = None #Used as a placeholder for `np.concatenate`. for featurecoder in featurecoders: idx = featurecoder.featurecoder_index fitted_coders = fitted_encoders[idx]# returns list encoding_dimension = featurecoder.encoding_dimension # Only transform these columns. matching_columns = featurecoder.matching_columns # Get the indices of the desired columns. col_indices = Job.colIndices_from_colNames( column_names=f_cols, desired_cols=matching_columns ) # Filter the array using those indices. features_to_transform = Job.cols_by_indices(arr_features, col_indices) if (idx == 0): # It's the first encoder. Nothing to concat with, so just overwite the None value. transformed_features = Labelcoder.transform_dynamicDimensions( fitted_encoders = fitted_coders , encoding_dimension = encoding_dimension , samples_to_transform = features_to_transform ) elif (idx > 0): encoded_features = Labelcoder.transform_dynamicDimensions( fitted_encoders = fitted_coders , encoding_dimension = encoding_dimension , samples_to_transform = features_to_transform ) # Then concatenate w previously encoded features. transformed_features = np.concatenate( (transformed_features, encoded_features) , axis = 1 ) # After all featurecoders run, merge in leftover, unencoded columns. leftover_columns = featurecoders[-1].leftover_columns if (len(leftover_columns) > 0): # Get the indices of the desired columns. col_indices = Job.colIndices_from_colNames( column_names=f_cols, desired_cols=leftover_columns ) # Filter the array using those indices. leftover_features = Job.cols_by_indices(arr_features, col_indices) transformed_features = np.concatenate( (transformed_features, leftover_features) , axis = 1 ) # Handle Sequence (part 2): reshape 3D to tall 2D for transformation. if (len(features_shape)==3): transformed_features = arr_features.reshape( features_shape[0], features_shape[1], features_shape[2] ) elif (len(featurecoders) == 0): transformed_features = arr_features return transformed_features def predict(samples:dict, predictor_id:int, splitset_id:int=None): """ Evaluation: predictions, metrics, charts for each split/fold. - Metrics are run against encoded data because they won't accept string data. - `splitset_id` refers to a splitset provided for inference, not training. """ predictor = Predictor.get_by_id(predictor_id) hyperparamcombo = predictor.job.hyperparamcombo algorithm = predictor.job.queue.algorithm library = algorithm.library analysis_type = algorithm.analysis_type # Access the 2nd level of the `samples:dict` to determine if it has Labels. first_key = list(samples.keys())[0] if ('labels' in samples[first_key].keys()): has_labels = True else: has_labels = False # Prepare the logic. model = predictor.get_model() if (algorithm.library == 'keras'): model = predictor.get_model() elif (algorithm.library == 'pytorch'): # Returns tuple(model,optimizer) model = predictor.get_model() model = model[0].eval() fn_predict = dill_deserialize(algorithm.fn_predict) if (hyperparamcombo is not None): hp = hyperparamcombo.hyperparameters elif (hyperparamcombo is None): hp = {} #`**` cannot be None. if (has_labels == True): fn_lose = dill_deserialize(algorithm.fn_lose) loser = fn_lose(**hp) if (loser is None): raise ValueError("\nYikes - `fn_lose` returned `None`.\nDid you include `return loser` at the end of the function?\n") predictions = {} probabilities = {} if (has_labels == True): metrics = {} plot_data = {} if ("classification" in analysis_type): for split, data in samples.items(): preds, probs = fn_predict(model, data) predictions[split] = preds probabilities[split] = probs # Outputs numpy. if (has_labels == True): # https://keras.io/api/losses/probabilistic_losses/ if (library == 'keras'): loss = loser(data['labels'], probs) elif (library == 'pytorch'): tz_probs = torch.FloatTensor(probs) if (algorithm.analysis_type == 'classification_binary'): loss = loser(tz_probs, data['labels']) # convert back to numpy for metrics and plots. data['labels'] = data['labels'].detach().numpy() elif (algorithm.analysis_type == 'classification_multi'): flat_labels = data['labels'].flatten().to(torch.long) loss = loser(tz_probs, flat_labels) # convert back to *OHE* numpy for metrics and plots. data['labels'] = data['labels'].detach().numpy() data['labels'] = keras.utils.to_categorical(data['labels']) metrics[split] = Job.split_classification_metrics( data['labels'], preds, probs, analysis_type ) metrics[split]['loss'] = float(loss) plot_data[split] = Job.split_classification_plots( data['labels'], preds, probs, analysis_type ) # During prediction Keras OHE output gets made ordinal for metrics. # Use the probabilities to recreate the OHE so they can be inverse_transform'ed. if (("multi" in analysis_type) and (library == 'keras')): predictions[split] = [] for p in probs: marker_position = np.argmax(p, axis=-1) empty_arr = np.zeros(len(p)) empty_arr[marker_position] = 1 predictions[split].append(empty_arr) predictions[split] = np.array(predictions[split]) elif (analysis_type == "regression"): # The raw output values *is* the continuous prediction itself. probs = None for split, data in samples.items(): preds = fn_predict(model, data) predictions[split] = preds # Outputs numpy. #https://keras.io/api/losses/regression_losses/ if (has_labels == True): if (library == 'keras'): loss = loser(data['labels'], preds) elif (library == 'pytorch'): tz_preds = torch.FloatTensor(preds) loss = loser(tz_preds, data['labels']) # After obtaining loss, make labels numpy again for metrics. data['labels'] = data['labels'].detach().numpy() # `preds` object is still numpy. # Numpy inputs. metrics[split] = Job.split_regression_metrics( data['labels'], preds ) metrics[split]['loss'] = float(loss) plot_data = None """ 4b. Format predictions for saving. - Decode predictions before saving. - Doesn't use any Label data, but does use Labelcoder fit on the original Labels. """ labelcoder, fitted_encoders = Predictor.get_fitted_labelcoder( job=predictor.job, label=predictor.job.queue.splitset.label ) if ((fitted_encoders is not None) and (hasattr(fitted_encoders, 'inverse_transform'))): for split, data in predictions.items(): # OHE is arriving here as ordinal, not OHE. data = Labelcoder.if_1d_make_2d(data) predictions[split] = fitted_encoders.inverse_transform(data) elif((fitted_encoders is not None) and (not hasattr(fitted_encoders, 'inverse_transform'))): print(dedent(""" Warning - `Predictor.predictions` are encoded. They cannot be decoded because the `sklearn.preprocessing` encoder used does not have `inverse_transform`. """)) # Flatten. for split, data in predictions.items(): if (data.ndim > 1): predictions[split] = data.flatten() if (has_labels == True): # 4c. Aggregate metrics across splits/ folds. # Alphabetize metrics dictionary by key. for k,v in metrics.items(): metrics[k] = dict(natsorted(v.items())) # Aggregate metrics across splits (e.g. mean, pstdev). metric_names = list(list(metrics.values())[0].keys()) metrics_aggregate = {} for metric in metric_names: split_values = [] for split, split_metrics in metrics.items(): # ran into obscure errors with `pstdev` when not `float(value)` value = float(split_metrics[metric]) split_values.append(value) mean = statistics.mean(split_values) median = statistics.median(split_values) pstdev = statistics.pstdev(split_values) minimum = min(split_values) maximum = max(split_values) metrics_aggregate[metric] = { "mean":mean, "median":median, "pstdev":pstdev, "minimum":minimum, "maximum":maximum } if ((probs is not None) and ("multi" not in algorithm.analysis_type)): # Don't flatten the softmax probabilities. probabilities[split] = probabilities[split].flatten() if (has_labels == False): metrics = None metrics_aggregate = None plot_data = None if (splitset_id is not None): splitset = Splitset.get_by_id(splitset_id) else: splitset = None prediction = Prediction.create( predictions = predictions , probabilities = probabilities , metrics = metrics , metrics_aggregate = metrics_aggregate , plot_data = plot_data , predictor = predictor , splitset = splitset ) return prediction def run(id:int, repeat_index:int, verbose:bool=False): """ Needs optimization = https://github.com/aiqc/aiqc/projects/1 """ time_started = datetime.datetime.now() job = Job.get_by_id(id) if verbose: print(f"\nJob #{job.id} starting...") queue = job.queue algorithm = queue.algorithm analysis_type = algorithm.analysis_type library = algorithm.library hide_test = queue.hide_test splitset = queue.splitset hyperparamcombo = job.hyperparamcombo fold = job.fold """ 1. Determines which splits/folds are needed. - Source of the training & evaluation data varies based on how Splitset and Foldset were designed. - The rest of the tasks in Job.run() look to `samples:dict` for their data. - The `key_*` variables are passed to downstream tasks. `key_train` could be either 'train' or 'folds_train_combined'. """ samples = {} if (hide_test == False): samples['test'] = splitset.samples['test'] key_evaluation = 'test' elif (hide_test == True): key_evaluation = None if (splitset.has_validation): samples['validation'] = splitset.samples['validation'] key_evaluation = 'validation' if (fold is not None): foldset = fold.foldset fold_index = fold.fold_index fold_samples = foldset.folds[fold_index].samples samples['folds_train_combined'] = fold_samples['folds_train_combined'] samples['fold_validation'] = fold_samples['fold_validation'] key_train = "folds_train_combined" key_evaluation = "fold_validation" elif (fold is None): samples['train'] = splitset.samples['train'] key_train = "train" """ 2. Encodes the labels and features. - Remember, you `.fit()` on either training data or all data (categoricals). - Then you transform the entire dataset because downstream processes may need the entire dataset: e.g. fit imputer to training data, but then impute entire dataset so that encoders can use entire dataset. - So we transform the entire dataset, then divide it into splits/ folds. - Then we convert the arrays to pytorch tensors if necessary. Subsetting with a list of indeces and `shape` work the same in both numpy and torch. """ # Labels - fetch and encode. if (splitset.supervision == "supervised"): arr_labels = splitset.label.to_numpy() labelcoder = splitset.label.get_latest_labelcoder() if (labelcoder is not None): fitted_encoders = Job.encoder_fit_labels( arr_labels=arr_labels, samples_train=samples[key_train], labelcoder=labelcoder ) arr_labels = Job.encoder_transform_labels( arr_labels=arr_labels, fitted_encoders=fitted_encoders, labelcoder=labelcoder ) FittedLabelcoder.create(fitted_encoders=fitted_encoders, job=job, labelcoder=labelcoder) if (library == 'pytorch'): arr_labels = torch.FloatTensor(arr_labels) # Features - fetch and encode. featureset = splitset.get_features() feature_count = len(featureset) features = []# expecting diff array shapes inside so it has to be list, not array. for feature in featureset: arr_features = feature.to_numpy() encoderset = feature.get_latest_encoderset() if (encoderset is not None): # This takes the entire array because it handles all features and splits. fitted_encoders = Job.encoderset_fit_features( arr_features=arr_features, samples_train=samples[key_train], encoderset=encoderset ) arr_features = Job.encoderset_transform_features( arr_features=arr_features, fitted_encoders=fitted_encoders, encoderset=encoderset ) FittedEncoderset.create(fitted_encoders=fitted_encoders, job=job, encoderset=encoderset) if (library == 'pytorch'): arr_features = torch.FloatTensor(arr_features) # Don't use the list if you don't have to. if (feature_count > 1): features.append(arr_features) """ - Stage preprocessed data to be passed into the remaining Job steps. - Example samples dict entry: samples['train']['labels'] - For each entry in the dict, fetch the rows from the encoded data. - Keras multi-input models accept input as a list. Not using nested dict for multiple features because it would be hard to figure out feature.id-based keys on the fly. """ for split, rows in samples.items(): if (feature_count == 1): samples[split] = { "features": arr_features[rows] , "labels": arr_labels[rows] } elif (feature_count > 1): samples[split] = { "features": [arr_features[rows] for arr_features in features] , "labels": arr_labels[rows] } """ - Input shapes can only be determined after encoding has taken place. - `[0]` accessess the first sample in each array. - Does not impact the training loop's `batch_size`. - Shapes are used later by `get_model()` to initialize it. """ label_shape = samples[key_train]['labels'][0].shape if (feature_count == 1): features_shape = samples[key_train]['features'][0].shape elif (feature_count > 1): features_shape = [arr_features[0].shape for arr_features in samples[key_train]['features']] input_shapes = { "features_shape": features_shape , "label_shape": label_shape } """ 3. Build and Train model. - This does not need to be modularized out of `Job.run()` because models are not trained anywhere else in the codebase. """ if (hyperparamcombo is not None): hp = hyperparamcombo.hyperparameters elif (hyperparamcombo is None): hp = {} #`**` cannot be None. fn_build = dill_deserialize(algorithm.fn_build) if (splitset.supervision == "supervised"): # pytorch multiclass has a single ordinal label. if ((analysis_type == 'classification_multi') and (library == 'pytorch')): num_classes = len(splitset.label.unique_classes) model = fn_build(features_shape, num_classes, **hp) else: model = fn_build(features_shape, label_shape, **hp) elif (splitset.supervision == "unsupervised"): model = fn_build(features_shape, **hp) if (model is None): raise ValueError("\nYikes - `fn_build` returned `None`.\nDid you include `return model` at the end of the function?\n") # The model and optimizer get combined during training. fn_lose = dill_deserialize(algorithm.fn_lose) fn_optimize = dill_deserialize(algorithm.fn_optimize) fn_train = dill_deserialize(algorithm.fn_train) loser = fn_lose(**hp) if (loser is None): raise ValueError("\nYikes - `fn_lose` returned `None`.\nDid you include `return loser` at the end of the function?\n") if (library == 'keras'): optimizer = fn_optimize(**hp) elif (library == 'pytorch'): optimizer = fn_optimize(model, **hp) if (optimizer is None): raise ValueError("\nYikes - `fn_optimize` returned `None`.\nDid you include `return optimizer` at the end of the function?\n") if (key_evaluation is not None): samples_eval = samples[key_evaluation] elif (key_evaluation is None): samples_eval = None if (library == "keras"): model = fn_train( model = model , loser = loser , optimizer = optimizer , samples_train = samples[key_train] , samples_evaluate = samples_eval , **hp ) if (model is None): raise ValueError("\nYikes - `fn_train` returned `model==None`.\nDid you include `return model` at the end of the function?\n") # Save the artifacts of the trained model. # If blank this value is `{}` not None. history = model.history.history """ - As of: Python(3.8.7), h5py(2.10.0), Keras(2.4.3), tensorflow(2.4.1) model.save(buffer) working for neither `io.BytesIO()` nor `tempfile.TemporaryFile()` https://github.com/keras-team/keras/issues/14411 - So let's switch to a real file in appdirs. - Assuming `model.save()` will trigger OS-specific h5 drivers. """ # Write it. temp_file_name = f"{app_dir}temp_keras_model.h5" model.save( temp_file_name , include_optimizer = True , save_format = 'h5' ) # Fetch the bytes ('rb': read binary) with open(temp_file_name, 'rb') as file: model_blob = file.read() os.remove(temp_file_name) elif (library == "pytorch"): model, history = fn_train( model = model , loser = loser , optimizer = optimizer , samples_train = samples[key_train] , samples_evaluate = samples_eval , **hp ) if (model is None): raise ValueError("\nYikes - `fn_train` returned `model==None`.\nDid you include `return model` at the end of the function?\n") if (history is None): raise ValueError("\nYikes - `fn_train` returned `history==None`.\nDid you include `return model, history` the end of the function?\n") # Save the artifacts of the trained model. # https://pytorch.org/tutorials/beginner/saving_loading_models.html#saving-loading-a-general-checkpoint-for-inference-and-or-resuming-training model_blob = io.BytesIO() torch.save( { 'model_state_dict': model.state_dict(), 'optimizer_state_dict': optimizer.state_dict() }, model_blob ) model_blob = model_blob.getvalue() """ 5. Save everything to Predictor object. """ time_succeeded = datetime.datetime.now() time_duration = (time_succeeded - time_started).seconds # There's a chance that a duplicate job-repeat_index pair was running elsewhere and finished first. matching_predictor = Predictor.select().join(Job).join(Queue).where( Queue.id==queue.id, Job.id==job.id, Predictor.repeat_index==repeat_index) if (len(matching_predictor) > 0): raise ValueError(f""" Yikes - Duplicate run detected: Queue<{queue.id}>, Job<{job.id}>, Job.repeat_index<{repeat_index}>. Cancelling this instance of `run_jobs()` as there is another `run_jobs()` ongoing. No action needed, the other instance will continue running to completion. """) predictor = Predictor.create( time_started = time_started , time_succeeded = time_succeeded , time_duration = time_duration , model_file = model_blob , input_shapes = input_shapes , history = history , job = job , repeat_index = repeat_index ) try: Job.predict(samples=samples, predictor_id=predictor.id) except: predictor.delete_instance() raise # Just to be sure not held in memory or multiprocess forked on a 2nd Queue. del samples del model return job def execute_jobs(job_statuses:list, verbose:bool=False): """ - This needs to be a top level function, otherwise you get pickle attribute error. - Alternatively, you can put this is a separate submodule file, and call it via `import aiqc.execute_jobs.execute_jobs` - Tried `mp.Manager` and `mp.Value` for shared variable for progress, but gave up after a full day of troubleshooting. - Also you have to get a separate database connection for the separate process. """ BaseModel._meta.database.close() BaseModel._meta.database = get_db() for j in tqdm( job_statuses , desc = "🔮 Training Models 🔮" , ncols = 100 ): if (j['predictor_id'] is None): Job.run(id=j['job_id'], verbose=verbose, repeat_index=j['repeat_index']) class FittedEncoderset(BaseModel): """ - Job uses this to save the fitted_encoders, which are later used for inference. - Useful for accessing featurecoders for matching_columns, dimensions. - When I added support for multiple Features, updating `Job.fitted_encoders` during `Job.run()` started to get unmanageable. Especially when you consider that not every Feature type is guaranteed to have an Encoderset. """ fitted_encoders = PickleField() job = ForeignKeyField(Job, backref='fittedencodersets') encoderset = ForeignKeyField(Encoderset, backref='fittedencodersets') class FittedLabelcoder(BaseModel): """ - See notes about FittedEncoderset. """ fitted_encoders = PickleField() job = ForeignKeyField(Job, backref='fittedlabelcoders') labelcoder = ForeignKeyField(Labelcoder, backref='fittedlabelcoders') class Predictor(BaseModel): """ - This was refactored from "Predictor" to "Predictor" - Regarding metrics, the label encoder was fit on training split labels. """ repeat_index = IntegerField() time_started = DateTimeField() time_succeeded = DateTimeField() time_duration = IntegerField() model_file = BlobField() input_shapes = JSONField() # used by get_model() history = JSONField() job = ForeignKeyField(Job, backref='predictors') def get_model(id:int): predictor = Predictor.get_by_id(id) algorithm = predictor.job.queue.algorithm model_blob = predictor.model_file if (algorithm.library == "keras"): #https://www.tensorflow.org/guide/keras/save_and_serialize temp_file_name = f"{app_dir}temp_keras_model.h5" # Workaround: write bytes to file so keras can read from path instead of buffer. with open(temp_file_name, 'wb') as f: f.write(model_blob) h5 = h5py.File(temp_file_name, 'r') model = keras.models.load_model(h5, compile=True) os.remove(temp_file_name) # Unlike pytorch, it's doesn't look like you need to initialize the optimizer or anything. return model elif (algorithm.library == 'pytorch'): # https://pytorch.org/tutorials/beginner/saving_loading_models.html#load # Need to initialize the classes first, which requires reconstructing them. if (predictor.job.hyperparamcombo is not None): hp = predictor.job.hyperparamcombo.hyperparameters elif (predictor.job.hyperparamcombo is None): hp = {} features_shape = predictor.input_shapes['features_shape'] label_shape = predictor.input_shapes['label_shape'] fn_build = dill_deserialize(algorithm.fn_build) fn_optimize = dill_deserialize(algorithm.fn_optimize) if (algorithm.analysis_type == 'classification_multi'): num_classes = len(predictor.job.queue.splitset.label.unique_classes) model = fn_build(features_shape, num_classes, **hp) else: model = fn_build(features_shape, label_shape, **hp) optimizer = fn_optimize(model, **hp) model_bytes = io.BytesIO(model_blob) checkpoint = torch.load(model_bytes) # Don't assign them: `model = model.load_state_dict ...` model.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) # "must call model.eval() to set dropout & batchNorm layers to evaluation mode before prediction." # ^ but you don't need to pass any data into eval() return model, optimizer def export_model(id:int, file_path:str=None): predictor = Predictor.get_by_id(id) algorithm = predictor.job.queue.algorithm if (file_path is None): dtime = datetime.datetime.now().strftime('%Y%b%d_%H:%M') if (algorithm.library == "keras"): ext = '.h5' elif (algorithm.library == 'pytorch'): ext = '.pt' file_path = f"{app_dir}/models/predictor{predictor.id}_model({dtime}){ext}" file_path = os.path.abspath(file_path) folder = f"{app_dir}/models" os.makedirs(folder, exist_ok=True) # We already have the bytes of the file we need to write. model_blob = predictor.model_file # trying `+` because directory may not exist yet. with open(file_path, 'wb+') as f: f.write(model_blob) f.close() os.path.exists(file_path) print(dedent( f"\nModel exported to the following absolute path:" \ f"\n{file_path}\n" )) return file_path def get_hyperparameters(id:int, as_pandas:bool=False): """This is actually a method of `Hyperparamcombo` so we just pass through.""" predictor = Predictor.get_by_id(id) hyperparamcombo = predictor.job.hyperparamcombo hp = hyperparamcombo.get_hyperparameters(as_pandas=as_pandas) return hp def plot_learning_curve(id:int, loss_skip_15pct:bool=False): predictor = Predictor.get_by_id(id) algorithm = predictor.job.queue.algorithm analysis_type = algorithm.analysis_type history = predictor.history dataframe = pd.DataFrame.from_dict(history, orient='index').transpose() Plot().learning_curve( dataframe = dataframe , analysis_type = analysis_type , loss_skip_15pct = loss_skip_15pct ) def tabular_schemas_match(set_original, set_new): # Set can be either Label or Feature. Needs `columns` and `.get_dtypes`. cols_old = set_original.columns cols_new = set_new.columns if (cols_new != cols_old): raise ValueError("\nYikes - New columns do not match original columns.\n") typs_old = set_original.get_dtypes() typs_new = set_new.get_dtypes() if (typs_new != typs_old): raise ValueError(dedent(""" Yikes - New dtypes do not match original dtypes. The Low-Level API methods for Dataset creation accept a `dtype` argument to fix this. """)) def image_schemas_match(feature_old, feature_new): image_old = feature_old.dataset.files[0].images[0] image_new = feature_new.dataset.files[0].images[0] if (image_old.size != image_new.size): raise ValueError(f"\nYikes - The new image size:{image_new.size} did not match the original image size:{image_old.size}.\n") if (image_old.mode != image_new.mode): raise ValueError(f"\nYikes - The new image color mode:{image_new.mode} did not match the original image color mode:{image_old.mode}.\n") def schemaNew_matches_schemaOld(splitset_new:object, splitset_old:object): # Get the new and old featuresets. Loop over them by index. features_new = splitset_new.get_features() features_old = splitset_old.get_features() if (len(features_new) != len(features_old)): raise ValueError("\nYikes - Your new and old Splitsets do not contain the same number of Features.\n") for i, feature_new in enumerate(features_new): feature_old = features_old[i] feature_old_typ = feature_old.dataset.dataset_type feature_new_typ = feature_new.dataset.dataset_type if (feature_old_typ != feature_new_typ): raise ValueError(f"\nYikes - New Feature dataset_type={feature_new_typ} != old Feature dataset_type={feature_old_typ}.\n") if ((feature_new_typ == 'tabular') or (feature_new_typ == 'sequence')): Predictor.tabular_schemas_match(feature_old, feature_new) elif (feature_new_typ == 'image'): Predictor.image_schemas_match(feature_old, feature_new) # Only verify Labels if the inference new Splitset provides Labels. # Otherwise, it may be conducting pure inference. label = splitset_new.label if (label is not None): label_new = label label_new_typ = label_new.dataset.dataset_type if (splitset_old.supervision == 'unsupervised'): raise ValueError("\nYikes - New Splitset has Labels, but old Splitset does not have Labels.\n") elif (splitset_old.supervision == 'supervised'): label_old = splitset_old.label label_old_typ = label_old.dataset.dataset_type if (label_old_typ != label_new_typ): raise ValueError("\nYikes - New Label and original Label come from different `dataset_types`.\n") if (label_new_typ == 'tabular'): Predictor.tabular_schemas_match(label_old, label_new) def get_fitted_encoderset(job:object, feature:object): """ - Given a Feature, you want to know if it needs to be transformed, and, if so, how to transform it. """ fitted_encodersets = FittedEncoderset.select().join(Encoderset).where( FittedEncoderset.job==job, FittedEncoderset.encoderset.feature==feature ) if (not fitted_encodersets): return None, None else: encoderset = fitted_encodersets[0].encoderset fitted_encoders = fitted_encodersets[0].fitted_encoders return encoderset, fitted_encoders def get_fitted_labelcoder(job:object, label:object): """ - Given a Feature, you want to know if it needs to be transformed, and, if so, how to transform it. """ fitted_labelcoders = FittedLabelcoder.select().join(Labelcoder).where( FittedLabelcoder.job==job, FittedLabelcoder.labelcoder.label==label ) if (not fitted_labelcoders): return None, None else: labelcoder = fitted_labelcoders[0].labelcoder fitted_encoders = fitted_labelcoders[0].fitted_encoders return labelcoder, fitted_encoders def infer(id:int, splitset_id:int): """ - Splitset is used because Labels and Features can come from different types of Datasets. - Verifies both Features and Labels match original schema. """ splitset_new = Splitset.get_by_id(splitset_id) predictor = Predictor.get_by_id(id) splitset_old = predictor.job.queue.splitset Predictor.schemaNew_matches_schemaOld(splitset_new, splitset_old) library = predictor.job.queue.algorithm.library featureset_new = splitset_new.get_features() featureset_old = splitset_old.get_features() feature_count = len(featureset_new) features = []# expecting different array shapes so it has to be list, not array. for i, feature_new in enumerate(featureset_new): arr_features = feature_new.to_numpy() encoderset, fitted_encoders = Predictor.get_fitted_encoderset( job=predictor.job, feature=featureset_old[i] ) if (encoderset is not None): # Don't need to check types because Encoderset creation protects # against unencodable types. arr_features = Job.encoderset_transform_features( arr_features=arr_features, fitted_encoders=fitted_encoders, encoderset=encoderset ) if (library == 'pytorch'): arr_features = torch.FloatTensor(arr_features) if (feature_count > 1): features.append(arr_features) else: # We don't need to do any row filtering so it can just be overwritten. features = arr_features """ - Pack into samples for the Algorithm functions. - This is two levels deep to mirror how the training samples were structured e.g. `samples[<trn,val,tst>]` - str() id because int keys aren't JSON serializable. """ str_id = str(splitset_id) samples = {str_id: {'features':features}} if (splitset_new.label is not None): label_new = splitset_new.label label_old = splitset_old.label else: label_new = None label_old = None if (label_new is not None): arr_labels = label_new.to_numpy() labelcoder, fitted_encoders = Predictor.get_fitted_labelcoder( job=predictor.job, label=label_old ) if (labelcoder is not None): arr_labels = Job.encoder_transform_labels( arr_labels=arr_labels, fitted_encoders=fitted_encoders, labelcoder=labelcoder ) if (library == 'pytorch'): arr_labels = torch.FloatTensor(arr_labels) samples[str_id]['labels'] = arr_labels prediction = Job.predict( samples=samples, predictor_id=id, splitset_id=splitset_id ) return prediction class Prediction(BaseModel): """ - Many-to-Many for making predictions after of the training experiment. - We use the low level API to create a Dataset because there's a lot of formatting that happens during Dataset creation that we would lose out on with raw numpy/pandas input: e.g. columns may need autocreation, and who knows what connectors we'll have in the future. This forces us to validate dtypes and columns after the fact. """ predictions = PickleField() probabilities = PickleField(null=True) # Not used for regression. metrics = PickleField(null=True) #inference metrics_aggregate = PickleField(null=True) #inference. plot_data = PickleField(null=True) # No regression-specific plots yet. predictor = ForeignKeyField(Predictor, backref='predictions') # dataset present if created for inference, v.s. null if from Original training set. splitset = ForeignKeyField(Splitset, deferrable='INITIALLY DEFERRED', null=True, backref='dataset') """ - I moved these plots out of Predictor into Prediction because it felt weird to access the Prediction via `predictions[0]`. - If we ever do non-deterministic algorithms then we would not have a 1-1 mapping between Predictor and Prediction. """ def plot_confusion_matrix(id:int): prediction = Prediction.get_by_id(id) prediction_plot_data = prediction.plot_data analysis_type = prediction.predictor.job.queue.algorithm.analysis_type if (analysis_type == "regression"): raise ValueError("\nYikes - <Algorithm.analysis_type> of 'regression' does not support this chart.\n") cm_by_split = {} labelcoder, fitted_encoders = Predictor.get_fitted_labelcoder( job=prediction.predictor.job, label=prediction.predictor.job.queue.splitset.label ) if (labelcoder is not None): if hasattr(fitted_encoders,'categories_'): labels = list(fitted_encoders.categories_[0]) elif hasattr(fitted_encoders,'classes_'): labels = fitted_encoders.classes_.tolist() else: unique_classes = prediction.predictor.job.queue.splitset.label.unique_classes labels = list(unique_classes) for split, data in prediction_plot_data.items(): cm_by_split[split] = data['confusion_matrix'] Plot().confusion_matrix(cm_by_split=cm_by_split, labels= labels) def plot_precision_recall(id:int): prediction = Prediction.get_by_id(id) predictor_plot_data = prediction.plot_data analysis_type = prediction.predictor.job.queue.algorithm.analysis_type if (analysis_type == "regression"): raise ValueError("\nYikes - <Algorith.analysis_type> of 'regression' does not support this chart.\n") pr_by_split = {} for split, data in predictor_plot_data.items(): pr_by_split[split] = data['precision_recall_curve'] dfs = [] for split, data in pr_by_split.items(): df = pd.DataFrame() df['precision'] = pd.Series(pr_by_split[split]['precision']) df['recall'] = pd.Series(pr_by_split[split]['recall']) df['split'] = split dfs.append(df) dataframe = pd.concat(dfs, ignore_index=True) dataframe = dataframe.round(3) Plot().precision_recall(dataframe=dataframe) def plot_roc_curve(id:int): prediction = Prediction.get_by_id(id) predictor_plot_data = prediction.plot_data analysis_type = prediction.predictor.job.queue.algorithm.analysis_type if (analysis_type == "regression"): raise ValueError("\nYikes - <Algorith.analysis_type> of 'regression' does not support this chart.\n") roc_by_split = {} for split, data in predictor_plot_data.items(): roc_by_split[split] = data['roc_curve'] dfs = [] for split, data in roc_by_split.items(): df =
pd.DataFrame()
pandas.DataFrame
# libraries import numpy as np import matplotlib.pyplot as plt import seaborn as sns import pandas as pd import os, sys import matplotlib.dates as mdates import matplotlib as mpl from matplotlib.colors import ListedColormap from mpl_toolkits.axes_grid1.inset_locator import inset_axes from matplotlib.offsetbox import AnchoredText from mpl_toolkits.axisartist.axislines import Axes from mpl_toolkits import axisartist import uncertainpy as un import statistics as st sys.path.append( os.path.dirname(os.path.dirname(os.path.dirname(os.path.realpath(__file__)))) ) from src.utils.settings import config # from src.utils.uq_output import draw_plot from src.models.icestupaClass import Icestupa from src.models.methods.metadata import get_parameter_metadata import seaborn as sns import matplotlib.pyplot as plt if __name__ == "__main__": locations = ["gangles21", "guttannen21", "guttannen20"] index = pd.date_range(start="1-1-2022", end="1-1-2024", freq="D", name="When") df_out = pd.DataFrame(columns=locations, index=index) names = [ "DX", "IE", "A_I", "A_S", "A_DECAY", "T_PPT", "Z", "T_F", # "D_MEAN", # "MU_CONE", # "r_spray", ] names_label = [ "$\\Delta x$", "$\\epsilon_{ice}$", r"$\alpha_{ice}$", r"$\alpha_{snow}$", "$\\tau$", "$T_{ppt}$", "$z_{0}$", "$T_{F}$", # "$d_{mean}$", # r"$\mu_{cone}$", # "$r_{spray}$", ] zip_iterator = zip(names, names_label) param_dictionary = dict(zip_iterator) evaluations = [] percent_change = [] efficiency_change = [] site = [] param = [] result = [] freeze_rate = [] melt_rate = [] fig, ax = plt.subplots() for location in locations: SITE, FOLDER = config(location) icestupa = Icestupa(location) icestupa.read_output() feature_name = "efficiency" icestupa.se = (icestupa.M_water + icestupa.M_ice) / icestupa.M_input * 100 for j in range(0, icestupa.df.shape[0]): if icestupa.df.loc[j, "fountain_froze"] != 0: freeze_rate.append( [ get_parameter_metadata(location)["shortname"], j, icestupa.df.loc[j, "fountain_froze"] / 60, ] ) if icestupa.df.loc[j, "melted"] != 0: melt_rate.append( [ get_parameter_metadata(location)["shortname"], j, icestupa.df.loc[j, "melted"] / 60, ] ) for name in names: data = un.Data() filename1 = FOLDER["sim"] + name + ".h5" data.load(filename1) print(data) evaluations.append(data[feature_name].evaluations) eval = data[feature_name].evaluations print( f"95 percent confidence interval caused by {name} is {round(st.mean(eval),2)} and {round(2 * st.stdev(eval),2)}" ) for i in range(0, len(data[feature_name].evaluations)): result.append( [ get_parameter_metadata(location)["shortname"], param_dictionary[name], data[feature_name].evaluations[i], (data[feature_name].evaluations[i] - icestupa.se), ] ) df =
pd.DataFrame(result, columns=["Site", "param", "SE", "percent_change"])
pandas.DataFrame
import pandas as pd import datetime from scipy import sparse import scipy.io from scipy.stats import zscore, wilcoxon, spearmanr from sklearn.preprocessing import binarize, normalize from sklearn import metrics from itertools import cycle from sklearn.metrics import roc_auc_score import os import pickle import seaborn as sns import subprocess import matplotlib import matplotlib.pyplot as plt import numpy as np import sys import re import math import datetime from scipy.spatial import distance from scipy.cluster import hierarchy import scanpy as sc from itertools import combinations from functools import reduce from scipy.cluster.hierarchy import linkage import scipy.spatial.distance as ssd from matplotlib import cm GENE_SIZES = [10, 50, 100, 200, 500, 1000] SET = 5 MSHAPES = ['o', 'P', 's', 's', '.', '^', '^', '^', '^', '^', '^'] USHAPES = ['o', 'P', 's', 's', '.', 'v', '^', '>', '<', 'D', 'd'] ALL_DATA = True SCANPY_OBJS = {'gene': ['GSE100033_gene_id_order_gene__all_bin_scanpy_obj_with_feat.pyn', 'GSE111586_gene_id_order_gene__all_scanpy_obj.pyn', 'GSE123576_gene_id_order_gene__all_scanpy_obj.pyn', 'GSE126074_gene_id_order_gene__all_scanpy_obj.pyn', 'GSE127257_distal_id_gene_order__all_scanpy_obj.pyn', 'GSE1303990_gene_id_order_gene__all_scanpy_obj.pyn', 'BICCN2_gene_id_order_gene__all_scanpy_obj.pyn'], 'distal': ['GSE100033_distal_id_order_distal__all_bin_scanpy_obj_with_feat.pyn', 'GSE111586_distal_id_order_distal__all_scanpy_obj.pyn', 'GSE123576_distal_id_order_distal__all_scanpy_obj.pyn', 'GSE126074_distal_id_order_distal__all_scanpy_obj.pyn', 'GSE127257_distal_id_gene_order__all_scanpy_obj.pyn', 'GSE1303990_distal_id_order_distal__all_scanpy_obj.pyn', 'BICCN2_distal_id_order_distal__all_scanpy_obj.pyn'], 'proximal': ['GSE100033_proximal_id_proximal__all_bin_scanpy_obj_with_feat.pyn', 'GSE111586_proximal_id_order_proximal__all_scanpy_obj.pyn', 'GSE123576_proximal_id_order_proximal__all_scanpy_obj.pyn', 'GSE126074_proximal_id_order_proximal__all_scanpy_obj.pyn', 'GSE127257_distal_id_gene_order__all_scanpy_obj.pyn', 'GSE1303990_proximal_id_order_proximal__all_scanpy_obj.pyn', 'BICCN2_proximal_id_order_proximal__all_scanpy_obj.pyn']} GSES = ['GSE100033', 'BICCN2', 'GSE111586', 'GSE123576', 'GSE126074', 'GSE127257', 'GSE1303990'] AMARKER = ['SF', 'CU', 'TA', 'TN', 'SC'] PALETTE = ['#E64B35FF', '#4DBBD5FF', '#00A087FF', '#91D1C2FF', '#3C5488FF'] def get_palette_shape(size, data=False): global ALL_DATA print(size) if data: if ALL_DATA: palette = ['#E64B35FF'] + sns.color_palette('Greys', 6)[::-1] shape = ['-', '--', '--', '--', '--', '--', '--'] else: palette = ['#E64B35FF'] + sns.color_palette('Greys', 5)[::-1] shape = ['-', '--', '--', '--', '--', '--'] else: if ALL_DATA: if size == 11: palette = ['#E64B35FF', '#4DBBD5FF', '#00A087FF', '#91D1C2FF', '#3C5488FF'] + sns.color_palette('Greys', 6)[::-1] shape = ['-', '-', '-', '-', '-', '--', '--', '--', '--', '--', '--'] else: palette = ['#E64B35FF', '#4DBBD5FF', '#00A087FF', '#91D1C2FF'] + sns.color_palette('Greys', 6)[::-1] shape = ['-', '-', '-', '-', '--', '--', '--', '--', '--', '--'] else: assert size <= 10 if size == 10: palette = ['#E64B35FF', '#4DBBD5FF', '#00A087FF', '#91D1C2FF', '#3C5488FF'] + sns.color_palette('Greys', 5)[::-1] shape = ['-', '-', '-', '-', '-', '--', '--', '--', '--', '--'] else: palette = ['#E64B35FF', '#4DBBD5FF', '#00A087FF', '#91D1C2FF'] + sns.color_palette('Greys', 5)[::-1] shape = ['-', '-', '-', '-', '--', '--', '--', '--', '--'] return palette, shape def norm_row_columns(X): from sklearn.preprocessing import MinMaxScaler X = np.array(X) print(X.shape) scaler = MinMaxScaler() X = np.apply_along_axis(lambda x: MinMaxScaler().fit_transform(x.reshape(-1, 1)), 0, X) X = np.squeeze(X) X = np.apply_along_axis(lambda x: MinMaxScaler().fit_transform(x.reshape(-1, 1)), 1, X) X = np.squeeze(X) print(X.shape) return X def get_celltype_category(sample_types): # order 'celltype' if 'AC' in sample_types: sample_uniq = ['AC', 'EX', 'IN', 'MG', 'OG', 'OT'] elif 'NN' in sample_types: sample_uniq = ['NN', 'EX', 'IN'] else: sample_uniq = ['OT', 'EX', 'IN', 'MG', 'OG'] sample_uniq = [x for x in sample_uniq if x in sample_types] return [str(sample_uniq.index(x))+'_'+x if x in sample_uniq else str(len(sample_uniq))+'_NA' for x in sample_types] def draw_boxplot(header, df, col_dict=None, sdf=None): print(df.head()) ax = sns.boxplot(x='marker', y="value", data=df, palette=col_dict, showfliers=False) if sdf is not None: ax = sns.swarmplot(x="marker", y="value", data=sdf, color=".2", dodge=True) else: ax = sns.swarmplot(x="marker", y="value", data=df, color=".2", dodge=True) ax.legend(bbox_to_anchor=(1.05, 1), loc=2, ncol=2, borderaxespad=0.) plt.savefig(header, bbox_inches='tight') plt.close('all') plt.clf() def collect_auc_from_down_sampled_exp(dir='./output/scobj/'): print('???') global AMARKER, PMARKER, SET, ALL_DATA auc_files = ['BICCN_gene_id_order_gene__all', 'GSE111586_gene_id_order_gene__all', 'GSE123576_gene_id_order_gene__all', 'GSE126074_gene_id_order_gene__all', 'GSE127257_distal_id_gene_order__all'] all_results = None if ALL_DATA: auc_files.extend(['GSE1303990_gene_id_order_gene__all']) for th in [1, 5, 10, 25, 50, 75, 100, 150, 200]: for fname in auc_files: print(os.path.join(dir, fname+'_simulate_add_noise_'+str(th)+'_auroc.csv')) df = pd.read_csv(os.path.join(dir, fname+'_simulate_down_sample_'+str(th)+'_auroc.csv'), header=0, index_col=0) value_column = ['auc', 'acc', 'precision', 'recall', 'whole', 'ppos', 'tpos', 'roc_file'] columns = [x for x in df.columns if x not in value_column] df = df.groupby(columns).agg(dict([(x, np.mean) for x in value_column if x != 'roc_file'])) df = df.reset_index(col_level=0) # print(df) gse = fname.split('_')[0] df = df.assign(gse=gse) df = df.assign(threshold=[th]*df.shape[0]) if all_results is None: all_results = df else: all_results =
pd.concat([all_results, df])
pandas.concat
from multiprocessing import Process import os import subprocess import pandas as pd from rdkit import Chem from rdkit.Chem import Descriptors from random import shuffle import numpy as np import time def read_dev_output(file_name): # read generated SMILES in seq2seq dev output file with open(file_name,'r') as f: smis = [] for l in f: smi = ''.join(l.split('\t')[0].split(' ')) smis.append(smi) return smis def get_novelty(gen_smis, ref_smis, return_novelty=False, ref_can=False): """ Get novelty generated MOLs which are not exist in training dataset para gen_smis: generated SMILES, in list format para ref_smis: training SMILES, in list format para return_novelty: if return novelty MOLs, in canonical SMILES format, default False """ c_gen_smis = [] for s in gen_smis: try: cs = Chem.MolToSmiles(Chem.MolFromSmiles(s)) except: pass else: c_gen_smis.append(cs) if ref_can: c_ref_smis = ref_smis else: c_ref_smis = [Chem.MolToSmiles(Chem.MolFromSmiles(s)) for s in ref_smis] c_ref_smis = list(set(c_ref_smis)) c_gen_smis = list(set(c_gen_smis)) nove_smis = [i for i in c_gen_smis if i not in c_ref_smis] if return_novelty: return nove_smis else: return len(nove_smis)/len(gen_smis) def get_novelty_smi(gen_smis, ref_smis, return_novelty=False,): """ Get novelty generated SMILES which are not exist in training dataset para gen_smis: generated SMILES, in list format para ref_smis: training SMILES, in list format para return_novelty: if return novelty MOLs, in canonical SMILES format, default False """ nov_smis = [i for i in gen_smis if i not in ref_smis] if return_novelty: return nov_smis else: return len(nov_smis)/len(gen_smis) def get_valid(gen_smis, return_valid=False): """ Get valid SMILES in generated samples para gen_smis: generated SMILES, in list format para return_valid: if return unique SMILESs, else return the fraction, default False """ valid_smi = [] for smi in gen_smis: try: m = Chem.MolFromSmiles(smi) except: pass else: if m != None: valid_smi.append(smi) if return_valid: return valid_smi else: return len(valid_smi)/len(gen_smis) def get_unique(gen_smis, random_sample_n=-1, valid=True, return_unique=False): """ Get unique generated samples para gen_smis: generated SMILES, in list format para random_sample_n: the number of sampled SMILESs from gen_smis for uniqueness calculation, -1 means using the whole gen_smis, default -1 para valid: if the unique SMILES should be valid SMILES para return_unique: if return unique SMILESs, default False """ base = get_valid(gen_smis, return_valid=True) if valid else gen_smis total_smi_n = len(base) if random_sample_n>total_smi_n or random_sample_n == -1: sample_n = total_smi_n else: sample_n = random_sample_n base_index = list(range(total_smi_n)) shuffle(base_index) sample_smis = [base[base_index[i]] for i in range(sample_n)] unique_smis = list(set(sample_smis)) if return_unique: return unique_smis else: if sample_n == 0: return 0 else: return len(unique_smis)/sample_n def eva_dl(file_list, ref, ids): """ The Distribution-Learning evaluation of the generated SMILES para file_list: the files store the generated SMILES, in list format para ref: the number of sampled SMILESs from gen_smis for uniqueness calculation, -1 means using the whole gen_smis, default -1 para ids: job id in multi-process, default None, and would return the metircs in Dataframe, otherwise will write to a csv file """ rec_file = open('eva_rec.log','a') ref_smis = ref vs = [] us = [] ns = [] for idx, file in enumerate(file_list): smis = read_dev_output(file) v_smis = get_valid(smis, return_valid=True) n_smis = get_novelty_smi(v_smis, ref_smis, return_novelty=True) vs.append(len(v_smis)/len(smis)) us.append(get_unique(smis)) ns.append(len(n_smis)/len(v_smis)) rec_file.write('DL-evaluation for {0} done\n'.format(file)) rec_file.close() dl_metrics = pd.DataFrame({'valid_score':vs, 'unique_score':us, 'novelty_score':ns}) if ids == None: return dl_metrics else: dl_metrics.to_csv('subprocess_{0}.csv'.format(ids), index=False) def eva_gd(file_list, target, ids): """ The Goal-Directed evaluation of the generated SMILES para file_list: the files store the generated SMILES, in list format para target: the pre-defined goal for generated SMILES, in list format para ids: job id in multi-process, default None, and would return the metircs in Dataframe, otherwise will write to a csv file """ rec_file = open('eva_rec.log','a') ave_diff = [] ave_p = [] top_1 = [] top_2 = [] top_3 = [] for idx, file in enumerate(file_list): smis = read_dev_output(file) if len(smis) != len(target): cut_ = min(len(smis), len(target)) smis = smis[:cut_] target_e = target[:cut_] else: target_e = target[:] properties = [0,0,0] diff = [] for sidx, smi in enumerate(smis): try: mol = Chem.MolFromSmiles(smi) q = Descriptors.qed(mol) except: pass else: diff.append(abs(q-target_e[sidx])) properties.append(q) properties = sorted(properties)[::-1] top_1.append(properties[0]) top_2.append(properties[1]) top_3.append(properties[2]) ave_p.append(np.mean(properties)) ave_diff.append(np.mean(diff)) rec_file.write('GD-evaluation for {0} done\n'.format(file)) rec_file.close() gd_metrics =
pd.DataFrame({'ave_diff':ave_diff, 'ave_property':ave_p, 'top_1':top_1, 'top_2':top_2, 'top_3':top_3})
pandas.DataFrame
import csv import os import pandas as pd class PatientDataLoader: def load_everion_patient_data(self, dir_name, filename, csv_delimiter, tz_to_zurich=True, drop_first_row=False, **kwargs): csv_in_file = os.path.join(dir_name, filename) if not os.path.exists(csv_in_file) or os.path.getsize(csv_in_file) <= 0: print("csv file is empty") return pd.DataFrame() df = pd.read_csv(csv_in_file, sep=csv_delimiter, **kwargs) if drop_first_row: df.drop(df.head(1).index, inplace=True) if tz_to_zurich: df["timestamp"] =
pd.to_datetime(df["timestamp"])
pandas.to_datetime
import pandas as pd # Create Series object. ser =
pd.Series(["NTU", "NCKU", "NCU", "NYCU"])
pandas.Series
from datetime import datetime, timedelta import inspect import numpy as np import pytest from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, IntervalIndex, MultiIndex, RangeIndex, Series, Timestamp, cut, date_range, to_datetime, ) import pandas.util.testing as tm @pytest.mark.filterwarnings("ignore:Sparse:FutureWarning") class TestDataFrameAlterAxes: def test_set_index_directly(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df.index = idx tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.index = idx[::2] def test_set_index(self, float_string_frame): df = float_string_frame idx = Index(np.arange(len(df))[::-1]) df = df.set_index(idx) tm.assert_index_equal(df.index, idx) with pytest.raises(ValueError, match="Length mismatch"): df.set_index(idx[::2]) def test_set_index_cast(self): # issue casting an index then set_index df = DataFrame( {"A": [1.1, 2.2, 3.3], "B": [5.0, 6.1, 7.2]}, index=[2010, 2011, 2012] ) df2 = df.set_index(df.index.astype(np.int32)) tm.assert_frame_equal(df, df2) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("inplace", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_drop_inplace(self, frame_of_index_cols, drop, inplace, keys): df = frame_of_index_cols if isinstance(keys, list): idx = MultiIndex.from_arrays([df[x] for x in keys], names=keys) else: idx = Index(df[keys], name=keys) expected = df.drop(keys, axis=1) if drop else df expected.index = idx if inplace: result = df.copy() result.set_index(keys, drop=drop, inplace=True) else: result = df.set_index(keys, drop=drop) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append(self, frame_of_index_cols, drop, keys): df = frame_of_index_cols keys = keys if isinstance(keys, list) else [keys] idx = MultiIndex.from_arrays( [df.index] + [df[x] for x in keys], names=[None] + keys ) expected = df.drop(keys, axis=1) if drop else df.copy() expected.index = idx result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) # A has duplicate values, C does not @pytest.mark.parametrize("keys", ["A", "C", ["A", "B"], ("tuple", "as", "label")]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_append_to_multiindex(self, frame_of_index_cols, drop, keys): # append to existing multiindex df = frame_of_index_cols.set_index(["D"], drop=drop, append=True) keys = keys if isinstance(keys, list) else [keys] expected = frame_of_index_cols.set_index(["D"] + keys, drop=drop, append=True) result = df.set_index(keys, drop=drop, append=True) tm.assert_frame_equal(result, expected) def test_set_index_after_mutation(self): # GH1590 df = DataFrame({"val": [0, 1, 2], "key": ["<KEY>"]}) expected = DataFrame({"val": [1, 2]}, Index(["b", "c"], name="key")) df2 = df.loc[df.index.map(lambda indx: indx >= 1)] result = df2.set_index("key") tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # Add list-of-list constructor because list is ambiguous -> lambda # also test index name if append=True (name is duplicate here for B) @pytest.mark.parametrize( "box", [ Series, Index, np.array, list, lambda x: [list(x)], lambda x: MultiIndex.from_arrays([x]), ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "B"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_single_array( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name key = box(df["B"]) if box == list: # list of strings gets interpreted as list of keys msg = "['one', 'two', 'three', 'one', 'two']" with pytest.raises(KeyError, match=msg): df.set_index(key, drop=drop, append=append) else: # np.array/list-of-list "forget" the name of B name_mi = getattr(key, "names", None) name = [getattr(key, "name", None)] if name_mi is None else name_mi result = df.set_index(key, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, nothing is dropped expected = df.set_index(["B"], drop=False, append=append) expected.index.names = [index_name] + name if append else name tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # also test index name if append=True (name is duplicate here for A & B) @pytest.mark.parametrize( "box", [Series, Index, np.array, list, lambda x: MultiIndex.from_arrays([x])] ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "B"), (True, "test"), (False, None)], ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays( self, frame_of_index_cols, drop, append, index_name, box ): df = frame_of_index_cols df.index.name = index_name keys = ["A", box(df["B"])] # np.array/list "forget" the name of B names = ["A", None if box in [np.array, list, tuple, iter] else "B"] result = df.set_index(keys, drop=drop, append=append) # only valid column keys are dropped # since B is always passed as array above, only A is dropped, if at all expected = df.set_index(["A", "B"], drop=False, append=append) expected = expected.drop("A", axis=1) if drop else expected expected.index.names = [index_name] + names if append else names tm.assert_frame_equal(result, expected) # MultiIndex constructor does not work directly on Series -> lambda # We also emulate a "constructor" for the label -> lambda # also test index name if append=True (name is duplicate here for A) @pytest.mark.parametrize( "box2", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "box1", [ Series, Index, np.array, list, iter, lambda x: MultiIndex.from_arrays([x]), lambda x: x.name, ], ) @pytest.mark.parametrize( "append, index_name", [(True, None), (True, "A"), (True, "test"), (False, None)] ) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_arrays_duplicate( self, frame_of_index_cols, drop, append, index_name, box1, box2 ): df = frame_of_index_cols df.index.name = index_name keys = [box1(df["A"]), box2(df["A"])] result = df.set_index(keys, drop=drop, append=append) # if either box is iter, it has been consumed; re-read keys = [box1(df["A"]), box2(df["A"])] # need to adapt first drop for case that both keys are 'A' -- # cannot drop the same column twice; # use "is" because == would give ambiguous Boolean error for containers first_drop = ( False if (keys[0] is "A" and keys[1] is "A") else drop # noqa: F632 ) # to test against already-tested behaviour, we add sequentially, # hence second append always True; must wrap keys in list, otherwise # box = list would be interpreted as keys expected = df.set_index([keys[0]], drop=first_drop, append=append) expected = expected.set_index([keys[1]], drop=drop, append=True) tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_pass_multiindex(self, frame_of_index_cols, drop, append): df = frame_of_index_cols keys = MultiIndex.from_arrays([df["A"], df["B"]], names=["A", "B"]) result = df.set_index(keys, drop=drop, append=append) # setting with a MultiIndex will never drop columns expected = df.set_index(["A", "B"], drop=False, append=append) tm.assert_frame_equal(result, expected) def test_set_index_verify_integrity(self, frame_of_index_cols): df = frame_of_index_cols with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index("A", verify_integrity=True) # with MultiIndex with pytest.raises(ValueError, match="Index has duplicate keys"): df.set_index([df["A"], df["A"]], verify_integrity=True) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_keys(self, frame_of_index_cols, drop, append): df = frame_of_index_cols with pytest.raises(KeyError, match="['foo', 'bar', 'baz']"): # column names are A-E, as well as one tuple df.set_index(["foo", "bar", "baz"], drop=drop, append=append) # non-existent key in list with arrays with pytest.raises(KeyError, match="X"): df.set_index([df["A"], df["B"], "X"], drop=drop, append=append) msg = "[('foo', 'foo', 'foo', 'bar', 'bar')]" # tuples always raise KeyError with pytest.raises(KeyError, match=msg): df.set_index(tuple(df["A"]), drop=drop, append=append) # also within a list with pytest.raises(KeyError, match=msg): df.set_index(["A", df["A"], tuple(df["A"])], drop=drop, append=append) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) @pytest.mark.parametrize("box", [set], ids=["set"]) def test_set_index_raise_on_type(self, frame_of_index_cols, box, drop, append): df = frame_of_index_cols msg = 'The parameter "keys" may be a column key, .*' # forbidden type, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(box(df["A"]), drop=drop, append=append) # forbidden type in list, e.g. set with pytest.raises(TypeError, match=msg): df.set_index(["A", df["A"], box(df["A"])], drop=drop, append=append) # MultiIndex constructor does not work directly on Series -> lambda @pytest.mark.parametrize( "box", [Series, Index, np.array, iter, lambda x: MultiIndex.from_arrays([x])], ids=["Series", "Index", "np.array", "iter", "MultiIndex"], ) @pytest.mark.parametrize("length", [4, 6], ids=["too_short", "too_long"]) @pytest.mark.parametrize("append", [True, False]) @pytest.mark.parametrize("drop", [True, False]) def test_set_index_raise_on_len( self, frame_of_index_cols, box, length, drop, append ): # GH 24984 df = frame_of_index_cols # has length 5 values = np.random.randint(0, 10, (length,)) msg = "Length mismatch: Expected 5 rows, received array of length.*" # wrong length directly with pytest.raises(ValueError, match=msg): df.set_index(box(values), drop=drop, append=append) # wrong length in list with pytest.raises(ValueError, match=msg): df.set_index(["A", df.A, box(values)], drop=drop, append=append) def test_set_index_custom_label_type(self): # GH 24969 class Thing: def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) # necessary for pretty KeyError __repr__ = __str__ thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing("Three", "pink") msg = "<Thing 'Three'>" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_hashable_iterable(self): # GH 24969 # actual example discussed in GH 24984 was e.g. for shapely.geometry # objects (e.g. a collection of Points) that can be both hashable and # iterable; using frozenset as a stand-in for testing here class Thing(frozenset): # need to stabilize repr for KeyError (due to random order in sets) def __repr__(self): tmp = sorted(list(self)) # double curly brace prints one brace in format string return "frozenset({{{}}})".format(", ".join(map(repr, tmp))) thing1 = Thing(["One", "red"]) thing2 = Thing(["Two", "blue"]) df = DataFrame({thing1: [0, 1], thing2: [2, 3]}) expected = DataFrame({thing1: [0, 1]}, index=Index([2, 3], name=thing2)) # use custom label directly result = df.set_index(thing2) tm.assert_frame_equal(result, expected) # custom label wrapped in list result = df.set_index([thing2]) tm.assert_frame_equal(result, expected) # missing key thing3 = Thing(["Three", "pink"]) msg = r"frozenset\(\{'Three', 'pink'\}\)" with pytest.raises(KeyError, match=msg): # missing label directly df.set_index(thing3) with pytest.raises(KeyError, match=msg): # missing label in list df.set_index([thing3]) def test_set_index_custom_label_type_raises(self): # GH 24969 # purposefully inherit from something unhashable class Thing(set): def __init__(self, name, color): self.name = name self.color = color def __str__(self): return "<Thing {self.name!r}>".format(self=self) thing1 = Thing("One", "red") thing2 = Thing("Two", "blue") df = DataFrame([[0, 2], [1, 3]], columns=[thing1, thing2]) msg = 'The parameter "keys" may be a column key, .*' with pytest.raises(TypeError, match=msg): # use custom label directly df.set_index(thing2) with pytest.raises(TypeError, match=msg): # custom label wrapped in list df.set_index([thing2]) def test_construction_with_categorical_index(self): ci = tm.makeCategoricalIndex(10) ci.name = "B" # with Categorical df = DataFrame({"A": np.random.randn(10), "B": ci.values}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # from a CategoricalIndex df = DataFrame({"A": np.random.randn(10), "B": ci}) idf = df.set_index("B") tm.assert_index_equal(idf.index, ci) # round-trip idf = idf.reset_index().set_index("B") tm.assert_index_equal(idf.index, ci) def test_set_index_cast_datetimeindex(self): df = DataFrame( { "A": [datetime(2000, 1, 1) + timedelta(i) for i in range(1000)], "B": np.random.randn(1000), } ) idf = df.set_index("A") assert isinstance(idf.index, DatetimeIndex) def test_convert_dti_to_series(self): # don't cast a DatetimeIndex WITH a tz, leave as object # GH 6032 idx = DatetimeIndex( to_datetime(["2013-1-1 13:00", "2013-1-2 14:00"]), name="B" ).tz_localize("US/Pacific") df = DataFrame(np.random.randn(2, 1), columns=["A"]) expected = Series( np.array( [ Timestamp("2013-01-01 13:00:00-0800", tz="US/Pacific"), Timestamp("2013-01-02 14:00:00-0800", tz="US/Pacific"), ], dtype="object", ), name="B", ) # convert index to series result = Series(idx) tm.assert_series_equal(result, expected) # assign to frame df["B"] = idx result = df["B"] tm.assert_series_equal(result, expected) # convert to series while keeping the timezone result = idx.to_series(keep_tz=True, index=[0, 1]) tm.assert_series_equal(result, expected) # convert to utc with tm.assert_produces_warning(FutureWarning): df["B"] = idx.to_series(keep_tz=False, index=[0, 1]) result = df["B"] comp = Series(DatetimeIndex(expected.values).tz_localize(None), name="B") tm.assert_series_equal(result, comp) with
tm.assert_produces_warning(FutureWarning)
pandas.util.testing.assert_produces_warning
# -*- coding: utf-8 -*- """ Created on 2021/02/23 21:49 @Project -> File: markov-process-order-determination -> univar_encoding.py @Author: luolei @Email: <EMAIL> @Describe: 一维序列变量编码 """ from collections import defaultdict import category_encoders as ce import pandas as pd import numpy as np class UnsuperCategorEncoding(object): """将多元序列编码为一元序列""" def __init__(self, x: np.ndarray): self.x = x.astype(np.int).flatten() self.N = len(x) @staticmethod def get_map(x: np.ndarray): labels_discret = np.unique(x, axis=0).astype(int).astype(str) map_ = defaultdict(int) for i in range(len(labels_discret)): map_[labels_discret[i]] = i return map_ @staticmethod def _convert2label(x, map_): x = x.astype(int).astype(str) key = ''.join(list(x)) return map_[key] def encode(self, method: str): map_ = self.get_map(self.x) series_encoded = np.apply_along_axis( lambda x: self._convert2label(x, map_), 1, self.x.reshape(-1, 1)) df =
pd.DataFrame(series_encoded, columns=['label'])
pandas.DataFrame
class Pywedge_Charts(): ''' Makes 8 different types of interactive Charts with interactive axis selection widgets in a single line of code for the given dataset. Different types of Charts viz, 1. Scatter Plot 2. Pie Chart 3. Bar Plot 4. Violin Plot 5. Box Plot 6. Distribution Plot 7. Histogram 8. Correlation Plot Inputs: 1. Dataframe 2. c = any redundant column to be removed (like ID column etc., at present supports a single column removal, subsequent version will provision multiple column removal requirements) 3. y = target column name as a string Returns: Charts widget ''' def __init__(self, train, c, y, manual=True): self.train = train self.c = c self.y = y self.X = self.train.drop(self.y,1) self.manual = manual def make_charts(self): import pandas as pd import ipywidgets as widgets import plotly.express as px import plotly.figure_factory as ff import plotly.offline as pyo from ipywidgets import HBox, VBox, Button from ipywidgets import interact, interact_manual, interactive import plotly.graph_objects as go from plotly.offline import iplot header = widgets.HTML(value="<h2>Pywedge Make_Charts </h2>") display(header) if len(self.train) > 500: from sklearn.model_selection import train_test_split test_size = 500/len(self.train) if self.c!=None: data = self.X.drop(self.c,1) else: data = self.X target = self.train[self.y] X_train, X_test, y_train, y_test = train_test_split(data, target, test_size=test_size, random_state=1) train_mc = pd.concat([X_test, y_test], axis=1) else: train_mc = self.train train_numeric = train_mc.select_dtypes('number') train_cat = train_mc.select_dtypes(exclude='number') out1 = widgets.Output() out2 = widgets.Output() out3 = widgets.Output() out4 = widgets.Output() out5 = widgets.Output() out6 = widgets.Output() out7 = widgets.Output() out8 = widgets.Output() out8 = widgets.Output() tab = widgets.Tab(children = [out1, out2, out3, out4, out5, out6, out7, out8]) tab.set_title(0, 'Scatter Plot') tab.set_title(1, 'Pie Chart') tab.set_title(2, 'Bar Plot') tab.set_title(3, 'Violin Plot') tab.set_title(4, 'Box Plot') tab.set_title(5, 'Distribution Plot') tab.set_title(6, 'Histogram') tab.set_title(7, 'Correlation plot') display(tab) with out1: header = widgets.HTML(value="<h1>Scatter Plots </h1>") display(header) x = widgets.Dropdown(options=list(train_mc.select_dtypes('number').columns)) def scatter_plot(X_Axis=list(train_mc.select_dtypes('number').columns), Y_Axis=list(train_mc.select_dtypes('number').columns)[1:], Color=list(train_mc.select_dtypes('number').columns)): fig = go.FigureWidget(data=go.Scatter(x=train_mc[X_Axis], y=train_mc[Y_Axis], mode='markers', text=list(train_cat), marker_color=train_mc[Color])) fig.update_layout(title=f'{Y_Axis.title()} vs {X_Axis.title()}', xaxis_title=f'{X_Axis.title()}', yaxis_title=f'{Y_Axis.title()}', autosize=False,width=600,height=600) fig.show() widgets.interact_manual.opts['manual_name'] = 'Make_Chart' one = interactive(scatter_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(scatter_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(scatter_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(scatter_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out2: header = widgets.HTML(value="<h1>Pie Charts </h1>") display(header) def pie_chart(Labels=list(train_mc.select_dtypes(exclude='number').columns), Values=list(train_mc.select_dtypes('number').columns)[0:]): fig = go.FigureWidget(data=[go.Pie(labels=train_mc[Labels], values=train_mc[Values])]) fig.update_layout(title=f'{Values.title()} vs {Labels.title()}', autosize=False,width=500,height=500) fig.show() one = interactive(pie_chart, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(pie_chart, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(pie_chart, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(pie_chart, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out3: header = widgets.HTML(value="<h1>Bar Plots </h1>") display(header) def bar_plot(X_Axis=list(train_mc.select_dtypes(exclude='number').columns), Y_Axis=list(train_mc.select_dtypes('number').columns)[1:], Color=list(train_mc.select_dtypes(exclude='number').columns)): fig1 = px.bar(train_mc, x=train_mc[X_Axis], y=train_mc[Y_Axis], color=train_mc[Color]) fig1.update_layout(barmode='group', title=f'{X_Axis.title()} vs {Y_Axis.title()}', xaxis_title=f'{X_Axis.title()}', yaxis_title=f'{Y_Axis.title()}', autosize=False,width=600,height=600) fig1.show() one = interactive(bar_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(bar_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(bar_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(bar_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out4: header = widgets.HTML(value="<h1>Violin Plots </h1>") display(header) def viol_plot(X_Axis=list(train_mc.select_dtypes('number').columns), Y_Axis=list(train_mc.select_dtypes('number').columns)[1:], Color=list(train_mc.select_dtypes(exclude='number').columns)): fig2 = px.violin(train_mc, X_Axis, Y_Axis, Color, box=True, hover_data=train_mc.columns) fig2.update_layout(title=f'{X_Axis.title()} vs {Y_Axis.title()}', xaxis_title=f'{X_Axis.title()}', autosize=False,width=600,height=600) fig2.show() one = interactive(viol_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(viol_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(viol_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(viol_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out5: header = widgets.HTML(value="<h1>Box Plots </h1>") display(header) def box_plot(X_Axis=list(train_mc.select_dtypes(exclude='number').columns), Y_Axis=list(train_mc.select_dtypes('number').columns)[0:], Color=list(train_mc.select_dtypes(exclude='number').columns)): fig4 = px.box(train_mc, x=X_Axis, y=Y_Axis, color=Color, points="all") fig4.update_layout(barmode='group', title=f'{X_Axis.title()} vs {Y_Axis.title()}', xaxis_title=f'{X_Axis.title()}', yaxis_title=f'{Y_Axis.title()}', autosize=False,width=600,height=600) fig4.show() one = interactive(box_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(box_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(box_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(box_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out6: header = widgets.HTML(value="<h1>Distribution Plots </h1>") display(header) def dist_plot(X_Axis=list(train_mc.select_dtypes('number').columns), Y_Axis=list(train_mc.select_dtypes('number').columns)[1:], Color=list(train_mc.select_dtypes(exclude='number').columns)): fig2 = px.histogram(train_mc, X_Axis, Y_Axis, Color, marginal='violin', hover_data=train_mc.columns) fig2.update_layout(title=f'{X_Axis.title()} vs {Y_Axis.title()}', xaxis_title=f'{X_Axis.title()}', autosize=False,width=600,height=600) fig2.show() one = interactive(dist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(dist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(dist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(dist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out7: header = widgets.HTML(value="<h1>Histogram </h1>") display(header) def hist_plot(X_Axis=list(train_mc.columns)): fig2 = px.histogram(train_mc, X_Axis) fig2.update_layout(title=f'{X_Axis.title()}', xaxis_title=f'{X_Axis.title()}', autosize=False,width=600,height=600) fig2.show() one = interactive(hist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) two = interactive(hist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) three = interactive(hist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) four = interactive(hist_plot, {'manual': self.manual, 'manual_name':'Make_Chart'}) g = widgets.HBox([one, two]) h = widgets.HBox([three, four]) i = widgets.VBox([g,h]) display(i) with out8: header = widgets.HTML(value="<h1>Correlation Plots </h1>") display(header) import plotly.figure_factory as ff corrs = train_mc.corr() colorscale = ['Greys', 'Greens', 'Bluered', 'RdBu', 'Reds', 'Blues', 'Picnic', 'Rainbow', 'Portland', 'Jet', 'Hot', 'Blackbody', 'Earth', 'Electric', 'Viridis', 'Cividis'] @interact_manual def plot_corrs(colorscale=colorscale): figure = ff.create_annotated_heatmap(z = corrs.round(2).values, x =list(corrs.columns), y=list(corrs.index), colorscale=colorscale, annotation_text=corrs.round(2).values) iplot(figure) class baseline_model(): ''' Cleans the raw dataframe to fed into ML models and runs various baseline models. Following data pre_processing will be carried out, 1) segregating numeric & categorical columns 2) missing values imputation for numeric & categorical columns 3) standardization 4) feature importance 5) SMOTE 6) baseline model Inputs: 1) train = train dataframe 2) test = stand out test dataframe (without target column) 2) c = any redundant column to be removed (like ID column etc., at present supports a single column removal, subsequent version will provision multiple column removal requirements) 3) y = target column name as a string 4) type = Classification / Regression Returns: 1) Various classification/regressions models & model performances 2) new_X (cleaned feature columns in dataframe) 3) new_y (cleaned target column in dataframe) 4) new_test (cleaned stand out test dataframe ''' def __init__(self, train, test, c, y, type="Classification"): self.train = train self.test = test self.c = c self.y = y self.type = type self.X = train.drop(self.y,1) def classification_summary(self): import ipywidgets as widgets from ipywidgets import HBox, VBox, Button from IPython.display import display, Markdown, clear_output header = widgets.HTML(value="<h2>Pywedge Baseline Models </h2>") display(header) out1 = widgets.Output() out2 = widgets.Output() tab = widgets.Tab(children = [out1, out2]) tab.set_title(0,'Baseline Models') tab.set_title(1, 'Predict Baseline Model') display(tab) with out1: import ipywidgets as widgets from ipywidgets import HBox, VBox, Button from IPython.display import display, Markdown, clear_output header = widgets.HTML(value="<h2>Pre_processing </h2>") display(header) import pandas as pd cat_info = widgets.Dropdown( options = [('cat_codes', '1'), ('get_dummies', '2')], value = '1', description = 'Select categorical conversion', style = {'description_width': 'initial'}, disabled=False) std_scr = widgets.Dropdown( options = [('StandardScalar', '1'), ('RobustScalar', '2'), ('MinMaxScalar', '3'), ('No Standardization', 'n')], value = 'n', description = 'Select Standardization methods', style = {'description_width': 'initial'}, disabled=False) apply_smote = widgets.Dropdown( options = [('Yes', 'y'), ('No', 'n')], value = 'y', description = 'Do you want to apply SMOTE?', style = {'description_width': 'initial'}, disabled=False) pp_class = widgets.VBox([cat_info, std_scr, apply_smote]) pp_reg = widgets.VBox([cat_info, std_scr]) if self.type == 'Classification': display(pp_class) else: display(pp_reg) test_size = widgets.BoundedFloatText( value=0.20, min=0.05, max=0.5, step=0.05, description='Text Size %', disabled=False) display(test_size) button_1 = widgets.Button(description = 'Run Baseline models') out = widgets.Output() def on_button_clicked(_): with out: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') if self.type=="Classification": if apply_smote.value == 'y': from imblearn.over_sampling import SMOTE import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings('ignore', 'FutureWarning') sm = SMOTE(random_state=42, n_jobs=-1) new_X_cols = self.new_X.columns new_y_cols = self.new_y.columns self.new_X, self.new_y= sm.fit_resample(self.new_X, self.new_y) self.new_X = pd.DataFrame(self.new_X, columns=new_X_cols) self.new_y= pd.DataFrame(self.new_y, columns=new_y_cols) print('> Oversampling using SMOTE completed') else: print('> No oversampling done') print('\nStarting classification_summary...') print('TOP 10 FEATURE IMPORTANCE - USING ADABOOST CLASSIFIER') from sklearn.ensemble import AdaBoostClassifier import pandas as pd import warnings warnings.filterwarnings('ignore') ab = AdaBoostClassifier().fit(self.new_X, self.new_y) print(pd.Series(ab.feature_importances_, index=self.new_X.columns).sort_values(ascending=False).head(10)) from sklearn.model_selection import train_test_split self.X_train, self.X_test, self.y_train, self.y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=test_size.value, random_state=1) from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.svm import LinearSVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier, HistGradientBoostingClassifier from catboost import CatBoostClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.linear_model import LogisticRegression import xgboost as xgb from sklearn.metrics import accuracy_score, f1_score from sklearn.metrics import roc_auc_score import warnings warnings.filterwarnings('ignore') from tqdm.notebook import trange, tqdm classifiers = { "Logistic" : LogisticRegression(n_jobs=-1), "KNN(3)" : KNeighborsClassifier(3, n_jobs=-1), "Decision Tree": DecisionTreeClassifier(max_depth=7), "Random Forest": RandomForestClassifier(max_depth=7, n_estimators=10, max_features=4, n_jobs=-1), "AdaBoost" : AdaBoostClassifier(), "GB Classifier": GradientBoostingClassifier(), "ExtraTree Cls": ExtraTreesClassifier(n_jobs=-1), "Hist GB Cls" : HistGradientBoostingClassifier(), "MLP Cls." : MLPClassifier(alpha=1), "XGBoost" : xgb.XGBClassifier(max_depth=4, n_estimators=10, learning_rate=0.1, n_jobs=-1), "CatBoost" : CatBoostClassifier(silent=True), "Naive Bayes" : GaussianNB(), "QDA" : QuadraticDiscriminantAnalysis(), "Linear SVC" : LinearSVC(), } from time import time k = 14 head = list(classifiers.items())[:k] for name, classifier in tqdm(head): start = time() classifier.fit(self.X_train, self.y_train) train_time = time() - start start = time() predictions = classifier.predict(self.X_test) predict_time = time()-start acc_score= (accuracy_score(self.y_test,predictions)) roc_score= (roc_auc_score(self.y_test,predictions)) f1_macro= (f1_score(self.y_test, predictions, average='macro')) print("{:<15}| acc_score = {:.3f} | roc_score = {:,.3f} | f1_score(macro) = {:,.3f} | Train time = {:,.3f}s | Pred. time = {:,.3f}s".format(name, acc_score, roc_score, f1_macro, train_time, predict_time)) button_1.on_click(on_button_clicked) a = widgets.VBox([button_1, out]) display(a) with out2: base_model = widgets.Dropdown( options=['Logistic Regression', 'KNN', 'Decision Tree', 'Random Forest', 'MLP Classifier', 'AdaBoost', 'CatBoost', 'GB Classifier', 'ExtraTree Cls', 'Hist GB Cls' ], value='Logistic Regression', description='Choose Base Model: ', style = {'description_width': 'initial'}, disabled=False) display(base_model) button_2 = widgets.Button(description = 'Predict Baseline models') out2 = widgets.Output() def on_pred_button_clicked(_): with out2: from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier, ExtraTreesClassifier, HistGradientBoostingClassifier from catboost import CatBoostClassifier from sklearn.linear_model import LogisticRegression import xgboost as xgb clear_output() print(base_model.value) if base_model.value == 'Logistic Regression': classifier = LogisticRegression(max_iter=1000, n_jobs=-1) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('> Prediction completed. \n> Use dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'KNN': classifier = KNeighborsClassifier(3, n_jobs=-1) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'Decision Tree': classifier = DecisionTreeClassifier(max_depth=7) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'Random Forest': classifier = RandomForestClassifier(max_depth=7, n_estimators=10, max_features=4, n_jobs=-1) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'MLP Classifier': classifier = MLPClassifier(alpha=1) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'AdaBoost': classifier = AdaBoostClassifier() classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'CatBoost': classifier = CatBoostClassifier(silent=True) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'GB Classifier': classifier = GradientBoostingClassifier() classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) self.predict_proba_baseline = classifier.predict_proba(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline (for predictions) & blm.predict_proba_baseline (for predict_proba), where blm is pywedge_baseline_model class object') if base_model.value == 'ExtraTree Cls': classifier = ExtraTreesClassifier(n_jobs=-1) classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) self.predict_proba_baseline = classifier.predict_proba(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline (for predictions) & blm.predict_proba_baseline (for predict_proba), where blm is pywedge_baseline_model class object') if base_model.value == 'Hist GB Cls': classifier = HistGradientBoostingClassifier() classifier.fit(self.X_train, self.y_train) self.predictions_baseline = classifier.predict(self.new_test) self.predict_proba_baseline = classifier.predict_proba(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline (for predictions) & blm.predict_proba_baseline (for predict_proba), where blm is pywedge_baseline_model class object') button_2.on_click(on_pred_button_clicked) b = widgets.VBox([button_2, out2]) display(b) def Regression_summary(self): import ipywidgets as widgets from ipywidgets import HBox, VBox, Button from IPython.display import display, Markdown, clear_output header = widgets.HTML(value="<h2>Pywedge Baseline Models </h2>") display(header) out1 = widgets.Output() out2 = widgets.Output() tab = widgets.Tab(children = [out1, out2]) tab.set_title(0,'Baseline Models') tab.set_title(1, 'Predict Baseline Model') display(tab) with out1: import ipywidgets as widgets from ipywidgets import HBox, VBox, Button from IPython.display import display, Markdown, clear_output header = widgets.HTML(value="<h2>Pre_processing </h2>") display(header) import pandas as pd cat_info = widgets.Dropdown( options = [('cat_codes', '1'), ('get_dummies', '2')], value = '1', description = 'Select categorical conversion', style = {'description_width': 'initial'}, disabled=False) std_scr = widgets.Dropdown( options = [('StandardScalar', '1'), ('RobustScalar', '2'), ('MinMaxScalar', '3'), ('No Standardization', 'n')], value = 'n', description = 'Select Standardization methods', style = {'description_width': 'initial'}, disabled=False) apply_smote = widgets.Dropdown( options = [('Yes', 'y'), ('No', 'n')], value = 'y', description = 'Do you want to apply SMOTE?', style = {'description_width': 'initial'}, disabled=False) pp_class = widgets.VBox([cat_info, std_scr, apply_smote]) pp_reg = widgets.VBox([cat_info, std_scr]) if self.type == 'Classification': display(pp_class) else: display(pp_reg) test_size = widgets.BoundedFloatText( value=0.20, min=0.05, max=0.5, step=0.05, description='Text Size %', disabled=False) display(test_size) button_1 = widgets.Button(description = 'Run Baseline models') out = widgets.Output() def on_button_clicked(_): with out: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') print('Starting regression summary...') print('TOP 10 FEATURE IMPORTANCE TABLE') from sklearn.ensemble import AdaBoostRegressor import pandas as pd import warnings warnings.filterwarnings('ignore') ab = AdaBoostRegressor().fit(self.new_X, self.new_y) print(pd.Series(ab.feature_importances_, index=self.new_X.columns).sort_values(ascending=False).head(10)) from sklearn.model_selection import train_test_split self.X_train, self.X_test, self.y_train, self.y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=test_size.value, random_state=1) from time import time from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.svm import SVR from sklearn.svm import LinearSVR from sklearn.linear_model import Lasso, Ridge from sklearn.metrics import explained_variance_score from sklearn.metrics import mean_absolute_error from sklearn.metrics import r2_score from sklearn.tree import DecisionTreeRegressor from sklearn.experimental import enable_hist_gradient_boosting from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, AdaBoostRegressor, ExtraTreesRegressor, HistGradientBoostingRegressor from catboost import CatBoostRegressor from sklearn.neural_network import MLPRegressor import xgboost as xgb from math import sqrt from tqdm.notebook import trange, tqdm import warnings warnings.filterwarnings('ignore') print('--------------------------LINEAR MODELS---------------------------------') lin_regressors = { 'Linear Reg' : LinearRegression(n_jobs=-1), 'KNN' : KNeighborsRegressor(n_jobs=-1), 'LinearSVR' : LinearSVR(), 'Lasso' : Lasso(), 'Ridge' : Ridge(), } from time import time k = 10 head = list(lin_regressors.items())[:k] for name, lin_regressors in tqdm(head): start = time() lin_regressors.fit(self.X_train, self.y_train) train_time = time() - start start = time() predictions = lin_regressors.predict(self.X_test) predict_time = time()-start exp_var = explained_variance_score(self.y_test, predictions) mae = mean_absolute_error(self.y_test, predictions) rmse = sqrt(mean_absolute_error(self.y_test, predictions)) r2 = r2_score(self.y_test, predictions) print("{:<15}| exp_var = {:.3f} | mae = {:,.3f} | rmse = {:,.3f} | r2 = {:,.3f} | Train time = {:,.3f}s | Pred. time = {:,.3f}s".format(name, exp_var, mae, rmse, r2, train_time, predict_time)) print('------------------------NON LINEAR MODELS----------------------------------') print('---------------------THIS MIGHT TAKE A WHILE-------------------------------') non_lin_regressors = { #'SVR' : SVR(), 'Decision Tree' : DecisionTreeRegressor(max_depth=5), 'Random Forest' : RandomForestRegressor(max_depth=10, n_jobs=-1), 'GB Regressor' : GradientBoostingRegressor(n_estimators=200), 'CB Regressor' : CatBoostRegressor(silent=True), 'ADAB Regressor': AdaBoostRegressor(), 'MLP Regressor' : MLPRegressor(), 'XGB Regressor' : xgb.XGBRegressor(n_jobs=-1), 'Extra tree Reg': ExtraTreesRegressor(n_jobs=-1), 'Hist GB Reg' : HistGradientBoostingRegressor() } from time import time k = 10 head = list(non_lin_regressors.items())[:k] for name, non_lin_regressors in tqdm(head): start = time() non_lin_regressors.fit(self.X_train, self.y_train) train_time = time() - start start = time() predictions = non_lin_regressors.predict(self.X_test) predict_time = time()-start exp_var = explained_variance_score(self.y_test, predictions) mae = mean_absolute_error(self.y_test, predictions) rmse = sqrt(mean_absolute_error(self.y_test, predictions)) r2 = r2_score(self.y_test, predictions) print("{:<15}| exp_var = {:.3f} | mae = {:,.3f} | rmse = {:,.3f} | r2 = {:,.3f} | Train time = {:,.3f}s | Pred. time = {:,.3f}s".format(name, exp_var, mae, rmse, r2, train_time, predict_time)) button_1.on_click(on_button_clicked) a = widgets.VBox([button_1, out]) display(a) with out2: base_model = widgets.Dropdown( options=['Linear Regression', 'KNN', 'Decision Tree', 'Random Forest', 'MLP Regressor', 'AdaBoost', 'Grad-Boost''CatBoost'], value='Linear Regression', description='Choose Base Model: ', style = {'description_width': 'initial'}, disabled=False) display(base_model) button_2 = widgets.Button(description = 'Predict Baseline models') out2 = widgets.Output() def on_pred_button_clicked(_): with out2: from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor, AdaBoostRegressor from catboost import CatBoostRegressor from sklearn.neural_network import MLPRegressor import xgboost as xgb clear_output() print(base_model.value) if base_model.value == 'Linear Regression': regressor = LinearRegression() regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'KNN': regressor = KNeighborsRegressor() regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'Decision Tree': regressor = DecisionTreeRegressor(max_depth=5) regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'Random Forest': regressor = RandomForestRegressor(max_depth=10) regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'MLP Regressor': regressor = MLPRegressor() regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'AdaBoost': regressor = AdaBoostRegressor() regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'Grad-Boost': regressor = GradientBoostingRegressor(n_estimators=200) regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') if base_model.value == 'CatBoost': regressor = CatBoostRegressor(silent=True) regressor.fit(self.X_train, self.y_train) self.predictions_baseline = regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., blm.predictions_baseline, where blm is pywedge_baseline_model class object') button_2.on_click(on_pred_button_clicked) b = widgets.VBox([button_2, out2]) display(b) class Pywedge_HP(): ''' Creates interative widget based Hyperparameter selection tool for both Classification & Regression. For Classification, following baseline estimators are covered in Gridsearch & Randomized search options 1) Logistic Regression 2) Decision Tree 3) Random Forest 4) KNN Classifier For Regression, following baseline estimators are covered in Gridsearch & Randomized search options 1) Linear Regression 2) Decision Tree Regressor 3) Random Forest Regressor 4) KNN Regressor Inputs: 1) train = train dataframe 2) test = stand out test dataframe (without target column) 3) c = any redundant column to be removed (like ID column etc., at present supports a single column removal, subsequent version will provision multiple column removal requirements) 4) y = target column name as a string Ouputs: 1) Hyperparameter tuning results 2) Prediction on standout test dataset ''' def __init__(self, train, test, c, y, tracking=False): self.train = train self.test = test self.c = c self.y = y self.X = train.drop(self.y,1) self.tracking = tracking def HP_Tune_Classification(self): from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, ExtraTreesClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.model_selection import GridSearchCV, RandomizedSearchCV import ipywidgets as widgets from ipywidgets import HBox, VBox, Button, Label from ipywidgets import interact_manual, interactive, interact import logging from IPython.display import display, Markdown, clear_output import warnings warnings.filterwarnings('ignore') header_1 = widgets.HTML(value="<h2>Pywedge HP_Tune</h2>") display(header_1) out1 = widgets.Output() out2 = widgets.Output() out3 = widgets.Output() tab = widgets.Tab(children = [out1, out2, out3]) tab.set_title(0, 'Input') tab.set_title(1, 'Output') tab.set_title(2, 'Helper Page') display(tab) with out1: header = widgets.HTML(value="<h3>Base Estimator</h3>") display(header) import pandas as pd cat_info = widgets.Dropdown( options = [('cat_codes', '1'), ('get_dummies', '2')], value = '1', description = 'Select categorical conversion', style = {'description_width': 'initial'}, disabled=False) std_scr = widgets.Dropdown( options = [('StandardScalar', '1'), ('RobustScalar', '2'), ('MinMaxScalar', '3'), ('No Standardization', 'n')], value = 'n', description = 'Select Standardization methods', style = {'description_width': 'initial'}, disabled=False) apply_smote = widgets.Dropdown( options = [('Yes', 'y'), ('No', 'n')], value = 'y', description = 'Do you want to apply SMOTE?', style = {'description_width': 'initial'}, disabled=False) pp_class = widgets.HBox([cat_info, std_scr, apply_smote]) header_2 = widgets.HTML(value="<h3>Pre_processing </h3>") base_estimator = widgets.Dropdown( options=['Logistic Regression', 'Decision Tree', 'Random Forest','AdaBoost', 'ExtraTree Classifier', 'KNN Classifier'], value='Logistic Regression', description='Choose Base Estimator: ', style = {'description_width': 'initial'}, disabled=False) display(base_estimator) button = widgets.Button(description='Select Base Estimator') out = widgets.Output() # Logistic Regression Hyperparameters _Start penalty_L = widgets.SelectMultiple( options = ['l1', 'l2', 'elasticnet', 'none'], value = ['none'], rows = 4, description = 'Penalty', disabled = False) dual_L = widgets.SelectMultiple( options = [True, False], value = [False], rows = 2, description = 'Dual', disabled = False) tol_L = widgets.Text( value='0.0001', placeholder='enter any float value', description='Tolerence (tol)', style = {'description_width': 'initial'}, disabled=False) g = widgets.HBox([penalty_L, dual_L, tol_L]) C_L = widgets.Text( value='1.0', placeholder='enter any float value', description='C', disabled=False) fit_intercept_L = widgets.SelectMultiple( options = [True, False], value = [False], rows = 2, description = 'Fit_intercept', disabled = False) intercept_scaling_L = widgets.Text( value='1.0', placeholder='enter any float value', description='Intercept_scaling', style = {'description_width': 'initial'}, disabled=False) h = widgets.HBox([C_L, fit_intercept_L, intercept_scaling_L]) class_weight_L = widgets.SelectMultiple( options = ['balanced', 'None'], value = ['None'], rows = 2, description = 'Class_weight', disabled = False) random_state_L = widgets.Text( value='0', placeholder='enter any integer value', description='Random_state', style = {'description_width': 'initial'}, disabled=False) solver_L = widgets.SelectMultiple( options = ['newton-cg', 'lbfgs', 'sag', 'saga'], value = ['lbfgs'], rows = 4, description = 'Solver', disabled = False) i= widgets.HBox([class_weight_L, random_state_L, solver_L]) max_iter_L = widgets.Text( value='100', placeholder='enter any integer value', description='Max_Iterations', style = {'description_width': 'initial'}, disabled=False) verbose_L = widgets.Text( value='0', placeholder='enter any integer value', description='Verbose', disabled=False) warm_state_L = widgets.SelectMultiple( options = [True, False], value = [False], rows = 2, description = 'Warm_State', disabled = False) j= widgets.HBox([max_iter_L, verbose_L, warm_state_L]) L1_Ratio_L = widgets.Text( value='None', placeholder='enter any integer value', description='L1_Ratio', style = {'description_width': 'initial'}, disabled=False) k = widgets.HBox([L1_Ratio_L]) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_L = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_L = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) scoring_L = widgets.Dropdown( options = ['accuracy', 'f1', 'roc_auc', 'balanced_accuracy'], value = 'accuracy', rows = 4, description = 'Scoring', disabled = False) l = widgets.HBox([search_param_L, cv_L, scoring_L]) n_iter_L = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_jobs_L = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_jobs_L, n_iter_L, n_iter_text]) null = widgets.HTML('<br></br>') button_2 = widgets.Button(description='Submit HP_Tune') out_res = widgets.Output() def on_out_res_clicked(_): with out_res: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') if apply_smote.value == 'y': from imblearn.over_sampling import SMOTE import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings('ignore', 'FutureWarning') sm = SMOTE(random_state=42, n_jobs=-1) new_X_cols = self.new_X.columns new_y_cols = self.new_y.columns self.new_X, self.new_y= sm.fit_resample(self.new_X, self.new_y) self.new_X = pd.DataFrame(self.new_X, columns=new_X_cols) self.new_y= pd.DataFrame(self.new_y, columns=new_y_cols) print('> Oversampling using SMOTE completed') else: print('> No oversampling done') param_grid = {'penalty': list(penalty_L.value), 'dual': list(dual_L.value), 'tol': [float(item) for item in tol_L.value.split(',')], 'C' : [float(item) for item in C_L.value.split(',')], 'fit_intercept' : list(fit_intercept_L.value), 'intercept_scaling' : [float(item) for item in intercept_scaling_L.value.split(',')], 'class_weight' : list(class_weight_L.value), 'random_state' : [int(item) for item in random_state_L.value.split(',')], 'solver' : list(solver_L.value), 'max_iter' : [float(item) for item in max_iter_L.value.split(',')], # 'multi_class' : list(multiclass.value), 'verbose' : [float(item) for item in verbose_L.value.split(',')], # 'n_jobs' : [float(item) for item in n_jobs.value.split(',')] } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() warnings.filterwarnings("ignore") estimator = LogisticRegression() if search_param_L.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_L.value), scoring = scoring_L.value) if search_param_L.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_iter = int(n_iter_L.value), n_jobs = int(n_jobs_L.value), scoring = scoring_L.value) with mlflow.start_run() as run: warnings.filterwarnings("ignore") self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) mlflow.log_param("acc_score", acc_score) mlflow.log_param("roc_score", roc_score) mlflow.log_param("f1_macro", f1_macro) mlflow.log_param("Best Estimator", self.classifier.best_estimator_) if self.tracking == False: estimator = LogisticRegression() if search_param_L.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value), scoring = scoring_L.value) if search_param_L.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_iter = int(n_iter_L.value), scoring = scoring_L.value) self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score from ipywidgets import interact, interactive X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.classifier.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.classifier.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("acc_score = {:.3f} | roc_score = {:,.3f} | f1_score(macro) = {:,.3f}".format(acc_score, roc_score, f1_macro)) Pred = widgets.HTML(value='<h3><em>Predictions on stand_out test data</em></h3>') print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_2.on_click(on_out_res_clicked) b = widgets.VBox([button_2, out_res]) h1 = widgets.HTML('<h3>Select Logistic Regression Hyperparameters</h3>') aa = widgets.VBox([header_2, pp_class, h1, g,h,i,j,k, h5, l, m, null, b]) # Logistic Regression Hyperpameter - Ends # Decision Tree Hyperparameter - Starts criterion_D = widgets.SelectMultiple( options = ['gini', 'entropy'], value = ['gini'], description = 'Criterion', rows = 2, disabled = False) splitter_D = widgets.SelectMultiple( options = ['best', 'random'], value = ['best'], rows = 2, description = 'Splitter', disabled = False) max_depth_D = widgets.Text( value='5', placeholder='enter any integer value', description='Max_Depth', disabled=False) min_samples_split_D = widgets.Text( value='2', placeholder='enter any integer value', description='min_samples_split', style = {'description_width': 'initial'}, disabled=False) min_samples_leaf_D = widgets.Text( value='1', placeholder='enter any integer value', description='min_samples_leaf', style = {'description_width': 'initial'}, disabled=False) min_weight_fraction_D = widgets.Text( value='0.0', placeholder='enter any float value', description='min_weight_fraction', style = {'description_width': 'initial'}, disabled=False) max_features_D = widgets.SelectMultiple( options = ['auto', 'sqrt', 'log2'], value = ['auto'], description = 'Max_Features', style = {'description_width': 'initial'}, rows = 3, disabled = False) random_state_D = widgets.Text( value='0', placeholder='enter any integer value', description='Random_state', disabled=False) max_leaf_nodes_D = widgets.Text( value='2', placeholder='enter any integer value', description='Max_leaf_nodes', style = {'description_width': 'initial'}, disabled=False) min_impurity_decrease_D = widgets.Text( value='0.0', placeholder='enter any float value', description='Min_impurity_decrease', style = {'description_width': 'initial'}, disabled=False) class_weight_D = widgets.SelectMultiple( options = ['balanced', 'None'], value = ['balanced'], rows = 2, description = 'Class_weight', style = {'description_width': 'initial'}, disabled = False) ccp_alpha_D = widgets.Text( value='0.0', placeholder='enter any non-negative float value', description='ccp_alpha', disabled=False) first_row = widgets.HBox([criterion_D, splitter_D, max_features_D]) second_row = widgets.HBox([min_samples_split_D, min_weight_fraction_D, max_depth_D]) third_row = widgets.HBox([random_state_D, max_leaf_nodes_D, min_impurity_decrease_D]) fourth_row = widgets.HBox([ccp_alpha_D, class_weight_D, min_samples_leaf_D]) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_D = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_D = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) scoring_D = widgets.Dropdown( options = ['accuracy', 'f1', 'roc_auc', 'balanced_accuracy'], value = 'accuracy', rows = 4, description = 'Scoring', disabled = False) l = widgets.HBox([search_param_D, cv_D, scoring_D]) n_iter_D = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_jobs_D = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_jobs_D, n_iter_D, n_iter_text]) button_3 = widgets.Button(description='Submit HP_Tune') out_res_DT = widgets.Output() def on_out_res_clicked_DT(_): with out_res_DT: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') if apply_smote.value == 'y': from imblearn.over_sampling import SMOTE import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings('ignore', 'FutureWarning') sm = SMOTE(random_state=42, n_jobs=-1) new_X_cols = self.new_X.columns new_y_cols = self.new_y.columns self.new_X, self.new_y= sm.fit_resample(self.new_X, self.new_y) self.new_X = pd.DataFrame(self.new_X, columns=new_X_cols) self.new_y= pd.DataFrame(self.new_y, columns=new_y_cols) print('> Oversampling using SMOTE completed') else: print('> No oversampling done') # print(criterion_D.value) param_grid = {'criterion': list(criterion_D.value), 'splitter': list(splitter_D.value), 'max_depth': [int(item) for item in max_depth_D.value.split(',')], 'min_samples_split' : [int(item) for item in min_samples_split_D.value.split(',')], 'min_samples_leaf' : [int(item) for item in min_samples_leaf_D.value.split(',')], # 'min_weight_fraction' : [float(item) for item in min_weight_fraction.value.split(',')], 'max_features' : list(max_features_D.value), 'random_state' : [int(item) for item in random_state_D.value.split(',')], 'max_leaf_nodes' : [int(item) for item in max_leaf_nodes_D.value.split(',')], 'min_impurity_decrease' : [float(item) for item in min_impurity_decrease_D.value.split(',')], 'ccp_alpha' : [float(item) for item in ccp_alpha_D.value.split(',')], 'class_weight' : list(class_weight_D.value) } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() warnings.filterwarnings("ignore") estimator = DecisionTreeClassifier() if search_param_D.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_D.value), n_jobs = int(n_jobs_D.value), scoring = scoring_D.value) if search_param_D.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_D.value), n_jobs = int(n_jobs_D.value), n_iter = int(n_iter_D.value), scoring = scoring_D.value) with mlflow.start_run() as run: warnings.filterwarnings("ignore", category=Warning) self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) mlflow.log_param("acc_score", acc_score) mlflow.log_param("roc_score", roc_score) mlflow.log_param("f1_macro", f1_macro) mlflow.log_param("Best Estimator", self.classifier.best_estimator_) if self.tracking == False: estimator = DecisionTreeClassifier() if search_param_D.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, n_jobs = int(n_jobs_D.value), cv = int(cv_D.value), scoring = scoring_D.value) if search_param_D.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_D.value), n_jobs = int(n_jobs_D.value), n_iter = int(n_iter_D.value), scoring = scoring_D.value) self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.classifier.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.classifier.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("acc_score = {:.3f} | roc_score = {:,.3f} | f1_score(macro) = {:,.3f}".format(acc_score, roc_score, f1_macro)) print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_2.on_click(on_out_res_clicked) button_3.on_click(on_out_res_clicked_DT) b = widgets.VBox([button_3, out_res_DT]) h1 = widgets.HTML('<h3>Select Decision Tree Hyperparameters</h3>') frame = widgets.VBox([header_2, pp_class, h1, first_row, second_row, third_row, fourth_row, h5, l, m, b]) # Decision Tree Hyperparameter Ends # Random Forest Hyperparameter Starts n_estimators_R = widgets.Text( value='100', placeholder='enter any integer value', description='n_estimators', disabled=False) criterion_R = widgets.SelectMultiple( options = ['gini', 'entropy'], value = ['gini'], rows = 2, description = 'Criterion', disabled = False) max_depth_R = widgets.Text( value='5', placeholder='enter any integer value', description='Max_Depth', disabled=False) min_samples_split_R = widgets.Text( value='2', placeholder='enter any integer value', description='min_samples_split', style = {'description_width': 'initial'}, disabled=False) min_samples_leaf_R = widgets.Text( value='1', placeholder='enter any integer value', description='min_samples_leaf', style = {'description_width': 'initial'}, disabled=False) min_weight_fraction_leaf_R = widgets.Text( value='0.0', placeholder='enter any float value', description='min_weight_fraction', style = {'description_width': 'initial'}, disabled=False) max_features_R = widgets.SelectMultiple( options = ['auto', 'sqrt', 'log2'], value = ['auto'], description = 'Max_Features', style = {'description_width': 'initial'}, rows = 3, disabled = False) random_state_R = widgets.Text( value='0', placeholder='enter any integer value', description='Random_state', style = {'description_width': 'initial'}, disabled=False) max_leaf_nodes_R = widgets.Text( value='2', placeholder='enter any integer value', description='Max_leaf_nodes', style = {'description_width': 'initial'}, disabled=False) min_impurity_decrease_R = widgets.Text( value='0.0', placeholder='enter any float value', description='Min_impurity_decrease', style = {'description_width': 'initial'}, disabled=False) bootstrap_R = widgets.SelectMultiple( options = [True, False], value = [False], description = 'Bootstrap', rows = 2, disabled = False) oob_score_R = widgets.SelectMultiple( options = [True, False], value = [False], description = 'oob_score', rows = 2, disabled = False) verbose_R = widgets.Text( value='0', placeholder='enter any integer value', description='Verbose', disabled=False) warm_state_R = widgets.SelectMultiple( options = [True, False], value = [False], description = 'Warm_State', style = {'description_width': 'initial'}, rows = 2, disabled = False) class_weight_R = widgets.SelectMultiple( options = ['balanced', 'balanced_subsample', 'None'], value = ['balanced'], description = 'Class_weight', rows = 3, style = {'description_width': 'initial'}, disabled = False) ccp_alpha_R = widgets.Text( value='0.0', placeholder='enter any non-negative float value', description='ccp_alpha', disabled=False) max_samples_R = widgets.Text( value='2', placeholder='enter any float value', description='max_samples', style = {'description_width': 'initial'}, disabled=False) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_R = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_R = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) scoring_R = widgets.Dropdown( options = ['accuracy', 'f1', 'roc_auc', 'balanced_accuracy'], value = 'accuracy', rows = 4, description = 'Scoring', disabled = False) l = widgets.HBox([search_param_R, cv_R, scoring_R]) n_jobs_R = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) n_iter_R = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_jobs_R, n_iter_R, n_iter_text]) first_row = widgets.HBox([n_estimators_R, criterion_R, max_depth_R]) second_row = widgets.HBox([min_samples_split_R, min_samples_leaf_R, min_weight_fraction_leaf_R]) third_row = widgets.HBox([max_features_R, max_leaf_nodes_R, min_impurity_decrease_R]) fourth_row = widgets.HBox([max_samples_R, bootstrap_R, oob_score_R]) fifth_row = widgets.HBox([warm_state_R, random_state_R, verbose_R]) sixth_row = widgets.HBox([class_weight_R, ccp_alpha_R]) button_4 = widgets.Button(description='Submit RF GridSearchCV') out_res_RF = widgets.Output() def on_out_res_clicked_RF(_): with out_res_RF: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') if apply_smote.value == 'y': from imblearn.over_sampling import SMOTE import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings('ignore', 'FutureWarning') sm = SMOTE(random_state=42, n_jobs=-1) new_X_cols = self.new_X.columns new_y_cols = self.new_y.columns self.new_X, self.new_y= sm.fit_resample(self.new_X, self.new_y) self.new_X = pd.DataFrame(self.new_X, columns=new_X_cols) self.new_y= pd.DataFrame(self.new_y, columns=new_y_cols) print('> Oversampling using SMOTE completed') else: print('> No oversampling done') param_grid = {'n_estimators' : [int(item) for item in n_estimators_R.value.split(',')], 'criterion': list(criterion_R.value), 'max_depth': [int(item) for item in max_depth_R.value.split(',')], 'min_samples_split' : [int(item) for item in min_samples_split_R.value.split(',')], 'min_samples_leaf' : [int(item) for item in min_samples_leaf_R.value.split(',')], 'min_weight_fraction_leaf' : [float(item) for item in min_weight_fraction_leaf_R.value.split(',')], 'max_features' : list(max_features_R.value), 'random_state' : [int(item) for item in random_state_R.value.split(',')], 'max_leaf_nodes' : [int(item) for item in max_leaf_nodes_R.value.split(',')], 'min_impurity_decrease' : [float(item) for item in min_impurity_decrease_R.value.split(',')], 'bootstrap' : list(bootstrap_R.value), 'oob_score' : list(oob_score_R.value), 'verbose' : [int(item) for item in verbose_R.value.split(',')], 'class_weight' : list(class_weight_R.value), 'ccp_alpha' : [float(item) for item in ccp_alpha_R.value.split(',')], 'max_samples' : [int(item) for item in max_samples_R.value.split(',')] } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() estimator = RandomForestClassifier() if search_param_R.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_R.value), scoring = scoring_L.value) if search_param_R.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_R.value), n_iter = int(n_iter_L.value), scoring = scoring_L.value) with mlflow.start_run() as run: self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) mlflow.log_param("acc_score", acc_score) mlflow.log_param("roc_score", roc_score) mlflow.log_param("f1_macro", f1_macro) mlflow.log_param("Best Estimator", self.classifier.best_estimator_) if self.tracking == False: estimator = RandomForestClassifier() if search_param_R.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, n_jobs = int(n_jobs_R.value), cv = int(cv_L.value), scoring = scoring_L.value) if search_param_R.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_R.value), n_iter = int(n_iter_L.value), scoring = scoring_L.value) self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.classifier.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.classifier.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("acc_score = {:.3f} | roc_score = {:,.3f} | f1_score(macro) = {:,.3f}".format(acc_score, roc_score, f1_macro)) print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_4.on_click(on_out_res_clicked_RF) b = widgets.VBox([button_4, out_res_RF]) h1 = widgets.HTML('<h3>Select Random Forest Hyperparameters</h3>') frame_RF = widgets.VBox([header_2, pp_class, h1, first_row, second_row, third_row, fourth_row, fifth_row, sixth_row, h5, l, m, b]) # Random Forest Hyperparameter ends # KNN Classifier Hyperparameter Starts n_neighbors_k = widgets.Text( value='5', placeholder='enter any integer value', description='n_neighbors', disabled=False) weights_k = widgets.SelectMultiple( options = ['uniform', 'distance'], value = ['uniform'], rows = 2, description = 'Weights', disabled = False) algorithm_k = widgets.SelectMultiple( options = ['auto', 'ball_tree', 'kd_tree', 'brute'], value = ['auto'], rows = 4, description = 'Algorithm', disabled = False) leaf_size_k = widgets.Text( value='30', placeholder='enter any integer value', description='Leaf_Size', disabled=False) p_k = widgets.Text( value='2', placeholder='enter any integer value', description='p (Power param)', disabled=False) metric_k = widgets.SelectMultiple( options = ['euclidean', 'manhattan', 'chebyshev', 'minkowski'], value = ['minkowski'], rows = 4, description = 'Metric', disabled = False) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_K = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_K = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) scoring_K = widgets.Dropdown( options = ['accuracy', 'f1', 'roc_auc', 'balanced_accuracy'], value = 'accuracy', rows = 4, description = 'Scoring', disabled = False) l = widgets.HBox([search_param_K, cv_K, scoring_K]) n_iter_K = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_jobs_K = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_iter_K, n_iter_text]) first_row = widgets.HBox([n_neighbors_k, weights_k, algorithm_k]) second_row = widgets.HBox([leaf_size_k, p_k, metric_k]) button_5 = widgets.Button(description='Submit RF GridSearchCV') out_res_K = widgets.Output() def on_out_res_clicked_K(_): with out_res_K: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') if apply_smote.value == 'y': from imblearn.over_sampling import SMOTE import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings('ignore', 'FutureWarning') sm = SMOTE(random_state=42, n_jobs=-1) new_X_cols = self.new_X.columns new_y_cols = self.new_y.columns self.new_X, self.new_y= sm.fit_resample(self.new_X, self.new_y) self.new_X = pd.DataFrame(self.new_X, columns=new_X_cols) self.new_y= pd.DataFrame(self.new_y, columns=new_y_cols) print('> Oversampling using SMOTE completed') else: print('> No oversampling done') # print(n_neighbors_k.value) param_grid = {'n_neighbors' : [int(item) for item in n_neighbors_k.value.split(',')], 'weights': list(weights_k.value), 'algorithm': list(algorithm_k.value), 'leaf_size' : [int(item) for item in leaf_size_k.value.split(',')], 'p' : [int(item) for item in p_k.value.split(',')], 'metric' : list(metric_k.value), } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() estimator = KNeighborsClassifier() if search_param_K.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_K.value), scoring = scoring_K.value) if search_param_K.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_K.value), n_iter = int(n_iter_K.value), n_jobs = int(n_jobs_K.value), scoring = scoring_K.value) with mlflow.start_run() as run: self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) mlflow.log_param("acc_score", acc_score) mlflow.log_param("roc_score", roc_score) mlflow.log_param("f1_macro", f1_macro) mlflow.log_param("Best Estimator", self.classifier.best_estimator_) if self.tracking == False: estimator = KNeighborsClassifier() if search_param_K.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, n_jobs = int(n_jobs_K.value), cv = int(cv_K.value), scoring = scoring_K.value) if search_param_K.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_K.value), n_jobs = int(n_jobs_K.value), n_iter = int(n_iter_K.value), scoring = scoring_K.value) self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.classifier.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.classifier.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("acc_score = {:.3f} | roc_score = {:,.3f} | f1_score(macro) = {:,.3f}".format(acc_score, roc_score, f1_macro)) print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_5.on_click(on_out_res_clicked_K) b = widgets.VBox([button_5, out_res_K]) h1 = widgets.HTML('<h3>Select KNN Classifier Hyperparameters</h3>') frame_K = widgets.VBox([header_2, pp_class, h1, first_row, second_row, h5, l, m, b]) #KNN Classifier Hyperparameter ends # Adaboost Classifier Hyperparameter Starts n_estimators_A = widgets.Text( value='50', placeholder='enter any integer value', description='n_estimators', disabled=False) learning_rate_A = widgets.Text( value='1', placeholder='enter any float value', description='learning_rate', disabled=False) algorithm_A = widgets.SelectMultiple( options = ['SAMME', 'SAMME.R'], value = ['SAMME.R'], rows = 2, description = 'Algorithm', disabled = False) random_state_A = widgets.Text( value='0', placeholder='enter any integer value', description='Random_state', style = {'description_width': 'initial'}, disabled=False) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_A = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_A = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) scoring_A = widgets.Dropdown( options = ['accuracy', 'f1', 'roc_auc', 'balanced_accuracy'], value = 'accuracy', rows = 4, description = 'Scoring', disabled = False) l = widgets.HBox([search_param_A, cv_A, scoring_A]) n_jobs_A = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) n_iter_A = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_jobs_A, n_iter_A, n_iter_text]) first_row = widgets.HBox([n_estimators_A, learning_rate_A, algorithm_A]) second_row = widgets.HBox([random_state_A]) button_6 = widgets.Button(description='Submit Adaboost HPTune') out_res_ADA = widgets.Output() def on_out_res_clicked_ADA(_): with out_res_ADA: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') if apply_smote.value == 'y': from imblearn.over_sampling import SMOTE import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings('ignore', 'FutureWarning') sm = SMOTE(random_state=42, n_jobs=-1) new_X_cols = self.new_X.columns new_y_cols = self.new_y.columns self.new_X, self.new_y= sm.fit_resample(self.new_X, self.new_y) self.new_X = pd.DataFrame(self.new_X, columns=new_X_cols) self.new_y= pd.DataFrame(self.new_y, columns=new_y_cols) print('> Oversampling using SMOTE completed') else: print('> No oversampling done') param_grid = {'n_estimators' : [int(item) for item in n_estimators_A.value.split(',')], 'learning_rate': [float(item) for item in learning_rate_A.value.split(',')], 'algorithm': list(algorithm_A.value), 'random_state' : [int(item) for item in random_state_A.value.split(',')], } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() estimator = AdaBoostClassifier() if search_param_A.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_A.value), n_jobs = int(n_jobs_A.value), scoring = scoring_A.value) if search_param_A.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_A.value), n_jobs = int(n_jobs_A.value), n_iter = int(n_iter_A.value), scoring = scoring_A.value) with mlflow.start_run() as run: self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) mlflow.log_param("acc_score", acc_score) mlflow.log_param("roc_score", roc_score) mlflow.log_param("f1_macro", f1_macro) mlflow.log_param("Best Estimator", self.classifier.best_estimator_) if self.tracking == False: estimator = AdaBoostClassifier() if search_param_A.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_A.value), n_jobs = int(n_jobs_A.value), scoring = scoring_A.value) if search_param_A.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_A.value), n_iter = int(n_iter_A.value), n_jobs = int(n_jobs_A.value), scoring = scoring_A.value) self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.classifier.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.classifier.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("acc_score = {:.3f} | roc_score = {:,.3f} | f1_score(macro) = {:,.3f}".format(acc_score, roc_score, f1_macro)) print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_6.on_click(on_out_res_clicked_ADA) b = widgets.VBox([button_6, out_res_ADA]) h1 = widgets.HTML('<h3>Select Adaboost Hyperparameters</h3>') frame_A = widgets.VBox([header_2, pp_class, h1, first_row, second_row, h5, l, m, b]) # Adaboost Cls Hyperparameter ends # Extra Trees Hyperparameter Starts n_estimators_E = widgets.Text( value='100', placeholder='enter any integer value', description='n_estimators', disabled=False) criterion_E = widgets.SelectMultiple( options = ['gini', 'entropy'], value = ['gini'], rows = 2, description = 'Criterion', disabled = False) max_depth_E = widgets.Text( value='5', placeholder='enter any integer value', description='Max_Depth', disabled=False) min_samples_split_E = widgets.Text( value='2', placeholder='enter any integer value', description='min_samples_split', style = {'description_width': 'initial'}, disabled=False) min_samples_leaf_E = widgets.Text( value='1', placeholder='enter any integer value', description='min_samples_leaf', style = {'description_width': 'initial'}, disabled=False) min_weight_fraction_leaf_E = widgets.Text( value='0.0', placeholder='enter any float value', description='min_weight_fraction', style = {'description_width': 'initial'}, disabled=False) max_features_E = widgets.SelectMultiple( options = ['auto', 'sqrt', 'log2'], value = ['auto'], description = 'Max_Features', style = {'description_width': 'initial'}, rows = 3, disabled = False) random_state_E = widgets.Text( value='0', placeholder='enter any integer value', description='Random_state', style = {'description_width': 'initial'}, disabled=False) max_leaf_nodes_E = widgets.Text( value='2', placeholder='enter any integer value', description='Max_leaf_nodes', style = {'description_width': 'initial'}, disabled=False) min_impurity_decrease_E = widgets.Text( value='0.0', placeholder='enter any float value', description='Min_impurity_decrease', style = {'description_width': 'initial'}, disabled=False) bootstrap_E = widgets.SelectMultiple( options = [True, False], value = [False], description = 'Bootstrap', rows = 2, disabled = False) oob_score_E = widgets.SelectMultiple( options = [True, False], value = [False], description = 'oob_score', rows = 2, disabled = False) verbose_E = widgets.Text( value='0', placeholder='enter any integer value', description='Verbose', disabled=False) warm_state_E = widgets.SelectMultiple( options = [True, False], value = [False], description = 'Warm_State', style = {'description_width': 'initial'}, rows = 2, disabled = False) class_weight_E = widgets.SelectMultiple( options = ['balanced', 'balanced_subsample', 'None'], value = ['balanced'], description = 'Class_weight', rows = 3, style = {'description_width': 'initial'}, disabled = False) ccp_alpha_E = widgets.Text( value='0.0', placeholder='enter any non-negative float value', description='ccp_alpha', disabled=False) max_samples_E = widgets.Text( value='2', placeholder='enter any float value', description='max_samples', style = {'description_width': 'initial'}, disabled=False) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_E = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_E = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) scoring_E = widgets.Dropdown( options = ['accuracy', 'f1', 'roc_auc', 'balanced_accuracy'], value = 'accuracy', rows = 4, description = 'Scoring', disabled = False) l = widgets.HBox([search_param_E, cv_E, scoring_E]) n_jobs_E = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) n_iter_E = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_jobs_E, n_iter_E, n_iter_text]) first_row = widgets.HBox([n_estimators_E, criterion_E, max_depth_E]) second_row = widgets.HBox([min_samples_split_E, min_samples_leaf_E, min_weight_fraction_leaf_E]) third_row = widgets.HBox([max_features_E, max_leaf_nodes_E, min_impurity_decrease_E]) fourth_row = widgets.HBox([max_samples_E, bootstrap_E, oob_score_E]) fifth_row = widgets.HBox([warm_state_E, random_state_E, verbose_E]) sixth_row = widgets.HBox([class_weight_E, ccp_alpha_E]) button_7 = widgets.Button(description='Submit ET GridSearchCV') out_res_ET = widgets.Output() def on_out_res_clicked_ET(_): with out_res_ET: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') if apply_smote.value == 'y': from imblearn.over_sampling import SMOTE import warnings warnings.simplefilter(action='ignore', category=FutureWarning) from sklearn.exceptions import DataConversionWarning warnings.filterwarnings(action='ignore', category=DataConversionWarning) warnings.filterwarnings('ignore', 'FutureWarning') sm = SMOTE(random_state=42, n_jobs=-1) new_X_cols = self.new_X.columns new_y_cols = self.new_y.columns self.new_X, self.new_y= sm.fit_resample(self.new_X, self.new_y) self.new_X = pd.DataFrame(self.new_X, columns=new_X_cols) self.new_y= pd.DataFrame(self.new_y, columns=new_y_cols) print('> Oversampling using SMOTE completed') else: print('> No oversampling done') param_grid = {'n_estimators' : [int(item) for item in n_estimators_E.value.split(',')], 'criterion': list(criterion_E.value), 'max_depth': [int(item) for item in max_depth_E.value.split(',')], 'min_samples_split' : [int(item) for item in min_samples_split_E.value.split(',')], 'min_samples_leaf' : [int(item) for item in min_samples_leaf_E.value.split(',')], 'min_weight_fraction_leaf' : [float(item) for item in min_weight_fraction_leaf_E.value.split(',')], 'max_features' : list(max_features_E.value), 'random_state' : [int(item) for item in random_state_E.value.split(',')], 'max_leaf_nodes' : [int(item) for item in max_leaf_nodes_E.value.split(',')], 'min_impurity_decrease' : [float(item) for item in min_impurity_decrease_E.value.split(',')], 'bootstrap' : list(bootstrap_E.value), 'oob_score' : list(oob_score_E.value), 'verbose' : [int(item) for item in verbose_E.value.split(',')], 'class_weight' : list(class_weight_E.value), 'ccp_alpha' : [float(item) for item in ccp_alpha_E.value.split(',')], 'max_samples' : [int(item) for item in max_samples_E.value.split(',')] } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() estimator = ExtraTreesClassifier() if search_param_E.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_E.value), n_jobs = int(n_jobs_E.value), scoring = scoring_E.value) if search_param_E.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_E.value), n_jobs = int(n_jobs_E.value), n_iter = int(n_iter_E.value), scoring = scoring_E.value) with mlflow.start_run() as run: self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) mlflow.log_param("acc_score", acc_score) mlflow.log_param("roc_score", roc_score) mlflow.log_param("f1_macro", f1_macro) mlflow.log_param("Best Estimator", self.classifier.best_estimator_) if self.tracking == False: estimator = ExtraTreesClassifier() if search_param_E.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, n_jobs = int(n_jobs_E.value), cv = int(cv_E.value), scoring = scoring_E.value) if search_param_E.value == 'Random Search CV': print('> RandomizedSearch CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_E.value), n_jobs = int(n_jobs_E.value), n_iter = int(n_iter_E.value), scoring = scoring_E.value) self.classifier = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score, f1_score, roc_auc_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.classifier.predict(X_test) acc_score= (accuracy_score(y_test,predictions)) roc_score= (roc_auc_score(y_test,predictions)) f1_macro= (f1_score(y_test, predictions, average='macro')) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.classifier.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.classifier.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("acc_score = {:.3f} | roc_score = {:,.3f} | f1_score(macro) = {:,.3f}".format(acc_score, roc_score, f1_macro)) print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.classifier.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_7.on_click(on_out_res_clicked_ET) b = widgets.VBox([button_7, out_res_ET]) h1 = widgets.HTML('<h3>Select ExtraTrees Hyperparameters</h3>') frame_ET = widgets.VBox([header_2, pp_class, h1, first_row, second_row, third_row, fourth_row, fifth_row, sixth_row, h5, l, m, b]) # Extra Trees Hyperparameter ends def on_button_clicked(_): with out: clear_output() selection = base_estimator.value if selection == 'Logistic Regression': display(aa) with out3: clear_output() hp = widgets.HTML('<h4> Logistic Regression - Scikit Learn web page</h4>') hp_1 = widgets.HTML('<iframe src="https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html" width="100%" height="600" title="SKLearn Helper page"> </iframe>') display(hp, hp_1) elif selection =='Decision Tree': display(frame) with out3: clear_output() hp = widgets.HTML('<h4> Decision Tree Classifier - Scikit Learn web page</h4>') hp_1 = widgets.HTML('<iframe src="https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html" width="100%" height="600" title="SKLearn Helper page"> </iframe>') display(hp, hp_1) elif selection == 'Random Forest': display(frame_RF) with out3: clear_output() hp = widgets.HTML('<h4> Random Forest Classifier - Scikit Learn web page</h4>') hp_1 = widgets.HTML('<iframe src="https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html" width="100%" height="600" title="SKLearn Helper page"> </iframe>') display(hp, hp_1) elif selection == 'AdaBoost': display(frame_A) with out3: clear_output() hp = widgets.HTML('<h4> Adaboost Classifier - Scikit Learn web page</h4>') hp_1 = widgets.HTML('<iframe src="https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html" width="100%" height="600" title="SKLearn Helper page"> </iframe>') display(hp, hp_1) elif selection == 'ExtraTree Classifier': display(frame_ET) with out3: clear_output() hp = widgets.HTML('<h4> ExtraTree Classifier - Scikit Learn web page</h4>') hp_1 = widgets.HTML('<iframe src="https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html" width="100%" height="600" title="SKLearn Helper page"> </iframe>') display(hp, hp_1) elif selection == 'KNN Classifier': display(frame_K) with out3: clear_output() hp = widgets.HTML('<h4> KNN Classifier - Scikit Learn web page</h4>') hp_1 = widgets.HTML('<iframe src="https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html" width="100%" height="600" title="SKLearn Helper page"> </iframe>') display(hp, hp_1) button.on_click(on_button_clicked) a = widgets.VBox([button, out]) display(a) def HP_Tune_Regression(self): from sklearn.neighbors import KNeighborsRegressor from sklearn.linear_model import LinearRegression from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor, ExtraTreesRegressor from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from math import sqrt import ipywidgets as widgets from ipywidgets import HBox, VBox, Button, Label from ipywidgets import interact_manual, interactive, interact import logging from IPython.display import display, Markdown, clear_output import warnings warnings.filterwarnings('ignore') out1 = widgets.Output() out2 = widgets.Output() out3 = widgets.Output() tab = widgets.Tab(children = [out1, out2, out3]) tab.set_title(0, 'Input') tab.set_title(1, 'Output') tab.set_title(2, 'Helper Page') display(tab) with out1: header_1 = widgets.HTML(value="<h2>Pywedge HP_Tune</h2>") header = widgets.HTML(value="<h3>Base Estimator</h3>") display(header_1, header) import pandas as pd cat_info = widgets.Dropdown( options = [('cat_codes', '1'), ('get_dummies', '2')], value = '1', description = 'Select categorical conversion', style = {'description_width': 'initial'}, disabled=False) std_scr = widgets.Dropdown( options = [('StandardScalar', '1'), ('RobustScalar', '2'), ('MinMaxScalar', '3'), ('No Standardization', 'n')], value = 'n', description = 'Select Standardization methods', style = {'description_width': 'initial'}, disabled=False) pp_class = widgets.HBox([cat_info, std_scr]) header_2 = widgets.HTML(value="<h3>Pre_processing </h3>") base_estimator = widgets.Dropdown( options=['Linear Regression', 'Decision Tree Regressor', 'Random Forest Regressor', 'AdaBoost Regressor', 'ExtraTree Regressor', 'KNN Regressor'], value='Linear Regression', description='Choose Base Estimator: ', style = {'description_width': 'initial'}, disabled=False) display(base_estimator) button = widgets.Button(description='Select Base Estimator') out = widgets.Output() # Linear Regression Hyperparameters _Start fit_intercept_L = widgets.SelectMultiple( options = [True, False], value = [True], rows = 2, description = 'Fit_Intercept', disabled = False) normalize_L = widgets.SelectMultiple( options = [True, False], value = [False], rows = 2, description = 'Normalize', disabled = False) copy_X_L = widgets.SelectMultiple( options = [True, False], value = [True], rows = 2, description = 'Copy_X', disabled = False) g = widgets.HBox([fit_intercept_L, normalize_L, copy_X_L]) positive_L = widgets.SelectMultiple( options = [True, False], value = [False], rows = 2, description = 'Positive', disabled = False) h = widgets.HBox([positive_L]) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_L = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_L = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) l = widgets.HBox([search_param_L, cv_L]) n_iter_L = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_iter_L, n_iter_text]) null = widgets.HTML('<br></br>') button_2 = widgets.Button(description='Submit HP_Tune') out_res = widgets.Output() def on_out_res_clicked(_): with out_res: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') param_grid = {'fit_intercept': list(fit_intercept_L.value), 'normalize': list(normalize_L.value), 'copy_X': list(copy_X_L.value) #'positive' : list(positive_L.value) } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() warnings.filterwarnings("ignore") estimator = LinearRegression() if search_param_L.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value)) if search_param_L.value == 'Random Search CV': print('> Randomized Search CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_iter = int(n_iter_L.value)) with mlflow.start_run() as run: warnings.filterwarnings("ignore") self.regressor = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import explained_variance_score, mean_absolute_error, r2_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.regressor.predict(X_test) exp_var = explained_variance_score(y_test, predictions) mae = mean_absolute_error(y_test, predictions) rmse = sqrt(mean_absolute_error(y_test, predictions)) r2 = r2_score(y_test, predictions) mlflow.log_param("Exp_Var", exp_var) mlflow.log_param("MAE", mae) mlflow.log_param("RMSE", rmse) mlflow.log_param('R2', r2) mlflow.log_param("Best Estimator", self.regressor.best_estimator_) if self.tracking == False: estimator = LinearRegression() if search_param_L.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value)) if search_param_L.value == 'Random Search CV': print('> Randomized Search CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_iter = int(n_iter_L.value)) warnings.filterwarnings("ignore") self.regressor = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import explained_variance_score, mean_absolute_error, r2_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.regressor.predict(X_test) exp_var = explained_variance_score(y_test, predictions) mae = mean_absolute_error(y_test, predictions) rmse = sqrt(mean_absolute_error(y_test, predictions)) r2 = r2_score(y_test, predictions) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.regressor.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.regressor.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("exp_var = {:.3f} | mae = {:,.3f} | rmse = {:,.3f} | r2 = {:,.3f} ".format(exp_var, mae, rmse, r2,)) print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking == True: display(msg_1) button_2.on_click(on_out_res_clicked) b = widgets.VBox([button_2, out_res]) h1 = widgets.HTML('<h3>Select Linear Regression Hyperparameters</h3>') aa = widgets.VBox([header_2, pp_class, h1, g,h,h5, l, m, null, b]) # Linear Regression Hyperpameter - Ends # Decision Tree Regressor Hyperparameter - Starts criterion_D = widgets.SelectMultiple( options = ['mse', 'friedman_mse', 'mae', 'poisson'], value = ['mse'], description = 'Criterion', rows = 4, disabled = False) splitter_D = widgets.SelectMultiple( options = ['best', 'random'], value = ['best'], rows = 2, description = 'Splitter', disabled = False) max_depth_D = widgets.Text( value='5', placeholder='enter any integer value', description='Max_Depth', disabled=False) min_samples_split_D = widgets.Text( value='2', placeholder='enter any integer value', description='min_samples_split', style = {'description_width': 'initial'}, disabled=False) min_samples_leaf_D = widgets.Text( value='1', placeholder='enter any integer value', description='min_samples_leaf', style = {'description_width': 'initial'}, disabled=False) min_weight_fraction_D = widgets.Text( value='0.0', placeholder='enter any float value', description='min_weight_fraction', style = {'description_width': 'initial'}, disabled=False) max_features_D = widgets.SelectMultiple( options = ['auto', 'sqrt', 'log2'], value = ['auto'], description = 'Max_Features', style = {'description_width': 'initial'}, rows = 3, disabled = False) random_state_D = widgets.Text( value='0', placeholder='enter any integer value', description='Random_state', disabled=False) max_leaf_nodes_D = widgets.Text( value='2', placeholder='enter any integer value', description='Max_leaf_nodes', style = {'description_width': 'initial'}, disabled=False) min_impurity_decrease_D = widgets.Text( value='0.0', placeholder='enter any float value', description='Min_impurity_decrease', style = {'description_width': 'initial'}, disabled=False) ccp_alpha_D = widgets.Text( value='0.0', placeholder='enter any non-negative float value', description='ccp_alpha', disabled=False) first_row = widgets.HBox([criterion_D, splitter_D, max_features_D]) second_row = widgets.HBox([min_samples_split_D, min_weight_fraction_D, max_depth_D]) third_row = widgets.HBox([random_state_D, max_leaf_nodes_D, min_impurity_decrease_D]) fourth_row = widgets.HBox([ccp_alpha_D, min_samples_leaf_D]) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_D = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_D = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) n_jobs_D = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) l = widgets.HBox([search_param_D, cv_D, n_jobs_D]) n_iter_D = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_iter_D, n_iter_text]) button_3 = widgets.Button(description='Submit HP_Tune') out_res_DT = widgets.Output() def on_out_res_clicked_DT(_): with out_res_DT: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') param_grid = {'criterion': list(criterion_D.value), 'splitter': list(splitter_D.value), 'max_depth': [int(item) for item in max_depth_D.value.split(',')], 'min_samples_split' : [int(item) for item in min_samples_split_D.value.split(',')], 'min_samples_leaf' : [int(item) for item in min_samples_leaf_D.value.split(',')], # 'min_weight_fraction' : [float(item) for item in min_weight_fraction.value.split(',')], 'max_features' : list(max_features_D.value), 'random_state' : [int(item) for item in random_state_D.value.split(',')], 'max_leaf_nodes' : [int(item) for item in max_leaf_nodes_D.value.split(',')], 'min_impurity_decrease' : [float(item) for item in min_impurity_decrease_D.value.split(',')], 'ccp_alpha' : [float(item) for item in ccp_alpha_D.value.split(',')] } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() estimator = DecisionTreeRegressor() if search_param_D.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_D.value), n_jobs = int(cv_D.value)) if search_param_D.value == 'Random Search CV': print('> Randomized Search CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_D.value), n_iter = int(n_iter_D.value), n_jobs = int(cv_D.value)) with mlflow.start_run() as run: warnings.filterwarnings("ignore") self.regressor = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import explained_variance_score, mean_absolute_error, r2_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.regressor.predict(X_test) exp_var = explained_variance_score(y_test, predictions) mae = mean_absolute_error(y_test, predictions) rmse = sqrt(mean_absolute_error(y_test, predictions)) r2 = r2_score(y_test, predictions) mlflow.log_param("Exp_Var", exp_var) mlflow.log_param("MAE", mae) mlflow.log_param("RMSE", rmse) mlflow.log_param('R2', r2) mlflow.log_param("Best Estimator", self.regressor.best_estimator_) if self.tracking == False: estimator = DecisionTreeRegressor() if search_param_D.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_D.value), n_jobs = int(cv_D.value)) if search_param_D.value == 'Random Search CV': print('> Randimized Search CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_D.value), n_iter = int(n_iter_D.value), n_jobs = int(cv_D.value)) warnings.filterwarnings("ignore") self.regressor = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import explained_variance_score, mean_absolute_error, r2_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.regressor.predict(X_test) exp_var = explained_variance_score(y_test, predictions) mae = mean_absolute_error(y_test, predictions) rmse = sqrt(mean_absolute_error(y_test, predictions)) r2 = r2_score(y_test, predictions) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.regressor.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.regressor.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("exp_var = {:.3f} | mae = {:,.3f} | rmse = {:,.3f} | r2 = {:,.3f} ".format(exp_var, mae, rmse, r2,)) print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_2.on_click(on_out_res_clicked) button_3.on_click(on_out_res_clicked_DT) b = widgets.VBox([button_3, out_res_DT]) h1 = widgets.HTML('<h3>Select Decision Tree Regressor Hyperparameters</h3>') frame = widgets.VBox([header_2, pp_class, h1, first_row, second_row, third_row, fourth_row, h5, l, m, b]) # Decision Tree Hyperparameter Ends # Random Forest Regressor Hyperparameter Starts n_estimators_R = widgets.Text( value='100', placeholder='enter any integer value', description='n_estimators', disabled=False) criterion_R = widgets.SelectMultiple( options = ['mse', 'mae'], value = ['mse'], rows = 2, description = 'Criterion', disabled = False) max_depth_R = widgets.Text( value='5', placeholder='enter any integer value', description='Max_Depth', disabled=False) min_samples_split_R = widgets.Text( value='2', placeholder='enter any integer value', description='min_samples_split', style = {'description_width': 'initial'}, disabled=False) min_samples_leaf_R = widgets.Text( value='1', placeholder='enter any integer value', description='min_samples_leaf', style = {'description_width': 'initial'}, disabled=False) min_weight_fraction_leaf_R = widgets.Text( value='0.0', placeholder='enter any float value', description='min_weight_fraction', style = {'description_width': 'initial'}, disabled=False) max_features_R = widgets.SelectMultiple( options = ['auto', 'sqrt', 'log2'], value = ['auto'], description = 'Max_Features', style = {'description_width': 'initial'}, rows = 3, disabled = False) random_state_R = widgets.Text( value='0', placeholder='enter any integer value', description='Random_state', style = {'description_width': 'initial'}, disabled=False) max_leaf_nodes_R = widgets.Text( value='2', placeholder='enter any integer value', description='Max_leaf_nodes', style = {'description_width': 'initial'}, disabled=False) min_impurity_decrease_R = widgets.Text( value='0.0', placeholder='enter any float value', description='Min_impurity_decrease', style = {'description_width': 'initial'}, disabled=False) bootstrap_R = widgets.SelectMultiple( options = [True, False], value = [False], description = 'Bootstrap', rows = 2, disabled = False) oob_score_R = widgets.SelectMultiple( options = [True, False], value = [False], description = 'oob_score', rows = 2, disabled = False) verbose_R = widgets.Text( value='0', placeholder='enter any integer value', description='Verbose', disabled=False) warm_state_R = widgets.SelectMultiple( options = [True, False], value = [False], description = 'Warm_State', rows = 2, style = {'description_width': 'initial'}, disabled = False) class_weight_R = widgets.SelectMultiple( options = ['balanced', 'balanced_subsample', 'None'], value = ['balanced'], description = 'Class_weight', rows = 3, style = {'description_width': 'initial'}, disabled = False) ccp_alpha_R = widgets.Text( value='0.0', placeholder='enter any non-negative float value', description='ccp_alpha', disabled=False) max_samples_R = widgets.Text( value='2', placeholder='enter any float value', description='max_samples', style = {'description_width': 'initial'}, disabled=False) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_R = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_R = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) n_jobs_R = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) l = widgets.HBox([search_param_R, cv_R, n_jobs_R]) n_iter_R = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_iter_R, n_iter_text]) first_row = widgets.HBox([n_estimators_R, criterion_R, max_depth_R]) second_row = widgets.HBox([min_samples_split_R, min_samples_leaf_R, min_weight_fraction_leaf_R]) third_row = widgets.HBox([max_features_R, max_leaf_nodes_R, min_impurity_decrease_R]) fourth_row = widgets.HBox([max_samples_R, bootstrap_R, oob_score_R]) fifth_row = widgets.HBox([random_state_R, verbose_R]) sixth_row = widgets.HBox([warm_state_R, ccp_alpha_R]) button_4 = widgets.Button(description='Submit HP_Tune') out_res_RF = widgets.Output() def on_out_res_clicked_RF(_): with out_res_RF: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') param_grid = {'n_estimators' : [int(item) for item in n_estimators_R.value.split(',')], 'criterion': list(criterion_R.value), 'max_depth': [int(item) for item in max_depth_R.value.split(',')], 'min_samples_split' : [int(item) for item in min_samples_split_R.value.split(',')], 'min_samples_leaf' : [int(item) for item in min_samples_leaf_R.value.split(',')], 'min_weight_fraction_leaf' : [float(item) for item in min_weight_fraction_leaf_R.value.split(',')], 'max_features' : list(max_features_R.value), 'random_state' : [int(item) for item in random_state_R.value.split(',')], 'max_leaf_nodes' : [int(item) for item in max_leaf_nodes_R.value.split(',')], 'min_impurity_decrease' : [float(item) for item in min_impurity_decrease_R.value.split(',')], 'bootstrap' : list(bootstrap_R.value), 'oob_score' : list(oob_score_R.value), 'verbose' : [int(item) for item in verbose_R.value.split(',')], 'ccp_alpha' : [float(item) for item in ccp_alpha_R.value.split(',')], 'max_samples' : [int(item) for item in max_samples_R.value.split(',')] } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() estimator = RandomForestRegressor() if search_param_R.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_R.value)) if search_param_R.value == 'Random Search CV': print('> Randomized Search CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_iter = int(n_iter_L.value), n_jobs = int(n_jobs_R.value)) with mlflow.start_run() as run: warnings.filterwarnings("ignore") self.regressor = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import explained_variance_score, mean_absolute_error, r2_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.regressor.predict(X_test) exp_var = explained_variance_score(y_test, predictions) mae = mean_absolute_error(y_test, predictions) rmse = sqrt(mean_absolute_error(y_test, predictions)) r2 = r2_score(y_test, predictions) mlflow.log_param("Exp_Var", exp_var) mlflow.log_param("MAE", mae) mlflow.log_param("RMSE", rmse) mlflow.log_param('R2', r2) mlflow.log_param("Best Estimator", self.regressor.best_estimator_) if self.tracking == False: estimator = RandomForestRegressor() if search_param_R.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_R.value)) if search_param_R.value == 'Random Search CV': print('> Randomized Search CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_iter = int(n_iter_L.value), n_jobs = int(n_jobs_R.value)) warnings.filterwarnings("ignore") self.regressor = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import explained_variance_score, mean_absolute_error, r2_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.regressor.predict(X_test) exp_var = explained_variance_score(y_test, predictions) mae = mean_absolute_error(y_test, predictions) rmse = sqrt(mean_absolute_error(y_test, predictions)) r2 = r2_score(y_test, predictions) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.regressor.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.regressor.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("exp_var = {:.3f} | mae = {:,.3f} | rmse = {:,.3f} | r2 = {:,.3f} ".format(exp_var, mae, rmse, r2,)) print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_4.on_click(on_out_res_clicked_RF) b = widgets.VBox([button_4, out_res_RF]) h1 = widgets.HTML('<h3>Select Random Forest Regressor Hyperparameters</h3>') frame_RF = widgets.VBox([header_2, pp_class, h1, first_row, second_row, third_row, fourth_row, fifth_row, sixth_row, h5, l, m, b]) # Random Forest Regressor Hyperparameter ends # KNN Regressor Hyperparameter Starts n_neighbors_k = widgets.Text( value='5', placeholder='enter any integer value', description='n_neighbors', disabled=False) weights_k = widgets.SelectMultiple( options = ['uniform', 'distance'], value = ['uniform'], rows = 2, description = 'Weights', disabled = False) algorithm_k = widgets.SelectMultiple( options = ['auto', 'ball_tree', 'kd_tree', 'brute'], value = ['auto'], rows = 4, description = 'Algorithm', disabled = False) leaf_size_k = widgets.Text( value='30', placeholder='enter any integer value', description='Leaf_Size', disabled=False) p_k = widgets.Text( value='2', placeholder='enter any integer value', description='p (Power param)', disabled=False) metric_k = widgets.SelectMultiple( options = ['euclidean', 'manhattan', 'chebyshev', 'minkowski'], value = ['minkowski'], rows = 4, description = 'Metric', disabled = False) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_K = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_K = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) n_jobs_K = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) l = widgets.HBox([search_param_K, cv_K, n_jobs_K]) n_iter_K = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_iter_K, n_iter_text]) first_row = widgets.HBox([n_neighbors_k, weights_k, algorithm_k]) second_row = widgets.HBox([leaf_size_k, p_k, metric_k]) button_5 = widgets.Button(description='Submit HP_Tune') out_res_K = widgets.Output() def on_out_res_clicked_K(_): with out_res_K: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y = pd.DataFrame(self.train[[self.y]]) self.new_y = pd.get_dummies(self.new_y,drop_first=True) if std_scr.value == '1': from sklearn.preprocessing import StandardScaler scalar = StandardScaler() self.new_X = pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test = pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Standard Scalar completed') elif std_scr.value == '2': from sklearn.preprocessing import RobustScaler scalar = RobustScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Roubust Scalar completed') elif std_scr.value == '3': from sklearn.preprocessing import MinMaxScaler scalar = MinMaxScaler() self.new_X= pd.DataFrame(scalar.fit_transform(self.new_X), columns=self.new_X.columns, index=self.new_X.index) self.new_test= pd.DataFrame(scalar.fit_transform(self.new_test), columns=self.new_test.columns, index=self.new_test.index) print('> standardization using Minmax Scalar completed') elif std_scr.value == 'n': print('> No standardization done') param_grid = {'n_neighbors' : [int(item) for item in n_neighbors_k.value.split(',')], 'weights': list(weights_k.value), 'algorithm': list(algorithm_k.value), 'leaf_size' : [int(item) for item in leaf_size_k.value.split(',')], 'p' : [int(item) for item in p_k.value.split(',')], 'metric' : list(metric_k.value), } if self.tracking == True: import mlflow from mlflow import log_metric, log_param, log_artifacts mlflow.sklearn.autolog() estimator = KNeighborsRegressor() if search_param_K.value == 'GridSearch CV': grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_R.value)) if search_param_K.value == 'Random Search CV': grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_iter = int(n_iter_L.value), n_jobs = int(n_jobs_R.value)) with mlflow.start_run() as run: warnings.filterwarnings("ignore") self.regressor = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import explained_variance_score, mean_absolute_error, r2_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.regressor.predict(X_test) exp_var = explained_variance_score(y_test, predictions) mae = mean_absolute_error(y_test, predictions) rmse = sqrt(mean_absolute_error(y_test, predictions)) r2 = r2_score(y_test, predictions) mlflow.log_param("Exp_Var", exp_var) mlflow.log_param("MAE", mae) mlflow.log_param("RMSE", rmse) mlflow.log_param('R2', r2) mlflow.log_param("Best Estimator", self.regressor.best_estimator_) if self.tracking == False: estimator = KNeighborsRegressor() if search_param_K.value == 'GridSearch CV': print('> GridSearch CV in progress...') grid_lr = GridSearchCV(estimator=estimator, param_grid = param_grid, cv = int(cv_L.value), n_jobs = int(n_jobs_R.value)) if search_param_K.value == 'Random Search CV': print('> Randomized Search CV in progress...') grid_lr = RandomizedSearchCV(estimator=estimator, param_distributions = param_grid, cv = int(cv_L.value), n_iter = int(n_iter_L.value), n_jobs = int(n_jobs_R.value)) warnings.filterwarnings("ignore") self.regressor = grid_lr.fit(self.new_X.values, self.new_y.values) from sklearn.model_selection import train_test_split from sklearn.metrics import explained_variance_score, mean_absolute_error, r2_score X_train, X_test, y_train, y_test = train_test_split( self.new_X.values, self.new_y.values, test_size=0.2, random_state=1) predictions = self.regressor.predict(X_test) exp_var = explained_variance_score(y_test, predictions) mae = mean_absolute_error(y_test, predictions) rmse = sqrt(mean_absolute_error(y_test, predictions)) r2 = r2_score(y_test, predictions) with out2: clear_output() print('\033[1m'+'\033[4m'+'Get_Params \n***************************************'+'\033[0m') print(self.regressor.get_params) print('\033[1m'+'\033[4m'+'Best_Estimator \n***********************************'+'\033[0m') print(self.regressor.best_estimator_) print('\033[1m'+'\033[4m'+'Metrics on Train data \n******************************'+'\033[0m') print("exp_var = {:.3f} | mae = {:,.3f} | rmse = {:,.3f} | r2 = {:,.3f} ".format(exp_var, mae, rmse, r2,)) print('\033[1m'+'\033[4m'+'Predictions on stand_out test data \n******************************'+'\033[0m') self.predict_HP = self.regressor.predict(self.new_test) print('Prediction completed. \nUse dot operator in below code cell to access predict, for eg., pph.predict_HP, where pph is pywedge_HP class object') msg = widgets.HTML('<h4>Please switch to output tab for results...</h4>') msg_1 = widgets.HTML('<h4>Please run mlfow ui in command prompt to monitor HP tuning results</h4>') display(msg) if self.tracking==True: display(msg_1) button_5.on_click(on_out_res_clicked_K) b = widgets.VBox([button_5, out_res_K]) h1 = widgets.HTML('<h3>Select KNN Regressor Hyperparameters</h3>') frame_K = widgets.VBox([header_2, pp_class, h1, first_row, second_row, h5, l, m, b]) # KNN Regressor Hyperparameter ends # Adaboost Classifier Hyperparameter Starts n_estimators_A = widgets.Text( value='50', placeholder='enter any integer value', description='n_estimators', disabled=False) learning_rate_A = widgets.Text( value='1', placeholder='enter any float value', description='learning_rate', disabled=False) loss_A = widgets.SelectMultiple( options = ['linear', 'square', 'square'], value = ['linear'], rows = 3, description = 'Loss', disabled = False) random_state_A = widgets.Text( value='0', placeholder='enter any integer value', description='Random_state', style = {'description_width': 'initial'}, disabled=False) h5 = widgets.HTML('<h4>Select Grid/Random search Hyperparameters</h4>') search_param_A = widgets.Dropdown( options=['GridSearch CV', 'Random Search CV'], value='GridSearch CV', description='Choose Search Option: ', style = {'description_width': 'initial'}, disabled=False) cv_A = widgets.Text( value='5', placeholder='enter any integer value', description='CV', style = {'description_width': 'initial'}, disabled=False) l = widgets.HBox([search_param_A, cv_A]) n_jobs_A = widgets.Text( value='1', placeholder='enter any integer value', description='n_jobs', style = {'description_width': 'initial'}, disabled=False) n_iter_A = widgets.Text( value='10', placeholder='enter any integer value', description='n_iter', style = {'description_width': 'initial'}, disabled=False) n_iter_text = widgets.HTML(value='<p><em>For Random Search</em></p>') m = widgets.HBox([n_jobs_A, n_iter_A, n_iter_text]) first_row = widgets.HBox([n_estimators_A, learning_rate_A, loss_A]) second_row = widgets.HBox([random_state_A]) button_6 = widgets.Button(description='Submit Adaboost HPTune') out_res_ADA = widgets.Output() def on_out_res_clicked_ADA(_): with out_res_ADA: clear_output() import pandas as pd self.new_X = self.X.copy(deep=True) self.new_y = self.y self.new_test = self.test.copy(deep=True) categorical_cols = self.new_X.select_dtypes('object').columns.to_list() for col in categorical_cols: self.new_X[col].fillna(self.new_X[col].mode()[0], inplace=True) numeric_cols = self.new_X.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_X[col].fillna(self.new_X[col].mean(), inplace=True) test_categorical_cols = self.new_test.select_dtypes('object').columns.to_list() for col in test_categorical_cols: self.new_test[col].fillna(self.new_test[col].mode()[0], inplace=True) numeric_cols = self.new_test.select_dtypes(['float64', 'int64']).columns.to_list() for col in numeric_cols: self.new_test[col].fillna(self.new_test[col].mean(), inplace=True) if cat_info.value == '1': for col in categorical_cols: self.new_X[col] = self.new_X[col].astype('category') self.new_X[col] = self.new_X[col].cat.codes self.new_test[col] = self.new_test[col].astype('category') self.new_test[col] = self.new_test[col].cat.codes print('> Categorical columns converted using Catcodes') if cat_info.value == '2': self.new_X = pd.get_dummies(self.new_X,drop_first=True) self.new_test = pd.get_dummies(self.new_test,drop_first=True) print('> Categorical columns converted using Get_Dummies') self.new_y =
pd.DataFrame(self.train[[self.y]])
pandas.DataFrame
# coding: utf-8 # # Weather Prediction Using Recurrent Neural Networks # # ## Adrian, Ben, and Sai # In[1]: get_ipython().run_line_magic('matplotlib', 'inline') from functools import reduce import datetime import pandas as pd from pandas import Series, DataFrame import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from tensorflow.contrib import rnn from sklearn.preprocessing import MinMaxScaler import timeit import random import sys import os # # Preprocessing ########################################################################################################################### ############# Preprocessing ############################################################################################## ########################################################################################################################### # ### Read in the files # In[2]: # Filenames city_file = 'city_attributes.csv' temp_file = 'temperature.csv' humid_file = 'humidity.csv' press_file = 'pressure.csv' desc_file = 'weather_description.csv' wdir_file = 'wind_direction.csv' wspeed_file = 'wind_speed.csv' # Load the files city_df = pd.read_csv(city_file) city_df.rename(str.lower, axis = 'columns', inplace = True) city_df.drop(['country'], axis = 1, inplace = True) city_df.set_index(['city'], inplace = True) temp_df =
pd.read_csv(temp_file)
pandas.read_csv
#!/usr/bin/python import warnings warnings.filterwarnings("ignore") import os,numpy,pandas,sys,scipy.io,scipy.sparse,time,numba from optparse import OptionParser # # opts = OptionParser() usage = "Evaluate gene score by TSS peaks\nusage: %prog -s project --gtf hg19.gtf --distal 20000" opts = OptionParser(usage=usage, version="%prog 1.0") opts.add_option("-s", help="The project folder.") opts.add_option("--gtf", default='../reference/hg19_RefSeq_genes.gtf', help="gtf file for genome, default=../reference/hg19_RefSeq_genes.gtf") opts.add_option("--distal", default=20000, help="distal region around TSS for peak searching, default=20000") options, arguments = opts.parse_args() # # def get_tss_region(options): mm10_df = pandas.read_csv(options.gtf, sep='\t', index_col=0) genes = list(set(mm10_df['name2'])) genes.sort() mm10_df.index = mm10_df['name'] names, tss = [], [] for symbol in genes: sub_df = mm10_df.loc[mm10_df['name2']==symbol] if len(sub_df.index.values)>=1: chrom = list(set(sub_df['chrom'].values)) strand = list(set(sub_df['strand'].values)) if len(chrom)==1: if strand[0]=='+': starts = list(set(map(str, sub_df['txStart'].values))) start = ','.join(starts) elif strand[0]=='-': starts = list(set(map(str, sub_df['txEnd'].values))) start = ','.join(starts) names.append(symbol) tss.append([chrom[0], start]) tss = numpy.array(tss) tss_df = pandas.DataFrame(tss, index=names, columns=['chrom', 'tss']) tss_df.to_csv(options.s+'/peak/genes_tss_region.csv', sep='\t') return # # def get_tss_peaks(options): peaks = [[x.split()[0], (int(x.split()[1])+int(x.split()[2]))/2] for x in open(options.s+'/peak/top_filtered_peaks.bed').readlines()] peaks_df = pandas.DataFrame(peaks, index=[str(x) for x in numpy.arange(0,len(peaks))], columns=['chrom', 'center']) tss_df = pandas.read_csv(options.s+'/peak/genes_tss_region.csv', sep='\t', index_col=0) for gene in tss_df.index.values: chrom, tsses = tss_df.ix[gene, 'chrom'], tss_df.ix[gene, 'tss'] tsses = map(int, tsses.split(',')) chr_peaks = peaks_df.loc[peaks_df['chrom']==chrom] proxim_peaks, distal_peaks = [], [] for tss in tsses: peaks1 = chr_peaks.loc[abs(chr_peaks['center']-tss)<=2000].index.values peaks2 = chr_peaks.loc[abs(chr_peaks['center']-tss)<=int(options.distal)].index.values proxim_peaks.extend(peaks1) distal_peaks.extend(peaks2) proxim_peaks = list(set(proxim_peaks)) distal_peaks = list(set(distal_peaks)-set(proxim_peaks)) if len(proxim_peaks)==0: proxim_peaks = ['NONE'] if len(distal_peaks)==0: distal_peaks = ['NONE'] proxim_peaks = ';'.join(proxim_peaks) tss_df.ix[gene, 'proximal'] = proxim_peaks distal_peaks = ';'.join(distal_peaks) tss_df.ix[gene, 'distal'] = distal_peaks tss_df.to_csv(options.s+'/peak/genes_tss_peaks.csv', sep='\t') return # # def get_score_from_peaks(options): tss_df = pandas.read_csv(options.s+'/peak/genes_tss_peaks.csv', sep='\t', index_col=0) reads = scipy.sparse.csr_matrix(scipy.io.mmread(options.s+'/matrix/filtered_reads.mtx')).T cells_df = pandas.read_csv(options.s+'/matrix/filtered_cells.csv', sep='\t', index_col=0) all_peaks = numpy.arange(0, reads.shape[1]) genes, score = [], [] for igene,gene in enumerate(tss_df.index.values): distal = tss_df.loc[gene, 'distal'].split(';') proximal = tss_df.loc[gene, 'proximal'].split(';') if distal==['NONE']: distal = [] else: distal = list(map(int, distal)) if proximal==['NONE']: proximal = [] else: proximal = list(map(int, proximal)) distal = list(set(distal).union(set(proximal))) distal = list(set(distal).intersection(set(all_peaks))) if len(distal)>0: signal = reads[:, distal].A.mean(axis=1) genes.append(gene) score.append(signal) score = numpy.array(score) score_df =
pandas.DataFrame(score, index=genes, columns=cells_df.index)
pandas.DataFrame
import numpy as np import pandas as pd import matplotlib.pylab as plt import tensorflow as tf from sklearn.svm import LinearSVR from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_squared_log_error as msle import keras import keras.layers as layers from sklearn.ensemble import ExtraTreesRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.ensemble import VotingRegressor from xgboost import XGBRegressor from pyramid.arima import auto_arima dftr=pd.read_csv('Train.csv',parse_dates=['date_time'],index_col='date_time') dfte=pd.read_csv('Test.csv',parse_dates=['date_time'],index_col='date_time') dfss=pd.read_csv('sample_submission.csv') dftr.wind_direction=(3.14/180)*(dftr.wind_direction) #wind_direction cardinal degrees to radians print(dftr.shape) date=dftr.index #Feature Engineering ms=np.array([],dtype=str) #boolean features me=np.array([],dtype=str) ys=np.array([],dtype=str) ye=np.array([],dtype=str) qs=np.array([],dtype=str) qe=np.array([],dtype=str) for i in range(33750): aaa=pd.Timestamp(date[i]) me=np.append(me,aaa.is_month_end) ms=np.append(ms,aaa.is_month_start) ye=np.append(ye,aaa.is_year_end) ys=np.append(ys,aaa.is_year_start) qe=np.append(qe,aaa.is_quarter_end) qs=np.append(qs,aaa.is_quarter_start) time=np.array([],dtype=int) # Features extracted from date_time woy=np.array([],dtype=int) dow=np.array([],dtype=int) month=np.array([],dtype=str) week=np.array([],dtype=float) days=np.array([],dtype=str) year=np.array([],dtype=float) for i in range(33750): aaa=pd.Timestamp(date[i]) days=np.append(days,aaa.day_name()) month=np.append(month,aaa.month_name()) number_dec = str((aaa.year/100)-int(aaa.year/100)).split('.')[1] year=np.append(year,int(number_dec[0:2])/10) time=np.append(time,aaa.hour) dow=np.append(dow,aaa.dayofweek) woy=np.append(woy,aaa.weekofyear) week=np.append(week,((aaa.day-1) // 7 + 1)) tr_x=dftr.iloc[:,0:13] #One Hot Encoding tr_x=
pd.get_dummies(tr_x)
pandas.get_dummies
import pandas as pd default_parameters = { 'p_prot': -1, 'k_prot': -1, 'l_prot':
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- from datetime import datetime, timedelta, date, time import numpy as np import pandas as pd import pandas.lib as lib import pandas.util.testing as tm from pandas import Index from pandas.compat import long, u, PY2 class TestInference(tm.TestCase): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') self.assertEqual(pd.lib.infer_dtype(arr), compare) # object array of bytes arr = arr.astype(object) self.assertEqual(pd.lib.infer_dtype(arr), compare) def test_isinf_scalar(self): # GH 11352 self.assertTrue(lib.isposinf_scalar(float('inf'))) self.assertTrue(lib.isposinf_scalar(np.inf)) self.assertFalse(lib.isposinf_scalar(-np.inf)) self.assertFalse(lib.isposinf_scalar(1)) self.assertFalse(lib.isposinf_scalar('a')) self.assertTrue(lib.isneginf_scalar(float('-inf'))) self.assertTrue(lib.isneginf_scalar(-np.inf)) self.assertFalse(lib.isneginf_scalar(np.inf)) self.assertFalse(lib.isneginf_scalar(1)) self.assertFalse(lib.isneginf_scalar('a')) def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = set(['', 'NULL', 'nan']) pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, neg) out = lib.maybe_convert_numeric( np.array([u(infinity)], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['+' + infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) # too many characters with tm.assertRaisesRegexp(ValueError, msg): lib.maybe_convert_numeric( np.array(['foo_' + infinity], dtype=object), na_values, maybe_int) def test_maybe_convert_numeric_post_floatify_nan(self): # see gh-13314 data = np.array(['1.200', '-999.000', '4.500'], dtype=object) expected = np.array([1.2, np.nan, 4.5], dtype=np.float64) nan_values = set([-999, -999.0]) for coerce_type in (True, False): out = lib.maybe_convert_numeric(data, nan_values, coerce_type) tm.assert_numpy_array_equal(out, expected) def test_convert_infs(self): arr = np.array(['inf', 'inf', 'inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) self.assertTrue(result.dtype == np.float64) arr = np.array(['-inf', '-inf', '-inf'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False) self.assertTrue(result.dtype == np.float64) def test_scientific_no_exponent(self): # See PR 12215 arr = np.array(['42E', '2E', '99e', '6e'], dtype='O') result = lib.maybe_convert_numeric(arr, set(), False, True) self.assertTrue(np.all(np.isnan(result))) def test_convert_non_hashable(self): # GH13324 # make sure that we are handing non-hashables arr = np.array([[10.0, 2], 1.0, 'apple']) result = lib.maybe_convert_numeric(arr, set(), False, True) tm.assert_numpy_array_equal(result, np.array([np.nan, 1.0, np.nan])) class TestTypeInference(tm.TestCase): _multiprocess_can_split_ = True def test_length_zero(self): result = lib.infer_dtype(np.array([], dtype='i4')) self.assertEqual(result, 'integer') result = lib.infer_dtype([]) self.assertEqual(result, 'empty') def test_integers(self): arr = np.array([1, 2, 3, np.int64(4), np.int32(5)], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'integer') arr = np.array([1, 2, 3, np.int64(4), np.int32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'mixed-integer') arr = np.array([1, 2, 3, 4, 5], dtype='i4') result = lib.infer_dtype(arr) self.assertEqual(result, 'integer') def test_bools(self): arr = np.array([True, False, True, True, True], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'boolean') arr = np.array([np.bool_(True), np.bool_(False)], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'boolean') arr = np.array([True, False, True, 'foo'], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'mixed') arr = np.array([True, False, True], dtype=bool) result = lib.infer_dtype(arr) self.assertEqual(result, 'boolean') def test_floats(self): arr = np.array([1., 2., 3., np.float64(4), np.float32(5)], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'floating') arr = np.array([1, 2, 3, np.float64(4), np.float32(5), 'foo'], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'mixed-integer') arr = np.array([1, 2, 3, 4, 5], dtype='f4') result = lib.infer_dtype(arr) self.assertEqual(result, 'floating') arr = np.array([1, 2, 3, 4, 5], dtype='f8') result = lib.infer_dtype(arr) self.assertEqual(result, 'floating') def test_string(self): pass def test_unicode(self): pass def test_datetime(self): dates = [datetime(2012, 1, x) for x in range(1, 20)] index = Index(dates) self.assertEqual(index.inferred_type, 'datetime64') def test_date(self): dates = [date(2012, 1, x) for x in range(1, 20)] index = Index(dates) self.assertEqual(index.inferred_type, 'date') def test_to_object_array_tuples(self): r = (5, 6) values = [r] result = lib.to_object_array_tuples(values) try: # make sure record array works from collections import namedtuple record = namedtuple('record', 'x y') r = record(5, 6) values = [r] result = lib.to_object_array_tuples(values) # noqa except ImportError: pass def test_to_object_array_width(self): # see gh-13320 rows = [[1, 2, 3], [4, 5, 6]] expected = np.array(rows, dtype=object) out = lib.to_object_array(rows) tm.assert_numpy_array_equal(out, expected) expected = np.array(rows, dtype=object) out = lib.to_object_array(rows, min_width=1) tm.assert_numpy_array_equal(out, expected) expected = np.array([[1, 2, 3, None, None], [4, 5, 6, None, None]], dtype=object) out = lib.to_object_array(rows, min_width=5) tm.assert_numpy_array_equal(out, expected) def test_object(self): # GH 7431 # cannot infer more than this as only a single element arr = np.array([None], dtype='O') result = lib.infer_dtype(arr) self.assertEqual(result, 'mixed') def test_categorical(self): # GH 8974 from pandas import Categorical, Series arr = Categorical(list('abc')) result = lib.infer_dtype(arr) self.assertEqual(result, 'categorical') result = lib.infer_dtype(Series(arr)) self.assertEqual(result, 'categorical') arr = Categorical(list('abc'), categories=['cegfab'], ordered=True) result = lib.infer_dtype(arr) self.assertEqual(result, 'categorical') result = lib.infer_dtype(
Series(arr)
pandas.Series
import logging import pandas as pd import requests from common.predictions import PredictionService, PredictionError logger = logging.getLogger(__name__) class DataRobotV1APIPredictionService(PredictionService): """ A chord prediction service powered by DataRobot V1 API for model deployments. """ def __init__(self, server, server_key, deployment_id, username, api_token): self.server = server self.server_key = server_key self.deployment_id = deployment_id self.username = username self.api_token = api_token def predict(self, df): logger.info(f'Using DataRobot V1 prediction service on data shape {df.shape}') rows = df.to_dict(orient='records') dr_payload = self.get_datarobot_predictions(rows) result = [ self.get_label_and_confidence(row) for row in dr_payload['data'] ] return
pd.DataFrame(result, columns=['name', 'confidence'])
pandas.DataFrame
import pandas as pd import torch import torch.nn as nn from torch.utils.data import Dataset, DataLoader from scripts.nn_train import TabularDataset, FeedForwardNN, binary_acc from sklearn.preprocessing import LabelEncoder class NeuralNet: def __init__(self): self.categorical_features = ["MaxDelq2PublicRecLast12M", "MaxDelqEver"] self.output_feature = "RiskPerformance" self.label_encoders = {} self.model_name = "Neural Net" def fit(self, X_train, y_train): train =
pd.concat([X_train, y_train], axis=1)
pandas.concat
import pandas as pd #Function to create two dictionaries based on the Human Development Index and its levels. def get_hdi(path,filename): '''This function creates two dictionaries based on the Human Development Index and its levels.''' # Read in the xlsx-file with data file = "{}/{}".format(path,filename) hdi_data = pd.read_excel(file, header=None) # Replace the country names in the hdi_data with the corresponding country names as used in # the regions data frame. hdi_data[1] = hdi_data[1].replace(to_replace ="Viet Nam", value ="Vietnam") hdi_data[1] = hdi_data[1].replace(to_replace ="Czechia", value ="Czech Republic") hdi_data[1] = hdi_data[1].replace(to_replace ="Russian Federation", value ="Russia") hdi_data[1] = hdi_data[1].replace(to_replace ="Venezuela (Bolivarian Republic of)", value ="Venezuela") hdi_data[1] = hdi_data[1].replace(to_replace ="Korea (Republic of)", value ="South Korea") hdi_data[1] = hdi_data[1].replace(to_replace ="Bolivia (Plurinational State of)", value ="Bolivia") hdi_data[1] = hdi_data[1].replace(to_replace ="Hong Kong, China (SAR)", value ="Hong Kong") hdi_data[1] = hdi_data[1].replace(to_replace ="Moldova (Republic of)", value ="Moldova") hdi_data[1] = hdi_data[1].replace(to_replace ="Tanzania (United Republic of)", value ="Tanzania") hdi_data[1] = hdi_data[1].replace(to_replace ="Lao People's Democratic Republic", value ="Laos") hdi_data[1] = hdi_data[1].replace(to_replace ="Congo (Democratic Republic of the)", value ="Democratic Republic of the Congo") hdi_data[1] = hdi_data[1].replace(to_replace ="Samoa", value ="American Samoa") hdi_data[1] = hdi_data[1].replace(to_replace ="Palestine, State of", value ="Palestine") hdi_data[1] = hdi_data[1].replace(to_replace ="Antigua and Barbuda", value ="Antigua") # Select the useful rows and columns from the hdi data file to make the hdi. df_hdi = hdi_data.iloc[7:200, 1:3] # Remove the title rows indicating the human development level. df_hdi = df_hdi[df_hdi[2].notna()] # Append missing countries df_hdi_missing = pd.DataFrame([["Macau", 0.914],["Aland Islands", 0.911],["Taiwan", 0.911],["Puerto Rico, U.S.", 0.845],["Western Sahara", 0.6764393349141735]],columns = [1,2]) df_hdi = pd.concat([df_hdi,df_hdi_missing]) # Make a dictionary with countries as keys and the hdi as values. dict_hdi = dict(df_hdi.values.tolist()) ## Create hdi-levels dictionary # Select the useful rows and column from the hdi data file to make the hdi-levels. df_levels = hdi_data.iloc[7:200, [1]] # Create an index based on the title rows indicating the hdi-level. idx = df_levels[(df_levels[1].str.contains("HUMAN DEVELOPMENT"))].index # Use the index to create new dataframes per hdi-level. df_very_high = df_levels.iloc[idx[0]-6:idx[1]-7, :] df_high = df_levels.iloc[idx[1]-6:idx[2]-7, :] df_medium = df_levels.iloc[idx[2]-6:idx[3]-7, :] df_low = df_levels.iloc[idx[3]-6:, :] # Add a column with the hdi-level per data frame. df_very_high[2] = "very high" df_high[2] = "high" df_medium[2] = "medium" df_low[2] = "low" # Append missing countries df_levels_high_missing = pd.DataFrame([["Macau", "very high"],["Aland Islands", "very high"],["Taiwan", "very high"],["Puerto Rico, U.S.", "very high"]],columns = [1,2]) df_very_high =
pd.concat([df_very_high,df_levels_high_missing])
pandas.concat
import pandas as pd import matplotlib.pyplot as plt import numpy as np #-------------read csv--------------------- df_2010_2011 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2010_2011.csv") df_2012_2013 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2012_2013.csv") df_2014_2015 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2014_2015.csv") df_2016_2017 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2016_2017.csv") df_2018_2019 = pd.read_csv("/mnt/nadavrap-students/STS/data/data_Shapira_20200911_2018_2019.csv") df_2010_2011['prcab'].fillna(2, inplace=True) df_2012_2013['prcab'].fillna(2, inplace=True) df_2014_2015['prcab'].fillna(2, inplace=True) df_2016_2017['prcab'].fillna(2, inplace=True) df_2018_2019['prcab'].fillna(2, inplace=True) mask = df_2010_2011['surgyear'] != 2010 df_2011 = df_2010_2011[mask] df_2010 = df_2010_2011[~mask] mask2 = df_2012_2013['surgyear'] != 2012 df_2013 = df_2012_2013[mask2] df_2012 = df_2012_2013[~mask2] mask3 = df_2014_2015['surgyear'] != 2014 df_2015 = df_2014_2015[mask3] df_2014 = df_2014_2015[~mask3] mask4 = df_2016_2017['surgyear'] != 2016 df_2017 = df_2016_2017[mask4] df_2016 = df_2016_2017[~mask4] mask5 = df_2018_2019['surgyear'] != 2018 df_2019 = df_2018_2019[mask5] df_2018 = df_2018_2019[~mask5] avg_siteid = pd.DataFrame() avg_surgid = pd.DataFrame() def groupby_siteid(): df2010 = df_2010.groupby('siteid')['siteid'].count().reset_index(name='2010_total') df2011 = df_2011.groupby('siteid')['siteid'].count().reset_index(name='2011_total') df2012 = df_2012.groupby('siteid')['siteid'].count().reset_index(name='2012_total') df2013 = df_2013.groupby('siteid')['siteid'].count().reset_index(name='2013_total') df2014 = df_2014.groupby('siteid')['siteid'].count().reset_index(name='2014_total') df2015 = df_2015.groupby('siteid')['siteid'].count().reset_index(name='2015_total') df2016 = df_2016.groupby('siteid')['siteid'].count().reset_index(name='2016_total') df2017 = df_2017.groupby('siteid')['siteid'].count().reset_index(name='2017_total') df2018 = df_2018.groupby('siteid')['siteid'].count().reset_index(name='2018_total') df2019 = df_2019.groupby('siteid')['siteid'].count().reset_index(name='2019_total') df1 =pd.merge(df2010, df2011, on='siteid', how='outer') df2 =pd.merge(df1, df2012, on='siteid', how='outer') df3 =pd.merge(df2, df2013, on='siteid', how='outer') df4 =pd.merge(df3, df2014, on='siteid', how='outer') df5 =pd.merge(df4, df2015, on='siteid', how='outer') df6 =pd.merge(df5, df2016, on='siteid', how='outer') df7 =pd.merge(df6, df2017, on='siteid', how='outer') df8 =pd.merge(df7, df2018, on='siteid', how='outer') df_sum_all_Years =pd.merge(df8, df2019, on='siteid', how='outer') df_sum_all_Years.fillna(0,inplace=True) cols = df_sum_all_Years.columns.difference(['siteid']) df_sum_all_Years['Distinct_years'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['siteid','Distinct_years']) df_sum_all_Years['Year_sum'] =df_sum_all_Years.loc[:,cols_sum].sum(axis=1) df_sum_all_Years['Year_avg'] = df_sum_all_Years['Year_sum']/df_sum_all_Years['Distinct_years'] df_sum_all_Years.to_csv("total op sum all years siteid.csv") print("details on site id dist:") print("num of all sites: ", len(df_sum_all_Years)) less_8 =df_sum_all_Years[df_sum_all_Years['Distinct_years'] !=10] less_8.to_csv("total op less 10 years siteid.csv") print("num of sites with less years: ", len(less_8)) x = np.array(less_8['Distinct_years']) print(np.unique(x)) avg_siteid['siteid'] = df_sum_all_Years['siteid'] avg_siteid['total_year_sum'] = df_sum_all_Years['Year_sum'] avg_siteid['total_year_avg'] = df_sum_all_Years['Year_avg'] avg_siteid['num_of_years'] = df_sum_all_Years['Distinct_years'] def groupby_siteid_prcab(): df2010 = df_2010.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2010_reop') df2011 = df_2011.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2011_reop') df2012 = df_2012.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2012_reop') df2013 = df_2013.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2013_reop') df2014 = df_2014.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2014_reop') df2015 = df_2015.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2015_reop') df2016 = df_2016.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2016_reop') df2017 = df_2017.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2017_reop') df2018 = df_2018.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2018_reop') df2019 = df_2019.groupby('siteid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2019_reop') df1 =pd.merge(df2010, df2011, on='siteid', how='outer') df2 =pd.merge(df1, df2012, on='siteid', how='outer') df3 =pd.merge(df2, df2013, on='siteid', how='outer') df4 =pd.merge(df3, df2014, on='siteid', how='outer') df5 =pd.merge(df4, df2015, on='siteid', how='outer') df6 =pd.merge(df5, df2016, on='siteid', how='outer') df7 =pd.merge(df6, df2017, on='siteid', how='outer') df8 =pd.merge(df7, df2018, on='siteid', how='outer') df_sum_all_Years =pd.merge(df8, df2019, on='siteid', how='outer') df_sum_all_Years.fillna(0,inplace=True) cols = df_sum_all_Years.columns.difference(['siteid']) df_sum_all_Years['Distinct_years_reop'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['siteid', 'Distinct_years_reop']) df_sum_all_Years['Year_sum_reop'] = df_sum_all_Years.loc[:, cols_sum].sum(axis=1) df_sum_all_Years['Year_avg_reop'] = df_sum_all_Years['Year_sum_reop'] / avg_siteid['num_of_years'] df_sum_all_Years.to_csv("sum all years siteid reop.csv") less_8 = df_sum_all_Years[df_sum_all_Years['Distinct_years_reop'] != 10] less_8.to_csv("less 10 years reop siteid.csv") print("num of sites with less years reop : ", len(less_8)) x = np.array(less_8['Distinct_years_reop']) print(np.unique(x)) df_10 = df_2010.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2010_Firstop') df_11 = df_2011.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2011_Firstop') df_12 = df_2012.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2012_Firstop') df_13 = df_2013.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2013_Firstop') df_14 = df_2014.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2014_Firstop') df_15 = df_2015.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2015_Firstop') df_16 = df_2016.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2016_Firstop') df_17 = df_2017.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2017_Firstop') df_18 = df_2018.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2018_Firstop') df_19 = df_2019.groupby('siteid')['prcab'].apply(lambda x:(x==2).sum()).reset_index(name='2019_Firstop') d1 = pd.merge(df_10, df_11, on='siteid', how='outer') d2 = pd.merge(d1, df_12, on='siteid', how='outer') d3 = pd.merge(d2, df_13, on='siteid', how='outer') d4 = pd.merge(d3, df_14, on='siteid', how='outer') d5 = pd.merge(d4, df_15, on='siteid', how='outer') d6 = pd.merge(d5, df_16, on='siteid', how='outer') d7 = pd.merge(d6, df_17, on='siteid', how='outer') d8 = pd.merge(d7, df_18, on='siteid', how='outer') df_sum_all_Years_total = pd.merge(d8, df_19, on='siteid', how='outer') df_sum_all_Years_total.fillna(0, inplace=True) cols = df_sum_all_Years_total.columns.difference(['siteid']) df_sum_all_Years_total['Distinct_years'] = df_sum_all_Years_total[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years_total.columns.difference(['siteid', 'Distinct_years']) df_sum_all_Years_total['Year_sum'] = df_sum_all_Years_total.loc[:, cols_sum].sum(axis=1) df_sum_all_Years_total['Year_avg'] = df_sum_all_Years_total['Year_sum'] / avg_siteid['num_of_years'] df_sum_all_Years_total.to_csv("First op sum all years siteid.csv") less = df_sum_all_Years_total[df_sum_all_Years_total['Distinct_years'] != 10] less.to_csv("First op less 10 years siteid.csv") print("First op num of sites with less years: ", len(less)) x = np.array(less['Distinct_years']) print(np.unique(x)) temp_first = pd.DataFrame() temp_first['siteid'] = df_sum_all_Years_total['siteid'] temp_first['Year_sum_Firstop'] = df_sum_all_Years_total['Year_sum'] temp_first['Year_avg_Firstop'] = df_sum_all_Years_total['Year_avg'] temp_reop = pd.DataFrame() temp_reop['siteid'] = df_sum_all_Years['siteid'] temp_reop['Year_avg_reop'] = df_sum_all_Years['Year_avg_reop'] temp_reop['Year_sum_reop'] = df_sum_all_Years['Year_sum_reop'] df20 = pd.merge(avg_siteid, temp_first, on='siteid', how='outer') total_avg_site_id = pd.merge(df20, temp_reop, on='siteid', how='outer') total_avg_site_id['firstop/total'] = (total_avg_site_id['Year_avg_Firstop'] / total_avg_site_id['num_of_years']) * 100 total_avg_site_id['reop/total'] = (total_avg_site_id['Year_avg_reop'] / total_avg_site_id['num_of_years']) * 100 total_avg_site_id.fillna(0,inplace=True) total_avg_site_id.to_csv('total_avg_site_id.csv') def groupby_surgid(): df2010 = df_2010.groupby('surgid')['surgid'].count().reset_index(name='2010_total') df2011 = df_2011.groupby('surgid')['surgid'].count().reset_index(name='2011_total') df2012 = df_2012.groupby('surgid')['surgid'].count().reset_index(name='2012_total') df2013 = df_2013.groupby('surgid')['surgid'].count().reset_index(name='2013_total') df2014 = df_2014.groupby('surgid')['surgid'].count().reset_index(name='2014_total') df2015 = df_2015.groupby('surgid')['surgid'].count().reset_index(name='2015_total') df2016 = df_2016.groupby('surgid')['surgid'].count().reset_index(name='2016_total') df2017 = df_2017.groupby('surgid')['surgid'].count().reset_index(name='2017_total') df2018 = df_2018.groupby('surgid')['surgid'].count().reset_index(name='2018_total') df2019 = df_2019.groupby('surgid')['surgid'].count().reset_index(name='2019_total') df1 = pd.merge(df2010, df2011, on='surgid', how='outer') df2 = pd.merge(df1, df2012, on='surgid', how='outer') df3 = pd.merge(df2, df2013, on='surgid', how='outer') df4 = pd.merge(df3, df2014, on='surgid', how='outer') df5 = pd.merge(df4, df2015, on='surgid', how='outer') df6 = pd.merge(df5, df2016, on='surgid', how='outer') df7 = pd.merge(df6, df2017, on='surgid', how='outer') df8 = pd.merge(df7, df2018, on='surgid', how='outer') df_sum_all_Years = pd.merge(df8, df2019, on='surgid', how='outer') df_sum_all_Years.fillna(0, inplace=True) cols = df_sum_all_Years.columns.difference(['surgid']) df_sum_all_Years['Distinct_years'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['surgid', 'Distinct_years']) df_sum_all_Years['Year_sum'] = df_sum_all_Years.loc[:, cols_sum].sum(axis=1) df_sum_all_Years['Year_avg'] = df_sum_all_Years['Year_sum'] / df_sum_all_Years['Distinct_years'] df_sum_all_Years.to_csv("total op sum all years surgid.csv") print("details on surg id dist:") print("num of all surgid: ", len(df_sum_all_Years)) less_8 = df_sum_all_Years[df_sum_all_Years['Distinct_years'] != 10] less_8.to_csv("total op less 10 years surgid.csv") print("num of surgid with less years: ", len(less_8)) x = np.array(less_8['Distinct_years']) print(np.unique(x)) # avg_surgid['surgid'] = df_sum_all_Years['surgid'] # avg_surgid['total_year_avg'] = df_sum_all_Years['Year_avg'] avg_surgid['surgid'] = df_sum_all_Years['surgid'] avg_surgid['total_year_avg'] = df_sum_all_Years['Year_avg'] avg_surgid['total_year_count'] = df_sum_all_Years['Year_sum'] avg_surgid['num_of_years'] = df_sum_all_Years['Distinct_years'] def groupby_surgid_prcab(): df2010 = df_2010.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2010_reop') df2011 = df_2011.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2011_reop') df2012 = df_2012.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2012_reop') df2013 = df_2013.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2013_reop') df2014 = df_2014.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2014_reop') df2015 = df_2015.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2015_reop') df2016 = df_2016.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2016_reop') df2017 = df_2017.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2017_reop') df2018 = df_2018.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2018_reop') df2019 = df_2019.groupby('surgid')['prcab'].apply(lambda x: (x == 1).sum()).reset_index(name='2019_reop') df1 = pd.merge(df2010, df2011, on='surgid', how='outer') df2 = pd.merge(df1, df2012, on='surgid', how='outer') df3 = pd.merge(df2, df2013, on='surgid', how='outer') df4 = pd.merge(df3, df2014, on='surgid', how='outer') df5 = pd.merge(df4, df2015, on='surgid', how='outer') df6 = pd.merge(df5, df2016, on='surgid', how='outer') df7 = pd.merge(df6, df2017, on='surgid', how='outer') df8 = pd.merge(df7, df2018, on='surgid', how='outer') df_sum_all_Years = pd.merge(df8, df2019, on='surgid', how='outer') df_sum_all_Years.fillna(0, inplace=True) cols = df_sum_all_Years.columns.difference(['surgid']) df_sum_all_Years['Distinct_years_reop'] = df_sum_all_Years[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years.columns.difference(['surgid', 'Distinct_years_reop']) df_sum_all_Years['Year_sum_reop'] = df_sum_all_Years.loc[:, cols_sum].sum(axis=1) df_sum_all_Years['Year_avg_reop'] = df_sum_all_Years['Year_sum_reop'] / avg_surgid['num_of_years'] df_sum_all_Years.to_csv("sum all years surgid reop.csv") less_8 = df_sum_all_Years[df_sum_all_Years['Distinct_years_reop'] != 10] less_8.to_csv("less 10 years reop surgid.csv") print("num of surgid with less years reop : ", len(less_8)) x = np.array(less_8['Distinct_years_reop']) print(np.unique(x)) df_10 = df_2010.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2010_Firstop') df_11 = df_2011.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2011_Firstop') df_12 = df_2012.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2012_Firstop') df_13 = df_2013.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2013_Firstop') df_14 = df_2014.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2014_Firstop') df_15 = df_2015.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2015_Firstop') df_16 = df_2016.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2016_Firstop') df_17 = df_2017.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2017_Firstop') df_18 = df_2018.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2018_Firstop') df_19 = df_2019.groupby('surgid')['prcab'].apply(lambda x: (x == 2).sum()).reset_index(name='2019_Firstop') d1 = pd.merge(df_10, df_11, on='surgid', how='outer') d2 = pd.merge(d1, df_12, on='surgid', how='outer') d3 = pd.merge(d2, df_13, on='surgid', how='outer') d4 = pd.merge(d3, df_14, on='surgid', how='outer') d5 = pd.merge(d4, df_15, on='surgid', how='outer') d6 = pd.merge(d5, df_16, on='surgid', how='outer') d7 = pd.merge(d6, df_17, on='surgid', how='outer') d8 = pd.merge(d7, df_18, on='surgid', how='outer') df_sum_all_Years_total = pd.merge(d8, df_19, on='surgid', how='outer') df_sum_all_Years_total.fillna(0, inplace=True) cols = df_sum_all_Years_total.columns.difference(['surgid']) df_sum_all_Years_total['Distinct_years'] = df_sum_all_Years_total[cols].gt(0).sum(axis=1) cols_sum = df_sum_all_Years_total.columns.difference(['surgid', 'Distinct_years']) df_sum_all_Years_total['Year_sum'] = df_sum_all_Years_total.loc[:, cols_sum].sum(axis=1) df_sum_all_Years_total['Year_avg'] = df_sum_all_Years_total['Year_sum'] / avg_surgid['num_of_years'] df_sum_all_Years_total.to_csv("First op sum all years surgid.csv") less = df_sum_all_Years_total[df_sum_all_Years_total['Distinct_years'] != 10] less.to_csv("First op less 10 years surgid.csv") print("First op num of sites with less years: ", len(less)) x = np.array(less['Distinct_years']) print(np.unique(x)) # temp_first = pd.DataFrame() # temp_first['surgid'] = df_sum_all_Years_total['surgid'] # temp_first['Year_avg_Firstop'] = df_sum_all_Years_total['Year_avg'] # temp_reop = pd.DataFrame() # temp_reop['surgid'] = df_sum_all_Years['surgid'] # temp_reop['Year_avg_reop'] = df_sum_all_Years['Year_avg_reop'] # # df20 = pd.merge(avg_surgid, temp_first, on='surgid', how='outer') # total_avg_surgid = pd.merge(df20, temp_reop, on='surgid', how='outer') # # total_avg_surgid['firstop/total'] = (total_avg_surgid['Year_avg_Firstop'] / total_avg_surgid['total_year_avg']) * 100 # total_avg_surgid['reop/total'] = (total_avg_surgid['Year_avg_reop'] / total_avg_surgid['total_year_avg']) * 100 # total_avg_surgid.fillna(0, inplace=True) # total_avg_surgid.to_csv('total_avg_surgid.csv') temp_first = pd.DataFrame() temp_first['surgid'] = df_sum_all_Years_total['surgid'] temp_first['Year_avg_Firstop'] = df_sum_all_Years_total['Year_avg'] temp_first['Year_sum_Firstop'] = df_sum_all_Years_total['Year_sum'] temp_reop = pd.DataFrame() temp_reop['surgid'] = df_sum_all_Years['surgid'] temp_reop['Year_avg_reop'] = df_sum_all_Years['Year_avg_reop'] temp_reop['Year_sum_reop'] = df_sum_all_Years['Year_sum_reop'] df20 = pd.merge(avg_surgid, temp_first, on='surgid', how='outer') total_avg_surgid =
pd.merge(df20, temp_reop, on='surgid', how='outer')
pandas.merge
#!/usr/bin/env python # -*- coding: UTF-8 -*- """ Download meteorological files from GFS """ import argparse import json import os import sys from datetime import datetime, timedelta from inspect import getmembers from traceback import print_exc import numpy as np import pandas as pd from pydap.client import open_dods from pydap.exceptions import OpenFileError, ServerError URL = "https://nomads.ncep.noaa.gov/dods/gfs_{res}{step}/gfs{date}/gfs_{res}{step}_{hour:02d}z.dods?" FORMAT_STR = ( "{var}.{var}[{time[0]:d}:{time[1]:d}][{lat[0]:d}:{lat[1]:d}][{lon[0]:d}:{lon[1]:d}]" ) FORMAT_STR_PL = "{var}.{var}[{time[0]:d}:{time[1]:d}][{lev[0]:d}:{lev[1]:d}][{lat[0]:d}:{lat[1]:d}][{lon[0]:d}:{lon[1]:d}]" VAR_CONF = { "pressfc": "surface", "tmp2m": "surface", "tmp80m": "surface", "tmp100m": "surface", "ugrd10m": "surface", "ugrd80m": "surface", "ugrd100m": "surface", "vgrd10m": "surface", "vgrd80m": "surface", "vgrd100m": "surface", "tmpprs": "pressure", "ugrdprs": "pressure", "vgrdprs": "pressure", "hgtprs": "pressure", } DATE_FORMAT = "%Y%m%d" range1 = lambda start, end, step=1: range(start, end + 1, step) def daterange(start, end): def convert(date): try: date = datetime.strptime(date, DATE_FORMAT) return date.date() except TypeError: return date # Catch and raise: # ValueError: day is out of range for month def get_date(n): return convert(start) + timedelta(days=n) days = (convert(end) - convert(start)).days if days < 0: raise ValueError("The start date must be before the end date.") for n in range1(0, days): yield get_date(n) def lat_type(str): try: lat = float(str) except: raise argparse.ArgumentTypeError("invalid float value: '{0}'".format(str)) if lat < -90 or lat > 90: raise argparse.ArgumentTypeError("latitude not in range -90..90") else: return lat def lon_type(str): try: lon = float(str) except: raise argparse.ArgumentTypeError("invalid float value: '{0}'".format(str)) if lon < -180 or lon > 180: raise argparse.ArgumentTypeError("longitude not in range -180..180") else: return lon def get_file(request, param, var_conf, time, lat, lon, verbose=False): ntime = len(time) ncoord = len(lat) * len(lon) var_list = [ ( (FORMAT_STR if vartype == "surface" else FORMAT_STR_PL).format( var=var, **param ) ) for var, vartype in var_conf.items() ] if verbose: print(request + ",".join(var_list)) try: dataset = open_dods(request + ",".join(var_list)) except: raise OpenFileError("file '{}' not available".format(request[:-1])) var_data = [var.data.reshape((ntime, -1, ncoord)) for var in dataset.values()] var_names = [ "{}{}".format(var, n) for idx, var in enumerate(dataset) for n in range(var_data[idx].shape[1]) ] index = pd.MultiIndex.from_product((lat, lon), names=["lat", "lon"]) columns =
pd.MultiIndex.from_product((time, var_names), names=["time", "var"])
pandas.MultiIndex.from_product
""" DOCSTRING """ import matplotlib.pyplot import numpy import os import pandas import PIL import seaborn import skimage import time class EDA: """ DOCSTRING """ def __init__(self): dict_labels = { 0: "No DR", 1: "Mild", 2: "Moderate", 3: "Severe", 4: "Proliferative DR"} def __call__(self): labels = pandas.read_csv("labels/trainLabels.csv") plot_classification_frequency(labels, "level", "Retinopathy_vs_Frequency_All") plot_classification_frequency(labels, "level", "Retinopathy_vs_Frequency_Binary", True) def change_labels(df, category): """ Changes the labels for a binary classification. Either the person has a degree of retinopathy, or they don't. INPUT df: Pandas DataFrame of the image name and labels category: column of the labels OUTPUT Column containing a binary classification of 0 or 1 """ return [1 if l > 0 else 0 for l in df[category]] def plot_classification_frequency(df, category, file_name, convert_labels=False): """ Plots the frequency at which labels occur. INPUT df: Pandas DataFrame of the image name and labels category: category of labels, from 0 to 4 file_name: file name of the image convert_labels: argument specified for converting to binary classification RETURN None """ if convert_labels == True: labels['level'] = change_labels(labels, 'level') seaborn.set(style="whitegrid", color_codes=True) seaborn.countplot(x=category, data=labels) pyplot.title('Retinopathy vs Frequency') pyplot.savefig(file_name) return class ImageToArray: """ DOCSTRING """ def __call__(self): start_time = time.time() labels = pandas.read_csv("../labels/trainLabels_master_256_v2.csv") print("Writing Train Array") X_train = convert_images_to_arrays_train('../data/train-resized-256/', labels) print(X_train.shape) print("Saving Train Array") save_to_array('../data/X_train.npy', X_train) print("--- %s seconds ---" % (time.time() - start_time)) def change_image_name(self, df, column): """ Appends the suffix '.jpeg' for all image names in the DataFrame INPUT df: Pandas DataFrame, including columns to be altered. column: The column that will be changed. Takes a string input. OUTPUT Pandas DataFrame, with a single column changed to include the aforementioned suffix. """ return [i + '.jpeg' for i in df[column]] def convert_images_to_arrays_train(self, file_path, df): """ Converts each image to an array, and appends each array to a new NumPy array, based on the image column equaling the image file name. INPUT file_path: Specified file path for resized test and train images. df: Pandas DataFrame being used to assist file imports. OUTPUT NumPy array of image arrays. """ lst_imgs = [l for l in df['train_image_name']] return numpy.array([numpy.array(PIL.Image.open(file_path + img)) for img in lst_imgs]) def save_to_array(self, arr_name, arr_object): """ Saves data object as a NumPy file. Used for saving train and test arrays. INPUT arr_name: The name of the file you want to save. This input takes a directory string. arr_object: NumPy array of arrays. This object is saved as a NumPy file. OUTPUT NumPy array of image arrays """ return numpy.save(arr_name, arr_object) class PreprocessImages: """ DOCSTRING """ def __call__(self): start_time = time.time() trainLabels = pandas.read_csv('../labels/trainLabels.csv') trainLabels['image'] = [i + '.jpeg' for i in trainLabels['image']] trainLabels['black'] = numpy.nan trainLabels['black'] = find_black_images('../data/train-resized-256/', trainLabels) trainLabels = trainLabels.loc[trainLabels['black'] == 0] trainLabels.to_csv('trainLabels_master.csv', index=False, header=True) print("Completed") print("--- %s seconds ---" % (time.time() - start_time)) def find_black_images(self, file_path, df): """ Creates a column of images that are not black (numpy.mean(img) != 0) INPUT file_path: file_path to the images to be analyzed. df: Pandas DataFrame that includes all labeled image names. column: column in DataFrame query is evaluated against. OUTPUT Column indicating if the photo is pitch black or not. """ lst_imgs = [l for l in df['image']] return [1 if numpy.mean(numpy.array( PIL.Image.open(file_path + img))) == 0 else 0 for img in lst_imgs] def rename_images(self, src_dir, new_prefix): """ DOCSTRING """ for file_name in os.listdir(src_dir): os.rename( os.path.join(src_dir, file_name), os.path.join(src_dir, new_prefix + file_name)) print(file_name + ' -> ' + new_prefix + file_name) class ReconcileLabels: """ DOCSTRING """ def __call__(self): trainLabels = pandas.read_csv("../labels/trainLabels_master.csv") lst_imgs = get_lst_images('../data/train-resized-256/') new_trainLabels = pandas.DataFrame({'image': lst_imgs}) new_trainLabels['image2'] = new_trainLabels.image # remove the suffix from the image names new_trainLabels['image2'] = \ new_trainLabels.loc[:, 'image2'].apply(lambda x: '_'.join(x.split('_')[0:2])) # strip and add jpeg back into file name new_trainLabels['image2'] = new_trainLabels.loc[:, 'image2'].apply( lambda x: '_'.join(x.split('_')[0:2]).strip('.jpeg') + '.jpeg') #trainLabels = trainLabels[0:10] new_trainLabels.columns = ['train_image_name', 'image'] trainLabels = pandas.merge(trainLabels, new_trainLabels, how='outer', on='image') trainLabels.drop(['black'], axis=1, inplace=True) #print(trainLabels.head(100)) trainLabels = trainLabels.dropna() print(trainLabels.shape) print("Writing CSV") trainLabels.to_csv('../labels/trainLabels_master_256_v2.csv', index=False, header=True) def get_lst_images(self, file_path): """ Reads in all files from file path into a list. INPUT file_path: specified file path containing the images. OUTPUT List of image strings """ return [i for i in os.listdir(file_path) if i != '.DS_Store'] class ResizeImages: """ DOCSTRING """ PIL.ImageFile.LOAD_TRUNCATED_IMAGES = True def __call__(self): self.crop_and_resize_images( path='../data/train/', new_path='../data/train-resized-256/', cropx=1800, cropy=1800, img_size=256) self.crop_and_resize_images( path='../data/test/', new_path='../data/test-resized-256/', cropx=1800, cropy=1800, img_size=256) def create_directory(self, directory): """ Creates a new folder in the specified directory if the folder doesn't exist. INPUT directory: Folder to be created, called as "folder/". OUTPUT None """ if not os.path.exists(directory): os.makedirs(directory) return def crop_and_resize_images(self, path, new_path, cropx, cropy, img_size=256): """ Crops, resizes, and stores all images from a directory in a new directory. INPUT path: Path where the current, unscaled images are contained. new_path: Path to save the resized images. img_size: New size for the rescaled images. OUTPUT None """ create_directory(new_path) dirs = [l for l in os.listdir(path) if l != '.DS_Store'] total = 0 for item in dirs: img = skimage.io.imread(path+item) y,x,channel = img.shape startx = x//2-(cropx//2) starty = y//2-(cropy//2) img = img[starty:starty+cropy,startx:startx+cropx] img = skimage.transform.resize(img, (256,256)) skimage.io.imsave(str(new_path + item), img) total += 1 print("Saving: ", item, total) return class RotateImages: """ DOCSTRING """ #import cv2 def __call__(self): start_time = time.time() trainLabels =
pandas.read_csv("../labels/trainLabels_master.csv")
pandas.read_csv
import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import os.path import math from IPython.display import display import random import scipy.stats as st from sklearn.preprocessing import LabelEncoder,OneHotEncoder import sklearn.preprocessing as sk import sklearn.model_selection as skm from imblearn.under_sampling import RandomUnderSampler from imblearn.over_sampling import RandomOverSampler from imblearn.over_sampling import SMOTE import datefinder class preprocess: def __init__(self,dataset,target=None,cat_thresh=20,ignore_columns=None): self.data=dataset.copy() self.dataset_cat=pd.DataFrame() self.dataset_num=pd.DataFrame() self.dataset_datetime=pd.DataFrame() self.dataset_high_cardinality=pd.DataFrame() self.target=target self.ignore_columns=ignore_columns self.col_i=self.data.columns self.cat_thresh=cat_thresh; if(ignore_columns): self.data=self.data.drop(ignore_columns,axis=1) self.data=self.data.replace([np.inf,-np.inf],np.NaN) self.col_ni=self.data.columns for col in self.data.columns: if self.data[col].dtype=="object": try: con1=dataset[col].astype("str").str.match("^([1-9]|0[1-9]|1[0-9]|2[0-9]|3[0-1])(\.|-|/)([1-9]|0[1-9]|1[0-2])(\.|-|/)([0-9][0-9]|19[0-9][0-9]|20[0-9][0-9])$|^([0-9][0-9]|19[0-9][0-9]|20[0-9][0-9])(\.|-|/)([1-9]|0[1-9]|1[0-2])(\.|-|/)([1-9]|0[1-9]|1[0-9]|2[0-9]|3[0-1])$").any() con2=dataset[col].astype("str").str.match('(\d{4})-(\d{2})-(\d{2})( (\d{2}):(\d{2}):(\d{2}))?').any() con3=dataset[col].astype("str").str.match('^(?:(?:31(\/|-|\.)(?:0?[13578]|1[02]|(?:Jan|Mar|May|Jul|Aug|Oct|Dec)))\1|(?:(?:29|30)(\/|-|\.)(?:0?[1,3-9]|1[0-2]|(?:Jan|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec))\2))(?:(?:1[6-9]|[2-9]\d)?\d{2})$|^(?:29(\/|-|\.)(?:0?2|(?:Feb))\3(?:(?:(?:1[6-9]|[2-9]\d)?(?:0[48]|[2468][048]|[13579][26])|(?:(?:16|[2468][048]|[3579][26])00))))$|^(?:0?[1-9]|1\d|2[0-8])(\/|-|\.)(?:(?:0?[1-9]|(?:Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep))|(?:1[0-2]|(?:Oct|Nov|Dec)))\4(?:(?:1[6-9]|[2-9]\d)?\d{2})$').any() con4=dataset[col].astype("str").str.match('^([0-9]|0[0-9]|1[0-9]|2[0-3]):([0-9]|[0-5][0-9]:)?([0-5]?\d)$').any() m=datefinder.find_dates(dataset[dataset[col].notnull()][col].astype("str")[0]) if(con1 or con2 or con3 or con4 or len(list(m))): self.data[col]=pd.to_datetime(self.data[col],errors="coerce") #self.dataset_datetime #Generate DateTime Features time_fe=pd.DataFrame() if(len(self.data[col].dt.year.value_counts())>1): time_fe[col+"_year"]=self.data[col].dt.year if(len(self.data[col].dt.month.value_counts())>1): time_fe[col+"_month"]=self.data[col].dt.month if(len(self.data[col].dt.day.value_counts())>1): time_fe[col+"_day"]=self.data[col].dt.day if(len(self.data[col].dt.hour.value_counts())>1): time_fe[col+"_hour"]=self.data[col].dt.hour if(len(self.data[col].dt.minute.value_counts())>1): time_fe[col+"_minute"]=self.data[col].dt.minute if(len(self.data[col].dt.second.value_counts())>1): time_fe[col+"_second"]=self.data[col].dt.second if(len(self.data[col].dt.dayofweek.value_counts())>1): time_fe[col+"_dayofweek"]=self.data[col].dt.dayofweek #print(self.data[col]) self.data=self.data.drop(col,axis=1) self.data=pd.concat([self.data,time_fe],axis=1) except: continue #display(self.data) #display(self.data.dtypes) for col in self.data.columns: if(self.data[col].nunique()<cat_thresh): self.dataset_cat[col]=self.data[col] elif(self.data[col].dtype=='object' and self.data[col].nunique()>cat_thresh): self.dataset_high_cardinality[col]=self.data[col] elif((self.data[col].dtype=='int64' or self.data[col].dtype=='float64') and self.data[col].nunique()>cat_thresh): self.dataset_num[col]=self.data[col] def impute_missing(self,numerical_imputation="mean",categorical_imputation="mode"): dataset_high_cardinality=pd.DataFrame() dataset_cat=pd.DataFrame() if(numerical_imputation=="mean"): dataset_num= self.dataset_num.fillna(self.dataset_num.mean()) elif(numerical_imputation=="median"): dataset_num= self.dataset_num.fillna(self.dataset_num.median()) elif(numerical_imputation=="mode"): dataset_num= self.dataset_num.fillna(self.dataset_num.mode().iloc[0,:]) if(categorical_imputation=="mode"): if(not self.dataset_cat.empty): dataset_cat= self.dataset_cat.fillna(self.dataset_cat.mode().iloc[0,:]) if(not self.dataset_high_cardinality.empty): dataset_high_cardinality= self.dataset_high_cardinality.fillna(self.dataset_high_cardinality.mode().iloc[0,:]) self.data=pd.concat([dataset_num,dataset_cat,dataset_high_cardinality],axis=1) return self.data def handle_outliers(self,method="iqr",outlier_threshold=2,strategy="replace_lb_ub",columns="all"): if(method=="iqr"): if columns=="all": for col in self.dataset_num: q1= self.data[col].describe()["25%"] q3= self.data[col].describe()["75%"] iqr=q3-q1 lb=q1-(1.5*iqr) ub=q3+(1.5*iqr) out= self.data[( self.data[col]<lb) | ( self.data[col]>ub)] num_o=out.shape[0] p=(num_o/self.data.shape[0])*100 if(p<outlier_threshold and p>0): if(strategy=="replace_lb_ub"): outlier_dict={}.fromkeys( self.data[ self.data[col]>ub][col],ub) outlier_dict.update({}.fromkeys( self.data[ self.data[col]<lb][col],lb)) self.data[col]= self.data[col].replace(outlier_dict) elif(strategy=="replace_mean"): outlier_dict_mean={}.fromkeys( self.data[( self.data[col]<lb) | ( self.data[col]>ub)][col], self.data[col].mean()) self.data[col]= self.data[col].replace(outlier_dict_mean) elif(strategy=="replace_median"): outlier_dict_median={}.fromkeys( self.data[( self.data[col]<lb) | ( self.data[col]>ub)][col], self.data[col].median()) self.data[col]= self.data[col].replace(outlier_dict_median) elif(strategy=="remove"): #outlier_index=data[(data[col]<lb) | (data[col]>ub)].index #print() self.data= self.data[( self.data[col]>lb) & (self.data[col]<ub)] else: for col in columns: if(col in self.dataset_num): q1= self.data[col].describe()["25%"] q3= self.data[col].describe()["75%"] iqr=q3-q1 lb=q1-(1.5*iqr) ub=q3+(1.5*iqr) out= self.data[(self.data[col]<lb) | (self.data[col]>ub)] num_o=out.shape[0] p=(num_o/self.data.shape[0])*100 if(p<outlier_threshold and p>0): if(strategy=="replace_lb_ub"): outlier_dict={}.fromkeys( self.data[ self.data[col]>ub][col],ub) outlier_dict.update({}.fromkeys( self.data[ self.data[col]<lb][col],lb)) self.data[col]= self.data[col].replace(outlier_dict) elif(strategy=="replace_mean"): outlier_dict_mean={}.fromkeys( self.data[( self.data[col]<lb) | ( self.data[col]>ub)][col], self.data[col].mean()) self.data[col]= self.data[col].replace(outlier_dict_mean) elif(strategy=="replace_median"): outlier_dict_median={}.fromkeys( self.data[( self.data[col]<lb) | ( self.data[col]>ub)][col], self.data[col].median()) self.data[col]= self.data[col].replace(outlier_dict_median) elif(strategy=="remove"): #outlier_index=data[(data[col]<lb) | (data[col]>ub)].index #print() self.data= self.data[(self.data[col]>lb) & (self.data[col]<ub)] return self.data def encode_data(self,strategy="one_hot_encode",high_cardinality="frequency",drop_first=True,ordinal_map=None,categorical_features="auto",encode_map=None): data= self.data target_encode=None data=self.impute_missing() #print(categorical_features) self.categorical_features=categorical_features self.high_cardinality=high_cardinality if(self.target): if(data[self.target].dtype=="object"): label_encoder = LabelEncoder() data[self.target]=label_encoder.fit_transform(data[self.target]) target_encode=data[self.target] data=data.drop(self.target,axis=1) if(self.categorical_features=="auto"): self.categorical_features=[] self.high_cardinality_features=[] for col in data.columns: if(data[col].dtype=="object" and data[col].nunique()<self.cat_thresh): self.categorical_features.append(col) elif(data[col].dtype=="object" and data[col].nunique()>self.cat_thresh): self.high_cardinality_features.append(col) if(self.high_cardinality=="frequency"): self.hc_frequency_map={} for col in self.high_cardinality_features: self.hc_frequency_map[col]=dict(data[col].value_counts()) data[col]=data[col].map(self.hc_frequency_map[col]) if strategy=="one_hot_encode": self.oh_map={} for col in self.categorical_features: self.oh_map[col]=OneHotEncoder() oh_encode=pd.DataFrame(self.oh_map[col].fit_transform(data[col].values.reshape(-1,1)).toarray(),columns=[col+"_"+s for s in sorted(data[col].unique())]) data=data.drop(col,axis=1) if(drop_first): oh_encode=oh_encode.iloc[:,1:] data=pd.concat([data,oh_encode],axis=1) elif strategy=="label_encode": self.lb_map={} for col in self.categorical_features: self.lb_map[col] = LabelEncoder() data[col]=self.lb_map[col].fit_transform(data[col]) elif strategy=="ordinal_encode": if not ordinal_map: raise ValueError("ordinal_map should not be None for Ordinal Encoding") else: for key,value in ordinal_map.items(): #num=list(range(0,len(value))) #map_d = {value[i]: num[i] for i in range(len(value))} data[key]=data[key].map(value) elif strategy=="frequency" or strategy=="count": self.frequency_map={} for col in self.categorical_features: self.frequency_map[col]=dict(data[col].value_counts()) data[col]=data[col].map(self.frequency_map[col]) elif strategy=="hybrid": if not encode_map: raise ValueError("encode_map should not be None for Hybrid Encoding") else: for key,value in encode_map.items(): if(key=="one_hot_encode"): data=pd.get_dummies(data,columns=value,drop_first=drop_first) elif(key=="label_encode"): for col in value: label_encoder = LabelEncoder() data[col]=label_encoder.fit_transform(data[col]) elif(key=="ordinal_encode"): for k,v in value.items(): num=list(range(0,len(v))) map_d = {v[i]: num[i] for i in range(len(v))} data[k]=data[k].map(map_d) if(self.target): data=pd.concat([data,target_encode],axis=1) self.data=data return self.data def normalize(self,method="min_max"): data=self.data target=None if(self.target): target=data[self.target] data=data.drop(self.target,axis=1) dataset_num=pd.DataFrame() dataset_cat=pd.DataFrame() for col in data.columns: if((data[col].dtype=='int64' or data[col].dtype=='float64')): dataset_num[col]=data[col] else: dataset_cat[col]=data[col] if(method=="min_max"): self.sc=sk.MinMaxScaler() col=dataset_num.columns dataset_num=pd.DataFrame(self.sc.fit_transform(dataset_num),columns=col) elif(method=="standard"): self.sc=sk.StandardScaler() col=dataset_num.columns dataset_num=pd.DataFrame(self.sc.fit_transform(dataset_num),columns=col) elif(method=="robust"): self.sc=sk.RobustScaler() col=dataset_num.columns dataset_num=pd.DataFrame(self.sc.fit_transform(dataset_num),columns=col) if(self.target): data=pd.concat([dataset_num,dataset_cat,target],axis=1) else: data=pd.concat([dataset_num,dataset_cat],axis=1) self.data=data return self.data def preprocess_data(self,impute_missing=True,handle_outliers=True,encode_data=True,normalize=True, numerical_imputation="mean",categorical_imputation="mode",cat_thresh=10, outlier_method="iqr",outlier_threshold=2,outlier_strategy="replace_lb_ub",outlier_columns="all", encoding_strategy="one_hot_encode",high_cardinality_encoding="frequency",encode_drop_first=True,ordinal_map=None,encoding_categorical_features="auto",encode_map=None, normalization_strategy="min_max",verbose=1 ): print("Part-1 Data PreProcessing Started...") print(10*"=") self.missing=impute_missing self.outliers=handle_outliers self.encode=encode_data self.scale=normalize self.numerical_imputation=numerical_imputation self.categorical_imputation=categorical_imputation self.encode_strategy=encoding_strategy self.drop_first=encode_drop_first self.ordinal_map=ordinal_map self.categorical_features=encoding_categorical_features self.encode_map=encode_map if impute_missing: if(verbose): print("Handling Missing Values") self.impute_missing(numerical_imputation,categorical_imputation) if(verbose): print(30*"=") if handle_outliers: if(verbose): print("Handling Outliers Values") self.handle_outliers(outlier_method,outlier_threshold,outlier_strategy,outlier_columns) if(verbose): print(30*"=") if encode_data: if(verbose): print("Encoding Data") self.encode_data(encoding_strategy,high_cardinality_encoding,encode_drop_first,ordinal_map,encoding_categorical_features,encode_map) if(verbose): print(30*"=") if normalize: if(verbose): print("Normaliziling Values") self.normalize(normalization_strategy) if(verbose): print(30*"=") self.p_columns=self.data.columns return self.data def preprocess_data_new(self,new_data): if(type(new_data)==list): new_data=[new_data] if(len(new_data[0])==(len(self.col_i)-1)): col_d=list(self.col_i) col_d.remove(self.target) new_data=
pd.DataFrame(new_data,columns=col_d)
pandas.DataFrame
from pathlib import Path from typing import Tuple import numpy as np import pandas as pd import torch import torch.nn.functional as F import torchaudio from constants import INPUT_SAMPLE_RATE, TARGET_SAMPLE_RATE from torch.utils.data import DataLoader, Dataset from tqdm import tqdm class SegmentationDataset(Dataset): """Base class for FixedSegmentationDataset and RandomSegmentationDataset""" def __init__( self, path_to_dataset: str, split_name: str, ) -> None: """ Args: path_to_dataset (str): absolute path to the directory of _talks.tsv and _segments.tsv for the dataset split_name (str): name of the dataset split """ super().__init__() self.path_to_dataset = Path(path_to_dataset) self.split_name = split_name self.input_sr = INPUT_SAMPLE_RATE self.target_sr = TARGET_SAMPLE_RATE self.in_trg_ratio = self.input_sr / self.target_sr self.trg_in_ratio = 1 / self.in_trg_ratio # load the talks and the actual segments self.talks_df = pd.read_csv( self.path_to_dataset / f"{self.split_name}_talks.tsv", sep="\t", index_col=0 ) self.segments_df = pd.read_csv( self.path_to_dataset / f"{self.split_name}_segments.tsv", sep="\t", index_col=0, ) self.columns = ["talk_id", "start", "end", "duration", "included"] # to calculate percentage of positive examples self.n_pos, self.n_all = 0, 0 def _secs_to_outframes(self, x): # from seconds to output space return np.round(x * self.target_sr).astype(int) def _outframes_to_inframes(self, x): # from output space to input space return np.round(x * self.in_trg_ratio).astype(int) def _inframes_to_outframes(self, x): # from input space to output space return np.round(x * self.trg_in_ratio).astype(int) def _secs_to_inframes(self, x): # from seconds to input space return np.round(x * self.input_sr).astype(int) def _get_targets_for_talk(self, sgm_df: pd.DataFrame, talk_id: str) -> pd.DataFrame: """ Given a segmentation of a talk (sgm_df), find for each random segment the true_starts and true_ends that it includes. They are in string form separated by commas. Ff they are none, an empty string is passed. Args: sgm_df (pd.DataFrame): a random segmentation of a wav talk_id (str): unique id for the wav Returns: pd.DataFrame: sgm_df but with the 'included' column completed """ true_sgm_df = self.segments_df.loc[self.segments_df.talk_id == talk_id] talk_targets = np.zeros( self.talks_df.loc[self.talks_df.id == talk_id, "total_frames"].values[0] ) for idx, sgm in true_sgm_df.iterrows(): talk_targets[sgm.start : sgm.end] = 1 for idx, sgm in sgm_df.iterrows(): sgm_targets = self._get_targets_for_segment( talk_targets[sgm.start : sgm.end] ) sgm_df.loc[idx, "included"] = ( ",".join([f"{s}:{e}" for s, e in sgm_targets]) if sgm_targets else "NA" ) return sgm_df def _get_targets_for_segment(self, true_points: np.array) -> list[list[int]]: """ Extracts the start and end points of segments in the output space from a binary vector defining the labels in the input space Args: true_points (np.array): binary label for each frame in the input space of a random segment Returns: list[list[int]]: list of tuples (start, end) in the output space where each tuple defines the start and end of a the true included points """ points_of_change = list(np.where(true_points[1:] != true_points[:-1])[0] + 1) targets = [] for s, e in zip([0] + points_of_change, points_of_change + [len(true_points)]): if true_points[s] == 1: s = self._inframes_to_outframes(s) e = self._inframes_to_outframes(e) # increase start of next segment if overlaps with end of the prev one if targets and s <= targets[-1][-1]: s += 1 targets.append([s, e]) self.n_pos += e - s self.n_all += self._inframes_to_outframes(len(true_points)) return targets def _construct_target(self, segment: pd.Series) -> torch.FloatTensor: """ Given a random segment, constructs its one-hot target tensor in the output space """ target_len = self._inframes_to_outframes(segment.duration) target = torch.zeros(target_len, dtype=torch.float) if segment.included != "NA": for s_e in segment.included.split(","): s, e = s_e.split(":") s = int(s) e = min(int(e), target_len + 1) target[s:e] = 1 return target class FixedSegmentationDataset(SegmentationDataset): def __init__( self, path_to_dataset: str, split_name: str, segment_length_secs: int = 20, inference_times: int = 1, ) -> None: """ Segmentation dataset to be used during inference Creates a pool of examples from a fixed-length segmentation of a wav Args: path_to_dataset (str): absolute path to the directory of _talks.tsv and _segments.tsv for the dataset split_name (str): name of the dataset split segment_length_secs (int, optional): The length of the fixed segments in seconds. Defaults to 20. inference_times (int, optional): How many times to perform inference on different fixed-length segmentations. Defaults to 1. """ super().__init__(path_to_dataset, split_name) self.segment_length_inframes = self._secs_to_inframes(segment_length_secs) self.inference_times = inference_times def generate_fixed_segments(self, talk_id: str, i: int) -> None: """ Generates a fixed-length segmentation of a wav with "i" controlling the begining of the segmentation so that different values of "i" produce different segmentations Args: talk_id (str): unique wav identifier i (int): indicates the current inference time and is used to produce a different fixed-length segmentation minimum allowed is 0 and maximum allowed is inference_times - 1 """ talk_info = self.talks_df.loc[self.talks_df["id"] == talk_id] self.talk_path = talk_info["path"].values[0] self.duration_outframes = self._inframes_to_outframes( self.talks_df.loc[self.talks_df["id"] == talk_id, "total_frames"].values[0] ) self.duration_inframes = int(talk_info["total_frames"]) self.fixed_segments_df = pd.DataFrame(columns=self.columns) start = round(self.segment_length_inframes / self.inference_times * i) if start > self.duration_inframes: start = 0 segmentation = np.arange( start, self.duration_inframes, self.segment_length_inframes ).astype(int) if segmentation[0] != 0: segmentation = np.insert(segmentation, 0, 0) if segmentation[-1] != self.duration_inframes: if self.duration_inframes - segmentation[-1] < self._secs_to_inframes(2): segmentation[-1] = self.duration_inframes else: segmentation = np.append(segmentation, self.duration_inframes) self.fixed_segments_df["talk_id"] = talk_id self.fixed_segments_df["start"] = segmentation[:-1] self.fixed_segments_df["end"] = segmentation[1:] self.fixed_segments_df["duration"] = ( self.fixed_segments_df.end - self.fixed_segments_df.start ) # fill-in targets self.fixed_segments_df = self._get_targets_for_talk( self.fixed_segments_df, talk_id ) def __len__(self) -> int: return len(self.fixed_segments_df) def __getitem__( self, index: int ) -> Tuple[torch.FloatTensor, torch.FloatTensor, int, int]: """ Loads the data for this fixed-length segment Args: index (int): segment id in the self.fixed_segments_df Returns: Tuple[torch.FloatTensor, torch.FloatTensor, int, int]: 0: waveform of the segment (input space) 1: target tensor of the segment (output space) 2: starting frame of the segment (output space) 3: ending frame of the segment (output space) """ segment = self.fixed_segments_df.iloc[index] waveform, _ = torchaudio.backend.sox_io_backend.load( self.talk_path, frame_offset=segment.start, num_frames=segment.duration ) start = self._inframes_to_outframes(segment.start + 1e-6) end = self._inframes_to_outframes(segment.end + 1e-6) target = self._construct_target(segment) return waveform[0], target, start, end class RandomSegmentationDataset(SegmentationDataset): def __init__( self, path_to_dataset: str, split_name: str = "train", segment_length_secs: int = 20, seed: int = None, ) -> None: """ Segmentation dataset to be used during training. Creates a pool of examples from a random segmentation of collection of wavs Args: path_to_dataset (str): absolute path to the directory of _talks.tsv and _segments.tsv for the dataset split_name (str): name of the dataset split. Defaults to train. segment_length_secs (int, optional): The length of the fixed segments in seconds. Defaults to 20. seed (int, optional): The random seed to be used for the random segmentation. Defaults to None """ super().__init__(path_to_dataset, split_name) if seed is not None: np.random.seed(seed) self.segment_length_outframes = self._secs_to_outframes(segment_length_secs) self.max_segment_outframes_overlap = self._secs_to_outframes( segment_length_secs / 10 ) self.segment_length_inframes = self._secs_to_inframes(segment_length_secs) # populate the dataset self.generate_random_segments() self.pos_class_percentage = self.n_pos / self.n_all def generate_random_segments(self) -> None: """ Creates a new dataset by randomly segmenting each talk and finding the true targets that correspond to every random segment """ print( f"Generating random segments for {self.path_to_dataset} and {self.split_name} split ..." ) self.random_segments_df = pd.concat( [ self._get_targets_for_talk(self._segment_talk(talk), talk["id"]) for _, talk in tqdm(self.talks_df.iterrows()) ], ignore_index=True, ) def _segment_talk(self, talk: pd.Series) -> pd.DataFrame: """ Produces a random segmentation of a given talk from the talks_df """ rnd_sgm_df =
pd.DataFrame(columns=self.columns)
pandas.DataFrame
import sys,os sys.path.append(os.getcwd()+'/src/gym-auction_emulator') import gym, gym_auction_emulator import random from operator import itemgetter import torch import numpy as np from collections import deque import cloudpickle import configparser from dqn import DQN from reward_net import RewardNet from model import set_seed import numpy as np import pandas as pd class RlBidAgent(): def _load_config(self): """ Parse the config.cfg file """ cfg = configparser.ConfigParser(allow_no_value=True) env_dir = os.path.dirname(__file__) cfg.read(env_dir + '/config.cfg') self.exp_type = str(cfg['experiment_type']['type']) self.T = int(cfg[self.exp_type]['T']) # Number of timesteps in each episode def __init__(self): self._load_config() # Beta parameter adjsuting the lambda parameter, that regulates the agent's bid amount self.BETA = [-0.08, -0.03, -0.01, 0, 0.01, 0.03, 0.08] # Starting value of epsilon in the adaptive eps-greedy policy self.eps = 0.9 # Parameter controlling the annealing speed of epsilon self.anneal = 2e-5 if self.exp_type in ('improved_drlb', 'improved_drlb_eval'): # DQN Network to learn Q function self.dqn_agent = DQN(state_size = 6, action_size = 7) # Reward Network to learn the reward function self.reward_net = RewardNet(state_action_size = 7, reward_size = 1) else: self.dqn_agent = DQN(state_size = 7, action_size = 7) self.reward_net = RewardNet(state_action_size = 8, reward_size = 1) # Number of timesteps in each episode (4 15min intervals x 24 hours = 96) # self.T = 672 # Initialize the DQN action for t=0 (index 3 - no adjustment of lambda, 0 ind self.BETA) self.dqn_action = 3 self.ctl_lambda = None # Arrays saving the training history self.step_memory = [] self.episode_memory = [] # Params for tracking the progress self.global_T = 0 # Tracking the global time step self.episode_budgets = None self.budget = None self.total_wins = 0 self.total_rewards = 0 self.rewards_prev_t = 0 self.rewards_prev_t_ratio = 0 self.rnet_r = 0 self.wins_e = 0 self.rewards_e = 0 self.ROL = self.T self.ROL_ratio = 1 def _get_state(self): """ Returns the state that will be used as input in the DQN """ if self.exp_type in ('improved_drlb', 'improved_drlb_eval'): return np.asarray([self.rem_budget_ratio, # 2. the ratio of the remaining budget to total available budget at time-step t self.ROL_ratio, # 3. The ratio of the number of Lambda regulation opportunities left self.BCR, # 4. Budget consumption rate self.CPI, # 5. Cost per impression between t-1 and t, in relation to the highest cost possible in the training set (300) self.WR, # 6. Auction win rate at state t self.rewards_prev_t_ratio]) # 7. Ratio of acquired/total clicks at timestep t-1 else: return np.asarray([self.t_step, # 1. Current time step self.rem_budget, # 2. the remaining budget at time-step t self.ROL, # 3. The number of Lambda regulation opportunities left self.BCR, # 4. Budget consumption rate self.CPM, # 5. Cost per mille of impressions between t-1 and t: self.WR, # 6. Auction win rate at state t self.rewards_prev_t]) # 7. Clicks acquired at timestep t-1 def _reset_episode(self): """ Function to reset the state when episode changes """ # Reset the count of time steps self.t_step = 0 # Lambda regulation parameter - set according to the greedy approximation algorithm, as suggested by the paper if self.exp_type == 'vanilla_drlb': self.ctl_lambda = 0.01 if self.budget is None else self.calc_greedy(self.greedy_memory, self.budget) # Clean up the array used to save all the necessary information to solve the knapsack problem with the GA algo self.greedy_memory = [] elif self.exp_type == 'episode_lambda': self.ctl_lambda = 0.01 else: pass # Next episode -> next step self._reset_step() # Set the budget for the episode self.budget = self.episode_budgets.pop(0) self.rem_budget = self.budget self.rem_budget_ratio = 1 self.budget_spent_t = 0 self.budget_spent_e = 0 if self.exp_type not in ('free_lambda', 'free_lambda_eval', 'improved_drlb', 'improved_drlb_eval'): self.ROL = self.T # 3. The number of Lambda regulation opportunities left self.ROL_ratio = 1 self.cur_day = 0 self.cur_min = 0 self.total_wins += self.rewards_e self.total_rewards += self.wins_e # Impressions won in each episode self.wins_e = 0 # Clicks won in each episode self.rewards_e = 0 # Dict and Value necessary for learning the RewardNet self.reward_net.V = 0 self.reward_net.S = [] def _update_step(self): """ Function that is called before transitioning into step t+1 (updates state t) """ self.global_T += 1 self.t_step += 1 self.prev_budget = self.rem_budget self.rem_budget = self.prev_budget - self.budget_spent_t self.budget_spent_e += self.budget_spent_t self.rewards_prev_t = self.reward_t self.ROL -= 1 self.BCR = 0 if self.prev_budget == 0 else -((self.rem_budget - self.prev_budget) / self.prev_budget) if self.exp_type in ('improved_drlb', 'improved_drlb_eval'): self.CPI = 0 if self.wins_t == 0 else (self.cost_t / self.wins_t) / 300 self.rewards_prev_t_ratio = 1 if self.possible_clicks_t == 0 else self.reward_t / self.possible_clicks_t self.ROL_ratio = self.ROL / self.T self.rem_budget_ratio = self.rem_budget / self.budget else: self.CPM = 0 if self.wins_t == 0 else ((self.cost_t / self.wins_t) * 1000) self.WR = self.wins_t / self.imp_opps_t # Adaptive eps-greedy policy self.eps = max(0.95 - self.anneal * self.global_T, 0.05) def _reset_step(self): """ Function to call every time a new time step is entered. """ self.possible_clicks_t = 0 self.total_rewards_t = 0 self.reward_t = 0 self.cost_t = 0 self.wins_t = 0 self.imp_opps_t = 0 self.BCR = 0 if self.exp_type in ('improved_drlb', 'improved_drlb_eval'): self.CPI = 0 else: self.CPM = 0 self.WR = 0 self.budget_spent_t = 0 def _update_reward_cost(self, bid, reward, potential_reward, cost, win): """ Internal function to update reward and action to compute the cumulative reward and cost within the given step. """ self.possible_clicks_t += potential_reward if win: self.budget_spent_t += cost self.wins_t += 1 self.wins_e += 1 self.total_wins += 1 self.reward_t += reward self.rewards_e += reward self.total_rewards += reward self.cost_t += cost def _model_upd(self, eval_mode): if not eval_mode: self.reward_net.step() # update reward net next_state = self._get_state() # observe state s_t+1 (state at the beginning of t+1) # get action a_t+1 (adjusting lambda_t to lambda_t+1) from the adaptive greedy policy a_beta = self.dqn_agent.act(next_state, eps=self.eps, eval_mode=eval_mode) self.ctl_lambda *= (1 + self.BETA[a_beta]) if not eval_mode: # updates for the RewardNet sa = np.append(self.cur_state, self.BETA[self.dqn_action]) #self.dqn_action) # state-action pair for t self.rnet_r = float(self.reward_net.act(sa)) # get reward r_t from RewardNet self.reward_net.V += self.reward_t self.reward_net.S.append((self.cur_state, self.BETA[self.dqn_action])) # Store in D1 and sample a mini batch and perform grad-descent step self.dqn_agent.step(self.cur_state, self.dqn_action, self.rnet_r, next_state) self.cur_state = next_state # set state t+1 as state t self.dqn_action = a_beta # analogously with the action t+1 def act(self, obs, eval_mode): """ This function gets called with every bid request. By looking at the weekday and hour to progress between the steps and episodes during training. Returns the bid decision based on the scaled version of the bid price using the DQN agent output. """ # within the time step if obs['min'] == self.cur_min and obs['weekday'] == self.cur_day: pass # within the episode, changing the time step elif obs['min'] != self.cur_min and obs['weekday'] == self.cur_day: self._update_step() self._model_upd(eval_mode) self.cur_min = obs['min'] # save history self.step_memory.append([self.global_T, int(self.rem_budget), self.ctl_lambda, self.eps, self.dqn_action, self.dqn_agent.loss, self.rnet_r, self.reward_net.loss]) self._reset_step() # transition to next episode elif obs['weekday'] != self.cur_day: self._update_step() self._model_upd(eval_mode) self.step_memory.append([self.global_T, int(self.rem_budget), self.ctl_lambda, self.eps, self.dqn_action, self.dqn_agent.loss, self.rnet_r, self.reward_net.loss]) # Updates for the RewardNet at the end of each episode (only when training) if not eval_mode: for (s, a) in self.reward_net.S: sa = tuple(np.append(s, a)) max_r = max(self.reward_net.get_from_M(sa), self.reward_net.V) self.reward_net.add_to_M(sa, max_r) self.reward_net.add(sa, max_r) print("Episode Result with Step={} Budget={} Spend={} impressions={} clicks={}".format(self.global_T, int(self.budget), int(self.budget_spent_e), self.wins_e, self.rewards_e)) # Save history self.episode_memory.append([self.budget, int(self.budget_spent_e), self.wins_e, self.rewards_e]) self._reset_episode() self.cur_day = obs['weekday'] self.cur_min = obs['min'] self.imp_opps_t += 1 bid = self.calc_bid(obs['pCTR']) if self.exp_type == 'vanilla_drlb': self.greedy_memory.append([obs['pCTR'], obs['payprice'], obs['pCTR']/max(obs['payprice'], 1)]) return bid def calc_bid(self, imp_value): # Calculate the theoretically optimal bid bid_amt = round(imp_value/self.ctl_lambda, 2) curr_budget_left = self.rem_budget - self.budget_spent_t if bid_amt > curr_budget_left: bid_amt = curr_budget_left return bid_amt def calc_greedy(self, items, budget_limit): # Borrowed from: https://bitbucket.org/trebsirk/algorithms/src/master/knapsack.py # Greedy approximation algorithm (Dantzig, 1957) bids = [] spending = 0 ctr = 0 items_sorted = sorted(items, key=itemgetter(2), reverse=True) while len(items_sorted) > 0: item = items_sorted.pop() if item[1] + spending <= budget_limit: # should be item[1], currently adds pCTR instead of price????? bids.append(item) spending += bids[-1][1] ctr += bids[-1][0] else: break ctrs = np.array(bids)[:,0] costs = np.array(bids)[:,1] # Take the max lambda to be more conservative at the beginning of a time step opt_lambda = np.max(np.divide(ctrs, costs)) return opt_lambda def main(): # Instantiate the Environment and Agent env = gym.make('AuctionEmulator-v0') env.seed(0) set_seed() agent = RlBidAgent() train_budget = env.bid_requests.payprice.sum()/8 # Set budgets for each episode budget_proportions = [] for episode in env.bid_requests.weekday.unique(): budget_proportions.append(len(env.bid_requests[env.bid_requests.weekday == episode])/env.total_bids) for i in range(len(budget_proportions)): budget_proportions[i] = round(train_budget * budget_proportions[i]) epochs = 400 for epoch in range(epochs): print("Epoch: ", epoch+1) obs, done = env.reset() agent.episode_budgets = budget_proportions.copy() if agent.exp_type in ('free_lambda', 'improved_drlb'): agent.ctl_lambda = 0.01 agent._reset_episode() agent.cur_day = obs['weekday'] agent.cur_hour = obs['hour'] agent.cur_state = agent._get_state() # observe state s_0 while not done: # iterate through the whole dataset bid = agent.act(obs, eval_mode=False) # Call agent action given each bid request from the env next_obs, cur_reward, potential_reward, cur_cost, win, done = env.step(bid) # Get information from the environment based on the agent's action agent._update_reward_cost(bid, cur_reward, potential_reward, cur_cost, win) # Agent receives reward and cost from the environment obs = next_obs print("Episode Result with Step={} Budget={} Spend={} impressions={} clicks={}".format(agent.global_T, int(agent.budget), int(agent.budget_spent_e), agent.wins_e, agent.rewards_e)) agent.episode_memory.append([agent.budget, int(agent.budget_spent_e), agent.wins_e, agent.rewards_e]) # Saving models and history if ((epoch + 1) % 25) == 0: PATH = 'models/model_state_{}.tar'.format(epoch+1) torch.save({'local_q_model': agent.dqn_agent.qnetwork_local.state_dict(), 'target_q_model':agent.dqn_agent.qnetwork_target.state_dict(), 'q_optimizer':agent.dqn_agent.optimizer.state_dict(), 'rnet': agent.reward_net.reward_net.state_dict(), 'rnet_optimizer': agent.reward_net.optimizer.state_dict()}, PATH) f = open('models/rnet_memory_{}.txt'.format(epoch+1), "wb") cloudpickle.dump(agent.dqn_agent.memory, f) f.close() f = open('models/rdqn_memory_{}.txt'.format(epoch+1), "wb") cloudpickle.dump(agent.reward_net.memory, f) f.close() pd.DataFrame(agent.step_memory).to_csv('models/step_history_{}.csv'.format(epoch+1),header=None,index=False) agent.step_memory=[]
pd.DataFrame(agent.episode_memory)
pandas.DataFrame
# -*- coding: utf-8 -*- from __future__ import print_function, division # ============================================================================== # Modules # ============================================================================== # Built-ins import os, sys, time, datetime, copy, warnings from typing import Dict, Union, Any from collections import defaultdict, OrderedDict from collections.abc import Mapping, Hashable from itertools import combinations, product # PyData import pandas as pd import numpy as np import networkx as nx import xarray as xr from scipy import stats from scipy.special import comb from scipy.spatial.distance import squareform, pdist # Compositional from compositional import pairwise_rho, pairwise_phi # soothsayer_utils from soothsayer_utils import pv, flatten, assert_acceptable_arguments, is_symmetrical, is_graph, write_object, format_memory, format_header, format_path, is_nonstring_iterable, Suppress, dict_build, dict_filter, is_dict, is_dict_like, is_color, is_number, check_packages, is_query_class try: from . import __version__ except ImportError: __version__ = "ImportError: attempted relative import with no known parent package" # ===================s # Transformations # =================== # Unsigned network to signed network def signed(X): """ unsigned -> signed correlation """ return (X + 1)/2 # =================== # Converting Networks # =================== #Get weights from graph def get_weights_from_graph(graph, into=np.asarray, weight="weight", generator=False): weights = map(lambda edge_data: edge_data[-1][weight], graph.edges(data=True)) if generator: return weights else: weights = list(weights) return into(weights) # pd.DataFrame 2D to pd.Series def dense_to_condensed(X, name=None, assert_symmetry=True, tol=None): if assert_symmetry: assert is_symmetrical(X, tol=tol), "`X` is not symmetric with tol=`{}`".format(tol) labels = X.index index=pd.Index(list(map(frozenset, combinations(labels, 2))), name=name) data = squareform(X, checks=False) return pd.Series(data, index=index, name=name) # pd.Series to pd.DataFrame 2D def condensed_to_dense(y:pd.Series, fill_diagonal="infer", index=None): # Check if there are self-interactions number_of_unique_nodes_in_edges = y.index.map(len).unique() assert set(number_of_unique_nodes_in_edges) <= {1,2}, "Number of unique nodes in edge must be either 1 or 2" if isinstance(fill_diagonal, str): if fill_diagonal == "infer": if number_of_unique_nodes_in_edges.min() == 1: fill_diagonal = None else: fill_diagonal = np.nan # Need to optimize this data = defaultdict(dict) for edge, w in y.iteritems(): number_of_unique_nodes = len(edge) if len(edge) == 2: node_a, node_b = tuple(edge) else: node_a = node_b = list(edge)[0] data[node_a][node_b] = data[node_b][node_a] = w if fill_diagonal is not None: if is_dict_like(fill_diagonal): for node in data: data[node][node] = fill_diagonal[node] else: for node in data: data[node][node] = fill_diagonal df_dense = pd.DataFrame(data) if index is None: index = df_dense.index return df_dense.loc[index,index] # Convert networks def convert_network(data, into, index=None, assert_symmetry=True, tol=1e-10, **attrs): """ Convert to and from the following network structures: * pd.DataFrame (must be symmetrical) * pd.Series (index must be frozenset of {node_a, node_b}) * Symmetric * nx.[Di|Ordered]Graph """ assert isinstance(data, (pd.DataFrame, pd.Series, Symmetric, nx.Graph, nx.OrderedGraph, nx.DiGraph, nx.OrderedDiGraph)), "`data` must be {pd.DataFrame, pd.Series, Symmetric, nx.Graph, nx.OrderedGraph, nx.DiGraph, nx.OrderedDiGraph}" assert into in (pd.DataFrame, pd.Series, Symmetric, nx.Graph, nx.OrderedGraph, nx.DiGraph, nx.OrderedDiGraph), "`into` must be {pd.DataFrame, pd.Series, Symmetric, nx.Graph, nx.OrderedGraph, nx.DiGraph, nx.OrderedDiGraph}" assert into not in {nx.MultiGraph, nx.MultiDiGraph}, "`into` cannot be a `Multi[Di]Graph`" # self -> self if isinstance(data, into): return data.copy() if isinstance(data, pd.Series): data = Symmetric(data, **attrs) if into == Symmetric: return data # pd.DataFrame -> Symmetric or Graph if isinstance(data, pd.DataFrame) and (into in {Symmetric, nx.Graph, nx.OrderedGraph, nx.DiGraph, nx.OrderedDiGraph}): weights = dense_to_condensed(data, assert_symmetry=assert_symmetry, tol=tol) if into == Symmetric: return Symmetric(weights, **attrs) else: return Symmetric(weights).to_networkx(into=into, **attrs) # pd.DataFrame -> pd.Series if isinstance(data, pd.DataFrame) and (into in {pd.Series}): return dense_to_condensed(data, assert_symmetry=assert_symmetry, tol=tol) # Symmetric -> pd.DataFrame, pd.Series, or Graph if isinstance(data, Symmetric): # pd.DataFrame if into == pd.DataFrame: df = data.to_dense() if index is None: return df else: assert set(index) <= set(df.index), "Not all `index` values are in `data`" return df.loc[index,index] elif into == pd.Series: return data.weights.copy() # Graph else: return data.to_networkx(into=into, **attrs) # Graph -> Symmetric if isinstance(data, (nx.Graph, nx.OrderedGraph, nx.DiGraph, nx.OrderedDiGraph)): if into == Symmetric: return Symmetric(data=data, **attrs) if into == pd.DataFrame: return Symmetric(data=data, **attrs).to_dense() if into in {nx.Graph, nx.OrderedGraph, nx.DiGraph, nx.OrderedDiGraph}: return Symmetric(data=data).to_networkx(into=into, **attrs) if into == pd.Series: return convert_network(data=data, into=Symmetric, index=index, assert_symmetry=assert_symmetry, tol=tol).weights # =================== # Network Statistics # =================== # Connectivity def connectivity(data, groups:pd.Series=None, include_self_loops=False, tol=1e-10): """ Calculate connectivity from pd.DataFrame (must be symmetric), Symmetric, Hive, or NetworkX graph groups must be dict-like: {node:group} """ # This is a hack to allow Hives from hive_networkx if is_query_class(data, "Hive"): data = condensed_to_dense(data.weights) assert isinstance(data, (pd.DataFrame, Symmetric, nx.Graph, nx.DiGraph, nx.OrderedGraph, nx.OrderedDiGraph)), "Must be either a symmetric pd.DataFrame, Symmetric, nx.Graph, or hx.Hive object" if is_graph(data): weights = dict() for edge_data in data.edges(data=True): edge = frozenset(edge_data[:-1]) weight = edge_data[-1]["weight"] weights[edge] = weight weights = pd.Series(weights, name="Weights")#.sort_index() data = Symmetric(weights) if isinstance(data, Symmetric): df_dense = condensed_to_dense(data.weights) if isinstance(data, pd.DataFrame): assert is_symmetrical(data, tol=tol) df_dense = data df_dense = df_dense.copy() if not include_self_loops: np.fill_diagonal(df_dense.values, 0) #kTotal k_total = df_dense.sum(axis=1) if groups is None: return k_total else: groups = pd.Series(groups) data_connectivity = OrderedDict() data_connectivity["kTotal"] = k_total #kWithin k_within = list() for group in groups.unique(): idx_nodes = pd.Index(sorted(set(groups[lambda x: x == group].index) & set(df_dense.index))) k_group = df_dense.loc[idx_nodes,idx_nodes].sum(axis=1) k_within.append(k_group) data_connectivity["kWithin"] = pd.concat(k_within) #kOut data_connectivity["kOut"] = data_connectivity["kTotal"] - data_connectivity["kWithin"] #kDiff data_connectivity["kDiff"] = data_connectivity["kWithin"] - data_connectivity["kOut"] return pd.DataFrame(data_connectivity) def density(k:pd.Series): """ Density = sum(khelp)/(nGenes * (nGenes - 1)) https://github.com/cran/WGCNA/blob/15de0a1fe2b214f7047b887e6f8ccbb1c681e39e/R/Functions.R#L1963 """ k_total = k.sum() number_of_nodes = k.size return k_total/(number_of_nodes * (number_of_nodes - 1)) def centralization(k:pd.Series): """ Centralization = nGenes*(max(khelp)-mean(khelp))/((nGenes-1)*(nGenes-2)) https://github.com/cran/WGCNA/blob/15de0a1fe2b214f7047b887e6f8ccbb1c681e39e/R/Functions.R#L1965 """ k_max = k.max() k_mean = k.mean() number_of_nodes = k.size return number_of_nodes * (k_max - k_mean)/((number_of_nodes - 1) * (number_of_nodes - 2)) def heterogeneity(k:pd.Series): """ Heterogeneity = sqrt(nGenes * sum(khelp^2)/sum(khelp)^2 - 1) https://github.com/cran/WGCNA/blob/15de0a1fe2b214f7047b887e6f8ccbb1c681e39e/R/Functions.R#L1967 """ number_of_nodes = k.size return np.sqrt(number_of_nodes * np.sum(k**2)/np.sum(k)**2 - 1) # Topological overlap def topological_overlap_measure(data, into=None, node_type=None, edge_type="topological_overlap_measure", association="network", assert_symmetry=True, tol=1e-10): """ Compute the topological overlap for a weighted adjacency matrix `data` and `into` can be the following network structures/objects: * pd.DataFrame (must be symmetrical) * Symmetric * nx.[Di|Ordered]Graph ==================================================== Benchmark 5000 nodes (iris w/ 4996 noise variables): ==================================================== TOM via rpy2 -> R -> WGCNA: 24 s ± 471 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) TOM via this function: 7.36 s ± 212 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) ================= Acknowledgements: ================= Original source: * <NAME> and <NAME> https://www.rdocumentation.org/packages/WGCNA/versions/1.67/topics/TOMsimilarity https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-559 Implementation adapted from the following sources: * Credits to @scleronomic https://stackoverflow.com/questions/56574729/how-to-compute-the-topological-overlap-measure-tom-for-a-weighted-adjacency-ma/56670900#56670900 * Credits to @benmaier https://github.com/benmaier/GTOM/issues/3 """ # Compute topological overlap def _compute_tom(A): # Prepare adjacency np.fill_diagonal(A, 0) # Prepare TOM A_tom = np.zeros_like(A) # Compute TOM L = np.matmul(A,A) ki = A.sum(axis=1) kj = A.sum(axis=0) MINK = np.array([ np.minimum(ki_,kj) for ki_ in ki ]) A_tom = (L+A) / (MINK + 1 - A) np.fill_diagonal(A_tom,1) return A_tom # Check input type if into is None: into = type(data) node_labels = None if not isinstance(data, np.ndarray): if not isinstance(data, pd.DataFrame): data = convert_network(data, into=pd.DataFrame) assert np.all(data.index == data.columns), "`data` index and columns must have identical ordering" np.fill_diagonal(data.values,0) #! redundant node_labels = data.index # Check input type if assert_symmetry: assert is_symmetrical(data, tol=tol), "`data` is not symmetric" assert np.all(data >= 0), "`data` weights must ≥ 0" # Compute TOM A_tom = _compute_tom(np.asarray(data)) if assert_symmetry: A_tom = (A_tom + A_tom.T)/2 # Unlabeled adjacency if node_labels is None: return A_tom # Labeled adjacency else: df_tom = pd.DataFrame(A_tom, index=node_labels, columns=node_labels) df_tom.index.name = df_tom.columns.name = node_type return convert_network(df_tom, into=into, assert_symmetry=assert_symmetry, tol=tol, adjacency="network", node_type=node_type, edge_type=edge_type, association=association) # ======================================================= # Community Detection # ======================================================= # Graph community detection def community_detection(graph, n_iter:int=100, weight:str="weight", random_state:int=0, algorithm="louvain", algo_kws=dict()): assert isinstance(n_iter, int) assert isinstance(random_state, int) assert isinstance(algorithm, str) assert_acceptable_arguments(algorithm, {"louvain", "leiden"}) # Louvain if algorithm == "louvain": try: from community import best_partition except ModuleNotFoundError: Exception("Please install `python-louvain` to use {} algorithm".format(algorithm)) # Keywords _algo_kws = {} _algo_kws.update(algo_kws) def partition_function(graph, weight, random_state, algo_kws): return best_partition(graph, weight=weight, random_state=random_state, **algo_kws) # Leiden if algorithm == "leiden": try: import igraph as ig except ModuleNotFoundError: Exception("Please install `igraph` to use {} algorithm".format(algorithm)) try: from leidenalg import find_partition, ModularityVertexPartition except ModuleNotFoundError: Exception("Please install `leidenalg` to use {} algorithm".format(algorithm)) # Convert NetworkX to iGraph graph = ig.Graph.from_networkx(graph) nodes_list = np.asarray(graph.vs["_nx_name"]) # Keywords _algo_kws = {"partition_type":ModularityVertexPartition, "n_iterations":-1} _algo_kws.update(algo_kws) def partition_function(graph, weight, random_state, algo_kws, nodes_list=nodes_list): node_to_partition = dict() for partition, nodes in enumerate(find_partition(graph, weights=weight, seed=random_state, **algo_kws)): mapping = dict(zip(nodes_list[nodes], [partition]*len(nodes))) node_to_partition.update(mapping) return node_to_partition # Get partitions partitions = dict() for rs in pv(range(random_state, n_iter + random_state), "Detecting communities via `{}` algorithm".format(algorithm)): partitions[rs] = partition_function(graph=graph, weight=weight, random_state=rs, algo_kws=_algo_kws) # Create DataFrame df = pd.DataFrame(partitions) df.index.name = "Node" df.columns.name = "Partition" return df # Cluster homogeneity matrix def cluster_homogeneity(df:pd.DataFrame, edge_type="Edge", iteration_type="Iteration"): """ # Create Graph from soothsayer_utils import get_iris_data df_adj = get_iris_data(["X"]).iloc[:5].T.corr() + np.random.RandomState(0).normal(size=(5,5)) graph = nx.from_pandas_adjacency(df_adj) graph.nodes() # NodeView(('sepal_length', 'sepal_width', 'petal_length', 'petal_width')) # Community detection (network clustering) df_louvain = community_detection(graph, n_iter=10, algorithm="louvain") df_louvain # Partition 0 1 2 3 4 5 6 7 8 9 # Node # iris_0 0 0 0 0 0 0 0 0 0 0 # iris_1 1 1 1 1 1 1 1 1 1 1 # iris_2 1 2 2 2 2 1 2 2 2 2 # iris_3 0 1 1 1 1 0 1 1 1 1 # iris_4 2 3 3 3 3 2 3 3 3 3 # Determine cluster homogeneity df_homogeneity = cluster_homogeneity(df_louvain) df_homogeneity # Iteration 0 1 2 3 4 5 6 7 8 9 # Edge # (iris_1, iris_0) 0 0 0 0 0 0 0 0 0 0 # (iris_2, iris_0) 0 0 0 0 0 0 0 0 0 0 # (iris_3, iris_0) 1 0 0 0 0 1 0 0 0 0 # (iris_4, iris_0) 0 0 0 0 0 0 0 0 0 0 # (iris_1, iris_2) 1 0 0 0 0 1 0 0 0 0 # (iris_3, iris_1) 0 1 1 1 1 0 1 1 1 1 # (iris_4, iris_1) 0 0 0 0 0 0 0 0 0 0 # (iris_3, iris_2) 0 0 0 0 0 0 0 0 0 0 # (iris_4, iris_2) 0 0 0 0 0 0 0 0 0 0 # (iris_4, iris_3) 0 0 0 0 0 0 0 0 0 0 df_homogeneity.mean(axis=1)[lambda x: x > 0.5] # Edge # (iris_3, iris_1) 0.8 # dtype: float64 """ # Adapted from @code-different: # https://stackoverflow.com/questions/58566957/how-to-transform-a-dataframe-of-cluster-class-group-labels-into-a-pairwise-dataf # `x` is a table of (n=nodes, p=iterations) nodes = df.index iterations = df.columns x = df.values n,p = x.shape # `y` is an array of n tables, each having 1 row and p columns y = x[:, None] # Using numpy broadcasting, `z` contains the result of comparing each # table in `y` against `x`. So the shape of `z` is (n x n x p) z = x == y # Reshaping `z` by merging the first two dimensions data = z.reshape((z.shape[0] * z.shape[1], z.shape[2])) # Redundant pairs redundant_pairs = list(map(lambda node:frozenset([node]), nodes)) # Create pairwise clustering matrix df_pairs = pd.DataFrame( data=data, index=pd.Index(list(map(frozenset, product(nodes,nodes))), name=edge_type), columns=pd.Index(iterations, name=iteration_type), dtype=int, ).drop(redundant_pairs, axis=0) return df_pairs[~df_pairs.index.duplicated(keep="first")] # ======================================================= # Data Structures # ======================================================= # Symmetrical dataframes represented as augment pd.Series class Symmetric(object): """ An indexable symmetric matrix stored as the lower triangle for space. Usage: import soothsayer_utils as syu import ensemble_networkx as enx # Load data X, y, colors = syu.get_iris_data(["X", "y", "colors"]) n, m = X.shape # Get association matrix (n,n) method = "pearson" df_sim = X.T.corr(method=method) ratio = 0.382 number_of_edges = int((n**2 - n)/2) number_of_edges_negative = int(ratio*number_of_edges) # Make half of the edges negative to showcase edge coloring (not statistically meaningful at all) for a, b in zip(np.random.RandomState(0).randint(low=0, high=149, size=number_of_edges_negative), np.random.RandomState(1).randint(low=0, high=149, size=number_of_edges_negative)): if a != b: df_sim.values[a,b] = df_sim.values[b,a] = df_sim.values[a,b]*-1 # Create a Symmetric object from the association matrix sym_iris = enx.Symmetric(data=df_sim, node_type="iris sample", edge_type=method, name="iris", association="network") # ==================================== # Symmetric(Name:iris, dtype: float64) # ==================================== # * Number of nodes (iris sample): 150 # * Number of edges (correlation): 11175 # * Association: network # * Memory: 174.609 KB # -------------------------------- # | Weights # -------------------------------- # (iris_1, iris_0) 0.995999 # (iris_0, iris_2) 0.999974 # (iris_3, iris_0) 0.998168 # (iris_0, iris_4) 0.999347 # (iris_0, iris_5) 0.999586 # ... # (iris_148, iris_146) 0.988469 # (iris_149, iris_146) 0.986481 # (iris_147, iris_148) 0.995708 # (iris_149, iris_147) 0.994460 # (iris_149, iris_148) 0.999916 devel ===== 2020-June-23 * Replace self._dense_to_condensed to dense_to_condensed * Dropped math operations * Added input for Symmetric or pd.Series with a frozenset index 2018-August-16 * Added __add__, __sub__, etc. * Removed conversion to dissimilarity for tree construction * Added .iteritems method Future: * Use `weights` instead of `data` Dropped: Fix the diagonal arithmetic """ def __init__( self, data, name=None, node_type=None, edge_type=None, func_metric=None, association="infer", assert_symmetry=True, nans_ok=True, tol=None, # fillna=np.nan, acceptable_associations={"similarity", "dissimilarity", "statistical_test", "network", "infer", None}, **attrs, ): self._acceptable_associations = acceptable_associations self.name = name self.node_type = node_type self.edge_type = edge_type self.func_metric = func_metric self.association = association self.diagonal = None self.metadata = dict() # From Symmetric object if isinstance(data, type(self)): if not nans_ok: assert not np.any(data.weights.isnull()), "Cannot move forward with missing values" self._from_symmetric(data=data, name=name, node_type=node_type, edge_type=edge_type, func_metric=func_metric, association=association) # From networkx if isinstance(data, (nx.Graph, nx.OrderedGraph, nx.DiGraph, nx.OrderedDiGraph)): self._from_networkx(data=data, association=association) # From pandas if isinstance(data, (pd.DataFrame, pd.Series)): if not nans_ok: assert not np.any(data.isnull()), "Cannot move forward with missing values" # From pd.DataFrame object if isinstance(data, pd.DataFrame): self._from_pandas_dataframe(data=data, association=association, assert_symmetry=assert_symmetry, nans_ok=nans_ok, tol=tol) # From pd.Series object if isinstance(data, pd.Series): self._from_pandas_series(data=data, association=association) # Universal # If there's still no `edge_type` and `func_metric` is not empty, then use this the name of `func_metric` if (self.edge_type is None) and (self.func_metric is not None): self.edge_type = self.func_metric.__name__ self.values = self.weights.values self.number_of_nodes = self.nodes.size self.number_of_edges = self.edges.size # self.graph = self.to_networkx(into=graph) # Not storing graph because it will double the storage self.memory = self.weights.memory_usage() self.metadata.update(attrs) self.__synthesized__ = datetime.datetime.utcnow() # ======= # Utility # ======= def _infer_association(self, X): diagonal = np.diagonal(X) diagonal_elements = set(diagonal) assert len(diagonal_elements) == 1, "Cannot infer relationships from diagonal because multiple values" assert diagonal_elements <= {0,1}, "Diagonal should be either 0.0 for dissimilarity or 1.0 for similarity" return {0.0:"dissimilarity", 1.0:"similarity"}[list(diagonal_elements)[0]] def _from_symmetric(self,data, name, node_type, edge_type, func_metric, association): self.__dict__.update(data.__dict__) # If there's no `name`, then get `name` of `data` if self.name is None: self.name = name # If there's no `node_type`, then get `node_type` of `data` if self.node_type is None: self.node_type = node_type # If there's no `edge_type`, then get `edge_type` of `data` if self.edge_type is None: self.edge_type = edge_type # If there's no `func_metric`, then get `func_metric` of `data` if self.func_metric is None: if func_metric is not None: assert hasattr(func_metric, "__call__"), "`func_metric` must be a function" self.func_metric = func_metric # Infer associations if self.association is None: assert_acceptable_arguments(association, self._acceptable_associations) if association != "infer": self.association = association def _from_networkx(self, data, association): assert isinstance(data, (nx.Graph, nx.OrderedGraph, nx.DiGraph, nx.OrderedDiGraph)), "`If data` is a graph, it must be in {nx.Graph, nx.OrderedGraph, nx.DiGraph, nx.OrderedDiGraph}" assert_acceptable_arguments(association, self._acceptable_associations) if association == "infer": if association is None: association = "network" assert_acceptable_arguments(association, self._acceptable_associations) # Propogate information from graph for attr in ["name", "node_type", "edge_type", "func_metric"]: if getattr(self, attr) is None: if attr in data.graph: value = data.graph[attr] if bool(value): setattr(self, attr, value) # Weights edge_weights = dict() for edge_data in data.edges(data=True): edge = frozenset(edge_data[:-1]) weight = edge_data[-1]["weight"] edge_weights[edge] = weight data = pd.Series(edge_weights) self._from_pandas_series(data=data, association=association) def _from_pandas_dataframe(self, data:pd.DataFrame, association, assert_symmetry, nans_ok, tol): if assert_symmetry: assert is_symmetrical(data, tol=tol), "`X` is not symmetric. Consider dropping the `tol` to a value such as `1e-10` or using `(X+X.T)/2` to force symmetry" assert_acceptable_arguments(association, self._acceptable_associations) if association == "infer": association = self._infer_association(data) self.association = association self.nodes = pd.Index(data.index) self.diagonal = pd.Series(np.diagonal(data), index=data.index, name="Diagonal")[self.nodes] self.weights = dense_to_condensed(data, name="Weights", assert_symmetry=assert_symmetry, tol=tol) self.edges = pd.Index(self.weights.index, name="Edges") def _from_pandas_series(self, data:pd.Series, association): assert all(data.index.map(lambda edge: isinstance(edge, frozenset))), "If `data` is pd.Series then each key in the index must be a frozenset of size 2" assert_acceptable_arguments(association, self._acceptable_associations) if association == "infer": association = None self.association = association # To ensure that the ordering is maintained and this is compatible with methods that use an unlabeled upper triangle, we must reindex and sort self.nodes = pd.Index(sorted(frozenset.union(*data.index))) self.edges = pd.Index(map(frozenset, combinations(self.nodes, r=2)), name="Edges") self.weights = pd.Series(data, name="Weights").reindex(self.edges) def set_diagonal(self, diagonal): if diagonal is None: self.diagonal = None else: if is_number(diagonal): diagonal = dict_build([(diagonal, self.nodes)]) assert is_dict_like(diagonal), "`diagonal` must be dict-like" assert set(diagonal.keys()) >= set(self.nodes), "Not all `nodes` are in `diagonal`" self.diagonal = pd.Series(diagonal, name="Diagonal")[self.nodes] # ======= # Built-in # ======= def __repr__(self): pad = 4 header = format_header("Symmetric(Name:{}, dtype: {})".format(self.name, self.weights.dtype),line_character="=") n = len(header.split("\n")[0]) fields = [ header, pad*" " + "* Number of nodes ({}): {}".format(self.node_type, self.number_of_nodes), pad*" " + "* Number of edges ({}): {}".format(self.edge_type, self.number_of_edges), pad*" " + "* Association: {}".format(self.association), pad*" " + "* Memory: {}".format(format_memory(self.memory)), *map(lambda line:pad*" " + line, format_header("| Weights", "-", n=n-pad).split("\n")), *map(lambda line: pad*" " + line, repr(self.weights).split("\n")[1:-1]), ] return "\n".join(fields) def __getitem__(self, key): """ `key` can be a node or non-string iterable of edges """ if is_nonstring_iterable(key): assert len(key) >= 2, "`key` must have at least 2 identifiers. e.g. ('A','B')" key = frozenset(key) if len(key) == 1: return self.diagonal[list(key)[0]] else: if len(key) > 2: key = list(map(frozenset, combinations(key, r=2))) return self.weights[key] else: if key in self.nodes: s = frozenset([key]) mask = self.edges.map(lambda x: bool(s & x)) return self.weights[mask] else: raise KeyError("{} not in node list".format(key)) def __call__(self, key, func=np.sum): """ This can be used for connectivity in the context of networks but can be confusing with the versatiliy of __getitem__ """ if hasattr(key, "__call__"): return self.weights.groupby(key).apply(func) else: return func(self[key]) def __len__(self): return self.number_of_nodes def __iter__(self): for v in self.weights: yield v def items(self): return self.weights.items() def iteritems(self): return self.weights.iteritems() def keys(self): return self.weights.keys() def apply(self, func): return func(self.weights) def mean(self): return self.weights.mean() def median(self): return self.weights.median() def min(self): return self.weights.min() def max(self): return self.weights.max() def idxmin(self): return self.weights.idxmin() def idxmax(self): return self.weights.idxmax() def sum(self): return self.weights.sum() def sem(self): return self.weights.sem() def var(self): return self.weights.var() def std(self): return self.weights.std() def describe(self, **kwargs): return self.weights.describe(**kwargs) def map(self, func): return self.weights.map(func) def entropy(self, base=2): assert np.all(self.weights > 0), "All weights must be greater than 0" return stats.entropy(self.weights, base=base) # ========== # Conversion # ========== def to_dense(self, index=None, fill_diagonal=None): if fill_diagonal is None: fill_diagonal=self.diagonal if index is None: index = self.nodes return condensed_to_dense(y=self.weights, fill_diagonal=fill_diagonal, index=index) def to_condensed(self): return self.weights # @check_packages(["ete3", "skbio"]) # def to_tree(self, method="average", into=None, node_prefix="y"): # assert self.association == "dissimilarity", "`association` must be 'dissimilarity' to construct tree" # if method in {"centroid", "median", "ward"}: # warnings.warn("Methods ‘centroid’, ‘median’, and ‘ward’ are correctly defined only if Euclidean pairwise metric is used.\nSciPy Documentation - https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html#scipy.cluster.hierarchy.linkage") # if into is None: # into = ete3.Tree # if not hasattr(self,"Z"): # self.Z = linkage(self.weights.values, metric="precomputed", method=method) # if not hasattr(self,"newick"): # self.newick = linkage_to_newick(self.Z, self.nodes) # tree = into(newick=self.newick, name=self.name) # return name_tree_nodes(tree, node_prefix) def to_networkx(self, into=None, **attrs): if into is None: into = nx.Graph metadata = { "node_type":self.node_type, "edge_type":self.edge_type, "func_metric":self.func_metric} metadata.update(attrs) graph = into(name=self.name, **metadata) for (node_A, node_B), weight in self.weights.iteritems(): graph.add_edge(node_A, node_B, weight=weight) return graph def to_file(self, path, **kwargs): write_object(obj=self, path=path, **kwargs) def copy(self): return copy.deepcopy(self) # ============================================================================== # Associations # ============================================================================== # Biweight midcorrelation def pairwise_biweight_midcorrelation(X, use_numba=False): """ X: {np.array, pd.DataFrame} Code adapted from the following sources: * https://stackoverflow.com/questions/61090539/how-can-i-use-broadcasting-with-numpy-to-speed-up-this-correlation-calculation/61219867#61219867 * https://github.com/olgabot/pandas/blob/e8caf4c09e1a505eb3c88b475bc44d9389956585/pandas/core/nanops.py Special thanks to the following people: * @norok2 (https://stackoverflow.com/users/5218354/norok2) for optimization (vectorization and numba) * @olgabot (https://github.com/olgabot) for NumPy implementation Benchmarking: * iris_features (4,4) * numba: 159 ms ± 2.85 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) * numpy: 276 µs ± 3.45 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) * iris_samples: (150,150) * numba: 150 ms ± 7.57 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) * numpy: 686 µs ± 18.8 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) Future: * Handle missing values """ # Data result = None labels = None if isinstance(X, pd.DataFrame): labels = X.columns X = X.values def _base_computation(A): n, m = A.shape A = A - np.median(A, axis=0, keepdims=True) v = 1 - (A / (9 * np.median(np.abs(A), axis=0, keepdims=True))) ** 2 est = A * v ** 2 * (v > 0) norms = np.sqrt(np.sum(est ** 2, axis=0)) return n, m, est, norms # Check if numba is available assert_acceptable_arguments(use_numba, {True, False, "infer"}) if use_numba == "infer": if "numba" in sys.modules: use_numba = True else: use_numba = False print("Numba is available:", use_numba, file=sys.stderr) # Compute using numba if use_numba: assert "numba" in sys.modules from numba import jit def _biweight_midcorrelation_numba(A): @jit def _condensed_to_dense(n, m, est, norms, result): for i in range(m): for j in range(i + 1, m): x = 0 for k in range(n): x += est[k, i] * est[k, j] result[i, j] = result[j, i] = x / norms[i] / norms[j] n, m, est, norms = _base_computation(A) result = np.empty((m, m)) np.fill_diagonal(result, 1.0) _condensed_to_dense(n, m, est, norms, result) return result result = _biweight_midcorrelation_numba(X) # Compute using numpy else: def _biweight_midcorrelation_numpy(A): n, m, est, norms = _base_computation(A) return np.einsum('mi,mj->ij', est, est) / norms[:, None] / norms[None, :] result = _biweight_midcorrelation_numpy(X) # Add labels if labels is not None: result = pd.DataFrame(result, index=labels, columns=labels) return result # ============================= # Feature Engineering # ============================= class CategoricalEngineeredFeature(object): """ Combine features using multiple categories. # ========================================= from soothsayer_utils import get_iris_data from scipy import stats import pandas as pd import ensemble_networkx as enx X, y = get_iris_data(["X","y"]) # Usage CEF = enx.CategoricalEngineeredFeature(name="Iris", observation_type="sample") # Add categories category_1 = pd.Series(X.columns.map(lambda x:x.split("_")[0]), X.columns) CEF.add_category( name_category="leaf_type", mapping=category_1, ) # Optionally add scaling factors, statistical tests, and summary statistics # Compile all of the data CEF.compile(scaling_factors=X.sum(axis=0), stats_tests=[stats.normaltest]) # Unpacking engineered groups: 100%|██████████| 1/1 [00:00<00:00, 2974.68it/s] # Organizing feature sets: 100%|██████████| 4/4 [00:00<00:00, 17403.75it/s] # Compiling synopsis [Basic Feature Info]: 100%|██████████| 2/2 [00:00<00:00, 32768.00it/s] # Compiling synopsis [Scaling Factor Info]: 100%|██████████| 2/2 [00:00<00:00, 238.84it/s] # View the engineered features CEF.synopsis_ # initial_features number_of_features leaf_type(level:0) scaling_factors sum(scaling_factors) mean(scaling_factors) sem(scaling_factors) std(scaling_factors) # leaf_type # sepal [sepal_width, sepal_length] 2 sepal [458.6, 876.5] 1335.1 667.55 208.95 208.95 # petal [petal_length, petal_width] 2 petal [563.7, 179.90000000000003] 743.6 371.8 191.9 191.9 # Transform a dataset using the defined categories CEF.fit_transform(X, aggregate_fn=np.sum) # leaf_type sepal petal # sample # iris_0 8.6 1.6 # iris_1 7.9 1.6 # iris_2 7.9 1.5 # iris_3 7.7 1.7 """ def __init__(self, initial_feature_type=None, engineered_feature_type=None, observation_type=None, unit_type=None, name=None, description=None, assert_mapping_intersection=False, ): self.initial_feature_type = initial_feature_type self.engineered_feature_type=engineered_feature_type self.observation_type = observation_type self.unit_type = unit_type self.name = name self.description = description self.assert_mapping_intersection = assert_mapping_intersection self.__data__ = dict() self.number_of_levels_ = 0 self.memory_ = sys.getsizeof(self) self.compiled_ = False def add_category(self, name_category:Hashable, mapping:Union[Mapping, pd.Series], level:int="infer", assert_mapping_exclusiveness=False, assert_level_nonexistent=True): if level == "infer": level = len(self.__data__) assert name_category not in self.__data__, "Already added category: {}".format(name_category) assert isinstance(mapping, (Mapping, pd.Series)), "`mapping` must be dict-like" # Force iterables into set type def f(x): # How should this handle frozensets and tuples? if is_nonstring_iterable(x) and not isinstance(x, Hashable): if assert_mapping_exclusiveness: raise AssertionError("name_category=`{}` must have one-to-one mapping exclusiveness. If this is not desired, please set `assert_mapping_exclusiveness=False` when adding component via `add_category`".format(name_category)) x = set(x) return x # Add categories if assert_level_nonexistent: assert level not in self.__data__, "`level={}` already existent".format(level) self.__data__[level] = { "name_category":name_category, "mapping":pd.Series(mapping).map(f) } return self # Compile all the categories def compile( self, scaling_factors:pd.Series=None, # e.g. Gene Lengths, stats_summary = [np.sum, np.mean, stats.sem, np.std], stats_tests = [], ): # Check features def check_initial_features(): self.initial_features_union_ = set.union(*map(lambda dict_values: set(dict_values["mapping"].index), self.__data__.values())) self.initial_features_intersection_ = set.intersection(*map(lambda dict_values: set(dict_values["mapping"].index), self.__data__.values())) if self.assert_mapping_intersection: assert self.initial_features_union_ == self.initial_features_intersection_, \ "All `mapping` must have same features mapped. features_union = {}; features_intersection = {}".format( len(self.initial_features_union_), len(self.initial_features_intersection_), ) if scaling_factors is not None: assert isinstance(scaling_factors, (Mapping, pd.Series)), "`scaling_factors` must be dict-like" self.scaling_factors_ = pd.Series(scaling_factors) assert set(self.initial_features_intersection_) <= set(self.scaling_factors_.index), "`scaling_factors` does not have all required `initial_features_intersection_`. In particular, the following number of features are missing:\n{}".format(len(self.initial_features_intersection_ - set(query_features))) else: self.scaling_factors_ = None # Organizing features and groups def organize_and_group_initial_features(): # Organize the data w/ respect to feature feature_to_grouping = defaultdict(lambda: defaultdict(set)) for level, data in pv(sorted(self.__data__.items(), key=lambda item:item[0]), description="Unpacking engineered groups"): name_category = data["name_category"] for id_feature, values in data["mapping"].items(): if isinstance(values, Hashable): values = set([values]) for v in values: feature_to_grouping[id_feature][level].add(v) # Organize the groups and create sets of features self.engineered_to_initial_features_ = defaultdict(set) self.initial_features_ = set(feature_to_grouping.keys()) for id_feature, grouping in pv(feature_to_grouping.items(), description="Organizing feature sets"): grouping_iterables = map(lambda item: item[1], sorted(grouping.items(), key=lambda item: item[0])) for engineered_feature in product(*grouping_iterables): if len(engineered_feature) == self.number_of_levels_: self.engineered_to_initial_features_[engineered_feature].add(id_feature) # Compute synopsis def get_synopsis(): name_to_level = dict(map(lambda item: (item[1]["name_category"], item[0]), self.__data__.items())) self.synopsis_ = defaultdict(dict) for engineered_feature, initial_features in pv(self.engineered_to_initial_features_.items(), description="Compiling synopsis [Basic Feature Info]"): self.synopsis_[engineered_feature]["initial_features"] = list(initial_features) self.synopsis_[engineered_feature]["number_of_features"] = len(initial_features) for i, value in enumerate(engineered_feature): level = self.levels_[i] name_category = self.__data__[level]["name_category"] self.synopsis_[engineered_feature]["{}(level:{})".format(name_category, level)] = value if self.scaling_factors_ is not None: for engineered_feature in pv(self.synopsis_.keys(), description="Compiling synopsis [Scaling Factor Info]"): initial_features = self.synopsis_[engineered_feature]["initial_features"] query_scaling_factors = self.scaling_factors_[initial_features] self.synopsis_[engineered_feature]["scaling_factors"] = list(query_scaling_factors) for func in stats_summary: with Suppress(): self.synopsis_[engineered_feature]["{}(scaling_factors)".format(func.__name__)] = func(query_scaling_factors) for func in stats_tests: with Suppress(): try: stat, p = func(query_scaling_factors) self.synopsis_[engineered_feature]["{}|stat(scaling_factors)".format(func.__name__)] = stat self.synopsis_[engineered_feature]["{}|p_value(scaling_factors)".format(func.__name__)] = p except: pass self.synopsis_ = pd.DataFrame(self.synopsis_).T if isinstance(self.synopsis_.index, pd.MultiIndex): self.synopsis_.index.names = map(lambda item: item[1]["name_category"], sorted(self.__data__.items(), key=lambda item:item[0])) # Basic Info self.levels_ = list(self.__data__.keys()) self.number_of_levels_ = len(self.__data__) if stats_summary is None: stats_summary = [] if stats_tests is None: stats_tests = [] # Run compilation print(format_header("CategoricalEngineeredFeature(Name:{})".format(self.name),line_character="="), file=sys.stderr) check_initial_features() organize_and_group_initial_features() get_synopsis() self.stats_summary_ = stats_summary self.stats_tests_ = stats_tests self.memory_ = sys.getsizeof(self) self.compiled_ = True return self # Transform a dataset def fit_transform( self, X:pd.DataFrame, aggregate_fn=np.sum, ) -> pd.DataFrame: query_features = set(X.columns) assert query_features >= self.initial_features_, "X.columns does not have all required `initial_features_`. In particular, the following number of features are missing:\n{}".format(len(self.initial_features_ - query_features)) # Aggregate features results = dict() for engineered_feature, initial_features in pv(self.engineered_to_initial_features_.items(), description="Aggregating engineered features"): X_subset = X[initial_features] aggregate = X_subset.apply(aggregate_fn, axis=1) results[engineered_feature] = aggregate df_aggregate = pd.DataFrame(results) # Properly label MultiIndex if isinstance(df_aggregate.columns, pd.MultiIndex): df_aggregate.columns.names = map(lambda item: item[1]["name_category"], sorted(self.__data__.items(), key=lambda item:item[0])) # df_aggregate.columns.names = self.synopsis_.index.names df_aggregate.index.name = self.observation_type return df_aggregate # ======= # Built-in # ======= def __repr__(self): pad = 4 n_preview = 5 header = format_header("CategoricalEngineeredFeature(Name:{})".format(self.name),line_character="=") n = len(header.split("\n")[0]) fields = [ header, pad*" " + "* Number of levels: {}".format(self.number_of_levels_), pad*" " + "* Memory: {}".format(format_memory(self.memory_)), pad*" " + "* Compiled: {}".format(self.compiled_), ] # Types fields += [ *map(lambda line:pad*" " + line, format_header("| Types", "-", n=n-pad).split("\n")), pad*" " + "* Initial feature type: {}".format(self.initial_feature_type), pad*" " + "* Engineered feature type: {}".format(self.engineered_feature_type), pad*" " + "* Observation feature type: {}".format(self.observation_type), pad*" " + "* Unit type: {}".format(self.unit_type), ] if self.compiled_: fields += [ *map(lambda line:pad*" " + line, format_header("| Statistics", "-", n=n-pad).split("\n")), 2*pad*" " + "Scaling Factors: {}".format(self.scaling_factors_ is not None), 2*pad*" " + "Summary: {}".format(list(map(lambda fn: fn.__name__, self.stats_summary_))), 2*pad*" " + "Tests: {}".format(list(map(lambda fn: fn.__name__, self.stats_tests_))), ] fields += [ *map(lambda line:pad*" " + line, format_header("| Categories", "-", n=n-pad).split("\n")), ] for level, d in self.__data__.items(): fields += [ pad*" " + "* Level {} - {}:".format(level, d["name_category"]), 2*pad*" " + "Number of initial features: {}".format(d["mapping"].index.nunique()), 2*pad*" " + "Number of categories: {}".format(len(flatten(d["mapping"].values, into=set))), ] fields += [ *map(lambda line:pad*" " + line, format_header("| Features", "-", n=n-pad).split("\n")), ] fields += [ pad*" " + 2*" " + "Number of initial features (Intersection): {}".format(len(self.initial_features_intersection_)), pad*" " + 2*" " + "Number of initial features (Union): {}".format(len(self.initial_features_union_)), pad*" " + 2*" " + "Number of engineered features: {}".format(len(self.engineered_to_initial_features_)), ] return "\n".join(fields) def __getitem__(self, key): """ `key` can be a node or non-string iterable of edges """ recognized = False if isinstance(key, int): try: recognized = True return self.__data__[key] except KeyError: raise KeyError("{} level not in self.__data__".format(key)) if isinstance(key, tuple): assert self.compiled_, "Please compile before using self.__getitem__ method." try: recognized = True return self.engineered_to_initial_features_[key] except KeyError: raise KeyError("{} engineered feature not in self.engineered_to_initial_features_".format(key)) if not recognized: raise KeyError("Could not interpret key: {}. Please use self.__getitem__ method for querying level data with an int or features with a tuple.".format(key)) def __len__(self): return len(self.engineered_to_initial_features_) def __iter__(self): for v in self.engineered_to_initial_features_.items(): yield v def items(self): return self.engineered_to_initial_features_.items() def iteritems(self): for v in self.engineered_to_initial_features_.items(): yield v def to_file(self, path, **kwargs): write_object(obj=self, path=path, **kwargs) def copy(self): return copy.deepcopy(self) # ============================= # Ensemble Association Networks # ============================= class EnsembleAssociationNetwork(object): """ # Load in data import soothsayer_utils as syu X = syu.get_iris_data(["X"]) # Create ensemble network ens = enx.EnsembleAssociationNetwork(name="Iris", node_type="leaf measurement", edge_type="association", observation_type="specimen") ens.fit(X=X, metric="spearman", n_iter=100, stats_summary=[np.mean,np.var, stats.kurtosis, stats.skew], stats_tests=[stats.normaltest], copy_ensemble=True) print(ens) # ======================================================= # EnsembleAssociationNetwork(Name:Iris, Metric: spearman) # ======================================================= # * Number of nodes (leaf measurement): 4 # * Number of edges (association): 6 # * Observation type: specimen # --------------------------------------------------- # | Parameters # --------------------------------------------------- # * n_iter: 100 # * sampling_size: 92 # * random_state: 0 # * with_replacement: False # * transformation: None # * memory: 16.156 KB # --------------------------------------------------- # | Data # --------------------------------------------------- # * Features (n=150, m=4, memory=10.859 KB) # * Ensemble (memory=4.812 KB) # * Statistics (['mean', 'var', 'kurtosis', 'skew', 'normaltest|stat', 'normaltest|p_value'], memory=496 B) # View ensemble print(ens.ensemble_.head()) # Edges (sepal_width, sepal_length) (sepal_length, petal_length) \ # Iterations # 0 -0.113835 0.880407 # 1 -0.243982 0.883397 # 2 -0.108511 0.868627 # 3 -0.151437 0.879405 # 4 -0.241807 0.869027 # View statistics print(ens.stats_.head()) # Statistics mean var kurtosis skew \ # Edges # (sepal_width, sepal_length) -0.167746 0.002831 0.191176 0.287166 # (sepal_length, petal_length) 0.880692 0.000268 -0.107437 0.235619 # (petal_width, sepal_length) 0.834140 0.000442 -0.275487 -0.219778 # (sepal_width, petal_length) -0.304403 0.003472 -0.363377 0.059179 # (sepal_width, petal_width) -0.285237 0.003466 -0.606118 0.264103 __future__: * Add ability to load in previous data. However, this is tricky because one needs to validate that the following objects are the same: - X - sampling_size - n_iter - random_state - with_replacement etc. """ def __init__( self, name=None, node_type=None, edge_type=None, observation_type=None, assert_symmetry=True, assert_draw_size=True, assert_nan_safe_functions=True, nans_ok=True, tol=1e-10, # temporary_directory=None, # remove_temporary_directory=True, # compression="gzip", # absolute_path=False, # force_overwrite=False, ): self.name = name self.node_type = node_type self.edge_type = edge_type self.observation_type = observation_type self.assert_symmetry = assert_symmetry self.assert_draw_size = assert_draw_size self.assert_nan_safe_functions = assert_nan_safe_functions self.nans_ok = nans_ok self.tol = tol # if temporary_directory == False: # temporary_directory = None # if temporary_directory: # # Do tsomething where you can resume from a previous tmp # if temporary_directory == True: # temporary_directory = ".EnsembleAssociationNetwork__{}".format(get_unique_identifier()) # temporary_directory = format_path(temporary_directory, absolute=absolute_path) # os.makedirs(temporary_directory, exist_ok=True) # self.temporary_directory = temporary_directory # self.remove_temporary_directory = remove_temporary_directory # assert_acceptable_arguments(compression, {"gzip", "bz2", None}) # self.compression = compression # self.force_overwrite = force_overwrite def _pandas_association(self, X, metric): return X.corr(method=metric) def fit( self, X:pd.DataFrame, metric="rho", n_iter=1000, sampling_size=0.6180339887, transformation=None, random_state=0, with_replacement=False, function_is_pairwise=True, stats_summary=[np.mean, np.median, np.var, stats.kurtosis, stats.skew] , stats_tests=[stats.normaltest], copy_X=True, copy_ensemble=True, a=np.asarray(np.linspace(-1,1,999).tolist() + [np.nan]), ): # Metric assert metric is not None metric_name = None if hasattr(metric, "__call__"): if not function_is_pairwise: function = metric metric_name = function.__name__ metric = lambda X: self._pandas_association(X=X, metric=function) acceptable_metrics = {"rho", "phi", "biweight_midcorrelation", "spearman", "pearson", "kendall"} if isinstance(metric, str): assert_acceptable_arguments(metric, acceptable_metrics) metric_name = metric if metric == "rho": metric = pairwise_rho if metric == "phi": metric = pairwise_phi if metric == "biweight_midcorrelation": metric = pairwise_biweight_midcorrelation if metric in {"spearman", "pearson", "kendall"}: association = metric metric = lambda X: self._pandas_association(X=X, metric=association) assert hasattr(metric, "__call__"), "`metric` must be either one of the following: [{}], \ a custom metric that returns an association (set `function_is_pairwise=False`), or a custom \ metric that returns a 2D square/symmetric pd.DataFrame (set `function_is_pairwise=True`)".format(acceptable_metrics) # Transformations acceptable_transformations = {"signed", "abs"} if transformation: if isinstance(transformation, str): assert_acceptable_arguments(transformation, acceptable_transformations) if transformation == "signed": transformation = signed if transformation == "abs": transformation = np.abs assert hasattr(transformation, "__call__"), "`transformation` must be either one of the following: [{}] or a function(pd.DataFrame) -> pd.DataFrame".format(acceptable_transformations) # Check statistics functions if self.assert_nan_safe_functions: if self.nans_ok: number_of_nan = np.isnan(X.values).ravel().sum() if number_of_nan > 0: if stats_summary: for func in stats_summary: v = func(a) assert np.isfinite(v), "`stats_summary` function `{}` is cannot handle `nan` ({} missing values)".format(func.__name__, number_of_nan) if stats_tests: for func in stats_tests: v = func(a)[-1] assert np.isfinite(v), "`stats_tests` function `{}` is cannot handle `nan` ({} missing values)".format(func.__name__, number_of_nan) # Data n, m = X.shape # Network nodes = pd.Index(X.columns) number_of_nodes = len(nodes) edges = pd.Index(map(frozenset, combinations(nodes, r=2)), name="Edges") number_of_edges = len(edges) # Get draws draws = list() # Use custom draws if is_nonstring_iterable(n_iter): draw_sizes = list() available_observations = set(X.index) for draw in n_iter: # Check that there are no unique observations in the draw not present in X.index query = set(draw) - available_observations assert len(query) == 0, "The following observations are not available in `X.index`:\n{}".format(query) draws.append(list(draw)) # Get draw size draw_sizes.append(len(draw)) unique_draw_sizes = set(draw_sizes) number_unique_draw_sizes = len(unique_draw_sizes) if self.assert_draw_size: assert number_unique_draw_sizes == 1, "With `assert_draw_size=True` all draw sizes must be the same length" # Update if number_unique_draw_sizes == 1: sampling_size = list(unique_draw_sizes)[0] else: sampling_size = draw_sizes n_iter = len(draws) random_state = np.nan with_replacement = np.nan # Do not use custom draws (this is default) else: assert 0 < sampling_size < n if 0 < sampling_size < 1: sampling_size = int(sampling_size*n) # Iterations number_of_unique_draws_possible = comb(n, sampling_size, exact=True, repetition=with_replacement) assert n_iter <= number_of_unique_draws_possible, "`n_iter` exceeds the number of possible draws (total_possible={})".format(number_of_unique_draws_possible) if random_state is not None: assert isinstance(random_state, int), "`random_state` must either be `None` or of `int` type" for j in range(n_iter): # Get draw of samples if random_state is None: rs = None else: rs = j + random_state index = np.random.RandomState(rs).choice(X.index, size=sampling_size, replace=with_replacement) draws.append(index.tolist()) # Stats if (stats_tests is None) or (stats_tests is False): stats_tests = [] if hasattr(stats_tests, "__call__"): stats_tests = [stats_tests] stats_tests = list(stats_tests) if (stats_summary is None) or (stats_summary is False): stats_summary = [] if hasattr(stats_summary, "__call__"): stats_summary = [stats_summary] stats_summary = list(stats_summary) for func in (stats_tests + stats_summary): assert hasattr(func, "__name__") # Associations ensemble = np.empty((n_iter, number_of_edges)) ensemble[:] = np.nan for i, index in pv(enumerate(draws), description="Computing associations ({})".format(self.name), total=n_iter, unit=" draws"): # Compute associations with current draw df_associations = metric(X.loc[index]) if self.assert_symmetry: assert is_symmetrical(df_associations, tol=self.tol) weights = squareform(df_associations.values, checks=False) #dense_to_condensed(X=df_associations, assert_symmetry=self.assert_symmetry, tol=self.tol) ensemble[i] = weights ensemble =
pd.DataFrame(ensemble, columns=edges)
pandas.DataFrame
# -*- coding: utf-8 -*- """ Test functions in tables.py. """ import numpy as np """License: Copyright 2020 The Cytoscape Consortium Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import unittest import pandas as df from requests import HTTPError from test_utils import * class TablesTests(unittest.TestCase): def setUp(self): try: close_session(False) # delete_all_networks() except: pass def tearDown(self): pass @print_entry_exit def test_delete_table_column(self): # Initialization load_test_session() def check_delete(table, column): columns = set(get_table_column_names(table=table)) self.assertEqual(delete_table_column(table=table, column=column), '') columns.discard(column) fewer_columns = set(get_table_column_names(table=table)) self.assertSetEqual(set(columns), set(fewer_columns)) check_delete('node', 'BetweennessCentrality') check_delete('edge', 'EdgeBetweenness') check_delete('node', 'boguscolumn') self.assertRaises(CyError, delete_table_column, table='bogustable', column='boguscolumn') self.assertRaises(CyError, get_table_column_names, network='bogus') @print_entry_exit def test_get_table_columns(self): # Initialization load_test_session() # Verify that an empty column list returns all columns, and all columns have at least one non-nan value df = get_table_columns() self.assertSetEqual(set(df.columns), {'BetweennessCentrality', 'gal1RGexp', 'Eccentricity', 'Stress', 'NumberOfDirectedEdges', 'NeighborhoodConnectivity', 'NumberOfUndirectedEdges', 'selected', 'gal4RGsig', 'Degree', 'gal80Rsig', 'SUID', 'gal80Rexp', 'TopologicalCoefficient', 'ClusteringCoefficient', 'Radiality', 'gal4RGexp', 'gal1RGsig', 'name', 'degree.layout', 'ClosenessCentrality', 'COMMON', 'AverageShortestPathLength', 'shared name', 'PartnerOfMultiEdgedNodePairs', 'SelfLoops', 'isExcludedFromPaths', 'IsSingleNode'}) self.assertEqual(len(df.index), get_node_count()) self.assertNotIn(False, [True in list(df[col].notnull()) for col in df.columns]) # Verify that an explicity column list returns exact columns, and each has at least one non-nan value df = get_table_columns(columns=['gal1RGexp', 'Eccentricity', 'Stress']) self.assertSetEqual(set(df.columns), {'gal1RGexp', 'Eccentricity', 'Stress'}) self.assertEqual(len(df.index), get_node_count()) self.assertNotIn(False, [True in list(df[col].notnull()) for col in df.columns]) # Verify that a column list as a comma-separated string returns exact columns, and each has at least one non-nan value df = get_table_columns(columns='Stress, NumberOfDirectedEdges') self.assertSetEqual(set(df.columns), {'Stress', 'NumberOfDirectedEdges'}) self.assertEqual(len(df.index), get_node_count()) self.assertNotIn(False, [True in list(df[col].notnull()) for col in df.columns]) # Verify that a bogus column name still returns a column, though it must be all nan df = get_table_columns(columns='Stress, bogus') self.assertSetEqual(set(df.columns), {'Stress', 'bogus'}) self.assertEqual(len(df.index), get_node_count()) self.assertTrue(True in list(df['Stress'].notnull())) self.assertFalse(False in df['bogus'].isnull()) # Verify that an empty column list returns all columns for edges, too df = get_table_columns(table='edge') self.assertSetEqual(set(df.columns), {'SUID', 'shared name', 'shared interaction', 'name', 'selected', 'interaction', 'EdgeBetweenness'}) self.assertEqual(len(df.index), get_edge_count()) self.assertRaises(CyError, get_table_columns, table='bogustable', columns='boguscolumn') self.assertRaises(CyError, get_table_columns, network='bogus') @print_entry_exit def test_get_table_value(self): # Initialization load_test_session() self.assertEqual(get_table_value('node', 'YDL194W', 'gal1RGexp'), 0.139) self.assertEqual(get_table_value('node', 'YDL194W', 'Degree'), 1) self.assertFalse(get_table_value('node', 'YDL194W', 'IsSingleNode')) self.assertEqual(get_table_value('node', 'YDL194W', 'COMMON'), 'SNF3') self.assertEqual(get_table_value('edge', 'YLR197W (pp) YOR310C', 'EdgeBetweenness'), 2.0) self.assertEqual(get_table_value('network', 'galFiltered.sif', 'publication'), 'Integrated Genomic and Proteomic Analyses of a Systematically Perturbed Metabolic Network\n' '<NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME>\n' 'Science 4 May 2001: 292 (5518), 929-934. [DOI:10.1126/science.292.5518.929]') # TODO: Fetching a None number raises an error, but should really return a None ... can this be changed? # TODO: Find out if a null string in Cytoscape is the same thing as a None self.assertRaises(CyError, get_table_value, 'node', 'YER056CA', 'gal1RGexp') self.assertIsNone(get_table_value('node', 'YER056CA', 'COMMON')) self.assertRaises(CyError, get_table_value, 'node', 'YDL194W', 'gal1RGexp', network='bogus') @print_entry_exit def test_get_table_column_names(self): # Initialization load_test_session() self.assertSetEqual(set(get_table_column_names()), {'SUID', 'shared name', 'name', 'selected', 'AverageShortestPathLength', 'BetweennessCentrality', 'ClosenessCentrality', 'ClusteringCoefficient', 'Degree', 'Eccentricity', 'IsSingleNode', 'NeighborhoodConnectivity', 'NumberOfDirectedEdges', 'NumberOfUndirectedEdges', 'PartnerOfMultiEdgedNodePairs', 'Radiality', 'SelfLoops', 'Stress', 'TopologicalCoefficient', 'degree.layout', 'COMMON', 'gal1RGexp', 'gal4RGexp', 'gal80Rexp', 'gal1RGsig', 'gal4RGsig', 'gal80Rsig', 'isExcludedFromPaths'}) self.assertSetEqual(set(get_table_column_names('edge')), {'SUID', 'shared name', 'shared interaction', 'name', 'selected', 'interaction', 'EdgeBetweenness'}) self.assertSetEqual(set(get_table_column_names('network')), {'SUID', 'shared name', 'name', 'selected', '__Annotations', 'publication', 'Dataset Name', 'Dataset URL'}) self.assertRaises(CyError, get_table_column_names, 'library') self.assertRaises(CyError, get_table_column_names, network='bogus') @print_entry_exit def test_get_table_column_types(self): # Initialization load_test_session() self.assertDictEqual(get_table_column_types(), {'SUID': 'Long', 'shared name': 'String', 'name': 'String', 'selected': 'Boolean', 'AverageShortestPathLength': 'Double', 'BetweennessCentrality': 'Double', 'ClosenessCentrality': 'Double', 'ClusteringCoefficient': 'Double', 'Degree': 'Integer', 'Eccentricity': 'Integer', 'IsSingleNode': 'Boolean', 'NeighborhoodConnectivity': 'Double', 'NumberOfDirectedEdges': 'Integer', 'NumberOfUndirectedEdges': 'Integer', 'PartnerOfMultiEdgedNodePairs': 'Integer', 'Radiality': 'Double', 'SelfLoops': 'Integer', 'Stress': 'Long', 'TopologicalCoefficient': 'Double', 'degree.layout': 'Integer', 'COMMON': 'String', 'gal1RGexp': 'Double', 'gal4RGexp': 'Double', 'gal80Rexp': 'Double', 'gal1RGsig': 'Double', 'gal4RGsig': 'Double', 'gal80Rsig': 'Double', 'isExcludedFromPaths': 'Boolean'}) self.assertDictEqual(get_table_column_types('edge'), {'SUID': 'Long', 'shared name': 'String', 'shared interaction': 'String', 'name': 'String', 'selected': 'Boolean', 'interaction': 'String', 'EdgeBetweenness': 'Double'}) self.assertDictEqual(get_table_column_types('network'), {'SUID': 'Long', 'shared name': 'String', 'name': 'String', 'selected': 'Boolean', '__Annotations': 'List', 'publication': 'String', 'Dataset Name': 'String', 'Dataset URL': 'String'}) self.assertRaises(CyError, get_table_column_types, 'library') self.assertRaises(CyError, get_table_column_types, 'edge', network='bogus') @print_entry_exit def test_load_table_data_from_file(self): def check_table(original_columns, new_column_name, key_values, table_name='node'): # Make sure we get exactly the expected columns self.assertSetEqual(set(get_table_column_names(table=table_name)), original_columns | {new_column_name}) # Make sure we get exactly the expected number of values in the new column table = get_table_columns(table=table_name, columns=['name', new_column_name]) table.dropna(inplace=True) table.set_index('name', inplace=True) self.assertEqual(len(table.index), len(key_values)) # Make sure the new column values are as expected for key, val in key_values: self.assertEqual(table[new_column_name][key], val) # Initialization load_test_session() node_column_names = set(get_table_column_names()) edge_column_names = set(get_table_column_names(table='edge')) # Verify that a table with column headers can be loaded into the node table res = load_table_data_from_file('data/defaultnode_table.tsv', first_row_as_column_names=True) check_table(node_column_names, 'newcol', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with column headers can be loaded into the edge table res = load_table_data_from_file('data/defaultedge_table.tsv', first_row_as_column_names=True, table='edge') check_table(edge_column_names, 'newcol_e', [('YDR277C (pp) YDL194W', 1000), ('YDR277C (pp) YJR022W', 2000), ('YPR145W (pp) YMR117C', 3000)], table_name='edge') # Verify that a spreadsheet with column headers can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.xlsx', first_row_as_column_names=True) check_table(node_column_names, 'newcol', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with no header can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.no-header.tsv', first_row_as_column_names=False) check_table(node_column_names, '1', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with extra lines at the beginning can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.extra-lines.tsv', first_row_as_column_names=False, start_load_row=4) check_table(node_column_names, '1', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with different field delimiters can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.semi-delimiter.txt', first_row_as_column_names=False, delimiters=' ,;') check_table(node_column_names, '1', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with values in a different order can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.backwards.tsv', first_row_as_column_names=True, data_key_column_index=2) check_table(node_column_names, 'newcol', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) # Verify that a table with indexing on a different table column can be loaded into the node table load_test_session() res = load_table_data_from_file('data/defaultnode_table.COMMON.tsv', first_row_as_column_names=True, table_key_column='COMMON') check_table(node_column_names, 'newcol', [('YDR277C', 2), ('YDL194W', 1), ('YBR043C', 3)]) self.assertRaises(CyError, load_table_data_from_file, 'bogus file name') self.assertRaises(CyError, load_table_data_from_file, 'data/defaultnode_table.tsv', start_load_row=-1) self.assertRaises(CyError, load_table_data_from_file, 'data/defaultnode_table.tsv', delimiters='bogus') self.assertRaises(CyError, load_table_data_from_file, 'data/defaultnode_table.tsv', data_key_column_index='newcol') self.assertRaises(CyError, load_table_data_from_file, 'data/defaultnode_table.tsv', data_key_column_index=-1) self.assertRaises(CyError, load_table_data_from_file, 'data/defaultnode_table.tsv', table_key_column='bogus column') @print_entry_exit def test_load_table_data(self): def check_values_added(table_column_names, table_key_name, test_data, data_key_name, data_value_name, table='node'): data = get_table_columns(table=table) self.assertEqual(len(table_column_names) + 2, len(data.columns)) self.assertIn(data_key_name, data.columns) self.assertIn(data_value_name, data.columns) added_data = data[data[table_key_name] == data[data_key_name]] self.assertEqual(len(test_data.index), len(added_data.index)) verify_each_newcol_value = [added_data[added_data[data_key_name] == row[data_key_name]].iloc[0][data_value_name] == row[data_value_name] for row_index, row in test_data.iterrows()] self.assertNotIn(False, verify_each_newcol_value) # Initialization load_test_session() # Verify that adding into rows that don't exist fails unrelated_data = df.DataFrame(data={'id': ['New1', 'New2', 'New3'], 'newcol': [1, 2, 3]}) self.assertRaises(CyError, load_table_data, unrelated_data, data_key_column='id', table='node', table_key_column='name') # Verify that adding into node table rows that do exist succeeds ... checks that string-keys work column_names_string_keyed = get_table_column_names() test_data_string_keyed = df.DataFrame(data={'id': ['YDL194W', 'YDR277C', 'YBR043C'], 'newcol': [1, 2, 3]}) res = load_table_data(test_data_string_keyed, data_key_column='id', table='node', table_key_column='name') self.assertEqual(res, 'Success: Data loaded in defaultnode table') # Verify that ID column and newcol were added, and that the newcols have values only for the named nodes check_values_added(column_names_string_keyed, 'name', test_data_string_keyed, 'id', 'newcol') # Given newcol values, use them as non-string keys to add yet another column column_names_int_keyed = get_table_column_names() test_data_int_keyed =
df.DataFrame(data={'newcol_val': [1, 2, 3], 'derived': [100, 200, 300]})
pandas.DataFrame
import numpy as np import pandas as pd def get_market_list(client, *args): marketList = pd.DataFrame(client.get_products()['data']) if len(args)>0: quoteBase = args[0] marketList = marketList[marketList['quoteAsset']==quoteBase] marketList['volume_24h'] = marketList['tradedMoney'] marketList = marketList[['symbol', 'volume_24h']] tickers = pd.DataFrame(client.get_ticker()) tickers['priceChangePercent'] =
pd.to_numeric(tickers['priceChangePercent'])
pandas.to_numeric
# import datetime import os import logging import click import pandas as pd from QARealtimeCollector.collectors.stockbarcollector import QARTCStockBar from QARealtimeCollector.connector.crawl import get_formater_easy_ticks, get_formater_akshare_ticks, TICK_SOURCE logger = logging.getLogger(__name__) class QARTC_StockTick(QARTCStockBar): def __init__(self, delay=0.0, date: datetime.datetime = None, log_dir='./log', debug=False, tick_source=TICK_SOURCE.EQ_SINA): if delay == 0: if tick_source == TICK_SOURCE.EQ_SINA: delay = 20 elif tick_source == TICK_SOURCE.AK_A_EM: delay = 60 super().__init__(delay=delay, date=date, log_dir=log_dir, debug=debug) self.tick_source = tick_source def get_data_from_source(self): if self.tick_source == TICK_SOURCE.EQ_SINA: l1_ticks_data = get_formater_easy_ticks(self.code_list) l1_ticks_data = pd.DataFrame(l1_ticks_data) elif self.tick_source == TICK_SOURCE.AK_A_EM: l1_ticks_data = get_formater_akshare_ticks() else: l1_ticks_data =
pd.DataFrame()
pandas.DataFrame
import tempfile from datetime import datetime import numpy as np from numpy.testing import assert_allclose import pandas as pd import pytest import pytz from eemeter.testing.mocks import MockWeatherClient from eemeter.weather import ISDWeatherSource from eemeter.modeling.formatters import ModelDataBillingFormatter from eemeter.structures import EnergyTrace @pytest.fixture def mock_isd_weather_source(): tmp_url = "sqlite:///{}/weather_cache.db".format(tempfile.mkdtemp()) ws = ISDWeatherSource("722880", tmp_url) ws.client = MockWeatherClient() return ws @pytest.fixture def trace1(): data = { "value": [1, 1, 1, 1, np.nan], "estimated": [False, False, True, False, False] } columns = ["value", "estimated"] index = [ datetime(2011, 1, 1, tzinfo=pytz.UTC), datetime(2011, 2, 1, tzinfo=pytz.UTC), datetime(2011, 3, 2, tzinfo=pytz.UTC), datetime(2011, 4, 3, tzinfo=pytz.UTC), datetime(2011, 4, 29, tzinfo=pytz.UTC), ] df = pd.DataFrame(data, index=index, columns=columns) return EnergyTrace("ELECTRICITY_CONSUMPTION_SUPPLIED", df, unit="KWH") @pytest.fixture def trace2(): data = { "value": [np.nan], "estimated": [True] } columns = ["value", "estimated"] index = [ datetime(2011, 1, 1, tzinfo=pytz.UTC), ] df = pd.DataFrame(data, index=index, columns=columns) return EnergyTrace("ELECTRICITY_CONSUMPTION_SUPPLIED", df, unit="KWH") @pytest.fixture def trace3(): data = { "value": [1, np.nan], "estimated": [True, False] } columns = ["value", "estimated"] index = [ datetime(2011, 1, 1, tzinfo=pytz.UTC), datetime(2011, 2, 1, tzinfo=pytz.UTC), ] df = pd.DataFrame(data, index=index, columns=columns) return EnergyTrace("ELECTRICITY_CONSUMPTION_SUPPLIED", df, unit="KWH") @pytest.fixture def trace4(): trace_length = 100 data = { "value": [1 for _ in range(trace_length)], "estimated": [False for _ in range(trace_length)] } columns = ["value", "estimated"] index = pd.date_range( start=datetime(2011, 1, 1, tzinfo=pytz.UTC), periods=trace_length, freq='D', tz=pytz.UTC ) df =
pd.DataFrame(data, index=index, columns=columns)
pandas.DataFrame
""" Engineering Time - In this example, we are going to extract different ways of representing time from a timestamp. - We can extract for example: - hour - minute - second - data - elapsed time We will create a toy dataset for the demonstration. """ import pandas as pd import numpy as np import datetime # let's create a toy data set: 1 column 7 different timestamps, # 1 hr difference between timestamp date = pd.Series(pd.date_range('2015-1-5 11:20:00', periods=7, freq='H')) df = pd.DataFrame(dict(date=date)) df date """ 0 2015-01-05 11:20:00 1 2015-01-05 12:20:00 2 2015-01-05 13:20:00 3 2015-01-05 14:20:00 4 2015-01-05 15:20:00 5 2015-01-05 16:20:00 6 2015-01-05 17:20:00 """ """ Extract the hr, minute and second """ df['hour'] = df['date'].dt.hour df['min'] = df['date'].dt.minute df['sec'] = df['date'].dt.second df """ date hour min sec 0 2015-01-05 11:20:00 11 20 0 1 2015-01-05 12:20:00 12 20 0 2 2015-01-05 13:20:00 13 20 0 3 2015-01-05 14:20:00 14 20 0 4 2015-01-05 15:20:00 15 20 0 5 2015-01-05 16:20:00 16 20 0 6 2015-01-05 17:20:00 17 20 0 """ """ Extract time part """ df['time'] = df['date'].dt.time df """ date hour min sec time 0 2015-01-05 11:20:00 11 20 0 11:20:00 1 2015-01-05 12:20:00 12 20 0 12:20:00 2 2015-01-05 13:20:00 13 20 0 13:20:00 3 2015-01-05 14:20:00 14 20 0 14:20:00 4 2015-01-05 15:20:00 15 20 0 15:20:00 5 2015-01-05 16:20:00 16 20 0 16:20:00 6 2015-01-05 17:20:00 17 20 0 17:20:00 """ # Extract hr, min, sec, at the same time # now let's repeat what we did in cell 3 in 1 command df[['h','m','s']] = pd.DataFrame([(x.hour, x.minute, x.second) for x in df['time']]) df """ date hour min sec time h m s 0 2015-01-05 11:20:00 11 20 0 11:20:00 11 20 0 1 2015-01-05 12:20:00 12 20 0 12:20:00 12 20 0 2 2015-01-05 13:20:00 13 20 0 13:20:00 13 20 0 3 2015-01-05 14:20:00 14 20 0 14:20:00 14 20 0 4 2015-01-05 15:20:00 15 20 0 15:20:00 15 20 0 5 2015-01-05 16:20:00 16 20 0 16:20:00 16 20 0 6 2015-01-05 17:20:00 17 20 0 17:20:00 17 20 0 """ # Calculate time difference # let's create another toy dataframe with 2 timestamp columns # and 7 rows each, in the first column the timestamps change monthly, # in the second column the timestamps change weekly date1 = pd.Series(pd.date_range('2012-1-1 12:00:00', periods=7, freq='M')) date2 = pd.Series(pd.date_range('2013-3-11 21:45:00', periods=7, freq='W')) df = pd.DataFrame(dict(Start_date = date1, End_date = date2)) df """ Start_date End_date 0 2012-01-31 12:00:00 2013-03-17 21:45:00 1 2012-02-29 12:00:00 2013-03-24 21:45:00 2 2012-03-31 12:00:00 2013-03-31 21:45:00 3 2012-04-30 12:00:00 2013-04-07 21:45:00 4 2012-05-31 12:00:00 2013-04-14 21:45:00 5 2012-06-30 12:00:00 2013-04-21 21:45:00 6 2012-07-31 12:00:00 2013-04-28 21:45:00 """ # let's calculate the time elapsed in seconds df['diff_seconds'] = df['End_date'] - df['Start_date'] df['diff_seconds']=df['diff_seconds']/np.timedelta64(1,'s') df """ Start_date End_date diff_seconds 0 2012-01-31 12:00:00 2013-03-17 21:45:00 35545500.0 1 2012-02-29 12:00:00 2013-03-24 21:45:00 33644700.0 2 2012-03-31 12:00:00 2013-03-31 21:45:00 31571100.0 3 2012-04-30 12:00:00 2013-04-07 21:45:00 29583900.0 4 2012-05-31 12:00:00 2013-04-14 21:45:00 27510300.0 5 2012-06-30 12:00:00 2013-04-21 21:45:00 25523100.0 6 2012-07-31 12:00:00 2013-04-28 21:45:00 23449500.0 """ # let's calculate the time elapsed in minutes df['diff_seconds'] = df['End_date'] - df['Start_date'] df['diff_seconds']=df['diff_seconds']/np.timedelta64(1,'m') df """ Start_date End_date diff_seconds 0 2012-01-31 12:00:00 2013-03-17 21:45:00 592425.0 1 2012-02-29 12:00:00 2013-03-24 21:45:00 560745.0 2 2012-03-31 12:00:00 2013-03-31 21:45:00 526185.0 3 2012-04-30 12:00:00 2013-04-07 21:45:00 493065.0 4 2012-05-31 12:00:00 2013-04-14 21:45:00 458505.0 5 2012-06-30 12:00:00 2013-04-21 21:45:00 425385.0 6 2012-07-31 12:00:00 2013-04-28 21:45:00 390825.0 """ """ For more details visit article: http://www.datasciencemadesimple.com/difference-two-timestamps-seconds-minutes-hours-pandas-python-2/ Work with different timezones - below, we will see how to work with timestamps that are in different time zones. """ # first, let's create a toy dataframe with some timestamps in different time zones df = pd.DataFrame() df['time'] = pd.concat([ pd.Series( pd.date_range( start='2014-08-01 09:00', freq='H', periods=3, tz='Europe/Berlin')), pd.Series( pd.date_range( start='2014-08-01 09:00', freq='H', periods=3, tz='US/Central')) ], axis=0) df """ time 0 2014-08-01 09:00:00+02:00 1 2014-08-01 10:00:00+02:00 2 2014-08-01 11:00:00+02:00 0 2014-08-01 09:00:00-05:00 1 2014-08-01 10:00:00-05:00 2 2014-08-01 11:00:00-05:00 - We can see the different timezones indicated by the +2 and -5, respect to the meridian. """ # to work with different time zones, first we unify the timezone to the central one # setting utc = True df['time_utc'] =
pd.to_datetime(df['time'], utc=True)
pandas.to_datetime
import pandas as pd import numpy as np from zipfile import ZipFile from cleanco import cleanco import re import os import zipcode from pyzipcode import ZipCodeDatabase #State formats state_format_extrastuff = '^[a-zA-Z]{2} ' state_format_right = '^[A-Z]{2}$' #Set up standardization for date fields date_right_pattern = '^[0-9]{4}-[0-9]{2}-[0-9]{2}$' date_long_format = '^[0-9]{4}-[0-9]{2}-[0-9]{2} [0-9]{1,2}:[0-9]{1,2}:[0-9]{1,2}$' date_long_format_no_space = '^[0-9]{4}-[0-9]{2}-[0-9]{2}[0-9]{1,2}:[0-9]{1,2}:[0-9]{1,2}$' date_slash_format = '^[0-9]{1,2}/[0-9]{1,2}/[0-9]{4}$' date_slash_format_5='^[0-9]{1,2}/[0-9]{1,2}/[0-9]{5}$' date_slash_format_2 = '^[0-9]{1,2}/[0-9]{1,2}/[0-9]{2}$' date_slash_format_long = '^[0-9]{1,2}/[0-9]{1,2}/[0-9]{4}[0-9]{1,2}:[0-9]{1,2}:[0-9]{1,2}$' #Set up standardization for zipcodes right_zip = '^[0-9]{5}$' long_zip = '^[0-9]{5}-[0-9]{4}$' zip_dict = {'77098':'TX','49855':'MI', '48075':'MI','48334':'MI', '48034':'MI', '48335':'MI','95014':'CA','92833':'CA','92834':'CA','10962':'NY','98117':'WA','98765':'WA','20008':'DC','20002':'DC','21704':'MD','20814':'MD','21208':'MD','22222':'VA'} state_values = ['TX', 'MA', 'MI', 'CA', 'VA', 'NJ', 'NY', 'PA', 'FL', 'MN', 'IL', 'MD', 'CT', 'WA', 'IA', 'CO', 'AZ', 'GA', 'OK', 'LA', 'WI', 'ND', 'UT', 'IN', 'OH', 'KY', 'NC', 'NH', 'MO', 'TN', 'ID', 'VT', 'DC', 'SD', 'AL', 'OR', 'AR', 'NM', 'SC', 'NE', 'DE', 'WY', 'HI', 'KS', 'WV', 'ME', 'RI', 'NV', 'MS', 'AK','MT','PR','GU','VI'] def get_file_from_zip(zipname, filename): with ZipFile('/'.join(['raw_data', zipname])) as zip_file: with zip_file.open(filename) as file: return pd.read_csv(file, dtype=str, encoding='Latin-1') def count_wrong_formats(df): has_submitted = "CASE_SUBMITTED" in df.columns has_decision = "DECISION_DATE" in df.columns wrong_submitted_date_format = 0 wrong_decision_date_format=0 wrong_employer_state_format = 0 wrong_worksite_state_format = 0 wrong_zip_format = 0 for index, row in df.iterrows(): if has_submitted and (pd.isnull(row['CASE_SUBMITTED']) or not re.match(date_right_pattern,row['CASE_SUBMITTED'])): wrong_submitted_date_format+=1 if has_decision and (pd.isnull(row['DECISION_DATE']) or not re.match(date_right_pattern,row['DECISION_DATE'])): wrong_decision_date_format+=1 if row['EMPLOYER_STATE'] not in state_values: wrong_employer_state_format+=1 if row['WORKSITE_STATE'] not in state_values: wrong_worksite_state_format+=1 if pd.isnull(row['EMPLOYER_POSTAL_CODE']) or not re.match(right_zip, row['EMPLOYER_POSTAL_CODE']): wrong_zip_format+=1 if has_submitted: print(wrong_submitted_date_format,"bad CASE_SUBMITTED fields") if has_decision: print(wrong_decision_date_format,"bad DECISION_DATE fields") print(wrong_employer_state_format, "bad EMPLOYER_STATE fields") print(wrong_worksite_state_format, "bad WORKSITE_STATE fields") print(wrong_zip_format, "bad EMPLOYER_POSTAL_CODE fields") def address_concatenate(data): data["EMPLOYER_ADDRESS"] = (data["EMPLOYER_ADDRESS1"].map(str) +" "+ data["EMPLOYER_ADDRESS2"].map(str)).str.replace('nan','').str.upper().str.strip() #Set up cleaning functions def employer_name_uppercase_cleanco(x): if pd.isnull(x): return x else: return cleanco(str(x).upper()).clean_name() def uppercase_nopunct(x): if pd.isnull(x): return x else: return str(x).upper().replace('[^\w\s]','').replace('/',' ').replace('"','').replace(' ',' ').strip() def clean_states(x): if pd.isnull(x): return x if str(x).strip()=='': return np.nan elif re.match(state_format_right, x): return x elif re.match(state_format_extrastuff, x) and x[:2] in state_values: return x[:2] elif x=="MARYLAND": return "MD" elif x=="NEW YORK": return "NY" else: print("\t\tState Error, ",x) return x def case_status_withdrawn(x): if x.WITHDRAWN=="Y" or x.WITHDRAWN=="y": return x.CASE_STATUS+"-WITHDRAWN" else: return x.CASE_STATUS def dot_code_format(x): if pd.isnull(x): return x else: return str(x).zfill(3) def check_apply_date_pattern(x): if pd.isnull(x): return x else: x=str(x).replace(" ",'') if re.match(date_right_pattern,x): return x elif re.match(date_long_format, x): return x[:10].strip() elif re.match(date_long_format_no_space,x): return x[:10].strip() elif re.match(date_slash_format, x): month = x[:x.index('/')] day = x[x.index('/')+1:x.index('/',x.index('/')+1)] year = x[x.index('/',x.index('/')+1)+1:] return "{}-{}-{}".format(year.strip(), month.zfill(2).strip(), day.zfill(2).strip()) elif re.match(date_slash_format_5, x): month = x[:x.index('/')] day = x[x.index('/')+1:x.index('/',x.index('/')+1)] year = x[x.index('/',x.index('/')+1)+1:x.index('/',x.index('/')+1)+5] return "{}-{}-{}".format(year.strip(), month.zfill(2).strip(), day.zfill(2).strip()) elif re.match(date_slash_format_2, x): month = x[:x.index('/')] day = x[x.index('/')+1:x.index('/',x.index('/')+1)] year = x[x.index('/',x.index('/')+1)+1:] return "20{}-{}-{}".format(year.strip(), month.zfill(2).strip(), day.zfill(2).strip()) elif re.match(date_slash_format_long, x): month = x[:x.index('/')] day = x[x.index('/')+1:x.index('/',x.index('/')+1)] year = x[x.index('/',x.index('/')+1)+1:x.index('/',x.index('/')+1)+5] return "{}-{}-{}".format(year.strip(), month.zfill(2).strip(), day.zfill(2).strip()) else: print("\t\tDATE ERROR: x is",x,"returning None") return None def fix_zip(x): if pd.isnull(x): return x x=str(x).strip() if x.isnumeric(): x=x.zfill(5) if re.match(right_zip,x): return x elif re.match(long_zip,x): return x[:5] else: print("\t\tError in zip,",x) return x def fix_visa_class(x): if pd.isnull(x): return x x=str(x).strip() valid = ["H-1B","E-3","H-1B1 CHILE","H-1B1 SINGAPORE"] if x in valid: return x elif x=="R": return "H-1B" elif x=="A": return "E-3" elif x=="C": return "H-1B1 CHILE" elif x=="S": return "H-1B1 SINGAPORE" else: print("\t\tError in visa class, ",x) return x def fix_employer_states(x): if pd.isnull(x['EMPLOYER_STATE']): return x.EMPLOYER_STATE elif x['EMPLOYER_STATE'] not in state_values and x.EMPLOYER_POSTAL_CODE.isdigit(): if x.EMPLOYER_POSTAL_CODE in zip_dict.keys(): return zip_dict[x.EMPLOYER_POSTAL_CODE] else: newzip = zipcode.isequal(x.EMPLOYER_POSTAL_CODE) if newzip is not None: return newzip.state else: pyzip = findpyzipcode(x) if pyzip: return pyzip print("\t\tCouldnt find",x.EMPLOYER_POSTAL_CODE,"in either zip package") return x.EMPLOYER_STATE elif x['EMPLOYER_STATE'] not in state_values and re.match(state_format_right, x.EMPLOYER_POSTAL_CODE.upper()): #print("Employer state found in postal code, shifting",x.EMPLOYER_POSTAL_CODE.upper()) x.EMPLOYER_CITY = x.EMPLOYER_STATE return x.EMPLOYER_POSTAL_CODE.upper() else: return x.EMPLOYER_STATE def findpyzipcode(x): zcdb = ZipCodeDatabase() try: value = zcdb[x] return value.state except IndexError: return None def fix_worksite_states(x): if
pd.isnull(x['WORKSITE_STATE'])
pandas.isnull
from __future__ import division from functools import wraps import pandas as pd import numpy as np import time import csv, sys import os.path import logging from .ted_functions import TedFunctions from .ted_aggregate_methods import TedAggregateMethods from base.uber_model import UberModel, ModelSharedInputs class TedSpeciesProperties(object): """ Listing of species properties that will eventually be read in from a SQL db """ def __init__(self): """Class representing Species properties""" super(TedSpeciesProperties, self).__init__() self.sci_name = pd.Series([], dtype='object') self.com_name = pd.Series([], dtype='object') self.taxa = pd.Series([], dtype='object') self.order = pd.Series([], dtype='object') self.usfws_id = pd.Series([], dtype='object') self.body_wgt = pd.Series([], dtype='object') self.diet_item = pd.Series([], dtype='object') self.h2o_cont = pd.Series([], dtype='float') def read_species_properties(self): # this is a temporary method to initiate the species/diet food items lists (this will be replaced with # a method to access a SQL database containing the properties #filename = './ted/tests/TEDSpeciesProperties.csv' filename = os.path.join(os.path.dirname(__file__),'tests/TEDSpeciesProperties.csv') try: with open(filename,'rt') as csvfile: # csv.DictReader uses first line in file for column headings by default dr = pd.read_csv(csvfile) # comma is default delimiter except csv.Error as e: sys.exit('file: %s, %s' (filename, e)) print(dr) self.sci_name = dr.ix[:,'Scientific Name'] self.com_name = dr.ix[:,'Common Name'] self.taxa = dr.ix[:,'Taxa'] self.order = dr.ix[:,'Order'] self.usfws_id = dr.ix[:,'USFWS Species ID (ENTITY_ID)'] self.body_wgt= dr.ix[:,'BW (g)'] self.diet_item = dr.ix[:,'Food item'] self.h2o_cont = dr.ix[:,'Water content of diet'] class TedInputs(ModelSharedInputs): """ Required inputs class for Ted. """ def __init__(self): """Class representing the inputs for Ted""" super(TedInputs, self).__init__() # Inputs: Assign object attribute variables from the input Pandas DataFrame self.chemical_name = pd.Series([], dtype="object", name="chemical_name") # application parameters for min/max application scenarios self.crop_min = pd.Series([], dtype="object", name="crop") self.app_method_min = pd.Series([], dtype="object", name="app_method_min") self.app_rate_min = pd.Series([], dtype="float", name="app_rate_min") self.num_apps_min = pd.Series([], dtype="int", name="num_apps_min") self.app_interval_min = pd.Series([], dtype="int", name="app_interval_min") self.droplet_spec_min = pd.Series([], dtype="object", name="droplet_spec_min") self.boom_hgt_min = pd.Series([], dtype="object", name="droplet_spec_min") self.pest_incorp_depth_min = pd.Series([], dtype="object", name="pest_incorp_depth") self.crop_max = pd.Series([], dtype="object", name="crop") self.app_method_max = pd.Series([], dtype="object", name="app_method_max") self.app_rate_max = pd.Series([], dtype="float", name="app_rate_max") self.num_apps_max = pd.Series([], dtype="int", name="num_app_maxs") self.app_interval_max = pd.Series([], dtype="int", name="app_interval_max") self.droplet_spec_max = pd.Series([], dtype="object", name="droplet_spec_max") self.boom_hgt_max = pd.Series([], dtype="object", name="droplet_spec_max") self.pest_incorp_depth_max = pd.Series([], dtype="object", name="pest_incorp_depth") # physical, chemical, and fate properties of pesticide self.foliar_diss_hlife = pd.Series([], dtype="float", name="foliar_diss_hlife") self.aerobic_soil_meta_hlife = pd.Series([], dtype="float", name="aerobic_soil_meta_hlife") self.frac_retained_mamm = pd.Series([], dtype="float", name="frac_retained_mamm") self.frac_retained_birds = pd.Series([], dtype="float", name="frac_retained_birds") self.log_kow = pd.Series([], dtype="float", name="log_kow") self.koc = pd.Series([], dtype="float", name="koc") self.solubility = pd.Series([], dtype="float", name="solubility") self.henry_law_const = pd.Series([], dtype="float", name="henry_law_const") # bio concentration factors (ug active ing/kg-ww) / (ug active ing/liter) self.aq_plant_algae_bcf_mean = pd.Series([], dtype="float", name="aq_plant_algae_bcf_mean") self.aq_plant_algae_bcf_upper = pd.Series([], dtype="float", name="aq_plant_algae_bcf_upper") self.inv_bcf_mean = pd.Series([], dtype="float", name="inv_bcf_mean") self.inv_bcf_upper = pd.Series([], dtype="float", name="inv_bcf_upper") self.fish_bcf_mean = pd.Series([], dtype="float", name="fish_bcf_mean") self.fish_bcf_upper = pd.Series([], dtype="float", name="fish_bcf_upper") # bounding water concentrations (ug active ing/liter) self.water_conc_1 = pd.Series([], dtype="float", name="water_conc_1") # lower bound self.water_conc_2 = pd.Series([], dtype="float", name="water_conc_2") # upper bound # health value inputs # naming convention (based on listing from OPP TED Excel spreadsheet 'inputs' worksheet): # dbt: dose based toxicity # cbt: concentration-based toxicity # arbt: application rate-based toxicity # 1inmill_mort: 1/million mortality (note initial character is numeral 1, not letter l) # 1inten_mort: 10% mortality (note initial character is numeral 1, not letter l) # others are self explanatory # dose based toxicity(dbt): mammals (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort") self.dbt_mamm_1inten_mort = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_low_ld50 = pd.Series([], dtype="float", name="dbt_mamm_low_ld50") self.dbt_mamm_rat_oral_ld50 = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort") self.dbt_mamm_rat_derm_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50") self.dbt_mamm_rat_inhal_ld50 = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50") self.dbt_mamm_sub_direct = pd.Series([], dtype="float", name="dbt_mamm_sub_direct") self.dbt_mamm_sub_indirect = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect") self.dbt_mamm_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inmill_mort_wgt") self.dbt_mamm_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_low_ld50_wgt") self.dbt_mamm_rat_oral_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_1inten_mort_wgt") self.dbt_mamm_rat_derm_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_derm_ld50_wgt") self.dbt_mamm_rat_inhal_ld50_wgt = pd.Series([], dtype="float", name="dbt_mamm_rat_inhal_ld50_wgt") self.dbt_mamm_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_direct_wgt") self.dbt_mamm_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_mamm_sub_indirect_wgt") # dose based toxicity(dbt): birds (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_bird_1inmill_mort = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort") self.dbt_bird_1inten_mort = pd.Series([], dtype="float", name="dbt_bird_1inten_mort") self.dbt_bird_low_ld50 = pd.Series([], dtype="float", name="dbt_bird_low_ld50") self.dbt_bird_hc05 = pd.Series([], dtype="float", name="dbt_bird_hc05") self.dbt_bird_hc50 = pd.Series([], dtype="float", name="dbt_bird_hc50") self.dbt_bird_hc95 = pd.Series([], dtype="float", name="dbt_bird_hc95") self.dbt_bird_sub_direct = pd.Series([], dtype="float", name="dbt_bird_sub_direct") self.dbt_bird_sub_indirect = pd.Series([], dtype="float", name="dbt_bird_sub_indirect") self.mineau_sca_fact = pd.Series([], dtype="float", name="mineau_sca_fact") self.dbt_bird_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inmill_mort_wgt") self.dbt_bird_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_bird_1inten_mort_wgt") self.dbt_bird_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_bird_low_ld50_wgt") self.dbt_bird_hc05_wgt = pd.Series([], dtype="float", name="dbt_bird_hc05_wgt") self.dbt_bird_hc50_wgt = pd.Series([], dtype="float", name="dbt_bird_hc50_wgt") self.dbt_bird_hc95_wgt = pd.Series([], dtype="float", name="dbt_bird_hc95_wgt") self.dbt_bird_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_direct_wgt") self.dbt_bird_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_bird_sub_indirect_wgt") self.mineau_sca_fact_wgt = pd.Series([], dtype="float", name="mineau_sca_fact_wgt") # dose based toxicity(dbt): reptiles, terrestrial-phase amphibians (mg-pest/kg-bw) & weight of test animal (grams) self.dbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort") self.dbt_reptile_1inten_mort = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort") self.dbt_reptile_low_ld50 = pd.Series([], dtype="float", name="dbt_reptile_low_ld50") self.dbt_reptile_sub_direct = pd.Series([], dtype="float", name="dbt_reptile_sub_direct") self.dbt_reptile_sub_indirect = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect") self.dbt_reptile_1inmill_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inmill_mort_wgt") self.dbt_reptile_1inten_mort_wgt = pd.Series([], dtype="float", name="dbt_reptile_1inten_mort_wgt") self.dbt_reptile_low_ld50_wgt = pd.Series([], dtype="float", name="dbt_reptile_low_ld50_wgt") self.dbt_reptile_sub_direct_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_direct_wgt") self.dbt_reptile_sub_indirect_wgt = pd.Series([], dtype="float", name="dbt_reptile_sub_indirect_wgt") # concentration-based toxicity (cbt) : mammals (mg-pest/kg-diet food) self.cbt_mamm_1inmill_mort = pd.Series([], dtype="float", name="cbt_mamm_1inmill_mort") self.cbt_mamm_1inten_mort = pd.Series([], dtype="float", name="cbt_mamm_1inten_mort") self.cbt_mamm_low_lc50 = pd.Series([], dtype="float", name="cbt_mamm_low_lc50") self.cbt_mamm_sub_direct = pd.Series([], dtype="float", name="cbt_mamm_sub_direct") self.cbt_mamm_grow_noec = pd.Series([], dtype="float", name="cbt_mamm_grow_noec") self.cbt_mamm_grow_loec = pd.Series([], dtype="float", name="cbt_mamm_grow_loec") self.cbt_mamm_repro_noec = pd.Series([], dtype="float", name="cbt_mamm_repro_noec") self.cbt_mamm_repro_loec = pd.Series([], dtype="float", name="cbt_mamm_repro_loec") self.cbt_mamm_behav_noec = pd.Series([], dtype="float", name="cbt_mamm_behav_noec") self.cbt_mamm_behav_loec = pd.Series([], dtype="float", name="cbt_mamm_behav_loec") self.cbt_mamm_sensory_noec = pd.Series([], dtype="float", name="cbt_mamm_sensory_noec") self.cbt_mamm_sensory_loec = pd.Series([], dtype="float", name="cbt_mamm_sensory_loec") self.cbt_mamm_sub_indirect = pd.Series([], dtype="float", name="cbt_mamm_sub_indirect") # concentration-based toxicity (cbt) : birds (mg-pest/kg-diet food) self.cbt_bird_1inmill_mort = pd.Series([], dtype="float", name="cbt_bird_1inmill_mort") self.cbt_bird_1inten_mort = pd.Series([], dtype="float", name="cbt_bird_1inten_mort") self.cbt_bird_low_lc50 = pd.Series([], dtype="float", name="cbt_bird_low_lc50") self.cbt_bird_sub_direct = pd.Series([], dtype="float", name="cbt_bird_sub_direct") self.cbt_bird_grow_noec = pd.Series([], dtype="float", name="cbt_bird_grow_noec") self.cbt_bird_grow_loec = pd.Series([], dtype="float", name="cbt_bird_grow_loec") self.cbt_bird_repro_noec = pd.Series([], dtype="float", name="cbt_bird_repro_noec") self.cbt_bird_repro_loec = pd.Series([], dtype="float", name="cbt_bird_repro_loec") self.cbt_bird_behav_noec = pd.Series([], dtype="float", name="cbt_bird_behav_noec") self.cbt_bird_behav_loec = pd.Series([], dtype="float", name="cbt_bird_behav_loec") self.cbt_bird_sensory_noec = pd.Series([], dtype="float", name="cbt_bird_sensory_noec") self.cbt_bird_sensory_loec = pd.Series([], dtype="float", name="cbt_bird_sensory_loec") self.cbt_bird_sub_indirect = pd.Series([], dtype="float", name="cbt_bird_sub_indirect") # concentration-based toxicity (cbt) : reptiles, terrestrial-phase amphibians (mg-pest/kg-diet food) self.cbt_reptile_1inmill_mort = pd.Series([], dtype="float", name="cbt_reptile_1inmill_mort") self.cbt_reptile_1inten_mort = pd.Series([], dtype="float", name="cbt_reptile_1inten_mort") self.cbt_reptile_low_lc50 = pd.Series([], dtype="float", name="cbt_reptile_low_lc50") self.cbt_reptile_sub_direct = pd.Series([], dtype="float", name="cbt_reptile_sub_direct") self.cbt_reptile_grow_noec = pd.Series([], dtype="float", name="cbt_reptile_grow_noec") self.cbt_reptile_grow_loec = pd.Series([], dtype="float", name="cbt_reptile_grow_loec") self.cbt_reptile_repro_noec = pd.Series([], dtype="float", name="cbt_reptile_repro_noec") self.cbt_reptile_repro_loec = pd.Series([], dtype="float", name="cbt_reptile_repro_loec") self.cbt_reptile_behav_noec = pd.Series([], dtype="float", name="cbt_reptile_behav_noec") self.cbt_reptile_behav_loec = pd.Series([], dtype="float", name="cbt_reptile_behav_loec") self.cbt_reptile_sensory_noec = pd.Series([], dtype="float", name="cbt_reptile_sensory_noec") self.cbt_reptile_sensory_loec = pd.Series([], dtype="float", name="cbt_reptile_sensory_loec") self.cbt_reptile_sub_indirect = pd.Series([], dtype="float", name="cbt_reptile_sub_indirect") # concentration-based toxicity (cbt) : invertebrates body weight (mg-pest/kg-bw(ww)) self.cbt_inv_bw_1inmill_mort = pd.Series([], dtype="float", name="cbt_inv_bw_1inmill_mort") self.cbt_inv_bw_1inten_mort = pd.Series([], dtype="float", name="cbt_inv_bw_1inten_mort") self.cbt_inv_bw_low_lc50 = pd.Series([], dtype="float", name="cbt_inv_bw_low_lc50") self.cbt_inv_bw_sub_direct = pd.Series([], dtype="float", name="cbt_inv_bw_sub_direct") self.cbt_inv_bw_grow_noec = pd.Series([], dtype="float", name="cbt_inv_bw_grow_noec") self.cbt_inv_bw_grow_loec = pd.Series([], dtype="float", name="cbt_inv_bw_grow_loec") self.cbt_inv_bw_repro_noec = pd.Series([], dtype="float", name="cbt_inv_bw_repro_noec") self.cbt_inv_bw_repro_loec = pd.Series([], dtype="float", name="cbt_inv_bw_repro_loec") self.cbt_inv_bw_behav_noec = pd.Series([], dtype="float", name="cbt_inv_bw_behav_noec") self.cbt_inv_bw_behav_loec =
pd.Series([], dtype="float", name="cbt_inv_bw_behav_loec")
pandas.Series
# -*- coding: utf-8 -*- """ Created on Tue Jan 29 08:35:09 2019 @author: user """ # build first input with noational aggregation # import build_input_national_aggr print('####################') print('BUILDING INPUT DATA FOR DISAGGREGATION OF SWITZERLAND INTO ARCHETYPES') print('####################') import os import itertools import hashlib import pandas as pd import numpy as np import matplotlib.pyplot as plt import grimsel.auxiliary.sqlutils.aux_sql_func as aql import datetime import seaborn as sns from grimsel.auxiliary.aux_general import print_full from grimsel.auxiliary.aux_general import translate_id import config_local as conf from grimsel.auxiliary.aux_general import expand_rows base_dir = conf.BASE_DIR data_path = conf.PATH_CSV data_path_prv = conf.PATH_CSV + '_national_aggr' seed = 2 np.random.seed(seed) db = conf.DATABASE sc = conf.SCHEMA #db = 'grimsel_1' #sc = 'lp_input_ee_dsm' def append_new_rows(df, tb): list_col = list(aql.get_sql_cols(tb, sc, db).keys()) aql.write_sql(df[list_col], db=db, sc=sc, tb=tb, if_exists='append') def del_new_rows(ind, tb, df): del_list = df[ind].drop_duplicates() for i in ind: del_list[i] = '%s = '%i + del_list[i].astype(str) del_str = ' OR '.join(del_list.apply(lambda x: '(' + ' AND '.join(x) + ')', axis=1)) exec_strg = ''' DELETE FROM {sc}.{tb} WHERE {del_str} '''.format(tb=tb, sc=sc, del_str=del_str) aql.exec_sql(exec_strg, db=db) #def replace_table(df, tb): # ## list_col = list(aql.get_sql_cols(tb, sc, db).keys()) # # aql.write_sql(df, db=db, sc=sc, tb=tb, if_exists='replace') def append_new_cols(df, tb): # list_col = list(aql.get_sql_cols(tb, sc, db).keys()) col_new = dict.fromkeys((set(df.columns.tolist()) - set(list_col))) for key, value in col_new.items(): col_new[key] = 'DOUBLE PRECISION' # col_new = dict.fromkeys((set(list_col[0].columns.tolist()) - set(list_col)),1) aql.add_column(df_src=df,tb_tgt=[sc,tb],col_new=col_new,on_cols=list_col, db=db) # exec_strg = ''' # AlTER # DELETE FROM {sc}.{tb} # WHERE {del_str} # '''.format(tb=tb, sc=sc, del_str=del_str) # aql.exec_sql(exec_strg, db=db) # # aql.write_sql(df[list_col], db=db, sc=sc, tb=tb, if_exists='append') # #aql.exec_sql(''' # ALTER TABLE lp_input_archetypes.profdmnd # DROP CONSTRAINT profdmnd_pkey, # DROP CONSTRAINT profdmnd_dmnd_pf_id_fkey; # ''', db=db) #%% dfprop_era_arch = pd.read_csv(base_dir+'/archetype_disaggr/PV/prop_era_arch.csv', sep = ';') #dfpv_arch = pd.read_csv(os.path.join(base_dir,'PV/surf_prod_arch_pv.csv'),sep=';') #dfpv_arch = pd.read_csv(os.path.join(base_dir,'PV/surf_prod_arch_pv_prop_0.csv'),sep=';') dfpv_arch = pd.read_csv(base_dir+'/archetype_disaggr/PV/surf_prod_arch_pv_prop_new.csv',sep=';') # set nd_id to that potential #dfpv_arch['pv_power_pot'] = dfpv_arch['el_prod']/(1000*dfkev['flh'].mean()) dfpv_arch = dfpv_arch.groupby(dfpv_arch.nd_id_new).sum() #dfpv_arch['nd_id_new'] = dfpv_arch.nd_id #dfpv_arch.loc[:,dfpv_arch.nd_id_new.str.contains('OTH')] == 'OTH_TOT' #dfpv_arch['cap_pv'] = 1666*(dfpv_arch['pv_power_pot']/dfpv_arch['pv_power_pot'].sum()) # 1666 MW SFOE 2016 dfpv_arch['cap_pv'] = 1666*(dfpv_arch['pv_power_tot_est']/dfpv_arch['pv_power_tot_est'].sum()) # 1666 MW SFOE 2016 dfpv_arch['cap_st_pwr'] = 0 # #dfpv_arch_CH0 = dfpv_arch.loc['CH0'] #dfpv_arch = dfpv_arch.drop(['CH0'], axis = 0) dfpv_arch = dfpv_arch.reset_index() # %% dfload_arch = pd.read_csv(base_dir+'/archetype_disaggr/demand/dmnd_archetypes_0.csv').query( 'nd_id not in %s'%(['CH0'])).reset_index(drop=True) dfload_arch['DateTime'] = dfload_arch['DateTime'].astype('datetime64[ns]') dfload_arch_res = pd.read_csv(base_dir+'/archetype_disaggr/demand/dmnd_archetypes_0.csv').query( 'nd_id.str.contains("SFH") or nd_id.str.contains("MFH")',engine='python').reset_index(drop=True) dfload_arch_res['DateTime'] = dfload_arch_res['DateTime'].astype('datetime64[ns]') dfload_arch_notres = pd.read_csv(base_dir+'/archetype_disaggr/demand/dmnd_archetypes_0.csv').query( 'nd_id.str.contains("OCO") or nd_id.str.contains("IND")',engine='python').reset_index(drop=True) dfload_arch_notres['DateTime'] = dfload_arch_notres['DateTime'].astype('datetime64[ns]') dfload_arch_CH0 = pd.read_csv(base_dir+'/archetype_disaggr/demand/dmnd_archetypes_0.csv').query( 'nd_id in %s'%(['CH0'])).reset_index(drop=True) dfload_arch_CH0['DateTime'] = dfload_arch_CH0['DateTime'].astype('datetime64[ns]') # dfload_arch = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_0',filt=[('nd_id', ['CH0'],'!=')]) # dfload_arch_res= aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_0',filt=[('nd_id', ['SFH%','MFH%'],'LIKE')]) # dfload_arch_notres= aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_0',filt=[('nd_id', ['OCO%','IND%'],'LIKE')]) # dfload_arch_CH0_1 = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes_0',filt=[('nd_id', ['CH0'])]) #dfload_arch = aql.read_sql('grimsel_1', 'profiles_raw','dmnd_archetypes') dfload_dict ={} dfload_dict_new = {} df = dfload_arch_res.copy() df['nd_id_new'] = 0 df['erg_tot_new'] = 0 for i in df.nd_id.unique(): dfload_dict[i] = df.loc[df.nd_id == i] for l in (0,1,2,3): df_1 = dfload_dict[i].copy() df_1['erg_tot_new'] = df_1.loc[:,'erg_tot'] * dfprop_era_arch.loc[dfprop_era_arch.nd_el.str.contains(i+'_'+str(l)),'prop'].reset_index(drop=True).loc[0] df_1['nd_id_new'] = i+'_'+str(l) dfload_dict_new[i+'_'+str(l)] = df_1 dfload_arch_res_new = dfload_arch_notres.head(0) for j in dfload_dict_new: dfload_arch_res_new = dfload_arch_res_new.append(dfload_dict_new[j],ignore_index=True) dfload_arch_notres['nd_id_new'] = dfload_arch_notres[['nd_id']] dfload_arch_notres['erg_tot_new'] = dfload_arch_notres[['erg_tot']] dfload_arch = dfload_arch_res_new.append(dfload_arch_notres,ignore_index=True) dfload_arch = dfload_arch.set_index('DateTime') dfload_arch.index = pd.to_datetime(dfload_arch.index) dfload_arch_CH0 = dfload_arch_CH0.set_index('DateTime') dfload_arch = dfload_arch.drop(columns=['nd_id','erg_tot']).rename(columns={'nd_id_new':'nd_id','erg_tot_new':'erg_tot'}) # %% np.random.seed(3) dferg_arch = dfload_arch.groupby('nd_id')['erg_tot'].sum() dferg_arch = dferg_arch.reset_index() dferg_arch['nd_id_new'] = dferg_arch.nd_id dict_nd = dferg_arch.set_index('nd_id')['nd_id_new'].to_dict() # %% df_solar_canton_raw = pd.read_csv(base_dir+'/archetype_disaggr/PV/swiss_location_solar.csv')[['value', 'hy', 'canton','DateTime']] df_solar_canton_raw['DateTime'] = df_solar_canton_raw['DateTime'].astype('datetime64[ns]') # df_solar_canton_raw_test = aql.read_sql(db, 'profiles_raw', 'swiss_location_solar', # keep=['value', 'hy', 'canton','DateTime']) df_solar_canton_raw_1 = df_solar_canton_raw.pivot_table(index='DateTime',columns='canton', values='value') df_solar_canton_1h = df_solar_canton_raw_1.resample('1h').sum()/4 df_solar_canton_1h['avg_all'] = df_solar_canton_1h.mean(axis=1) df_solar_canton_1h['DateTime'] = df_solar_canton_1h.index df_solar_canton_1h = df_solar_canton_1h.reset_index(drop=True) df_solar_canton_1h['hy'] = df_solar_canton_1h.index df_solar_canton_raw_1h = pd.melt(df_solar_canton_1h, id_vars=['DateTime','hy'], var_name='canton', value_name='value') df_solar_canton_1h.index = df_solar_canton_1h['DateTime'] df_solar_canton_1h = df_solar_canton_1h.drop(columns=['DateTime','hy']) cols = df_solar_canton_1h.columns.tolist() cols = cols[-1:] + cols[:-1] df_solar_canton_1h = df_solar_canton_1h[cols] #list_ct = df_solar_canton_raw.canton.unique().tolist() list_ct = df_solar_canton_1h.columns.tolist() # %% ~~~~~~~~~~~~~~~~~~ DEF_NODE # #df_def_node_0 = aql.read_sql(db, sc, 'def_node', filt=[('nd', ['SFH%'], ' NOT LIKE ')]) #df_nd_add = pd.DataFrame(pd.concat([dferg_filt.nd_id_new.rename('nd'), # ], axis=0)).reset_index(drop=True) color_nd = {'IND_RUR': '#472503', 'IND_SUB': '#041FA3', 'IND_URB': '#484A4B', 'MFH_RUR_0': '#924C04', 'MFH_SUB_0': '#0A81EE', 'MFH_URB_0': '#BDC3C5', 'MFH_RUR_1': '#924C04', 'MFH_SUB_1': '#0A81EE', 'MFH_URB_1': '#BDC3C5', 'MFH_RUR_2': '#924C04', 'MFH_SUB_2': '#0A81EE', 'MFH_URB_2': '#BDC3C5', 'MFH_RUR_3': '#924C04', 'MFH_SUB_3': '#0A81EE', 'MFH_URB_3': '#BDC3C5', 'OCO_RUR': '#6D3904', 'OCO_SUB': '#0A31EE', 'OCO_URB': '#818789', 'SFH_RUR_0': '#BD6104', 'SFH_SUB_0': '#0EBADF', 'SFH_URB_0': '#A9A4D8', 'SFH_RUR_1': '#BD6104', 'SFH_SUB_1': '#0EBADF', 'SFH_URB_1': '#A9A4D8', 'SFH_RUR_2': '#BD6104', 'SFH_SUB_2': '#0EBADF', 'SFH_URB_2': '#A9A4D8', 'SFH_RUR_3': '#BD6104', 'SFH_SUB_3': '#0EBADF', 'SFH_URB_3': '#A9A4D8', } col_nd_df = pd.DataFrame.from_dict(color_nd, orient='index').reset_index().rename(columns={'index': 'nd',0:'color'}) df_def_node_0 = pd.read_csv(data_path_prv + '/def_node.csv') # df_def_node_0 = aql.read_sql(db, sc, 'def_node') df_nd_add = pd.DataFrame(pd.concat([dferg_arch.nd_id_new.rename('nd'), ], axis=0)).reset_index(drop=True) # reduce numbar #df_nd_add = df_nd_add nd_id_max = df_def_node_0.loc[~df_def_node_0.nd.isin(df_nd_add.nd)].nd_id.max() df_nd_add['nd_id'] = np.arange(0, len(df_nd_add)) + nd_id_max + 1 #df_nd_add['color'] = 'g' df_nd_add = pd.merge(df_nd_add,col_nd_df, on = 'nd') df_def_node = df_nd_add.reindex(columns=df_def_node_0.columns.tolist()).fillna(0) dict_nd_id = df_nd_add.set_index('nd')['nd_id'].to_dict() dict_nd_id = {nd_old: dict_nd_id[nd] for nd_old, nd in dict_nd.items() if nd in dict_nd_id} # %% set nd_id number to the corresponding nd_id new dfpv_arch = dfpv_arch.set_index(dfpv_arch['nd_id_new']) for key, value in dict_nd_id.items(): dfpv_arch.loc[key,'nd_id'] = value dferg_arch = dferg_arch.set_index(dfpv_arch['nd_id_new']) for key, value in dict_nd_id.items(): dferg_arch.loc[key,'nd_id'] = value # %% ~~~~~~~~~~~~~~~~~~~~~~~ DEF_PP_TYPE df_def_pp_type_0 = pd.read_csv(data_path_prv + '/def_pp_type.csv') # df_def_pp_type_0 = aql.read_sql(db, sc, 'def_pp_type') df_def_pp_type = df_def_pp_type_0.copy().head(0) for npt, pt, cat, color in ((0, 'STO_LI_SFH', 'NEW_STORAGE_LI_SFH', '#7B09CC'), (1, 'STO_LI_MFH', 'NEW_STORAGE_LI_MFH', '#59F909'), (2, 'STO_LI_OCO', 'NEW_STORAGE_LI_OCO', '#28A503'), (3, 'STO_LI_IND', 'NEW_STORAGE_LI_IND', '#1A6703'), (4, 'PHO_SFH', 'PHOTO_SFH', '#D9F209'), (5, 'PHO_MFH', 'PHOTO_MFH', '#F2D109'), (6, 'PHO_OCO', 'PHOTO_OCO', '#F27E09'), (7, 'PHO_IND', 'PHOTO_IND', '#F22C09'),): df_def_pp_type.loc[npt] = (npt, pt, cat, color) df_def_pp_type['pt_id'] = np.arange(0, len(df_def_pp_type)) + df_def_pp_type_0.pt_id.max() + 1 # %% ~~~~~~~~~~~~~~~~~~~~~~ DEF_FUEL # all there df_def_fuel = pd.read_csv(data_path_prv + '/def_fuel.csv') # df_def_fuel_test = aql.read_sql(db, sc, 'def_fuel') # %% ~~~~~~~~~~~~~~~~~~~~~~~ DEF_PLANT df_def_plant_0 = pd.read_csv(data_path_prv + '/def_plant.csv') # df_def_plant_test = aql.read_sql(db, sc, 'def_plant') dict_pp_id_all = df_def_plant_0.set_index('pp')['pp_id'].to_dict() df_pp_add_0 = pd.DataFrame(df_nd_add.nd).rename(columns={'nd': 'nd_id'}) df_pp_add_1 = df_pp_add_0.nd_id.str.slice(stop=3) df_pp_add = pd.DataFrame() for sfx, fl_id, pt_id, set_1 in [('_PHO', 'photovoltaics', 'PHO_', ['set_def_pr','set_def_add']), ('_STO_LI', 'new_storage', 'STO_LI_', ['set_def_st','set_def_add']), ]: new_pp_id = df_def_plant_0.pp_id.max() + 1 data = dict(pp=df_pp_add_0 + sfx, fl_id=fl_id, pt_id=pt_id + df_pp_add_1 , pp_id=np.arange(new_pp_id, new_pp_id + len(df_pp_add_0)), **{st: 1 if st in set_1 else 0 for st in [c for c in df_def_plant_0.columns if 'set' in c]}) df_pp_add = df_pp_add.append(df_pp_add_0.assign(**data), sort=True) df_pp_add.pp_id = np.arange(0, len(df_pp_add)) + df_pp_add.pp_id.min() df_def_plant = df_pp_add[df_def_plant_0.columns].reset_index(drop=True) for df, idx in [(df_def_fuel, 'fl'), (df_def_pp_type, 'pt'), (df_def_node, 'nd')]: df_def_plant, _ = translate_id(df_def_plant, df, idx) # selecting random profiles from canton list #np.random.seed(4) dict_pp_id = df_pp_add.set_index('pp')['pp_id'].to_dict() df_pp_add_pho = df_pp_add.loc[df_pp_add.fl_id == 'photovoltaics'] dict_pp_id_pho = df_pp_add_pho.set_index('pp')['pp_id'].to_dict() # solar profile dictionary by node dict_ct = {pp: list_ct[npp%len(list_ct)] for npp, pp in enumerate(df_pp_add.loc[df_pp_add.fl_id == 'photovoltaics', 'nd_id'].tolist())} dict_ct = {pp: list_ct[0] for npp, pp in enumerate(df_pp_add.loc[df_pp_add.fl_id == 'photovoltaics', 'nd_id'].tolist())} # %% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ DEF_PROFILE df_def_profile_0 = pd.read_csv(data_path_prv + '/def_profile.csv') # df_def_profile_test = aql.read_sql(db, sc, 'def_profile') df_def_profile_sup = pd.DataFrame({'primary_nd': df_solar_canton_1h.columns}) + '_PHO' df_def_profile_sup['pf'] = 'supply_' + df_def_profile_sup.primary_nd df_def_profile_sup['pf_id'] = df_def_profile_sup.index.rename('pf_id') + df_def_profile_0.pf_id.max() + 1 df_def_profile_sup = df_def_profile_sup[df_def_profile_0.columns] df_def_profile_sup.drop(df_def_profile_sup.tail(23).index,inplace=True) # to keep only average for now # Demand profiles df_def_profile_dmnd = df_def_node.nd.copy().rename('primary_nd').reset_index() df_def_profile_dmnd['pf'] = 'demand_EL_' + df_def_profile_dmnd.primary_nd df_def_profile_dmnd['pf_id'] = df_def_profile_dmnd.index.rename('pf_id') + df_def_profile_sup.pf_id.max() + 1 df_def_profile_dmnd = df_def_profile_dmnd[df_def_profile_0.columns] df_def_profile = pd.concat([df_def_profile_sup, df_def_profile_dmnd], axis=0) # df_def_profile_prc], axis=0) df_def_profile = df_def_profile.reset_index(drop=True) #df_def_profile = pd.concat([df_def_profile_sup, df_def_profile_dmnd], axis=0) df_def_profile # %% ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ NODE_ENCAR df_node_encar_0 = pd.read_csv(data_path_prv + '/node_encar.csv') # df_node_encar_0 = aql.read_sql(db, sc, 'node_encar') df_node_encar_0_CH0 = df_node_encar_0.copy().loc[(df_node_encar_0.nd_id == 1)] factor_CH0_dmnd = dfload_arch_CH0.erg_tot.sum()/df_node_encar_0.loc[(df_node_encar_0.nd_id == 1)].dmnd_sum factor_CH0_dmnd = factor_CH0_dmnd.reset_index(drop=True) df = df_node_encar_0_CH0.filter(like='dmnd_sum')*factor_CH0_dmnd.loc[0] df_node_encar_0_CH0.update(df) #exec_str = '''UPDATE sc.node_encar SET # SET sc.dmnd_sum = df_node_encar_0_CH0.dmnd_sum # WHERE nd_id = 1 # # ''' #aql.exec_sql(exec_str=exec_str,db=db) #df_ndca_add = (dferg_filt.loc[dferg_filt.nd_id_new.isin(df_nd_add.nd), ['nd_id_new', 'erg_tot_filled']] # .rename(columns={'erg_tot_filled': 'dmnd_sum', 'nd_id_new': 'nd_id'})) df_ndca_add = (dferg_arch.loc[dferg_arch.nd_id_new.isin(df_nd_add.nd), ['nd_id_new', 'erg_tot']] .rename(columns={'erg_tot': 'dmnd_sum', 'nd_id_new': 'nd_id'})) #TODO maybe add here some grid losses data = dict(vc_dmnd_flex=0.1, ca_id=0, grid_losses=0.0413336227316051, grid_losses_absolute=0) df_node_encar = df_ndca_add.assign(**data).reindex(columns=df_node_encar_0.columns) list_dmnd = [c for c in df_node_encar if 'dmnd_sum' in c] df_node_encar = df_node_encar.assign(**{c: df_node_encar.dmnd_sum for c in list_dmnd}) df_node_encar =
pd.merge(df_node_encar, df_def_profile_dmnd, left_on='nd_id', right_on='primary_nd', how='inner')
pandas.merge
from django.core.files import temp from django.shortcuts import render from django.conf import settings from django.http import HttpResponse from django.core.files.storage import FileSystemStorage from django.http import FileResponse from django.views.static import serve import xlsxwriter import pdfkit import csv import numpy #import required libraries import pandas as pd import pyexcel import xlrd from matplotlib import pylab from matplotlib import collections as mc from pylab import * from pylev3 import Levenshtein from matplotlib.ticker import PercentFormatter from matplotlib import pyplot import matplotlib.pyplot as plt import PIL, PIL.Image import os try: from StringIO import BytesIO except ImportError: from io import BytesIO '''from google.colab import drive drive.mount('/content/drive')''' # Create your views here. def welcome(request): return HttpResponse("Welcome") def ourResponse(request): return HttpResponse("OUR RESPONSE") def takeInput(request): return render(request,'input.html') def similarity(seq1, seq2): l1 , l2 = len(seq1), len(seq2) ldist = Levenshtein.wf(seq1, seq2) return (1 - ldist/max(l1, l2))*100 def df_gdomain_counter(df): df_count = df["ProteinID"].value_counts() return df_count def match(x, y, mm): mismatch = 0 for i in range(len(x)): if (x[i] == 'X' or x[i] == y[i]): pass else: mismatch += 1 if (mismatch <= mm): return True else: return False def shuffler(word): word_to_scramble = list(word) numpy.random.shuffle(word_to_scramble) # O=seq= ''.join(seq_temp) new_word = ''.join(word_to_scramble) return new_word def list_of_7mer_X(sevenmer): x_data = [] for r1 in range(7): x = list(sevenmer) x[r1] = "X" x = ''.join(x) x_data.append(x) return x_data def performAlgo(request): myfile = request.FILES['document'] print(myfile.name) fs = FileSystemStorage() '''fs.save(myfile.name, myfile)''' workbook = xlsxwriter.Workbook('media/new.xlsx') family = request.POST.get("input01") outpath = "media/new.xlsx" df1 = pd.read_excel(myfile) df2 = df1 for i in range((df1.shape[0] - 1)): A = df1.loc[i, "Sequence"] B = df1.loc[(i + 1), "Sequence"] percent_similarity = similarity(A, B) if (percent_similarity >= 90): df2 = df2.drop(df2[df2.Sequence == B].index) df2.to_excel(outpath, index=False) NumProteins = df2.shape[0] def H(protein_id, protein, x1, x2, x3, x4, mm1, mm2, mm3, mm4, min13, min34, min45, max13, max34, max45): pL1 = [] pL2 = [] pL3 = [] pL4 = [] L1 = [] L2 = [] L3 = [] L4 = [] for i in range(len(protein) - len(x1)): if (match(x1, protein[i:i + len(x1)], mm1) == True): # global L1 pL1 = pL1 + [i] L1 = L1 + [protein[i:i + len(x1)]] # print "L1 = ", pL1,L1 for j in range(len(protein) - len(x2)): if (match(x2, protein[j:j + len(x2)], mm2) == True): # global L2 pL2 = pL2 + [j] L2 = L2 + [protein[j:j + len(x2)]] # print "L2 = ", pL2,L2 for k in range(len(protein) - len(x3)): if (match(x3, protein[k:k + len(x3)], mm3) == True): # global L3 pL3 = pL3 + [k] L3 = L3 + [protein[k:k + len(x3)]] # print "L3 = ", pL3,L3 for l in range(len(protein) - len(x4)): if (match(x4, protein[l:l + len(x4)], mm4) == True): # global L3 pL4 = pL4 + [l] L4 = L4 + [protein[l:l + len(x4)]] candidates = [] for i in range(len(pL1)): for j in range(len(pL2)): for k in range(len(pL3)): for l in range(len(pL4)): if (min13 <= pL2[j] - pL1[i] <= max13 and min34 <= pL3[k] - pL2[j] <= max34 and min45 <= pL4[l] - pL3[k] <= max45): # if 80 <=pL2[j]-pL1[i] <= 120 and 40 <=pL3[k]- pL2[j] <= 80 and 20 <=pL4[l]- pL3[k] <= 80 a = L1[i] a_pos = pL1[i] b = L2[j] b_pos = pL2[j] c = L3[k] c_pos = pL3[k] d = L4[l] d_pos = pL4[l] candidates.append((protein_id, a, a_pos, b, b_pos, c, c_pos, d, d_pos)) return candidates abc = [] l1 = [] inpath = "media/new.xlsx" mismatch1 = int(request.POST.get("mismatch1")) mismatch2 = int(request.POST.get("mismatch2")) mismatch3 = int(request.POST.get("mismatch3")) mismatch4 = int(request.POST.get("mismatch4")) mismatch41 = mismatch4 x1 = request.POST.get("x1") x2 = request.POST.get("x2") x3 = request.POST.get("x3") x4 = request.POST.get("x4") Min_G1_G3 = int(request.POST.get("Min_G1_G3")) Max_G1_G3 = int(request.POST.get("Max_G1_G3")) Min_G3_G4 = int(request.POST.get("Min_G3_G4")) Max_G3_G4 = int(request.POST.get("Max_G3_G4")) Min_G4_G5 = int(request.POST.get("Min_G4_G5")) Max_G4_G5 = int(request.POST.get("Max_G4_G5")) workbook = xlsxwriter.Workbook('media/output_wo_bias.xlsx') outpath = "media/output_wo_bias.xlsx" df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] protein_id for i in range(len(protein)): l = H(protein_id[i], protein[i], x1, x2, x3, x4, mismatch1, mismatch2, mismatch3, mismatch4, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position.1', 'G4-box', 'Position.2', 'G5-box', 'Position.3']) gdomains = gdomains[gdomains['ProteinID'].astype(bool)] gdomains.head() gdomains.to_excel(outpath, index=False) abc = [] l1 = [] workbook = xlsxwriter.Workbook('media/SA_nomismatch.xlsx') outpath = "media/SA_nomismatch.xlsx" str1 = "XXX" x41 = str1 + x4 + "X" mismatch41 = 0 df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] #protein_id for i in range(len(protein)): l = H(protein_id[i], protein[i], x1, x2, x3, x41, mismatch1, mismatch2, mismatch3, mismatch41, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position', 'G4-box', 'Position', 'G5-box', 'Position']) gdomains = gdomains[gdomains['ProteinID'].astype(bool)] gdomains.head() gdomains.to_excel(outpath, index=False) abc = [] l1 = [] workbook = xlsxwriter.Workbook('media/SA_mismatch.xlsx') outpath = "media/SA_mismatch.xlsx" df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] protein_id for i in range(len(protein)): l = H(protein_id[i], protein[i], x1, x2, x3, x41, mismatch1, mismatch2, mismatch3, mismatch4, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position', 'G4-box', 'Position', 'G5-box', 'Position']) gdomains = gdomains[gdomains['ProteinID'].astype(bool)] gdomains.head() gdomains.to_excel(outpath, index=False) abc = [] l1 = [] workbook = xlsxwriter.Workbook('media/A_nomismatch.xlsx') outpath = "media/A_nomismatch.xlsx" y = x4[1:] z = y[:-1] x42 = str1 + z + str1 df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] protein_id for i in range(len(protein)): l = H(protein_id[i], protein[i], x1, x2, x3, x42, mismatch1, mismatch2, mismatch3, mismatch41, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position', 'G4-box', 'Position', 'G5-box', 'Position']) gdomains = gdomains[gdomains['ProteinID'].astype(bool)] gdomains.head() gdomains.to_excel(outpath, index=False) inpath_SA_mm = "media/SA_mismatch.xlsx" workbook = xlsxwriter.Workbook('media/SA_mm_7mer_X_dict.xlsx') outpath1_SA_mm = "media/SA_mm_7mer_X_dict.xlsx" workbook = xlsxwriter.Workbook('media/SA_mm_7mer_X_dict_count.xlsx') outpath2_SA_mm = "media/SA_mm_7mer_X_dict_count.xlsx" str2 = [["Rab", 470], ["Rac", 128], ["Ran", 29], ["Ras", 190], ["Roc", 19], ["Arf", 140], ["AlG1", 44], ["Era", 188], ["FeoB", 18], ["Hflx", 26], ["GB1", 116], ["EngB", 401], ["Dynamin", 115], ["IRG", 10], ["Obg", 659], ["Septin", 86], ["SRP", 99], ["Translational", 2869], ["tRme", 454], ["EngA", 424]] #for i in str2: # if (i[0] == family): # #total = i[1] total = NumProteins data = pd.read_excel(inpath_SA_mm) unique_7mers = data['G5-box'].unique() temp = data id_set = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_X(seq) for x in x_data: if (x not in id_set): id_set[x] = set() id_set[x].add(ID) else: id_set[x].add(ID) id_set.items() with open(outpath1_SA_mm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set.items()] with open(outpath2_SA_mm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set.items()] inpath_A_nomm = "media/A_nomismatch.xlsx" workbook = xlsxwriter.Workbook('media/A_nomm_7mer_X_dict.xlsx') outpath1_A_nomm = "media/A_nomm_7mer_X_dict.xlsx" workbook = xlsxwriter.Workbook('media/A_nomm_7mer_X_dict_count.xlsx') outpath2_A_nomm = "media/A_nomm_7mer_X_dict_count.xlsx" data1 = pd.read_excel(inpath_A_nomm) unique_7mers = data1['G5-box'].unique() temp = data1 id_set1 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_X(seq) for x in x_data: if (x not in id_set1): id_set1[x] = set() id_set1[x].add(ID) else: id_set1[x].add(ID) id_set1.items() with open(outpath1_A_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set1.items()] with open(outpath2_A_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set1.items()] inpath_SA_nomm = "media/SA_nomismatch.xlsx" workbook = xlsxwriter.Workbook('media/SA_nomm_7mer_X_dict.xlsx') outpath1_SA_nomm = "media/SA_nomm_7mer_X_dict.xlsx" workbook = xlsxwriter.Workbook('media/SA_nomm_7mer_X_dict_count.xlsx') outpath2_SA_nomm = "media/SA_nomm_7mer_X_dict_count.xlsx" data2 = pd.read_excel(inpath_SA_nomm) unique_7mers = data2['G5-box'].unique() temp = data2 id_set2 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_X(seq) for x in x_data: if (x not in id_set2): id_set2[x] = set() id_set2[x].add(ID) else: id_set2[x].add(ID) id_set2.items() with open(outpath1_SA_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set2.items()] with open(outpath2_SA_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set2.items()] workbook = xlsxwriter.Workbook('media/7mer_X_dict.xlsx') outpath1 = "media/7mer_X_dict.xlsx" workbook = xlsxwriter.Workbook('media/7mer_X_count_dict.xlsx') outpath2 = "media/7mer_X_count_dict.xlsx" SA_nomm = pd.read_excel(inpath_SA_nomm) A_nomm = pd.read_excel(inpath_A_nomm) SA_mm = pd.read_excel(inpath_SA_mm) table = [SA_nomm[['ProteinID', 'G5-box', 'Position']], A_nomm[['ProteinID', 'G5-box', 'Position']], SA_mm[['ProteinID', 'G5-box', 'Position']]] # to be used when SA with no mismatch doesn't give any result. # table= [A_nomm[['Entry', 'G5_box', 'Value']], SA_mm[['Entry', 'G5_box', 'Value']]] data3 = pd.concat(table) data3 = data3.reset_index(drop=True) unique_7mers = data3['G5-box'].unique() temp = data3 id_set3 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_X(seq) for x in x_data: if (x not in id_set3): id_set3[x] = set() id_set3[x].add(ID) else: id_set3[x].add(ID) id_set3.items() with open(outpath1, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set3.items()] with open(outpath2, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set3.items()] def list_of_7mer_2X(sevenmer): x_data = [] for r1 in range(7): for r2 in range(7): if (r1 != r2): x = list(sevenmer) x[r1] = "X" x[r2] = "X" x = ''.join(x) x_data.append(x) return x_data workbook = xlsxwriter.Workbook('media/SA_mm_7mer_2X_dict.xlsx') outpath1_SA_mm = "media/SA_mm_7mer_2X_dict.xlsx" workbook = xlsxwriter.Workbook('media/SA_mm_7mer_2X_dict_count.xlsx') outpath2_SA_mm = "media/SA_mm_7mer_2X_dict_count.xlsx" data = pd.read_excel(inpath_SA_mm) unique_7mers = data['G5-box'].unique() temp = data id_set = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_2X(seq) for x in x_data: if (x not in id_set): id_set[x] = set() id_set[x].add(ID) else: id_set[x].add(ID) id_set.items() with open(outpath1_SA_mm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set.items()] with open(outpath2_SA_mm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set.items()] workbook = xlsxwriter.Workbook('media/A_nomm_7mer_2X_dict.xlsx') outpath1_A_nomm = "media/A_nomm_7mer_2X_dict.xlsx" workbook = xlsxwriter.Workbook('media/A_nomm_7mer_2X_dict_count.xlsx') outpath2_A_nomm = "media/A_nomm_7mer_2X_dict_count.xlsx" data = pd.read_excel(inpath_A_nomm) unique_7mers = data['G5-box'].unique() temp = data id_set1 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_2X(seq) for x in x_data: if (x not in id_set1): id_set1[x] = set() id_set1[x].add(ID) else: id_set1[x].add(ID) id_set1.items() with open(outpath1_A_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set1.items()] with open(outpath2_A_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set1.items()] workbook = xlsxwriter.Workbook('media/SA_nomm_7mer_2X_dict.xlsx') outpath1_SA_nomm = "media/SA_nomm_7mer_2X_dict.xlsx" workbook = xlsxwriter.Workbook('media/SA_nomm_7mer_2X_dict_count.xlsx') outpath2_SA_nomm = "media/SA_nomm_7mer_2X_dict_count.xlsx" data = pd.read_excel(inpath_SA_nomm) unique_7mers = data['G5-box'].unique() temp = data id_set2 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_2X(seq) for x in x_data: if (x not in id_set2): id_set2[x] = set() id_set2[x].add(ID) else: id_set2[x].add(ID) id_set2.items() with open(outpath1_SA_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set2.items()] with open(outpath2_SA_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set2.items()] workbook = xlsxwriter.Workbook('media/7mer_2X_dict.xlsx') outpath1 = "media/7mer_2X_dict.xlsx" workbook = xlsxwriter.Workbook('media/7mer_2X_count_dict.xlsx') outpath2 = "media/7mer_2X_count_dict.xlsx" SA_nomm = pd.read_excel(inpath_SA_nomm) A_nomm = pd.read_excel(inpath_A_nomm) SA_mm = pd.read_excel(inpath_SA_mm) table = [SA_nomm[['ProteinID', 'G5-box', 'Position']], A_nomm[['ProteinID', 'G5-box', 'Position']], SA_mm[['ProteinID', 'G5-box', 'Position']]] # table= [A_nomm[['Entry', 'G5_box', 'Value']], SA_mm[['Entry', 'G5_box', 'Value']]] data = pd.concat(table) data = data.reset_index(drop=True) unique_7mers = data['G5-box'].unique() temp = data id_set3 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_2X(seq) for x in x_data: if (x not in id_set3): id_set3[x] = set() id_set3[x].add(ID) else: id_set3[x].add(ID) id_set3.items() with open(outpath1, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set3.items()] with open(outpath2, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set3.items()] def list_of_7mer_3X(sevenmer): x_data = [] for r1 in range(7): for r2 in range(7): for r3 in range(7): if (r1 != r2 and r1 != r3 and r2 != r3): x = list(sevenmer) x[r1] = "X" x[r2] = "X" x[r3] = "X" x = ''.join(x) x_data.append(x) return x_data workbook = xlsxwriter.Workbook('media/SA_mm_7mer_3X_dict.xlsx') outpath1_SA_mm = "media/SA_mm_7mer_3X_dict.xlsx" workbook = xlsxwriter.Workbook('media/SA_mm_7mer_3X_dict_count.xlsx') outpath2_SA_mm = "media/SA_mm_7mer_3X_dict_count.xlsx" data = pd.read_excel(inpath_SA_mm) unique_7mers = data['G5-box'].unique() temp = data id_set = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_3X(seq) for x in x_data: if (x not in id_set): id_set[x] = set() id_set[x].add(ID) else: id_set[x].add(ID) id_set.items() with open(outpath1_SA_mm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set.items()] with open(outpath2_SA_mm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set.items()] workbook = xlsxwriter.Workbook('media/A_nomm_7mer_3X_dict.xlsx') outpath1_A_nomm = "media/A_nomm_7mer_3X_dict.xlsx" workbook = xlsxwriter.Workbook('media/A_nomm_7mer_3X_dict_count.xlsx') outpath2_A_nomm = "media/A_nomm_7mer_3X_dict_count.xlsx" data = pd.read_excel(inpath_A_nomm) unique_7mers = data['G5-box'].unique() temp = data id_set1 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_3X(seq) for x in x_data: if (x not in id_set1): id_set1[x] = set() id_set1[x].add(ID) else: id_set1[x].add(ID) id_set1.items() with open(outpath1_A_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set1.items()] with open(outpath2_A_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set1.items()] workbook = xlsxwriter.Workbook('media/SA_nomm_7mer_3X_dict.xlsx') outpath1_SA_nomm = "media/SA_nomm_7mer_3X_dict.xlsx" workbook = xlsxwriter.Workbook('media/SA_nomm_7mer_3X_dict_count.xlsx') outpath2_SA_nomm = "media/SA_nomm_7mer_3X_dict_count.xlsx" data = pd.read_excel(inpath_SA_nomm) unique_7mers = data['G5-box'].unique() temp = data id_set2 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_3X(seq) for x in x_data: if (x not in id_set2): id_set2[x] = set() id_set2[x].add(ID) else: id_set2[x].add(ID) id_set2.items() with open(outpath1_SA_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set2.items()] with open(outpath2_SA_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set2.items()] workbook = xlsxwriter.Workbook('media/7mer_3X_dict.xlsx') outpath1 = "media/7mer_3X_dict.xlsx" workbook = xlsxwriter.Workbook('media/7mer_3X_count_dict.xlsx') outpath2 = "media/7mer_3X_count_dict.xlsx" SA_nomm = pd.read_excel(inpath_SA_nomm) A_nomm = pd.read_excel(inpath_A_nomm) SA_mm = pd.read_excel(inpath_SA_mm) table = [SA_nomm[['ProteinID', 'G5-box', 'Position']], A_nomm[['ProteinID', 'G5-box', 'Position']], SA_mm[['ProteinID', 'G5-box', 'Position']]] # table= [A_nomm[['Entry', 'G5_box', 'Value']], SA_mm[['Entry', 'G5_box', 'Value']]] data = pd.concat(table) data = data.reset_index(drop=True) unique_7mers = data['G5-box'].unique() temp = data id_set3 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_3X(seq) for x in x_data: if (x not in id_set3): id_set3[x] = set() id_set3[x].add(ID) else: id_set3[x].add(ID) id_set3.items() with open(outpath1, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set3.items()] with open(outpath2, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set3.items()] def list_of_7mer_4X(sevenmer): x_data = [] for r1 in range(7): for r2 in range(7): for r3 in range(7): for r4 in range(7): if (r1 != r2 and r1 != r3 and r1 != r4 and r2 != r3 and r2 != r4 and r3 != r4): x = list(sevenmer) x[r1] = "X" x[r2] = "X" x[r3] = "X" x[r4] = "X" x = ''.join(x) x_data.append(x) return x_data workbook = xlsxwriter.Workbook('media/SA_mm_7mer_4X_dict.xlsx') outpath1_SA_mm = "media/SA_mm_7mer_4X_dict.xlsx" workbook = xlsxwriter.Workbook("media/SA_mm_7mer_4X_dict_count.xlsx") outpath2_SA_mm = "media/SA_mm_7mer_4X_dict_count.xlsx" data = pd.read_excel(inpath_SA_mm) unique_7mers = data['G5-box'].unique() temp = data id_set = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_4X(seq) for x in x_data: if (x not in id_set): id_set[x] = set() id_set[x].add(ID) else: id_set[x].add(ID) id_set.items() with open(outpath1_SA_mm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set.items()] with open(outpath2_SA_mm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set.items()] workbook = xlsxwriter.Workbook('media/A_nomm_7mer_4X_dict.xlsx') outpath1_A_nomm = "media/A_nomm_7mer_4X_dict.xlsx" workbook = xlsxwriter.Workbook('media/A_nomm_7mer_4X_dict_count.xlsx') outpath2_A_nomm = "media/A_nomm_7mer_4X_dict_count.xlsx" data = pd.read_excel(inpath_A_nomm) unique_7mers = data['G5-box'].unique() temp = data id_set1 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_4X(seq) for x in x_data: if (x not in id_set1): id_set1[x] = set() id_set1[x].add(ID) else: id_set1[x].add(ID) id_set1.items() with open(outpath1_A_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set1.items()] with open(outpath2_A_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set1.items()] workbook = xlsxwriter.Workbook('media/SA_nomm_7mer_4X_dict.xlsx') outpath1_SA_nomm = "media/SA_nomm_7mer_4X_dict.xlsx" workbook = xlsxwriter.Workbook('media/SA_nomm_7mer_4X_dict_count.xlsx') outpath2_SA_nomm = "media/SA_nomm_7mer_4X_dict_count.xlsx" data = pd.read_excel(inpath_SA_nomm) unique_7mers = data['G5-box'].unique() temp = data id_set2 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_4X(seq) for x in x_data: if (x not in id_set2): id_set2[x] = set() id_set2[x].add(ID) else: id_set2[x].add(ID) id_set2.items() with open(outpath1_SA_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set2.items()] with open(outpath2_SA_nomm, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set2.items()] workbook = xlsxwriter.Workbook('media/7mer_4X_dict.xlsx') outpath1 = "media/7mer_4X_dict.xlsx" workbook = xlsxwriter.Workbook('media/7mer_4X_count_dict.xlsx') outpath2 = "media/7mer_4X_count_dict.xlsx" SA_nomm = pd.read_excel(inpath_SA_nomm) A_nomm = pd.read_excel(inpath_A_nomm) SA_mm = pd.read_excel(inpath_SA_mm) table = [SA_nomm[['ProteinID', 'G5-box', 'Position']], A_nomm[['ProteinID', 'G5-box', 'Position']], SA_mm[['ProteinID', 'G5-box', 'Position']]] # table= [A_nomm[['Entry', 'G5_box', 'Value']], SA_mm[['Entry', 'G5_box', 'Value']]] data = pd.concat(table) data = data.reset_index(drop=True) unique_7mers = data['G5-box'].unique() temp = data id_set3 = {} for j in range(temp.shape[0]): seq = temp.loc[j, "G5-box"] ID = temp.loc[j, "ProteinID"] x_data = list_of_7mer_4X(seq) for x in x_data: if (x not in id_set3): id_set3[x] = set() id_set3[x].add(ID) else: id_set3[x].add(ID) id_set3.items() with open(outpath1, 'w') as f: [f.write('{0},{1}\n'.format(key, value)) for key, value in id_set3.items()] with open(outpath2, 'w') as f: [f.write('{0},{1}\n'.format(key, [len(value), round((100 * len(value) / total), 2)])) for key, value in id_set3.items()] with open(outpath2, 'rU') as f: reader = csv.reader(f) next(reader) answer = max(int(column[1].replace(',', '').replace('[', '').replace(']', '')) for column in reader) for each in id_set3.items(): if (len(each[1]) == answer): str3 = each[0] if (str3.startswith("X")): str3 = str3[1:] if (str3.endswith("X")): x43 = str3[:-1] elif (str3.startswith("X")): x43 = str3[1:] else: x43 = str3 elif (str3.endswith("X")): str3 = str3[:-1] if (str3.startswith("X")): x43 = str3[1:] elif (str3.endswith("X")): x43 = str3[:-1] else: x43 = str3 else: x43 = str3 abc = [] l1 = [] inpath = "media/new.xlsx" workbook = xlsxwriter.Workbook('media/output_new.xlsx') outpath = "media/output_new.xlsx" df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] protein_id for i in range(len(protein)): l = H(protein_id[i], protein[i], x1, x2, x3, x43, mismatch1, mismatch2, mismatch3, mismatch4, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position.1', 'G4-box', 'Position.2', 'G5-box', 'Position.3']) gdomains = gdomains[gdomains['ProteinID'].astype(bool)] gdomains.head() gdomains.to_excel(outpath, index=False) df = pd.read_excel("media/output_new.xlsx") df.to_html("media/output_new.html") df = pd.read_excel("media/output_wo_bias.xlsx") df.to_html("media/output_wo_bias.html") counter = {} inpath = "media/new.xlsx" inpath_before = "media/output_new.xlsx" workbook = xlsxwriter.Workbook('media/neg.xlsx') outpath = "media/neg.xlsx" df1 = pd.read_excel(inpath) df2 = df1.set_index("Entry", drop=False) protein = df2.loc[:, "Sequence"] protein_id = df2.loc[:, "Entry"] protein_id for j in range(50): abc = [] l1 = [] for i in range(len(protein)): s = shuffler(protein[i]) l = H(protein_id[i], s, x1, x2, x3, x43, mismatch1, mismatch2, mismatch3, mismatch4, Min_G1_G3, Min_G3_G4, Min_G4_G5, Max_G1_G3, Max_G3_G4, Max_G4_G5) l1.append(l) abc = [item for sublist in l1 for item in sublist] gdomains = pd.DataFrame(abc, columns=['ProteinID', 'G1-box', 'Position', 'G3-box', 'Position', 'G4-box', 'Position', 'G5-box', 'Position']) counter[j] = df_gdomain_counter(gdomains) outpath1 = "media/after.csv" outpath2 = "media/before.csv" xyz = pd.DataFrame(pd.concat(counter.values())) xyz['Protein'] = xyz.index xyz_mean_after = xyz.groupby(['Protein']).sum() / 50 xyz_mean_after['Protein'] = xyz_mean_after.index xyz_mean_after.to_csv(outpath1) xyz_before =
pd.read_excel(inpath_before)
pandas.read_excel
import pickle import pandas as pd import matplotlib.pyplot as plt from matplotlib.dates import DateFormatter import seaborn as sns from gensim.models.ldamulticore import LdaMulticore import numpy as np # load the model from disk filename = 'models/trained_lda.sav' ldamodel = LdaMulticore.load(filename) filename = 'models/trained_lda_corpus.sav' corpus = pickle.load(open(filename, 'rb')) #load the files data_files = ["data/pubmed_articles_cancer_01_smaller.csv", "data/pubmed_articles_cancer_02_smaller.csv", "data/pubmed_articles_cancer_03_smaller.csv","data/pubmed_articles_cancer_04_smaller.csv"] input_data = pd.DataFrame() print("load the files") for file in data_files: df_load = pd.read_csv(file,skip_blank_lines=True) input_data = input_data.append(df_load) input_data.abstract = input_data.abstract.astype('str') dates_df = input_data.copy() dates_df = dates_df[["pubmed_id", "created_date"]] print("get weights") # https://stackoverflow.com/questions/62174945/gensim-extract-100-most-representative-documents-for-each-topic topic_probs = ldamodel.get_document_topics(corpus) #get the list of topic probabilities by doc topic_dict = [dict(x) for x in topic_probs] #convert to dictionary to convert to data frame df = pd.DataFrame(topic_dict).fillna(0) #convert to data frame, fill topics < 0.01 as 0 df = df.reindex(sorted(df.columns), axis=1) columns_names = ["infection risk", "thyroid cancer", "safety and efficacy", "leukemia chemotherapy", "surgical intervention", "lymph nodes detection", "pain management", "cervical cancer", "bladder cancer", "risk prediction", "adjuvant therapy", "healthy habits", "hematologic toxicity", "surgical complications", "tumor angiogenesis", "Intraoperative Radiation Therapy", "radiotherapy", "stem cell transplantation", "glioma", "behavioral intervention", "prostate cancer"] df.columns = columns_names print("create new df") # Topics per decade Tot = 6 Cols = 3 # Compute Rows required Rows = Tot // Cols Rows += Tot % Cols # Create a Position index Position = range(1,Tot + 1) for column in df.columns: df[column] = np.where(df[column].values <= 0.05, 0, 1) transformed_df = dates_df.join(df) transformed_df.reset_index(drop=True, inplace=True) #EDA: Very little data before 1975 transformed_df['created_date'] =
pd.to_datetime(transformed_df['created_date'], format="%m/%d/%Y %H:%M")
pandas.to_datetime
""" A script package helping you make plots for paper. """ import os, sys, json import numpy as np from numpy.lib.arraysetops import isin import pandas as pd import itertools import matplotlib.pyplot as plt import matplotlib.lines as mlines from contextlib import redirect_stderr from os import devnull from exptools.launching.variant import flatten_variant4hparams # NOTE: this could limit the number of curves of your plot color_defaults = [ '#1f77b4', # muted blue '#ff7f0e', # safety orange '#2ca02c', # cooked asparagus green '#d62728', # brick red '#9467bd', # muted purple '#8c564b', # chestnut brown '#e377c2', # raspberry yogurt pink '#7f7f7f', # middle gray '#bcbd22', # curry yellow-green '#17becf', # blue-teal ] class PaperCurvePlotter: def __init__(self, exp_paths, log_filename= "progress.csv", param_filename= "variant_config.json", ): """ @ Args: exp_paths: list[str] absolute paths n_fig_a_row: int How many figure you want to put in a row fig_name_shorten_level: int to make the figure title shorter, the label will ignore the first some. """ self.exp_paths = exp_paths self.log_filename = log_filename self.param_filename = param_filename self.color_map = dict() self.df = pd.DataFrame() self.interpret_exp_paths() def interpret_exp_paths(self): """ Go through all paths, and log them into a pandas data frame arranged by params """ # extract all valid log directory for exp_path in self.exp_paths: for path, subdirs, subfiles in os.walk(exp_path): if self.log_filename in subfiles and self.param_filename in subfiles: # get a valid directory with open(os.path.join(path, self.param_filename)) as f: param = json.load(f) # to make all dictionary in the same level, which is easier to process param = flatten_variant4hparams(param) abspath = os.path.abspath(path) param["experiment_log_path"] = abspath self.df = self.df.append(param, ignore_index= True) if self.df.empty: Warning("You got an empty database, please check your exp_paths") def make_plots(self, args_in_figures, args_in_series, x_key, y_key, xlabel= None, ylabel= None, margins= (1, 1, 1, 1), x_lim: tuple= (-5*1e6, 50*1e6), y_lim: tuple=(0.0, 1e3), sci_lim: tuple= None, n_fig_a_row= 4, one_fig_size= (5, 5), fontsize= 18, fig_name_shorten_level= 0, show_legend= False, ): """ The main entrance ploting all experiments by design. The two arguments are specifying what experiments you want to plot. Both of them are dictionaries, whose keys are param keys and values are a list of values you want to plot. If providing None, we will dig out all options in this given key. @ Args: args_in_figures: dict{str: list} plot all experiments that meet the specifications (seperated in each figure) args_in_series: dict{str: list} plot all experiments that meet the specifications (seperated in each curve) margins: a tuple of 4 margin in inches, in the order of (top, bottom, left, right) sci_lim: tuple(int, int) demote the scientific notation of x and y, (exponent of 10) """ self.n_fig_a_row = n_fig_a_row self.one_fig_size = one_fig_size self.fontsize = fontsize self.x_lim = x_lim self.y_lim = y_lim self.fig_name_shorten_level = fig_name_shorten_level self.show_legend = show_legend self.marked_labels = [] n_figures = 1 figure_keys, figure_all_options = [], [] for key, options in args_in_figures.items(): # options: list # find all args which is assigned as None, and seperate them if options is None: options = [*(self.df[key].unique())] n_figures *= len(options) figure_all_options.append(options) figure_keys.append(key) # record mapping from label name to options, which makes a 2 level nested dict self.series_label_mapping = dict() series_keys, series_all_options = [], [] for key, options in args_in_series.items(): if options is None: options = [*(self.df[key].unique())] series_all_options.append(options) series_keys.append(key) for i, options in enumerate(itertools.product(*series_all_options)): label = "" optionset = dict() for key, option in zip(series_keys, options): label += str(key) + ":" + str(option) + ";" optionset[key] = option self.series_label_mapping[label] = optionset self.color_map[label] = color_defaults[i] self.fig, axs = self.create_figure(n_figures) # plot each figure one by one for ax, fig_optionset in zip( axs.flat, itertools.product(*figure_all_options) ): # get all rows that meet the figure options fig_df = self.df fig_name = "" for fig_key, fig_opt in zip(figure_keys, fig_optionset): fig_df = fig_df.loc[fig_df[fig_key] == fig_opt] fig_key = fig_key.split(".", self.fig_name_shorten_level)[-1] fig_name += fig_key + ":" + str(fig_opt) + ";" # plot each curve for label, series_optionset in self.series_label_mapping.items(): # get all rows that meet the series options ser_df = fig_df for ser_key, ser_opt in series_optionset.items(): ser_df = ser_df.loc[ser_df[ser_key] == ser_opt] self.plot_exp(ax, ser_df["experiment_log_path"], x_key, y_key, label= label, ) # warp up for this figure ax.grid(color= "gray", linewidth= 0.5) ax.tick_params(axis='both', labelsize=14) ax.set_title(fig_name, fontsize=16) ax.set_xlim(self.x_lim) ax.ticklabel_format(style='sci', axis='x', scilimits=sci_lim) self.finish_plot(xlabel, ylabel, margins) def finish_plot(self, xlabel, ylabel, margins): if xlabel is not None: plt.xlabel(xlabel, fontsize= self.fontsize) if ylabel is not None: plt.ylabel(ylabel, fontsize= self.fontsize) plt.xlim(self.x_lim) plt.ylim(self.y_lim) plt.subplots_adjust( top = 1 - (margins[0] / self.fig.get_size_inches()[0]), bottom= margins[1] / self.fig.get_size_inches()[1], left= margins[2] / self.fig.get_size_inches()[0], ) if self.show_legend: plt.subplots_adjust(right= 1 - ((margins[3] + 2) / self.fig.get_size_inches()[0])) plt.legend( loc='upper left', bbox_to_anchor= (1, 1), handles= [mlines.Line2D([],[], color= v, label= k) for k, v in self.color_map.items()] ) else: plt.subplots_adjust( right= 1 - (margins[3] / self.fig.get_size_inches()[0]) ) save_name = ylabel + "_to_" + xlabel + "_plots.png" save_filename = os.path.join(os.getcwd(), save_name) print("image saved at {}".format(save_filename)) plt.savefig(save_filename) def create_figure(self, n_figures): legend_margin = 5 if self.show_legend else 0 if n_figures > 1: n_cols = min(n_figures, self.n_fig_a_row) n_rows = (n_figures-1) // self.n_fig_a_row + 1 fig, axs = plt.subplots(n_rows, n_cols, sharex= True, figsize= (n_cols*self.one_fig_size[0] + legend_margin, n_rows*self.one_fig_size[1] + 1) ) fig.add_subplot(111, frameon=False) # hide tick and tick label of the big axes plt.tick_params(axis='both', which='both', bottom=False, top=False, left=False, right=False, labelcolor='none') else: fig, ax = plt.subplots(1, 1, figsize= (self.one_fig_size[0] + legend_margin, self.one_fig_size[1] + 1) ) axs = np.array(ax) return fig, axs def plot_exp(self, ax, paths: list, x: str= None, y= "eprew", label= ""): """ plot data based on given experiment logs, curve will be compute mean for all logs @ Args: paths: list[str] a list of absolute path x, y: str telling which curve you want to plot (assuming lots of curves in a .csv) """ all_runs = [] nframes = None for path in paths: with open(os.path.join(path, self.log_filename), "r") as f: try: df =
pd.read_csv(f)
pandas.read_csv
from urllib.request import Request, urlopen import time from bs4 import BeautifulSoup import requests import json import pandas as pd from pandas.io.json import json_normalize import sys import os sys.path.append(os.path.dirname(os.path.abspath(os.path.dirname(os.path.abspath(os.path.dirname(__file__)))))) import camping_server2.config as config import xmltodict class KoreaTourApi: def __init__(self): self.secretKey = config.Config.PUBLIC_API_KEY def festivalAPI(self, eventStartDate): """ 축제 검색 > 축제 시작일 설정 eventStartDate: YYYYMMDD 양식으로 기입 (ex: 20210601) """ url = 'http://api.visitkorea.or.kr/openapi/service/rest/KorService/searchFestival?' param = 'ServiceKey=' + self.secretKey + '&MobileOS=ETC&MobileApp=AppTest&numOfRows=3000&arrange=A&listYN=Y' detail_param = f'&eventStartDate={eventStartDate}' request = Request(url + param + detail_param) request.get_method = lambda: 'GET' response = urlopen(request) rescode = response.getcode() if rescode == 200: responseData = response.read() rD = xmltodict.parse(responseData) rDJ = json.dumps(rD) rDD = json.loads(rDJ) print(rDD) festival_api_df = json_normalize(rDD['response']['body']['items']['item']) return festival_api_df # festival_api_df.to_csv(config.Config.PATH + "festival_api_info.csv", encoding='utf-8-sig') def tourspotAPI(self, i, contentTypeId, radius=1000): """ 내 위치 기반 관광지 검색 i: camp_api_df의 i번째 row 캠핑장 기준 검색 contentType: 하단 contentType_dict 에서 골라 숫자 기입 - contentType_dict= {'festival': 15, 'tourspot': 12, 'shopping': 38, 'restaurant': 39, } radius: 경도 위도 지점의 반경 몇 m 이내 검색 (default = 1000m) """ camp_api_df = pd.read_csv(config.Config.PATH + "/camp_api_info.csv", encoding='utf-8-sig') mapX = camp_api_df['mapX'].iloc[i] mapY = camp_api_df['mapY'].iloc[i] url = 'http://api.visitkorea.or.kr/openapi/service/rest/KorService/locationBasedList?' param = 'ServiceKey='+self.secretKey+'&MobileOS=ETC&MobileApp=AppTest&numOfRows=3000' detail_param = f'contentTypeId={contentTypeId}&mapX={mapX}&mapY={mapY}&radius={radius}&listYN=Y' request = Request(url+param+detail_param) request.get_method = lambda: 'GET' response = urlopen(request) rescode = response.getcode() if rescode == 200: responseData = response.read() # rDD_list = {} rD = xmltodict.parse(responseData) rDJ = json.dumps(rD) rDD = json.loads(rDJ) # rDD_list.append(rDD) print(rDD) tourspot_api_df = json_normalize(rDD['response']['body']['items']['item']) return tourspot_api_df # tourspot_api_df.to_csv(config.Config.PATH + "tourspot_api_info.csv", encoding='utf-8-sig') # 지역 기반 관광지 검색 def tourlistAPI(self, num): item_list = ["addr1", "addr2", "areacode", "booktour", "cat1", "cat2", "cat3", "contentid", "contenttypeid", "createdtime", "firstimage", "firstimage2", "mapx", "mapy", "mlevel", "readcount", "sigungucode", "tel", "title", "zipcode"] data =
pd.DataFrame()
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Nov 30 15:49:39 2020 @author: Jyanqa """ import plotly.graph_objects as go import Setting as s #import plotly.express as px import pandas as pd #from plotly import io from statsmodels.base.model import GenericLikelihoodModel from scipy import stats import numpy as np #import statsmodels.api as sm import scipy.stats as st class LR(GenericLikelihoodModel): def loglike(self, params): scale = params[-1] weights = params[:-1] y_hat = np.sum(weights * self.exog[:, :-1], axis=-1) return np.sum(stats.norm.logpdf(self.endog, loc=y_hat, scale=scale)) def boot(y,x): model = LR(y, x) res = model.fit() resboot = res.bootstrap(s.noboot) #boot 10 times mean = resboot[0] std = resboot[1] z_score = st.norm.ppf(1 - (1 - s.confi)/2) upCI = mean + (z_score*(std/s.noboot)) lowCI = mean - (z_score*(std/s.noboot)) bootres =
pd.DataFrame({'Average Coefs':mean, 'Upper CI Coefs': upCI, 'Lower CI Coefs':lowCI})
pandas.DataFrame
import datetime from flask import Flask,redirect, url_for, request import matplotlib.pyplot as plt import pandas as pd import anomalies.config as config def plot_results(): year = request.form["year"] from_month = request.form["from_month"] to_month = request.form["to_month"] currency = request.form["currency"] print('anomalies are detecting...') print('year: ' + str(year)) print('from_month: ' + str(from_month)) print('to_month: ' + str(to_month)) start_date = request.form["year"] + "-" + request.form["from_month"] + "-01" #end_date = request.form["year"] + "-" + str(int(request.form["to_month"]) + 1) + "-01" if (int(request.form["to_month"]) == 12): end_date = str(int(request.form["year"]) + 1) + "-" + str(1) + "-01" else: end_date = request.form["year"] + "-" + str(int(request.form["to_month"]) + 1) + "-01" quotes = pd.read_csv("static/data/"+currency+"/DAT_MT_"+currency+"_M1_" + str(year) + ".csv") quotes['Time'] = quotes[['Date', 'Time']].apply(lambda x: ' '.join(x), axis=1) quotes['Time'] = quotes['Time'].apply(lambda x:
pd.to_datetime(x)
pandas.to_datetime
import numpy as np import pandas as pd import os import re import xml.etree.ElementTree as ET from pylatex import Document, Section, Subsection, Command, LargeText from pylatex.utils import italic, NoEscape, bold import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator import seaborn as sns from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator from tjbioarticles.keywords import Keywords from tjbioarticles.pubmed_extraction import PubMedExtraction class ArticlesData(object): '''The ArticlesData object collects the articles informations in a useful DataFrame and allows some output analysis''' def __init__(self, output_dir, xml_dir, latex_dir, email): self.output_dir = output_dir self.xml_dir = xml_dir self.latex_dir = latex_dir self.country_dict = pd.read_excel(r'input_data/country_dict.xlsx') self.email = email self.data_analysis = pd.DataFrame() self.create_data_structs() return def load_data(self, data_excel): self.data_analysis = pd.read_excel(data_excel) return def load_xml(self, filename): mytree = ET.parse(filename) self.xml_data = mytree.getroot() return def export_data(self, output_excel): final_data = self.data_analysis.drop('abstract', axis=1) final_data.to_excel(output_excel, index=False) return def insert_values_from_excel(self, input_excel): data = pd.read_excel(r'input_data/country_dict.xlsx') self.data_analysis = self.data_analysis.append(data, ignore_index=True) return def insert_values_from_PubMed_keywords(self, keywords, file_keysearch, file_articles_found): pub_data = PubMedExtraction(self.email) pub_data.find_id_from_key(keywords) self.collect_pubmed_data(pub_data, keywords) keywords.save_keys_output(file_keysearch, file_articles_found) return def insert_values_from_PubMed_title(self, title): pub_data = PubMedExtraction() pub_data.find_id_from_title(title) self.collect_pubmed_data(pub_data) return def create_data_structs(self): '''The create_data_columns function generates the analysis_data columns.''' self.data_analysis['id'] = '' self.data_analysis['filename'] = '' self.data_analysis['year'] = '' self.data_analysis['first_author'] = '' self.data_analysis['title'] = '' self.data_analysis['journal'] = '' self.data_analysis['pub_status'] = '' self.data_analysis['authors'] = '' self.data_analysis['authors_info'] = '' self.data_analysis['country'] = '' self.data_analysis['keywords_major'] = '' self.data_analysis['keywords_minor'] = '' self.data_analysis['search_key'] = '' self.data_analysis['abstract'] = '' self.abstract = {} return def collect_pubmed_data(self, pub_data, keywords): for article_id in pub_data.idlist: xml_data = pub_data.find_info_xml(article_id) f = open(self.xml_dir + 'tmp.xml', "wb") f.write(xml_data) f.close() mytree = ET.parse(self.xml_dir + 'tmp.xml') self.xml_data = mytree.getroot() data =
pd.DataFrame([article_id], columns=['id'])
pandas.DataFrame
## Code for automated data processing for ML ## Author: <NAME> ## Date: 2016-01-01 ## importing libraries import numpy as np import pandas as pd import sys from sklearn.preprocessing import LabelEncoder ## class for data class Data: ## initialization function def __init__(self, train, test): self.train_raw = train self.test_raw = test self.train = pd.DataFrame.copy(train) self.test = pd.DataFrame.copy(test) ## function for extracting id column def extract_ids(self): """Extracts id column if present, else generates default. """ # checking if first column is id first_column = self.train.columns[0].lower() id_flag = 0 if "id" in first_column or "no" in first_column or "number" in first_column: while True: id_input = str(input("Is %s the observation id/number?(y/n): " % (str(self.train.columns[0]))).lower()) if id_input.lower() not in ["y","n"]: print("Please enter y or n") else: print("") break break if id_input == "y": id_flag = 1 id_column = self.train.columns[0] self.train_ids = np.array(self.train[id_column]) self.train.drop(id_column, axis=1, inplace=True) print("Column %s extracted as id from train data" % (id_column)) try: self.test_ids = np.array(self.test[id_column]) self.test.drop(id_column, axis=1, inplace=True) print("Column %s extracted as id from test data" % (id_column)) except: self.test_ids = np.arange(len(self.test)) + 1 print("Column %s not found in test data, created default ids" % (id_column)) # asking for id column if id_flag == 0: while True: id_column = str(input("Please enter column name of id (or type none if no such column exists): ")) if id_column.lower() != "none" and id_column not in self.train.columns.values: print("Column %s not found in train data" % (id_column)) else: print("") break break if id_column != "none": self.train_ids = np.array(self.train[id_column]) self.train.drop(id_column, axis=1, inplace=True) print("Column %s extracted as id from train data" % (id_column)) try: self.test_ids = np.array(self.test[id_column]) self.test.drop(id_column, axis=1, inplace=True) print("Column %s extracted as id from test data" % (id_column)) except: self.test_ids = np.arange(len(self.test)) + 1 print("Column %s not found in test data, created default ids" %(id_column)) else: self.train_ids = np.arange(len(self.train)) + 1 self.test_ids = np.arange(len(self.test)) + 1 print("Created default ids for train data") print("Created default ids for test data") print("") ## function for extracting target variable def extract_target(self): """Extracts target variable. """ target_flag = 0 # checking if target variable is present in train data for colname in self.train.columns.values: if colname.lower() in ["response","result","target"]: while True: target_input = str(input("Is %s the target variable?(y/n): " % (colname))) if target_input not in ["y","n"]: print("Please enter y or n") else: print("") break break if target_input == "y": target_flag = 1 self.target = np.array(self.train[colname]) self.train.drop(colname, axis=1, inplace=True) if colname in self.test.columns.values: self.test.drop(colname, axis=1, inplace=True) print("Column %s extracted as target variable from data" % (colname)) # asking for target variable if target_flag == 0: while True: target_column = str(input("Please enter column name of target variable (or q to quit): ")) if target_column == "q": sys.exit() if target_column not in self.train.columns.values: print("Column %s not found in train data" % (target_column)) else: print("") break break self.target = np.array(self.train[target_column]) self.train.drop(target_column, axis=1, inplace=True) if target_column in self.test.columns.values: self.test.drop(target_column, axis=1, inplace=True) print("Column %s extracted as target variable from data" % (target_column)) ## function for checking columns def check_column_names(self): """Checks if all columns are present and removes ones that aren"t. """ train_cols = [] test_cols = [] # extracting columns present in train but not in test for colname in self.train.columns: if colname not in self.test.columns: train_cols.append(colname) # extracting columns present in test but not in train for colname in self.test.columns: if colname not in self.train.columns: test_cols.append(colname) # removing columns from train if len(train_cols) > 0: for i in train_cols: del self.train[i] print("Column %s not found in test data, removed from train data" % (i)) # removing columns from test if len(test_cols) > 0: for i in test_cols: del self.test[i] print("Column %s not found in train data, removed from test data" % (i)) self.test = self.test[self.train.columns] print("") ## function for removing constant columns def remove_constant_variables(self): """Removes all columns with constant value. """ # creating panel panel =
pd.concat([self.train, self.test], ignore_index=True)
pandas.concat
# -*- coding: utf-8 -*- # ################# # This script takes as an input the ice core data # from MacFarling Meure et al. (2006), imported in csv format from # the original .xlsx file, and returns a csv file with # tidy inferred atmospheric concentrations since year 1 of the current era. # # Last updated: Apr 2021 # Author: <NAME> # ################# import numpy as np import pandas as pd ######### Get clean ice core data ######### data_ = pd.DataFrame(pd.read_csv('../processed/law2006_by_year_clean.csv', header=0)) # # Aggregate data proc_data =
pd.DataFrame()
pandas.DataFrame
from random import randint import pandas as pd import pytest from janitor.timeseries import _get_missing_timestamps, fill_missing_timestamps # Random data for testing @pytest.fixture def timeseries_dataframe() -> pd.DataFrame: """ Returns a time series dataframe """ ts_index =
pd.date_range("1/1/2019", periods=1000, freq="1H")
pandas.date_range
import numpy as np import pandas as pd import pandas._testing as tm def test_mutate_groups(): # GH3380 df = pd.DataFrame( { "cat1": ["a"] * 8 + ["b"] * 6, "cat2": ["c"] * 2 + ["d"] * 2 + ["e"] * 2 + ["f"] * 2 + ["c"] * 2 + ["d"] * 2 + ["e"] * 2, "cat3": [f"g{x}" for x in range(1, 15)], "val": np.random.randint(100, size=14), } ) def f_copy(x): x = x.copy() x["rank"] = x.val.rank(method="min") return x.groupby("cat2")["rank"].min() def f_no_copy(x): x["rank"] = x.val.rank(method="min") return x.groupby("cat2")["rank"].min() grpby_copy = df.groupby("cat1").apply(f_copy) grpby_no_copy = df.groupby("cat1").apply(f_no_copy) tm.assert_series_equal(grpby_copy, grpby_no_copy) def test_no_mutate_but_looks_like(): # GH 8467 # first show's mutation indicator # second does not, but should yield the same results df = pd.DataFrame({"key": [1, 1, 1, 2, 2, 2, 3, 3, 3], "value": range(9)}) result1 = df.groupby("key", group_keys=True).apply(lambda x: x[:].key) result2 = df.groupby("key", group_keys=True).apply(lambda x: x.key) tm.assert_series_equal(result1, result2) def test_apply_function_with_indexing(): # GH: 33058 df = pd.DataFrame( {"col1": ["A", "A", "A", "B", "B", "B"], "col2": [1, 2, 3, 4, 5, 6]} ) def fn(x): x.col2[x.index[-1]] = 0 return x.col2 result = df.groupby(["col1"], as_index=False).apply(fn) expected = pd.Series( [1, 2, 0, 4, 5, 0], index=pd.MultiIndex.from_tuples( [(0, 0), (0, 1), (0, 2), (1, 3), (1, 4), (1, 5)] ), name="col2", ) tm.assert_series_equal(result, expected) def test_apply_mutate_columns_multiindex(): # GH 12652 df = pd.DataFrame( { ("C", "julian"): [1, 2, 3], ("B", "geoffrey"): [1, 2, 3], ("A", "julian"): [1, 2, 3], ("B", "julian"): [1, 2, 3], ("A", "geoffrey"): [1, 2, 3], ("C", "geoffrey"): [1, 2, 3], }, columns=pd.MultiIndex.from_tuples( [ ("A", "julian"), ("A", "geoffrey"), ("B", "julian"), ("B", "geoffrey"), ("C", "julian"), ("C", "geoffrey"), ] ), ) def add_column(grouped): name = grouped.columns[0][1] grouped["sum", name] = grouped.sum(axis=1) return grouped result = df.groupby(level=1, axis=1).apply(add_column) expected = pd.DataFrame( [ [1, 1, 1, 3, 1, 1, 1, 3], [2, 2, 2, 6, 2, 2, 2, 6], [ 3, 3, 3, 9, 3, 3, 3, 9, ], ], columns=pd.MultiIndex.from_tuples( [ ("geoffrey", "A", "geoffrey"), ("geoffrey", "B", "geoffrey"), ("geoffrey", "C", "geoffrey"), ("geoffrey", "sum", "geoffrey"), ("julian", "A", "julian"), ("julian", "B", "julian"), ("julian", "C", "julian"), ("julian", "sum", "julian"), ] ), )
tm.assert_frame_equal(result, expected)
pandas._testing.assert_frame_equal
# Copyright 2019 The Glow Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from glow import glow import pandas as pd import numpy as np from pyspark import SparkContext from pyspark.sql import DataFrame, Row, SparkSession, SQLContext from typeguard import check_argument_types, check_return_type from typing import Any, Dict, List from nptyping import Float, NDArray from .ridge_reduction import RidgeReduction from .ridge_regression import RidgeRegression from .logistic_ridge_regression import LogisticRidgeRegression __all__ = [ 'get_sample_ids', 'block_variants_and_samples', 'reshape_for_gwas', 'estimate_loco_offsets' ] def _get_contigs_from_loco_df(df: pd.DataFrame) -> pd.Series: return df.index.get_level_values(1).unique() def __validate_sample_ids(sample_ids: List[str]): """" Validates that a set of sample IDs are valid (non-empty and unique). """ assert check_argument_types() if any(not s for s in sample_ids): raise Exception("Cannot have empty sample IDs.") if len(sample_ids) != len(set(sample_ids)): raise Exception("Cannot have duplicated sample IDs.") def __get_index_map(sample_ids: List[str], sample_block_count: int, sql_ctx: SQLContext) -> Dict[str, List[str]]: """ Creates an index mapping from sample blocks to a list of corresponding sample IDs. Uses the same sample-blocking logic as the blocked GT matrix transformer. Requires that: - Each variant row has the same number of values - The number of values per row matches the number of sample IDs Args: sample_ids : The list of sample ID strings sample_block_count : The number of sample blocks Returns: index mapping from sample block IDs to a list of sample IDs """ assert check_argument_types() sample_id_df = sql_ctx.createDataFrame([Row(values=sample_ids)]) make_sample_blocks_fn = SparkContext._jvm.io.projectglow.transformers.blockvariantsandsamples.VariantSampleBlockMaker.makeSampleBlocks output_jdf = make_sample_blocks_fn(sample_id_df._jdf, sample_block_count) output_df = DataFrame(output_jdf, sql_ctx) index_map = {r.sample_block: r.values for r in output_df.collect()} assert check_return_type(index_map) return index_map def get_sample_ids(data: DataFrame) -> List[str]: """ Extracts sample IDs from a variant DataFrame, such as one read from PLINK files. Requires that the sample IDs: - Are in ``genotype.sampleId`` - Are the same across all the variant rows - Are a list of strings - Are non-empty - Are unique Args: data : The variant DataFrame containing sample IDs Returns: list of sample ID strings """ assert check_argument_types() distinct_sample_id_sets = data.selectExpr("genotypes.sampleId as sampleIds").distinct() if distinct_sample_id_sets.count() != 1: raise Exception("Each row must have the same set of sample IDs.") sample_ids = distinct_sample_id_sets.head().sampleIds __validate_sample_ids(sample_ids) assert check_return_type(sample_ids) return sample_ids def block_variants_and_samples(variant_df: DataFrame, sample_ids: List[str], variants_per_block: int, sample_block_count: int) -> (DataFrame, Dict[str, List[str]]): """ Creates a blocked GT matrix and index mapping from sample blocks to a list of corresponding sample IDs. Uses the same sample-blocking logic as the blocked GT matrix transformer. Requires that: - Each variant row has the same number of values - The number of values per row matches the number of sample IDs Args: variant_df : The variant DataFrame sample_ids : The list of sample ID strings variants_per_block : The number of variants per block sample_block_count : The number of sample blocks Returns: tuple of (blocked GT matrix, index mapping) """ assert check_argument_types() first_row = variant_df.selectExpr("size(values) as numValues").take(1) if not first_row: raise Exception("DataFrame has no values.") num_values = first_row[0].numValues if num_values != len(sample_ids): raise Exception( f"Number of values does not match between DataFrame ({num_values}) and sample ID list ({len(sample_ids)})." ) __validate_sample_ids(sample_ids) blocked_gt = glow.transform("block_variants_and_samples", variant_df, variants_per_block=variants_per_block, sample_block_count=sample_block_count) index_map = __get_index_map(sample_ids, sample_block_count, variant_df.sql_ctx) output = blocked_gt, index_map assert check_return_type(output) return output def reshape_for_gwas(spark: SparkSession, label_df: pd.DataFrame) -> DataFrame: """ Reshapes a Pandas DataFrame into a Spark DataFrame with a convenient format for Glow's GWAS functions. This function can handle labels that are either per-sample or per-sample and per-contig, like those generated by GloWGR's transform_loco function. Examples: .. invisible-code-block: import pandas as pd >>> label_df = pd.DataFrame({'label1': [1, 2], 'label2': [3, 4]}, index=['sample1', 'sample2']) >>> reshaped = reshape_for_gwas(spark, label_df) >>> reshaped.head() Row(label='label1', values=[1, 2]) >>> loco_label_df = pd.DataFrame({'label1': [1, 2], 'label2': [3, 4]}, ... index=pd.MultiIndex.from_tuples([('sample1', 'chr1'), ('sample1', 'chr2')])) >>> reshaped = reshape_for_gwas(spark, loco_label_df) >>> reshaped.head() Row(contigName='chr1', label='label1', values=[1]) Requires that: - The input label DataFrame is indexed by sample id or by (sample id, contig name) Args: spark : A Spark session label_df : A pandas DataFrame containing labels. The Data Frame should either be indexed by sample id or multi indexed by (sample id, contig name). Each column is interpreted as a label. Returns: A Spark DataFrame with a convenient format for Glow regression functions. Each row contains the label name, the contig name if provided in the input DataFrame, and an array containing the label value for each sample. """ assert check_argument_types() if label_df.index.nlevels == 1: # Indexed by sample id transposed_df = label_df.T column_names = ['label', 'values'] elif label_df.index.nlevels == 2: # Indexed by sample id and contig name # stacking sorts the new column index, so we remember the original sample # ordering in case it's not sorted def transpose_one(contig): transposed = label_df.xs(contig, level=1).T return transposed contigs = _get_contigs_from_loco_df(label_df) transposed_df = pd.concat([transpose_one(contig) for contig in contigs], keys=contigs, names=['contig', 'label']) column_names = ['contigName', 'label', 'values'] else: raise ValueError('label_df must be indexed by sample id or by (sample id, contig name)') # Can only create a Spark DataFrame from pandas with ndarray columns in Spark 3+ if int(spark.version.split('.')[0]) < 3: values = transposed_df.to_numpy().tolist() else: values = list(transposed_df.to_numpy()) transposed_df['values_array'] = values return spark.createDataFrame(transposed_df[['values_array']].reset_index(), column_names) def estimate_loco_offsets(block_df: DataFrame, label_df: pd.DataFrame, sample_blocks: Dict[str, List[str]], cov_df: pd.DataFrame =
pd.DataFrame({})
pandas.DataFrame
from datetime import datetime import numpy as np import pytest from pandas import Series, _testing as tm def test_title(): values = Series(["FOO", "BAR", np.nan, "Blah", "blurg"]) result = values.str.title() exp = Series(["Foo", "Bar", np.nan, "Blah", "Blurg"]) tm.assert_series_equal(result, exp) # mixed mixed = Series(["FOO", np.nan, "bar", True, datetime.today(), "blah", None, 1, 2.0]) mixed = mixed.str.title() exp = Series(["Foo", np.nan, "Bar", np.nan, np.nan, "Blah", np.nan, np.nan, np.nan]) tm.assert_almost_equal(mixed, exp) def test_lower_upper(): values = Series(["om", np.nan, "nom", "nom"]) result = values.str.upper() exp = Series(["OM", np.nan, "NOM", "NOM"]) tm.assert_series_equal(result, exp) result = result.str.lower() tm.assert_series_equal(result, values) # mixed mixed = Series(["a", np.nan, "b", True, datetime.today(), "foo", None, 1, 2.0]) mixed = mixed.str.upper() rs = Series(mixed).str.lower() xp = Series(["a", np.nan, "b", np.nan, np.nan, "foo", np.nan, np.nan, np.nan]) assert isinstance(rs, Series) tm.assert_series_equal(rs, xp) def test_capitalize(): values = Series(["FOO", "BAR", np.nan, "Blah", "blurg"]) result = values.str.capitalize() exp =
Series(["Foo", "Bar", np.nan, "Blah", "Blurg"])
pandas.Series
#! /usr/bin/env python # -*- coding: utf-8 -*- """Batch processing for GRD products """ import os import json import itertools import logging import pandas as pd from pathlib import Path from godale._concurrent import Executor from ost import Sentinel1Scene from ost.s1 import grd_to_ard from ost.helpers import raster as ras from ost.generic import ts_extent from ost.generic import ts_ls_mask from ost.generic import ard_to_ts from ost.generic import timescan from ost.generic import mosaic logger = logging.getLogger(__name__) def _create_processing_dict(inventory_df): """Function that creates a dictionary to handle GRD batch processing This helper function takes the inventory dataframe and creates a dictionary with the track as key, and all the files to process as a list, whereas the list is :param inventory_df: :return: """ # initialize empty dictionary dict_scenes = {} # get relative orbits and loop through each track_list = inventory_df["relativeorbit"].unique() for track in track_list: # get acquisition dates and loop through each acquisition_dates = inventory_df["acquisitiondate"][ inventory_df["relativeorbit"] == track ].unique() # loop through dates for i, acquisition_date in enumerate(acquisition_dates): # get the scene ids per acquisition_date and write into a list single_id = inventory_df["identifier"][ (inventory_df["relativeorbit"] == track) & (inventory_df["acquisitiondate"] == acquisition_date) ].tolist() # add this list to the dictionary and associate the track number # as dict key dict_scenes[f"{track}_{i+1}"] = single_id return dict_scenes def create_processed_df(inventory_df, list_of_scenes, outfile, out_ls, error): df = pd.DataFrame(columns=["identifier", "outfile", "out_ls", "error"]) for scene in list_of_scenes: temp_df = pd.DataFrame() # get scene_id temp_df["identifier"] = inventory_df.identifier[ inventory_df.identifier == scene ].values # fill outfiles/error temp_df["outfile"] = outfile temp_df["out_ls"] = out_ls temp_df["error"] = error # append to final df and delete temp_df for next loop df = pd.concat([df, temp_df]) del temp_df return df def grd_to_ard_batch(inventory_df, config_file): # load relevant config parameters with open(config_file, "r") as file: config_dict = json.load(file) download_dir = Path(config_dict["download_dir"]) data_mount = Path(config_dict["data_mount"]) # where all frames are grouped into acquisitions processing_dict = _create_processing_dict(inventory_df) processing_df =
pd.DataFrame(columns=["identifier", "outfile", "out_ls", "error"])
pandas.DataFrame
import numpy as np import pandas as pd import os from ogcore.constants import VAR_LABELS, DEFAULT_START_YEAR from ogcore import wealth, tax from ogcore.utils import save_return_table, Inequality cur_path = os.path.split(os.path.abspath(__file__))[0] def macro_table( base_tpi, base_params, reform_tpi=None, reform_params=None, var_list=["Y", "C", "K", "L", "r", "w"], output_type="pct_diff", num_years=10, include_SS=True, include_overall=True, start_year=DEFAULT_START_YEAR, table_format=None, path=None, ): """ Create a table of macro aggregates. Args: base_tpi (dictionary): TPI output from baseline run base_params (OG-Core Specifications class): baseline parameters object reform_tpi (dictionary): TPI output from reform run reform_params (OG-Core Specifications class): reform parameters object var_list (list): names of variable to use in table output_type (string): type of plot, can be: 'pct_diff': plots percentage difference between baselien and reform ((reform-base)/base) 'diff': plots difference between baseline and reform (reform-base) 'levels': variables in model units num_years (integer): number of years to include in table include_SS (bool): whether to include the steady-state results in the table include_overall (bool): whether to include results over the entire budget window as a column in the table start_year (integer): year to start table table_format (string): format to return table in: 'csv', 'tex', 'excel', 'json', if None, a DataFrame is returned path (string): path to save table to Returns: table (various): table in DataFrame or string format or `None` if saved to disk """ assert isinstance(start_year, (int, np.integer)) assert isinstance(num_years, (int, np.integer)) # Make sure both runs cover same time period if reform_tpi is not None: assert base_params.start_year == reform_params.start_year year_vec = np.arange(start_year, start_year + num_years) start_index = start_year - base_params.start_year # Check that reform included if doing pct_diff or diff plot if output_type == "pct_diff" or output_type == "diff": assert reform_tpi is not None year_list = year_vec.tolist() if include_overall: year_list.append(str(year_vec[0]) + "-" + str(year_vec[-1])) if include_SS: year_list.append("SS") table_dict = {"Year": year_list} for i, v in enumerate(var_list): if output_type == "pct_diff": # multiple by 100 so in percentage points results = ((reform_tpi[v] - base_tpi[v]) / base_tpi[v]) * 100 results_years = results[start_index : start_index + num_years] results_overall = ( ( reform_tpi[v][start_index : start_index + num_years].sum() - base_tpi[v][start_index : start_index + num_years].sum() ) / base_tpi[v][start_index : start_index + num_years].sum() ) * 100 results_SS = results[-1] results_for_table = results_years if include_overall: results_for_table = np.append( results_for_table, results_overall ) if include_SS: results_for_table = np.append(results_for_table, results_SS) table_dict[VAR_LABELS[v]] = results_for_table elif output_type == "diff": results = reform_tpi[v] - base_tpi[v] results_years = results[start_index : start_index + num_years] results_overall = ( reform_tpi[v][start_index : start_index + num_years].sum() - base_tpi[v][start_index : start_index + num_years].sum() ) results_SS = results[-1] results_for_table = results_years if include_overall: results_for_table = np.append( results_for_table, results_overall ) if include_SS: results_for_table = np.append(results_for_table, results_SS) table_dict[VAR_LABELS[v]] = results_for_table else: results_years = base_tpi[v][start_index : start_index + num_years] results_overall = results_years.sum() results_SS = base_tpi[v][-1] results_for_table = results_years if include_overall: results_for_table = np.append( results_for_table, results_overall ) if include_SS: results_for_table = np.append(results_for_table, results_SS) table_dict[VAR_LABELS[v] + " Baseline"] = results_for_table if reform_tpi is not None: results_years = reform_tpi[v][ start_index : start_index + num_years ] results_overall = results_years.sum() results_SS = reform_tpi[v][-1] results_for_table = results_years if include_overall: results_for_table = np.append( results_for_table, results_overall ) if include_SS: results_for_table = np.append( results_for_table, results_SS ) table_dict[VAR_LABELS[v] + " Reform"] = results_for_table # Make df with dict so can use pandas functions table_df = ( pd.DataFrame.from_dict(table_dict, orient="columns") .set_index("Year") .transpose() ) table_df.reset_index(inplace=True) table_df.rename(columns={"index": "Variable"}, inplace=True) table = save_return_table(table_df, table_format, path) return table def macro_table_SS( base_ss, reform_ss, var_list=["Yss", "Css", "Kss", "Lss", "rss", "wss"], table_format=None, path=None, ): """ Create a table of macro aggregates from the steady-state solutions. Args: base_ss (dictionary): SS output from baseline run reform_ss (dictionary): SS output from reform run var_list (list): names of variable to use in table table_format (string): format to return table in: 'csv', 'tex', 'excel', 'json', if None, a DataFrame is returned path (string): path to save table to Returns: table (various): table in DataFrame or string format or `None` if saved to disk """ table_dict = { "Variable": [], "Baseline": [], "Reform": [], "% Change (or pp diff)": [], } for i, v in enumerate(var_list): table_dict["Variable"].append(VAR_LABELS[v]) table_dict["Baseline"].append(base_ss[v]) table_dict["Reform"].append(reform_ss[v]) if v != "D/Y": diff = ((reform_ss[v] - base_ss[v]) / base_ss[v]) * 100 else: diff = ( reform_ss["Dss"] / reform_ss["Yss"] - base_ss["Dss"] / base_ss["Yss"] ) table_dict["% Change (or pp diff)"].append(diff) # Make df with dict so can use pandas functions table_df = pd.DataFrame.from_dict( table_dict, orient="columns" ).set_index("Variable") table = save_return_table(table_df, table_format, path, precision=3) return table def ineq_table( base_ss, base_params, reform_ss=None, reform_params=None, var_list=["cssmat"], table_format=None, path=None, ): """ Creates table with various inequality measures in the model steady-state. Args: base_ss (dictionary): SS output from baseline run base_params (OG-Core Specifications class): baseline parameters object reform_ss (dictionary): SS output from reform run reform_params (OG-Core Specifications class): reform parameters object var_list (list): names of variable to use in table table_format (string): format to return table in: 'csv', 'tex', 'excel', 'json', if None, a DataFrame is returned path (string): path to save table to Returns: table (various): table in DataFrame or string format or `None` if saved to disk """ table_dict = { "Steady-State Variable": [], "Inequality Measure": [], "Baseline": [], } if reform_ss: table_dict["Reform"] = [] table_dict["% Change"] = [] for i, v in enumerate(var_list): base_ineq = Inequality( base_ss[v], base_params.omega_SS, base_params.lambdas, base_params.S, base_params.J, ) if reform_ss: reform_ineq = Inequality( reform_ss[v], reform_params.omega_SS, reform_params.lambdas, reform_params.S, reform_params.J, ) table_dict["Steady-State Variable"].extend( [VAR_LABELS[v], "", "", "", ""] ) table_dict["Inequality Measure"].extend( [ "Gini Coefficient", "Var of Logs", "90/10 Ratio", "Top 10% Share", "Top 1% Share", ] ) base_values = np.array( [ base_ineq.gini(), base_ineq.var_of_logs(), base_ineq.ratio_pct1_pct2(0.90, 0.10), base_ineq.top_share(0.1), base_ineq.top_share(0.01), ] ) table_dict["Baseline"].extend(list(base_values)) if reform_ss: reform_values = np.array( [ reform_ineq.gini(), reform_ineq.var_of_logs(), reform_ineq.ratio_pct1_pct2(0.90, 0.10), reform_ineq.top_share(0.1), reform_ineq.top_share(0.01), ] ) table_dict["Reform"].extend(list(reform_values)) table_dict["% Change"].extend( list(((reform_values - base_values) / base_values) * 100) ) # Make df with dict so can use pandas functions table_df = pd.DataFrame.from_dict(table_dict) table = save_return_table(table_df, table_format, path, precision=3) return table def gini_table( base_ss, base_params, reform_ss=None, reform_params=None, var_list=["cssmat"], table_format=None, path=None, ): """ Creates table with measures of the Gini coefficient: overall, across lifetime earnings group, and across age. Args: base_ss (dictionary): SS output from baseline run base_params (OG-Core Specifications class): baseline parameters object reform_ss (dictionary): SS output from reform run reform_params (OG-Core Specifications class): reform parameters object var_list (list): names of variable to use in table table_format (string): format to return table in: 'csv', 'tex', 'excel', 'json', if None, a DataFrame is returned path (string): path to save table to Returns: table (various): table in DataFrame or string format or `None` if saved to disk """ table_dict = {"Steady-State Variable": [], "Gini Type": [], "Baseline": []} if reform_ss: table_dict["Reform"] = [] table_dict["% Change"] = [] for i, v in enumerate(var_list): base_ineq = Inequality( base_ss[v], base_params.omega_SS, base_params.lambdas, base_params.S, base_params.J, ) if reform_ss: reform_ineq = Inequality( reform_ss[v], reform_params.omega_SS, reform_params.lambdas, reform_params.S, reform_params.J, ) table_dict["Steady-State Variable"].extend([VAR_LABELS[v], "", ""]) table_dict["Gini Type"].extend( ["Overall", "Lifetime Income Group, $j$", "Age , $s$"] ) base_values = np.array( [ base_ineq.gini(), base_ineq.gini(type="ability"), base_ineq.gini(type="age"), ] ) table_dict["Baseline"].extend(list(base_values)) if reform_ss: reform_values = np.array( [ reform_ineq.gini(), reform_ineq.gini(type="ability"), reform_ineq.gini(type="age"), ] ) table_dict["Reform"].extend(list(reform_values)) table_dict["% Change"].extend( list(((reform_values - base_values) / base_values) * 100) ) # Make df with dict so can use pandas functions table_df =
pd.DataFrame.from_dict(table_dict)
pandas.DataFrame.from_dict
from datetime import datetime import numpy as np from pandas.tseries.frequencies import get_freq_code as _gfc from pandas.tseries.index import DatetimeIndex, Int64Index from pandas.tseries.tools import parse_time_string import pandas.tseries.frequencies as _freq_mod import pandas.core.common as com import pandas.core.datetools as datetools from pandas._tseries import Timestamp import pandas._tseries as lib #--------------- # Period logic def to_period(arg, freq=None): """ Attempts to convert arg to timestamp """ if arg is None: return arg if type(arg) == float: raise TypeError("Cannot convert a float to period") return Period(arg, freq=freq) class Period(object): def __init__(self, value=None, freq=None, year=None, month=1, quarter=None, day=1, hour=0, minute=0, second=0): """ Represents an period of time Parameters ---------- value : Period or basestring, default None The time period represented (e.g., '4Q2005') freq : str, default None e.g., 'B' for businessday, ('T', 5) or '5T' for 5 minutes year : int, default None month : int, default 1 quarter : int, default None day : int, default 1 hour : int, default 0 minute : int, default 0 second : int, default 0 """ # freq points to a tuple (base, mult); base is one of the defined # periods such as A, Q, etc. Every five minutes would be, e.g., # ('T', 5) but may be passed in as a string like '5T' self.freq = None # ordinal is the period offset from the gregorian proleptic epoch self.ordinal = None if value is None: if freq is None: raise ValueError("If value is None, freq cannot be None") if year is None: raise ValueError("If value is None, year cannot be None") if quarter is not None: month = (quarter - 1) * 3 + 1 base, mult = _gfc(freq) self.ordinal = lib.period_ordinal(year, month, day, hour, minute, second, base, mult) elif isinstance(value, Period): other = value if freq is None or _gfc(freq) == _gfc(other.freq): self.ordinal = other.ordinal freq = other.freq else: converted = other.asfreq(freq) self.ordinal = converted.ordinal elif isinstance(value, basestring): value = value.upper() dt, parsed, reso = parse_time_string(value) if freq is None: if reso == 'year': freq = 'A' elif reso == 'quarter': freq = 'Q' elif reso == 'month': freq = 'M' elif reso == 'day': freq = 'D' elif reso == 'hour': freq = 'H' elif reso == 'minute': freq = 'T' elif reso == 'second': freq = 'S' else: raise ValueError("Could not infer frequency for period") elif isinstance(value, datetime): dt = value if freq is None: raise ValueError('Must supply freq for datetime value') elif isinstance(value, (int, long)): if value <= 0: raise ValueError("Value must be positive") self.ordinal = value if freq is None: raise ValueError('Must supply freq for ordinal value') else: msg = "Value must be Period, string, integer, or datetime" raise ValueError(msg) base, mult = _gfc(freq) if self.ordinal is None: self.ordinal = lib.period_ordinal(dt.year, dt.month, dt.day, dt.hour, dt.minute, dt.second, base, mult) self.freq = _freq_mod._get_freq_str(base, mult) def __eq__(self, other): if isinstance(other, Period): return (self.ordinal == other.ordinal and _gfc(self.freq) == _gfc(other.freq)) return False def __add__(self, other): if isinstance(other, (int, long)): return Period(self.ordinal + other, self.freq) raise ValueError("Cannot add with non-integer value") def __sub__(self, other): if isinstance(other, (int, long)): return Period(self.ordinal - other, self.freq) if isinstance(other, Period): if other.freq != self.freq: raise ValueError("Cannot do arithmetic with " "non-conforming periods") return self.ordinal - other.ordinal raise ValueError("Cannot sub with non-integer value") def asfreq(self, freq=None, how='E'): """ Parameters ---------- freq : how : Returns ------- resampled : Period """ how = _validate_end_alias(how) base1, mult1 = _gfc(self.freq) base2, mult2 = _gfc(freq) new_ordinal = lib.period_asfreq(self.ordinal, base1, mult1, base2, mult2, how) return Period(new_ordinal, (base2, mult2)) def start_time(self): return self.to_timestamp(which_end='S') def end_time(self): return self.to_timestamp(which_end='E') def to_timestamp(self, which_end='S'): """ Return the Timestamp at the start/end of the period Parameters ---------- which_end: str, default 'S' (start) 'S', 'E'. Can be aliased as case insensitive 'Start', 'Finish', 'Begin', 'End' Returns ------- Timestamp """ which_end = _validate_end_alias(which_end) new_val = self.asfreq('S', which_end) base, mult = _gfc(new_val.freq) return Timestamp(lib.period_ordinal_to_dt64(new_val.ordinal, base, mult)) @property def year(self): base, mult = _gfc(self.freq) return lib.get_period_year(self.ordinal, base, mult) @property def month(self): base, mult = _gfc(self.freq) return lib.get_period_month(self.ordinal, base, mult) @property def qyear(self): base, mult = _gfc(self.freq) return lib.get_period_qyear(self.ordinal, base, mult) @property def quarter(self): base, mult = _gfc(self.freq) return lib.get_period_quarter(self.ordinal, base, mult) @property def day(self): base, mult = _gfc(self.freq) return lib.get_period_day(self.ordinal, base, mult) @property def week(self): base, mult = _gfc(self.freq) return lib.get_period_week(self.ordinal, base, mult) @property def weekday(self): base, mult = _gfc(self.freq) return lib.get_period_weekday(self.ordinal, base, mult) @property def day_of_week(self): base, mult = _gfc(self.freq) return lib.get_period_dow(self.ordinal, base, mult) @property def day_of_year(self): base, mult = _gfc(self.freq) return lib.get_period_doy(self.ordinal, base, mult) @property def hour(self): base, mult = _gfc(self.freq) return lib.get_period_hour(self.ordinal, base, mult) @property def minute(self): base, mult = _gfc(self.freq) return lib.get_period_minute(self.ordinal, base, mult) @property def second(self): base, mult = _gfc(self.freq) return lib.get_period_second(self.ordinal, base, mult) @classmethod def now(cls, freq=None): return Period(datetime.now(), freq=freq) def __repr__(self): base, mult = _gfc(self.freq) formatted = lib.period_ordinal_to_string(self.ordinal, base, mult) freqstr = _freq_mod._reverse_period_code_map[base] if mult == 1: return "Period('%s', '%s')" % (formatted, freqstr) return ("Period('%s', '%d%s')" % (formatted, mult, freqstr)) def __str__(self): base, mult = _gfc(self.freq) formatted = lib.period_ordinal_to_string(self.ordinal, base, mult) return ("%s" % formatted) def strftime(self, fmt): """ Returns the string representation of the :class:`Period`, depending on the selected :keyword:`format`. :keyword:`format` must be a string containing one or several directives. The method recognizes the same directives as the :func:`time.strftime` function of the standard Python distribution, as well as the specific additional directives ``%f``, ``%F``, ``%q``. (formatting & docs originally from scikits.timeries) +-----------+--------------------------------+-------+ | Directive | Meaning | Notes | +===========+================================+=======+ | ``%a`` | Locale's abbreviated weekday | | | | name. | | +-----------+--------------------------------+-------+ | ``%A`` | Locale's full weekday name. | | +-----------+--------------------------------+-------+ | ``%b`` | Locale's abbreviated month | | | | name. | | +-----------+--------------------------------+-------+ | ``%B`` | Locale's full month name. | | +-----------+--------------------------------+-------+ | ``%c`` | Locale's appropriate date and | | | | time representation. | | +-----------+--------------------------------+-------+ | ``%d`` | Day of the month as a decimal | | | | number [01,31]. | | +-----------+--------------------------------+-------+ | ``%f`` | 'Fiscal' year without a | \(1) | | | century as a decimal number | | | | [00,99] | | +-----------+--------------------------------+-------+ | ``%F`` | 'Fiscal' year with a century | \(2) | | | as a decimal number | | +-----------+--------------------------------+-------+ | ``%H`` | Hour (24-hour clock) as a | | | | decimal number [00,23]. | | +-----------+--------------------------------+-------+ | ``%I`` | Hour (12-hour clock) as a | | | | decimal number [01,12]. | | +-----------+--------------------------------+-------+ | ``%j`` | Day of the year as a decimal | | | | number [001,366]. | | +-----------+--------------------------------+-------+ | ``%m`` | Month as a decimal number | | | | [01,12]. | | +-----------+--------------------------------+-------+ | ``%M`` | Minute as a decimal number | | | | [00,59]. | | +-----------+--------------------------------+-------+ | ``%p`` | Locale's equivalent of either | \(3) | | | AM or PM. | | +-----------+--------------------------------+-------+ | ``%q`` | Quarter as a decimal number | | | | [01,04] | | +-----------+--------------------------------+-------+ | ``%S`` | Second as a decimal number | \(4) | | | [00,61]. | | +-----------+--------------------------------+-------+ | ``%U`` | Week number of the year | \(5) | | | (Sunday as the first day of | | | | the week) as a decimal number | | | | [00,53]. All days in a new | | | | year preceding the first | | | | Sunday are considered to be in | | | | week 0. | | +-----------+--------------------------------+-------+ | ``%w`` | Weekday as a decimal number | | | | [0(Sunday),6]. | | +-----------+--------------------------------+-------+ | ``%W`` | Week number of the year | \(5) | | | (Monday as the first day of | | | | the week) as a decimal number | | | | [00,53]. All days in a new | | | | year preceding the first | | | | Monday are considered to be in | | | | week 0. | | +-----------+--------------------------------+-------+ | ``%x`` | Locale's appropriate date | | | | representation. | | +-----------+--------------------------------+-------+ | ``%X`` | Locale's appropriate time | | | | representation. | | +-----------+--------------------------------+-------+ | ``%y`` | Year without century as a | | | | decimal number [00,99]. | | +-----------+--------------------------------+-------+ | ``%Y`` | Year with century as a decimal | | | | number. | | +-----------+--------------------------------+-------+ | ``%Z`` | Time zone name (no characters | | | | if no time zone exists). | | +-----------+--------------------------------+-------+ | ``%%`` | A literal ``'%'`` character. | | +-----------+--------------------------------+-------+ .. note:: (1) The ``%f`` directive is the same as ``%y`` if the frequency is not quarterly. Otherwise, it corresponds to the 'fiscal' year, as defined by the :attr:`qyear` attribute. (2) The ``%F`` directive is the same as ``%Y`` if the frequency is not quarterly. Otherwise, it corresponds to the 'fiscal' year, as defined by the :attr:`qyear` attribute. (3) The ``%p`` directive only affects the output hour field if the ``%I`` directive is used to parse the hour. (4) The range really is ``0`` to ``61``; this accounts for leap seconds and the (very rare) double leap seconds. (5) The ``%U`` and ``%W`` directives are only used in calculations when the day of the week and the year are specified. .. rubric:: Examples >>> a = Period(freq='Q@JUL', year=2006, quarter=1) >>> a.strftime('%F-Q%q') '2006-Q1' >>> # Output the last month in the quarter of this date >>> a.strftime('%b-%Y') 'Oct-2005' >>> >>> a = Period(freq='D', year=2001, month=1, day=1) >>> a.strftime('%d-%b-%Y') '01-Jan-2006' >>> a.strftime('%b. %d, %Y was a %A') 'Jan. 01, 2001 was a Monday' """ base, mult = _gfc(self.freq) if fmt is not None: return lib.period_strftime(self.ordinal, base, mult, fmt) else: return lib.period_ordinal_to_string(self.ordinal, base, mult) def _period_unbox(key, check=None): ''' Period-like => int64 ''' if not isinstance(key, Period): key = Period(key, freq=check) elif check is not None: if key.freq != check: raise ValueError("%s is wrong freq" % key) return np.int64(key.ordinal) def _period_unbox_array(arr, check=None): if arr is None: return arr unboxer = np.frompyfunc(lambda x: _period_unbox(x, check=check), 1, 1) return unboxer(arr) def _period_box(val, freq): return Period(val, freq=freq) def _period_box_array(arr, freq): if arr is None: return arr if not isinstance(arr, np.ndarray): return arr boxfunc = lambda x: _period_box(x, freq) boxer = np.frompyfunc(boxfunc, 1, 1) return boxer(arr) def dt64arr_to_periodarr(data, freq): if data is None: return data if isinstance(freq, basestring): base, mult = _gfc(freq) else: base, mult = freq return lib.dt64arr_to_periodarr(data.view('i8'), base, mult) # --- Period index sketch class PeriodIndex(Int64Index): """ Immutable ndarray holding ordinal values indicating regular periods in time such as particular years, quarters, months, etc. A value of 1 is the period containing the Gregorian proleptic datetime Jan 1, 0001 00:00:00. This ordinal representation is from the scikits.timeseries project. For instance, # construct period for day 1/1/1 and get the first second i = Period(year=1,month=1,day=1,freq='D').asfreq('S', 'S') i.ordinal ===> 1 Index keys are boxed to Period objects which carries the metadata (eg, frequency information). Parameters ---------- data : array-like (1-dimensional), optional Optional period-like data to construct index with dtype : NumPy dtype (default: i8) copy : bool Make a copy of input ndarray freq : string or period object, optional One of pandas period strings or corresponding objects start : starting value, period-like, optional If data is None, used as the start point in generating regular period data. periods : int, optional, > 0 Number of periods to generate, if generating index. Takes precedence over end argument end : end value, period-like, optional If periods is none, generated index will extend to first conforming period on or just past end argument """ def __new__(cls, data=None, freq=None, start=None, end=None, periods=None, copy=False, name=None): if isinstance(freq, Period): freq = freq.freq else: freq = datetools.get_standard_freq(freq) if data is None: if start is None and end is None: raise ValueError('Must specify start, end, or data') start = to_period(start, freq) end = to_period(end, freq) is_start_intv = isinstance(start, Period) is_end_intv = isinstance(end, Period) if (start is not None and not is_start_intv): raise ValueError('Failed to convert %s to period' % start) if (end is not None and not is_end_intv): raise ValueError('Failed to convert %s to period' % end) if is_start_intv and is_end_intv and (start.freq != end.freq): raise ValueError('Start and end must have same freq') if freq is None: if is_start_intv: freq = start.freq elif is_end_intv: freq = end.freq else: raise ValueError('Could not infer freq from start/end') if periods is not None: if start is None: data = np.arange(end.ordinal - periods + 1, end.ordinal + 1, dtype=np.int64) else: data = np.arange(start.ordinal, start.ordinal + periods, dtype=np.int64) else: if start is None or end is None: msg = 'Must specify both start and end if periods is None' raise ValueError(msg) data = np.arange(start.ordinal, end.ordinal+1, dtype=np.int64) subarr = data.view(cls) subarr.name = name subarr.freq = freq return subarr if not isinstance(data, np.ndarray): if np.isscalar(data): raise ValueError('PeriodIndex() must be called with a ' 'collection of some kind, %s was passed' % repr(data)) if isinstance(data, Period): data = [data] # other iterable of some kind if not isinstance(data, (list, tuple)): data = list(data) try: data = np.array(data, dtype='i8') except: data = np.array(data, dtype='O') if freq is None: raise ValueError('freq cannot be none') data = _period_unbox_array(data, check=freq) else: if isinstance(data, PeriodIndex): if freq is None or freq == data.freq: freq = data.freq data = data.values else: base1, mult1 =
_gfc(data.freq)
pandas.tseries.frequencies.get_freq_code
import pandas as pd import numpy as np import csv import os from collections import Counter import pytz from datetime import datetime from dateutil.relativedelta import relativedelta import data_paths from transit_non_transit_comparision.before_and_after_final_tpu import pos_percent_minus_neg_percent import utils # statistics import statsmodels.formula.api as smf # Hong Kong and Shanghai share the same time zone. # Hence, we transform the utc time in our dataset into Shanghai time time_zone_hk = pytz.timezone('Asia/Shanghai') october_1_start = datetime(2016, 10, 1, 0, 0, 0, tzinfo=time_zone_hk) october_31_end = datetime(2016, 10, 31, 23, 59, 59, tzinfo=time_zone_hk) december_1_start = datetime(2016, 12, 1, 0, 0, 0, tzinfo=time_zone_hk) december_31_end = datetime(2016, 12, 31, 23, 59, 59, tzinfo=time_zone_hk) class StudyArea(object): def __init__(self, area_name, open_month): assert open_month in ['Oct', 'Dec'], "The open month should be either 'Oct' or 'Dec'." self.area_name = area_name if open_month == 'Oct': self.open_start_date = october_1_start self.open_end_date = october_31_end else: self.open_start_date = december_1_start self.open_end_date = december_31_end def transform_string_time_to_datetime(string): """ :param string: the string which records the time of the posted tweets :return: a datetime object which could get access to the year, month, day easily """ assert isinstance(string, str) datetime_object = datetime.strptime(string, '%Y-%m-%d %H:%M:%S+08:00') final_time_object = datetime_object.replace(tzinfo=time_zone_hk) return final_time_object def add_post_variable(string, opening_start_date, opening_end_date, check_window=0): """ Add the value of the POST variable in the DID analysis. In this case, we assume that the introduction of MTR stations immediately changes the tweet sentiment and tweet activity :param string: the time string :param opening_start_date: the opening date of the studied station :param opening_end_date: the closing date of the studied station :param check_window: the month window size used to check the temporal effect of the studied station :return: the post variable based on the time of one tweet """ time_object = transform_string_time_to_datetime(string) if check_window == np.inf: if time_object > opening_end_date: return 1 elif time_object < opening_start_date: return 0 else: return 'not considered' else: left_time_range = opening_start_date - relativedelta(months=check_window) right_time_range = opening_end_date + relativedelta(months=check_window) if left_time_range <= time_object < opening_start_date: return 0 elif opening_end_date < time_object <= right_time_range: return 1 else: return 'not considered' def add_post_variable_lag_effect(string, opening_start_date, opening_end_date, lag_effect_month=0): """ Add the value of the POST variable in the DID analysis (Consider the lag effect) In this case, we believe that the operation of MTR stations does not immediately change the tweet sentiment and tweet activity. The lag effect exists. :param string: the time string :param opening_start_date: the opening date of the studied station :param opening_end_date: the closing date of the studied station :param lag_effect_month: the number of lag effect months :return: the post variable based on the time of one tweet """ time_object = transform_string_time_to_datetime(string) if lag_effect_month == np.inf: if time_object > opening_end_date: return 1 elif time_object < opening_start_date: return 0 else: return 'not considered' else: left_time_range = opening_start_date - relativedelta(months=12) right_time_range = opening_end_date + relativedelta(months=lag_effect_month + 12) opening_end_date = opening_end_date + relativedelta(months=lag_effect_month) if left_time_range <= time_object < opening_start_date: return 0 elif opening_end_date < time_object <= right_time_range: return 1 else: return 'not considered' def get_population_one_area_combined(dataframe: pd.DataFrame, census_dict: dict): """ Get the population data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param census_dict: dictionary saving the population and median income information :return: dataframe containing the population """ assert 'T_i_t' in dataframe, 'The dataframe should have treatment and control indicator' dataframe['Population_log'] = dataframe.apply( lambda row: np.log(census_dict['treatment'][0]) if row['T_i_t'] == 1 else np.log(census_dict['control'][0]), axis=1) return dataframe def get_population_one_area_seperate(dataframe: pd.DataFrame, census_dict: dict): """ Get the population data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param census_dict: dictionary saving the population and median income information :return: dataframe containing the population """ assert 'T_i_t' in dataframe, 'The dataframe should have treatment and control indicator' dataframe['Population_log'] = dataframe.apply(lambda row: np.log(census_dict[row['SmallTPU']][0]), axis=1) return dataframe def get_median_income_one_area_combined(dataframe: pd.DataFrame, census_dict: dict): """ Get the population data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param census_dict: dictionary saving the population and median income information :return: dataframe containing the population """ assert 'T_i_t' in dataframe, 'The dataframe should have treatment and control indicator' dataframe['Median_Income_log'] = dataframe.apply( lambda row: np.log(census_dict['treatment'][1]) if row['T_i_t'] == 1 else np.log(census_dict['control'][1]), axis=1) return dataframe def get_median_income_one_area_seperate(dataframe: pd.DataFrame, census_dict: dict): """ Get the population data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param census_dict: dictionary saving the population and median income information :return: dataframe containing the population """ assert 'T_i_t' in dataframe, 'The dataframe should have treatment and control indicator' dataframe['Median_Income_log'] = dataframe.apply(lambda row: np.log(census_dict[row['SmallTPU']][1]), axis=1) return dataframe def get_population_three_areas_combined(dataframe: pd.DataFrame, census_dict: dict): """ Get the population data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param census_dict: dictionary saving the population and median income information :return: dataframe containing the population """ assert 'T_i_t' in dataframe, 'The dataframe should have treatment and control indicator' assert 'Area_name' in dataframe, "The dataframe should have one column saving the area name" assert 'kwun_tong' in census_dict, 'The dictionary should contain whampoa & ho man tin data' assert 'south_horizons' in census_dict, 'The dictionary should contain south horizons & lei tung data' assert 'ocean_park' in census_dict, 'The dictionary should contain ocean park & wong chuk hang data' result_population_log_list = [] dataframe_copy = dataframe.copy() for index, row in dataframe_copy.iterrows(): if (row['T_i_t'] == 1) and (row['Area_name'] == 'kwun_tong'): result_population_log_list.append(np.log(census_dict['kwun_tong'][0][0])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'kwun_tong'): result_population_log_list.append(np.log(census_dict['kwun_tong'][1][0])) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'south_horizons'): result_population_log_list.append(np.log(census_dict['south_horizons'][0][0])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'south_horizons'): result_population_log_list.append(np.log(census_dict['south_horizons'][1][0])) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'ocean_park'): result_population_log_list.append(np.log(census_dict['ocean_park'][0][0])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'ocean_park'): result_population_log_list.append(np.log(census_dict['ocean_park'][1][0])) else: raise ValueError('Something wrong with the area name...') dataframe_copy['Population_log'] = result_population_log_list return dataframe_copy def get_median_income_three_areas_combined(dataframe: pd.DataFrame, census_dict: dict): """ Get the median income data based on treatment and control setting :param dataframe: a pandas dataframe containing the data for DID analysis :param census_dict: dictionary saving the population and median income information :return: dataframe containing the median income """ assert 'T_i_t' in dataframe, 'The dataframe should have treatment and control indicator' assert 'Area_name' in dataframe, "The dataframe should have one column saving the area name" assert 'kwun_tong' in census_dict, 'The dictionary should contain whampoa & ho man tin data' assert 'south_horizons' in census_dict, 'The dictionary should contain south horizons & lei tung data' assert 'ocean_park' in census_dict, 'The dictionary should contain ocean park & wong chuk hang data' result_median_income_log_list = [] dataframe_copy = dataframe.copy() for index, row in dataframe_copy.iterrows(): if (row['T_i_t'] == 1) and (row['Area_name'] == 'kwun_tong'): result_median_income_log_list.append(np.log(census_dict['kwun_tong'][0][1])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'kwun_tong'): result_median_income_log_list.append(np.log(census_dict['kwun_tong'][1][1])) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'south_horizons'): result_median_income_log_list.append(np.log(census_dict['south_horizons'][0][1])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'south_horizons'): result_median_income_log_list.append(np.log(census_dict['south_horizons'][1][1])) elif (row['T_i_t'] == 1) and (row['Area_name'] == 'ocean_park'): result_median_income_log_list.append(np.log(census_dict['ocean_park'][0][1])) elif (row['T_i_t'] == 0) and (row['Area_name'] == 'ocean_park'): result_median_income_log_list.append(np.log(census_dict['ocean_park'][1][1])) else: raise ValueError('Something wrong with the area name...') dataframe_copy['Median_Income_log'] = result_median_income_log_list return dataframe_copy def build_dataframe_based_on_set(datapath, tpu_set, selected_user_set): """ Build the dataframes based on the given tpu set :param datapath: the datapath saving the tweets posted in each tpu :param tpu_set: a python set saving the considered tpu names :param selected_user_set: a set containing the id of users we are interested in :return: a pandas dataframe saving the tweets posted in the considered tpus """ tpu_name_list = [] dataframe_list = [] for tpu in tpu_set: tpu_name_list.append(tpu) dataframe = pd.read_csv(os.path.join(datapath, tpu, tpu + '_data.csv'), encoding='utf-8', dtype='str', quoting=csv.QUOTE_NONNUMERIC) dataframe['user_id_str'] = dataframe.apply(lambda row: np.int64(float(row['user_id_str'])), axis=1) dataframe_select = dataframe.loc[dataframe['user_id_str'].isin(selected_user_set)] dataframe_list.append(dataframe_select) combined_dataframe =
pd.concat(dataframe_list, axis=0)
pandas.concat
""" Copyright 2019 <NAME>. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import datetime import datetime as dt import os from typing import Union import numpy as np import pandas as pd import pytest import pytz from gs_quant.target.common import XRef, PricingLocation, Currency as CurrEnum from numpy.testing import assert_allclose from pandas.testing import assert_series_equal from pandas.tseries.offsets import CustomBusinessDay from pytz import timezone from testfixtures import Replacer from testfixtures.mock import Mock import gs_quant.timeseries.measures as tm import gs_quant.timeseries.measures_rates as tm_rates from gs_quant.api.gs.assets import GsTemporalXRef, GsAssetApi, GsIdType, IdList, GsAsset from gs_quant.api.gs.data import GsDataApi, MarketDataResponseFrame from gs_quant.api.gs.data import QueryType from gs_quant.data.core import DataContext from gs_quant.data.dataset import Dataset from gs_quant.data.fields import Fields from gs_quant.errors import MqError, MqValueError, MqTypeError from gs_quant.markets.securities import AssetClass, Cross, Index, Currency, SecurityMaster, Stock, \ Swap, CommodityNaturalGasHub from gs_quant.session import GsSession, Environment from gs_quant.test.timeseries.utils import mock_request from gs_quant.timeseries import Returns from gs_quant.timeseries.measures import BenchmarkType _index = [pd.Timestamp('2019-01-01')] _test_datasets = ('TEST_DATASET',) def mock_empty_market_data_response(): df = MarketDataResponseFrame() df.dataset_ids = () return df def map_identifiers_default_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-LIBOR-BBA" in ids: return {"USD-LIBOR-BBA": "MAPDB7QNB2TZVQ0E"} elif "EUR-EURIBOR-TELERATE" in ids: return {"EUR-EURIBOR-TELERATE": "MAJNQPFGN1EBDHAE"} elif "GBP-LIBOR-BBA" in ids: return {"GBP-LIBOR-BBA": "MAFYB8Z4R1377A19"} elif "JPY-LIBOR-BBA" in ids: return {"JPY-LIBOR-BBA": "MABMVE27EM8YZK33"} elif "EUR OIS" in ids: return {"EUR OIS": "MARFAGXDQRWM07Y2"} def map_identifiers_swap_rate_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m" in ids: return {"USD-3m": "MAAXGV0GZTW4GFNC"} elif "EUR-6m" in ids: return {"EUR-6m": "MA5WM2QWRVMYKDK0"} elif "KRW" in ids: return {"KRW": 'MAJ6SEQH3GT0GA2Z'} def map_identifiers_inflation_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "CPI-UKRPI" in ids: return {"CPI-UKRPI": "MAQ7ND0MBP2AVVQW"} elif "CPI-CPXTEMU" in ids: return {"CPI-CPXTEMU": "MAK1FHKH5P5GJSHH"} def map_identifiers_cross_basis_mocker(input_type: Union[GsIdType, str], output_type: Union[GsIdType, str], ids: IdList, as_of: dt.datetime = None, multimap: bool = False, limit: int = None, **kwargs ) -> dict: if "USD-3m/JPY-3m" in ids: return {"USD-3m/JPY-3m": "MA99N6C1KF9078NM"} elif "EUR-3m/USD-3m" in ids: return {"EUR-3m/USD-3m": "MAXPKTXW2D4X6MFQ"} elif "GBP-3m/USD-3m" in ids: return {"GBP-3m/USD-3m": "MA8BZHQV3W32V63B"} def get_data_policy_rate_expectation_mocker( start: Union[dt.date, dt.datetime] = None, end: Union[dt.date, dt.datetime] = None, as_of: dt.datetime = None, since: dt.datetime = None, fields: Union[str, Fields] = None, asset_id_type: str = None, **kwargs) -> pd.DataFrame: if 'meetingNumber' in kwargs: if kwargs['meetingNumber'] == 0: return mock_meeting_spot() elif 'meeting_date' in kwargs: if kwargs['meeting_date'] == dt.date(2019, 10, 24): return mock_meeting_spot() return mock_meeting_expectation() def test_parse_meeting_date(): assert tm.parse_meeting_date(5) == '' assert tm.parse_meeting_date('') == '' assert tm.parse_meeting_date('test') == '' assert tm.parse_meeting_date('2019-09-01') == dt.date(2019, 9, 1) def test_currency_to_default_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_default_mocker) asset_id_list = ["MAZ7RWC904JYHYPS", "MAJNQPFGN1EBDHAE", "MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] correct_mapping = ["MAPDB7QNB2TZVQ0E", "MAJNQPFGN1EBDHAE", "MAFYB8Z4R1377A19", "MABMVE27EM8YZK33", "MA4J1YB8XZP2BPT8", "MA4B66MW5E27U8P32SB"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_default_swap_rate_asset(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_swap_rate_mocker) asset_id_list = ['MAZ7RWC904JYHYPS', 'MAJNQPFGN1EBDHAE', 'MAJ6SEQH3GT0GA2Z'] correct_mapping = ['MAAXGV0GZTW4GFNC', 'MA5WM2QWRVMYKDK0', 'MAJ6SEQH3GT0GA2Z'] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_default_swap_rate_asset(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_currency_to_inflation_benchmark_rate(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_inflation_mocker) asset_id_list = ["MA66CZBQJST05XKG", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] correct_mapping = ["MAQ7ND0MBP2AVVQW", "MAK1FHKH5P5GJSHH", "MA4J1YB8XZP2BPT8"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.currency_to_inflation_benchmark_rate(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.currency_to_inflation_benchmark_rate('MA66CZBQJST05XKG') == 'MA66CZBQJST05XKG' def test_cross_to_basis(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_cross_basis_mocker) asset_id_list = ["MAYJPCVVF2RWXCES", "MA4B66MW5E27U8P32SB", "nobbid"] correct_mapping = ["MA99N6C1KF9078NM", "MA4B66MW5E27U8P32SB", "nobbid"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_basis(asset_id_list[i]) assert correct_id == correct_mapping[i] # Test that the same id is returned when a TypeError is raised mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=TypeError('Test')) assert tm.cross_to_basis('MAYJPCVVF2RWXCES') == 'MAYJPCVVF2RWXCES' def test_currency_to_tdapi_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA25DW5ZGC1BSC8Y', 'NOK') bbid_mock.return_value = 'NOK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAFRSWPAF5QPNTP2' == correct_id bbid_mock.return_value = 'CHF' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAW25BGQJH9P6DPT' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAA9MVX15AJNQCVG' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA6QCAP9B7ABS9HA' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAEE219J5ZP0ZKRK' == correct_id bbid_mock.return_value = 'SEK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAETMVTPNP3199A5' == correct_id bbid_mock.return_value = 'HKD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MABRNGY8XRFVC36N' == correct_id bbid_mock.return_value = 'NZD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAH16NHE1HBN0FBZ' == correct_id bbid_mock.return_value = 'AUD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAY8147CRK0ZP53B' == correct_id bbid_mock.return_value = 'CAD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MANJ8SS88WJ6N28Q' == correct_id bbid_mock.return_value = 'KRW' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAP55AXG5SQVS6C5' == correct_id bbid_mock.return_value = 'INR' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA20JHJXN1PD5HGE' == correct_id bbid_mock.return_value = 'CNY' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA4K1D8HH2R0RQY5' == correct_id bbid_mock.return_value = 'SGD' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MA5CQFHYBPH9E5BS' == correct_id bbid_mock.return_value = 'DKK' correct_id = tm_rates._currency_to_tdapi_swap_rate_asset(asset) assert 'MAF131NKWVRESFYA' == correct_id asset = Currency('MA890', 'PLN') bbid_mock.return_value = 'PLN' assert 'MA890' == tm_rates._currency_to_tdapi_swap_rate_asset(asset) replace.restore() def test_currency_to_tdapi_basis_swap_rate_asset(mocker): replace = Replacer() mocker.patch.object(GsSession.__class__, 'current', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=mock_request) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) with tm.PricingContext(dt.date.today()): asset = Currency('MA890', 'NOK') bbid_mock.return_value = 'NOK' assert 'MA890' == tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) asset = Currency('MAZ7RWC904JYHYPS', 'USD') bbid_mock.return_value = 'USD' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAQB1PGEJFCET3GG' == correct_id bbid_mock.return_value = 'EUR' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAGRG2VT11GQ2RQ9' == correct_id bbid_mock.return_value = 'GBP' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAHCYNB3V75JC5Q8' == correct_id bbid_mock.return_value = 'JPY' correct_id = tm_rates._currency_to_tdapi_basis_swap_rate_asset(asset) assert 'MAXVRBEZCJVH0C4V' == correct_id replace.restore() def test_check_clearing_house(): assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house('lch') assert tm_rates._ClearingHouse.CME == tm_rates._check_clearing_house(tm_rates._ClearingHouse.CME) assert tm_rates._ClearingHouse.LCH == tm_rates._check_clearing_house(None) invalid_ch = ['NYSE'] for ch in invalid_ch: with pytest.raises(MqError): tm_rates._check_clearing_house(ch) def test_get_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] assert dict(csaTerms='USD-1') == tm_rates._get_swap_csa_terms('USD', fed_funds_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_swap_csa_terms('EUR', estr_index) assert {} == tm_rates._get_swap_csa_terms('EUR', euribor_index) assert {} == tm_rates._get_swap_csa_terms('USD', usd_libor_index) def test_get_basis_swap_csa_terms(): euribor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EURIBOR.value] usd_libor_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.LIBOR.value] fed_funds_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.Fed_Funds.value] sofr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD'][BenchmarkType.SOFR.value] estr_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EUROSTR.value] eonia_index = tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['EUR'][BenchmarkType.EONIA.value] assert dict(csaTerms='USD-1') == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, sofr_index) assert dict(csaTerms='EUR-EuroSTR') == tm_rates._get_basis_swap_csa_terms('EUR', estr_index, eonia_index) assert {} == tm_rates._get_basis_swap_csa_terms('EUR', eonia_index, euribor_index) assert {} == tm_rates._get_basis_swap_csa_terms('USD', fed_funds_index, usd_libor_index) def test_match_floating_tenors(): swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['SOFR'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_payer_designated_maturity='1y', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_receiver_designated_maturity='3m') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_payer_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['GBP']['SONIA'], asset_parameters_receiver_designated_maturity='1y') assert '3m' == tm_rates._match_floating_tenors(swap_args)['asset_parameters_receiver_designated_maturity'] swap_args = dict(asset_parameters_payer_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=tm_rates.CURRENCY_TO_SWAP_RATE_BENCHMARK['USD']['LIBOR'], asset_parameters_receiver_designated_maturity='6m') assert swap_args == tm_rates._match_floating_tenors(swap_args) def test_get_term_struct_date(mocker): today = datetime.datetime.today() biz_day = CustomBusinessDay() assert today == tm_rates._get_term_struct_date(tenor=today, index=today, business_day=biz_day) date_index = datetime.datetime(2020, 7, 31, 0, 0) assert date_index == tm_rates._get_term_struct_date(tenor='2020-07-31', index=date_index, business_day=biz_day) assert date_index == tm_rates._get_term_struct_date(tenor='0b', index=date_index, business_day=biz_day) assert datetime.datetime(2021, 7, 30, 0, 0) == tm_rates._get_term_struct_date(tenor='1y', index=date_index, business_day=biz_day) def test_cross_stored_direction_for_fx_vol(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_stored_direction_for_fx_vol(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_usd_based_cross_for_fx_forecast(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) asset_id_list = ["MAYJPCVVF2RWXCES", "MATGYV0J9MPX534Z"] correct_mapping = ["MATGYV0J9MPX534Z", "MATGYV0J9MPX534Z"] with tm.PricingContext(dt.date.today()): for i in range(len(asset_id_list)): correct_id = tm.cross_to_usd_based_cross(asset_id_list[i]) assert correct_id == correct_mapping[i] def test_cross_to_used_based_cross(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_to_usd_based_cross(Cross('FUN', 'EURUSD')) replace.restore() def test_cross_stored_direction(mocker): mocker.patch.object(GsSession.__class__, 'default_value', return_value=GsSession.get(Environment.QA, 'client_id', 'secret')) mocker.patch.object(GsSession.current, '_get', side_effect=mock_request) mocker.patch.object(GsSession.current, '_post', side_effect=mock_request) mocker.patch.object(SecurityMaster, 'get_asset', side_effect=TypeError('unsupported')) replace = Replacer() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'HELLO' assert 'FUN' == tm.cross_stored_direction_for_fx_vol(Cross('FUN', 'EURUSD')) replace.restore() def test_get_tdapi_rates_assets(mocker): mock_asset_1 = GsAsset(asset_class='Rate', id='MAW25BGQJH9P6DPT', type_='Swap', name='Test_asset') mock_asset_2 = GsAsset(asset_class='Rate', id='MAA9MVX15AJNQCVG', type_='Swap', name='Test_asset') mock_asset_3 = GsAsset(asset_class='Rate', id='MANQHVYC30AZFT7R', type_='BasisSwap', name='Test_asset') replace = Replacer() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1] assert 'MAW25BGQJH9P6DPT' == tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict(asset_parameters_termination_date='10y', asset_parameters_effective_date='0b') with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [] with pytest.raises(MqValueError): tm_rates._get_tdapi_rates_assets() replace.restore() assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_1, mock_asset_2] kwargs = dict() assert ['MAW25BGQJH9P6DPT', 'MAA9MVX15AJNQCVG'] == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() # test case will test matching sofr maturity with libor leg and flipping legs to get right asset kwargs = dict(type='BasisSwap', asset_parameters_termination_date='10y', asset_parameters_payer_rate_option=BenchmarkType.LIBOR, asset_parameters_payer_designated_maturity='3m', asset_parameters_receiver_rate_option=BenchmarkType.SOFR, asset_parameters_receiver_designated_maturity='1y', asset_parameters_clearing_house='lch', asset_parameters_effective_date='Spot', asset_parameters_notional_currency='USD', pricing_location='NYC') assets = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) assets.return_value = [mock_asset_3] assert 'MANQHVYC30AZFT7R' == tm_rates._get_tdapi_rates_assets(**kwargs) replace.restore() def test_get_swap_leg_defaults(): result_dict = dict(currency=CurrEnum.JPY, benchmark_type='JPY-LIBOR-BBA', floating_rate_tenor='6m', pricing_location=PricingLocation.TKO) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.JPY) assert result_dict == defaults result_dict = dict(currency=CurrEnum.USD, benchmark_type='USD-LIBOR-BBA', floating_rate_tenor='3m', pricing_location=PricingLocation.NYC) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.USD) assert result_dict == defaults result_dict = dict(currency=CurrEnum.EUR, benchmark_type='EUR-EURIBOR-TELERATE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.EUR) assert result_dict == defaults result_dict = dict(currency=CurrEnum.SEK, benchmark_type='SEK-STIBOR-SIDE', floating_rate_tenor='6m', pricing_location=PricingLocation.LDN) defaults = tm_rates._get_swap_leg_defaults(CurrEnum.SEK) assert result_dict == defaults def test_check_forward_tenor(): valid_tenors = [datetime.date(2020, 1, 1), '1y', 'imm2', 'frb2', '1m', '0b'] for tenor in valid_tenors: assert tenor == tm_rates._check_forward_tenor(tenor) invalid_tenors = ['5yr', 'imm5', 'frb0'] for tenor in invalid_tenors: with pytest.raises(MqError): tm_rates._check_forward_tenor(tenor) def mock_commod(_cls, _q): d = { 'price': [30, 30, 30, 30, 35.929686, 35.636039, 27.307498, 23.23177, 19.020833, 18.827291, 17.823749, 17.393958, 17.824999, 20.307603, 24.311249, 25.160103, 25.245728, 25.736873, 28.425206, 28.779789, 30.519996, 34.896348, 33.966973, 33.95489, 33.686348, 34.840307, 32.674163, 30.261665, 30, 30, 30] } df = MarketDataResponseFrame(data=d, index=pd.date_range('2019-05-01', periods=31, freq='H', tz=timezone('UTC'))) df.dataset_ids = _test_datasets return df def mock_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 11.6311, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "M20", "J20", "K20", "M20", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 9)) df.dataset_ids = _test_datasets return df def mock_fair_price(_cls, _q): d = { 'fairPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_natgas_forward_price(_cls, _q): d = { 'forwardPrice': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_fair_price_swap(_cls, _q): d = {'fairPrice': [2.880]} df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)])) df.dataset_ids = _test_datasets return df def mock_implied_volatility(_cls, _q): d = { 'impliedVolatility': [ 2.880, 2.844, 2.726, ], 'contract': [ "F21", "G21", "H21", ] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 3)) df.dataset_ids = _test_datasets return df def mock_missing_bucket_forward_price(_cls, _q): d = { 'forwardPrice': [ 22.0039, 24.8436, 24.8436, 11.9882, 14.0188, 18.9234, 21.3654, 21.3654, ], 'quantityBucket': [ "PEAK", "PEAK", "PEAK", "7X8", "7X8", "2X16H", "2X16H", "2X16H", ], 'contract': [ "J20", "K20", "M20", "J20", "K20", "J20", "K20", "M20", ] } return pd.DataFrame(data=d, index=pd.to_datetime([datetime.date(2019, 1, 2)] * 8)) def mock_fx_vol(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame({'impliedVolatility': [3]}, index=[pd.Timestamp('2019-01-04T12:00:00Z')]) d = { 'strikeReference': ['delta', 'spot', 'forward'], 'relativeStrike': [25, 100, 100], 'impliedVolatility': [5, 1, 2], 'forecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=pd.date_range('2019-01-01', periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_fx_forecast(_cls, _q): d = { 'fxForecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_fx_delta(_cls, _q): d = { 'relativeStrike': [25, -25, 0], 'impliedVolatility': [1, 5, 2], 'forecast': [1.1, 1.1, 1.1] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_fx_empty(_cls, _q): d = { 'strikeReference': [], 'relativeStrike': [], 'impliedVolatility': [] } df = MarketDataResponseFrame(data=d, index=[]) df.dataset_ids = _test_datasets return df def mock_fx_switch(_cls, _q, _n): replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_empty) replace.restore() return Cross('MA1889', 'ABC/XYZ') def mock_curr(_cls, _q): d = { 'swapAnnuity': [1, 2, 3], 'swapRate': [1, 2, 3], 'basisSwapRate': [1, 2, 3], 'swaptionVol': [1, 2, 3], 'atmFwdRate': [1, 2, 3], 'midcurveVol': [1, 2, 3], 'capFloorVol': [1, 2, 3], 'spreadOptionVol': [1, 2, 3], 'inflationSwapRate': [1, 2, 3], 'midcurveAtmFwdRate': [1, 2, 3], 'capFloorAtmFwdRate': [1, 2, 3], 'spreadOptionAtmFwdRate': [1, 2, 3], 'strike': [0.25, 0.5, 0.75] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_cross(_cls, _q): d = { 'basis': [1, 2, 3], } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq(_cls, _q): d = { 'relativeStrike': [0.75, 0.25, 0.5], 'impliedVolatility': [5, 1, 2], 'impliedCorrelation': [5, 1, 2], 'realizedCorrelation': [3.14, 2.71828, 1.44], 'averageImpliedVolatility': [5, 1, 2], 'averageImpliedVariance': [5, 1, 2], 'averageRealizedVolatility': [5, 1, 2], 'impliedVolatilityByDeltaStrike': [5, 1, 2], 'fundamentalMetric': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq_vol(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: idx = [pd.Timestamp(datetime.datetime.now(pytz.UTC))] return MarketDataResponseFrame({'impliedVolatility': [3]}, index=idx) d = { 'impliedVolatility': [5, 1, 2], } end = datetime.datetime.now(pytz.UTC).date() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_vol_last_err(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: raise MqValueError('error while getting last') d = { 'impliedVolatility': [5, 1, 2], } end = datetime.date.today() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_vol_last_empty(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame() d = { 'impliedVolatility': [5, 1, 2], } end = datetime.date.today() - datetime.timedelta(days=1) df = MarketDataResponseFrame(data=d, index=pd.date_range(end=end, periods=3, freq='D')) df.dataset_ids = _test_datasets return df def mock_eq_norm(_cls, _q): d = { 'relativeStrike': [-4.0, 4.0, 0], 'impliedVolatility': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_eq_spot(_cls, _q): d = { 'relativeStrike': [0.75, 1.25, 1.0], 'impliedVolatility': [5, 1, 2] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_inc(_cls, _q): d = { 'relativeStrike': [0.25, 0.75], 'impliedVolatility': [5, 1] } df = MarketDataResponseFrame(data=d, index=_index * 2) df.dataset_ids = _test_datasets return df def mock_meeting_expectation(): data_dict = MarketDataResponseFrame({'date': [dt.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Meeting Forward'], 'startingDate': [dt.date(2020, 1, 29)], 'endingDate': [dt.date(2020, 1, 29)], 'meetingNumber': [2], 'valuationDate': [dt.date(2019, 12, 6)], 'meetingDate': [dt.date(2020, 1, 23)], 'value': [-0.004550907771] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_meeting_spot(): data_dict = MarketDataResponseFrame({'date': [dt.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Meeting Forward'], 'startingDate': [dt.date(2019, 10, 30)], 'endingDate': [dt.date(2019, 12, 18)], 'meetingNumber': [0], 'valuationDate': [dt.date(2019, 12, 6)], 'meetingDate': [dt.date(2019, 10, 24)], 'value': [-0.004522570525] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_meeting_absolute(): data_dict = MarketDataResponseFrame({'date': [datetime.date(2019, 12, 6), datetime.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2', 'MARFAGXDQRWM07Y2'], 'location': ['NYC', 'NYC'], 'rateType': ['Meeting Forward', 'Meeting Forward'], 'startingDate': [datetime.date(2019, 10, 30), datetime.date(2020, 1, 29)], 'endingDate': [datetime.date(2019, 10, 30), datetime.date(2020, 1, 29)], 'meetingNumber': [0, 2], 'valuationDate': [datetime.date(2019, 12, 6), datetime.date(2019, 12, 6)], 'meetingDate': [datetime.date(2019, 10, 24), datetime.date(2020, 1, 23)], 'value': [-0.004522570525, -0.004550907771] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_ois_spot(): data_dict = MarketDataResponseFrame({'date': [datetime.date(2019, 12, 6)], 'assetId': ['MARFAGXDQRWM07Y2'], 'location': ['NYC'], 'rateType': ['Spot'], 'startingDate': [datetime.date(2019, 12, 6)], 'endingDate': [datetime.date(2019, 12, 7)], 'meetingNumber': [-1], 'valuationDate': [datetime.date(2019, 12, 6)], 'meetingDate': [datetime.date(2019, 12, 6)], 'value': [-0.00455] }) data_dict.dataset_ids = _test_datasets return data_dict def mock_esg(_cls, _q): d = { "esNumericScore": [2, 4, 6], "esNumericPercentile": [81.2, 75.4, 65.7], "esPolicyScore": [2, 4, 6], "esPolicyPercentile": [81.2, 75.4, 65.7], "esScore": [2, 4, 6], "esPercentile": [81.2, 75.4, 65.7], "esProductImpactScore": [2, 4, 6], "esProductImpactPercentile": [81.2, 75.4, 65.7], "gScore": [2, 4, 6], "gPercentile": [81.2, 75.4, 65.7], "esMomentumScore": [2, 4, 6], "esMomentumPercentile": [81.2, 75.4, 65.7], "gRegionalScore": [2, 4, 6], "gRegionalPercentile": [81.2, 75.4, 65.7], "controversyScore": [2, 4, 6], "controversyPercentile": [81.2, 75.4, 65.7], "esDisclosurePercentage": [49.2, 55.7, 98.4] } df = MarketDataResponseFrame(data=d, index=_index * 3) df.dataset_ids = _test_datasets return df def mock_index_positions_data( asset_id, start_date, end_date, fields=None, position_type=None ): return [ {'underlyingAssetId': 'MA3', 'netWeight': 0.1, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' }, {'underlyingAssetId': 'MA1', 'netWeight': 0.6, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' }, {'underlyingAssetId': 'MA2', 'netWeight': 0.3, 'positionType': 'close', 'assetId': 'MA890', 'positionDate': '2020-01-01' } ] def mock_rating(_cls, _q): d = { 'rating': ['Buy', 'Sell', 'Buy', 'Neutral'], 'convictionList': [1, 0, 0, 0] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def mock_gsdeer_gsfeer(_cls, assetId, start_date): d = { 'gsdeer': [1, 1.2, 1.1], 'gsfeer': [2, 1.8, 1.9], 'year': [2000, 2010, 2020], 'quarter': ['Q1', 'Q2', 'Q3'] } df = MarketDataResponseFrame(data=d, index=_index * 3) return df def mock_factor_profile(_cls, _q): d = { 'growthScore': [0.238, 0.234, 0.234, 0.230], 'financialReturnsScore': [0.982, 0.982, 0.982, 0.982], 'multipleScore': [0.204, 0.192, 0.190, 0.190], 'integratedScore': [0.672, 0.676, 0.676, 0.674] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def mock_commodity_forecast(_cls, _q): d = { 'forecastPeriod': ['3m', '3m', '3m', '3m'], 'forecastType': ['spotReturn', 'spotReturn', 'spotReturn', 'spotReturn'], 'commodityForecast': [1700, 1400, 1500, 1600] } df = MarketDataResponseFrame(data=d, index=pd.to_datetime([datetime.date(2020, 8, 13), datetime.date(2020, 8, 14), datetime.date(2020, 8, 17), datetime.date(2020, 8, 18)])) df.dataset_ids = _test_datasets return df def test_skew(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.skew(mock_spx, '1m', tm.SkewReference.DELTA, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_norm) actual = tm.skew(mock_spx, '1m', tm.SkewReference.NORMALIZED, 4) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_spot) actual = tm.skew(mock_spx, '1m', tm.SkewReference.SPOT, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) mock.return_value = mock_empty_market_data_response() actual = tm.skew(mock_spx, '1m', tm.SkewReference.SPOT, 25) assert actual.empty replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_inc) with pytest.raises(MqError): tm.skew(mock_spx, '1m', tm.SkewReference.DELTA, 25) replace.restore() with pytest.raises(MqError): tm.skew(mock_spx, '1m', None, 25) def test_skew_fx(): replace = Replacer() cross = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = cross replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_delta) mock = cross actual = tm.skew(mock, '1m', tm.SkewReference.DELTA, 25) assert_series_equal(pd.Series([2.0], index=_index, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.DELTA, 25, real_time=True) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.SPOT, 25) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.FORWARD, 25) with pytest.raises(MqError): tm.skew(mock, '1m', tm.SkewReference.NORMALIZED, 25) with pytest.raises(MqError): tm.skew(mock, '1m', None, 25) replace.restore() def test_implied_vol(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol) idx = pd.date_range(end=datetime.datetime.now(pytz.UTC).date(), periods=4, freq='D') actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2, 3], index=idx, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2, 3], index=idx, name='impliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(MqError): tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_NEUTRAL) with pytest.raises(MqError): tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL) replace.restore() def test_implied_vol_no_last(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') idx = pd.date_range(end=datetime.date.today() - datetime.timedelta(days=1), periods=3, freq='D') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol_last_err) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq_vol_last_empty) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) actual = tm.implied_volatility(mock_spx, '1m', tm.VolReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=idx, name='impliedVolatility'), pd.Series(actual)) replace.restore() def test_implied_vol_fx(): replace = Replacer() mock = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = mock # for different delta strikes replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_vol) actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_CALL, 25) expected = pd.Series([5, 1, 2, 3], index=pd.date_range('2019-01-01', periods=4, freq='D'), name='impliedVolatility') assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_PUT, 25) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_NEUTRAL) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.FORWARD, 100) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_volatility(mock, '1m', tm.VolReference.SPOT, 100) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets # NORMALIZED not supported with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.DELTA_CALL) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.NORMALIZED, 25) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.SPOT, 25) with pytest.raises(MqError): tm.implied_volatility(mock, '1m', tm.VolReference.FORWARD, 25) replace.restore() def test_fx_forecast(): replace = Replacer() mock = Cross('MAA0NE9QX2ABETG6', 'USD/EUR') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EURUSD', ))] replace('gs_quant.markets.securities.SecurityMaster.get_asset', Mock()).return_value = mock replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_forecast) actual = tm.fx_forecast(mock, '12m') assert_series_equal(pd.Series([1.1, 1.1, 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.fx_forecast(mock, '3m') assert_series_equal(pd.Series([1.1, 1.1, 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.fx_forecast(mock, '3m', real_time=True) replace.restore() def test_fx_forecast_inverse(): replace = Replacer() get_cross = replace('gs_quant.timeseries.measures.cross_to_usd_based_cross', Mock()) get_cross.return_value = "MATGYV0J9MPX534Z" replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fx_forecast) mock = Cross("MAYJPCVVF2RWXCES", 'USD/JPY') actual = tm.fx_forecast(mock, '3m') assert_series_equal(pd.Series([1 / 1.1, 1 / 1.1, 1 / 1.1], index=_index * 3, name='fxForecast'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace.restore() def test_vol_smile(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.FORWARD, '5d') assert_series_equal(pd.Series([5, 1, 2], index=[0.75, 0.25, 0.5]), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.SPOT, '5d') assert_series_equal(pd.Series([5, 1, 2], index=[0.75, 0.25, 0.5]), pd.Series(actual)) assert actual.dataset_ids == _test_datasets market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = mock_empty_market_data_response() actual = tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.SPOT, '1d') assert actual.empty assert actual.dataset_ids == () market_mock.assert_called_once() with pytest.raises(NotImplementedError): tm.vol_smile(mock_spx, '1m', tm.VolSmileReference.SPOT, '1d', real_time=True) replace.restore() def test_impl_corr(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.implied_correlation(mock_spx, '1m', tm.EdrDataReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='impliedCorrelation'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.implied_correlation(mock_spx, '1m', tm.EdrDataReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='impliedCorrelation'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.implied_correlation(..., '1m', tm.EdrDataReference.DELTA_PUT, 75, real_time=True) with pytest.raises(MqError): tm.implied_correlation(..., '1m', tm.EdrDataReference.DELTA_CALL, 50, '') replace.restore() def test_impl_corr_n(): spx = Index('MA4B66MW5E27U8P32SB', AssetClass.Equity, 'SPX') with pytest.raises(MqValueError): tm.implied_correlation(spx, '1m', tm.EdrDataReference.DELTA_CALL, 0.5, composition_date=datetime.date.today()) with pytest.raises(MqValueError): tm.implied_correlation(spx, '1m', tm.EdrDataReference.DELTA_CALL, 0.5, 200) resources = os.path.join(os.path.dirname(__file__), '..', 'resources') i_vol = pd.read_csv(os.path.join(resources, 'SPX_50_icorr_in.csv')) i_vol.index = pd.to_datetime(i_vol['date']) weights = pd.read_csv(os.path.join(resources, 'SPX_50_weights.csv')) weights.set_index('underlyingAssetId', inplace=True) replace = Replacer() market_data = replace('gs_quant.timeseries.econometrics.GsDataApi.get_market_data', Mock()) market_data.return_value = i_vol constituents = replace('gs_quant.timeseries.measures._get_index_constituent_weights', Mock()) constituents.return_value = weights expected = pd.read_csv(os.path.join(resources, 'SPX_50_icorr_out.csv')) expected.index = pd.to_datetime(expected['date']) expected = expected['value'] actual = tm.implied_correlation(spx, '1m', tm.EdrDataReference.DELTA_CALL, 0.5, 50, datetime.date(2020, 8, 31), source='PlotTool') pd.testing.assert_series_equal(actual, expected, check_names=False) replace.restore() def test_real_corr(): spx = Index('MA4B66MW5E27U8P32SB', AssetClass.Equity, 'SPX') with pytest.raises(NotImplementedError): tm.realized_correlation(spx, '1m', real_time=True) replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.realized_correlation(spx, '1m') assert_series_equal(pd.Series([3.14, 2.71828, 1.44], index=_index * 3), pd.Series(actual), check_names=False) assert actual.dataset_ids == _test_datasets replace.restore() def test_real_corr_missing(): spx = Index('MA4B66MW5E27U8P32SB', AssetClass.Equity, 'SPX') d = { 'assetId': ['MA4B66MW5E27U8P32SB'] * 3, 'spot': [3000, 3100, 3050], } df = MarketDataResponseFrame(data=d, index=pd.date_range('2020-08-01', periods=3, freq='D')) resources = os.path.join(os.path.dirname(__file__), '..', 'resources') weights = pd.read_csv(os.path.join(resources, 'SPX_50_weights.csv')) weights.set_index('underlyingAssetId', inplace=True) replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', lambda *args, **kwargs: df) constituents = replace('gs_quant.timeseries.measures._get_index_constituent_weights', Mock()) constituents.return_value = weights with pytest.raises(MqValueError): tm.realized_correlation(spx, '1m', 50) replace.restore() def test_real_corr_n(): spx = Index('MA4B66MW5E27U8P32SB', AssetClass.Equity, 'SPX') with pytest.raises(MqValueError): tm.realized_correlation(spx, '1m', composition_date=datetime.date.today()) with pytest.raises(MqValueError): tm.realized_correlation(spx, '1m', 200) resources = os.path.join(os.path.dirname(__file__), '..', 'resources') r_vol = pd.read_csv(os.path.join(resources, 'SPX_50_rcorr_in.csv')) r_vol.index = pd.to_datetime(r_vol['date']) weights = pd.read_csv(os.path.join(resources, 'SPX_50_weights.csv')) weights.set_index('underlyingAssetId', inplace=True) replace = Replacer() market_data = replace('gs_quant.timeseries.econometrics.GsDataApi.get_market_data', Mock()) market_data.return_value = r_vol constituents = replace('gs_quant.timeseries.measures._get_index_constituent_weights', Mock()) constituents.return_value = weights expected = pd.read_csv(os.path.join(resources, 'SPX_50_rcorr_out.csv')) expected.index = pd.to_datetime(expected['date']) expected = expected['value'] actual = tm.realized_correlation(spx, '1m', 50, datetime.date(2020, 8, 31), source='PlotTool') pd.testing.assert_series_equal(actual, expected, check_names=False) replace.restore() def test_cds_implied_vol(): replace = Replacer() mock_cds = Index('MA890', AssetClass.Equity, 'CDS') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.cds_implied_volatility(mock_cds, '1m', '5y', tm.CdsVolReference.DELTA_CALL, 10) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='impliedVolatilityByDeltaStrike'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.cds_implied_volatility(mock_cds, '1m', '5y', tm.CdsVolReference.FORWARD, 100) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='impliedVolatilityByDeltaStrike'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.cds_implied_volatility(..., '1m', '5y', tm.CdsVolReference.DELTA_PUT, 75, real_time=True) replace.restore() def test_avg_impl_vol(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.average_implied_volatility(mock_spx, '1m', tm.EdrDataReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='averageImpliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets actual = tm.average_implied_volatility(mock_spx, '1m', tm.EdrDataReference.DELTA_PUT, 75) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='averageImpliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace.restore() df1 = pd.DataFrame(data={'impliedVolatility': [1, 2, 3], 'assetId': ['MA1', 'MA1', 'MA1']}, index=pd.date_range(start='2020-01-01', periods=3)) df2 = pd.DataFrame(data={'impliedVolatility': [2, 3, 4], 'assetId': ['MA2', 'MA2', 'MA2']}, index=pd.date_range(start='2020-01-01', periods=3)) df3 = pd.DataFrame(data={'impliedVolatility': [2, 5], 'assetId': ['MA3', 'MA3']}, index=pd.date_range(start='2020-01-01', periods=2)) replace('gs_quant.api.gs.assets.GsAssetApi.get_asset_positions_data', mock_index_positions_data) market_data_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) mock_implied_vol = MarketDataResponseFrame(pd.concat([df1, df2, df3], join='inner')) mock_implied_vol.dataset_ids = _test_datasets market_data_mock.return_value = mock_implied_vol actual = tm.average_implied_volatility(mock_spx, '1m', tm.EdrDataReference.DELTA_CALL, 25, 3, '1d') assert_series_equal(pd.Series([1.4, 2.6, 3.33333], index=pd.date_range(start='2020-01-01', periods=3), name='averageImpliedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.average_implied_volatility(..., '1m', tm.EdrDataReference.DELTA_PUT, 75, real_time=True) with pytest.raises(MqValueError): tm.average_implied_volatility(mock_spx, '1m', tm.EdrDataReference.DELTA_PUT, 75, top_n_of_index=None, composition_date='1d') with pytest.raises(NotImplementedError): tm.average_implied_volatility(mock_spx, '1m', tm.EdrDataReference.DELTA_PUT, 75, top_n_of_index=101) replace.restore() def test_avg_realized_vol(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.average_realized_volatility(mock_spx, '1m') assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='averageRealizedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace.restore() df1 = pd.DataFrame(data={'spot': [1, 2, 3], 'assetId': ['MA1', 'MA1', 'MA1']}, index=pd.date_range(start='2020-01-01', periods=3)) df2 = pd.DataFrame(data={'spot': [2, 3, 4], 'assetId': ['MA2', 'MA2', 'MA2']}, index=pd.date_range(start='2020-01-01', periods=3)) df3 = pd.DataFrame(data={'spot': [2, 5], 'assetId': ['MA3', 'MA3']}, index=pd.date_range(start='2020-01-01', periods=2)) mock_spot = MarketDataResponseFrame(pd.concat([df1, df2, df3], join='inner')) mock_spot.dataset_ids = _test_datasets replace('gs_quant.api.gs.assets.GsAssetApi.get_asset_positions_data', mock_index_positions_data) market_data_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_data_mock.return_value = mock_spot actual = tm.average_realized_volatility(mock_spx, '2d', Returns.SIMPLE, 3, '1d') assert_series_equal(pd.Series([392.874026], index=pd.date_range(start='2020-01-03', periods=1), name='averageRealizedVolatility'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.average_realized_volatility(mock_spx, '1w', real_time=True) with pytest.raises(MqValueError): tm.average_realized_volatility(mock_spx, '1w', composition_date='1d') with pytest.raises(NotImplementedError): tm.average_realized_volatility(mock_spx, '1w', Returns.LOGARITHMIC) with pytest.raises(NotImplementedError): tm.average_realized_volatility(mock_spx, '1w', Returns.SIMPLE, 201) replace.restore() empty_positions_data_mock = replace('gs_quant.api.gs.assets.GsAssetApi.get_asset_positions_data', Mock()) empty_positions_data_mock.return_value = [] with pytest.raises(MqValueError): tm.average_realized_volatility(mock_spx, '1w', Returns.SIMPLE, 5) replace.restore() def test_avg_impl_var(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) actual = tm.average_implied_variance(mock_spx, '1m', tm.EdrDataReference.DELTA_CALL, 25) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='averageImpliedVariance'), pd.Series(actual)) actual = tm.average_implied_variance(mock_spx, '1m', tm.EdrDataReference.DELTA_PUT, 75) assert actual.dataset_ids == _test_datasets assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='averageImpliedVariance'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.average_implied_variance(..., '1m', tm.EdrDataReference.DELTA_PUT, 75, real_time=True) replace.restore() def test_basis_swap_spread(mocker): replace = Replacer() args = dict(swap_tenor='10y', spread_benchmark_type=None, spread_tenor=None, reference_benchmark_type=None, reference_tenor=None, forward_tenor='0b', real_time=False) mock_nok = Currency('MA891', 'NOK') xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'NOK' args['asset'] = mock_nok with pytest.raises(NotImplementedError): tm_rates.basis_swap_spread(**args) mock_usd = Currency('MAZ7RWC904JYHYPS', 'USD') args['asset'] = mock_usd xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' with pytest.raises(NotImplementedError): tm_rates.basis_swap_spread(..., '1y', real_time=True) args['swap_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['swap_tenor'] = '6y' args['spread_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['spread_tenor'] = '3m' args['reference_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['reference_tenor'] = '6m' args['forward_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['forward_tenor'] = None args['spread_benchmark_type'] = BenchmarkType.STIBOR with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['spread_benchmark_type'] = BenchmarkType.LIBOR args['reference_benchmark_type'] = 'libor_3m' with pytest.raises(MqValueError): tm_rates.basis_swap_spread(**args) args['reference_benchmark_type'] = BenchmarkType.LIBOR xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' identifiers = replace('gs_quant.timeseries.measures_rates._get_tdapi_rates_assets', Mock()) identifiers.return_value = {'MAQB1PGEJFCET3GG'} mocker.patch.object(GsDataApi, 'get_market_data', return_value=mock_curr(None, None)) actual = tm_rates.basis_swap_spread(**args) expected = tm.ExtendedSeries([1, 2, 3], index=_index * 3, name='basisSwapRate') expected.dataset_ids = _test_datasets assert_series_equal(expected, actual) assert actual.dataset_ids == expected.dataset_ids args['reference_benchmark_type'] = BenchmarkType.SOFR args['reference_tenor'] = '1y' args['reference_benchmark_type'] = BenchmarkType.LIBOR args['reference_tenor'] = '3m' xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' identifiers = replace('gs_quant.timeseries.measures_rates._get_tdapi_rates_assets', Mock()) identifiers.return_value = {'MA06ATQ9CM0DCZFC'} mocker.patch.object(GsDataApi, 'get_market_data', return_value=mock_curr(None, None)) actual = tm_rates.basis_swap_spread(**args) expected = tm.ExtendedSeries([1, 2, 3], index=_index * 3, name='basisSwapRate') expected.dataset_ids = _test_datasets assert_series_equal(expected, actual) assert actual.dataset_ids == expected.dataset_ids replace.restore() def test_swap_rate(mocker): replace = Replacer() args = dict(swap_tenor='10y', benchmark_type=None, floating_rate_tenor=None, forward_tenor='0b', real_time=False) mock_usd = Currency('MAZ7RWC904JYHYPS', 'USD') args['asset'] = mock_usd xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' args['swap_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_rate(**args) args['swap_tenor'] = '10y' args['floating_rate_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_rate(**args) args['floating_rate_tenor'] = '1y' args['forward_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_rate(**args) args['forward_tenor'] = None args['benchmark_type'] = BenchmarkType.STIBOR with pytest.raises(MqValueError): tm_rates.swap_rate(**args) args['benchmark_type'] = 'sonia' with pytest.raises(MqValueError): tm_rates.swap_rate(**args) args['benchmark_type'] = 'fed_funds' xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' identifiers = replace('gs_quant.timeseries.measures_rates._get_tdapi_rates_assets', Mock()) identifiers.return_value = {'MAZ7RWC904JYHYPS'} mocker.patch.object(GsDataApi, 'get_market_data', return_value=mock_curr(None, None)) actual = tm_rates.swap_rate(**args) expected = tm.ExtendedSeries([1, 2, 3], index=_index * 3, name='swapRate') expected.dataset_ids = _test_datasets assert_series_equal(expected, actual) assert actual.dataset_ids == _test_datasets xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'EUR' identifiers = replace('gs_quant.timeseries.measures_rates._get_tdapi_rates_assets', Mock()) identifiers.return_value = {'MAJNQPFGN1EBDHAE'} mocker.patch.object(GsDataApi, 'get_market_data', return_value=mock_curr(None, None)) args['asset'] = Currency('MAJNQPFGN1EBDHAE', 'EUR') args['benchmark_type'] = 'estr' actual = tm_rates.swap_rate(**args) expected = tm.ExtendedSeries([1, 2, 3], index=_index * 3, name='swapRate') expected.dataset_ids = _test_datasets assert_series_equal(expected, actual) assert actual.dataset_ids == _test_datasets replace.restore() def test_swap_annuity(mocker): replace = Replacer() args = dict(swap_tenor='10y', benchmark_type=None, floating_rate_tenor=None, forward_tenor='0b', real_time=False) mock_nok = Currency('MA891', 'PLN') xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'PLN' args['asset'] = mock_nok with pytest.raises(NotImplementedError): tm_rates.swap_annuity(**args) mock_usd = Currency('MAZ7RWC904JYHYPS', 'USD') args['asset'] = mock_usd xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' with pytest.raises(NotImplementedError): tm_rates.swap_annuity(..., '1y', real_time=True) args['swap_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_annuity(**args) args['swap_tenor'] = '10y' args['floating_rate_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_annuity(**args) args['floating_rate_tenor'] = '1y' args['forward_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_annuity(**args) args['forward_tenor'] = None args['benchmark_type'] = BenchmarkType.STIBOR with pytest.raises(MqValueError): tm_rates.swap_annuity(**args) args['benchmark_type'] = BenchmarkType.SOFR xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' identifiers = replace('gs_quant.timeseries.measures_rates._get_tdapi_rates_assets', Mock()) identifiers.return_value = {'MAZ7RWC904JYHYPS'} mocker.patch.object(GsDataApi, 'get_market_data', return_value=mock_curr(None, None)) actual = tm_rates.swap_annuity(**args) expected = abs(tm.ExtendedSeries([1.0, 2.0, 3.0], index=_index * 3, name='swapAnnuity') * 1e4 / 1e8) expected.dataset_ids = _test_datasets assert_series_equal(expected, actual) assert actual.dataset_ids == expected.dataset_ids replace.restore() def test_swap_term_structure(): replace = Replacer() args = dict(benchmark_type=None, floating_rate_tenor=None, tenor_type=tm_rates._SwapTenorType.FORWARD_TENOR, tenor='0b', real_time=False) mock_nok = Currency('MA891', 'PLN') xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'PLN' args['asset'] = mock_nok with pytest.raises(NotImplementedError): tm_rates.swap_term_structure(**args) mock_usd = Currency('MAZ7RWC904JYHYPS', 'USD') args['asset'] = mock_usd xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' with pytest.raises(NotImplementedError): tm_rates.swap_term_structure(..., '1y', real_time=True) args['floating_rate_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_term_structure(**args) args['floating_rate_tenor'] = '3m' args['tenor_type'] = 'expiry' with pytest.raises(MqValueError): tm_rates.swap_term_structure(**args) args['tenor_type'] = None args['tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_term_structure(**args) args['tenor'] = None args['benchmark_type'] = BenchmarkType.STIBOR with pytest.raises(MqValueError): tm_rates.swap_term_structure(**args) args['benchmark_type'] = BenchmarkType.LIBOR bd_mock = replace('gs_quant.data.dataset.Dataset.get_data', Mock()) bd_mock.return_value = pd.DataFrame(data=dict(date="2020-04-10", exchange="NYC", description="Good Friday"), index=[pd.Timestamp('2020-04-10')]) args['pricing_date'] = datetime.date(2020, 4, 10) with pytest.raises(MqValueError): tm_rates.swap_term_structure(**args) args['pricing_date'] = None xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' identifiers_empty = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) identifiers_empty.return_value = {} with pytest.raises(MqValueError): tm_rates.swap_term_structure(**args) identifiers = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) mock_asset = Currency('USD', name='USD') mock_asset.id = 'MAEMPCXQG3T716EX' mock_asset.exchange = 'OTC' identifiers.return_value = [mock_asset] d = { 'terminationTenor': ['1y', '2y', '3y', '4y'], 'swapRate': [1, 2, 3, 4], 'assetId': ['MAEMPCXQG3T716EX', 'MAFRSWPAF5QPNTP2', 'MA88BXZ3TCTXTFW1', 'MAC4KAG9B9ZAZHFT'] } pricing_date_mock = replace('gs_quant.timeseries.measures_rates._range_from_pricing_date', Mock()) pricing_date_mock.return_value = [datetime.date(2019, 1, 1), datetime.date(2019, 1, 1)] bd_mock.return_value = pd.DataFrame() market_data_mock = replace('gs_quant.timeseries.measures_rates._market_data_timed', Mock()) market_data_mock.return_value = pd.DataFrame() df = pd.DataFrame(data=d, index=_index * 4) assert tm_rates.swap_term_structure(**args).empty market_data_mock.return_value = df with DataContext('2019-01-01', '2025-01-01'): actual = tm_rates.swap_term_structure(**args) actual.dataset_ids = _test_datasets expected = tm.ExtendedSeries([1, 2, 3, 4], index=pd.to_datetime(['2020-01-01', '2021-01-01', '2021-12-31', '2022-12-30'])) expected.dataset_ids = _test_datasets assert_series_equal(expected, actual, check_names=False) assert actual.dataset_ids == expected.dataset_ids df = pd.DataFrame(data={'effectiveTenor': ['1y'], 'swapRate': [1], 'assetId': ['MAEMPCXQG3T716EX']}, index=_index) market_data_mock.return_value = df args['tenor_type'] = 'swap_tenor' args['tenor'] = '5y' with DataContext('2019-01-01', '2025-01-01'): actual = tm_rates.swap_term_structure(**args) actual.dataset_ids = _test_datasets expected = tm.ExtendedSeries([1], index=pd.to_datetime(['2020-01-01'])) expected.dataset_ids = _test_datasets assert_series_equal(expected, actual, check_names=False) assert actual.dataset_ids == expected.dataset_ids d = { 'effectiveTenor': ['1y', '2y', '3y', '4y'], 'swapRate': [1, 2, 3, 4], 'assetId': ['MAEMPCXQG3T716EX', 'MAFRSWPAF5QPNTP2', 'MA88BXZ3TCTXTFW1', 'MAC4KAG9B9ZAZHFT'] } df = pd.DataFrame(data=d, index=_index * 4) market_data_mock.return_value = df args['tenor_type'] = 'swap_tenor' args['tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.swap_term_structure(**args) args['tenor'] = '5y' market_data_mock.return_value = pd.DataFrame() df = pd.DataFrame(data=d, index=_index * 4) assert tm_rates.swap_term_structure(**args).empty market_data_mock.return_value = df with DataContext('2019-01-01', '2025-01-01'): actual = tm_rates.swap_term_structure(**args) actual.dataset_ids = _test_datasets expected = tm.ExtendedSeries([1, 2, 3, 4], index=pd.to_datetime(['2020-01-01', '2021-01-01', '2021-12-31', '2022-12-30'])) expected.dataset_ids = _test_datasets assert_series_equal(expected, actual, check_names=False) assert actual.dataset_ids == expected.dataset_ids replace.restore() def test_basis_swap_term_structure(): replace = Replacer() range_mock = replace('gs_quant.timeseries.measures_rates._range_from_pricing_date', Mock()) range_mock.return_value = [datetime.date(2019, 1, 1), datetime.date(2019, 1, 1)] args = dict(spread_benchmark_type=None, spread_tenor=None, reference_benchmark_type=None, reference_tenor=None, tenor_type=tm_rates._SwapTenorType.FORWARD_TENOR, tenor='0b', real_time=False) mock_nok = Currency('MA891', 'NOK') xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'NOK' args['asset'] = mock_nok with pytest.raises(NotImplementedError): tm_rates.basis_swap_term_structure(**args) mock_usd = Currency('MAZ7RWC904JYHYPS', 'USD') args['asset'] = mock_usd xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' with pytest.raises(NotImplementedError): tm_rates.basis_swap_term_structure(..., '1y', real_time=True) args['spread_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.basis_swap_term_structure(**args) args['spread_tenor'] = '3m' args['reference_tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.basis_swap_term_structure(**args) args['reference_tenor'] = '6m' args['tenor_type'] = 'expiry' with pytest.raises(MqValueError): tm_rates.basis_swap_term_structure(**args) args['tenor_type'] = 'forward_tenor' args['tenor'] = '5yr' with pytest.raises(MqValueError): tm_rates.basis_swap_term_structure(**args) args['tenor'] = None args['spread_benchmark_type'] = BenchmarkType.STIBOR with pytest.raises(MqValueError): tm_rates.basis_swap_term_structure(**args) args['spread_benchmark_type'] = BenchmarkType.LIBOR args['reference_benchmark_type'] = BenchmarkType.STIBOR with pytest.raises(MqValueError): tm_rates.basis_swap_term_structure(**args) args['reference_benchmark_type'] = BenchmarkType.LIBOR bd_mock = replace('gs_quant.data.dataset.Dataset.get_data', Mock()) bd_mock.return_value = pd.DataFrame(data=dict(date="2020-04-10", exchange="NYC", description="Good Friday"), index=[pd.Timestamp('2020-04-10')]) args['pricing_date'] = datetime.date(2020, 4, 10) with pytest.raises(MqValueError): tm_rates.basis_swap_term_structure(**args) args['pricing_date'] = None xrefs = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) xrefs.return_value = 'USD' identifiers_empty = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) identifiers_empty.return_value = {} with pytest.raises(MqValueError): tm_rates.basis_swap_term_structure(**args) identifiers = replace('gs_quant.timeseries.measures.GsAssetApi.get_many_assets', Mock()) mock_asset = Currency('USD', name='USD') mock_asset.id = 'MAEMPCXQG3T716EX' mock_asset.exchange = 'OTC' identifiers.return_value = [mock_asset] d = { 'terminationTenor': ['1y', '2y', '3y', '4y'], 'basisSwapRate': [1, 2, 3, 4], 'assetId': ['MAEMPCXQG3T716EX', 'MAFRSWPAF5QPNTP2', 'MA88BXZ3TCTXTFW1', 'MAC4KAG9B9ZAZHFT'] } pricing_date_mock = replace('gs_quant.timeseries.measures_rates._range_from_pricing_date', Mock()) pricing_date_mock.return_value = [datetime.date(2019, 1, 1), datetime.date(2019, 1, 1)] bd_mock.return_value = pd.DataFrame() market_data_mock = replace('gs_quant.timeseries.measures_rates._market_data_timed', Mock()) market_data_mock.return_value = pd.DataFrame() assert tm_rates.basis_swap_term_structure(**args).empty df = pd.DataFrame(data=d, index=_index * 4) market_data_mock.return_value = df with DataContext('2019-01-01', '2025-01-01'): actual = tm_rates.basis_swap_term_structure(**args) actual.dataset_ids = _test_datasets expected = tm.ExtendedSeries([1, 2, 3, 4], index=pd.to_datetime(['2020-01-01', '2021-01-01', '2021-12-31', '2022-12-30'])) expected.dataset_ids = _test_datasets assert_series_equal(expected, actual, check_names=False) assert actual.dataset_ids == expected.dataset_ids d = { 'effectiveTenor': ['1y', '2y', '3y', '4y'], 'basisSwapRate': [1, 2, 3, 4], 'assetId': ['MAEMPCXQG3T716EX', 'MAFRSWPAF5QPNTP2', 'MA88BXZ3TCTXTFW1', 'MAC4KAG9B9ZAZHFT'] } bd_mock.return_value = pd.DataFrame() market_data_mock = replace('gs_quant.timeseries.measures_rates._market_data_timed', Mock()) df = pd.DataFrame(data=d, index=_index * 4) market_data_mock.return_value = df args['tenor_type'] = tm_rates._SwapTenorType.SWAP_TENOR args['tenor'] = '5y' with DataContext('2019-01-01', '2025-01-01'): actual = tm_rates.basis_swap_term_structure(**args) actual.dataset_ids = _test_datasets expected = tm.ExtendedSeries([1, 2, 3, 4], index=pd.to_datetime(['2020-01-01', '2021-01-01', '2021-12-31', '2022-12-30'])) expected.dataset_ids = _test_datasets assert_series_equal(expected, actual, check_names=False) assert actual.dataset_ids == expected.dataset_ids df = pd.DataFrame(data={'effectiveTenor': ['1y'], 'basisSwapRate': [1], 'assetId': ['MAEMPCXQG3T716EX']}, index=_index) market_data_mock.return_value = df with DataContext('2019-01-01', '2025-01-01'): actual = tm_rates.basis_swap_term_structure(**args) actual.dataset_ids = _test_datasets expected = tm.ExtendedSeries([1], index=pd.to_datetime(['2020-01-01'])) expected.dataset_ids = _test_datasets assert_series_equal(expected, actual, check_names=False) assert actual.dataset_ids == expected.dataset_ids replace.restore() def test_cap_floor_vol(): replace = Replacer() mock_usd = Currency('MA890', 'USD') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='USD', ))] identifiers = replace('gs_quant.timeseries.measures.GsAssetApi.map_identifiers', Mock()) identifiers.return_value = {'USD-LIBOR-BBA': 'MA123'} replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_curr) actual = tm.cap_floor_vol(mock_usd, '5y', 50) assert_series_equal(pd.Series([1, 2, 3], index=_index * 3, name='capFloorVol'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.cap_floor_vol(..., '5y', 50, real_time=True) replace.restore() def test_cap_floor_atm_fwd_rate(): replace = Replacer() mock_usd = Currency('MA890', 'USD') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='USD', ))] identifiers = replace('gs_quant.timeseries.measures.GsAssetApi.map_identifiers', Mock()) identifiers.return_value = {'USD-LIBOR-BBA': 'MA123'} replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_curr) actual = tm.cap_floor_atm_fwd_rate(mock_usd, '5y') assert_series_equal(pd.Series([1, 2, 3], index=_index * 3, name='capFloorAtmFwdRate'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.cap_floor_atm_fwd_rate(..., '5y', real_time=True) replace.restore() def test_spread_option_vol(): replace = Replacer() mock_usd = Currency('MA890', 'USD') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='USD', ))] identifiers = replace('gs_quant.timeseries.measures.GsAssetApi.map_identifiers', Mock()) identifiers.return_value = {'USD-LIBOR-BBA': 'MA123'} replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_curr) actual = tm.spread_option_vol(mock_usd, '3m', '10y', '5y', 50) assert_series_equal(pd.Series([1, 2, 3], index=_index * 3, name='spreadOptionVol'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.spread_option_vol(..., '3m', '10y', '5y', 50, real_time=True) replace.restore() def test_spread_option_atm_fwd_rate(): replace = Replacer() mock_usd = Currency('MA890', 'USD') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='USD', ))] identifiers = replace('gs_quant.timeseries.measures.GsAssetApi.map_identifiers', Mock()) identifiers.return_value = {'USD-LIBOR-BBA': 'MA123'} replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_curr) actual = tm.spread_option_atm_fwd_rate(mock_usd, '3m', '10y', '5y') assert_series_equal(pd.Series([1, 2, 3], index=_index * 3, name='spreadOptionAtmFwdRate'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.spread_option_atm_fwd_rate(..., '3m', '10y', '5y', real_time=True) replace.restore() def test_zc_inflation_swap_rate(): replace = Replacer() mock_gbp = Currency('MA890', 'GBP') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='GBP', ))] identifiers = replace('gs_quant.timeseries.measures.GsAssetApi.map_identifiers', Mock()) identifiers.return_value = {'CPI-UKRPI': 'MA123'} replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_curr) actual = tm.zc_inflation_swap_rate(mock_gbp, '1y') assert_series_equal(pd.Series([1, 2, 3], index=_index * 3, name='inflationSwapRate'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.zc_inflation_swap_rate(..., '1y', real_time=True) replace.restore() def test_basis(): replace = Replacer() mock_jpyusd = Cross('MA890', 'USD/JPY') xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='JPYUSD', ))] identifiers = replace('gs_quant.timeseries.measures.GsAssetApi.map_identifiers', Mock()) identifiers.return_value = {'USD-3m/JPY-3m': 'MA123'} replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_cross) actual = tm.basis(mock_jpyusd, '1y') assert_series_equal(pd.Series([1, 2, 3], index=_index * 3, name='basis'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.basis(..., '1y', real_time=True) replace.restore() def test_td(): cases = {'3d': pd.DateOffset(days=3), '9w': pd.DateOffset(weeks=9), '2m': pd.DateOffset(months=2), '10y': pd.DateOffset(years=10) } for k, v in cases.items(): actual = tm._to_offset(k) assert v == actual, f'expected {v}, got actual {actual}' with pytest.raises(ValueError): tm._to_offset('5z') def test_pricing_range(): import datetime given = datetime.date(2019, 4, 20) s, e = tm._range_from_pricing_date('NYSE', given) assert s == e == given class MockDate(datetime.date): @classmethod def today(cls): return cls(2019, 5, 25) # mock replace = Replacer() cbd = replace('gs_quant.timeseries.measures._get_custom_bd', Mock()) cbd.return_value = pd.tseries.offsets.BusinessDay() today = replace('gs_quant.timeseries.measures.pd.Timestamp.today', Mock()) today.return_value = pd.Timestamp(2019, 5, 25) gold = datetime.date datetime.date = MockDate # cases s, e = tm._range_from_pricing_date('ANY') assert s == pd.Timestamp(2019, 5, 24) assert e == pd.Timestamp(2019, 5, 24) s, e = tm._range_from_pricing_date('ANY', '3m') assert s == pd.Timestamp(2019, 2, 22) assert e == pd.Timestamp(2019, 2, 24) s, e = tm._range_from_pricing_date('ANY', '3b') assert s == e == pd.Timestamp(2019, 5, 22) # restore datetime.date = gold replace.restore() def test_var_swap_tenors(): session = GsSession.get(Environment.DEV, token='<PASSWORD>') replace = Replacer() get_mock = replace('gs_quant.session.GsSession._get', Mock()) get_mock.return_value = { 'data': [ { 'dataField': 'varSwap', 'filteredFields': [ { 'field': 'tenor', 'values': ['abc', 'xyc'] } ] } ] } with session: actual = tm._var_swap_tenors(Index('MAXXX', AssetClass.Equity, 'XXX')) assert actual == ['abc', 'xyc'] get_mock.return_value = { 'data': [] } with pytest.raises(MqError): with session: tm._var_swap_tenors(Index('MAXXX', AssetClass.Equity, 'XXX')) replace.restore() def test_tenor_to_month(): with pytest.raises(MqError): tm._tenor_to_month('1d') with pytest.raises(MqError): tm._tenor_to_month('2w') assert tm._tenor_to_month('3m') == 3 assert tm._tenor_to_month('4y') == 48 def test_month_to_tenor(): assert tm._month_to_tenor(36) == '3y' assert tm._month_to_tenor(18) == '18m' def test_forward_var_term(): idx = pd.DatetimeIndex([datetime.date(2020, 4, 1), datetime.date(2020, 4, 2)] * 6) data = { 'varSwap': [1.1, 1, 2.1, 2, 3.1, 3, 4.1, 4, 5.1, 5, 6.1, 6], 'tenor': ['1w', '1w', '1m', '1m', '5w', '5w', '2m', '2m', '3m', '3m', '5m', '5m'] } out = MarketDataResponseFrame(data=data, index=idx) out.dataset_ids = _test_datasets replace = Replacer() market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = out # Equity expected = pd.Series([np.nan, 5.29150, 6.55744], name='forwardVarTerm', index=pd.DatetimeIndex(['2020-05-01', '2020-06-02', '2020-07-02'], name='expirationDate')) with DataContext('2020-01-01', '2020-07-31'): actual = tm.forward_var_term(Index('MA123', AssetClass.Equity, '123'), datetime.date(2020, 4, 2)) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets market_mock.assert_called_once() # FX expected_fx = pd.Series([np.nan, 5.29150, 6.55744, 7.24569], name='forwardVarTerm', index=pd.DatetimeIndex(['2020-05-01', '2020-06-02', '2020-07-02', '2020-09-02'], name='expirationDate')) with DataContext('2020-01-01', '2020-09-02'): actual_fx = tm.forward_var_term(Cross('ABCDE', 'EURUSD')) assert_series_equal(expected_fx, pd.Series(actual_fx)) assert actual_fx.dataset_ids == _test_datasets # no data market_mock.reset_mock() market_mock.return_value = mock_empty_market_data_response() actual = tm.forward_var_term(Index('MA123', AssetClass.Equity, '123')) assert actual.empty # real-time with pytest.raises(NotImplementedError): tm.forward_var_term(..., real_time=True) replace.restore() def _mock_var_swap_data(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame({'varSwap': [4]}, index=[pd.Timestamp('2019-01-04T12:00:00Z')]) idx = pd.date_range(start="2019-01-01", periods=3, freq="D") data = { 'varSwap': [1, 2, 3] } out = MarketDataResponseFrame(data=data, index=idx) out.dataset_ids = _test_datasets return out def test_var_swap(): replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', _mock_var_swap_data) expected = pd.Series([1, 2, 3, 4], name='varSwap', index=pd.date_range("2019-01-01", periods=4, freq="D")) actual = tm.var_swap(Index('MA123', AssetClass.Equity, '123'), '1m') assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = mock_empty_market_data_response() actual = tm.var_swap(Index('MA123', AssetClass.Equity, '123'), '1m') assert actual.empty replace.restore() def _mock_var_swap_fwd(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame({'varSwap': [4, 4.5], 'tenor': ['1y', '13m']}, index=[pd.Timestamp('2019-01-04T12:00:00Z')] * 2) idx = pd.date_range(start="2019-01-01", periods=3, freq="D") d1 = { 'varSwap': [1, 2, 3], 'tenor': ['1y'] * 3 } d2 = { 'varSwap': [1.5, 2.5, 3.5], 'tenor': ['13m'] * 3 } df1 = MarketDataResponseFrame(data=d1, index=idx) df2 = MarketDataResponseFrame(data=d2, index=idx) out = pd.concat([df1, df2]) out.dataset_ids = _test_datasets return out def _mock_var_swap_1t(_cls, q): queries = q.get('queries', []) if len(queries) > 0 and 'Last' in queries[0]['measures']: return MarketDataResponseFrame({'varSwap': [4, 4.5], 'tenor': ['1y', '13m']}, index=[pd.Timestamp('2019-01-04T12:00:00Z')]) idx = pd.date_range(start="2019-01-01", periods=3, freq="D") d1 = { 'varSwap': [1, 2, 3], 'tenor': ['1y'] * 3 } df1 = MarketDataResponseFrame(data=d1, index=idx) df1.dataset_ids = _test_datasets return df1 def test_var_swap_fwd(): # bad input with pytest.raises(MqError): tm.var_swap(Index('MA123', AssetClass.Equity, '123'), '1m', 500) # regular replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', _mock_var_swap_fwd) tenors_mock = replace('gs_quant.timeseries.measures._var_swap_tenors', Mock()) tenors_mock.return_value = ['1m', '1y', '13m'] expected = pd.Series([4.1533, 5.7663, 7.1589, 8.4410], name='varSwap', index=pd.date_range(start="2019-01-01", periods=4, freq="D")) actual = tm.var_swap(Index('MA123', AssetClass.Equity, '123'), '1m', '1y') assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets # no data market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = mock_empty_market_data_response() actual = tm.var_swap(Index('MA123', AssetClass.Equity, '123'), '1m', '1y') assert actual.empty assert actual.dataset_ids == () # no data for a tenor replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', _mock_var_swap_1t) actual = tm.var_swap(Index('MA123', AssetClass.Equity, '123'), '1m', '1y') assert actual.empty assert actual.dataset_ids == () # no such tenors tenors_mock.return_value = [] actual = tm.var_swap(Index('MA123', AssetClass.Equity, '123'), '1m', '1y') assert actual.empty assert actual.dataset_ids == () # finish replace.restore() def _var_term_typical(): assert DataContext.current_is_set data = { 'tenor': ['1w', '2w', '1y', '2y'], 'varSwap': [1, 2, 3, 4] } out = MarketDataResponseFrame(data=data, index=pd.DatetimeIndex(['2018-01-01'] * 4)) out.dataset_ids = _test_datasets replace = Replacer() market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = out actual = tm.var_term(Index('MA123', AssetClass.Equity, '123')) idx = pd.DatetimeIndex(['2018-01-08', '2018-01-15', '2019-01-01', '2020-01-01'], name='varSwap') expected = pd.Series([1, 2, 3, 4], name='varSwap', index=idx) expected = expected.loc[DataContext.current.start_date: DataContext.current.end_date] if expected.empty: assert actual.empty else: assert_series_equal(expected, pd.Series(actual), check_names=False) assert actual.dataset_ids == _test_datasets market_mock.assert_called_once() replace.restore() return actual def _var_term_empty(): replace = Replacer() market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = mock_empty_market_data_response() actual = tm.var_term(Index('MAXYZ', AssetClass.Equity, 'XYZ')) assert actual.empty assert actual.dataset_ids == () market_mock.assert_called_once() replace.restore() def _var_term_fwd(): idx = pd.date_range('2018-01-01', periods=2, freq='D') def mock_var_swap(_asset, tenor, _forward_start_date, **_kwargs): if tenor == '1m': series = tm.ExtendedSeries([1, 2], idx, name='varSwap') series.dataset_ids = _test_datasets elif tenor == '2m': series = tm.ExtendedSeries([3, 4], idx, name='varSwap') series.dataset_ids = _test_datasets else: series = tm.ExtendedSeries() series.dataset_ids = () return series replace = Replacer() market_mock = replace('gs_quant.timeseries.measures.var_swap', Mock()) market_mock.side_effect = mock_var_swap tenors_mock = replace('gs_quant.timeseries.measures._var_swap_tenors', Mock()) tenors_mock.return_value = ['1m', '2m', '3m'] actual = tm.var_term(Index('MA123', AssetClass.Equity, '123'), forward_start_date='1m') idx = pd.DatetimeIndex(['2018-02-02', '2018-03-02'], name='varSwap') expected = pd.Series([2, 4], name='varSwap', index=idx) expected = expected.loc[DataContext.current.start_date: DataContext.current.end_date] if expected.empty: assert actual.empty else: assert_series_equal(expected, pd.Series(actual), check_names=False) assert actual.dataset_ids == _test_datasets market_mock.assert_called() replace.restore() return actual def test_var_term(): with DataContext('2018-01-01', '2019-01-01'): _var_term_typical() _var_term_empty() _var_term_fwd() with DataContext('2019-01-01', '2019-07-04'): _var_term_fwd() with DataContext('2018-01-16', '2018-12-31'): out = _var_term_typical() assert out.empty assert out.dataset_ids == _test_datasets with pytest.raises(MqError): tm.var_term(..., pricing_date=300) def test_forward_vol(): idx = pd.DatetimeIndex([datetime.date(2020, 5, 1), datetime.date(2020, 5, 2)] * 4) data = { 'impliedVolatility': [2.1, 2, 3.1, 3, 4.1, 4, 5.1, 5], 'tenor': ['1m', '1m', '2m', '2m', '3m', '3m', '4m', '4m'] } out = MarketDataResponseFrame(data=data, index=idx) out.dataset_ids = _test_datasets replace = Replacer() market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = out # Equity expected = pd.Series([5.58659, 5.47723], name='forwardVol', index=pd.to_datetime(['2020-05-01', '2020-05-02'])) with DataContext('2020-01-01', '2020-09-01'): actual = tm.forward_vol(Index('MA123', AssetClass.Equity, '123'), '1m', '2m', tm.VolReference.SPOT, 100) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets market_mock.assert_called_once() # FX cross_mock = replace('gs_quant.timeseries.measures.cross_stored_direction_for_fx_vol', Mock()) cross_mock.return_value = 'EURUSD' with DataContext('2020-01-01', '2020-09-01'): actual_fx = tm.forward_vol(Cross('ABCDE', 'EURUSD'), '1m', '2m', tm.VolReference.SPOT, 100) assert_series_equal(expected, pd.Series(actual_fx)) assert actual_fx.dataset_ids == _test_datasets # no data market_mock.reset_mock() market_mock.return_value = mock_empty_market_data_response() actual = tm.forward_vol(Index('MA123', AssetClass.Equity, '123'), '1m', '2m', tm.VolReference.SPOT, 100) assert actual.empty # no data for required tenor market_mock.reset_mock() market_mock.return_value = MarketDataResponseFrame(data={'impliedVolatility': [2.1, 3.1, 5.1], 'tenor': ['1m', '2m', '4m']}, index=[datetime.date(2020, 5, 1)] * 3) actual = tm.forward_vol(Index('MA123', AssetClass.Equity, '123'), '1m', '2m', tm.VolReference.SPOT, 100) assert actual.empty # real-time with pytest.raises(NotImplementedError): tm.forward_vol(..., '1m', '2m', tm.VolReference.SPOT, 100, real_time=True) replace.restore() def test_forward_vol_term(): idx = pd.DatetimeIndex([datetime.date(2020, 4, 1), datetime.date(2020, 4, 2)] * 6) data = { 'impliedVolatility': [1.1, 1, 2.1, 2, 3.1, 3, 4.1, 4, 5.1, 5, 6.1, 6], 'tenor': ['1w', '1w', '1m', '1m', '5w', '5w', '2m', '2m', '3m', '3m', '5m', '5m'] } out = MarketDataResponseFrame(data=data, index=idx) out.dataset_ids = _test_datasets replace = Replacer() market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = out # Equity expected = pd.Series([np.nan, 5.29150, 6.55744], name='forwardVolTerm', index=pd.DatetimeIndex(['2020-05-01', '2020-06-02', '2020-07-02'], name='expirationDate')) with DataContext('2020-01-01', '2020-07-31'): actual = tm.forward_vol_term(Index('MA123', AssetClass.Equity, '123'), tm.VolReference.SPOT, 100, datetime.date(2020, 4, 2)) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets market_mock.assert_called_once() # FX cross_mock = replace('gs_quant.timeseries.measures.cross_stored_direction_for_fx_vol', Mock()) cross_mock.return_value = 'EURUSD' expected_fx = pd.Series([np.nan, 5.29150, 6.55744, 7.24569], name='forwardVolTerm', index=pd.DatetimeIndex(['2020-05-01', '2020-06-02', '2020-07-02', '2020-09-02'], name='expirationDate')) with DataContext('2020-01-01', '2020-09-02'): actual_fx = tm.forward_vol_term(Cross('ABCDE', 'EURUSD'), tm.VolReference.SPOT, 100) assert_series_equal(expected_fx, pd.Series(actual_fx)) assert actual_fx.dataset_ids == _test_datasets # no data market_mock.reset_mock() market_mock.return_value = mock_empty_market_data_response() actual = tm.forward_vol_term(Index('MA123', AssetClass.Equity, '123'), tm.VolReference.SPOT, 100) assert actual.empty # real-time with pytest.raises(NotImplementedError): tm.forward_vol_term(..., tm.VolReference.SPOT, 100, real_time=True) replace.restore() def _vol_term_typical(reference, value): assert DataContext.current_is_set data = { 'tenor': ['1w', '2w', '1y', '2y'], 'impliedVolatility': [1, 2, 3, 4] } out = MarketDataResponseFrame(data=data, index=pd.DatetimeIndex(['2018-01-01'] * 4)) out.dataset_ids = _test_datasets replace = Replacer() market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = out actual = tm.vol_term(Index('MA123', AssetClass.Equity, '123'), reference, value) idx = pd.DatetimeIndex(['2018-01-08', '2018-01-15', '2019-01-01', '2020-01-01'], name='expirationDate') expected = pd.Series([1, 2, 3, 4], name='impliedVolatility', index=idx) expected = expected.loc[DataContext.current.start_date: DataContext.current.end_date] if expected.empty: assert actual.empty else: assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets market_mock.assert_called_once() replace.restore() return actual def _vol_term_empty(): replace = Replacer() market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = MarketDataResponseFrame() actual = tm.vol_term(Index('MAXYZ', AssetClass.Equity, 'XYZ'), tm.VolReference.DELTA_CALL, 777) assert actual.empty assert actual.dataset_ids == () market_mock.assert_called_once() replace.restore() def test_vol_term(): with DataContext('2018-01-01', '2019-01-01'): _vol_term_typical(tm.VolReference.SPOT, 100) _vol_term_typical(tm.VolReference.NORMALIZED, 4) _vol_term_typical(tm.VolReference.DELTA_PUT, 50) _vol_term_empty() with DataContext('2018-01-16', '2018-12-31'): out = _vol_term_typical(tm.VolReference.SPOT, 100) assert out.empty assert out.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.vol_term(..., tm.VolReference.SPOT, 100, real_time=True) with pytest.raises(MqError): tm.vol_term(Index('MA123', AssetClass.Equity, '123'), tm.VolReference.DELTA_NEUTRAL, 0) def _vol_term_fx(reference, value): assert DataContext.current_is_set data = { 'tenor': ['1w', '2w', '1y', '2y'], 'impliedVolatility': [1, 2, 3, 4] } out = MarketDataResponseFrame(data=data, index=pd.DatetimeIndex(['2018-01-01'] * 4)) out.dataset_ids = _test_datasets replace = Replacer() market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = out cross_mock = replace('gs_quant.timeseries.measures.cross_stored_direction_for_fx_vol', Mock()) cross_mock.return_value = 'EURUSD' actual = tm.vol_term(Cross('ABCDE', 'EURUSD'), reference, value) idx = pd.DatetimeIndex(['2018-01-08', '2018-01-15', '2019-01-01', '2020-01-01'], name='expirationDate') expected = pd.Series([1, 2, 3, 4], name='impliedVolatility', index=idx) expected = expected.loc[DataContext.current.start_date: DataContext.current.end_date] if expected.empty: assert actual.empty else: assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets market_mock.assert_called_once() replace.restore() return actual def test_vol_term_fx(): with pytest.raises(MqError): tm.vol_term(Cross('MABLUE', 'BLUE'), tm.VolReference.SPOT, 50) with pytest.raises(MqError): tm.vol_term(Cross('MABLUE', 'BLUE'), tm.VolReference.NORMALIZED, 1) with pytest.raises(MqError): tm.vol_term(Cross('MABLUE', 'BLUE'), tm.VolReference.DELTA_NEUTRAL, 1) with DataContext('2018-01-01', '2019-01-01'): _vol_term_fx(tm.VolReference.DELTA_CALL, 50) with DataContext('2018-01-01', '2019-01-01'): _vol_term_fx(tm.VolReference.DELTA_PUT, 50) def _fwd_term_typical(): assert DataContext.current_is_set data = { 'tenor': ['1w', '2w', '1y', '2y'], 'forward': [1, 2, 3, 4] } out = MarketDataResponseFrame(data=data, index=pd.DatetimeIndex(['2018-01-01'] * 4)) out.dataset_ids = _test_datasets replace = Replacer() market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = out actual = tm.fwd_term(Index('MA123', AssetClass.Equity, '123')) idx = pd.DatetimeIndex(['2018-01-08', '2018-01-15', '2019-01-01', '2020-01-01'], name='expirationDate') expected = pd.Series([1, 2, 3, 4], name='forward', index=idx) expected = expected.loc[DataContext.current.start_date: DataContext.current.end_date] if expected.empty: assert actual.empty else: assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets market_mock.assert_called_once() replace.restore() return actual def _fwd_term_empty(): replace = Replacer() market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = mock_empty_market_data_response() actual = tm.fwd_term(Index('MAXYZ', AssetClass.Equity, 'XYZ')) assert actual.empty assert actual.dataset_ids == () market_mock.assert_called_once() replace.restore() def test_fwd_term(): with DataContext('2018-01-01', '2019-01-01'): _fwd_term_typical() _fwd_term_empty() with DataContext('2018-01-16', '2018-12-31'): out = _fwd_term_typical() assert out.empty assert out.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.fwd_term(..., real_time=True) def test_bucketize_price(): target = { '7x24': [27.323461], 'offpeak': [26.004816], 'peak': [27.982783], '7x8': [26.004816], '2x16h': [], 'monthly': [], 'CAISO 7x24': [26.953743375], 'CAISO peak': [29.547952562499997], 'MISO 7x24': [27.076390749999998], 'MISO offpeak': [25.263605624999997], } replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_commod) mock_pjm = Index('MA001', AssetClass.Commod, 'PJM') mock_caiso = Index('MA002', AssetClass.Commod, 'CAISO') mock_miso = Index('MA003', AssetClass.Commod, 'MISO') with DataContext(datetime.date(2019, 5, 1), datetime.date(2019, 5, 1)): bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'MISO' actual = tm.bucketize_price(mock_miso, 'LMP', bucket='7x24') assert_series_equal(pd.Series(target['MISO 7x24'], index=[datetime.date(2019, 5, 1)], name='price'), pd.Series(actual)) actual = tm.bucketize_price(mock_miso, 'LMP', bucket='offpeak') assert_series_equal(pd.Series(target['MISO offpeak'], index=[datetime.date(2019, 5, 1)], name='price'), pd.Series(actual)) bbid_mock.return_value = 'CAISO' actual = tm.bucketize_price(mock_caiso, 'LMP', bucket='7x24') assert_series_equal(pd.Series(target['CAISO 7x24'], index=[datetime.date(2019, 5, 1)], name='price'), pd.Series(actual)) actual = tm.bucketize_price(mock_caiso, 'LMP', bucket='peak') assert_series_equal(pd.Series(target['CAISO peak'], index=[datetime.date(2019, 5, 1)], name='price'), pd.Series(actual)) bbid_mock.return_value = 'PJM' actual = tm.bucketize_price(mock_pjm, 'LMP', bucket='7x24') assert_series_equal(pd.Series(target['7x24'], index=[datetime.date(2019, 5, 1)], name='price'), pd.Series(actual)) actual = tm.bucketize_price(mock_pjm, 'LMP', bucket='offpeak') assert_series_equal(pd.Series(target['offpeak'], index=[datetime.date(2019, 5, 1)], name='price'), pd.Series(actual)) actual = tm.bucketize_price(mock_pjm, 'LMP', bucket='peak') assert_series_equal(pd.Series(target['peak'], index=[datetime.date(2019, 5, 1)], name='price'), pd.Series(actual)) actual = tm.bucketize_price(mock_pjm, 'LMP', bucket='7x8') assert_series_equal(pd.Series(target['7x8'], index=[datetime.date(2019, 5, 1)], name='price'), pd.Series(actual)) actual = tm.bucketize_price(mock_pjm, 'LMP', bucket='2x16h') assert_series_equal(pd.Series(target['2x16h'], index=[], name='price'), pd.Series(actual)) actual = tm.bucketize_price(mock_pjm, 'LMP', granularity='m', bucket='7X24') assert_series_equal(pd.Series(target['monthly'], index=[], name='price'), pd.Series(actual)) with pytest.raises(ValueError): tm.bucketize_price(mock_pjm, 'LMP', bucket='7X24', real_time=True) with pytest.raises(ValueError): tm.bucketize_price(mock_pjm, 'LMP', bucket='weekday') with pytest.raises(ValueError): tm.bucketize_price(mock_caiso, 'LMP', bucket='weekday') with pytest.raises(ValueError): tm.bucketize_price(mock_pjm, 'LMP', granularity='yearly') replace.restore() # No market data market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = mock_empty_market_data_response() with DataContext(datetime.date(2019, 1, 2), datetime.date(2019, 1, 2)): bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'MISO' actual = tm.bucketize_price(mock_miso, 'LMP', bucket='7x24') assert_series_equal(pd.Series(dtype='float64'), pd.Series(actual)) replace.restore() def test_forward_price(): # US Power target = { '7x24': [19.46101], 'peak': [23.86745], 'J20 7x24': [18.11768888888889], 'J20-K20 7x24': [19.283921311475414], 'J20-K20 offpeak': [15.82870707070707], 'J20-K20 7x8': [13.020144262295084], } replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_forward_price) mock_spp = Index('MA001', AssetClass.Commod, 'SPP') with DataContext(datetime.date(2019, 1, 2), datetime.date(2019, 1, 2)): bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'SPP' # Should return empty series as mark for '7x8' bucket is missing actual = tm.forward_price(mock_spp, price_method='LMP', contract_range='2Q20', bucket='7x24' ) assert_series_equal(pd.Series(target['7x24'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) actual = tm.forward_price(mock_spp, price_method='LMP', contract_range='J20', bucket='7x24' ) assert_series_equal(pd.Series(target['J20 7x24'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) actual = tm.forward_price(mock_spp, price_method='LMP', contract_range='2Q20', bucket='PEAK' ) assert_series_equal(pd.Series(target['peak'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) actual = tm.forward_price(mock_spp, price_method='LMP', contract_range='J20-K20', bucket='7x24' ) assert_series_equal(pd.Series(target['J20-K20 7x24'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) actual = tm.forward_price(mock_spp, price_method='LMP', contract_range='J20-K20', bucket='offpeak' ) assert_series_equal(pd.Series(target['J20-K20 offpeak'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) actual = tm.forward_price(mock_spp, price_method='LMP', contract_range='J20-K20', bucket='7x8' ) assert_series_equal(pd.Series(target['J20-K20 7x8'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) actual = tm.forward_price(mock_spp, price_method='lmp', contract_range='2Q20', bucket='7x24' ) assert_series_equal(pd.Series(target['7x24'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) with pytest.raises(ValueError): tm.forward_price(mock_spp, price_method='LMP', contract_range='5Q20', bucket='PEAK' ) with pytest.raises(ValueError): tm.forward_price(mock_spp, price_method='LMP', contract_range='Invalid', bucket='PEAK' ) with pytest.raises(ValueError): tm.forward_price(mock_spp, price_method='LMP', contract_range='3H20', bucket='7x24' ) with pytest.raises(ValueError): tm.forward_price(mock_spp, price_method='LMP', contract_range='F20-I20', bucket='7x24' ) with pytest.raises(ValueError): tm.forward_price(mock_spp, price_method='LMP', contract_range='2H20', bucket='7x24', real_time=True ) replace.restore() replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_missing_bucket_forward_price) bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'SPP' actual = tm.forward_price(mock_spp, price_method='LMP', contract_range='2Q20', bucket='7x24' ) assert_series_equal(pd.Series(), pd.Series(actual), check_names=False) actual = tm.forward_price(mock_spp, price_method='LMP', contract_range='2Q20', bucket='PEAK' ) assert_series_equal(pd.Series(target['peak'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) actual = tm.forward_price(mock_spp, price_method='LMP', contract_range='J20-K20', bucket='7x24' ) assert_series_equal(pd.Series(target['J20-K20 7x24'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) replace.restore() # No market data market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = mock_empty_market_data_response() bbid_mock = replace('gs_quant.timeseries.measures.Asset.get_identifier', Mock()) bbid_mock.return_value = 'SPP' with DataContext(datetime.date(2019, 1, 2), datetime.date(2019, 1, 2)): actual = tm.forward_price(mock_spp, price_method='LMP', contract_range='2Q20', bucket='7x24' ) assert_series_equal(pd.Series(dtype='float64'), pd.Series(actual)) replace.restore() def test_natgas_forward_price(): replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_natgas_forward_price) mock = CommodityNaturalGasHub('MA001', 'AGT') with DataContext(datetime.date(2019, 1, 2), datetime.date(2019, 1, 2)): actual = pd.Series(tm.forward_price(mock, price_method='GDD', contract_range='F21')) expected = pd.Series([2.880], index=[datetime.date(2019, 1, 2)], name='price') assert_series_equal(expected, actual) actual = pd.Series(tm.forward_price(mock, price_method='GDD', contract_range='F21-G21')) expected = pd.Series([2.8629152542372878], index=[datetime.date(2019, 1, 2)], name='price') assert_series_equal(expected, actual) with pytest.raises(ValueError): tm.forward_price(mock, price_method='GDD', contract_range='F21-I21') with pytest.raises(ValueError): tm.forward_price(mock, price_method='GDD', contract_range='I21') replace.restore() # No market data market_mock = replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', Mock()) market_mock.return_value = mock_empty_market_data_response() with DataContext(datetime.date(2019, 1, 2), datetime.date(2019, 1, 2)): actual = tm.forward_price(mock, price_method='GDD', contract_range='F21') assert_series_equal(pd.Series(dtype='float64'), pd.Series(actual)) replace.restore() def test_get_iso_data(): tz_map = {'MISO': 'US/Central', 'CAISO': 'US/Pacific'} for key in tz_map: assert (tm._get_iso_data(key)[0] == tz_map[key]) def test_string_to_date_interval(): assert (tm._string_to_date_interval("K20")['start_date'] == datetime.date(2020, 5, 1)) assert (tm._string_to_date_interval("K20")['end_date'] == datetime.date(2020, 5, 31)) assert (tm._string_to_date_interval("k20")['start_date'] == datetime.date(2020, 5, 1)) assert (tm._string_to_date_interval("k20")['end_date'] == datetime.date(2020, 5, 31)) assert (tm._string_to_date_interval("Cal22")['start_date'] == datetime.date(2022, 1, 1)) assert (tm._string_to_date_interval("Cal22")['end_date'] == datetime.date(2022, 12, 31)) assert (tm._string_to_date_interval("Cal2012")['start_date'] == datetime.date(2012, 1, 1)) assert (tm._string_to_date_interval("Cal2012")['end_date'] == datetime.date(2012, 12, 31)) assert (tm._string_to_date_interval("Cal53")['start_date'] == datetime.date(1953, 1, 1)) assert (tm._string_to_date_interval("Cal53")['end_date'] == datetime.date(1953, 12, 31)) assert (tm._string_to_date_interval("2010")['start_date'] == datetime.date(2010, 1, 1)) assert (tm._string_to_date_interval("2010")['end_date'] == datetime.date(2010, 12, 31)) assert (tm._string_to_date_interval("3Q20")['start_date'] == datetime.date(2020, 7, 1)) assert (tm._string_to_date_interval("3Q20")['end_date'] == datetime.date(2020, 9, 30)) assert (tm._string_to_date_interval("2h2021")['start_date'] == datetime.date(2021, 7, 1)) assert (tm._string_to_date_interval("2h2021")['end_date'] == datetime.date(2021, 12, 31)) assert (tm._string_to_date_interval("3q20")['start_date'] == datetime.date(2020, 7, 1)) assert (tm._string_to_date_interval("3q20")['end_date'] == datetime.date(2020, 9, 30)) assert (tm._string_to_date_interval("2H2021")['start_date'] == datetime.date(2021, 7, 1)) assert (tm._string_to_date_interval("2H2021")['end_date'] == datetime.date(2021, 12, 31)) assert (tm._string_to_date_interval("Mar2021")['start_date'] == datetime.date(2021, 3, 1)) assert (tm._string_to_date_interval("Mar2021")['end_date'] == datetime.date(2021, 3, 31)) assert (tm._string_to_date_interval("March2021")['start_date'] == datetime.date(2021, 3, 1)) assert (tm._string_to_date_interval("March2021")['end_date'] == datetime.date(2021, 3, 31)) assert (tm._string_to_date_interval("5Q20") == "Invalid Quarter") assert (tm._string_to_date_interval("HH2021") == "Invalid num") assert (tm._string_to_date_interval("3H2021") == "Invalid Half Year") assert (tm._string_to_date_interval("Cal2a") == "Invalid year") assert (tm._string_to_date_interval("Marc201") == "Invalid date code") assert (tm._string_to_date_interval("M1a2021") == "Invalid date code") assert (tm._string_to_date_interval("Marcha2021") == "Invalid date code") assert (tm._string_to_date_interval("I20") == "Invalid month") assert (tm._string_to_date_interval("20") == "Unknown date code") def test_implied_vol_commod(): target = { 'F21': [2.880], 'F21-H21': [2.815756], } replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_implied_volatility) mock = Index('MA001', AssetClass.Commod, 'Option NG Exchange') with DataContext(datetime.date(2019, 1, 2), datetime.date(2019, 1, 2)): actual = tm.implied_volatility(mock, tenor='F21-H21') assert_series_equal(pd.Series(target['F21-H21'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) replace.restore() def test_fair_price(): target = { 'F21': [2.880], 'F21-H21': [2.815756], } replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fair_price) mock = Index('MA001', AssetClass.Commod, 'Swap NG Exchange') mock2 = Swap('MA002', AssetClass.Commod, 'Swap Oil') with DataContext(datetime.date(2019, 1, 2), datetime.date(2019, 1, 2)): actual = tm.fair_price(mock, tenor='F21') assert_series_equal(pd.Series(target['F21'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) with pytest.raises(ValueError): tm.fair_price(mock, tenor=None) replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fair_price_swap) with DataContext(datetime.date(2019, 1, 2), datetime.date(2019, 1, 2)): actual = tm.fair_price(mock2) assert_series_equal(pd.Series([2.880], index=[pd.Timestamp('2019-01-02')], name='fairPrice'), pd.Series(actual), ) replace.restore() def test_weighted_average_valuation_curve_for_calendar_strip(): target = { 'F21': [2.880], 'F21-H21': [2.815756], } replace = Replacer() replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_fair_price) mock = Index('MA001', AssetClass.Commod, 'Swap NG Exchange') with DataContext(datetime.date(2019, 1, 2), datetime.date(2019, 1, 2)): actual = tm._weighted_average_valuation_curve_for_calendar_strip(mock, contract_range='F21', query_type=QueryType.FAIR_PRICE, measure_field='fairPrice' ) assert_series_equal(pd.Series(target['F21'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) actual = tm._weighted_average_valuation_curve_for_calendar_strip(mock, contract_range='F21-H21', query_type=QueryType.FAIR_PRICE, measure_field='fairPrice' ) assert_series_equal(pd.Series(target['F21-H21'], index=[datetime.date(2019, 1, 2)], name='price'), pd.Series(actual)) with pytest.raises(ValueError): tm._weighted_average_valuation_curve_for_calendar_strip(mock, contract_range='Invalid', query_type=QueryType.FAIR_PRICE, measure_field='fairPrice' ) with pytest.raises(ValueError): tm._weighted_average_valuation_curve_for_calendar_strip(mock, contract_range='F20-I20', query_type=QueryType.FAIR_PRICE, measure_field='fairPrice' ) with pytest.raises(ValueError): tm._weighted_average_valuation_curve_for_calendar_strip(mock, contract_range='3H20', query_type=QueryType.PRICE, measure_field='fairPrice' ) replace.restore() def test_fundamental_metrics(): replace = Replacer() mock_spx = Index('MA890', AssetClass.Equity, 'SPX') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_eq) period = '1y' direction = tm.FundamentalMetricPeriodDirection.FORWARD actual = tm.dividend_yield(mock_spx, period, direction) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='fundamentalMetric'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.dividend_yield(..., period, direction, real_time=True) actual = tm.earnings_per_share(mock_spx, period, direction) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='fundamentalMetric'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.earnings_per_share(..., period, direction, real_time=True) actual = tm.earnings_per_share_positive(mock_spx, period, direction) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='fundamentalMetric'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.earnings_per_share_positive(..., period, direction, real_time=True) actual = tm.net_debt_to_ebitda(mock_spx, period, direction) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='fundamentalMetric'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.net_debt_to_ebitda(..., period, direction, real_time=True) actual = tm.price_to_book(mock_spx, period, direction) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='fundamentalMetric'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.price_to_book(..., period, direction, real_time=True) actual = tm.price_to_cash(mock_spx, period, direction) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='fundamentalMetric'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.price_to_cash(..., period, direction, real_time=True) actual = tm.price_to_earnings(mock_spx, period, direction) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='fundamentalMetric'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.price_to_earnings(..., period, direction, real_time=True) actual = tm.price_to_earnings_positive(mock_spx, period, direction) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='fundamentalMetric'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.price_to_earnings_positive(..., period, direction, real_time=True) actual = tm.price_to_sales(mock_spx, period, direction) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='fundamentalMetric'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.price_to_sales(..., period, direction, real_time=True) actual = tm.return_on_equity(mock_spx, period, direction) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='fundamentalMetric'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.return_on_equity(..., period, direction, real_time=True) actual = tm.sales_per_share(mock_spx, period, direction) assert_series_equal(pd.Series([5, 1, 2], index=_index * 3, name='fundamentalMetric'), pd.Series(actual)) assert actual.dataset_ids == _test_datasets with pytest.raises(NotImplementedError): tm.sales_per_share(..., period, direction, real_time=True) replace.restore() def test_central_bank_swap_rate(mocker): target = { 'meeting_absolute': -0.004550907771, 'meeting_relative': -0.00002833724599999969, 'eoy_absolute': -0.003359767756, 'eoy_relative': 0.001162802769, 'spot': -0.00455 } mock_eur = Currency('MARFAGXDQRWM07Y2', 'EUR') with DataContext(dt.date(2019, 12, 6), dt.date(2019, 12, 6)): replace = Replacer() xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EUR', ))] mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_default_mocker) mock_get_data = replace('gs_quant.data.dataset.Dataset.get_data', Mock()) mock_get_data.return_value = mock_meeting_absolute() actual_abs = tm.central_bank_swap_rate(mock_eur, tm.MeetingType.MEETING_FORWARD, 'absolute', dt.date(2019, 12, 6)) assert (target['meeting_absolute'] == actual_abs.loc[dt.date(2020, 1, 23)]) assert actual_abs.dataset_ids == ('CENTRAL_BANK_WATCH',) actual_rel = tm.central_bank_swap_rate(mock_eur, tm.MeetingType.MEETING_FORWARD, 'relative', dt.date(2019, 12, 6)) assert (target['meeting_relative'] == actual_rel.loc[dt.date(2020, 1, 23)]) assert actual_rel.dataset_ids == ('CENTRAL_BANK_WATCH',) mock_get_data.return_value = mock_ois_spot() actual_spot = tm.central_bank_swap_rate(mock_eur, tm.MeetingType.SPOT, 'absolute', dt.date(2019, 12, 6)) assert (target['spot'] == actual_spot.loc[dt.date(2019, 12, 6)]) assert actual_spot.dataset_ids == ('CENTRAL_BANK_WATCH',) with pytest.raises(MqError): tm.central_bank_swap_rate(mock_eur, 'meeting_forward') with pytest.raises(MqError): tm.central_bank_swap_rate(mock_eur, tm.MeetingType.MEETING_FORWARD, 'normalized', '2019-09-01') with pytest.raises(MqError): tm.central_bank_swap_rate(mock_eur, tm.MeetingType.MEETING_FORWARD, 'absolute', 5) with pytest.raises(MqError): tm.central_bank_swap_rate(mock_eur, tm.MeetingType.MEETING_FORWARD, 'absolute', '01-09-2019') with pytest.raises(MqError): tm.central_bank_swap_rate(mock_eur, tm.MeetingType.SPOT, 'relative') with pytest.raises(NotImplementedError): tm.central_bank_swap_rate(mock_eur, tm.MeetingType.SPOT, 'absolute', real_time=True) replace.restore() def test_policy_rate_expectation(mocker): target = { 'meeting_number_absolute': -0.004550907771, 'meeting_number_relative': -0.000028337246, 'meeting_date_relative': -0.000028337246, 'meeting_number_spot': -0.004522570525 } mock_eur = Currency('MARFAGXDQRWM07Y2', 'EUR') with DataContext(dt.date(2019, 12, 6), dt.date(2019, 12, 6)): replace = Replacer() xrefs = replace('gs_quant.timeseries.measures.GsAssetApi.get_asset_xrefs', Mock()) xrefs.return_value = [GsTemporalXRef(dt.date(2019, 1, 1), dt.date(2952, 12, 31), XRef(bbid='EUR', ))] mocker.patch.object(GsAssetApi, 'map_identifiers', side_effect=map_identifiers_default_mocker) mocker.patch.object(Dataset, 'get_data', side_effect=get_data_policy_rate_expectation_mocker) actual_num = tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'absolute', 2) assert (target['meeting_number_absolute'] == actual_num.loc[dt.date(2019, 12, 6)]) assert actual_num.dataset_ids == ('CENTRAL_BANK_WATCH',) actual_date = tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'absolute', dt.date(2020, 1, 23)) assert (target['meeting_number_absolute'] == actual_date.loc[dt.date(2019, 12, 6)]) assert actual_date.dataset_ids == ('CENTRAL_BANK_WATCH',) actual_num = tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'relative', 2) assert_allclose([target['meeting_number_relative']], [actual_num.loc[dt.date(2019, 12, 6)]], rtol=1e-9, atol=1e-15) assert actual_num.dataset_ids == ('CENTRAL_BANK_WATCH',) actual_num = tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'absolute', 0) assert (target['meeting_number_spot'] == actual_num.loc[dt.date(2019, 12, 6)]) assert actual_num.dataset_ids == ('CENTRAL_BANK_WATCH',) actual_date = tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'absolute', '2019-10-24') assert (target['meeting_number_spot'] == actual_date.loc[dt.date(2019, 12, 6)]) assert actual_date.dataset_ids == ('CENTRAL_BANK_WATCH',) mocker.patch.object(Dataset, 'get_data', side_effect=[mock_meeting_expectation(), mock_empty_market_data_response()]) with pytest.raises(MqError): tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'relative', 2) with pytest.raises(MqError): tm.policy_rate_expectation(mock_eur, tm.MeetingType.SPOT) with pytest.raises(MqError): tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'relative', '5') with pytest.raises(MqError): tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'absolute', 5.5) with pytest.raises(MqError): tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'absolute', '01-09-2019') with pytest.raises(MqError): tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'normalized', dt.date(2019, 9, 1)) with pytest.raises(MqError): tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'relative', -2) with pytest.raises(NotImplementedError): tm.policy_rate_expectation(mock_eur, tm.MeetingType.SPOT, 'absolute', real_time=True) mock_get_data = replace('gs_quant.data.dataset.Dataset.get_data', Mock()) mock_get_data.return_value = pd.DataFrame() with pytest.raises(MqError): tm.policy_rate_expectation(mock_eur, tm.MeetingType.MEETING_FORWARD, 'absolute', 2) replace.restore() def test_realized_volatility(): from gs_quant.timeseries.econometrics import volatility, Returns from gs_quant.timeseries.statistics import generate_series random = generate_series(100).rename('spot') window = 10 type_ = Returns.SIMPLE replace = Replacer() market_data = replace('gs_quant.timeseries.measures._market_data_timed', Mock()) return_value = MarketDataResponseFrame(random) return_value.dataset_ids = _test_datasets market_data.return_value = return_value expected = volatility(random, window, type_) actual = tm.realized_volatility(Cross('MA123', 'ABCXYZ'), window, type_) assert_series_equal(expected, pd.Series(actual)) assert actual.dataset_ids == _test_datasets replace.restore() def test_esg_headline_metric(): replace = Replacer() mock_aapl = Stock('MA4B66MW5E27U9VBB94', 'AAPL') replace('gs_quant.timeseries.measures.GsDataApi.get_market_data', mock_esg) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.ENVIRONMENTAL_SOCIAL_NUMERIC_SCORE) assert_series_equal(pd.Series([2, 4, 6], index=_index * 3, name='esNumericScore'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.ENVIRONMENTAL_SOCIAL_POLICY_SCORE) assert_series_equal(pd.Series([2, 4, 6], index=_index * 3, name='esPolicyScore'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.ENVIRONMENTAL_SOCIAL_AGGREGATE_SCORE) assert_series_equal(pd.Series([2, 4, 6], index=_index * 3, name='esScore'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.ENVIRONMENTAL_SOCIAL_PRODUCT_IMPACT_SCORE) assert_series_equal(pd.Series([2, 4, 6], index=_index * 3, name='esProductImpactScore'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.GOVERNANCE_AGGREGATE_SCORE) assert_series_equal(pd.Series([2, 4, 6], index=_index * 3, name='gScore'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.ENVIRONMENTAL_SOCIAL_MOMENTUM_SCORE) assert_series_equal(pd.Series([2, 4, 6], index=_index * 3, name='esMomentumScore'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.GOVERNANCE_REGIONAL_SCORE) assert_series_equal(pd.Series([2, 4, 6], index=_index * 3, name='gRegionalScore'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.CONTROVERSY_SCORE) assert_series_equal(pd.Series([2, 4, 6], index=_index * 3, name='controversyScore'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.ENVIRONMENTAL_SOCIAL_NUMERIC_PERCENTILE) assert_series_equal(pd.Series([81.2, 75.4, 65.7], index=_index * 3, name='esNumericPercentile'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.ENVIRONMENTAL_SOCIAL_POLICY_PERCENTILE) assert_series_equal(pd.Series([81.2, 75.4, 65.7], index=_index * 3, name='esPolicyPercentile'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.ENVIRONMENTAL_SOCIAL_AGGREGATE_PERCENTILE) assert_series_equal(pd.Series([81.2, 75.4, 65.7], index=_index * 3, name='esPercentile'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.ENVIRONMENTAL_SOCIAL_PRODUCT_IMPACT_PERCENTILE) assert_series_equal(pd.Series([81.2, 75.4, 65.7], index=_index * 3, name='esProductImpactPercentile'), pd.Series(actual)) actual = tm.esg_headline_metric(mock_aapl, tm.EsgMetric.GOVERNANCE_AGGREGATE_PERCENTILE) assert_series_equal(
pd.Series([81.2, 75.4, 65.7], index=_index * 3, name='gPercentile')
pandas.Series
""" This is the main script of DeepD v0.1 Developed and maintained by Xu lab at https://github.com/DesmondYuan/deepD For quick start, try this with python scripts/main.py -config=configs/example_GENT_NC.json The config file should include the following information "expr_name": (str) Label used as folder name under results "train_dataset": (str) Location of the dataset that would be further split into training set and validation set with the "validation_ratio. "test_dataset": (str) Location of the withheld/test dataset. "annotation_col": (str) On which column of the input data frame would a supervised model be trained to classify. "validation_ratio": (float) The training/validation ratio for data partition used for "train_dataset". "n_genes": (int) Number of genes from the input data. "unsupervised_layers": (list) A list of layer sizes used for encoders and decoders. "supervised_layers": (list) A list of layer sizes used for supervised classifier DeepDCancer. "pretrain_tp2vec": (bool) Whether to perform unsupervised pretraining. "plot_pretrain_results": (bool) Whether to plot the results after pretraining. "train_disconnected_classifier": (bool) Whether to perform the disconnected supervised classification (DeepDCancer). "train_connected_classifier": (bool) Whether to perform the connected supervised classification (DeepDcCancer). "max_iteration": (int) Maximum number of iterations used for training. "max_iteration_pretrain": (int) Maximum number of iterations used for pretraining. n_iter_buffer (int): The moving window for eval losses during training. n_iter_patience (int): How many iterations without buffered loss on validation dataset decreases would result in an earlystop in training. "n_iter_patience_pretrain":How many iterations without buffered loss on validation dataset decreases would result in an earlystop in pretraining (for each layer). learning_rate (float): The learning rate for Adam Optimizer. Note that we used the default beta1 and beta2 for Adam. l1 (float): l1 regularization strength. l2 (float): l2 regularization strength. "activation": (tensorflow) Activation function for dense layers. "optimizer": (tensorflow) Which optimizer would be used for training. "verbose": (int) export verbose "listen_freq": (int) Printing training loss for each # of iterations. "pretrain_batch_size": Batch size for each iteration in pretraining. "batch_size": Batch size for each iteration in training. """ import sys import os import shutil import argparse import json import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sys.path.append(os.path.dirname(__file__) + '/..') from DeepD.model import DeepT2vec, DeepDCancer from DeepD.utils import md5, get_metrics, plot_reconstruction from DeepD.train import pretrain, train, session_setup, session_init from DeepD.data import random_partition parser = argparse.ArgumentParser(description='DeepD main script') parser.add_argument('-config', '--experiment_config_path', required=True, type=str, help="Path of experiment config") parser.add_argument('-seed', '--random_seed', required=False, default=0, type=int, help="Random seed") args = parser.parse_args() cfg = json.load(open(args.experiment_config_path, 'r')) print("[Main] Experiment starts with seed={} and config={}".format(args.random_seed, cfg)) # Loading datasets print("[Main] Loading datasets...") train_df = pd.read_csv(cfg['train_dataset'], index_col=0) test_df =
pd.read_csv(cfg['test_dataset'], index_col=0)
pandas.read_csv
# -*- coding:utf-8 -*- # !/usr/bin/env python """ Date: 2021/11/2 21:08 Desc: 同花顺-数据中心-技术选股 http://data.10jqka.com.cn/rank/cxg/ """ import pandas as pd import requests from bs4 import BeautifulSoup from py_mini_racer import py_mini_racer from tqdm import tqdm from akshare.datasets import get_ths_js def _get_file_content_ths(file: str = "ths.js") -> str: """ 获取 JS 文件的内容 :param file: JS 文件名 :type file: str :return: 文件内容 :rtype: str """ setting_file_path = get_ths_js(file) with open(setting_file_path) as f: file_data = f.read() return file_data def stock_rank_cxg_ths(symbol: str = "创月新高") -> pd.DataFrame: """ 同花顺-数据中心-技术选股-创新高 http://data.10jqka.com.cn/rank/cxg/ :param symbol: choice of {"创月新高", "半年新高", "一年新高", "历史新高"} :type symbol: str :return: 创新高数据 :rtype: pandas.DataFrame """ symbol_map = { "创月新高": "4", "半年新高": "3", "一年新高": "2", "历史新高": "1", } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxg/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxg/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = ["序号", "股票代码", "股票简称", "涨跌幅", "换手率", "最新价", "前期高点", "前期高点日期"] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].str.strip("%") big_df["换手率"] = big_df["换手率"].str.strip("%") big_df["前期高点日期"] = pd.to_datetime(big_df["前期高点日期"]).dt.date big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["前期高点"] = pd.to_numeric(big_df["前期高点"]) return big_df def stock_rank_cxd_ths(symbol: str = "创月新低") -> pd.DataFrame: """ 同花顺-数据中心-技术选股-创新低 http://data.10jqka.com.cn/rank/cxd/ :param symbol: choice of {"创月新低", "半年新低", "一年新低", "历史新低"} :type symbol: str :return: 创新低数据 :rtype: pandas.DataFrame """ symbol_map = { "创月新低": "4", "半年新低": "3", "一年新低": "2", "历史新低": "1", } js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxd/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/cxd/board/{symbol_map[symbol]}/field/stockcode/order/asc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text)[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = ["序号", "股票代码", "股票简称", "涨跌幅", "换手率", "最新价", "前期低点", "前期低点日期"] big_df["股票代码"] = big_df["股票代码"].astype(str).str.zfill(6) big_df["涨跌幅"] = big_df["涨跌幅"].str.strip("%") big_df["换手率"] = big_df["换手率"].str.strip("%") big_df["前期低点日期"] = pd.to_datetime(big_df["前期低点日期"]).dt.date big_df["涨跌幅"] = pd.to_numeric(big_df["涨跌幅"]) big_df["换手率"] = pd.to_numeric(big_df["换手率"]) big_df["最新价"] = pd.to_numeric(big_df["最新价"]) big_df["前期低点"] = pd.to_numeric(big_df["前期低点"]) return big_df def stock_rank_lxsz_ths() -> pd.DataFrame: """ 同花顺-数据中心-技术选股-连续上涨 http://data.10jqka.com.cn/rank/lxsz/ :return: 连续上涨 :rtype: pandas.DataFrame """ js_code = py_mini_racer.MiniRacer() js_content = _get_file_content_ths("ths.js") js_code.eval(js_content) v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxsz/field/lxts/order/desc/page/1/ajax/1/free/1/" r = requests.get(url, headers=headers) soup = BeautifulSoup(r.text, "lxml") try: total_page = soup.find("span", attrs={"class": "page_info"}).text.split("/")[1] except AttributeError as e: total_page = 1 big_df = pd.DataFrame() for page in tqdm(range(1, int(total_page) + 1), leave=False): v_code = js_code.call("v") headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.90 Safari/537.36", "Cookie": f"v={v_code}", } url = f"http://data.10jqka.com.cn/rank/lxsz/field/lxts/order/desc/page/{page}/ajax/1/free/1/" r = requests.get(url, headers=headers) temp_df = pd.read_html(r.text, converters={"股票代码": str})[0] big_df = big_df.append(temp_df, ignore_index=True) big_df.columns = [ "序号", "股票代码", "股票简称", "收盘价", "最高价", "最低价", "连涨天数", "连续涨跌幅", "累计换手率", "所属行业", ] big_df["连续涨跌幅"] = big_df["连续涨跌幅"].str.strip("%") big_df["累计换手率"] = big_df["累计换手率"].str.strip("%") big_df["连续涨跌幅"] = pd.to_numeric(big_df["连续涨跌幅"]) big_df["累计换手率"] = pd.to_nume
ric(big_df["累计换手率"])
pandas.to_numeric
import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy.cluster.hierarchy import linkage, fcluster, dendrogram from scipy import stats from sklearn.metrics import f1_score, precision_score, recall_score from sklearn.decomposition import PCA # utils -------------------------------------------------------------------- def mad(df): # median absolute deviation return df.subtract(df.median(axis=1), axis=0).abs().median(axis=1) def score_from_index(func, idx_seq1, idx_seq2, n): x1 = np.zeros(n) x2 = np.zeros(n) x1[idx_seq1] = 1 x2[idx_seq2] = 1 return func(x1, x2) def score_sfg(sfg_arr, func): return score_from_index(func, np.arange(500), sfg_arr, 10000) def jaccard(idx_seq1, idx_seq2): return len(np.intersect1d(idx_seq1, idx_seq2)) / \ len(np.union1d(idx_seq1, idx_seq2)) def generate_data(n_sample, scale=5, n_gene=10000, n_pos=500): df_expr = pd.DataFrame(np.random.randn(n_gene, n_sample)) df_ctrl = pd.DataFrame(np.random.randn(n_gene, n_sample)) common_fluc = np.sqrt(scale**2 - 1) * np.random.randn(n_sample) df_expr[:n_pos] += common_fluc return df_expr, df_ctrl def deg(df_expr, df_ctrl, fc_cutoff=1.0): # differentially expressed genes diff_sr = df_expr.mean(axis=1) - df_ctrl.mean(axis=1) return df_expr.index[diff_sr.abs() > fc_cutoff] def save_gene(gene_arr, map_sr, file_name='gene_list.txt'): pd.Series(map_sr.loc[gene_arr].dropna().sort_values().unique()).\ to_csv(file_name, index=False) def calculate_q(p_seq): p_arr = np.asarray(p_seq) n_tests = len(p_arr) sort_index_arr = np.argsort(p_arr) p_sorted_arr = p_arr[sort_index_arr] q_arr = p_sorted_arr * n_tests / (np.arange(n_tests) + 1) q_min = q_arr[-1] q_list = [q_min] for q in q_arr[-2::-1]: if q < q_min: q_min = q q_list.append(q_min) q_arr = np.array(q_list)[::-1] q_arr[sort_index_arr] = q_arr.copy() return q_arr # proposed method 1 -------------------------------------------------------- def two_step(df_expr, df_ctrl, fc_cutoff=2, corr_cutoff=0.75, cluster_cutoff=0.5, robust=True): # step 1: deviation filtering if robust: df_sub = df_expr[mad(df_expr) > fc_cutoff * mad(df_ctrl)] else: df_sub = df_expr[df_expr.std(axis=1) > fc_cutoff * df_ctrl.std(axis=1)] # step 2: clustering if robust: # Spearman's correlation df_sub = df_sub.T.rank().T linkage_arr = linkage(df_sub, method='average', metric='correlation') label_arr = fcluster(linkage_arr, 1-corr_cutoff, criterion='distance') freq_sr =
pd.Series(label_arr)
pandas.Series
import torch import torch.nn as nn from torch.nn.utils.rnn import pack_padded_sequence, pad_packed_sequence import pandas as pd import numpy as np from datetime import datetime from scipy.stats.mstats import gmean from dateutil.relativedelta import relativedelta import os from server.models.portfolio.stats import * from server.models.portfolio.cost import costs from server.models.portfolio.tiingo import get_data from server.models.portfolio.optimize import optimize from server.models.portfolio.bl import bl, get_mkt_cap from server.models.portfolio.rs import fama_french, regime_switch, current_regime, business_days, expected_returns, covariance class RNN(nn.Module): def __init__(self, embed_size, num_output, rnn_model = 'GRU', use_last = True, padding_index = 0, hidden_size = 64, num_layers = 1, batch_first = True): super(RNN, self).__init__() self.use_last = use_last self.drop_en = nn.Dropout(p = 0.6) self.end_date = datetime.now().strftime("%Y-%m-%d") self.start_date = (datetime.strptime(self.end_date, "%Y-%m-%d") - relativedelta(years=6)).strftime("%Y-%m-%d") self.tickers = list(pd.read_csv(os.getcwd() + r'/data/tickers.csv')['Tickers']) if rnn_model == 'LSTM': self.rnn = nn.LSTM(input_size = embed_size, hidden_size = hidden_size, num_layers = num_layers, dropout = 0.5, batch_first = True, bidirectional = False) elif rnn_model == 'GRU': self.rnn = nn.GRU(input_size = embed_size, hidden_size = hidden_size, num_layers = num_layers, dropout = 0.5, batch_first = True, bidirectional = False) self.bn2 = nn.BatchNorm1d(int(hidden_size)) self.fc = nn.Linear(int(hidden_size), int(num_output)) def forward(self, x): #x_embed = self.drop_en(x) #x_embed = nn.functional.dropout(x) x_embed = x.view(28, x.shape[1], -1) #packed_input = pack_padded_sequence(x_embed, seq_lengths.cpu().numpy(), batch_first = True) x_embed = x_embed.type(torch.FloatTensor) packed_output, ht = self.rnn(x_embed, None) #out_rnn, _ = pad_packed_sequence(packed_output, batch_first = True) #row_indices = torch.arange(0, x.size(0)).long() #col_indices = seq_lengths - 1 #if next(self.parameters()).is_cuda(): # row_indices = row_indices.cuda() #col_indices = col_indices.cuda() #if self.use_last: #last_tensor = out_rnn[row_indices, col_indices, :] #last_tensor = packed_output[row_indices, :] #else: #last_tensor = out_rnn[row_indices, :, :] #last_tensor = packed_output[row_indices, :] #last_tensor = torch.mean(last_tensor, dim = 1) #change labels to predict returns from stock price, but output mu_ml (do this in run_optimization - move it outside) fc_input = self.bn2(packed_output[-1].view(x.shape[1], -1)) out = self.fc(fc_input) #out = self.run_optimization(self.end_date, self.start_date, out) return out.view(-1) def run_optimization(self, end_date, start_date, mu_ml): rebalance_date = (datetime.strptime(end_date, "%Y-%m-%d") + relativedelta(months=6, days=1)).strftime("%Y-%m-%d") rebalance_date = datetime.strftime(
pd.bdate_range(end_date, rebalance_date)
pandas.bdate_range
#Aqui iremos utilizar um metodo mais sofisticado para calcular o valor de uma acao no mercado de opcoes #Chamado de discretizacao de Euler import numpy as np import pandas as pd from pandas_datareader import data as wb from scipy.stats import norm import matplotlib.pyplot as plt ticker = 'PG' data =
pd.DataFrame()
pandas.DataFrame
import datetime import json import requests import pandas as pd import streamlit as st from copy import deepcopy from twilio.rest import Client import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText st.set_page_config(layout='wide', initial_sidebar_state='collapsed') @st.cache(allow_output_mutation=True, suppress_st_warning=True) def filter_column(df, col, value): df_temp = deepcopy(df.loc[df[col] == value, :]) return df_temp def filter_in_stock(df, col): df_temp = deepcopy(df.loc[df[col] >= 0, :]) return df_temp def get_location(df, col): df_temp = deepcopy(df.loc[df[col], :]) return df_temp rename_mapping = { 'date': 'Date', 'min_age_limit': 'Minimum Age Limit', 'available_capacity': 'Available Capacity', 'pincode': 'Pincode', 'name': 'Hospital Name', 'state_name' : 'State', 'district_name' : 'District', 'block_name': 'Block Name', 'fee_type' : 'Fees' } st.title('Manasa says lets get vaccinated!') st.info('The CoWIN APIs are geo-fenced so sometimes you may not see an output! Please try after sometime ') left_column_1, right_column_1 = st.beta_columns(2) with left_column_1: numdays = st.slider('Select Date Range', 0, 100, 5) with right_column_1: PINCODE = st.text_input("Pincode", "560037") base = datetime.datetime.today() date_list = [base + datetime.timedelta(days=x) for x in range(numdays)] date_str = [x.strftime("%d-%m-%Y") for x in date_list] final_df = None for INP_DATE in date_str: URL = "https://cdn-api.co-vin.in/api/v2/appointment/sessions/calendarByPin?pincode={}&date={}".format(PINCODE, INP_DATE) response = requests.get(URL) if (response.ok) and ('centers' in json.loads(response.text)): resp_json = json.loads(response.text)['centers'] if resp_json is not None: df =
pd.DataFrame(resp_json)
pandas.DataFrame
# -*- coding: utf-8 -*- try: import json except ImportError: import simplejson as json import math import pytz import locale import pytest import time import datetime import calendar import re import decimal import dateutil from functools import partial from pandas.compat import range, StringIO, u from pandas._libs.tslib import Timestamp import pandas._libs.json as ujson import pandas.compat as compat import numpy as np from pandas import DataFrame, Series, Index, NaT, DatetimeIndex, date_range import pandas.util.testing as tm json_unicode = (json.dumps if compat.PY3 else partial(json.dumps, encoding="utf-8")) def _clean_dict(d): """ Sanitize dictionary for JSON by converting all keys to strings. Parameters ---------- d : dict The dictionary to convert. Returns ------- cleaned_dict : dict """ return {str(k): v for k, v in compat.iteritems(d)} @pytest.fixture(params=[ None, # Column indexed by default. "split", "records", "values", "index"]) def orient(request): return request.param @pytest.fixture(params=[None, True]) def numpy(request): return request.param class TestUltraJSONTests(object): @pytest.mark.skipif(compat.is_platform_32bit(), reason="not compliant on 32-bit, xref #15865") def test_encode_decimal(self): sut = decimal.Decimal("1337.1337") encoded = ujson.encode(sut, double_precision=15) decoded = ujson.decode(encoded) assert decoded == 1337.1337 sut = decimal.Decimal("0.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.94") encoded = ujson.encode(sut, double_precision=1) assert encoded == "0.9" decoded = ujson.decode(encoded) assert decoded == 0.9 sut = decimal.Decimal("1.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "2.0" decoded = ujson.decode(encoded) assert decoded == 2.0 sut = decimal.Decimal("-1.95") encoded = ujson.encode(sut, double_precision=1) assert encoded == "-2.0" decoded = ujson.decode(encoded) assert decoded == -2.0 sut = decimal.Decimal("0.995") encoded = ujson.encode(sut, double_precision=2) assert encoded == "1.0" decoded = ujson.decode(encoded) assert decoded == 1.0 sut = decimal.Decimal("0.9995") encoded = ujson.encode(sut, double_precision=3) assert encoded == "1.0" decoded =
ujson.decode(encoded)
pandas._libs.json.decode
from __future__ import print_function import collections import json import logging import os import pickle import sys import numpy as np import pandas as pd import keras from itertools import cycle, islice from sklearn.preprocessing import Imputer from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler from sklearn.model_selection import ShuffleSplit, KFold import file_utils file_path = os.path.dirname(os.path.realpath(__file__)) lib_path = os.path.abspath(os.path.join(file_path, '..', '..', 'common')) sys.path.append(lib_path) # import candle import file_utils global_cache = {} SEED = 2018 P1B3_URL = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/P1B3/' DATA_URL = 'http://ftp.mcs.anl.gov/pub/candle/public/benchmarks/Pilot1/combo/' logger = logging.getLogger(__name__) def set_up_logger(verbose=False): sh = logging.StreamHandler() sh.setFormatter(logging.Formatter('')) sh.setLevel(logging.DEBUG if verbose else logging.INFO) logger.setLevel(logging.DEBUG) logger.addHandler(sh) def set_seed(seed=SEED): os.environ['PYTHONHASHSEED'] = '0' np.random.seed(seed) random.seed(seed) def get_file(url): fname = os.path.basename(url) return file_utils.get_file(fname, origin=url, cache_subdir='Pilot1') def impute_and_scale(df, scaling='std', imputing='mean', dropna='all'): """Impute missing values with mean and scale data included in pandas dataframe. Parameters ---------- df : pandas dataframe dataframe to impute and scale scaling : 'maxabs' [-1,1], 'minmax' [0,1], 'std', or None, optional (default 'std') type of scaling to apply """ if dropna: df = df.dropna(axis=1, how=dropna) else: empty_cols = df.columns[df.notnull().sum() == 0] df[empty_cols] = 0 if imputing is None or imputing.lower() == 'none': mat = df.values else: imputer = Imputer(strategy=imputing, axis=0) mat = imputer.fit_transform(df) if scaling is None or scaling.lower() == 'none': return pd.DataFrame(mat, columns=df.columns) if scaling == 'maxabs': scaler = MaxAbsScaler() elif scaling == 'minmax': scaler = MinMaxScaler() else: scaler = StandardScaler() mat = scaler.fit_transform(mat) df = pd.DataFrame(mat, columns=df.columns) return df def discretize(df, col, bins=2, cutoffs=None): y = df[col] thresholds = cutoffs if thresholds is None: percentiles = [100 / bins * (i + 1) for i in range(bins - 1)] thresholds = [np.percentile(y, x) for x in percentiles] classes = np.digitize(y, thresholds) df[col] = classes return df def save_combined_dose_response(): df1 = load_single_dose_response(combo_format=True, fraction=False) df2 = load_combo_dose_response(fraction=False) df = pd.concat([df1, df2]) df.to_csv('combined_drug_growth', index=False, sep='\t') def load_combined_dose_response(rename=True): df1 = load_single_dose_response(combo_format=True) logger.info('Loaded {} single drug dose response measurements'.format(df1.shape[0])) df2 = load_combo_dose_response() logger.info('Loaded {} drug pair dose response measurements'.format(df2.shape[0])) df = pd.concat([df1, df2]) logger.info('Combined dose response data contains sources: {}'.format(df['SOURCE'].unique())) if rename: df = df.rename(columns={'SOURCE': 'Source', 'CELL': 'Sample', 'DRUG1': 'Drug1', 'DRUG2': 'Drug2', 'DOSE1': 'Dose1', 'DOSE2': 'Dose2', 'GROWTH': 'Growth', 'STUDY': 'Study'}) return df def load_single_dose_response(combo_format=False, fraction=True): # path = get_file(DATA_URL + 'combined_single_drug_growth') path = get_file(DATA_URL + 'rescaled_combined_single_drug_growth') df = global_cache.get(path) if df is None: df = pd.read_csv(path, sep='\t', engine='c', na_values=['na', '-', ''], # nrows=10, dtype={'SOURCE': str, 'DRUG_ID': str, 'CELLNAME': str, 'CONCUNIT': str, 'LOG_CONCENTRATION': np.float32, 'EXPID': str, 'GROWTH': np.float32}) global_cache[path] = df df['DOSE'] = -df['LOG_CONCENTRATION'] df = df.rename(columns={'CELLNAME': 'CELL', 'DRUG_ID': 'DRUG', 'EXPID': 'STUDY'}) df = df[['SOURCE', 'CELL', 'DRUG', 'DOSE', 'GROWTH', 'STUDY']] if fraction: df['GROWTH'] /= 100 if combo_format: df = df.rename(columns={'DRUG': 'DRUG1', 'DOSE': 'DOSE1'}) df['DRUG2'] = np.nan df['DOSE2'] = np.nan df['DRUG2'] = df['DRUG2'].astype(object) df['DOSE2'] = df['DOSE2'].astype(np.float32) df = df[['SOURCE', 'CELL', 'DRUG1', 'DOSE1', 'DRUG2', 'DOSE2', 'GROWTH', 'STUDY']] return df def load_combo_dose_response(fraction=True): path = get_file(DATA_URL + 'ComboDrugGrowth_Nov2017.csv') df = global_cache.get(path) if df is None: df = pd.read_csv(path, sep=',', engine='c', na_values=['na', '-', ''], usecols=['CELLNAME', 'NSC1', 'CONC1', 'NSC2', 'CONC2', 'PERCENTGROWTH', 'VALID', 'SCREENER', 'STUDY'], # nrows=10000, dtype={'CELLNAME': str, 'NSC1': str, 'NSC2': str, 'CONC1': np.float32, 'CONC2': np.float32, 'PERCENTGROWTH': np.float32, 'VALID': str, 'SCREENER': str, 'STUDY': str}, error_bad_lines=False, warn_bad_lines=True) global_cache[path] = df df = df[df['VALID'] == 'Y'] df['SOURCE'] = 'ALMANAC.' + df['SCREENER'] cellmap_path = get_file(DATA_URL + 'NCI60_CELLNAME_to_Combo.txt') df_cellmap = pd.read_csv(cellmap_path, sep='\t') df_cellmap.set_index('Name', inplace=True) cellmap = df_cellmap[['NCI60.ID']].to_dict()['NCI60.ID'] df['CELL'] = df['CELLNAME'].map(lambda x: cellmap[x]) df['DOSE1'] = -np.log10(df['CONC1']) df['DOSE2'] = -np.log10(df['CONC2']) df['DRUG1'] = 'NSC.' + df['NSC1'] df['DRUG2'] = 'NSC.' + df['NSC2'] if fraction: df['GROWTH'] = df['PERCENTGROWTH'] / 100 else: df['GROWTH'] = df['PERCENTGROWTH'] df = df[['SOURCE', 'CELL', 'DRUG1', 'DOSE1', 'DRUG2', 'DOSE2', 'GROWTH', 'STUDY']] return df def load_aggregated_single_response(target='AUC', min_r2_fit=0.3, max_ec50_se=3, combo_format=False, rename=True): path = get_file(DATA_URL + 'combined_single_response_agg') df = global_cache.get(path) if df is None: df = pd.read_csv(path, engine='c', sep='\t', dtype={'SOURCE': str, 'CELL': str, 'DRUG': str, 'STUDY': str, 'AUC': np.float32, 'IC50': np.float32, 'EC50': np.float32, 'EC50se': np.float32, 'R2fit': np.float32, 'Einf': np.float32, 'HS': np.float32, 'AAC1': np.float32, 'AUC1': np.float32, 'DSS1': np.float32}) global_cache[path] = df total = len(df) df = df[(df['R2fit'] >= min_r2_fit) & (df['EC50se'] <= max_ec50_se)] df = df[['SOURCE', 'CELL', 'DRUG', target, 'STUDY']] df = df[~df[target].isnull()] logger.info('Loaded %d dose indepdendent response samples (filtered by EC50se <= %f & R2fit >=%f from a total of %d).', len(df), max_ec50_se, min_r2_fit, total) if combo_format: df = df.rename(columns={'DRUG': 'DRUG1'}) df['DRUG2'] = np.nan df['DRUG2'] = df['DRUG2'].astype(object) df = df[['SOURCE', 'CELL', 'DRUG1', 'DRUG2', target, 'STUDY']] if rename: df = df.rename(columns={'SOURCE': 'Source', 'CELL': 'Sample', 'DRUG1': 'Drug1', 'DRUG2': 'Drug2', 'STUDY': 'Study'}) else: if rename: df = df.rename(columns={'SOURCE': 'Source', 'CELL': 'Sample', 'DRUG': 'Drug', 'STUDY': 'Study'}) return df def load_drug_data(ncols=None, scaling='std', imputing='mean', dropna=None, add_prefix=True): df_info = load_drug_info() df_info['Drug'] = df_info['PUBCHEM'] df_desc = load_drug_set_descriptors(drug_set='Combined_PubChem', ncols=ncols) df_fp = load_drug_set_fingerprints(drug_set='Combined_PubChem', ncols=ncols) df_desc = pd.merge(df_info[['ID', 'Drug']], df_desc, on='Drug').drop('Drug', 1).rename(columns={'ID': 'Drug'}) df_fp = pd.merge(df_info[['ID', 'Drug']], df_fp, on='Drug').drop('Drug', 1).rename(columns={'ID': 'Drug'}) df_desc2 = load_drug_set_descriptors(drug_set='NCI60', usecols=df_desc.columns.tolist() if ncols else None) df_fp2 = load_drug_set_fingerprints(drug_set='NCI60', usecols=df_fp.columns.tolist() if ncols else None) df_desc = pd.concat([df_desc, df_desc2]).reset_index(drop=True) df1 =
pd.DataFrame(df_desc.loc[:, 'Drug'])
pandas.DataFrame
""" Tests for scalar Timedelta arithmetic ops """ from datetime import datetime, timedelta import operator import numpy as np import pytest import pandas as pd from pandas import NaT, Timedelta, Timestamp, offsets import pandas._testing as tm from pandas.core import ops class TestTimedeltaAdditionSubtraction: """ Tests for Timedelta methods: __add__, __radd__, __sub__, __rsub__ """ @pytest.mark.parametrize( "ten_seconds", [ Timedelta(10, unit="s"), timedelta(seconds=10), np.timedelta64(10, "s"), np.timedelta64(10000000000, "ns"), offsets.Second(10), ], ) def test_td_add_sub_ten_seconds(self, ten_seconds): # GH#6808 base = Timestamp("20130101 09:01:12.123456") expected_add = Timestamp("20130101 09:01:22.123456") expected_sub = Timestamp("20130101 09:01:02.123456") result = base + ten_seconds assert result == expected_add result = base - ten_seconds assert result == expected_sub @pytest.mark.parametrize( "one_day_ten_secs", [ Timedelta("1 day, 00:00:10"), Timedelta("1 days, 00:00:10"), timedelta(days=1, seconds=10), np.timedelta64(1, "D") + np.timedelta64(10, "s"), offsets.Day() + offsets.Second(10), ], ) def test_td_add_sub_one_day_ten_seconds(self, one_day_ten_secs): # GH#6808 base = Timestamp("20130102 09:01:12.123456") expected_add = Timestamp("20130103 09:01:22.123456") expected_sub = Timestamp("20130101 09:01:02.123456") result = base + one_day_ten_secs assert result == expected_add result = base - one_day_ten_secs assert result == expected_sub @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_datetimelike_scalar(self, op): # GH#19738 td = Timedelta(10, unit="d") result = op(td, datetime(2016, 1, 1)) if op is operator.add: # datetime + Timedelta does _not_ call Timedelta.__radd__, # so we get a datetime back instead of a Timestamp assert isinstance(result, Timestamp) assert result == Timestamp(2016, 1, 11) result = op(td, Timestamp("2018-01-12 18:09")) assert isinstance(result, Timestamp) assert result == Timestamp("2018-01-22 18:09") result = op(td, np.datetime64("2018-01-12")) assert isinstance(result, Timestamp) assert result == Timestamp("2018-01-22") result = op(td, NaT) assert result is NaT @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_td(self, op): td = Timedelta(10, unit="d") result = op(td, Timedelta(days=10)) assert isinstance(result, Timedelta) assert result == Timedelta(days=20) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_pytimedelta(self, op): td = Timedelta(10, unit="d") result = op(td, timedelta(days=9)) assert isinstance(result, Timedelta) assert result == Timedelta(days=19) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_timedelta64(self, op): td = Timedelta(10, unit="d") result = op(td, np.timedelta64(-4, "D")) assert isinstance(result, Timedelta) assert result == Timedelta(days=6) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_td_add_offset(self, op): td = Timedelta(10, unit="d") result = op(td, offsets.Hour(6)) assert isinstance(result, Timedelta) assert result == Timedelta(days=10, hours=6) def test_td_sub_td(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_pytimedelta(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td.to_pytimedelta() assert isinstance(result, Timedelta) assert result == expected result = td.to_pytimedelta() - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_timedelta64(self): td = Timedelta(10, unit="d") expected = Timedelta(0, unit="ns") result = td - td.to_timedelta64() assert isinstance(result, Timedelta) assert result == expected result = td.to_timedelta64() - td assert isinstance(result, Timedelta) assert result == expected def test_td_sub_nat(self): # In this context pd.NaT is treated as timedelta-like td = Timedelta(10, unit="d") result = td - NaT assert result is NaT def test_td_sub_td64_nat(self): td = Timedelta(10, unit="d") td_nat = np.timedelta64("NaT") result = td - td_nat assert result is NaT result = td_nat - td assert result is NaT def test_td_sub_offset(self): td = Timedelta(10, unit="d") result = td - offsets.Hour(1) assert isinstance(result, Timedelta) assert result == Timedelta(239, unit="h") def test_td_add_sub_numeric_raises(self): td = Timedelta(10, unit="d") for other in [2, 2.0, np.int64(2), np.float64(2)]: with pytest.raises(TypeError): td + other with pytest.raises(TypeError): other + td with pytest.raises(TypeError): td - other with pytest.raises(TypeError): other - td def test_td_rsub_nat(self): td = Timedelta(10, unit="d") result = NaT - td assert result is NaT result = np.datetime64("NaT") - td assert result is NaT def test_td_rsub_offset(self): result = offsets.Hour(1) - Timedelta(10, unit="d") assert isinstance(result, Timedelta) assert result == Timedelta(-239, unit="h") def test_td_sub_timedeltalike_object_dtype_array(self): # GH#21980 arr = np.array([Timestamp("20130101 9:01"), Timestamp("20121230 9:02")]) exp = np.array([Timestamp("20121231 9:01"), Timestamp("20121229 9:02")]) res = arr - Timedelta("1D") tm.assert_numpy_array_equal(res, exp) def test_td_sub_mixed_most_timedeltalike_object_dtype_array(self): # GH#21980 now = Timestamp.now() arr = np.array([now,
Timedelta("1D")
pandas.Timedelta
"""MVTecAd Dataset.""" # default packages import dataclasses as dc import enum import logging import pathlib import shutil import sys import tarfile import typing as t import urllib.request as request # third party packages import pandas as pd # my packages import src.data.dataset as ds import src.data.utils as ut # logger _logger = logging.getLogger(__name__) class Kind(enum.Enum): HAZELNUT = "hazelnut" @classmethod def value_of(cls, name: str) -> "Kind": """設定値の文字列から Enum 値を返す. Raises: ValueError: 指定した文字列が設定値にない場合 Returns: [type]: Enum の値 """ for e in Kind: if e.value == name: return e raise ValueError(f"invalid value: {name}") class MVTecAd(ds.Dataset): def __init__(self, kind: Kind) -> None: super().__init__() archive, datadir = _get_archive_file_name(kind) self.archive_file = self.path.joinpath(archive) self.datadir = self.path.joinpath(datadir) self.train_list = self.path.joinpath(f"{datadir}_train.csv") self.valid_list = self.path.joinpath(f"{datadir}_valid.csv") self.test_list = self.path.joinpath(f"{datadir}_test.csv") def save_dataset(self, reprocess: bool) -> None: if reprocess: _logger.info("=== reporcess mode. delete existing data.") self.archive_file.unlink() shutil.rmtree(self.datadir) self.train_list.unlink() self.valid_list.unlink() self.test_list.unlink() self.path.mkdir(exist_ok=True) if not self.datadir.exists(): if not self.archive_file.exists(): _logger.info("=== download zip file.") _download(self.archive_file) _logger.info("=== extract all.") with tarfile.open(self.archive_file, "r") as tar: tar.extractall(self.path) if not self.train_list.exists() and not self.valid_list.exists(): _logger.info("=== create train and valid file list.") filelist = sorted( [p.relative_to(self.path) for p in self.datadir.glob("train/**/*.png")] ) train_ratio = 0.8 train_num = int(len(filelist) * train_ratio) if not self.train_list.exists(): train_list =
pd.DataFrame({"filepath": filelist[:train_num]})
pandas.DataFrame
import gensim import numpy as np import pandas as pd import re import os import time import jieba import cv2 import json import urllib import random import hashlib from snownlp import sentiment from snownlp import SnowNLP import jieba.posseg as pseg from gensim.models import word2vec import logging import torch import torch.nn as nn from torch.autograd import Variable from torchvision import models, transforms from PIL import Image from tensorflow.keras.applications import vgg19 from tensorflow.keras.applications import resnet50 from tensorflow.keras.preprocessing import image from collections import Counter from scipy.linalg import norm train_csv_path = r'G:\毕设\数据集\微博\train.csv' text_csv_path = r'G:\毕设\数据集\微博\text.csv' user_csv_path = r'G:\毕设\数据集\微博\user.csv' image_csv_path = r'G:\毕设\数据集\微博\image.csv' en_imagenet_class_path = r'G:\毕设\数据集\微博\imagenet_class_index.json' cn_imagenet_class_path = r'G:\毕设\数据集\微博\imagenet_class_cn.json' image_class_vgg19_score_path = r'G:\毕设\数据集\微博\image_class_vgg19.txt' image_class_resnet50_score_path = r'G:\毕设\数据集\微博\image_class_resnet50.txt' train_negative_corpus_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+'/util/negative.txt' train_positive_corpus_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+'/util/positive.txt' sentiment_model_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+'/util/sentiment.marshal' stopwords_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+"/util/stopwords.txt" word2vec_txt_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+"/util/word2vec_corpus.txt" word2vec_model_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+"/util/text8.model" possentiwords_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+"/util/possentiwords.txt" negsentiwords_path = os.path.abspath(os.path.dirname(os.getcwd())+os.path.sep+".")+"/util/negsentiwords.txt" appid = '20190716000318328' secretKey = '<KEY>' url_baidu = 'http://api.fanyi.baidu.com/api/trans/vip/translate' def train_data_read(train_csv_path): """ 训练数据的读入 df_text 文本信息列 df_user 用户信息列 df_image 图片信息列 """ logging.info("正在载入数据中...") #微博信息 df_text = pd.read_csv(train_csv_path,usecols=['id','text','category','label']) #用户信息 df_user = pd.read_csv(train_csv_path,usecols=['id','userGender','userFollowCount','userFansCount','userWeiboCount','userLocation','userDescription']) #微博图片信息 df_image =
pd.read_csv(train_csv_path,usecols=['id','piclist'])
pandas.read_csv
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-20"), ], "estimate": [11.0, 12.0, 21.0] * 2, FISCAL_QUARTER_FIELD_NAME: [1, 1, 2] * 2, FISCAL_YEAR_FIELD_NAME: [2015] * 6, } ) @classmethod def assert_compute(cls, estimate, today): raise NotImplementedError("assert_compute") def test_windows_with_varying_num_estimates(self): dataset = QuartersEstimates(1) assert_compute = self.assert_compute class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = 3 def compute(self, today, assets, out, estimate): assert_compute(estimate, today) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=pd.Timestamp("2015-01-13", tz="utc"), # last event date we have end_date=pd.Timestamp("2015-01-14", tz="utc"), ) class PreviousVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([np.NaN, np.NaN, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 12, 12])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 12, 12])) assert_array_equal(estimate[:, 1], np.array([12, 12, 12])) @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextVaryingNumEstimates(WithVaryingNumEstimates, ZiplineTestCase): def assert_compute(self, estimate, today): if today == pd.Timestamp("2015-01-13", tz="utc"): assert_array_equal(estimate[:, 0], np.array([11, 12, 12])) assert_array_equal(estimate[:, 1], np.array([np.NaN, np.NaN, 21])) else: assert_array_equal(estimate[:, 0], np.array([np.NaN, 21, 21])) assert_array_equal(estimate[:, 1], np.array([np.NaN, 21, 21])) @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) class WithEstimateWindows(WithEstimates): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows. Attributes ---------- events : pd.DataFrame DataFrame with estimates for 2 quarters for 2 sids. window_test_start_date : pd.Timestamp The date from which the window should start. timelines : dict[int -> pd.DataFrame] A dictionary mapping to the number of quarters out to snapshots of how the data should look on each date in the date range. Methods ------- make_expected_timelines() -> dict[int -> pd.DataFrame] Creates a dictionary of expected data. See `timelines`, above. Tests ----- test_estimate_windows_at_quarter_boundaries() Tests that we overwrite values with the correct quarter's estimate at the correct dates when we have a factor that asks for a window of data. """ END_DATE = pd.Timestamp("2015-02-10", tz="utc") window_test_start_date = pd.Timestamp("2015-01-05") critical_dates = [ pd.Timestamp("2015-01-09", tz="utc"), pd.Timestamp("2015-01-15", tz="utc"), pd.Timestamp("2015-01-20", tz="utc"), pd.Timestamp("2015-01-26", tz="utc"), pd.Timestamp("2015-02-05", tz="utc"), pd.Timestamp("2015-02-10", tz="utc"), ] # Starting date, number of announcements out. window_test_cases = list(itertools.product(critical_dates, (1, 2))) @classmethod def make_events(cls): # Typical case: 2 consecutive quarters. sid_0_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-02-10"), # We want a case where we get info for a later # quarter before the current quarter is over but # after the split_asof_date to make sure that # we choose the correct date to overwrite until. pd.Timestamp("2015-01-18"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-04-01"), ], "estimate": [100.0, 101.0] + [200.0, 201.0] + [400], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2 + [4], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 0, } ) # We want a case where we skip a quarter. We never find out about Q2. sid_10_timeline = pd.DataFrame( { TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-22"), pd.Timestamp("2015-01-22"), pd.Timestamp("2015-02-05"), pd.Timestamp("2015-02-05"), ], "estimate": [110.0, 111.0] + [310.0, 311.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [3] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 10, } ) # We want to make sure we have correct overwrites when sid quarter # boundaries collide. This sid's quarter boundaries collide with sid 0. sid_20_timeline = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-07"), cls.window_test_start_date, pd.Timestamp("2015-01-17"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-02-10"), pd.Timestamp("2015-02-10"), ], "estimate": [120.0, 121.0] + [220.0, 221.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 20, } ) concatted = pd.concat( [sid_0_timeline, sid_10_timeline, sid_20_timeline] ).reset_index() np.random.seed(0) return concatted.reindex(np.random.permutation(concatted.index)) @classmethod def get_sids(cls): sids = sorted(cls.events[SID_FIELD_NAME].unique()) # Add extra sids between sids in our data. We want to test that we # apply adjustments to the correct sids. return [ sid for i in range(len(sids) - 1) for sid in range(sids[i], sids[i + 1]) ] + [sids[-1]] @classmethod def make_expected_timelines(cls): return {} @classmethod def init_class_fixtures(cls): super(WithEstimateWindows, cls).init_class_fixtures() cls.create_expected_df_for_factor_compute = partial( create_expected_df_for_factor_compute, cls.window_test_start_date, cls.get_sids(), ) cls.timelines = cls.make_expected_timelines() @parameterized.expand(window_test_cases) def test_estimate_windows_at_quarter_boundaries( self, start_date, num_announcements_out ): dataset = QuartersEstimates(num_announcements_out) trading_days = self.trading_days timelines = self.timelines # The window length should be from the starting index back to the first # date on which we got data. The goal is to ensure that as we # progress through the timeline, all data we got, starting from that # first date, is correctly overwritten. window_len = ( self.trading_days.get_loc(start_date) - self.trading_days.get_loc(self.window_test_start_date) + 1 ) class SomeFactor(CustomFactor): inputs = [dataset.estimate] window_length = window_len def compute(self, today, assets, out, estimate): today_idx = trading_days.get_loc(today) today_timeline = ( timelines[num_announcements_out] .loc[today] .reindex(trading_days[: today_idx + 1]) .values ) timeline_start_idx = len(today_timeline) - window_len assert_almost_equal(estimate, today_timeline[timeline_start_idx:]) engine = self.make_engine() engine.run_pipeline( Pipeline({"est": SomeFactor()}), start_date=start_date, # last event date we have end_date=pd.Timestamp("2015-02-10", tz="utc"), ) class PreviousEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-20"), ), cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-20")), ], pd.Timestamp("2015-01-21"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111, pd.Timestamp("2015-01-22")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 311, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311, pd.Timestamp("2015-02-05")), (20, 221, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextEstimateWindows(WithEstimateWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-09"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-19") ] ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (0, 101, pd.Timestamp("2015-01-20")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120, cls.window_test_start_date), (20, 121, pd.Timestamp("2015-01-07")), ], pd.Timestamp("2015-01-20"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-01-22") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, 310, pd.Timestamp("2015-01-09")), (10, 311, pd.Timestamp("2015-01-15")), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-01-23", "2015-02-05") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], end_date, ) for end_date in pd.date_range("2015-02-06", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (0, 201, pd.Timestamp("2015-02-10")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-11") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-12", "2015-01-16") ] + [ cls.create_expected_df_for_factor_compute( [ (0, 200, pd.Timestamp("2015-01-12")), (10, np.NaN, cls.window_test_start_date), (20, 220, cls.window_test_start_date), (20, 221, pd.Timestamp("2015-01-17")), ], pd.Timestamp("2015-01-20"), ) ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-21", "2015-02-10") ] ) return {1: oneq_next, 2: twoq_next} class WithSplitAdjustedWindows(WithEstimateWindows): """ ZiplineTestCase mixin providing fixures and a test to test running a Pipeline with an estimates loader over differently-sized windows and with split adjustments. """ split_adjusted_asof_date = pd.Timestamp("2015-01-14") @classmethod def make_events(cls): # Add an extra sid that has a release before the split-asof-date in # order to test that we're reversing splits correctly in the previous # case (without an overwrite) and in the next case (with an overwrite). sid_30 = pd.DataFrame( { TS_FIELD_NAME: [ cls.window_test_start_date, pd.Timestamp("2015-01-09"), # For Q2, we want it to start early enough # that we can have several adjustments before # the end of the first quarter so that we # can test un-adjusting & readjusting with an # overwrite. cls.window_test_start_date, # We want the Q2 event date to be enough past # the split-asof-date that we can have # several splits and can make sure that they # are applied correctly. pd.Timestamp("2015-01-20"), ], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-20"), ], "estimate": [130.0, 131.0, 230.0, 231.0], FISCAL_QUARTER_FIELD_NAME: [1] * 2 + [2] * 2, FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 30, } ) # An extra sid to test no splits before the split-adjusted-asof-date. # We want an event before and after the split-adjusted-asof-date & # timestamps for data points also before and after # split-adjsuted-asof-date (but also before the split dates, so that # we can test that splits actually get applied at the correct times). sid_40 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-15")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [140.0, 240.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 40, } ) # An extra sid to test all splits before the # split-adjusted-asof-date. All timestamps should be before that date # so that we have cases where we un-apply and re-apply splits. sid_50 = pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-02-10"), ], "estimate": [150.0, 250.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: 2015, SID_FIELD_NAME: 50, } ) return pd.concat( [ # Slightly hacky, but want to make sure we're using the same # events as WithEstimateWindows. cls.__base__.make_events(), sid_30, sid_40, sid_50, ] ) @classmethod def make_splits_data(cls): # For sid 0, we want to apply a series of splits before and after the # split-adjusted-asof-date we well as between quarters (for the # previous case, where we won't see any values until after the event # happens). sid_0_splits = pd.DataFrame( { SID_FIELD_NAME: 0, "ratio": (-1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 100), "effective_date": ( pd.Timestamp("2014-01-01"), # Filter out # Split before Q1 event & after first estimate pd.Timestamp("2015-01-07"), # Split before Q1 event pd.Timestamp("2015-01-09"), # Split before Q1 event pd.Timestamp("2015-01-13"), # Split before Q1 event pd.Timestamp("2015-01-15"), # Split before Q1 event pd.Timestamp("2015-01-18"), # Split after Q1 event and before Q2 event pd.Timestamp("2015-01-30"), # Filter out - this is after our date index pd.Timestamp("2016-01-01"), ), } ) sid_10_splits = pd.DataFrame( { SID_FIELD_NAME: 10, "ratio": (0.2, 0.3), "effective_date": ( # We want a split before the first estimate and before the # split-adjusted-asof-date but within our calendar index so # that we can test that the split is NEVER applied. pd.Timestamp("2015-01-07"), # Apply a single split before Q1 event. pd.Timestamp("2015-01-20"), ), } ) # We want a sid with split dates that collide with another sid (0) to # make sure splits are correctly applied for both sids. sid_20_splits = pd.DataFrame( { SID_FIELD_NAME: 20, "ratio": ( 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, ), "effective_date": ( pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), pd.Timestamp("2015-01-30"), ), } ) # This sid has event dates that are shifted back so that we can test # cases where an event occurs before the split-asof-date. sid_30_splits = pd.DataFrame( { SID_FIELD_NAME: 30, "ratio": (8, 9, 10, 11, 12), "effective_date": ( # Split before the event and before the # split-asof-date. pd.Timestamp("2015-01-07"), # Split on date of event but before the # split-asof-date. pd.Timestamp("2015-01-09"), # Split after the event, but before the # split-asof-date. pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-15"), pd.Timestamp("2015-01-18"), ), } ) # No splits for a sid before the split-adjusted-asof-date. sid_40_splits = pd.DataFrame( { SID_FIELD_NAME: 40, "ratio": (13, 14), "effective_date": ( pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-22"), ), } ) # No splits for a sid after the split-adjusted-asof-date. sid_50_splits = pd.DataFrame( { SID_FIELD_NAME: 50, "ratio": (15, 16), "effective_date": ( pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ), } ) return pd.concat( [ sid_0_splits, sid_10_splits, sid_20_splits, sid_30_splits, sid_40_splits, sid_50_splits, ] ) class PreviousWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_previous = pd.concat( [ pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), # Undo all adjustments that haven't happened yet. (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-12") ] ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-13"), ), cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-14"), ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11, pd.Timestamp("2015-01-09")), (40, 140.0, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-15", "2015-01-16") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, np.NaN, cls.window_test_start_date), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-01-21") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-22", "2015-01-29") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 111 * 0.3, pd.Timestamp("2015-01-22")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-01-30", "2015-02-04") ] ), pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-01-20")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-01-20")), (30, 231, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-01-09")), (50, 150.0, pd.Timestamp("2015-01-09")), ], end_date, ) for end_date in pd.date_range("2015-02-05", "2015-02-09") ] ), cls.create_expected_df_for_factor_compute( [ (0, 201, pd.Timestamp("2015-02-10")), (10, 311 * 0.3, pd.Timestamp("2015-02-05")), (20, 221 * 0.8 * 0.9, pd.Timestamp("2015-02-10")), (30, 231, pd.Timestamp("2015-01-20")), (40, 240.0 * 13 * 14, pd.Timestamp("2015-02-10")), (50, 250.0, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ), ] ) twoq_previous = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, np.NaN, cls.window_test_start_date), ], end_date, ) for end_date in pd.date_range("2015-01-09", "2015-01-19") ] + [ cls.create_expected_df_for_factor_compute( [ (0, np.NaN, cls.window_test_start_date), (10, np.NaN, cls.window_test_start_date), (20, np.NaN, cls.window_test_start_date), (30, 131 * 11 * 12, pd.Timestamp("2015-01-20")), ], end_date, ) for end_date in pd.date_range("2015-01-20", "2015-02-09") ] # We never get estimates for S1 for 2Q ago because once Q3 # becomes our previous quarter, 2Q ago would be Q2, and we have # no data on it. + [ cls.create_expected_df_for_factor_compute( [ (0, 101 * 7, pd.Timestamp("2015-02-10")), (10, np.NaN, pd.Timestamp("2015-02-05")), (20, 121 * 0.7 * 0.8 * 0.9, pd.Timestamp("2015-02-10")), (30, 131 * 11 * 12, pd.Timestamp("2015-01-20")), (40, 140.0 * 13 * 14, pd.Timestamp("2015-02-10")), (50, 150.0, pd.Timestamp("2015-02-10")), ], pd.Timestamp("2015-02-10"), ) ] ) return {1: oneq_previous, 2: twoq_previous} class NextWithSplitAdjustedWindows(WithSplitAdjustedWindows, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextSplitAdjustedEarningsEstimatesLoader( events, columns, split_adjustments_loader=cls.adjustment_reader, split_adjusted_column_names=["estimate"], split_adjusted_asof=cls.split_adjusted_asof_date, ) @classmethod def make_expected_timelines(cls): oneq_next = pd.concat( [ cls.create_expected_df_for_factor_compute( [ (0, 100 * 1 / 4, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (20, 120 * 5 / 3, cls.window_test_start_date), (20, 121 * 5 / 3, pd.Timestamp("2015-01-07")), (30, 130 * 1 / 10, cls.window_test_start_date), (30, 131 * 1 / 10, pd.Timestamp("2015-01-09")), (40, 140, pd.Timestamp("2015-01-09")), (50, 150.0 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-09")), ], pd.Timestamp("2015-01-09"), ), cls.create_expected_df_for_factor_compute( [ (0, 100 * 1 / 4, cls.window_test_start_date), (10, 110, pd.Timestamp("2015-01-09")), (10, 111, pd.Timestamp("2015-01-12")), (20, 120 * 5 / 3, cls.window_test_start_date), (20, 121 * 5 / 3, pd.Timestamp("2015-01-07")), (30, 230 * 1 / 10, cls.window_test_start_date), (40, np.NaN, pd.Timestamp("2015-01-10")), (50, 250.0 * 1 / 15 * 1 / 16, pd.Timestamp("2015-01-12")), ], pd.Timestamp("2015-01-12"), ), cls.create_expected_df_for_factor_compute( [ (0, 100, cls.window_test_start_date), (10, 110,
pd.Timestamp("2015-01-09")
pandas.Timestamp
#!/usr/bin/env python # coding: utf-8 # # Introduction # # Previously I built XG Boost models to predict the main and sub-types of Pokemon from all 7 generations (https://www.kaggle.com/xagor1/pokemon-type-predictions-using-xgb). This was relatively successful, but often stalled at around 70% accuracy per generation, with some much worse. To gain more experience with parameter tuning and feature engineering, I decided to revisit just the 1st Generation, and see if I could improve my results. # In[2]: #Load various packages import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import os import gc import time import numpy as np import pandas as pd from sklearn.cross_validation import train_test_split import xgboost as xgb from xgboost import plot_importance import matplotlib.pyplot as plt from sklearn.metrics import accuracy_score from sklearn import metrics import seaborn as sns print(os.listdir("../../../input/rounakbanik_pokemon")) from sklearn.feature_selection import SelectFromModel from collections import Counter import warnings warnings.filterwarnings("ignore") # # Loading and Modifying Data # # To start with, I loaded and modified the data as in the previous kernel. # # In contrast to last time, I separated out the numerical and categorical data, and applied one-hot encoding to the latter. This caused the number of features to explode from 24 to 500. # # The original plan was to do feature engineering to improve my overall accuracy. However, thus far all my attempts have actually made the predictions worse, so I have left this aside for now. # In[3]: #Read data path = "../../../input/rounakbanik_pokemon/" egg_df=pd.read_csv(path+"pokemon.csv") species_df=pd.read_csv(path+"pokemon.csv") abilities_df=pd.read_csv(path+"pokemon.csv") #Split duplicates off & combine back egg2_df=pd.DataFrame.copy(egg_df) egg2_df=egg_df.loc[egg_df['species_id'].duplicated(), :] egg_df.drop_duplicates('species_id',inplace=True) merged = egg_df.merge(egg2_df,on="species_id",how='outer') merged.fillna(0,inplace=True) #Rename columns to simpler form. merged.rename(index=str,columns={"egg_group_id_x":"egg_group_1"},inplace=True) merged.rename(index=str,columns={"egg_group_id_y":"egg_group_2"},inplace=True) #Drop last 6 columns merged.drop(merged.tail(6).index,inplace=True) #Rename merged.rename(index=str,columns={"species_id":"pokedex_number"},inplace=True) #Make a new smaller dataframe species_trim_df=pd.DataFrame() species_trim_df["pokedex_number"]=species_df['id'] species_trim_df["color_id"]=species_df['color_id'] species_trim_df["shape_id"]=species_df['shape_id'] species_trim_df["habitat_id"]=species_df['habitat_id'] species_trim_df.drop(species_trim_df.tail(6).index,inplace=True) #Trim all below Magearna off abilities_df = abilities_df[abilities_df.pokemon_id < 802] #Make 3 new columns abilities_df["Ability1"]=0 abilities_df["Ability2"]=0 abilities_df["Ability3"]=0 #Assign values to the 3 columns based on the ability slot (1-3) abilities_df["Ability1"] = abilities_df.ability_id.where(abilities_df.slot == 1,0) abilities_df["Ability2"] = abilities_df.ability_id.where(abilities_df.slot == 2,0) abilities_df["Ability3"] = abilities_df.ability_id.where(abilities_df.slot == 3,0) #Split duplicates off into new dataframes #3 abilities on some means it needs to be split twice #I'm sure there's an easier way to do this abilities_df2=pd.DataFrame.copy(abilities_df) abilities_df2=abilities_df.loc[abilities_df['pokemon_id'].duplicated(), :] abilities_df.drop_duplicates('pokemon_id',inplace=True) abilities_df3=pd.DataFrame.copy(abilities_df2) abilities_df3=abilities_df2.loc[abilities_df2['pokemon_id'].duplicated(), :] abilities_df2.drop_duplicates('pokemon_id',inplace=True) #Drop extra columns abilities_df.drop(['ability_id','is_hidden','slot'],axis=1,inplace=True) abilities_df2.drop(['ability_id','is_hidden','slot'],axis=1,inplace=True) abilities_df3.drop(['ability_id','is_hidden','slot'],axis=1,inplace=True) #Combine everything back abilities_df=abilities_df.set_index('pokemon_id').add(abilities_df2.set_index('pokemon_id'),fill_value=0).reset_index() abilities_df=abilities_df.set_index('pokemon_id').add(abilities_df3.set_index('pokemon_id'),fill_value=0).reset_index() #Rename pokemon_id to pokedex number to allow for merging. abilities_df.rename(index=str,columns={"pokemon_id":"pokedex_number"},inplace=True) #Read Kaggle data path = "../../../input/rounakbanik_pokemon/" pokemon_df=
pd.read_csv(path+"pokemon.csv")
pandas.read_csv
''' MIT License Copyright (c) 2020 MINCIENCIA Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' import json from urllib import request import sys import pandas as pd from datetime import datetime class traffic: def __init__(self, user, token): self.user = user self.token = token self.df_clones = pd.DataFrame(columns=['timestamp','count','uniques']) self.df_views = pd.DataFrame(columns=['timestamp','count','uniques']) self.now = pd.to_datetime(datetime.now()).strftime('%Y-%m-%d') self.df_referring = pd.DataFrame(columns=['timestamp','referrer','count','uniques']) self.df_popular = pd.DataFrame(columns=['timestamp','path','count','uniques']) def lambda_handler(self): base_url = "https://api.github.com" user = self.user print("Getting repositories for %s" % user) req = request.Request( "%s/users/%s/repos" % (base_url, user), headers={"Authorization": "token %s" % self.token} ) response = request.urlopen(req) req = json.load(response) ur = [(r["name"]) for r in req] print("Found %s repositories" % len(ur)) print(" ") for repo_name in ur: print("Getting views for %s" % repo_name) req = request.Request( "%s/repos/%s/%s/traffic/views" % (base_url, user, repo_name), headers={"Authorization": "token %s" % self.token} ) response = request.urlopen(req) req = json.load(response) for i in req['views']: dfi = pd.Series(i) print(dfi) self.df_views = self.df_views.append(dfi,ignore_index=True) print("Getting clones for %s" % repo_name) req = request.Request( "%s/repos/%s/%s/traffic/clones" % (base_url, user, repo_name), headers={"Authorization": "token %s" % self.token} ) response = request.urlopen(req) req = json.load(response) for i in req['clones']: dfi = pd.Series(i) print(dfi) self.df_clones = self.df_clones.append(dfi,ignore_index=True) print("Getting referral data for %s" % repo_name) referrals = request.Request( "%s/repos/%s/%s/traffic/popular/referrers" % (base_url, user, repo_name), headers={"Authorization": "token %s" % self.token} ) referrals = request.urlopen(referrals) referrals = json.load(referrals) if len(referrals) > 0: for ref in referrals: referred = { "timestamp": self.now, "referrer": ref["referrer"], "count": ref["count"], "uniques": ref["uniques"], } dfi = pd.Series(referred) print(dfi) self.df_referring = self.df_referring.append(dfi,ignore_index=True) print("Getting top referral path data for %s" % repo_name) paths = request.Request( "%s/repos/%s/%s/traffic/popular/paths" % (base_url, user, repo_name), headers={"Authorization": "token %s" % self.token} ) paths = request.urlopen(paths) paths = json.load(paths) if len(paths) > 0: for ref in paths: paths = { "timestamp": self.now, "path": ref["path"], "count": ref["count"], "uniques": ref["uniques"], } dfi = pd.Series(paths) print(dfi) self.df_popular = self.df_popular.append(dfi, ignore_index=True) def save(self): #views self.df_views['timestamp'] = pd.to_datetime(self.df_views['timestamp'], format='%Y-%m-%d').dt.date self.df_views.to_csv('../input/Traffic/views.csv',mode='a',index=False,header=False) #clones self.df_clones['timestamp'] = pd.to_datetime(self.df_clones['timestamp'], format='%Y-%m-%d').dt.date self.df_clones.to_csv('../input/Traffic/clones.csv',mode='a',index=False,header=False) #referrers self.df_referring.to_csv('../input/Traffic/referrers.csv',mode='a', index=False,header=False) #popular self.df_popular.to_csv('../input/Traffic/popular.csv',mode='a', index=False,header=False) def publish(self): views = pd.read_csv('../input/Traffic/views.csv') views.sort_values(by=['count'], inplace=True) views.drop_duplicates(subset=['timestamp'], keep='last', inplace=True) views.sort_values(by=['timestamp'], inplace=True) clones =
pd.read_csv('../input/Traffic/clones.csv')
pandas.read_csv
# -*- coding: utf-8 -*- from __future__ import print_function, division """ .. note:: These are the database functions for SPLAT """ # imports: internal import base64 import copy import csv import glob import os import re import requests from shutil import copyfile import time # imports: external import astropy import numpy import pandas from astropy.io import ascii, fits # for reading in spreadsheet from astropy.table import Column, Table, join, vstack # for reading in table files from astropy.time import Time # for reading in table files from astropy.coordinates import SkyCoord from astropy import units as u # standard units from astroquery.simbad import Simbad from astroquery.vizier import Vizier from astroquery.nist import Nist from astroquery.xmatch import XMatch #from astroquery.gaia import Gaia # splat requirements import splat import splat.plot as splot from splat.initialize import * from splat.utilities import * from splat.empirical import estimateDistance, typeToColor #from splat import DB_SOURCES, DB_SPECTRA #import splat as spl # Python 2->3 fix for input try: input=raw_input except NameError: pass # set timeout limits to 1 minute Simbad.TIMEOUT = 60 Vizier.TIMEOUT = 60 Nist.TIMEOUT = 60 XMatch.TIMEOUT = 180 ##################################################### ########### DATABASE QUERY AND ACCESS ########### ##################################################### def prepDB(db_init,force=False): ''' Prep a pandas database for DESIGNATION join Populates RA, DEC, DESIGNATION and SHORTNAME columns if not present Requires RA, DEC or DESIGNATION to be present ''' db = copy.deepcopy(db_init) if 'RA' not in list(db.columns) or 'DEC' not in list(db.columns): if 'DESIGNATION' not in list(db.columns): raise ValueError('Database must have columns RA and DEC, or DESIGNATION') else: db['COORDINATES'] = [splat.designationToCoordinate(d) for d in db['DESIGNATION']] if not isinstance(db['RA'].iloc[0],float): db['RA'] = [c.ra.degree for c in db['COORDINATES']] db['DEC'] = [c.dec.degree for c in db['COORDINATES']] if 'DESIGNATION' not in list(db.columns): db['DESIGNATION'] = [splat.coordinateToDesignation([db['RA'].iloc[i],db['DEC'].iloc[i]]) for i in range(len(db))] if 'COORDINATES' not in list(db.columns): db['COORDINATES'] = [splat.designationToCoordinate(d) for d in db['DESIGNATION']] # if 'SHORTNAME' not in list(db.columns): # db['SHORTNAME'] = [splat.designationToShortName(d) for d in db['DESIGNATION']] # force COORDINATES, RA, DEC if desired if force == True: db['COORDINATES'] = [splat.designationToCoordinate(d) for d in db['DESIGNATION']] db['RA'] = [c.ra.degree for c in db['COORDINATES']] db['DEC'] = [c.dec.degree for c in db['COORDINATES']] # db['SHORTNAME'] = [splat.designationToShortName(d) for d in db['DESIGNATION']] return db def fetchDatabase(*args, **kwargs): ''' :Purpose: Get the SpeX Database from either online repository or local drive ''' filename = 'db_spexprism.txt' # temporary original database file for backwards compatability if len(args) > 0: filename = args[0] kwargs['filename'] = kwargs.get('filename',filename) kwargs['filename'] = kwargs.get('file',kwargs['filename']) kwargs['folder'] = kwargs.get('folder',SPLAT_PATH+DB_FOLDER) url = kwargs.get('url',SPLAT_URL)+kwargs['folder'] local = kwargs.get('local',True) online = kwargs.get('online',not local and checkOnline()) local = not online kwargs['local'] = local kwargs['online'] = online kwargs['model'] = True # determine format of file delimiter = kwargs.get('delimiter','') fmt = kwargs.get('format','') fmt = kwargs.get('fmt',fmt) if delimiter == ',' or delimiter == 'comma' or delimiter == 'csv' or kwargs.get('comma',False) == True or ('.csv' in kwargs['filename']): delimiter = ',' fmt = 'csv' if delimiter == '\t' or delimiter == 'tab' or kwargs.get('tab',False) == True or ('.txt' in kwargs['filename']): delimiter = '\t' fmt = 'tab' if fmt == '': raise NameError('\nCould not determine the file format of '+kwargs['filename']+'; please specify using format or delimiter keywords\n\n') # check that folder/set is present either locally or online # if not present locally but present online, switch to this mode # if not present at either raise error folder = checkLocal(kwargs['folder']) if folder=='': folder = checkOnlineFile(kwargs['folder']) if folder=='': raise NameError('\nCould not find '+kwargs['folder']+' locally or on SPLAT website\n\n') else: kwargs['folder'] = folder kwargs['local'] = False kwargs['online'] = True else: kwargs['folder'] = folder # locally: if kwargs['local']: # print('Reading local') infile = checkLocal(kwargs['filename']) if infile=='': infile = checkLocal(kwargs['folder']+'/'+kwargs['filename']) if infile=='': raise NameError('\nCould not find '+kwargs['filename']+' locally\n\n') else: try: data = ascii.read(os.path.normpath(infile), delimiter=delimiter,fill_values='-99.',format=fmt) # data = ascii.read(infile, delimiter='\t',fill_values='-99.',format='tab') except: raise NameError('\nCould not load {}: this may be a decoding error\n'.format(infile)) # check if file is present; if so, read it in, otherwise go to interpolated # online: if kwargs['online']: # print('Reading online') infile = checkOnlineFile(kwargs['filename']) if infile=='': infile = checkOnlineFile(kwargs['folder']+'/'+kwargs['filename']) if infile=='': raise NameError('\nCould not find '+kwargs['filename']+' on the SPLAT website\n\n') try: # open(os.path.basename(TMPFILENAME), 'wb').write(urllib2.urlopen(url+infile).read()) open(os.path.basename(TMPFILENAME), 'wb').write(requests.get(url+infile).content) kwargs['filename'] = os.path.basename(tmp) data = ascii.read(os.path.basename(TMPFILENAME), delimiter=delimiter,fill_values='-99.',format=fmt) os.remove(os.path.basename(TMPFILENAME)) except: raise NameError('\nHaving a problem reading in '+kwargs['filename']+' on the SPLAT website\n\n') return data ##################################################### ########### ADDING NEW SPECTRA TO SPLAT ########## ##################################################### def addUserSpectra(folder='./',instrument='SPEX-PRISM',mode='update',repeat='retain',radius_repeat=10.*u.arcsec,input_file='input.txt',search_str='*.fits',sources_data_file=DB_SOURCES_FILE,spectra_data_file=DB_SPECTRA_FILE,verbose=True,*args): ''' :Purpose: Adds in local spectral data to the underlying SPLAT library This program is currently UNDER DEVELOPMENT ''' # program constants optional_spectra_columns = ['PUBLISHED','DATA_BIBCODE','PROGRAM_PI','OBSERVATION_DATE','OBSERVATION_MJD','OBSERVATION_TIME','OBSERVER','AIRMASS'] optional_sources_columns = ['NAME','DESIGNATION','RA','DEC','COORDINATES','DISCOVERY_REF','SPT','SPT_REF','SPT_OPT','SPT_OPT_REF','SPT_NIR','SPT_NIR_REF','SPT_LIT','SPT_LIT_REF','LUMINOSITY_CLASS','METALLICITY_CLASS','GRAVITY_CLASS_OPTICAL','GRAVITY_CLASS_OPTICAL_REF','GRAVITY_CLASS_NIR','GRAVITY_CLASS_NIR_REF','CLUSTER','CLUSTER_REF','BINARY','BINARY_TYPE','BINARY_REF','SBINARY','SBINARY_REF','COMPANION_NAME','COMPANION_REF'] header_spectra_columns = { 'OBSERVATION_DATE': ['OBS_DATE','OBS-DATE','UT-DATE'], 'OBSERVATION_TIME': ['OBS_TIME','OBS-TIME','UT-TIME'], 'OBSERVER': [], 'AIRMASS': ['Z'], 'SLIT': ['APERTURE'], 'DISPERSER': ['GRATING','GRISM','DISPERSE'], } header_sources_columns = { 'NAME': ['OBJECT','SOURCE','TARGET'], 'RA': ['RA-D','RADEG'], 'DEC': ['DEC-D','DECDEG'], } dataset_number_factor = 1e6 now = time.localtime() nowstr = str(now.tm_year)+str(now.tm_mon)+str(now.tm_mday) if len(args) > 0: folder = args[0] if len(args) > 1: instrument = args[1] ##### STOPPED HERE ##### # check if this has already been read in # if folder in DATA_FOLDERS: # n = # check instrument inst = splat.checkInstrument(instrument) if inst != False: instrument = inst # check mode and repeat mode_labels = ['new','append','refresh','update'] if mode.lower() not in mode_labels: if verbose==True: print('\nDo not recognize mode = {}; should be one of {}; reverting to update'.format(mode,mode_labels)) mode = 'update' repeat_labels = ['replace','assert','retain','keep'] if repeat.lower() not in repeat_labels: if verbose==True: print('\nDo not recognize repeat = {}; should be one of {}; reverting to retain'.format(repeat,repeat_labels)) repeat = 'retain' # check the folder is correctly specified if not os.path.exists(folder): print('\nCould not find folder {} in local directory structure; skipping') return # check if spectra data file is present; if not, you'll need to generate a new one if spectra_data_file not in os.listdir(folder): if verbose == True: print('\nCannot find spectral data file {}; generating a new one from input files'.format(spectra_data_file)) mode = 'new' # STAGE 1: SET UP A NEW FOLDER OF DATA if mode.lower() == 'new': # check if input file is in place; if not, make one if input_file not in os.listdir(folder): files = glob.glob(folder+'/'+search_str) files = [os.path.basename(f) for f in files] for f in [input_file,sources_data_file,spectra_data_file]: if f in files: files.remove(f) # turn into preliminary input.txt file input_db = pandas.DataFrame() input_db['DATA_FILE'] = files input_db['INSTRUMENT'] = [instrument]*len(files) if '.txt' in input_file: input_db.to_csv(folder+'/'+input_file,sep='\t',index=False) elif '.csv' in input_file: input_db.to_csv(folder+'/'+input_file,sep=',',index=False) elif '.xls' in input_file: input_db.to_excel(folder+'/'+input_file,index=False) else: raise ValueError('\nDo not recognize file format for {}'.format(input_file)) # prompt to continue? # read in input file and start building spectral database if '.txt' in input_file: input_db = pandas.read_csv(folder+'/'+input_file,delimiter='\t') elif '.csv' in input_file: input_db =
pandas.read_csv(folder+'/'+input_file,delimiter=',')
pandas.read_csv
import pandas as pd from simple_network_sim import network_of_populations, sampleUseOfModel, hdf5_to_csv from tests.utils import create_baseline def test_cli_run(base_data_dir): try: sampleUseOfModel.main(["-c", str(base_data_dir / "config.yaml")]) h5_file = base_data_dir / "output" / "simple_network_sim" / "outbreak-timeseries" / "data.h5" csv_file = base_data_dir / "output" / "simple_network_sim" / "outbreak-timeseries" / "data.csv" hdf5_to_csv.main([str(h5_file), str(csv_file)]) baseline = create_baseline(csv_file) test_df = pd.read_csv(csv_file) baseline_df = pd.read_csv(baseline) pd.testing.assert_frame_equal( test_df.set_index(["date", "node", "age", "state"]), baseline_df.set_index(["date", "node", "age", "state"]), check_like=True, ) finally: # TODO; remove this once https://github.com/ScottishCovidResponse/data_pipeline_api/issues/12 is done (base_data_dir / "access.log").unlink() h5_file.unlink() csv_file.unlink() def test_stochastic_cli_run(base_data_dir): try: sampleUseOfModel.main(["-c", str(base_data_dir / "config_stochastic.yaml")]) h5_file = base_data_dir / "output" / "simple_network_sim" / "outbreak-timeseries" / "data.h5" csv_file = base_data_dir / "output" / "simple_network_sim" / "outbreak-timeseries" / "data.csv" hdf5_to_csv.main([str(h5_file), str(csv_file)]) baseline = create_baseline(csv_file) test_df = pd.read_csv(csv_file) baseline_df = pd.read_csv(baseline) pd.testing.assert_frame_equal( test_df.set_index(["date", "node", "age", "state"]), baseline_df.set_index(["date", "node", "age", "state"]), check_like=True, ) finally: # TODO; remove this once https://github.com/ScottishCovidResponse/data_pipeline_api/issues/12 is done (base_data_dir / "access.log").unlink() h5_file.unlink() csv_file.unlink() def test_stochastic_seed_sequence(data_api_stochastic): network, _ = network_of_populations.createNetworkOfPopulation( data_api_stochastic.read_table("human/compartment-transition", "compartment-transition"), data_api_stochastic.read_table("human/population", "population"), data_api_stochastic.read_table("human/commutes", "commutes"), data_api_stochastic.read_table("human/mixing-matrix", "mixing-matrix"), data_api_stochastic.read_table("human/infectious-compartments", "infectious-compartments"), data_api_stochastic.read_table("human/infection-probability", "infection-probability"), data_api_stochastic.read_table("human/initial-infections", "initial-infections"), pd.DataFrame({"Value": [2]}), data_api_stochastic.read_table("human/start-end-date", "start-end-date"), data_api_stochastic.read_table("human/movement-multipliers", "movement-multipliers"),
pd.DataFrame({"Value": [True]})
pandas.DataFrame
# ActivitySim # See full license in LICENSE.txt. import logging import numpy as np import orca import pandas as pd from activitysim.core import simulate as asim from activitysim.core import tracing from activitysim.core import pipeline logger = logging.getLogger(__name__) @orca.table() def households(store, households_sample_size, trace_hh_id): df_full = store["households"] # if we are tracing hh exclusively if trace_hh_id and households_sample_size == 1: # df contains only trace_hh (or empty if not in full store) df = tracing.slice_ids(df_full, trace_hh_id) # if we need sample a subset of full store elif households_sample_size > 0 and len(df_full.index) > households_sample_size: # take the requested random sample df = asim.random_rows(df_full, households_sample_size) # if tracing and we missed trace_hh in sample, but it is in full store if trace_hh_id and trace_hh_id not in df.index and trace_hh_id in df_full.index: # replace first hh in sample with trace_hh logger.debug("replacing household %s with %s in household sample" % (df.index[0], trace_hh_id)) df_hh = tracing.slice_ids(df_full, trace_hh_id) df = pd.concat([df_hh, df[1:]]) else: df = df_full logger.info("loaded households %s" % (df.shape,)) # replace table function with dataframe orca.add_table('households', df) pipeline.get_rn_generator().add_channel(df, 'households') if trace_hh_id: tracing.register_traceable_table('households', df) tracing.trace_df(df, "households", warn_if_empty=True) return df # this assigns a chunk_id to each household so we can iterate over persons by whole households @orca.column("households", cache=True) def chunk_id(households): # FIXME - pathological knowledge of name of chunk_id column used by hh_chunked_choosers chunk_ids = pd.Series(range(len(households)), households.index) return chunk_ids @orca.column('households') def work_tour_auto_time_savings(households): # FIXME - fix this variable from auto ownership model return pd.Series(0, households.index) # this is the placeholder for all the columns to update after the # workplace location choice model @orca.table() def households_cdap(households): return
pd.DataFrame(index=households.index)
pandas.DataFrame
# standard lib from collections.abc import Sequence import json # 3rd party lib import pandas as pd # local lib from .base_rule import BaseRule, SAMPLE_RULES @SAMPLE_RULES.register_module('sequential') class Sequential(BaseRule): def __init__(self, rules): self._rules = rules def _apply(self, obj): for r in self._rules: obj = r(obj) return obj def __repr__(self): return self.__class__.__name__ + '([\n\t' + \ ',\n\t'.join([repr(v) for v in self._rules]) + '\n])' if __name__ == '__main__': import numpy as np from pprint import pprint from .eval_rule import EvalRule from .parallel import Parallel meta = { 'scale': np.arange(0, 1000, 100), 'depth': np.arange(2, 22, 2), 'latency': np.linspace(0, 20, 10), } a =
pd.DataFrame(meta)
pandas.DataFrame
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import pandas as pd import numpy as np from sklearn.metrics import precision_recall_fscore_support from sklearn.metrics import roc_curve, auc from sklearn.preprocessing import LabelBinarizer def classification_report(y_true, y_pred, y_score=None, average='micro'): """ Params: -------- y_true : 1d array-like, or label indicator array / sparse matrix Ground truth (correct) target values. y_pred : 1d array-like, or label indicator array / sparse matrix Estimated targets as returned by a classifier. y_score : nd array-like with the probabilities of the classes. average : str. either 'micro' or 'macro', for more details of how they are computed see: http://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html#multiclass-settings Return: -------- pd.DataFrame : contains the classification report as pandas.DataFrame Example: --------- from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.datasets import make_classification X, y = make_classification(n_samples=5000, n_features=10, n_informative=5, n_redundant=0, n_classes=10, random_state=0, shuffle=False) X_train, X_test, y_train, y_test = train_test_split(X, y) model = RandomForestClassifier(max_depth=2, random_state=0) model.fit(X_train, y_train) sk_report = classification_report( digits=6, y_true=y_test, y_pred=model.predict(X_test)) report_with_auc = class_report( y_true=y_test, y_pred=model.predict(X_test), y_score=model.predict_proba(X_test)) print(sk_report) Out: precision recall f1-score support 0 0.267101 0.645669 0.377880 127 1 0.361905 0.290076 0.322034 131 2 0.408451 0.243697 0.305263 119 3 0.345455 0.327586 0.336283 116 4 0.445652 0.333333 0.381395 123 5 0.413793 0.095238 0.154839 126 6 0.428571 0.474820 0.450512 139 7 0.446809 0.169355 0.245614 124 8 0.302703 0.466667 0.367213 120 9 0.373333 0.448000 0.407273 125 avg / total 0.379944 0.351200 0.335989 1250 print(report_with_auc) Out: precision recall f1-score support pred AUC 0 0.267101 0.645669 0.377880 127.0 307.0 0.810550 1 0.361905 0.290076 0.322034 131.0 105.0 0.777579 2 0.408451 0.243697 0.305263 119.0 71.0 0.823277 3 0.345455 0.327586 0.336283 116.0 110.0 0.844390 4 0.445652 0.333333 0.381395 123.0 92.0 0.811389 5 0.413793 0.095238 0.154839 126.0 29.0 0.654790 6 0.428571 0.474820 0.450512 139.0 154.0 0.876458 7 0.446809 0.169355 0.245614 124.0 47.0 0.777237 8 0.302703 0.466667 0.367213 120.0 185.0 0.799735 9 0.373333 0.448000 0.407273 125.0 150.0 0.825959 avg / total 0.379944 0.351200 0.335989 1250.0 1250.0 0.800534 """ if y_true.shape != y_pred.shape: print("Error! y_true %s is not the same shape as y_pred %s" % ( y_true.shape, y_pred.shape) ) return lb = LabelBinarizer() if len(y_true.shape) == 1: lb.fit(y_true) # Value counts of predictions labels, cnt = np.unique( y_pred, return_counts=True) n_classes = len(labels) all_labels = set(labels).union(np.unique(y_true)) pred_cnt =
pd.Series(cnt, index=labels)
pandas.Series
#%% # import labraries import matplotlib.pyplot as plt import pandas as pd import time import os #%% # preprocess time of active power def preprocess_active_power(df_act): start_idx, end_idx = 0, 0 for i in range(0, int(df_act.shape[0]/2)): if df_act['Item005'][i]==0 and df_act['Item005'][i+1]!=0: start_idx = i break for i in range(df_act.shape[0]-1, int(df_act.shape[0]/2), -1): if df_act['Item005'][i]==0 and df_act['Item005'][i-1]!=0: end_idx = i break df_act['DataSavedTime'][:end_idx-start_idx+1] = df_act['DataSavedTime'][start_idx:end_idx+1] df_act['Item005'][:end_idx-start_idx+1] = df_act['Item005'][start_idx:end_idx+1] df_result = pd.concat([df_act['DataSavedTime'][:end_idx-start_idx+1], df_act['Item005'][:end_idx-start_idx+1]], axis=1) return df_result #%% # read labeled data label_directories = [f for f in os.listdir('./elevator_label/') if not '.' in f] # labels label_cur, label_act = {}, {} for i, l in enumerate(label_directories): label_data = [f for f in os.listdir('./elevator_label/'+l+'/') if not 'png' in f] # get only csv files act_csv = [f for f in label_data if 'active' in f] cur_csv = [f for f in label_data if not 'active' in f and not '.ini' in f] print(l, " ==> ", len(act_csv)==len(cur_csv)) label_cur[l] = cur_csv label_act[l] = act_csv #%% # find max time duration cur_max_duration, act_max_duration = {}, {} cur_min_duration, act_min_duration = {}, {} # to check error data error_data = '' for i, l in enumerate(label_directories): path = './elevator_label/'+l+'/' max_cur, max_act = 0, 0 min_cur, min_act = 500, 500 temp = '' for j in range(len(label_cur[l])): df_cur = pd.read_csv(path+label_cur[l][j]) df_act = pd.read_csv(path+label_act[l][j]) if df_cur.shape[1]<3: df_cur.columns = ['DataSavedTime', 'Item005'] else: df_cur.columns = ['Index', 'DataSavedTime', 'Item005'] cur_time_duration = df_cur.shape[0] act_time_duration = df_act.shape[0] if max_cur<cur_time_duration: max_cur = cur_time_duration temp = path+label_cur[l][j] if max_act<act_time_duration: max_act = act_time_duration if min_cur>=cur_time_duration: min_cur = cur_time_duration error_data = path+label_cur[l][j] if min_act>=act_time_duration: min_act = act_time_duration cur_max_duration[l] = max_cur act_max_duration[l] = max_act cur_min_duration[l] = min_cur act_min_duration[l] = min_act print('cur_max_duration', '='*20, '\n', cur_max_duration) print('cur_min_duration', '='*20, '\n', cur_min_duration) print('act_max_duration', '='*20, '\n', act_max_duration) print('act_min_duration', '='*20, '\n', act_min_duration) #%% # plot graphs of current in one figure target_label = ['012', '052'] for i, l in enumerate(label_directories): if not l in target_label: continue path = './elevator_label/'+l+'/' plt.figure() for j in range(len(label_cur[l])): df_cur =
pd.read_csv(path+label_cur[l][j])
pandas.read_csv