prompt
stringlengths
19
1.03M
completion
stringlengths
4
2.12k
api
stringlengths
8
90
################################# # standard library import os import sys import math import collections # https://docs.python.org/3/library/collections.html import itertools # https://docs.python.org/3/library/itertools.html # third party import pandas as pd # for loading data and operations with data import matplotlib.pyplot as plt # for plotting import numpy as np # useful mathematic and numeric tools from scipy.io import loadmat from sklearn import linear_model import statsmodels.api as sm ################################# #NOTE: stepwise_selection function used from: #https://datascience.stackexchange.com/questions/24405/how-to-do-stepwise-regression-using-sklearn/24447#24447 def stepwise_selection(X, y, initial_list=[], threshold_in=0.01, threshold_out = 0.05, verbose=True): """ Perform a forward-backward feature selection based on p-value from statsmodels.api.OLS Arguments: X - pandas.DataFrame with candidate features y - list-like with the target initial_list - list of features to start with (column names of X) threshold_in - include a feature if its p-value < threshold_in threshold_out - exclude a feature if its p-value > threshold_out verbose - whether to print the sequence of inclusions and exclusions Returns: list of selected features Always set threshold_in < threshold_out to avoid infinite looping. See https://en.wikipedia.org/wiki/Stepwise_regression for the details """ included = list(initial_list) while True: changed=False # forward step excluded = list(set(X.columns)-set(included)) new_pval =
pd.Series(index=excluded)
pandas.Series
# -*- coding: utf-8 -*- import app.config.env as env import pandas as pd class Capacity: def __init__(self, capacity=0., unit=None, tenors=[], start=-float("inf"), end=float("inf")): self.capacity = capacity self.unit = unit self.start = start self.end = end self.capacities = None capacities = [] for tenor in tenors: capacities.apend(capacity if (tenor >= start and tenor < end) else 0.) self.capacities = pd.Series(capacities, index=tenors) def schedule(self, tenors): capacities = [] for tenor in tenors: capacities.append(self.capacity if (tenor >= self.start and tenor < self.end) else 0.) self.capacities =
pd.Series(capacities, index=tenors)
pandas.Series
# -*- coding: utf-8 -*- ''' Autor: <NAME>, <NAME>, <NAME>, <NAME> Version: 1.3 Server fuer das hosten des FaSta-Dashboards Copyright 2018 The Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ============================================================================== ''' import sys import dash import dash_auth import dash_core_components import dash_core_components as dcc import dash_html_components as html import dash_table_experiments as dt import flask import pandas as pd import plotly.graph_objs as go import pymongo import threading from dash.dependencies import Input, Output import os import collections from pprint import pprint from pymongo.command_cursor import CommandCursor from datetime import datetime from apscheduler.schedulers.blocking import BlockingScheduler from types import * import pandas as pd import numpy as np from pandas import DataFrame sys.path.append('./Clients') import folium from geopy.geocoders import Nominatim #from sqlalchemy import create_engine import psycopg2 ########################################################################## ############################################################################################################################################# ########################################################################## Web Application ############################################################################################################################################# ########################################################################## ############################################################################################################################################# # Konstanten MONGO_URL = os.environ.get('MONGO_URI') POSTGRESS_URL = os.environ.get('POSTGRES_URL') HOST_ID = '0.0.0.0' PORT = '37002' print('Fasta Server initialisiert!') def createGraphDataForEscalatorPage(numberOfLastEntries: int): ergDF = pd.DataFrame(columns=['Datum', 'Anzahl_Ausfälle']) facilities_collection = facilities.find({}) pandas_facilities = pd.DataFrame(list(facilities_collection)) pandas_facilities = pandas_facilities[['equipmentnumber', 'datetime', 'state']] facilities_distinct = pandas_facilities facilities_distinct.columns = ['ID', 'Datum', 'Status'] facilities_distinct['Datum'] = pd.to_datetime(facilities_distinct['Datum'], format="%Y-%m-%d_%H-%M-%S") facilities_distinct['Datum'] = facilities_distinct['Datum'].dt.strftime('%Y-%m-%d') facilities_distinct_inactive = facilities_distinct[facilities_distinct['Status'] == 'INACTIVE'] dfOnlyDatetime = pd.DataFrame(facilities_distinct_inactive['Datum'], columns=['Datum']).drop_duplicates() facilities_distinct_inactive_latestDate = facilities_distinct_inactive.groupby('ID')['Datum'].max() counter = 0 for index, row in dfOnlyDatetime.iterrows(): counter = 0 for key, value in facilities_distinct_inactive_latestDate.items(): if value == row['Datum']: counter += 1 ergDF.loc[index] = row['Datum'], counter ergDF = ergDF.reset_index().drop(['index'], axis=1) ergDF = ergDF.iloc[-numberOfLastEntries:] return ergDF def getDesiredState(listWithStates, state): stateCounter = 0 for i in listWithStates: if state == i['state']: stateCounter += 1 return stateCounter def getDesiredStateExplanation(listWithStates, state, stateExplanation): stateExpressionCounter = 0 for i in listWithStates: if state == i['state'] and stateExplanation == i['stateExplanation']: stateExpressionCounter += 1 return stateExpressionCounter def createOverview(givenType: str): resultOverview = facilities.aggregate([ {'$match': {'type': givenType}}, {'$group': { '_id': '$equipmentnumber', 'lastStateChangeDate': {'$last': '$datetime'}, 'state': {'$last': '$state'}, }} ]) listWithStates = [] for i in resultOverview: listWithStates.append(i) stateCountACTIVE = getDesiredState(listWithStates, 'ACTIVE') stateCountINACTIVE = getDesiredState(listWithStates, 'INACTIVE') stateCountUNKNOWN = getDesiredState(listWithStates, 'UNKNOWN') return stateCountACTIVE, stateCountINACTIVE, stateCountUNKNOWN def createReasonsForInactivity(givenType: str): uniqueList = facilities.distinct("stateExplanation"); resultGruendeFuerInaktivitaet = facilities.aggregate([ {'$match': {'type': givenType}}, {'$group': { '_id': '$equipmentnumber', 'lastStateChangeDate': {'$last': '$datetime'}, 'state': {'$last': '$state'}, 'stateExplanation': {'$last': '$stateExplanation'} }} ]) listWithStateExplanations = [] for i in resultGruendeFuerInaktivitaet: listWithStateExplanations.append(i) dictStateExplanationReason = {} for i in uniqueList: count = getDesiredStateExplanation(listWithStateExplanations, 'INACTIVE', str(i)) if count != 0: dictStateExplanationReason[str(i)] = count key_array = [] value_array = [] for key, value in dictStateExplanationReason.items(): key_array.append(key) value_array.append(value) return key_array, value_array def createInitialData(): client = pymongo.MongoClient(MONGO_URL, maxPoolSize=50) dbeva = client.eva_dev facilities = dbeva['facilities'] # Aufzüge reinladen conn = psycopg2.connect(host='station-db', user='postgres', password='<PASSWORD>', dbname='eva_dev', port=5432) cur = conn.cursor() querry = 'select * from "elevator"' cur.execute( querry ) stammdaten_liste = cur.fetchall() aufzüge = pd.DataFrame(stammdaten_liste) columns = ['ID','Standort Equipment', 'TechnPlatzBezeichng', 'Equipment', 'Equipmentname', 'Ort', 'Wirtschaftseinheit', 'Hersteller', 'Baujahr', 'ANTRIEBSART', 'ANZAHL_HALTESTELLEN', 'ANZAHL_TUEREN_KABINE', 'ANZAHL_TUEREN_SCHACHT', 'FOERDERGESCHWINDIGKEIT', 'FOERDERHOEHE', 'LAGE', 'TRAGKRAFT', 'ERWEITERTE_ORTSANGABE', 'MIN_TUERBREITE', 'KABINENTIEFE', 'KABINENBREITE', 'KABINENHOEHE', 'TUERHOHE', 'FABRIKNUMMER', 'TUERART', 'GEOKOORDINATERECHTSWERT', 'GEOKOORDINATEHOCHWERT', 'AUSFTEXTLICHEBESCHREIBUNG'] aufzüge.columns = columns aufzüge = aufzüge.drop(0) aufzüge['Equipment'] = aufzüge['Equipment'].astype(str).astype('int64') aufzüge = aufzüge.drop_duplicates(['Equipment']) aufzüge = aufzüge.drop(columns=['ID']) aufzüge = aufzüge.fillna(value=np.nan) aufzüge['Baujahr'] = pd.to_numeric(aufzüge['Baujahr'], errors='coerce') print('Anzahl Aufzüge: ', len(aufzüge)) return facilities, aufzüge def createMap(givenType: str): resultCommandCursor = facilities.aggregate([ {'$match': {'type': givenType}}, {'$group': { '_id': '$equipmentnumber', 'description': {'$last': '$description'}, 'geocoordX': {'$last': '$geocoordX'}, 'geocoordY': {'$last': '$geocoordY'}, 'lastStateChangeDate': {'$last': '$datetime'}, 'state': {'$last': '$state'}, }} ]) resultCommandCursor = pd.DataFrame(list(resultCommandCursor)) resultCommandCursor.columns = ['equipmentnumber', 'description', 'geocoordX', 'geocoordY', 'lastStateChangeDate', 'state'] inactive = resultCommandCursor[resultCommandCursor['state'] == 'INACTIVE'] active = resultCommandCursor[resultCommandCursor['state'] == 'ACTIVE'] # Zoom am ausgewählten Ort geolocator = Nominatim(user_agent="Eva_Dashboard") return inactive, active, geolocator ##################################################################### ################ Start of Code (create initial data) ################ ##################################################################### facilities, aufzüge = createInitialData() ############################################################ ################# Die Aufzüge im Überblick ################# ############################################################ elevatorStateCountACTIVE, elevatorStateCountINACTIVE, elevatorStateCountUNKNOWN = createOverview('ELEVATOR') ############################################################ ############### Die Rolltreppen im Überblick ############### ############################################################ escalatorStateCountACTIVE, escalatorStateCountINACTIVE, escalatorStateCountUNKNOWN = createOverview('ESCALATOR') #################################################### ###### Gründe für Inaktivität von Fahrstühlen ###### #################################################### elevator_key_array, elevator_value_array = createReasonsForInactivity('ELEVATOR') #################################################### ###### Gründe für Inaktivität von Rolltreppen ###### #################################################### escalator_key_array, escalator_value_array = createReasonsForInactivity('ESCALATOR') #################################################### ###### Routine zum Aktualisieren der Daten ###### #################################################### def updateValues(): global facilities, aufzüge, elevatorStateCountACTIVE, elevatorStateCountINACTIVE, elevatorStateCountUNKNOWN global escalatorStateCountACTIVE, escalatorStateCountINACTIVE, escalatorStateCountUNKNOWN global elevator_key_array, elevator_value_array global escalator_key_array, escalator_value_array facilities, aufzüge = createInitialData() elevatorStateCountACTIVE, elevatorStateCountINACTIVE, elevatorStateCountUNKNOWN = createOverview('ELEVATOR') escalatorStateCountACTIVE, escalatorStateCountINACTIVE, escalatorStateCountUNKNOWN = createOverview('ESCALATOR') elevator_key_array, elevator_value_array = createReasonsForInactivity('ELEVATOR') escalator_key_array, escalator_value_array = createReasonsForInactivity('ESCALATOR') # Daten werden jede Stunde aktualisiert scheduler = BlockingScheduler() scheduler.add_job(updateValues, 'interval', minutes=5) class UpdateValue(threading.Thread): def __init__(self): threading.Thread.__init__(self) def run(self): scheduler.start() print('Thread zum Updaten der Werte gestartet!') tread = UpdateValue() tread.start() #################################### ###### Wusstest du schon? ###### #################################### # Ältester Aufzug aeltesteAufzug_datensatz = aufzüge[aufzüge['Baujahr'] == int(aufzüge['Baujahr'].min())] aeltesteAufzug_ort = aeltesteAufzug_datensatz['Ort'].values[0] aeltesteAufzug_jahr = int(aeltesteAufzug_datensatz['Baujahr'].values[0]) # Station mit den meisten Aufzügen uniquelist_orte = aufzüge['Ort'].unique() df_anzahlProStation =
pd.DataFrame(columns=['Ort', 'Anzahl_Aufzüge'])
pandas.DataFrame
import datetime import functools from decimal import Decimal import pandas as pd from dateutil.parser import parse as time_parser from enums import BuySell class LocalTradeRecord: def __init__(self): self.path = "data/trade_record.csv" # number, stock_id, buy_time, sell_time, buy_price, sell_price, volumn, buy_cost, sell_cost, revenue self.df = pd.read_csv(self.path, dtype={0: int, 1: str, 2: str, 3: str, 4: str, 5: str, 6: float, 7: str, 8: str, 9: str}) # 交易紀錄索引值 def getLastNumber(self): last_row = list(self.df.iloc[-1]) return last_row[0] def getLastBuyTime(self, stock_id): sub_df = self.df[self.df["stock_id"] == stock_id].copy() sub_df.sort_values(by=["number", "buy_time"], inplace=True) last_buy = list(sub_df.iloc[-1])[2] return time_parser(last_buy) def saveTradeRecord(self, stock_id, buy_time: datetime.datetime, sell_time: datetime.datetime, buy_price: Decimal, sell_price: Decimal, volumn: int, buy_cost: Decimal, sell_cost: Decimal, revenue: Decimal): """ :param stock_id: :param buy_time: :param sell_time: :param buy_price: :param sell_price: :param volumn: :param buy_cost: :param sell_cost: :param revenue: :return: """ number = self.getLastNumber() + 1 data = {"number": number, "stock_id": stock_id, "buy_time": str(buy_time.date()), "sell_time": str(sell_time.date()), "buy_price": str(buy_price), "sell_price": str(sell_price), "volumn": volumn, "buy_cost": str(buy_cost), "sell_cost": str(sell_cost), "revenue": str(revenue)} self.df = self.df.append(data, ignore_index=True) self.df.to_csv(self.path, index=False) return data # # 移除庫存 # self.api.removeInventory(guid=guid) # # # TODO: 寫出交易紀錄,並更新資金(funds.csv) # self.local_capital.allocateRevenue(deal_time=sell_time, remark=str(number), trade_revenue=trade_revenue) # # self.api.recordTrading(stock_id=stock_id, # # buy_price=str(buy_price), # # sell_price=str(sell_price), # # vol=buy_volumn, # # buy_time=buy_time, # # sell_time=sell_time, # # buy_cost=str(buy_cost), # # sell_cost=str(sell_cost), # # revenue=str(revenue - buy_cost - sell_cost)) # # self.logger.info(f"record: {record}", extra=self.extra) # f.write(record) def recordDividend(self, stock_id: str, revenue: str, pay_time: datetime.datetime = datetime.datetime.today()): last_buy = self.getLastBuyTime(stock_id=stock_id) buy_time = last_buy.strftime("%Y-%m-%d") sell_time = pay_time.strftime("%Y-%m-%d") number = self.getLastNumber() + 1 data = {"number": number, "stock_id": stock_id, "buy_time": buy_time, "sell_time": sell_time, "buy_price": "0", "sell_price": "0", "volumn": 0, "buy_cost": "0", "sell_cost": "0", "revenue": revenue} self.df = self.df.append(data, ignore_index=True) self.df.to_csv(self.path, index=False) return data def renumber(self): n_data = len(self.df) numbers = list(range(1, n_data + 1)) self.df["number"] = numbers self.df.to_csv(self.path, index=False) def sortOperates(operates): """ 將操作做排序,排序優先順序為: 日期(越早越前) -> 操作類型(buy 優先,再來才是 sell) xxx_operate -> [datetime, buy/sell, cost/income] :param operates: 所有操作 :return: """ def compareOperates(op1, op2): """ sorted()也是一個高階函式,它可以接收一個比較函式來實現自定義排序, 比較函式的定義是,傳入兩個待比較的元素 x, y, 如果 x 應該排在 y 的前面,返回 -1, 如果 x 應該排在 y 的後面,返回 1。 如果 x 和 y 相等,返回 0。 def customSort(x, y): if x > y: return -1 if x < y: return 1 return 0 print(sorted([2,4,5,7,3], key=functools.cmp_to_key(customSort))) -> [7, 5, 4, 3, 2] :param op1: 請求 1 :param op2: 請求 2 :return: """ # datetime, buy/sell, cost/income time1, buy_sell1, _ = op1 time2, buy_sell2, _ = op2 # 時間越早排越前面 if time1 < time2: return -1 elif time1 > time2: return 1 # 數量少的排前面 if buy_sell1.value < buy_sell2.value: return -1 # 數量多的排後面 elif buy_sell1.value > buy_sell2.value: return 1 else: return 0 # 透過自定義規則函式 compareRequests 來對 requests 來進行排序 return sorted(operates, key=functools.cmp_to_key(compareOperates)) def evaluateTradingPerformance(): path = "data/trade_record.csv" # number,stock_id,buy_time,sell_time,buy_price,sell_price,volumn,buy_cost,sell_cost,revenue df = pd.read_csv(path) df["buy_time"] = pd.to_datetime(df["buy_time"]) df["sell_time"] =
pd.to_datetime(df["sell_time"])
pandas.to_datetime
from pandas import Series,DataFrame import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.cross_validation import train_test_split from sklearn.cluster import KMeans from sklearn import preprocessing import os from sklearn import datasets import sklearn.metrics as sm from sklearn.preprocessing import LabelEncoder #calling in libraries data=
pd.read_csv(r"C:\Users\mudit\Documents\weather-check.csv")
pandas.read_csv
# Time series subplots # Import Modules import os import pandas as pd import numpy as np import datetime as dt import csv import matplotlib.pyplot as plt from tqdm import tqdm import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) # All Posts # Read CSV df = pd.read_csv('ClimateSkepticsAllPosts.csv',index_col=0,parse_dates=True) def get_yearmonth(timestamp): month = timestamp[5:7] year = timestamp[:4] monthyear = str(year) + '/' + str(month) return monthyear df['YearMonth'] = df['timestamp'].apply(lambda x: get_yearmonth(x)) # Bin Data in Months df_grp = df.groupby('YearMonth') Y_M = [] Num_Posts = [] for i, grp in df_grp: grplen = len(grp) Num_Posts.append(grplen) # Get Number of Posts per Month Y_M.append(i) # New DateFrame dateTime = pd.DataFrame() dateTime['YearMonth'] = Y_M dateTime['Posts'] = Num_Posts dateTime.to_csv('ClimateSkeptics_Posts_per_Month.csv') datetime_list = [] for i in list(range(0,len(dateTime))): month = int(dateTime['YearMonth'][i][5:7]) year = int(dateTime['YearMonth'][i][0:4]) datetime_list.append(dt.date(year,month,1)) dateTime['Date'] = datetime_list # All Submissions # Read CSV path=os.getcwd() fullpath=path+'/Outputs/CS_FULL/LDA_Dataframes/topic_timeseries_10.csv' df = pd.read_csv(fullpath,index_col=0,parse_dates=True) df['YearMonth'] = df['timestamp'].apply(lambda x: get_yearmonth(x)) # Bin Data in Months df_grp = df.groupby('YearMonth') Y_M = [] Num_Posts = [] for i, grp in df_grp: grplen = len(grp) Num_Posts.append(grplen) # Get Number of Posts per Month Y_M.append(i) # New DateFrame dateTime2 = pd.DataFrame() dateTime2['YearMonth'] = Y_M dateTime2['Posts'] = Num_Posts dateTime2.to_csv('ClimateSkeptics_Submissions_per_Month.csv') datetime_list = [] for i in list(range(0,len(dateTime2))): month = int(dateTime2['YearMonth'][i][5:7]) year = int(dateTime2['YearMonth'][i][0:4]) datetime_list.append(dt.date(year,month,1)) dateTime2['Date'] = datetime_list # Get Subscribers subs = pd.read_csv('climateskeptics_subscribers.csv') subs.columns = ['timestamp','Subscribers'] datetime_list = [] for i in list(range(0,len(subs))): day = subs['timestamp'][i][:2] month = subs['timestamp'][i][3:5] year = subs['timestamp'][i][6:10] datetime_list.append(dt.date(int(year),int(month),int(day))) subs['Date'] = datetime_list # NOW DO SPECIFIC SEARCHES # CLIMATEGATE cgate_posts = pd.read_csv('CS_CGate_posts.csv') cgate_posts = cgate_posts.drop(['title','url','comms_num'],axis=1) cgate_coms = pd.read_csv('CS_CGate_comments.csv') cgate_df =
pd.concat([cgate_posts,cgate_coms])
pandas.concat
import pandas as pd from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import PolynomialFeatures from sklearn.linear_model import LinearRegression from sklearn.pipeline import Pipeline from sklearn.model_selection import RandomizedSearchCV from scipy.stats import expon from scipy.stats import randint from sklearn.multioutput import MultiOutputClassifier import numpy as np if __name__ == '__main__': path = 'example_data.csv' df = pd.read_csv(path) df = pd.get_dummies(df) # Create a 3d scatter plot of the data fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(df['x'], df['y'], df['z']) ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') plt.show() # Create a 2d scatter plot of the data fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(df['x'], df['z']) ax.set_xlabel('X') ax.set_ylabel('Z') plt.show() # We will train the model to predict Z and the category of the data from the X and Y values # Create empty Dataframes X = pd.DataFrame() Y =
pd.DataFrame()
pandas.DataFrame
"""Tests for the sdv.constraints.tabular module.""" import uuid import numpy as np import pandas as pd import pytest from sdv.constraints.errors import MissingConstraintColumnError from sdv.constraints.tabular import ( Between, ColumnFormula, CustomConstraint, GreaterThan, Negative, OneHotEncoding, Positive, Rounding, UniqueCombinations) def dummy_transform(): pass def dummy_reverse_transform(): pass def dummy_is_valid(): pass class TestCustomConstraint(): def test___init__(self): """Test the ``CustomConstraint.__init__`` method. The ``transform``, ``reverse_transform`` and ``is_valid`` methods should be replaced by the given ones, importing them if necessary. Setup: - Create dummy functions (created above this class). Input: - dummy transform and revert_transform + is_valid FQN Output: - Instance with all the methods replaced by the dummy versions. """ is_valid_fqn = __name__ + '.dummy_is_valid' # Run instance = CustomConstraint( transform=dummy_transform, reverse_transform=dummy_reverse_transform, is_valid=is_valid_fqn ) # Assert assert instance.transform == dummy_transform assert instance.reverse_transform == dummy_reverse_transform assert instance.is_valid == dummy_is_valid class TestUniqueCombinations(): def test___init__(self): """Test the ``UniqueCombinations.__init__`` method. It is expected to create a new Constraint instance and receiving the names of the columns that need to produce unique combinations. Side effects: - instance._colums == columns """ # Setup columns = ['b', 'c'] # Run instance = UniqueCombinations(columns=columns) # Assert assert instance._columns == columns def test_fit(self): """Test the ``UniqueCombinations.fit`` method. The ``UniqueCombinations.fit`` method is expected to: - Call ``UniqueCombinations._valid_separator``. - Find a valid separator for the data and generate the joint column name. Input: - Table data (pandas.DataFrame) """ # Setup columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) # Run table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) instance.fit(table_data) # Asserts expected_combinations = pd.DataFrame({ 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) assert instance._separator == '#' assert instance._joint_column == 'b#c' pd.testing.assert_frame_equal(instance._combinations, expected_combinations) def test_is_valid_true(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_false(self): """Test the ``UniqueCombinations.is_valid`` method. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['D', 'E', 'F'], 'c': ['g', 'h', 'i'] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_true(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data satisfies the constraint, result is a series of ``True`` values. Input: - Table data (pandas.DataFrame), satisfying the constraint. Output: - Series of ``True`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.is_valid(table_data) expected_out = pd.Series([True, True, True], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_is_valid_non_string_false(self): """Test the ``UniqueCombinations.is_valid`` method with non string columns. If the input data doesn't satisfy the constraint, result is a series of ``False`` values. Input: - Table data (pandas.DataFrame), which does not satisfy the constraint. Output: - Series of ``False`` values (pandas.Series) Side effects: - Since the ``is_valid`` method needs ``self._combinations``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [1, 2, 3], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) columns = ['b', 'c', 'd'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run incorrect_table = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': [6, 7, 8], 'c': ['g', 'h', 'i'], 'd': [2.4, 1.23, 5.6] }) out = instance.is_valid(incorrect_table) # Assert expected_out = pd.Series([False, False, False], name='b#c#d') pd.testing.assert_series_equal(expected_out, out) def test_transform(self): """Test the ``UniqueCombinations.transform`` method. It is expected to return a Table data with the columns concatenated by the separator. Input: - Table data (pandas.DataFrame) Output: - Table data transformed, with the columns concatenated (pandas.DataFrame) Side effects: - Since the ``transform`` method needs ``self._joint_column``, method ``fit`` must be called as well. """ # Setup table_data = pd.DataFrame({ 'a': ['a', 'b', 'c'], 'b': ['d', 'e', 'f'], 'c': ['g', 'h', 'i'] }) columns = ['b', 'c'] instance = UniqueCombinations(columns=columns) instance.fit(table_data) # Run out = instance.transform(table_data) # Assert assert instance._combinations_to_uuids is not None assert instance._uuids_to_combinations is not None expected_out_a = pd.Series(['a', 'b', 'c'], name='a')
pd.testing.assert_series_equal(expected_out_a, out['a'])
pandas.testing.assert_series_equal
from datetime import timedelta from functools import partial import itertools from parameterized import parameterized import numpy as np from numpy.testing import assert_array_equal, assert_almost_equal import pandas as pd from toolz import merge from zipline.pipeline import SimplePipelineEngine, Pipeline, CustomFactor from zipline.pipeline.common import ( EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, SID_FIELD_NAME, TS_FIELD_NAME, ) from zipline.pipeline.data import DataSet from zipline.pipeline.data import Column from zipline.pipeline.domain import EquitySessionDomain from zipline.pipeline.loaders.earnings_estimates import ( NextEarningsEstimatesLoader, NextSplitAdjustedEarningsEstimatesLoader, normalize_quarters, PreviousEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, split_normalized_quarters, ) from zipline.testing.fixtures import ( WithAdjustmentReader, WithTradingSessions, ZiplineTestCase, ) from zipline.testing.predicates import assert_equal from zipline.testing.predicates import assert_frame_equal from zipline.utils.numpy_utils import datetime64ns_dtype from zipline.utils.numpy_utils import float64_dtype import pytest class Estimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate = Column(dtype=float64_dtype) class MultipleColumnsEstimates(DataSet): event_date = Column(dtype=datetime64ns_dtype) fiscal_quarter = Column(dtype=float64_dtype) fiscal_year = Column(dtype=float64_dtype) estimate1 = Column(dtype=float64_dtype) estimate2 = Column(dtype=float64_dtype) def QuartersEstimates(announcements_out): class QtrEstimates(Estimates): num_announcements = announcements_out name = Estimates return QtrEstimates def MultipleColumnsQuartersEstimates(announcements_out): class QtrEstimates(MultipleColumnsEstimates): num_announcements = announcements_out name = Estimates return QtrEstimates def QuartersEstimatesNoNumQuartersAttr(num_qtr): class QtrEstimates(Estimates): name = Estimates return QtrEstimates def create_expected_df_for_factor_compute(start_date, sids, tuples, end_date): """ Given a list of tuples of new data we get for each sid on each critical date (when information changes), create a DataFrame that fills that data through a date range ending at `end_date`. """ df = pd.DataFrame(tuples, columns=[SID_FIELD_NAME, "estimate", "knowledge_date"]) df = df.pivot_table( columns=SID_FIELD_NAME, values="estimate", index="knowledge_date", dropna=False ) df = df.reindex(pd.date_range(start_date, end_date)) # Index name is lost during reindex. df.index = df.index.rename("knowledge_date") df["at_date"] = end_date.tz_localize("utc") df = df.set_index(["at_date", df.index.tz_localize("utc")]).ffill() new_sids = set(sids) - set(df.columns) df = df.reindex(columns=df.columns.union(new_sids)) return df class WithEstimates(WithTradingSessions, WithAdjustmentReader): """ ZiplineTestCase mixin providing cls.loader and cls.events as class level fixtures. Methods ------- make_loader(events, columns) -> PipelineLoader Method which returns the loader to be used throughout tests. events : pd.DataFrame The raw events to be used as input to the pipeline loader. columns : dict[str -> str] The dictionary mapping the names of BoundColumns to the associated column name in the events DataFrame. make_columns() -> dict[BoundColumn -> str] Method which returns a dictionary of BoundColumns mapped to the associated column names in the raw data. """ # Short window defined in order for test to run faster. START_DATE = pd.Timestamp("2014-12-28", tz="utc") END_DATE = pd.Timestamp("2015-02-04", tz="utc") @classmethod def make_loader(cls, events, columns): raise NotImplementedError("make_loader") @classmethod def make_events(cls): raise NotImplementedError("make_events") @classmethod def get_sids(cls): return cls.events[SID_FIELD_NAME].unique() @classmethod def make_columns(cls): return { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } def make_engine(self, loader=None): if loader is None: loader = self.loader return SimplePipelineEngine( lambda x: loader, self.asset_finder, default_domain=EquitySessionDomain( self.trading_days, self.ASSET_FINDER_COUNTRY_CODE, ), ) @classmethod def init_class_fixtures(cls): cls.events = cls.make_events() cls.ASSET_FINDER_EQUITY_SIDS = cls.get_sids() cls.ASSET_FINDER_EQUITY_SYMBOLS = [ "s" + str(n) for n in cls.ASSET_FINDER_EQUITY_SIDS ] # We need to instantiate certain constants needed by supers of # `WithEstimates` before we call their `init_class_fixtures`. super(WithEstimates, cls).init_class_fixtures() cls.columns = cls.make_columns() # Some tests require `WithAdjustmentReader` to be set up by the time we # make the loader. cls.loader = cls.make_loader( cls.events, {column.name: val for column, val in cls.columns.items()} ) class WithOneDayPipeline(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_columns(cls): return { MultipleColumnsEstimates.event_date: "event_date", MultipleColumnsEstimates.fiscal_quarter: "fiscal_quarter", MultipleColumnsEstimates.fiscal_year: "fiscal_year", MultipleColumnsEstimates.estimate1: "estimate1", MultipleColumnsEstimates.estimate2: "estimate2", } @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate1": [1.0, 2.0], "estimate2": [3.0, 4.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def make_expected_out(cls): raise NotImplementedError("make_expected_out") @classmethod def init_class_fixtures(cls): super(WithOneDayPipeline, cls).init_class_fixtures() cls.sid0 = cls.asset_finder.retrieve_asset(0) cls.expected_out = cls.make_expected_out() def test_load_one_day(self): # We want to test multiple columns dataset = MultipleColumnsQuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=pd.Timestamp("2015-01-15", tz="utc"), end_date=pd.Timestamp("2015-01-15", tz="utc"), ) assert_frame_equal(results.sort_index(1), self.expected_out.sort_index(1)) class PreviousWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-10"), "estimate1": 1.0, "estimate2": 3.0, FISCAL_QUARTER_FIELD_NAME: 1.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) class NextWithOneDayPipeline(WithOneDayPipeline, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def make_expected_out(cls): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: pd.Timestamp("2015-01-20"), "estimate1": 2.0, "estimate2": 4.0, FISCAL_QUARTER_FIELD_NAME: 2.0, FISCAL_YEAR_FIELD_NAME: 2015.0, }, index=pd.MultiIndex.from_tuples( ((pd.Timestamp("2015-01-15", tz="utc"), cls.sid0),) ), ) dummy_df = pd.DataFrame( {SID_FIELD_NAME: 0}, columns=[ SID_FIELD_NAME, TS_FIELD_NAME, EVENT_DATE_FIELD_NAME, FISCAL_QUARTER_FIELD_NAME, FISCAL_YEAR_FIELD_NAME, "estimate", ], index=[0], ) class WithWrongLoaderDefinition(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- events : pd.DataFrame A simple DataFrame with columns needed for estimates and a single sid and no other data. Tests ------ test_wrong_num_announcements_passed() Tests that loading with an incorrect quarter number raises an error. test_no_num_announcements_attr() Tests that the loader throws an AssertionError if the dataset being loaded has no `num_announcements` attribute. """ @classmethod def make_events(cls): return dummy_df def test_wrong_num_announcements_passed(self): bad_dataset1 = QuartersEstimates(-1) bad_dataset2 = QuartersEstimates(-2) good_dataset = QuartersEstimates(1) engine = self.make_engine() columns = { c.name + str(dataset.num_announcements): c.latest for dataset in (bad_dataset1, bad_dataset2, good_dataset) for c in dataset.columns } p = Pipeline(columns) err_msg = ( r"Passed invalid number of quarters -[0-9],-[0-9]; " r"must pass a number of quarters >= 0" ) with pytest.raises(ValueError, match=err_msg): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) def test_no_num_announcements_attr(self): dataset = QuartersEstimatesNoNumQuartersAttr(1) engine = self.make_engine() p = Pipeline({c.name: c.latest for c in dataset.columns}) with pytest.raises(AttributeError): engine.run_pipeline( p, start_date=self.trading_days[0], end_date=self.trading_days[-1], ) class PreviousWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that previous quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) class NextWithWrongNumQuarters(WithWrongLoaderDefinition, ZiplineTestCase): """ Tests that next quarter loader correctly breaks if an incorrect number of quarters is passed. """ @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) options = [ "split_adjustments_loader", "split_adjusted_column_names", "split_adjusted_asof", ] class WrongSplitsLoaderDefinition(WithEstimates, ZiplineTestCase): """ Test class that tests that loaders break correctly when incorrectly instantiated. Tests ----- test_extra_splits_columns_passed(SplitAdjustedEstimatesLoader) A test that checks that the loader correctly breaks when an unexpected column is passed in the list of split-adjusted columns. """ @classmethod def init_class_fixtures(cls): super(WithEstimates, cls).init_class_fixtures() @parameterized.expand( itertools.product( ( NextSplitAdjustedEarningsEstimatesLoader, PreviousSplitAdjustedEarningsEstimatesLoader, ), ) ) def test_extra_splits_columns_passed(self, loader): columns = { Estimates.event_date: "event_date", Estimates.fiscal_quarter: "fiscal_quarter", Estimates.fiscal_year: "fiscal_year", Estimates.estimate: "estimate", } with pytest.raises(ValueError): loader( dummy_df, {column.name: val for column, val in columns.items()}, split_adjustments_loader=self.adjustment_reader, split_adjusted_column_names=["estimate", "extra_col"], split_adjusted_asof=pd.Timestamp("2015-01-01"), ) class WithEstimatesTimeZero(WithEstimates): """ ZiplineTestCase mixin providing cls.events as a class level fixture and defining a test for all inheritors to use. Attributes ---------- cls.events : pd.DataFrame Generated dynamically in order to test inter-leavings of estimates and event dates for multiple quarters to make sure that we select the right immediate 'next' or 'previous' quarter relative to each date - i.e., the right 'time zero' on the timeline. We care about selecting the right 'time zero' because we use that to calculate which quarter's data needs to be returned for each day. Methods ------- get_expected_estimate(q1_knowledge, q2_knowledge, comparable_date) -> pd.DataFrame Retrieves the expected estimate given the latest knowledge about each quarter and the date on which the estimate is being requested. If there is no expected estimate, returns an empty DataFrame. Tests ------ test_estimates() Tests that we get the right 'time zero' value on each day for each sid and for each column. """ # Shorter date range for performance END_DATE = pd.Timestamp("2015-01-28", tz="utc") q1_knowledge_dates = [ pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-04"), pd.Timestamp("2015-01-07"), pd.Timestamp("2015-01-11"), ] q2_knowledge_dates = [ pd.Timestamp("2015-01-14"), pd.Timestamp("2015-01-17"), pd.Timestamp("2015-01-20"), pd.Timestamp("2015-01-23"), ] # We want to model the possibility of an estimate predicting a release date # that doesn't match the actual release. This could be done by dynamically # generating more combinations with different release dates, but that # significantly increases the amount of time it takes to run the tests. # These hard-coded cases are sufficient to know that we can update our # beliefs when we get new information. q1_release_dates = [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-14"), ] # One day late q2_release_dates = [ pd.Timestamp("2015-01-25"), # One day early pd.Timestamp("2015-01-26"), ] @classmethod def make_events(cls): """ In order to determine which estimate we care about for a particular sid, we need to look at all estimates that we have for that sid and their associated event dates. We define q1 < q2, and thus event1 < event2 since event1 occurs during q1 and event2 occurs during q2 and we assume that there can only be 1 event per quarter. We assume that there can be multiple estimates per quarter leading up to the event. We assume that estimates will not surpass the relevant event date. We will look at 2 estimates for an event before the event occurs, since that is the simplest scenario that covers the interesting edge cases: - estimate values changing - a release date changing - estimates for different quarters interleaving Thus, we generate all possible inter-leavings of 2 estimates per quarter-event where estimate1 < estimate2 and all estimates are < the relevant event and assign each of these inter-leavings to a different sid. """ sid_estimates = [] sid_releases = [] # We want all permutations of 2 knowledge dates per quarter. it = enumerate( itertools.permutations(cls.q1_knowledge_dates + cls.q2_knowledge_dates, 4) ) for sid, (q1e1, q1e2, q2e1, q2e2) in it: # We're assuming that estimates must come before the relevant # release. if ( q1e1 < q1e2 and q2e1 < q2e2 # All estimates are < Q2's event, so just constrain Q1 # estimates. and q1e1 < cls.q1_release_dates[0] and q1e2 < cls.q1_release_dates[0] ): sid_estimates.append( cls.create_estimates_df(q1e1, q1e2, q2e1, q2e2, sid) ) sid_releases.append(cls.create_releases_df(sid)) return pd.concat(sid_estimates + sid_releases).reset_index(drop=True) @classmethod def get_sids(cls): sids = cls.events[SID_FIELD_NAME].unique() # Tack on an extra sid to make sure that sids with no data are # included but have all-null columns. return list(sids) + [max(sids) + 1] @classmethod def create_releases_df(cls, sid): # Final release dates never change. The quarters have very tight date # ranges in order to reduce the number of dates we need to iterate # through when testing. return pd.DataFrame( { TS_FIELD_NAME: [pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-13"), pd.Timestamp("2015-01-26"), ], "estimate": [0.5, 0.8], FISCAL_QUARTER_FIELD_NAME: [1.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0], SID_FIELD_NAME: sid, } ) @classmethod def create_estimates_df(cls, q1e1, q1e2, q2e1, q2e2, sid): return pd.DataFrame( { EVENT_DATE_FIELD_NAME: cls.q1_release_dates + cls.q2_release_dates, "estimate": [0.1, 0.2, 0.3, 0.4], FISCAL_QUARTER_FIELD_NAME: [1.0, 1.0, 2.0, 2.0], FISCAL_YEAR_FIELD_NAME: [2015.0, 2015.0, 2015.0, 2015.0], TS_FIELD_NAME: [q1e1, q1e2, q2e1, q2e2], SID_FIELD_NAME: sid, } ) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): return pd.DataFrame() def test_estimates(self): dataset = QuartersEstimates(1) engine = self.make_engine() results = engine.run_pipeline( Pipeline({c.name: c.latest for c in dataset.columns}), start_date=self.trading_days[1], end_date=self.trading_days[-2], ) for sid in self.ASSET_FINDER_EQUITY_SIDS: sid_estimates = results.xs(sid, level=1) # Separate assertion for all-null DataFrame to avoid setting # column dtypes on `all_expected`. if sid == max(self.ASSET_FINDER_EQUITY_SIDS): assert sid_estimates.isnull().all().all() else: ts_sorted_estimates = self.events[ self.events[SID_FIELD_NAME] == sid ].sort_values(TS_FIELD_NAME) q1_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 1 ] q2_knowledge = ts_sorted_estimates[ ts_sorted_estimates[FISCAL_QUARTER_FIELD_NAME] == 2 ] all_expected = pd.concat( [ self.get_expected_estimate( q1_knowledge[ q1_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], q2_knowledge[ q2_knowledge[TS_FIELD_NAME] <= date.tz_localize(None) ], date.tz_localize(None), ).set_index([[date]]) for date in sid_estimates.index ], axis=0, ) sid_estimates.index = all_expected.index.copy() assert_equal(all_expected[sid_estimates.columns], sid_estimates) class NextEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # If our latest knowledge of q1 is that the release is # happening on this simulation date or later, then that's # the estimate we want to use. if ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q1_knowledge.iloc[-1:] # If q1 has already happened or we don't know about it # yet and our latest knowledge indicates that q2 hasn't # happened yet, then that's the estimate we want to use. elif ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] >= comparable_date ): return q2_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class PreviousEstimate(WithEstimatesTimeZero, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) def get_expected_estimate(self, q1_knowledge, q2_knowledge, comparable_date): # The expected estimate will be for q2 if the last thing # we've seen is that the release date already happened. # Otherwise, it'll be for q1, as long as the release date # for q1 has already happened. if ( not q2_knowledge.empty and q2_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q2_knowledge.iloc[-1:] elif ( not q1_knowledge.empty and q1_knowledge[EVENT_DATE_FIELD_NAME].iloc[-1] <= comparable_date ): return q1_knowledge.iloc[-1:] return pd.DataFrame(columns=q1_knowledge.columns, index=[comparable_date]) class WithEstimateMultipleQuarters(WithEstimates): """ ZiplineTestCase mixin providing cls.events, cls.make_expected_out as class-level fixtures and self.test_multiple_qtrs_requested as a test. Attributes ---------- events : pd.DataFrame Simple DataFrame with estimates for 2 quarters for a single sid. Methods ------- make_expected_out() --> pd.DataFrame Returns the DataFrame that is expected as a result of running a Pipeline where estimates are requested for multiple quarters out. fill_expected_out(expected) Fills the expected DataFrame with data. Tests ------ test_multiple_qtrs_requested() Runs a Pipeline that calculate which estimates for multiple quarters out and checks that the returned columns contain data for the correct number of quarters out. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 2, TS_FIELD_NAME: [pd.Timestamp("2015-01-01"), pd.Timestamp("2015-01-06")], EVENT_DATE_FIELD_NAME: [ pd.Timestamp("2015-01-10"), pd.Timestamp("2015-01-20"), ], "estimate": [1.0, 2.0], FISCAL_QUARTER_FIELD_NAME: [1, 2], FISCAL_YEAR_FIELD_NAME: [2015, 2015], } ) @classmethod def init_class_fixtures(cls): super(WithEstimateMultipleQuarters, cls).init_class_fixtures() cls.expected_out = cls.make_expected_out() @classmethod def make_expected_out(cls): expected = pd.DataFrame( columns=[cls.columns[col] + "1" for col in cls.columns] + [cls.columns[col] + "2" for col in cls.columns], index=cls.trading_days, ) for (col, raw_name), suffix in itertools.product( cls.columns.items(), ("1", "2") ): expected_name = raw_name + suffix if col.dtype == datetime64ns_dtype: expected[expected_name] = pd.to_datetime(expected[expected_name]) else: expected[expected_name] = expected[expected_name].astype(col.dtype) cls.fill_expected_out(expected) return expected.reindex(cls.trading_days) def test_multiple_qtrs_requested(self): dataset1 = QuartersEstimates(1) dataset2 = QuartersEstimates(2) engine = self.make_engine() results = engine.run_pipeline( Pipeline( merge( [ {c.name + "1": c.latest for c in dataset1.columns}, {c.name + "2": c.latest for c in dataset2.columns}, ] ) ), start_date=self.trading_days[0], end_date=self.trading_days[-1], ) q1_columns = [col.name + "1" for col in self.columns] q2_columns = [col.name + "2" for col in self.columns] # We now expect a column for 1 quarter out and a column for 2 # quarters out for each of the dataset columns. assert_equal( sorted(np.array(q1_columns + q2_columns)), sorted(results.columns.values) ) assert_equal( self.expected_out.sort_index(axis=1), results.xs(0, level=1).sort_index(axis=1), ) class NextEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return NextEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp( "2015-01-11", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[0] expected.loc[ pd.Timestamp("2015-01-11", tz="UTC") : pd.Timestamp( "2015-01-20", tz="UTC" ), raw_name + "1", ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out # We only have an estimate and event date for 2 quarters out before # Q1's event happens; after Q1's event, we know 1 Q out but not 2 Qs # out. for col_name in ["estimate", "event_date"]: expected.loc[ pd.Timestamp("2015-01-06", tz="UTC") : pd.Timestamp( "2015-01-10", tz="UTC" ), col_name + "2", ] = cls.events[col_name].iloc[1] # But we know what FQ and FY we'd need in both Q1 and Q2 # because we know which FQ is next and can calculate from there expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-09", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 2 expected.loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_QUARTER_FIELD_NAME + "2", ] = 3 expected.loc[ pd.Timestamp("2015-01-01", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC"), FISCAL_YEAR_FIELD_NAME + "2", ] = 2015 return expected class PreviousEstimateMultipleQuarters(WithEstimateMultipleQuarters, ZiplineTestCase): @classmethod def make_loader(cls, events, columns): return PreviousEarningsEstimatesLoader(events, columns) @classmethod def fill_expected_out(cls, expected): # Fill columns for 1 Q out for raw_name in cls.columns.values(): expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp( "2015-01-19", tz="UTC" ) ] = cls.events[raw_name].iloc[0] expected[raw_name + "1"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[raw_name].iloc[1] # Fill columns for 2 Q out for col_name in ["estimate", "event_date"]: expected[col_name + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = cls.events[col_name].iloc[0] expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 4 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-12", tz="UTC") : pd.Timestamp("2015-01-20", tz="UTC") ] = 2014 expected[FISCAL_QUARTER_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 1 expected[FISCAL_YEAR_FIELD_NAME + "2"].loc[ pd.Timestamp("2015-01-20", tz="UTC") : ] = 2015 return expected class WithVaryingNumEstimates(WithEstimates): """ ZiplineTestCase mixin providing fixtures and a test to ensure that we have the correct overwrites when the event date changes. We want to make sure that if we have a quarter with an event date that gets pushed back, we don't start overwriting for the next quarter early. Likewise, if we have a quarter with an event date that gets pushed forward, we want to make sure that we start applying adjustments at the appropriate, earlier date, rather than the later date. Methods ------- assert_compute() Defines how to determine that results computed for the `SomeFactor` factor are correct. Tests ----- test_windows_with_varying_num_estimates() Tests that we create the correct overwrites from 2015-01-13 to 2015-01-14 regardless of how event dates were updated for each quarter for each sid. """ @classmethod def make_events(cls): return pd.DataFrame( { SID_FIELD_NAME: [0] * 3 + [1] * 3, TS_FIELD_NAME: [ pd.Timestamp("2015-01-09"), pd.Timestamp("2015-01-12"), pd.Timestamp("2015-01-13"), ] * 2, EVENT_DATE_FIELD_NAME: [
pd.Timestamp("2015-01-12")
pandas.Timestamp
from datetime import ( datetime, timedelta, ) from importlib import reload import string import sys import numpy as np import pytest from pandas._libs.tslibs import iNaT import pandas.util._test_decorators as td from pandas import ( NA, Categorical, CategoricalDtype, Index, Interval, NaT, Series, Timedelta, Timestamp, cut, date_range, ) import pandas._testing as tm class TestAstypeAPI: def test_arg_for_errors_in_astype(self): # see GH#14878 ser = Series([1, 2, 3]) msg = ( r"Expected value of kwarg 'errors' to be one of \['raise', " r"'ignore'\]\. Supplied value is 'False'" ) with pytest.raises(ValueError, match=msg): ser.astype(np.float64, errors=False) ser.astype(np.int8, errors="raise") @pytest.mark.parametrize("dtype_class", [dict, Series]) def test_astype_dict_like(self, dtype_class): # see GH#7271 ser = Series(range(0, 10, 2), name="abc") dt1 = dtype_class({"abc": str}) result = ser.astype(dt1) expected = Series(["0", "2", "4", "6", "8"], name="abc") tm.assert_series_equal(result, expected) dt2 = dtype_class({"abc": "float64"}) result = ser.astype(dt2) expected = Series([0.0, 2.0, 4.0, 6.0, 8.0], dtype="float64", name="abc") tm.assert_series_equal(result, expected) dt3 = dtype_class({"abc": str, "def": str}) msg = ( "Only the Series name can be used for the key in Series dtype " r"mappings\." ) with pytest.raises(KeyError, match=msg): ser.astype(dt3) dt4 = dtype_class({0: str}) with pytest.raises(KeyError, match=msg): ser.astype(dt4) # GH#16717 # if dtypes provided is empty, it should error if dtype_class is Series: dt5 = dtype_class({}, dtype=object) else: dt5 = dtype_class({}) with pytest.raises(KeyError, match=msg): ser.astype(dt5) class TestAstype: @pytest.mark.parametrize("dtype", np.typecodes["All"]) def test_astype_empty_constructor_equality(self, dtype): # see GH#15524 if dtype not in ( "S", "V", # poor support (if any) currently "M", "m", # Generic timestamps raise a ValueError. Already tested. ): init_empty = Series([], dtype=dtype) with tm.assert_produces_warning(DeprecationWarning): as_type_empty = Series([]).astype(dtype) tm.assert_series_equal(init_empty, as_type_empty) @pytest.mark.parametrize("dtype", [str, np.str_]) @pytest.mark.parametrize( "series", [ Series([string.digits * 10, tm.rands(63), tm.rands(64), tm.rands(1000)]), Series([string.digits * 10, tm.rands(63), tm.rands(64), np.nan, 1.0]), ], ) def test_astype_str_map(self, dtype, series): # see GH#4405 result = series.astype(dtype) expected = series.map(str) tm.assert_series_equal(result, expected) def test_astype_float_to_period(self): result = Series([np.nan]).astype("period[D]") expected = Series([NaT], dtype="period[D]") tm.assert_series_equal(result, expected) def test_astype_no_pandas_dtype(self): # https://github.com/pandas-dev/pandas/pull/24866 ser = Series([1, 2], dtype="int64") # Don't have PandasDtype in the public API, so we use `.array.dtype`, # which is a PandasDtype. result = ser.astype(ser.array.dtype) tm.assert_series_equal(result, ser) @pytest.mark.parametrize("dtype", [np.datetime64, np.timedelta64]) def test_astype_generic_timestamp_no_frequency(self, dtype, request): # see GH#15524, GH#15987 data = [1] s = Series(data) if np.dtype(dtype).name not in ["timedelta64", "datetime64"]: mark = pytest.mark.xfail(reason="GH#33890 Is assigned ns unit") request.node.add_marker(mark) msg = ( fr"The '{dtype.__name__}' dtype has no unit\. " fr"Please pass in '{dtype.__name__}\[ns\]' instead." ) with pytest.raises(ValueError, match=msg): s.astype(dtype) def test_astype_dt64_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti = date_range("2012-01-01", periods=3) result = Series(dti).astype(str) expected = Series(["2012-01-01", "2012-01-02", "2012-01-03"], dtype=object) tm.assert_series_equal(result, expected) def test_astype_dt64tz_to_str(self): # GH#10442 : testing astype(str) is correct for Series/DatetimeIndex dti_tz = date_range("2012-01-01", periods=3, tz="US/Eastern") result = Series(dti_tz).astype(str) expected = Series( [ "2012-01-01 00:00:00-05:00", "2012-01-02 00:00:00-05:00", "2012-01-03 00:00:00-05:00", ], dtype=object, ) tm.assert_series_equal(result, expected) def test_astype_datetime(self): s = Series(iNaT, dtype="M8[ns]", index=range(5)) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0)]) s = s.astype("O") assert s.dtype == np.object_ s = Series([datetime(2001, 1, 2, 0, 0) for i in range(3)]) s[1] = np.nan assert s.dtype == "M8[ns]" s = s.astype("O") assert s.dtype == np.object_ def test_astype_datetime64tz(self): s = Series(date_range("20130101", periods=3, tz="US/Eastern")) # astype result = s.astype(object) expected = Series(s.astype(object), dtype=object) tm.assert_series_equal(result, expected) result =
Series(s.values)
pandas.Series
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with tm.assertRaises(ValueError): self.panel['ItemE'] = lp # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex(index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = True self.assertEqual(self.panel['ItemG'].values.dtype, np.int64) self.assertEqual(self.panel['ItemE'].values.dtype, np.bool_) # object dtype self.panel['ItemQ'] = 'foo' self.assertEqual(self.panel['ItemQ'].values.dtype, np.object_) # boolean dtype self.panel['ItemP'] = self.panel['ItemA'] > 0 self.assertEqual(self.panel['ItemP'].values.dtype, np.bool_) self.assertRaises(TypeError, self.panel.__setitem__, 'foo', self.panel.ix[['ItemP']]) # bad shape p = Panel(np.random.randn(4, 3, 2)) with tm.assertRaisesRegexp(ValueError, "shape of value must be \(3, 2\), " "shape of given object was \(4, 2\)"): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): from pandas import date_range, datetools timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=datetools.MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notnull(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notnull(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_major_xs(self): ref = self.panel['ItemA'] idx = self.panel.major_axis[5] xs = self.panel.major_xs(idx) result = xs['ItemA'] assert_series_equal(result, ref.xs(idx), check_names=False) self.assertEqual(result.name, 'ItemA') # not contained idx = self.panel.major_axis[0] - bday self.assertRaises(Exception, self.panel.major_xs, idx) def test_major_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.major_xs(self.panel.major_axis[0]) self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_minor_xs(self): ref = self.panel['ItemA'] idx = self.panel.minor_axis[1] xs = self.panel.minor_xs(idx) assert_series_equal(xs['ItemA'], ref[idx], check_names=False) # not contained self.assertRaises(Exception, self.panel.minor_xs, 'E') def test_minor_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.minor_xs('D') self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_xs(self): itemA = self.panel.xs('ItemA', axis=0) expected = self.panel['ItemA'] assert_frame_equal(itemA, expected) # get a view by default itemA_view = self.panel.xs('ItemA', axis=0) itemA_view.values[:] = np.nan self.assertTrue(np.isnan(self.panel['ItemA'].values).all()) # mixed-type yields a copy self.panel['strings'] = 'foo' result = self.panel.xs('D', axis=2) self.assertIsNotNone(result.is_copy) def test_getitem_fancy_labels(self): p = self.panel items = p.items[[1, 0]] dates = p.major_axis[::2] cols = ['D', 'C', 'F'] # all 3 specified assert_panel_equal(p.ix[items, dates, cols], p.reindex(items=items, major=dates, minor=cols)) # 2 specified assert_panel_equal(p.ix[:, dates, cols], p.reindex(major=dates, minor=cols)) assert_panel_equal(p.ix[items, :, cols], p.reindex(items=items, minor=cols)) assert_panel_equal(p.ix[items, dates, :], p.reindex(items=items, major=dates)) # only 1 assert_panel_equal(p.ix[items, :, :], p.reindex(items=items)) assert_panel_equal(p.ix[:, dates, :], p.reindex(major=dates)) assert_panel_equal(p.ix[:, :, cols], p.reindex(minor=cols)) def test_getitem_fancy_slice(self): pass def test_getitem_fancy_ints(self): p = self.panel # #1603 result = p.ix[:, -1, :] expected = p.ix[:, p.major_axis[-1], :] assert_frame_equal(result, expected) def test_getitem_fancy_xs(self): p = self.panel item = 'ItemB' date = p.major_axis[5] col = 'C' # get DataFrame # item assert_frame_equal(p.ix[item], p[item]) assert_frame_equal(p.ix[item, :], p[item]) assert_frame_equal(p.ix[item, :, :], p[item]) # major axis, axis=1 assert_frame_equal(p.ix[:, date], p.major_xs(date)) assert_frame_equal(p.ix[:, date, :], p.major_xs(date)) # minor axis, axis=2 assert_frame_equal(p.ix[:, :, 'C'], p.minor_xs('C')) # get Series assert_series_equal(p.ix[item, date], p[item].ix[date]) assert_series_equal(p.ix[item, date, :], p[item].ix[date]) assert_series_equal(p.ix[item, :, col], p[item][col]) assert_series_equal(p.ix[:, date, col], p.major_xs(date).ix[col]) def test_getitem_fancy_xs_check_view(self): item = 'ItemB' date = self.panel.major_axis[5] # make sure it's always a view NS = slice(None, None) # DataFrames comp = assert_frame_equal self._check_view(item, comp) self._check_view((item, NS), comp) self._check_view((item, NS, NS), comp) self._check_view((NS, date), comp) self._check_view((NS, date, NS), comp) self._check_view((NS, NS, 'C'), comp) # Series comp = assert_series_equal self._check_view((item, date), comp) self._check_view((item, date, NS), comp) self._check_view((item, NS, 'C'), comp) self._check_view((NS, date, 'C'), comp) def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.ix[:, 22, [111, 333]] = b assert_frame_equal(a.ix[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.ix[0, :, 0] = b assert_series_equal(df.ix[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.ix[:, 0, 0] = b assert_series_equal(df.ix[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.ix[0, 0, :] = b assert_series_equal(df.ix[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): p_orig = tm.makePanel() df = p_orig.ix[0].copy() assert_frame_equal(p_orig['ItemA'], df) p = p_orig.copy() p.ix[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA', :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0, [0, 1, 3, 5], -2:] = df out = p.ix[0, [0, 1, 3, 5], -2:] assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]]) # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def _check_view(self, indexer, comp): cp = self.panel.copy() obj = cp.ix[indexer] obj.values[:] = 0 self.assertTrue((obj.values == 0).all()) comp(cp.ix[indexer].reindex_like(obj), obj) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]}) assert_frame_equal(result, expected) def test_neg(self): # what to do? assert_panel_equal(-self.panel, -1 * self.panel) def test_invert(self): assert_panel_equal(-(self.panel < 0), ~(self.panel < 0)) def test_comparisons(self): p1 = tm.makePanel() p2 = tm.makePanel() tp = p1.reindex(items=p1.items + ['foo']) df = p1[p1.items[0]] def test_comp(func): # versus same index result = func(p1, p2) self.assert_numpy_array_equal(result.values, func(p1.values, p2.values)) # versus non-indexed same objs self.assertRaises(Exception, func, p1, tp) # versus different objs self.assertRaises(Exception, func, p1, df) # versus scalar result3 = func(self.panel, 0) self.assert_numpy_array_equal(result3.values, func(self.panel.values, 0)) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis"): self.panel.get_value('a') def test_set_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: self.panel.set_value(item, mjr, mnr, 1.) assert_almost_equal(self.panel[item][mnr][mjr], 1.) # resize res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5) tm.assertIsInstance(res, Panel) self.assertIsNot(res, self.panel) self.assertEqual(res.get_value('ItemE', 'foo', 'bar'), 1.5) res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5) self.assertTrue(com.is_float_dtype(res3['ItemE'].values)) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis" " plus the value provided"): self.panel.set_value('a') _panel = tm.makePanel() tm.add_nans(_panel) class TestPanel(tm.TestCase, PanelTests, CheckIndexing, SafeForLongAndSparse, SafeForSparse): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def setUp(self): self.panel = _panel.copy() self.panel.major_axis.name = None self.panel.minor_axis.name = None self.panel.items.name = None def test_panel_warnings(self): with tm.assert_produces_warning(FutureWarning): shifted1 = self.panel.shift(lags=1) with tm.assert_produces_warning(False): shifted2 = self.panel.shift(periods=1) tm.assert_panel_equal(shifted1, shifted2) with tm.assert_produces_warning(False): shifted3 = self.panel.shift() tm.assert_panel_equal(shifted1, shifted3) def test_constructor(self): # with BlockManager wp = Panel(self.panel._data) self.assertIs(wp._data, self.panel._data) wp = Panel(self.panel._data, copy=True) self.assertIsNot(wp._data, self.panel._data) assert_panel_equal(wp, self.panel) # strings handled prop wp = Panel([[['foo', 'foo', 'foo', ], ['foo', 'foo', 'foo']]]) self.assertEqual(wp.values.dtype, np.object_) vals = self.panel.values # no copy wp = Panel(vals) self.assertIs(wp.values, vals) # copy wp = Panel(vals, copy=True) self.assertIsNot(wp.values, vals) # GH #8285, test when scalar data is used to construct a Panel # if dtype is not passed, it should be inferred value_and_dtype = [(1, 'int64'), (3.14, 'float64'), ('foo', np.object_)] for (val, dtype) in value_and_dtype: wp = Panel(val, items=range(2), major_axis=range(3), minor_axis=range(4)) vals = np.empty((2, 3, 4), dtype=dtype) vals.fill(val) assert_panel_equal(wp, Panel(vals, dtype=dtype)) # test the case when dtype is passed wp = Panel(1, items=range(2), major_axis=range(3), minor_axis=range(4), dtype='float32') vals = np.empty((2, 3, 4), dtype='float32') vals.fill(1) assert_panel_equal(wp, Panel(vals, dtype='float32')) def test_constructor_cast(self): zero_filled = self.panel.fillna(0) casted = Panel(zero_filled._data, dtype=int) casted2 = Panel(zero_filled.values, dtype=int) exp_values = zero_filled.values.astype(int) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) casted = Panel(zero_filled._data, dtype=np.int32) casted2 = Panel(zero_filled.values, dtype=np.int32) exp_values = zero_filled.values.astype(np.int32) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) # can't cast data = [[['foo', 'bar', 'baz']]] self.assertRaises(ValueError, Panel, data, dtype=float) def test_constructor_empty_panel(self): empty = Panel() self.assertEqual(len(empty.items), 0) self.assertEqual(len(empty.major_axis), 0) self.assertEqual(len(empty.minor_axis), 0) def test_constructor_observe_dtype(self): # GH #411 panel = Panel(items=lrange(3), major_axis=lrange(3), minor_axis=lrange(3), dtype='O') self.assertEqual(panel.values.dtype, np.object_) def test_constructor_dtypes(self): # GH #797 def _check_dtype(panel, dtype): for i in panel.items: self.assertEqual(panel[i].values.dtype.name, dtype) # only nan holding types allowed here for dtype in ['float64', 'float32', 'object']: panel = Panel(items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.random.randn(2, 10, 5), items=lrange( 2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: df1 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) df2 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype) _check_dtype(panel, dtype) def test_constructor_fails_with_not_3d_input(self): with tm.assertRaisesRegexp(ValueError, "The number of dimensions required is 3"): Panel(np.random.randn(10, 2)) def test_consolidate(self): self.assertTrue(self.panel._data.is_consolidated()) self.panel['foo'] = 1. self.assertFalse(self.panel._data.is_consolidated()) panel = self.panel.consolidate() self.assertTrue(panel._data.is_consolidated()) def test_ctor_dict(self): itema = self.panel['ItemA'] itemb = self.panel['ItemB'] d = {'A': itema, 'B': itemb[5:]} d2 = {'A': itema._series, 'B': itemb[5:]._series} d3 = {'A': None, 'B': DataFrame(itemb[5:]._series), 'C': DataFrame(itema._series)} wp = Panel.from_dict(d) wp2 = Panel.from_dict(d2) # nested Dict # TODO: unused? wp3 = Panel.from_dict(d3) # noqa self.assertTrue(wp.major_axis.equals(self.panel.major_axis)) assert_panel_equal(wp, wp2) # intersect wp = Panel.from_dict(d, intersect=True) self.assertTrue(wp.major_axis.equals(itemb.index[5:])) # use constructor assert_panel_equal(Panel(d), Panel.from_dict(d)) assert_panel_equal(Panel(d2), Panel.from_dict(d2)) assert_panel_equal(Panel(d3), Panel.from_dict(d3)) # a pathological case d4 = {'A': None, 'B': None} # TODO: unused? wp4 = Panel.from_dict(d4) # noqa assert_panel_equal(Panel(d4), Panel(items=['A', 'B'])) # cast dcasted = dict((k, v.reindex(wp.major_axis).fillna(0)) for k, v in compat.iteritems(d)) result = Panel(dcasted, dtype=int) expected = Panel(dict((k, v.astype(int)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) result = Panel(dcasted, dtype=np.int32) expected = Panel(dict((k, v.astype(np.int32)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) def test_constructor_dict_mixed(self): data = dict((k, v.values) for k, v in self.panel.iteritems()) result = Panel(data) exp_major = Index(np.arange(len(self.panel.major_axis))) self.assertTrue(result.major_axis.equals(exp_major)) result = Panel(data, items=self.panel.items, major_axis=self.panel.major_axis, minor_axis=self.panel.minor_axis) assert_panel_equal(result, self.panel) data['ItemC'] = self.panel['ItemC'] result = Panel(data) assert_panel_equal(result, self.panel) # corner, blow up data['ItemB'] = data['ItemB'][:-1] self.assertRaises(Exception, Panel, data) data['ItemB'] = self.panel['ItemB'].values[:, :-1] self.assertRaises(Exception, Panel, data) def test_ctor_orderedDict(self): keys = list(set(np.random.randint(0, 5000, 100)))[ :50] # unique random int keys d = OrderedDict([(k, mkdf(10, 5)) for k in keys]) p = Panel(d) self.assertTrue(list(p.items) == keys) p = Panel.from_dict(d) self.assertTrue(list(p.items) == keys) def test_constructor_resize(self): data = self.panel._data items = self.panel.items[:-1] major = self.panel.major_axis[:-1] minor = self.panel.minor_axis[:-1] result = Panel(data, items=items, major_axis=major, minor_axis=minor) expected = self.panel.reindex(items=items, major=major, minor=minor) assert_panel_equal(result, expected) result = Panel(data, items=items, major_axis=major) expected = self.panel.reindex(items=items, major=major) assert_panel_equal(result, expected) result = Panel(data, items=items) expected = self.panel.reindex(items=items) assert_panel_equal(result, expected) result = Panel(data, minor_axis=minor) expected = self.panel.reindex(minor=minor) assert_panel_equal(result, expected) def test_from_dict_mixed_orient(self): df = tm.makeDataFrame() df['foo'] = 'bar' data = {'k1': df, 'k2': df} panel = Panel.from_dict(data, orient='minor') self.assertEqual(panel['foo'].values.dtype, np.object_) self.assertEqual(panel['A'].values.dtype, np.float64) def test_constructor_error_msgs(self): def testit(): Panel(np.random.randn(3, 4, 5), lrange(4), lrange(5), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(4, 5, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(4), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 4, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(5), lrange(4)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 5, 4\)", testit) def test_conform(self): df = self.panel['ItemA'][:-5].filter(items=['A', 'B']) conformed = self.panel.conform(df) assert (conformed.index.equals(self.panel.major_axis)) assert (conformed.columns.equals(self.panel.minor_axis)) def test_convert_objects(self): # GH 4937 p = Panel(dict(A=dict(a=['1', '1.0']))) expected = Panel(dict(A=dict(a=[1, 1.0]))) result = p._convert(numeric=True, coerce=True) assert_panel_equal(result, expected) def test_dtypes(self): result = self.panel.dtypes expected = Series(np.dtype('float64'), index=self.panel.items) assert_series_equal(result, expected) def test_apply(self): # GH1148 # ufunc applied = self.panel.apply(np.sqrt) self.assertTrue(assert_almost_equal(applied.values, np.sqrt( self.panel.values))) # ufunc same shape result = self.panel.apply(lambda x: x * 2, axis='items') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='major_axis') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='minor_axis') expected = self.panel * 2 assert_panel_equal(result, expected) # reduction to DataFrame result = self.panel.apply(lambda x: x.dtype, axis='items') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.minor_axis) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='major_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.minor_axis, columns=self.panel.items) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='minor_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.items) assert_frame_equal(result, expected) # reductions via other dims expected = self.panel.sum(0) result = self.panel.apply(lambda x: x.sum(), axis='items') assert_frame_equal(result, expected) expected = self.panel.sum(1) result = self.panel.apply(lambda x: x.sum(), axis='major_axis') assert_frame_equal(result, expected) expected = self.panel.sum(2) result = self.panel.apply(lambda x: x.sum(), axis='minor_axis') assert_frame_equal(result, expected) # pass kwargs result = self.panel.apply(lambda x, y: x.sum() + y, axis='items', y=5) expected = self.panel.sum(0) + 5 assert_frame_equal(result, expected) def test_apply_slabs(self): # same shape as original result = self.panel.apply(lambda x: x * 2, axis=['items', 'major_axis']) expected = (self.panel * 2).transpose('minor_axis', 'major_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['items', 'minor_axis']) expected = (self.panel * 2).transpose('major_axis', 'minor_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'minor_axis']) expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'major_axis']) assert_panel_equal(result, expected) # reductions result = self.panel.apply(lambda x: x.sum(0), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(1).T assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.sum(1), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(0) assert_frame_equal(result, expected) # transforms f = lambda x: ((x.T - x.mean(1)) / x.std(1)).T # make sure that we don't trigger any warnings with tm.assert_produces_warning(False): result = self.panel.apply(f, axis=['items', 'major_axis']) expected = Panel(dict([(ax, f(self.panel.loc[:, :, ax])) for ax in self.panel.minor_axis])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['major_axis', 'minor_axis']) expected = Panel(dict([(ax, f(self.panel.loc[ax])) for ax in self.panel.items])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['minor_axis', 'items']) expected = Panel(dict([(ax, f(self.panel.loc[:, ax])) for ax in self.panel.major_axis])) assert_panel_equal(result, expected) # with multi-indexes # GH7469 index = MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ( 'two', 'a'), ('two', 'b')]) dfa = DataFrame(np.array(np.arange(12, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) dfb = DataFrame(np.array(np.arange(10, 22, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) p = Panel({'f': dfa, 'g': dfb}) result = p.apply(lambda x: x.sum(), axis=0) # on windows this will be in32 result = result.astype('int64') expected = p.sum(0) assert_frame_equal(result, expected) def test_apply_no_or_zero_ndim(self): # GH10332 self.panel = Panel(np.random.rand(5, 5, 5)) result_int = self.panel.apply(lambda df: 0, axis=[1, 2]) result_float = self.panel.apply(lambda df: 0.0, axis=[1, 2]) result_int64 = self.panel.apply(lambda df: np.int64(0), axis=[1, 2]) result_float64 = self.panel.apply(lambda df: np.float64(0.0), axis=[1, 2]) expected_int = expected_int64 = Series([0] * 5) expected_float = expected_float64 = Series([0.0] * 5) assert_series_equal(result_int, expected_int) assert_series_equal(result_int64, expected_int64) assert_series_equal(result_float, expected_float) assert_series_equal(result_float64, expected_float64) def test_reindex(self): ref = self.panel['ItemB'] # items result = self.panel.reindex(items=['ItemA', 'ItemB']) assert_frame_equal(result['ItemB'], ref) # major new_major = list(self.panel.major_axis[:10]) result = self.panel.reindex(major=new_major) assert_frame_equal(result['ItemB'], ref.reindex(index=new_major)) # raise exception put both major and major_axis self.assertRaises(Exception, self.panel.reindex, major_axis=new_major, major=new_major) # minor new_minor = list(self.panel.minor_axis[:2]) result = self.panel.reindex(minor=new_minor) assert_frame_equal(result['ItemB'], ref.reindex(columns=new_minor)) # this ok result = self.panel.reindex() assert_panel_equal(result, self.panel) self.assertFalse(result is self.panel) # with filling smaller_major = self.panel.major_axis[::5] smaller = self.panel.reindex(major=smaller_major) larger = smaller.reindex(major=self.panel.major_axis, method='pad') assert_frame_equal(larger.major_xs(self.panel.major_axis[1]), smaller.major_xs(smaller_major[0])) # don't necessarily copy result = self.panel.reindex(major=self.panel.major_axis, copy=False) assert_panel_equal(result, self.panel) self.assertTrue(result is self.panel) def test_reindex_multi(self): # with and without copy full reindexing result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) self.assertIs(result.items, self.panel.items) self.assertIs(result.major_axis, self.panel.major_axis) self.assertIs(result.minor_axis, self.panel.minor_axis) result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) assert_panel_equal(result, self.panel) # multi-axis indexing consistency # GH 5900 df = DataFrame(np.random.randn(4, 3)) p = Panel({'Item1': df}) expected = Panel({'Item1': df}) expected['Item2'] = np.nan items = ['Item1', 'Item2'] major_axis = np.arange(4) minor_axis = np.arange(3) results = [] results.append(p.reindex(items=items, major_axis=major_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, copy=False)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=False)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=False)) for i, r in enumerate(results): assert_panel_equal(expected, r) def test_reindex_like(self): # reindex_like smaller = self.panel.reindex(items=self.panel.items[:-1], major=self.panel.major_axis[:-1], minor=self.panel.minor_axis[:-1]) smaller_like = self.panel.reindex_like(smaller) assert_panel_equal(smaller, smaller_like) def test_take(self): # axis == 0 result = self.panel.take([2, 0, 1], axis=0) expected = self.panel.reindex(items=['ItemC', 'ItemA', 'ItemB']) assert_panel_equal(result, expected) # axis >= 1 result = self.panel.take([3, 0, 1, 2], axis=2) expected = self.panel.reindex(minor=['D', 'A', 'B', 'C']) assert_panel_equal(result, expected) # neg indicies ok expected = self.panel.reindex(minor=['D', 'D', 'B', 'C']) result = self.panel.take([3, -1, 1, 2], axis=2) assert_panel_equal(result, expected) self.assertRaises(Exception, self.panel.take, [4, 0, 1, 2], axis=2) def test_sort_index(self): import random ritems = list(self.panel.items) rmajor = list(self.panel.major_axis) rminor = list(self.panel.minor_axis) random.shuffle(ritems) random.shuffle(rmajor) random.shuffle(rminor) random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0) assert_panel_equal(sorted_panel, self.panel) # descending random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0, ascending=False) assert_panel_equal(sorted_panel, self.panel.reindex(items=self.panel.items[::-1])) random_order = self.panel.reindex(major=rmajor) sorted_panel = random_order.sort_index(axis=1) assert_panel_equal(sorted_panel, self.panel) random_order = self.panel.reindex(minor=rminor) sorted_panel = random_order.sort_index(axis=2) assert_panel_equal(sorted_panel, self.panel) def test_fillna(self): filled = self.panel.fillna(0) self.assertTrue(np.isfinite(filled.values).all()) filled = self.panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], self.panel['ItemA'].fillna(method='backfill')) panel = self.panel.copy() panel['str'] = 'foo' filled = panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], panel['ItemA'].fillna(method='backfill')) empty = self.panel.reindex(items=[]) filled = empty.fillna(0) assert_panel_equal(filled, empty) self.assertRaises(ValueError, self.panel.fillna) self.assertRaises(ValueError, self.panel.fillna, 5, method='ffill') self.assertRaises(TypeError, self.panel.fillna, [1, 2]) self.assertRaises(TypeError, self.panel.fillna, (1, 2)) # limit not implemented when only value is specified p = Panel(np.random.randn(3, 4, 5)) p.iloc[0:2, 0:2, 0:2] = np.nan self.assertRaises(NotImplementedError, lambda: p.fillna(999, limit=1)) def test_ffill_bfill(self): assert_panel_equal(self.panel.ffill(), self.panel.fillna(method='ffill')) assert_panel_equal(self.panel.bfill(), self.panel.fillna(method='bfill')) def test_truncate_fillna_bug(self): # #1823 result = self.panel.truncate(before=None, after=None, axis='items') # it works! result.fillna(value=0.0) def test_swapaxes(self): result = self.panel.swapaxes('items', 'minor') self.assertIs(result.items, self.panel.minor_axis) result = self.panel.swapaxes('items', 'major') self.assertIs(result.items, self.panel.major_axis) result = self.panel.swapaxes('major', 'minor') self.assertIs(result.major_axis, self.panel.minor_axis) panel = self.panel.copy() result = panel.swapaxes('major', 'minor') panel.values[0, 0, 1] = np.nan expected = panel.swapaxes('major', 'minor') assert_panel_equal(result, expected) # this should also work result = self.panel.swapaxes(0, 1) self.assertIs(result.items, self.panel.major_axis) # this works, but return a copy result = self.panel.swapaxes('items', 'items') assert_panel_equal(self.panel, result) self.assertNotEqual(id(self.panel), id(result)) def test_transpose(self): result = self.panel.transpose('minor', 'major', 'items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # test kwargs result = self.panel.transpose(items='minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # text mixture of args result = self.panel.transpose('minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # duplicate axes with tm.assertRaisesRegexp(TypeError, 'not enough/duplicate arguments'): self.panel.transpose('minor', maj='major', minor='items') with tm.assertRaisesRegexp(ValueError, 'repeated axis in transpose'): self.panel.transpose('minor', 'major', major='minor', minor='items') result = self.panel.transpose(2, 1, 0) assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'items', 'major') expected = self.panel.swapaxes('items', 'minor') expected = expected.swapaxes('major', 'minor') assert_panel_equal(result, expected) result = self.panel.transpose(2, 0, 1) assert_panel_equal(result, expected) self.assertRaises(ValueError, self.panel.transpose, 0, 0, 1) def test_transpose_copy(self): panel = self.panel.copy() result = panel.transpose(2, 0, 1, copy=True) expected = panel.swapaxes('items', 'minor') expected = expected.swapaxes('major', 'minor') assert_panel_equal(result, expected) panel.values[0, 1, 1] = np.nan self.assertTrue(notnull(result.values[1, 0, 1])) @ignore_sparse_panel_future_warning def test_to_frame(self): # filtered filtered = self.panel.to_frame() expected = self.panel.to_frame().dropna(how='any') assert_frame_equal(filtered, expected) # unfiltered unfiltered = self.panel.to_frame(filter_observations=False) assert_panel_equal(unfiltered.to_panel(), self.panel) # names self.assertEqual(unfiltered.index.names, ('major', 'minor')) # unsorted, round trip df = self.panel.to_frame(filter_observations=False) unsorted = df.take(np.random.permutation(len(df))) pan = unsorted.to_panel() assert_panel_equal(pan, self.panel) # preserve original index names df = DataFrame(np.random.randn(6, 2), index=[['a', 'a', 'b', 'b', 'c', 'c'], [0, 1, 0, 1, 0, 1]], columns=['one', 'two']) df.index.names = ['foo', 'bar'] df.columns.name = 'baz' rdf = df.to_panel().to_frame() self.assertEqual(rdf.index.names, df.index.names) self.assertEqual(rdf.columns.names, df.columns.names) def test_to_frame_mixed(self): panel = self.panel.fillna(0) panel['str'] = 'foo' panel['bool'] = panel['ItemA'] > 0 lp = panel.to_frame() wp = lp.to_panel() self.assertEqual(wp['bool'].values.dtype, np.bool_) # Previously, this was mutating the underlying index and changing its # name assert_frame_equal(wp['bool'], panel['bool'], check_names=False) # GH 8704 # with categorical df = panel.to_frame() df['category'] = df['str'].astype('category') # to_panel # TODO: this converts back to object p = df.to_panel() expected = panel.copy() expected['category'] = 'foo' assert_panel_equal(p, expected) def test_to_frame_multi_major(self): idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) expected_idx = MultiIndex.from_tuples( [ (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (2, 'two', 'A'), (2, 'two', 'B'), (2, 'two', 'C') ], names=[None, None, 'minor']) expected = DataFrame({'i1': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1], 'i2': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1]}, index=expected_idx) result = wp.to_frame() assert_frame_equal(result, expected) wp.iloc[0, 0].iloc[0] = np.nan # BUG on setting. GH #5773 result = wp.to_frame() assert_frame_equal(result, expected[1:]) idx = MultiIndex.from_tuples([(1, 'two'), (1, 'one'), (2, 'one'), ( np.nan, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) ex_idx = MultiIndex.from_tuples([(1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (np.nan, 'two', 'A'), (np.nan, 'two', 'B'), (np.nan, 'two', 'C')], names=[None, None, 'minor']) expected.index = ex_idx result = wp.to_frame() assert_frame_equal(result, expected) def test_to_frame_multi_major_minor(self): cols = MultiIndex(levels=[['C_A', 'C_B'], ['C_1', 'C_2']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two'), (3, 'three'), (4, 'four')]) df = DataFrame([[1, 2, 11, 12], [3, 4, 13, 14], ['a', 'b', 'w', 'x'], ['c', 'd', 'y', 'z'], [-1, -2, -3, -4], [-5, -6, -7, -8]], columns=cols, index=idx) wp = Panel({'i1': df, 'i2': df}) exp_idx = MultiIndex.from_tuples( [(1, 'one', 'C_A', 'C_1'), (1, 'one', 'C_A', 'C_2'), (1, 'one', 'C_B', 'C_1'), (1, 'one', 'C_B', 'C_2'), (1, 'two', 'C_A', 'C_1'), (1, 'two', 'C_A', 'C_2'), (1, 'two', 'C_B', 'C_1'), (1, 'two', 'C_B', 'C_2'), (2, 'one', 'C_A', 'C_1'), (2, 'one', 'C_A', 'C_2'), (2, 'one', 'C_B', 'C_1'), (2, 'one', 'C_B', 'C_2'), (2, 'two', 'C_A', 'C_1'), (2, 'two', 'C_A', 'C_2'), (2, 'two', 'C_B', 'C_1'), (2, 'two', 'C_B', 'C_2'), (3, 'three', 'C_A', 'C_1'), (3, 'three', 'C_A', 'C_2'), (3, 'three', 'C_B', 'C_1'), (3, 'three', 'C_B', 'C_2'), (4, 'four', 'C_A', 'C_1'), (4, 'four', 'C_A', 'C_2'), (4, 'four', 'C_B', 'C_1'), (4, 'four', 'C_B', 'C_2')], names=[None, None, None, None]) exp_val = [[1, 1], [2, 2], [11, 11], [12, 12], [3, 3], [4, 4], [13, 13], [14, 14], ['a', 'a'], ['b', 'b'], ['w', 'w'], ['x', 'x'], ['c', 'c'], ['d', 'd'], ['y', 'y'], ['z', 'z'], [-1, -1], [-2, -2], [-3, -3], [-4, -4], [-5, -5], [-6, -6], [-7, -7], [-8, -8]] result = wp.to_frame() expected = DataFrame(exp_val, columns=['i1', 'i2'], index=exp_idx) assert_frame_equal(result, expected) def test_to_frame_multi_drop_level(self): idx = MultiIndex.from_tuples([(1, 'one'), (2, 'one'), (2, 'two')]) df = DataFrame({'A': [np.nan, 1, 2]}, index=idx) wp = Panel({'i1': df, 'i2': df}) result = wp.to_frame() exp_idx = MultiIndex.from_tuples([(2, 'one', 'A'), (2, 'two', 'A')], names=[None, None, 'minor']) expected = DataFrame({'i1': [1., 2], 'i2': [1., 2]}, index=exp_idx) assert_frame_equal(result, expected) def test_to_panel_na_handling(self): df = DataFrame(np.random.randint(0, 10, size=20).reshape((10, 2)), index=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 2, 3, 4, 5]]) panel = df.to_panel() self.assertTrue(isnull(panel[0].ix[1, [0, 1]]).all()) def test_to_panel_duplicates(self): # #2441 df = DataFrame({'a': [0, 0, 1], 'b': [1, 1, 1], 'c': [1, 2, 3]}) idf = df.set_index(['a', 'b']) assertRaisesRegexp(ValueError, 'non-uniquely indexed', idf.to_panel) def test_panel_dups(self): # GH 4960 # duplicates in an index # items data = np.random.randn(5, 100, 5) no_dup_panel = Panel(data, items=list("ABCDE")) panel = Panel(data, items=list("AACDE")) expected = no_dup_panel['A'] result = panel.iloc[0] assert_frame_equal(result, expected) expected = no_dup_panel['E'] result = panel.loc['E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[['A', 'B']] expected.items = ['A', 'A'] result = panel.loc['A'] assert_panel_equal(result, expected) # major data = np.random.randn(5, 5, 5) no_dup_panel = Panel(data, major_axis=list("ABCDE")) panel = Panel(data, major_axis=list("AACDE")) expected = no_dup_panel.loc[:, 'A'] result = panel.iloc[:, 0] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, 'E'] result = panel.loc[:, 'E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, ['A', 'B']] expected.major_axis = ['A', 'A'] result = panel.loc[:, 'A'] assert_panel_equal(result, expected) # minor data = np.random.randn(5, 100, 5) no_dup_panel = Panel(data, minor_axis=list("ABCDE")) panel = Panel(data, minor_axis=list("AACDE")) expected = no_dup_panel.loc[:, :, 'A'] result = panel.iloc[:, :, 0] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, :, 'E'] result = panel.loc[:, :, 'E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, :, ['A', 'B']] expected.minor_axis = ['A', 'A'] result = panel.loc[:, :, 'A'] assert_panel_equal(result, expected) def test_filter(self): pass def test_compound(self): compounded = self.panel.compound() assert_series_equal(compounded['ItemA'], (1 + self.panel['ItemA']).product(0) - 1, check_names=False) def test_shift(self): # major idx = self.panel.major_axis[0] idx_lag = self.panel.major_axis[1] shifted = self.panel.shift(1) assert_frame_equal(self.panel.major_xs(idx), shifted.major_xs(idx_lag)) # minor idx = self.panel.minor_axis[0] idx_lag = self.panel.minor_axis[1] shifted = self.panel.shift(1, axis='minor') assert_frame_equal(self.panel.minor_xs(idx), shifted.minor_xs(idx_lag)) # items idx = self.panel.items[0] idx_lag = self.panel.items[1] shifted = self.panel.shift(1, axis='items') assert_frame_equal(self.panel[idx], shifted[idx_lag]) # negative numbers, #2164 result = self.panel.shift(-1) expected = Panel(dict((i, f.shift(-1)[:-1]) for i, f in self.panel.iteritems())) assert_panel_equal(result, expected) # mixed dtypes #6959 data = [('item ' + ch, makeMixedDataFrame()) for ch in list('abcde')] data = dict(data) mixed_panel = Panel.from_dict(data, orient='minor') shifted = mixed_panel.shift(1) assert_series_equal(mixed_panel.dtypes, shifted.dtypes) def test_tshift(self): # PeriodIndex ps = tm.makePeriodPanel() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(unshifted, ps) shifted2 = ps.tshift(freq='B') assert_panel_equal(shifted, shifted2) shifted3 = ps.tshift(freq=bday) assert_panel_equal(shifted, shifted3) assertRaisesRegexp(ValueError, 'does not match', ps.tshift, freq='M') # DatetimeIndex panel = _panel shifted = panel.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(panel, unshifted) shifted2 = panel.tshift(freq=panel.major_axis.freq) assert_panel_equal(shifted, shifted2) inferred_ts = Panel(panel.values, items=panel.items, major_axis=Index(np.asarray(panel.major_axis)), minor_axis=panel.minor_axis) shifted = inferred_ts.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(shifted, panel.tshift(1)) assert_panel_equal(unshifted, inferred_ts) no_freq = panel.ix[:, [0, 5, 7], :] self.assertRaises(ValueError, no_freq.tshift) def test_pct_change(self): df1 = DataFrame({'c1': [1, 2, 5], 'c2': [3, 4, 6]}) df2 = df1 + 1 df3 = DataFrame({'c1': [3, 4, 7], 'c2': [5, 6, 8]}) wp = Panel({'i1': df1, 'i2': df2, 'i3': df3}) # major, 1 result = wp.pct_change() # axis='major' expected = Panel({'i1': df1.pct_change(), 'i2': df2.pct_change(), 'i3': df3.pct_change()}) assert_panel_equal(result, expected) result = wp.pct_change(axis=1) assert_panel_equal(result, expected) # major, 2 result = wp.pct_change(periods=2) expected = Panel({'i1': df1.pct_change(2), 'i2': df2.pct_change(2), 'i3': df3.pct_change(2)}) assert_panel_equal(result, expected) # minor, 1 result = wp.pct_change(axis='minor') expected = Panel({'i1': df1.pct_change(axis=1), 'i2': df2.pct_change(axis=1), 'i3': df3.pct_change(axis=1)}) assert_panel_equal(result, expected) result = wp.pct_change(axis=2) assert_panel_equal(result, expected) # minor, 2 result = wp.pct_change(periods=2, axis='minor') expected = Panel({'i1': df1.pct_change(periods=2, axis=1), 'i2': df2.pct_change(periods=2, axis=1), 'i3': df3.pct_change(periods=2, axis=1)}) assert_panel_equal(result, expected) # items, 1 result = wp.pct_change(axis='items') expected = Panel({'i1': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i2': DataFrame({'c1': [1, 0.5, .2], 'c2': [1. / 3, 0.25, 1. / 6]}), 'i3': DataFrame({'c1': [.5, 1. / 3, 1. / 6], 'c2': [.25, .2, 1. / 7]})}) assert_panel_equal(result, expected) result = wp.pct_change(axis=0) assert_panel_equal(result, expected) # items, 2 result = wp.pct_change(periods=2, axis='items') expected = Panel({'i1': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i2': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i3': DataFrame({'c1': [2, 1, .4], 'c2': [2. / 3, .5, 1. / 3]})}) assert_panel_equal(result, expected) def test_round(self): values = [[[-3.2, 2.2], [0, -4.8213], [3.123, 123.12], [-1566.213, 88.88], [-12, 94.5]], [[-5.82, 3.5], [6.21, -73.272], [-9.087, 23.12], [272.212, -99.99], [23, -76.5]]] evalues = [[[float(np.around(i)) for i in j] for j in k] for k in values] p = Panel(values, items=['Item1', 'Item2'], major_axis=pd.date_range('1/1/2000', periods=5), minor_axis=['A', 'B']) expected = Panel(evalues, items=['Item1', 'Item2'], major_axis=pd.date_range('1/1/2000', periods=5), minor_axis=['A', 'B']) result = p.round() self.assert_panel_equal(expected, result) def test_multiindex_get(self): ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)], names=['first', 'second']) wp = Panel(np.random.random((4, 5, 5)), items=ind, major_axis=np.arange(5), minor_axis=np.arange(5)) f1 = wp['a'] f2 = wp.ix['a'] assert_panel_equal(f1, f2) self.assertTrue((f1.items == [1, 2]).all()) self.assertTrue((f2.items == [1, 2]).all()) ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)], names=['first', 'second']) def test_multiindex_blocks(self): ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)], names=['first', 'second']) wp = Panel(self.panel._data) wp.items = ind f1 = wp['a'] self.assertTrue((f1.items == [1, 2]).all()) f1 = wp[('b', 1)] self.assertTrue((f1.columns == ['A', 'B', 'C', 'D']).all()) def test_repr_empty(self): empty = Panel() repr(empty) def test_rename(self): mapper = {'ItemA': 'foo', 'ItemB': 'bar', 'ItemC': 'baz'} renamed = self.panel.rename_axis(mapper, axis=0) exp = Index(['foo', 'bar', 'baz']) self.assertTrue(renamed.items.equals(exp)) renamed = self.panel.rename_axis(str.lower, axis=2) exp = Index(['a', 'b', 'c', 'd']) self.assertTrue(renamed.minor_axis.equals(exp)) # don't copy renamed_nocopy = self.panel.rename_axis(mapper, axis=0, copy=False) renamed_nocopy['foo'] = 3. self.assertTrue((self.panel['ItemA'].values == 3).all()) def test_get_attr(self): assert_frame_equal(self.panel['ItemA'], self.panel.ItemA) # specific cases from #3440 self.panel['a'] = self.panel['ItemA'] assert_frame_equal(self.panel['a'], self.panel.a) self.panel['i'] = self.panel['ItemA'] assert_frame_equal(self.panel['i'], self.panel.i) def test_from_frame_level1_unsorted(self): tuples = [('MSFT', 3), ('MSFT', 2), ('AAPL', 2), ('AAPL', 1), ('MSFT', 1)] midx = MultiIndex.from_tuples(tuples) df = DataFrame(np.random.rand(5, 4), index=midx) p = df.to_panel() assert_frame_equal(p.minor_xs(2), df.xs(2, level=1).sort_index()) def test_to_excel(self): try: import xlwt # noqa import xlrd # noqa import openpyxl # noqa from pandas.io.excel import ExcelFile except ImportError: raise nose.SkipTest("need xlwt xlrd openpyxl") for ext in ['xls', 'xlsx']: path = '__tmp__.' + ext with ensure_clean(path) as path: self.panel.to_excel(path) try: reader = ExcelFile(path) except ImportError: raise nose.SkipTest("need xlwt xlrd openpyxl") for item, df in self.panel.iteritems(): recdf = reader.parse(str(item), index_col=0) assert_frame_equal(df, recdf) def test_to_excel_xlsxwriter(self): try: import xlrd # noqa import xlsxwriter # noqa from pandas.io.excel import ExcelFile except ImportError: raise nose.SkipTest("Requires xlrd and xlsxwriter. Skipping test.") path = '__tmp__.xlsx' with ensure_clean(path) as path: self.panel.to_excel(path, engine='xlsxwriter') try: reader = ExcelFile(path) except ImportError as e: raise nose.SkipTest("cannot write excel file: %s" % e) for item, df in self.panel.iteritems(): recdf = reader.parse(str(item), index_col=0) assert_frame_equal(df, recdf) def test_dropna(self): p = Panel(np.random.randn(4, 5, 6), major_axis=list('abcde')) p.ix[:, ['b', 'd'], 0] = np.nan result = p.dropna(axis=1) exp = p.ix[:, ['a', 'c', 'e'], :] assert_panel_equal(result, exp) inp = p.copy() inp.dropna(axis=1, inplace=True) assert_panel_equal(inp, exp) result = p.dropna(axis=1, how='all') assert_panel_equal(result, p) p.ix[:, ['b', 'd'], :] = np.nan result = p.dropna(axis=1, how='all') exp = p.ix[:, ['a', 'c', 'e'], :] assert_panel_equal(result, exp) p = Panel(np.random.randn(4, 5, 6), items=list('abcd')) p.ix[['b'], :, 0] = np.nan result = p.dropna() exp = p.ix[['a', 'c', 'd']] assert_panel_equal(result, exp) result = p.dropna(how='all') assert_panel_equal(result, p) p.ix['b'] = np.nan result = p.dropna(how='all') exp = p.ix[['a', 'c', 'd']] assert_panel_equal(result, exp) def test_drop(self): df = DataFrame({"A": [1, 2], "B": [3, 4]}) panel = Panel({"One": df, "Two": df}) def check_drop(drop_val, axis_number, aliases, expected): try: actual = panel.drop(drop_val, axis=axis_number) assert_panel_equal(actual, expected) for alias in aliases: actual = panel.drop(drop_val, axis=alias) assert_panel_equal(actual, expected) except AssertionError: com.pprint_thing("Failed with axis_number %d and aliases: %s" % (axis_number, aliases)) raise # Items expected = Panel({"One": df}) check_drop('Two', 0, ['items'], expected) self.assertRaises(ValueError, panel.drop, 'Three') # errors = 'ignore' dropped = panel.drop('Three', errors='ignore') assert_panel_equal(dropped, panel) dropped = panel.drop(['Two', 'Three'], errors='ignore') expected = Panel({"One": df}) assert_panel_equal(dropped, expected) # Major exp_df = DataFrame({"A": [2], "B": [4]}, index=[1]) expected = Panel({"One": exp_df, "Two": exp_df}) check_drop(0, 1, ['major_axis', 'major'], expected) exp_df = DataFrame({"A": [1], "B": [3]}, index=[0]) expected = Panel({"One": exp_df, "Two": exp_df}) check_drop([1], 1, ['major_axis', 'major'], expected) # Minor exp_df = df[['B']] expected = Panel({"One": exp_df, "Two": exp_df}) check_drop(["A"], 2, ['minor_axis', 'minor'], expected) exp_df = df[['A']] expected = Panel({"One": exp_df, "Two": exp_df}) check_drop("B", 2, ['minor_axis', 'minor'], expected) def test_update(self): pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) other = Panel([[[3.6, 2., np.nan], [np.nan, np.nan, 7]]], items=[1]) pan.update(other) expected = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[3.6, 2., 3], [1.5, np.nan, 7], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) assert_panel_equal(pan, expected) def test_update_from_dict(self): pan = Panel({'one': DataFrame([[1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]), 'two': DataFrame([[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]])}) other = {'two': DataFrame([[3.6, 2., np.nan], [np.nan, np.nan, 7]])} pan.update(other) expected = Panel( {'two': DataFrame([[3.6, 2., 3], [1.5, np.nan, 7], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]), 'one': DataFrame([[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]])}) assert_panel_equal(pan, expected) def test_update_nooverwrite(self): pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) other = Panel([[[3.6, 2., np.nan], [np.nan, np.nan, 7]]], items=[1]) pan.update(other, overwrite=False) expected = Panel([[[1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, 2., 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) assert_panel_equal(pan, expected) def test_update_filtered(self): pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) other = Panel([[[3.6, 2., np.nan], [np.nan, np.nan, 7]]], items=[1]) pan.update(other, filter_func=lambda x: x > 2) expected = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 3], [1.5, np.nan, 7], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) assert_panel_equal(pan, expected) def test_update_raise(self): pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) np.testing.assert_raises(Exception, pan.update, *(pan, ), **{'raise_conflict': True}) def test_all_any(self): self.assertTrue((self.panel.all(axis=0).values == nanall( self.panel, axis=0)).all()) self.assertTrue((self.panel.all(axis=1).values == nanall( self.panel, axis=1).T).all()) self.assertTrue((self.panel.all(axis=2).values == nanall( self.panel, axis=2).T).all()) self.assertTrue((self.panel.any(axis=0).values == nanany( self.panel, axis=0)).all()) self.assertTrue((self.panel.any(axis=1).values == nanany( self.panel, axis=1).T).all()) self.assertTrue((self.panel.any(axis=2).values == nanany( self.panel, axis=2).T).all()) def test_all_any_unhandled(self): self.assertRaises(NotImplementedError, self.panel.all, bool_only=True) self.assertRaises(NotImplementedError, self.panel.any, bool_only=True) class TestLongPanel(tm.TestCase): """ LongPanel no longer exists, but... """ _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) panel = tm.makePanel() tm.add_nans(panel) self.panel = panel.to_frame() self.unfiltered_panel = panel.to_frame(filter_observations=False) def test_ops_differently_indexed(self): # trying to set non-identically indexed panel wp = self.panel.to_panel() wp2 = wp.reindex(major=wp.major_axis[:-1]) lp2 = wp2.to_frame() result = self.panel + lp2 assert_frame_equal(result.reindex(lp2.index), lp2 * 2) # careful, mutation self.panel['foo'] = lp2['ItemA'] assert_series_equal(self.panel['foo'].reindex(lp2.index), lp2['ItemA'], check_names=False) def test_ops_scalar(self): result = self.panel.mul(2) expected = DataFrame.__mul__(self.panel, 2) assert_frame_equal(result, expected) def test_combineFrame(self): wp = self.panel.to_panel() result = self.panel.add(wp['ItemA'].stack(), axis=0) assert_frame_equal(result.to_panel()['ItemA'], wp['ItemA'] * 2) def test_combinePanel(self): wp = self.panel.to_panel() result = self.panel.add(self.panel) wide_result = result.to_panel() assert_frame_equal(wp['ItemA'] * 2, wide_result['ItemA']) # one item result = self.panel.add(self.panel.filter(['ItemA'])) def test_combine_scalar(self): result = self.panel.mul(2) expected = DataFrame(self.panel._data) * 2 assert_frame_equal(result, expected) def test_combine_series(self): s = self.panel['ItemA'][:10] result = self.panel.add(s, axis=0) expected = DataFrame.add(self.panel, s, axis=0) assert_frame_equal(result, expected) s = self.panel.ix[5] result = self.panel + s expected = DataFrame.add(self.panel, s, axis=1) assert_frame_equal(result, expected) def test_operators(self): wp = self.panel.to_panel() result = (self.panel + 1).to_panel() assert_frame_equal(wp['ItemA'] + 1, result['ItemA']) def test_arith_flex_panel(self): ops = ['add', 'sub', 'mul', 'div', 'truediv', 'pow', 'floordiv', 'mod'] if not compat.PY3: aliases = {} else: aliases = {'div': 'truediv'} self.panel = self.panel.to_panel() for n in [np.random.randint(-50, -1), np.random.randint(1, 50), 0]: for op in ops: alias = aliases.get(op, op) f = getattr(operator, alias) exp = f(self.panel, n) result = getattr(self.panel, op)(n) assert_panel_equal(result, exp, check_panel_type=True) # rops r_f = lambda x, y: f(y, x) exp = r_f(self.panel, n) result = getattr(self.panel, 'r' + op)(n) assert_panel_equal(result, exp) def test_sort(self): def is_sorted(arr): return (arr[1:] > arr[:-1]).any() sorted_minor = self.panel.sortlevel(level=1) self.assertTrue(is_sorted(sorted_minor.index.labels[1])) sorted_major = sorted_minor.sortlevel(level=0) self.assertTrue(is_sorted(sorted_major.index.labels[0])) def test_to_string(self): buf = StringIO() self.panel.to_string(buf) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.index.levels[0] start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end).to_panel() expected = self.panel.to_panel()['ItemA'].truncate(start, end) # TODO trucate drops index.names assert_frame_equal(trunced['ItemA'], expected, check_names=False) trunced = self.panel.truncate(before=start).to_panel() expected = self.panel.to_panel()['ItemA'].truncate(before=start) # TODO trucate drops index.names assert_frame_equal(trunced['ItemA'], expected, check_names=False) trunced = self.panel.truncate(after=end).to_panel() expected = self.panel.to_panel()['ItemA'].truncate(after=end) # TODO trucate drops index.names assert_frame_equal(trunced['ItemA'], expected, check_names=False) # truncate on dates that aren't in there wp = self.panel.to_panel() new_index = wp.major_axis[::5] wp2 = wp.reindex(major=new_index) lp2 = wp2.to_frame() lp_trunc = lp2.truncate(wp.major_axis[2], wp.major_axis[-2]) wp_trunc = wp2.truncate(wp.major_axis[2], wp.major_axis[-2]) assert_panel_equal(wp_trunc, lp_trunc.to_panel()) # throw proper exception self.assertRaises(Exception, lp2.truncate, wp.major_axis[-2], wp.major_axis[2]) def test_axis_dummies(self): from pandas.core.reshape import make_axis_dummies minor_dummies = make_axis_dummies(self.panel, 'minor') self.assertEqual(len(minor_dummies.columns), len(self.panel.index.levels[1])) major_dummies = make_axis_dummies(self.panel, 'major') self.assertEqual(len(major_dummies.columns), len(self.panel.index.levels[0])) mapping = {'A': 'one', 'B': 'one', 'C': 'two', 'D': 'two'} transformed = make_axis_dummies(self.panel, 'minor', transform=mapping.get) self.assertEqual(len(transformed.columns), 2) self.assert_numpy_array_equal(transformed.columns, ['one', 'two']) # TODO: test correctness def test_get_dummies(self): from pandas.core.reshape import get_dummies, make_axis_dummies self.panel['Label'] = self.panel.index.labels[1] minor_dummies = make_axis_dummies(self.panel, 'minor') dummies = get_dummies(self.panel['Label']) self.assert_numpy_array_equal(dummies.values, minor_dummies.values) def test_mean(self): means = self.panel.mean(level='minor') # test versus Panel version wide_means = self.panel.to_panel().mean('major') assert_frame_equal(means, wide_means) def test_sum(self): sums = self.panel.sum(level='minor') # test versus Panel version wide_sums = self.panel.to_panel().sum('major') assert_frame_equal(sums, wide_sums) def test_count(self): index = self.panel.index major_count = self.panel.count(level=0)['ItemA'] labels = index.labels[0] for i, idx in enumerate(index.levels[0]): self.assertEqual(major_count[i], (labels == i).sum()) minor_count = self.panel.count(level=1)['ItemA'] labels = index.labels[1] for i, idx in enumerate(index.levels[1]): self.assertEqual(minor_count[i], (labels == i).sum()) def test_join(self): lp1 = self.panel.filter(['ItemA', 'ItemB']) lp2 = self.panel.filter(['ItemC']) joined = lp1.join(lp2) self.assertEqual(len(joined.columns), 3) self.assertRaises(Exception, lp1.join, self.panel.filter(['ItemB', 'ItemC'])) def test_pivot(self): from pandas.core.reshape import _slow_pivot one, two, three = (np.array([1, 2, 3, 4, 5]), np.array(['a', 'b', 'c', 'd', 'e']), np.array([1, 2, 3, 5, 4.])) df = pivot(one, two, three) self.assertEqual(df['a'][1], 1) self.assertEqual(df['b'][2], 2) self.assertEqual(df['c'][3], 3) self.assertEqual(df['d'][4], 5) self.assertEqual(df['e'][5], 4) assert_frame_equal(df, _slow_pivot(one, two, three)) # weird overlap, TODO: test? a, b, c = (np.array([1, 2, 3, 4, 4]), np.array(['a', 'a', 'a', 'a', 'a']), np.array([1., 2., 3., 4., 5.])) self.assertRaises(Exception, pivot, a, b, c) # corner case, empty df = pivot(np.array([]), np.array([]), np.array([])) def test_monotonic(): pos = np.array([1, 2, 3, 5]) def _monotonic(arr): return not (arr[1:] < arr[:-1]).any() assert _monotonic(pos) neg = np.array([1, 2, 3, 4, 3]) assert not _monotonic(neg) neg2 = np.array([5, 1, 2, 3, 4, 5]) assert not _monotonic(neg2) def test_panel_index(): index = panelm.panel_index([1, 2, 3, 4], [1, 2, 3]) expected = MultiIndex.from_arrays([np.tile( [1, 2, 3, 4], 3), np.repeat( [1, 2, 3], 4)]) assert (index.equals(expected)) def test_import_warnings(): # GH8152 panel = Panel(np.random.rand(3, 3, 3)) with
assert_produces_warning()
pandas.util.testing.assert_produces_warning
#!/usr/bin/env python3 import re import glob from numpy import nan from os.path import isfile from pandas import DataFrame, read_pickle, concat from lib.yababay.corpus import Ethnical ethnical_corpus = Ethnical() ethnical_df = None re_filename = re.compile(r'.*\/([^\/]+.txt)$') CORPUS_DIR = '../assets/corpus' text_files = [re.match(re_filename, filename).group(1) for filename in glob.glob(f'{CORPUS_DIR}/*.txt')] for filename in text_files: pickle_filename = f'{CORPUS_DIR}/{filename.replace(".txt", "-ethnical.pkl")}' if isfile(pickle_filename): print('ok', filename) df = read_pickle(pickle_filename) df['filename'] = [filename.replace('.txt', '_count'), filename.replace('.txt', '_sents')] if ethnical_df is None: ethnical_df = df else: ethnical_df =
concat([ethnical_df, df])
pandas.concat
"""Tests for pylola""" import unittest import pandas as pd from pandas.testing import assert_frame_equal import pylola class TestRunLOLA(unittest.TestCase): """Tests for the run_lola functions.""" @classmethod def setUp(cls): cls.query1 = pd.read_csv( "./tests/test_files/query1.bed", sep="\t", header=None )[[0, 1, 2]].rename(columns={0: "chrom", 1: "start", 2: "end"}) cls.target1 =
pd.read_csv("./tests/test_files/target1.bed", sep="\t")
pandas.read_csv
# coding=utf-8 # pylint: disable-msg=E1101,W0612 from datetime import datetime, timedelta from numpy import nan import numpy as np import pandas as pd from pandas.types.common import is_integer, is_scalar from pandas import Index, Series, DataFrame, isnull, date_range from pandas.core.index import MultiIndex from pandas.core.indexing import IndexingError from pandas.tseries.index import Timestamp from pandas.tseries.offsets import BDay from pandas.tseries.tdi import Timedelta from pandas.compat import lrange, range from pandas import compat from pandas.util.testing import assert_series_equal, assert_almost_equal import pandas.util.testing as tm from pandas.tests.series.common import TestData JOIN_TYPES = ['inner', 'outer', 'left', 'right'] class TestSeriesIndexing(TestData, tm.TestCase): _multiprocess_can_split_ = True def test_get(self): # GH 6383 s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54])) result = s.get(25, 0) expected = 0 self.assertEqual(result, expected) s = Series(np.array([43, 48, 60, 48, 50, 51, 50, 45, 57, 48, 56, 45, 51, 39, 55, 43, 54, 52, 51, 54]), index=pd.Float64Index( [25.0, 36.0, 49.0, 64.0, 81.0, 100.0, 121.0, 144.0, 169.0, 196.0, 1225.0, 1296.0, 1369.0, 1444.0, 1521.0, 1600.0, 1681.0, 1764.0, 1849.0, 1936.0], dtype='object')) result = s.get(25, 0) expected = 43 self.assertEqual(result, expected) # GH 7407 # with a boolean accessor df = pd.DataFrame({'i': [0] * 3, 'b': [False] * 3}) vc = df.i.value_counts() result = vc.get(99, default='Missing') self.assertEqual(result, 'Missing') vc = df.b.value_counts() result = vc.get(False, default='Missing') self.assertEqual(result, 3) result = vc.get(True, default='Missing') self.assertEqual(result, 'Missing') def test_delitem(self): # GH 5542 # should delete the item inplace s = Series(lrange(5)) del s[0] expected = Series(lrange(1, 5), index=lrange(1, 5)) assert_series_equal(s, expected) del s[1] expected = Series(lrange(2, 5), index=lrange(2, 5)) assert_series_equal(s, expected) # empty s = Series() def f(): del s[0] self.assertRaises(KeyError, f) # only 1 left, del, add, del s = Series(1) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) s[0] = 1 assert_series_equal(s, Series(1)) del s[0] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='int64'))) # Index(dtype=object) s = Series(1, index=['a']) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) s['a'] = 1 assert_series_equal(s, Series(1, index=['a'])) del s['a'] assert_series_equal(s, Series(dtype='int64', index=Index( [], dtype='object'))) def test_getitem_setitem_ellipsis(self): s = Series(np.random.randn(10)) np.fix(s) result = s[...] assert_series_equal(result, s) s[...] = 5 self.assertTrue((result == 5).all()) def test_getitem_negative_out_of_bounds(self): s = Series(tm.rands_array(5, 10), index=tm.rands_array(10, 10)) self.assertRaises(IndexError, s.__getitem__, -11) self.assertRaises(IndexError, s.__setitem__, -11, 'foo') def test_pop(self): # GH 6600 df = DataFrame({'A': 0, 'B': np.arange(5, dtype='int64'), 'C': 0, }) k = df.iloc[4] result = k.pop('B') self.assertEqual(result, 4) expected = Series([0, 0], index=['A', 'C'], name=4) assert_series_equal(k, expected) def test_getitem_get(self): idx1 = self.series.index[5] idx2 = self.objSeries.index[5] self.assertEqual(self.series[idx1], self.series.get(idx1)) self.assertEqual(self.objSeries[idx2], self.objSeries.get(idx2)) self.assertEqual(self.series[idx1], self.series[5]) self.assertEqual(self.objSeries[idx2], self.objSeries[5]) self.assertEqual( self.series.get(-1), self.series.get(self.series.index[-1])) self.assertEqual(self.series[5], self.series.get(self.series.index[5])) # missing d = self.ts.index[0] - BDay() self.assertRaises(KeyError, self.ts.__getitem__, d) # None # GH 5652 for s in [Series(), Series(index=list('abc'))]: result = s.get(None) self.assertIsNone(result) def test_iget(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.irow(1) # 10711, deprecated with tm.assert_produces_warning(FutureWarning): s.iget_value(1) for i in range(len(s)): result = s.iloc[i] exp = s[s.index[i]] assert_almost_equal(result, exp) # pass a slice result = s.iloc[slice(1, 3)] expected = s.ix[2:4] assert_series_equal(result, expected) # test slice is a view result[:] = 0 self.assertTrue((s[1:3] == 0).all()) # list of integers result = s.iloc[[0, 2, 3, 4, 5]] expected = s.reindex(s.index[[0, 2, 3, 4, 5]]) assert_series_equal(result, expected) def test_iget_nonunique(self): s = Series([0, 1, 2], index=[0, 1, 0]) self.assertEqual(s.iloc[2], 2) def test_getitem_regression(self): s = Series(lrange(5), index=lrange(5)) result = s[lrange(5)] assert_series_equal(result, s) def test_getitem_setitem_slice_bug(self): s = Series(lrange(10), lrange(10)) result = s[-12:] assert_series_equal(result, s) result = s[-7:] assert_series_equal(result, s[3:]) result = s[:-12] assert_series_equal(result, s[:0]) s = Series(lrange(10), lrange(10)) s[-12:] = 0 self.assertTrue((s == 0).all()) s[:-12] = 5 self.assertTrue((s == 0).all()) def test_getitem_int64(self): idx = np.int64(5) self.assertEqual(self.ts[idx], self.ts[5]) def test_getitem_fancy(self): slice1 = self.series[[1, 2, 3]] slice2 = self.objSeries[[1, 2, 3]] self.assertEqual(self.series.index[2], slice1.index[1]) self.assertEqual(self.objSeries.index[2], slice2.index[1]) self.assertEqual(self.series[2], slice1[1]) self.assertEqual(self.objSeries[2], slice2[1]) def test_getitem_boolean(self): s = self.series mask = s > s.median() # passing list is OK result = s[list(mask)] expected = s[mask] assert_series_equal(result, expected) self.assert_index_equal(result.index, s.index[mask]) def test_getitem_boolean_empty(self): s = Series([], dtype=np.int64) s.index.name = 'index_name' s = s[s.isnull()] self.assertEqual(s.index.name, 'index_name') self.assertEqual(s.dtype, np.int64) # GH5877 # indexing with empty series s = Series(['A', 'B']) expected = Series(np.nan, index=['C'], dtype=object) result = s[Series(['C'], dtype=object)] assert_series_equal(result, expected) s = Series(['A', 'B']) expected = Series(dtype=object, index=Index([], dtype='int64')) result = s[Series([], dtype=object)] assert_series_equal(result, expected) # invalid because of the boolean indexer # that's empty or not-aligned def f(): s[Series([], dtype=bool)] self.assertRaises(IndexingError, f) def f(): s[Series([True], dtype=bool)] self.assertRaises(IndexingError, f) def test_getitem_generator(self): gen = (x > 0 for x in self.series) result = self.series[gen] result2 = self.series[iter(self.series > 0)] expected = self.series[self.series > 0] assert_series_equal(result, expected) assert_series_equal(result2, expected) def test_type_promotion(self): # GH12599 s = pd.Series() s["a"] = pd.Timestamp("2016-01-01") s["b"] = 3.0 s["c"] = "foo" expected = Series([pd.Timestamp("2016-01-01"), 3.0, "foo"], index=["a", "b", "c"]) assert_series_equal(s, expected) def test_getitem_boolean_object(self): # using column from DataFrame s = self.series mask = s > s.median() omask = mask.astype(object) # getitem result = s[omask] expected = s[mask] assert_series_equal(result, expected) # setitem s2 = s.copy() cop = s.copy() cop[omask] = 5 s2[mask] = 5 assert_series_equal(cop, s2) # nans raise exception omask[5:10] = np.nan self.assertRaises(Exception, s.__getitem__, omask) self.assertRaises(Exception, s.__setitem__, omask, 5) def test_getitem_setitem_boolean_corner(self): ts = self.ts mask_shifted = ts.shift(1, freq=BDay()) > ts.median() # these used to raise...?? self.assertRaises(Exception, ts.__getitem__, mask_shifted) self.assertRaises(Exception, ts.__setitem__, mask_shifted, 1) # ts[mask_shifted] # ts[mask_shifted] = 1 self.assertRaises(Exception, ts.ix.__getitem__, mask_shifted) self.assertRaises(Exception, ts.ix.__setitem__, mask_shifted, 1) # ts.ix[mask_shifted] # ts.ix[mask_shifted] = 2 def test_getitem_setitem_slice_integers(self): s = Series(np.random.randn(8), index=[2, 4, 6, 8, 10, 12, 14, 16]) result = s[:4] expected = s.reindex([2, 4, 6, 8]) assert_series_equal(result, expected) s[:4] = 0 self.assertTrue((s[:4] == 0).all()) self.assertTrue(not (s[4:] == 0).any()) def test_getitem_out_of_bounds(self): # don't segfault, GH #495 self.assertRaises(IndexError, self.ts.__getitem__, len(self.ts)) # GH #917 s = Series([]) self.assertRaises(IndexError, s.__getitem__, -1) def test_getitem_setitem_integers(self): # caused bug without test s = Series([1, 2, 3], ['a', 'b', 'c']) self.assertEqual(s.ix[0], s['a']) s.ix[0] = 5 self.assertAlmostEqual(s['a'], 5) def test_getitem_box_float64(self): value = self.ts[5] tm.assertIsInstance(value, np.float64) def test_getitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) self.assertRaises(KeyError, s.__getitem__, 1) self.assertRaises(KeyError, s.ix.__getitem__, 1) def test_getitem_unordered_dup(self): obj = Series(lrange(5), index=['c', 'a', 'a', 'b', 'b']) self.assertTrue(is_scalar(obj['c'])) self.assertEqual(obj['c'], 0) def test_getitem_dups_with_missing(self): # breaks reindex, so need to use .ix internally # GH 4246 s = Series([1, 2, 3, 4], ['foo', 'bar', 'foo', 'bah']) expected = s.ix[['foo', 'bar', 'bah', 'bam']] result = s[['foo', 'bar', 'bah', 'bam']] assert_series_equal(result, expected) def test_getitem_dups(self): s = Series(range(5), index=['A', 'A', 'B', 'C', 'C'], dtype=np.int64) expected = Series([3, 4], index=['C', 'C'], dtype=np.int64) result = s['C'] assert_series_equal(result, expected) def test_getitem_dataframe(self): rng = list(range(10)) s = pd.Series(10, index=rng) df = pd.DataFrame(rng, index=rng) self.assertRaises(TypeError, s.__getitem__, df > 5) def test_getitem_callable(self): # GH 12533 s = pd.Series(4, index=list('ABCD')) result = s[lambda x: 'A'] self.assertEqual(result, s.loc['A']) result = s[lambda x: ['A', 'B']] tm.assert_series_equal(result, s.loc[['A', 'B']]) result = s[lambda x: [True, False, True, True]] tm.assert_series_equal(result, s.iloc[[0, 2, 3]]) def test_setitem_ambiguous_keyerror(self): s = Series(lrange(10), index=lrange(0, 20, 2)) # equivalent of an append s2 = s.copy() s2[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) s2 = s.copy() s2.ix[1] = 5 expected = s.append(Series([5], index=[1])) assert_series_equal(s2, expected) def test_setitem_float_labels(self): # note labels are floats s = Series(['a', 'b', 'c'], index=[0, 0.5, 1]) tmp = s.copy() s.ix[1] = 'zoo' tmp.iloc[2] = 'zoo' assert_series_equal(s, tmp) def test_setitem_callable(self): # GH 12533 s = pd.Series([1, 2, 3, 4], index=list('ABCD')) s[lambda x: 'A'] = -1 tm.assert_series_equal(s, pd.Series([-1, 2, 3, 4], index=list('ABCD'))) def test_setitem_other_callable(self): # GH 13299 inc = lambda x: x + 1 s = pd.Series([1, 2, -1, 4]) s[s < 0] = inc expected = pd.Series([1, 2, inc, 4]) tm.assert_series_equal(s, expected) def test_slice(self): numSlice = self.series[10:20] numSliceEnd = self.series[-10:] objSlice = self.objSeries[10:20] self.assertNotIn(self.series.index[9], numSlice.index) self.assertNotIn(self.objSeries.index[9], objSlice.index) self.assertEqual(len(numSlice), len(numSlice.index)) self.assertEqual(self.series[numSlice.index[0]], numSlice[numSlice.index[0]]) self.assertEqual(numSlice.index[1], self.series.index[11]) self.assertTrue(tm.equalContents(numSliceEnd, np.array(self.series)[ -10:])) # test return view sl = self.series[10:20] sl[:] = 0 self.assertTrue((self.series[10:20] == 0).all()) def test_slice_can_reorder_not_uniquely_indexed(self): s = Series(1, index=['a', 'a', 'b', 'b', 'c']) s[::-1] # it works! def test_slice_float_get_set(self): self.assertRaises(TypeError, lambda: self.ts[4.0:10.0]) def f(): self.ts[4.0:10.0] = 0 self.assertRaises(TypeError, f) self.assertRaises(TypeError, self.ts.__getitem__, slice(4.5, 10.0)) self.assertRaises(TypeError, self.ts.__setitem__, slice(4.5, 10.0), 0) def test_slice_floats2(self): s = Series(np.random.rand(10), index=np.arange(10, 20, dtype=float)) self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) i = np.arange(10, 20, dtype=float) i[2] = 12.2 s.index = i self.assertEqual(len(s.ix[12.0:]), 8) self.assertEqual(len(s.ix[12.5:]), 7) def test_slice_float64(self): values = np.arange(10., 50., 2) index = Index(values) start, end = values[[5, 15]] s = Series(np.random.randn(20), index=index) result = s[start:end] expected = s.iloc[5:16] assert_series_equal(result, expected) result = s.loc[start:end] assert_series_equal(result, expected) df = DataFrame(np.random.randn(20, 3), index=index) result = df[start:end] expected = df.iloc[5:16] tm.assert_frame_equal(result, expected) result = df.loc[start:end] tm.assert_frame_equal(result, expected) def test_setitem(self): self.ts[self.ts.index[5]] = np.NaN self.ts[[1, 2, 17]] = np.NaN self.ts[6] = np.NaN self.assertTrue(np.isnan(self.ts[6])) self.assertTrue(np.isnan(self.ts[2])) self.ts[np.isnan(self.ts)] = 5 self.assertFalse(np.isnan(self.ts[2])) # caught this bug when writing tests series = Series(tm.makeIntIndex(20).astype(float), index=tm.makeIntIndex(20)) series[::2] = 0 self.assertTrue((series[::2] == 0).all()) # set item that's not contained s = self.series.copy() s['foobar'] = 1 app = Series([1], index=['foobar'], name='series') expected = self.series.append(app) assert_series_equal(s, expected) # Test for issue #10193 key = pd.Timestamp('2012-01-01') series = pd.Series() series[key] = 47 expected = pd.Series(47, [key]) assert_series_equal(series, expected) series = pd.Series([], pd.DatetimeIndex([], freq='D')) series[key] = 47 expected = pd.Series(47, pd.DatetimeIndex([key], freq='D')) assert_series_equal(series, expected) def test_setitem_dtypes(self): # change dtypes # GH 4463 expected = Series([np.nan, 2, 3]) s = Series([1, 2, 3]) s.iloc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s.loc[0] = np.nan assert_series_equal(s, expected) s = Series([1, 2, 3]) s[0] = np.nan assert_series_equal(s, expected) s = Series([False]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan])) s = Series([False, True]) s.loc[0] = np.nan assert_series_equal(s, Series([np.nan, 1.0])) def test_set_value(self): idx = self.ts.index[10] res = self.ts.set_value(idx, 0) self.assertIs(res, self.ts) self.assertEqual(self.ts[idx], 0) # equiv s = self.series.copy() res = s.set_value('foobar', 0) self.assertIs(res, s) self.assertEqual(res.index[-1], 'foobar') self.assertEqual(res['foobar'], 0) s = self.series.copy() s.loc['foobar'] = 0 self.assertEqual(s.index[-1], 'foobar') self.assertEqual(s['foobar'], 0) def test_setslice(self): sl = self.ts[5:20] self.assertEqual(len(sl), len(sl.index)) self.assertTrue(sl.index.is_unique) def test_basic_getitem_setitem_corner(self): # invalid tuples, e.g. self.ts[:, None] vs. self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] with tm.assertRaisesRegexp(ValueError, 'tuple-index'): self.ts[:, 2] = 2 # weird lists. [slice(0, 5)] will work but not two slices result = self.ts[[slice(None, 5)]] expected = self.ts[:5] assert_series_equal(result, expected) # OK self.assertRaises(Exception, self.ts.__getitem__, [5, slice(None, None)]) self.assertRaises(Exception, self.ts.__setitem__, [5, slice(None, None)], 2) def test_basic_getitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] result = self.ts[indices] expected = self.ts.reindex(indices) assert_series_equal(result, expected) result = self.ts[indices[0]:indices[2]] expected = self.ts.ix[indices[0]:indices[2]] assert_series_equal(result, expected) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 2, 5, 7, 8] arr_inds = np.array([0, 2, 5, 7, 8]) result = s[inds] expected = s.reindex(inds) assert_series_equal(result, expected) result = s[arr_inds] expected = s.reindex(arr_inds) assert_series_equal(result, expected) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) expected = Timestamp('2011-01-01', tz='US/Eastern') result = s.loc['a'] self.assertEqual(result, expected) result = s.iloc[0] self.assertEqual(result, expected) result = s['a'] self.assertEqual(result, expected) def test_basic_setitem_with_labels(self): indices = self.ts.index[[5, 10, 15]] cp = self.ts.copy() exp = self.ts.copy() cp[indices] = 0 exp.ix[indices] = 0 assert_series_equal(cp, exp) cp = self.ts.copy() exp = self.ts.copy() cp[indices[0]:indices[2]] = 0 exp.ix[indices[0]:indices[2]] = 0 assert_series_equal(cp, exp) # integer indexes, be careful s = Series(np.random.randn(10), index=lrange(0, 20, 2)) inds = [0, 4, 6] arr_inds = np.array([0, 4, 6]) cp = s.copy() exp = s.copy() s[inds] = 0 s.ix[inds] = 0 assert_series_equal(cp, exp) cp = s.copy() exp = s.copy() s[arr_inds] = 0 s.ix[arr_inds] = 0 assert_series_equal(cp, exp) inds_notfound = [0, 4, 5, 6] arr_inds_notfound = np.array([0, 4, 5, 6]) self.assertRaises(Exception, s.__setitem__, inds_notfound, 0) self.assertRaises(Exception, s.__setitem__, arr_inds_notfound, 0) # GH12089 # with tz for values s = Series(pd.date_range("2011-01-01", periods=3, tz="US/Eastern"), index=['a', 'b', 'c']) s2 = s.copy() expected = Timestamp('2011-01-03', tz='US/Eastern') s2.loc['a'] = expected result = s2.loc['a'] self.assertEqual(result, expected) s2 = s.copy() s2.iloc[0] = expected result = s2.iloc[0] self.assertEqual(result, expected) s2 = s.copy() s2['a'] = expected result = s2['a'] self.assertEqual(result, expected) def test_ix_getitem(self): inds = self.series.index[[3, 4, 7]] assert_series_equal(self.series.ix[inds], self.series.reindex(inds)) assert_series_equal(self.series.ix[5::2], self.series[5::2]) # slice with indices d1, d2 = self.ts.index[[5, 15]] result = self.ts.ix[d1:d2] expected = self.ts.truncate(d1, d2) assert_series_equal(result, expected) # boolean mask = self.series > self.series.median() assert_series_equal(self.series.ix[mask], self.series[mask]) # ask for index value self.assertEqual(self.ts.ix[d1], self.ts[d1]) self.assertEqual(self.ts.ix[d2], self.ts[d2]) def test_ix_getitem_not_monotonic(self): d1, d2 = self.ts.index[[5, 15]] ts2 = self.ts[::2][[1, 2, 0]] self.assertRaises(KeyError, ts2.ix.__getitem__, slice(d1, d2)) self.assertRaises(KeyError, ts2.ix.__setitem__, slice(d1, d2), 0) def test_ix_getitem_setitem_integer_slice_keyerrors(self): s = Series(np.random.randn(10), index=lrange(0, 20, 2)) # this is OK cp = s.copy() cp.ix[4:10] = 0 self.assertTrue((cp.ix[4:10] == 0).all()) # so is this cp = s.copy() cp.ix[3:11] = 0 self.assertTrue((cp.ix[3:11] == 0).values.all()) result = s.ix[4:10] result2 = s.ix[3:11] expected = s.reindex([4, 6, 8, 10]) assert_series_equal(result, expected) assert_series_equal(result2, expected) # non-monotonic, raise KeyError s2 = s.iloc[lrange(5) + lrange(5, 10)[::-1]] self.assertRaises(KeyError, s2.ix.__getitem__, slice(3, 11)) self.assertRaises(KeyError, s2.ix.__setitem__, slice(3, 11), 0) def test_ix_getitem_iterator(self): idx = iter(self.series.index[:10]) result = self.series.ix[idx] assert_series_equal(result, self.series[:10]) def test_setitem_with_tz(self): for tz in ['US/Eastern', 'UTC', 'Asia/Tokyo']: orig = pd.Series(pd.date_range('2016-01-01', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-01-01 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-01-01 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_setitem_with_tz_dst(self): # GH XXX tz = 'US/Eastern' orig = pd.Series(pd.date_range('2016-11-06', freq='H', periods=3, tz=tz)) self.assertEqual(orig.dtype, 'datetime64[ns, {0}]'.format(tz)) # scalar s = orig.copy() s[1] = pd.Timestamp('2011-01-01', tz=tz) exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2016-11-06 02:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[1] = pd.Timestamp('2011-01-01', tz=tz) tm.assert_series_equal(s, exp) # vector vals = pd.Series([pd.Timestamp('2011-01-01', tz=tz), pd.Timestamp('2012-01-01', tz=tz)], index=[1, 2]) self.assertEqual(vals.dtype, 'datetime64[ns, {0}]'.format(tz)) s[[1, 2]] = vals exp = pd.Series([pd.Timestamp('2016-11-06 00:00', tz=tz), pd.Timestamp('2011-01-01 00:00', tz=tz), pd.Timestamp('2012-01-01 00:00', tz=tz)]) tm.assert_series_equal(s, exp) s = orig.copy() s.loc[[1, 2]] = vals tm.assert_series_equal(s, exp) s = orig.copy() s.iloc[[1, 2]] = vals tm.assert_series_equal(s, exp) def test_where(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(cond).dropna() rs2 = s[cond] assert_series_equal(rs, rs2) rs = s.where(cond, -s) assert_series_equal(rs, s.abs()) rs = s.where(cond) assert (s.shape == rs.shape) assert (rs is not s) # test alignment cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) expected = s2[cond].reindex(s2.index[:3]).reindex(s2.index) rs = s2.where(cond[:3]) assert_series_equal(rs, expected) expected = s2.abs() expected.ix[0] = s2[0] rs = s2.where(cond[:3], -s2) assert_series_equal(rs, expected) self.assertRaises(ValueError, s.where, 1) self.assertRaises(ValueError, s.where, cond[:3].values, -s) # GH 2745 s = Series([1, 2]) s[[True, False]] = [0, 1] expected = Series([0, 2]) assert_series_equal(s, expected) # failures self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), [0, 2, 3]) self.assertRaises(ValueError, s.__setitem__, tuple([[[True, False]]]), []) # unsafe dtype changes for dtype in [np.int8, np.int16, np.int32, np.int64, np.float16, np.float32, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype=dtype) assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # these are allowed operations, but are upcasted for dtype in [np.int64, np.float64]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] s[mask] = values expected = Series(values + lrange(5, 10), dtype='float64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) # GH 9731 s = Series(np.arange(10), dtype='int64') mask = s > 5 values = [2.5, 3.5, 4.5, 5.5] s[mask] = values expected = Series(lrange(6) + values, dtype='float64') assert_series_equal(s, expected) # can't do these as we are forced to change the itemsize of the input # to something we cannot for dtype in [np.int8, np.int16, np.int32, np.float16, np.float32]: s = Series(np.arange(10), dtype=dtype) mask = s < 5 values = [2.5, 3.5, 4.5, 5.5, 6.5] self.assertRaises(Exception, s.__setitem__, tuple(mask), values) # GH3235 s = Series(np.arange(10), dtype='int64') mask = s < 5 s[mask] = lrange(2, 7) expected = Series(lrange(2, 7) + lrange(5, 10), dtype='int64') assert_series_equal(s, expected) self.assertEqual(s.dtype, expected.dtype) s = Series(np.arange(10), dtype='int64') mask = s > 5 s[mask] = [0] * 4 expected = Series([0, 1, 2, 3, 4, 5] + [0] * 4, dtype='int64') assert_series_equal(s, expected) s = Series(np.arange(10)) mask = s > 5 def f(): s[mask] = [5, 4, 3, 2, 1] self.assertRaises(ValueError, f) def f(): s[mask] = [0] * 5 self.assertRaises(ValueError, f) # dtype changes s = Series([1, 2, 3, 4]) result = s.where(s > 2, np.nan) expected = Series([np.nan, np.nan, 3, 4]) assert_series_equal(result, expected) # GH 4667 # setting with None changes dtype s = Series(range(10)).astype(float) s[8] = None result = s[8] self.assertTrue(isnull(result)) s = Series(range(10)).astype(float) s[s > 8] = None result = s[isnull(s)] expected = Series(np.nan, index=[9]) assert_series_equal(result, expected) def test_where_setitem_invalid(self): # GH 2702 # make sure correct exceptions are raised on invalid list assignment # slice s = Series(list('abc')) def f(): s[0:3] = list(range(27)) self.assertRaises(ValueError, f) s[0:3] = list(range(3)) expected = Series([0, 1, 2]) assert_series_equal(s.astype(np.int64), expected, ) # slice with step s = Series(list('abcdef')) def f(): s[0:4:2] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abcdef')) s[0:4:2] = list(range(2)) expected = Series([0, 'b', 1, 'd', 'e', 'f']) assert_series_equal(s, expected) # neg slices s = Series(list('abcdef')) def f(): s[:-1] = list(range(27)) self.assertRaises(ValueError, f) s[-3:-1] = list(range(2)) expected = Series(['a', 'b', 'c', 0, 1, 'f']) assert_series_equal(s, expected) # list s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(27)) self.assertRaises(ValueError, f) s = Series(list('abc')) def f(): s[[0, 1, 2]] = list(range(2)) self.assertRaises(ValueError, f) # scalar s = Series(list('abc')) s[0] = list(range(10)) expected = Series([list(range(10)), 'b', 'c']) assert_series_equal(s, expected) def test_where_broadcast(self): # Test a variety of differently sized series for size in range(2, 6): # Test a variety of boolean indices for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: # Test a variety of different numbers as content for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: # Test numpy arrays, lists and tuples as the input to be # broadcast for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) s[selection] = arr # Construct the expected series by taking the source # data or item based on the selection expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(s, expected) s = Series(data) result = s.where(~selection, arr) assert_series_equal(result, expected) def test_where_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.where(cond, inplace=True) assert_series_equal(rs.dropna(), s[cond]) assert_series_equal(rs, s.where(cond)) rs = s.copy() rs.where(cond, -s, inplace=True) assert_series_equal(rs, s.where(cond, -s)) def test_where_dups(self): # GH 4550 # where crashes with dups in index s1 = Series(list(range(3))) s2 = Series(list(range(3))) comb = pd.concat([s1, s2]) result = comb.where(comb < 2) expected = Series([0, 1, np.nan, 0, 1, np.nan], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(result, expected) # GH 4548 # inplace updating not working with dups comb[comb < 1] = 5 expected = Series([5, 1, 2, 5, 1, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) comb[comb < 2] += 10 expected = Series([5, 11, 2, 5, 11, 2], index=[0, 1, 2, 0, 1, 2]) assert_series_equal(comb, expected) def test_where_datetime(self): s = Series(date_range('20130102', periods=2)) expected = Series([10, 10], dtype='datetime64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='datetime64[ns]') assert_series_equal(rs, expected) def test_where_timedelta(self): s = Series([1, 2], dtype='timedelta64[ns]') expected = Series([10, 10], dtype='timedelta64[ns]') mask = np.array([False, False]) rs = s.where(mask, [10, 10]) assert_series_equal(rs, expected) rs = s.where(mask, 10) assert_series_equal(rs, expected) rs = s.where(mask, 10.0) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, 10.0]) assert_series_equal(rs, expected) rs = s.where(mask, [10.0, np.nan]) expected = Series([10, None], dtype='timedelta64[ns]') assert_series_equal(rs, expected) def test_mask(self): # compare with tested results in test_where s = Series(np.random.randn(5)) cond = s > 0 rs = s.where(~cond, np.nan) assert_series_equal(rs, s.mask(cond)) rs = s.where(~cond) rs2 = s.mask(cond) assert_series_equal(rs, rs2) rs = s.where(~cond, -s) rs2 = s.mask(cond, -s) assert_series_equal(rs, rs2) cond = Series([True, False, False, True, False], index=s.index) s2 = -(s.abs()) rs = s2.where(~cond[:3]) rs2 = s2.mask(cond[:3]) assert_series_equal(rs, rs2) rs = s2.where(~cond[:3], -s2) rs2 = s2.mask(cond[:3], -s2) assert_series_equal(rs, rs2) self.assertRaises(ValueError, s.mask, 1) self.assertRaises(ValueError, s.mask, cond[:3].values, -s) # dtype changes s = Series([1, 2, 3, 4]) result = s.mask(s > 2, np.nan) expected = Series([1, 2, np.nan, np.nan]) assert_series_equal(result, expected) def test_mask_broadcast(self): # GH 8801 # copied from test_where_broadcast for size in range(2, 6): for selection in [ # First element should be set np.resize([True, False, False, False, False], size), # Set alternating elements] np.resize([True, False], size), # No element should be set np.resize([False], size)]: for item in [2.0, np.nan, np.finfo(np.float).max, np.finfo(np.float).min]: for arr in [np.array([item]), [item], (item, )]: data = np.arange(size, dtype=float) s = Series(data) result = s.mask(selection, arr) expected = Series([item if use_item else data[ i] for i, use_item in enumerate(selection)]) assert_series_equal(result, expected) def test_mask_inplace(self): s = Series(np.random.randn(5)) cond = s > 0 rs = s.copy() rs.mask(cond, inplace=True) assert_series_equal(rs.dropna(), s[~cond]) assert_series_equal(rs, s.mask(cond)) rs = s.copy() rs.mask(cond, -s, inplace=True) assert_series_equal(rs, s.mask(cond, -s)) def test_ix_setitem(self): inds = self.series.index[[3, 4, 7]] result = self.series.copy() result.ix[inds] = 5 expected = self.series.copy() expected[[3, 4, 7]] = 5 assert_series_equal(result, expected) result.ix[5:10] = 10 expected[5:10] = 10 assert_series_equal(result, expected) # set slice with indices d1, d2 = self.series.index[[5, 15]] result.ix[d1:d2] = 6 expected[5:16] = 6 # because it's inclusive assert_series_equal(result, expected) # set index value self.series.ix[d1] = 4 self.series.ix[d2] = 6 self.assertEqual(self.series[d1], 4) self.assertEqual(self.series[d2], 6) def test_where_numeric_with_string(self): # GH 9280 s = pd.Series([1, 2, 3]) w = s.where(s > 1, 'X') self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, ['X', 'Y', 'Z']) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') w = s.where(s > 1, np.array(['X', 'Y', 'Z'])) self.assertFalse(is_integer(w[0])) self.assertTrue(is_integer(w[1])) self.assertTrue(is_integer(w[2])) self.assertTrue(isinstance(w[0], str)) self.assertTrue(w.dtype == 'object') def test_setitem_boolean(self): mask = self.series > self.series.median() # similiar indexed series result = self.series.copy() result[mask] = self.series * 2 expected = self.series * 2 assert_series_equal(result[mask], expected[mask]) # needs alignment result = self.series.copy() result[mask] = (self.series * 2)[0:5] expected = (self.series * 2)[0:5].reindex_like(self.series) expected[-mask] = self.series[mask] assert_series_equal(result[mask], expected[mask]) def test_ix_setitem_boolean(self): mask = self.series > self.series.median() result = self.series.copy() result.ix[mask] = 0 expected = self.series expected[mask] = 0 assert_series_equal(result, expected) def test_ix_setitem_corner(self): inds = list(self.series.index[[5, 8, 12]]) self.series.ix[inds] = 5 self.assertRaises(Exception, self.series.ix.__setitem__, inds + ['foo'], 5) def test_get_set_boolean_different_order(self): ordered = self.series.sort_values() # setting copy = self.series.copy() copy[ordered > 0] = 0 expected = self.series.copy() expected[expected > 0] = 0 assert_series_equal(copy, expected) # getting sel = self.series[ordered > 0] exp = self.series[self.series > 0] assert_series_equal(sel, exp) def test_setitem_na(self): # these induce dtype changes expected = Series([np.nan, 3, np.nan, 5, np.nan, 7, np.nan, 9, np.nan]) s = Series([2, 3, 4, 5, 6, 7, 8, 9, 10]) s[::2] = np.nan assert_series_equal(s, expected) # get's coerced to float, right? expected = Series([np.nan, 1, np.nan, 0]) s = Series([True, True, False, False]) s[::2] = np.nan assert_series_equal(s, expected) expected = Series([np.nan, np.nan, np.nan, np.nan, np.nan, 5, 6, 7, 8, 9]) s = Series(np.arange(10)) s[:5] = np.nan assert_series_equal(s, expected) def test_basic_indexing(self): s = Series(np.random.randn(5), index=['a', 'b', 'a', 'a', 'b']) self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) self.assertRaises(KeyError, s.__getitem__, 'c') s = s.sort_index() self.assertRaises(IndexError, s.__getitem__, 5) self.assertRaises(IndexError, s.__setitem__, 5, 0) def test_int_indexing(self): s = Series(np.random.randn(6), index=[0, 0, 1, 1, 2, 2]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') # not monotonic s = Series(np.random.randn(6), index=[2, 2, 0, 0, 1, 1]) self.assertRaises(KeyError, s.__getitem__, 5) self.assertRaises(KeyError, s.__getitem__, 'c') def test_datetime_indexing(self): from pandas import date_range index = date_range('1/1/2000', '1/7/2000') index = index.repeat(3) s = Series(len(index), index=index) stamp = Timestamp('1/8/2000') self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) # not monotonic s = Series(len(index), index=index) s = s[::-1] self.assertRaises(KeyError, s.__getitem__, stamp) s[stamp] = 0 self.assertEqual(s[stamp], 0) def test_timedelta_assignment(self): # GH 8209 s = Series([]) s.loc['B'] = timedelta(1) tm.assert_series_equal(s, Series(Timedelta('1 days'), index=['B'])) s = s.reindex(s.index.insert(0, 'A')) tm.assert_series_equal(s, Series( [np.nan, Timedelta('1 days')], index=['A', 'B'])) result = s.fillna(timedelta(1)) expected = Series(Timedelta('1 days'), index=['A', 'B']) tm.assert_series_equal(result, expected) s.loc['A'] = timedelta(1) tm.assert_series_equal(s, expected) # GH 14155 s = Series(10 * [np.timedelta64(10, 'm')]) s.loc[[1, 2, 3]] = np.timedelta64(20, 'm') expected = pd.Series(10 * [np.timedelta64(10, 'm')]) expected.loc[[1, 2, 3]] = pd.Timedelta(np.timedelta64(20, 'm')) tm.assert_series_equal(s, expected) def test_underlying_data_conversion(self): # GH 4080 df = DataFrame(dict((c, [1, 2, 3]) for c in ['a', 'b', 'c'])) df.set_index(['a', 'b', 'c'], inplace=True) s = Series([1], index=[(2, 2, 2)]) df['val'] = 0 df df['val'].update(s) expected = DataFrame( dict(a=[1, 2, 3], b=[1, 2, 3], c=[1, 2, 3], val=[0, 1, 0])) expected.set_index(['a', 'b', 'c'], inplace=True) tm.assert_frame_equal(df, expected) # GH 3970 # these are chained assignments as well pd.set_option('chained_assignment', None) df = DataFrame({"aa": range(5), "bb": [2.2] * 5}) df["cc"] = 0.0 ck = [True] * len(df) df["bb"].iloc[0] = .13 # TODO: unused df_tmp = df.iloc[ck] # noqa df["bb"].iloc[0] = .15 self.assertEqual(df['bb'].iloc[0], 0.15) pd.set_option('chained_assignment', 'raise') # GH 3217 df = DataFrame(dict(a=[1, 3], b=[np.nan, 2])) df['c'] = np.nan df['c'].update(pd.Series(['foo'], index=[0])) expected = DataFrame(dict(a=[1, 3], b=[np.nan, 2], c=['foo', np.nan])) tm.assert_frame_equal(df, expected) def test_preserveRefs(self): seq = self.ts[[5, 10, 15]] seq[1] = np.NaN self.assertFalse(np.isnan(self.ts[10])) def test_drop(self): # unique s = Series([1, 2], index=['one', 'two']) expected = Series([1], index=['one']) result = s.drop(['two']) assert_series_equal(result, expected) result = s.drop('two', axis='rows') assert_series_equal(result, expected) # non-unique # GH 5248 s = Series([1, 1, 2], index=['one', 'two', 'one']) expected = Series([1, 2], index=['one', 'one']) result = s.drop(['two'], axis=0) assert_series_equal(result, expected) result = s.drop('two') assert_series_equal(result, expected) expected = Series([1], index=['two']) result = s.drop(['one']) assert_series_equal(result, expected) result = s.drop('one') assert_series_equal(result, expected) # single string/tuple-like s = Series(range(3), index=list('abc')) self.assertRaises(ValueError, s.drop, 'bc') self.assertRaises(ValueError, s.drop, ('a', )) # errors='ignore' s = Series(range(3), index=list('abc')) result = s.drop('bc', errors='ignore') assert_series_equal(result, s) result = s.drop(['a', 'd'], errors='ignore') expected = s.ix[1:] assert_series_equal(result, expected) # bad axis self.assertRaises(ValueError, s.drop, 'one', axis='columns') # GH 8522 s = Series([2, 3], index=[True, False]) self.assertTrue(s.index.is_object()) result = s.drop(True) expected = Series([3], index=[False]) assert_series_equal(result, expected) def test_align(self): def _check_align(a, b, how='left', fill=None): aa, ab = a.align(b, join=how, fill_value=fill) join_index = a.index.join(b.index, how=how) if fill is not None: diff_a = aa.index.difference(join_index) diff_b = ab.index.difference(join_index) if len(diff_a) > 0: self.assertTrue((aa.reindex(diff_a) == fill).all()) if len(diff_b) > 0: self.assertTrue((ab.reindex(diff_b) == fill).all()) ea = a.reindex(join_index) eb = b.reindex(join_index) if fill is not None: ea = ea.fillna(fill) eb = eb.fillna(fill) assert_series_equal(aa, ea) assert_series_equal(ab, eb) self.assertEqual(aa.name, 'ts') self.assertEqual(ea.name, 'ts') self.assertEqual(ab.name, 'ts') self.assertEqual(eb.name, 'ts') for kind in JOIN_TYPES: _check_align(self.ts[2:], self.ts[:-5], how=kind) _check_align(self.ts[2:], self.ts[:-5], how=kind, fill=-1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind) _check_align(self.ts[:0], self.ts[:-5], how=kind, fill=-1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind) _check_align(self.ts[:-5], self.ts[:0], how=kind, fill=-1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind) _check_align(self.ts[:0], self.ts[:0], how=kind, fill=-1) def test_align_fill_method(self): def _check_align(a, b, how='left', method='pad', limit=None): aa, ab = a.align(b, join=how, method=method, limit=limit) join_index = a.index.join(b.index, how=how) ea = a.reindex(join_index) eb = b.reindex(join_index) ea = ea.fillna(method=method, limit=limit) eb = eb.fillna(method=method, limit=limit) assert_series_equal(aa, ea) assert_series_equal(ab, eb) for kind in JOIN_TYPES: for meth in ['pad', 'bfill']: _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[2:], self.ts[:-5], how=kind, method=meth, limit=1) # empty left _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:-5], how=kind, method=meth, limit=1) # empty right _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:-5], self.ts[:0], how=kind, method=meth, limit=1) # both empty _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth) _check_align(self.ts[:0], self.ts[:0], how=kind, method=meth, limit=1) def test_align_nocopy(self): b = self.ts[:5].copy() # do copy a = self.ts.copy() ra, _ = a.align(b, join='left') ra[:5] = 5 self.assertFalse((a[:5] == 5).any()) # do not copy a = self.ts.copy() ra, _ = a.align(b, join='left', copy=False) ra[:5] = 5 self.assertTrue((a[:5] == 5).all()) # do copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right') rb[:3] = 5 self.assertFalse((b[:3] == 5).any()) # do not copy a = self.ts.copy() b = self.ts[:5].copy() _, rb = a.align(b, join='right', copy=False) rb[:2] = 5 self.assertTrue((b[:2] == 5).all()) def test_align_sameindex(self): a, b = self.ts.align(self.ts, copy=False) self.assertIs(a.index, self.ts.index) self.assertIs(b.index, self.ts.index) # a, b = self.ts.align(self.ts, copy=True) # self.assertIsNot(a.index, self.ts.index) # self.assertIsNot(b.index, self.ts.index) def test_align_multiindex(self): # GH 10665 midx = pd.MultiIndex.from_product([range(2), range(3), range(2)], names=('a', 'b', 'c')) idx = pd.Index(range(2), name='b') s1 = pd.Series(np.arange(12, dtype='int64'), index=midx) s2 = pd.Series(np.arange(2, dtype='int64'), index=idx) # these must be the same results (but flipped) res1l, res1r = s1.align(s2, join='left') res2l, res2r = s2.align(s1, join='right') expl = s1 tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1, np.nan, np.nan] * 2, index=midx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) res1l, res1r = s1.align(s2, join='right') res2l, res2r = s2.align(s1, join='left') exp_idx = pd.MultiIndex.from_product([range(2), range(2), range(2)], names=('a', 'b', 'c')) expl = pd.Series([0, 1, 2, 3, 6, 7, 8, 9], index=exp_idx) tm.assert_series_equal(expl, res1l) tm.assert_series_equal(expl, res2r) expr = pd.Series([0, 0, 1, 1] * 2, index=exp_idx) tm.assert_series_equal(expr, res1r) tm.assert_series_equal(expr, res2l) def test_reindex(self): identity = self.series.reindex(self.series.index) # __array_interface__ is not defined for older numpies # and on some pythons try: self.assertTrue(np.may_share_memory(self.series.index, identity.index)) except (AttributeError): pass self.assertTrue(identity.index.is_(self.series.index)) self.assertTrue(identity.index.identical(self.series.index)) subIndex = self.series.index[10:20] subSeries = self.series.reindex(subIndex) for idx, val in compat.iteritems(subSeries): self.assertEqual(val, self.series[idx]) subIndex2 = self.ts.index[10:20] subTS = self.ts.reindex(subIndex2) for idx, val in compat.iteritems(subTS): self.assertEqual(val, self.ts[idx]) stuffSeries = self.ts.reindex(subIndex) self.assertTrue(np.isnan(stuffSeries).all()) # This is extremely important for the Cython code to not screw up nonContigIndex = self.ts.index[::2] subNonContig = self.ts.reindex(nonContigIndex) for idx, val in compat.iteritems(subNonContig): self.assertEqual(val, self.ts[idx]) # return a copy the same index here result = self.ts.reindex() self.assertFalse((result is self.ts)) def test_reindex_nan(self): ts = Series([2, 3, 5, 7], index=[1, 4, nan, 8]) i, j = [nan, 1, nan, 8, 4, nan], [2, 0, 2, 3, 1, 2] assert_series_equal(ts.reindex(i), ts.iloc[j]) ts.index = ts.index.astype('object') # reindex coerces index.dtype to float, loc/iloc doesn't assert_series_equal(ts.reindex(i), ts.iloc[j], check_index_type=False) def test_reindex_corner(self): # (don't forget to fix this) I think it's fixed self.empty.reindex(self.ts.index, method='pad') # it works # corner case: pad empty series reindexed = self.empty.reindex(self.ts.index, method='pad') # pass non-Index reindexed = self.ts.reindex(list(self.ts.index)) assert_series_equal(self.ts, reindexed) # bad fill method ts = self.ts[::2] self.assertRaises(Exception, ts.reindex, self.ts.index, method='foo') def test_reindex_pad(self): s = Series(np.arange(10), dtype='int64') s2 = s[::2] reindexed = s2.reindex(s.index, method='pad') reindexed2 = s2.reindex(s.index, method='ffill') assert_series_equal(reindexed, reindexed2) expected = Series([0, 0, 2, 2, 4, 4, 6, 6, 8, 8], index=np.arange(10)) assert_series_equal(reindexed, expected) # GH4604 s = Series([1, 2, 3, 4, 5], index=['a', 'b', 'c', 'd', 'e']) new_index = ['a', 'g', 'c', 'f'] expected = Series([1, 1, 3, 3], index=new_index) # this changes dtype because the ffill happens after result = s.reindex(new_index).ffill() assert_series_equal(result, expected.astype('float64')) result = s.reindex(new_index).ffill(downcast='infer') assert_series_equal(result, expected) expected = Series([1, 5, 3, 5], index=new_index) result = s.reindex(new_index, method='ffill') assert_series_equal(result, expected) # inferrence of new dtype s = Series([True, False, False, True], index=list('abcd')) new_index = 'agc' result = s.reindex(list(new_index)).ffill() expected = Series([True, True, False], index=list(new_index)) assert_series_equal(result, expected) # GH4618 shifted series downcasting s = Series(False, index=lrange(0, 5)) result = s.shift(1).fillna(method='bfill') expected = Series(False, index=
lrange(0, 5)
pandas.compat.lrange
import glob # Unix style pathname pattern expansion import re # Regular expression operations import numpy as np # fundamental package for scientific computing from obspy.core import UTCDateTime # framework for processing seismological data import datetime # Basic date and time types import scipy.io # ecosystem of open-source software for mathematics, science, and engineering import pandas as pd # open source, BSD-licensed library providing high-performance, easy-to-use data structures and data analysis tools import matplotlib.pyplot as plt # from obspy.geodetics.base import gps2dist_azimuth ### Import GeoSEA Modules ### from .extract_df import * from .change2dateindex import * from .read_data import * from .read_id import * ### Global Variables ### GMT_DATEFORMAT = '%Y-%m-%dT%H:%M' def read(starttime=None, endtime=None, pathname=None, writefile=True): """ Reads data from *csv files. Note that the *csv files have to be unique for each station! It needs: starttime (optional) ... no measurement before this time is used (format 'YYYY-MM-DD hh:mm:ss') endtime (optional) ... no measurement after this time is used (format 'YYYY-MM-DD hh:mm:ss') pathname (optional) ... location of input files (default ../RAW/) writefile (optional) ... if True files containing all read-in parameters will be created in current directory, if False data will just be returned (default True) It returns: ID ... an 1-dim list with station IDs st_series ... an 1-dim list with pandas.DataFrame with columns: temperature ('hrt'), pressure ('prs'), sound speed ('ssp'), temperature from pressure ('tpr'), inclinometer data ('pitch','roll'), battery ('bat','vlt') and pages ('pag') with corresponding times of measurement for each beacon (same order as items in ID) bsl_series ... an 1-dim list with pandas.DataFrame with baseline measurements: ID of other station ('range_ID'), traveltime ('range') and turn around time ('TAT') with corresponding times of measurement for each beacon (same order as items in ID) It further writes human readable files for pressure, inclinometer data, battery, and pages, respectively. """ ID = [] if pathname is None: pathname = '../RAW/' ID = read_id(pathname) ifiles = glob.glob(pathname + 'Data_*_*_*.csv') #------------------------------------------------------------------------------- # Open and merge all Raw Files #------------------------------------------------------------------------------- st_series = [] bsl_series = [] # pre-define column names (needed because of different number of columns # per row in input files) my_cols = ["A","B","C","D","E","F","G","H","I","J"] print('-------------------------------------------------------------------------------\n') print('GeoSEA Python Module v1.21 20 July 2020\n') print('GEOMAR Helmholtz Centre for Ocean Research Kiel') print('-------------------------------------------------------------------------------\n\n') for j,station in enumerate(ID): print('\nData Processing for Station: ' + station) print('-------------------------------------------------------------------------------') print('Open Files:') # create empty pandas.DataFrame for storing of data from file all_data = pd.DataFrame() for i,data in enumerate(ifiles): stationname = data.split('_', 3) if station in stationname: print(data) # reads data from csv-file using pandas # my_cols ... pre-defined column names # skiprow=13 ... skips first 13 rows # index_col=0 ... uses first column as index # final dataframe has columns 'B'-'J' (0-9) and index column # with ['PAG','BSL',...] curfile =
pd.read_csv(data,names=my_cols,skiprows=13,index_col=0,low_memory=False)
pandas.read_csv
import os import matplotlib.pyplot as plt import pandas as pd import seaborn as sns from sklearn.decomposition import pca sns.set_style("whitegrid") class Weights: def __init__(self, tumor_path: pd.DataFrame, sample_dir: str): self.tumor_path = tumor_path self.tumor = self._load_tumor() self.genes = self.tumor.columns[5:] self.sample_dir = sample_dir self.df = self._weight_df() self.perc = self._perc_df() self.num_samples = len(self.df["sample"].unique()) def _weight_df(self) -> pd.DataFrame: """ Creates DataFrame of sample weights from a directory of samples Columns: tissue, normal_tissue, weight, sample_id Returns: DataFrame of Weights """ # DataFrame: cols=tissue, normal_tissue, weight weights = [] tissues = self.tumor.tissue for sample in os.listdir(self.sample_dir): sample_tissue = tissues.loc[sample] w = pd.read_csv( os.path.join(self.sample_dir, sample, "weights.tsv"), sep="\t" ) w.columns = ["normal_tissue", "Median", "std"] w["tissue"] = sample_tissue w["sample"] = sample weights.append(w.drop("std", axis=1)) return
pd.concat(weights)
pandas.concat
# Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import argparse import datetime import hashlib import json import os import tempfile from multiprocessing import current_process from pathlib import Path from random import randint from time import sleep import pandas as pd from azureml.automl.core.shared import constants from azureml.automl.core.shared.exceptions import (AutoMLException, ClientException, ErrorTypes) from azureml.automl.core.shared.utilities import get_error_code from azureml.core import Run from azureml.core.model import Model from azureml.train.automl import AutoMLConfig from azureml_user.parallel_run import EntryScript from train_automl_helper import compose_logs, str2bool current_step_run = Run.get_context() # This is used by UI to display the many model settings many_model_run_properties = {'many_models_run': True} LOG_NAME = "user_log" parser = argparse.ArgumentParser("split") parser.add_argument("--process_count_per_node", default=1, type=int, help="number of processes per node") parser.add_argument("--retrain_failed_models", default=False, type=str2bool, help="retrain failed models only") args, _ = parser.parse_known_args() def read_from_json(): full_path = Path(__file__).absolute().parent with open(str(full_path) + "/automlconfig.json") as json_file: return json.load(json_file) automl_settings = read_from_json() # ''"{\"task\": \"forecasting\", \"iteration_timeout_minutes\": 10, \"iterations\": 10, \"n_cross_validations\": 3, # \"primary_metric\": \"accuracy\", \"preprocess\": false, \"verbosity\": 20, \"label_column_name\": \"Quantity\", # \"debug_log\": \"automl_oj_sales_errors.log\", \"time_column_name\": \"WeekStarting\", \"max_horizon\": 6, # \"drop_column_names\": [\"logQuantity\"], \"group_column_names\": [\"Store\", \"Brand\"]}"'' timestamp_column = automl_settings.get('time_column_name', None) grain_column_names = automl_settings.get('grain_column_names', []) group_column_names = automl_settings.get('group_column_names', []) max_horizon = automl_settings.get('max_horizon', 0) target_column = automl_settings.get('label_column_name', None) print("max_horizon: {}".format(max_horizon)) print("target_column: {}".format(target_column)) print("timestamp_column: {}".format(timestamp_column)) print("group_column_names: {}".format(group_column_names)) print("grain_column_names: {}".format(grain_column_names)) print("retrain_failed_models: {}".format(args.retrain_failed_models)) def init(): entry_script = EntryScript() logger = entry_script.logger output_folder = os.path.join(os.environ.get("AZ_BATCHAI_INPUT_AZUREML", ""), "temp/output") working_dir = os.environ.get("AZ_BATCHAI_OUTPUT_logs", "") ip_addr = os.environ.get("AZ_BATCHAI_WORKER_IP", "") log_dir = os.path.join(working_dir, "user", ip_addr, current_process().name) t_log_dir = Path(log_dir) t_log_dir.mkdir(parents=True, exist_ok=True) automl_settings['many_models'] = True automl_settings['many_models_process_count_per_node'] = args.process_count_per_node debug_log = automl_settings.get('debug_log', None) if debug_log is not None: automl_settings['debug_log'] = os.path.join(log_dir, debug_log) automl_settings['path'] = tempfile.mkdtemp() print(automl_settings['debug_log']) logger.info(f"{__file__}.AutoML debug log:{debug_log}") logger.info(f"{__file__}.output_folder:{output_folder}") logger.info("init()") sleep(randint(1, 120)) def train_model(file_path, data, logger): file_name = file_path.split('/')[-1][:-4] print(file_name) logger.info("in train_model") print('data') print(data.head(5)) automl_config = AutoMLConfig(training_data=data, **automl_settings) logger.info("submit_child") local_run = current_step_run.submit_child(automl_config, show_output=False) local_run.add_properties({ k: str(many_model_run_properties[k]) for k in many_model_run_properties }) logger.info(local_run) print(local_run) local_run.wait_for_completion(show_output=True) best_child_run, fitted_model = local_run.get_output() return fitted_model, local_run, best_child_run def run(input_data): entry_script = EntryScript() logger = entry_script.logger os.makedirs('./outputs', exist_ok=True) resultList = [] model_name = None current_run = None error_message = None error_code = None error_type = None tags_dict = None for file in input_data: logs = [] date1 = datetime.datetime.now() logger.info('start (' + file + ') ' + str(datetime.datetime.now())) file_path = file file_name_with_extension = os.path.basename(file_path) file_name, file_extension = os.path.splitext(file_name_with_extension) try: if file_extension.lower() == ".parquet": data = pd.read_parquet(file_path) else: data =
pd.read_csv(file_path, parse_dates=[timestamp_column])
pandas.read_csv
# ---------------------------------------------------------------------------- # Copyright (c) 2013--, scikit-bio development team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. # ---------------------------------------------------------------------------- import copy import pandas as pd import numpy as np import numpy.testing as npt from skbio.util._testing import assert_data_frame_almost_equal class MetadataMixinTests: def test_constructor_invalid_type(self): for md in (0, 'a', ('f', 'o', 'o'), np.array([]), pd.DataFrame()): with self.assertRaisesRegex(TypeError, 'metadata must be a dict'): self._metadata_constructor_(metadata=md) def test_constructor_no_metadata(self): for md in None, {}: obj = self._metadata_constructor_(metadata=md) self.assertEqual(obj.metadata, {}) def test_constructor_with_metadata(self): obj = self._metadata_constructor_(metadata={'foo': 'bar'}) self.assertEqual(obj.metadata, {'foo': 'bar'}) obj = self._metadata_constructor_( metadata={'': '', 123: {'a': 'b', 'c': 'd'}}) self.assertEqual(obj.metadata, {'': '', 123: {'a': 'b', 'c': 'd'}}) def test_constructor_makes_shallow_copy_of_metadata(self): md = {'foo': 'bar', 42: []} obj = self._metadata_constructor_(metadata=md) self.assertEqual(obj.metadata, md) self.assertIsNot(obj.metadata, md) md['foo'] = 'baz' self.assertEqual(obj.metadata, {'foo': 'bar', 42: []}) md[42].append(True) self.assertEqual(obj.metadata, {'foo': 'bar', 42: [True]}) def test_eq(self): self.assertReallyEqual( self._metadata_constructor_(metadata={'foo': 42}), self._metadata_constructor_(metadata={'foo': 42})) self.assertReallyEqual( self._metadata_constructor_(metadata={'foo': 42, 123: {}}), self._metadata_constructor_(metadata={'foo': 42, 123: {}})) def test_eq_missing_metadata(self): self.assertReallyEqual(self._metadata_constructor_(), self._metadata_constructor_()) self.assertReallyEqual(self._metadata_constructor_(), self._metadata_constructor_(metadata={})) self.assertReallyEqual(self._metadata_constructor_(metadata={}), self._metadata_constructor_(metadata={})) def test_ne(self): # Both have metadata. obj1 = self._metadata_constructor_(metadata={'id': 'foo'}) obj2 = self._metadata_constructor_(metadata={'id': 'bar'}) self.assertReallyNotEqual(obj1, obj2) # One has metadata. obj1 = self._metadata_constructor_(metadata={'id': 'foo'}) obj2 = self._metadata_constructor_() self.assertReallyNotEqual(obj1, obj2) def test_copy_metadata_none(self): obj = self._metadata_constructor_() obj_copy = copy.copy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) self.assertEqual(obj.metadata, {}) self.assertEqual(obj_copy.metadata, {}) self.assertIsNot(obj.metadata, obj_copy.metadata) def test_copy_metadata_empty(self): obj = self._metadata_constructor_(metadata={}) obj_copy = copy.copy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) self.assertEqual(obj.metadata, {}) self.assertEqual(obj_copy.metadata, {}) self.assertIsNot(obj.metadata, obj_copy.metadata) def test_copy_with_metadata(self): obj = self._metadata_constructor_(metadata={'foo': [1]}) obj_copy = copy.copy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) self.assertEqual(obj.metadata, {'foo': [1]}) self.assertEqual(obj_copy.metadata, {'foo': [1]}) self.assertIsNot(obj.metadata, obj_copy.metadata) self.assertIs(obj.metadata['foo'], obj_copy.metadata['foo']) obj_copy.metadata['foo'].append(2) obj_copy.metadata['foo2'] = 42 self.assertEqual(obj_copy.metadata, {'foo': [1, 2], 'foo2': 42}) self.assertEqual(obj.metadata, {'foo': [1, 2]}) def test_deepcopy_metadata_none(self): obj = self._metadata_constructor_() obj_copy = copy.deepcopy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) self.assertEqual(obj.metadata, {}) self.assertEqual(obj_copy.metadata, {}) self.assertIsNot(obj.metadata, obj_copy.metadata) def test_deepcopy_metadata_empty(self): obj = self._metadata_constructor_(metadata={}) obj_copy = copy.deepcopy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) self.assertEqual(obj.metadata, {}) self.assertEqual(obj_copy.metadata, {}) self.assertIsNot(obj.metadata, obj_copy.metadata) def test_deepcopy_with_metadata(self): obj = self._metadata_constructor_(metadata={'foo': [1]}) obj_copy = copy.deepcopy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) self.assertEqual(obj.metadata, {'foo': [1]}) self.assertEqual(obj_copy.metadata, {'foo': [1]}) self.assertIsNot(obj.metadata, obj_copy.metadata) self.assertIsNot(obj.metadata['foo'], obj_copy.metadata['foo']) obj_copy.metadata['foo'].append(2) obj_copy.metadata['foo2'] = 42 self.assertEqual(obj_copy.metadata, {'foo': [1, 2], 'foo2': 42}) self.assertEqual(obj.metadata, {'foo': [1]}) def test_deepcopy_memo_is_respected(self): # Basic test to ensure deepcopy's memo is passed through to recursive # deepcopy calls. obj = self._metadata_constructor_(metadata={'foo': 'bar'}) memo = {} copy.deepcopy(obj, memo) self.assertGreater(len(memo), 2) def test_metadata_getter(self): obj = self._metadata_constructor_( metadata={42: 'foo', ('hello', 'world'): 43}) self.assertIsInstance(obj.metadata, dict) self.assertEqual(obj.metadata, {42: 'foo', ('hello', 'world'): 43}) obj.metadata[42] = 'bar' self.assertEqual(obj.metadata, {42: 'bar', ('hello', 'world'): 43}) def test_metadata_getter_no_metadata(self): obj = self._metadata_constructor_() self.assertIsInstance(obj.metadata, dict) self.assertEqual(obj.metadata, {}) def test_metadata_setter(self): obj = self._metadata_constructor_() self.assertEqual(obj.metadata, {}) obj.metadata = {'hello': 'world'} self.assertEqual(obj.metadata, {'hello': 'world'}) obj.metadata = {} self.assertEqual(obj.metadata, {}) def test_metadata_setter_makes_shallow_copy(self): obj = self._metadata_constructor_() md = {'foo': 'bar', 42: []} obj.metadata = md self.assertEqual(obj.metadata, md) self.assertIsNot(obj.metadata, md) md['foo'] = 'baz' self.assertEqual(obj.metadata, {'foo': 'bar', 42: []}) md[42].append(True) self.assertEqual(obj.metadata, {'foo': 'bar', 42: [True]}) def test_metadata_setter_invalid_type(self): obj = self._metadata_constructor_(metadata={123: 456}) for md in (None, 0, 'a', ('f', 'o', 'o'), np.array([]), pd.DataFrame()): with self.assertRaisesRegex(TypeError, 'metadata must be a dict'): obj.metadata = md self.assertEqual(obj.metadata, {123: 456}) def test_metadata_deleter(self): obj = self._metadata_constructor_(metadata={'foo': 'bar'}) self.assertEqual(obj.metadata, {'foo': 'bar'}) del obj.metadata self.assertEqual(obj.metadata, {}) # Delete again. del obj.metadata self.assertEqual(obj.metadata, {}) obj = self._metadata_constructor_() self.assertEqual(obj.metadata, {}) del obj.metadata self.assertEqual(obj.metadata, {}) def test_has_metadata(self): obj = self._metadata_constructor_() self.assertFalse(obj.has_metadata()) self.assertFalse( self._metadata_constructor_(metadata={}).has_metadata()) self.assertTrue( self._metadata_constructor_(metadata={'': ''}).has_metadata()) self.assertTrue( self._metadata_constructor_( metadata={'foo': 42}).has_metadata()) class PositionalMetadataMixinTests: def test_constructor_invalid_positional_metadata_type(self): with self.assertRaisesRegex(TypeError, 'Invalid positional metadata. Must be ' 'consumable by `pd.DataFrame` constructor.' ' Original pandas error message: '): self._positional_metadata_constructor_(0, positional_metadata=2) def test_constructor_positional_metadata_len_mismatch(self): # Zero elements. with self.assertRaisesRegex(ValueError, '\(0\).*\(4\)'): self._positional_metadata_constructor_(4, positional_metadata=[]) # Not enough elements. with self.assertRaisesRegex(ValueError, '\(3\).*\(4\)'): self._positional_metadata_constructor_( 4, positional_metadata=[2, 3, 4]) # Too many elements. with self.assertRaisesRegex(ValueError, '\(5\).*\(4\)'): self._positional_metadata_constructor_( 4, positional_metadata=[2, 3, 4, 5, 6]) # Series not enough rows. with self.assertRaisesRegex(ValueError, '\(3\).*\(4\)'): self._positional_metadata_constructor_( 4, positional_metadata=pd.Series(range(3))) # Series too many rows. with self.assertRaisesRegex(ValueError, '\(5\).*\(4\)'): self._positional_metadata_constructor_( 4, positional_metadata=pd.Series(range(5))) # DataFrame not enough rows. with self.assertRaisesRegex(ValueError, '\(3\).*\(4\)'): self._positional_metadata_constructor_( 4, positional_metadata=pd.DataFrame({'quality': range(3)})) # DataFrame too many rows. with self.assertRaisesRegex(ValueError, '\(5\).*\(4\)'): self._positional_metadata_constructor_( 4, positional_metadata=pd.DataFrame({'quality': range(5)})) # Empty DataFrame wrong size. with self.assertRaisesRegex(ValueError, '\(2\).*\(3\)'): self._positional_metadata_constructor_( 3, positional_metadata=pd.DataFrame(index=range(2))) def test_constructor_no_positional_metadata(self): # Length zero with missing/empty positional metadata. for empty in None, {}, pd.DataFrame(): obj = self._positional_metadata_constructor_( 0, positional_metadata=empty) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame(index=np.arange(0))) # Nonzero length with missing positional metadata. obj = self._positional_metadata_constructor_( 3, positional_metadata=None) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame(index=np.arange(3))) def test_constructor_with_positional_metadata_len_zero(self): for data in [], (), np.array([]): obj = self._positional_metadata_constructor_( 0, positional_metadata={'foo': data}) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': data}, index=np.arange(0))) def test_constructor_with_positional_metadata_len_one(self): for data in [2], (2, ), np.array([2]): obj = self._positional_metadata_constructor_( 1, positional_metadata={'foo': data}) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': data}, index=np.arange(1))) def test_constructor_with_positional_metadata_len_greater_than_one(self): for data in ([0, 42, 42, 1, 0, 8, 100, 0, 0], (0, 42, 42, 1, 0, 8, 100, 0, 0), np.array([0, 42, 42, 1, 0, 8, 100, 0, 0])): obj = self._positional_metadata_constructor_( 9, positional_metadata={'foo': data}) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': data}, index=np.arange(9))) def test_constructor_with_positional_metadata_multiple_columns(self): obj = self._positional_metadata_constructor_( 5, positional_metadata={'foo': np.arange(5), 'bar': np.arange(5)[::-1]}) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': np.arange(5), 'bar': np.arange(5)[::-1]}, index=np.arange(5))) def test_constructor_with_positional_metadata_custom_index(self): df = pd.DataFrame({'foo': np.arange(5), 'bar': np.arange(5)[::-1]}, index=['a', 'b', 'c', 'd', 'e']) obj = self._positional_metadata_constructor_( 5, positional_metadata=df) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': np.arange(5), 'bar': np.arange(5)[::-1]}, index=np.arange(5))) def test_constructor_makes_shallow_copy_of_positional_metadata(self): df = pd.DataFrame({'foo': [22, 22, 0], 'bar': [[], [], []]}, index=['a', 'b', 'c']) obj = self._positional_metadata_constructor_( 3, positional_metadata=df) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': [22, 22, 0], 'bar': [[], [], []]}, index=np.arange(3))) self.assertIsNot(obj.positional_metadata, df) # Original df is not mutated. orig_df = pd.DataFrame({'foo': [22, 22, 0], 'bar': [[], [], []]}, index=['a', 'b', 'c']) assert_data_frame_almost_equal(df, orig_df) # Change values of column (using same dtype). df['foo'] = [42, 42, 42] assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': [22, 22, 0], 'bar': [[], [], []]}, index=np.arange(3))) # Change single value of underlying data. df.values[0][0] = 10 assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': [22, 22, 0], 'bar': [[], [], []]}, index=np.arange(3))) # Mutate list (not a deep copy). df['bar'][0].append(42) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': [22, 22, 0], 'bar': [[42], [], []]}, index=np.arange(3))) def test_eq_basic(self): obj1 = self._positional_metadata_constructor_( 3, positional_metadata={'foo': [1, 2, 3]}) obj2 = self._positional_metadata_constructor_( 3, positional_metadata={'foo': [1, 2, 3]}) self.assertReallyEqual(obj1, obj2) def test_eq_from_different_source(self): obj1 = self._positional_metadata_constructor_( 3, positional_metadata={'foo': np.array([1, 2, 3])}) obj2 = self._positional_metadata_constructor_( 3, positional_metadata=pd.DataFrame({'foo': [1, 2, 3]}, index=['foo', 'bar', 'baz'])) self.assertReallyEqual(obj1, obj2) def test_eq_missing_positional_metadata(self): for empty in None, {}, pd.DataFrame(), pd.DataFrame(index=[]): obj = self._positional_metadata_constructor_( 0, positional_metadata=empty) self.assertReallyEqual( obj, self._positional_metadata_constructor_(0)) self.assertReallyEqual( obj, self._positional_metadata_constructor_( 0, positional_metadata=empty)) for empty in None, pd.DataFrame(index=['a', 'b']): obj = self._positional_metadata_constructor_( 2, positional_metadata=empty) self.assertReallyEqual( obj, self._positional_metadata_constructor_(2)) self.assertReallyEqual( obj, self._positional_metadata_constructor_( 2, positional_metadata=empty)) def test_ne_len_zero(self): # Both have positional metadata. obj1 = self._positional_metadata_constructor_( 0, positional_metadata={'foo': []}) obj2 = self._positional_metadata_constructor_( 0, positional_metadata={'foo': [], 'bar': []}) self.assertReallyNotEqual(obj1, obj2) # One has positional metadata. obj1 = self._positional_metadata_constructor_( 0, positional_metadata={'foo': []}) obj2 = self._positional_metadata_constructor_(0) self.assertReallyNotEqual(obj1, obj2) def test_ne_len_greater_than_zero(self): # Both have positional metadata. obj1 = self._positional_metadata_constructor_( 3, positional_metadata={'foo': [1, 2, 3]}) obj2 = self._positional_metadata_constructor_( 3, positional_metadata={'foo': [1, 2, 2]}) self.assertReallyNotEqual(obj1, obj2) # One has positional metadata. obj1 = self._positional_metadata_constructor_( 3, positional_metadata={'foo': [1, 2, 3]}) obj2 = self._positional_metadata_constructor_(3) self.assertReallyNotEqual(obj1, obj2) def test_ne_len_mismatch(self): obj1 = self._positional_metadata_constructor_( 3, positional_metadata=pd.DataFrame(index=range(3))) obj2 = self._positional_metadata_constructor_( 2, positional_metadata=pd.DataFrame(index=range(2))) self.assertReallyNotEqual(obj1, obj2) def test_copy_positional_metadata_none(self): obj = self._positional_metadata_constructor_(3) obj_copy = copy.copy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame(index=range(3))) assert_data_frame_almost_equal(obj_copy.positional_metadata, pd.DataFrame(index=range(3))) self.assertIsNot(obj.positional_metadata, obj_copy.positional_metadata) def test_copy_positional_metadata_empty(self): obj = self._positional_metadata_constructor_( 3, positional_metadata=pd.DataFrame(index=range(3))) obj_copy = copy.copy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame(index=range(3))) assert_data_frame_almost_equal(obj_copy.positional_metadata, pd.DataFrame(index=range(3))) self.assertIsNot(obj.positional_metadata, obj_copy.positional_metadata) def test_copy_with_positional_metadata(self): obj = self._positional_metadata_constructor_( 4, positional_metadata={'bar': [[], [], [], []], 'baz': [42, 42, 42, 42]}) obj_copy = copy.copy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'bar': [[], [], [], []], 'baz': [42, 42, 42, 42]}, index=range(4))) assert_data_frame_almost_equal( obj_copy.positional_metadata, pd.DataFrame({'bar': [[], [], [], []], 'baz': [42, 42, 42, 42]}, index=range(4))) self.assertIsNot(obj.positional_metadata, obj_copy.positional_metadata) self.assertIsNot(obj.positional_metadata.values, obj_copy.positional_metadata.values) self.assertIs(obj.positional_metadata.loc[0, 'bar'], obj_copy.positional_metadata.loc[0, 'bar']) obj_copy.positional_metadata.loc[0, 'bar'].append(1) obj_copy.positional_metadata.loc[0, 'baz'] = 43 assert_data_frame_almost_equal( obj_copy.positional_metadata, pd.DataFrame({'bar': [[1], [], [], []], 'baz': [43, 42, 42, 42]})) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'bar': [[1], [], [], []], 'baz': [42, 42, 42, 42]})) def test_deepcopy_positional_metadata_none(self): obj = self._positional_metadata_constructor_(3) obj_copy = copy.deepcopy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame(index=range(3))) assert_data_frame_almost_equal(obj_copy.positional_metadata, pd.DataFrame(index=range(3))) self.assertIsNot(obj.positional_metadata, obj_copy.positional_metadata) def test_deepcopy_positional_metadata_empty(self): obj = self._positional_metadata_constructor_( 3, positional_metadata=pd.DataFrame(index=range(3))) obj_copy = copy.deepcopy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame(index=range(3))) assert_data_frame_almost_equal(obj_copy.positional_metadata, pd.DataFrame(index=range(3))) self.assertIsNot(obj.positional_metadata, obj_copy.positional_metadata) def test_deepcopy_with_positional_metadata(self): obj = self._positional_metadata_constructor_( 4, positional_metadata={'bar': [[], [], [], []], 'baz': [42, 42, 42, 42]}) obj_copy = copy.deepcopy(obj) self.assertEqual(obj, obj_copy) self.assertIsNot(obj, obj_copy) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'bar': [[], [], [], []], 'baz': [42, 42, 42, 42]}, index=range(4))) assert_data_frame_almost_equal( obj_copy.positional_metadata, pd.DataFrame({'bar': [[], [], [], []], 'baz': [42, 42, 42, 42]}, index=range(4))) self.assertIsNot(obj.positional_metadata, obj_copy.positional_metadata) self.assertIsNot(obj.positional_metadata.values, obj_copy.positional_metadata.values) self.assertIsNot(obj.positional_metadata.loc[0, 'bar'], obj_copy.positional_metadata.loc[0, 'bar']) obj_copy.positional_metadata.loc[0, 'bar'].append(1) obj_copy.positional_metadata.loc[0, 'baz'] = 43 assert_data_frame_almost_equal( obj_copy.positional_metadata, pd.DataFrame({'bar': [[1], [], [], []], 'baz': [43, 42, 42, 42]})) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'bar': [[], [], [], []], 'baz': [42, 42, 42, 42]})) def test_deepcopy_memo_is_respected(self): # Basic test to ensure deepcopy's memo is passed through to recursive # deepcopy calls. obj = self._positional_metadata_constructor_( 3, positional_metadata={'foo': [1, 2, 3]}) memo = {} copy.deepcopy(obj, memo) self.assertGreater(len(memo), 2) def test_positional_metadata_getter(self): obj = self._positional_metadata_constructor_( 3, positional_metadata={'foo': [22, 22, 0]}) self.assertIsInstance(obj.positional_metadata, pd.DataFrame) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame({'foo': [22, 22, 0]})) # Update existing column. obj.positional_metadata['foo'] = [42, 42, 43] assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame({'foo': [42, 42, 43]})) # Add new column. obj.positional_metadata['foo2'] = [True, False, True] assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': [42, 42, 43], 'foo2': [True, False, True]})) def test_positional_metadata_getter_no_positional_metadata(self): obj = self._positional_metadata_constructor_(4) self.assertIsInstance(obj.positional_metadata, pd.DataFrame) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame(index=np.arange(4))) def test_positional_metadata_getter_set_column_series(self): length = 8 obj = self._positional_metadata_constructor_( length, positional_metadata={'foo': range(length)}) obj.positional_metadata['bar'] = pd.Series(range(length-3)) # pandas.Series will be padded with NaN if too short. npt.assert_equal(obj.positional_metadata['bar'], np.array(list(range(length-3)) + [np.nan]*3)) obj.positional_metadata['baz'] = pd.Series(range(length+3)) # pandas.Series will be truncated if too long. npt.assert_equal(obj.positional_metadata['baz'], np.array(range(length))) def test_positional_metadata_getter_set_column_array(self): length = 8 obj = self._positional_metadata_constructor_( length, positional_metadata={'foo': range(length)}) # array-like objects will fail if wrong size. for array_like in (np.array(range(length-1)), range(length-1), np.array(range(length+1)), range(length+1)): with self.assertRaisesRegex(ValueError, "Length of values does not match " "length of index"): obj.positional_metadata['bar'] = array_like def test_positional_metadata_setter_pandas_consumable(self): obj = self._positional_metadata_constructor_(3) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame(index=range(3))) obj.positional_metadata = {'foo': [3, 2, 1]} assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame({'foo': [3, 2, 1]})) obj.positional_metadata = pd.DataFrame(index=np.arange(3)) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame(index=np.arange(3))) def test_positional_metadata_setter_data_frame(self): obj = self._positional_metadata_constructor_(3) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame(index=range(3))) obj.positional_metadata = pd.DataFrame({'foo': [3, 2, 1]}, index=['a', 'b', 'c']) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame({'foo': [3, 2, 1]})) obj.positional_metadata = pd.DataFrame(index=np.arange(3)) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame(index=np.arange(3))) def test_positional_metadata_setter_none(self): obj = self._positional_metadata_constructor_( 0, positional_metadata={'foo': []}) assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame({'foo': []})) # `None` behavior differs from constructor. obj.positional_metadata = None assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame(index=np.arange(0))) def test_positional_metadata_setter_makes_shallow_copy(self): obj = self._positional_metadata_constructor_(3) df = pd.DataFrame({'foo': [22, 22, 0], 'bar': [[], [], []]}, index=['a', 'b', 'c']) obj.positional_metadata = df assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': [22, 22, 0], 'bar': [[], [], []]}, index=np.arange(3))) self.assertIsNot(obj.positional_metadata, df) # Original df is not mutated. orig_df = pd.DataFrame({'foo': [22, 22, 0], 'bar': [[], [], []]}, index=['a', 'b', 'c']) assert_data_frame_almost_equal(df, orig_df) # Change values of column (using same dtype). df['foo'] = [42, 42, 42] assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': [22, 22, 0], 'bar': [[], [], []]}, index=np.arange(3))) # Change single value of underlying data. df.values[0][0] = 10 assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': [22, 22, 0], 'bar': [[], [], []]}, index=np.arange(3))) # Mutate list (not a deep copy). df['bar'][0].append(42) assert_data_frame_almost_equal( obj.positional_metadata, pd.DataFrame({'foo': [22, 22, 0], 'bar': [[42], [], []]}, index=np.arange(3))) def test_positional_metadata_setter_invalid_type(self): obj = self._positional_metadata_constructor_( 3, positional_metadata={'foo': [1, 2, 42]}) with self.assertRaisesRegex(TypeError, 'Invalid positional metadata. Must be ' 'consumable by `pd.DataFrame` constructor.' ' Original pandas error message: '): obj.positional_metadata = 2 assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame({'foo': [1, 2, 42]})) def test_positional_metadata_setter_len_mismatch(self): obj = self._positional_metadata_constructor_( 3, positional_metadata={'foo': [1, 2, 42]}) # `None` behavior differs from constructor. with self.assertRaisesRegex(ValueError, '\(0\).*\(3\)'): obj.positional_metadata = None assert_data_frame_almost_equal(obj.positional_metadata, pd.DataFrame({'foo': [1, 2, 42]})) with self.assertRaisesRegex(ValueError, '\(4\).*\(3\)'): obj.positional_metadata = [1, 2, 3, 4] assert_data_frame_almost_equal(obj.positional_metadata,
pd.DataFrame({'foo': [1, 2, 42]})
pandas.DataFrame
# -*- coding: utf-8 -*- from unittest import TestCase import pandas as pd from pandas.util.testing import assert_frame_equal from datetime import datetime as dt from alphaware.base import (Factor, FactorContainer) from alphaware.preprocess import FactorStandardizer from alphaware.enums import FactorType class TestStandardizer(TestCase): def test_standardizer(self): index = pd.MultiIndex.from_product([['2014-01-30', '2014-02-28'], ['001', '002', '003', '004']], names=['trade_date', 'ticker']) data1 = pd.DataFrame(index=index, data=[1.0, 1.0, 1.2, 200.0, 0.9, 5.0, 5.0, 5.1]) factor_test1 = Factor(data=data1, name='test1') data2 =
pd.DataFrame(index=index, data=[2.6, 2.5, 2.8, 2.9, 2.7, 1.9, -10.0, 2.1])
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Mon Nov 13 12:31:33 2017 @author: Astrid """ import os import pandas as pd import numpy as np from collections import Counter import re import multiprocessing def getFileList(dir_name, ext=''): file_dir_list = list() file_list = list() for file in os.listdir(dir_name): # If no extension is specified, create list with all files if not ext: file_dir_list.append(os.path.join(dir_name, file)) file_list.append(file) # If extension is specified, create list with only ext files elif file.endswith(ext): file_dir_list.append(os.path.join(dir_name, file)) file_list.append(file) return file_list, file_dir_list def string2vec(string): vec = [] for t in string.split(): try: vec.append(float(t)) except ValueError: pass return vec def readDPJ(filename): #Read .dpj file line by line file_obj = open(filename, 'r', encoding='utf8') file = file_obj.readlines() file_obj.close() del file_obj # Search in file for lines that need to be changes, save those lines in a dataframe # Create an array with the x-discretisation grid, an array with the y-discretisation grid and an array with the assignments x_discretisation = list() y_discretisation = list() assignments = pd.DataFrame(columns=['line','type','range','name']) parameters = pd.DataFrame(columns = ['line','parameter']) l=23 #start looking on 24th line # INITIALISATION SETTINGS # Find start year and start time while l < len(file): if 'START_YEAR' in file[l]: parameters = parameters.append({'line': l,'parameter':'start year'},ignore_index=True) parameters = parameters.append({'line': l+1,'parameter':'start time'},ignore_index=True) l=l+4; break # If the parameter is not found at the end of the file, there is a problem in the code elif l == len(file)-1: print('Error: start year and start time not found') l=l+1 # MATERIAL PARAMETERS k=l # Find air layer properties - included only when using an air layer to implement an interior climate dependent on V, n, HIR and exterior climate while l < len(file): if 'air room' in file[l].lower(): while file[l].strip() != '[MATERIAL]' and '; **' not in file[l]: if 'CE' in file[l]: parameters = parameters.append({'line': l,'parameter':'room air thermal capacity'},ignore_index=True) l=l+1 continue elif 'THETA_POR' in file[l]: parameters = parameters.append({'line': l,'parameter':'room air theta_por'},ignore_index=True) l=l+1 continue elif 'THETA_EFF' in file[l]: parameters = parameters.append({'line': l,'parameter':'room air theta_eff'},ignore_index=True) l=l+1 continue elif 'THETA_80' in file[l]: parameters = parameters.append({'line': l,'parameter':'room air theta_80'},ignore_index=True) l=l+1 continue elif 'Theta_l(RH)' in file[l]: parameters = parameters.append({'line': l,'parameter':'room air sorption curve'},ignore_index=True) l=l+1 continue l=l+1 l=l+5 break # If the parameter is not found at the end of the file, there is no air layer. We must start looking for the next parameter from the same begin line, so we don't skip part of the file. elif l == len(file)-2: l=k break l=l+1 # WALLS # Find wall conditions while l < len(file): if '[WALL_DATA]' in file[l]: parameters = parameters.append({'line': l+2,'parameter':'wall orientation'},ignore_index=True) parameters = parameters.append({'line': l+3,'parameter':'wall inclination'},ignore_index=True) parameters = parameters.append({'line': l+4,'parameter':'latitude'},ignore_index=True) l=l+9 break # If the parameter is not found at the end of the file, there is a problem in the code elif l == len(file)-1: print('Error: wall orientation and inclination not found') l=l+1 # CLIMATE CONDITIONS while l < len(file): if '[CLIMATE_CONDITIONS]' in file[l]: k=l break elif l == len(file)-1: print('Error: climate conditions section not found') l=l+1 # Find climatic conditions # Interior temperature l=k # start at beginning of climate conditions while l < len(file): if 'TEMPER' in file[l] and 'inside' in file[l+1].lower(): parameters = parameters.append({'line': l+3,'parameter':'interior temperature'},ignore_index=True) break # If the parameter is not found at the end of the file, there is a problem in the code elif l == len(file)-1: print('Error: interior temperature not found') l=l+1 # Exterior temperature l=k # start at beginning of climate conditions while l < len(file): if 'TEMPER' in file[l] and 'outside' in file[l+1].lower(): parameters = parameters.append({'line': l+3,'parameter':'exterior temperature'},ignore_index=True) break # If the parameter is not found at the end of the file, there is a problem in the code elif l == len(file)-1: print('Error: interior temperature not found') l=l+1 # Interior relative humidity l=k # start at beginning of climate conditions while l < len(file): if 'RELHUM' in file[l] and 'inside' in file[l+1].lower(): parameters = parameters.append({'line': l+3,'parameter':'interior relative humidity'},ignore_index=True) break l=l+1 # Exterior relative humidity l=k # start at beginning of climate conditions while l < len(file): if 'RELHUM' in file[l] and 'outside' in file[l+1].lower(): parameters = parameters.append({'line': l+3,'parameter':'exterior relative humidity'},ignore_index=True) break l=l+1 # Interior vapour pressure l=k # start at beginning of climate conditions while l < len(file): if 'VAPPRES' in file[l] and 'inside' in file[l+1].lower(): parameters = parameters.append({'line': l+3,'parameter':'interior vapour pressure'},ignore_index=True) break l=l+1 # Rain load - imposed flux on vertical surface l=k # start at beginning of climate conditions while l < len(file): if 'NORRAIN' in file[l]: parameters = parameters.append({'line': l+3,'parameter':'rain vertical surface'},ignore_index=True) break l=l+1 # Rain load - flux on horizontal surface l=k # start at beginning of climate conditions while l < len(file): if 'HORRAIN' in file[l]: parameters = parameters.append({'line': l+3,'parameter':'rain horizontal surface'},ignore_index=True) break l=l+1 # Wind direction l=k # start at beginning of climate conditions while l < len(file): if 'WINDDIR' in file[l]: parameters = parameters.append({'line': l+3,'parameter':'wind direction'},ignore_index=True) break l=l+1 # Wind velocity l=k # start at beginning of climate conditions while l < len(file): if 'WINDVEL' in file[l]: parameters = parameters.append({'line': l+3,'parameter':'wind velocity'},ignore_index=True) break l=l+1 # Direct sun radiation l=k # start at beginning of climate conditions while l < len(file): if 'DIRRAD' in file[l]: parameters = parameters.append({'line': l+3,'parameter':'direct radiation'},ignore_index=True) break l=l+1 # Diffuse sun radiation l=k # start at beginning of climate conditions while l < len(file): if 'DIFRAD' in file[l]: parameters = parameters.append({'line': l+3,'parameter':'diffuse radiation'},ignore_index=True) break l=l+1 # Cloud covering l=k # start at beginning of climate conditions while l < len(file): if 'CLOUDCOV' in file[l]: parameters = parameters.append({'line': l+3,'parameter':'cloud cover'},ignore_index=True) break l=l+1 # Sky radiation l=k # start at beginning of climate conditions while l < len(file): if 'SKYEMISS' in file[l]: parameters = parameters.append({'line': l+3,'parameter':'sky radiation'},ignore_index=True) break l=l+1 # Sky temperature l=k # start at beginning of climate conditions while l < len(file): if 'SKYTEMP' in file[l]: parameters = parameters.append({'line': l+3,'parameter':'sky temperature'},ignore_index=True) break l=l+1 # BOUNDARY CONDITIONS while l < len(file): if '[BOUNDARY_CONDITIONS]' in file[l]: k=l break elif l == len(file)-1: print('Error: boundary conditions section not found') l=l+1 # Find exterior heat transfer coefficient l=k; # start at beginning of boundary conditions while l < len(file): if 'HEATCOND' in file[l] and 'outside' in file[l+1].lower(): while file[l].strip() != '[BOUND_COND]': if 'EXCOEFF' in file[l]: parameters = parameters.append({'line': l,'parameter':'exterior heat transfer coefficient'},ignore_index=True) if 'EXCH_SLOPE' in file[l+1].strip(): l=l+1 parameters = parameters.append({'line': l,'parameter':'exterior heat transfer coefficient slope'},ignore_index=True) break l=l+1 break l=l+1 # Find interior vapour surface resistance coefficient l=k # start at beginning of boundary conditions while l < len(file): if 'VAPDIFF' in file[l] and 'inside' in file[l+1].lower(): while file[l].strip() != '[BOUND_COND]': if 'EXCOEFF' in file[l]: parameters = parameters.append({'line': l,'parameter':'interior vapour diffusion transfer coefficient'},ignore_index=True) break l=l+1 break l=l+1 # Find exterior vapour surface resistance coefficient l=k # start at beginning of boundary conditions while l < len(file): if 'VAPDIFF' in file[l] and 'outside' in file[l+1].lower(): while file[l].strip() != '[BOUND_COND]': if 'EXCOEFF' in file[l]: parameters = parameters.append({'line': l,'parameter':'exterior vapour diffusion transfer coefficient'},ignore_index=True) if 'EXCH_SLOPE' in file[l+1].strip(): l=l+1 parameters = parameters.append({'line': l,'parameter':'exterior vapour diffusion transfer coefficient slope'},ignore_index=True) break l=l+1 break l=l+1 # Find solar absorption l=k #start at beginning of boundary conditions while l < len(file): if 'SURABSOR' in file[l]: parameters = parameters.append({'line': l,'parameter':'solar absorption'},ignore_index=True) break l=l+1 # Find scale factor catch ratio l=k #start at beginning of boundary conditions while l < len(file): if 'EXPCOEFF' in file[l]: parameters = parameters.append({'line': l,'parameter':'scale factor catch ratio'},ignore_index=True) break l=l+1 # DISCRETISATION while l < len(file): if '[DISCRETISATION]' in file[l]: k=l break elif l == len(file)-1: print('Error: discretisation section not found') l=l+1 # Find discretisation l=k #start at beginning of discretisation while l < len(file): if '[DISCRETISATION]' in file[l]: x_discr_str = file[l+3] parameters = parameters.append({'line': l+3,'parameter':'x-discretisation'},ignore_index=True) y_discr_str = file[l+4] parameters = parameters.append({'line': l+4,'parameter':'y-discretisation'},ignore_index=True) # remove characters and convert to vector x_discretisation = string2vec(x_discr_str) y_discretisation = string2vec(y_discr_str) break # If the discretisation is not found at the end of the file, there is a problem in the code elif l == len(file)-1: print('Error: discretisation not found') l=l+1 # %OUTPUTS while l < len(file): if '[OUTPUTS]' in file[l]: k=l break elif l == len(file)-1: print('Error: outputs section not found') l=l+1 # Find output folder l=k # start at beginning of outputs while l < len(file): if 'OUTPUT_FOLDER' in file[l]: parameters = parameters.append({'line': l,'parameter':'output folder'},ignore_index=True) break #If the output folder is not found at the end of the file, there is a problem in the code elif l == len(file)-1: print('Error: output folder not found') l=l+1 # Find output files while l < len(file): if '[FILES]' in file[l]: l=l+3 while '; **' not in file[l]: if 'NAME' in file[l]: output_file = file[l] parameters = parameters.append({'line': l,'parameter':output_file[33:]},ignore_index=True) l=l+5 continue l=l+1 break # If the output files are not found at the end of the file, there is a problem in the code elif l == len(file)-1: print('Error: output files not found') l=l+1 # ASSIGNMENTS while l < len(file): if '[ASSIGNMENTS]' in file[l]: k=l break elif l == len(file): print('Error: assignments section not found') l=l+1 # Find assignments l=k # start at beginning of assignments while l < len(file): if 'RANGE' in file[l]: assignments = assignments.append({'line': l, 'type': file[l-1][30:-1].strip(),'range': [int(i) for i in string2vec(file[l])],'name': file[l+1][30:-1].strip()},ignore_index=True) l=l+4 continue l=l+1 #If the discretisation is not found at the end of the file, there is a problem in the code if assignments.empty: print('Error: assignments not found') return file, x_discretisation, y_discretisation, assignments, parameters def readccd(ccdfile, date=False): # Find header with open(ccdfile, 'r') as f: l = 0 for line in f: if '0:00:00' in line: header = l break l = l+1 # Read ccd value = np.loadtxt(ccdfile,skiprows=header,usecols=2,dtype='f').tolist() if date: day = np.loadtxt(ccdfile,skiprows=header,usecols=0,dtype='i').tolist() hour = np.loadtxt(ccdfile,skiprows=header,usecols=1,dtype='U').tolist() return value, day, hour else: return value def saveccd(path, value): days = int(len(value)/24) df = pd.DataFrame() df['day'] = np.repeat(list(range(days)),24).tolist() df['hour'] = ['%02d:00:00' % x for x in range(24)]*days df['value'] = value climateparam = re.sub('[0-9_]', '', os.path.basename(path)[:-4]) df.to_csv(path, header=[headerccd(climateparam),'',''], sep=' ', index=False, quotechar=' ') def headerccd(climateparam): param_header = pd.DataFrame([{'parameter':'CloudCover', 'header': 'CLOUDCOV ---'}, {'parameter':'DiffuseRadiation', 'header': 'DIFRAD W/m2'}, {'parameter':'DirectRadiation', 'header': 'DIRRAD W/m2'}, {'parameter':'ShortWaveRadiation', 'header': 'SHWRAD W/m2'}, {'parameter':'GlobalRadiation', 'header': 'SKYEMISS W/m2'}, {'parameter':'RelativeHumidity', 'header': 'RELHUM %'}, {'parameter':'VapourPressure', 'header': 'VAPPRES Pa'}, {'parameter':'SkyRadiation', 'header': 'SKYEMISS W/m2'}, {'parameter':'Temperature', 'header': 'TEMPER C'}, {'parameter':'VerticalRain', 'header': 'NORRAIN l/m2h'}, {'parameter':'HorizontalRain', 'header': 'HORRAIN l/m2h'}, {'parameter':'WindDirection', 'header': 'WINDDIR Deg'}, {'parameter':'WindVelocity', 'header': 'WINDVEL m/s'}, ]) header = param_header.loc[param_header['parameter'] == climateparam,'header'].tolist()[0] if len(header) == 0: print('Error: coud not find climate parameter header') return header def marker(param): param_mark = pd.DataFrame([{'parameter': 'wall orientation','marker': 'Deg'}, {'parameter': 'wall inclination', 'marker': 'Deg'}, {'parameter': 'interior temperature', 'marker': 'C'}, {'parameter': 'exterior temperature', 'marker': 'C'}, {'parameter': 'exterior heat transfer coefficient', 'marker': 'W/m2K'}, {'parameter': 'exterior heat transfer coefficient slope', 'marker': 'J/m3K'}, {'parameter': 'interior relative humidity', 'marker': '%'}, {'parameter': 'exterior relative humidity', 'marker': '%'}, {'parameter': 'interior vapour pressure', 'marker': 'Pa'}, {'parameter': 'exterior vapour pressure', 'marker': 'Pa'}, {'parameter': 'interior vapour diffusion transfer coefficient', 'marker': 's/m'}, {'parameter': 'exterior vapour diffusion transfer coefficient', 'marker': 's/m'}, {'parameter': 'exterior vapour diffusion transfer coefficient slope', 'marker': 's2/m2'}, {'parameter': 'solar absorption', 'marker': '-'}, {'parameter': 'scale factor catch ratio', 'marker': '-'}, {'parameter': 'output folder', 'marker': ''}, {'parameter': 'x-discretisation', 'marker': 'm'}, {'parameter': 'y-discretisation', 'marker': 'm'}, {'parameter': 'start year', 'marker': ''}, {'parameter': 'start time', 'marker': ''} ]) mark = param_mark.loc[param_mark['parameter'] == param,'marker'].tolist()[0] if len(mark) == 0: print('Error: coud not find parameter marker') return mark def nameccd(climateparam): param_name = pd.DataFrame([{'parameter': 'cloud cover','name':'CloudCover'}, {'parameter': 'diffuse radiation','name':'DiffuseRadiation'}, {'parameter': 'direct radiation','name':'DirectRadiation'}, {'parameter': 'sky radiation','name':'SkyRadiation'}, {'parameter': 'interior relative humidity','name':'RelativeHumidity'}, {'parameter': 'exterior relative humidity','name':'RelativeHumidity'}, {'parameter': 'interior vapour pressure','name':'VapourPressure'}, {'parameter': 'sky radiation','name':'SkyRadiation'}, {'parameter': 'interior temperature','name':'Temperature'}, {'parameter': 'exterior temperature','name':'Temperature'}, {'parameter': 'rain vertical surface','name':'VerticalRain'}, {'parameter': 'rain horizontal surface','name':'HorizontalRain'}, {'parameter': 'wind direction','name':'WindDirection'}, {'parameter': 'wind velocity','name':'WindVelocity'}, ]) name = param_name.loc[param_name['parameter'] == climateparam,'name'].tolist()[0] if len(name) == 0: print('Error: coud not find climate parameter name') return name def readData(args): n, files_num, delete = args output_fn, geometry_fn, elements_fn = dict(), dict(), dict() geom_x, geom_y = None, None for file in files_num: p = re.sub('[0-9_-]', '', file.split('\\')[-1][:-4]) with open(file, 'r', encoding='utf8') as f: l = 0 for line in f: # Find geometry line if 'TABLE GRID' in line: geom_x = string2vec(f.readline()) geom_y = string2vec(f.readline()) l += 2 # Find output start line if 'ELEMENTS' in line or 'SIDES 'in line: elem_f = string2vec(line) output_f = np.loadtxt(file,skiprows=l+1,usecols=tuple(range(1,len(elem_f)+1)),dtype='f') break l +=1 # Combine in dictionary geometry_fn['geom_x'], geometry_fn['geom_y'], = geom_x, geom_y elements_fn[p] = elem_f output_fn[p] = output_f if delete: os.remove(file) return output_fn, geometry_fn, elements_fn def readOutput(path, exclude=None, delete=False): # Get list of all files that need to be read files_all = getFileList(path, ext='.out')[1] files = list() if exclude: for f in files_all: if not any(e in f for e in exclude): files.append(f) else: files = files_all if not files: return [], [], [] else: # Extract output parameters from list param = list(Counter([re.sub('[0-9_-]', '', x.split('\\')[-1][:-4]) for x in files]).keys()) # Extract numbers from list num = list(Counter([re.sub('[a-zA-Z]', '', x[:-4]).split('_')[-1] for x in files]).keys()) do = [[int(x.split('-')[0]) for x in num], [int(x.split('-')[1]) for x in num]] tuples = list(zip(*do)) # Read files num_cores = multiprocessing.cpu_count()-1 pool = multiprocessing.Pool(num_cores) args = [(n, [x for x in files if re.sub('[a-zA-Z]', '', x[:-4]).split('_')[-1] == n], delete) for n in num] results = pool.map(readData, args) pool.close() pool.join() output = pd.DataFrame([x[0] for x in results], columns=param, index=
pd.MultiIndex.from_tuples(tuples)
pandas.MultiIndex.from_tuples
from collections import abc, deque from decimal import Decimal from io import StringIO from warnings import catch_warnings import numpy as np from numpy.random import randn import pytest from pandas.core.dtypes.dtypes import CategoricalDtype import pandas as pd from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, MultiIndex, Series, concat, date_range, read_csv, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.core.construction import create_series_with_explicit_dtype from pandas.tests.extension.decimal import to_decimal @pytest.fixture(params=[True, False]) def sort(request): """Boolean sort keyword for concat and DataFrame.append.""" return request.param class TestConcatenate: def test_concat_copy(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randint(0, 10, size=4).reshape(4, 1)) df3 = DataFrame({5: "foo"}, index=range(4)) # These are actual copies. result = concat([df, df2, df3], axis=1, copy=True) for b in result._mgr.blocks: assert b.values.base is None # These are the same. result = concat([df, df2, df3], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is df._mgr.blocks[0].values.base elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None # Float block was consolidated. df4 = DataFrame(np.random.randn(4, 1)) result = concat([df, df2, df3, df4], axis=1, copy=False) for b in result._mgr.blocks: if b.is_float: assert b.values.base is None elif b.is_integer: assert b.values.base is df2._mgr.blocks[0].values.base elif b.is_object: assert b.values.base is not None def test_concat_with_group_keys(self): df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) # axis=0 df = DataFrame(np.random.randn(3, 4)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1]) exp_index = MultiIndex.from_arrays( [[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]] ) expected = DataFrame(np.r_[df.values, df2.values], index=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1]) exp_index2 = MultiIndex.from_arrays([[0, 0, 0, 1, 1, 1], [0, 1, 2, 0, 1, 2]]) expected = DataFrame(np.r_[df.values, df.values], index=exp_index2) tm.assert_frame_equal(result, expected) # axis=1 df = DataFrame(np.random.randn(4, 3)) df2 = DataFrame(np.random.randn(4, 4)) result = concat([df, df2], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df2.values], columns=exp_index) tm.assert_frame_equal(result, expected) result = concat([df, df], keys=[0, 1], axis=1) expected = DataFrame(np.c_[df.values, df.values], columns=exp_index2) tm.assert_frame_equal(result, expected) def test_concat_keys_specific_levels(self): df = DataFrame(np.random.randn(10, 4)) pieces = [df.iloc[:, [0, 1]], df.iloc[:, [2]], df.iloc[:, [3]]] level = ["three", "two", "one", "zero"] result = concat( pieces, axis=1, keys=["one", "two", "three"], levels=[level], names=["group_key"], ) tm.assert_index_equal(result.columns.levels[0], Index(level, name="group_key")) tm.assert_index_equal(result.columns.levels[1], Index([0, 1, 2, 3])) assert result.columns.names == ["group_key", None] def test_concat_dataframe_keys_bug(self, sort): t1 = DataFrame( {"value": Series([1, 2, 3], index=Index(["a", "b", "c"], name="id"))} ) t2 = DataFrame({"value": Series([7, 8], index=
Index(["a", "b"], name="id")
pandas.Index
import math import logging import pandas as pd import numpy as np from scipy.sparse import csr_matrix import nltk from nltk.tokenize import sent_tokenize from spacy.cli.download import download as spacy_download try: import en_core_web_sm except ImportError: logging.warning(">Spacy en_core_web_sm not found. Downloading and installing.") spacy_download("en_core_web_sm") import en_core_web_sm from collections import Counter, defaultdict, OrderedDict import time import os from enum import Enum, auto class ParseAndModel: """ Treats data input chain. Based on this data, computes matrices for reviews and features. Usage: pm = ParseAndModel(feature_list=["sound", "battery", ["screen", "display"]], filename='../tests/data/parse_and_model/iPod.final') print(pm.model_results) """ class InputType(Enum): """ Enum holding the types of input files. """ annotated = auto() docperline = auto() def __init__(self, feature_list: list = None, filename: str = None, input_type: Enum = InputType.annotated, nlines: int = None, remove_stopwords: bool = True, start_line: int = 0, lemmatize_words: bool = True, log_base: int = None, include_title_lines: bool = True): """ :param feature_list: a list of strings and lists of strings. Individual strings will be given separate ids, lists of strings will be treated as synonyms and given the same feature id. ex. ["sound", "battery", ["screen", "display"]] :param filename: Filename for the data set :param input_type: An enum of type InputType, specifying the type of input data so the correct read function can be chosen options are "annotated" - which expects data in Santu's original format and "onedocperline" - which expects all data to be in a single file with one document per line :param nlines: Maximum number of lines from the file to read or None to read all lines :param remove_stopwords: Set to true if stop words should be removed from document sections before models are created :param start_line: Optional parameter, specific line number to start at, mostly for testing purposes :param lemmatize_words: Set to true if lemmatization should be performed on document sections before models are created :param log_base: Optional parameter to specify log base, defaults to ln if not set :param include_title_lines: Set to true to include lines as marked in title lines in the output, false otherwise only valid for annotated data input """ # Test nltk dependencies nltk_punkt = nltk.data.find('tokenizers/punkt') if nltk_punkt is None: logging.warning(" >NLTK punkt not present: downloading nltk punkt.") nltk.download('punkt') else: logging.info(" >Ok: NLTK punkt present.") # Run feature list formatter and save output (or notify user this is being skipped) self.feature_list = feature_list self.formatted_feature_list = None if self.feature_list is None: logging.warning(" >No feature list specified, skipping feature list formatting") else: self.formatted_feature_list = self.format_feature_list() # Run read annotated data (or notify user this is being skipped) if filename is None: logging.warning(" >No filename specified, skipping parse step") else: if input_type == ParseAndModel.InputType.annotated: logging.info("Reading data from annotated file") self.parsed_text = self.read_annotated_data(filename=filename, nlines=nlines, start_line=start_line, include_title_lines=include_title_lines) elif input_type == ParseAndModel.InputType.docperline: logging.info("Reading data from un-annotated file. Assuming one document per line.") self.parsed_text = self.read_file_data(filename=filename, nlines=nlines, start_line=start_line) else: raise Exception("Invalid input type. Options are 'annotated' and 'oneDocPerLine'") # Build the explicit models and store the output if self.formatted_feature_list is None: logging.warning(" >No formatted feature list present, can't build explicit models") elif self.parsed_text is None: logging.warning(" >No parsed text present, can't build explicit models") else: self.model_results = self.build_explicit_models(remove_stopwords=remove_stopwords, lemmatize_words=lemmatize_words, log_base=log_base ) # self.parsed_text2 = ParseAndModel.read_file_data(filename=filename, nlines=nlines, start_line=start_line) def format_feature_list(self) -> pd.DataFrame: """ This function takes a list of strings and/or lists of strings and converts them to a DataFrame with ids. Terms in nested lists will be treated as synonyms and given the same feature id ex. feature_list = format_feature_list(feature_list = ["sound", "battery", ["screen", "display"]]) :return: DataFrame with integer ids for each feature, synonyms are grouped together | feature (str) | feature_id (int) | feature_term_id (int) feature: string representation of the feature feature_id: integer id for the feature, will be the same for synonyms if input in nested list feature_term_id: integer id for the feature, will be unique for each string, including synonyms """ feature_list = self.feature_list feature_index = 0 feature_term_index = 0 formatted_feature_list = [] # loop through list of features for feature in feature_list: if isinstance(feature, str): formatted_feature_list.append( {"feature_term_id": feature_term_index, "feature_id": feature_index, "feature": feature}) feature_term_index += 1 elif isinstance(feature, list): for synonym in feature: if isinstance(synonym, str): formatted_feature_list.append( {"feature_term_id": feature_term_index, "feature_id": feature_index, "feature": synonym}) feature_term_index += 1 else: raise ValueError(str(feature) + '>' + str(synonym) + ' is not a string or a list of strings') else: raise ValueError(str(feature) + ' is not a string or a list of strings') feature_index += 1 feature_df = pd.DataFrame(formatted_feature_list) # Save formatted feature list to object # TODO: [nfr] remove this from here, return feature_df and make assignment in __init__ return feature_df # TODO: add tests, alterate file formats def read_annotated_data(self, filename: str, nlines: int = None, start_line: int = 0, include_title_lines: bool = True) -> dict: """ Reads in Santu's annotated files and records the explicit features and implicit features annotated in the file ex. annotated_data = read_annotated_data(filename='demo_files/iPod.final', nlines=200) ex. annotated_data = read_annotated_data(filename='demo_files/iPod.final', nlines=2) :param filename: Filename for the annotated data set :param nlines: Maximum number of lines from the file to read or None to read all lines :param start_line: Optional parameter, specific line number to start at, mostly for testing purposes :param include_title_lines: Set to true to include lines as marked in title lines in the output, false otherwise :return: a dictionary with the following data section_list: DataFrame with the following form | doc_id (int) | section_id (int) | section_text (str) | title (bool) | doc_id: integer id for the document section_id: integer id for the section section_text: cleaned (lowercase, trimmed) section text title: True if the line is a title, False otherwise feature_section_mapping: DataFrame | doc_id (int) | feature (str) | is_explicit (bool) | section_id (int) | doc_id: integer id for the document feature: the string form of the feature in the annotation is_explicit: False if the feature was marked in the annotation as an implicit mention, True otherwise section_id: integer id for the section feature_list: dictionary with each feature and the number of sections it appears in key: feature name value: number of sections in which the feature appears """ doc_id = -1 section_id = 0 section_list = [] feature_section_mapping = [] feature_list = defaultdict(int) line_number = 0 line_count = 0 with open(filename, 'r') as input_file: for line in input_file: # Skip line if before specified start if line_number < start_line: # Increment line number line_number += 1 continue else: # Increment line number line_number += 1 # Section is from new doc, increment doc id if '[t]' in line: doc_id += 1 is_title = True line_text = line.split('[t]')[1].strip().lower() # Section is from new doc, increment doc id elif line.startswith('*'): doc_id += 1 is_title = True line_text = line.split('*')[1].strip().lower() # Section not from new doc, just get cleaned text else: is_title = False line_text = line.split('##')[1].strip().lower() # If we still haven't seen a title increment the document id anyway if doc_id == -1: doc_id += 1 # Look for feature annotations attached to the line feature_string = line.split('##')[0].split(',') logging.debug(feature_string) if not is_title and feature_string[0] != '': # Loop through all the features found in the annotation for feature in feature_string: logging.debug(feature) # Check if the feature in the annotation is marked as an implicit mention if '[u]' in feature: explicit_feature = False logging.debug('implicit') else: explicit_feature = True # Get the actual text of the feature feature_text = feature.split('[@]')[0] # Add the feature and section id to the data set feature_section_mapping.append( {"doc_id": doc_id, "section_id": section_id, "feature": feature_text, "is_explicit": explicit_feature}) # Increment the feature in the unique feature list feature_list[feature_text] += 1 # Check if title lines should be included if not include_title_lines and is_title: # Check if max number of lines has been reached yet line_count += 1 if nlines is not None: if line_count >= nlines: break continue # Add section line to data set section_list.append( {"doc_id": doc_id, "section_id": section_id, "section_text": line_text, "title": is_title}) # Increment section id section_id += 1 line_count += 1 logging.debug(line) # Check if max number of lines has been reached yet if nlines is not None: if line_count >= nlines: break # Bundle and save data set # TODO: [nfr] remove this from here, return dictionary and make assignment in __init__ return dict(section_list=pd.DataFrame(section_list), feature_mapping=
pd.DataFrame(feature_section_mapping)
pandas.DataFrame
"""Implements the csv unifier""" from abc import ABC, abstractmethod import pandas as pd import sys from datetime import datetime import os class AbstractStatementTransformer(ABC): """Implements the statement class""" _COLUMNS = ["datetime", "transaction_type", "amount", "from", "to"] def __init__(self, source_csv_file_path): try: self._source_df =
pd.read_csv(source_csv_file_path)
pandas.read_csv
import os import pandas as pd import numpy as np from pandas.api.types import CategoricalDtype from imblearn.over_sampling import SMOTE DATA_PATH = '../cell-profiler/measurements' def load_data(filename, data_path=DATA_PATH): """ Read a csv file. """ csv_path = os.path.join(data_path, filename) return
pd.read_csv(csv_path)
pandas.read_csv
#!/usr/bin/env python # coding: utf-8 # In[2]: import pandas as pd import matplotlib.pyplot as plt import xlrd # In[3]: import os # In[4]: csv = [] # In[5]: path = './Data' for root, dirs, files in os.walk(path): csv.append(files) # In[6]: csv # In[7]: # Agreement_csv = ['bittorrent.csv', # 'dns.csv', # 'ftp.csv', # 'httphttps.csv', # 'pop3.csv', # 'smtp.csv', # 'ssh.csv', # 'telnet.csv'] Agreement_csv = [ 'dns.csv', 'ssh.csv', 'telnet.csv'] path = "./Data" # In[8]: def strip(data): columns = data.columns new_columns = [] for i in range(len(columns)): new_columns.append(columns[i].strip()) return new_columns # In[9]: data =
pd.DataFrame()
pandas.DataFrame
"""Multivariate Aggregator module.""" __version__ = '2.0.0' from typing import Dict, List from fastapi import FastAPI, HTTPException from pydantic import BaseModel from .core.algorithms import lstm_model from adtk.transformer import PcaReconstructionError from adtk.data import validate_series from sklearn.preprocessing import MinMaxScaler import scipy.stats as stats from statsmodels.tsa.vector_ar.var_model import VAR from tensorflow import keras import joblib import numpy as np import pandas as pd import os import shutil from fastapi.staticfiles import StaticFiles app = FastAPI( title='Multivariate Aggregator module.', docs_url='/documentation', redoc_url='/redoc', description='Multivariate aggregator based on multivariate time series data.', version=__version__ ) class ModelPath(BaseModel): '''Parameters for explanation generation''' model: str scaler: str class MultivariateTimeSeriesData(BaseModel): '''Data provided for handling model for MultiVariateTimeseriesData''' data: Dict[str, List[float]] class TrainMVTS(BaseModel): '''Data provided for traning lstm for MultiVariateTimeseriesData''' train_data: MultivariateTimeSeriesData paths: ModelPath activation: str = 'relu' optimizer: str = 'adam' loss: str = 'mae' nb_epochs: int = 300 batch_size: int = 64 validation_split: int = 0.15 patience = 20 initial_embeding_dim: int = 128 class AggregatedMVTS(BaseModel): test_data: MultivariateTimeSeriesData paths: ModelPath class BestVAR(BaseModel): train_data: MultivariateTimeSeriesData low_order: int = 1 high_order: int = 50 class TrainVAR(BaseModel): train_data: MultivariateTimeSeriesData paths: ModelPath order: int = 1 class TestVAR(BaseModel): test_data: MultivariateTimeSeriesData paths: ModelPath order: int = 1 class AggregatedPCA(BaseModel): """Parameters for PCA anomaly detection.""" test_data: MultivariateTimeSeriesData principal_component: int = 1 class AggregatedOut(BaseModel): '''Aggregated Score''' out: List[float] @app.post('/multivariate-lstm-train') async def aggregate_multivariate_lstm(mvts_data: TrainMVTS): """Apply LSTM reconstruction error to aggregate the Multivariate data""" train_x = pd.DataFrame.from_dict(mvts_data.train_data.data) # normalise scaler = MinMaxScaler() scaler = scaler.fit(train_x) train_x = scaler.transform(train_x) # reshape data train_x = train_x.reshape(train_x.shape[0], 1, train_x.shape[1]) model = lstm_model(train_x, mvts_data.initial_embeding_dim, mvts_data.loss ) try: path_to_model = os.path.join('data', mvts_data.paths.model) model.save(path_to_model) path_to_scaler = os.path.join('data', mvts_data.paths.scaler) with open(path_to_scaler, 'wb') as fo: joblib.dump(scaler, fo) return {"dump_status": "model is saved successfully"} except Exception as inst: return {"dump_status": str(inst)} @app.post('/aggregate-multivariate-lstm-score', response_model=AggregatedOut) async def aggregate_multivariate_lstm(mvts_data: AggregatedMVTS): """Apply LSTM reconstruction error to aggregate the Multivariate data""" # load model path_to_model = os.path.join('data', mvts_data.paths.model) model = keras.models.load_model(path_to_model) # get scaler path_to_scaler = os.path.join('data', mvts_data.paths.scaler) scaler = joblib.load(path_to_scaler) # get data test_x = pd.DataFrame.from_dict(mvts_data.test_data.data) # normalise test_x = scaler.transform(test_x) # reshape data test_x = test_x.reshape(test_x.shape[0], 1, test_x.shape[1]) # predict test_x_pred = model.predict(test_x) # get score test_score = list(np.mean(np.abs(test_x - test_x_pred), axis=2)[:, 0]) return AggregatedOut(out=test_score) @app.post('/best-multivariate-var-order') async def best_multivariate_var_order(mvts_data: BestVAR): """Apply VAR to find best lag order""" # get data train_data = pd.DataFrame.from_dict(mvts_data.train_data.data) # add datetime index to data train_data.index = pd.to_datetime(train_data.index, unit='ms') AIC = {} best_aic, best_order = np.inf, 0 for i in range(mvts_data.low_order, mvts_data.high_order): model = VAR(endog=train_data) var_result = model.fit(maxlags=i) AIC[i] = var_result.aic if AIC[i] < best_aic: best_aic = AIC[i] best_order = i return {"best_order": best_order} @app.post('/train-multivariate-var') async def train_multivariate_var(mvts_data: TrainVAR): """Train VAR and return var_result""" # get data train_data =
pd.DataFrame.from_dict(mvts_data.train_data.data)
pandas.DataFrame.from_dict
# coding: utf-8 import pandas as pd import numpy as np from bokeh.plotting import figure from bokeh.models import ColumnDataSource from bokeh.models import HoverTool, PanTool, WheelZoomTool, BoxSelectTool, TapTool, OpenURL from bokeh.models import GMapPlot, GMapOptions, Circle, DataRange1d, Range1d from bokeh.io import curdoc from bokeh.layouts import row, column, widgetbox, gridplot from bokeh.models.widgets import Select, Slider, TextInput, DataTable, TableColumn, Div, Select import itertools import os import logging logger = logging.getLogger(__name__) # data file locations MAP_DATA_FILE = 'proteomz_stns.csv' PROTEOMZ_DATA_FILE = 'ExampleDataset.csv' TAXA_KEYS_DATA_FILE = 'Taxa_keys.csv' # plot tools TOOLS = "box_zoom, pan, xwheel_zoom, reset" # global visual parameters TITLE_TEXT_SIZE = '20px' # introduction text INTRODUCTION_HTML = """<b>Ocean Proteomics data from <i>Falkor ProteOMZ Expedition</i> in January-February of 2016. The prototype interactive display can explore millions of protein values from over a hundred 300 liter samples collected in the Central Pacific Oxygen Minimum Zone to depths greater than 1 kilometer. Use the sliders and menus to enable scientific discovery within this novel dataset. <u>*NOTE: This is an example dataset containing <i>shuffled protein annotations.</i> Public release of this dataset coming soon. </u> """ INTRODUCTION_WIDTH = 380 INTRODUCTION_HEIGHT = 130 # map visual parameters MAP_WIDTH = 400 MAP_HEIGHT = 750 MAP_TITLE = 'ProteOMZ EXPEDITION FALKOR 2015' MAP_LAT = 7.29 MAP_LON = -145.73 MAP_ZOOM = 4 # For map to work, uncomment this line and put your own google API key (https://developers.google.com/maps/documentation/javascript/get-api-key) # MAP_API_KEY = MAP_TYPE = 'hybrid' DESELECTED_STATION_COLOR = 'white' SELECTED_STATION_COLOR = 'red' # profile visual parameters PROFILE_TITLE = 'The Vertical Distribution of Microbial Proteins' PROFILE_X_LABEL = 'Relative Abundance (Spectral Counts)' PROFILE_Y_LABEL = 'Depth in the Ocean (meters)' PROFILE_LINE_COLOR = 'red' MAX_PROFILES = 1200 PROFILE_WIDTH = 600 PROFILE_HEIGHT = 1100 # histogram visual parameters HISTOGRAM_TITLE = 'All Spectra/IDs' HISTOGRAM_X_LABEL = 'Sum of Proteins/Spectra' HISTOGRAM_WIDTH = 400 HISTOGRAM_HEIGHT = 1100 # bar chart visual parameters TAXA_BAR_TITLE = 'The Diversity of Microbial Proteins' TAXA_BAR_WIDTH = 600 TAXA_BAR_HEIGHT = 350 TAXA_BAR_COLORS = ["#e6ab02", "#1f78b4", "#b2182b", "#7570b3", "#e7298a", "#66a61e", "#d95f02", "#666666"] #, "#1b9e77"] #table settings TAXON_TABLE_WIDTH=600 TAXON_TABLE_HEIGHT=750 # initial selections ALL = 'ALL' INIT_TAXA_GROUP = ALL INIT_EC_GROUP = ALL INIT_PCTILE = 95 INIT_NUT = 'N+N' INIT_PROT = 'P1' ST_SELECT_TITLE = 'Station' NUT_SELECT_TITLE = 'Select Hydrographic Parameter for Correlation' TN_SELECT_TITLE = 'Select Microbial Taxon' EC_SELECT_TITLE = 'Major Enzyme Classes' PERCENTILE_SLIDER_TITLE = 'Percentile (Note: be patient below 90%)' EC_GROUPS = ['Oxidoreductases','Transferases', 'Hydrolases', 'Lyases', 'Isomerases', 'Ligases'] # computing axis ranges def compute_profile_axis_ranges(z, station_counts): # compute plot axis ranges for profile plot max_z, min_z = z.max(), z.min() min_c, max_c = 0, station_counts.max().max() return (max_z, min_z), (min_c, max_c) def compute_histogram_axis_ranges(histogram_datasource): # compute plot axis ranges for histogram min_h = 0 max_h = max(histogram_datasource.data['prot_cts']) * 1.5 return (min_h, max_h) # main container class Visualization(object): def __init__(self): """read data and construct plot elements in their initial state""" self.read_data() z, station_counts, hydrography_counts, all_counts, selected_nut = self.select_initial_data(self.stations[0]) self.construct_datasources(z, station_counts, hydrography_counts, all_counts, selected_nut) # create plots and widgets self.make_plots(z, station_counts, hydrography_counts, selected_nut) self.make_widgets() def read_data(self): """read data and transform into dataframes""" self._read_map_data() self._read_proteomz_with_metadata() def _read_map_data(self): # second column data source for map stn/lat/long only, single point per stn self.stn_coor = pd.read_csv(MAP_DATA_FILE, index_col=None) def _read_proteomz_with_metadata(self): """read the large spreadsheet CSV, extract sections, and reorganize into meaningful dataframes""" df = pd.read_csv(PROTEOMZ_DATA_FILE, low_memory=False) # extract metadata section of spreadsheet containing station and depth information self.cruise_metadata = df[df.columns[:11]][:103] # stations are in that column of cruise_metadata self.stations = self.cruise_metadata.Station.unique().astype(int) # extract counts section of spreadsheet all_counts = df[df.columns[21:]][:103].transpose() self.all_counts = all_counts.dropna().astype(float) #extract hydrographic data hydrography = df[df.columns[4:17]][:103].transpose() self.hydrography = hydrography.dropna().astype(float) # extract metadata section of spreadsheet containing prot id information data = df[103:] data.index=data.pop('ID') for col in data.columns[:10]: data.pop(col) prot_metadata = data.transpose() ### For taxonomy information we read a different file taxa_df =
pd.read_csv(TAXA_KEYS_DATA_FILE)
pandas.read_csv
# -*- coding: utf-8 -*- """ Key classification using multiclass Support Vector Machine (SVM) reference: Date: Jun 05, 2017 @author: <NAME> @Library: scikit-learn """ import os, glob, random import numpy as np from pandas import DataFrame from sklearn.feature_extraction.text import CountVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.svm import LinearSVC from sklearn.metrics import confusion_matrix, precision_score from sklearn.pipeline import Pipeline from sklearn.externals import joblib from sklearn.cross_validation import KFold import time import codecs import matplotlib.pyplot as plt import itertools NEW_LINE = '\r\n' TRAIN_SIZE = 0.8 def build_data_frame(data_dir): dirs = next(os.walk(data_dir))[1] class_names = [] total_amount = [] train_amount = [] test_amount = [] train_data =
DataFrame({'value': [], 'class': []})
pandas.DataFrame
from datetime import ( datetime, time, ) import numpy as np import pytest from pandas._libs.tslibs import timezones import pandas.util._test_decorators as td from pandas import ( DataFrame, Series, date_range, ) import pandas._testing as tm class TestBetweenTime: @td.skip_if_has_locale def test_between_time_formats(self, frame_or_series): # GH#11818 rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) if frame_or_series is Series: ts = ts[0] strings = [ ("2:00", "2:30"), ("0200", "0230"), ("2:00am", "2:30am"), ("0200am", "0230am"), ("2:00:00", "2:30:00"), ("020000", "023000"), ("2:00:00am", "2:30:00am"), ("020000am", "023000am"), ] expected_length = 28 for time_string in strings: assert len(ts.between_time(*time_string)) == expected_length @pytest.mark.parametrize("tzstr", ["US/Eastern", "dateutil/US/Eastern"]) def test_localized_between_time(self, tzstr, frame_or_series): tz = timezones.maybe_get_tz(tzstr) rng = date_range("4/16/2012", "5/1/2012", freq="H") ts = Series(np.random.randn(len(rng)), index=rng) if frame_or_series is DataFrame: ts = ts.to_frame() ts_local = ts.tz_localize(tzstr) t1, t2 = time(10, 0), time(11, 0) result = ts_local.between_time(t1, t2) expected = ts.between_time(t1, t2).tz_localize(tzstr) tm.assert_equal(result, expected) assert timezones.tz_compare(result.index.tz, tz) def test_between_time_types(self, frame_or_series): # GH11818 rng = date_range("1/1/2000", "1/5/2000", freq="5min") obj = DataFrame({"A": 0}, index=rng) if frame_or_series is Series: obj = obj["A"] msg = r"Cannot convert arg \[datetime\.datetime\(2010, 1, 2, 1, 0\)\] to a time" with pytest.raises(ValueError, match=msg): obj.between_time(datetime(2010, 1, 2, 1), datetime(2010, 1, 2, 5)) def test_between_time(self, close_open_fixture, frame_or_series): rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) if frame_or_series is not DataFrame: ts = ts[0] stime = time(0, 0) etime = time(1, 0) inc_start, inc_end = close_open_fixture filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = 13 * 4 + 1 if not inc_start: exp_len -= 5 if not inc_end: exp_len -= 4 assert len(filtered) == exp_len for rs in filtered.index: t = rs.time() if inc_start: assert t >= stime else: assert t > stime if inc_end: assert t <= etime else: assert t < etime result = ts.between_time("00:00", "01:00") expected = ts.between_time(stime, etime) tm.assert_equal(result, expected) # across midnight rng = date_range("1/1/2000", "1/5/2000", freq="5min") ts = DataFrame(np.random.randn(len(rng), 2), index=rng) if frame_or_series is not DataFrame: ts = ts[0] stime = time(22, 0) etime = time(9, 0) filtered = ts.between_time(stime, etime, inc_start, inc_end) exp_len = (12 * 11 + 1) * 4 + 1 if not inc_start: exp_len -= 4 if not inc_end: exp_len -= 4 assert len(filtered) == exp_len for rs in filtered.index: t = rs.time() if inc_start: assert (t >= stime) or (t <= etime) else: assert (t > stime) or (t <= etime) if inc_end: assert (t <= etime) or (t >= stime) else: assert (t < etime) or (t >= stime) def test_between_time_raises(self, frame_or_series): # GH#20725 obj = DataFrame([[1, 2, 3], [4, 5, 6]]) if frame_or_series is not DataFrame: obj = obj[0] msg = "Index must be DatetimeIndex" with pytest.raises(TypeError, match=msg): # index is not a DatetimeIndex obj.between_time(start_time="00:00", end_time="12:00") def test_between_time_axis(self, frame_or_series): # GH#8839 rng = date_range("1/1/2000", periods=100, freq="10min") ts = Series(np.random.randn(len(rng)), index=rng) if frame_or_series is DataFrame: ts = ts.to_frame() stime, etime = ("08:00:00", "09:00:00") expected_length = 7 assert len(ts.between_time(stime, etime)) == expected_length assert len(ts.between_time(stime, etime, axis=0)) == expected_length msg = f"No axis named {ts.ndim} for object type {type(ts).__name__}" with pytest.raises(ValueError, match=msg): ts.between_time(stime, etime, axis=ts.ndim) def test_between_time_axis_aliases(self, axis): # GH#8839 rng = date_range("1/1/2000", periods=100, freq="10min") ts = DataFrame(np.random.randn(len(rng), len(rng))) stime, etime = ("08:00:00", "09:00:00") exp_len = 7 if axis in ["index", 0]: ts.index = rng assert len(ts.between_time(stime, etime)) == exp_len assert len(ts.between_time(stime, etime, axis=0)) == exp_len if axis in ["columns", 1]: ts.columns = rng selected = ts.between_time(stime, etime, axis=1).columns assert len(selected) == exp_len def test_between_time_axis_raises(self, axis): # issue 8839 rng = date_range("1/1/2000", periods=100, freq="10min") mask = np.arange(0, len(rng)) rand_data = np.random.randn(len(rng), len(rng)) ts =
DataFrame(rand_data, index=rng, columns=rng)
pandas.DataFrame
import dash import dash_html_components as html from character import Character from dash.dependencies import Input, Output, State import plotly.express as px import dash_core_components as dcc import dash_bootstrap_components as dbc import layout from data import Data from user import User import numpy as np from datetime import timedelta, datetime import plotly.graph_objects as go from DataBase import databaseDF from src.models.load_data import AdvisedPortfolios, Singleton, PriceDB from skimage import io from pandas import to_numeric, to_datetime import pandas as pd import copy from pypfopt.discrete_allocation import DiscreteAllocation sheet = ['https://codepen.io/chriddyp/pen/bWLwgP.css'] app = dash.Dash(__name__, external_stylesheets=sheet, suppress_callback_exceptions=True) server = app.server user = None def show_content(): style = layout.style user = User() # global _user app.layout = html.Div(layout.main_login, id='main-layout') check = False # 3번째 탭용 테스트 데이터 세팅 # risk_profile = 4 # current_date = '2021-06-01' # userid = 'A001' # username = '안정추구형소규모' db = databaseDF() # advised_pf = AdvisedPortfolios.instance().data # print('type(advised_pf)'.format(type(advised_pf))) # print('Here is your advised_pf:') # print(advised_pf.tail(3)) # db.insert_advised_pf(advised_pf) @app.callback( Output('main-layout', 'children'), [Input('login-button', 'n_clicks'), Input('sign-up-button', 'n_clicks')], State('user-id-main', 'value') ) def show_layout(login, signup, user_id): if user.name: user.name = "" user.userid = "" user.data = Data() user.date = "" print('#1. in show_layout, login: {}, signup: {}, user_id: {}'.format(login, signup, user_id)) if 0 < login: temp = copy.deepcopy(layout.tab) temp.children[0].children = temp.children[0].children[1:] temp.children[0].value = 'analysis' user.name = copy.deepcopy(user_id) print('#3. in show_layout, login: {}, signup: {}, user.name: {}'.format(login, signup, user.name)) layout.main_login.children[2].n_clicks = 0 check = False return temp if 0 < signup: layout.main_login.children[5].n_clicks = 0 check = True layout.tab.children[0].value = 'signup' return layout.tab print('login and signup >= 0!! Despite of this, let me set user.name to be user_id {}.'.format(user.name)) return layout.main_login @app.callback( Output(layout.output_id, 'children'), Input(layout.input_id, 'value') ) def show_page(tab_input): # global _user if tab_input == 'signup': return html.Div(layout.signup) if tab_input == 'analysis': if not check: # 로그인을 했을 경우 # RA자문 탭의 이름과 자문기준일 값을 설정함. layout.analysis[0].children[1].children = '' layout.analysis[0].children[3].children = '8/1/2021 4:00:00 PM' user.date = '8/1/2021 4:00:00 PM' # layout.analysis[0].children[3].children = user.getStartDate(user.name) # layout.analysis[0].children[1].children = user.name # layout.analysis[0].children[3].children = '6/2/2021 4:00:00 PM' # 처음 로그인할 때 이게 user.name이 none이었음. # 다른 브라우저로 다른 아이디로 로그인할 때는 이 값이 사용자가 입력한 값을 가짐. # 세 번째 로그인도 잘 작동. # 네 번째 로그인도 잘 작동. # 관찰결과: user.name에 한 세션 이전의 사용자명이 저장되어 있음. # print('This is user.name: {}'.format(user.name)) return html.Div(layout.analysis) if tab_input == 'info': if not check: # 로그인을 했을 경우 layout.info[0].children[1].children = copy.deepcopy(user.name) return html.Div(layout.info) @app.callback( Output('output-div', 'children'), Input('submit-val', 'n_clicks'), State('self-understand-degree', 'value'), State('age-check', 'value'), State('invest-terms', 'value'), State('finance-ratio', 'value'), State('annual-income', 'value'), State('character-risk', 'value'), State('invest-purpose', 'value'), State('invest-experience', 'value'), State('invest-scale', 'value'), State('datetime', 'value'), State('name', 'value') ) def page1_result(n_clicks, input_1, input_2, input_3, input_4, input_5, input_6, input_7, input_8, input_9, input_10, input_11): def get_fig(source, width, height): # Create figure fig = go.Figure() # Constants img_width = width img_height = height scale_factor = 0.5 # Add invisible scatter trace. # This trace is added to help the autoresize logic work. fig.add_trace( go.Scatter( x=[0, img_width * scale_factor], y=[0, img_height * scale_factor], mode="markers", marker_opacity=0 ) ) # Configure axes fig.update_xaxes( visible=False, range=[0, img_width * scale_factor] ) fig.update_yaxes( visible=False, range=[0, img_height * scale_factor], # the scaleanchor attribute ensures that the aspect ratio stays constant scaleanchor="x" ) # Add image fig.add_layout_image( dict( x=0, sizex=img_width * scale_factor, y=img_height * scale_factor, sizey=img_height * scale_factor, xref="x", yref="y", opacity=1.0, layer="below", sizing="stretch", source=source) ) # Configure other layout fig.update_layout( width=img_width * scale_factor, height=img_height * scale_factor, margin={"l": 0, "r": 0, "t": 0, "b": 0}, ) return fig if 0 < n_clicks: tags_id = [input_1, input_2, input_3, input_4, input_5, input_6, input_7, input_8, input_9, input_10, input_11] user.name = input_11 user.date = input_10 print(user.name, user.date) character = Character(tags_id) # print('tags_id: {}'.format(tags_id)) output = html.Div([ html.Div(id='character-result') ], id='output-div') if character.empty_check(): # fig_rpt = go.Figure(go.Image(dx=1008, dy=2592, z=io.imread('./reports/figures/report-4_2021-02-26.png'))) # fig_rpt2 = go.Figure(go.Image(dx=1000, dy=600, z=io.imread('./reports/figures/ef_area-4_2021-02-26.png'))) # fig_rpt3 = go.Figure(go.Image(dx=640, dy=480, z=io.imread('./reports/figures/ef-4_2021-02-26.png'))) # fig_rpt = go.Figure().add_layout_image(source='./reports/figures/report-4_2021-02-26.png') # fig_rpt2 = go.Figure().add_layout_image(source='./reports/figures/ef_area-4_2021-02-26.png') # fig_rpt3 = go.Figure().add_layout_image(source='./reports/figures/ef-4_2021-02-26.png') answer = [] for_selected = layout.signup[3] for id in tags_id: check = False for i in range(1, len(for_selected.children), 3): for j in range(len(for_selected.children[i].options)): if for_selected.children[i].options[j]['value'] == id: answer.append(j+1) check = True break if check: break risk_avg, df, by_assetclass, score, current_date, risk_profile = character.predict( answer, first_trade=True) rpt_url = 'https://raw.githubusercontent.com/my2582/kisra_storage/main/report-{}_{}.png'.format(risk_profile, current_date) rpt2_url = 'https://raw.githubusercontent.com/my2582/kisra_storage/main/ef_area-{}_{}.png'.format(risk_profile, current_date) rpt3_url = 'https://raw.githubusercontent.com/my2582/kisra_storage/main/ef-{}_{}.png'.format(risk_profile, current_date) # print('URLs:', rpt_url, rpt2_url, rpt3_url) fig_rpt = get_fig(source=rpt_url, width=1008, height=2592) fig_rpt2 = get_fig(source=rpt2_url, width=1000, height=600) fig_rpt3 = get_fig(source=rpt3_url, width=640, height=480) result = '당신의 점수는 {0}이며 {1}형 투자자입니다. 당신에게 맞는 포트폴리오를 확인해 보세요'.format( score, risk_avg) # 파이차트 (종목별) pie = px.pie(df, names=df.loc[:, 'itemname'], values=df.loc[:, 'weights'], title="추천 포트폴리오", color_discrete_sequence=px.colors.qualitative.Set3) # print('-=-=-=-df.columns-=-=-=-=-') # print(df.columns) # 바 차트(자산군별) bar_chart = px.bar(by_assetclass, y='weights', x='asset_class', title='자산군별 비중', labels={'asset_class': '자산군', 'weights': '비중'}, orientation='v', color="asset_class", color_continuous_scale='darkmint', template='plotly_dark') output.children[0].children = result if len(output.children) < 3: fig = dcc.Graph(id='pie-chart') fig.figure = pie fig.figure.layout.paper_bgcolor = style['pie_chart_style']['backgroundColor'] fig_bar = dcc.Graph(id='bar-chart') fig_bar.figure=bar_chart fig_bar.figure.layout.paper_bgcolor = style['pie_chart_style']['backgroundColor'] output.children.append(fig) output.children.append(fig_bar) # print('------------fig---------------') # fig_show = html.Img(class_='picture-show', src="./reports/figures/report-4_2021-02-26.png") # href = html.A('Download readMe.pdf', download='./reports/figures/report-4_2021-02-26.png', href='/readMe.pdf') # output.children.append(href) output.style = style['pie_chart_style'] # fig_rpt['layout'].update(width=1008, height=2592, autosize=False) # fig_rpt2['layout'].update(width=1000, height=600, autosize=False) # fig_rpt3['layout'].update(width=640, height=480, autosize=False) output.children.append(dcc.Graph(id="fig-image", figure=fig_rpt, config={'doubleClick': 'reset'})) output.children.append(dcc.Graph(id="fig2-image", figure=fig_rpt2, config={'doubleClick': 'reset'})) output.children.append(dcc.Graph(id="fig3-image", figure=fig_rpt3, config={'doubleClick': 'reset'})) return output warning = '비어있는 항목이 있습니다! 전부 체크해 주세요' if 2 < len(output.children): output.children = output.children[:-1] output.children[0].children = warning output.style = style['pie_chart_style'] return output def page2_result(content, date, ret, vol, df_comp): if type(content) == str: return dcc.ConfirmDialog( id='confirm', message=content ) table_title1 = [html.Thead(html.Tr([html.H4("리밸런싱 전/후 비교")]))] table_title2 = [html.Thead(html.Tr([html.H4("자산별 구성 및 운용성과")]))] table_title3 = [html.Thead(html.Tr([html.H4("리밸런싱 과거 내역")]))] table_header_comp = [ html.Thead(html.Tr([html.Th(col) for col in list(df_comp.columns)])) ] print('table_header_comp is : {}'.format(table_header_comp)) print('in page2_result, df_comp is', df_comp) rows = df_comp.values.tolist() # print(rows) comp_row = list() for row in rows: temp = [html.Td(record) for record in row] comp_row.extend([html.Tr(temp)]) print('in page2_result, comp_row is', comp_row) table_header = [ html.Thead(html.Tr([html.Th("시점"), html.Th("Cash"), html.Th( "Equity"), html.Th("Fixed Income"), html.Th("Alternative"), html.Th("Total"), html.Th("누적수익률(%)"), html.Th("변동성(%)")])) ] # print('content.date: {}'.format(content.date)) # print('date: {}'.format(date)) latest_content = content.loc[content.date==date, :] latest_content.value = to_numeric(latest_content.value) print('content.columns: {}'.format(content.columns)) print('content.shape: {}'.format(content.shape)) print('content: {}'.format(content)) # print('----------------------------') # print('latest_content.shape: {}'.format(latest_content.shape)) # print('latest_content.columns: {}'.format(latest_content.columns)) # print('latest_content: {}'.format(latest_content)) # print('latest_content.date: {}, date: {}'.format(latest_content.date, date)) # print('latest_content[latest_content[asset_class] == Cash][value]: {}'.format(latest_content.loc[latest_content.asset_class == 'Cash', 'value'])) summary = latest_content.loc[:, ['asset_class', 'value']].groupby('asset_class').sum().reset_index() total = summary.value.sum() total = '{:,}'.format(int(total)) latest_content.value = latest_content.value.astype(int).apply(lambda x : "{:,}".format(x)) summary.value = summary.value.astype(int).apply(lambda x : "{:,}".format(x)) row1 = html.Tr([html.Td("현재"), html.Td(summary.loc[summary.asset_class == 'Cash', 'value']), html.Td(summary.loc[summary.asset_class == 'Equity', 'value']), html.Td(summary.loc[summary.asset_class == 'Fixed Income', 'value']), html.Td(summary.loc[summary.asset_class == 'Alternative', 'value']), html.Td(total), html.Td('{:.1f}'.format(float(ret)*100)), html.Td('{:.1f}'.format(float(vol)*100)) ]) # print('----page2_result에서 상세내역 찍기 시작---') # result = user.closeData(select, name=user.name, date=user.date, choice=False) # print('content 첫줄 보면..') # print(content.iloc[:1, :3]) # 과거 내역(detail) 중 리밸런싱이 발생한 날짜의 레코드만 result = content.loc[content.original == 'Rebal', :] print('content.shape: {}, result.shape: {}'.format(content.shape, result.shape)) # RA자문 탭에서 상세잔고내역의 컬럼명/컬럼순서 변경 result = result.loc[:, ['date', 'name', 'itemname', 'price', 'quantity', 'value', 'wt', 'original']] result.date = to_datetime(result.date).dt.strftime('%Y-%m-%d') result.loc[:, ['price', 'quantity', 'value']] = result.loc[:, ['price', 'quantity', 'value']].astype(float).astype(int).applymap(lambda x : "{:,}".format(x)) result.loc[:, ['wt']] = (result.loc[:, ['wt']].astype(float)*100).applymap(lambda x : "{:.1f}".format(x)) result = result.rename(columns={ 'date':'날짜', 'name':'이름', 'itemname': '종목명', 'price': '종가', 'quantity': '보유수량', 'value': '평가금액', 'wt': '비중(%)', 'original': '납입금여부' }) table_header_detail = [ html.Thead(html.Tr([html.Th(col) for col in list(result.columns)])) ] rows = result.values.tolist() # print(rows) table_row = list() for row in rows: temp = [html.Td(data) for data in row] table_row.extend([html.Tr(temp)]) print('table_header_detail is {}'.format(table_header_detail)) print('in page2_result, table_row is', table_row) return html.Div([dbc.Table(table_title1, bordered=False, style = {'margin-top' : '18px', 'margin-bottom' : '10px', 'text-align' : 'left', 'paddingLeft': 12}), dbc.Table(table_header_comp + [html.Tbody(comp_row)], bordered=True, style = {'margin-top' : '18px', 'margin-bottom' : '10px', 'text-align' : 'left', 'paddingLeft': 12}), dbc.Table(table_title2, bordered=False, style = {'margin-top' : '18px', 'margin-bottom' : '10px', 'text-align' : 'left', 'paddingLeft': 12}), dbc.Table(table_header + [html.Tbody([row1])], bordered=True, style = {'margin-top' : '18px', 'margin-bottom' : '10px', 'text-align' : 'left', 'paddingLeft': 12}), dbc.Table(table_title3, bordered=False, style = {'margin-top' : '18px', 'margin-bottom' : '10px', 'text-align' : 'left', 'paddingLeft': 12}), dbc.Table(table_header_detail + [html.Tbody(table_row)], bordered=True, style = {'margin-top' : '18px', 'margin-bottom' : '10px', 'text-align' : 'left', 'paddingLeft': 12})]) # return html.Div([dbc.Table(table_title1, bordered=False), # dbc.Table(table_header_comp + [html.Tbody(comp_row)], bordered=True), # dbc.Table(table_title3, bordered=False), # dbc.Table(table_header_detail + [html.Tbody(table_row)], bordered=True)]) # return html.Div([dbc.Table(table_title1, bordered=False), # dbc.Table(table_header_comp + [html.Tbody(comp_row)], bordered=True), # dbc.Table(table_title3, bordered=False), # dbc.Table(table_header_detail + [html.Tbody(table_row)], bordered=True)]) def changePeriod(select): for idx, sel in enumerate(select): if select[idx] < 12: select[idx] = (12-select[idx])*30 continue if select[idx] < 14: select[idx] = (14-select[idx])*7 continue select[idx] = 17-select[idx] return select def page3Layout(result, from_date, allowable): chart, table = result print('chart: {}, chart.keys(): {}'.format(chart, chart.keys())) print('table: {}'.format(table)) pie = px.pie( chart, names=chart['asset_class'].tolist(), values=chart['wt'].tolist()) fig = dcc.Graph(id='pie-chart-page3') fig.figure = pie table_header = [ html.Thead(html.Tr([html.Th("종목명"), html.Th( "평가액"), html.Th("비중(%)"), html.Th("자산군")])) ] informations = table.loc[:, ['itemname', 'value', 'wt', 'asset_class']] # informations.loc[:, 'wt'] = informations.loc[:, 'wt']*100 total_value = informations.value.str.replace(',','').astype(float).sum() total_value = '{:,}'.format(round(total_value)) informations.wt = informations.wt.str.replace(',','').astype(float) total_wt = informations.wt.sum() total_wt = '{:.1f}'.format(float(total_wt)) informations.wt = informations.wt.apply(lambda x: '{:.1f}'.format(x)) sumOfInfo = [html.Td('계'), html.Td(total_value), html.Td(total_wt), html.Td('')] informations = informations.values.tolist() table_row = list() for row in informations: temp = [html.Td(data) for data in row] table_row.extend([html.Tr(temp)]) table_row.extend([html.Tr(sumOfInfo)]) table_result = html.Div( dbc.Table(table_header + [html.Tbody(table_row)], bordered=True)) x_axis = [from_date] now = from_date while now < allowable: now += timedelta(days=30) x_axis.append(now) y_axis = np.random.randn(2, len(x_axis)).tolist() y_axis[0].sort() y_axis[1].sort() # fig_2 = dcc.Graph(id='line-chart') # fig_line = go.Figure() # fig_line.add_trace(go.Scatter( # x=x_axis, y=y_axis[0], mode='lines+markers', name='before')) # fig_line.add_trace(go.Scatter( # x=x_axis, y=y_axis[1], mode='lines+markers', name='after')) # fig_2.figure = fig_line return html.Div([fig, table_result]) def rebalance(rebal_date, price_d, detail, new_port): ''' Rebalance a portfolio. Parameters: rebal_date: str rebalancing date detail: DataFrame current balance price_d: DataFrame price data on rebal_date new_port: DataFrame A new portfolio. Your current portfolio in `detail` will be rebalanced toward `new_port`. ''' trading_amt = detail.value.sum() wt = new_port[['itemcode', 'weights']].set_index('itemcode').to_dict()['weights'] pr = new_port[['itemcode', 'price']].set_index('itemcode').squeeze() da = DiscreteAllocation(weights=wt, latest_prices=pr, total_portfolio_value=trading_amt) allocation, remaining_cash = da.greedy_portfolio() print("리밸런싱 결과:") print("{}: 새 포트폴리오(종목코드:수량)-{}".format(rebal_date,allocation)) print(" - 매매 후 잔액: {:.2f} KRW".format(remaining_cash)) # 매매한 뒤의 레코드 생성 df_qty = pd.DataFrame.from_dict(allocation, orient='index', columns=['quantity']) next_detail = new_port.merge(df_qty, left_on='itemcode', right_index=True, how='inner') next_detail['cost_price'] = next_detail.price.copy() next_detail['cost_value'] = next_detail.cost_price*next_detail.quantity next_detail['value'] = next_detail.cost_value.copy() # 매매하고 남은 돈은 현금으로 df_cash = { 'itemcode': 'C000001', 'quantity': remaining_cash, 'cost_price': 1, 'price':1, 'cost_value': remaining_cash, 'value': remaining_cash, 'itemname': '현금', 'asset_class': 'Cash' } df_cash = pd.DataFrame.from_dict(df_cash, orient='index').T next_detail = pd.concat((next_detail[['itemcode', 'quantity', 'cost_price', 'price', 'cost_value', 'value', 'itemname', 'asset_class']], df_cash), axis=0) next_detail['wt'] = next_detail.value/next_detail.value.sum() next_date = datetime.strptime(rebal_date, '%Y-%m-%d') #next_date = str(next_date.month)+'/'+str(next_date.day)+'/'+str(next_date.year)+' 03:30:00 PM' next_detail['date'] = next_date next_detail.reset_index(drop=True, inplace=True) next_detail['group_by'] = '' next_detail = pd.merge(next_detail, price_d.loc[price_d.date==rebal_date, ['date', 'itemcode']], left_on=['date', 'itemcode'], right_on=['date', 'itemcode'], how='left') next_detail['username'] = username next_detail['userid'] = userid next_detail['original'] = 'Rebal' next_detail = next_detail.rename(columns={'weights':'wt'}) next_detail = next_detail[['itemcode', 'quantity', 'cost_price', 'price', 'cost_value', 'value', 'itemname', 'asset_class', 'date', 'userid', 'username', 'group_by', 'original', 'wt']] return next_detail def get_next_portfolio(first_trade=False, new_units=None, prices=None, remaining_cash=None, detail=None): price_db = PriceDB.instance().data advised_pf = AdvisedPortfolios.instance().data # 시뮬레이션 기간은 현재일(current_date) 다음 날부터 추천 포트폴리오가 존재하는 마지막날까지임. dates = advised_pf.loc[(advised_pf.risk_profile == risk_profile) & ( advised_pf.date > current_date), 'date'].min() rebal_dates = dates dt = rebal_dates # dt랑 rebal_dates, dates 다 똑같음. print('리밸런싱 일자: ', rebal_dates) # return할 때 필요한 첫날의 추천 포트 폴리오와 asset class별 정보 수집 new_port = advised_pf.loc[(advised_pf.date == rebal_dates) & ( advised_pf.risk_profile == risk_profile), :] first_advised_port = new_port.loc[:, ['weights', 'itemname', 'itemcode']].groupby( ['itemname', 'itemcode']).sum().reset_index() by_assetclass = new_port.loc[:, ['weights', 'asset_class']].groupby( 'asset_class').sum().sort_values('weights', ascending=False).reset_index() # next_detail = copy.deepcopy(detail) next_detail = detail all_the_nexts =
pd.DataFrame(columns=next_detail.columns)
pandas.DataFrame
# text_association.py - calculates the similarity between the text and the influencers import pandas as pd from .text_cleaner import * import re from collections import Counter import numpy as np import pickle from scipy.special import softmax import tensorflow as tf class TextProcessor(object): def __init__(self): # Load the required files with open("text_processing/finetuned_s90_10_word_trait_array.pickle", "rb") as f: self.word_df = pickle.load(f) # Generate word map from AGDS self.word_map = self.word_df.columns.tolist() # Read archetype list and clean it up self.arch_df = pd.read_csv("text_processing/archetypes_pl_new.csv", header=0, index_col=0) self.arch_df = self.arch_df.fillna(2) self.arch_df = self.arch_df[~self.arch_df.index.duplicated(keep='first')] # Generate trait list self.trait_list = self.arch_df.columns.tolist() # Load LSTM model self.test_model = tf.keras.models.load_model("text_processing/nn_model") def extract_hashtags(self, post_text): HASH_RE = re.compile(r"\#\w+") out_list = re.findall(HASH_RE, post_text) return out_list def get_trait_dot_product(self, post_text: str) -> list: # Filter out the text filtered_post = remove_stopwords(clean_up_text(post_text)) filtered_post += self.extract_hashtags(post_text) # Create a vector for dot product vector post_vector = [0] * len(self.word_map) # Calculate word occurrences word_ctr = Counter(filtered_post) for word, freq in word_ctr.items(): if word in self.word_map: post_vector[self.word_map.index(word)] = freq # Calculate dot product for a given text word_dot = self.word_df.dot(post_vector) out_vec = pd.Series() for trait in self.trait_list: out_vec = out_vec.append(pd.Series([np.argmax(softmax(word_dot.loc[trait]))], index=[trait])) return out_vec # Trait accuracy - round the results def natural_round(x: float) -> int: out = int(x // 1) return out + 1 if (x - out) >= 0.5 else out def accuracy_per_trait(input_vector: pd.Series, annotated_vector: pd.Series) -> np.array: out_array = np.array([0] * 37, dtype=np.int) for i in range(len(out_array)): if input_vector[i] == annotated_vector[i]: out_array[i] = 1 return out_array # Method for calculating the similarity def calculate_similarity(self, post_text: str) -> (pd.Series, pd.Series): # Calculate word-trait dot product post_result = self.get_trait_dot_product(post_text) # Generate new dataframe - one row per influencer inf_df =
pd.Series(index=self.arch_df.index)
pandas.Series
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Jan 13 11:22:34 2022 @author: mariaolaru """ import os import pandas as pd import numpy as np import statsmodels.api as sm import scipy.stats as stat import xarray as xr from matplotlib import pyplot as plt import math from sklearn.preprocessing import MinMaxScaler, StandardScaler, MaxAbsScaler, RobustScaler from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score import torch from torch.utils.data import TensorDataset, DataLoader import torch.optim as optim from datetime import date import datetime def get_files(data_dir): files = [f for f in os.listdir(data_dir) if os.path.isfile(os.path.join(data_dir, f))] if '.DS_Store' in files: i = files.index('.DS_Store') del files[i] return files def make_dir(fp, dirname): path = os.path.join(fp, dirname) if not os.path.isdir(path): os.mkdir(path) return path def preproc_data(df, label, file=None): if label == 'pkg': df_out = df[df['Off_Wrist'] == 0] col_keep = ['Date_Time', 'BK', 'DK', 'Tremor_Score'] df_out = df_out.loc[:, col_keep] df_out = df_out.rename(columns={'Date_Time': 'pkg_dt', 'BK': 'pkg_bk', 'DK': 'pkg_dk', 'Tremor_Score': 'pkg_tremor'}) df_out['pkg_bk'] = df_out['pkg_bk']*-1 elif label == 'apple': df_out = df.rename(columns={'time': 'timestamp'}) if 'tremor' in file: df_out = df_out.rename(columns={'probability': 'apple_tremor'}) if 'dyskinesia' in file: df_out = df_out.rename(columns={'probability': 'apple_dk'}) return df_out def merge_targets(dfp, df_out): if df_out.empty: return dfp df_merged = df_out.merge(dfp, how='outer') return df_merged def print_loop(i, num, message, file): print('(' + str(i+1) + '/' + str(num) + ') ' + message + ': ', file) def preproc_files(data_dir): files = get_files(data_dir) nfiles = len(files) df_pkg = pd.DataFrame([]) df_apple = pd.DataFrame([]) for i in range(nfiles): file = files[i] print_loop(i, nfiles, 'preprocessing file', file) file_fp = os.path.join(data_dir, file) df = pd.read_csv(file_fp) if 'BK' in df.columns: #pkg data dfp = preproc_data(df, 'pkg') df_pkg = merge_targets(dfp, df_pkg) pkg_dir = make_dir(data_dir, 'orig_pkg') os.replace(file_fp, os.path.join(pkg_dir, file)) if 'time' in df.columns: #apple data dfp = preproc_data(df, 'apple', file) df_apple = merge_targets(dfp, df_apple) apple_dir = make_dir(data_dir, 'orig_apple') os.replace(file_fp, os.path.join(apple_dir, file)) if not df_pkg.empty: out_pkg_file = 'pkg_2min_scores.csv' df_pkg.to_csv(os.path.join(data_dir, out_pkg_file), index=False) if not df_apple.empty: out_apple_file = 'apple_1min_scores.csv' df_apple.to_csv(os.path.join(data_dir, out_apple_file), index=False) def pivot_df(df): #assumes values of pivot table are in column #1 and columns are column #0 & #2 dfp = df.pivot_table(index = df.index, values = [df.columns[1]], columns = [df.columns[0], df.columns[2]]) dfp.columns = ['_'.join(map(str, col)) for col in dfp.columns] return dfp def average_2min_scores(df_psd): #find indices of timestamp on even minutes s = pd.Series(df_psd.index.minute % 2 == 1) odd_i = s[s].index.values odd_prev_i = odd_i-1 diff = (df_psd.index[odd_i] - df_psd.index[odd_prev_i]).astype('timedelta64[m]') s = pd.Series(diff == 1) s_i = s[s].index.values keep_i = odd_i[s_i] if keep_i[0] == 0: keep_i = np.delete(keep_i, 0) ts_2min = df_psd.index[keep_i] colnames = df_psd.columns colnames_2min = [sub.replace('min1', 'min2') for sub in colnames] df_psd_avg1 = df_psd.iloc[keep_i, :].reset_index(drop=True).to_numpy() df_psd_avg2 = df_psd.iloc[keep_i-1, :].reset_index(drop=True).to_numpy() df_avg = np.mean([df_psd_avg1, df_psd_avg2], axis=0) df_psd_2min = pd.DataFrame(data = df_avg, columns = colnames_2min, index = ts_2min) return df_psd_2min def add_2min_scores(df_psd): colnames = df_psd.columns addl = 'min1_' addl_colnames = [addl + s for s in colnames] df_psd.columns = addl_colnames df_psd_2min = average_2min_scores(df_psd) df_merged = df_psd.merge(df_psd_2min, how = 'outer', left_index = True, right_index = True) return df_merged def merge_df(df_psd, df_target, get_2min_scores=False): if len(df_psd.index.unique()) < len(df_psd.index): #assumes this is long-form power spectra data df_psd = pivot_df(df_psd) if (get_2min_scores==True): df_psd = add_2min_scores(df_psd) if df_target.empty: return df_psd df_out = df_target.merge(df_psd, left_index=True, right_index=True, sort = True) return df_out def add_timestamps(df, file): colname = 'timestamp' unit = 'ms' ts_pkg = 'pkg_dt' ts_out = 'timestamp_dt' if ts_pkg in df.columns: colname = ts_pkg unit = 'ns' elif colname in df.columns: if len(str(int(df['timestamp'].head(1).values))) == 10: unit = 's' elif colname not in df.columns: raise ValueError('This file does not contain a timestamp column header: ' + file) df[ts_out] = pd.to_datetime(df[colname], unit = unit) if colname == ts_pkg: df[ts_out] = df[ts_out] df[ts_out] = df[ts_out] + pd.DateOffset(minutes=1) df = df.drop(ts_pkg, axis = 1) else: df[ts_out] = df[ts_out] - pd.Timedelta(7, unit = 'hours') #Assumes local time is America/Los_Angeles df = df.set_index([ts_out]) return df def check_overlap(colnames, feature_key, target_list): merge_data = False if colnames[1] in target_list: merge_data = True if feature_key in colnames: merge_data = True return merge_data def merge_dfs(data_dir, feature_key, targets): files = get_files(data_dir) nfiles = len(files) df_out = pd.DataFrame([]) for i in range(nfiles): file = files[i] file_fp = os.path.join(data_dir, file) df = pd.read_csv(file_fp) df = add_timestamps(df, file) merge_data = check_overlap(df.columns, feature_key, targets) if merge_data: print_loop(i, nfiles, 'merging file', file) df_out = merge_df(df, df_out, get_2min_scores=True) df_out = order_features(df_out, feature_key) #Assumes feature_key has spectra that is not ordered #df_out = df_out.dropna() if feature_key == 'spectra': feature_i = [j for j, s in enumerate(df_out.columns) if feature_key in s] df_out.iloc[:, feature_i] = np.log10(df_out.iloc[:, feature_i]) return df_out def scale_data(df, scaler_type): scaler = get_scaler(scaler_type) df_scale = pd.DataFrame(data = scaler.fit_transform(df), columns = df.columns, index = df.index) return df_scale def get_scaler(scaler): scalers = { "minmax": MinMaxScaler, "standard": StandardScaler, "maxabs": MaxAbsScaler, "robust": RobustScaler, } return scalers.get(scaler.lower())() def get_targets(colnames, target_list): targets = list(set(target_list) & set(colnames)) return targets def get_frequencies(colnames): frequencies = np.array([]) for i in range(len(colnames)): if '+' in colnames[i]: #assumes frequency column headers include contact channel w/ '+' x = colnames[i].split('_')[-2] x = float(x) frequencies = np.append(frequencies, x) return np.unique(frequencies) def sort_contacts(contacts): num_contacts = len(contacts) contacts_sorted = np.empty(num_contacts, dtype='<U32') contact_start = np.zeros(num_contacts) for i in range(num_contacts): contact_end_i = contacts[i].find('-') contact_start[i] = int(contacts[i][1:contact_end_i]) contacts_sorted_i = np.argsort(contact_start) for i in range(num_contacts): contacts_sorted[i] = contacts[contacts_sorted_i[i]] return contacts_sorted def get_contacts(colnames): contacts = np.array([]) for i in range(len(colnames)): if '+' in colnames[i]: #assumes channel column headers include '+' x = '+' + colnames[i].split('+')[1] contacts = np.append(contacts, x) contacts = sort_contacts(np.unique(contacts)) return contacts def order_features(df, feature_key): feature_i = [j for j, s in enumerate(df.columns) if feature_key in s] target_i = list(set(np.arange(0, df.shape[1])).difference(feature_i)) colnames = df.columns[feature_i] contacts = get_contacts(colnames) df_ordered = pd.DataFrame([]) for contact in contacts: contact_i = [i for i, s in enumerate(df.columns) if contact in s] df_ordered = pd.concat([df_ordered, df.iloc[:, contact_i]], axis = 1) df_out = pd.merge(df_ordered, df.iloc[:, target_i], left_index = True, right_index = True) return df_out def get_psd(df, feature_key): feature_i = [j for j, s in enumerate(df.columns) if feature_key in s] df_in = df.iloc[:, feature_i] contacts = get_contacts(df_in.columns) frequencies = get_frequencies(df_in.columns) return [df_in, contacts, frequencies] def reshape_data(df, feature_key, targets, psd_only = False): [df_psd, contacts, frequencies] = get_psd(df, feature_key) df_psd.index.name = 'measure' description = 'spectral overlaid increments' da = c2dto4d(df_psd, contacts, frequencies, description) if (psd_only == True): return da cols_keep = list(set(targets) & set(df.columns)) data_keep = df.loc[:, cols_keep] da_redund = xr.DataArray( dims = ['time_interval', 'contact', 'measure', 'feature'], coords = dict( time_interval = da['time_interval'].values, contact = da['contact'].values, measure = data_keep.index, feature = cols_keep)) for i in range(len(da_redund['contact'].values)): contact = da_redund['contact'].values[i] da_redund.loc[dict(contact = contact)] = data_keep.values da = xr.concat([da, da_redund], dim='feature') return da def get_single_meta_data(index, interval): df_variable = pd.DataFrame(columns = ['start_date', 'stop_date', 'hours', 'minutes']) start_date = np.array([0, 0, 0]) start_date[0] = pd.DatetimeIndex(index).year[0] start_date[1] = pd.DatetimeIndex(index).month[0] start_date[2] = pd.DatetimeIndex(index).day[0] stop_date = np.array([0,0,0]) stop_date[0] = pd.DatetimeIndex(index).year[len(index)-1] stop_date[1] = pd.DatetimeIndex(index).month[len(index)-1] stop_date[2] = pd.DatetimeIndex(index).day[len(index)-1] df_variable.loc[0, 'start_date'] = str(start_date[0]) + '-' + str(start_date[1]) + '-' + str(start_date[2]) df_variable.loc[0, 'stop_date'] = str(stop_date[0]) + '-' + str(stop_date[1]) + '-' + str(stop_date[2]) h = math.floor(len(index)/interval/60) m = math.floor(((len(index)/interval/60)-h)*60) df_variable.loc[0, 'hours'] = h df_variable.loc[0, 'minutes'] = m return df_variable def get_meta_data(data_dir, feature_key): files = get_files(data_dir) nfiles = len(files) df_psd = pd.DataFrame([]) df_pkg = pd.DataFrame([]) df_apple = pd.DataFrame([]) df_times = pd.DataFrame(columns = ['start_date', 'stop_date', 'hours', 'minutes'], index = ['psd', 'pkg', 'apple', 'psd-pkg', 'psd-apple', 'pkg-apple', 'psd-pkg-apple']) for i in range(nfiles): file = files[i] print_loop(i, nfiles, 'processing data', file) file_fp = os.path.join(data_dir, file) df = pd.read_csv(file_fp) if 'pkg' in file: df_pkg = add_timestamps(df, file) interval = 2 df_times.loc['pkg', :] = get_single_meta_data(df_pkg.index, interval).values elif 'apple' in file: df_apple = add_timestamps(df, file) df_apple = df_apple.drop(['timestamp'], axis = 1) interval = 1 df_times.loc['apple', :] = get_single_meta_data(df_apple.index, interval).values elif 'psd' in file: df_psd = add_timestamps(df, file) df_psd = df_psd.drop(['timestamp'], axis = 1) interval = 1 df_times.loc['psd', :] = get_single_meta_data(df_psd.index.unique(), interval).values if (not df_pkg.empty) & (not df_psd.empty): df_pkg_psd = merge_df(df_psd, df_pkg) if not df_pkg_psd.empty: interval = 2 df_times.loc['psd-pkg', :] = get_single_meta_data(df_pkg_psd.index, interval).values if (not df_apple.empty) & (not df_psd.empty): df_apple_psd = merge_df(df_psd, df_apple) if not df_apple_psd.empty: interval = 1 df_times.loc['psd-apple', :] = get_single_meta_data(df_apple_psd.index, interval).values if (not df_pkg.empty) & (not df_apple.empty): df_pkg_apple = merge_df(df_pkg, df_apple) if not df_pkg_apple.empty: interval = 1 df_times.loc['pkg-apple', :] = get_single_meta_data(df_pkg_apple.index, interval).values if (not df_pkg.empty) & (not df_apple.empty) & (not df_psd.empty): df_psd_pkg_apple = merge_df(df_psd, df_pkg_apple) if not df_psd_pkg_apple.empty: interval = 2 df_times.loc['psd-pkg-apple', :] = get_single_meta_data(df_psd_pkg_apple.index, interval).values out_dir = make_dir(data_dir, 'tables') filename = 'meta_timetable' df_times.to_csv(os.path.join(out_dir, filename+'.csv')) plot_table(df_times, data_dir, filename) return df_times def plot_table(df, data_dir, filename): fig, ax = plt.subplots() # hide axes fig.patch.set_visible(False) ax.axis('off') ax.axis('tight') ax.table(cellText=df.values, colLabels=df.columns, loc='center', rowLabels=df.index) fig.tight_layout() plt.show() out_dir = make_dir(data_dir, 'tables') fig.savefig(os.path.join(out_dir, filename+'.pdf')) def get_psd_overlaps(df_times, target_list): if df_times.loc['psd-apple', :].isnull().any(): indx_rm = [i for i, s in enumerate(target_list) if 'apple' in s] target_list = np.delete(target_list, indx_rm) if df_times.loc['psd-pkg', :].isnull().any(): indx_rm = [i for i, s in enumerate(target_list) if 'pkg' in s] target_list = np.delete(target_list, indx_rm) return target_list def compute_pca_2d(df, pca, pc_labels, domain): pcs = pca.fit_transform(df.values).T columns = df.index if domain == 'frequency': pcs = pca.fit_transform(df.T.values).T columns = df.columns df_pcs = pd.DataFrame(data = pcs, columns = columns, index = pc_labels) return df_pcs def compute_pca(da_psd, ncomponents, domain): pc_nums = np.linspace(1, ncomponents, ncomponents).astype(int).astype(str).tolist() pc_labels = ['pc' + sub for sub in pc_nums] pca = PCA(n_components=ncomponents) if domain == 'frequency': da_psd = da_psd.sel(time_interval='min1') da = xr.DataArray( dims = ['contact', 'pc', 'feature'], coords=dict( contact=da_psd['contact'].values, pc=pc_labels, feature=da_psd['feature'].values, ), attrs=dict(description='PCs in ' + domain + ' domain'), ) contacts = da['contact'].values df_pc_ratio = pd.DataFrame([], columns = contacts, index = pc_labels) for i in range(len(contacts)): contact = contacts[i] df = pd.DataFrame(da_psd.sel(contact = contact).values, columns = da_psd.feature.values, index = da_psd.measure.values) df = df.dropna() df_pcs = compute_pca_2d(df, pca, pc_labels, domain) da.loc[dict(contact=contact)] = df_pcs df_pc_ratio.iloc[:, i] = pca.explained_variance_ratio_ elif domain == 'time': df_pcs = compute_pca_2d(da_psd, pca, pc_labels, domain) da = df_pcs df_pc_ratio = pca.explained_variance_ratio_ return [da, df_pc_ratio] def compute_spectra_stats(df, feature_key): [df_psd, contacts, frequencies] = get_psd(df, feature_key) feature_1min = [j for j, col in enumerate(df_psd.columns) if 'min1' in col] df_psd_1min = df_psd.iloc[:, feature_1min] #get statistics stats = pd.DataFrame([], columns = df_psd_1min.columns, index = ['mean', 'sem', 'ci_lower', 'ci_upper']) confidence_level = 0.95 degrees_freedom = df_psd_1min.shape[0] - 1 stats.loc['mean'] = df_psd_1min.mean(axis=0) stats.loc['sem'] = stat.sem(df_psd_1min, axis=0) [stats.loc['ci_lower'], stats.loc['ci_upper']] = stat.t.interval(confidence_level, degrees_freedom, stats.loc['mean'].astype(float), stats.loc['sem'].astype(float)) #convert into 3d array description = 'Summary statistics for spectra' da = c2dto3d(stats, contacts, frequencies, description) return da def train_val_test_split(X, y, test_ratio, shuffle=True): val_ratio = test_ratio / (1 - test_ratio) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_ratio, random_state = 42, shuffle=shuffle) X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=val_ratio, random_state = 42, shuffle=shuffle) return X_train, X_val, X_test, y_train, y_val, y_test def compute_correlation(df, feature_key, target): if 'apple' in target: addl = 'min1_' if 'pkg' in target: addl = 'min2_' feature_key_addl = addl + feature_key feature_i = [j for j, s in enumerate(df.columns) if feature_key_addl in s] df = df.dropna() X = df.iloc[:, feature_i] y = df.loc[:, target] df_corrs = pd.DataFrame(index = ['r', 'r_pval'], columns = X.columns) for i in range(X.shape[1]): df_corrs.iloc[:, i] = stat.pearsonr(X.iloc[:, i], y) return df_corrs def c2dto3d(df, contacts, frequencies, description): dim = len(contacts) df_3d = np.array(np.hsplit(df, dim)) da = xr.DataArray(data = df_3d, dims = ['contact', 'measure', 'feature'], coords = dict( contact=contacts, measure=df.index.values, feature=frequencies ), attrs=dict(description=description), ) return da def c2dto4d(df, contacts, frequencies, description): dim = len(contacts) df_list = [] time_intervals = ['min1', 'min2'] for i in range(len(time_intervals)): time_interval = time_intervals[i] feature_i = [j for j, s in enumerate(df.columns) if time_interval in s] dft = df.iloc[:, feature_i] df_3d = np.array(np.hsplit(dft, dim)) df_list.append(df_3d) #debug sanity check #for i in range(df.shape[0]): # plt.plot(df_3d[0,i, :], color= 'b', alpha = 0.01) df_4d = np.stack(df_list) da = xr.DataArray(data = df_4d, dims = ['time_interval', 'contact', 'measure', 'feature'], coords = dict( time_interval = time_intervals, contact=contacts, measure=df.index.values, feature=frequencies ), attrs=dict(description=description), ) return da def compute_correlations(df, feature_key, target_list): contacts = get_contacts(df.columns) frequencies = get_frequencies(df.columns) targets = list(set(target_list) & set(df.columns)) da = xr.DataArray( dims = ['target', 'contact', 'measure', 'feature'], coords=dict( target=targets, contact=contacts, measure=['r', 'r_pval'], feature=frequencies ), attrs=dict(description='Pearson r test'), ) for i in range(len(targets)): target = targets[i] print_loop(i, len(targets), 'correlating', target) df_corrs = compute_correlation(df, feature_key, target) description = 'Pearsonr for ' + target df_corrs_3d = c2dto3d(df_corrs, contacts, frequencies, description) da.loc[dict(target=target)] = df_corrs_3d return da def plot_psds(da, measure, out_gp, filename, feature_key): if measure == 'overlaid': suptitle_text = 'spectral overlay' elif measure == 'ci': suptitle_text = 'spectral summary' dirname = os.path.basename(out_gp) contacts = da['contact'].values num_plots = len(contacts) ncols = math.ceil(num_plots/2) fig, axs = plt.subplots(nrows = 2, ncols = ncols, figsize=(5*ncols, 15)) plt.rcParams.update({'font.size': 16}) plt.setp(axs[-1, :], xlabel = 'Frequencies (Hz)') plt.setp(axs[:, 0], ylabel = 'log10(Power)') fig.suptitle(dirname + ' ' + suptitle_text) colors = ['#3976AF', '#F08536', '#519D3E', '#C63A32', '#8D6BB8', '#84584E', '#D57FBE', '#BDBC45', '#56BBCC'] ylim = [-10, -2] if feature_key == 'fooof_flat': ylim = [-2, 2] for i in range(len(contacts)): contact = contacts[i] ax = fig.get_axes()[i] ax.set_ylim(ylim) ax.set_xlim([0, 100]) ax.axvspan(4, 8, color = 'grey', alpha = 0.1) ax.axvspan(13, 30, color = 'grey', alpha = 0.1) ax.axvspan(60, 90, color = 'grey', alpha = 0.1) ax.set_title(contact) if (measure == 'overlaid'): df = pd.DataFrame(da.sel(contact = contact).values, columns = da.feature.values, index = da.measure.values) alpha = 0.1 if df.shape[0] > 3000: alpha = 0.01 for j in range(df.shape[0]): df_singrow = df.iloc[j, :] ax.plot(df_singrow.index, df_singrow.values, color = colors[0], alpha = alpha) elif (measure == 'ci'): df = pd.DataFrame(da.sel(contact = contact).values, columns = da.feature, index = da.measure) ax.plot(df.columns, df.loc['mean'].astype(float), color = colors[0]) ax.fill_between(df.columns, df.loc['ci_lower'].astype(float), df.loc['ci_upper'].astype(float), alpha = 0.5, color = colors[0]) make_dir(out_gp, 'plots') out_dir= make_dir(os.path.join(out_gp, 'plots'), feature_key) fig.savefig(os.path.join(out_dir, filename)) def plot_pca(da, measure, out_gp, filename, feature_key): dirname = os.path.basename(out_gp) contacts = da['contact'].values pcs = da['pc'].values num_plots = len(contacts) ncols = math.ceil(num_plots/2) fig, axs = plt.subplots(nrows = 2, ncols = ncols, figsize=(5*ncols, 15)) plt.rcParams.update({'font.size': 16}) plt.setp(axs[-1, :], xlabel = 'Frequencies (Hz)') plt.setp(axs[:, 0], ylabel = 'component values') fig.suptitle(dirname + ' ' + 'top PCs ' + measure + ' domain') colors = ['#3976AF', '#F08536', '#519D3E', '#C63A32', '#8D6BB8', '#84584E', '#D57FBE', '#BDBC45', '#56BBCC'] for i in range(len(contacts)): contact = contacts[i] ax = fig.get_axes()[i] ax.set_xlim([0, 100]) ax.axhline(y=0, color = 'grey') ax.axvspan(4, 8, color = 'grey', alpha = 0.1) ax.axvspan(13, 30, color = 'grey', alpha = 0.1) ax.axvspan(60, 90, color = 'grey', alpha = 0.1) ax.set_title(contact) if (measure == 'frequency'): df = pd.DataFrame(da.sel(contact = contact).values, index = da.pc.values, columns = da.feature.values) for j in range(df.shape[0]): pc = pcs[j] df_sngl = df.iloc[j, :] ax.plot(df_sngl.index, df_sngl.values, color = colors[j], label = pc) elif (measure == 'time'): print('inp, need to write code') if i == 0: fig.legend(ncol = 2, loc = 'upper right', prop={"size":10}, title = 'components') make_dir(out_gp, 'plots') out_dir= make_dir(os.path.join(out_gp, 'plots'), feature_key) fig.savefig(os.path.join(out_dir, filename)) def plot_corrs(da, measure, out_gp, filename, feature_key): #dims = da.coords.dims dirname = os.path.basename(out_gp) target_vals = da['target'].values num_plots = len(target_vals) ncols = math.ceil(num_plots/2) nrows = 2 fig, axs = plt.subplots(nrows = nrows, ncols = ncols, figsize=(5*ncols, 15)) plt.rcParams.update({'font.size': 16}) xlabel = 'Frequencies (Hz)' ylabel = 'Pearson ' + measure if num_plots <= nrows: plt.setp(axs[-1], xlabel = xlabel) plt.setp(axs[:], ylabel = ylabel) else: plt.setp(axs[-1, :], xlabel = xlabel) plt.setp(axs[:, 0], ylabel = ylabel) fig.suptitle(dirname) colors = ['#3976AF', '#F08536', '#519D3E', '#C63A32', '#8D6BB8', '#84584E', '#D57FBE', '#BDBC45', '#56BBCC'] for i in range(len(target_vals)): target = target_vals[i] ax = fig.get_axes()[i] ax.set_ylim([-1, 1]) ax.set_xlim([0, 100]) ax.axhline(y=0, color = 'grey') ax.axvspan(4, 8, color = 'grey', alpha = 0.1) ax.axvspan(13, 30, color = 'grey', alpha = 0.1) ax.axvspan(60, 90, color = 'grey', alpha = 0.1) ax.set_title(target) df = pd.DataFrame(da.sel(target = target, measure = measure).values.T, columns = da.contact, index = da.feature) for j in range(len(df.columns)): channel = df.columns[j] ax.plot(df.index, df[channel], label = channel, color = colors[j]) if i == 0: fig.legend(ncol = 2, loc = 'upper right', prop={"size":10}, title = 'channels') fig.tight_layout() make_dir(out_gp, 'plots') out_dir= make_dir(os.path.join(out_gp, 'plots'), feature_key) fig.savefig(os.path.join(out_dir, filename)) return df def plot_spectra(da, da_type, measure, out_gp, feature_key): if 'time_interval' in da.dims: da = da.sel(time_interval = 'min1') dirname = os.path.basename(out_gp) if (da_type == 'corr'): filename = dirname + '_corr_' + measure + '_linegraphs.pdf' plot_corrs(da, measure, out_gp, filename, feature_key) elif (da_type == 'psd'): filename = dirname + '_spectra_' + measure + '_linegraphs.pdf' plot_psds(da, measure, out_gp, filename, feature_key) elif (da_type == 'pca'): filename = dirname + '_pca_' + measure + '_linegraphs.pdf' plot_pca(da, measure, out_gp, filename, feature_key) def plot_timeseries(dfl_top_ts, out_gp, feature_key, time='datetime'): dirname = os.path.basename(out_gp) target_vals = list(dfl_top_ts.keys()) nplots = len(target_vals) xlabel = 'Time (datetime)' if time == 'samples': xlabel = 'Time (samples)' fig, axs = plt.subplots(nrows = nplots, ncols = 1, figsize=(15, 5*nplots)) plt.rcParams.update({'font.size': 16}) plt.setp(axs[-1], xlabel = xlabel) fig.text(0.007, 0.5, 'scores (normalized)', ha="center", va="center", rotation=90) fig.suptitle(dirname + ' timeseries') colors = ['#3976AF', '#F08536', '#519D3E', '#C63A32', '#8D6BB8', '#84584E', '#D57FBE', '#BDBC45', '#56BBCC'] locs = ['upper right', 'center right', 'lower right'] for i in range(len(target_vals)): target = target_vals[i] ax = fig.get_axes()[i] ax.set_ylim([0, 1]) ax.set_title(target) df =
pd.DataFrame(dfl_top_ts[target])
pandas.DataFrame
"""Functions to interactively cut the data into buckets and plot the results""" __version__ = '0.1.0' # Ensure this is kept in-sync with VERSION in the SETUP.PY ############ # Contents # ############ # - Setup # - Assign buckets # - Group and aggregate # - Set coordinates # - Pipeline functions # - Plotting # - Running interactively ######### # Setup # ######### # Import built-in modules import functools import inspect # Import external modules import numpy as np import pandas as pd import bokeh import bokeh.palettes ################## # Assign buckets # ################## def divide_n(df, bucket_var, n_bins=10): """ Assign each row of `df` to a bucket by dividing the range of the `bucket_var` column into `n_bins` number of equal width intervals. df: DataFrame bucket_var: Name of the column of df to use for dividing. n_bins: positive integer number of buckets. Returns: df with the additional `bucket` column The `bucket` column is Categorical data type consisting of Intervals that partition the interval from just below min(bucket_var) to max(bucket_var). """ df_w_buckets = df.assign( bucket=lambda df: pd.cut(df[bucket_var], bins=n_bins) ) return(df_w_buckets) def custom_width(df, bucket_var, width, boundary=0, first_break=None, last_break=None): """ Assign each row of `df` to a bucket by dividing the range of the `bucket_var` column into `n_bins` number of equal width intervals. df: DataFrame bucket_var: Name of the column of df to use for dividing. width: Positive width of the buckets boundary: Edge of one of the buckets, if the data extended that far first_break: All values below this (if any) are grouped into one bucket last_break: All values above this (if any) are grouped into one bucket Returns: df with the additional `bucket` column The `bucket` column is Categorical data type consisting of Intervals that partition the interval from just below min(bucket_var) to max(bucket_var). """ var_min, var_max = df[bucket_var].min(), df[bucket_var].max() extended_min = var_min - 0.001 * np.min([(var_max - var_min), width]) # Set bucket edges start = np.floor((extended_min - boundary) / width) * width + boundary stop = np.ceil((var_max - boundary) / width) * width + boundary num = int((stop - start) / width) + 1 breaks_all = np.array([ extended_min, *np.linspace(start, stop, num)[1:-1], var_max, ]) # Clip lower and upper buckets breaks_clipped = breaks_all if first_break is not None or last_break is not None: breaks_clipped = np.unique(np.array([ breaks_all.min(), *np.clip(breaks_all, first_break, last_break), breaks_all.max(), ])) breaks_clipped df_w_buckets = df.assign( bucket=lambda df:
pd.cut(df[bucket_var], bins=breaks_clipped)
pandas.cut
"""Climate normals daily data""" import re import numpy as np import pandas as pd def norm_get_dly(): """Get all daily climate normals data""" prcp = norm_get_dly_prcp() snow = norm_get_dly_snow() tavg = norm_get_dly_tavg() tmax = norm_get_dly_tmax() tmin = norm_get_dly_tmin() by = ["id", "month", "day"] df = pd.merge(prcp, snow, how="outer", on=by) df = pd.merge(df, tavg, how="outer", on=by) df =
pd.merge(df, tmax, how="outer", on=by)
pandas.merge
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected)
tm.assert_frame_equal(data, data2)
pandas.util.testing.assert_frame_equal
import os import numpy as np import pandas as pd import torch from torch.utils.data import Dataset, DataLoader # from sklearn.preprocessing import StandardScaler from utils.andet import kde, sr from utils.tools import StandardScaler, padding from utils.timefeatures import time_features import warnings warnings.filterwarnings('ignore') class Dataset_ETT_hour(Dataset): def __init__(self, root_path, flag='train', size=None, features='S', data_path='ETTh1.csv', target='OT', scale=True, inverse=False, timeenc=0, freq='h', cols=None): # size [seq_len, label_len, pred_len] # info if size == None: self.seq_len = 24*4*4 self.label_len = 24*4 self.pred_len = 24*4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.inverse = inverse self.timeenc = timeenc self.freq = freq self.root_path = root_path self.data_path = data_path self.__read_data__() def __read_data__(self): self.scaler = StandardScaler() df_raw = pd.read_csv(os.path.join(self.root_path, self.data_path)) border1s = [0, 12*30*24 - self.seq_len, 12*30*24+4*30*24 - self.seq_len] border2s = [12*30*24, 12*30*24+4*30*24, 12*30*24+8*30*24] border1 = border1s[self.set_type] border2 = border2s[self.set_type] if self.features=='M' or self.features=='MS': cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] if self.scale: train_data = df_data[border1s[0]:border2s[0]] self.scaler.fit(train_data.values) data = self.scaler.transform(df_data.values) else: data = df_data.values df_stamp = df_raw[['date']][border1:border2] df_stamp['date'] = pd.to_datetime(df_stamp.date) data_stamp = time_features(df_stamp, timeenc=self.timeenc, freq=self.freq) self.data_x = data[border1:border2] if self.inverse: self.data_y = df_data.values[border1:border2] else: self.data_y = data[border1:border2] self.data_stamp = data_stamp def __getitem__(self, index): s_begin = index s_end = s_begin + self.seq_len r_begin = s_end - self.label_len r_end = r_begin + self.label_len + self.pred_len seq_x = self.data_x[s_begin:s_end] if self.inverse: seq_y = np.concatenate([self.data_x[r_begin:r_begin+self.label_len], self.data_y[r_begin+self.label_len:r_end]], 0) else: seq_y = self.data_y[r_begin:r_end] seq_x_mark = self.data_stamp[s_begin:s_end] seq_y_mark = self.data_stamp[r_begin:r_end] return seq_x, seq_y, seq_x_mark, seq_y_mark def __len__(self): return len(self.data_x) - self.seq_len- self.pred_len + 1 def inverse_transform(self, data): return self.scaler.inverse_transform(data) class Dataset_ETT_minute(Dataset): def __init__(self, root_path, flag='train', size=None, features='S', data_path='ETTm1.csv', target='OT', scale=True, inverse=False, timeenc=0, freq='t', cols=None): # size [seq_len, label_len, pred_len] # info if size == None: self.seq_len = 24*4*4 self.label_len = 24*4 self.pred_len = 24*4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.inverse = inverse self.timeenc = timeenc self.freq = freq self.root_path = root_path self.data_path = data_path self.__read_data__() def __read_data__(self): self.scaler = StandardScaler() df_raw = pd.read_csv(os.path.join(self.root_path, self.data_path)) border1s = [0, 12*30*24*4 - self.seq_len, 12*30*24*4+4*30*24*4 - self.seq_len] border2s = [12*30*24*4, 12*30*24*4+4*30*24*4, 12*30*24*4+8*30*24*4] border1 = border1s[self.set_type] border2 = border2s[self.set_type] if self.features=='M' or self.features=='MS': cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] if self.scale: train_data = df_data[border1s[0]:border2s[0]] self.scaler.fit(train_data.values) data = self.scaler.transform(df_data.values) else: data = df_data.values df_stamp = df_raw[['date']][border1:border2] df_stamp['date'] = pd.to_datetime(df_stamp.date) data_stamp = time_features(df_stamp, timeenc=self.timeenc, freq=self.freq) self.data_x = data[border1:border2] if self.inverse: self.data_y = df_data.values[border1:border2] else: self.data_y = data[border1:border2] self.data_stamp = data_stamp def __getitem__(self, index): s_begin = index s_end = s_begin + self.seq_len r_begin = s_end - self.label_len r_end = r_begin + self.label_len + self.pred_len seq_x = self.data_x[s_begin:s_end] if self.inverse: seq_y = np.concatenate([self.data_x[r_begin:r_begin+self.label_len], self.data_y[r_begin+self.label_len:r_end]], 0) else: seq_y = self.data_y[r_begin:r_end] seq_x_mark = self.data_stamp[s_begin:s_end] seq_y_mark = self.data_stamp[r_begin:r_end] return seq_x, seq_y, seq_x_mark, seq_y_mark def __len__(self): return len(self.data_x) - self.seq_len - self.pred_len + 1 def inverse_transform(self, data): return self.scaler.inverse_transform(data) class Dataset_Custom(Dataset): def __init__(self, root_path, flag='train', size=None, features='S', data_path='ETTh1.csv', target='OT', scale=True, inverse=False, timeenc=0, freq='h', cols=None): # size [seq_len, label_len, pred_len] # info if size == None: self.seq_len = 24*4*4 self.label_len = 24*4 self.pred_len = 24*4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['train', 'test', 'val'] type_map = {'train':0, 'val':1, 'test':2} self.set_type = type_map[flag] self.features = features self.target = target self.scale = scale self.inverse = inverse self.timeenc = timeenc self.freq = freq self.cols=cols self.root_path = root_path self.data_path = data_path self.__read_data__() def __read_data__(self): self.scaler = StandardScaler() df_raw = pd.read_csv(os.path.join(self.root_path, self.data_path)) ''' df_raw.columns: ['date', ...(other features), target feature] ''' # cols = list(df_raw.columns); if self.cols: cols=self.cols.copy() cols.remove(self.target) else: cols = list(df_raw.columns); cols.remove(self.target); cols.remove('date') df_raw = df_raw[['date']+cols+[self.target]] num_train = int(len(df_raw)*0.7) num_test = int(len(df_raw)*0.2) num_vali = len(df_raw) - num_train - num_test border1s = [0, num_train-self.seq_len, len(df_raw)-num_test-self.seq_len] border2s = [num_train, num_train+num_vali, len(df_raw)] border1 = border1s[self.set_type] border2 = border2s[self.set_type] if self.features=='M' or self.features=='MS': cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] if self.scale: train_data = df_data[border1s[0]:border2s[0]] self.scaler.fit(train_data.values) data = self.scaler.transform(df_data.values) else: data = df_data.values df_stamp = df_raw[['date']][border1:border2] df_stamp['date'] = pd.to_datetime(df_stamp.date) data_stamp = time_features(df_stamp, timeenc=self.timeenc, freq=self.freq) self.data_x = data[border1:border2] if self.inverse: self.data_y = df_data.values[border1:border2] else: self.data_y = data[border1:border2] self.data_stamp = data_stamp def __getitem__(self, index): s_begin = index s_end = s_begin + self.seq_len r_begin = s_end - self.label_len r_end = r_begin + self.label_len + self.pred_len seq_x = self.data_x[s_begin:s_end] if self.inverse: seq_y = np.concatenate([self.data_x[r_begin:r_begin+self.label_len], self.data_y[r_begin+self.label_len:r_end]], 0) else: seq_y = self.data_y[r_begin:r_end] seq_x_mark = self.data_stamp[s_begin:s_end] seq_y_mark = self.data_stamp[r_begin:r_end] return seq_x, seq_y, seq_x_mark, seq_y_mark def __len__(self): return len(self.data_x) - self.seq_len- self.pred_len + 1 def inverse_transform(self, data): return self.scaler.inverse_transform(data) class Dataset_Pred(Dataset): def __init__(self, root_path, flag='pred', size=None, features='S', data_path='ETTh1.csv', target='OT', scale=True, inverse=False, timeenc=0, freq='15min', cols=None): # size [seq_len, label_len, pred_len] # info if size == None: self.seq_len = 24*4*4 self.label_len = 24*4 self.pred_len = 24*4 else: self.seq_len = size[0] self.label_len = size[1] self.pred_len = size[2] # init assert flag in ['pred'] self.features = features self.target = target self.scale = scale self.inverse = inverse self.timeenc = timeenc self.freq = freq self.cols=cols self.root_path = root_path self.data_path = data_path self.__read_data__() def __read_data__(self): self.scaler = StandardScaler() df_raw = pd.read_csv(os.path.join(self.root_path, self.data_path)) ''' df_raw.columns: ['date', ...(other features), target feature] ''' if self.cols: cols=self.cols.copy() cols.remove(self.target) else: cols = list(df_raw.columns); cols.remove(self.target); cols.remove('date') df_raw = df_raw[['date']+cols+[self.target]] border1 = len(df_raw)-self.seq_len border2 = len(df_raw) if self.features=='M' or self.features=='MS': cols_data = df_raw.columns[1:] df_data = df_raw[cols_data] elif self.features=='S': df_data = df_raw[[self.target]] if self.scale: self.scaler.fit(df_data.values) data = self.scaler.transform(df_data.values) else: data = df_data.values tmp_stamp = df_raw[['date']][border1:border2] tmp_stamp['date'] =
pd.to_datetime(tmp_stamp.date)
pandas.to_datetime
import os import re import functools from itertools import chain import attr import logbook from pathlib import Path import pandas as pd from ete3 import Tree from common import config from common.rename import * genus = snakemake.config["genus"] species = snakemake.config["species"] taxid = snakemake.config["taxid"] section = snakemake.config["section"] group = snakemake.config["group"] threads = snakemake.config["threads"] root = Path(snakemake.config["root"]) outdir = root / "human_readable" / section / group / genus / species section_dir = outdir / section group_dir = section_dir / group fastas = outdir.rglob("GCA*fna.gz") summary =
pd.read_csv(root / "summary.tsv", sep="\t", index_col=0)
pandas.read_csv
# -*- coding: utf-8 -*- # pylint: disable=W0612,E1101 from datetime import datetime import operator import nose from functools import wraps import numpy as np import pandas as pd from pandas import Series, DataFrame, Index, isnull, notnull, pivot, MultiIndex from pandas.core.datetools import bday from pandas.core.nanops import nanall, nanany from pandas.core.panel import Panel from pandas.core.series import remove_na import pandas.core.common as com from pandas import compat from pandas.compat import range, lrange, StringIO, OrderedDict, signature from pandas import SparsePanel from pandas.util.testing import (assert_panel_equal, assert_frame_equal, assert_series_equal, assert_almost_equal, assert_produces_warning, ensure_clean, assertRaisesRegexp, makeCustomDataframe as mkdf, makeMixedDataFrame) import pandas.core.panel as panelm import pandas.util.testing as tm def ignore_sparse_panel_future_warning(func): """ decorator to ignore FutureWarning if we have a SparsePanel can be removed when SparsePanel is fully removed """ @wraps(func) def wrapper(self, *args, **kwargs): if isinstance(self.panel, SparsePanel): with assert_produces_warning(FutureWarning, check_stacklevel=False): return func(self, *args, **kwargs) else: return func(self, *args, **kwargs) return wrapper class PanelTests(object): panel = None def test_pickle(self): unpickled = self.round_trip_pickle(self.panel) assert_frame_equal(unpickled['ItemA'], self.panel['ItemA']) def test_rank(self): self.assertRaises(NotImplementedError, lambda: self.panel.rank()) def test_cumsum(self): cumsum = self.panel.cumsum() assert_frame_equal(cumsum['ItemA'], self.panel['ItemA'].cumsum()) def not_hashable(self): c_empty = Panel() c = Panel(Panel([[[1]]])) self.assertRaises(TypeError, hash, c_empty) self.assertRaises(TypeError, hash, c) class SafeForLongAndSparse(object): _multiprocess_can_split_ = True def test_repr(self): repr(self.panel) @ignore_sparse_panel_future_warning def test_copy_names(self): for attr in ('major_axis', 'minor_axis'): getattr(self.panel, attr).name = None cp = self.panel.copy() getattr(cp, attr).name = 'foo' self.assertIsNone(getattr(self.panel, attr).name) def test_iter(self): tm.equalContents(list(self.panel), self.panel.items) def test_count(self): f = lambda s: notnull(s).sum() self._check_stat_op('count', f, obj=self.panel, has_skipna=False) def test_sum(self): self._check_stat_op('sum', np.sum) def test_mean(self): self._check_stat_op('mean', np.mean) def test_prod(self): self._check_stat_op('prod', np.prod) def test_median(self): def wrapper(x): if isnull(x).any(): return np.nan return np.median(x) self._check_stat_op('median', wrapper) def test_min(self): self._check_stat_op('min', np.min) def test_max(self): self._check_stat_op('max', np.max) def test_skew(self): try: from scipy.stats import skew except ImportError: raise nose.SkipTest("no scipy.stats.skew") def this_skew(x): if len(x) < 3: return np.nan return skew(x, bias=False) self._check_stat_op('skew', this_skew) # def test_mad(self): # f = lambda x: np.abs(x - x.mean()).mean() # self._check_stat_op('mad', f) def test_var(self): def alt(x): if len(x) < 2: return np.nan return np.var(x, ddof=1) self._check_stat_op('var', alt) def test_std(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) self._check_stat_op('std', alt) def test_sem(self): def alt(x): if len(x) < 2: return np.nan return np.std(x, ddof=1) / np.sqrt(len(x)) self._check_stat_op('sem', alt) # def test_skew(self): # from scipy.stats import skew # def alt(x): # if len(x) < 3: # return np.nan # return skew(x, bias=False) # self._check_stat_op('skew', alt) def _check_stat_op(self, name, alternative, obj=None, has_skipna=True): if obj is None: obj = self.panel # # set some NAs # obj.ix[5:10] = np.nan # obj.ix[15:20, -2:] = np.nan f = getattr(obj, name) if has_skipna: def skipna_wrapper(x): nona = remove_na(x) if len(nona) == 0: return np.nan return alternative(nona) def wrapper(x): return alternative(np.asarray(x)) for i in range(obj.ndim): result = f(axis=i, skipna=False) assert_frame_equal(result, obj.apply(wrapper, axis=i)) else: skipna_wrapper = alternative wrapper = alternative for i in range(obj.ndim): result = f(axis=i) if not tm._incompat_bottleneck_version(name): assert_frame_equal(result, obj.apply(skipna_wrapper, axis=i)) self.assertRaises(Exception, f, axis=obj.ndim) # Unimplemented numeric_only parameter. if 'numeric_only' in signature(f).args: self.assertRaisesRegexp(NotImplementedError, name, f, numeric_only=True) class SafeForSparse(object): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def test_get_axis(self): assert (self.panel._get_axis(0) is self.panel.items) assert (self.panel._get_axis(1) is self.panel.major_axis) assert (self.panel._get_axis(2) is self.panel.minor_axis) def test_set_axis(self): new_items = Index(np.arange(len(self.panel.items))) new_major = Index(np.arange(len(self.panel.major_axis))) new_minor = Index(np.arange(len(self.panel.minor_axis))) # ensure propagate to potentially prior-cached items too item = self.panel['ItemA'] self.panel.items = new_items if hasattr(self.panel, '_item_cache'): self.assertNotIn('ItemA', self.panel._item_cache) self.assertIs(self.panel.items, new_items) # TODO: unused? item = self.panel[0] # noqa self.panel.major_axis = new_major self.assertIs(self.panel[0].index, new_major) self.assertIs(self.panel.major_axis, new_major) # TODO: unused? item = self.panel[0] # noqa self.panel.minor_axis = new_minor self.assertIs(self.panel[0].columns, new_minor) self.assertIs(self.panel.minor_axis, new_minor) def test_get_axis_number(self): self.assertEqual(self.panel._get_axis_number('items'), 0) self.assertEqual(self.panel._get_axis_number('major'), 1) self.assertEqual(self.panel._get_axis_number('minor'), 2) def test_get_axis_name(self): self.assertEqual(self.panel._get_axis_name(0), 'items') self.assertEqual(self.panel._get_axis_name(1), 'major_axis') self.assertEqual(self.panel._get_axis_name(2), 'minor_axis') def test_get_plane_axes(self): # what to do here? index, columns = self.panel._get_plane_axes('items') index, columns = self.panel._get_plane_axes('major_axis') index, columns = self.panel._get_plane_axes('minor_axis') index, columns = self.panel._get_plane_axes(0) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.major_axis start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end, axis='major') expected = self.panel['ItemA'].truncate(start, end) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(before=start, axis='major') expected = self.panel['ItemA'].truncate(before=start) assert_frame_equal(trunced['ItemA'], expected) trunced = self.panel.truncate(after=end, axis='major') expected = self.panel['ItemA'].truncate(after=end) assert_frame_equal(trunced['ItemA'], expected) # XXX test other axes def test_arith(self): self._test_op(self.panel, operator.add) self._test_op(self.panel, operator.sub) self._test_op(self.panel, operator.mul) self._test_op(self.panel, operator.truediv) self._test_op(self.panel, operator.floordiv) self._test_op(self.panel, operator.pow) self._test_op(self.panel, lambda x, y: y + x) self._test_op(self.panel, lambda x, y: y - x) self._test_op(self.panel, lambda x, y: y * x) self._test_op(self.panel, lambda x, y: y / x) self._test_op(self.panel, lambda x, y: y ** x) self._test_op(self.panel, lambda x, y: x + y) # panel + 1 self._test_op(self.panel, lambda x, y: x - y) # panel - 1 self._test_op(self.panel, lambda x, y: x * y) # panel * 1 self._test_op(self.panel, lambda x, y: x / y) # panel / 1 self._test_op(self.panel, lambda x, y: x ** y) # panel ** 1 self.assertRaises(Exception, self.panel.__add__, self.panel['ItemA']) @staticmethod def _test_op(panel, op): result = op(panel, 1) assert_frame_equal(result['ItemA'], op(panel['ItemA'], 1)) def test_keys(self): tm.equalContents(list(self.panel.keys()), self.panel.items) def test_iteritems(self): # Test panel.iteritems(), aka panel.iteritems() # just test that it works for k, v in self.panel.iteritems(): pass self.assertEqual(len(list(self.panel.iteritems())), len(self.panel.items)) @ignore_sparse_panel_future_warning def test_combineFrame(self): def check_op(op, name): # items df = self.panel['ItemA'] func = getattr(self.panel, name) result = func(df, axis='items') assert_frame_equal(result['ItemB'], op(self.panel['ItemB'], df)) # major xs = self.panel.major_xs(self.panel.major_axis[0]) result = func(xs, axis='major') idx = self.panel.major_axis[1] assert_frame_equal(result.major_xs(idx), op(self.panel.major_xs(idx), xs)) # minor xs = self.panel.minor_xs(self.panel.minor_axis[0]) result = func(xs, axis='minor') idx = self.panel.minor_axis[1] assert_frame_equal(result.minor_xs(idx), op(self.panel.minor_xs(idx), xs)) ops = ['add', 'sub', 'mul', 'truediv', 'floordiv'] if not compat.PY3: ops.append('div') # pow, mod not supported for SparsePanel as flex ops (for now) if not isinstance(self.panel, SparsePanel): ops.extend(['pow', 'mod']) else: idx = self.panel.minor_axis[1] with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.pow(self.panel.minor_xs(idx), axis='minor') with assertRaisesRegexp(ValueError, "Simple arithmetic.*scalar"): self.panel.mod(self.panel.minor_xs(idx), axis='minor') for op in ops: try: check_op(getattr(operator, op), op) except: com.pprint_thing("Failing operation: %r" % op) raise if compat.PY3: try: check_op(operator.truediv, 'div') except: com.pprint_thing("Failing operation: %r" % 'div') raise @ignore_sparse_panel_future_warning def test_combinePanel(self): result = self.panel.add(self.panel) self.assert_panel_equal(result, self.panel * 2) @ignore_sparse_panel_future_warning def test_neg(self): self.assert_panel_equal(-self.panel, self.panel * -1) # issue 7692 def test_raise_when_not_implemented(self): p = Panel(np.arange(3 * 4 * 5).reshape(3, 4, 5), items=['ItemA', 'ItemB', 'ItemC'], major_axis=pd.date_range('20130101', periods=4), minor_axis=list('ABCDE')) d = p.sum(axis=1).ix[0] ops = ['add', 'sub', 'mul', 'truediv', 'floordiv', 'div', 'mod', 'pow'] for op in ops: with self.assertRaises(NotImplementedError): getattr(p, op)(d, axis=0) @ignore_sparse_panel_future_warning def test_select(self): p = self.panel # select items result = p.select(lambda x: x in ('ItemA', 'ItemC'), axis='items') expected = p.reindex(items=['ItemA', 'ItemC']) self.assert_panel_equal(result, expected) # select major_axis result = p.select(lambda x: x >= datetime(2000, 1, 15), axis='major') new_major = p.major_axis[p.major_axis >= datetime(2000, 1, 15)] expected = p.reindex(major=new_major) self.assert_panel_equal(result, expected) # select minor_axis result = p.select(lambda x: x in ('D', 'A'), axis=2) expected = p.reindex(minor=['A', 'D']) self.assert_panel_equal(result, expected) # corner case, empty thing result = p.select(lambda x: x in ('foo', ), axis='items') self.assert_panel_equal(result, p.reindex(items=[])) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) @ignore_sparse_panel_future_warning def test_abs(self): result = self.panel.abs() result2 = abs(self.panel) expected = np.abs(self.panel) self.assert_panel_equal(result, expected) self.assert_panel_equal(result2, expected) df = self.panel['ItemA'] result = df.abs() result2 = abs(df) expected = np.abs(df) assert_frame_equal(result, expected) assert_frame_equal(result2, expected) s = df['A'] result = s.abs() result2 = abs(s) expected = np.abs(s) assert_series_equal(result, expected) assert_series_equal(result2, expected) self.assertEqual(result.name, 'A') self.assertEqual(result2.name, 'A') class CheckIndexing(object): _multiprocess_can_split_ = True def test_getitem(self): self.assertRaises(Exception, self.panel.__getitem__, 'ItemQ') def test_delitem_and_pop(self): expected = self.panel['ItemA'] result = self.panel.pop('ItemA') assert_frame_equal(expected, result) self.assertNotIn('ItemA', self.panel.items) del self.panel['ItemB'] self.assertNotIn('ItemB', self.panel.items) self.assertRaises(Exception, self.panel.__delitem__, 'ItemB') values = np.empty((3, 3, 3)) values[0] = 0 values[1] = 1 values[2] = 2 panel = Panel(values, lrange(3), lrange(3), lrange(3)) # did we delete the right row? panelc = panel.copy() del panelc[0] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[1] assert_frame_equal(panelc[0], panel[0]) assert_frame_equal(panelc[2], panel[2]) panelc = panel.copy() del panelc[2] assert_frame_equal(panelc[1], panel[1]) assert_frame_equal(panelc[0], panel[0]) def test_setitem(self): # LongPanel with one item lp = self.panel.filter(['ItemA', 'ItemB']).to_frame() with tm.assertRaises(ValueError): self.panel['ItemE'] = lp # DataFrame df = self.panel['ItemA'][2:].filter(items=['A', 'B']) self.panel['ItemF'] = df self.panel['ItemE'] = df df2 = self.panel['ItemF'] assert_frame_equal(df, df2.reindex(index=df.index, columns=df.columns)) # scalar self.panel['ItemG'] = 1 self.panel['ItemE'] = True self.assertEqual(self.panel['ItemG'].values.dtype, np.int64) self.assertEqual(self.panel['ItemE'].values.dtype, np.bool_) # object dtype self.panel['ItemQ'] = 'foo' self.assertEqual(self.panel['ItemQ'].values.dtype, np.object_) # boolean dtype self.panel['ItemP'] = self.panel['ItemA'] > 0 self.assertEqual(self.panel['ItemP'].values.dtype, np.bool_) self.assertRaises(TypeError, self.panel.__setitem__, 'foo', self.panel.ix[['ItemP']]) # bad shape p = Panel(np.random.randn(4, 3, 2)) with tm.assertRaisesRegexp(ValueError, "shape of value must be \(3, 2\), " "shape of given object was \(4, 2\)"): p[0] = np.random.randn(4, 2) def test_setitem_ndarray(self): from pandas import date_range, datetools timeidx = date_range(start=datetime(2009, 1, 1), end=datetime(2009, 12, 31), freq=datetools.MonthEnd()) lons_coarse = np.linspace(-177.5, 177.5, 72) lats_coarse = np.linspace(-87.5, 87.5, 36) P = Panel(items=timeidx, major_axis=lons_coarse, minor_axis=lats_coarse) data = np.random.randn(72 * 36).reshape((72, 36)) key = datetime(2009, 2, 28) P[key] = data assert_almost_equal(P[key].values, data) def test_set_minor_major(self): # GH 11014 df1 = DataFrame(['a', 'a', 'a', np.nan, 'a', np.nan]) df2 = DataFrame([1.0, np.nan, 1.0, np.nan, 1.0, 1.0]) panel = Panel({'Item1': df1, 'Item2': df2}) newminor = notnull(panel.iloc[:, :, 0]) panel.loc[:, :, 'NewMinor'] = newminor assert_frame_equal(panel.loc[:, :, 'NewMinor'], newminor.astype(object)) newmajor = notnull(panel.iloc[:, 0, :]) panel.loc[:, 'NewMajor', :] = newmajor assert_frame_equal(panel.loc[:, 'NewMajor', :], newmajor.astype(object)) def test_major_xs(self): ref = self.panel['ItemA'] idx = self.panel.major_axis[5] xs = self.panel.major_xs(idx) result = xs['ItemA'] assert_series_equal(result, ref.xs(idx), check_names=False) self.assertEqual(result.name, 'ItemA') # not contained idx = self.panel.major_axis[0] - bday self.assertRaises(Exception, self.panel.major_xs, idx) def test_major_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.major_xs(self.panel.major_axis[0]) self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_minor_xs(self): ref = self.panel['ItemA'] idx = self.panel.minor_axis[1] xs = self.panel.minor_xs(idx) assert_series_equal(xs['ItemA'], ref[idx], check_names=False) # not contained self.assertRaises(Exception, self.panel.minor_xs, 'E') def test_minor_xs_mixed(self): self.panel['ItemD'] = 'foo' xs = self.panel.minor_xs('D') self.assertEqual(xs['ItemA'].dtype, np.float64) self.assertEqual(xs['ItemD'].dtype, np.object_) def test_xs(self): itemA = self.panel.xs('ItemA', axis=0) expected = self.panel['ItemA'] assert_frame_equal(itemA, expected) # get a view by default itemA_view = self.panel.xs('ItemA', axis=0) itemA_view.values[:] = np.nan self.assertTrue(np.isnan(self.panel['ItemA'].values).all()) # mixed-type yields a copy self.panel['strings'] = 'foo' result = self.panel.xs('D', axis=2) self.assertIsNotNone(result.is_copy) def test_getitem_fancy_labels(self): p = self.panel items = p.items[[1, 0]] dates = p.major_axis[::2] cols = ['D', 'C', 'F'] # all 3 specified assert_panel_equal(p.ix[items, dates, cols], p.reindex(items=items, major=dates, minor=cols)) # 2 specified assert_panel_equal(p.ix[:, dates, cols], p.reindex(major=dates, minor=cols)) assert_panel_equal(p.ix[items, :, cols], p.reindex(items=items, minor=cols)) assert_panel_equal(p.ix[items, dates, :], p.reindex(items=items, major=dates)) # only 1 assert_panel_equal(p.ix[items, :, :], p.reindex(items=items)) assert_panel_equal(p.ix[:, dates, :], p.reindex(major=dates)) assert_panel_equal(p.ix[:, :, cols], p.reindex(minor=cols)) def test_getitem_fancy_slice(self): pass def test_getitem_fancy_ints(self): p = self.panel # #1603 result = p.ix[:, -1, :] expected = p.ix[:, p.major_axis[-1], :] assert_frame_equal(result, expected) def test_getitem_fancy_xs(self): p = self.panel item = 'ItemB' date = p.major_axis[5] col = 'C' # get DataFrame # item assert_frame_equal(p.ix[item], p[item]) assert_frame_equal(p.ix[item, :], p[item]) assert_frame_equal(p.ix[item, :, :], p[item]) # major axis, axis=1 assert_frame_equal(p.ix[:, date], p.major_xs(date)) assert_frame_equal(p.ix[:, date, :], p.major_xs(date)) # minor axis, axis=2 assert_frame_equal(p.ix[:, :, 'C'], p.minor_xs('C')) # get Series assert_series_equal(p.ix[item, date], p[item].ix[date]) assert_series_equal(p.ix[item, date, :], p[item].ix[date]) assert_series_equal(p.ix[item, :, col], p[item][col]) assert_series_equal(p.ix[:, date, col], p.major_xs(date).ix[col]) def test_getitem_fancy_xs_check_view(self): item = 'ItemB' date = self.panel.major_axis[5] # make sure it's always a view NS = slice(None, None) # DataFrames comp = assert_frame_equal self._check_view(item, comp) self._check_view((item, NS), comp) self._check_view((item, NS, NS), comp) self._check_view((NS, date), comp) self._check_view((NS, date, NS), comp) self._check_view((NS, NS, 'C'), comp) # Series comp = assert_series_equal self._check_view((item, date), comp) self._check_view((item, date, NS), comp) self._check_view((item, NS, 'C'), comp) self._check_view((NS, date, 'C'), comp) def test_ix_setitem_slice_dataframe(self): a = Panel(items=[1, 2, 3], major_axis=[11, 22, 33], minor_axis=[111, 222, 333]) b = DataFrame(np.random.randn(2, 3), index=[111, 333], columns=[1, 2, 3]) a.ix[:, 22, [111, 333]] = b assert_frame_equal(a.ix[:, 22, [111, 333]], b) def test_ix_align(self): from pandas import Series b = Series(np.random.randn(10), name=0) b.sort() df_orig = Panel(np.random.randn(3, 10, 2)) df = df_orig.copy() df.ix[0, :, 0] = b assert_series_equal(df.ix[0, :, 0].reindex(b.index), b) df = df_orig.swapaxes(0, 1) df.ix[:, 0, 0] = b assert_series_equal(df.ix[:, 0, 0].reindex(b.index), b) df = df_orig.swapaxes(1, 2) df.ix[0, 0, :] = b assert_series_equal(df.ix[0, 0, :].reindex(b.index), b) def test_ix_frame_align(self): p_orig = tm.makePanel() df = p_orig.ix[0].copy() assert_frame_equal(p_orig['ItemA'], df) p = p_orig.copy() p.ix[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0, :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.iloc[0] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.loc['ItemA', :, :] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p['ItemA'] = df assert_panel_equal(p, p_orig) p = p_orig.copy() p.ix[0, [0, 1, 3, 5], -2:] = df out = p.ix[0, [0, 1, 3, 5], -2:] assert_frame_equal(out, df.iloc[[0, 1, 3, 5], [2, 3]]) # GH3830, panel assignent by values/frame for dtype in ['float64', 'int64']: panel = Panel(np.arange(40).reshape((2, 4, 5)), items=['a1', 'a2'], dtype=dtype) df1 = panel.iloc[0] df2 = panel.iloc[1] tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by Value Passes for 'a2' panel.loc['a2'] = df1.values tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df1) # Assignment by DataFrame Ok w/o loc 'a2' panel['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) # Assignment by DataFrame Fails for 'a2' panel.loc['a2'] = df2 tm.assert_frame_equal(panel.loc['a1'], df1) tm.assert_frame_equal(panel.loc['a2'], df2) def _check_view(self, indexer, comp): cp = self.panel.copy() obj = cp.ix[indexer] obj.values[:] = 0 self.assertTrue((obj.values == 0).all()) comp(cp.ix[indexer].reindex_like(obj), obj) def test_logical_with_nas(self): d = Panel({'ItemA': {'a': [np.nan, False]}, 'ItemB': {'a': [True, True]}}) result = d['ItemA'] | d['ItemB'] expected = DataFrame({'a': [np.nan, True]}) assert_frame_equal(result, expected) # this is autodowncasted here result = d['ItemA'].fillna(False) | d['ItemB'] expected = DataFrame({'a': [True, True]}) assert_frame_equal(result, expected) def test_neg(self): # what to do? assert_panel_equal(-self.panel, -1 * self.panel) def test_invert(self): assert_panel_equal(-(self.panel < 0), ~(self.panel < 0)) def test_comparisons(self): p1 = tm.makePanel() p2 = tm.makePanel() tp = p1.reindex(items=p1.items + ['foo']) df = p1[p1.items[0]] def test_comp(func): # versus same index result = func(p1, p2) self.assert_numpy_array_equal(result.values, func(p1.values, p2.values)) # versus non-indexed same objs self.assertRaises(Exception, func, p1, tp) # versus different objs self.assertRaises(Exception, func, p1, df) # versus scalar result3 = func(self.panel, 0) self.assert_numpy_array_equal(result3.values, func(self.panel.values, 0)) test_comp(operator.eq) test_comp(operator.ne) test_comp(operator.lt) test_comp(operator.gt) test_comp(operator.ge) test_comp(operator.le) def test_get_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: result = self.panel.get_value(item, mjr, mnr) expected = self.panel[item][mnr][mjr] assert_almost_equal(result, expected) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis"): self.panel.get_value('a') def test_set_value(self): for item in self.panel.items: for mjr in self.panel.major_axis[::2]: for mnr in self.panel.minor_axis: self.panel.set_value(item, mjr, mnr, 1.) assert_almost_equal(self.panel[item][mnr][mjr], 1.) # resize res = self.panel.set_value('ItemE', 'foo', 'bar', 1.5) tm.assertIsInstance(res, Panel) self.assertIsNot(res, self.panel) self.assertEqual(res.get_value('ItemE', 'foo', 'bar'), 1.5) res3 = self.panel.set_value('ItemE', 'foobar', 'baz', 5) self.assertTrue(com.is_float_dtype(res3['ItemE'].values)) with tm.assertRaisesRegexp(TypeError, "There must be an argument for each axis" " plus the value provided"): self.panel.set_value('a') _panel = tm.makePanel() tm.add_nans(_panel) class TestPanel(tm.TestCase, PanelTests, CheckIndexing, SafeForLongAndSparse, SafeForSparse): _multiprocess_can_split_ = True @classmethod def assert_panel_equal(cls, x, y): assert_panel_equal(x, y) def setUp(self): self.panel = _panel.copy() self.panel.major_axis.name = None self.panel.minor_axis.name = None self.panel.items.name = None def test_panel_warnings(self): with tm.assert_produces_warning(FutureWarning): shifted1 = self.panel.shift(lags=1) with tm.assert_produces_warning(False): shifted2 = self.panel.shift(periods=1) tm.assert_panel_equal(shifted1, shifted2) with tm.assert_produces_warning(False): shifted3 = self.panel.shift() tm.assert_panel_equal(shifted1, shifted3) def test_constructor(self): # with BlockManager wp = Panel(self.panel._data) self.assertIs(wp._data, self.panel._data) wp = Panel(self.panel._data, copy=True) self.assertIsNot(wp._data, self.panel._data) assert_panel_equal(wp, self.panel) # strings handled prop wp = Panel([[['foo', 'foo', 'foo', ], ['foo', 'foo', 'foo']]]) self.assertEqual(wp.values.dtype, np.object_) vals = self.panel.values # no copy wp = Panel(vals) self.assertIs(wp.values, vals) # copy wp = Panel(vals, copy=True) self.assertIsNot(wp.values, vals) # GH #8285, test when scalar data is used to construct a Panel # if dtype is not passed, it should be inferred value_and_dtype = [(1, 'int64'), (3.14, 'float64'), ('foo', np.object_)] for (val, dtype) in value_and_dtype: wp = Panel(val, items=range(2), major_axis=range(3), minor_axis=range(4)) vals = np.empty((2, 3, 4), dtype=dtype) vals.fill(val) assert_panel_equal(wp, Panel(vals, dtype=dtype)) # test the case when dtype is passed wp = Panel(1, items=range(2), major_axis=range(3), minor_axis=range(4), dtype='float32') vals = np.empty((2, 3, 4), dtype='float32') vals.fill(1) assert_panel_equal(wp, Panel(vals, dtype='float32')) def test_constructor_cast(self): zero_filled = self.panel.fillna(0) casted = Panel(zero_filled._data, dtype=int) casted2 = Panel(zero_filled.values, dtype=int) exp_values = zero_filled.values.astype(int) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) casted = Panel(zero_filled._data, dtype=np.int32) casted2 = Panel(zero_filled.values, dtype=np.int32) exp_values = zero_filled.values.astype(np.int32) assert_almost_equal(casted.values, exp_values) assert_almost_equal(casted2.values, exp_values) # can't cast data = [[['foo', 'bar', 'baz']]] self.assertRaises(ValueError, Panel, data, dtype=float) def test_constructor_empty_panel(self): empty = Panel() self.assertEqual(len(empty.items), 0) self.assertEqual(len(empty.major_axis), 0) self.assertEqual(len(empty.minor_axis), 0) def test_constructor_observe_dtype(self): # GH #411 panel = Panel(items=lrange(3), major_axis=lrange(3), minor_axis=lrange(3), dtype='O') self.assertEqual(panel.values.dtype, np.object_) def test_constructor_dtypes(self): # GH #797 def _check_dtype(panel, dtype): for i in panel.items: self.assertEqual(panel[i].values.dtype.name, dtype) # only nan holding types allowed here for dtype in ['float64', 'float32', 'object']: panel = Panel(items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype=dtype), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.array(np.random.randn(2, 10, 5), dtype='O'), items=lrange(2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: panel = Panel(np.random.randn(2, 10, 5), items=lrange( 2), major_axis=lrange(10), minor_axis=lrange(5), dtype=dtype) _check_dtype(panel, dtype) for dtype in ['float64', 'float32', 'int64', 'int32', 'object']: df1 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) df2 = DataFrame(np.random.randn(2, 5), index=lrange(2), columns=lrange(5)) panel = Panel.from_dict({'a': df1, 'b': df2}, dtype=dtype) _check_dtype(panel, dtype) def test_constructor_fails_with_not_3d_input(self): with tm.assertRaisesRegexp(ValueError, "The number of dimensions required is 3"): Panel(np.random.randn(10, 2)) def test_consolidate(self): self.assertTrue(self.panel._data.is_consolidated()) self.panel['foo'] = 1. self.assertFalse(self.panel._data.is_consolidated()) panel = self.panel.consolidate() self.assertTrue(panel._data.is_consolidated()) def test_ctor_dict(self): itema = self.panel['ItemA'] itemb = self.panel['ItemB'] d = {'A': itema, 'B': itemb[5:]} d2 = {'A': itema._series, 'B': itemb[5:]._series} d3 = {'A': None, 'B': DataFrame(itemb[5:]._series), 'C': DataFrame(itema._series)} wp = Panel.from_dict(d) wp2 = Panel.from_dict(d2) # nested Dict # TODO: unused? wp3 = Panel.from_dict(d3) # noqa self.assertTrue(wp.major_axis.equals(self.panel.major_axis)) assert_panel_equal(wp, wp2) # intersect wp = Panel.from_dict(d, intersect=True) self.assertTrue(wp.major_axis.equals(itemb.index[5:])) # use constructor assert_panel_equal(Panel(d), Panel.from_dict(d)) assert_panel_equal(Panel(d2), Panel.from_dict(d2)) assert_panel_equal(Panel(d3), Panel.from_dict(d3)) # a pathological case d4 = {'A': None, 'B': None} # TODO: unused? wp4 = Panel.from_dict(d4) # noqa assert_panel_equal(Panel(d4), Panel(items=['A', 'B'])) # cast dcasted = dict((k, v.reindex(wp.major_axis).fillna(0)) for k, v in compat.iteritems(d)) result = Panel(dcasted, dtype=int) expected = Panel(dict((k, v.astype(int)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) result = Panel(dcasted, dtype=np.int32) expected = Panel(dict((k, v.astype(np.int32)) for k, v in compat.iteritems(dcasted))) assert_panel_equal(result, expected) def test_constructor_dict_mixed(self): data = dict((k, v.values) for k, v in self.panel.iteritems()) result = Panel(data) exp_major = Index(np.arange(len(self.panel.major_axis))) self.assertTrue(result.major_axis.equals(exp_major)) result = Panel(data, items=self.panel.items, major_axis=self.panel.major_axis, minor_axis=self.panel.minor_axis) assert_panel_equal(result, self.panel) data['ItemC'] = self.panel['ItemC'] result = Panel(data) assert_panel_equal(result, self.panel) # corner, blow up data['ItemB'] = data['ItemB'][:-1] self.assertRaises(Exception, Panel, data) data['ItemB'] = self.panel['ItemB'].values[:, :-1] self.assertRaises(Exception, Panel, data) def test_ctor_orderedDict(self): keys = list(set(np.random.randint(0, 5000, 100)))[ :50] # unique random int keys d = OrderedDict([(k, mkdf(10, 5)) for k in keys]) p = Panel(d) self.assertTrue(list(p.items) == keys) p = Panel.from_dict(d) self.assertTrue(list(p.items) == keys) def test_constructor_resize(self): data = self.panel._data items = self.panel.items[:-1] major = self.panel.major_axis[:-1] minor = self.panel.minor_axis[:-1] result = Panel(data, items=items, major_axis=major, minor_axis=minor) expected = self.panel.reindex(items=items, major=major, minor=minor) assert_panel_equal(result, expected) result = Panel(data, items=items, major_axis=major) expected = self.panel.reindex(items=items, major=major) assert_panel_equal(result, expected) result = Panel(data, items=items) expected = self.panel.reindex(items=items) assert_panel_equal(result, expected) result = Panel(data, minor_axis=minor) expected = self.panel.reindex(minor=minor) assert_panel_equal(result, expected) def test_from_dict_mixed_orient(self): df = tm.makeDataFrame() df['foo'] = 'bar' data = {'k1': df, 'k2': df} panel = Panel.from_dict(data, orient='minor') self.assertEqual(panel['foo'].values.dtype, np.object_) self.assertEqual(panel['A'].values.dtype, np.float64) def test_constructor_error_msgs(self): def testit(): Panel(np.random.randn(3, 4, 5), lrange(4), lrange(5), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(4, 5, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(4), lrange(5)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 4, 5\)", testit) def testit(): Panel(np.random.randn(3, 4, 5), lrange(5), lrange(5), lrange(4)) assertRaisesRegexp(ValueError, "Shape of passed values is \(3, 4, 5\), " "indices imply \(5, 5, 4\)", testit) def test_conform(self): df = self.panel['ItemA'][:-5].filter(items=['A', 'B']) conformed = self.panel.conform(df) assert (conformed.index.equals(self.panel.major_axis)) assert (conformed.columns.equals(self.panel.minor_axis)) def test_convert_objects(self): # GH 4937 p = Panel(dict(A=dict(a=['1', '1.0']))) expected = Panel(dict(A=dict(a=[1, 1.0]))) result = p._convert(numeric=True, coerce=True) assert_panel_equal(result, expected) def test_dtypes(self): result = self.panel.dtypes expected = Series(np.dtype('float64'), index=self.panel.items) assert_series_equal(result, expected) def test_apply(self): # GH1148 # ufunc applied = self.panel.apply(np.sqrt) self.assertTrue(assert_almost_equal(applied.values, np.sqrt( self.panel.values))) # ufunc same shape result = self.panel.apply(lambda x: x * 2, axis='items') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='major_axis') expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis='minor_axis') expected = self.panel * 2 assert_panel_equal(result, expected) # reduction to DataFrame result = self.panel.apply(lambda x: x.dtype, axis='items') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.minor_axis) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='major_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.minor_axis, columns=self.panel.items) assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.dtype, axis='minor_axis') expected = DataFrame(np.dtype('float64'), index=self.panel.major_axis, columns=self.panel.items) assert_frame_equal(result, expected) # reductions via other dims expected = self.panel.sum(0) result = self.panel.apply(lambda x: x.sum(), axis='items') assert_frame_equal(result, expected) expected = self.panel.sum(1) result = self.panel.apply(lambda x: x.sum(), axis='major_axis') assert_frame_equal(result, expected) expected = self.panel.sum(2) result = self.panel.apply(lambda x: x.sum(), axis='minor_axis') assert_frame_equal(result, expected) # pass kwargs result = self.panel.apply(lambda x, y: x.sum() + y, axis='items', y=5) expected = self.panel.sum(0) + 5 assert_frame_equal(result, expected) def test_apply_slabs(self): # same shape as original result = self.panel.apply(lambda x: x * 2, axis=['items', 'major_axis']) expected = (self.panel * 2).transpose('minor_axis', 'major_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['items', 'minor_axis']) expected = (self.panel * 2).transpose('major_axis', 'minor_axis', 'items') assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'items']) assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['major_axis', 'minor_axis']) expected = self.panel * 2 assert_panel_equal(result, expected) result = self.panel.apply(lambda x: x * 2, axis=['minor_axis', 'major_axis']) assert_panel_equal(result, expected) # reductions result = self.panel.apply(lambda x: x.sum(0), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(1).T assert_frame_equal(result, expected) result = self.panel.apply(lambda x: x.sum(1), axis=[ 'items', 'major_axis' ]) expected = self.panel.sum(0) assert_frame_equal(result, expected) # transforms f = lambda x: ((x.T - x.mean(1)) / x.std(1)).T # make sure that we don't trigger any warnings with tm.assert_produces_warning(False): result = self.panel.apply(f, axis=['items', 'major_axis']) expected = Panel(dict([(ax, f(self.panel.loc[:, :, ax])) for ax in self.panel.minor_axis])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['major_axis', 'minor_axis']) expected = Panel(dict([(ax, f(self.panel.loc[ax])) for ax in self.panel.items])) assert_panel_equal(result, expected) result = self.panel.apply(f, axis=['minor_axis', 'items']) expected = Panel(dict([(ax, f(self.panel.loc[:, ax])) for ax in self.panel.major_axis])) assert_panel_equal(result, expected) # with multi-indexes # GH7469 index = MultiIndex.from_tuples([('one', 'a'), ('one', 'b'), ( 'two', 'a'), ('two', 'b')]) dfa = DataFrame(np.array(np.arange(12, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) dfb = DataFrame(np.array(np.arange(10, 22, dtype='int64')).reshape( 4, 3), columns=list("ABC"), index=index) p = Panel({'f': dfa, 'g': dfb}) result = p.apply(lambda x: x.sum(), axis=0) # on windows this will be in32 result = result.astype('int64') expected = p.sum(0) assert_frame_equal(result, expected) def test_apply_no_or_zero_ndim(self): # GH10332 self.panel = Panel(np.random.rand(5, 5, 5)) result_int = self.panel.apply(lambda df: 0, axis=[1, 2]) result_float = self.panel.apply(lambda df: 0.0, axis=[1, 2]) result_int64 = self.panel.apply(lambda df: np.int64(0), axis=[1, 2]) result_float64 = self.panel.apply(lambda df: np.float64(0.0), axis=[1, 2]) expected_int = expected_int64 = Series([0] * 5) expected_float = expected_float64 = Series([0.0] * 5) assert_series_equal(result_int, expected_int) assert_series_equal(result_int64, expected_int64) assert_series_equal(result_float, expected_float) assert_series_equal(result_float64, expected_float64) def test_reindex(self): ref = self.panel['ItemB'] # items result = self.panel.reindex(items=['ItemA', 'ItemB']) assert_frame_equal(result['ItemB'], ref) # major new_major = list(self.panel.major_axis[:10]) result = self.panel.reindex(major=new_major) assert_frame_equal(result['ItemB'], ref.reindex(index=new_major)) # raise exception put both major and major_axis self.assertRaises(Exception, self.panel.reindex, major_axis=new_major, major=new_major) # minor new_minor = list(self.panel.minor_axis[:2]) result = self.panel.reindex(minor=new_minor) assert_frame_equal(result['ItemB'], ref.reindex(columns=new_minor)) # this ok result = self.panel.reindex() assert_panel_equal(result, self.panel) self.assertFalse(result is self.panel) # with filling smaller_major = self.panel.major_axis[::5] smaller = self.panel.reindex(major=smaller_major) larger = smaller.reindex(major=self.panel.major_axis, method='pad') assert_frame_equal(larger.major_xs(self.panel.major_axis[1]), smaller.major_xs(smaller_major[0])) # don't necessarily copy result = self.panel.reindex(major=self.panel.major_axis, copy=False) assert_panel_equal(result, self.panel) self.assertTrue(result is self.panel) def test_reindex_multi(self): # with and without copy full reindexing result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) self.assertIs(result.items, self.panel.items) self.assertIs(result.major_axis, self.panel.major_axis) self.assertIs(result.minor_axis, self.panel.minor_axis) result = self.panel.reindex(items=self.panel.items, major=self.panel.major_axis, minor=self.panel.minor_axis, copy=False) assert_panel_equal(result, self.panel) # multi-axis indexing consistency # GH 5900 df = DataFrame(np.random.randn(4, 3)) p = Panel({'Item1': df}) expected = Panel({'Item1': df}) expected['Item2'] = np.nan items = ['Item1', 'Item2'] major_axis = np.arange(4) minor_axis = np.arange(3) results = [] results.append(p.reindex(items=items, major_axis=major_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, copy=False)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, minor_axis=minor_axis, copy=False)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=True)) results.append(p.reindex(items=items, major_axis=major_axis, minor_axis=minor_axis, copy=False)) for i, r in enumerate(results): assert_panel_equal(expected, r) def test_reindex_like(self): # reindex_like smaller = self.panel.reindex(items=self.panel.items[:-1], major=self.panel.major_axis[:-1], minor=self.panel.minor_axis[:-1]) smaller_like = self.panel.reindex_like(smaller) assert_panel_equal(smaller, smaller_like) def test_take(self): # axis == 0 result = self.panel.take([2, 0, 1], axis=0) expected = self.panel.reindex(items=['ItemC', 'ItemA', 'ItemB']) assert_panel_equal(result, expected) # axis >= 1 result = self.panel.take([3, 0, 1, 2], axis=2) expected = self.panel.reindex(minor=['D', 'A', 'B', 'C']) assert_panel_equal(result, expected) # neg indicies ok expected = self.panel.reindex(minor=['D', 'D', 'B', 'C']) result = self.panel.take([3, -1, 1, 2], axis=2) assert_panel_equal(result, expected) self.assertRaises(Exception, self.panel.take, [4, 0, 1, 2], axis=2) def test_sort_index(self): import random ritems = list(self.panel.items) rmajor = list(self.panel.major_axis) rminor = list(self.panel.minor_axis) random.shuffle(ritems) random.shuffle(rmajor) random.shuffle(rminor) random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0) assert_panel_equal(sorted_panel, self.panel) # descending random_order = self.panel.reindex(items=ritems) sorted_panel = random_order.sort_index(axis=0, ascending=False) assert_panel_equal(sorted_panel, self.panel.reindex(items=self.panel.items[::-1])) random_order = self.panel.reindex(major=rmajor) sorted_panel = random_order.sort_index(axis=1) assert_panel_equal(sorted_panel, self.panel) random_order = self.panel.reindex(minor=rminor) sorted_panel = random_order.sort_index(axis=2) assert_panel_equal(sorted_panel, self.panel) def test_fillna(self): filled = self.panel.fillna(0) self.assertTrue(np.isfinite(filled.values).all()) filled = self.panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], self.panel['ItemA'].fillna(method='backfill')) panel = self.panel.copy() panel['str'] = 'foo' filled = panel.fillna(method='backfill') assert_frame_equal(filled['ItemA'], panel['ItemA'].fillna(method='backfill')) empty = self.panel.reindex(items=[]) filled = empty.fillna(0) assert_panel_equal(filled, empty) self.assertRaises(ValueError, self.panel.fillna) self.assertRaises(ValueError, self.panel.fillna, 5, method='ffill') self.assertRaises(TypeError, self.panel.fillna, [1, 2]) self.assertRaises(TypeError, self.panel.fillna, (1, 2)) # limit not implemented when only value is specified p = Panel(np.random.randn(3, 4, 5)) p.iloc[0:2, 0:2, 0:2] = np.nan self.assertRaises(NotImplementedError, lambda: p.fillna(999, limit=1)) def test_ffill_bfill(self): assert_panel_equal(self.panel.ffill(), self.panel.fillna(method='ffill')) assert_panel_equal(self.panel.bfill(), self.panel.fillna(method='bfill')) def test_truncate_fillna_bug(self): # #1823 result = self.panel.truncate(before=None, after=None, axis='items') # it works! result.fillna(value=0.0) def test_swapaxes(self): result = self.panel.swapaxes('items', 'minor') self.assertIs(result.items, self.panel.minor_axis) result = self.panel.swapaxes('items', 'major') self.assertIs(result.items, self.panel.major_axis) result = self.panel.swapaxes('major', 'minor') self.assertIs(result.major_axis, self.panel.minor_axis) panel = self.panel.copy() result = panel.swapaxes('major', 'minor') panel.values[0, 0, 1] = np.nan expected = panel.swapaxes('major', 'minor') assert_panel_equal(result, expected) # this should also work result = self.panel.swapaxes(0, 1) self.assertIs(result.items, self.panel.major_axis) # this works, but return a copy result = self.panel.swapaxes('items', 'items') assert_panel_equal(self.panel, result) self.assertNotEqual(id(self.panel), id(result)) def test_transpose(self): result = self.panel.transpose('minor', 'major', 'items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # test kwargs result = self.panel.transpose(items='minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # text mixture of args result = self.panel.transpose('minor', major='major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'major', minor='items') expected = self.panel.swapaxes('items', 'minor') assert_panel_equal(result, expected) # duplicate axes with tm.assertRaisesRegexp(TypeError, 'not enough/duplicate arguments'): self.panel.transpose('minor', maj='major', minor='items') with tm.assertRaisesRegexp(ValueError, 'repeated axis in transpose'): self.panel.transpose('minor', 'major', major='minor', minor='items') result = self.panel.transpose(2, 1, 0) assert_panel_equal(result, expected) result = self.panel.transpose('minor', 'items', 'major') expected = self.panel.swapaxes('items', 'minor') expected = expected.swapaxes('major', 'minor') assert_panel_equal(result, expected) result = self.panel.transpose(2, 0, 1) assert_panel_equal(result, expected) self.assertRaises(ValueError, self.panel.transpose, 0, 0, 1) def test_transpose_copy(self): panel = self.panel.copy() result = panel.transpose(2, 0, 1, copy=True) expected = panel.swapaxes('items', 'minor') expected = expected.swapaxes('major', 'minor') assert_panel_equal(result, expected) panel.values[0, 1, 1] = np.nan self.assertTrue(notnull(result.values[1, 0, 1])) @ignore_sparse_panel_future_warning def test_to_frame(self): # filtered filtered = self.panel.to_frame() expected = self.panel.to_frame().dropna(how='any') assert_frame_equal(filtered, expected) # unfiltered unfiltered = self.panel.to_frame(filter_observations=False) assert_panel_equal(unfiltered.to_panel(), self.panel) # names self.assertEqual(unfiltered.index.names, ('major', 'minor')) # unsorted, round trip df = self.panel.to_frame(filter_observations=False) unsorted = df.take(np.random.permutation(len(df))) pan = unsorted.to_panel() assert_panel_equal(pan, self.panel) # preserve original index names df = DataFrame(np.random.randn(6, 2), index=[['a', 'a', 'b', 'b', 'c', 'c'], [0, 1, 0, 1, 0, 1]], columns=['one', 'two']) df.index.names = ['foo', 'bar'] df.columns.name = 'baz' rdf = df.to_panel().to_frame() self.assertEqual(rdf.index.names, df.index.names) self.assertEqual(rdf.columns.names, df.columns.names) def test_to_frame_mixed(self): panel = self.panel.fillna(0) panel['str'] = 'foo' panel['bool'] = panel['ItemA'] > 0 lp = panel.to_frame() wp = lp.to_panel() self.assertEqual(wp['bool'].values.dtype, np.bool_) # Previously, this was mutating the underlying index and changing its # name assert_frame_equal(wp['bool'], panel['bool'], check_names=False) # GH 8704 # with categorical df = panel.to_frame() df['category'] = df['str'].astype('category') # to_panel # TODO: this converts back to object p = df.to_panel() expected = panel.copy() expected['category'] = 'foo' assert_panel_equal(p, expected) def test_to_frame_multi_major(self): idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) expected_idx = MultiIndex.from_tuples( [ (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (2, 'two', 'A'), (2, 'two', 'B'), (2, 'two', 'C') ], names=[None, None, 'minor']) expected = DataFrame({'i1': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1], 'i2': [1, 'a', 1, 2, 'b', 1, 3, 'c', 1, 4, 'd', 1]}, index=expected_idx) result = wp.to_frame() assert_frame_equal(result, expected) wp.iloc[0, 0].iloc[0] = np.nan # BUG on setting. GH #5773 result = wp.to_frame() assert_frame_equal(result, expected[1:]) idx = MultiIndex.from_tuples([(1, 'two'), (1, 'one'), (2, 'one'), ( np.nan, 'two')]) df = DataFrame([[1, 'a', 1], [2, 'b', 1], [3, 'c', 1], [4, 'd', 1]], columns=['A', 'B', 'C'], index=idx) wp = Panel({'i1': df, 'i2': df}) ex_idx = MultiIndex.from_tuples([(1, 'two', 'A'), (1, 'two', 'B'), (1, 'two', 'C'), (1, 'one', 'A'), (1, 'one', 'B'), (1, 'one', 'C'), (2, 'one', 'A'), (2, 'one', 'B'), (2, 'one', 'C'), (np.nan, 'two', 'A'), (np.nan, 'two', 'B'), (np.nan, 'two', 'C')], names=[None, None, 'minor']) expected.index = ex_idx result = wp.to_frame() assert_frame_equal(result, expected) def test_to_frame_multi_major_minor(self): cols = MultiIndex(levels=[['C_A', 'C_B'], ['C_1', 'C_2']], labels=[[0, 0, 1, 1], [0, 1, 0, 1]]) idx = MultiIndex.from_tuples([(1, 'one'), (1, 'two'), (2, 'one'), ( 2, 'two'), (3, 'three'), (4, 'four')]) df = DataFrame([[1, 2, 11, 12], [3, 4, 13, 14], ['a', 'b', 'w', 'x'], ['c', 'd', 'y', 'z'], [-1, -2, -3, -4], [-5, -6, -7, -8]], columns=cols, index=idx) wp = Panel({'i1': df, 'i2': df}) exp_idx = MultiIndex.from_tuples( [(1, 'one', 'C_A', 'C_1'), (1, 'one', 'C_A', 'C_2'), (1, 'one', 'C_B', 'C_1'), (1, 'one', 'C_B', 'C_2'), (1, 'two', 'C_A', 'C_1'), (1, 'two', 'C_A', 'C_2'), (1, 'two', 'C_B', 'C_1'), (1, 'two', 'C_B', 'C_2'), (2, 'one', 'C_A', 'C_1'), (2, 'one', 'C_A', 'C_2'), (2, 'one', 'C_B', 'C_1'), (2, 'one', 'C_B', 'C_2'), (2, 'two', 'C_A', 'C_1'), (2, 'two', 'C_A', 'C_2'), (2, 'two', 'C_B', 'C_1'), (2, 'two', 'C_B', 'C_2'), (3, 'three', 'C_A', 'C_1'), (3, 'three', 'C_A', 'C_2'), (3, 'three', 'C_B', 'C_1'), (3, 'three', 'C_B', 'C_2'), (4, 'four', 'C_A', 'C_1'), (4, 'four', 'C_A', 'C_2'), (4, 'four', 'C_B', 'C_1'), (4, 'four', 'C_B', 'C_2')], names=[None, None, None, None]) exp_val = [[1, 1], [2, 2], [11, 11], [12, 12], [3, 3], [4, 4], [13, 13], [14, 14], ['a', 'a'], ['b', 'b'], ['w', 'w'], ['x', 'x'], ['c', 'c'], ['d', 'd'], ['y', 'y'], ['z', 'z'], [-1, -1], [-2, -2], [-3, -3], [-4, -4], [-5, -5], [-6, -6], [-7, -7], [-8, -8]] result = wp.to_frame() expected = DataFrame(exp_val, columns=['i1', 'i2'], index=exp_idx) assert_frame_equal(result, expected) def test_to_frame_multi_drop_level(self): idx = MultiIndex.from_tuples([(1, 'one'), (2, 'one'), (2, 'two')]) df = DataFrame({'A': [np.nan, 1, 2]}, index=idx) wp = Panel({'i1': df, 'i2': df}) result = wp.to_frame() exp_idx = MultiIndex.from_tuples([(2, 'one', 'A'), (2, 'two', 'A')], names=[None, None, 'minor']) expected = DataFrame({'i1': [1., 2], 'i2': [1., 2]}, index=exp_idx) assert_frame_equal(result, expected) def test_to_panel_na_handling(self): df = DataFrame(np.random.randint(0, 10, size=20).reshape((10, 2)), index=[[0, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 3, 4, 5, 2, 3, 4, 5]]) panel = df.to_panel() self.assertTrue(isnull(panel[0].ix[1, [0, 1]]).all()) def test_to_panel_duplicates(self): # #2441 df = DataFrame({'a': [0, 0, 1], 'b': [1, 1, 1], 'c': [1, 2, 3]}) idf = df.set_index(['a', 'b']) assertRaisesRegexp(ValueError, 'non-uniquely indexed', idf.to_panel) def test_panel_dups(self): # GH 4960 # duplicates in an index # items data = np.random.randn(5, 100, 5) no_dup_panel = Panel(data, items=list("ABCDE")) panel = Panel(data, items=list("AACDE")) expected = no_dup_panel['A'] result = panel.iloc[0] assert_frame_equal(result, expected) expected = no_dup_panel['E'] result = panel.loc['E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[['A', 'B']] expected.items = ['A', 'A'] result = panel.loc['A'] assert_panel_equal(result, expected) # major data = np.random.randn(5, 5, 5) no_dup_panel = Panel(data, major_axis=list("ABCDE")) panel = Panel(data, major_axis=list("AACDE")) expected = no_dup_panel.loc[:, 'A'] result = panel.iloc[:, 0] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, 'E'] result = panel.loc[:, 'E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, ['A', 'B']] expected.major_axis = ['A', 'A'] result = panel.loc[:, 'A'] assert_panel_equal(result, expected) # minor data = np.random.randn(5, 100, 5) no_dup_panel = Panel(data, minor_axis=list("ABCDE")) panel = Panel(data, minor_axis=list("AACDE")) expected = no_dup_panel.loc[:, :, 'A'] result = panel.iloc[:, :, 0] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, :, 'E'] result = panel.loc[:, :, 'E'] assert_frame_equal(result, expected) expected = no_dup_panel.loc[:, :, ['A', 'B']] expected.minor_axis = ['A', 'A'] result = panel.loc[:, :, 'A'] assert_panel_equal(result, expected) def test_filter(self): pass def test_compound(self): compounded = self.panel.compound() assert_series_equal(compounded['ItemA'], (1 + self.panel['ItemA']).product(0) - 1, check_names=False) def test_shift(self): # major idx = self.panel.major_axis[0] idx_lag = self.panel.major_axis[1] shifted = self.panel.shift(1) assert_frame_equal(self.panel.major_xs(idx), shifted.major_xs(idx_lag)) # minor idx = self.panel.minor_axis[0] idx_lag = self.panel.minor_axis[1] shifted = self.panel.shift(1, axis='minor') assert_frame_equal(self.panel.minor_xs(idx), shifted.minor_xs(idx_lag)) # items idx = self.panel.items[0] idx_lag = self.panel.items[1] shifted = self.panel.shift(1, axis='items') assert_frame_equal(self.panel[idx], shifted[idx_lag]) # negative numbers, #2164 result = self.panel.shift(-1) expected = Panel(dict((i, f.shift(-1)[:-1]) for i, f in self.panel.iteritems())) assert_panel_equal(result, expected) # mixed dtypes #6959 data = [('item ' + ch, makeMixedDataFrame()) for ch in list('abcde')] data = dict(data) mixed_panel = Panel.from_dict(data, orient='minor') shifted = mixed_panel.shift(1) assert_series_equal(mixed_panel.dtypes, shifted.dtypes) def test_tshift(self): # PeriodIndex ps = tm.makePeriodPanel() shifted = ps.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(unshifted, ps) shifted2 = ps.tshift(freq='B') assert_panel_equal(shifted, shifted2) shifted3 = ps.tshift(freq=bday) assert_panel_equal(shifted, shifted3) assertRaisesRegexp(ValueError, 'does not match', ps.tshift, freq='M') # DatetimeIndex panel = _panel shifted = panel.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(panel, unshifted) shifted2 = panel.tshift(freq=panel.major_axis.freq) assert_panel_equal(shifted, shifted2) inferred_ts = Panel(panel.values, items=panel.items, major_axis=Index(np.asarray(panel.major_axis)), minor_axis=panel.minor_axis) shifted = inferred_ts.tshift(1) unshifted = shifted.tshift(-1) assert_panel_equal(shifted, panel.tshift(1)) assert_panel_equal(unshifted, inferred_ts) no_freq = panel.ix[:, [0, 5, 7], :] self.assertRaises(ValueError, no_freq.tshift) def test_pct_change(self): df1 = DataFrame({'c1': [1, 2, 5], 'c2': [3, 4, 6]}) df2 = df1 + 1 df3 = DataFrame({'c1': [3, 4, 7], 'c2': [5, 6, 8]}) wp = Panel({'i1': df1, 'i2': df2, 'i3': df3}) # major, 1 result = wp.pct_change() # axis='major' expected = Panel({'i1': df1.pct_change(), 'i2': df2.pct_change(), 'i3': df3.pct_change()}) assert_panel_equal(result, expected) result = wp.pct_change(axis=1) assert_panel_equal(result, expected) # major, 2 result = wp.pct_change(periods=2) expected = Panel({'i1': df1.pct_change(2), 'i2': df2.pct_change(2), 'i3': df3.pct_change(2)}) assert_panel_equal(result, expected) # minor, 1 result = wp.pct_change(axis='minor') expected = Panel({'i1': df1.pct_change(axis=1), 'i2': df2.pct_change(axis=1), 'i3': df3.pct_change(axis=1)}) assert_panel_equal(result, expected) result = wp.pct_change(axis=2) assert_panel_equal(result, expected) # minor, 2 result = wp.pct_change(periods=2, axis='minor') expected = Panel({'i1': df1.pct_change(periods=2, axis=1), 'i2': df2.pct_change(periods=2, axis=1), 'i3': df3.pct_change(periods=2, axis=1)}) assert_panel_equal(result, expected) # items, 1 result = wp.pct_change(axis='items') expected = Panel({'i1': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i2': DataFrame({'c1': [1, 0.5, .2], 'c2': [1. / 3, 0.25, 1. / 6]}), 'i3': DataFrame({'c1': [.5, 1. / 3, 1. / 6], 'c2': [.25, .2, 1. / 7]})}) assert_panel_equal(result, expected) result = wp.pct_change(axis=0) assert_panel_equal(result, expected) # items, 2 result = wp.pct_change(periods=2, axis='items') expected = Panel({'i1': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i2': DataFrame({'c1': [np.nan, np.nan, np.nan], 'c2': [np.nan, np.nan, np.nan]}), 'i3': DataFrame({'c1': [2, 1, .4], 'c2': [2. / 3, .5, 1. / 3]})}) assert_panel_equal(result, expected) def test_round(self): values = [[[-3.2, 2.2], [0, -4.8213], [3.123, 123.12], [-1566.213, 88.88], [-12, 94.5]], [[-5.82, 3.5], [6.21, -73.272], [-9.087, 23.12], [272.212, -99.99], [23, -76.5]]] evalues = [[[float(np.around(i)) for i in j] for j in k] for k in values] p = Panel(values, items=['Item1', 'Item2'], major_axis=pd.date_range('1/1/2000', periods=5), minor_axis=['A', 'B']) expected = Panel(evalues, items=['Item1', 'Item2'], major_axis=pd.date_range('1/1/2000', periods=5), minor_axis=['A', 'B']) result = p.round() self.assert_panel_equal(expected, result) def test_multiindex_get(self): ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1), ('b', 2)], names=['first', 'second']) wp = Panel(np.random.random((4, 5, 5)), items=ind, major_axis=np.arange(5), minor_axis=np.arange(5)) f1 = wp['a'] f2 = wp.ix['a'] assert_panel_equal(f1, f2) self.assertTrue((f1.items == [1, 2]).all()) self.assertTrue((f2.items == [1, 2]).all()) ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)], names=['first', 'second']) def test_multiindex_blocks(self): ind = MultiIndex.from_tuples([('a', 1), ('a', 2), ('b', 1)], names=['first', 'second']) wp = Panel(self.panel._data) wp.items = ind f1 = wp['a'] self.assertTrue((f1.items == [1, 2]).all()) f1 = wp[('b', 1)] self.assertTrue((f1.columns == ['A', 'B', 'C', 'D']).all()) def test_repr_empty(self): empty = Panel() repr(empty) def test_rename(self): mapper = {'ItemA': 'foo', 'ItemB': 'bar', 'ItemC': 'baz'} renamed = self.panel.rename_axis(mapper, axis=0) exp = Index(['foo', 'bar', 'baz']) self.assertTrue(renamed.items.equals(exp)) renamed = self.panel.rename_axis(str.lower, axis=2) exp = Index(['a', 'b', 'c', 'd']) self.assertTrue(renamed.minor_axis.equals(exp)) # don't copy renamed_nocopy = self.panel.rename_axis(mapper, axis=0, copy=False) renamed_nocopy['foo'] = 3. self.assertTrue((self.panel['ItemA'].values == 3).all()) def test_get_attr(self): assert_frame_equal(self.panel['ItemA'], self.panel.ItemA) # specific cases from #3440 self.panel['a'] = self.panel['ItemA'] assert_frame_equal(self.panel['a'], self.panel.a) self.panel['i'] = self.panel['ItemA'] assert_frame_equal(self.panel['i'], self.panel.i) def test_from_frame_level1_unsorted(self): tuples = [('MSFT', 3), ('MSFT', 2), ('AAPL', 2), ('AAPL', 1), ('MSFT', 1)] midx = MultiIndex.from_tuples(tuples) df = DataFrame(np.random.rand(5, 4), index=midx) p = df.to_panel() assert_frame_equal(p.minor_xs(2), df.xs(2, level=1).sort_index()) def test_to_excel(self): try: import xlwt # noqa import xlrd # noqa import openpyxl # noqa from pandas.io.excel import ExcelFile except ImportError: raise nose.SkipTest("need xlwt xlrd openpyxl") for ext in ['xls', 'xlsx']: path = '__tmp__.' + ext with ensure_clean(path) as path: self.panel.to_excel(path) try: reader = ExcelFile(path) except ImportError: raise nose.SkipTest("need xlwt xlrd openpyxl") for item, df in self.panel.iteritems(): recdf = reader.parse(str(item), index_col=0) assert_frame_equal(df, recdf) def test_to_excel_xlsxwriter(self): try: import xlrd # noqa import xlsxwriter # noqa from pandas.io.excel import ExcelFile except ImportError: raise nose.SkipTest("Requires xlrd and xlsxwriter. Skipping test.") path = '__tmp__.xlsx' with ensure_clean(path) as path: self.panel.to_excel(path, engine='xlsxwriter') try: reader = ExcelFile(path) except ImportError as e: raise nose.SkipTest("cannot write excel file: %s" % e) for item, df in self.panel.iteritems(): recdf = reader.parse(str(item), index_col=0) assert_frame_equal(df, recdf) def test_dropna(self): p = Panel(np.random.randn(4, 5, 6), major_axis=list('abcde')) p.ix[:, ['b', 'd'], 0] = np.nan result = p.dropna(axis=1) exp = p.ix[:, ['a', 'c', 'e'], :] assert_panel_equal(result, exp) inp = p.copy() inp.dropna(axis=1, inplace=True) assert_panel_equal(inp, exp) result = p.dropna(axis=1, how='all') assert_panel_equal(result, p) p.ix[:, ['b', 'd'], :] = np.nan result = p.dropna(axis=1, how='all') exp = p.ix[:, ['a', 'c', 'e'], :] assert_panel_equal(result, exp) p = Panel(np.random.randn(4, 5, 6), items=list('abcd')) p.ix[['b'], :, 0] = np.nan result = p.dropna() exp = p.ix[['a', 'c', 'd']] assert_panel_equal(result, exp) result = p.dropna(how='all') assert_panel_equal(result, p) p.ix['b'] = np.nan result = p.dropna(how='all') exp = p.ix[['a', 'c', 'd']] assert_panel_equal(result, exp) def test_drop(self): df = DataFrame({"A": [1, 2], "B": [3, 4]}) panel = Panel({"One": df, "Two": df}) def check_drop(drop_val, axis_number, aliases, expected): try: actual = panel.drop(drop_val, axis=axis_number) assert_panel_equal(actual, expected) for alias in aliases: actual = panel.drop(drop_val, axis=alias) assert_panel_equal(actual, expected) except AssertionError: com.pprint_thing("Failed with axis_number %d and aliases: %s" % (axis_number, aliases)) raise # Items expected = Panel({"One": df}) check_drop('Two', 0, ['items'], expected) self.assertRaises(ValueError, panel.drop, 'Three') # errors = 'ignore' dropped = panel.drop('Three', errors='ignore') assert_panel_equal(dropped, panel) dropped = panel.drop(['Two', 'Three'], errors='ignore') expected = Panel({"One": df}) assert_panel_equal(dropped, expected) # Major exp_df = DataFrame({"A": [2], "B": [4]}, index=[1]) expected = Panel({"One": exp_df, "Two": exp_df}) check_drop(0, 1, ['major_axis', 'major'], expected) exp_df = DataFrame({"A": [1], "B": [3]}, index=[0]) expected = Panel({"One": exp_df, "Two": exp_df}) check_drop([1], 1, ['major_axis', 'major'], expected) # Minor exp_df = df[['B']] expected = Panel({"One": exp_df, "Two": exp_df}) check_drop(["A"], 2, ['minor_axis', 'minor'], expected) exp_df = df[['A']] expected = Panel({"One": exp_df, "Two": exp_df}) check_drop("B", 2, ['minor_axis', 'minor'], expected) def test_update(self): pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) other = Panel([[[3.6, 2., np.nan], [np.nan, np.nan, 7]]], items=[1]) pan.update(other) expected = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[3.6, 2., 3], [1.5, np.nan, 7], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) assert_panel_equal(pan, expected) def test_update_from_dict(self): pan = Panel({'one': DataFrame([[1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]), 'two': DataFrame([[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]])}) other = {'two': DataFrame([[3.6, 2., np.nan], [np.nan, np.nan, 7]])} pan.update(other) expected = Panel( {'two': DataFrame([[3.6, 2., 3], [1.5, np.nan, 7], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]), 'one': DataFrame([[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]])}) assert_panel_equal(pan, expected) def test_update_nooverwrite(self): pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) other = Panel([[[3.6, 2., np.nan], [np.nan, np.nan, 7]]], items=[1]) pan.update(other, overwrite=False) expected = Panel([[[1.5, np.nan, 3], [1.5, np.nan, 3], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, 2., 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) assert_panel_equal(pan, expected) def test_update_filtered(self): pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) other = Panel([[[3.6, 2., np.nan], [np.nan, np.nan, 7]]], items=[1]) pan.update(other, filter_func=lambda x: x > 2) expected = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 3], [1.5, np.nan, 7], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) assert_panel_equal(pan, expected) def test_update_raise(self): pan = Panel([[[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]], [[1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.], [1.5, np.nan, 3.]]]) np.testing.assert_raises(Exception, pan.update, *(pan, ), **{'raise_conflict': True}) def test_all_any(self): self.assertTrue((self.panel.all(axis=0).values == nanall( self.panel, axis=0)).all()) self.assertTrue((self.panel.all(axis=1).values == nanall( self.panel, axis=1).T).all()) self.assertTrue((self.panel.all(axis=2).values == nanall( self.panel, axis=2).T).all()) self.assertTrue((self.panel.any(axis=0).values == nanany( self.panel, axis=0)).all()) self.assertTrue((self.panel.any(axis=1).values == nanany( self.panel, axis=1).T).all()) self.assertTrue((self.panel.any(axis=2).values == nanany( self.panel, axis=2).T).all()) def test_all_any_unhandled(self): self.assertRaises(NotImplementedError, self.panel.all, bool_only=True) self.assertRaises(NotImplementedError, self.panel.any, bool_only=True) class TestLongPanel(tm.TestCase): """ LongPanel no longer exists, but... """ _multiprocess_can_split_ = True def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) panel = tm.makePanel() tm.add_nans(panel) self.panel = panel.to_frame() self.unfiltered_panel = panel.to_frame(filter_observations=False) def test_ops_differently_indexed(self): # trying to set non-identically indexed panel wp = self.panel.to_panel() wp2 = wp.reindex(major=wp.major_axis[:-1]) lp2 = wp2.to_frame() result = self.panel + lp2 assert_frame_equal(result.reindex(lp2.index), lp2 * 2) # careful, mutation self.panel['foo'] = lp2['ItemA'] assert_series_equal(self.panel['foo'].reindex(lp2.index), lp2['ItemA'], check_names=False) def test_ops_scalar(self): result = self.panel.mul(2) expected = DataFrame.__mul__(self.panel, 2) assert_frame_equal(result, expected) def test_combineFrame(self): wp = self.panel.to_panel() result = self.panel.add(wp['ItemA'].stack(), axis=0) assert_frame_equal(result.to_panel()['ItemA'], wp['ItemA'] * 2) def test_combinePanel(self): wp = self.panel.to_panel() result = self.panel.add(self.panel) wide_result = result.to_panel() assert_frame_equal(wp['ItemA'] * 2, wide_result['ItemA']) # one item result = self.panel.add(self.panel.filter(['ItemA'])) def test_combine_scalar(self): result = self.panel.mul(2) expected = DataFrame(self.panel._data) * 2 assert_frame_equal(result, expected) def test_combine_series(self): s = self.panel['ItemA'][:10] result = self.panel.add(s, axis=0) expected = DataFrame.add(self.panel, s, axis=0) assert_frame_equal(result, expected) s = self.panel.ix[5] result = self.panel + s expected = DataFrame.add(self.panel, s, axis=1) assert_frame_equal(result, expected) def test_operators(self): wp = self.panel.to_panel() result = (self.panel + 1).to_panel() assert_frame_equal(wp['ItemA'] + 1, result['ItemA']) def test_arith_flex_panel(self): ops = ['add', 'sub', 'mul', 'div', 'truediv', 'pow', 'floordiv', 'mod'] if not compat.PY3: aliases = {} else: aliases = {'div': 'truediv'} self.panel = self.panel.to_panel() for n in [np.random.randint(-50, -1), np.random.randint(1, 50), 0]: for op in ops: alias = aliases.get(op, op) f = getattr(operator, alias) exp = f(self.panel, n) result = getattr(self.panel, op)(n) assert_panel_equal(result, exp, check_panel_type=True) # rops r_f = lambda x, y: f(y, x) exp = r_f(self.panel, n) result = getattr(self.panel, 'r' + op)(n) assert_panel_equal(result, exp) def test_sort(self): def is_sorted(arr): return (arr[1:] > arr[:-1]).any() sorted_minor = self.panel.sortlevel(level=1) self.assertTrue(is_sorted(sorted_minor.index.labels[1])) sorted_major = sorted_minor.sortlevel(level=0) self.assertTrue(is_sorted(sorted_major.index.labels[0])) def test_to_string(self): buf = StringIO() self.panel.to_string(buf) @ignore_sparse_panel_future_warning def test_truncate(self): dates = self.panel.index.levels[0] start, end = dates[1], dates[5] trunced = self.panel.truncate(start, end).to_panel() expected = self.panel.to_panel()['ItemA'].truncate(start, end) # TODO trucate drops index.names assert_frame_equal(trunced['ItemA'], expected, check_names=False) trunced = self.panel.truncate(before=start).to_panel() expected = self.panel.to_panel()['ItemA'].truncate(before=start) # TODO trucate drops index.names assert_frame_equal(trunced['ItemA'], expected, check_names=False) trunced = self.panel.truncate(after=end).to_panel() expected = self.panel.to_panel()['ItemA'].truncate(after=end) # TODO trucate drops index.names assert_frame_equal(trunced['ItemA'], expected, check_names=False) # truncate on dates that aren't in there wp = self.panel.to_panel() new_index = wp.major_axis[::5] wp2 = wp.reindex(major=new_index) lp2 = wp2.to_frame() lp_trunc = lp2.truncate(wp.major_axis[2], wp.major_axis[-2]) wp_trunc = wp2.truncate(wp.major_axis[2], wp.major_axis[-2]) assert_panel_equal(wp_trunc, lp_trunc.to_panel()) # throw proper exception self.assertRaises(Exception, lp2.truncate, wp.major_axis[-2], wp.major_axis[2]) def test_axis_dummies(self): from pandas.core.reshape import make_axis_dummies minor_dummies = make_axis_dummies(self.panel, 'minor') self.assertEqual(len(minor_dummies.columns), len(self.panel.index.levels[1])) major_dummies = make_axis_dummies(self.panel, 'major') self.assertEqual(len(major_dummies.columns), len(self.panel.index.levels[0])) mapping = {'A': 'one', 'B': 'one', 'C': 'two', 'D': 'two'} transformed = make_axis_dummies(self.panel, 'minor', transform=mapping.get) self.assertEqual(len(transformed.columns), 2) self.assert_numpy_array_equal(transformed.columns, ['one', 'two']) # TODO: test correctness def test_get_dummies(self): from pandas.core.reshape import get_dummies, make_axis_dummies self.panel['Label'] = self.panel.index.labels[1] minor_dummies =
make_axis_dummies(self.panel, 'minor')
pandas.core.reshape.make_axis_dummies
import pickle import random import string import warnings import numpy as np from numpy.testing import assert_allclose import pandas as pd import pytest from scipy import stats import linearmodels from linearmodels.shared.exceptions import missing_warning from linearmodels.shared.hypotheses import ( InapplicableTestStatistic, InvalidTestStatistic, WaldTestStatistic, ) from linearmodels.shared.io import add_star, format_wide from linearmodels.shared.linalg import has_constant, inv_sqrth from linearmodels.shared.utility import AttrDict, ensure_unique_column, panel_to_frame MISSING_PANEL = "Panel" not in dir(pd) def test_missing_warning(): missing = np.zeros(500, dtype=bool) with warnings.catch_warnings(record=True) as w: missing_warning(missing) assert len(w) == 0 missing[0] = True with warnings.catch_warnings(record=True) as w: missing_warning(missing) assert len(w) == 1 original = linearmodels.WARN_ON_MISSING linearmodels.WARN_ON_MISSING = False with warnings.catch_warnings(record=True) as w: missing_warning(missing) assert len(w) == 0 linearmodels.WARN_ON_MISSING = original def test_hasconstant(): x = np.random.randn(100, 3) hc, loc = has_constant(x) assert bool(hc) is False assert loc is None x[:, 0] = 1 hc, loc = has_constant(x) assert hc is True assert loc == 0 x[:, 0] = 2 hc, loc = has_constant(x) assert hc is True assert loc == 0 x[::2, 0] = 0 x[:, 1] = 1 x[1::2, 1] = 0 hc, loc = has_constant(x) assert hc is True def test_wald_statistic(): ts = WaldTestStatistic(1.0, "_NULL_", 1, name="_NAME_") assert str(hex(id(ts))) in ts.__repr__() assert "_NULL_" in str(ts) assert ts.stat == 1.0 assert ts.df == 1 assert ts.df_denom is None assert ts.dist_name == "chi2(1)" assert isinstance(ts.critical_values, dict) assert_allclose(1 - stats.chi2.cdf(1.0, 1), ts.pval) ts = WaldTestStatistic(1.0, "_NULL_", 1, 1000, name="_NAME_") assert ts.df == 1 assert ts.df_denom == 1000 assert ts.dist_name == "F(1,1000)" assert_allclose(1 - stats.f.cdf(1.0, 1, 1000), ts.pval) def test_invalid_test_statistic(): ts = InvalidTestStatistic("_REASON_", name="_NAME_") assert str(hex(id(ts))) in ts.__repr__() assert "_REASON_" in str(ts) assert np.isnan(ts.pval) assert ts.critical_values is None def test_inapplicable_test_statistic(): ts = InapplicableTestStatistic(reason="_REASON_", name="_NAME_") assert str(hex(id(ts))) in ts.__repr__() assert "_REASON_" in str(ts) assert np.isnan(ts.pval) assert ts.critical_values is None ts = InapplicableTestStatistic() assert "not applicable" in str(ts) def test_inv_sqrth(): x = np.random.randn(1000, 10) xpx = x.T @ x invsq = inv_sqrth(xpx) prod = invsq @ xpx @ invsq - np.eye(10) assert_allclose(1 + prod, np.ones((10, 10))) def test_ensure_unique_column(): df = pd.DataFrame({"a": [0, 1, 0], "b": [1.0, 0.0, 1.0]}) out = ensure_unique_column("a", df) assert out == "_a_" out = ensure_unique_column("c", df) assert out == "c" out = ensure_unique_column("a", df, "=") assert out == "=a=" df["_a_"] = -1 out = ensure_unique_column("a", df) assert out == "__a__" def test_attr_dict(): ad = AttrDict() ad["one"] = "one" ad[1] = 1 ad[("a", 2)] = ("a", 2) assert list(ad.keys()) == ["one", 1, ("a", 2)] assert len(ad) == 3 plk = pickle.dumps(ad) pad = pickle.loads(plk) assert list(pad.keys()) == ["one", 1, ("a", 2)] assert len(pad) == 3 ad2 = ad.copy() assert list(ad2.keys()) == list(ad.keys()) assert ad.get("one", None) == "one" assert ad.get("two", False) is False k, v = ad.popitem() assert k == "one" assert v == "one" items = ad.items() assert (1, 1) in items assert (("a", 2), ("a", 2)) in items assert len(items) == 2 values = ad.values() assert 1 in values assert ("a", 2) in values assert len(values) == 2 ad2 = AttrDict() ad2[1] = 3 ad2["one"] = "one" ad2["a"] = "a" ad.update(ad2) assert ad[1] == 3 assert "a" in ad ad.__str__() with pytest.raises(AttributeError): ad.__private_dict__ = None with pytest.raises(AttributeError): ad.some_other_key with pytest.raises(KeyError): ad["__private_dict__"] = None del ad[1] assert 1 not in ad.keys() ad.new_value = "new_value" assert "new_value" in ad.keys() assert ad.new_value == ad["new_value"] for key in ad.keys(): if isinstance(key, str): assert key in dir(ad) new_value = ad.pop("new_value") assert new_value == "new_value" del ad.one assert "one" not in ad.keys() ad.clear() assert list(ad.keys()) == [] def test_format_wide(): k = 26 inputs = [chr(65 + i) * (20 + i) for i in range(k)] out = format_wide(inputs, 80) assert max([len(v) for v in out]) <= 80 out = format_wide(["a"], 80) assert out == [["a"]] def test_panel_to_midf(): x = np.random.standard_normal((3, 7, 100)) df = panel_to_frame(x, list(range(3)), list(range(7)), list(range(100))) mi = pd.MultiIndex.from_product([list(range(7)), list(range(100))]) expected = pd.DataFrame(index=mi, columns=[0, 1, 2]) for i in range(3): expected[i] = x[i].ravel() expected.index.names = ["major", "minor"] pd.testing.assert_frame_equal(df, expected) expected2 = expected.copy() expected2 = expected2.sort_index(level=[1, 0]) expected2.index = expected2.index.swaplevel(0, 1) expected2.index.names = ["major", "minor"] df2 = panel_to_frame(x, list(range(3)), list(range(7)), list(range(100)), True) pd.testing.assert_frame_equal(df2, expected2) entities = list( map( "".join, [ [random.choice(string.ascii_lowercase) for __ in range(10)] for _ in range(100) ], ) ) times = pd.date_range("1999-12-31", freq="A-DEC", periods=7) var_names = ["x.{0}".format(i) for i in range(1, 4)] df3 = panel_to_frame(x, var_names, times, entities, True) mi = pd.MultiIndex.from_product([times, entities]) expected3 = pd.DataFrame(index=mi, columns=var_names) for i in range(1, 4): expected3["x.{0}".format(i)] = x[i - 1].ravel() expected3.index = expected3.index.swaplevel(0, 1) mi =
pd.MultiIndex.from_product([entities, times])
pandas.MultiIndex.from_product
from flask import Flask, render_template, request import pickle import joblib import pandas as pd from geopy.geocoders import Nominatim # app instantiation APP = Flask(__name__) @APP.route('/') def Home_page(): '''Landing page to the Kickstarter Prediction project''' return render_template('landing.html', title='Home') @APP.route('/prediction', methods= ["POST"]) def prediction(): # Winter, Spring, Summer, Fall time_of_year = request.form['time_of_year'] # # Latitude and Longitude geolocator = Nominatim(user_agent="airbnb") address = request.form['addy'] location = geolocator.geocode(address) lat = location.latitude lon = location.longitude # Room Type, Superhost, Instant Bookable, Description Length room_type = request.form['room_type'] super_host = True if request.form['super_host']=='1' else False instant_bookable = True if request.form['instant_bookable']=='1' else False description_len = len(request.form['description']) # Accomodates, Bedrooms, Beds, Baths, Shared Baths, ppl_per_bed accommodates = int(request.form['accomodates']) # n_bedrooms = int(request.form['n_bedrooms']) # n_beds = int(request.form['n_beds']) # n_baths = int(request.form['n_baths']) # shared_baths = True if request.form['shared_baths']=='1' else False ppl_per_bed = accommodates/n_beds if n_beds!=0 else accommodates/1 n_amenities = int(request.form['n_amenities']) # # Host experience, total reviews, total_statisfaction, reviews since host_since = int(request.form['host_since']) host_experience_yrs = round(2021 - int(host_since)) total_reviews = int(request.form['total_reviews']) total_satisfaction = float(request.form['total_satisfaction']) # If we average the survey values then how are we going to ask reviews_per_month = total_reviews/(host_experience_yrs*12) # Min and Max nights min_nights = int(request.form['min_nights']) max_nights = int(request.form['max_nights']) # Dataframe column_names = ['lat', 'lon', 'room_type', 'superhost', 'instant_bookable', 'description_len', 'n_amenities', 'accommodates', 'n_bedrooms', 'n_beds', 'n_baths', 'shared_baths', 'min_nights', 'max_nights', 'reviews_per_month', 'total_reviews', 'total_satisfaction', 'host_experience_yrs', 'ppl_per_bed'] info = [[lat, lon, room_type, super_host, instant_bookable, description_len, n_amenities, accommodates, n_bedrooms, n_beds, n_baths, shared_baths, min_nights, max_nights, reviews_per_month, total_reviews, total_satisfaction, host_experience_yrs, ppl_per_bed]] listing =
pd.DataFrame(info,columns=column_names)
pandas.DataFrame
# Arithmetic tests for DataFrame/Series/Index/Array classes that should # behave identically. # Specifically for Period dtype import operator import numpy as np import pytest from pandas._libs.tslibs.period import IncompatibleFrequency from pandas.errors import PerformanceWarning import pandas as pd from pandas import Period, PeriodIndex, Series, period_range from pandas.core import ops from pandas.core.arrays import TimedeltaArray import pandas.util.testing as tm from pandas.tseries.frequencies import to_offset # ------------------------------------------------------------------ # Comparisons class TestPeriodArrayLikeComparisons: # Comparison tests for PeriodDtype vectors fully parametrized over # DataFrame/Series/PeriodIndex/PeriodArray. Ideally all comparison # tests will eventually end up here. def test_compare_zerodim(self, box_with_array): # GH#26689 make sure we unbox zero-dimensional arrays xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000", periods=4) other = np.array(pi.to_numpy()[0]) pi = tm.box_expected(pi, box_with_array) result = pi <= other expected = np.array([True, False, False, False]) expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) class TestPeriodIndexComparisons: # TODO: parameterize over boxes @pytest.mark.parametrize("other", ["2017", 2017]) def test_eq(self, other): idx = PeriodIndex(["2017", "2017", "2018"], freq="D") expected = np.array([True, True, False]) result = idx == other tm.assert_numpy_array_equal(result, expected) def test_pi_cmp_period(self): idx = period_range("2007-01", periods=20, freq="M") result = idx < idx[10] exp = idx.values < idx.values[10] tm.assert_numpy_array_equal(result, exp) # TODO: moved from test_datetime64; de-duplicate with version below def test_parr_cmp_period_scalar2(self, box_with_array): xbox = box_with_array if box_with_array is not pd.Index else np.ndarray pi = pd.period_range("2000-01-01", periods=10, freq="D") val = Period("2000-01-04", freq="D") expected = [x > val for x in pi] ser = tm.box_expected(pi, box_with_array) expected = tm.box_expected(expected, xbox) result = ser > val tm.assert_equal(result, expected) val = pi[5] result = ser > val expected = [x > val for x in pi] expected = tm.box_expected(expected, xbox) tm.assert_equal(result, expected) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_period_scalar(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) per = Period("2011-02", freq=freq) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == per, exp) tm.assert_equal(per == base, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != per, exp) tm.assert_equal(per != base, exp) exp = np.array([False, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > per, exp) tm.assert_equal(per < base, exp) exp = np.array([True, False, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < per, exp) tm.assert_equal(per > base, exp) exp = np.array([False, True, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= per, exp) tm.assert_equal(per <= base, exp) exp = np.array([True, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= per, exp) tm.assert_equal(per >= base, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi(self, freq, box_with_array): # GH#13200 xbox = np.ndarray if box_with_array is pd.Index else box_with_array base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) # TODO: could also box idx? idx = PeriodIndex(["2011-02", "2011-01", "2011-03", "2011-05"], freq=freq) exp = np.array([False, False, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base == idx, exp) exp = np.array([True, True, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base != idx, exp) exp = np.array([False, True, False, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base > idx, exp) exp = np.array([True, False, False, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base < idx, exp) exp = np.array([False, True, True, False]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base >= idx, exp) exp = np.array([True, False, True, True]) exp = tm.box_expected(exp, xbox) tm.assert_equal(base <= idx, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_parr_cmp_pi_mismatched_freq_raises(self, freq, box_with_array): # GH#13200 # different base freq base = PeriodIndex(["2011-01", "2011-02", "2011-03", "2011-04"], freq=freq) base = tm.box_expected(base, box_with_array) msg = "Input has different freq=A-DEC from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="A") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="A") >= base # TODO: Could parametrize over boxes for idx? idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="A") rev_msg = ( r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=A-DEC\)" ) idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx # Different frequency msg = "Input has different freq=4M from " with pytest.raises(IncompatibleFrequency, match=msg): base <= Period("2011", freq="4M") with pytest.raises(IncompatibleFrequency, match=msg): Period("2011", freq="4M") >= base idx = PeriodIndex(["2011", "2012", "2013", "2014"], freq="4M") rev_msg = r"Input has different freq=(M|2M|3M) from " r"PeriodArray\(freq=4M\)" idx_msg = rev_msg if box_with_array is tm.to_array else msg with pytest.raises(IncompatibleFrequency, match=idx_msg): base <= idx @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) result = idx1 > Period("2011-02", freq=freq) exp = np.array([False, False, False, True]) tm.assert_numpy_array_equal(result, exp) result = Period("2011-02", freq=freq) < idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 == Period("NaT", freq=freq) exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) == idx1 tm.assert_numpy_array_equal(result, exp) result = idx1 != Period("NaT", freq=freq) exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = Period("NaT", freq=freq) != idx1 tm.assert_numpy_array_equal(result, exp) idx2 = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq=freq) result = idx1 < idx2 exp = np.array([True, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx2 exp = np.array([False, False, False, False]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx2 exp = np.array([True, True, True, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 == idx1 exp = np.array([True, True, False, True]) tm.assert_numpy_array_equal(result, exp) result = idx1 != idx1 exp = np.array([False, False, True, False]) tm.assert_numpy_array_equal(result, exp) @pytest.mark.parametrize("freq", ["M", "2M", "3M"]) def test_pi_cmp_nat_mismatched_freq_raises(self, freq): idx1 = PeriodIndex(["2011-01", "2011-02", "NaT", "2011-05"], freq=freq) diff = PeriodIndex(["2011-02", "2011-01", "2011-04", "NaT"], freq="4M") msg = "Input has different freq=4M from Period(Array|Index)" with pytest.raises(IncompatibleFrequency, match=msg): idx1 > diff with pytest.raises(IncompatibleFrequency, match=msg): idx1 == diff # TODO: De-duplicate with test_pi_cmp_nat @pytest.mark.parametrize("dtype", [object, None]) def test_comp_nat(self, dtype): left = pd.PeriodIndex( [pd.Period("2011-01-01"), pd.NaT, pd.Period("2011-01-03")] ) right = pd.PeriodIndex([pd.NaT, pd.NaT, pd.Period("2011-01-03")]) if dtype is not None: left = left.astype(dtype) right = right.astype(dtype) result = left == right expected = np.array([False, False, True]) tm.assert_numpy_array_equal(result, expected) result = left != right expected = np.array([True, True, False]) tm.assert_numpy_array_equal(result, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left == pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT == right, expected) expected = np.array([True, True, True]) tm.assert_numpy_array_equal(left != pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT != left, expected) expected = np.array([False, False, False]) tm.assert_numpy_array_equal(left < pd.NaT, expected) tm.assert_numpy_array_equal(pd.NaT > left, expected) class TestPeriodSeriesComparisons: def test_cmp_series_period_series_mixed_freq(self): # GH#13200 base = Series( [ Period("2011", freq="A"), Period("2011-02", freq="M"), Period("2013", freq="A"), Period("2011-04", freq="M"), ] ) ser = Series( [ Period("2012", freq="A"), Period("2011-01", freq="M"), Period("2013", freq="A"), Period("2011-05", freq="M"), ] ) exp = Series([False, False, True, False]) tm.assert_series_equal(base == ser, exp) exp = Series([True, True, False, True]) tm.assert_series_equal(base != ser, exp) exp = Series([False, True, False, False]) tm.assert_series_equal(base > ser, exp) exp = Series([True, False, False, True]) tm.assert_series_equal(base < ser, exp) exp = Series([False, True, True, False]) tm.assert_series_equal(base >= ser, exp) exp = Series([True, False, True, True]) tm.assert_series_equal(base <= ser, exp) class TestPeriodIndexSeriesComparisonConsistency: """ Test PeriodIndex and Period Series Ops consistency """ # TODO: needs parametrization+de-duplication def _check(self, values, func, expected): # Test PeriodIndex and Period Series Ops consistency idx = pd.PeriodIndex(values) result = func(idx) # check that we don't pass an unwanted type to tm.assert_equal assert isinstance(expected, (pd.Index, np.ndarray)) tm.assert_equal(result, expected) s = pd.Series(values) result = func(s) exp = pd.Series(expected, name=values.name) tm.assert_series_equal(result, exp) def test_pi_comp_period(self): idx = PeriodIndex( ["2011-01", "2011-02", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.Period("2011-03", freq="M") exp = np.array([False, False, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, True, True, False], dtype=np.bool) self._check(idx, f, exp) def test_pi_comp_period_nat(self): idx = PeriodIndex( ["2011-01", "NaT", "2011-03", "2011-04"], freq="M", name="idx" ) f = lambda x: x == pd.Period("2011-03", freq="M") exp = np.array([False, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") == x self._check(idx, f, exp) f = lambda x: x == pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT == x self._check(idx, f, exp) f = lambda x: x != pd.Period("2011-03", freq="M") exp = np.array([True, True, False, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") != x self._check(idx, f, exp) f = lambda x: x != pd.NaT exp = np.array([True, True, True, True], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT != x self._check(idx, f, exp) f = lambda x: pd.Period("2011-03", freq="M") >= x exp = np.array([True, False, True, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x < pd.Period("2011-03", freq="M") exp = np.array([True, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: x > pd.NaT exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) f = lambda x: pd.NaT >= x exp = np.array([False, False, False, False], dtype=np.bool) self._check(idx, f, exp) # ------------------------------------------------------------------ # Arithmetic class TestPeriodFrameArithmetic: def test_ops_frame_period(self): # GH#13043 df = pd.DataFrame( { "A": [pd.Period("2015-01", freq="M"), pd.Period("2015-02", freq="M")], "B": [pd.Period("2014-01", freq="M"), pd.Period("2014-02", freq="M")], } ) assert df["A"].dtype == "Period[M]" assert df["B"].dtype == "Period[M]" p = pd.Period("2015-03", freq="M") off = p.freq # dtype will be object because of original dtype exp = pd.DataFrame( { "A": np.array([2 * off, 1 * off], dtype=object), "B": np.array([14 * off, 13 * off], dtype=object), } ) tm.assert_frame_equal(p - df, exp) tm.assert_frame_equal(df - p, -1 * exp) df2 = pd.DataFrame( { "A": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], "B": [pd.Period("2015-05", freq="M"), pd.Period("2015-06", freq="M")], } ) assert df2["A"].dtype == "Period[M]" assert df2["B"].dtype == "Period[M]" exp = pd.DataFrame( { "A": np.array([4 * off, 4 * off], dtype=object), "B": np.array([16 * off, 16 * off], dtype=object), } ) tm.assert_frame_equal(df2 - df, exp) tm.assert_frame_equal(df - df2, -1 * exp) class TestPeriodIndexArithmetic: # --------------------------------------------------------------- # __add__/__sub__ with PeriodIndex # PeriodIndex + other is defined for integers and timedelta-like others # PeriodIndex - other is defined for integers, timedelta-like others, # and PeriodIndex (with matching freq) def test_parr_add_iadd_parr_raises(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) # An earlier implementation of PeriodIndex addition performed # a set operation (union). This has since been changed to # raise a TypeError. See GH#14164 and GH#13077 for historical # reference. with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): rng += other def test_pi_sub_isub_pi(self): # GH#20049 # For historical reference see GH#14164, GH#13077. # PeriodIndex subtraction originally performed set difference, # then changed to raise TypeError before being implemented in GH#20049 rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="D", periods=5) off = rng.freq expected = pd.Index([-5 * off] * 5) result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_sub_pi_with_nat(self): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = rng[1:].insert(0, pd.NaT) assert other[1:].equals(rng[1:]) result = rng - other off = rng.freq expected = pd.Index([pd.NaT, 0 * off, 0 * off, 0 * off, 0 * off]) tm.assert_index_equal(result, expected) def test_parr_sub_pi_mismatched_freq(self, box_with_array): rng = pd.period_range("1/1/2000", freq="D", periods=5) other = pd.period_range("1/6/2000", freq="H", periods=5) # TODO: parametrize over boxes for other? rng = tm.box_expected(rng, box_with_array) with pytest.raises(IncompatibleFrequency): rng - other @pytest.mark.parametrize("n", [1, 2, 3, 4]) def test_sub_n_gt_1_ticks(self, tick_classes, n): # GH 23878 p1_d = "19910905" p2_d = "19920406" p1 = pd.PeriodIndex([p1_d], freq=tick_classes(n)) p2 = pd.PeriodIndex([p2_d], freq=tick_classes(n)) expected = pd.PeriodIndex([p2_d], freq=p2.freq.base) - pd.PeriodIndex( [p1_d], freq=p1.freq.base ) tm.assert_index_equal((p2 - p1), expected) @pytest.mark.parametrize("n", [1, 2, 3, 4]) @pytest.mark.parametrize( "offset, kwd_name", [ (pd.offsets.YearEnd, "month"), (pd.offsets.QuarterEnd, "startingMonth"), (pd.offsets.MonthEnd, None), (pd.offsets.Week, "weekday"), ], ) def test_sub_n_gt_1_offsets(self, offset, kwd_name, n): # GH 23878 kwds = {kwd_name: 3} if kwd_name is not None else {} p1_d = "19910905" p2_d = "19920406" freq = offset(n, normalize=False, **kwds) p1 = pd.PeriodIndex([p1_d], freq=freq) p2 = pd.PeriodIndex([p2_d], freq=freq) result = p2 - p1 expected = pd.PeriodIndex([p2_d], freq=freq.base) - pd.PeriodIndex( [p1_d], freq=freq.base ) tm.assert_index_equal(result, expected) # ------------------------------------------------------------- # Invalid Operations @pytest.mark.parametrize("other", [3.14, np.array([2.0, 3.0])]) @pytest.mark.parametrize("op", [operator.add, ops.radd, operator.sub, ops.rsub]) def test_parr_add_sub_float_raises(self, op, other, box_with_array): dti = pd.DatetimeIndex(["2011-01-01", "2011-01-02"], freq="D") pi = dti.to_period("D") pi = tm.box_expected(pi, box_with_array) with pytest.raises(TypeError): op(pi, other) @pytest.mark.parametrize( "other", [ # datetime scalars pd.Timestamp.now(), pd.Timestamp.now().to_pydatetime(), pd.Timestamp.now().to_datetime64(), # datetime-like arrays pd.date_range("2016-01-01", periods=3, freq="H"), pd.date_range("2016-01-01", periods=3, tz="Europe/Brussels"), pd.date_range("2016-01-01", periods=3, freq="S")._data, pd.date_range("2016-01-01", periods=3, tz="Asia/Tokyo")._data, # Miscellaneous invalid types ], ) def test_parr_add_sub_invalid(self, other, box_with_array): # GH#23215 rng = pd.period_range("1/1/2000", freq="D", periods=3) rng = tm.box_expected(rng, box_with_array) with pytest.raises(TypeError): rng + other with pytest.raises(TypeError): other + rng with pytest.raises(TypeError): rng - other with pytest.raises(TypeError): other - rng # ----------------------------------------------------------------- # __add__/__sub__ with ndarray[datetime64] and ndarray[timedelta64] def test_pi_add_sub_td64_array_non_tick_raises(self): rng = pd.period_range("1/1/2000", freq="Q", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values with pytest.raises(IncompatibleFrequency): rng + tdarr with pytest.raises(IncompatibleFrequency): tdarr + rng with pytest.raises(IncompatibleFrequency): rng - tdarr with pytest.raises(TypeError): tdarr - rng def test_pi_add_sub_td64_array_tick(self): # PeriodIndex + Timedelta-like is allowed only with # tick-like frequencies rng = pd.period_range("1/1/2000", freq="90D", periods=3) tdi = pd.TimedeltaIndex(["-1 Day", "-1 Day", "-1 Day"]) tdarr = tdi.values expected = pd.period_range("12/31/1999", freq="90D", periods=3) result = rng + tdi tm.assert_index_equal(result, expected) result = rng + tdarr tm.assert_index_equal(result, expected) result = tdi + rng tm.assert_index_equal(result, expected) result = tdarr + rng tm.assert_index_equal(result, expected) expected = pd.period_range("1/2/2000", freq="90D", periods=3) result = rng - tdi tm.assert_index_equal(result, expected) result = rng - tdarr tm.assert_index_equal(result, expected) with pytest.raises(TypeError): tdarr - rng with pytest.raises(TypeError): tdi - rng # ----------------------------------------------------------------- # operations with array/Index of DateOffset objects @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_add_offset_array(self, box): # GH#18849 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) offs = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = pd.PeriodIndex([pd.Period("2015Q2"), pd.Period("2015Q4")]) with tm.assert_produces_warning(PerformanceWarning): res = pi + offs tm.assert_index_equal(res, expected) with tm.assert_produces_warning(PerformanceWarning): res2 = offs + pi tm.assert_index_equal(res2, expected) unanchored = np.array([pd.offsets.Hour(n=1), pd.offsets.Minute(n=-2)]) # addition/subtraction ops with incompatible offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi + unanchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): unanchored + pi @pytest.mark.parametrize("box", [np.array, pd.Index]) def test_pi_sub_offset_array(self, box): # GH#18824 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("2016Q2")]) other = box( [ pd.offsets.QuarterEnd(n=1, startingMonth=12), pd.offsets.QuarterEnd(n=-2, startingMonth=12), ] ) expected = PeriodIndex([pi[n] - other[n] for n in range(len(pi))]) with tm.assert_produces_warning(PerformanceWarning): res = pi - other tm.assert_index_equal(res, expected) anchored = box([pd.offsets.MonthEnd(), pd.offsets.Day(n=2)]) # addition/subtraction ops with anchored offsets should issue # a PerformanceWarning and _then_ raise a TypeError. with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): pi - anchored with pytest.raises(IncompatibleFrequency): with tm.assert_produces_warning(PerformanceWarning): anchored - pi def test_pi_add_iadd_int(self, one): # Variants of `one` for #19012 rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng + one expected = pd.period_range("2000-01-01 10:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng += one tm.assert_index_equal(rng, expected) def test_pi_sub_isub_int(self, one): """ PeriodIndex.__sub__ and __isub__ with several representations of the integer 1, e.g. int, np.int64, np.uint8, ... """ rng = pd.period_range("2000-01-01 09:00", freq="H", periods=10) result = rng - one expected = pd.period_range("2000-01-01 08:00", freq="H", periods=10) tm.assert_index_equal(result, expected) rng -= one tm.assert_index_equal(rng, expected) @pytest.mark.parametrize("five", [5, np.array(5, dtype=np.int64)]) def test_pi_sub_intlike(self, five): rng = period_range("2007-01", periods=50) result = rng - five exp = rng + (-five) tm.assert_index_equal(result, exp) def test_pi_sub_isub_offset(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng - pd.offsets.YearEnd(5) expected = pd.period_range("2009", "2019", freq="A") tm.assert_index_equal(result, expected) rng -= pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) rng = pd.period_range("2014-01", "2016-12", freq="M") result = rng - pd.offsets.MonthEnd(5) expected = pd.period_range("2013-08", "2016-07", freq="M") tm.assert_index_equal(result, expected) rng -= pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_offset_n_gt1(self, box_transpose_fail): # GH#23215 # add offset to PeriodIndex with freq.n > 1 box, transpose = box_transpose_fail per = pd.Period("2016-01", freq="2M") pi = pd.PeriodIndex([per]) expected = pd.PeriodIndex(["2016-03"], freq="2M") pi = tm.box_expected(pi, box, transpose=transpose) expected = tm.box_expected(expected, box, transpose=transpose) result = pi + per.freq tm.assert_equal(result, expected) result = per.freq + pi tm.assert_equal(result, expected) def test_pi_add_offset_n_gt1_not_divisible(self, box_with_array): # GH#23215 # PeriodIndex with freq.n > 1 add offset with offset.n % freq.n != 0 pi = pd.PeriodIndex(["2016-01"], freq="2M") expected = pd.PeriodIndex(["2016-04"], freq="2M") # FIXME: with transposing these tests fail pi = tm.box_expected(pi, box_with_array, transpose=False) expected = tm.box_expected(expected, box_with_array, transpose=False) result = pi + to_offset("3M") tm.assert_equal(result, expected) result = to_offset("3M") + pi tm.assert_equal(result, expected) # --------------------------------------------------------------- # __add__/__sub__ with integer arrays @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) @pytest.mark.parametrize("op", [operator.add, ops.radd]) def test_pi_add_intarray(self, int_holder, op): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = op(pi, other) expected = pd.PeriodIndex([pd.Period("2016Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) @pytest.mark.parametrize("int_holder", [np.array, pd.Index]) def test_pi_sub_intarray(self, int_holder): # GH#19959 pi = pd.PeriodIndex([pd.Period("2015Q1"), pd.Period("NaT")]) other = int_holder([4, -1]) result = pi - other expected = pd.PeriodIndex([pd.Period("2014Q1"), pd.Period("NaT")]) tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - pi # --------------------------------------------------------------- # Timedelta-like (timedelta, timedelta64, Timedelta, Tick) # TODO: Some of these are misnomers because of non-Tick DateOffsets def test_pi_add_timedeltalike_minute_gt1(self, three_days): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # minute frequency with n != 1. A more general case is tested below # in test_pi_add_timedeltalike_tick_gt1, but here we write out the # expected result more explicitly. other = three_days rng = pd.period_range("2014-05-01", periods=3, freq="2D") expected = pd.PeriodIndex(["2014-05-04", "2014-05-06", "2014-05-08"], freq="2D") result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.PeriodIndex(["2014-04-28", "2014-04-30", "2014-05-02"], freq="2D") result = rng - other tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - rng @pytest.mark.parametrize("freqstr", ["5ns", "5us", "5ms", "5s", "5T", "5h", "5d"]) def test_pi_add_timedeltalike_tick_gt1(self, three_days, freqstr): # GH#23031 adding a time-delta-like offset to a PeriodArray that has # tick-like frequency with n != 1 other = three_days rng = pd.period_range("2014-05-01", periods=6, freq=freqstr) expected = pd.period_range(rng[0] + other, periods=6, freq=freqstr) result = rng + other tm.assert_index_equal(result, expected) result = other + rng tm.assert_index_equal(result, expected) # subtraction expected = pd.period_range(rng[0] - other, periods=6, freq=freqstr) result = rng - other tm.assert_index_equal(result, expected) with pytest.raises(TypeError): other - rng def test_pi_add_iadd_timedeltalike_daily(self, three_days): # Tick other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-05-04", "2014-05-18", freq="D") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_sub_isub_timedeltalike_daily(self, three_days): # Tick-like 3 Days other = three_days rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") expected = pd.period_range("2014-04-28", "2014-05-12", freq="D") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_daily(self, not_daily): other = not_daily rng = pd.period_range("2014-05-01", "2014-05-15", freq="D") msg = "Input has different freq(=.+)? from Period.*?\\(freq=D\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 12:00", "2014-01-05 12:00", freq="H") result = rng + other tm.assert_index_equal(result, expected) rng += other tm.assert_index_equal(rng, expected) def test_pi_add_timedeltalike_mismatched_freq_hourly(self, not_hourly): other = not_hourly rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") msg = "Input has different freq(=.+)? from Period.*?\\(freq=H\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other def test_pi_sub_isub_timedeltalike_hourly(self, two_hours): other = two_hours rng = pd.period_range("2014-01-01 10:00", "2014-01-05 10:00", freq="H") expected = pd.period_range("2014-01-01 08:00", "2014-01-05 08:00", freq="H") result = rng - other tm.assert_index_equal(result, expected) rng -= other tm.assert_index_equal(rng, expected) def test_add_iadd_timedeltalike_annual(self): # offset # DateOffset rng = pd.period_range("2014", "2024", freq="A") result = rng + pd.offsets.YearEnd(5) expected = pd.period_range("2019", "2029", freq="A") tm.assert_index_equal(result, expected) rng += pd.offsets.YearEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_annual(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014", "2024", freq="A") msg = "Input has different freq(=.+)? from Period.*?\\(freq=A-DEC\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_pi_add_iadd_timedeltalike_M(self): rng = pd.period_range("2014-01", "2016-12", freq="M") expected = pd.period_range("2014-06", "2017-05", freq="M") result = rng + pd.offsets.MonthEnd(5) tm.assert_index_equal(result, expected) rng += pd.offsets.MonthEnd(5) tm.assert_index_equal(rng, expected) def test_pi_add_sub_timedeltalike_freq_mismatch_monthly(self, mismatched_freq): other = mismatched_freq rng = pd.period_range("2014-01", "2016-12", freq="M") msg = "Input has different freq(=.+)? from Period.*?\\(freq=M\\)" with pytest.raises(IncompatibleFrequency, match=msg): rng + other with pytest.raises(IncompatibleFrequency, match=msg): rng += other with pytest.raises(IncompatibleFrequency, match=msg): rng - other with pytest.raises(IncompatibleFrequency, match=msg): rng -= other def test_parr_add_sub_td64_nat(self, box_transpose_fail): # GH#23320 special handling for timedelta64("NaT") box, transpose = box_transpose_fail pi = pd.period_range("1994-04-01", periods=9, freq="19D") other = np.timedelta64("NaT") expected = pd.PeriodIndex(["NaT"] * 9, freq="19D") obj = tm.box_expected(pi, box, transpose=transpose) expected = tm.box_expected(expected, box, transpose=transpose) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) with pytest.raises(TypeError): other - obj @pytest.mark.parametrize( "other", [ np.array(["NaT"] * 9, dtype="m8[ns]"), TimedeltaArray._from_sequence(["NaT"] * 9), ], ) def test_parr_add_sub_tdt64_nat_array(self, box_df_fail, other): # FIXME: DataFrame fails because when when operating column-wise # timedelta64 entries become NaT and are treated like datetimes box = box_df_fail pi = pd.period_range("1994-04-01", periods=9, freq="19D") expected = pd.PeriodIndex(["NaT"] * 9, freq="19D") obj = tm.box_expected(pi, box) expected = tm.box_expected(expected, box) result = obj + other tm.assert_equal(result, expected) result = other + obj tm.assert_equal(result, expected) result = obj - other tm.assert_equal(result, expected) with pytest.raises(TypeError): other - obj # --------------------------------------------------------------- # Unsorted def test_parr_add_sub_index(self): # Check that PeriodArray defers to Index on arithmetic ops pi = pd.period_range("2000-12-31", periods=3) parr = pi.array result = parr - pi expected = pi - pi tm.assert_index_equal(result, expected) class TestPeriodSeriesArithmetic: def test_ops_series_timedelta(self): # GH#13043 ser = pd.Series( [pd.Period("2015-01-01", freq="D"), pd.Period("2015-01-02", freq="D")], name="xxx", ) assert ser.dtype == "Period[D]" expected = pd.Series( [pd.Period("2015-01-02", freq="D"), pd.Period("2015-01-03", freq="D")], name="xxx", ) result = ser + pd.Timedelta("1 days") tm.assert_series_equal(result, expected) result = pd.Timedelta("1 days") + ser tm.assert_series_equal(result, expected) result = ser + pd.tseries.offsets.Day() tm.assert_series_equal(result, expected) result = pd.tseries.offsets.Day() + ser tm.assert_series_equal(result, expected) def test_ops_series_period(self): # GH#13043 ser = pd.Series( [pd.Period("2015-01-01", freq="D"), pd.Period("2015-01-02", freq="D")], name="xxx", ) assert ser.dtype == "Period[D]" per =
pd.Period("2015-01-10", freq="D")
pandas.Period
######### Bernoulli, SVM, Logistic Regression XGboost ########## # utilities import re import numpy as np import pandas as pd # plotting import seaborn as sns from wordcloud import WordCloud import matplotlib.pyplot as plt # nltk import nltk from nltk.stem import PorterStemmer # sklearn from sklearn.svm import LinearSVC from sklearn.naive_bayes import BernoulliNB from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report import xgboost as xgb # Importing the dataset DATASET_COLUMNS=['target','ids','date','flag','user','text'] DATASET_ENCODING = "ISO-8859-1" df = pd.read_csv (r'Dataset_2.csv' , encoding=DATASET_ENCODING, names=DATASET_COLUMNS) ########### Data Preprocessing ############ #select text and target for analysis data=df[['text','target']] #Replacing the values to ease understanding. (Assigning 1 to Positive sentiment 4) data['target'] = data['target'].replace(4,1) #Separating positive and negative tweets data_pos = data[data['target'] == 1] data_neg = data[data['target'] == 0] #taking one fourth data so we can run on our machine easily data_pos = data_pos.iloc[:int(200000)] data_neg = data_neg.iloc[:int(200000)] #Combining positive and negative tweets dataset = pd.concat([data_pos, data_neg]) #Making statement text in lower case dataset['text']=dataset['text'].str.lower() #Defining set containing all stopwords in English. stopwordlist = ['a', 'about', 'above', 'after', 'again', 'ain', 'all', 'am', 'an', 'and','any','are', 'as', 'at', 'be', 'because', 'been', 'before', 'being', 'below', 'between','both', 'by', 'can', 'd', 'did', 'do', 'does', 'doing', 'down', 'during', 'each','few', 'for', 'from', 'further', 'had', 'has', 'have', 'having', 'he', 'her', 'here', 'hers', 'herself', 'him', 'himself', 'his', 'how', 'i', 'if', 'in', 'into','is', 'it', 'its', 'itself', 'just', 'll', 'm', 'ma', 'me', 'more', 'most','my', 'myself', 'now', 'o', 'of', 'on', 'once', 'only', 'or', 'other', 'our', 'ours','ourselves', 'out', 'own', 're','s', 'same', 'she', "shes", 'should', "shouldve",'so', 'some', 'such', 't', 'than', 'that', "thatll", 'the', 'their', 'theirs', 'them', 'themselves', 'then', 'there', 'these', 'they', 'this', 'those', 'through', 'to', 'too','under', 'until', 'up', 've', 'very', 'was', 'we', 'were', 'what', 'when', 'where','which','while', 'who', 'whom', 'why', 'will', 'with', 'won', 'y', 'you', "youd","youll", "youre", "youve", 'your', 'yours', 'yourself', 'yourselves'] #Cleaning and removing the above stop words list from the tweet text STOPWORDS = set(stopwordlist) def cleaning_stopwords(text): return " ".join([word for word in str(text).split() if word not in STOPWORDS]) dataset['text'] = dataset['text'].apply(lambda text: cleaning_stopwords(text)) #Cleaning and removing punctuations import string english_punctuations = string.punctuation punctuations_list = english_punctuations def cleaning_punctuations(text): translator = str.maketrans('', '', punctuations_list) return text.translate(translator) dataset['text']= dataset['text'].apply(lambda x: cleaning_punctuations(x)) #Cleaning and removing repeating characters def cleaning_repeating_char(text): return re.sub(r'(.)1+', r'1', text) dataset['text'] = dataset['text'].apply(lambda x: cleaning_repeating_char(x)) #Cleaning and removing URL’s def cleaning_URLs(data): return re.sub('((www.[^s]+)|(https?://[^s]+))',' ',data) dataset['text'] = dataset['text'].apply(lambda x: cleaning_URLs(x)) #Cleaning and removing numbers def cleaning_numbers(data): return re.sub('[0-9]+', '', data) dataset['text'] = dataset['text'].apply(lambda x: cleaning_numbers(x)) st=PorterStemmer() #Stemming tweets def stemming_sentence(sentence): words = nltk.word_tokenize(sentence) res_words = [] for word in words: res_words.append(st.stem(word)) return " ".join(res_words) dataset['text'] = dataset['text'].apply(lambda x: stemming_sentence(x)) #Separating input feature and label X=dataset.text y=dataset.target # Separating the 95% data for training data and 5% for testing data X_train, X_test, y_train, y_test = train_test_split(X,y,test_size = 0.05, random_state =0) #TF-IDF Vectorizer vectoriser = TfidfVectorizer(ngram_range=(1,2), max_features=500000) vectoriser.fit(X_train) print(X_train) #Transform the data using TF-IDF Vectorizer X_train = vectoriser.transform(X_train) X_test = vectoriser.transform(X_test) #Model Bernoulli Naive Bayes BNBmodel = BernoulliNB() BNBmodel.fit(X_train, y_train) y_pred1 = BNBmodel.predict(X_test) print(classification_report(y_test, y_pred1)) #Model SVM(Support Vector Machine) SVCmodel = LinearSVC() SVCmodel.fit(X_train, y_train) y_pred2 = SVCmodel.predict(X_test) print(classification_report(y_test, y_pred2)) # Model Logistic Regression LRmodel = LogisticRegression(C = 2, max_iter = 1000, n_jobs=-1) LRmodel.fit(X_train, y_train) y_pred3 = LRmodel.predict(X_test) print(classification_report(y_test, y_pred3)) #Model XGBoost xg = xgb.XGBClassifier(use_label_encoder=False, eval_metric='error') xg.fit(X_train, y_train) y_pred4 = xg.predict(X_test) print(classification_report(y_test, y_pred4)) ########## Classify real tweets fetching them with twitter API ########### #Setting twitter API import tweepy consumer_key = "z4eXbyALxvkOODCNafLiywMmr" consumer_secret_key = "<KEY>" access_token = '<KEY>' access_token_secret = '<KEY>' auth = tweepy.OAuthHandler(consumer_key, consumer_secret_key) auth.set_access_token(access_token, access_token_secret) api = tweepy.API(auth) #Fetching tweets ordered by a topic keyword = input('Enter a field: ') count = 500 #TWEETS tweets = tweepy.Cursor(api.search_tweets,q=keyword,count = 100,tweet_mode = 'extended',lang='en').items(count) #tweets = tweepy.Cursor(api.user_timeline,screen_name='JoeBiden',count = 100,tweet_mode = 'extended').items(count) #DATAFRAME OF TWEETS columns_t = ['User','Tweet'] data_t = [] for tweet in tweets: data_t.append([tweet.user.screen_name, tweet.full_text]) df_tweets =
pd.DataFrame(data_t,columns=columns_t)
pandas.DataFrame
# Freddy @BH # Dec 20, 2017 import torch import torch.nn as nn import torchvision.datasets as dsets import torchvision.transforms as transforms from torch.autograd import Variable import numpy as np import pandas as pd import sys import math import time from tqdm import * from data_preprocess import * from utils import * from logger import Logger # Hyper Parameters num_epochs = 10 batch_size = 256 #learning_rate = 1e-3 learning_rate = 1e-4 # argv #data_dir = sys.argv[1] debug = False load_prev_model = False direct_test = False use_gpu = False if(sys.argv[2] == '1'): debug = True if(sys.argv[3] == '1'): load_prev_model = True if(sys.argv[4] == '1'): direct_test = True if(torch.cuda.is_available()): use_gpu = True ''' Data ''' class DigitDataset(Dataset): def __init__(self, matrix_csv_path, label_csv_path, dtype): matrix_data = pd.read_csv(matrix_csv_path,header=None) label_data =
pd.read_csv(label_csv_path,header=None)
pandas.read_csv
# from cdk_pywrapper.cdk_pywrapper import Compound import pandas as pd import copy import json import os import wikidataintegrator as wdi from cdk_pywrapper.cdk_pywrapper import Compound from elasticsearch import Elasticsearch from elasticsearch.exceptions import RequestError es = Elasticsearch() def generate_fingerprint(smiles, compound_id, main_label, qid): if smiles: compound = Compound(compound_string=smiles, identifier_type='smiles', suppress_hydrogens=True) fingerprint = compound.get_bitmap_fingerprint() fp = {x for x in str(fingerprint)[1:-1].split(', ')} # if only compound id is set as a label, try to set something more useful if compound_id in compound_id_fp_map: sim_item = compound_id_fp_map[compound_id] if sim_item[1] == compound_id: sim_item[1] = main_label else: compound_id_fp_map.update({compound_id: (compound_id, main_label, qid, fp)}) return list(fp) else: return [] def update_es(data, index='reframe'): tmp_data = copy.deepcopy(data) ikey = tmp_data['ikey'] if es.exists(index=index, doc_type='compound', id=ikey): # for k, v in data.items(): # if (type(v) == list or type(v) == dict) and len(v) == 0: # del tmp_data[k] # elif not v: # del tmp_data[k] es.update(index=index, id=ikey, doc_type='compound', body={'doc': tmp_data}) else: try: # if index does not yet exist, make sure that all fields are being added res = es.index(index=index, doc_type='compound', id=ikey, body=data) except RequestError as e: print(tmp_obj) def desalt_compound(smiles): desalted_smiles = [] desalted_ikeys = [] if smiles: for single_compound in smiles.split('.'): desalted_smiles.append(single_compound) try: compound = Compound(compound_string=single_compound, identifier_type='smiles') ikey = compound.get_inchi_key() desalted_ikeys.append(ikey) except Exception as e: desalted_ikeys.append('') return desalted_smiles, desalted_ikeys def get_rfm_ids(ikey): rfm_ids = [] chem_vendors = [] for k, v in rfm_ikey_map.items(): s_id, s_vendor, s_vendor_id = v if s_id == ikey: rfm_ids.append(True) chem_vendors.append({'chem_vendor': s_vendor if pd.notnull(s_vendor) else '', 'chem_vendor_id': s_vendor_id if pd.notnull(s_vendor_id) else ''}) return rfm_ids, chem_vendors def calculate_tanimoto(fp_1, fp_2): intersct = fp_1.intersection(fp_2) return len(intersct)/(len(fp_1) + len(fp_2) - len(intersct)) # index name 'reframe' gvk_doc_map = { # 'hvac_id': 'hvac_id', 'gvk_id': 'gvk_id', # 'calibr_note': None, 'drug_name': ('drug_name', '; '), 'phase': ('phase', '; '), 'drug_roa': ('roa', '; '), 'category': ('category', '; '), 'mechanism': ('mechanism', '; '), 'sub_smiles': 'smiles', 'synonyms': ('synonyms', '; '), 'ikey': 'ikey' } integrity_doc_map = { 'id': 'id', 'smiles': 'smiles', 'name': ('drug_name', '; '), 'status': ('phase', '; '), 'int_thera_group': ('category', '; '), 'int_MoA': ('mechanism', '; '), # 'calibr_note': None, 'ikey': 'ikey', 'wikidata': 'wikidata', 'PubChem CID': 'PubChem CID' } informa_doc_map = { 'name': ('drug_name', '\n'), # 'Global Status': ('phase', '; '), 'highest_status (between global and Highest Status)': 'highest_phase', 'moa': ('mechanism', '\n'), 'target_name': ('target_name', '\n'), 'target_family': ('target_families', '\n'), 'origin': 'origin', 'chem_name': 'chemical_name', 'smiles': 'smiles', 'key': None, 'ikey': 'ikey', 'pubchem': 'PubChem CID', 'wikidata': 'wikidata', 'informa_id': 'informa_id' } assay_data_doc_map = { 'calibr_id': 'reframe_id', 'ac50': 'ac50', 'datamode': 'datamode', 'genedata_id': 'assay_id', 'assay_title': 'assay_title', # 'smiles': 'smiles', 'ikey': 'ikey', 'PubChem CID': 'PubChem CID', 'pubchem_label': 'pubchem_label', 'wikidata': 'wikidata', 'library': 'chem_vendor', 'source_id': 'chem_vendor_id' } reframe_doc = { 'ikey': '', 'reframe_id': [], 'chem_vendors': [], 'qid': '', 'alt_id': '', # 'fingerprint': [], 'similar_compounds': [], 'gvk': { }, 'integrity': { }, 'informa': { }, 'assay': [] } basic_block = { 'id': None, 'phase': [], 'mechanism': [], 'category': [] } data_dir = os.getenv('DATA_DIR') # assay_data = pd.read_csv(os.path.join(data_dir, 'reframe_short_20170822.csv')) gvk_dt = pd.read_csv(os.path.join(data_dir, '20180430_GVK_excluded_column.csv')) integrity_dt = pd.read_csv(os.path.join(data_dir, 'integrity_annot_20180504.csv')) informa_dt = pd.read_csv(os.path.join(data_dir, '20180430_Informa_excluded_column.csv')) assay_descr = pd.read_csv(os.path.join(data_dir, '20180222_assay_descriptions.csv'), header=0) assay_data = pd.read_csv(os.path.join(data_dir, 'assay_data_w_vendor_mapping.csv'), header=0) vendor_dt = pd.read_csv(os.path.join(data_dir, 'portal_info_annot.csv'), sep=',') ikey_wd_map = wdi.wdi_helpers.id_mapper('P235') compound_id_fp_map = {} rfm_ikey_map = {x['public_id']: (x['ikey'], x['library'], x['source_id']) for x in vendor_dt[['public_id', 'ikey', 'library', 'source_id']].to_dict(orient='records')} for c, x in gvk_dt.iterrows(): if x['exclude'] == 1: continue ikey = x['ikey'] if pd.isnull(ikey): if pd.notnull(x['gvk_id']): ikey = str(x['gvk_id']) else: continue tmp_obj = copy.deepcopy(reframe_doc) tmp_obj['ikey'] = ikey tmp_obj['reframe_id'], tmp_obj['chem_vendors'] = get_rfm_ids(ikey) if ikey in ikey_wd_map: tmp_obj['qid'] = ikey_wd_map[ikey] for k, v in gvk_doc_map.items(): if pd.isnull(x[k]) or v is None: continue if type(v) == tuple: tmp_obj['gvk'].update({v[0]: x[k].split(v[1])}) else: tmp_obj['gvk'].update({v: x[k]}) if 'smiles' in tmp_obj['gvk']: smiles = tmp_obj['gvk']['smiles'] main_label = tmp_obj['gvk']['drug_name'][0] if len(tmp_obj['gvk']['drug_name']) > 0 else ikey # tmp_obj['fingerprint'] = generate_fingerprint(smiles, ikey, main_label, tmp_obj['qid']) fp = generate_fingerprint(smiles, ikey, main_label, tmp_obj['qid']) if len(fp) > 0: tmp_obj['fingerprint'] = fp d_smiles, d_ikey = desalt_compound(smiles) if len(d_smiles) > 1: tmp_obj['sub_smiles'] = d_smiles tmp_obj['sub_ikey'] = d_ikey update_es(tmp_obj) # if c > 20: # break if c % 100 == 0: print(c) for c, x in integrity_dt.iterrows(): if x['exclude'] == 1: continue ikey = x['ikey'] if pd.isnull(ikey): if pd.notnull(x['id']): ikey = str(x['id']) else: continue tmp_obj = copy.deepcopy(reframe_doc) tmp_obj['ikey'] = ikey tmp_obj['reframe_id'], tmp_obj['chem_vendors'] = get_rfm_ids(ikey) if ikey in ikey_wd_map: tmp_obj['qid'] = ikey_wd_map[ikey] for k, v in integrity_doc_map.items(): if
pd.isnull(x[k])
pandas.isnull
from pywim.utils.stats import iqr import numpy as np import pandas as pd import peakutils def sensors_estimation( signal_data: pd.DataFrame, sensors_delta_distance: list ) -> [np.array]: """ :param signal_data: :param sensors_delta_distance: :return: """ # x axis: time x = signal_data.index.values sensors_peak_time = [] sensors_delta_time = [None] for k in signal_data.keys(): # y axis: volts y = signal_data[k].values indexes = peakutils.indexes(y, thres=0.5, min_dist=30) sensors_peak_time.append(x[indexes]) for i in range(1, len(sensors_peak_time)): sensors_delta_time.append( sensors_peak_time[i] - sensors_peak_time[i - 1] ) # the information about first sensor should be equal to the second sensor sensors_delta_time[0] = sensors_delta_time[1] sensors_delta_speed = [] for i in range(len(sensors_delta_distance)): sensors_delta_speed.append( sensors_delta_distance[i] / sensors_delta_time[i] ) # the information about first sensor should be equal to the second sensor sensors_delta_speed[0] = sensors_delta_speed[1] return sensors_delta_speed def average_estimation( signal_data: pd.DataFrame=None, sensors_delta_distance: list=None, sensors_delta_speed: list=None ) -> float: """ :param signal_data: :param sensors_delta_distance: :param sensors_delta_speed: :return: """ if not sensors_delta_speed: sensors_delta_speed = sensors_estimation( signal_data, sensors_delta_distance ) speed_values = np.array([]) for sensor_speeds in sensors_delta_speed[1:]: speed_values = np.concatenate((speed_values, sensor_speeds)) return iqr.reject_outliers(
pd.Series(speed_values)
pandas.Series
################################################################################ # This module aggregates the all psycho-linguistic measures into one matrix by # each 'AC_Doc_ID (item stem or option). # Parameters df_ac_pos: input pandas.DataFrame, it should have, at least, POS # count columns with the 'AC_Doc_ID's as the index of # the DataFrame # pos_start_q: integer column number (starting from zero) # specifying the starting point of POS count # columns in the question DataFrame, from the point # to the end, all the columns should be the POS count # columns # df_ac_loc_overlapping_lemma: pandas.DataFrame of the overlapping # lemma location information, even no # location information, still # df_ac_overlapping_lemma is # acceptable # df_ac_loc_overlapping_syn_lemma: pandas.DataFrame of # the overlapping lemma with synonym # location information, even no # location information, still # df_ac_overlapping_syn_lemma is # acceptable # df_ac_overlapping_nchunk: pandas.DataFrame as a result of # overlapping NChunk counts # df_ac_oanc_lemma_freq_q: pandas.DataFrame reporting each # 'AC_Doc_ID's lemma frequency stats # stem_option_name_clm: column name of stem/option identifier # in the aggregated DataFrame # stem_identifier: name of the stem identifier in the aggregated # DataFrame # keep_specific_columns_POS = None: a list of column names to be # included into the aggrageted # matrix as a part of the original # columns of the df_ac_pos input # DataFrame # stop_words_POS = None: list of POS to specify stop words, they # should all include in the POS question # and passage DataFrames # df_ac_lemma_q = None: pandas.DataFrame of questions, it should # have, at least, lemma count columns with the 'AC_Doc_ID's # as the index of the DataFrame # include_specific_lemma_count = None: a list of lemmas to be # included into the aggrageted # matrix as the lemma counts # df_ac_pos_p = None: pandas.DataFrame of passages, it should have, # at least, POS count columns, passage name and the section # columns # passage_name_clm_q = None: column name of the passage names # in the lemma question DataFrame # passage_sec_clm_q = None: column name of the passage sections # in the lemma question DataFrame # passage_name_clm_p = None: column name of the passage names # in the passage DataFrame # passage_sec_clm_p = None: column name of the passage sections # in the passage DataFrame # pos_start_p: integer column number (starting from zero) # specifying the starting point of POS count # columns in the passage DataFrame, from the point # to the end, all the columns should be the POS # count columns # decimal_places = None: specify the decimal places to round at # df_ac_overlapping_hypernyms = None: pandas.DataFrame as a result # of overlapping hypernym counts # df_ac_overlapping_hyponyms = None: pandas.DataFrame as a result # of overlapping hyponym counts # nchunk_suffix = '_nc': specify the suffix of NChunk variables # which was used for the column names of # the overlapping NChunk # hypernym_suffix = '_hype': specify the suffix of hypernym variables # which was used for the column names of # the overlapping hypernyms # hyponym_suffix = '_hypo': specify the suffix of hyponym variables # which was used for the column names of # the overlapping hyponyms # df_ac_bigram_pmi_distribution = None: pandas.DataFrame as bigram # PMI stats # df_ac_trigram_pmi_distribution = None: pandas.DataFrame as trigram # PMI stats # Returns Result: pandas.DataFrame including the original columns of # the df_ac_pos DataFrame plus aggregated result columns ################################################################################ def ac_aggregate_plim(df_ac_pos, pos_start_q, df_ac_loc_overlapping_lemma, df_ac_loc_overlapping_syn_lemma, df_ac_overlapping_nchunk, df_ac_oanc_lemma_freq_q, stem_option_name_clm, stem_identifier, keep_specific_columns_POS = None, stop_words_POS = None, df_ac_lemma_q = None, include_specific_lemma_count = None, df_ac_pos_p = None, passage_name_clm_q = None, passage_sec_clm_q =None, passage_name_clm_p = None, passage_sec_clm_p = None, pos_start_p = None, decimal_places = None, df_ac_overlapping_hypernyms = None, df_ac_overlapping_hyponyms = None, nchunk_suffix = '_nc', hypernym_suffix = '_hype', hyponym_suffix = '_hypo', df_ac_bigram_pmi_distribution = None, df_ac_trigram_pmi_distribution = None): import pandas as pd df_ac_buf_POS = df_ac_pos.iloc[:, pos_start_q:] all_option_count_name_clms = [] df_ac_options = df_ac_pos.drop_duplicates([stem_option_name_clm]) for i, x in enumerate(df_ac_options[stem_option_name_clm]): if x != stem_identifier: s = 'Count_' + x all_option_count_name_clms.append(s) for i, x in enumerate(df_ac_options[stem_option_name_clm]): if x != stem_identifier: s = 'Count_s_' + x all_option_count_name_clms.append(s) for i, x in enumerate(df_ac_options[stem_option_name_clm]): if x != stem_identifier: s = 'Count' + nchunk_suffix + '_' + x all_option_count_name_clms.append(s) for i, x in enumerate(df_ac_options[stem_option_name_clm]): if x != stem_identifier: s = 'Count' + hypernym_suffix + '_' + x all_option_count_name_clms.append(s) for i, x in enumerate(df_ac_options[stem_option_name_clm]): if x != stem_identifier: s = 'Count' + hyponym_suffix + '_' + x all_option_count_name_clms.append(s) option_len = len(all_option_count_name_clms) // 5 if stop_words_POS != None: df_ac_buf_POS = df_ac_buf_POS.drop(stop_words_POS, axis=1) df_ac_buf_sum = pd.DataFrame({ 'POS_sum' : df_ac_buf_POS.sum(axis=1) }) if keep_specific_columns_POS != None: df_ac_buf_POS_head = df_ac_pos.loc[:, keep_specific_columns_POS] else: df_ac_buf_POS_head = df_ac_pos.copy() df_ac_buf_POS_head['POS_sum'] = df_ac_buf_sum['POS_sum'] if df_ac_loc_overlapping_lemma is not None: df_concat = pd.concat([df_ac_buf_POS_head, df_ac_loc_overlapping_lemma], axis=1) else: df_concat = df_ac_buf_POS_head.copy() df_concat_tmp = df_concat.copy() if df_ac_loc_overlapping_syn_lemma is not None: df_concat = pd.concat([df_concat_tmp, df_ac_loc_overlapping_syn_lemma], axis=1) df_concat_tmp = df_concat.copy() if df_ac_overlapping_nchunk is not None: df_concat =
pd.concat([df_concat_tmp, df_ac_overlapping_nchunk, df_ac_oanc_lemma_freq_q], axis=1)
pandas.concat
#!/usr/bin/env python # coding: utf-8 # In[1]: #!/usr/bin/env python # coding: utf-8 import os import pandas as pd from selenium import webdriver from lxml import etree import time import jieba import re import numpy as np url1 = input("请输入您所需要爬取的网页(知乎)") browser = webdriver.Chrome("/Users/apple/Downloads/chromedriver_mac_mac") browser.get(url1) try: #点击问题全部内容 button1 = browser.find_elements_by_xpath("""//div[@class= "QuestionHeader-detail"] //button[contains(@class,"Button") and contains(@class,"QuestionRichText-more") and contains(@class , "Button--plain") ]""")[0] button1.click() except: print('这个问题比较简单,并没有问题的全部内容哦!') #此网页就属于异步加载的情况 #那么我们就需要多次下滑 for i in range(20): browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') time.sleep(0.5) print(i) #点击知乎的登陆弹窗 button2 = browser.find_elements_by_xpath("""//button[@aria-label = '关闭']""")[0] button2.click() # #点击知乎的“查看全部回答”按钮 # button3 = browser.find_elements_by_xpath("""//div[@class = 'Question-main'] # //a[contains(@class,"ViewAll-QuestionMainAction") and contains(@class , "QuestionMainAction") ]""")[1] # button3.click() final_end_it = browser.find_elements_by_xpath("""//button[contains(@class,"Button") and contains(@class ,'QuestionAnswers-answerButton') and contains(@class ,'Button--blue') and contains(@class ,'Button--spread') ]""") while final_end_it == []: final_end_it = browser.find_elements_by_xpath("""//button[contains(@class,"Button") and contains(@class ,'QuestionAnswers-answerButton') and contains(@class ,'Button--blue') and contains(@class ,'Button--spread') ]""") js="var q=document.documentElement.scrollTop=0" browser.execute_script(js) for i in range(30): browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') time.sleep(0.5) print(i) # #定位按钮 # #查看全部 6,376 个回答 # #得到事件的具体描述,以及网友的评论文本(或许要?) # button = browser.find_elements_by_xpath("""//a[@class='load']""")[0] # button.click() #应该在爬取的时候,进行存储,不然之后若是过多,会有事情的!可能会加载不出来?? # In[ ]: final_end_it = browser.find_elements_by_xpath("""//button[contains(@class,"Button") and contains(@class ,'QuestionAnswers-answerButton') and contains(@class ,'Button--blue') and contains(@class ,'Button--spread') ]""") while final_end_it == []: final_end_it = browser.find_elements_by_xpath("""//button[contains(@class,"Button") and contains(@class ,'QuestionAnswers-answerButton') and contains(@class ,'Button--blue') and contains(@class ,'Button--spread') ]""") js="var q=document.documentElement.scrollTop=0" browser.execute_script(js) for i in range(30): browser.execute_script('window.scrollTo(0,document.body.scrollHeight)') time.sleep(0.5) print(i) # #定位按钮 # #查看全部 6,376 个回答 # #得到事件的具体描述,以及网友的评论文本(或许要?) # button = browser.find_elements_by_xpath("""//a[@class='load']""")[0] # button.click() #应该在爬取的时候,进行存储,不然之后若是过多,会有事情的!可能会加载不出来?? # In[2]: dom = etree.HTML(browser.page_source) # # 对于问题本身的数据 # In[4]: Followers_number_first = dom.xpath("""//div[@class="QuestionFollowStatus"]//div[@class = "NumberBoard-itemInner"]/strong/text()""")[0] Browsed_number_first = dom.xpath("""//div[@class="QuestionFollowStatus"]//div[@class = "NumberBoard-itemInner"]/strong/text()""")[1] #关注者数量 Followers_number_final = re.sub(",","",Followers_number_first) #浏览数量 Browsed_number_final = re.sub(",","",Browsed_number_first) #问题链接 problem_url = url1 #问题ID problem_id = re.findall(r"\d+\.?\d*",url1) #问题标题 problem_title = dom.xpath("""//div[@class = 'QuestionHeader']//h1[@class = "QuestionHeader-title"]/text()""") #问题点赞数 problem_endorse = dom.xpath("""//div[@class = 'QuestionHeader']//div[@class = "GoodQuestionAction"]/button/text()""") #问题评论数 problem_Comment = dom.xpath("""//div[@class = 'QuestionHeader']//div[@class = "QuestionHeader-Comment"]/button/text()""") #问题回答数 answer_number = dom.xpath("""//div[@class = 'Question-main']//h4[@class = "List-headerText"]/span/text()""") #问题标签 problem_tags_list = dom.xpath("""//div[@class = 'QuestionHeader-topics']//a[@class = "TopicLink"]/div/div/text()""") # # 对于回答本身的数据 # In[5]: #具体内容 comment_list = dom.xpath("""//div[@class = 'List-item']//div[@class = "RichContent-inner"]""") comment_list_text = [] for comment in comment_list: comment_list_text.append(comment.xpath("string(.)")) #发表时间 time_list = dom.xpath("""//div[@class = 'List-item']//div[@class = "ContentItem-time"]//span/@data-tooltip""") edit_time_list = dom.xpath("""//div[@class = 'List-item']//div[@class = "ContentItem-time"]//span/text()""") #点赞数 endorse_list = dom.xpath("""//div[@class = 'List-item']//button[contains(@class,"Button") and contains(@class,"VoteButton") and contains(@class , "VoteButton--up")]/@aria-label""") #评论人数 number_of_endorse_list = dom.xpath("""//div[@class = 'List-item']//svg[contains(@class,"Zi") and contains(@class,"Zi--Comment") and contains(@class,"Button-zi")]/../../text()""") #回答链接 answers_url_list = dom.xpath("""//div[@class = 'List-item']//div[contains(@class,"ContentItem") and contains(@class,"AnswerItem")] /meta[@itemprop = "url"]/@content""") authors_list = dom.xpath("""//div[@class = 'List-item']//div[contains(@class,"ContentItem") and contains(@class,"AnswerItem")] /@data-zop""") #作者姓名 authorName_list = [] #作者id authorid_list = [] for i in authors_list: authorName_list.append(eval(i)['authorName']) authorid_list.append(eval(i)["itemId"]) # # 合成数据框 # In[6]: data =
pd.DataFrame()
pandas.DataFrame
import os import time import uuid from uuid import uuid5 import logging from importlib import import_module from typing import List, Union, Callable, Tuple import numpy as np import fire import requests import pandas as pd from bs4 import BeautifulSoup from yadil.web.scraper_config import default_config as config def delay_mean_and_std(mean: int = 5, std: int = 3): if not delay_mean_and_std.init: np.random.seed(delay_mean_and_std.seed) delay_mean_and_std.init = True time.sleep(np.abs(np.random.normal(loc=mean, scale=std) / 1.0)) delay_mean_and_std.seed = 123456 delay_mean_and_std.init = False class VisitedUrls(object): def __init__(self): self.urls = {} def check_if_visited_and_add(self, url: str = None): try: url_parts = url.split("/") urls = self.urls for p in url_parts: if p in urls.keys(): urls = urls[p] elif p == url_parts[-1]: urls[p] = True return False else: urls[p] = {} urls = urls[p] return True except: return False logger = logging.getLogger(__file__) logger.setLevel(logging.INFO) def _download(config, url) -> Tuple[str, bytes]: try: if config.visited.check_if_visited_and_add(url): logger.warn("url : {} is already visited.".format(url)) return None r = requests.get(url, allow_redirects=True) delay_mean_and_std(config.DELAY_MEAN, config.DELAY_STD) return r.headers["content-type"], r.content except Exception as e: logger.error("download error : {}".format(url)) return None def _save_image(config, url, content): try: if content: unq_id = str(uuid5(uuid.NAMESPACE_URL, name=url)) filename = os.path.join(config.OUTPUT_DIR, unq_id + ".jpg") with open(filename, "wb") as f: f.write(content) logger.info("Saving {} as {}".format(url, unq_id)) df =
pd.DataFrame(data={"url": [url], "uuid": [unq_id]}, columns=["url", "uuid"])
pandas.DataFrame
import pandas as pd import re import numpy as np from sklearn.preprocessing import OneHotEncoder from sklearn.metrics.pairwise import cosine_similarity df = pd.read_csv("amazon_data.csv") df_cleaned = df.drop( axis=0, columns= ['bestsellers_rank_main_name', 'bestsellers_rank_main_rank', 'bestsellers_rank_sub_0_name', 'price_shipping', 'dimensions_cm_raw', 'price_per_unit', 'fulfillment_type', 'fulfillment_is_sold_by_amazon', 'attributes_variation_size_name', 'fulfillment_is_fulfilled_by_amazon', 'weight_tier', 'fulfillment_is_fulfilled_by_third_party','fulfillment_is_sold_by_third_party', 'price_buybox', 'price_rrp', 'weight_raw', 'weight_unit', 'weight_gramme', 'bestsellers_rank_sub_0_rank', 'labels_choice_keyword', 'labels_is_amazon_bestseller', 'labels_is_amazon_choice', 'offers_quantity', 'attributes_variation_style_name', 'bestsellers_rank_sub_1_name', 'bestsellers_rank_sub_1_rank', 'upc_number', 'ean_number', 'review_ratings_total', 'dimensions_type', 'dimensions_unit', 'dimensions_tier', 'part_number', 'parent_asin', 'variants_quantity', 'answered_questions_count', 'project_name', 'marketplace', 'attributes_variation_color_name', 'gtin_number','bestsellers_rank_sub_2_name', 'bestsellers_rank_sub_2_rank', 'estimations_sales_daily', 'dimensions_in_raw', 'attributes_variation_fit_type', 'estimations_sales_monthly', 'estimations_revenue_daily', 'model_number', 'keywords', 'review_rating', 'amazon_label', 'date_time', 'attributes_variation_number_of_items', 'estimations_revenue_monthly', 'estimations_revenue_per_review', 'price_symbol', 'aplus_feature', 'brand_name', 'seller_name', 'seller_id', 'is_used', 'asin', 'date_listed_iso', 'manufacturer', 'asins', 'images_count', 'review_by_stars_five_star', 'review_by_stars_four_star', 'review_by_stars_three_star', 'review_by_stars_two_star', 'review_by_stars_one_star']) titles = df_cleaned["title"] bullet1 = df_cleaned["features_bullet_point_0"].astype(str) bullet2 = df_cleaned["features_bullet_point_1"].astype(str) bullet3 = df_cleaned["features_bullet_point_2"].astype(str) bullet4 = df_cleaned["features_bullet_point_3"].astype(str) bullet5 = df_cleaned["features_bullet_point_4"].astype(str) description = df_cleaned["features_description"].astype(str) text_list = [titles, bullet1, bullet2, bullet3, bullet4, bullet5, description] #Extracting Age: def get_age_in_years(texts): """extracts numbers that occure with the words year(s), Year(s), Jahr(e), jahr(e) """ age = r"(................[1234567890]................)" year_b = r"(................year................)" year_c = r"(................Year................)" year_d = r"(................jahr................)" year_e = r"(................Jahr................)" agey = [] for n in texts: a = re.findall(age,n) text_y = "" if a: b = re.findall(year_b,n) if b: text_y = b[0] else: c = re.findall(year_c,n) if c: text_y=c[0] else: d = re.findall(year_d,n) if d: text_y = d[0] else: e = re.findall(year_e,n) if e: text_y = e[0] agey.append(text_y) return agey def get_age_in_months(texts): """extracts numbers that occure with the words month(s), Month(s), monat(e), Monat(e) """ age = r"..........[1234567890]............" month_b = r"(................month................)" month_c = r"(................Month................)" month_d = r"(................monat................)" month_e = r"(................Monat................)" agem = [] for n in texts: a = re.findall(age,n) text = "" if a: b = re.findall(month_b,n) if b: text = b[0] else: c = re.findall(month_c,n) if c: text=c[0] else: d = re.findall(month_d,n) if d: text = d[0] else: e = re.findall(month_e,n) if e: text = e[0] agem.append(text) return agem titles_agey = get_age_in_years(titles) titles_agem = get_age_in_months(titles) bullet1_agey = get_age_in_years(bullet1) bullet1_agem = get_age_in_months(bullet1) bullet2_agey = get_age_in_years(bullet2) bullet2_agem = get_age_in_months(bullet2) bullet3_agey = get_age_in_years(bullet3) bullet3_agem = get_age_in_months(bullet3) bullet4_agey = get_age_in_years(bullet4) bullet4_agem = get_age_in_months(bullet4) bullet5_agey = get_age_in_years(bullet5) bullet5_agem = get_age_in_months(bullet5) description_agey = get_age_in_years(description) description_agem = get_age_in_months(description) def get_age_in_numbers(texts): """extracts numbers without text """ number = r"[^0-9]+(\b\d+\b)[^0-9]+(\b\d+\b)[^0-9]+(\b\d+\b)[^0-9]+(\b\d+\b).+" agen = [] for n in texts: a = re.findall(number,n) text = "" if a: text = a[0] agen.append(set(text)) return agen titles_agey = get_age_in_numbers(titles_agey) titles_agem = get_age_in_numbers(titles_agem) bullet1_agey = get_age_in_numbers(bullet1_agey) bullet1_agem = get_age_in_numbers(bullet1_agem) bullet2_agey = get_age_in_numbers(bullet2_agey) bullet2_agem = get_age_in_numbers(bullet2_agem) bullet3_agey = get_age_in_numbers(bullet3_agey) bullet3_agem = get_age_in_numbers(bullet3_agem) bullet4_agey = get_age_in_numbers(bullet4_agey) bullet4_agem = get_age_in_numbers(bullet4_agem) bullet5_agey = get_age_in_numbers(bullet5_agey) bullet5_agem = get_age_in_numbers(bullet5_agem) description_agey = get_age_in_numbers(description_agey) description_agem = get_age_in_numbers(description_agem) df_cleaned["titles_agey"] = np.asarray(titles_agey) df_cleaned["titles_agem"] = np.asarray(titles_agem) df_cleaned["bullet1_agey"] = np.asarray(bullet1_agey) df_cleaned["bullet1_agem"] = np.asarray(bullet1_agem) df_cleaned["bullet2_agey"] = np.asarray(bullet2_agey) df_cleaned["bullet2_agem"] = np.asarray(bullet2_agem) df_cleaned["bullet3_agey"] = np.asarray(bullet3_agey) df_cleaned["bullet3_agem"] = np.asarray(bullet3_agem) df_cleaned["bullet4_agey"] = np.asarray(bullet4_agey) df_cleaned["bullet4_agem"] = np.asarray(bullet4_agem) df_cleaned["bullet5_agey"] = np.asarray(bullet5_agey) df_cleaned["bullet5_agem"] = np.asarray(bullet5_agem) df_cleaned["description_agey"] = np.asarray(description_agey) df_cleaned["description_agem"] = np.asarray(description_agem) df_age = df_cleaned.drop( axis=0, columns= ['features_bullet_point_0', 'features_bullet_point_1', 'features_bullet_point_2', 'features_bullet_point_3', 'features_bullet_point_4', 'features_description', 'feature_bullets_count', 'images_row']) list_years=[] for i in range(len(df_age)): h = df_age.loc[i, "titles_agey"].union(df_age.loc[i, "bullet1_agey"]).union(df_age.loc[i, "bullet2_agey"]).union(df_age.loc[i, "bullet3_agey"]).union(df_age.loc[i, "bullet4_agey"]).union(df_age.loc[i, "bullet5_agey"]).union(df_age.loc[i, "description_agey"]) list_years.append(h) df_age["age_years"] = list_years list_months=[] for i in range(len(df_age)): h = df_age.loc[i, "titles_agem"].union(df_age.loc[i, "bullet1_agem"]).union(df_age.loc[i, "bullet2_agem"]).union(df_age.loc[i, "bullet3_agem"]).union(df_age.loc[i, "bullet4_agem"]).union(df_age.loc[i, "bullet5_agem"]).union(df_age.loc[i, "description_agem"]) list_months.append(h) df_age["age_years"] = list_years df_age["age_months"] = list_months df_age['new_age_in_months'] = df_age.age_years.apply(lambda z: set({int(x)*12 for x in z})) df_age.age_months = df_age.age_months.apply(lambda y: set({int(x) for x in y}) ) new_row = [] for i,row in df_age.iterrows(): new_row.append(row[-1].union(row[5])) df_age['age'] = new_row df_age = df_age.drop( axis=0, columns= ['bullet3_agey', 'bullet3_agem', 'bullet4_agey', 'bullet4_agem', 'bullet5_agey', 'bullet5_agem', 'bullet1_agey', 'bullet1_agem', 'titles_agey', 'titles_agem','bullet2_agey', 'bullet2_agem', 'description_agey', 'description_agem']) df_age['list_of_age'] = df_age.age.apply(lambda x: [int(y) for y in list(x)]) df_age['0_24'] = df_age.list_of_age.apply(lambda y : 1 if sum([1 if x >=0 and x <=24 else 0 for x in y])else 0) df_age["25-60"]= df_age.list_of_age.apply(lambda y : 1 if sum([1 if x >=25 and x <=60 else 0 for x in y])else 0) df_age['72+'] = df_age.list_of_age.apply(lambda y : 1 if sum([1 if x >=72 else 0 for x in y])else 0) df_age.columns[5:] df_age = df_age.drop(axis=0, columns=["list_of_age", "age_months", "new_age_in_months", "age", "age_years"]) # Extracting skills: age = r"..........[1234567890]............" motor = r"(motor)" motor_c = r"(Motor)" language = r"(language)" language_c = r"(Language)" math = r"(math)" math_c = r"(Math)" cognative = r"(cognative)" cognative_c = r"(Cognative)" numbers = r"(number)" numbers_c = r"(Number)" stem = r"(stem)" stem_c = r"(Stem)" stem_cc = r"(STEM)" emotional = r"(emotional)" emotional_c = r"(Emotional)" social = r"(social)" social_c = r"(Social)" def get_skills(text,reg): skill = [] for n in text: lines = "" a = re.findall(age,n) if a: b = re.findall(reg, n) if b: lines = b[0] skill.append(lines) return skill for t in text_list: df_age["motor"] = get_skills(t, motor) df_age["motor_c"]= get_skills(t, motor_c) df_age["language"] = get_skills(t, language) df_age["language_c"]= get_skills(t, language_c) df_age["math"] = get_skills(t, math) df_age["math_c"]= get_skills(t, math_c) df_age["cognative"] = get_skills(t, cognative) df_age["cognative_c"]= get_skills(t, cognative_c) df_age["numbers"] = get_skills(t, numbers) df_age["numbers_c"]= get_skills(t, numbers_c) df_age["stem"] = get_skills(t, stem) df_age["stem_c"]= get_skills(t, stem_c) df_age["stem_cc"]= get_skills(t, stem_cc) df_age["emotional"] = get_skills(t, emotional) df_age["emotional_c"]= get_skills(t, emotional_c) df_age["social"] = get_skills(t, social) df_age["social_c"]= get_skills(t, social_c) # Putting columns of same skill together df_age_skills = df_age df_age_skills["motor_skills"] = df_age_skills["motor"] + df_age_skills["motor_c"] df_age_skills["language_skills"] = df_age_skills["language"] + df_age_skills["language_c"] df_age_skills["math_skills"] = df_age_skills["math"] + df_age_skills["math_c"] df_age_skills["cognative_skills"] = df_age_skills["cognative"] + df_age_skills["cognative_c"] df_age_skills["numbers_skills"] = df_age_skills["numbers"] + df_age_skills["numbers_c"] df_age_skills["stem_skills"] = df_age_skills["stem"] + df_age_skills["stem_c"] + df_age_skills["stem_cc"] df_age_skills["emotional_skills"] = df_age_skills["emotional"] + df_age_skills["emotional_c"] df_age_skills["social_skills"] = df_age_skills["social"] + df_age_skills["social_c"] df_merged = df_age_skills.drop(axis=0, columns=["motor", "motor_c", "language", "language_c", "math", "math_c", "cognative", "cognative_c", "numbers", "numbers_c", "stem", "stem_c", "stem_cc", "emotional", "emotional_c", "social", "social_c"]) # Replacing empty strings with NaN df_merged = df_merged.replace(r'^\s*$', np.NaN, regex=True) # Unifying values in skills columns df_merged["math_skills"].replace({"math": "stem", "Math": "stem"}, inplace=True) df_merged["numbers_skills"].replace({"number": "stem", "Numbers": "stem"}, inplace=True) df_merged["stem_skills"] = df_merged["math_skills"] + df_merged["numbers_skills"] df_merged = df_merged.drop(axis=0, columns=["math_skills", "numbers_skills"]) df_merged["stem_skills"].replace({"stemstem": "stem", "stemnumberNumber": "stem", "stemNumber": "stem", "mathMathstem": "stem", "mathMathnumberNumber": "stem" }, inplace=True) df_merged["motor_skills"].replace({"Motor": "motor", "motorMotor": "motor" }, inplace=True) df_merged["language_skills"].replace({"Language": "language"}, inplace=True) df_merged = df_merged.drop(axis=0, columns=["cognative_skills"]) df_merged["emotional_skills"].replace({"Emotional": "emotional", "emotionalEmotional": "emotional"}, inplace=True) df_merged["social_skills"].replace({"Social": "social"}, inplace=True) df_final = df_merged # One hot encoding one_hot = OneHotEncoder(sparse=False, handle_unknown='ignore') m = df_final['motor_skills'].to_numpy().reshape(-1, 1) one_hot.fit(m) motor = one_hot.transform(m) motor_df = pd.DataFrame(motor, columns= ["motor", "drop"]).drop( axis=0, columns='drop') l = df_final['language_skills'].to_numpy().reshape(-1, 1) one_hot.fit(l) language = one_hot.transform(l) language_df = pd.DataFrame(language, columns= ["language", "drop"]).drop( axis=0, columns='drop') st= df_final['stem_skills'].to_numpy().reshape(-1, 1) one_hot.fit(st) stem = one_hot.transform(st) stem_df = pd.DataFrame(stem, columns= ["stem", "drop"]).drop( axis=0, columns='drop') e = df_final['emotional_skills'].to_numpy().reshape(-1, 1) one_hot.fit(e) emotional = one_hot.transform(e) emotional_df = pd.DataFrame(emotional, columns= ["emotional", "drop"]).drop( axis=0, columns='drop') s = df_final['social_skills'].to_numpy().reshape(-1, 1) one_hot.fit(s) social = one_hot.transform(s) social_df = pd.DataFrame(social, columns= ["social", "drop"]).drop( axis=0, columns='drop') df_final =
pd.concat([df_final, motor_df, language_df, stem_df, emotional_df, social_df], axis=1)
pandas.concat
import os from datetime import datetime import nose import pandas as pd from pandas import compat from pandas.util.testing import network, assert_frame_equal, with_connectivity_check from numpy.testing.decorators import slow import pandas.util.testing as tm if compat.PY3: raise nose.SkipTest("python-gflags does not support Python 3 yet") try: import httplib2 import pandas.io.ga as ga from pandas.io.ga import GAnalytics, read_ga from pandas.io.auth import AuthenticationConfigError, reset_default_token_store from pandas.io import auth except ImportError: raise nose.SkipTest("need httplib2 and auth libs") class TestGoogle(tm.TestCase): _multiprocess_can_split_ = True def test_remove_token_store(self): auth.DEFAULT_TOKEN_FILE = 'test.dat' with open(auth.DEFAULT_TOKEN_FILE, 'w') as fh: fh.write('test') reset_default_token_store() self.assertFalse(os.path.exists(auth.DEFAULT_TOKEN_FILE)) @with_connectivity_check("http://www.google.com") def test_getdata(self): try: end_date = datetime.now() start_date = end_date - pd.offsets.Day() * 5 end_date = end_date.strftime('%Y-%m-%d') start_date = start_date.strftime('%Y-%m-%d') reader = GAnalytics() df = reader.get_data( metrics=['avgTimeOnSite', 'visitors', 'newVisits', 'pageviewsPerVisit'], start_date=start_date, end_date=end_date, dimensions=['date', 'hour'], parse_dates={'ts': ['date', 'hour']}, index_col=0) self.assertIsInstance(df, pd.DataFrame) self.assertIsInstance(df.index, pd.DatetimeIndex) self.assertGreater(len(df), 1) self.assertTrue('date' not in df) self.assertTrue('hour' not in df) self.assertEqual(df.index.name, 'ts') self.assertTrue('avgTimeOnSite' in df) self.assertTrue('visitors' in df) self.assertTrue('newVisits' in df) self.assertTrue('pageviewsPerVisit' in df) df2 = read_ga( metrics=['avgTimeOnSite', 'visitors', 'newVisits', 'pageviewsPerVisit'], start_date=start_date, end_date=end_date, dimensions=['date', 'hour'], parse_dates={'ts': ['date', 'hour']}, index_col=0) assert_frame_equal(df, df2) except AuthenticationConfigError: raise nose.SkipTest("authentication error") @with_connectivity_check("http://www.google.com") def test_iterator(self): try: reader =
GAnalytics()
pandas.io.ga.GAnalytics
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 12 17:13:29 2018 @author: pamelaanderson """ from difflib import SequenceMatcher import json import numpy as np import os import operator import pandas as pd def load_adverse_events(path, year, q): """ Loading adverse drug events while performing basic pre-processing""" path_w_year = path + year + '/' + q + '/' json_files = os.listdir(path_w_year) df_adverse_ev = pd.DataFrame() file_tot = [file for file in json_files if file not in ['.DS_Store']] ind = 0 for file in file_tot: print(file) adverse_ev_data = json.load(open(path_w_year + file)) df_adverse_ev_json = pd.DataFrame(adverse_ev_data['results']) df_adverse_ev = pd.concat([df_adverse_ev, df_adverse_ev_json]) del adverse_ev_data, df_adverse_ev_json ind += 1 df_adverse_ev = df_adverse_ev.reset_index(drop=True) # Change data types to correct format df_adverse_ev = format_kept_cells(df_adverse_ev) # Find drug application number from nested dictionary df_adverse_ev = extract_drug_app_num_from_ad_ev(df_adverse_ev) # Find patient features from nested dictionary df_adverse_ev = extract_patient_features(df_adverse_ev) # Find drug info from nested dictionary df_adverse_ev = extract_drug_features(df_adverse_ev) # Find who submitted report info as column in df df_adverse_ev = extract_source_info(df_adverse_ev) # Drop columns that will not be included as features df_adverse_ev = drop_unneeded_cols(df_adverse_ev) return df_adverse_ev def drop_unneeded_cols(df_adverse_ev): """ Drop the columns that will not be used as features """ drop_cols = ['companynumb','duplicate', 'occurcountry', 'patient', 'primarysourcecountry', 'receiptdateformat', 'receiver', 'receivedate', 'receivedateformat', 'reportduplicate', 'reporttype','safetyreportid', 'safetyreportversion', 'sender', 'transmissiondate','transmissiondateformat'] df_adverse_ev = df_adverse_ev.drop(drop_cols, axis=1) return df_adverse_ev def format_kept_cells(df_adverse_ev): """ Correct data types (to numeric or datetime) """ df_adverse_ev['fulfillexpeditecriteria'] = pd.to_numeric(df_adverse_ev['fulfillexpeditecriteria']) df_adverse_ev['serious'] = pd.to_numeric(df_adverse_ev['serious']) df_adverse_ev['seriousnesscongenitalanomali'] = pd.to_numeric(df_adverse_ev['seriousnesscongenitalanomali']) df_adverse_ev['seriousnessdeath'] = pd.to_numeric(df_adverse_ev['seriousnessdeath']) df_adverse_ev['seriousnessdisabling'] = pd.to_numeric(df_adverse_ev['seriousnessdisabling']) df_adverse_ev['seriousnesshospitalization'] = pd.to_numeric(df_adverse_ev['seriousnesshospitalization']) df_adverse_ev['seriousnesslifethreatening'] = pd.to_numeric(df_adverse_ev['seriousnesslifethreatening']) df_adverse_ev['seriousnessother'] = pd.to_numeric(df_adverse_ev['seriousnessother']) df_adverse_ev['receiptdate'] = pd.to_datetime(df_adverse_ev['receiptdate']) cols_to_convert_na_to_0 = ['serious', 'seriousnesscongenitalanomali', 'seriousnessdeath', 'seriousnessdisabling', 'seriousnesshospitalization', 'seriousnesslifethreatening', 'seriousnessother'] df_adverse_ev[cols_to_convert_na_to_0] = df_adverse_ev[ cols_to_convert_na_to_0 ].fillna(value=0) return df_adverse_ev def extract_drug_features(df_adverse_ev): """ Find the relevant information about the drugs """ medic_product = [] drug_indict = [] drug_route = [] drug_char = [] for i in range(0,len(df_adverse_ev)): col_names = list(df_adverse_ev.iloc[i]['patient']['drug'][0].keys()) if 'medicinalproduct' in col_names: medic_product.append(df_adverse_ev.iloc[i]['patient']['drug'][0]['medicinalproduct']) else: medic_product.append(np.nan) if 'drugindication' in col_names: drug_indict.append(df_adverse_ev.iloc[i]['patient']['drug'][0]['drugindication']) else: drug_indict.append(np.nan) if 'drugadministrationroute' in col_names: drug_route.append(df_adverse_ev.iloc[i]['patient']['drug'][0]['drugadministrationroute']) else: drug_route.append(np.nan) if 'drugcharacterization' in col_names: drug_char.append(df_adverse_ev.iloc[i]['patient']['drug'][0]['drugcharacterization']) else: drug_char.append(np.nan) drug_info = pd.DataFrame({'medic_product' : medic_product, 'drug_indict' : drug_indict, 'drug_route' : drug_route, 'drug_char' : drug_char}) df_adverse_ev = pd.concat([df_adverse_ev, drug_info], axis=1) return df_adverse_ev def extract_source_info(df_adverse_ev): """ Find information about who submitted the report """ qual_list = [] for i in range(0,len(df_adverse_ev)): if df_adverse_ev.iloc[i]['primarysource'] is not None: col_names = list(df_adverse_ev.iloc[i]['primarysource'].keys()) if 'qualification' in col_names: qual_list.append(
pd.to_numeric(df_adverse_ev.iloc[i]['primarysource']['qualification'])
pandas.to_numeric
import cv2 import numpy as np import os import pandas as pd from tkg import GUI ix,iy,ix2,iy2 = -1,-1,-1,-1 # mouse callback function flag=0 k=None img=None def draw_circle(event,x,y,flags,param): global ix,iy,ix2,iy2,flag if event == cv2.EVENT_LBUTTONDBLCLK: cv2.circle(img,(x,y),100,(255,0,0),-1) if flag ==0: ix,iy = x,y flag=1 elif flag== 1: ix2,iy2=x,y flag=0 def main(): global k,flag,img print("Select Path First") o=GUI() o.gui() df =
pd.DataFrame(columns=["Filename","x1","y1","x2","y2","classname"])
pandas.DataFrame
import pandas as pd from pandas import Series, Period, PeriodIndex, date_range class PeriodProperties(object): params = ['M', 'min'] param_names = ['freq'] def setup(self, freq): self.per = Period('2012-06-01', freq=freq) def time_year(self, freq): self.per.year def time_month(self, freq): self.per.month def time_day(self, freq): self.per.day def time_hour(self, freq): self.per.hour def time_minute(self, freq): self.per.minute def time_second(self, freq): self.per.second def time_is_leap_year(self, freq): self.per.is_leap_year def time_quarter(self, freq): self.per.quarter def time_qyear(self, freq): self.per.qyear def time_week(self, freq): self.per.week def time_daysinmonth(self, freq): self.per.daysinmonth def time_dayofweek(self, freq): self.per.dayofweek def time_dayofyear(self, freq): self.per.dayofyear def time_start_time(self, freq): self.per.start_time def time_end_time(self, freq): self.per.end_time class PeriodUnaryMethods(object): params = ['M', 'min'] param_names = ['freq'] def setup(self, freq): self.per = Period('2012-06-01', freq=freq) def time_to_timestamp(self, freq): self.per.to_timestamp() def time_now(self, freq): self.per.now(freq) def time_asfreq(self, freq): self.per.asfreq('A') class PeriodIndexConstructor(object): goal_time = 0.2 params = ['D'] param_names = ['freq'] def setup(self, freq): self.rng = date_range('1985', periods=1000) self.rng2 = date_range('1985', periods=1000).to_pydatetime() def time_from_date_range(self, freq): PeriodIndex(self.rng, freq=freq) def time_from_pydatetime(self, freq):
PeriodIndex(self.rng2, freq=freq)
pandas.PeriodIndex
# Data Preprocessing """ML_Workflow template with required libraries and function calls. @author:Varshtih """ import pandas as pd import numpy as np from autoimpute.imputations import MultipleImputer from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import LabelEncoder from scipy import stats import sweetviz import seaborn as sns from pyod.models.feature_bagging import FeatureBagging # Load Input Files train_data = pd.read_csv(r"C:\Users\svvar\PycharmProjects\ml_workflow\Algorithims\Data Files\train.csv") test_data = pd.read_csv(r"C:\Users\svvar\PycharmProjects\ml_workflow\Algorithims\Data Files\test.csv") train_data.info() test_data.info() # Fill in required Inputs x_train = train_data.iloc[:, list(range(3, 11))] y_train = train_data.iloc[:, list(range(11,12))].values x_train_num = train_data.iloc[:, list(range(3, 9))] x_train_txt = train_data.iloc[:, list(range(9, 11))] x_train_txt_encode_split = 2 # Split at Column Number x_test = test_data.iloc[:, list(range(3, 11))] x_test_num = test_data.iloc[:, list(range(3, 9))] x_test_txt = test_data.iloc[:, list(range(9, 11))] x_test_txt_encode_split = 2 # Split at Column Number # Impute Missing values # Numerical Imputer imputer_num = MultipleImputer(strategy='stochastic', return_list=True, n=5, seed=101) x_train_num_avg = imputer_num.fit_transform(x_train_num) x_train_num_concat = x_train_num_avg[0][1] for i in range(len(x_train_num_avg)-1): x_train_num_concat = pd.concat([x_train_num_concat,x_train_num_avg[i+1][1]], axis=1) x_train_num_avg = x_train_num_concat.groupby(by=x_train_num_concat.columns, axis=1).apply(lambda g: g.mean(axis=1)) x_test_num_avg = imputer_num.fit_transform(x_test_num) x_test_num_concat = x_test_num_avg[0][1] for i in range(len(x_test_num_avg)-1): x_test_num_concat =
pd.concat([x_test_num_concat,x_test_num_avg[i+1][1]], axis=1)
pandas.concat
"""Helper methods.""" import copy import glob import errno import os.path import time import calendar import numpy import pandas import matplotlib.colors from matplotlib import pyplot import keras import tensorflow.keras as tf_keras import tensorflow.keras.layers as layers import tensorflow.python.keras.backend as K from scipy.interpolate import interp1d from scipy.ndimage.filters import gaussian_filter from scipy.spatial.distance import cdist from scipy.cluster.hierarchy import linkage, dendrogram from sklearn.metrics import roc_auc_score from sklearn.metrics import auc as sklearn_auc from sklearn.linear_model import LinearRegression, Ridge, Lasso, ElasticNet, \ SGDClassifier from sklearn.tree import DecisionTreeClassifier, plot_tree from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from sklearn.cluster import KMeans, AgglomerativeClustering from ai2es_xai_course.plotting import evaluation_plotting from ai2es_xai_course.utils import keras_metrics as custom_metrics # TODO(thunderhoser): Split this into different modules. # Variable names. METADATA_COLUMNS_ORIG = [ 'Step_ID', 'Track_ID', 'Ensemble_Name', 'Ensemble_Member', 'Run_Date', 'Valid_Date', 'Forecast_Hour', 'Valid_Hour_UTC' ] EXTRANEOUS_COLUMNS_ORIG = [ 'Duration', 'Centroid_Lon', 'Centroid_Lat', 'Centroid_X', 'Centroid_Y', 'Storm_Motion_U', 'Storm_Motion_V', 'Matched', 'Max_Hail_Size', 'Num_Matches', 'Shape', 'Location', 'Scale' ] TARGET_NAME_ORIG = 'RVORT1_MAX-future_max' TARGET_NAME = 'max_future_vorticity_s01' BINARIZED_TARGET_NAME = 'strong_future_rotation_flag' AREA_NAME = 'area_km2' MAJOR_AXIS_NAME = 'major_axis_km' MINOR_AXIS_NAME = 'minor_axis_km' ORIENTATION_NAME = 'orientation_deg' METADATA_COLUMNS_ORIG_TO_NEW = { 'Step_ID': 'storm_object_name', 'Track_ID': 'storm_cell_name', 'Ensemble_Name': 'ensemble_name', 'Ensemble_Member': 'ensemble_member_name', 'Run_Date': 'init_time_string', 'Valid_Date': 'valid_time_string', 'Forecast_Hour': 'lead_time_hours', 'Valid_Hour_UTC': 'valid_hour' } TARGET_COLUMNS_ORIG_TO_NEW = { TARGET_NAME_ORIG: TARGET_NAME } PREDICTOR_COLUMNS_ORIG_TO_NEW = { 'REFL_COM_mean': 'composite_refl_mean_dbz', 'REFL_COM_max': 'composite_refl_max_dbz', 'REFL_COM_min': 'composite_refl_min_dbz', 'REFL_COM_std': 'composite_refl_stdev_dbz', 'REFL_COM_percentile_10': 'composite_refl_prctile10_dbz', 'REFL_COM_percentile_25': 'composite_refl_prctile25_dbz', 'REFL_COM_percentile_50': 'composite_refl_median_dbz', 'REFL_COM_percentile_75': 'composite_refl_prctile75_dbz', 'REFL_COM_percentile_90': 'composite_refl_prctile90_dbz', 'U10_mean': 'u_wind_10metres_mean_m_s01', 'U10_max': 'u_wind_10metres_max_m_s01', 'U10_min': 'u_wind_10metres_min_m_s01', 'U10_std': 'u_wind_10metres_stdev_m_s01', 'U10_percentile_10': 'u_wind_10metres_prctile10_m_s01', 'U10_percentile_25': 'u_wind_10metres_prctile25_m_s01', 'U10_percentile_50': 'u_wind_10metres_median_m_s01', 'U10_percentile_75': 'u_wind_10metres_prctile75_m_s01', 'U10_percentile_90': 'u_wind_10metres_prctile90_m_s01', 'V10_mean': 'v_wind_10metres_mean_m_s01', 'V10_max': 'v_wind_10metres_max_m_s01', 'V10_min': 'v_wind_10metres_min_m_s01', 'V10_std': 'v_wind_10metres_stdev_m_s01', 'V10_percentile_10': 'v_wind_10metres_prctile10_m_s01', 'V10_percentile_25': 'v_wind_10metres_prctile25_m_s01', 'V10_percentile_50': 'v_wind_10metres_median_m_s01', 'V10_percentile_75': 'v_wind_10metres_prctile75_m_s01', 'V10_percentile_90': 'v_wind_10metres_prctile90_m_s01', 'T2_mean': 'temperature_2metres_mean_kelvins', 'T2_max': 'temperature_2metres_max_kelvins', 'T2_min': 'temperature_2metres_min_kelvins', 'T2_std': 'temperature_2metres_stdev_kelvins', 'T2_percentile_10': 'temperature_2metres_prctile10_kelvins', 'T2_percentile_25': 'temperature_2metres_prctile25_kelvins', 'T2_percentile_50': 'temperature_2metres_median_kelvins', 'T2_percentile_75': 'temperature_2metres_prctile75_kelvins', 'T2_percentile_90': 'temperature_2metres_prctile90_kelvins', 'area': AREA_NAME, 'eccentricity': 'eccentricity', 'major_axis_length': MAJOR_AXIS_NAME, 'minor_axis_length': MINOR_AXIS_NAME, 'orientation': ORIENTATION_NAME } MAE_KEY = 'mean_absolute_error' RMSE_KEY = 'root_mean_squared_error' MEAN_BIAS_KEY = 'mean_bias' MAE_SKILL_SCORE_KEY = 'mae_skill_score' MSE_SKILL_SCORE_KEY = 'mse_skill_score' MAX_PEIRCE_SCORE_KEY = 'max_peirce_score' AUC_KEY = 'area_under_roc_curve' MAX_CSI_KEY = 'max_csi' BRIER_SCORE_KEY = 'brier_score' BRIER_SKILL_SCORE_KEY = 'brier_skill_score' PREDICTORS_KEY = 'predictor_matrix' PERMUTED_FLAGS_KEY = 'permuted_flags' PERMUTED_INDICES_KEY = 'permuted_predictor_indices' PERMUTED_COSTS_KEY = 'permuted_cost_matrix' DEPERMUTED_INDICES_KEY = 'depermuted_predictor_indices' DEPERMUTED_COSTS_KEY = 'depermuted_cost_matrix' HIT_INDICES_KEY = 'hit_indices' MISS_INDICES_KEY = 'miss_indices' FALSE_ALARM_INDICES_KEY = 'false_alarm_indices' CORRECT_NULL_INDICES_KEY = 'correct_null_indices' # Plotting constants. FIGURE_WIDTH_INCHES = 10 FIGURE_HEIGHT_INCHES = 10 LARGE_FIGURE_WIDTH_INCHES = 15 LARGE_FIGURE_HEIGHT_INCHES = 15 DEFAULT_GRAPH_LINE_COLOUR = numpy.array([27, 158, 119], dtype=float) / 255 DEFAULT_GRAPH_LINE_WIDTH = 2 BAR_GRAPH_COLOUR = numpy.array([27, 158, 119], dtype=float) / 255 BAR_GRAPH_EDGE_WIDTH = 2 BAR_GRAPH_FONT_SIZE = 14 BAR_GRAPH_FONT_COLOUR = numpy.array([217, 95, 2], dtype=float) / 255 GREEN_COLOUR = numpy.array([27, 158, 119], dtype=float) / 255 ORANGE_COLOUR = numpy.array([217, 95, 2], dtype=float) / 255 PURPLE_COLOUR = numpy.array([117, 112, 179], dtype=float) / 255 GREY_COLOUR = numpy.full(3, 152. / 255) HISTOGRAM_EDGE_WIDTH = 1.5 HISTOGRAM_FACE_COLOUR = numpy.full(3, 152. / 255) HISTOGRAM_FACE_COLOUR = matplotlib.colors.to_rgba(HISTOGRAM_FACE_COLOUR, 0.5) HISTOGRAM_EDGE_COLOUR = numpy.full(3, 152. / 255) FONT_SIZE = 20 pyplot.rc('font', size=FONT_SIZE) pyplot.rc('axes', titlesize=FONT_SIZE) pyplot.rc('axes', labelsize=FONT_SIZE) pyplot.rc('xtick', labelsize=FONT_SIZE) pyplot.rc('ytick', labelsize=FONT_SIZE) pyplot.rc('legend', fontsize=FONT_SIZE) pyplot.rc('figure', titlesize=FONT_SIZE) # Misc constants. SEPARATOR_STRING = '\n\n' + '*' * 50 + '\n\n' MINOR_SEPARATOR_STRING = '\n\n' + '-' * 50 + '\n\n' DATE_FORMAT = '%Y%m%d' DATE_FORMAT_REGEX = '[0-9][0-9][0-9][0-9][0-1][0-9][0-3][0-9]' GRID_SPACING_KM = 3. RADIANS_TO_DEGREES = 180. / numpy.pi RANDOM_SEED = 6695 LAMBDA_TOLERANCE = 1e-10 ELU_FUNCTION_NAME = 'elu' RELU_FUNCTION_NAME = 'relu' SELU_FUNCTION_NAME = 'selu' TANH_FUNCTION_NAME = 'tanh' SIGMOID_FUNCTION_NAME = 'sigmoid' ACTIVATION_FUNCTION_NAMES = [ ELU_FUNCTION_NAME, RELU_FUNCTION_NAME, SELU_FUNCTION_NAME, TANH_FUNCTION_NAME, SIGMOID_FUNCTION_NAME ] KERNEL_INITIALIZER_NAME = 'glorot_uniform' BIAS_INITIALIZER_NAME = 'zeros' METRIC_FUNCTION_LIST = [ custom_metrics.accuracy, custom_metrics.binary_accuracy, custom_metrics.binary_csi, custom_metrics.binary_frequency_bias, custom_metrics.binary_pod, custom_metrics.binary_pofd, custom_metrics.binary_peirce_score, custom_metrics.binary_success_ratio, custom_metrics.binary_focn ] # TODO(thunderhoser): Remove word "binary" from these scores. METRIC_FUNCTION_DICT = { 'accuracy': custom_metrics.accuracy, 'binary_accuracy': custom_metrics.binary_accuracy, 'binary_csi': custom_metrics.binary_csi, 'binary_frequency_bias': custom_metrics.binary_frequency_bias, 'binary_pod': custom_metrics.binary_pod, 'binary_pofd': custom_metrics.binary_pofd, 'binary_peirce_score': custom_metrics.binary_peirce_score, 'binary_success_ratio': custom_metrics.binary_success_ratio, 'binary_focn': custom_metrics.binary_focn } DEFAULT_NEURON_COUNTS = numpy.array([1000, 178, 32, 6, 1], dtype=int) DEFAULT_DROPOUT_RATES = numpy.array([0.5, 0.5, 0.5, 0.5, 0]) DEFAULT_INNER_ACTIV_FUNCTION_NAME = copy.deepcopy(RELU_FUNCTION_NAME) DEFAULT_INNER_ACTIV_FUNCTION_ALPHA = 0.2 DEFAULT_OUTPUT_ACTIV_FUNCTION_NAME = copy.deepcopy(SIGMOID_FUNCTION_NAME) DEFAULT_OUTPUT_ACTIV_FUNCTION_ALPHA = 0. DEFAULT_L1_WEIGHT = 0. DEFAULT_L2_WEIGHT = 0.001 PLATEAU_PATIENCE_EPOCHS = 5 PLATEAU_LEARNING_RATE_MULTIPLIER = 0.6 PLATEAU_COOLDOWN_EPOCHS = 0 EARLY_STOPPING_PATIENCE_EPOCHS = 10 LOSS_PATIENCE = 0. DEFAULT_NUM_BOOTSTRAP_REPS = 1000 ORIGINAL_COST_KEY = 'orig_cost_estimates' BEST_PREDICTORS_KEY = 'best_predictor_names' BEST_COSTS_KEY = 'best_cost_matrix' STEP1_PREDICTORS_KEY = 'step1_predictor_names' STEP1_COSTS_KEY = 'step1_cost_matrix' BACKWARDS_FLAG_KEY = 'is_backwards_test' def _tabular_file_name_to_date(csv_file_name): """Parses date from name of tabular file. :param csv_file_name: Path to input file. :return: date_string: Date (format "yyyymmdd"). """ pathless_file_name = os.path.split(csv_file_name)[-1] date_string = pathless_file_name.replace( 'track_step_NCARSTORM_d01_', '' ).replace('-0000.csv', '') # Verify. time_string_to_unix(time_string=date_string, time_format=DATE_FORMAT) return date_string def _remove_future_data(predictor_table): """Removes future data from predictors. :param predictor_table: pandas DataFrame with predictor values. Each row is one storm object. :return: predictor_table: Same but with fewer columns. """ predictor_names = list(predictor_table) columns_to_remove = [p for p in predictor_names if 'future' in p] return predictor_table.drop(columns_to_remove, axis=1, inplace=False) def _lambdas_to_sklearn_inputs(lambda1, lambda2): """Converts lambdas to input arguments for scikit-learn. :param lambda1: L1-regularization weight. :param lambda2: L2-regularization weight. :return: alpha: Input arg for scikit-learn model. :return: l1_ratio: Input arg for scikit-learn model. """ return lambda1 + lambda2, lambda1 / (lambda1 + lambda2) def _get_reliability_curve(actual_values, predicted_values, num_bins, max_bin_edge, invert=False): """Computes reliability curve for one target variable. E = number of examples B = number of bins :param actual_values: length-E numpy array of actual values. :param predicted_values: length-E numpy array of predicted values. :param num_bins: Number of bins (points in curve). :param max_bin_edge: Value at upper edge of last bin. :param invert: Boolean flag. If True, will return inverted reliability curve, which bins by target value and relates target value to conditional mean prediction. If False, will return normal reliability curve, which bins by predicted value and relates predicted value to conditional mean observation (target). :return: mean_predictions: length-B numpy array of x-coordinates. :return: mean_observations: length-B numpy array of y-coordinates. :return: example_counts: length-B numpy array with num examples in each bin. """ max_bin_edge = max([max_bin_edge, numpy.finfo(float).eps]) bin_cutoffs = numpy.linspace(0., max_bin_edge, num=num_bins + 1) bin_index_by_example = numpy.digitize( actual_values if invert else predicted_values, bin_cutoffs, right=False ) - 1 bin_index_by_example[bin_index_by_example < 0] = 0 bin_index_by_example[bin_index_by_example > num_bins - 1] = num_bins - 1 mean_predictions = numpy.full(num_bins, numpy.nan) mean_observations = numpy.full(num_bins, numpy.nan) example_counts = numpy.full(num_bins, -1, dtype=int) for i in range(num_bins): these_example_indices = numpy.where(bin_index_by_example == i)[0] example_counts[i] = len(these_example_indices) mean_predictions[i] = numpy.mean( predicted_values[these_example_indices] ) mean_observations[i] = numpy.mean(actual_values[these_example_indices]) return mean_predictions, mean_observations, example_counts def _add_colour_bar( axes_object, colour_map_object, values_to_colour, min_colour_value, max_colour_value, colour_norm_object=None, orientation_string='vertical', extend_min=True, extend_max=True): """Adds colour bar to existing axes. :param axes_object: Existing axes (instance of `matplotlib.axes._subplots.AxesSubplot`). :param colour_map_object: Colour scheme (instance of `matplotlib.pyplot.cm`). :param values_to_colour: numpy array of values to colour. :param min_colour_value: Minimum value in colour scheme. :param max_colour_value: Max value in colour scheme. :param colour_norm_object: Instance of `matplotlib.colors.BoundaryNorm`, defining the scale of the colour map. If `colour_norm_object is None`, will assume that scale is linear. :param orientation_string: Orientation of colour bar ("vertical" or "horizontal"). :param extend_min: Boolean flag. If True, the bottom of the colour bar will have an arrow. If False, it will be a flat line, suggesting that lower values are not possible. :param extend_max: Same but for top of colour bar. :return: colour_bar_object: Colour bar (instance of `matplotlib.pyplot.colorbar`) created by this method. """ if colour_norm_object is None: colour_norm_object = matplotlib.colors.Normalize( vmin=min_colour_value, vmax=max_colour_value, clip=False ) scalar_mappable_object = pyplot.cm.ScalarMappable( cmap=colour_map_object, norm=colour_norm_object ) scalar_mappable_object.set_array(values_to_colour) if extend_min and extend_max: extend_string = 'both' elif extend_min: extend_string = 'min' elif extend_max: extend_string = 'max' else: extend_string = 'neither' if orientation_string == 'horizontal': padding = 0.075 else: padding = 0.05 colour_bar_object = pyplot.colorbar( ax=axes_object, mappable=scalar_mappable_object, orientation=orientation_string, pad=padding, extend=extend_string, shrink=0.8 ) colour_bar_object.ax.tick_params(labelsize=FONT_SIZE) return colour_bar_object def _get_points_in_roc_curve(observed_labels, forecast_probabilities): """Creates points for ROC curve. E = number of examples T = number of binarization thresholds :param observed_labels: length-E numpy array of class labels (integers in 0...1). :param forecast_probabilities: length-E numpy array with forecast probabilities of label = 1. :return: pofd_by_threshold: length-T numpy array of POFD (probability of false detection) values. :return: pod_by_threshold: length-T numpy array of POD (probability of detection) values. """ assert numpy.all(numpy.logical_or( observed_labels == 0, observed_labels == 1 )) assert numpy.all(numpy.logical_and( forecast_probabilities >= 0, forecast_probabilities <= 1 )) observed_labels = observed_labels.astype(int) binarization_thresholds = numpy.linspace(0, 1, num=1001, dtype=float) num_thresholds = len(binarization_thresholds) pofd_by_threshold = numpy.full(num_thresholds, numpy.nan) pod_by_threshold = numpy.full(num_thresholds, numpy.nan) for k in range(num_thresholds): these_forecast_labels = ( forecast_probabilities >= binarization_thresholds[k] ).astype(int) this_num_hits = numpy.sum(numpy.logical_and( these_forecast_labels == 1, observed_labels == 1 )) this_num_false_alarms = numpy.sum(numpy.logical_and( these_forecast_labels == 1, observed_labels == 0 )) this_num_misses = numpy.sum(numpy.logical_and( these_forecast_labels == 0, observed_labels == 1 )) this_num_correct_nulls = numpy.sum(numpy.logical_and( these_forecast_labels == 0, observed_labels == 0 )) try: pofd_by_threshold[k] = ( float(this_num_false_alarms) / (this_num_false_alarms + this_num_correct_nulls) ) except ZeroDivisionError: pass try: pod_by_threshold[k] = ( float(this_num_hits) / (this_num_hits + this_num_misses) ) except ZeroDivisionError: pass pod_by_threshold = numpy.array([1.] + pod_by_threshold.tolist() + [0.]) pofd_by_threshold = numpy.array([1.] + pofd_by_threshold.tolist() + [0.]) return pofd_by_threshold, pod_by_threshold def _get_points_in_perf_diagram(observed_labels, forecast_probabilities): """Creates points for performance diagram. E = number of examples T = number of binarization thresholds :param observed_labels: length-E numpy array of class labels (integers in 0...1). :param forecast_probabilities: length-E numpy array with forecast probabilities of label = 1. :return: pod_by_threshold: length-T numpy array of POD (probability of detection) values. :return: success_ratio_by_threshold: length-T numpy array of success ratios. """ assert numpy.all(numpy.logical_or( observed_labels == 0, observed_labels == 1 )) assert numpy.all(numpy.logical_and( forecast_probabilities >= 0, forecast_probabilities <= 1 )) observed_labels = observed_labels.astype(int) binarization_thresholds = numpy.linspace(0, 1, num=1001, dtype=float) num_thresholds = len(binarization_thresholds) pod_by_threshold = numpy.full(num_thresholds, numpy.nan) success_ratio_by_threshold = numpy.full(num_thresholds, numpy.nan) for k in range(num_thresholds): these_forecast_labels = ( forecast_probabilities >= binarization_thresholds[k] ).astype(int) this_num_hits = numpy.sum(numpy.logical_and( these_forecast_labels == 1, observed_labels == 1 )) this_num_false_alarms = numpy.sum(numpy.logical_and( these_forecast_labels == 1, observed_labels == 0 )) this_num_misses = numpy.sum(numpy.logical_and( these_forecast_labels == 0, observed_labels == 1 )) try: pod_by_threshold[k] = ( float(this_num_hits) / (this_num_hits + this_num_misses) ) except ZeroDivisionError: pass try: success_ratio_by_threshold[k] = ( float(this_num_hits) / (this_num_hits + this_num_false_alarms) ) except ZeroDivisionError: pass pod_by_threshold = numpy.array([1.] + pod_by_threshold.tolist() + [0.]) success_ratio_by_threshold = numpy.array( [0.] + success_ratio_by_threshold.tolist() + [1.] ) return pod_by_threshold, success_ratio_by_threshold def _do_activation(input_values, function_name, slope_param=0.2): """Runs input array through activation function. :param input_values: numpy array (any shape). :param function_name: Name of activation function. :param slope_param: Slope parameter (alpha) for activation function. Used only for eLU and ReLU. :return: output_values: Same as `input_values` but post-activation. """ assert function_name in ACTIVATION_FUNCTION_NAMES input_object = K.placeholder() if function_name == ELU_FUNCTION_NAME: function_object = K.function( [input_object], [layers.ELU(alpha=slope_param)(input_object)] ) elif function_name == RELU_FUNCTION_NAME: function_object = K.function( [input_object], [layers.LeakyReLU(alpha=slope_param)(input_object)] ) else: function_object = K.function( [input_object], [layers.Activation(function_name)(input_object)] ) return function_object([input_values])[0] def _get_weight_regularizer(l1_weight, l2_weight): """Creates regularizer for neural-net weights. :param l1_weight: L1 regularization weight. This "weight" is not to be confused with those being regularized (weights learned by the net). :param l2_weight: L2 regularization weight. :return: regularizer_object: Instance of `keras.regularizers.l1_l2`. """ l1_weight = numpy.nanmax(numpy.array([l1_weight, 0.])) l2_weight = numpy.nanmax(numpy.array([l2_weight, 0.])) return keras.regularizers.l1_l2(l1=l1_weight, l2=l2_weight) def _get_dense_layer(num_output_units, weight_regularizer=None): """Creates dense (fully connected) layer. :param num_output_units: Number of output units (or "features" or "neurons"). :param weight_regularizer: Will be used to regularize weights in the new layer. This may be instance of `keras.regularizers` or None (if you want no regularization). :return: layer_object: Instance of `keras.layers.Dense`. """ return keras.layers.Dense( num_output_units, activation=None, use_bias=True, kernel_initializer=KERNEL_INITIALIZER_NAME, bias_initializer=BIAS_INITIALIZER_NAME, kernel_regularizer=weight_regularizer, bias_regularizer=weight_regularizer ) def _get_activation_layer(function_name, slope_param=0.2): """Creates activation layer. :param function_name: Name of activation function. :param slope_param: Slope parameter (alpha) for activation function. Used only for eLU and ReLU. :return: layer_object: Instance of `keras.layers.Activation`, `keras.layers.ELU`, or `keras.layers.LeakyReLU`. """ assert function_name in ACTIVATION_FUNCTION_NAMES if function_name == ELU_FUNCTION_NAME: return keras.layers.ELU(alpha=slope_param) if function_name == RELU_FUNCTION_NAME: if slope_param <= 0: return keras.layers.ReLU() return keras.layers.LeakyReLU(alpha=slope_param) return keras.layers.Activation(function_name) def _get_dropout_layer(dropout_fraction): """Creates dropout layer. :param dropout_fraction: Fraction of weights to drop. :return: layer_object: Instance of `keras.layers.Dropout`. """ assert dropout_fraction > 0. assert dropout_fraction < 1. return keras.layers.Dropout(rate=dropout_fraction) def _get_batch_norm_layer(): """Creates batch-normalization layer. :return: Instance of `keras.layers.BatchNormalization`. """ return keras.layers.BatchNormalization( axis=-1, momentum=0.99, epsilon=0.001, center=True, scale=True ) def _mkdir_recursive_if_necessary(directory_name=None, file_name=None): """Creates directory if necessary (i.e., doesn't already exist). This method checks for the argument `directory_name` first. If `directory_name` is None, this method checks for `file_name` and extracts the directory. :param directory_name: Path to local directory. :param file_name: Path to local file. """ if directory_name is None: directory_name = os.path.dirname(file_name) if directory_name == '': return try: os.makedirs(directory_name) except OSError as this_error: if this_error.errno == errno.EEXIST and os.path.isdir(directory_name): pass else: raise def apply_gaussian_filter(input_matrix, e_folding_radius_grid_cells): """Applies Gaussian filter to any-dimensional grid. :param input_matrix: numpy array with any dimensions. :param e_folding_radius_grid_cells: e-folding radius (num grid cells). :return: output_matrix: numpy array after smoothing (same dimensions as input). """ assert e_folding_radius_grid_cells >= 0. return gaussian_filter( input_matrix, sigma=e_folding_radius_grid_cells, order=0, mode='nearest' ) def create_paneled_figure( num_rows, num_columns, figure_width_inches=FIGURE_WIDTH_INCHES, figure_height_inches=FIGURE_HEIGHT_INCHES, horizontal_spacing=0.075, vertical_spacing=0., shared_x_axis=False, shared_y_axis=False, keep_aspect_ratio=True): """Creates paneled figure. This method only initializes the panels. It does not plot anything. J = number of panel rows K = number of panel columns :param num_rows: J in the above discussion. :param num_columns: K in the above discussion. :param figure_width_inches: Width of the entire figure (including all panels). :param figure_height_inches: Height of the entire figure (including all panels). :param horizontal_spacing: Spacing (in figure-relative coordinates, from 0...1) between adjacent panel columns. :param vertical_spacing: Spacing (in figure-relative coordinates, from 0...1) between adjacent panel rows. :param shared_x_axis: Boolean flag. If True, all panels will share the same x-axis. :param shared_y_axis: Boolean flag. If True, all panels will share the same y-axis. :param keep_aspect_ratio: Boolean flag. If True, the aspect ratio of each panel will be preserved (reflect the aspect ratio of the data plotted therein). :return: figure_object: Figure handle (instance of `matplotlib.figure.Figure`). :return: axes_object_matrix: J-by-K numpy array of axes handles (instances of `matplotlib.axes._subplots.AxesSubplot`). """ figure_object, axes_object_matrix = pyplot.subplots( num_rows, num_columns, sharex=shared_x_axis, sharey=shared_y_axis, figsize=(figure_width_inches, figure_height_inches) ) if num_rows == num_columns == 1: axes_object_matrix = numpy.full( (1, 1), axes_object_matrix, dtype=object ) if num_rows == 1 or num_columns == 1: axes_object_matrix = numpy.reshape( axes_object_matrix, (num_rows, num_columns) ) pyplot.subplots_adjust( left=0.02, bottom=0.02, right=0.98, top=0.95, hspace=horizontal_spacing, wspace=vertical_spacing ) if not keep_aspect_ratio: return figure_object, axes_object_matrix for i in range(num_rows): for j in range(num_columns): axes_object_matrix[i][j].set(aspect='equal') return figure_object, axes_object_matrix def time_string_to_unix(time_string, time_format): """Converts time from string to Unix format. Unix format = seconds since 0000 UTC 1 Jan 1970. :param time_string: Time string. :param time_format: Format of time string (example: "%Y%m%d" or "%Y-%m-%d-%H%M%S"). :return: unix_time_sec: Time in Unix format. """ return calendar.timegm(time.strptime(time_string, time_format)) def time_unix_to_string(unix_time_sec, time_format): """Converts time from Unix format to string. Unix format = seconds since 0000 UTC 1 Jan 1970. :param unix_time_sec: Time in Unix format. :param time_format: Desired format of time string (example: "%Y%m%d" or "%Y-%m-%d-%H%M%S"). :return: time_string: Time string. """ return time.strftime(time_format, time.gmtime(unix_time_sec)) def find_tabular_files(directory_name, first_date_string, last_date_string): """Finds CSV files with tabular data. :param directory_name: Name of directory with tabular files. :param first_date_string: First date ("yyyymmdd") in range. :param last_date_string: Last date ("yyyymmdd") in range. :return: csv_file_names: 1-D list of paths to tabular files. """ first_time_unix_sec = time_string_to_unix( time_string=first_date_string, time_format=DATE_FORMAT ) last_time_unix_sec = time_string_to_unix( time_string=last_date_string, time_format=DATE_FORMAT ) csv_file_pattern = '{0:s}/track_step_NCARSTORM_d01_{1:s}-0000.csv'.format( directory_name, DATE_FORMAT_REGEX ) csv_file_names = glob.glob(csv_file_pattern) csv_file_names.sort() file_date_strings = [_tabular_file_name_to_date(f) for f in csv_file_names] file_times_unix_sec = numpy.array([ time_string_to_unix(time_string=d, time_format=DATE_FORMAT) for d in file_date_strings ], dtype=int) good_indices = numpy.where(numpy.logical_and( file_times_unix_sec >= first_time_unix_sec, file_times_unix_sec <= last_time_unix_sec ))[0] return [csv_file_names[k] for k in good_indices] def read_tabular_file(csv_file_name): """Reads tabular data from CSV file. :param csv_file_name: Path to input file. :return: metadata_table: pandas DataFrame with metadata. Each row is one storm object. :return: predictor_table: pandas DataFrame with predictor values. Each row is one storm object. :return: target_table: pandas DataFrame with target values. Each row is one storm object. """ predictor_table =
pandas.read_csv(csv_file_name, header=0, sep=',')
pandas.read_csv
"""Test solvent-accessible surface area methods.""" import logging import json from pathlib import Path import pytest import yaml from scipy.stats import linregress import numpy as np import pandas as pd from osmolytes.sasa import SolventAccessibleSurface, ReferenceModels from osmolytes.pqr import parse_pqr_file, Atom, aggregate, count_residues _LOGGER = logging.getLogger(__name__) with open("tests/data/alkanes/alkanes.json", "rt") as json_file: ATOM_AREAS = json.load(json_file) PROTEIN_PATH = Path("tests/data/proteins") @pytest.mark.parametrize("radius", [0.25, 0.5, 1.0, 2.0, 4.0]) def test_one_sphere_sasa(radius, tmp_path): """Test solvent-accessible surface areas for one sphere.""" atom = Atom() atom.position = np.random.randn(3) frac = np.random.rand(1)[0] atom.radius = frac * radius probe_radius = (1.0 - frac) * radius xyz_path = Path(tmp_path) / "sphere.xyz" sas = SolventAccessibleSurface( [atom], probe_radius, 200, xyz_path=xyz_path ) atom_sasa = sas.atom_surface_area(0) ref_sasa = 4.0 * np.pi * radius * radius _LOGGER.info( f"Radius: {radius}, Test area: {atom_sasa}, Ref area: {ref_sasa}" ) np.testing.assert_almost_equal(atom_sasa, ref_sasa) def two_sphere_area(radius1, radius2, distance): """Area of two overlapping spheres. :param float radius1: radius of sphere1 :param float radius2: radius of sphere2 :param float distance: distance between centers of spheres :returns: exposed areas of spheres :rtype: (float, float) """ distsq = distance * distance rad1sq = radius1 * radius1 rad2sq = radius2 * radius2 full_area1 = 4 * np.pi * rad1sq full_area2 = 4 * np.pi * rad2sq if distance > (radius1 + radius2): return (full_area1, full_area2) elif distance <= np.absolute(radius1 - radius2): if full_area1 > full_area2: return (full_area1, 0) if full_area1 < full_area2: return (0, full_area2) else: return (0.5 * full_area1, 0.5 * full_area2) else: if radius1 > 0: cos_theta1 = (rad1sq + distsq - rad2sq) / (2 * radius1 * distance) cap1_area = 2 * np.pi * radius1 * radius1 * (1 - cos_theta1) else: cap1_area = 0 if radius2 > 0: cos_theta2 = (rad2sq + distsq - rad1sq) / (2 * radius2 * distance) cap2_area = 2 * np.pi * radius2 * radius2 * (1 - cos_theta2) else: cap2_area = 0 return (full_area1 - cap1_area, full_area2 - cap2_area) @pytest.mark.parametrize("radius", [0.0, 1.1, 2.2, 4.4, 6.6, 8.8]) def test_two_sphere_sasa(radius, tmp_path): """Test solvent accessible surface areas for two spheres.""" atom_tolerance = 0.02 total_tolerance = 0.02 probe_radius = 0.0 big_atom = Atom() big_atom.radius = radius big_atom.position = np.array([0, 0, 0]) little_atom = Atom() little_atom.radius = 1.0 test_atom_areas = [] test_total_areas = [] ref_atom_areas = [] ref_total_areas = [] distances = np.linspace(0, (big_atom.radius + little_atom.radius), num=20) for distance in distances: _LOGGER.debug("Distance = %g", distance) little_atom.position = np.array(3 * [distance / np.sqrt(3)]) xyz_path = Path(tmp_path) / f"spheres-{distance}.xyz" sas = SolventAccessibleSurface( [big_atom, little_atom], probe_radius, 300, xyz_path=xyz_path ) test = np.array([sas.atom_surface_area(0), sas.atom_surface_area(1)]) test_total_areas.append(test.sum()) test_atom_areas.append(test) ref = np.array( two_sphere_area(big_atom.radius, little_atom.radius, distance) ) ref_total_areas.append(ref.sum()) ref_atom_areas.append(ref) test_atom_areas = np.array(test_atom_areas) test_total_areas = np.array(test_total_areas) ref_atom_areas = np.array(ref_atom_areas) ref_total_areas = np.array(ref_total_areas) rel_difference = np.absolute( np.divide(test_atom_areas - ref_atom_areas, np.sum(ref_atom_areas)) ) errors = [] if np.any(rel_difference > atom_tolerance): ref_series = pd.Series(index=distances, data=ref_total_areas) ref_series.index.name = "Dist" ref_df =
pd.DataFrame(index=distances, data=ref_atom_areas)
pandas.DataFrame
from datetime import datetime import numpy as np import pytest import pandas.util._test_decorators as td from pandas.core.dtypes.base import _registry as ea_registry from pandas.core.dtypes.common import ( is_categorical_dtype, is_interval_dtype, is_object_dtype, ) from pandas.core.dtypes.dtypes import ( CategoricalDtype, DatetimeTZDtype, IntervalDtype, PeriodDtype, ) from pandas import ( Categorical, DataFrame, DatetimeIndex, Index, Interval, IntervalIndex, MultiIndex, NaT, Period, PeriodIndex, Series, Timestamp, cut, date_range, notna, period_range, ) import pandas._testing as tm from pandas.core.arrays import SparseArray from pandas.tseries.offsets import BDay class TestDataFrameSetItem: @pytest.mark.parametrize("dtype", ["int32", "int64", "float32", "float64"]) def test_setitem_dtype(self, dtype, float_frame): arr = np.random.randn(len(float_frame)) float_frame[dtype] = np.array(arr, dtype=dtype) assert float_frame[dtype].dtype.name == dtype def test_setitem_list_not_dataframe(self, float_frame): data = np.random.randn(len(float_frame), 2) float_frame[["A", "B"]] = data tm.assert_almost_equal(float_frame[["A", "B"]].values, data) def test_setitem_error_msmgs(self): # GH 7432 df = DataFrame( {"bar": [1, 2, 3], "baz": ["d", "e", "f"]}, index=Index(["a", "b", "c"], name="foo"), ) ser = Series( ["g", "h", "i", "j"], index=Index(["a", "b", "c", "a"], name="foo"), name="fiz", ) msg = "cannot reindex from a duplicate axis" with pytest.raises(ValueError, match=msg): df["newcol"] = ser # GH 4107, more descriptive error message df = DataFrame(np.random.randint(0, 2, (4, 4)), columns=["a", "b", "c", "d"]) msg = "incompatible index of inserted column with frame index" with pytest.raises(TypeError, match=msg): df["gr"] = df.groupby(["b", "c"]).count() def test_setitem_benchmark(self): # from the vb_suite/frame_methods/frame_insert_columns N = 10 K = 5 df = DataFrame(index=range(N)) new_col = np.random.randn(N) for i in range(K): df[i] = new_col expected = DataFrame(np.repeat(new_col, K).reshape(N, K), index=range(N)) tm.assert_frame_equal(df, expected) def test_setitem_different_dtype(self): df = DataFrame( np.random.randn(5, 3), index=np.arange(5), columns=["c", "b", "a"] ) df.insert(0, "foo", df["a"]) df.insert(2, "bar", df["c"]) # diff dtype # new item df["x"] = df["a"].astype("float32") result = df.dtypes expected = Series( [np.dtype("float64")] * 5 + [np.dtype("float32")], index=["foo", "c", "bar", "b", "a", "x"], ) tm.assert_series_equal(result, expected) # replacing current (in different block) df["a"] = df["a"].astype("float32") result = df.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2, index=["foo", "c", "bar", "b", "a", "x"], ) tm.assert_series_equal(result, expected) df["y"] = df["a"].astype("int32") result = df.dtypes expected = Series( [np.dtype("float64")] * 4 + [np.dtype("float32")] * 2 + [np.dtype("int32")], index=["foo", "c", "bar", "b", "a", "x", "y"], ) tm.assert_series_equal(result, expected) def test_setitem_empty_columns(self): # GH 13522 df = DataFrame(index=["A", "B", "C"]) df["X"] = df.index df["X"] = ["x", "y", "z"] exp = DataFrame(data={"X": ["x", "y", "z"]}, index=["A", "B", "C"]) tm.assert_frame_equal(df, exp) def test_setitem_dt64_index_empty_columns(self): rng = date_range("1/1/2000 00:00:00", "1/1/2000 1:59:50", freq="10s") df = DataFrame(index=np.arange(len(rng))) df["A"] = rng assert df["A"].dtype == np.dtype("M8[ns]") def test_setitem_timestamp_empty_columns(self): # GH#19843 df = DataFrame(index=range(3)) df["now"] = Timestamp("20130101", tz="UTC") expected = DataFrame( [[Timestamp("20130101", tz="UTC")]] * 3, index=[0, 1, 2], columns=["now"] ) tm.assert_frame_equal(df, expected) def test_setitem_wrong_length_categorical_dtype_raises(self): # GH#29523 cat = Categorical.from_codes([0, 1, 1, 0, 1, 2], ["a", "b", "c"]) df = DataFrame(range(10), columns=["bar"]) msg = ( rf"Length of values \({len(cat)}\) " rf"does not match length of index \({len(df)}\)" ) with pytest.raises(ValueError, match=msg): df["foo"] = cat def test_setitem_with_sparse_value(self): # GH#8131 df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]}) sp_array = SparseArray([0, 0, 1]) df["new_column"] = sp_array expected = Series(sp_array, name="new_column") tm.assert_series_equal(df["new_column"], expected) def test_setitem_with_unaligned_sparse_value(self): df = DataFrame({"c_1": ["a", "b", "c"], "n_1": [1.0, 2.0, 3.0]}) sp_series = Series(SparseArray([0, 0, 1]), index=[2, 1, 0]) df["new_column"] = sp_series expected = Series(SparseArray([1, 0, 0]), name="new_column") tm.assert_series_equal(df["new_column"], expected) def test_setitem_dict_preserves_dtypes(self): # https://github.com/pandas-dev/pandas/issues/34573 expected = DataFrame( { "a": Series([0, 1, 2], dtype="int64"), "b": Series([1, 2, 3], dtype=float), "c": Series([1, 2, 3], dtype=float), } ) df = DataFrame( { "a": Series([], dtype="int64"), "b": Series([], dtype=float), "c": Series([], dtype=float), } ) for idx, b in enumerate([1, 2, 3]): df.loc[df.shape[0]] = {"a": int(idx), "b": float(b), "c": float(b)} tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "obj,dtype", [ (Period("2020-01"), PeriodDtype("M")), (Interval(left=0, right=5), IntervalDtype("int64", "right")), ( Timestamp("2011-01-01", tz="US/Eastern"), DatetimeTZDtype(tz="US/Eastern"), ), ], ) def test_setitem_extension_types(self, obj, dtype): # GH: 34832 expected = DataFrame({"idx": [1, 2, 3], "obj": Series([obj] * 3, dtype=dtype)}) df = DataFrame({"idx": [1, 2, 3]}) df["obj"] = obj tm.assert_frame_equal(df, expected) @pytest.mark.parametrize( "ea_name", [ dtype.name for dtype in ea_registry.dtypes # property would require instantiation if not isinstance(dtype.name, property) ] # mypy doesn't allow adding lists of different types # https://github.com/python/mypy/issues/5492 + ["datetime64[ns, UTC]", "period[D]"], # type: ignore[list-item] ) def test_setitem_with_ea_name(self, ea_name): # GH 38386 result = DataFrame([0]) result[ea_name] = [1] expected = DataFrame({0: [0], ea_name: [1]}) tm.assert_frame_equal(result, expected) def test_setitem_dt64_ndarray_with_NaT_and_diff_time_units(self): # GH#7492 data_ns = np.array([1, "nat"], dtype="datetime64[ns]") result = Series(data_ns).to_frame() result["new"] = data_ns expected = DataFrame({0: [1, None], "new": [1, None]}, dtype="datetime64[ns]") tm.assert_frame_equal(result, expected) # OutOfBoundsDatetime error shouldn't occur data_s = np.array([1, "nat"], dtype="datetime64[s]") result["new"] = data_s expected = DataFrame({0: [1, None], "new": [1e9, None]}, dtype="datetime64[ns]") tm.assert_frame_equal(result, expected) @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"]) def test_frame_setitem_datetime64_col_other_units(self, unit): # Check that non-nano dt64 values get cast to dt64 on setitem # into a not-yet-existing column n = 100 dtype = np.dtype(f"M8[{unit}]") vals = np.arange(n, dtype=np.int64).view(dtype) ex_vals = vals.astype("datetime64[ns]") df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df[unit] = vals assert df[unit].dtype == np.dtype("M8[ns]") assert (df[unit].values == ex_vals).all() @pytest.mark.parametrize("unit", ["h", "m", "s", "ms", "D", "M", "Y"]) def test_frame_setitem_existing_datetime64_col_other_units(self, unit): # Check that non-nano dt64 values get cast to dt64 on setitem # into an already-existing dt64 column n = 100 dtype = np.dtype(f"M8[{unit}]") vals = np.arange(n, dtype=np.int64).view(dtype) ex_vals = vals.astype("datetime64[ns]") df = DataFrame({"ints": np.arange(n)}, index=np.arange(n)) df["dates"] = np.arange(n, dtype=np.int64).view("M8[ns]") # We overwrite existing dt64 column with new, non-nano dt64 vals df["dates"] = vals assert (df["dates"].values == ex_vals).all() def test_setitem_dt64tz(self, timezone_frame): df = timezone_frame idx = df["B"].rename("foo") # setitem df["C"] = idx tm.assert_series_equal(df["C"], Series(idx, name="C")) df["D"] = "foo" df["D"] = idx tm.assert_series_equal(df["D"], Series(idx, name="D")) del df["D"] # assert that A & C are not sharing the same base (e.g. they # are copies) v1 = df._mgr.arrays[1] v2 = df._mgr.arrays[2] tm.assert_extension_array_equal(v1, v2) v1base = v1._data.base v2base = v2._data.base assert v1base is None or (id(v1base) != id(v2base)) # with nan df2 = df.copy() df2.iloc[1, 1] = NaT df2.iloc[1, 2] = NaT result = df2["B"] tm.assert_series_equal(notna(result), Series([True, False, True], name="B")) tm.assert_series_equal(df2.dtypes, df.dtypes) def test_setitem_periodindex(self): rng = period_range("1/1/2000", periods=5, name="index") df = DataFrame(np.random.randn(5, 3), index=rng) df["Index"] = rng rs = Index(df["Index"]) tm.assert_index_equal(rs, rng, check_names=False) assert rs.name == "Index" assert rng.name == "index" rs = df.reset_index().set_index("index") assert isinstance(rs.index, PeriodIndex) tm.assert_index_equal(rs.index, rng) def test_setitem_complete_column_with_array(self): # GH#37954 df = DataFrame({"a": ["one", "two", "three"], "b": [1, 2, 3]}) arr = np.array([[1, 1], [3, 1], [5, 1]]) df[["c", "d"]] = arr expected = DataFrame( { "a": ["one", "two", "three"], "b": [1, 2, 3], "c": [1, 3, 5], "d": [1, 1, 1], } ) expected["c"] = expected["c"].astype(arr.dtype) expected["d"] = expected["d"].astype(arr.dtype) assert expected["c"].dtype == arr.dtype assert expected["d"].dtype == arr.dtype tm.assert_frame_equal(df, expected) @pytest.mark.parametrize("dtype", ["f8", "i8", "u8"]) def test_setitem_bool_with_numeric_index(self, dtype): # GH#36319 cols = Index([1, 2, 3], dtype=dtype) df = DataFrame(np.random.randn(3, 3), columns=cols) df[False] = ["a", "b", "c"] expected_cols = Index([1, 2, 3, False], dtype=object) if dtype == "f8": expected_cols = Index([1.0, 2.0, 3.0, False], dtype=object) tm.assert_index_equal(df.columns, expected_cols) @pytest.mark.parametrize("indexer", ["B", ["B"]]) def test_setitem_frame_length_0_str_key(self, indexer): # GH#38831 df = DataFrame(columns=["A", "B"]) other = DataFrame({"B": [1, 2]}) df[indexer] = other expected = DataFrame({"A": [np.nan] * 2, "B": [1, 2]}) expected["A"] = expected["A"].astype("object") tm.assert_frame_equal(df, expected) def test_setitem_frame_duplicate_columns(self, using_array_manager): # GH#15695 cols = ["A", "B", "C"] * 2 df = DataFrame(index=range(3), columns=cols) df.loc[0, "A"] = (0, 3) df.loc[:, "B"] = (1, 4) df["C"] = (2, 5) expected = DataFrame( [ [0, 1, 2, 3, 4, 5], [np.nan, 1, 2, np.nan, 4, 5], [np.nan, 1, 2, np.nan, 4, 5], ], dtype="object", ) if using_array_manager: # setitem replaces column so changes dtype expected.columns = cols expected["C"] = expected["C"].astype("int64") # TODO(ArrayManager) .loc still overwrites expected["B"] = expected["B"].astype("int64") else: # set these with unique columns to be extra-unambiguous expected[2] = expected[2].astype(np.int64) expected[5] = expected[5].astype(np.int64) expected.columns = cols tm.assert_frame_equal(df, expected) def test_setitem_frame_duplicate_columns_size_mismatch(self): # GH#39510 cols = ["A", "B", "C"] * 2 df = DataFrame(index=range(3), columns=cols) with pytest.raises(ValueError, match="Columns must be same length as key"): df[["A"]] = (0, 3, 5) df2 = df.iloc[:, :3] # unique columns with pytest.raises(ValueError, match="Columns must be same length as key"): df2[["A"]] = (0, 3, 5) @pytest.mark.parametrize("cols", [["a", "b", "c"], ["a", "a", "a"]]) def test_setitem_df_wrong_column_number(self, cols): # GH#38604 df = DataFrame([[1, 2, 3]], columns=cols) rhs = DataFrame([[10, 11]], columns=["d", "e"]) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): df["a"] = rhs def test_setitem_listlike_indexer_duplicate_columns(self): # GH#38604 df = DataFrame([[1, 2, 3]], columns=["a", "b", "b"]) rhs = DataFrame([[10, 11, 12]], columns=["a", "b", "b"]) df[["a", "b"]] = rhs expected = DataFrame([[10, 11, 12]], columns=["a", "b", "b"]) tm.assert_frame_equal(df, expected) df[["c", "b"]] = rhs expected = DataFrame([[10, 11, 12, 10]], columns=["a", "b", "b", "c"]) tm.assert_frame_equal(df, expected) def test_setitem_listlike_indexer_duplicate_columns_not_equal_length(self): # GH#39403 df = DataFrame([[1, 2, 3]], columns=["a", "b", "b"]) rhs = DataFrame([[10, 11]], columns=["a", "b"]) msg = "Columns must be same length as key" with pytest.raises(ValueError, match=msg): df[["a", "b"]] = rhs def test_setitem_intervals(self): df = DataFrame({"A": range(10)}) ser = cut(df["A"], 5) assert isinstance(ser.cat.categories, IntervalIndex) # B & D end up as Categoricals # the remainder are converted to in-line objects # containing an IntervalIndex.values df["B"] = ser df["C"] = np.array(ser) df["D"] = ser.values df["E"] = np.array(ser.values) df["F"] = ser.astype(object) assert is_categorical_dtype(df["B"].dtype) assert is_interval_dtype(df["B"].cat.categories) assert is_categorical_dtype(df["D"].dtype) assert is_interval_dtype(df["D"].cat.categories) # These go through the Series constructor and so get inferred back # to IntervalDtype assert is_interval_dtype(df["C"]) assert is_interval_dtype(df["E"]) # But the Series constructor doesn't do inference on Series objects, # so setting df["F"] doesn't get cast back to IntervalDtype assert is_object_dtype(df["F"]) # they compare equal as Index # when converted to numpy objects c = lambda x: Index(np.array(x)) tm.assert_index_equal(c(df.B), c(df.B)) tm.assert_index_equal(c(df.B), c(df.C), check_names=False) tm.assert_index_equal(c(df.B), c(df.D), check_names=False) tm.assert_index_equal(c(df.C), c(df.D), check_names=False) # B & D are the same Series tm.assert_series_equal(df["B"], df["B"]) tm.assert_series_equal(df["B"], df["D"], check_names=False) # C & E are the same Series tm.assert_series_equal(df["C"], df["C"]) tm.assert_series_equal(df["C"], df["E"], check_names=False) def test_setitem_categorical(self): # GH#35369 df = DataFrame({"h": Series(list("mn")).astype("category")}) df.h = df.h.cat.reorder_categories(["n", "m"]) expected = DataFrame( {"h": Categorical(["m", "n"]).reorder_categories(["n", "m"])} ) tm.assert_frame_equal(df, expected) def test_setitem_with_empty_listlike(self): # GH#17101 index = Index([], name="idx") result = DataFrame(columns=["A"], index=index) result["A"] = [] expected = DataFrame(columns=["A"], index=index) tm.assert_index_equal(result.index, expected.index) @pytest.mark.parametrize( "cols, values, expected", [ (["C", "D", "D", "a"], [1, 2, 3, 4], 4), # with duplicates (["D", "C", "D", "a"], [1, 2, 3, 4], 4), # mixed order (["C", "B", "B", "a"], [1, 2, 3, 4], 4), # other duplicate cols (["C", "B", "a"], [1, 2, 3], 3), # no duplicates (["B", "C", "a"], [3, 2, 1], 1), # alphabetical order (["C", "a", "B"], [3, 2, 1], 2), # in the middle ], ) def test_setitem_same_column(self, cols, values, expected): # GH#23239 df = DataFrame([values], columns=cols) df["a"] = df["a"] result = df["a"].values[0] assert result == expected def test_setitem_multi_index(self): # GH#7655, test that assigning to a sub-frame of a frame # with multi-index columns aligns both rows and columns it = ["jim", "joe", "jolie"], ["first", "last"], ["left", "center", "right"] cols = MultiIndex.from_product(it) index = date_range("20141006", periods=20) vals = np.random.randint(1, 1000, (len(index), len(cols))) df = DataFrame(vals, columns=cols, index=index) i, j = df.index.values.copy(), it[-1][:] np.random.shuffle(i) df["jim"] = df["jolie"].loc[i, ::-1] tm.assert_frame_equal(df["jim"], df["jolie"]) np.random.shuffle(j) df[("joe", "first")] = df[("jolie", "last")].loc[i, j] tm.assert_frame_equal(df[("joe", "first")], df[("jolie", "last")]) np.random.shuffle(j) df[("joe", "last")] = df[("jolie", "first")].loc[i, j] tm.assert_frame_equal(df[("joe", "last")], df[("jolie", "first")]) @pytest.mark.parametrize( "columns,box,expected", [ ( ["A", "B", "C", "D"], 7, DataFrame( [[7, 7, 7, 7], [7, 7, 7, 7], [7, 7, 7, 7]], columns=["A", "B", "C", "D"], ), ), ( ["C", "D"], [7, 8], DataFrame( [[1, 2, 7, 8], [3, 4, 7, 8], [5, 6, 7, 8]], columns=["A", "B", "C", "D"], ), ), ( ["A", "B", "C"], np.array([7, 8, 9], dtype=np.int64), DataFrame([[7, 8, 9], [7, 8, 9], [7, 8, 9]], columns=["A", "B", "C"]), ), ( ["B", "C", "D"], [[7, 8, 9], [10, 11, 12], [13, 14, 15]], DataFrame( [[1, 7, 8, 9], [3, 10, 11, 12], [5, 13, 14, 15]], columns=["A", "B", "C", "D"], ), ), ( ["C", "A", "D"], np.array([[7, 8, 9], [10, 11, 12], [13, 14, 15]], dtype=np.int64), DataFrame( [[8, 2, 7, 9], [11, 4, 10, 12], [14, 6, 13, 15]], columns=["A", "B", "C", "D"], ), ), ( ["A", "C"],
DataFrame([[7, 8], [9, 10], [11, 12]], columns=["A", "C"])
pandas.DataFrame
import warnings from copy import deepcopy from datetime import datetime, timedelta from typing import Callable, Dict, List, Optional, Union import dateutil import pandas as pd from dateutil import parser as dateparser from github.Commit import Commit from github.CommitStats import CommitStats from github.GitAuthor import GitAuthor from github.GitCommit import GitCommit from github.GitRelease import GitRelease from github.Issue import Issue from github.NamedUser import NamedUser from github.Repository import Repository from github.Stargazer import Stargazer from projectreport.analyzer.ts.base import TimeSeriesAnalysis from projectreport.analyzer.ts.types import DictList from projectreport.tools.monkey_patch_github import ( NoMorePagesAllowedException, monkey_patch_github_obj_for_throttling, ) from projectreport.version import ( add_major_minor_patch_changed_to_df, add_major_minor_patch_to_df, ) class GithubAnalysis(TimeSeriesAnalysis): analysis_attrs = ["repo"] def __init__(self, repo: Repository, auto_throttle: bool = True): self.repo = deepcopy(repo) self.auto_throttle = auto_throttle if self.auto_throttle: monkey_patch_github_obj_for_throttling(self.repo) @property def event_functions(self) -> Dict[str, Callable[[Repository], DictList]]: funcs: Dict[str, Callable[[Repository], DictList]] = dict( commits=commit_stats_from_repo, issues=issue_stats_from_repo, stars=stars_from_repo, releases=releases_from_repo, ) return funcs @property def count_functions(self) -> Dict[str, Callable[[DictList, str], DictList]]: funcs: Dict[str, Callable[[DictList, str], DictList]] = dict( commits=commit_loc_counts_from_commit_events, issues=issue_counts_from_issue_events, stars=star_counts_from_star_events, releases=release_counts_from_release_events, ) return funcs def commit_stats_from_repo(repo: Repository, author_stats: bool = True) -> DictList: all_data = [] commit: Commit try: for commit in repo.get_commits(): stats: CommitStats = commit.stats author: Optional[Union[NamedUser, GitAuthor]] = _get_author_from_commit( commit ) committer: Optional[ Union[NamedUser, GitAuthor] ] = _get_committer_from_commit(commit) data_dict = dict( sha=commit.sha, last_modified=dateparser.parse(commit.last_modified) if commit.last_modified is not None else None, additions=stats.additions, deletions=stats.deletions, url=commit.html_url, ) if author_stats: if author is not None: data_dict.update(_get_data_from_named_user_or_git_author(author)) if committer is not None: data_dict.update( _get_data_from_named_user_or_git_author( committer, is_committer=True ) ) all_data.append(data_dict) except NoMorePagesAllowedException: warnings.warn( f"Could not collect full history for {repo.name} commits as Github " f"limits the amount of history than can be pulled" ) return all_data # type: ignore def commit_loc_counts_from_commit_events( commits: DictList, freq: str = "d" ) -> DictList: event_df = pd.DataFrame(commits) event_df["net"] = event_df["additions"] - event_df["deletions"] event_df["change"] = event_df["additions"] + event_df["deletions"] start = _get_end_of_period(event_df["last_modified"].min(), freq) end = event_df["last_modified"].max() dates =
pd.date_range(start=start, end=end, freq=freq)
pandas.date_range
import numpy as np import pytest from pandas import DataFrame import pandas._testing as tm from pandas.io.excel import ExcelWriter from pandas.io.formats.excel import ExcelFormatter @pytest.mark.parametrize( "engine", [ pytest.param( "xlwt", marks=pytest.mark.xfail( reason="xlwt does not support openpyxl-compatible style dicts" ), ), "xlsxwriter", "openpyxl", ], ) def test_styler_to_excel(engine): def style(df): # TODO: RGB colors not supported in xlwt return DataFrame( [ ["font-weight: bold", "", ""], ["", "color: blue", ""], ["", "", "text-decoration: underline"], ["border-style: solid", "", ""], ["", "font-style: italic", ""], ["", "", "text-align: right"], ["background-color: red", "", ""], ["number-format: 0%", "", ""], ["", "", ""], ["", "", ""], ["", "", ""], ], index=df.index, columns=df.columns, ) def assert_equal_style(cell1, cell2, engine): if engine in ["xlsxwriter", "openpyxl"]: pytest.xfail( reason=(f"GH25351: failing on some attribute comparisons in {engine}") ) # TODO: should find a better way to check equality assert cell1.alignment.__dict__ == cell2.alignment.__dict__ assert cell1.border.__dict__ == cell2.border.__dict__ assert cell1.fill.__dict__ == cell2.fill.__dict__ assert cell1.font.__dict__ == cell2.font.__dict__ assert cell1.number_format == cell2.number_format assert cell1.protection.__dict__ == cell2.protection.__dict__ def custom_converter(css): # use bold iff there is custom style attached to the cell if css.strip(" \n;"): return {"font": {"bold": True}} return {} pytest.importorskip("jinja2") pytest.importorskip(engine) # Prepare spreadsheets df = DataFrame(np.random.randn(11, 3)) with tm.ensure_clean(".xlsx" if engine != "xlwt" else ".xls") as path: with ExcelWriter(path, engine=engine) as writer: df.to_excel(writer, sheet_name="frame") df.style.to_excel(writer, sheet_name="unstyled") styled = df.style.apply(style, axis=None) styled.to_excel(writer, sheet_name="styled")
ExcelFormatter(styled, style_converter=custom_converter)
pandas.io.formats.excel.ExcelFormatter
""" The texthero.nlp module supports common NLP tasks such as named_entities, noun_chunks, ... on Pandas Series and DataFrame. """ import spacy import pandas as pd from texthero._types import TextSeries, InputSeries @InputSeries(TextSeries) def named_entities(s: TextSeries, package="spacy") -> pd.Series: """ Return named-entities. Return a Pandas Series where each row contains a list of tuples with information about the named entities in the row's document. Tuple: (`entity'name`, `entity'label`, `starting character`, `ending character`) Under the hood, `named_entities` makes use of `Spacy name entity recognition <https://spacy.io/usage/linguistic-features#named-entities>`_ List of labels: - `PERSON`: People, including fictional. - `NORP`: Nationalities or religious or political groups. - `FAC`: Buildings, airports, highways, bridges, etc. - `ORG` : Companies, agencies, institutions, etc. - `GPE`: Countries, cities, states. - `LOC`: Non-GPE locations, mountain ranges, bodies of water. - `PRODUCT`: Objects, vehicles, foods, etc. (Not services.) - `EVENT`: Named hurricanes, battles, wars, sports events, etc. - `WORK_OF_ART`: Titles of books, songs, etc. - `LAW`: Named documents made into laws. - `LANGUAGE`: Any named language. - `DATE`: Absolute or relative dates or periods. - `TIME`: Times smaller than a day. - `PERCENT`: Percentage, including ”%“. - `MONEY`: Monetary values, including unit. - `QUANTITY`: Measurements, as of weight or distance. - `ORDINAL`: “first”, “second”, etc. - `CARDINAL`: Numerals that do not fall under another type. Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series("Yesterday I was in NY with <NAME>") >>> hero.named_entities(s)[0] # doctest: +NORMALIZE_WHITESPACE [('Yesterday', 'DATE', 0, 9), ('NY', 'GPE', 19, 21), ('<NAME>', 'PERSON', 27, 41)] """ entities = [] nlp = spacy.load("en_core_web_sm", disable=["tagger", "parser"]) # nlp.pipe is now 'ner' for doc in nlp.pipe(s.astype("unicode").values, batch_size=32): entities.append( [(ent.text, ent.label_, ent.start_char, ent.end_char) for ent in doc.ents] ) return pd.Series(entities, index=s.index) @InputSeries(TextSeries) def noun_chunks(s: TextSeries) -> pd.Series: """ Return noun chunks (noun phrases). Return a Pandas Series where each row contains a tuple that has information regarding the noun chunk. Tuple: (`chunk'text`, `chunk'label`, `starting index`, `ending index`) Noun chunks or noun phrases are phrases that have noun at their head or nucleus i.e., they ontain the noun and other words that describe that noun. A detailed explanation on noun chunks: https://en.wikipedia.org/wiki/Noun phrase. Internally `noun_chunks` makes use of Spacy's dependency parsing: https://spacy.io/usage/linguistic-features#dependency-parse Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series("The spotted puppy is sleeping.") >>> hero.noun_chunks(s) 0 [(The spotted puppy, NP, 0, 17)] dtype: object """ noun_chunks = [] nlp = spacy.load("en_core_web_sm", disable=["ner"]) # nlp.pipe is now "tagger", "parser" for doc in nlp.pipe(s.astype("unicode").values, batch_size=32): noun_chunks.append( [ (chunk.text, chunk.label_, chunk.start_char, chunk.end_char) for chunk in doc.noun_chunks ] ) return pd.Series(noun_chunks, index=s.index) @InputSeries(TextSeries) def count_sentences(s: TextSeries) -> pd.Series: """ Count the number of sentences per cell in a Pandas Series. Return a new Pandas Series with the number of sentences per cell. This makes use of the SpaCy `sentencizer <https://spacy.io/api/sentencizer>`_ Examples -------- >>> import texthero as hero >>> import pandas as pd >>> s = pd.Series( ... ["Yesterday I was in NY with <NAME>. Great story...", ... "This is the F.B.I.! What? Open up!"]) >>> hero.count_sentences(s) 0 2 1 3 dtype: int64 """ number_of_sentences = [] nlp = spacy.load("en_core_web_sm", disable=["tagger", "parser", "ner"]) nlp.add_pipe(nlp.create_pipe("sentencizer")) # Pipe is only "sentencizer" for doc in nlp.pipe(s.values, batch_size=32): sentences = len(list(doc.sents)) number_of_sentences.append(sentences) return
pd.Series(number_of_sentences, index=s.index)
pandas.Series
# Copyright 2021 AI Singapore. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union, List, Dict import math import pandas as pd import dash from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate import dash_table import dash_core_components as dcc import dash_html_components as html import dash_bootstrap_components as dbc from rarity.app import app from rarity.data_loader import CSVDataLoader, DataframeLoader from rarity.interpreters.structured_data import IntLossClusterer from rarity.visualizers import loss_clusters as viz_clusters from rarity.visualizers import shared_viz_component as viz_shared from rarity.utils import style_configs from rarity.utils.common_functions import (is_active_trace, is_reset, is_regression, is_classification, detected_legend_filtration, detected_single_xaxis, detected_single_yaxis, detected_bimodal, get_min_max_offset, get_min_max_cluster, get_effective_xaxis_cluster, get_adjusted_dfs_based_on_legend_filtration, conditional_sliced_df, insert_index_col, dataframe_prep_on_model_count_by_yaxis_slice, new_dataframe_prep_based_on_effective_index) def fig_plot_offset_clusters_reg(data_loader: Union[CSVDataLoader, DataframeLoader], num_cluster: int): ''' For use in regression task only. Function to output collated info packs used to display final graph objects by cluster groups along with calculated silhouette scores Arguments: data_loader (:class:`~rarity.data_loader.CSVDataLoader` or :class:`~rarity.data_loader.DataframeLoader`): Class object from data_loader module num_cluster (int): Number of cluster to form Returns: Compact outputs consist of the followings - df (:obj:`~pd.DataFrame`): dataframes for overview visualization need with offset values included - fig_obj_cluster (:obj:`~plotly.graph_objects.Figure`): figure displaying violin plot outlining cluster groups by offset values - ls_cluster_score (:obj:`List[str]`): list of silhouette scores, indication of clustering quality - fig_obj_elbow (:obj:`~plotly.graph_objects.Figure`): figure displaying line plot outlining the change in sum of squared distances \ along the cluster range ''' df, ls_cluster_score, ls_cluster_range, ls_ssd = IntLossClusterer(data_loader).xform(num_cluster, None, 'All') models = data_loader.get_model_list() analysis_type = data_loader.get_analysis_type() fig_obj_cluster = viz_clusters.plot_offset_clusters(df, analysis_type) fig_obj_elbow = viz_clusters.plot_optimum_cluster_via_elbow_method(ls_cluster_range, ls_ssd, models) return df, fig_obj_cluster, ls_cluster_score, fig_obj_elbow def fig_plot_logloss_clusters_cls(data_loader: Union[CSVDataLoader, DataframeLoader], num_cluster: int, log_func: math.log = math.log, specific_dataset: str = 'All'): ''' For use in classification task only. Function to output collated info packs used to display final graph objects by cluster groups along with calculated silhouette scores Arguments: data_loader (:class:`~rarity.data_loader.CSVDataLoader` or :class:`~rarity.data_loader.DataframeLoader`): Class object from data_loader module num_cluster (int): Number of cluster to form log_funct (:obj:`math.log`): Mathematics logarithm function used to calculate log-loss between yTrue and yPred specific_dataset (str): Default to 'All' indicating to include all miss-predict labels. Other options flexibly expand depending on class labels Returns: Compact outputs consist of the followings - ls_dfs_viz (:obj:`List[~pd.DataFrame]`): dataframes for overview visualization need with offset values included - fig_obj_cluster (:obj:`~plotly.graph_objects.Figure`): figure displaying violin plot outlining cluster groups by offset values - ls_cluster_score (:obj:`List[str]`): list of silhouette scores, indication of clustering quality - fig_obj_elbow (:obj:`~plotly.graph_objects.Figure`): figure displaying line plot outlining the change in sum of squared distances \ along the cluster range - ls_class_labels (:obj:`List[str]`): list of all class labels - ls_class_labels_misspred (:obj:`List[str]`): list of class labels with minimum of 1 miss-prediction - df_features (:obj:`~pandas.DataFrame`): dataframe storing all features used in dataset ''' compact_outputs = IntLossClusterer(data_loader).xform(num_cluster, log_func, specific_dataset) ls_dfs_viz, ls_class_labels, ls_class_labels_misspred = compact_outputs[0], compact_outputs[1], compact_outputs[2] ls_cluster_score, ls_cluster_range, ls_ssd = compact_outputs[3], compact_outputs[4], compact_outputs[5] df_features = data_loader.get_features() analysis_type = data_loader.get_analysis_type() models = data_loader.get_model_list() fig_obj_cluster = viz_clusters.plot_logloss_clusters(ls_dfs_viz, analysis_type) fig_obj_elbow = viz_clusters.plot_optimum_cluster_via_elbow_method(ls_cluster_range, ls_ssd, models) return ls_dfs_viz, fig_obj_cluster, ls_cluster_score, fig_obj_elbow, ls_class_labels, ls_class_labels_misspred, df_features def table_with_relayout_datapoints(data: dash_table.DataTable, customized_cols: List[str], header: Dict, exp_format: str): ''' Create table outlining dataframe content Arguments: data (:obj:`~dash_table.DataTable`): dictionary like format storing dataframe info under 'record' key customized_cols (:obj:`List[str]`): list of customized column names header (:obj:`Dict`): dictionary format storing the style info for table header exp_format (str): text info indicating the export format Returns: :obj:`~dash_table.DataTable`: table object outlining the dataframe content with specific styles ''' tab_obj = viz_shared.reponsive_table_to_filtered_datapoints(data, customized_cols, header, exp_format) return tab_obj def convert_cluster_relayout_data_to_df_reg(relayout_data: Dict, df: pd.DataFrame, models: List[str]): ''' For use in regression task only. Convert raw data format from relayout selection range by user into the correct df fit for viz purpose Arguments: relayout_data (:obj:`Dict`): dictionary like data containing selection range indices returned from plotly graph df (:obj:`~pandas.DataFrame`): dataframe tap-out from interpreters pipeline models (:obj:`List[str]`): model names defined by user during spin-up of Tenjin app Returns: :obj:`~pandas.DataFrame`: dataframe fit for the responsive table-graph filtering ''' if detected_single_xaxis(relayout_data): x_cluster = get_effective_xaxis_cluster(relayout_data) df_filtered_x = df[df[f'cluster_{models[0]}'] == x_cluster] if detected_bimodal(models): df_filtered_x_m2 = df[df[f'cluster_{models[1]}'] == x_cluster] df_filtered_x = pd.concat([df_filtered_x, df_filtered_x_m2]).drop_duplicates() y_start_idx, y_stop_idx = get_min_max_offset(df_filtered_x, models) df_final = dataframe_prep_on_model_count_by_yaxis_slice(df_filtered_x, models, y_start_idx, y_stop_idx) elif detected_single_yaxis(relayout_data): y_start_idx = relayout_data['yaxis.range[0]'] y_stop_idx = relayout_data['yaxis.range[1]'] df_filtered_y = dataframe_prep_on_model_count_by_yaxis_slice(df, models, y_start_idx, y_stop_idx) x_start_idx, x_stop_idx = get_min_max_cluster(df_filtered_y, models, y_start_idx, y_stop_idx) x_start_idx = x_start_idx if x_start_idx >= 1 else 1 x_stop_idx = x_stop_idx if x_stop_idx <= 8 else 8 condition_min_cluster = df_filtered_y[f'cluster_{models[0]}'] >= x_start_idx condition_max_cluster = df_filtered_y[f'cluster_{models[0]}'] <= x_stop_idx df_final = conditional_sliced_df(df_filtered_y, condition_min_cluster, condition_max_cluster) if detected_bimodal(models): condition_min_cluster_m2 = df_filtered_y[f'cluster_{models[1]}'] >= x_start_idx condition_max_cluster_m2 = df_filtered_y[f'cluster_{models[1]}'] <= x_stop_idx df_final_m2 = conditional_sliced_df(df_filtered_y, condition_min_cluster_m2, condition_max_cluster_m2) df_final = pd.concat([df_final, df_final_m2]).drop_duplicates() else: # a complete range is provided by user (with proper x-y coordinates) x_cluster = get_effective_xaxis_cluster(relayout_data) y_start_idx = relayout_data['yaxis.range[0]'] y_stop_idx = relayout_data['yaxis.range[1]'] df_filtered = df[df[f'cluster_{models[0]}'] == x_cluster] if detected_bimodal(models): df_filtered_m2 = df[df[f'cluster_{models[1]}'] == x_cluster] df_filtered =
pd.concat([df_filtered, df_filtered_m2])
pandas.concat
# -*- coding: utf-8 -*- """ Created on Thu Aug 16 15:33:07 2018 @author: ysye """ import os import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np from sklearn.preprocessing import minmax_scale from math import log from sklearn.metrics import roc_curve, auc from scipy import stats from matplotlib.colors import ListedColormap from scipy.spatial import distance #os.chdir('E:/Users/yusen/Project/Project3/Python code/CICRLET_package/src/CIRCLET') from . import CIRCLET_DEFINE from . import CIRCLET_CORE bcolors_3=['#EF4F50','#587FBF','#CCCCCC'] bcolors_6=['#587FBF','#3FA667','#EF4F50','#FFAAA3','#414C50','#D3D3D3'] bcolors_12=['#CC1B62','#FBBC00','#0E8934','#AC1120','#EA7B00','#007AB7', '#9A35B4','#804E1F' ,'#BEAB81','#D32414','#75AB09','#004084'] def change_index(passed_qc_sc_DF_cond,soft_add,software,UBI=['1CDU', '1CD_G1', '1CD_eS', '1CD_mS', '1CD_lS_G2']): """ which measures how frequent an experimentally determined single cell labels changes along the time-series. """ #read order of single cell if (software=='wishbone') | (software=='CIRCLET'): phenotime=pd.read_table(soft_add,header=None,index_col=0) phenotime.columns=['Pseudotime'] phenotime['cond']=passed_qc_sc_DF_cond ordIndex=phenotime.sort_values(by='Pseudotime') #cond_order=[cond for cond in ordIndex['cond'] if cond in UBI] elif software=='multi-metric': passed_qc_sc_DF=pd.read_table(soft_add,header=0,index_col=0) phenotime=passed_qc_sc_DF[['ord','cond']] ordIndex=phenotime.sort_values(by='ord') cond_order=[cond for cond in ordIndex['cond'] if cond in UBI] #generate penalty table penal_table=np.ones((len(UBI),len(UBI))) for loc in range(len(UBI)): penal_table[loc,loc]=0 #if loc==0: # penal_table[loc,1]=0 # penal_table[loc,2]=0 penal_table=(np.triu(penal_table)+np.triu(penal_table).T) penalty_sum=0 sc_number=len(cond_order) for k,cond in enumerate(cond_order): phase1=UBI.index(cond) phase2=UBI.index(cond_order[(k+1)%sc_number]) penalty_sum+=penal_table[phase1,phase2] change_score=1-(penalty_sum-4)/(sc_number-4) return change_score def evaluate_continue_change(con_distri_features,soft_add,software): #roc_auc_DF=evaluation_ranks(passed_qc_sc_DF_cond,soft_add,software,UBI=UBIs[1:5]) #plot_evaluate_heat(passed_qc_sc_DF_RO,soft_add,con_distri_features,software,UBIs) if software=='multi-metric': passed_qc_sc_DF=pd.read_table(soft_add,header=0,index_col=0) phenotime=passed_qc_sc_DF[['ord']] elif (software=='wishbone') | (software=='CIRCLET'): phenotime=pd.read_table(soft_add,header=None,index_col=0) phenotime.columns=['Pseudotime'] ordIndex=phenotime.sort_values(by='Pseudotime') old_sc_name=ordIndex.index[-1] sc_name=ordIndex.index[0] corr_list=list() for sc_name in ordIndex.index: x=con_distri_features.loc[old_sc_name] y=con_distri_features.loc[sc_name] old_sc_name=sc_name #temp=stats.pearsonr(x,y)[0] #temp=distance.cosine(x,y) #temp=np.abs(distance.cosine(x,y)-1) temp=np.abs(distance.correlation(x,y)-1) corr_list.append(temp) evaluation_value=np.mean(corr_list) #print(evaluation_value) return evaluation_value def computing_AUC(Rank_list): """ Compulating AUC """ y_true=Rank_list['bench'] y_score=np.max(Rank_list['Pseudotime'])-Rank_list['Pseudotime'] fpr,tpr,threshold = roc_curve(y_true,y_score) roc_auc = auc(fpr, tpr) if roc_auc<0.5: roc_auc=1-roc_auc #plt.plot(fpr,tpr) return roc_auc #soft_con_distri_Res_add=soft_add def evaluation_ranks(passed_qc_sc_DF_cond,soft_con_distri_Res_add,software,UBI,key='not'): """ Calculate the AUC curve values according to the order of the rankings between the two UBI pairs to obtain the distribution of AUC values. """ #UsingBatchIDs=['1CDU', '1CDX1', '1CDX2', '1CDX3', '1CDX4', '1CDES'] #UBIs=['1CDU', '1CD_G1', '1CD_eS', '1CD_mS', '1CD_lS_G2', 'NoSort'] if software=='multi-metric': passed_qc_sc_DF=
pd.read_table(soft_con_distri_Res_add,header=0,index_col=0)
pandas.read_table
import pandas as pd from os import listdir filenames = listdir("/home/debian/datalake/sirene/2020-08/rna/") globdf = pd.DataFrame(columns=['id', 'id_ex', 'siret', 'rup_mi', 'gestion', 'date_creat', 'date_decla', 'date_publi', 'date_disso', 'nature', 'groupement', 'titre', 'titre_court', 'objet', 'objet_social1', 'objet_social2', 'adrs_complement', 'adrs_numvoie', 'adrs_repetition', 'adrs_typevoie', 'adrs_libvoie', 'adrs_distrib', 'adrs_codeinsee', 'adrs_codepostal', 'adrs_libcommune', 'adrg_declarant', 'adrg_complemid', 'adrg_complemgeo', 'adrg_libvoie', 'adrg_distrib', 'adrg_codepostal', 'adrg_achemine', 'adrg_pays', 'dir_civilite', 'siteweb', 'publiweb', 'observation', 'position', 'maj_time', 'mois_crea', 'mois_ferm', 'objet_social_parent_id', 'objet_social_lib', 'objet_social_parent_lib', 'reg', 'dep']) dfnom = pd.read_csv("/home/debian/projects/postgres-playground/db/utils/rna_nomenclature_objet_social.csv",dtype=str) dfnom2 = dfnom[dfnom['objet_social_parent_id'] == dfnom['objet_social_id']] dfnom2 = dfnom2.rename(columns={'objet_social_lib':'objet_social_parent_lib'}) dfnom2 = dfnom2.drop(columns=['objet_social_id']) dfnom = dfnom[dfnom['objet_social_parent_id'] != dfnom['objet_social_id']] dfnom = pd.merge(dfnom,dfnom2,on='objet_social_parent_id',how='left') dfnom = dfnom.rename(columns={'objet_social_id':'objet_social1'}) dfnom =dfnom.drop_duplicates(subset={"objet_social1"}) dfcom = pd.read_csv("/home/debian/projects/postgres-playground/db/utils/communes-2019.csv",dtype=str) dfcom = dfcom[['com','reg','dep']] dfcom = dfcom.rename(columns={'com':'adrs_codeinsee'}) dfcom = dfcom.drop_duplicates(subset={'adrs_codeinsee'}) for filename in filenames: print(filename) df =
pd.read_csv("/home/debian/datalake/sirene/2020-08/rna/rna_waldec_20200801_dpt_75.csv",sep=";",encoding="Latin-1",dtype=str)
pandas.read_csv
''' Regression test for #226. ''' import os import pandas as pd import pytest from parsl.app.app import bash_app, python_app from parsl.tests.configs.local_threads import config local_config = config class Foo(object): def __init__(self, x): self.x = x def __eq__(self, value): raise NotImplementedError bar = Foo(1) @python_app def get_foo_x(a, b=bar, c=None): return b.x data =
pd.DataFrame({'x': [None, 2, [3]]})
pandas.DataFrame
#Imports import numpy as np import pandas as pd import matplotlib.pyplot as plt def initialize_parameters_deep(layer_dims, n): """ This function takes the numbers of layers to be used to build our model as input and otputs a dictonary containing weights and biases as parameters to be learned during training The number in the layer_dims corresponds to number of neurons in corresponding layer @params Input to this function is layer dimensions layer_dims = List contains number of neurons in one respective layer and [len(layer_dims) - 1] gives L Layer Neural Network Returns: parameters = Dictionary containing parameters "W1", "b1", . . ., "WL", "bL" where Wl = Weight Matrix of shape (layer_dims[l-1],layer_dims[l]) bl = Bias Vector of shape (1,layer_dims[l]) """ # layers_dims = [250, 128, 128, 5] # 3-layer model np.random.seed(3) parameters = {} L = len(layer_dims) # Number of layers in the network for l in range(1, L): # It starts with 1 hence till len(layer_dims) # Initialize weights randomly according to Xavier initializer in order to avoid linear model parameters['W' + str(l)] = np.random.randn(layer_dims[l-1],layer_dims[l])*np.sqrt(n / layer_dims[l-1]) # Initialize bias vector with zeros parameters['b' + str(l)] = np.zeros((1,layer_dims[l])) # Making sure the shape is correct assert(parameters['W' + str(l)].shape == (layer_dims[l-1], layer_dims[l])) assert(parameters['b' + str(l)].shape == (1,layer_dims[l])) # parameters = {"W [key]": npnp.random.randn(layer_dims[l-1],layer_dims[l]) [value]} return parameters # Activation functions and their derivaties: def sigmoid(Z): """ This function takes the forward matrix Z (Output of the linear layer) as the input and applies element-wise Sigmoid activation @params Z = numpy array of any shape Returns: A = Output of sigmoid(Z), same shape as Z, for the last layer this A is the output value from our model cache = Z is cached, this is useful during backpropagation """ A = 1/(1+np.exp(-Z)) # Using numpy apply sigmoid to Z cache = Z # Cache the matrix Z return A, cache def relu(Z): """ This function takes the forward matrix Z as the input and applies element wise Relu activation @params Z = Output of the linear layer, of any shape Returns: A = Post-activation parameter, of the same shape as Z cache = Z is cached, this is useful during backpropagation """ A = np.maximum(0,Z) # Element-wise maximum of array elements # Making sure shape of A is same as shape of Z assert(A.shape == Z.shape) cache = Z # Cache the matrix Z return A, cache def relu_backward(dA, cache): """ This function implements the backward propagation for a single Relu unit @params dA = post-activation gradient, of any shape cache = Retrieve cached Z for computing backward propagation efficiently Returns: dZ = Gradient of the cost with respect to Z """ #Z = cache dZ = np.array(dA) # Just converting dz to a correct object. #print(dZ.all()==dA.all()) #print(dZ.shape, Z.shape) # When z <= 0, you set dz to 0 as well, as relu sets negative values to 0 dZ[cache <= 0] = 0 # Making sure shape of dZ is same as shape of Z assert (dZ.shape == cache.shape) return dZ def sigmoid_backward(dA, cache): """ This function implements the backward propagation for a single Sigmoid unit @params dA = post-activation gradient, of any shape cache = Retrieve cached Z for computing backward propagation efficiently Returns: dZ = Gradient of the cost with respect to Z """ Z = cache s = 1/(1+np.exp(-Z)) # Using numpy apply Sigmoid to Z dZ = dA * s * (1-s) # This is derivatie of Sigmoid function # Making sure shape of dZ is same as shape of Z assert (dZ.shape == Z.shape) return dZ # Softmax def softmax(Z): """ This fucntion caculates the softmax values element wise. Here I've implemented a stable softmax function @params Z = Output of the linear layer, of any shape Returns: Elementwise exponential values of the matriz Z """ exp_val = np.exp(Z - np.max(Z, axis=1,keepdims=True)) softmax_vals = exp_val/np.sum(exp_val,axis=1,keepdims=True) return softmax_vals def softmax_loss(Z,y,act_cache): """ This function takes the forward matrix Z as the input and applies element wise Softmax activation. It even calculates the cross entropy loss and derivative of cross entropy loss function @params Z = Output of the linear layer, of any shape Y = Ground Truth/ True "label" vector (containing classes 0 and 1) shape = (number of examples, 1) Returns: log_loss = Returns cross entropy loss: −∑ylog(probs) dZ = Gradient of the cost with respect to Z """ # Forward Pass # Here we'll implement a stable softmax m = y.shape[0] cache = Z A = softmax(Z) #Z,_ = act_cache A_back = softmax(act_cache) y = y.flatten() log_loss = np.sum(-np.log(A[range(m), y]))/m # Backward Pass dZ = A_back.copy() dZ[range(m), y] -= 1 dZ /= m #dZ = (A - y)/m assert(A.shape == Z.shape) assert (dZ.shape == Z.shape) return A, cache, log_loss, dZ def linear_forward(A, W, b): """ This function implements the forward propagation equation Z = WX + b @params A = Activations from previous layer (or input data), shape = (number of examples, size of previous layer) W = Weight matrix of shape (size of previous layer,size of current layer) b = Bias vector of shape (1, size of the current layer) Returns: Z = The input of the activation function, also called pre-activation parameter, shape = (number of examples, size of current layer) cache = Tuple containing "A", "W" and "b"; stored for computing the backward pass efficiently """ # print(A.shape, W.shape) Z = A.dot(W) + b # Here b gets broadcasted #print("Debug",Z.shape,A.shape[0],W.shape[1]) # Making sure shape of Z = (number of examples, size of current layer) assert(Z.shape == (A.shape[0], W.shape[1])) cache = (A, W, b) # Cache all the three params return Z, cache def linear_activation_forward(A_prev, W, b, y,keep_prob,predict_result,activation): """ This function implements forward propagation LINEAR -> ACTIVATION layer @params A_prev = Activations from previous layer (or input data), shape = (number of examples, size of previous layer) W = Weight matrix of shape (size of previous layer,size of current layer) b = Bias vector of shape (1, size of the current layer) Y = Ground Truth/ True "label" vector (containing classes 0 and 1) shape = (number of examples, 1) keep_prob = Percentage of neurons to be kept active predict_result = False while training, True when predicting the ground truth values (False only when ground truth values are not present) Must be kept False if you have ground truth values while predicting activation = The activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: When activation is Sigmoid: A = The output of the activation function, also called the post-activation value cache = Tuple containing "linear_cache" and "activation_cache"; stored for computing the backward pass efficiently When activation is Softmax and Y is present during training and prediction: A = The output of the activation function, also called the post-activation value cache = Tuple containing "linear_cache" and "activation_cache"; stored for computing the backward pass efficiently log_loss = Cross ENtropy loss dZ = Derivative of cross entropy softmax When activation is Softmax and Y is not present during prediction: Z = The input of the activation function, also called pre-activation parameter, shape = (number of examples, size of current layer) """ if activation == "sigmoid": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache" Z, linear_cache = linear_forward(A_prev, W, b) A, activate_cache = sigmoid(Z) D = np.ones((A.shape[0],A.shape[1])) A = np.multiply(A,D) activation_cache = (activate_cache,D) elif activation == "relu": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache" Z, linear_cache = linear_forward(A_prev, W, b) A, activate_cache = relu(Z) D = np.random.rand(A.shape[0],A.shape[1]) #print("Relu Function ",(A.shape, D.shape)) D = (D < keep_prob).astype(int) #print("Relu D", D.shape) A = np.multiply(A,D) A /= keep_prob activation_cache = (activate_cache,D) #print("Relu Activation cache", len(activation_cache)) elif activation == "softmax": # Inputs: "A_prev, W, b". Outputs: "A, activation_cache" Z, linear_cache = linear_forward(A_prev, W, b) #print("Z values",Z) if predict_result: return Z A, activate_cache, log_loss, dZ = softmax_loss(Z,y,Z.copy()) D = np.ones((A.shape[0],A.shape[1])) #print("Softmax D", D.shape) A = np.multiply(A,D) activation_cache = (activate_cache,D) #print("Softmax Activation cache", len(activation_cache)) #print("A values", A) # Making sure shape of A = (number of examples, size of current layer) assert (A.shape == (A_prev.shape[0],W.shape[1])) cache = (linear_cache, activation_cache) #print(cache) if activation=="softmax": return A, cache,log_loss,dZ else: return A, cache def L_model_forward(X, parameters, y,Output_classes,keep_prob,predict_result,activation_type): #print(y.shape) """ This function implements forward propagation as following: [LINEAR->RELU]*(L-1) -> LINEAR -> SIGMOID computation So we apply Relu to all the hidden layers and Sigmoid to the output layer @params X = Data, numpy array of shape (number of examples, number of features) parameters = Output of initialize_parameters_deep() function Y = Ground Truth/ True "label" vector (containing classes 0 and 1) shape = (number of examples, 1) keep_prob = Percentage of neurons to be kept active predict_result = False while training, True when predicting the ground truth values (False only when ground truth values are not present) Must be kept False if you have ground truth values while predicting activation_type = The activation to be used in this layer, stored as a text string: "bianry" or "multiclass" Returns: When activation is Binary: AL = last post-activation value, also rferred as prediction from model caches = list of caches containing: every cache of linear_activation_forward() function (there are L-1 of them, indexed from 0 to L-1) When activation is Mukticlass and Y is present during training and prediction: A = The output of the activation function, also called the post-activation value cache = Tuple containing "linear_cache" and "activation_cache"; stored for computing the backward pass efficiently log_loss = Cross Entropy loss dZ = Derivative of cross entropy softmax When activation is Multiclass and Y is not present during prediction: Z = The input of the activation function, also called pre-activation parameter, shape = (number of examples, size of current layer) """ #print(np.unique(y).shape[0]) caches = [] A = X L = len(parameters) // 2 # Number of layers in the neural network # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list. for l in range(1, L): A_prev = A # For hidden layers use Relu activation A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)], parameters['b' + str(l)],y,keep_prob, predict_result,activation='relu') #print("Relu A",A.shape) caches.append(cache) # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list. # For output layer use Sigmoid activation if activation_type == "binary": AL, cache = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)],y, keep_prob,predict_result,activation='sigmoid') caches.append(cache) # Making sure shape of AL = (number of examples, 1) assert(AL.shape == (X.shape[0],1)) # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list. # For output layer use Sigmoid activation elif activation_type == "multiclass": if not predict_result: AL, cache, log_loss, dZ = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)],y,keep_prob,predict_result,activation='softmax') else: Z = linear_activation_forward(A, parameters['W' + str(L)], parameters['b' + str(L)],y,keep_prob,predict_result,activation='softmax') return Z #print("AL",AL.shape) caches.append(cache) # Making sure shape of AL = (number of examples, number of classes) assert(AL.shape == (X.shape[0],Output_classes)) #print("Softmax A", AL.shape) if activation_type=="multiclass": return AL, caches, log_loss, dZ else: return AL, caches def compute_cost(AL, Y, parameters, lambd, log_loss, reg_type, activation_type): """ When activation is Sigmoid: This function implements the Binary Cross-Entropy Cost along with l1/l2 regularization For l1: J = -(1/m)*(ylog(predictions)+(1−y)log(1−predictions)) + (λ/2*m)∑absolute(W) For l2: J = -(1/m)*(ylog(predictions)+(1−y)log(1−predictions)) + (λ/2*m)∑(W**2) When activation is Softmax: This function implements the Cross-Entropy Softmax Cost along with L2 regularization For l1: J = -(1/m)*(∑ylog(predictions)) + (λ/2*m)∑absolute(W) For l2: J = -(1/m)*(ylog(predictions)+(1−y)log(1−predictions)) + (λ/2*m)∑(W**2) @params AL = Probability vector corresponding to our label predictions shape = (number of examples, 1) Y = Ground Truth/ True "label" vector (containing classes 0 and 1) shape = (number of examples, 1) parameters = Dictionary containing parameters as follwoing: parameters["W" + str(l)] = Wl parameters["b" + str(l)] = bl lambd = Regularization parameter, int reg_type = Type of regularization to use "l1" or "l2" activation_type = The activation to be used in this layer, stored as a text string: "bianry" or "multiclass" Returns: cost = Binary or Softmax Cross-Entropy Cost with l1/l2 Regularizaion """ m = Y.shape[0] # Number of training examples if activation_type=="binary": # Compute loss from aL and y cross_entropy_cost = -(1/m)*(np.dot(np.log(AL).T,Y) + np.dot(np.log(1-AL).T,(1-Y))) #print(cost) elif activation_type=="multiclass": cross_entropy_cost = log_loss reg_cost = [] W = 0 L = len(parameters) // 2 # number of layers in the neural network if reg_type=="l2": for l in range(1, L+1): W = parameters["W" + str(l)] reg_cost.append(lambd*1./(2*m)*np.sum(W**2)) elif reg_type=="l1": for l in range(1, L+1): W = parameters["W" + str(l)] reg_cost.append(lambd*np.sum(abs(W))) cross_entropy_cost = np.squeeze(cross_entropy_cost) # To make sure cost's is scalar (e.g. this turns [[cost]] into cost) assert(cross_entropy_cost.shape == ()) cost = cross_entropy_cost + np.sum(reg_cost) #print("Cost",(cost,log_loss)) return cost def linear_backward(dZ,l_cache,keep_prob,lambd,reg_type): """ This function implements the linear portion of backward propagation for a single layer (layer l) @params dZ = Gradient of the cost with respect to the linear output of current layer l, shape = (number of examples, size of current layer) cache = Tuple of values (A_prev, W, b) coming from the forward propagation in the current layer keep_prob = Percentage of neurons to be kept active lambd = Regularization parameter, int reg_type = Type of regularization to use "l1" or "l2" Returns: dA_prev = Gradient of the cost with respect to the activation of the previous layer l-1, same shape as A_prev(number of examples, size of previous layer) dW = Gradient of the cost with respect to W of current layer l, same shape as W(size of previous layer,size of current layer) db = Gradient of the cost with respect to b of current layer l, same shape as b(1,size of current layer) """ if reg_type=="l2": A_prev, W, b = l_cache #print("1 Softmax, 2 Relu W", W.shape) #print("Backward A_prev for cache",A_prev.shape) m = A_prev.shape[0] # Number of training examples dW = (1/m)*np.dot(A_prev.T,dZ) + (1/m)*lambd*W # Derivative wrt Weights db = (1/m)*np.sum(dZ, axis=0, keepdims=True) # Derivative wrt Bias dA_prev = np.dot(dZ,W.T) elif reg_type=="l1": A_prev, W, b = l_cache m = A_prev.shape[0] # Number of training examples #if W.any()>0: dW_pos = (W > 0)*lambd # wherever weights are positive(+)lambd from weights dW_neg = (W < 0)*-lambd # wherever weights are negative(-)lambd from weights dW = (1/m)*np.dot(A_prev.T,dZ) + (dW_pos + dW_neg) db = (1/m)*np.sum(dZ, axis=0, keepdims=True) # Derivative wrt Bias dA_prev = np.dot(dZ,W.T) assert (dA_prev.shape == A_prev.shape) assert (dW.shape == W.shape) assert (db.shape == b.shape) return dA_prev, dW, db def linear_activation_backward(dA, cache,keep_prob, lambd, y, reg_type,first_layer, activation): """ This function implements backward propagation for LINEAR -> ACTIVATION layer @params dA = post-activation gradient for current layer l cache = tuple of values (linear_cache, activation_cache) we store for computing backward propagation efficiently keep_prob = Percentage of neurons to be kept active lambd = Regularization parameter, int Y = Ground Truth/ True "label" vector (containing classes 0 and 1) shape = (number of examples, 1) reg_type = Type of regularization to use "l1" or "l2" first_layer = True only for first layer i.e. the input layer. It is True because while unpacking the tuple cache it has only "Two" values "linear" and "activation" cache, cached durinng forward pass. For other layers it is False as it has to unpack "Four"values of "linear" and "activation" cache, from current and next layer during backward class (current and previous layer in terms of forward pass) activation = the activation to be used in this layer, stored as a text string: "sigmoid" or "relu" Returns: dA_prev = Gradient of the cost with respect to the activation of the previous layer l-1, same shape as A_prev(number of examples, size of previous layer) dW = Gradient of the cost with respect to W of current layer l, same shape as W(size of previous layer,size of current layer) db = Gradient of the cost with respect to b of current layer l, same shape as b(1,size of current layer) """ if activation == "relu": if not first_layer: # Unpacking Four Tuple Values from Cache curr_l_a_cache, next_l_a_cache = cache curr_linear_cache, curr_activation_cache = curr_l_a_cache next_linear_cache, next_activation_cache = next_l_a_cache Z,_ = curr_activation_cache _,D = next_activation_cache dZ = relu_backward(dA,Z) dA_prev, dW, db = linear_backward(dZ, curr_linear_cache,keep_prob,lambd,reg_type) dA_prev = np.multiply(dA_prev,D) dA_prev /= keep_prob else: #Unpacking Two Tuple Values from Cache curr_linear_cache, curr_activation_cache = cache Z,_ = curr_activation_cache dZ = relu_backward(dA,Z) dA_prev, dW, db = linear_backward(dZ, curr_linear_cache,keep_prob,lambd,reg_type) elif activation == "sigmoid": # Unpacking Four Tuple Values from Cache curr_l_a_cache, next_l_a_cache = cache curr_linear_cache, curr_activation_cache = curr_l_a_cache next_linear_cache, next_activation_cache = next_l_a_cache Z,_ = curr_activation_cache _,D = next_activation_cache #print("D",D.shape) dZ = sigmoid_backward(dA,Z) #print("dZ shape",(dZ.shape,D.shape)) dA_prev, dW, db = linear_backward(dZ, curr_linear_cache,keep_prob,lambd,reg_type) dA_prev = np.multiply(dA_prev,D) dA_prev /= keep_prob #Z,_ = activation_cache #dZ = sigmoid_backward(dA,Z) #dA_prev, dW, db = linear_backward(dZ, linear_cache,activation_cache,keep_prob,lambd,reg_type) elif activation == "softmax": # Unpacking Four Tuple Values from Cache curr_l_a_cache, next_l_a_cache = cache curr_linear_cache, curr_activation_cache = curr_l_a_cache next_linear_cache, next_activation_cache = next_l_a_cache Z,_ = curr_activation_cache _,D = next_activation_cache #print("D",D.shape) _,_,_,dZ = softmax_loss(dA, y, Z) #print("dZ shape",(dZ.shape,D.shape)) dA_prev, dW, db = linear_backward(dZ, curr_linear_cache,keep_prob,lambd,reg_type) dA_prev = np.multiply(dA_prev,D) dA_prev /= keep_prob #print("Softmax dA", dA_prev.shape) return dA_prev, dW, db def L_model_backward(AL, Y, caches, keep_prob, lambd,reg_type, activation_type): """ This function implements the backward propagation as following: [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group @params AL = probability vector, output of the L_model_forward function Y = Ground Truth/ True "label" vector (containing classes 0 and 1) shape = (number of examples, 1) caches = list of caches containing: every cache of linear_activation_forward function with "relu" (it's caches[l], for l in range(L-1) i.e l = 0...L-2) the cache of linear_activation_forward function with "sigmoid" (it's caches[L-1]) keep_prob = Percentage of neurons to be kept active lambd = Regularization parameter, int reg_type = Type of regularization to use "l1" or "l2" activation_type = The activation to be used in this layer, stored as a text string: "bianry" or "multiclass" Returns: grads = Dictionary with the gradients grads["dA" + str(l)] = ... grads["dW" + str(l+1)] = ... grads["db" + str(l+1)] = ... """ grads = {} L = len(caches) # the number of layers #print(L) m = AL.shape[0] # Number of training examples # Initializing the backpropagation # Derivative of Binary Cross Entropy function if activation_type=="binary": Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL dAL = - (np.divide(Y, AL) - np.divide(1 - Y, 1 - AL)) # Lth layer (SIGMOID -> LINEAR) gradients. # Inputs: "dAL, current_cache". Outputs: "grads["dAL-1"], grads["dWL"], grads["dbL"] current_cache = (caches[L-1],caches[L-2]) # Grabbig correct dropout mask of the previous layer (wrt Forward pass) grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(dAL, current_cache, keep_prob,lambd,Y,reg_type,first_layer=False,activation = "sigmoid") elif activation_type=="multiclass": #Y = Y.reshape(AL.shape) #curr_cache = caches[L-2] current_cache = (caches[L-1],caches[L-2]) # Grabbig correct dropout mask of the previous layer (wrt Forward pass) #print("Softmax CC",len(current_cache)) grads["dA" + str(L-1)], grads["dW" + str(L)], grads["db" + str(L)] = linear_activation_backward(AL, current_cache, keep_prob,lambd, Y,reg_type,first_layer=False,activation = "softmax") #print("Softmax_grad",grads["dA"+str(L-1)]) # Loop from l=L-2 to l=0 for l in reversed(range(L-1)): #print("l",l) #l = 1,0 # lth layer: (RELU -> LINEAR) gradients # Inputs: "grads["dA" + str(l + 1)], current_cache". Outputs: "grads["dA" + str(l)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] if l != 0: first_layer = False current_cache = (caches[l], caches[l-1]) # Grabbig correct dropout mask of the previous layer (wrt Forward pass) #print("Relu CC",len(current_cache)) elif l==0: first_layer = True current_cache = caches[l] # No dropout is appkied to the first/input layer dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l + 1)], current_cache,keep_prob, lambd, Y,reg_type,first_layer,activation = "relu") grads["dA" + str(l)] = dA_prev_temp grads["dW" + str(l + 1)] = dW_temp grads["db" + str(l + 1)] = db_temp #print(grads) return grads def initialize_adam(parameters) : """ This function Initializes v and s as two python dictionaries with: - keys: "dW1", "db1", ..., "dWL", "dbL" - values: numpy arrays of zeros of the same shape as the corresponding gradients/parameters @param parameters = Dictionary containing parameters as follwoing: parameters["W" + str(l)] = Wl parameters["b" + str(l)] = bl Returns: v = Dictionary that will contain the exponentially weighted average of the gradient v["dW" + str(l)] = ... v["db" + str(l)] = ... s = Dictionary that will contain the exponentially weighted average of the squared gradient s["dW" + str(l)] = ... s["db" + str(l)] = ... """ L = len(parameters) // 2 # number of layers in the neural networks v = {} s = {} # Initialize v, s. Input: "parameters". Outputs: "v, s". for l in range(L): v["dW" + str(l+1)] = np.zeros(parameters['W' + str(l+1)].shape) v["db" + str(l+1)] = np.zeros(parameters['b' + str(l+1)].shape) s["dW" + str(l+1)] = np.zeros(parameters['W' + str(l+1)].shape) s["db" + str(l+1)] = np.zeros(parameters['b' + str(l+1)].shape) return v, s def update_parameters_with_adam(parameters, grads, v, s, t, learning_rate = 0.01, beta1 = 0.9, beta2 = 0.999, epsilon = 1e-8): """ This function updates our model parameters using Adam @params parameters = Dictionary containing our parameters: parameters['W' + str(l)] = Wl parameters['b' + str(l)] = bl grads = Dictionary containing our gradients for each parameters: grads['dW' + str(l)] = dWl grads['db' + str(l)] = dbl v = Adam variable, moving average of the first gradient, python dictionary s = Adam variable, moving average of the squared gradient, python dictionary learning_rate = the learning rate, scalar. beta1 = Exponential decay hyperparameter for the first moment estimates beta2 = Exponential decay hyperparameter for the second moment estimates epsilon = hyperparameter preventing division by zero in Adam updates Returns: parameters = Dictionary containing our updated parameters v = Adam variable, moving average of the first gradient, python dictionary s = Adam variable, moving average of the squared gradient, python dictionary """ L = len(parameters) // 2 # number of layers in the neural networks v_corrected = {} # Initializing first moment estimate, python dictionary s_corrected = {} # Initializing second moment estimate, python dictionary # Perform Adam update on all parameters for l in range(L): # Moving average of the gradients. Inputs: "v, grads, beta1". Output: "v". v["dW" + str(l+1)] = beta1 * v['dW' + str(l+1)] + (1 - beta1) * grads['dW' + str(l+1)] v["db" + str(l+1)] = beta1 * v['db' + str(l+1)] + (1 - beta1) * grads['db' + str(l+1)] # Compute bias-corrected first moment estimate. Inputs: "v, beta1, t". Output: "v_corrected". v_corrected["dW" + str(l+1)] = v['dW' + str(l+1)] / float(1 - beta1**t) v_corrected["db" + str(l+1)] = v['db' + str(l+1)] / float(1 - beta1**t) # Moving average of the squared gradients. Inputs: "s, grads, beta2". Output: "s". s["dW" + str(l+1)] = beta2 * s['dW' + str(l+1)] + (1 - beta2) * (grads['dW' + str(l+1)]**2) s["db" + str(l+1)] = beta2 * s['db' + str(l+1)] + (1 - beta2) * (grads['db' + str(l+1)]**2) ### END CODE HERE ### # Compute bias-corrected second raw moment estimate. Inputs: "s, beta2, t". Output: "s_corrected". s_corrected["dW" + str(l+1)] = s["dW" + str(l+1)] / float(1 - beta2**t) s_corrected["db" + str(l+1)] = s["db" + str(l+1)] / float(1 - beta2**t) # Update parameters. Inputs: "parameters, learning_rate, v_corrected, s_corrected, epsilon". Output: "parameters". parameters["W" + str(l+1)] = parameters["W" + str(l+1)] - learning_rate * v_corrected["dW" + str(l+1)] / (np.sqrt(s_corrected["dW" + str(l+1)]) + epsilon) parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * v_corrected["db" + str(l+1)] / (np.sqrt(s_corrected["db" + str(l+1)]) + epsilon) return parameters, v, s def random_mini_batches(X, Y, mini_batch_size): """ This function creates a list of random minibatches from (X, Y) @params X = Data, numpy array of shape (number of examples, number of features) Y = Ground Truth/ True "label" vector (containing classes 0 and 1) shape = (number of examples, 1) mini_batch_size = size of the mini-batches (suggested to use powers of 2) Returns: mini_batches = list of synchronous (mini_batch_X, mini_batch_Y) """ np.random.seed(0) m = X.shape[0] # Number of training examples mini_batches = [] # List to return synchronous minibatches # Step 1: Shuffle (X, Y) permutation = list(np.random.permutation(m)) shuffled_X = X[permutation,:] #print("S_X",shuffled_X.shape) shuffled_Y = Y[permutation].reshape((m,1)) #print("S_Y",shuffled_Y.shape) # Step 2: Partition (shuffled_X, shuffled_Y). Minus the end case. num_complete_minibatches = (m//mini_batch_size) # number of mini batches of size mini_batch_size in our partitionning for k in range(num_complete_minibatches): mini_batch_X = shuffled_X[k*mini_batch_size : (k+1)*mini_batch_size,:] #print("M_X",mini_batch_X.shape) mini_batch_Y = shuffled_Y[k*mini_batch_size : (k+1)*mini_batch_size,:] mini_batch = (mini_batch_X, mini_batch_Y) # Tuple for synchronous minibatches mini_batches.append(mini_batch) # Handling the end case (last mini-batch < mini_batch_size) if m % mini_batch_size != 0: mini_batch_X = shuffled_X[num_complete_minibatches*mini_batch_size :,: ] mini_batch_Y = shuffled_Y[num_complete_minibatches*mini_batch_size :,: ] mini_batch = (mini_batch_X, mini_batch_Y) mini_batches.append(mini_batch) return mini_batches def predict(X, parameters,y,Output_classes, keep_prob,predict_result,activation_type, flags): """ This function is used to predict the results of a L-layer neural network @ params X = Data, numpy array of shape (number of examples, number of features) Y = Ground Truth/ True "label" vector (containing classes 0 and 1) shape = (number of examples, 1) parameters = Parameters of trained model returned by L_layer_model function keep_prob = Percentage of neurons to be kept active predict_result = False while training, True when predicting the ground truth values (False only when ground truth values are present) Must be kept False if you have ground truth values while predicting activation_type = The activation to be used in this layer, stored as a text string: "bianry" or "multiclass" flags = During prediction sometime we have grounnd truth values and sometime we have to predict ground truth values using learned parameters during training. so flags is "y_is_present" or "predict_y" Returns: Predictions for the given dataset X """ m = X.shape[0] # Number of training examples in Dataset n = len(parameters) // 2 # Number of layers in the neural network if activation_type=="multiclass": if flags=="y_is_present": # Forward propagation AL, _, _, _ = L_model_forward(X, parameters, y,Output_classes,keep_prob, predict_result,activation_type) elif flags == "predict_y": Z = L_model_forward(X, parameters, y,Output_classes,keep_prob, predict_result,activation_type) AL = softmax(Z) # Apply stable Softmax predicted_class = np.argmax(AL, axis=1) # Prediction elif activation_type=="binary": p = np.zeros((m,1)) #Forward Propagation probas, _ = L_model_forward(X, parameters,y,Output_classes,keep_prob, predict_result,activation_type) for i in range(probas.shape[0]): # As per sigmoid, values greater than 0.5 are categorized as 1 # and values lesser than 0.5 as categorized as 0 if probas[i] > 0.5: p[i] = 1 else: p[i] = 0 if flags == "y_is_present" and activation_type=="multiclass": #acc = np.sum((predicted_class == y)/m)*100 #print("Accuracy:%.2f%%" % acc) #print('Accuracy: {0}%'.format(100*np.mean(predicted_class == y))) return predicted_class elif flags == "y_is_present" and activation_type=="binary": y = y.reshape(p.shape) acc = np.sum((p == y)/m)*100 print("Accuracy:%.2f%%" % acc) return p if flags == "predict_y" and activation_type=="multiclass": ret = np.column_stack((y, predicted_class)).astype(int) # Saving the Predictions as Multiclass_Predictions.csv pd.DataFrame(ret).to_csv("Multiclass_Predictions.csv", sep = ",", header = ["Id", "label"], index = False) return predicted_class elif flags == "predict_y" and activation_type=="binary": ret = np.column_stack((y, p)).astype(int) # Saving the Predictions as Binary_Predictions.csv
pd.DataFrame(ret)
pandas.DataFrame
import dash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output, State from dash.exceptions import PreventUpdate import plotly.graph_objects as go import plotly.express as px import pandas as pd from helpers import ( austin_listings, zc_link, apply_clustering, rating_clustering, review_columns, ) app = dash.Dash(__name__) server = app.server app.config.suppress_callback_exceptions = True # CONSTANTS grouped = austin_listings.groupby("zipcode").size() mapbox_token = "<KEY>" geo_colors = [ "#8dd3c7", "#ffd15f", "#bebada", "#fb8072", "#80b1d3", "#fdb462", "#b3de69", "#fccde5", "#d9d9d9", "#bc80bd", "#ccebc5", ] bar_coloway = [ "#fa4f56", "#8dd3c7", "#ffffb3", "#bebada", "#80b1d3", "#fdb462", "#b3de69", "#fccde5", "#d9d9d9", "#bc80bd", "#ccebc5", "#ffed6f", ] intro_text = """ **About this app** This app applies spatial clustering and regionalization analysis to discover the [dataset of AirBnb listings in the city of Austin](http://insideairbnb.com/get-the-data.html). Models are created using [pysal](https://pysal.readthedocs.io/en/latest/) and scikit-learn. Select the type of model from radioitem, click on the button to run clustering and visualize output regions geographically on the map, computing may take seconds to finish. Click on regions on the map to update the number of airbnb listings from your highlighted group. """ listing_txt = """ out of *{}* total listings """.format( grouped.sum() ) INIT_THRESHOLD_VAL = 5 def header_section(): return html.Div( [ html.Img(src=app.get_asset_url("dash-logo.png"), className="logo"), html.H4("Spatial Clustering"), ], className="header__title", ) def make_base_map(): # Scattermapbox with geojson layer, plot all listings on mapbox customdata = list( zip( austin_listings["host_name"], austin_listings["name"], austin_listings["host_since"], austin_listings["price"], austin_listings["accommodates"], austin_listings["availability_365"], round(austin_listings["availability_365"] / 365 * 100, 1), ) ) mapbox_figure = dict( type="scattermapbox", lat=austin_listings["latitude"], lon=austin_listings["longitude"], marker=dict(size=7, opacity=0.7, color="#550100"), customdata=customdata, name="Listings", hovertemplate="<b>Host: %{customdata[0]}</b><br><br>" "<b>%{customdata[1]}</b><br>" "<b>Host Since: </b>%{customdata[2]}<br>" "<b>Price: </b>%{customdata[3]} / night<br>" "<b>Person to accommodate: </b>%{customdata[4]}<br>" "<b>Yearly Availability: </b>%{customdata[5]} days/year (%{customdata[6]} %)", ) layout = dict( mapbox=dict( style="streets", uirevision=True, accesstoken=mapbox_token, zoom=9, center=dict( lon=austin_listings["longitude"].mean(), lat=austin_listings["latitude"].mean(), ), ), shapes=[ { "type": "rect", "xref": "paper", "yref": "paper", "x0": 0, "y0": 0, "x1": 1, "y1": 1, "line": {"width": 1, "color": "#B0BEC5"}, } ], margin=dict(l=10, t=10, b=10, r=10), height=900, showlegend=True, hovermode="closest", ) figure = {"data": [mapbox_figure], "layout": layout} return figure def make_map_with_clustering(sel_ind, c_type, stored_data): """ Update layers on map from clustering regions. :param sel_ind: lasso-select index from map.selectedData. :param c_type: cluster type. :param stored_data: datastore from computing. :return: Plotly figure object. """ # Group based on zipcode figure = make_base_map() # Decrease opacity of scatter figure["data"][0]["marker"].update(opacity=0.02) figure["layout"].update( dragmode="lasso" ) # clickmode doesn't work but drag will select scatters db = pd.DataFrame() if c_type == "ht-cluster": db = pd.read_json(stored_data["ht"]["data"]) elif c_type == "rating-cluster": db, p_val =
pd.read_json(stored_data["rt"]["data"])
pandas.read_json
import pandas as pd bs = pd.read_csv('/home/federico/basf-dev/app/py/beneficios.csv') df = pd.DataFrame() for row, (k,v) in enumerate(bs.groupby(["Categoría"])): df = df.append(v.drop_duplicates("Subcategoría")) cols_to_del = [x for x in df.columns if x != 'Categoría' and x != 'Subcategoría'] df = df.drop(cols_to_del, 1) df.to_csv('/home/federico/subcat_gen.csv', index = False, header = False) bs =
pd.read_csv('/home/federico/basf-dev/app/py/beneficios.csv')
pandas.read_csv
from datetime import datetime from datetime import timedelta import io import os from sqlalchemy import create_engine import pandas as pd import requests def init_sql_conn(): user = "root" host = os.getenv('MYSQL_HOST') db = "covid" engine = create_engine(f'mysql://{user}@{host}/{db}') conn = engine.connect() return conn def scrape_from(conn, start_date, end_date=datetime.now().date()): columns_to_drop = ["FIPS", "Lat", "Long_", "Latitude", "Longitude", "Combined_Key"] column_rename = { "Last Update": "report_date", "Last_Update": "report_date", "City": "city", "Admin2": "city", "Province/State": "province_state", "Province_State": "province_state", "Country/Region": "country", "Country_Region": "country", "Confirmed": "confirmed", "Deaths": "deaths", "Recovered": "recovered", "Active": "active", } url = "https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_daily_reports/" table = "covid" columns = ["report_date", "city", "province_state", "country", "confirmed", "deaths", "recovered", "active"] df_all = pd.DataFrame(columns=columns) curr_date = start_date while curr_date <= end_date: # pull in the csv file from url and convert to dataframe date = datetime.strftime(curr_date, "%m-%d-%Y") full_url = url+date+".csv" resp = requests.get(full_url) if resp.status_code != 200: print(f'Got status code {resp.status_code} for {date}') curr_date += timedelta(days=1) continue df = pd.read_csv(io.StringIO(resp.content.decode('utf-8'))) # drop columns that we're not interested in for c in columns_to_drop: if c in df.columns: df = df.drop(c, axis=1) # standardize the column names df = df.rename(columns=column_rename) # adds columns that may not be present due to file schema changes for c in columns: if c not in df.columns: df[c] = 0 # try to convert report_date to a datetime try: df["report_date"] =
pd.to_datetime(df["report_date"])
pandas.to_datetime
import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) from stockstats import StockDataFrame import warnings import traceback warnings.filterwarnings('ignore') import argparse import re import sys, os sys.path.append(os.getcwd()) import os import requests from requests.exceptions import ConnectionError import bs4 from bs4 import BeautifulSoup from fastnumbers import isfloat from fastnumbers import fast_float from multiprocessing.dummy import Pool as ThreadPool import more_itertools from random import shuffle import matplotlib.pyplot as plt import seaborn as sns from datetime import datetime import json import seaborn as sns sns.set_style('whitegrid') import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) import matplotlib as mplt import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import explained_variance_score from sklearn.preprocessing import LabelEncoder from sklearn.metrics import confusion_matrix from sklearn.model_selection import GridSearchCV import matplotlib.dates as mdates import seaborn as sns import math import gc import ipaddress from urllib.parse import urlparse from sklearn.metrics import confusion_matrix from sklearn.preprocessing import StandardScaler from sklearn.neural_network import MLPClassifier from data_science_utils import dataframe as df_utils from data_science_utils import models as model_utils from data_science_utils.dataframe import column as column_utils from data_science_utils.models.IdentityScaler import IdentityScaler as IdentityScaler from xgboost import XGBClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import confusion_matrix,classification_report import lightgbm as lgb np.set_printoptions(threshold=np.nan) import pickle from xgboost import XGBClassifier import xgboost as xgb from sklearn.metrics import accuracy_score import missingno as msno from sklearn.metrics import f1_score from sklearn.metrics import precision_score from sklearn.metrics import recall_score from sklearn.preprocessing import StandardScaler import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn import datasets from sklearn.decomposition import PCA import datetime from scipy import signal import matplotlib.pyplot as plt from datetime import timedelta from sklearn import linear_model from sklearn.metrics import roc_auc_score from IPython.display import display, HTML import warnings warnings.filterwarnings('ignore') from data_science_utils.misc import ffloat from data_science_utils.misc import is_dataframe from data_science_utils.misc import ffloat_list from data_science_utils.misc import remove_multiple_spaces from datetime import date, timedelta def prev_weekday(adate): if adate.weekday() <=4: return adate adate -= timedelta(days=1) while adate.weekday() > 4: # Mon-Fri are 0-4 adate -= timedelta(days=1) return adate def get_ci(p,t,r): return np.abs(np.fv(r/100,t,0,p)) def get_cumulative_amounts(p,t,r): psum = p for i in range(1,t): psum = psum + get_ci(p,i,r) return psum def get_year_when_cumulative_profit_over_pe(pe,cpg): if np.isnan(pe) or np.isnan(cpg): return np.inf for i in range(1,int(np.ceil(pe))): if get_cumulative_amounts(1,i,cpg)>=pe: return i return int(np.ceil(pe)) def get_children(html_content): return [item for item in html_content.children if type(item)==bs4.element.Tag or len(str(item).replace("\n","").strip())>0] def get_portfolio(mfid): url = "https://www.moneycontrol.com/india/mutualfunds/mfinfo/portfolio_holdings/" + mfid page_response = requests.get(url, timeout=240) page_content = BeautifulSoup(page_response.content, "html.parser") portfolio_table = page_content.find('table', attrs={'class': 'tblporhd'}) fund_name = page_content.find('h1').text return portfolio_table, fund_name def get_table(portfolio_table): portfolio_elems = get_children(portfolio_table) table_data = list() for row in portfolio_elems: row_data = list() row_elems = get_children(row) for elem in row_elems: text = elem.text.strip().replace("\n", "") if len(text) == 0: continue elem_descriptor = {'text': text} elem_children = get_children(elem) if len(elem_children) > 0: if elem_children[0].has_attr('href'): elem_href = elem_children[0]['href'] elem_descriptor['href'] = elem_href row_data.append(elem_descriptor) table_data.append(row_data) return table_data def get_table_simple(portfolio_table, is_table_tag=True): portfolio_elems = portfolio_table.find_all('tr') if is_table_tag else get_children(portfolio_table) table_data = list() for row in portfolio_elems: row_data = list() row_elems = get_children(row) for elem in row_elems: text = elem.text.strip().replace("\n", "") text = remove_multiple_spaces(text) if len(text) == 0: continue row_data.append(text) table_data.append(row_data) return table_data def get_inner_texts_as_array(elem, filter_empty=True): children = get_children(elem) tarr = [child.text.strip().replace("\n", "") for child in children] if filter_empty: tarr = list(filter(lambda x: x is not None and len(x) > 0, tarr)) return tarr def get_shareholding_pattern(shareholding_url): page_response = requests.get(shareholding_url, timeout=240) page_content = BeautifulSoup(page_response.content, "html.parser") tables = page_content.find_all('table') if len(tables) < 3: return {} table_content = page_content.find_all('table')[2] rows = table_content.find_all('tr') all_tds = page_content.find_all('td') idx = list(map(lambda x: x.text, all_tds)).index("Total (A)+(B)+(C)") promoters = get_inner_texts_as_array( list(filter(lambda x: "Total shareholding of Promoter and Promoter Group (A)" in x.text, rows))[0], filter_empty=False) public = get_inner_texts_as_array(list(filter(lambda x: "Total Public shareholding (B)" in x.text, rows))[0], filter_empty=False) all_shares = get_inner_texts_as_array( list(filter(lambda x: "Total (A)+(B)+(C)" in x.text, page_content.find_all('tr')))[0], filter_empty=False) promoters_pledging = ffloat(promoters[7]) promoters = ffloat(promoters[5]) public = ffloat(public[5]) total_shares_count = ffloat(all_tds[idx + 2].text) total_pledging = ffloat(all_tds[idx + 7].text) return {"promoters": promoters, "public": public, "promoters_pledging": promoters_pledging, "total_shares_count": total_shares_count, "total_pledging": total_pledging} def get_fundholding_pattern(fundholding_url): # Funds holding it or not Y # Total funds holding currently N # percent held by funds # buys last quarter # sells last quarter # no change last quarter # Total change in fund holding by money # Total change in fund holding by percent shares page_response = requests.get(fundholding_url, timeout=240) page_content = BeautifulSoup(page_response.content, "html.parser") results = {} top_tab = page_content.text # print(top_tab) if "Not held by Mutual Funds in the last 6 quarters" in top_tab: results['mf_holding'] = True else: results['mf_holding'] = False bought = np.nan sold = np.nan hold = np.nan if not results['mf_holding']: bl = top_tab.split("Bought by") if len(bl) == 2: bought = ffloat(bl[1].strip().split(" ")[0]) sl = top_tab.split("Sold by") if len(sl) == 2: sold = ffloat(sl[1].strip().split(" ")[0]) hl = top_tab.split("No change in") if len(hl) == 2: hold = ffloat(hl[1].strip().split(" ")[0]) results['mf_bought'] = bought results['mf_sold'] = sold results['mf_hold'] = hold six_quarter = page_content.find('div', attrs={'id': 'div_0'}).find('table', attrs={'class': 'tblfund2'}).find_all('tr')[-1] six_quarter = ffloat_list(get_inner_texts_as_array(six_quarter)[1:]) results['mf_share_count'] = six_quarter[0] results['mf_share_count_last_quarter_change'] = six_quarter[0] - six_quarter[1] results['mf_six_quarter_share_count'] = six_quarter return results def get_ratios(url): page_response = requests.get(url, timeout=240) page_content = BeautifulSoup(page_response.content, "html.parser") table_content = page_content.find_all('table', attrs={'class': 'table4'})[-1] if "Data Not Available" in table_content.text: return {} dates_html = get_children(get_children(get_children(table_content)[0])[1])[1] dates = get_inner_texts_as_array(dates_html) ratios_htmls = get_children(get_children(get_children(get_children(table_content)[0])[1])[2])[1:] rows = list(map(get_inner_texts_as_array, ratios_htmls)) ratios = {} ratios['dates'] = dates for row in rows: if len(row) > 1: ratios[row[0]] = ffloat_list(row[1:]) needed_keys = [('dates', 'ratios_dates'), ('Diluted EPS (Rs.)', 'ratios_diluted_eps'), ('Revenue from Operations/Share (Rs.)', 'ratios_revenue_per_share'), ('PBT/Share (Rs.)', 'ratios_pbt_per_share'), ('PBT Margin (%)', 'ratios_pbt_margin_per_share'), ('Total Debt/Equity (X)', 'ratios_de'), ('Asset Turnover Ratio (%)', 'ratios_asset_turnover_ratio'), ('Current Ratio (X)', 'ratios_cr'), ('EV/EBITDA (X)', 'ratios_ev_by_ebitda'), ('Price/BV (X)', 'ratios_pb'), ('MarketCap/Net Operating Revenue (X)','mcap/revenue'), ('Price/Net Operating Revenue','price/revenue')] ratios = {your_key[1]: ratios[your_key[0]] if your_key[0] in ratios else [] for your_key in needed_keys} return ratios def get_min_and_three_year_from_screener(table): min_value = np.inf three_year_value = np.inf for row in table: if len(row)==2: if row[0]=='3 Years:': three_year_value = ffloat(row[1].replace('%','')) cur_value = ffloat(row[1].replace('%','')) min_value = min(min_value,cur_value) return min_value,three_year_value def get_quarterly_results(quarterly_results_table): qrt = get_table_simple(quarterly_results_table) qres = {} qres['dates'] = qrt[0] qres['sales'] = ffloat_list(qrt[1][1:]) qres['operating_profit'] = ffloat_list(qrt[3][1:]) qres['opm_percent'] = ffloat_list(qrt[4][1:]) qres['interest'] = ffloat_list(qrt[7][1:]) qres['pbt'] = ffloat_list(qrt[8][1:]) return qres def get_annual_results(annual_results): if annual_results is None: return {} qrt = get_table_simple(annual_results) qres = {} qres['dates'] = qrt[0] qres['sales'] = ffloat_list(qrt[1][1:]) qres['operating_profit'] = ffloat_list(qrt[3][1:]) qres['opm_percent'] = ffloat_list(qrt[4][1:]) qres['interest'] = ffloat_list(qrt[6][1:]) qres['pbt'] = ffloat_list(qrt[8][1:]) qres['eps'] = ffloat_list(qrt[11][1:]) return qres def get_balance_sheet(balance_sheet): if balance_sheet is None: return {} qrt = get_table_simple(balance_sheet) qres = {} qres['dates'] = qrt[0] qres['borrowings'] = ffloat_list(qrt[3][1:]) qres['fixed_assets'] = ffloat_list(qrt[6][1:]) qres['total_assets'] = ffloat_list(qrt[10][1:]) return qres def get_cash_flows(cash_flows): if cash_flows is None: return {} qrt = get_table_simple(cash_flows) qres = {} qres['dates'] = qrt[0] qres['net_cash_flow'] = ffloat_list(qrt[4][1:]) return qres def get_past_prices(sc_id): bse_url = "https://www.moneycontrol.com/tech_charts/bse/his/%s.csv" % sc_id nse_url = "https://www.moneycontrol.com/tech_charts/nse/his/%s.csv" % sc_id past_prices_nse = pd.read_csv(nse_url, header=None, names=['open', 'high', 'low', 'close', 'volume', 1, 2, 3, 4])[ ['open', 'high', 'low', 'close', 'volume']] past_prices_nse.index = pd.to_datetime(past_prices_nse.index) past_prices_bse = pd.read_csv(bse_url, header=None, names=['open', 'high', 'low', 'close', 'volume', 1, 2, 3, 4])[ ['open', 'high', 'low', 'close', 'volume']] past_prices_bse.index = pd.to_datetime(past_prices_bse.index) ly = None two_year_ago = None three_year_ago = None five_year_ago = None past_prices = past_prices_bse for i in range(12): try: if ly is None: ly_t = pd.to_datetime(past_prices.iloc[-1:].index.values[0] - pd.to_timedelta(364 + i, unit='d')) ly = past_prices.loc[[ly_t]] if two_year_ago is None: two_year_ago_t = pd.to_datetime( past_prices.iloc[-1:].index.values[0] - pd.to_timedelta(730 + i, unit='d')) two_year_ago = past_prices.loc[[two_year_ago_t]] if three_year_ago is None: three_year_ago_t = pd.to_datetime( past_prices.iloc[-1:].index.values[0] - pd.to_timedelta(1095 + i, unit='d')) three_year_ago = past_prices.loc[[three_year_ago_t]] if five_year_ago is None: five_year_ago_t = pd.to_datetime( past_prices.iloc[-1:].index.values[0] - pd.to_timedelta(1825 + i, unit='d')) five_year_ago = past_prices.loc[[five_year_ago_t]] except Exception as e: pass past_prices = past_prices_nse for i in range(12): try: if ly is None: ly_t = pd.to_datetime(past_prices.iloc[-1:].index.values[0] - pd.to_timedelta(364 + i, unit='d')) ly = past_prices.loc[[ly_t]] if two_year_ago is None: two_year_ago_t = pd.to_datetime( past_prices.iloc[-1:].index.values[0] - pd.to_timedelta(730 + i, unit='d')) two_year_ago = past_prices.loc[[two_year_ago_t]] if three_year_ago is None: three_year_ago_t = pd.to_datetime( past_prices.iloc[-1:].index.values[0] - pd.to_timedelta(1095 + i, unit='d')) three_year_ago = past_prices.loc[[three_year_ago_t]] if five_year_ago is None: five_year_ago_t = pd.to_datetime( past_prices.iloc[-1:].index.values[0] -
pd.to_timedelta(1825 + i, unit='d')
pandas.to_timedelta
#!/usr/bin/env python3 import os import sys import re import pandas as pd, geopandas as gpd import numpy as np import argparse import matplotlib.pyplot as plt import seaborn as sns from functools import reduce from multiprocessing import Pool from os.path import isfile, join import shutil import warnings from pathlib import Path import time warnings.simplefilter(action='ignore', category=FutureWarning) import rasterio from rasterio import features as riofeatures from rasterio import plot as rioplot from shapely.geometry import Polygon """ Plot Rating Curves and Compare to USGS Gages Parameters ---------- fim_dir : str Directory containing FIM output folders. output_dir : str Directory containing rating curve plots and tables. usgs_gages_filename : str File name of USGS rating curves. nwm_flow_dir : str Directory containing NWM recurrence flows files. number_of_jobs : str Number of jobs. stat_groups : str string of columns to group eval metrics. """ def check_file_age(file): ''' Checks if file exists, determines the file age, and recommends updating if older than 1 month. Returns ------- None. ''' file = Path(file) if file.is_file(): modification_time = file.stat().st_mtime current_time = time.time() file_age_days = (current_time - modification_time)/86400 if file_age_days > 30: check = f'{file.name} is {int(file_age_days)} days old, consider updating.\nUpdate with rating_curve_get_usgs_curves.py' else: check = f'{file.name} is {int(file_age_days)} days old.' return check # recurr_intervals = ['recurr_1_5_cms.csv','recurr_5_0_cms.csv','recurr_10_0_cms.csv'] def generate_rating_curve_metrics(args): elev_table_filename = args[0] branches_folder = args[1] usgs_gages_filename = args[2] usgs_recurr_stats_filename = args[3] nwm_recurr_data_filename = args[4] rc_comparison_plot_filename = args[5] nwm_flow_dir = args[6] catfim_flows_filename = args[7] huc = args[8] alt_plot = args[9] elev_table = pd.read_csv(elev_table_filename,dtype={'location_id': object, 'feature_id':object,'HydroID':object, 'levpa_id':object}) elev_table.dropna(subset=['location_id'], inplace=True) usgs_gages = pd.read_csv(usgs_gages_filename,dtype={'location_id': object, 'feature_id':object}) # Aggregate FIM4 hydroTables hydrotable = pd.DataFrame() for branch in elev_table.levpa_id.unique(): branch_elev_table = elev_table.loc[elev_table.levpa_id == branch].copy() branch_hydrotable = pd.read_csv(join(branches_folder, str(branch), f'hydroTable_{branch}.csv'),dtype={'HydroID':object,'feature_id':object}) # Only pull SRC for hydroids that are in this branch branch_hydrotable = branch_hydrotable.loc[branch_hydrotable.HydroID.isin(branch_elev_table.HydroID)] branch_hydrotable.drop(columns=['order_'], inplace=True) # Join SRC with elevation data branch_elev_table.rename(columns={'feature_id':'fim_feature_id'}, inplace=True) branch_hydrotable = branch_hydrotable.merge(branch_elev_table, on="HydroID") # Append to full rating curve dataframe if hydrotable.empty: hydrotable = branch_hydrotable else: hydrotable = hydrotable.append(branch_hydrotable) # Join rating curves with elevation data #elev_table.rename(columns={'feature_id':'fim_feature_id'}, inplace=True) #hydrotable = hydrotable.merge(elev_table, on="HydroID") relevant_gages = list(hydrotable.location_id.unique()) usgs_gages = usgs_gages[usgs_gages['location_id'].isin(relevant_gages)] usgs_gages = usgs_gages.reset_index(drop=True) if len(usgs_gages) > 0: # Adjust rating curve to elevation hydrotable['elevation_ft'] = (hydrotable.stage + hydrotable.dem_adj_elevation) * 3.28084 # convert from m to ft # hydrotable['raw_elevation_ft'] = (hydrotable.stage + hydrotable.dem_elevation) * 3.28084 # convert from m to ft hydrotable['discharge_cfs'] = hydrotable.discharge_cms * 35.3147 usgs_gages = usgs_gages.rename(columns={"flow": "discharge_cfs", "elevation_navd88": "elevation_ft"}) hydrotable['source'] = "FIM" usgs_gages['source'] = "USGS" limited_hydrotable = hydrotable.filter(items=['location_id','elevation_ft','discharge_cfs','source', 'HydroID', 'levpa_id', 'dem_adj_elevation']) select_usgs_gages = usgs_gages.filter(items=['location_id', 'elevation_ft', 'discharge_cfs','source']) if 'default_discharge_cms' in hydrotable.columns: # check if both "FIM" and "FIM_default" SRCs are available hydrotable['default_discharge_cfs'] = hydrotable.default_discharge_cms * 35.3147 limited_hydrotable_default = hydrotable.filter(items=['location_id','elevation_ft', 'default_discharge_cfs']) limited_hydrotable_default['discharge_cfs'] = limited_hydrotable_default.default_discharge_cfs limited_hydrotable_default['source'] = "FIM_default" rating_curves = limited_hydrotable.append(select_usgs_gages) rating_curves = rating_curves.append(limited_hydrotable_default) else: rating_curves = limited_hydrotable.append(select_usgs_gages) # Add stream order stream_orders = hydrotable.filter(items=['location_id','order_']).drop_duplicates() rating_curves = rating_curves.merge(stream_orders, on='location_id') rating_curves['order_'] = rating_curves['order_'].astype('int') # NWM recurr intervals recurr_intervals = ("2","5","10","25","50","100") recurr_dfs = [] for interval in recurr_intervals: recurr_file = join(nwm_flow_dir, 'nwm21_17C_recurr_{}_0_cms.csv'.format(interval)) df = pd.read_csv(recurr_file, dtype={'feature_id': str}) # Update column names df = df.rename(columns={"discharge": interval}) recurr_dfs.append(df) # Merge NWM recurr intervals into a single layer nwm_recurr_intervals_all = reduce(lambda x,y: pd.merge(x,y, on='feature_id', how='outer'), recurr_dfs) nwm_recurr_intervals_all = pd.melt(nwm_recurr_intervals_all, id_vars=['feature_id'], value_vars=recurr_intervals, var_name='recurr_interval', value_name='discharge_cms') # Append catfim data (already set up in format similar to nwm_recurr_intervals_all) cat_fim = pd.read_csv(catfim_flows_filename, dtype={'feature_id':str}) nwm_recurr_intervals_all = nwm_recurr_intervals_all.append(cat_fim) # Convert discharge to cfs and filter nwm_recurr_intervals_all['discharge_cfs'] = nwm_recurr_intervals_all.discharge_cms * 35.3147 nwm_recurr_intervals_all = nwm_recurr_intervals_all.filter(items=['discharge_cfs', 'recurr_interval','feature_id']).drop_duplicates() # Identify unique gages usgs_crosswalk = hydrotable.filter(items=['location_id', 'feature_id']).drop_duplicates() usgs_crosswalk.dropna(subset=['location_id'], inplace=True) nwm_recurr_data_table = pd.DataFrame() usgs_recurr_data =
pd.DataFrame()
pandas.DataFrame
# -*- coding: utf-8 -*- """ Landscape Evaporative Response Index This script will download all or update existing LERI files used in the app. It uses the same FTP server as EDDI. Production notes: - LERI does not usually cover the full grid and only dates back to 2000, so maybe there would be space to experiment with a different resolution? - Also, LERI is not available for the same time periods as EDDI, SPI, and SPEI. The monthly values are available for 1, 3, 7 and 12 month-windows. - The 1- and 3-month files come out every month, the 7-month files only once per year (January), and the 12-month files twice per year (September and December). Not sure why this is, and it would throw the time-period selection system off. Perhaps we start with just the 1- and 3-month LERIs then brainstorm how to fit the others in. - Also, these are netcdf files, so the process will be a blend of Get_EDDI.py and Get_WWDT.py. - I am sharing the temp folder with EDDI, so don't run the two at the same time (Get_LERI and Get_EDDI). Created on Mon Mar 18 09:47:33 2019 @author: User """ import datetime as dt import ftplib from glob import glob from netCDF4 import Dataset import numpy as np import os from osgeo import gdal import pandas as pd import sys from tqdm import tqdm import xarray as xr if sys.platform == 'win32': sys.path.insert(0, 'C:/Users/User/github/Ubuntu-Practice-Machine') os.chdir('C:/Users/User/github/Ubuntu-Practice-Machine') data_path = 'f:/' elif 'travis' in os.getcwd(): os.chdir('/home/travis/github/Ubuntu-Practice-Machine') data_path = '' else: sys.path.insert(0, '/root/Sync/Ubuntu-Practice-Machine') os.chdir('/root/Sync/Ubuntu-Practice-Machine') data_path = '/root/Sync' from functions import toNetCDF, toNetCDFAlbers, toNetCDFPercentile, isInt # These make output logs too noisy to see what happened gdal.PushErrorHandler('CPLQuietErrorHandler') os.environ['GDAL_PAM_ENABLED'] = 'NO' # There are often missing epsg codes in the gcs.csv file, but proj4 works proj = ('+proj=aea +lat_1=20 +lat_2=60 +lat_0=40 +lon_0=-96 +x_0=0 +y_0=0 ' + '+ellps=GRS80 +datum=NAD83 +units=m no_defs') # Get resolution from file call try: res = float(sys.argv[1]) except: res = 0.25 # In[] Data Source and target directories ftp_path = 'ftp://ftp.cdc.noaa.gov/Projects/LERI/CONUS_archive/data/' temp_folder = os.path.join(data_path, 'data/droughtindices/netcdfs/leri') pc_folder = os.path.join(data_path, 'data/droughtindices/netcdfs/percentiles') if not os.path.exists(temp_folder): os.makedirs(temp_folder) if not os.path.exists(pc_folder): os.makedirs(pc_folder) # In[] Index Options indices = ['leri1', 'leri3'] # In[] Define scraping routine def getLERI(scale, date, temp_folder): ''' The date in the file name always uses the first day of the month. ''' year = date.year month = date.month file_name = 'LERI_{:02d}mn_{}{:02d}01.nc'.format(scale, year, month) local_file = os.path.join(temp_folder, 'leri.nc') with open(local_file, 'wb') as dst: ftp.retrbinary('RETR %s' % file_name, dst.write) return local_file # In[] Today's date, month, and year todays_date = dt.datetime.today() today = np.datetime64(todays_date) print("##") print("#####") print("############") print("#######################") print("#######################################") print("####################################################") print("\nRunning Get_LERI.py using a " + str(res) + " degree resolution:\n") print(str(today) + '\n') # In[] Get time series of currently available values # Connect to FTP ftp = ftplib.FTP('ftp.cdc.noaa.gov', 'anonymous', '<EMAIL>') for index in indices: ftp.cwd('/Projects/LERI/CONUS_archive/data/') print('\n' + index) original_path = os.path.join(data_path, "data/droughtindices/netcdfs/", index + ".nc") percentile_path = os.path.join(data_path, "data/droughtindices/netcdfs/percentiles", index + '.nc') albers_path = os.path.join(data_path, "data/droughtindices/netcdfs/albers", index + '.nc') scale = index[-2:] scale = int("".join([s for s in scale if isInt(s)])) # Delete existing contents of temporary folder temps = glob(os.path.join(temp_folder, "*")) for t in temps: os.remove(t) ####### If we are only missing some dates ################################# if os.path.exists(original_path): with xr.open_dataset(original_path) as data: dates = pd.DatetimeIndex(data.time.data) data.close() # Extract dates d1 = dates[0] d2 = dates[-1] # Get a list of the dates already in the netcdf file existing_dates =
pd.date_range(d1, d2, freq="M")
pandas.date_range
# -*- coding: utf-8 -*- """ Created on Sat Oct 19 15:43:27 2019 @author: mikeriess """ import pandas as pd import numpy as np def InitialFormatting(df, maxcases, dateformat): import pandas as pd #Work on a subset: casestoload = df["id"].unique().tolist()[0:maxcases] df = df.loc[df["id"].isin(casestoload)] # find cases to drop due to length print("Cases before dropping len=1:",len(casestoload),"cases",len(df),"rows") # Make function to apply to groups def func(sub): out = None keepid = min(sub.id) if len(sub) > 1: out = keepid return out # Make list of cases above length 1 df_grp = df.groupby('id').apply(func) #Remove NaNs from the list keepers = df_grp.values keepers = [i for i in keepers if i] # Drop cases with only one event: df = df.loc[df["id"].isin(keepers)] print("Cases after dropping len=1:",len(keepers),"cases",len(df),"rows") #Sort the dataframe by time aftewards df['parsed_date'] = pd.to_datetime(df.time, format = dateformat, exact = True) ########################################################################## print("Sorting by id, date (chronological order)") #generate new ID column: df = df.assign(id=(df['id']).astype('category').cat.codes) df["id"] = df.id.astype('int32') # Ensure ID starts at 1 if min(df.id) == 0: df.id = df.id +1 # Sort the DF baed on caseid, and the date of the event df = df.sort_values(['id',"parsed_date"], ascending=[True, True]) df = df.drop("parsed_date",axis=1) return df def GetFileInfo(df): print("Number of cases in log:",len(df["id"].unique())) import numpy as np import pandas as pd #Get the maximal trace length, for determining prefix length max_length = np.max(df['id'].value_counts()) print("longest trace is:",max_length) #Look at the time format: print("Time format:",df["time"].loc[0]) print("Std. format: %Y-%m-%d %H:%M:%S") print(df.head()) return max_length def MakeSplitCriterion(df, trainsize=0.8, mode="event"): import pandas as pd import numpy as np from datetime import datetime, timedelta import time as tm def datetime_range(start=None, end=None): span = end - start for i in range(span.days + 1): yield start + timedelta(days=i) #Parse date df["time_parsed"] = pd.to_datetime(df["time"]) #Get min max dates: earliest_date = min(df["time_parsed"]) lastest_date = max(df["time_parsed"]) #Find the date to divide on: dates = list(datetime_range(start=earliest_date, end=lastest_date)) n_dates = len(dates) splitpoint = n_dates*trainsize splitpoint = int(np.round(splitpoint,decimals=0)) dividing_date = dates[splitpoint] dividing_date = dividing_date print("=======================================") print("Log starts at:",earliest_date) print("Last event starts at:",lastest_date) print("Train-test split happens at:",dividing_date) print("=======================================") if mode=="event": """ Here we simply divide by date of the event, and disregard that a case could be in both train and test set this way """ df["trainset"] = df["time_parsed"] < dividing_date df["trainset"].value_counts() split_criterion = df[["id","trainset"]] split_criterion = split_criterion.rename(columns={'id':'caseid', 'trainset':'trainset'}, inplace=False) split_criterion = split_criterion.reset_index(drop=True) split_criterion = split_criterion.drop_duplicates(subset="caseid",keep="first") print(len(split_criterion["caseid"].unique().tolist())) print(len(split_criterion)) print(np.sum(df["trainset"]*1)) print("=======================================") if mode=="case": """ Here we remove all cases that are in both train and test set """ # For every case, verify if it has both True & False events # If it has, drop that case ID # And remember to print it df["trainset"] = df["time_parsed"] < dividing_date df["trainset"].value_counts() split_criterion = df[["id","trainset"]] split_criterion = split_criterion.rename(columns={'id':'caseid', 'trainset':'trainset'}, inplace=False) split_criterion = split_criterion.reset_index(drop=True) #Groupby and get count of every unique value per case id validation = pd.DataFrame(split_criterion.groupby('caseid').trainset.nunique()) validation["caseid"] = validation.index #If a caseid has both true and false within it (count == 2), #it should be dropped. print("=======================================") print("Dropping cases that have events in both train + testsets:") print("=======================================") print("Cases before dropping:",len(validation["trainset"])) validation["keep"] = validation["trainset"] == 1 validation = validation.loc[validation["keep"]==True] print("Cases after dropping:",len(validation["trainset"])) #list of caseids to keep ids_keep = validation["caseid"] #drop those thet should not be kept print("Total events before:",len(split_criterion)) split_criterion = split_criterion.loc[split_criterion["caseid"].isin(ids_keep)] print("Total events after:",len(split_criterion)) split_criterion = split_criterion.drop_duplicates(subset="caseid",keep="first") print("=======================================") print(len(split_criterion)) print(np.sum(split_criterion["trainset"]*1)) return split_criterion def GenerateTrainData(df, category_cols=[], numeric_cols=[], dateformat = "%Y-%m-%d %H:%M:%S", droplastev=True, drop_end_target=True, get_activity_target=True, get_case_features = True, dummify_time_features = True, max_prefix_length = 2, window_position="last_k"): #Make copy of df data = df #Subset only relevant variables df = df[["id","time","event"]+category_cols+numeric_cols] import time as tm from datetime import datetime import pandas as pd import time # Make new case ids: ############################## cases = data["id"].unique().tolist() newcaseids = list(range(0,len(cases))) dictdf = pd.DataFrame([cases,newcaseids]).T dictdf.columns =["id","newid"] newdata = pd.merge(left=data,right=dictdf,on="id") newdata.rename(columns={'id':'dropme', 'newid':'id'}, inplace=False).drop("dropme",axis=1) # List all cases by their new id: cases = data["id"].unique().tolist() # Make new event ids: ############################## evids = [] for i in cases: subset = data.loc[data["id"] == i] evids = evids + list(range(0,len(subset))) evids = [x+1 for x in evids] # + 1 ###################################################### added +1 #set the new eventids data["eventid"] = evids #make a counter to keep status num_cases = len(cases) # Generate features case by case for i in cases: #iteration = iteration +1 print("case:",i, "of",num_cases) #Look only at one caseid at a time subset = data.loc[data["id"] == i] subset.index = subset.eventid """ ####################################################################### PREFIX: ####################################################################### """ index1 = 0 #determine whether to start in the beginning or end of trace if window_position == "last_k": #if trace is smaller than desired prefix, just pick the full trace if max_prefix_length > len(subset): start = 1 #0 stop = len(subset) - index1 # #If the the max prefix len is smaller than the actual trace, #take the K last events (sliding window approach) if max_prefix_length < len(subset): start = len(subset) - max_prefix_length stop = len(subset) - index1 #If max prefix is identical to trace len, start from one if max_prefix_length == len(subset): start = 1 #0 stop = len(subset) - index1 if window_position == "first_k": #if trace is smaller than desired prefix len, just pick the full trace if max_prefix_length > len(subset): start = 1 #0 stop = len(subset) - index1 # #If the the max prefix len is smaller than the actual trace, #take the K FIRST events (sliding window approach) if max_prefix_length < len(subset): start = 1 stop = max_prefix_length - index1 #If max prefix is identical to trace len, start from one if max_prefix_length == len(subset): start = 1 #0 stop = len(subset) - index1 print("start",start,"stop",stop) #Prefix capability: Subset k last events from trace subset = subset.loc[start:stop] #Make sure the data to be dummified also follows prefix convention if i == 1: datasub = subset print("len subset:",len(subset)) print("len datasub:",len(datasub)) if i > 1: datasub =
pd.concat([datasub, subset],axis=0)
pandas.concat
# -*- coding: utf-8 -*- # pylint: disable=E1101 # flake8: noqa from datetime import datetime import csv import os import sys import re import nose import platform from multiprocessing.pool import ThreadPool from numpy import nan import numpy as np from pandas.io.common import DtypeWarning from pandas import DataFrame, Series, Index, MultiIndex, DatetimeIndex from pandas.compat import( StringIO, BytesIO, PY3, range, long, lrange, lmap, u ) from pandas.io.common import URLError import pandas.io.parsers as parsers from pandas.io.parsers import (read_csv, read_table, read_fwf, TextFileReader, TextParser) import pandas.util.testing as tm import pandas as pd from pandas.compat import parse_date import pandas.lib as lib from pandas import compat from pandas.lib import Timestamp from pandas.tseries.index import date_range import pandas.tseries.tools as tools from numpy.testing.decorators import slow import pandas.parser class ParserTests(object): """ Want to be able to test either C+Cython or Python+Cython parsers """ data1 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo2,12,13,14,15 bar2,12,13,14,15 """ def read_csv(self, *args, **kwargs): raise NotImplementedError def read_table(self, *args, **kwargs): raise NotImplementedError def setUp(self): import warnings warnings.filterwarnings(action='ignore', category=FutureWarning) self.dirpath = tm.get_data_path() self.csv1 = os.path.join(self.dirpath, 'test1.csv') self.csv2 = os.path.join(self.dirpath, 'test2.csv') self.xls1 = os.path.join(self.dirpath, 'test.xls') def construct_dataframe(self, num_rows): df = DataFrame(np.random.rand(num_rows, 5), columns=list('abcde')) df['foo'] = 'foo' df['bar'] = 'bar' df['baz'] = 'baz' df['date'] = pd.date_range('20000101 09:00:00', periods=num_rows, freq='s') df['int'] = np.arange(num_rows, dtype='int64') return df def generate_multithread_dataframe(self, path, num_rows, num_tasks): def reader(arg): start, nrows = arg if not start: return pd.read_csv(path, index_col=0, header=0, nrows=nrows, parse_dates=['date']) return pd.read_csv(path, index_col=0, header=None, skiprows=int(start) + 1, nrows=nrows, parse_dates=[9]) tasks = [ (num_rows * i / num_tasks, num_rows / num_tasks) for i in range(num_tasks) ] pool = ThreadPool(processes=num_tasks) results = pool.map(reader, tasks) header = results[0].columns for r in results[1:]: r.columns = header final_dataframe = pd.concat(results) return final_dataframe def test_converters_type_must_be_dict(self): with tm.assertRaisesRegexp(TypeError, 'Type converters.+'): self.read_csv(StringIO(self.data1), converters=0) def test_empty_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), decimal='') def test_empty_thousands_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands='') def test_multi_character_decimal_marker(self): data = """A|B|C 1|2,334|5 10|13|10. """ self.assertRaises(ValueError, read_csv, StringIO(data), thousands=',,') def test_empty_string(self): data = """\ One,Two,Three a,1,one b,2,two ,3,three d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv(StringIO(data)) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}, keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv( StringIO(data), na_values=['a'], keep_default_na=False) xp = DataFrame({'One': [np.nan, 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) df = self.read_csv(StringIO(data), na_values={'One': [], 'Three': []}) xp = DataFrame({'One': ['a', 'b', np.nan, 'd', 'e', np.nan, 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['one', 'two', 'three', np.nan, 'five', np.nan, 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) # GH4318, passing na_values=None and keep_default_na=False yields # 'None' as a na_value data = """\ One,Two,Three a,1,None b,2,two ,3,None d,4,nan e,5,five nan,6, g,7,seven """ df = self.read_csv( StringIO(data), keep_default_na=False) xp = DataFrame({'One': ['a', 'b', '', 'd', 'e', 'nan', 'g'], 'Two': [1, 2, 3, 4, 5, 6, 7], 'Three': ['None', 'two', 'None', 'nan', 'five', '', 'seven']}) tm.assert_frame_equal(xp.reindex(columns=df.columns), df) def test_read_csv(self): if not compat.PY3: if compat.is_platform_windows(): prefix = u("file:///") else: prefix = u("file://") fname = prefix + compat.text_type(self.csv1) # it works! read_csv(fname, index_col=0, parse_dates=True) def test_dialect(self): data = """\ label1,label2,label3 index1,"a,c,e index2,b,d,f """ dia = csv.excel() dia.quoting = csv.QUOTE_NONE df = self.read_csv(StringIO(data), dialect=dia) data = '''\ label1,label2,label3 index1,a,c,e index2,b,d,f ''' exp = self.read_csv(StringIO(data)) exp.replace('a', '"a', inplace=True) tm.assert_frame_equal(df, exp) def test_dialect_str(self): data = """\ fruit:vegetable apple:brocolli pear:tomato """ exp = DataFrame({ 'fruit': ['apple', 'pear'], 'vegetable': ['brocolli', 'tomato'] }) dia = csv.register_dialect('mydialect', delimiter=':') # noqa df = self.read_csv(StringIO(data), dialect='mydialect') tm.assert_frame_equal(df, exp) csv.unregister_dialect('mydialect') def test_1000_sep(self): data = """A|B|C 1|2,334|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) tm.assert_equal(expected.A.dtype, 'int64') tm.assert_equal(expected.B.dtype, 'float') tm.assert_equal(expected.C.dtype, 'float') df = self.read_csv(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',', decimal='.') tm.assert_frame_equal(df, expected) data_with_odd_sep = """A|B|C 1|2.334,01|5 10|13|10, """ df = self.read_csv(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data_with_odd_sep), sep='|', thousands='.', decimal=',') tm.assert_frame_equal(df, expected) def test_separator_date_conflict(self): # Regression test for issue #4678: make sure thousands separator and # date parsing do not conflict. data = '06-02-2013;13:00;1-000.215' expected = DataFrame( [[datetime(2013, 6, 2, 13, 0, 0), 1000.215]], columns=['Date', 2] ) df = self.read_csv(StringIO(data), sep=';', thousands='-', parse_dates={'Date': [0, 1]}, header=None) tm.assert_frame_equal(df, expected) def test_squeeze(self): data = """\ a,1 b,2 c,3 """ idx = Index(['a', 'b', 'c'], name=0) expected = Series([1, 2, 3], name=1, index=idx) result = self.read_table(StringIO(data), sep=',', index_col=0, header=None, squeeze=True) tm.assertIsInstance(result, Series) tm.assert_series_equal(result, expected) def test_squeeze_no_view(self): # GH 8217 # series should not be a view data = """time,data\n0,10\n1,11\n2,12\n4,14\n5,15\n3,13""" result = self.read_csv(StringIO(data), index_col='time', squeeze=True) self.assertFalse(result._is_view) def test_inf_parsing(self): data = """\ ,A a,inf b,-inf c,Inf d,-Inf e,INF f,-INF g,INf h,-INf i,inF j,-inF""" inf = float('inf') expected = Series([inf, -inf] * 5) df = read_csv(StringIO(data), index_col=0) tm.assert_almost_equal(df['A'].values, expected.values) df = read_csv(StringIO(data), index_col=0, na_filter=False) tm.assert_almost_equal(df['A'].values, expected.values) def test_multiple_date_col(self): # Can use multiple date parsers data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def func(*date_cols): return lib.try_parse_dates(parsers._concat_date_cols(date_cols)) df = self.read_csv(StringIO(data), header=None, date_parser=func, prefix='X', parse_dates={'nominal': [1, 2], 'actual': [1, 3]}) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'nominal'], d) df = self.read_csv(StringIO(data), header=None, date_parser=func, parse_dates={'nominal': [1, 2], 'actual': [1, 3]}, keep_date_col=True) self.assertIn('nominal', df) self.assertIn('actual', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = """\ KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ df = read_csv(StringIO(data), header=None, prefix='X', parse_dates=[[1, 2], [1, 3]]) self.assertIn('X1_X2', df) self.assertIn('X1_X3', df) self.assertNotIn('X1', df) self.assertNotIn('X2', df) self.assertNotIn('X3', df) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.ix[0, 'X1_X2'], d) df = read_csv(StringIO(data), header=None, parse_dates=[[1, 2], [1, 3]], keep_date_col=True) self.assertIn('1_2', df) self.assertIn('1_3', df) self.assertIn(1, df) self.assertIn(2, df) self.assertIn(3, df) data = '''\ KORD,19990127 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 ''' df = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[1], index_col=1) d = datetime(1999, 1, 27, 19, 0) self.assertEqual(df.index[0], d) def test_multiple_date_cols_int_cast(self): data = ("KORD,19990127, 19:00:00, 18:56:00, 0.8100\n" "KORD,19990127, 20:00:00, 19:56:00, 0.0100\n" "KORD,19990127, 21:00:00, 20:56:00, -0.5900\n" "KORD,19990127, 21:00:00, 21:18:00, -0.9900\n" "KORD,19990127, 22:00:00, 21:56:00, -0.5900\n" "KORD,19990127, 23:00:00, 22:56:00, -0.5900") date_spec = {'nominal': [1, 2], 'actual': [1, 3]} import pandas.io.date_converters as conv # it works! df = self.read_csv(StringIO(data), header=None, parse_dates=date_spec, date_parser=conv.parse_date_time) self.assertIn('nominal', df) def test_multiple_date_col_timestamp_parse(self): data = """05/31/2012,15:30:00.029,1306.25,1,E,0,,1306.25 05/31/2012,15:30:00.029,1306.25,8,E,0,,1306.25""" result = self.read_csv(StringIO(data), sep=',', header=None, parse_dates=[[0, 1]], date_parser=Timestamp) ex_val = Timestamp('05/31/2012 15:30:00.029') self.assertEqual(result['0_1'][0], ex_val) def test_single_line(self): # GH 6607 # Test currently only valid with python engine because sep=None and # delim_whitespace=False. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'sep=None with delim_whitespace=False'): # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_multiple_date_cols_with_header(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) self.assertNotIsInstance(df.nominal[0], compat.string_types) ts_data = """\ ID,date,nominalTime,actualTime,A,B,C,D,E KORD,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000 """ def test_multiple_date_col_name_collision(self): self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), parse_dates={'ID': [1, 2]}) data = """\ date_NominalTime,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" # noqa self.assertRaises(ValueError, self.read_csv, StringIO(data), parse_dates=[[1, 2]]) def test_index_col_named(self): no_header = """\ KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" h = "ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir\n" data = h + no_header rs = self.read_csv(StringIO(data), index_col='ID') xp = self.read_csv(StringIO(data), header=0).set_index('ID') tm.assert_frame_equal(rs, xp) self.assertRaises(ValueError, self.read_csv, StringIO(no_header), index_col='ID') data = """\ 1,2,3,4,hello 5,6,7,8,world 9,10,11,12,foo """ names = ['a', 'b', 'c', 'd', 'message'] xp = DataFrame({'a': [1, 5, 9], 'b': [2, 6, 10], 'c': [3, 7, 11], 'd': [4, 8, 12]}, index=Index(['hello', 'world', 'foo'], name='message')) rs = self.read_csv(StringIO(data), names=names, index_col=['message']) tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) rs = self.read_csv(StringIO(data), names=names, index_col='message') tm.assert_frame_equal(xp, rs) self.assertEqual(xp.index.name, rs.index.name) def test_usecols_index_col_False(self): # Issue 9082 s = "a,b,c,d\n1,2,3,4\n5,6,7,8" s_malformed = "a,b,c,d\n1,2,3,4,\n5,6,7,8," cols = ['a', 'c', 'd'] expected = DataFrame({'a': [1, 5], 'c': [3, 7], 'd': [4, 8]}) df = self.read_csv(StringIO(s), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(s_malformed), usecols=cols, index_col=False) tm.assert_frame_equal(expected, df) def test_index_col_is_True(self): # Issue 9798 self.assertRaises(ValueError, self.read_csv, StringIO(self.ts_data), index_col=True) def test_converter_index_col_bug(self): # 1835 data = "A;B\n1;2\n3;4" rs = self.read_csv(StringIO(data), sep=';', index_col='A', converters={'A': lambda x: x}) xp = DataFrame({'B': [2, 4]}, index=Index([1, 3], name='A')) tm.assert_frame_equal(rs, xp) self.assertEqual(rs.index.name, xp.index.name) def test_date_parser_int_bug(self): # #3071 log_file = StringIO( 'posix_timestamp,elapsed,sys,user,queries,query_time,rows,' 'accountid,userid,contactid,level,silo,method\n' '1343103150,0.062353,0,4,6,0.01690,3,' '12345,1,-1,3,invoice_InvoiceResource,search\n' ) def f(posix_string): return datetime.utcfromtimestamp(int(posix_string)) # it works! read_csv(log_file, index_col=0, parse_dates=0, date_parser=f) def test_multiple_skts_example(self): data = "year, month, a, b\n 2001, 01, 0.0, 10.\n 2001, 02, 1.1, 11." pass def test_malformed(self): # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: try: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): # XXX df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_passing_dtype(self): # GH 6607 # Passing dtype is currently only supported by the C engine. # Temporarily copied to TestCParser*. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) with tm.assertRaisesRegexp(ValueError, "The 'dtype' option is not supported"): # empty frame # GH12048 self.read_csv(StringIO('A,B'), dtype=str) def test_quoting(self): bad_line_small = """printer\tresult\tvariant_name Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jacob Klosterdruckerei\tKlosterdruckerei <Salem> (1611-1804)\tMuller, Jakob Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\t"Furststiftische Hofdruckerei, <Kempten"" Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tGaller, Alois Klosterdruckerei\tKlosterdruckerei <Kempten> (1609-1805)\tHochfurstliche Buchhandlung <Kempten>""" self.assertRaises(Exception, self.read_table, StringIO(bad_line_small), sep='\t') good_line_small = bad_line_small + '"' df = self.read_table(StringIO(good_line_small), sep='\t') self.assertEqual(len(df), 3) def test_non_string_na_values(self): # GH3611, na_values that are not a string are an issue with tm.ensure_clean('__non_string_na_values__.csv') as path: df = DataFrame({'A': [-999, 2, 3], 'B': [1.2, -999, 4.5]}) df.to_csv(path, sep=' ', index=False) result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, result2) tm.assert_frame_equal(result2, result3) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, result3) tm.assert_frame_equal(result5, result3) tm.assert_frame_equal(result6, result3) tm.assert_frame_equal(result7, result3) good_compare = result3 # with an odd float format, so we can't match the string 999.0 # exactly, but need float matching df.to_csv(path, sep=' ', index=False, float_format='%.3f') result1 = read_csv(path, sep=' ', header=0, na_values=['-999.0', '-999']) result2 = read_csv(path, sep=' ', header=0, na_values=[-999, -999.0]) result3 = read_csv(path, sep=' ', header=0, na_values=[-999.0, -999]) tm.assert_frame_equal(result1, good_compare) tm.assert_frame_equal(result2, good_compare) tm.assert_frame_equal(result3, good_compare) result4 = read_csv(path, sep=' ', header=0, na_values=['-999.0']) result5 = read_csv(path, sep=' ', header=0, na_values=['-999']) result6 = read_csv(path, sep=' ', header=0, na_values=[-999.0]) result7 = read_csv(path, sep=' ', header=0, na_values=[-999]) tm.assert_frame_equal(result4, good_compare) tm.assert_frame_equal(result5, good_compare) tm.assert_frame_equal(result6, good_compare) tm.assert_frame_equal(result7, good_compare) def test_default_na_values(self): _NA_VALUES = set(['-1.#IND', '1.#QNAN', '1.#IND', '-1.#QNAN', '#N/A', 'N/A', 'NA', '#NA', 'NULL', 'NaN', 'nan', '-NaN', '-nan', '#N/A N/A', '']) self.assertEqual(_NA_VALUES, parsers._NA_VALUES) nv = len(_NA_VALUES) def f(i, v): if i == 0: buf = '' elif i > 0: buf = ''.join([','] * i) buf = "{0}{1}".format(buf, v) if i < nv - 1: buf = "{0}{1}".format(buf, ''.join([','] * (nv - i - 1))) return buf data = StringIO('\n'.join([f(i, v) for i, v in enumerate(_NA_VALUES)])) expected = DataFrame(np.nan, columns=range(nv), index=range(nv)) df = self.read_csv(data, header=None) tm.assert_frame_equal(df, expected) def test_custom_na_values(self): data = """A,B,C ignore,this,row 1,NA,3 -1.#IND,5,baz 7,8,NaN """ expected = [[1., nan, 3], [nan, 5, nan], [7, 8, nan]] df = self.read_csv(StringIO(data), na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df.values, expected) df2 = self.read_table(StringIO(data), sep=',', na_values=['baz'], skiprows=[1]) tm.assert_almost_equal(df2.values, expected) df3 = self.read_table(StringIO(data), sep=',', na_values='baz', skiprows=[1]) tm.assert_almost_equal(df3.values, expected) def test_nat_parse(self): # GH 3062 df = DataFrame(dict({ 'A': np.asarray(lrange(10), dtype='float64'), 'B': pd.Timestamp('20010101')})) df.iloc[3:6, :] = np.nan with tm.ensure_clean('__nat_parse_.csv') as path: df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) expected = Series(dict(A='float64', B='datetime64[ns]')) tm.assert_series_equal(expected, result.dtypes) # test with NaT for the nan_rep # we don't have a method to specif the Datetime na_rep (it defaults # to '') df.to_csv(path) result = read_csv(path, index_col=0, parse_dates=['B']) tm.assert_frame_equal(result, df) def test_skiprows_bug(self): # GH #505 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=lrange(6), header=None, index_col=0, parse_dates=True) data2 = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) tm.assert_frame_equal(data, data2) def test_deep_skiprows(self): # GH #4382 text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in range(10)]) condensed_text = "a,b,c\n" + \ "\n".join([",".join([str(i), str(i + 1), str(i + 2)]) for i in [0, 1, 2, 3, 4, 6, 8, 9]]) data = self.read_csv(StringIO(text), skiprows=[6, 8]) condensed_data = self.read_csv(StringIO(condensed_text)) tm.assert_frame_equal(data, condensed_data) def test_skiprows_blank(self): # GH 9832 text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ data = self.read_csv(StringIO(text), skiprows=6, header=None, index_col=0, parse_dates=True) expected = DataFrame(np.arange(1., 10.).reshape((3, 3)), columns=[1, 2, 3], index=[datetime(2000, 1, 1), datetime(2000, 1, 2), datetime(2000, 1, 3)]) expected.index.name = 0 tm.assert_frame_equal(data, expected) def test_detect_string_na(self): data = """A,B foo,bar NA,baz NaN,nan """ expected = [['foo', 'bar'], [nan, 'baz'], [nan, nan]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_unnamed_columns(self): data = """A,B,C,, 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] df = self.read_table(StringIO(data), sep=',') tm.assert_almost_equal(df.values, expected) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'Unnamed: 3', 'Unnamed: 4']) def test_string_nas(self): data = """A,B,C a,b,c d,,f ,g,h """ result = self.read_csv(StringIO(data)) expected = DataFrame([['a', 'b', 'c'], ['d', np.nan, 'f'], [np.nan, 'g', 'h']], columns=['A', 'B', 'C']) tm.assert_frame_equal(result, expected) def test_duplicate_columns(self): for engine in ['python', 'c']: data = """A,A,B,B,B 1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ # check default beahviour df = self.read_table(StringIO(data), sep=',', engine=engine) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=False) self.assertEqual(list(df.columns), ['A', 'A', 'B', 'B', 'B']) df = self.read_table(StringIO(data), sep=',', engine=engine, mangle_dupe_cols=True) self.assertEqual(list(df.columns), ['A', 'A.1', 'B', 'B.1', 'B.2']) def test_csv_mixed_type(self): data = """A,B,C a,1,2 b,3,4 c,4,5 """ df = self.read_csv(StringIO(data)) # TODO def test_csv_custom_parser(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ f = lambda x: datetime.strptime(x, '%Y%m%d') df = self.read_csv(StringIO(data), date_parser=f) expected = self.read_csv(StringIO(data), parse_dates=True) tm.assert_frame_equal(df, expected) def test_parse_dates_implicit_first_col(self): data = """A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ df = self.read_csv(StringIO(data), parse_dates=True) expected = self.read_csv(StringIO(data), index_col=0, parse_dates=True) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) tm.assert_frame_equal(df, expected) def test_parse_dates_string(self): data = """date,A,B,C 20090101,a,1,2 20090102,b,3,4 20090103,c,4,5 """ rs = self.read_csv( StringIO(data), index_col='date', parse_dates='date') idx = date_range('1/1/2009', periods=3) idx.name = 'date' xp = DataFrame({'A': ['a', 'b', 'c'], 'B': [1, 3, 4], 'C': [2, 4, 5]}, idx) tm.assert_frame_equal(rs, xp) def test_yy_format(self): data = """date,time,B,C 090131,0010,1,2 090228,1020,3,4 090331,0830,5,6 """ rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[['date', 'time']]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) rs = self.read_csv(StringIO(data), index_col=0, parse_dates=[[0, 1]]) idx = DatetimeIndex([datetime(2009, 1, 31, 0, 10, 0), datetime(2009, 2, 28, 10, 20, 0), datetime(2009, 3, 31, 8, 30, 0)], dtype=object, name='date_time') xp = DataFrame({'B': [1, 3, 5], 'C': [2, 4, 6]}, idx) tm.assert_frame_equal(rs, xp) def test_parse_dates_column_list(self): from pandas.core.datetools import to_datetime data = '''date;destination;ventilationcode;unitcode;units;aux_date 01/01/2010;P;P;50;1;12/1/2011 01/01/2010;P;R;50;1;13/1/2011 15/01/2010;P;P;50;1;14/1/2011 01/05/2010;P;P;50;1;15/1/2011''' expected = self.read_csv(StringIO(data), sep=";", index_col=lrange(4)) lev = expected.index.levels[0] levels = list(expected.index.levels) levels[0] = lev.to_datetime(dayfirst=True) # hack to get this to work - remove for final test levels[0].name = lev.name expected.index.set_levels(levels, inplace=True) expected['aux_date'] = to_datetime(expected['aux_date'], dayfirst=True) expected['aux_date'] = lmap(Timestamp, expected['aux_date']) tm.assertIsInstance(expected['aux_date'][0], datetime) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=[0, 5], dayfirst=True) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), sep=";", index_col=lrange(4), parse_dates=['date', 'aux_date'], dayfirst=True) tm.assert_frame_equal(df, expected) def test_no_header(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df = self.read_table(StringIO(data), sep=',', header=None) df_pref = self.read_table(StringIO(data), sep=',', prefix='X', header=None) names = ['foo', 'bar', 'baz', 'quux', 'panda'] df2 = self.read_table(StringIO(data), sep=',', names=names) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df.values, expected) tm.assert_almost_equal(df.values, df2.values) self.assert_numpy_array_equal(df_pref.columns, ['X0', 'X1', 'X2', 'X3', 'X4']) self.assert_numpy_array_equal(df.columns, lrange(5)) self.assert_numpy_array_equal(df2.columns, names) def test_no_header_prefix(self): data = """1,2,3,4,5 6,7,8,9,10 11,12,13,14,15 """ df_pref = self.read_table(StringIO(data), sep=',', prefix='Field', header=None) expected = [[1, 2, 3, 4, 5.], [6, 7, 8, 9, 10], [11, 12, 13, 14, 15]] tm.assert_almost_equal(df_pref.values, expected) self.assert_numpy_array_equal(df_pref.columns, ['Field0', 'Field1', 'Field2', 'Field3', 'Field4']) def test_header_with_index_col(self): data = """foo,1,2,3 bar,4,5,6 baz,7,8,9 """ names = ['A', 'B', 'C'] df = self.read_csv(StringIO(data), names=names) self.assertEqual(names, ['A', 'B', 'C']) values = [[1, 2, 3], [4, 5, 6], [7, 8, 9]] expected = DataFrame(values, index=['foo', 'bar', 'baz'], columns=['A', 'B', 'C']) tm.assert_frame_equal(df, expected) def test_read_csv_dataframe(self): df = self.read_csv(self.csv1, index_col=0, parse_dates=True) df2 = self.read_table(self.csv1, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D']) self.assertEqual(df.index.name, 'index') self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_no_index_name(self): df = self.read_csv(self.csv2, index_col=0, parse_dates=True) df2 = self.read_table(self.csv2, sep=',', index_col=0, parse_dates=True) self.assert_numpy_array_equal(df.columns, ['A', 'B', 'C', 'D', 'E']) self.assertIsInstance( df.index[0], (datetime, np.datetime64, Timestamp)) self.assertEqual(df.ix[:, ['A', 'B', 'C', 'D'] ].values.dtype, np.float64) tm.assert_frame_equal(df, df2) def test_read_csv_infer_compression(self): # GH 9770 expected = self.read_csv(self.csv1, index_col=0, parse_dates=True) inputs = [self.csv1, self.csv1 + '.gz', self.csv1 + '.bz2', open(self.csv1)] for f in inputs: df = self.read_csv(f, index_col=0, parse_dates=True, compression='infer') tm.assert_frame_equal(expected, df) inputs[3].close() def test_read_table_unicode(self): fin = BytesIO(u('\u0141aski, Jan;1').encode('utf-8')) df1 = read_table(fin, sep=";", encoding="utf-8", header=None) tm.assertIsInstance(df1[0].values[0], compat.text_type) def test_read_table_wrong_num_columns(self): # too few! data = """A,B,C,D,E,F 1,2,3,4,5,6 6,7,8,9,10,11,12 11,12,13,14,15,16 """ self.assertRaises(Exception, self.read_csv, StringIO(data)) def test_read_table_duplicate_index(self): data = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ result = self.read_csv(StringIO(data), index_col=0) expected = self.read_csv(StringIO(data)).set_index('index', verify_integrity=False) tm.assert_frame_equal(result, expected) def test_read_table_duplicate_index_implicit(self): data = """A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 qux,12,13,14,15 foo,12,13,14,15 bar,12,13,14,15 """ # it works! result = self.read_csv(StringIO(data)) def test_parse_bools(self): data = """A,B True,1 False,2 True,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B YES,1 no,2 yes,3 No,3 Yes,3 """ data = self.read_csv(StringIO(data), true_values=['yes', 'Yes', 'YES'], false_values=['no', 'NO', 'No']) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B TRUE,1 FALSE,2 TRUE,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.bool_) data = """A,B foo,bar bar,foo""" result = self.read_csv(StringIO(data), true_values=['foo'], false_values=['bar']) expected = DataFrame({'A': [True, False], 'B': [False, True]}) tm.assert_frame_equal(result, expected) def test_int_conversion(self): data = """A,B 1.0,1 2.0,2 3.0,3 """ data = self.read_csv(StringIO(data)) self.assertEqual(data['A'].dtype, np.float64) self.assertEqual(data['B'].dtype, np.int64) def test_infer_index_col(self): data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ data = self.read_csv(StringIO(data)) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) def test_read_nrows(self): df = self.read_csv(StringIO(self.data1), nrows=3) expected = self.read_csv(StringIO(self.data1))[:3] tm.assert_frame_equal(df, expected) def test_read_chunksize(self): reader = self.read_csv(StringIO(self.data1), index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_read_chunksize_named(self): reader = self.read_csv( StringIO(self.data1), index_col='index', chunksize=2) df = self.read_csv(StringIO(self.data1), index_col='index') chunks = list(reader) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_get_chunk_passed_chunksize(self): data = """A,B,C 1,2,3 4,5,6 7,8,9 1,2,3""" result = self.read_csv(StringIO(data), chunksize=2) piece = result.get_chunk() self.assertEqual(len(piece), 2) def test_read_text_list(self): data = """A,B,C\nfoo,1,2,3\nbar,4,5,6""" as_list = [['A', 'B', 'C'], ['foo', '1', '2', '3'], ['bar', '4', '5', '6']] df = self.read_csv(StringIO(data), index_col=0) parser = TextParser(as_list, index_col=0, chunksize=2) chunk = parser.read(None) tm.assert_frame_equal(chunk, df) def test_iterator(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_header_not_first_line(self): data = """got,to,ignore,this,line got,to,ignore,this,line index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ data2 = """index,A,B,C,D foo,2,3,4,5 bar,7,8,9,10 baz,12,13,14,15 """ df = self.read_csv(StringIO(data), header=2, index_col=0) expected = self.read_csv(StringIO(data2), header=0, index_col=0) tm.assert_frame_equal(df, expected) def test_header_multi_index(self): expected = tm.makeCustomDataframe( 5, 3, r_idx_nlevels=2, c_idx_nlevels=4) data = """\ C0,,C_l0_g0,C_l0_g1,C_l0_g2 C1,,C_l1_g0,C_l1_g1,C_l1_g2 C2,,C_l2_g0,C_l2_g1,C_l2_g2 C3,,C_l3_g0,C_l3_g1,C_l3_g2 R0,R1,,, R_l0_g0,R_l1_g0,R0C0,R0C1,R0C2 R_l0_g1,R_l1_g1,R1C0,R1C1,R1C2 R_l0_g2,R_l1_g2,R2C0,R2C1,R2C2 R_l0_g3,R_l1_g3,R3C0,R3C1,R3C2 R_l0_g4,R_l1_g4,R4C0,R4C1,R4C2 """ df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) # skipping lines in the header df = self.read_csv(StringIO(data), header=[0, 1, 2, 3], index_col=[ 0, 1], tupleize_cols=False) tm.assert_frame_equal(df, expected) #### invalid options #### # no as_recarray self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], as_recarray=True, tupleize_cols=False) # names self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], names=['foo', 'bar'], tupleize_cols=False) # usecols self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=[0, 1], usecols=['foo', 'bar'], tupleize_cols=False) # non-numeric index_col self.assertRaises(ValueError, self.read_csv, StringIO(data), header=[0, 1, 2, 3], index_col=['foo', 'bar'], tupleize_cols=False) def test_header_multiindex_common_format(self): df = DataFrame([[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]], index=['one', 'two'], columns=MultiIndex.from_tuples([('a', 'q'), ('a', 'r'), ('a', 's'), ('b', 't'), ('c', 'u'), ('c', 'v')])) # to_csv data = """,a,a,a,b,c,c ,q,r,s,t,u,v ,,,,,, one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common data = """,a,a,a,b,c,c ,q,r,s,t,u,v one,1,2,3,4,5,6 two,7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(df, result) # common, no index_col data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=None) tm.assert_frame_equal(df.reset_index(drop=True), result) # malformed case 1 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[u('a'), u('q')])) data = """a,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # malformed case 2 expected = DataFrame(np.array([[2, 3, 4, 5, 6], [8, 9, 10, 11, 12]], dtype='int64'), index=Index([1, 7]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('r'), u('s'), u('t'), u('u'), u('v')]], labels=[[0, 0, 1, 2, 2], [ 0, 1, 2, 3, 4]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=0) tm.assert_frame_equal(expected, result) # mi on columns and index (malformed) expected = DataFrame(np.array([[3, 4, 5, 6], [9, 10, 11, 12]], dtype='int64'), index=MultiIndex(levels=[[1, 7], [2, 8]], labels=[[0, 1], [0, 1]]), columns=MultiIndex(levels=[[u('a'), u('b'), u('c')], [u('s'), u('t'), u('u'), u('v')]], labels=[[0, 1, 2, 2], [0, 1, 2, 3]], names=[None, u('q')])) data = """,a,a,b,c,c q,r,s,t,u,v 1,2,3,4,5,6 7,8,9,10,11,12""" result = self.read_csv(StringIO(data), header=[0, 1], index_col=[0, 1]) tm.assert_frame_equal(expected, result) def test_pass_names_with_index(self): lines = self.data1.split('\n') no_header = '\n'.join(lines[1:]) # regular index names = ['index', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=0, names=names) expected = self.read_csv(StringIO(self.data1), index_col=0) tm.assert_frame_equal(df, expected) # multi index data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['index1', 'index2', 'A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data), index_col=['index1', 'index2']) tm.assert_frame_equal(df, expected) def test_multi_index_no_level_names(self): data = """index1,index2,A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ data2 = """A,B,C,D foo,one,2,3,4,5 foo,two,7,8,9,10 foo,three,12,13,14,15 bar,one,12,13,14,15 bar,two,12,13,14,15 """ lines = data.split('\n') no_header = '\n'.join(lines[1:]) names = ['A', 'B', 'C', 'D'] df = self.read_csv(StringIO(no_header), index_col=[0, 1], header=None, names=names) expected = self.read_csv(StringIO(data), index_col=[0, 1]) tm.assert_frame_equal(df, expected, check_names=False) # 2 implicit first cols df2 = self.read_csv(StringIO(data2)) tm.assert_frame_equal(df2, df) # reverse order of index df = self.read_csv(StringIO(no_header), index_col=[1, 0], names=names, header=None) expected = self.read_csv(StringIO(data), index_col=[1, 0]) tm.assert_frame_equal(df, expected, check_names=False) def test_multi_index_parse_dates(self): data = """index1,index2,A,B,C 20090101,one,a,1,2 20090101,two,b,3,4 20090101,three,c,4,5 20090102,one,a,1,2 20090102,two,b,3,4 20090102,three,c,4,5 20090103,one,a,1,2 20090103,two,b,3,4 20090103,three,c,4,5 """ df = self.read_csv(StringIO(data), index_col=[0, 1], parse_dates=True) self.assertIsInstance(df.index.levels[0][0], (datetime, np.datetime64, Timestamp)) # specify columns out of order! df2 = self.read_csv(StringIO(data), index_col=[1, 0], parse_dates=True) self.assertIsInstance(df2.index.levels[1][0], (datetime, np.datetime64, Timestamp)) def test_skip_footer(self): # GH 6607 # Test currently only valid with python engine because # skip_footer != 0. Temporarily copied to TestPythonParser. # Test for ValueError with other engines: with tm.assertRaisesRegexp(ValueError, 'skip_footer'): data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_no_unnamed_index(self): data = """ id c0 c1 c2 0 1 0 a b 1 2 0 c d 2 2 2 e f """ df = self.read_table(StringIO(data), sep=' ') self.assertIsNone(df.index.name) def test_converters(self): data = """A,B,C,D a,1,2,01/01/2009 b,3,4,01/02/2009 c,4,5,01/03/2009 """ from pandas.compat import parse_date result = self.read_csv(StringIO(data), converters={'D': parse_date}) result2 = self.read_csv(StringIO(data), converters={3: parse_date}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(parse_date) tm.assertIsInstance(result['D'][0], (datetime, Timestamp)) tm.assert_frame_equal(result, expected) tm.assert_frame_equal(result2, expected) # produce integer converter = lambda x: int(x.split('/')[2]) result = self.read_csv(StringIO(data), converters={'D': converter}) expected = self.read_csv(StringIO(data)) expected['D'] = expected['D'].map(converter) tm.assert_frame_equal(result, expected) def test_converters_no_implicit_conv(self): # GH2184 data = """000102,1.2,A\n001245,2,B""" f = lambda x: x.strip() converter = {0: f} df = self.read_csv(StringIO(data), header=None, converters=converter) self.assertEqual(df[0].dtype, object) def test_converters_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_converter_return_string_bug(self): # GH #583 data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" f = lambda x: float(x.replace(",", ".")) converter = {'Number1': f, 'Number2': f, 'Number3': f} df2 = self.read_csv(StringIO(data), sep=';', converters=converter) self.assertEqual(df2['Number1'].dtype, float) def test_read_table_buglet_4x_multiindex(self): # GH 6607 # Parsing multi-level index currently causes an error in the C parser. # Temporarily copied to TestPythonParser. # Here test that CParserError is raised: with tm.assertRaises(pandas.parser.CParserError): text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_read_csv_parse_simple_list(self): text = """foo bar baz qux foo foo bar""" df = read_csv(StringIO(text), header=None) expected = DataFrame({0: ['foo', 'bar baz', 'qux foo', 'foo', 'bar']}) tm.assert_frame_equal(df, expected) def test_parse_dates_custom_euroformat(self): text = """foo,bar,baz 31/01/2010,1,2 01/02/2010,1,NA 02/02/2010,1,2 """ parser = lambda d: parse_date(d, dayfirst=True) df = self.read_csv(StringIO(text), names=['time', 'Q', 'NTU'], header=0, index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) exp_index = Index([datetime(2010, 1, 31), datetime(2010, 2, 1), datetime(2010, 2, 2)], name='time') expected = DataFrame({'Q': [1, 1, 1], 'NTU': [2, np.nan, 2]}, index=exp_index, columns=['Q', 'NTU']) tm.assert_frame_equal(df, expected) parser = lambda d: parse_date(d, day_first=True) self.assertRaises(Exception, self.read_csv, StringIO(text), skiprows=[0], names=['time', 'Q', 'NTU'], index_col=0, parse_dates=True, date_parser=parser, na_values=['NA']) def test_na_value_dict(self): data = """A,B,C foo,bar,NA bar,foo,foo foo,bar,NA bar,foo,foo""" df = self.read_csv(StringIO(data), na_values={'A': ['foo'], 'B': ['bar']}) expected = DataFrame({'A': [np.nan, 'bar', np.nan, 'bar'], 'B': [np.nan, 'foo', np.nan, 'foo'], 'C': [np.nan, 'foo', np.nan, 'foo']}) tm.assert_frame_equal(df, expected) data = """\ a,b,c,d 0,NA,1,5 """ xp = DataFrame({'b': [np.nan], 'c': [1], 'd': [5]}, index=[0]) xp.index.name = 'a' df = self.read_csv(StringIO(data), na_values={}, index_col=0) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=[0, 2]) tm.assert_frame_equal(df, xp) xp = DataFrame({'b': [np.nan], 'd': [5]}, MultiIndex.from_tuples([(0, 1)])) xp.index.names = ['a', 'c'] df = self.read_csv(StringIO(data), na_values={}, index_col=['a', 'c']) tm.assert_frame_equal(df, xp) @tm.network def test_url(self): # HTTP(S) url = ('https://raw.github.com/pydata/pandas/master/' 'pandas/io/tests/data/salary.table') url_table = self.read_table(url) dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) tm.assert_frame_equal(url_table, local_table) # TODO: ftp testing @slow def test_file(self): # FILE if sys.version_info[:2] < (2, 6): raise nose.SkipTest("file:// not supported with Python < 2.6") dirpath = tm.get_data_path() localtable = os.path.join(dirpath, 'salary.table') local_table = self.read_table(localtable) try: url_table = self.read_table('file://localhost/' + localtable) except URLError: # fails on some systems raise nose.SkipTest("failing on %s" % ' '.join(platform.uname()).strip()) tm.assert_frame_equal(url_table, local_table) def test_parse_tz_aware(self): import pytz # #1693 data = StringIO("Date,x\n2012-06-13T01:39:00Z,0.5") # it works result = read_csv(data, index_col=0, parse_dates=True) stamp = result.index[0] self.assertEqual(stamp.minute, 39) try: self.assertIs(result.index.tz, pytz.utc) except AssertionError: # hello Yaroslav arr = result.index.to_pydatetime() result = tools.to_datetime(arr, utc=True)[0] self.assertEqual(stamp.minute, result.minute) self.assertEqual(stamp.hour, result.hour) self.assertEqual(stamp.day, result.day) def test_multiple_date_cols_index(self): data = """\ ID,date,NominalTime,ActualTime,TDew,TAir,Windspeed,Precip,WindDir KORD1,19990127, 19:00:00, 18:56:00, 0.8100, 2.8100, 7.2000, 0.0000, 280.0000 KORD2,19990127, 20:00:00, 19:56:00, 0.0100, 2.2100, 7.2000, 0.0000, 260.0000 KORD3,19990127, 21:00:00, 20:56:00, -0.5900, 2.2100, 5.7000, 0.0000, 280.0000 KORD4,19990127, 21:00:00, 21:18:00, -0.9900, 2.0100, 3.6000, 0.0000, 270.0000 KORD5,19990127, 22:00:00, 21:56:00, -0.5900, 1.7100, 5.1000, 0.0000, 290.0000 KORD6,19990127, 23:00:00, 22:56:00, -0.5900, 1.7100, 4.6000, 0.0000, 280.0000""" xp = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}) df = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col='nominal') tm.assert_frame_equal(xp.set_index('nominal'), df) df2 = self.read_csv(StringIO(data), parse_dates={'nominal': [1, 2]}, index_col=0) tm.assert_frame_equal(df2, df) df3 = self.read_csv(StringIO(data), parse_dates=[[1, 2]], index_col=0) tm.assert_frame_equal(df3, df, check_names=False) def test_multiple_date_cols_chunked(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={ 'nominal': [1, 2]}, index_col='nominal') reader = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal', chunksize=2) chunks = list(reader) self.assertNotIn('nominalTime', df) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) def test_multiple_date_col_named_components(self): xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col='nominal') colspec = {'nominal': ['date', 'nominalTime']} df = self.read_csv(StringIO(self.ts_data), parse_dates=colspec, index_col='nominal') tm.assert_frame_equal(df, xp) def test_multiple_date_col_multiple_index(self): df = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}, index_col=['nominal', 'ID']) xp = self.read_csv(StringIO(self.ts_data), parse_dates={'nominal': [1, 2]}) tm.assert_frame_equal(xp.set_index(['nominal', 'ID']), df) def test_comment(self): data = """A,B,C 1,2.,4.#hello world 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) df = self.read_table(StringIO(data), sep=',', comment='#', na_values=['NaN']) tm.assert_almost_equal(df.values, expected) def test_bool_na_values(self): data = """A,B,C True,False,True NA,True,False False,NA,True""" result = self.read_csv(StringIO(data)) expected = DataFrame({'A': np.array([True, nan, False], dtype=object), 'B': np.array([False, True, nan], dtype=object), 'C': [True, False, True]}) tm.assert_frame_equal(result, expected) def test_nonexistent_path(self): # don't segfault pls #2428 path = '%s.csv' % tm.rands(10) self.assertRaises(Exception, self.read_csv, path) def test_missing_trailing_delimiters(self): data = """A,B,C,D 1,2,3,4 1,3,3, 1,4,5""" result = self.read_csv(StringIO(data)) self.assertTrue(result['D'].isnull()[1:].all()) def test_skipinitialspace(self): s = ('"09-Apr-2012", "01:10:18.300", 2456026.548822908, 12849, ' '1.00361, 1.12551, 330.65659, 0355626618.16711, 73.48821, ' '314.11625, 1917.09447, 179.71425, 80.000, 240.000, -350, ' '70.06056, 344.98370, 1, 1, -0.689265, -0.692787, ' '0.212036, 14.7674, 41.605, -9999.0, -9999.0, ' '-9999.0, -9999.0, -9999.0, -9999.0, 000, 012, 128') sfile = StringIO(s) # it's 33 columns result = self.read_csv(sfile, names=lrange(33), na_values=['-9999.0'], header=None, skipinitialspace=True) self.assertTrue(pd.isnull(result.ix[0, 29])) def test_utf16_bom_skiprows(self): # #2298 data = u("""skip this skip this too A\tB\tC 1\t2\t3 4\t5\t6""") data2 = u("""skip this skip this too A,B,C 1,2,3 4,5,6""") path = '__%s__.csv' % tm.rands(10) with tm.ensure_clean(path) as path: for sep, dat in [('\t', data), (',', data2)]: for enc in ['utf-16', 'utf-16le', 'utf-16be']: bytes = dat.encode(enc) with open(path, 'wb') as f: f.write(bytes) s = BytesIO(dat.encode('utf-8')) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') result = self.read_csv(path, encoding=enc, skiprows=2, sep=sep) expected = self.read_csv(s, encoding='utf-8', skiprows=2, sep=sep) tm.assert_frame_equal(result, expected) def test_utf16_example(self): path = tm.get_data_path('utf16_ex.txt') # it works! and is the right length result = self.read_table(path, encoding='utf-16') self.assertEqual(len(result), 50) if not compat.PY3: buf = BytesIO(open(path, 'rb').read()) result = self.read_table(buf, encoding='utf-16') self.assertEqual(len(result), 50) def test_converters_corner_with_nas(self): # skip aberration observed on Win64 Python 3.2.2 if hash(np.int64(-1)) != -2: raise nose.SkipTest("skipping because of windows hash on Python" " 3.2.2") csv = """id,score,days 1,2,12 2,2-5, 3,,14+ 4,6-12,2""" def convert_days(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_days_sentinel(x): x = x.strip() if not x: return np.nan is_plus = x.endswith('+') if is_plus: x = int(x[:-1]) + 1 else: x = int(x) return x def convert_score(x): x = x.strip() if not x: return np.nan if x.find('-') > 0: valmin, valmax = lmap(int, x.split('-')) val = 0.5 * (valmin + valmax) else: val = float(x) return val fh = StringIO(csv) result = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days}, na_values=['', None]) self.assertTrue(pd.isnull(result['days'][1])) fh = StringIO(csv) result2 = self.read_csv(fh, converters={'score': convert_score, 'days': convert_days_sentinel}, na_values=['', None]) tm.assert_frame_equal(result, result2) def test_unicode_encoding(self): pth = tm.get_data_path('unicode_series.csv') result = self.read_csv(pth, header=None, encoding='latin-1') result = result.set_index(0) got = result[1][1632] expected = u('\xc1 k\xf6ldum klaka (Cold Fever) (1994)') self.assertEqual(got, expected) def test_trailing_delimiters(self): # #2442. grumble grumble data = """A,B,C 1,2,3, 4,5,6, 7,8,9,""" result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame({'A': [1, 4, 7], 'B': [2, 5, 8], 'C': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_escapechar(self): # http://stackoverflow.com/questions/13824840/feature-request-for- # pandas-read-csv data = '''SEARCH_TERM,ACTUAL_URL "bra tv bord","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "tv p\xc3\xa5 hjul","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord" "SLAGBORD, \\"Bergslagen\\", IKEA:s 1700-tals serie","http://www.ikea.com/se/sv/catalog/categories/departments/living_room/10475/?se%7cps%7cnonbranded%7cvardagsrum%7cgoogle%7ctv_bord"''' result = self.read_csv(StringIO(data), escapechar='\\', quotechar='"', encoding='utf-8') self.assertEqual(result['SEARCH_TERM'][2], 'SLAGBORD, "Bergslagen", IKEA:s 1700-tals serie') self.assertTrue(np.array_equal(result.columns, ['SEARCH_TERM', 'ACTUAL_URL'])) def test_header_names_backward_compat(self): # #2539 data = '1,2,3\n4,5,6' result = self.read_csv(StringIO(data), names=['a', 'b', 'c']) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) tm.assert_frame_equal(result, expected) data2 = 'foo,bar,baz\n' + data result = self.read_csv(StringIO(data2), names=['a', 'b', 'c'], header=0) tm.assert_frame_equal(result, expected) def test_int64_min_issues(self): # #2599 data = 'A,B\n0,0\n0,' result = self.read_csv(StringIO(data)) expected = DataFrame({'A': [0, 0], 'B': [0, np.nan]}) tm.assert_frame_equal(result, expected) def test_parse_integers_above_fp_precision(self): data = """Numbers 17007000002000191 17007000002000191 17007000002000191 17007000002000191 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000192 17007000002000194""" result = self.read_csv(StringIO(data)) expected = DataFrame({'Numbers': [17007000002000191, 17007000002000191, 17007000002000191, 17007000002000191, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000192, 17007000002000194]}) self.assertTrue(np.array_equal(result['Numbers'], expected['Numbers'])) def test_usecols_index_col_conflict(self): # Issue 4201 Test that index_col as integer reflects usecols data = """SecId,Time,Price,P2,P3 10000,2013-5-11,100,10,1 500,2013-5-12,101,11,1 """ expected = DataFrame({'Price': [100, 101]}, index=[ datetime(2013, 5, 11), datetime(2013, 5, 12)]) expected.index.name = 'Time' df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 'Time', 'Price'], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col='Time') tm.assert_frame_equal(expected, df) df = self.read_csv(StringIO(data), usecols=[ 1, 2], parse_dates=True, index_col=0) tm.assert_frame_equal(expected, df) expected = DataFrame( {'P3': [1, 1], 'Price': (100, 101), 'P2': (10, 11)}) expected = expected.set_index(['Price', 'P2']) df = self.read_csv(StringIO(data), usecols=[ 'Price', 'P2', 'P3'], parse_dates=True, index_col=['Price', 'P2']) tm.assert_frame_equal(expected, df) def test_chunks_have_consistent_numerical_type(self): integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ["1.0", "2.0"] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) # Assert that types were coerced. self.assertTrue(type(df.a[0]) is np.float64) self.assertEqual(df.a.dtype, np.float) def test_warn_if_chunks_have_mismatched_type(self): # See test in TestCParserLowMemory. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(False): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_usecols(self): data = """\ a,b,c 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(1, 2)) result2 = self.read_csv(StringIO(data), usecols=('b', 'c')) exp = self.read_csv(StringIO(data)) self.assertEqual(len(result.columns), 2) self.assertTrue((result['b'] == exp['b']).all()) self.assertTrue((result['c'] == exp['c']).all()) tm.assert_frame_equal(result, result2) result = self.read_csv(StringIO(data), usecols=[1, 2], header=0, names=['foo', 'bar']) expected = self.read_csv(StringIO(data), usecols=[1, 2]) expected.columns = ['foo', 'bar'] tm.assert_frame_equal(result, expected) data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), names=['b', 'c'], header=None, usecols=[1, 2]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['b', 'c']] tm.assert_frame_equal(result, expected) result2 = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None, usecols=['b', 'c']) tm.assert_frame_equal(result2, result) # 5766 result = self.read_csv(StringIO(data), names=['a', 'b'], header=None, usecols=[0, 1]) expected = self.read_csv(StringIO(data), names=['a', 'b', 'c'], header=None) expected = expected[['a', 'b']] tm.assert_frame_equal(result, expected) # length conflict, passed names and usecols disagree self.assertRaises(ValueError, self.read_csv, StringIO(data), names=['a', 'b'], usecols=[1], header=None) def test_integer_overflow_bug(self): # #2601 data = "65248E10 11\n55555E55 22\n" result = self.read_csv(StringIO(data), header=None, sep=' ') self.assertTrue(result[0].dtype == np.float64) result = self.read_csv(StringIO(data), header=None, sep='\s+') self.assertTrue(result[0].dtype == np.float64) def test_catch_too_many_names(self): # Issue 5156 data = """\ 1,2,3 4,,6 7,8,9 10,11,12\n""" tm.assertRaises(Exception, read_csv, StringIO(data), header=0, names=['a', 'b', 'c', 'd']) def test_ignore_leading_whitespace(self): # GH 6607, GH 3374 data = ' a b c\n 1 2 3\n 4 5 6\n 7 8 9' result = self.read_table(StringIO(data), sep='\s+') expected = DataFrame({'a': [1, 4, 7], 'b': [2, 5, 8], 'c': [3, 6, 9]}) tm.assert_frame_equal(result, expected) def test_nrows_and_chunksize_raises_notimplemented(self): data = 'a b c' self.assertRaises(NotImplementedError, self.read_csv, StringIO(data), nrows=10, chunksize=5) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_chunk_begins_with_newline_whitespace(self): # GH 10022 data = '\n hello\nworld\n' result = self.read_csv(StringIO(data), header=None) self.assertEqual(len(result), 2) # GH 9735 chunk1 = 'a' * (1024 * 256 - 2) + '\na' chunk2 = '\n a' result = pd.read_csv(StringIO(chunk1 + chunk2), header=None) expected = pd.DataFrame(['a' * (1024 * 256 - 2), 'a', ' a']) tm.assert_frame_equal(result, expected) def test_empty_with_index(self): # GH 10184 data = 'x,y' result = self.read_csv(StringIO(data), index_col=0) expected = DataFrame([], columns=['y'], index=Index([], name='x')) tm.assert_frame_equal(result, expected) def test_emtpy_with_multiindex(self): # GH 10467 data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=['x', 'y']) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_reversed_multiindex(self): data = 'x,y,z' result = self.read_csv(StringIO(data), index_col=[1, 0]) expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_index_col_scenarios(self): data = 'x,y,z' # None, no index index_col, expected = None, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # False, no index index_col, expected = False, DataFrame([], columns=list('xyz')), tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, first column index_col, expected = 0, DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # int, not first column index_col, expected = 1, DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, first column index_col, expected = 'x', DataFrame( [], columns=['y', 'z'], index=Index([], name='x')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # str, not the first column index_col, expected = 'y', DataFrame( [], columns=['x', 'z'], index=Index([], name='y')) tm.assert_frame_equal(self.read_csv( StringIO(data), index_col=index_col), expected) # list of int index_col, expected = [0, 1], DataFrame([], columns=['z'], index=MultiIndex.from_arrays([[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str index_col = ['x', 'y'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['x', 'y'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of int, reversed sequence index_col = [1, 0] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) # list of str, reversed sequence index_col = ['y', 'x'] expected = DataFrame([], columns=['z'], index=MultiIndex.from_arrays( [[]] * 2, names=['y', 'x'])) tm.assert_frame_equal(self.read_csv(StringIO(data), index_col=index_col), expected, check_index_type=False) def test_empty_with_index_col_false(self): # GH 10413 data = 'x,y' result = self.read_csv(StringIO(data), index_col=False) expected = DataFrame([], columns=['x', 'y']) tm.assert_frame_equal(result, expected) def test_float_parser(self): # GH 9565 data = '45e-1,4.5,45.,inf,-inf' result = self.read_csv(StringIO(data), header=None) expected = pd.DataFrame([[float(s) for s in data.split(',')]]) tm.assert_frame_equal(result, expected) def test_int64_overflow(self): data = """ID 00013007854817840016671868 00013007854817840016749251 00013007854817840016754630 00013007854817840016781876 00013007854817840017028824 00013007854817840017963235 00013007854817840018860166""" result = self.read_csv(StringIO(data)) self.assertTrue(result['ID'].dtype == object) self.assertRaises((OverflowError, pandas.parser.OverflowError), self.read_csv, StringIO(data), converters={'ID': np.int64}) # Just inside int64 range: parse as integer i_max = np.iinfo(np.int64).max i_min = np.iinfo(np.int64).min for x in [i_max, i_min]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([x]) tm.assert_frame_equal(result, expected) # Just outside int64 range: parse as string too_big = i_max + 1 too_small = i_min - 1 for x in [too_big, too_small]: result = pd.read_csv(StringIO(str(x)), header=None) expected = pd.DataFrame([str(x)]) tm.assert_frame_equal(result, expected) def test_empty_with_nrows_chunksize(self): # GH 9535 expected = pd.DataFrame([], columns=['foo', 'bar']) result = self.read_csv(StringIO('foo,bar\n'), nrows=10) tm.assert_frame_equal(result, expected) result = next(iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10))) tm.assert_frame_equal(result, expected) result = pd.read_csv(StringIO('foo,bar\n'), nrows=10, as_recarray=True) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) result = next( iter(pd.read_csv(StringIO('foo,bar\n'), chunksize=10, as_recarray=True))) result = pd.DataFrame(result[2], columns=result[1], index=result[0]) tm.assert_frame_equal(pd.DataFrame.from_records( result), expected, check_index_type=False) def test_eof_states(self): # GH 10728 and 10548 # With skip_blank_lines = True expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) # GH 10728 # WHITESPACE_LINE data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # GH 10548 # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # EAT_CRNL_NOP data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data)) tm.assert_frame_equal(result, expected) # EAT_COMMENT data = 'a,b,c\n4,5,6#comment' result = self.read_csv(StringIO(data), comment='#') tm.assert_frame_equal(result, expected) # SKIP_LINE data = 'a,b,c\n4,5,6\nskipme' result = self.read_csv(StringIO(data), skiprows=[2]) tm.assert_frame_equal(result, expected) # With skip_blank_lines = False # EAT_LINE_COMMENT data = 'a,b,c\n4,5,6\n#comment' result = self.read_csv( StringIO(data), comment='#', skip_blank_lines=False) expected = pd.DataFrame([[4, 5, 6]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # IN_FIELD data = 'a,b,c\n4,5,6\n ' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [['4', 5, 6], [' ', None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # EAT_CRNL data = 'a,b,c\n4,5,6\n\r' result = self.read_csv(StringIO(data), skip_blank_lines=False) expected = pd.DataFrame( [[4, 5, 6], [None, None, None]], columns=['a', 'b', 'c']) tm.assert_frame_equal(result, expected) # Should produce exceptions # ESCAPED_CHAR data = "a,b,c\n4,5,6\n\\" self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # ESCAPE_IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"\\' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') # IN_QUOTED_FIELD data = 'a,b,c\n4,5,6\n"' self.assertRaises(Exception, self.read_csv, StringIO(data), escapechar='\\') class TestPythonParser(ParserTests, tm.TestCase): def test_negative_skipfooter_raises(self): text = """#foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c #foo,a,b,c 1/1/2000,1.,2.,3. 1/2/2000,4,5,6 1/3/2000,7,8,9 """ with tm.assertRaisesRegexp(ValueError, 'skip footer cannot be negative'): df = self.read_csv(StringIO(text), skipfooter=-1) def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'python' return read_table(*args, **kwds) def test_sniff_delimiter(self): text = """index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data = self.read_csv(StringIO(text), index_col=0, sep=None) self.assertTrue(data.index.equals(Index(['foo', 'bar', 'baz']))) data2 = self.read_csv(StringIO(text), index_col=0, delimiter='|') tm.assert_frame_equal(data, data2) text = """ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """ data3 = self.read_csv(StringIO(text), index_col=0, sep=None, skiprows=2) tm.assert_frame_equal(data, data3) text = u("""ignore this ignore this too index|A|B|C foo|1|2|3 bar|4|5|6 baz|7|8|9 """).encode('utf-8') s = BytesIO(text) if compat.PY3: # somewhat False since the code never sees bytes from io import TextIOWrapper s = TextIOWrapper(s, encoding='utf-8') data4 = self.read_csv(s, index_col=0, sep=None, skiprows=2, encoding='utf-8') tm.assert_frame_equal(data, data4) def test_regex_separator(self): data = """ A B C D a 1 2 3 4 b 1 2 3 4 c 1 2 3 4 """ df = self.read_table(StringIO(data), sep='\s+') expected = self.read_csv(StringIO(re.sub('[ ]+', ',', data)), index_col=0) self.assertIsNone(expected.index.name) tm.assert_frame_equal(df, expected) def test_1000_fwf(self): data = """ 1 2,334.0 5 10 13 10. """ expected = [[1, 2334., 5], [10, 13, 10]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (3, 11), (12, 16)], thousands=',') tm.assert_almost_equal(df.values, expected) def test_1000_sep_with_decimal(self): data = """A|B|C 1|2,334.01|5 10|13|10. """ expected = DataFrame({ 'A': [1, 10], 'B': [2334.01, 13], 'C': [5, 10.] }) df = self.read_csv(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data), sep='|', thousands=',') tm.assert_frame_equal(df, expected) def test_comment_fwf(self): data = """ 1 2. 4 #hello world 5 NaN 10.0 """ expected = [[1, 2., 4], [5, np.nan, 10.]] df = read_fwf(StringIO(data), colspecs=[(0, 3), (4, 9), (9, 25)], comment='#') tm.assert_almost_equal(df.values, expected) def test_fwf(self): data_expected = """\ 2011,58,360.242940,149.910199,11950.7 2011,59,444.953632,166.985655,11788.4 2011,60,364.136849,183.628767,11806.2 2011,61,413.836124,184.375703,11916.8 2011,62,502.953953,173.237159,12468.3 """ expected = self.read_csv(StringIO(data_expected), header=None) data1 = """\ 201158 360.242940 149.910199 11950.7 201159 444.953632 166.985655 11788.4 201160 364.136849 183.628767 11806.2 201161 413.836124 184.375703 11916.8 201162 502.953953 173.237159 12468.3 """ colspecs = [(0, 4), (4, 8), (8, 20), (21, 33), (34, 43)] df = read_fwf(StringIO(data1), colspecs=colspecs, header=None) tm.assert_frame_equal(df, expected) data2 = """\ 2011 58 360.242940 149.910199 11950.7 2011 59 444.953632 166.985655 11788.4 2011 60 364.136849 183.628767 11806.2 2011 61 413.836124 184.375703 11916.8 2011 62 502.953953 173.237159 12468.3 """ df = read_fwf(StringIO(data2), widths=[5, 5, 13, 13, 7], header=None) tm.assert_frame_equal(df, expected) # From <NAME>: apparently some non-space filler characters can # be seen, this is supported by specifying the 'delimiter' character: # http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.config.doc/topics/rfixwidth.html data3 = """\ 201158~~~~360.242940~~~149.910199~~~11950.7 201159~~~~444.953632~~~166.985655~~~11788.4 201160~~~~364.136849~~~183.628767~~~11806.2 201161~~~~413.836124~~~184.375703~~~11916.8 201162~~~~502.953953~~~173.237159~~~12468.3 """ df = read_fwf( StringIO(data3), colspecs=colspecs, delimiter='~', header=None) tm.assert_frame_equal(df, expected) with tm.assertRaisesRegexp(ValueError, "must specify only one of"): read_fwf(StringIO(data3), colspecs=colspecs, widths=[6, 10, 10, 7]) with tm.assertRaisesRegexp(ValueError, "Must specify either"): read_fwf(StringIO(data3), colspecs=None, widths=None) def test_fwf_colspecs_is_list_or_tuple(self): with tm.assertRaisesRegexp(TypeError, 'column specifications must be a list or ' 'tuple.+'): pd.io.parsers.FixedWidthReader(StringIO(self.data1), {'a': 1}, ',', '#') def test_fwf_colspecs_is_list_or_tuple_of_two_element_tuples(self): with tm.assertRaisesRegexp(TypeError, 'Each column specification must be.+'): read_fwf(StringIO(self.data1), [('a', 1)]) def test_fwf_colspecs_None(self): # GH 7079 data = """\ 123456 456789 """ colspecs = [(0, 3), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, 3), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123, 456], [456, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(0, None), (3, None)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) colspecs = [(None, None), (3, 6)] result = read_fwf(StringIO(data), colspecs=colspecs, header=None) expected = DataFrame([[123456, 456], [456789, 789]]) tm.assert_frame_equal(result, expected) def test_fwf_regression(self): # GH 3594 # turns out 'T060' is parsable as a datetime slice! tzlist = [1, 10, 20, 30, 60, 80, 100] ntz = len(tzlist) tcolspecs = [16] + [8] * ntz tcolnames = ['SST'] + ["T%03d" % z for z in tzlist[1:]] data = """ 2009164202000 9.5403 9.4105 8.6571 7.8372 6.0612 5.8843 5.5192 2009164203000 9.5435 9.2010 8.6167 7.8176 6.0804 5.8728 5.4869 2009164204000 9.5873 9.1326 8.4694 7.5889 6.0422 5.8526 5.4657 2009164205000 9.5810 9.0896 8.4009 7.4652 6.0322 5.8189 5.4379 2009164210000 9.6034 9.0897 8.3822 7.4905 6.0908 5.7904 5.4039 """ df = read_fwf(StringIO(data), index_col=0, header=None, names=tcolnames, widths=tcolspecs, parse_dates=True, date_parser=lambda s: datetime.strptime(s, '%Y%j%H%M%S')) for c in df.columns: res = df.loc[:, c] self.assertTrue(len(res)) def test_fwf_for_uint8(self): data = """1421302965.213420 PRI=3 PGN=0xef00 DST=0x17 SRC=0x28 04 154 00 00 00 00 00 127 1421302964.226776 PRI=6 PGN=0xf002 SRC=0x47 243 00 00 255 247 00 00 71""" df = read_fwf(StringIO(data), colspecs=[(0, 17), (25, 26), (33, 37), (49, 51), (58, 62), (63, 1000)], names=['time', 'pri', 'pgn', 'dst', 'src', 'data'], converters={ 'pgn': lambda x: int(x, 16), 'src': lambda x: int(x, 16), 'dst': lambda x: int(x, 16), 'data': lambda x: len(x.split(' '))}) expected = DataFrame([[1421302965.213420, 3, 61184, 23, 40, 8], [1421302964.226776, 6, 61442, None, 71, 8]], columns=["time", "pri", "pgn", "dst", "src", "data"]) expected["dst"] = expected["dst"].astype(object) tm.assert_frame_equal(df, expected) def test_fwf_compression(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest("Need gzip and bz2 to run this test") data = """1111111111 2222222222 3333333333""".strip() widths = [5, 5] names = ['one', 'two'] expected = read_fwf(StringIO(data), widths=widths, names=names) if compat.PY3: data = bytes(data, encoding='utf-8') comps = [('gzip', gzip.GzipFile), ('bz2', bz2.BZ2File)] for comp_name, compresser in comps: with tm.ensure_clean() as path: tmp = compresser(path, mode='wb') tmp.write(data) tmp.close() result = read_fwf(path, widths=widths, names=names, compression=comp_name) tm.assert_frame_equal(result, expected) def test_BytesIO_input(self): if not compat.PY3: raise nose.SkipTest( "Bytes-related test - only needs to work on Python 3") result = pd.read_fwf(BytesIO("שלום\nשלום".encode('utf8')), widths=[ 2, 2], encoding='utf8') expected = pd.DataFrame([["של", "ום"]], columns=["של", "ום"]) tm.assert_frame_equal(result, expected) data = BytesIO("שלום::1234\n562::123".encode('cp1255')) result = pd.read_table(data, sep="::", engine='python', encoding='cp1255') expected = pd.DataFrame([[562, 123]], columns=["שלום", "1234"]) tm.assert_frame_equal(result, expected) def test_verbose_import(self): text = """a,b,c,d one,1,2,3 one,1,2,3 ,1,2,3 one,1,2,3 ,1,2,3 ,1,2,3 one,1,2,3 two,1,2,3""" buf = StringIO() sys.stdout = buf try: # it works! df = self.read_csv(StringIO(text), verbose=True) self.assertEqual( buf.getvalue(), 'Filled 3 NA values in column a\n') finally: sys.stdout = sys.__stdout__ buf = StringIO() sys.stdout = buf text = """a,b,c,d one,1,2,3 two,1,2,3 three,1,2,3 four,1,2,3 five,1,2,3 ,1,2,3 seven,1,2,3 eight,1,2,3""" try: # it works! df = self.read_csv(StringIO(text), verbose=True, index_col=0) self.assertEqual( buf.getvalue(), 'Filled 1 NA values in column a\n') finally: sys.stdout = sys.__stdout__ def test_float_precision_specified(self): # Should raise an error if float_precision (C parser option) is # specified with tm.assertRaisesRegexp(ValueError, "The 'float_precision' option " "is not supported with the 'python' engine"): self.read_csv(StringIO('a,b,c\n1,2,3'), float_precision='high') def test_iteration_open_handle(self): if PY3: raise nose.SkipTest( "won't work in Python 3 {0}".format(sys.version_info)) with tm.ensure_clean() as path: with open(path, 'wb') as f: f.write('AAA\nBBB\nCCC\nDDD\nEEE\nFFF\nGGG') with open(path, 'rb') as f: for line in f: if 'CCC' in line: break try: read_table(f, squeeze=True, header=None, engine='c') except Exception: pass else: raise ValueError('this should not happen') result = read_table(f, squeeze=True, header=None, engine='python') expected = Series(['DDD', 'EEE', 'FFF', 'GGG'], name=0) tm.assert_series_equal(result, expected) def test_iterator(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True) df = self.read_csv(StringIO(self.data1), index_col=0) chunk = reader.read(3) tm.assert_frame_equal(chunk, df[:3]) last_chunk = reader.read(5) tm.assert_frame_equal(last_chunk, df[3:]) # pass list lines = list(csv.reader(StringIO(self.data1))) parser = TextParser(lines, index_col=0, chunksize=2) df = self.read_csv(StringIO(self.data1), index_col=0) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[:2]) tm.assert_frame_equal(chunks[1], df[2:4]) tm.assert_frame_equal(chunks[2], df[4:]) # pass skiprows parser = TextParser(lines, index_col=0, chunksize=2, skiprows=[1]) chunks = list(parser) tm.assert_frame_equal(chunks[0], df[1:3]) # test bad parameter (skip_footer) reader = self.read_csv(StringIO(self.data1), index_col=0, iterator=True, skip_footer=True) self.assertRaises(ValueError, reader.read, 3) treader = self.read_table(StringIO(self.data1), sep=',', index_col=0, iterator=True) tm.assertIsInstance(treader, TextFileReader) # stopping iteration when on chunksize is specified, GH 3967 data = """A,B,C foo,1,2,3 bar,4,5,6 baz,7,8,9 """ reader = self.read_csv(StringIO(data), iterator=True) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) tm.assert_frame_equal(result[0], expected) # chunksize = 1 reader = self.read_csv(StringIO(data), chunksize=1) result = list(reader) expected = DataFrame(dict(A=[1, 4, 7], B=[2, 5, 8], C=[ 3, 6, 9]), index=['foo', 'bar', 'baz']) self.assertEqual(len(result), 3) tm.assert_frame_equal(pd.concat(result), expected) def test_single_line(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # sniff separator buf = StringIO() sys.stdout = buf # printing warning message when engine == 'c' for now try: # it works! df = self.read_csv(StringIO('1,2'), names=['a', 'b'], header=None, sep=None) tm.assert_frame_equal(DataFrame({'a': [1], 'b': [2]}), df) finally: sys.stdout = sys.__stdout__ def test_malformed(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed # all data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#') self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # skip_footer data = """ignore A,B,C 1,2,3 # comment 1,2,3,4,5 2,3,4 footer """ try: df = self.read_table( StringIO(data), sep=',', header=1, comment='#', skip_footer=1) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 4, saw 5', str(inst)) # first chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(5) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # middle chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read(2) self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) # last chunk data = """ignore A,B,C skip 1,2,3 3,5,10 # comment 1,2,3,4,5 2,3,4 """ try: it = self.read_table(StringIO(data), sep=',', header=1, comment='#', iterator=True, chunksize=1, skiprows=[2]) df = it.read(1) it.read() self.assertTrue(False) except Exception as inst: self.assertIn('Expected 3 fields in line 6, saw 5', str(inst)) def test_skip_footer(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with the C parser is fixed data = """A,B,C 1,2,3 4,5,6 7,8,9 want to skip this also also skip this """ result = self.read_csv(StringIO(data), skip_footer=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), nrows=3) tm.assert_frame_equal(result, expected) # skipfooter alias result = self.read_csv(StringIO(data), skipfooter=2) no_footer = '\n'.join(data.split('\n')[:-3]) expected = self.read_csv(StringIO(no_footer)) tm.assert_frame_equal(result, expected) def test_decompression_regex_sep(self): # GH 6607 # This is a copy which should eventually be moved to ParserTests # when the issue with the C parser is fixed try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() data = data.replace(b',', b'::') expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, sep='::', compression='bz2') tm.assert_frame_equal(result, expected) self.assertRaises(ValueError, self.read_csv, path, compression='bz3') def test_read_table_buglet_4x_multiindex(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the issue with multi-level index is fixed in the C parser. text = """ A B C D E one two three four a b 10.0032 5 -0.5109 -2.3358 -0.4645 0.05076 0.3640 a q 20 4 0.4473 1.4152 0.2834 1.00661 0.1744 x q 30 3 -0.6662 -0.5243 -0.3580 0.89145 2.5838""" # it works! df = self.read_table(StringIO(text), sep='\s+') self.assertEqual(df.index.names, ('one', 'two', 'three', 'four')) # GH 6893 data = ' A B C\na b c\n1 3 7 0 3 6\n3 1 4 1 5 9' expected = DataFrame.from_records([(1, 3, 7, 0, 3, 6), (3, 1, 4, 1, 5, 9)], columns=list('abcABC'), index=list('abc')) actual = self.read_table(StringIO(data), sep='\s+') tm.assert_frame_equal(actual, expected) def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_almost_equal(list(df.values), list(expected)) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = [[1, 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) class TestFwfColspaceSniffing(tm.TestCase): def test_full_file(self): # File with all values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 2000-01-05T00:00:00 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0.487094399463 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 2000-01-11T00:00:00 0.157160753327 34 foo''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_missing(self): # File with missing values test = '''index A B C 2000-01-03T00:00:00 0.980268513777 3 foo 2000-01-04T00:00:00 1.04791624281 -4 bar 0.498580885705 73 baz 2000-01-06T00:00:00 1.12020151869 1 foo 2000-01-07T00:00:00 0 bar 2000-01-10T00:00:00 0.836648671666 2 baz 34''' colspecs = ((0, 19), (21, 35), (38, 40), (42, 45)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces(self): # File with spaces in columns test = ''' Account Name Balance CreditLimit AccountCreated 101 <NAME> 9315.45 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 <NAME> 0 17000.00 5/25/1985 761 Jada Pinkett-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 5000.00 2/5/2007 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_full_file_with_spaces_and_missing(self): # File with spaces and missing values in columsn test = ''' Account Name Balance CreditLimit AccountCreated 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 8/6/2003 868 5/25/1985 761 <NAME>-Smith 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((0, 7), (8, 28), (30, 38), (42, 53), (56, 70)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_messed_up_data(self): # Completely messed up file test = ''' Account Name Balance Credit Limit Account Created 101 10000.00 1/17/1998 312 <NAME> 90.00 1000.00 761 <NAME> 49654.87 100000.00 12/5/2006 317 <NAME> 789.65 '''.strip('\r\n') colspecs = ((2, 10), (15, 33), (37, 45), (49, 61), (64, 79)) expected = read_fwf(StringIO(test), colspecs=colspecs) tm.assert_frame_equal(expected, read_fwf(StringIO(test))) def test_multiple_delimiters(self): test = r''' col1~~~~~col2 col3++++++++++++++++++col4 ~~22.....11.0+++foo~~~~~~~~~~<NAME> 33+++122.33\\\bar.........<NAME> ++44~~~~12.01 baz~~<NAME> ~~55 11+++foo++++<NAME>-Smith ..66++++++.03~~~bar <NAME> '''.strip('\r\n') colspecs = ((0, 4), (7, 13), (15, 19), (21, 41)) expected = read_fwf(StringIO(test), colspecs=colspecs, delimiter=' +~.\\') tm.assert_frame_equal(expected, read_fwf(StringIO(test), delimiter=' +~.\\')) def test_variable_width_unicode(self): if not compat.PY3: raise nose.SkipTest( 'Bytes-related test - only needs to work on Python 3') test = ''' שלום שלום ום שלל של ום '''.strip('\r\n') expected = pd.read_fwf(BytesIO(test.encode('utf8')), colspecs=[(0, 4), (5, 9)], header=None, encoding='utf8') tm.assert_frame_equal(expected, read_fwf(BytesIO(test.encode('utf8')), header=None, encoding='utf8')) class CParserTests(ParserTests): """ base class for CParser Testsing """ def test_buffer_overflow(self): # GH9205 # test certain malformed input files that cause buffer overflows in # tokenizer.c malfw = "1\r1\r1\r 1\r 1\r" # buffer overflow in words pointer malfs = "1\r1\r1\r 1\r 1\r11\r" # buffer overflow in stream pointer malfl = "1\r1\r1\r 1\r 1\r11\r1\r" # buffer overflow in lines pointer for malf in (malfw, malfs, malfl): try: df = self.read_table(StringIO(malf)) except Exception as cperr: self.assertIn( 'Buffer overflow caught - possible malformed input file.', str(cperr)) def test_buffer_rd_bytes(self): # GH 12098 # src->buffer can be freed twice leading to a segfault if a corrupt # gzip file is read with read_csv and the buffer is filled more than # once before gzip throws an exception data = '\x1F\x8B\x08\x00\x00\x00\x00\x00\x00\x03\xED\xC3\x41\x09' \ '\x00\x00\x08\x00\xB1\xB7\xB6\xBA\xFE\xA5\xCC\x21\x6C\xB0' \ '\xA6\x4D' + '\x55' * 267 + \ '\x7D\xF7\x00\x91\xE0\x47\x97\x14\x38\x04\x00' \ '\x1f\x8b\x08\x00VT\x97V\x00\x03\xed]\xefO' for i in range(100): try: _ = self.read_csv(StringIO(data), compression='gzip', delim_whitespace=True) except Exception as e: pass class TestCParserHighMemory(CParserTests, tm.TestCase): def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = False return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = False return read_table(*args, **kwds) def test_compact_ints(self): if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) def test_parse_dates_empty_string(self): # #2263 s = StringIO("Date, test\n2012-01-01, 1\n,2") result = self.read_csv(s, parse_dates=["Date"], na_filter=False) self.assertTrue(result['Date'].isnull()[1]) def test_usecols(self): raise nose.SkipTest( "Usecols is not supported in C High Memory engine.") def test_line_comment(self): data = """# empty A,B,C 1,2.,4.#hello world #ignore this line 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data), comment='#') tm.assert_almost_equal(df.values, expected) # check with delim_whitespace=True df = self.read_csv(StringIO(data.replace(',', ' ')), comment='#', delim_whitespace=True) tm.assert_almost_equal(df.values, expected) # check with custom line terminator df = self.read_csv(StringIO(data.replace('\n', '*')), comment='#', lineterminator='*') tm.assert_almost_equal(df.values, expected) def test_comment_skiprows(self): data = """# empty random line # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # this should ignore the first four lines (including comments) df = self.read_csv(StringIO(data), comment='#', skiprows=4) tm.assert_almost_equal(df.values, expected) def test_skiprows_lineterminator(self): # GH #9079 data = '\n'.join(['SMOSMANIA ThetaProbe-ML2X ', '2007/01/01 01:00 0.2140 U M ', '2007/01/01 02:00 0.2141 M O ', '2007/01/01 04:00 0.2142 D M ']) expected = pd.DataFrame([['2007/01/01', '01:00', 0.2140, 'U', 'M'], ['2007/01/01', '02:00', 0.2141, 'M', 'O'], ['2007/01/01', '04:00', 0.2142, 'D', 'M']], columns=['date', 'time', 'var', 'flag', 'oflag']) # test with the three default lineterminators LF, CR and CRLF df = self.read_csv(StringIO(data), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data.replace('\n', '\r')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) df = self.read_csv(StringIO(data.replace('\n', '\r\n')), skiprows=1, delim_whitespace=True, names=['date', 'time', 'var', 'flag', 'oflag']) tm.assert_frame_equal(df, expected) def test_trailing_spaces(self): data = "A B C \nrandom line with trailing spaces \nskip\n1,2,3\n1,2.,4.\nrandom line with trailing tabs\t\t\t\n \n5.1,NaN,10.0\n" expected = pd.DataFrame([[1., 2., 4.], [5.1, np.nan, 10.]]) # this should ignore six lines including lines with trailing # whitespace and blank lines. issues 8661, 8679 df = self.read_csv(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) df = self.read_table(StringIO(data.replace(',', ' ')), header=None, delim_whitespace=True, skiprows=[0, 1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) # test skipping set of rows after a row with trailing spaces, issue # #8983 expected = pd.DataFrame({"A": [1., 5.1], "B": [2., np.nan], "C": [4., 10]}) df = self.read_table(StringIO(data.replace(',', ' ')), delim_whitespace=True, skiprows=[1, 2, 3, 5, 6], skip_blank_lines=True) tm.assert_frame_equal(df, expected) def test_comment_header(self): data = """# empty # second empty line 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # header should begin at the second non-comment line df = self.read_csv(StringIO(data), comment='#', header=1) tm.assert_almost_equal(df.values, expected) def test_comment_skiprows_header(self): data = """# empty # second empty line # third empty line X,Y,Z 1,2,3 A,B,C 1,2.,4. 5.,NaN,10.0 """ expected = [[1., 2., 4.], [5., np.nan, 10.]] # skiprows should skip the first 4 lines (including comments), while # header should start from the second non-commented line starting # with line 5 df = self.read_csv(StringIO(data), comment='#', skiprows=4, header=1) tm.assert_almost_equal(df.values, expected) def test_empty_lines(self): data = """\ A,B,C 1,2.,4. 5.,NaN,10.0 -70,.4,1 """ expected = [[1., 2., 4.], [5., np.nan, 10.], [-70., .4, 1.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) df = self.read_csv(StringIO(data.replace(',', ' ')), sep='\s+') tm.assert_almost_equal(df.values, expected) expected = [[1., 2., 4.], [np.nan, np.nan, np.nan], [np.nan, np.nan, np.nan], [5., np.nan, 10.], [np.nan, np.nan, np.nan], [-70., .4, 1.]] df = self.read_csv(StringIO(data), skip_blank_lines=False) tm.assert_almost_equal(list(df.values), list(expected)) def test_whitespace_lines(self): data = """ \t \t\t \t A,B,C \t 1,2.,4. 5.,NaN,10.0 """ expected = [[1, 2., 4.], [5., np.nan, 10.]] df = self.read_csv(StringIO(data)) tm.assert_almost_equal(df.values, expected) def test_passing_dtype(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the dtype argument is supported by all engines. df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) # empty frame # GH12048 actual = self.read_csv(StringIO('A,B'), dtype=str) expected = DataFrame({'A': [], 'B': []}, index=[], dtype=str) tm.assert_frame_equal(actual, expected) def test_dtype_and_names_error(self): # GH 8833 # passing both dtype and names resulting in an error reporting issue data = """ 1.0 1 2.0 2 3.0 3 """ # base cases result = self.read_csv(StringIO(data), sep='\s+', header=None) expected = DataFrame([[1.0, 1], [2.0, 2], [3.0, 3]]) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), sep='\s+', header=None, names=['a', 'b']) expected = DataFrame( [[1.0, 1], [2.0, 2], [3.0, 3]], columns=['a', 'b']) tm.assert_frame_equal(result, expected) # fallback casting result = self.read_csv(StringIO( data), sep='\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) expected = DataFrame([[1, 1], [2, 2], [3, 3]], columns=['a', 'b']) expected['a'] = expected['a'].astype(np.int32) tm.assert_frame_equal(result, expected) data = """ 1.0 1 nan 2 3.0 3 """ # fallback casting, but not castable with tm.assertRaisesRegexp(ValueError, 'cannot safely convert'): self.read_csv(StringIO(data), sep='\s+', header=None, names=['a', 'b'], dtype={'a': np.int32}) def test_fallback_to_python(self): # GH 6607 data = 'a b c\n1 2 3' # specify C engine with unsupported options (raise) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep=None, delim_whitespace=False) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep='\s') with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', skip_footer=1) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), delim_whitespace=True, skipinitialspace=True) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), lineterminator='\n', skipinitialspace=True) tm.assert_frame_equal(result, expected) class TestCParserLowMemory(CParserTests, tm.TestCase): def read_csv(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = True kwds['buffer_lines'] = 2 return read_csv(*args, **kwds) def read_table(self, *args, **kwds): kwds = kwds.copy() kwds['engine'] = 'c' kwds['low_memory'] = True kwds['buffer_lines'] = 2 return read_table(*args, **kwds) def test_compact_ints(self): data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.to_records(index=False).dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.to_records(index=False).dtype, ex_dtype) def test_compact_ints_as_recarray(self): if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") data = ('0,1,0,0\n' '1,1,0,0\n' '0,1,0,1') result = read_csv(StringIO(data), delimiter=',', header=None, compact_ints=True, as_recarray=True) ex_dtype = np.dtype([(str(i), 'i1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) result = read_csv(StringIO(data), delimiter=',', header=None, as_recarray=True, compact_ints=True, use_unsigned=True) ex_dtype = np.dtype([(str(i), 'u1') for i in range(4)]) self.assertEqual(result.dtype, ex_dtype) def test_precise_conversion(self): # GH #8002 tm._skip_if_32bit() from decimal import Decimal normal_errors = [] precise_errors = [] for num in np.linspace(1., 2., num=500): # test numbers between 1 and 2 text = 'a\n{0:.25}'.format(num) # 25 decimal digits of precision normal_val = float(self.read_csv(StringIO(text))['a'][0]) precise_val = float(self.read_csv( StringIO(text), float_precision='high')['a'][0]) roundtrip_val = float(self.read_csv( StringIO(text), float_precision='round_trip')['a'][0]) actual_val = Decimal(text[2:]) def error(val): return abs(Decimal('{0:.100}'.format(val)) - actual_val) normal_errors.append(error(normal_val)) precise_errors.append(error(precise_val)) # round-trip should match float() self.assertEqual(roundtrip_val, float(text[2:])) self.assertTrue(sum(precise_errors) <= sum(normal_errors)) self.assertTrue(max(precise_errors) <= max(normal_errors)) def test_pass_dtype(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}) self.assertEqual(result['one'].dtype, 'u1') self.assertEqual(result['two'].dtype, 'object') def test_pass_dtype_as_recarray(self): data = """\ one,two 1,2.5 2,3.5 3,4.5 4,5.5""" if compat.is_platform_windows(): raise nose.SkipTest( "segfaults on win-64, only when all tests are run") result = self.read_csv(StringIO(data), dtype={'one': 'u1', 1: 'S1'}, as_recarray=True) self.assertEqual(result['one'].dtype, 'u1') self.assertEqual(result['two'].dtype, 'S1') def test_empty_pass_dtype(self): data = 'one,two' result = self.read_csv(StringIO(data), dtype={'one': 'u1'}) expected = DataFrame({'one': np.empty(0, dtype='u1'), 'two': np.empty(0, dtype=np.object)}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_index_pass_dtype(self): data = 'one,two' result = self.read_csv(StringIO(data), index_col=['one'], dtype={'one': 'u1', 1: 'f'}) expected = DataFrame({'two': np.empty(0, dtype='f')}, index=Index([], dtype='u1', name='one')) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_multiindex_pass_dtype(self): data = 'one,two,three' result = self.read_csv(StringIO(data), index_col=['one', 'two'], dtype={'one': 'u1', 1: 'f8'}) exp_idx = MultiIndex.from_arrays([np.empty(0, dtype='u1'), np.empty(0, dtype='O')], names=['one', 'two']) expected = DataFrame( {'three': np.empty(0, dtype=np.object)}, index=exp_idx) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_mangled_column_pass_dtype_by_names(self): data = 'one,one' result = self.read_csv(StringIO(data), dtype={ 'one': 'u1', 'one.1': 'f'}) expected = DataFrame( {'one': np.empty(0, dtype='u1'), 'one.1': np.empty(0, dtype='f')}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_mangled_column_pass_dtype_by_indexes(self): data = 'one,one' result = self.read_csv(StringIO(data), dtype={0: 'u1', 1: 'f'}) expected = DataFrame( {'one': np.empty(0, dtype='u1'), 'one.1': np.empty(0, dtype='f')}) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_dup_column_pass_dtype_by_names(self): data = 'one,one' result = self.read_csv( StringIO(data), mangle_dupe_cols=False, dtype={'one': 'u1'}) expected = pd.concat([Series([], name='one', dtype='u1')] * 2, axis=1) tm.assert_frame_equal(result, expected, check_index_type=False) def test_empty_with_dup_column_pass_dtype_by_indexes(self): ### FIXME in GH9424 raise nose.SkipTest( "GH 9424; known failure read_csv with duplicate columns") data = 'one,one' result = self.read_csv( StringIO(data), mangle_dupe_cols=False, dtype={0: 'u1', 1: 'f'}) expected = pd.concat([Series([], name='one', dtype='u1'), Series([], name='one', dtype='f')], axis=1) tm.assert_frame_equal(result, expected, check_index_type=False) def test_usecols_dtypes(self): data = """\ 1,2,3 4,5,6 7,8,9 10,11,12""" result = self.read_csv(StringIO(data), usecols=(0, 1, 2), names=('a', 'b', 'c'), header=None, converters={'a': str}, dtype={'b': int, 'c': float}, ) result2 = self.read_csv(StringIO(data), usecols=(0, 2), names=('a', 'b', 'c'), header=None, converters={'a': str}, dtype={'b': int, 'c': float}, ) self.assertTrue((result.dtypes == [object, np.int, np.float]).all()) self.assertTrue((result2.dtypes == [object, np.float]).all()) def test_usecols_implicit_index_col(self): # #2654 data = 'a,b,c\n4,apple,bat,5.7\n8,orange,cow,10' result = self.read_csv(StringIO(data), usecols=['a', 'b']) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(result, expected) def test_usecols_with_whitespace(self): data = 'a b c\n4 apple bat 5.7\n8 orange cow 10' result = self.read_csv(StringIO(data), delim_whitespace=True, usecols=('a', 'b')) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(result, expected) def test_usecols_regex_sep(self): # #2733 data = 'a b c\n4 apple bat 5.7\n8 orange cow 10' df = self.read_csv(StringIO(data), sep='\s+', usecols=('a', 'b')) expected = DataFrame({'a': ['apple', 'orange'], 'b': ['bat', 'cow']}, index=[4, 8]) tm.assert_frame_equal(df, expected) def test_pure_python_failover(self): data = "a,b,c\n1,2,3#ignore this!\n4,5,6#ignorethistoo" result = self.read_csv(StringIO(data), comment='#') expected = DataFrame({'a': [1, 4], 'b': [2, 5], 'c': [3, 6]}) tm.assert_frame_equal(result, expected) def test_decompression(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, compression='gzip') tm.assert_frame_equal(result, expected) result = self.read_csv(open(path, 'rb'), compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() result = self.read_csv(path, compression='bz2') tm.assert_frame_equal(result, expected) # result = self.read_csv(open(path, 'rb'), compression='bz2') # tm.assert_frame_equal(result, expected) self.assertRaises(ValueError, self.read_csv, path, compression='bz3') with open(path, 'rb') as fin: if compat.PY3: result = self.read_csv(fin, compression='bz2') tm.assert_frame_equal(result, expected) else: self.assertRaises(ValueError, self.read_csv, fin, compression='bz2') def test_decompression_regex_sep(self): try: import gzip import bz2 except ImportError: raise nose.SkipTest('need gzip and bz2 to run') data = open(self.csv1, 'rb').read() data = data.replace(b',', b'::') expected = self.read_csv(self.csv1) with tm.ensure_clean() as path: tmp = gzip.GzipFile(path, mode='wb') tmp.write(data) tmp.close() # GH 6607 # Test currently only valid with the python engine because of # regex sep. Temporarily copied to TestPythonParser. # Here test for ValueError when passing regex sep: with tm.assertRaisesRegexp(ValueError, 'regex sep'): # XXX result = self.read_csv(path, sep='::', compression='gzip') tm.assert_frame_equal(result, expected) with tm.ensure_clean() as path: tmp = bz2.BZ2File(path, mode='wb') tmp.write(data) tmp.close() # GH 6607 with tm.assertRaisesRegexp(ValueError, 'regex sep'): # XXX result = self.read_csv(path, sep='::', compression='bz2') tm.assert_frame_equal(result, expected) self.assertRaises(ValueError, self.read_csv, path, compression='bz3') def test_memory_map(self): # it works! result = self.read_csv(self.csv1, memory_map=True) def test_disable_bool_parsing(self): # #2090 data = """A,B,C Yes,No,Yes No,Yes,Yes Yes,,Yes No,No,No""" result = read_csv(StringIO(data), dtype=object) self.assertTrue((result.dtypes == object).all()) result = read_csv(StringIO(data), dtype=object, na_filter=False) self.assertEqual(result['B'][2], '') def test_euro_decimal_format(self): data = """Id;Number1;Number2;Text1;Text2;Number3 1;1521,1541;187101,9543;ABC;poi;4,738797819 2;121,12;14897,76;DEF;uyt;0,377320872 3;878,158;108013,434;GHI;rez;2,735694704""" df2 = self.read_csv(StringIO(data), sep=';', decimal=',') self.assertEqual(df2['Number1'].dtype, float) self.assertEqual(df2['Number2'].dtype, float) self.assertEqual(df2['Number3'].dtype, float) def test_custom_lineterminator(self): data = 'a,b,c~1,2,3~4,5,6' result = self.read_csv(StringIO(data), lineterminator='~') expected = self.read_csv(StringIO(data.replace('~', '\n'))) tm.assert_frame_equal(result, expected) data2 = data.replace('~', '~~') result = self.assertRaises(ValueError, read_csv, StringIO(data2), lineterminator='~~') def test_raise_on_passed_int_dtype_with_nas(self): # #2631 data = """YEAR, DOY, a 2001,106380451,10 2001,,11 2001,106380451,67""" self.assertRaises(Exception, read_csv, StringIO(data), sep=",", skipinitialspace=True, dtype={'DOY': np.int64}) def test_na_trailing_columns(self): data = """Date,Currenncy,Symbol,Type,Units,UnitPrice,Cost,Tax 2012-03-14,USD,AAPL,BUY,1000 2012-05-12,USD,SBUX,SELL,500""" result = self.read_csv(StringIO(data)) self.assertEqual(result['Date'][1], '2012-05-12') self.assertTrue(result['UnitPrice'].isnull().all()) def test_parse_ragged_csv(self): data = """1,2,3 1,2,3,4 1,2,3,4,5 1,2 1,2,3,4""" nice_data = """1,2,3,, 1,2,3,4, 1,2,3,4,5 1,2,,, 1,2,3,4,""" result = self.read_csv(StringIO(data), header=None, names=['a', 'b', 'c', 'd', 'e']) expected = self.read_csv(StringIO(nice_data), header=None, names=['a', 'b', 'c', 'd', 'e']) tm.assert_frame_equal(result, expected) # too many columns, cause segfault if not careful data = "1,2\n3,4,5" result = self.read_csv(StringIO(data), header=None, names=lrange(50)) expected = self.read_csv(StringIO(data), header=None, names=lrange(3)).reindex(columns=lrange(50)) tm.assert_frame_equal(result, expected) def test_tokenize_CR_with_quoting(self): # #3453, this doesn't work with Python parser for some reason data = ' a,b,c\r"a,b","e,d","f,f"' result = self.read_csv(StringIO(data), header=None) expected = self.read_csv(StringIO(data.replace('\r', '\n')), header=None) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data)) expected = self.read_csv(StringIO(data.replace('\r', '\n'))) tm.assert_frame_equal(result, expected) def test_raise_on_no_columns(self): # single newline data = "\n" self.assertRaises(ValueError, self.read_csv, StringIO(data)) # test with more than a single newline data = "\n\n\n" self.assertRaises(ValueError, self.read_csv, StringIO(data)) def test_warn_if_chunks_have_mismatched_type(self): # Issue #3866 If chunks are different types and can't # be coerced using numerical types, then issue warning. integers = [str(i) for i in range(499999)] data = "a\n" + "\n".join(integers + ['a', 'b'] + integers) with tm.assert_produces_warning(DtypeWarning): df = self.read_csv(StringIO(data)) self.assertEqual(df.a.dtype, np.object) def test_invalid_c_parser_opts_with_not_c_parser(self): from pandas.io.parsers import _c_parser_defaults as c_defaults data = """1,2,3,, 1,2,3,4, 1,2,3,4,5 1,2,,, 1,2,3,4,""" engines = 'python', 'python-fwf' for default in c_defaults: for engine in engines: kwargs = {default: object()} with tm.assertRaisesRegexp(ValueError, 'The %r option is not supported ' 'with the %r engine' % (default, engine)): read_csv(StringIO(data), engine=engine, **kwargs) def test_passing_dtype(self): # GH 6607 # This is a copy which should eventually be merged into ParserTests # when the dtype argument is supported by all engines. df = DataFrame(np.random.rand(5, 2), columns=list( 'AB'), index=['1A', '1B', '1C', '1D', '1E']) with tm.ensure_clean('__passing_str_as_dtype__.csv') as path: df.to_csv(path) # GH 3795 # passing 'str' as the dtype result = self.read_csv(path, dtype=str, index_col=0) tm.assert_series_equal(result.dtypes, Series( {'A': 'object', 'B': 'object'})) # we expect all object columns, so need to convert to test for # equivalence result = result.astype(float) tm.assert_frame_equal(result, df) # invalid dtype self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'foo', 'B': 'float64'}, index_col=0) # valid but we don't support it (date) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0) self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'datetime64', 'B': 'float64'}, index_col=0, parse_dates=['B']) # valid but we don't support it self.assertRaises(TypeError, self.read_csv, path, dtype={'A': 'timedelta64', 'B': 'float64'}, index_col=0) def test_fallback_to_python(self): # GH 6607 data = 'a b c\n1 2 3' # specify C engine with C-unsupported options (raise) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep=None, delim_whitespace=False) with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', sep='\s') with tm.assertRaisesRegexp(ValueError, 'does not support'): self.read_table(StringIO(data), engine='c', skip_footer=1) def test_raise_on_sep_with_delim_whitespace(self): # GH 6607 data = 'a b c\n1 2 3' with tm.assertRaisesRegexp(ValueError, 'you can only specify one'): self.read_table(StringIO(data), sep='\s', delim_whitespace=True) def test_single_char_leading_whitespace(self): # GH 9710 data = """\ MyColumn a b a b\n""" expected = DataFrame({'MyColumn': list('abab')}) result = self.read_csv(StringIO(data), delim_whitespace=True, skipinitialspace=True) tm.assert_frame_equal(result, expected) result = self.read_csv(StringIO(data), lineterminator='\n', skipinitialspace=True) tm.assert_frame_equal(result, expected) def test_bool_header_arg(self): # GH 6114 data = """\ MyColumn a b a b""" for arg in [True, False]: with tm.assertRaises(TypeError): pd.read_csv(StringIO(data), header=arg) with tm.assertRaises(TypeError): pd.read_table(StringIO(data), header=arg) with tm.assertRaises(TypeError): pd.read_fwf(StringIO(data), header=arg) def test_multithread_stringio_read_csv(self): # GH 11786 max_row_range = 10000 num_files = 100 bytes_to_df = [ '\n'.join( ['%d,%d,%d' % (i, i, i) for i in range(max_row_range)] ).encode() for j in range(num_files)] files = [BytesIO(b) for b in bytes_to_df] # Read all files in many threads pool = ThreadPool(8) results = pool.map(pd.read_csv, files) first_result = results[0] for result in results: tm.assert_frame_equal(first_result, result) def test_multithread_path_multipart_read_csv(self): # GH 11786 num_tasks = 4 file_name = '__threadpool_reader__.csv' num_rows = 100000 df = self.construct_dataframe(num_rows) with tm.ensure_clean(file_name) as path: df.to_csv(path) final_dataframe = self.generate_multithread_dataframe(path, num_rows, num_tasks) tm.assert_frame_equal(df, final_dataframe) class TestMiscellaneous(tm.TestCase): # for tests that don't fit into any of the other classes, e.g. those that # compare results for different engines or test the behavior when 'engine' # is not passed def test_compare_whitespace_regex(self): # GH 6607 data = ' a b c\n1 2 3 \n4 5 6\n 7 8 9' result_c = pd.read_table(StringIO(data), sep='\s+', engine='c') result_py = pd.read_table(StringIO(data), sep='\s+', engine='python') print(result_c) tm.assert_frame_equal(result_c, result_py) def test_fallback_to_python(self): # GH 6607 data = 'a b c\n1 2 3' # specify C-unsupported options with python-unsupported option # (options will be ignored on fallback, raise) with tm.assertRaisesRegexp(ValueError, 'Falling back'): pd.read_table(StringIO(data), sep=None, delim_whitespace=False, dtype={'a': float}) with tm.assertRaisesRegexp(ValueError, 'Falling back'): pd.read_table(StringIO(data), sep='\s', dtype={'a': float}) with tm.assertRaisesRegexp(ValueError, 'Falling back'): pd.read_table(StringIO(data), skip_footer=1, dtype={'a': float}) # specify C-unsupported options without python-unsupported options with tm.assert_produces_warning(parsers.ParserWarning): pd.read_table(StringIO(data), sep=None, delim_whitespace=False) with tm.assert_produces_warning(parsers.ParserWarning): pd.read_table(StringIO(data), sep='\s') with tm.assert_produces_warning(parsers.ParserWarning): pd.read_table(StringIO(data), skip_footer=1) class TestParseSQL(tm.TestCase): def test_convert_sql_column_floats(self): arr = np.array([1.5, None, 3, 4.2], dtype=object) result = lib.convert_sql_column(arr) expected = np.array([1.5, np.nan, 3, 4.2], dtype='f8') assert_same_values_and_dtype(result, expected) def test_convert_sql_column_strings(self): arr = np.array(['1.5', None, '3', '4.2'], dtype=object) result = lib.convert_sql_column(arr) expected = np.array(['1.5', np.nan, '3', '4.2'], dtype=object) assert_same_values_and_dtype(result, expected) def test_convert_sql_column_unicode(self): arr = np.array([u('1.5'), None, u('3'), u('4.2')], dtype=object) result = lib.convert_sql_column(arr) expected = np.array([u('1.5'), np.nan, u('3'), u('4.2')], dtype=object) assert_same_values_and_dtype(result, expected) def test_convert_sql_column_ints(self): arr = np.array([1, 2, 3, 4], dtype='O') arr2 = np.array([1, 2, 3, 4], dtype='i4').astype('O') result = lib.convert_sql_column(arr) result2 = lib.convert_sql_column(arr2) expected = np.array([1, 2, 3, 4], dtype='i8') assert_same_values_and_dtype(result, expected) assert_same_values_and_dtype(result2, expected) arr = np.array([1, 2, 3, None, 4], dtype='O') result = lib.convert_sql_column(arr) expected = np.array([1, 2, 3, np.nan, 4], dtype='f8') assert_same_values_and_dtype(result, expected) def test_convert_sql_column_longs(self): arr = np.array([long(1),
long(2)
pandas.compat.long
#!/usr/bin/env python # coding: utf-8 # In[850]: import pandas as pd import numpy as np import matplotlib.pyplot as plt import pandas as pd import warnings warnings.filterwarnings("ignore") from sklearn.model_selection import cross_val_score,KFold from sklearn.neighbors import KNeighborsRegressor # In[851]: ###DATA FRAMES### # Supplied Dataset BAH # power_df = pd.DataFrame.from_csv("energy_db.csv") # GDP - World Bank Group # gdp_df = pd.DataFrame.from_csv("gdp_power.csv") # Population - World Bank Group # population_df = pd.DataFrame.from_csv("population.csv") # Hydropower Status Report - International Hydropower Association # hydro_df = pd.DataFrame.from_csv("hydro_power.csv") # Freedom in the World 2018 - Freedomhouse.org # freedom_df = pd.DataFrame.from_csv("freedom.csv") # Natural Disaster Probability - World Risk Report 2016 # disasters_df = pd.DataFrame.from_csv("NaturalDisasterChance.csv") # Nuclear Power Statistics - World Nuclear Association # nuclear_df = pd.DataFrame.from_csv("Third World Nuclear Totals.csv") # Wind Energy Statistics - World Energy Council # wind_df = pd.DataFrame.from_csv("Wind energy - Wind energy.csv") # Solar Energy Statistics - World Energy Council / World Bank Group # solar_df = pd.DataFrame.from_csv("solar_potential - hydro_power.csv") # Class Attributes for Training Data # classattr_df = pd.DataFrame.from_csv("TrainClassAtributes.csv") # In[852]: # Remove irrelevant values # power_df = power_df.drop(columns=["gppd_idnr", "owner", "source", "url", "geolocation_source", "year_of_capacity_data", "generation_gwh_2013", "generation_gwh_2014", "generation_gwh_2015", "generation_gwh_2016"]) # In[853]: # Dataframe Merge # # In[854]: power_df = pd.merge(power_df, gdp_df, on=["country"]) # In[855]: power_df = pd.merge(power_df, population_df, on=["country"]) # In[856]: power_df = pd.merge(power_df, hydro_df, on=["country_long"]) # In[857]: power_df = pd.merge(power_df, freedom_df, on=["country_long"]) # In[858]: power_df =
pd.merge(power_df, disasters_df, on=["country_long"])
pandas.merge
import pandas as pd from pandas import Series, DataFrame, Panel import numpy as np from datetime import datetime, date, time import matplotlib.pyplot as plt import matplotlib as mpl t = pd.read_csv('ParkingCashlessDenorm.csv', header=None) u = t.rename(columns= {0:"amount_paid", 1:"paid_duration_mins", 2:"start_date", 3:"start_day", 4:"end_date", 5:"end_day", 6:"start_time", 7:"end_time", 8:"DesignationType", 9:"Hours_of_Control", 10:"Tariff", 11:"Max_Stay", 12:"Spaces", 13:"Street", 14:"x_coordinate", 15:"y_coordinate", 16:"latitude", 17:"longitude"}) v = u[(u.Street == 'Devonshire Place') & (pd.to_datetime(u.start_date) == pd.to_datetime('2013-02-28 00:00:00'))] v['start_date'] = pd.to_datetime(v['start_date']) v['end_date'] = pd.to_datetime(v['end_date']) # make a datetime for the selected day at midnight ts_now =
pd.to_datetime("2013-02-28 00:00:00")
pandas.to_datetime
import pandas as pd import numpy as np from multiprocessing import Pool import tqdm import sys import gzip as gz from tango.prepare import init_sqlite_taxdb def translate_taxids_to_names(res_df, reportranks, name_dict): """ Takes a pandas dataframe with ranks as columns and contigs as rows and taxids as values and translates taxids to names column by column using a taxid->name dictionary Parameters ---------- res_df: pandas.DataFrame Results with taxids reportranks: list List of taxonomic ranks to report results for name_dict: dictionary Dictionary mapping taxids -> names Returns ------- res: pandas.DataFrame Dataframe with names instead of taxids """ res = {} for rank in reportranks: res[rank] = [name_dict[taxid] for taxid in res_df.loc[:,rank]] res = pd.DataFrame(res) res.index = res_df.index res = res.loc[:, reportranks] return res def get_thresholds(df, top=10): """ Here bit-score thresholds are calculated per query an returned in a dictionary. The pandas DataFrame is first sorted by bitscore (high to low), then grouped by query, then for the first entry per query the top% of the best hit is calculated and converted to dictionary. Parameters ---------- df: pandas.DataFrame DataFrame of diamond results top: int Percentage range of top bitscore Returns ------- thresholds: dict Dictionary with queries as keys and bitscore thresholds as values """ thresholds = (df.sort_values("bitscore", ascending=False).groupby(level=0).first().bitscore * ( (100 - top)) / 100).to_dict() return thresholds def get_rank_thresholds(ranks, thresholds): """ Constructs dictionary of rank-specific thresholds Parameters ---------- ranks: list Taxonomic ranks to assign thresholds: list Thresholds for taxonomic ranks Returns ------- Dictionary of thresholds """ t_len, r_len = len(thresholds), len(ranks) if t_len != r_len: sys.exit("ERROR: Number of taxonomic ranks ({}) and number of thresholds ({}) differ\n".format(r_len, t_len)) return dict(zip(ranks, thresholds)) def add_names(x, taxid, ncbi_taxa): """ This function translates taxonomy ids to names. It operates per-row in the lineage dataframe. Parameters ---------- x: pandas.DataFrame DataFrame of one taxid and its taxonomic ranks taxid: int Taxid being evaluated ncbi_taxa: ete3.ncbi_taxonomy.ncbiquery.NCBITaxa The ete3 sqlite database connection Returns ------- The original DataFrame merged with the taxa names """ # Get a names dictionary for all taxids in the row names = ncbi_taxa.get_taxid_translator(list(x.loc[taxid].values) + [taxid]) n = {} # Iterate ranks for rank in list(x.columns): # Get taxid for the current rank t = x.loc[taxid, rank] # If taxid is negative it means that there is no classified taxonomy at this rank # Instead we get the last known name in the hierarchy. We can then use the negative values to translate into # the name with the "Unclassified." prefix. # If the name is 'root' we just use 'Unclassified' if t < 0: known_name = names[-t] if known_name == "root": name = "Unclassified" else: name = known_name # If taxid is positive we just use the name from the dictionary else: name = names[t] # Add name to a dictionary with keys in the form of {rank}.name n["{}.name".format(rank)] = name name_df = pd.DataFrame(n, index=[taxid]) return pd.merge(x, name_df, left_index=True, right_index=True) def propagate_lower(x, taxid, ranks): """ Shift known ranks down through the taxonomic hierarchy. Parameters ---------- x: pandas.DataFrame DataFrame of one taxid and its taxonomic ranks taxid: int Taxid being evaluated ranks: list Ranks used for assigning Returns ------- pandas.DataFrame updated with missing ranks Some proteins in the database may map to a taxonomic rank above the lowest taxonomic rank that we are trying to assign. For instance, if we use the ranks 'superkingdom phylum genus species' and a protein maps to a taxid at rank phylum then we want to add the taxonomic information at the genus and species levels. This is done here by adding the negative taxid of the lowest known rank to the lower ranks. Example: In the Uniref90 database the entry 'E1GVX1' maps to taxonomy id 838 (rank: genus, name: Prevotella). When creating the lineage for taxid 838 we add '-838' to rank species. """ rev_ranks = [ranks[x] for x in list(range(len(ranks) - 1, -1, -1))] missing = {} known = taxid for rank in rev_ranks[0:]: if rank not in x.columns: missing[rank] = -known else: known = x.loc[taxid, rank] return pd.merge(x, pd.DataFrame(missing, index=[taxid]), left_index=True, right_index=True) def get_lca(r, assignranks, reportranks): """ Assign lowest common ancestor from a set of taxids. Parameters ---------- r: pandas.DataFrame Results for a single query, extracted from the main diamond results file assignranks: list Taxonomic ranks to assign taxonomy for reportranks: list Taxonomic ranks to report taxonomy for Returns ------- a tuple of dictionaries with ranks as keys and taxa names/ids as values This function takes a query-slice of the diamond results after filtering by score (and rank-threshold if tango mode is 'rank_lca' or 'rank_vote'). It then iterates through each rank in reverse order checks how many unique taxids are found at that rank. If there's only one taxid """ query = r.index.unique()[0] # Reverse ranks for iterating rev_ranks = [assignranks[x] for x in list(range(len(assignranks) - 1, -1, -1))] # Iterate through the assignranks for rank in rev_ranks: higher_ranks = reportranks[0:reportranks.index(rank) + 1] higher_rank_names = ["{}.name".format(x) for x in higher_ranks] # Count number of taxa at rank c = r.groupby(rank).count() # If there's only one taxa then we have found the LCA if len(c) == 1: if len(r) == 1: lca_taxids = r.loc[query, higher_ranks].values else: lca_taxids = r.loc[query, higher_ranks].values[0] return dict(zip(higher_ranks, lca_taxids)) return {} def parse_with_rank_thresholds(r, assignranks, reportranks, rank_thresholds, mode, vote_threshold): """Assigns taxonomy using rank_specific thresholds The ranks used to assign taxonomy are iterated in reverse (e.g. species, genus, phylum), at each rank results are filtered by the corresponding rank threshold, if no hits remain after filtering the next rank is evaluated, Then, if mode=='rank_lca', for remaining hits, a lowest common ancestor is calculated from all remaining taxids. However, if mode=='rank_vote', taxids are counted among the remaining hits and all results matching taxids that occur more than vote_threshold are used to determine the lowest common ancestor. If a taxonomy can be assigned at a rank, it is returned directly. If no taxonomy can be assigned at any of the ranks, empty results are returned. Parameters ---------- r: pandas.DataFrame Dataframe slice for a query assignranks: list Taxonomic ranks used to assign taxonomy reportranks: list Taxonomic ranks at which taxonomy is reported rank_thresholds: dict Dictionary of rank_specific thresholds mode: str 'rank_lca' or 'rank_vote' vote_threshold: float Cutoff used to filter out common taxids Returns ------- tuple Dictionaries with taxonomy names and taxonomy ids at each rank """ # Start from lowest rank rev_ranks = [assignranks[x] for x in list(range(len(assignranks) - 1, -1, -1))] for rank in rev_ranks: # Make sure that LCA is not set below current rank allowed_ranks = assignranks[0:assignranks.index(rank) + 1] # Get rank threshold threshold = rank_thresholds[rank] # Filter results by rank threshold try: _r = r.loc[r.pident >= threshold] except KeyError: continue if len(_r) == 0: continue lca_taxids = {} # After filtering, either calculate lca from all filtered taxids if mode == "rank_lca": lca_taxids = get_lca(_r, allowed_ranks, reportranks) # Or at each rank, get most common taxid elif mode == "rank_vote": vote = get_rank_vote(_r, rank, vote_threshold) if len(vote) > 0: lca_taxids = get_lca(vote, allowed_ranks, reportranks) if len(lca_taxids.keys()) > 0: return lca_taxids return {} def get_rank_vote(r, rank, vote_threshold=0.5): """ Filter results based on fraction of taxa Parameters ---------- r: pandas.DataFrame Results for a single query, after filtering with bitscore and rank-specific thresholds rank: str Current rank being investigated vote_threshold: float Required fraction of hits from a single taxa in order to keep taxa Returns ------- Filtered dataframe only containing taxa that meet vote_threshold Here taxa are counted among all hits remaining for a query after filtering using bitscore and rank-specific thresholds. Taxa are counted at a certain rank and counts are normalized. Hits belonging to taxa above vote_threshold are kept while others are filtered out. """ # Create dataframe for unique taxids filtered at this rank threshold taxid_counts = pd.DataFrame(dict.fromkeys(r.staxids.unique(), 1), index=["count"]).T # Add taxid for rank being investigated rank_df = r.groupby("staxids").first().reset_index()[[rank, "staxids"]].set_index("staxids") rank_df = pd.merge(taxid_counts, rank_df, left_index=True, right_index=True) # Sum counts for current rank rank_sum = rank_df.groupby(rank).sum() rank_norm = rank_sum.div(rank_sum.sum()) rank_norm = rank_norm.sort_values("count", ascending=False) votes = rank_norm.loc[rank_norm["count"] > vote_threshold] if len(votes) > 0: return r.loc[r[rank].isin(votes.index)] return [] def propagate_taxids(res, ranks): """ Transfer taxonomy ids to unassigned ranks based on best known taxonomy Example: {'species': -1, 'family': -171549, 'genus': -171549, 'order': 171549, 'phylum': 976, 'class': 200643, 'superkingdom': 2} should become {'species': -171549, 'family': -171549, 'genus': -171549, 'order': 171549, 'phylum': 976, 'class': 200643, 'superkingdom': 2} Parameters ---------- res: dict Dictionary of ranks and taxonomy ids ranks: list Ranks to assign taxonomy to Returns ------- res: dict Dictionary with updated taxonomy ids """ known = -1 for rank in ranks: # If not -1 (Unclassified) at rank, store assignment as known if res[rank] != -1: known = res[rank] continue # If -1 at rank (Unclassified), add the taxid with the '-' prefix if res[rank] == -1: res[rank] = -abs(known) return res def series2df(df): """Converts pandas series to pandas dataframe""" if str(type(df)) == "<class 'pandas.core.series.Series'>": df = pd.DataFrame(df).T return df def read_taxidmap(f, ids): """ Reads the protein to taxid map file and stores mappings Parameters ---------- f: str Input file with protein_id->taxid map ids: list Protein ids to store taxids for Returns ------- Dictionary of protein ids to taxid and all unique taxids """ taxidmap = dict.fromkeys(ids, -1) open_function = open if ".gz" in f: open_function = gz.open with open_function(f, 'rt') as fhin: for line in tqdm.tqdm(fhin, desc="Reading idmap {}".format(f), ncols=100, unit=" lines"): items = (line.rstrip()).rsplit() # If file has only two columns, assume taxid in second if len(items) == 2: protid, taxid = items # Otherwise, assume format is same as NCBI protein mapping else: protid, taxid = items[0], items[2] # Add map to dictionary # We initialize the dictionary with -1 so we make an attempt to add the taxid + 1 # If the protid is not in the dictionary we skip it try: taxidmap[protid] += int(taxid) + 1 except KeyError: continue except ValueError: continue return pd.DataFrame(taxidmap, index=["staxids"]).T, list(set(taxidmap.values())) def read_df(infile, top=10, e=0.001, input_format="tango", taxidmap=None): """ Reads the blast results from file and returns a dictionary with query->results. Note that the input is assumed to be sorted by bitscore for each query. The first entry for a query is used to set the score threshold for storing hits for that query. So if a query has a bitscore of 100 and --top 10 is specified then we only store subsequent hits that have a bitscore of at least (100-0.1*100) = 90. Tango-formatted output contains two additional compared to the standard blast format 6: query1 subject1 93.6 47 3 0 146 6 79 125 8.5e-16 91.3 314295 query1 subject2 100.0 44 0 0 137 6 484 527 2.5e-15 89.7 9347 query2 subject3 53.5 241 84 2 645 7 15 255 1.3e-53 216.9 864142 where the last column is the taxid of the subject. Otherwise the output may have the typical blast format 6 output. Parameters ---------- infile: str Arguments from argument parser top: int Keep results within top% of best bitscore e: float Maximum allowed e-value to keep a hit. input_format: str Blast format. 'tango' if taxid for each subject is present in blast results, otherwise 'blast' taxidmap: str File mapping each subject id to a taxid Returns ------- tuple The function returns a tuple with dictionary of query->results and unique taxonomy ids (if tango format) or unique subject ids """ open_function = open if ".gz" in infile: open_function = gz.open r = {} taxids = [] queries = {} with open_function(infile, 'rt') as fhin: for line in tqdm.tqdm(fhin, desc="Reading {}".format(infile), ncols=100, unit=" lines"): items = line.rstrip().rsplit() query, subject, pident, evalue, score = items[0], items[1], float(items[2]), \ float(items[10]), float(items[11]) try: min_score = queries[query]['min_score'] except KeyError: min_score = score * ((100 - top) / 100) queries[query] = {'min_score': min_score} if score < min_score or evalue > e: continue if input_format == "tango" and len(items) > 12: taxid = items[12] taxids.append(taxid) # TODO: Is there a way to skip storing the same taxid from a worse hit for the same query elif input_format == "blast" and len(items) == 12: taxid = "" if not taxidmap: sys.exit( "ERROR: Standard blast input detected with no protein -> taxid file specified (--taxidmap).") else: continue # Add results for query to dictionary try: r[query] += [[subject, pident, evalue, score, int(taxid)]] except KeyError: r[query] = [[subject, pident, evalue, score, int(taxid)]] # If this is blast format then we return all subject ids found if input_format == "blast": ids = list(set([r[key][i][0] for key in list(r.keys()) for i in range(0, len(r[key]))])) return r, ids # If this is tango format then return all taxids found return r, list(set(taxids)) def process_lineages(items): """ Looks up lineage information from taxids. The lineage object is a list of taxonomic ids corresponding to the full lineage of a single taxid. """ taxid, ranks, taxdir, dbname, lineage = items # Read the taxonomy db ncbi_taxa = init_sqlite_taxdb(taxdir, dbname) # Get ranks for each taxid in the lineage lineage_ranks = ncbi_taxa.get_rank(lineage) x = pd.DataFrame(lineage_ranks, index=["rank"]).T x = x.loc[x["rank"].isin(ranks)].reset_index().T x.columns = x.loc["rank"] x.drop("rank", inplace=True) x.index = [taxid] # Add taxids for lower ranks in the hierarchy x = propagate_lower(x, taxid, ranks) # Add names for taxids x = add_names(x, taxid, ncbi_taxa) return x def make_name_dict(df, ranks): """ Creates a dictionary of taxids to taxonomy names, including Unclassified ranks Parameters ---------- df: pandas.DataFrame Lineage dataframe ranks: list Ranks to store names information for Returns ------- name_dict: dict Name dictionary mapping taxonomy ids to names """ name_dict = {} for rank in ranks: name_dict.update(dict(zip(df[rank].values, df["{}.name".format(rank)].values))) name_dict.update(dict(zip(-abs(df[rank]), "Unclassified." + df["{}.name".format(rank)]))) name_dict[-1] = "Unclassified" return name_dict def make_lineage_df(taxids, taxdir, dbname, ranks, cpus=1): """ Creates a lineage dataframe with full taxonomic information for a list of taxids. Example: taxid species phylum genus genus.name phylum.name species.name 859655 305 1224 48736 Ralstonia Proteobacteria Ralstonia solanacearum 387344 1580 1239 1578 Lactobacillus Firmicutes Lactobacillus brevis 358681 1393 1239 55080 Brevibacillus Firmicutes Brevibacillus brevis Parameters ---------- taxids: list List of taxonomic ids to obtain information for taxdir: str Path to directory holding taxonomic info dbname: str Name of ete3 sqlite database within taxdir ranks: list Ranks to store information for cpus: int Number of cpus to use Returns ------- lineage_df: pandas.DataFrame Data Frame with full taxonomic info """ # Read the taxonomy db ncbi_taxa = init_sqlite_taxdb(taxdir, dbname) lineages = ncbi_taxa.get_lineage_translator(taxids) # Store potential missing taxids and warn user missing_taxids = set([int(x) for x in taxids]).difference(lineages.keys()) # Get possible translations for taxids that have been changed _, translate_dict = ncbi_taxa._translate_merged(list(set(taxids).difference(lineages.keys()))) rename = {y: x for x, y in translate_dict.items()} # Update lineages with missing taxids lineages.update(ncbi_taxa.get_lineage_translator(translate_dict.values())) items = [[taxid, ranks, taxdir, dbname, lineages[taxid]] for taxid in list(lineages.keys())] with Pool(processes=cpus) as pool: res = list( tqdm.tqdm(pool.imap(process_lineages, items), desc="Making lineages", total=len(items), unit=" taxids", ncols=100)) lineage_df = pd.concat(res, sort=False) lineage_df.rename(index=rename, inplace=True) lineage_df.rename(index=lambda x: int(x), inplace=True) for rank in ranks: lineage_df[rank] = pd.to_numeric(lineage_df[rank]) name_dict = make_name_dict(lineage_df, ranks) if len(missing_taxids) > 0: sys.stderr.write("#WARNING: Missing taxids found:\n") sys.stderr.write("#{}\n".format(",".join([str(x) for x in missing_taxids]))) sys.stderr.write("#To fix this, you can try to update the taxonomy database using\n") sys.stderr.write("#tango download taxonomy --force\n") return lineage_df.loc[:,lineage_df.dtypes==int], name_dict def process_queries(args): """Receives a query and its results and assigns taxonomy""" res_taxids = {} min_rank_threshold = 0 query, res, rank_thresholds, top, reportranks, assignranks, mode, vote_threshold, lineage_df, taxidmap = args if len(rank_thresholds) > 0 and "rank" in mode: min_rank_threshold = min([x for x in rank_thresholds.values()]) columns = ['sseqid', 'pident', 'evalue', 'bitscore'] if len(res[0]) == 5: columns += ['staxids'] # Create pandas dataframe for slice res_df = pd.DataFrame(res, columns=columns, index=[query] * len(res)) # Add taxidmap if not present in results if "staxids" not in res_df.columns: res_df = pd.merge(res_df, taxidmap, left_on="sseqid", right_index=True, how="left") # Calculate bit score threshold for slice thresholds = get_thresholds(res_df, top=top) # Set index res_df.index.name = "qseqid" # Merge with lineage df res_df = pd.merge(res_df, lineage_df, left_on="staxids", right_index=True, how="left") # Remove potential nan rows created if the blast results have taxids that are missing from lineage_df res_df = res_df.loc[res_df[reportranks[0]] == res_df[reportranks[0]]] # Initialize dictionary res_taxids[query] = dict.fromkeys(reportranks, -1) # Handle queries that return pandas Series res_df = res_df.loc[res_df.bitscore >= thresholds[query]] res_df = series2df(res_df) lca_taxids = {} # Parse with rank thresholds or by just filtering by bitscore if "rank" in mode: if len(res_df.loc[res_df.pident >= min_rank_threshold]) > 0: lca_taxids = parse_with_rank_thresholds(res_df, assignranks, reportranks, rank_thresholds, mode, vote_threshold) else: lca_taxids = get_lca(res_df, assignranks, reportranks) # Update results with lca_taxids res_taxids[query].update(lca_taxids) res_taxids[query] = propagate_taxids(res_taxids[query], reportranks) return res_taxids[query], query def write_blobout(f, res_taxids, queries, ranks): """ Writes output in a format for use with blobtools Parameters ---------- f: str Outputfile res_taxids: list List of results for queries queries: list List of queries ranks: list Ranks to write results for """ rev_ranks = [ranks[x] for x in list(range(len(ranks) - 1, -1, -1))] with open(f, 'w') as fhout: for i, query in enumerate(queries): d = res_taxids[i] for rank in rev_ranks: if rank in d.keys(): taxid = d[rank] if taxid != -1: fhout.write("{query}\t{taxid}\t1\tref\n".format(query=query, taxid=abs(taxid))) break def stage_queries(res, lineage_df, input_format="tango", rank_thresholds=[45, 60, 85], top=10, mode="rank_lca", vote_threshold=0.5, assignranks=["phylum", "genus", "species"], reportranks=["superkingdom", "phylum", "class", "order", "family", "genus", "species"], taxidmap=None): """ Parameters ---------- res: dict Dictionary with queries as keys and a list of hits as values lineage_df: pandas.DataFrame Data frame of taxids and taxonomic information input_format: str 'tango' or 'blast' rank_thresholds: list List of thresholds for ranks top: int Only evaluate results within <top> percent bitscore of best scoring hit mode: str 'rank_lca' or 'rank_vote' for rank thresholds usage or 'score' to just filter by bitscore vote_threshold: float Cutoff used to filter out common taxids assignranks: list Ranks used to assign taxonomy reportranks: list Ranks to report taxonomy for (inferred from assignranks) taxidmap: dict Dictionary with subject ids as keys and taxids as values Returns ------- items: list List of items to send to multiprocessing """ items = [] total_queries = len(res) for q in tqdm.tqdm(sorted(res.keys()), total=total_queries, unit=" queries", ncols=100, desc="Staging queries"): # If the diamond output does not have standard tango format we do some work to add this information. item = [q, res[q], rank_thresholds, top, reportranks, assignranks, mode, vote_threshold] if input_format == "blast": # Get all subject ids s = list(set([res[q][i][0] for i in range(0, len(res[q]))]).intersection(lineage_df.index)) # Get all taxids for this query q_taxids = taxidmap.loc[s, "staxids"].unique() item += [lineage_df.loc[q_taxids], taxidmap.loc[s]] # If diamond output has taxonomy id then directly create the list of results to # feed into the multiprocessing pool else: # Get all taxids for query q_taxids = list(set([res[q][i][-1] for i in range(0, len(res[q]))]).intersection(lineage_df.index)) item += [lineage_df.loc[q_taxids], None] items.append(item) return items def parse_hits(diamond_results, outfile, taxidout=False, blobout=False, top=10, evalue=0.001, input_format="tango", taxidmap=False, mode="rank_lca", vote_threshold=0.5, assignranks=["phylum", "genus", "species"], reportranks=["superkingdom", "phylum", "class", "order", "family", "genus", "species"], rank_thresholds=[45, 60, 85], taxdir="./taxonomy/", sqlitedb="taxonomy.sqlite", chunksize=1, cpus=1): """ This is the main function to handle diamond result files and assign taxonomy to queries. The function performs the following steps: 1. Checks rank-specific thresholds 2. Reads the diamond results file 3. If required, maps subject ids to taxonomy ids 4. Creates a dataframe of all unique taxonomy ids found for subjects and their taxa names for each rank 5. Stages queries for multiprocessing 6. Processes each query and returns it with assigned taxonomy 7. Writes output to file Parameters ---------- diamond_results: str Diamond results file outfile: str File to write results to taxidout: str If True, write results with taxonomic ids instead of names to file blobout: str If True, write output in blobtools format top: int Evaluate hits within this bitscore percent range of the best scoring hit evalue: float Filter hits with evalue larger than this input_format: str 'tango' or 'blast' depending on whether the diamond results has subject taxids in the last column or not taxidmap: str Path to a file mapping subject ids to taxids (needed if input_format != 'tango') mode: str How to assign taxonomy: 'rank_lca' and 'rank_vote' use rank specific thresholds, 'score' only filters by bitscore vote_threshold: float When using 'rank_vote' to assign taxonomy, this is the fraction of hits that must have the same taxid to assign a taxonomy at a rank assignranks: list Ranks used to assign taxonomy reportranks: list Ranks to report taxonomy for rank_thresholds: list Percent identity thresholds for assigning taxonomy taxdir: str Path to directory holding taxonomic information files sqlitedb: str Name of ete3 sqlite database within taxdir chunksize: int The size of chunks for the iterable being submitted to the process pool cpus: int The number of worker processes to use args: Input arguments from __main__.py Returns ------- Return code 0 if function finished without issue """ # Set up rank thresholds if "rank" in mode: rank_thresholds = get_rank_thresholds(assignranks, rank_thresholds) # Read diamond results res, ids = read_df(diamond_results, top, evalue, input_format, taxidmap) # Read protein -> taxidmap file if specified taxidmap =
pd.DataFrame()
pandas.DataFrame
""" ``xrview.handlers`` """ import asyncio import numpy as np import pandas as pd from bokeh.document import without_document_lock from bokeh.models import ColumnDataSource from pandas.core.indexes.base import InvalidIndexError from tornado import gen from tornado.platform.asyncio import AnyThreadEventLoopPolicy # TODO this fixes issues with tornado>=5, but it might also be the reason for # the backed up range update callbacks # see https://github.com/tornadoweb/tornado/issues/2531 asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy()) class DataHandler(object): """ Parameters ---------- data : pandas DataFrame """ def __init__(self, data): self.source = ColumnDataSource(data) self.source.add(data.index, "index") class InteractiveDataHandler(DataHandler): def __init__(self, data, context=None, verbose=False): super(InteractiveDataHandler, self).__init__(data) self.data = data self.source_data = self.source.data self.context = context self.verbose = verbose self.selection_bounds = None self.selection = [] self.pending_update = False self.update_buffer = None self.callbacks = { "update_data": [], "reset_data": [], "update_source": [], } def get_dict(self): """ Get data as a dict. """ new_source_data = self.data.to_dict(orient="list") new_source_data["index"] = self.data.index for k in list(new_source_data): if isinstance(k, tuple): new_source_data["_".join(k)] = new_source_data.pop(k) return new_source_data @without_document_lock @gen.coroutine def update(self, **kwargs): """ Update callback for handler. """ self.pending_update = True self.update_data(**kwargs) self.update_selection() if self.context is not None and self.context.doc is not None: self.context.doc.add_next_tick_callback(self.update_source) @without_document_lock @gen.coroutine def reset(self): """ Reset data and selection to be displayed. """ self.selection_bounds = None self.selection = [] for c in self.callbacks["reset_data"]: c() if self.context is not None and self.context.doc is not None: self.context.doc.add_next_tick_callback(self.update_source) @without_document_lock @gen.coroutine def update_data(self, **kwargs): """ Update data and selection to be displayed. """ self.source_data = self.get_dict() for c in self.callbacks["update_data"]: c() @without_document_lock @gen.coroutine def update_selection(self): """ Update selection. """ if ( self.source.selected is not None and self.selection_bounds is not None ): self.selection = list( np.where( (self.source_data["index"] >= self.selection_bounds[0]) & (self.source_data["index"] <= self.selection_bounds[1]) )[0] ) else: self.selection = [] @gen.coroutine def update_source(self): """ Update data and selected.indices of self.source """ if self.verbose: print("Updating source") self.source.data = self.source_data if self.source.selected is not None: self.source.selected.indices = self.selection for c in self.callbacks["update_source"]: c() self.pending_update = False if self.update_buffer is not None: self.context.doc.add_next_tick_callback(self.update_buffer) self.update_buffer = None def add_callback(self, method, callback): """ Add a callback to one of this instance's methods. Parameters ---------- method : str The name of the method this callback will be attached to. callback : callable The callback function. """ if method not in self.callbacks: raise ValueError("Unrecognized method name: " + str(method)) if callback in self.callbacks[method]: raise ValueError( str(callback) + " has already been attached to this instance." ) self.callbacks[method].append(callback) class ResamplingDataHandler(InteractiveDataHandler): """ Parameters ---------- data : pandas DataFrame factor : numeric lowpass : bool, default False context : TimeseriesViewer, optional with_range : bool, default True """ def __init__( self, data, factor, lowpass=False, context=None, with_range=True, verbose=False, ): self.data = data self.factor = factor self.lowpass = lowpass self.context = context self.verbose = verbose if with_range: self.source_data = self.get_dict_from_range( self.data.index[0], self.data.index[-1] ) self.source = ColumnDataSource(self.source_data) else: self.source = ColumnDataSource(self.data) self.source.add(self.data.index, "index") self.source_data = self.source.data self.selection_bounds = None self.selection = [] self.pending_update = False self.update_buffer = None self.callbacks = { "update_data": [], "reset_data": [], "update_source": [], } @staticmethod def from_range(data, max_samples, start, end, lowpass): """ Get sub-sampled pandas DataFrame from index range. Parameters ---------- data : pandas DataFrame The data to be sub-sampled max_samples : numeric The subsampling factor. start : numeric The start of the range to be sub-sampled. end : numeric The end of the range to be sub-sampled. Returns ------- data_new : pandas DataFrame A sub-sampled slice of the data. """ # handle the case of no data if data.shape[0] == 0: return data if start is None: start = 0 else: try: start = data.index.get_loc(start, method="nearest") except InvalidIndexError: # handle non-ordered/non-unique index start = np.argmin(np.abs(data.index - start)) if end is None: end = data.shape[0] else: try: end = data.index.get_loc(end, method="nearest") + 1 except InvalidIndexError: # handle non-ordered/non-unique index end = np.argmin(np.abs(data.index - end)) + 1 step = int(np.ceil((end - start) / max_samples)) # TODO: handle NaNs at start/end if step == 0: # hacky solution for range reset data_new = pd.concat((data.iloc[:1], data.iloc[-1:])) else: data_new = data.iloc[start:end] if step > 1 and lowpass: # TODO make this work from scipy.signal import butter, filtfilt for c in data_new.columns: if c != "selected": coefs = butter(3, 1 / step) data_new[c] = filtfilt( coefs[0], coefs[1], data_new.loc[:, c] ) data_new = data_new.iloc[::step] # hacky solution for range reset if start > 0: data_new =
pd.concat((data.iloc[:1], data_new))
pandas.concat
from bs4 import BeautifulSoup import os import glob import pandas as pd if not os.path.exists("parsed_files"): os.mkdir("parsed_files") df =
pd.DataFrame()
pandas.DataFrame
import os import pandas as pd import datetime from scrape_data.queries import * from scrape_data.mysql_connect import * def choose_team(country_name, division): """ This function returns a list of the teams per country and will populate a drop down in the callbacks :param country_name: :return: list of team names per country """ from datetime import datetime #connecting to DB conn = footy_connect() #grabbing dataframe df = grab_team_names(conn, division, country_name) df = create_seasons_list(df) today_year = datetime.now().year full = str(today_year-1) + '/' + str(today_year) df = df.loc[df['dateYear'] == full] df = df.drop_duplicates(subset='home_team') conn.close() return df def home_vs_away(df, team_name): """ Helper function to check out wins loses and draws for a given team. :param df: dataframe containing information to determine home or away wins :return: df """ outcome = [] for index, row in df.iterrows(): if row["home_team"] == team_name and row["full_time_results"] == 'H': outcome.append("win") elif row['home_team'] == team_name and row['full_time_results'] == 'A': outcome.append('lose') elif row['away_team'] == team_name and row['full_time_results'] == 'A': outcome.append('win') elif row['away_team'] == team_name and row['full_time_results'] == 'H': outcome.append('lose') elif row["away_team_goals"] == row["home_team_goals"]: outcome.append("draw") df['outcome'] = outcome return df def run_win_pct(team_name, df): """ Function that calculates a teams winning percentage Year over Year (YoY) Calculation: Number of wins by the total number of competitions. Then multiply by 100 = win percentage. Number of loses by the total number of competitions. Then multiply by 100 = loss percentage this function also takes into account the home and away win/loss percentages. :param team_name: Takes in the state of the team_names dropdown :return:a dataframe That returns percentages for specific teams """ df['home_team'] = df['home_team'].str.lower() df['away_team'] = df['away_team'].str.lower() team_name = team_name.lower() df_home = df[df['home_team'] == team_name] df_away = df[df['away_team'] == team_name] frames = [df_home,df_away] df_fill = pd.concat(frames) df = home_vs_away(df_fill, team_name) home_matches = df[df['home_team'] == team_name] away_matches = df[df['away_team'] == team_name] home_matches = home_matches.drop(columns = ['away_team']) away_matches = away_matches.drop(columns = ['home_team']) #wins per season home_team_win = home_matches.groupby(["home_team","dateYear"])["outcome"].apply( lambda x: x[x.str.contains("win")].count()).reset_index() away_team_win = away_matches.groupby(['away_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('win')].count()).reset_index() home_team_loss = home_matches.groupby(['home_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('lose')].count()).reset_index() away_team_loss = away_matches.groupby(['away_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('lose')].count()).reset_index() home_team_tie = home_matches.groupby(['home_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('draw')].count()).reset_index() away_team_tie = away_matches.groupby(['away_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('draw')].count()).reset_index() #matches played per season searchFor = ['win','lose','draw'] matches_home = home_matches.groupby(['home_team','dateYear'])['outcome'].apply( lambda x: x[x.str.contains('|'.join(searchFor))].count()).reset_index() matches_away = away_matches.groupby(['away_team', 'dateYear'])['outcome'].apply( lambda x: x[x.str.contains('|'.join(searchFor))].count()).reset_index() #goals for and against match_numbers = matches_home.merge(matches_away, how='left', left_on='dateYear', right_on='dateYear') loss_merge = home_team_loss.merge(away_team_loss, how='left', left_on='dateYear', right_on='dateYear') tie_merge = home_team_tie.merge(away_team_tie, how='left', left_on='dateYear', right_on='dateYear') fin = home_team_win.merge(away_team_win, how = 'left', left_on='dateYear', right_on='dateYear') fin['Total Wins'] = fin['outcome_x'] + fin['outcome_y'] fin['Total Losses'] = loss_merge['outcome_x'] + loss_merge['outcome_y'] fin['Total Draws'] = tie_merge['outcome_x'] + tie_merge['outcome_y'] fin['Total Matches'] = match_numbers['outcome_x'] + match_numbers['outcome_y'] fin['Win PCT'] = (fin['Total Wins'] / fin['Total Matches'] * 100).round(2) fin['Loss PCT'] = (fin['Total Losses'] / fin['Total Matches'] * 100).round(2) fin['Draw PCT'] = (fin['Total Draws'] / fin['Total Matches'] * 100).round(2) #home match percentage fin['Home Win PCT'] = (home_team_win['outcome'] / matches_home['outcome'] * 100).round(2) fin['Away Win PCT'] = (away_team_win['outcome'] / matches_away['outcome'] * 100).round(2) fin['Home Loss PCT'] = (home_team_loss['outcome'] / matches_home['outcome'] * 100).round(2) fin['Away Loss PCT'] = (away_team_loss['outcome'] / matches_away['outcome'] * 100).round(2) return fin def create_seasons_list(df=None, country = None): """ This function pretty much breaks down the date of a given match then buckets that information to a particular season. I.E: a match played on 02/07/2018 would be bucketed in the 2017/2018 season. :param df: takes in a dataframe :return: a dataframe """ if country is not None: conn = footy_connect() df = grab_data(conn, country) real_dates = [] import re m = '\d+' for index, row in df.iterrows(): x = re.findall(m, row['dates']) x = int(x[1]) if x >= 8: year1 = int(row['dates'][-2:]) + 2000 year2 = year1 + 1 real_dates.append(str(year1) + "/" + str(year2)) elif x <= 5: year1 = int(row['dates'][-2:]) + 2000 year2 = year1 - 1 real_dates.append(str(year2) + "/" + str(year1)) else: real_dates.append(0) df['dateYear'] = real_dates df = df[df['dateYear'] != 0] conn.close() else: real_dates = [] import re m = '\d+' for index, row in df.iterrows(): x = re.findall(m, row['dates']) x = int(x[1]) if x >= 8: year1 = int(row['dates'][-2:]) + 2000 year2 = year1 + 1 real_dates.append(str(year1) + "/" + str(year2)) elif x <= 5: year1 = int(row['dates'][-2:]) + 2000 year2 = year1 - 1 real_dates.append(str(year2) + "/" + str(year1)) else: real_dates.append(0) df['dateYear'] = real_dates df = df[df['dateYear'] != 0] return df def table_per_season(df, division, year): """ Function that returns a complete dataframe with what you would normally see as a soccer league table. It contains the matches played, wins, draws, loses, goals for/against, the difference, and the overall points a team earned throughout the season. :param country: an option from the countries dropdown :param division: an option from the divsions dropdown :param year: an option from the seasons dropdown :return: a dataframe with the information for a specific season """ df = df[df['dateYear'] == year] df = df[df['division'] == division] #creating empty dataframe final = pd.DataFrame() #matches played mp_home = df.groupby(['home_team'])['id'].count().reset_index() mp_away = df.groupby(['away_team'])['id'].count().reset_index() #resutls w_home = df.groupby(['home_team'])['full_time_results'].apply(lambda x: x[x.str.contains('H')].count()).reset_index() w_away = df.groupby(['away_team'])['full_time_results'].apply(lambda x: x[x.str.contains('A')].count()).reset_index() l_home = df.groupby(['home_team'])['full_time_results'].apply(lambda x: x[x.str.contains('A')].count()).reset_index() l_away = df.groupby(['away_team'])['full_time_results'].apply(lambda x: x[x.str.contains('H')].count()).reset_index() d_home = df.groupby(['home_team'])['full_time_results'].apply(lambda x: x[x.str.contains('D')].count()).reset_index() d_away = df.groupby(['away_team'])['full_time_results'].apply(lambda x: x[x.str.contains('D')].count()).reset_index() #gf/ga gf_home = df.groupby(['home_team'])['home_team_goals'].sum().reset_index() gf_away = df.groupby(['away_team'])['away_team_goals'].sum().reset_index() gfh = df.groupby(['home_team'])['away_team_goals'].sum().reset_index() gfa = df.groupby(['away_team'])['home_team_goals'].sum().reset_index() #calcs final['Team'] = mp_home['home_team'] final['MP'] = mp_home['id'] + mp_away['id'] final['W'] = w_home['full_time_results'] + w_away['full_time_results'] final['D'] = d_home['full_time_results'] + d_away['full_time_results'] final["L"] = l_home['full_time_results'] + l_away['full_time_results'] final['GF'] = gf_home['home_team_goals'] + gf_away['away_team_goals'] final['GA'] = gfa['home_team_goals'] + gfh['away_team_goals'] final['+/-'] = final['GF'] - final['GA'] final['PTS'] = (final['W'] * 3) + (final['D'] * 1) final = final.sort_values(by='PTS', ascending=False) return final def goal_stats(df, team): """ This function looks at the % of goals scored home and away relative to the shots taken in each game by season. """ df_fin =
pd.DataFrame()
pandas.DataFrame
import numpy as np import pandas as pd from trackintel.geogr.distances import check_gdf_planar, calculate_haversine_length def calculate_modal_split(tpls_in, freq=None, metric="count", per_user=False, norm=False): """Calculate the modal split of triplegs Parameters ---------- tpls_in : GeoDataFrame (as trackintel triplegs) triplegs require the column `mode`. freq : str frequency string passed on as `freq` keyword to the pandas.Grouper class. If `freq=None` the modal split is calculated on all data. A list of possible values can be found `here <https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset -aliases>`_. metric : {'count', 'distance', 'duration'} Aggregation used to represent the modal split. 'distance' returns in the same unit as the crs. 'duration' returns values in seconds. per_user : bool, default: False If True the modal split is calculated per user norm : bool, default: False If True every row of the modal split is normalized to 1 Returns ------- modal_split : DataFrame The modal split represented as pandas Dataframe with (optionally) a multi-index. The index can have the levels: `('user_id', 'timestamp')` and every mode as a column. Notes ------ `freq='W-MON'` is used for a weekly aggregation that starts on mondays. If `freq=None` and `per_user=False` are passed the modal split collapses to a single column. The modal split can be visualized using :func:`trackintel.visualization.modal_split.plot_modal_split` Examples -------- >>> triplegs.calculate_modal_split() >>> tripleg.calculate_modal_split(freq='W-MON', metric='distance') """ tpls = tpls_in.copy() # precalculate distance and duration if required if metric == "distance": if_planer_crs = check_gdf_planar(tpls) if not if_planer_crs: tpls["distance"] = calculate_haversine_length(tpls) else: tpls["distance"] = tpls.length elif metric == "duration": tpls["duration"] = tpls["finished_at"] - tpls["started_at"] # create grouper if freq is None: if per_user: tpls_grouper = tpls.groupby(["user_id", "mode"]) else: tpls_grouper = tpls.groupby(["mode"]) else: tpls.set_index("started_at", inplace=True) tpls.index.name = "timestamp" if per_user: tpls_grouper = tpls.groupby(["user_id", "mode",
pd.Grouper(freq=freq)
pandas.Grouper
# -*- coding: utf-8 -*- """ These the test the public routines exposed in types/common.py related to inference and not otherwise tested in types/test_common.py """ from warnings import catch_warnings, simplefilter import collections import re from datetime import datetime, date, timedelta, time from decimal import Decimal from numbers import Number from fractions import Fraction import numpy as np import pytz import pytest import pandas as pd from pandas._libs import lib, iNaT, missing as libmissing from pandas import (Series, Index, DataFrame, Timedelta, DatetimeIndex, TimedeltaIndex, Timestamp, Panel, Period, Categorical, isna, Interval, DateOffset) from pandas import compat from pandas.compat import u, PY2, StringIO, lrange from pandas.core.dtypes import inference from pandas.core.dtypes.common import ( is_timedelta64_dtype, is_timedelta64_ns_dtype, is_datetime64_dtype, is_datetime64_ns_dtype, is_datetime64_any_dtype, is_datetime64tz_dtype, is_number, is_integer, is_float, is_bool, is_scalar, is_scipy_sparse, ensure_int32, ensure_categorical) from pandas.util import testing as tm import pandas.util._test_decorators as td @pytest.fixture(params=[True, False], ids=str) def coerce(request): return request.param # collect all objects to be tested for list-like-ness; use tuples of objects, # whether they are list-like or not (special casing for sets), and their ID ll_params = [ ([1], True, 'list'), # noqa: E241 ([], True, 'list-empty'), # noqa: E241 ((1, ), True, 'tuple'), # noqa: E241 (tuple(), True, 'tuple-empty'), # noqa: E241 ({'a': 1}, True, 'dict'), # noqa: E241 (dict(), True, 'dict-empty'), # noqa: E241 ({'a', 1}, 'set', 'set'), # noqa: E241 (set(), 'set', 'set-empty'), # noqa: E241 (frozenset({'a', 1}), 'set', 'frozenset'), # noqa: E241 (frozenset(), 'set', 'frozenset-empty'), # noqa: E241 (iter([1, 2]), True, 'iterator'), # noqa: E241 (iter([]), True, 'iterator-empty'), # noqa: E241 ((x for x in [1, 2]), True, 'generator'), # noqa: E241 ((x for x in []), True, 'generator-empty'), # noqa: E241 (Series([1]), True, 'Series'), # noqa: E241 (Series([]), True, 'Series-empty'), # noqa: E241 (Series(['a']).str, True, 'StringMethods'), # noqa: E241 (Series([], dtype='O').str, True, 'StringMethods-empty'), # noqa: E241 (Index([1]), True, 'Index'), # noqa: E241 (Index([]), True, 'Index-empty'), # noqa: E241 (DataFrame([[1]]), True, 'DataFrame'), # noqa: E241 (DataFrame(), True, 'DataFrame-empty'), # noqa: E241 (np.ndarray((2,) * 1), True, 'ndarray-1d'), # noqa: E241 (np.array([]), True, 'ndarray-1d-empty'), # noqa: E241 (np.ndarray((2,) * 2), True, 'ndarray-2d'), # noqa: E241 (np.array([[]]), True, 'ndarray-2d-empty'), # noqa: E241 (np.ndarray((2,) * 3), True, 'ndarray-3d'), # noqa: E241 (np.array([[[]]]), True, 'ndarray-3d-empty'), # noqa: E241 (np.ndarray((2,) * 4), True, 'ndarray-4d'), # noqa: E241 (np.array([[[[]]]]), True, 'ndarray-4d-empty'), # noqa: E241 (np.array(2), False, 'ndarray-0d'), # noqa: E241 (1, False, 'int'), # noqa: E241 (b'123', False, 'bytes'), # noqa: E241 (b'', False, 'bytes-empty'), # noqa: E241 ('123', False, 'string'), # noqa: E241 ('', False, 'string-empty'), # noqa: E241 (str, False, 'string-type'), # noqa: E241 (object(), False, 'object'), # noqa: E241 (np.nan, False, 'NaN'), # noqa: E241 (None, False, 'None') # noqa: E241 ] objs, expected, ids = zip(*ll_params) @pytest.fixture(params=zip(objs, expected), ids=ids) def maybe_list_like(request): return request.param def test_is_list_like(maybe_list_like): obj, expected = maybe_list_like expected = True if expected == 'set' else expected assert inference.is_list_like(obj) == expected def test_is_list_like_disallow_sets(maybe_list_like): obj, expected = maybe_list_like expected = False if expected == 'set' else expected assert inference.is_list_like(obj, allow_sets=False) == expected def test_is_sequence(): is_seq = inference.is_sequence assert (is_seq((1, 2))) assert (is_seq([1, 2])) assert (not is_seq("abcd")) assert (not is_seq(u("abcd"))) assert (not is_seq(np.int64)) class A(object): def __getitem__(self): return 1 assert (not is_seq(A())) def test_is_array_like(): assert inference.is_array_like(Series([])) assert inference.is_array_like(Series([1, 2])) assert inference.is_array_like(np.array(["a", "b"])) assert inference.is_array_like(Index(["2016-01-01"])) class DtypeList(list): dtype = "special" assert inference.is_array_like(DtypeList()) assert not inference.is_array_like([1, 2, 3]) assert not inference.is_array_like(tuple()) assert not inference.is_array_like("foo") assert not inference.is_array_like(123) @pytest.mark.parametrize('inner', [ [], [1], (1, ), (1, 2), {'a': 1}, {1, 'a'}, Series([1]), Series([]), Series(['a']).str, (x for x in range(5)) ]) @pytest.mark.parametrize('outer', [ list, Series, np.array, tuple ]) def test_is_nested_list_like_passes(inner, outer): result = outer([inner for _ in range(5)]) assert inference.is_list_like(result) @pytest.mark.parametrize('obj', [ 'abc', [], [1], (1,), ['a'], 'a', {'a'}, [1, 2, 3], Series([1]), DataFrame({"A": [1]}), ([1, 2] for _ in range(5)), ]) def test_is_nested_list_like_fails(obj): assert not inference.is_nested_list_like(obj) @pytest.mark.parametrize( "ll", [{}, {'A': 1}, Series([1])]) def test_is_dict_like_passes(ll): assert inference.is_dict_like(ll) @pytest.mark.parametrize( "ll", ['1', 1, [1, 2], (1, 2), range(2), Index([1])]) def test_is_dict_like_fails(ll): assert not inference.is_dict_like(ll) @pytest.mark.parametrize("has_keys", [True, False]) @pytest.mark.parametrize("has_getitem", [True, False]) @pytest.mark.parametrize("has_contains", [True, False]) def test_is_dict_like_duck_type(has_keys, has_getitem, has_contains): class DictLike(object): def __init__(self, d): self.d = d if has_keys: def keys(self): return self.d.keys() if has_getitem: def __getitem__(self, key): return self.d.__getitem__(key) if has_contains: def __contains__(self, key): return self.d.__contains__(key) d = DictLike({1: 2}) result = inference.is_dict_like(d) expected = has_keys and has_getitem and has_contains assert result is expected def test_is_file_like(mock): class MockFile(object): pass is_file = inference.is_file_like data = StringIO("data") assert is_file(data) # No read / write attributes # No iterator attributes m = MockFile() assert not is_file(m) MockFile.write = lambda self: 0 # Write attribute but not an iterator m = MockFile() assert not is_file(m) # gh-16530: Valid iterator just means we have the # __iter__ attribute for our purposes. MockFile.__iter__ = lambda self: self # Valid write-only file m = MockFile() assert is_file(m) del MockFile.write MockFile.read = lambda self: 0 # Valid read-only file m = MockFile() assert is_file(m) # Iterator but no read / write attributes data = [1, 2, 3] assert not is_file(data) assert not is_file(mock.Mock()) @pytest.mark.parametrize( "ll", [collections.namedtuple('Test', list('abc'))(1, 2, 3)]) def test_is_names_tuple_passes(ll): assert inference.is_named_tuple(ll) @pytest.mark.parametrize( "ll", [(1, 2, 3), 'a', Series({'pi': 3.14})]) def test_is_names_tuple_fails(ll): assert not inference.is_named_tuple(ll) def test_is_hashable(): # all new-style classes are hashable by default class HashableClass(object): pass class UnhashableClass1(object): __hash__ = None class UnhashableClass2(object): def __hash__(self): raise TypeError("Not hashable") hashable = (1, 3.14, np.float64(3.14), 'a', tuple(), (1, ), HashableClass(), ) not_hashable = ([], UnhashableClass1(), ) abc_hashable_not_really_hashable = (([], ), UnhashableClass2(), ) for i in hashable: assert inference.is_hashable(i) for i in not_hashable: assert not inference.is_hashable(i) for i in abc_hashable_not_really_hashable: assert not inference.is_hashable(i) # numpy.array is no longer collections.Hashable as of # https://github.com/numpy/numpy/pull/5326, just test # is_hashable() assert not inference.is_hashable(np.array([])) # old-style classes in Python 2 don't appear hashable to # collections.Hashable but also seem to support hash() by default if PY2: class OldStyleClass(): pass c = OldStyleClass() assert not isinstance(c, compat.Hashable) assert inference.is_hashable(c) hash(c) # this will not raise @pytest.mark.parametrize( "ll", [re.compile('ad')]) def test_is_re_passes(ll): assert inference.is_re(ll) @pytest.mark.parametrize( "ll", ['x', 2, 3, object()]) def test_is_re_fails(ll): assert not inference.is_re(ll) @pytest.mark.parametrize( "ll", [r'a', u('x'), r'asdf', re.compile('adsf'), u(r'\u2233\s*'), re.compile(r'')]) def test_is_recompilable_passes(ll): assert inference.is_re_compilable(ll) @pytest.mark.parametrize( "ll", [1, [], object()]) def test_is_recompilable_fails(ll): assert not inference.is_re_compilable(ll) class TestInference(object): def test_infer_dtype_bytes(self): compare = 'string' if PY2 else 'bytes' # string array of bytes arr = np.array(list('abc'), dtype='S1') assert lib.infer_dtype(arr) == compare # object array of bytes arr = arr.astype(object) assert lib.infer_dtype(arr) == compare # object array of bytes with missing values assert lib.infer_dtype([b'a', np.nan, b'c'], skipna=True) == compare def test_isinf_scalar(self): # GH 11352 assert libmissing.isposinf_scalar(float('inf')) assert libmissing.isposinf_scalar(np.inf) assert not libmissing.isposinf_scalar(-np.inf) assert not libmissing.isposinf_scalar(1) assert not libmissing.isposinf_scalar('a') assert libmissing.isneginf_scalar(float('-inf')) assert libmissing.isneginf_scalar(-np.inf) assert not libmissing.isneginf_scalar(np.inf) assert not libmissing.isneginf_scalar(1) assert not libmissing.isneginf_scalar('a') def test_maybe_convert_numeric_infinities(self): # see gh-13274 infinities = ['inf', 'inF', 'iNf', 'Inf', 'iNF', 'InF', 'INf', 'INF'] na_values = {'', 'NULL', 'nan'} pos = np.array(['inf'], dtype=np.float64) neg = np.array(['-inf'], dtype=np.float64) msg = "Unable to parse string" for infinity in infinities: for maybe_int in (True, False): out = lib.maybe_convert_numeric( np.array([infinity], dtype=object), na_values, maybe_int) tm.assert_numpy_array_equal(out, pos) out = lib.maybe_convert_numeric( np.array(['-' + infinity], dtype=object), na_values, maybe_int)
tm.assert_numpy_array_equal(out, neg)
pandas.util.testing.assert_numpy_array_equal
import requests import pandas as pd import re import os from bs4 import BeautifulSoup def get_soup(url): """Wrapper function to Beautiful Soup. Customised to parse json response. Returns soup object. """ page = requests.get(url) jsonResponse = page.json() html = jsonResponse['html'] soup = BeautifulSoup(html, 'html.parser') return(soup) def get_seasons(url): """Get a list of available seasons. Sample Record: ['WNBL 2020', '2020', 'https://wnbl.basketball/stats/?&WHurl=%2Fcompetition%2F28356%2Fstatistics%2Fteam', '28356'] """ soup = get_soup(url) options = soup.find_all("option") seasons = [] for o in options: # option HTML element season_uri = o['value'] season_name = o.contents[0] if (season_uri.startswith('https')): # only save options with links # extract the year from the season name m = re.search('\d{4}',season_name) season_year = m.group(0) if m else 1900 # competition ID x = season_uri.split('%2F') season_id = x[2] seasons.append([ season_name, season_year, season_uri, season_id ]) return(seasons) def get_player_data(html): """Get player data from table. Returns dataframe. """ # gather data as list of lists data = [] # column headings header = [ele.text.strip() for ele in html.find('thead').find_all('th')] # parse table body rows = html.find('tbody').find_all('tr') for row in rows: cols = row.find_all('td') cols = [ele.text.strip() for ele in cols] # save row # data.append([ele for ele in cols if ele]) # Get rid of empty values data.append(cols) # convert lists to dataframe df =
pd.DataFrame(data,columns=header)
pandas.DataFrame
import csv import pickle import pandas as pd class HandleData: def __init__(self, param_dict): self.running_preds = pd.DataFrame() self.target = param_dict['target'] self.model_file = param_dict['model_file'] self.file_id = self.model_file.split('.')[0] self.end_row = len(param_dict['symbols'])-1 def data_triage(self, dict): # write raw data to csv self.write_mktdata_to_csv(dict) # create dataframe and make new prediction with it new_df = self.make_new_prediction(self.create_dataframe(dict)) #add new prediction to running data running_df = self.add_to_running_stats(new_df) # output running data to csv self.write_predictions_to_csv(running_df) def write_mktdata_to_csv(self, dict): with open(self.file_id + '_DataOutput.csv', 'a', newline='') as csv_a, open(self.file_id + '_DataOutput.csv','r', newline='') as csv_r: reader = csv.reader(csv_r) writer = csv.DictWriter(csv_a, dict.keys()) # put each row into a dict data = [row for row in reader] # check to see if 2nd row is blank(since newline puts first entry on 2nd row) try: first_row_blank = True if data[1] == [] else False except IndexError: first_row_blank = True if first_row_blank: writer.writeheader() writer.writerow(dict) else: writer.writerow(dict) def write_predictions_to_csv(self, df): with open(self.file_id + '_Predictions.csv', 'a', newline='') as csv_a, open(self.file_id + '_Predictions.csv','r', newline='') as csv_r: reader = csv.reader(csv_r) data = [row for row in reader] try: first_row_blank = True if data[1] == [] else False except IndexError: first_row_blank = True if first_row_blank: df.iloc[-1:].to_csv(csv_a, header=True) else: df.iloc[-1:].to_csv(csv_a, header=False) def create_dataframe(self, dict): df = pd.DataFrame([dict]) df['Timestamp'] = pd.to_datetime(df['Timestamp']) +
pd.Timedelta(hours=1, minutes=30)
pandas.Timedelta
# -*- coding:utf-8 -*- # /usr/bin/env python """ Date: 2021/7/14 21:21 Desc: 中国-香港-宏观指标 https://data.eastmoney.com/cjsj/foreign_8_0.html """ import demjson import pandas as pd import requests def marco_china_hk_cpi() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-消费者物价指数 https://data.eastmoney.com/cjsj/foreign_8_0.html :return: 消费者物价指数 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "0", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def marco_china_hk_cpi_ratio() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-消费者物价指数年率 https://data.eastmoney.com/cjsj/foreign_8_1.html :return: 消费者物价指数年率 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "1", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def marco_china_hk_rate_of_unemployment() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-失业率 https://data.eastmoney.com/cjsj/foreign_8_2.html :return: 失业率 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "2", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def marco_china_hk_gbp() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-香港 GDP https://data.eastmoney.com/cjsj/foreign_8_3.html :return: 香港 GDP :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "3", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.to_numeric(temp_df['前值']) temp_df['现值'] = pd.to_numeric(temp_df['现值']) temp_df['时间'] = pd.to_datetime(temp_df['时间']).dt.date temp_df['发布日期'] = pd.to_datetime(temp_df['发布日期']).dt.date return temp_df def marco_china_hk_gbp_ratio() -> pd.DataFrame: """ 东方财富-经济数据一览-中国香港-香港 GDP 同比 https://data.eastmoney.com/cjsj/foreign_8_4.html :return: 香港 GDP 同比 :rtype: pandas.DataFrame """ url = "https://datainterface.eastmoney.com/EM_DataCenter/JS.aspx" params = { "type": "GJZB", "sty": "HKZB", "js": "({data:[(x)],pages:(pc)})", "p": "1", "ps": "2000", "mkt": "8", "stat": "4", "pageNo": "1", "pageNum": "1", "_": "1621332091873", } r = requests.get(url, params=params) data_text = r.text data_json = demjson.decode(data_text[1:-1]) temp_df = pd.DataFrame([item.split(",") for item in data_json["data"]]) temp_df.columns = [ "时间", "前值", "现值", "发布日期", ] temp_df['前值'] = pd.t
o_numeric(temp_df['前值'])
pandas.to_numeric
import os import pickle from functools import reduce from tqdm import tqdm from datetime import datetime from dateutil.relativedelta import relativedelta import pandas as pd import numpy as np from sklearn.linear_model import LogisticRegression from sklearn.tree import DecisionTreeClassifier from sklearn import metrics from sklearn.metrics import roc_auc_score, plot_precision_recall_curve import matplotlib.pyplot as plt def optimal_binning_boundary(x: pd.Series, y: pd.Series, nan: float = -999.) -> list: ''' 利用决策树获得最优分箱的边界值列表 ''' boundary = [] # 待return的分箱边界值列表 x = x.fillna(nan).values # 填充缺失值 y = y.values clf = DecisionTreeClassifier(criterion='entropy', #“信息熵”最小化准则划分 max_leaf_nodes=6, # 最大叶子节点数 min_samples_leaf=0.05) # 叶子节点样本数量最小占比 clf.fit(x.reshape(-1, 1), y) # 训练决策树 n_nodes = clf.tree_.node_count children_left = clf.tree_.children_left children_right = clf.tree_.children_right threshold = clf.tree_.threshold for i in range(n_nodes): if children_left[i] != children_right[i]: # 获得决策树节点上的划分边界值 boundary.append(threshold[i]) boundary.sort() min_x = x.min() max_x = x.max() + 0.1 # +0.1是为了考虑后续groupby操作时,能包含特征最大值的样本 boundary = [min_x] + boundary + [max_x] return boundary def ks_table(y_predict, y_true, ascending=False, is_cate=False, sep=None, nbins=10): """ 计算KS分层表 :param y_predict: list, array, pandas.Series, 预测的概率或打分 :param y_true: list, array, pandas.Series, 真实的标签, 1或0, 只支持二分类 :param ascending: boolean, default False, 对y_predict排序的方式。 为False则降序排序,此时y_predict越大表示y_true为1(坏客户)的概率越大,一般适用于预测概率; 为True则升序排序,此时y_predict越小表示y_true为1(坏客户)的概率越大,一般适用于标准分; :param sep: list, default None, 预设的分割点 :return: Pandas.DataFrame, 结果KS分层表 """ if len(y_predict) < 10: return None if not isinstance(y_predict, pd.Series): y_predict = pd.Series(y_predict) if not isinstance(y_true, pd.Series): y_true = pd.Series(y_true) y_predict = y_predict.reset_index(drop=True) y_true = y_true.reset_index(drop=True) data = pd.concat([y_predict, y_true], axis=1).reset_index(drop=True) data = data.dropna() data.columns = ['score', 'flag'] data.sort_values(by='score', ascending=ascending, inplace=True) data = data.reset_index(drop=True) cnt_all = data.shape[0] if not is_cate: if sep is not None: sep = sorted(sep) if ascending: data["group"] = pd.cut(data['score'], bins=sep, labels=False) else: data["group"] = pd.cut(data['score'], bins=sep, labels=False).map(lambda x: len(sep) - 1 - x) nbins = len(sep) - 1 else: data["group"] = data.index.map(lambda x: min(nbins - 1, (x + 1) // (cnt_all / nbins))) sep = data.groupby("group").agg({"score": "max"})["score"].tolist() if ascending: sep[-1] = float("inf") sep = [float("-inf")] + sep else: sep[0] = float("inf") sep.append(float("-inf")) else: data['group'] = data['score'] nbins = data['score'].nunique() table = pd.DataFrame(np.arange(1, nbins + 1), columns=['Rank']) table['Total'] = data.groupby('group').size().reindex(table.index).fillna(0) # Total这一列存放每一组样本的总个数 table['Population'] = table['Total'] / cnt_all table['MinScore'] = data[['score', 'group']].groupby(['group']).min() table['MeanScore'] = data[['score', 'group']].groupby(['group']).mean() table['MaxScore'] = data[['score', 'group']].groupby(['group']).max() table['BadCnt'] = data[['flag', 'group']].groupby(['group']).sum().reindex(table.index).fillna(0) table['bumps'] = 0 table['GoodCnt'] = table['Total'] - table['BadCnt'].fillna(0) table['InnerBadRate'] = table['BadCnt'] / table['Total'] table['bumps'] = 0 for ind in range(1, table.shape[0]): if table.loc[table.index[ind], 'InnerBadRate'] > table.loc[table.index[ind - 1], 'InnerBadRate']: table.loc[table.index[ind], 'bumps'] = table.loc[table.index[ind - 1], 'bumps'] + 1 else: table.loc[ind, 'bumps'] = table.loc[ind - 1, 'bumps'] table['bumps'] = table['bumps'].astype('int64').fillna(0) table['BadRate'] = table['BadCnt'] / sum(table['BadCnt']) table['CumTotalBadRate'] = table['BadRate'].cumsum() table['GoodRate'] = table['GoodCnt'] / sum(table['GoodCnt']) table['CumTotalGoodRate'] = table['GoodRate'].cumsum() table['K-S'] = (table['CumTotalBadRate'] - table['CumTotalGoodRate']) table['Lift'] = table['InnerBadRate'] * (table['BadCnt'].sum() + table['GoodCnt'].sum()) / table['BadCnt'].sum() table['BadRate'] = table['BadRate'].apply(lambda x: format(x, '.2%')) table['CumTotalBadRate'] = table['CumTotalBadRate'].apply(lambda x: format(x, '.2%')) table['CumTotalGoodRate'] = table['CumTotalGoodRate'].apply(lambda x: format(x, '.2%')) total_information = {'Rank': 'Total', 'Population': 1.0, 'Total': data.shape[0], 'MinScore': min(y_predict), 'MeanScore': np.mean(y_predict), 'MaxScore': max(y_predict), 'BadCnt': sum(table['BadCnt']), 'GoodCnt': sum(table['GoodCnt']), 'InnerBadRate': sum(table['BadCnt']) / len(data), 'bumps': '.', 'BadRate': '.', 'CumTotalBadRate': '.', 'CumTotalGoodRate': '.', 'GoodRate': sum(table['GoodCnt']) / len(data), 'K-S': max(table['K-S']), 'Lift': '.'} table = table.append(total_information, ignore_index=True) selected_columns = ['Rank', 'Population', 'Total', 'bumps', 'MinScore', 'MeanScore', 'MaxScore', 'BadCnt', 'GoodCnt', 'InnerBadRate', 'BadRate', 'CumTotalBadRate', 'GoodRate', 'CumTotalGoodRate', 'K-S', 'Lift'] table = table.loc[:, selected_columns] table['InnerBadRate'] = table['InnerBadRate'].apply(lambda x: format(x, '.2%')) table['GoodRate'] = table['GoodRate'].apply(lambda x: format(x, '.2%')) table['K-S'] = table['K-S'].apply(lambda x: format(x, '.2%')) table['Population'] = table['Population'].apply(lambda x: format(x, '.2%')) table['Lift'] = table['Lift'].map(lambda x: round(x, 2) if x != '.' else 1) table['MinScore'] = table['MinScore'].apply(lambda x: format(x, '.2f')) table['MaxScore'] = table['MaxScore'].apply(lambda x: format(x, '.2f')) table['MeanScore'] = table['MeanScore'].apply(lambda x: format(x, '.2f')) return table, sep def iv_table(x: pd.Series, y: pd.Series, is_cate: bool = False, nan: float = -999.) -> pd.DataFrame: ''' 计算变量各个分箱的WOE、IV值,返回一个DataFrame ''' #x = x.fillna(nan) df = pd.concat([x, y], axis=1) # 合并x、y为一个DataFrame,方便后续计算 df.columns = ['x', 'y'] # 特征变量、目标变量字段的重命名 stat_num = df['y'].value_counts() good_num,bad_num = stat_num[0],stat_num[1] total_num = good_num+bad_num df = df.dropna() if not is_cate: boundary = optimal_binning_boundary(df.x, df.y, nan) # 获得最优分箱边界值列表 df['bins'] = pd.cut(x=x, bins=boundary, right=False) # 获得每个x值所在的分箱区间 else: df['bins'] = df['x'] grouped = df.groupby('bins')['y'] # 统计各分箱区间的好、坏、总客户数量 result_df = grouped.agg([('good', lambda y: (y == 0).sum()), ('bad', lambda y: (y == 1).sum()), ('total', 'count')]) result_df['good_pct'] = result_df['good'] / result_df["good"].sum() # 好客户占比 result_df['bad_pct'] = result_df['bad'] / result_df["bad"].sum() # 坏客户占比 result_df['goodRecall'] = result_df['good'] / good_num # 好客户占比 result_df['badRecall'] = result_df['bad'] / bad_num # 坏客户占比 result_df['groupRecall'] = result_df['total'] / total_num # 总客户占比 result_df['innerBadRate'] = result_df['bad'] / result_df['total'] # 坏比率 result_df['woe'] = np.log(result_df['good_pct'] / result_df['bad_pct']) # WOE result_df['iv'] = (result_df['good_pct'] - result_df['bad_pct']) * result_df['woe'] # IV result_df['lift'] = (result_df['bad']/result_df['total'])/(bad_num/total_num) # lift result_df = result_df.reset_index() result_df.sort_values("bins",ascending=False,inplace=True) result_df['bins'] = result_df['bins'].astype('str') total_information = {'bins': 'Total', 'good': result_df['good'].sum(), 'bad': result_df['bad'].sum(), 'total': result_df['total'].sum(), 'good_pct': result_df['good_pct'].sum(), 'bad_pct': result_df['bad_pct'].sum(), 'goodRecall': result_df['goodRecall'].sum(), 'badRecall': result_df['badRecall'].sum(), 'groupRecall': result_df['groupRecall'].sum(), 'innerBadRate': result_df["bad"].sum()/(result_df["good"].sum()+result_df["bad"].sum()), 'woe': '.','iv': result_df['iv'].sum(), 'lift': (result_df["bad"].sum()/(result_df["good"].sum()+result_df["bad"].sum()))/(bad_num/total_num)} result_df = result_df.append(total_information, ignore_index=True) return result_df def df_auc(x: pd.Series, y: pd.Series, ifnan:bool=False, nan: float = -999.) -> float: '''计算基于dataframe数据的auc''' df = pd.concat([x, y], axis=1) df.columns = ['x', 'y'] if ifnan: df = df.fillna(nan) else: df = df.dropna() return roc_auc_score(df.y, df.x) def score_summary(x: pd.Series, y: pd.Series, is_cate: bool = False, ifnan:bool=False, nan: float = -999.) -> dict: summary_dict = {'iv':None, 'auc':None, 'coverage_rate':None} df = pd.concat([x, y], axis=1) df.columns = ['x', 'y'] # 1、覆盖率 coverage_rate = round(1-df.x.isna().sum()/len(df), 4) summary_dict['coverage_rate'] = coverage_rate if ifnan: df = df.fillna(nan) else: df = df.dropna() # 2、ks相关 ks_t = ks_table(df.x, df.y, is_cate=is_cate, ascending=False, sep=None) summary_dict['ks'] = float(ks_t[0]['K-S'].iloc[-1].strip('%')) #auc相关 auc = df_auc(df.x, df.y, ifnan=False) summary_dict['auc'] = round(auc,4) # 3、iv相关 iv_t = iv_table(df.x, df.y, is_cate=is_cate) summary_dict['iv'] = iv_t['iv'].iloc[-1] return iv_t, ks_t[0], summary_dict class Psi(object): def __init__(self, bins: int = 10, minimal: int = 1): self.bins = bins self.minimal = minimal self.psi_detail = dict() self.psi = pd.DataFrame() self.base = dict() def _distribution_continuous(self, series: pd.Series, bins: list = None): if bins: bins[0] = float("-inf") bins[-1] = float("inf") series_cut =
pd.cut(series, bins=bins)
pandas.cut
import unittest import numpy as np import pandas as pd from pandas.testing import assert_frame_equal from yitian.datasource import * from yitian.datasource import preprocess class Test(unittest.TestCase): # def test_standardize_date(self): # data_pd = pd.DataFrame([ # ['01/01/2019', 11.11], # ['01/04/2019', 44.44], # ['01/03/2019', 33.33], # ['01/02/2019', 22.22] # ], columns=['Trade Date', 'price']) # # expect_pd = pd.DataFrame([ # ['01/01/2019', 11.11], # ['01/04/2019', 44.44], # ['01/03/2019', 33.33], # ['01/02/2019', 22.22] # ], columns=['date', 'price']) # # assert_frame_equal(expect_pd, preprocess.standardize_date(data_pd)) # # def test_standardize_date_with_multi_date_column(self): # data_pd = pd.DataFrame([ # ['2019-01-01 00:00:00', '2019-01-01 00:00:00', 11.11], # ['2019-01-02 00:00:00', '2019-01-01 00:00:00', 22.22], # ['2019-01-03 00:00:00', '2019-01-01 00:00:00', 33.33], # ['2019-01-04 00:00:00', '2019-01-01 00:00:00', 44.44], # ], columns=['DATE', 'date', 'price']) # # with self.assertRaises(ValueError) as context: # preprocess.standardize_date(data_pd) # # assert str(context.exception) == \ # str("Original cols ({cols}) cannot be reconnciled with date options ({option})"\ # .format(cols=data_pd.columns.tolist(), option=RAW_DATE_OPTIONS)) def test_create_ts_pd(self): data_pd = pd.DataFrame([ ['01/01/2019', 11.11], ['01/04/2019', 44.44], ['01/03/2019', 33.33], ['01/02/2019', 22.22] ], columns=['date', 'price']) expect_pd = pd.DataFrame([ [pd.Timestamp('2019-01-01'), 11.11], [
pd.Timestamp('2019-01-02')
pandas.Timestamp
import os, glob, re, chardet import pandas as pd from statistics import mode ############################################ # clean_weird function ############################################ def clean_weird(vector_dirty, extra=False): ## # ============================ ## # ORDER MATTERS HERE ## # ============================ ## # strip and to lower vector_clean = vector_dirty.str.strip() vector_clean = vector_clean.str.lower() ## # city names at the end vector_clean = vector_clean.str.replace(r'(,\s\w+(\s\w+)?)$', '', regex=True) ## # ============================ ## # remove weird symbols ## # ============================ vector_clean = vector_clean.str.replace(r'á','a', regex=True) vector_clean = vector_clean.str.replace(r'ã','a', regex=True) vector_clean = vector_clean.str.replace(r'ä','a', regex=True) vector_clean = vector_clean.str.replace(r'é','e', regex=True) vector_clean = vector_clean.str.replace(r'ë','e', regex=True) vector_clean = vector_clean.str.replace(r'É','E', regex=True) vector_clean = vector_clean.str.replace(r'í','i', regex=True) vector_clean = vector_clean.str.replace(r'ó','o', regex=True) vector_clean = vector_clean.str.replace(r'ö','o', regex=True) vector_clean = vector_clean.str.replace(r'ü','u', regex=True) vector_clean = vector_clean.str.replace(r'ñ','n', regex=True) ## # ============================ ## # remove company designations ## # ============================ ## # see: ## # https://www.corporateinformation.com/Company-Extensions-Security-Identifiers.aspx ## # https://www.nathantrust.com/insights/comprehensive-guide-to-a-designated-activity-company-dac if extra==True: ## # combos: as,sl,scs,sa,sac,sau,sas,spa,sanv, etc. (with and without intermediate . or /) s_chars = r'(a\W?s\W?|s\W?((a|e|p|c|l)\W?)?((a|s|u)\W?)?\W?(n\W?v\W?)?(r\W?l\W?)?)$' vector_clean = vector_clean.str.replace(s_chars, '', regex=True) ## # combos: nv,nvsa,bv,oyj,ltd, etc. (with and without intermediate . or /) s_chars = r'((n|b)\W?v\W{0,2}?(s\W?a\W?)?|o\W?y\W?j\W?|l\W?t\W?d\W?)$' vector_clean = vector_clean.str.replace(s_chars, '', regex=True) ## # combos: cvba,ag,plc,dac, etc. (with and without intermediate . or /) s_chars = r'(c\W?v\W?b\W?a\W?|a\W?g\W?|p\W?l\W?c\W?|d\W?a\W?c\W?)$' vector_clean = vector_clean.str.replace(s_chars, '', regex=True) ## # combos: ,(g)mbh, kgaa, etc. (with and without intermediate . or /) s_chars = r'((g\W?)?m\W?b\W?h\W?|k\W?g\W?a\W?a\W?)$' vector_clean = vector_clean.str.replace(s_chars, '', regex=True) ## # specifics s_chars = r'(\W(sa)\s(\wt)\W(expl)\W(p)\W(g)\W(cl)\W)$' vector_clean = vector_clean.str.replace(s_chars, '', regex=True) s_chars = r'(\W(soc)\W(an)\W(d)\W(gest)\W(st)\W(d)\W(sec)\W)$' vector_clean = vector_clean.str.replace(s_chars, '', regex=True) vector_clean = vector_clean.str.replace(r'-',' ', regex=True) vector_clean = vector_clean.str.replace(r'\s{2,}',' ', regex=True) vector_clean = vector_clean.str.replace(r'[^\w\s]','', regex=True) vector_clean = vector_clean.str.strip() return(vector_clean) ############################################ # function merge_csv ############################################ def merge_csv(save_dir, file_dir, file_name): ## # location os.chdir(file_dir) ## # list files all_files = [i for i in glob.glob("*.csv")] ## # regular expression for date regex = re.compile(r'\d+') ## # iterating through data all_df = [] # to concatenate all data encode = [] # to save all encodings for file in all_files: ## # check encoding of files: open first 10'000 bytes with open(file, 'rb') as rawdata: encoding = chardet.detect(rawdata.read(10000)) ## print(encoding) ## # 73% of confidence in each file encode.append(encoding['encoding']) # to use in final file ## # load data frame df =
pd.read_csv(file, sep=',', encoding=encoding['encoding'])
pandas.read_csv
""" This file contains a couple functions for taking a dataframe of measured temperatures and associated starnames/instruments, and returning a corrected temperature with error bar. The correction needed is determined in the iPython notebook 'CheckCCFSystematics'. """ import pandas as pd def get_real_temperature_newmethod(df, addmode='simple'): """ See docstring for get_real_temperature. This function is only for legacy support. """ return get_real_temperature(df, addmode=addmode) def get_real_temperature(df, addmode='simple'): """ Given a dataframe of observations, find the actual temperature and uncertainty for each star Parameters: =========== - df: pandas DataFrame The input dataframe. Must have the following keys: - 'Star' - '[Fe/H]' - 'vsini' (which is the vsini of the secondary star) - 'Instrument' - 'Temperature' (which is the measured temperature) - addmode: string The way the individual order CCFs were co-added Returns: ======== corrected: pandas DataFrame A dataframe with the corrected temperature, and its upper and lower errors. """ from kglib.utils import HDF5_Helpers hdf_interface = HDF5_Helpers.Full_CCF_Interface() # Group by the star name. star_groups = df.groupby('Star') starnames = star_groups.groups.keys() metal = [] vsini = [] corrected_list = [] for starname in starnames: # Get the measured temperature for each observation star_df = star_groups.get_group(starname) m_list = [] for _, r in star_df.iterrows(): m_list.append( hdf_interface.get_measured_temperature(r['Star'], r['Date'], r['Temperature'], r['Instrument'])) measurements = pd.concat(m_list, ignore_index=True) # Convert the measurements to actual temperatures corrected = HDF5_Helpers.convert_measured_to_actual(measurements.copy()) corrected_list.append(corrected) corrected =
pd.concat(corrected_list, ignore_index=True)
pandas.concat
from application import app from flask import Flask, redirect, request, url_for,render_template, Response, jsonify import pandas as pd from itertools import combinations from random import choices import random def calculator(player1_move,player2_move,move_hist): if player1_move == "c": if player2_move == "c": return [2,2] else: return [0,3] elif player1_move == "d": if player2_move == "d": return [1,1] else: return [3,0] def C_AlwaysC(turn,player,move_hist): if turn == 0: return "c" else: return "c" def C_AlwaysD(turn,player,move_hist): if turn == 0: return "c" else: return "d" def D_AlwaysC(turn,player,move_hist): if turn == 0: return "d" else: return "c" def D_AlwaysD(turn,player,move_hist): if turn == 0: return "d" else: return "d" def C_TitForTat(turn,player,move_hist): if player == 1: if turn == 0: return "c" else: return move_hist[1::2][-1] elif player == 2: if turn == 0: return "c" else: return move_hist[0::2][-1] def C_UntilD(turn,player,move_hist): if player == 1: if turn == 0: return "c" else: if "d" not in move_hist[1::2]: return "c" else: return "d" elif player == 2: if turn == 0: return "c" else: if "d" not in move_hist[0::2]: return "c" else: return "d" def C_TitFor2Tat(turn,player,move_hist): if player == 1: if turn <= 1: return "c" else: if (move_hist[1::2][-1] == "d") & (move_hist[1::2][-2] == "d"): return "d" else: return "c" elif player == 2: if turn <= 1: return "c" else: if (move_hist[0::2][-1] == "d") & (move_hist[0::2][-2] == "d"): return "d" else: return "c" def Random_70C(turn,player,move_hist): if turn == 0: return choices(["c","d"], weights=[0.7,0.3])[0] else: return choices(["c","d"], weights=[0.7,0.3])[0] def Random_70D(turn,player,move_hist): if turn == 0: return choices(["c","d"], weights=[0.3,0.7])[0] else: return choices(["c","d"], weights=[0.3,0.7])[0] def D_TitFor2TatExploiter(turn,player,move_hist): if turn == 0: return "d" else: if (turn%2) == 0: return "d" else: return "c" def C_OccasionalDefector(turn,player,move_hist): if turn <= 6: return "c" else: if "d" not in move_hist[-10:]: return "d" else: return "c" def D_AlwaysCExploiter(turn,player,move_hist): if player == 1: if turn == 0: return "d" else: if "d" not in (move_hist[1::2]): return "d" else: return move_hist[0::2][-1] elif player == 2: if turn == 0: return "d" else: if "d" not in (move_hist[1::2]): return "d" else: return move_hist[0::2][-1] def strategies_menu(): return C_AlwaysD,C_AlwaysC,D_AlwaysD,C_TitForTat,C_UntilD,Random_70C,Random_70D,C_TitFor2Tat,D_TitFor2TatExploiter,C_OccasionalDefector,D_AlwaysCExploiter,D_AlwaysC def players(winner,loser,g,df1): if g == 0: playing = 12 player_list = [] start_strategy = [] for p in range(1,playing+1): player_list = player_list + ['player'+str(p)] start_strategy = start_strategy + [p-1] df = pd.DataFrame(index=player_list,columns=['strategy_history'],data=start_strategy) df.loc[loser] = [df.loc[winner]] else: df = pd.DataFrame(index=df1.index,columns=['strategy_history'],data=list(df1)) df.loc[loser] = df1.loc[winner] return df def fixtures(winner,loser,g,df1): fixture_list = list(combinations(players(winner,loser,g,df1).index,2)) return fixture_list def game(winner,loser,g,df1): gamelength = 10 fixture_list = list(fixtures(winner,loser,g,df1)) player_strategies = players(winner,loser,g,df1).strategy_history round_totals = pd.DataFrame() for n in range(len(fixtures(winner,loser,g,df1))): df = pd.DataFrame() move_hist = [] points = [] for turn in range(gamelength): player1_name = fixture_list[n][0] player2_name = fixture_list[n][1] player1_move = strategies_menu()[player_strategies.loc[player1_name]](turn,1,move_hist) player2_move = strategies_menu()[player_strategies.loc[player2_name]](turn,2,move_hist) player_scores = calculator(player1_move,player2_move,move_hist) move_hist = move_hist + [player1_move] + [player2_move] points = points + [player_scores[0]] + [player_scores[1]] df = pd.DataFrame([move_hist[0::2],move_hist[1::2],points[0::2],points[1::2]]).T df.rename(columns={0:player1_name+"_move",1:player2_name+"_move",2:player1_name,3:player2_name},inplace=True) #print(df) round_totals = pd.concat([round_totals,df.iloc[:,-2:].sum(axis=0)],axis=1) return round_totals.sum(axis=1) def match(g,winner,loser,df1): rounds = 5 df = pd.DataFrame() for r in range(rounds): df = pd.concat([df,game(winner,loser,g,df1)],axis=1) totals = pd.Series(df.sum(axis=1),name='Generation'+'_'+str(g)) return pd.merge(players(winner,loser,g,df1),totals,how='outer',left_index=True,right_index=True) def tournament(): generations = 50 df = pd.DataFrame() winner = 'player1' loser = 'player1' df1 = df.copy() for g in range(generations): if g == 0: df = pd.concat([df,match(g,winner,loser,df1)],axis=1) scores = df.iloc[:,-1] winner = choices(list(scores.loc[scores == scores.max()].index))[0] loser = choices(list(scores.loc[scores == scores.min()].index))[0] else: df1 = df.iloc[:,-2].copy() df = pd.concat([df,match(g,winner,loser,df1)],axis=1) scores = df.iloc[:,-1] winner = choices(list(scores.loc[scores == scores.max()].index))[0] loser = choices(list(scores.loc[scores == scores.min()].index))[0] return df ############################# ############################# ############################# @app.route('/', methods=['GET','POST']) def home(): return "wanna play?" + '<br><br><a href="/play">Start a tournament?</a> </br>' @app.route('/play', methods=['GET','POST']) # to move into strategies microservice def play(): strategy_list = [] for s in strategies_menu(): strategy_list.append(s.__name__) maps = {} for m in range(len(strategy_list)): maps.update({m:strategy_list[m]}) df6 = match(0,'player1','player1',
pd.DataFrame()
pandas.DataFrame
import pandas as pd import numpy as np def createVectorScores(line_bins:list, start_zero:bool): """ Create list of values from bins frequencies list. give only a list with the frequencies. The method assumes that the first position correspond the score 0. If start_zero is False, the score zero wasn't considered. :param line_bins: list of frequencies :param start_zero: to know if the score 0 is considered or not :type line_bins: int :type start_zero: int :return: array with the proteins ids :rtype: array[int] """ bins_value = 0 n_repeats = 0 list_Values = [] if start_zero == False: bins_value = 1 line_bins.pop(0) for n_repeat in line_bins: array_bins_aux = np.repeat(bins_value, n_repeat) list_Values = np.append(list_Values, array_bins_aux) bins_value +=1 list_Values = list_Values.astype(int) return list_Values def countNumberofScores(list_frequencys:list): """ count the number of scores (not the sum of them but the quantity) :param list_frequencys: list of frequencies :type line_bins: list(1,4,3,...) :return: quantity of elements :rtype: int """ list_without_zeros = [element for element in list_frequencys if element != 0] qty_elements = np.sum(list_without_zeros) return qty_elements def createVecSizeOfBins(max_score:int, size_bins:int): """ calculate the vector of bins used in case you want a specific size of bins :param max_score: highest score that you can have in the bin :param size_bins: size of the bins :type max_score: int :type size_bins: int :return: quantity of elements :rtype: int """ array_bins_config = np.arange(0, max_score, size_bins) if max_score % size_bins != 0: array_bins_config = np.concatenate((array_bins_config, [max_score])) return array_bins_config def createVecNumberOfBins(max_score:int, number_of_bins:int): """ calculate the vector of bins used in case you want a specific number of bins :param max_score: highest score that you can have in the bin :param number_of_bins: number of bins :type max_score: int :type number_of_bins: int :return: vector of bins :rtype: array[int] """ size_each_bins = max_score / number_of_bins array_bins_config = np.arange(0, max_score, size_each_bins) max_score_bin = np.max(array_bins_config) if max_score % max_score_bin != 0: #array_bins_config.append(max_score) array_bins_config = np.concatenate((array_bins_config, [max_score])) return array_bins_config def createHeaderBinsSize(vec_histo_values:np.array): """ create the header for the dataset with the size of bins :param vec_histo_values: vec with the intervals of each bins :type vec_histo_values: numPy array :return: vec with the labels :rtype: int """ vec_designation = ['interaction_ID'] qty_elements = len(vec_histo_values) - 1 aux_count = 0 while aux_count < qty_elements: element_start = vec_histo_values[aux_count] index_element_end = aux_count + 1 element_end = vec_histo_values[index_element_end] bins_interval_start = float("{0:.3f}".format(element_start)) bins_interval_end = float("{0:.3f}".format(element_end)) string_bin_designation = 'bin_' + str(bins_interval_start) + '_' + str(bins_interval_end) vec_designation.append(string_bin_designation) aux_count += 1 vec_designation.append('label') return vec_designation def createHeaderBinsNumber(number_of_bins:int): """ create the header for the dataset with the number of bins :param number_of_bins: number of bins :type number_of_bins: int :return: vec with the labels :rtype: int """ vec_designation = ['interaction_ID'] aux = 0 while aux < number_of_bins: string_designation_bins = 'bins_' + str(aux) vec_designation.append(string_designation_bins) aux += 1 vec_designation.append('label') return vec_designation def dataTreatmentVecBins(dataframe_csv_base:pd.DataFrame, save_zeros:bool): """ split the data into three vectors :note: vec_ids = ids of the interactions :note: vec_labels = labels of the interactions :note: matrix_frequencies = matric of vectors with the frequencies of each score :param number_of_bins: number of bins :type number_of_bins: int :return: vec with the labels :rtype: int """ vec_ids = [] vec_labels = [] matrix_frequencies = [] for index, row in dataframe_csv_base.iterrows(): id_interaction = row.Interaction_ID label_value = row.Label list_values = row.values.tolist() #Remove the id list_values.pop(0) #Remove the label list_values.pop() list_frequencies_hist = createVectorScores(list_values, save_zeros) qty_elements = countNumberofScores(list_values) qty_scores = len(list_frequencies_hist) assert qty_scores == qty_elements vec_ids.append(id_interaction) vec_labels.append(label_value) matrix_frequencies.append(list_frequencies_hist) #print('N row treated {0}'.format(len(vec_labels))) return vec_ids, vec_labels, matrix_frequencies def constructSizeOfBins(vec_ids:list, vec_labels:list, matrix_frequencies:list, max_score:int, size_of_bins:int): """ This method create the vec of bins score based on the size of bins :param vec_ids = ids of the interactions :param vec_labels = labels of the interactions :param matrix_frequencies = matrix of vectors with the frequencies of each score :param max_score = max score found in the dataset based :param size_of_bins = size of the bins :type vec_ids: list :type vec_labels: list :type matrix_frequencies: list :type max_score: int :type size_of_bins: int :return: dataframe with the bins :rtype: Dataframe """ vec_histo_size = createVecSizeOfBins(max_score, size_of_bins) data_bins_treated = [] for counter, vec_frequencies in enumerate(matrix_frequencies): interaction_id = vec_ids[counter] label_value = vec_labels[counter] histogram_vec_dist = np.histogram(vec_frequencies, bins = vec_histo_size) data_histo = histogram_vec_dist[0].flatten() data_histo = data_histo.tolist() data_histo.append(label_value) data_histo.insert(0, interaction_id) data_bins_treated.append(data_histo) vec_labels = createHeaderBinsSize(histogram_vec_dist[1]) print(vec_labels) dataframe_data = pd.DataFrame(data=data_bins_treated, columns=vec_labels) return dataframe_data def constructNumberOfBins(vec_ids:list, vec_labels:list, matrix_frequencies:list, max_socre:int, number_of_bins:int): """ This method create the vec of bins score based on the number of bins :note: the number of bins correspond to the max score/number of bins :note vec_ids = ids of the interactions :note vec_labels = labels of the interactions :note matrix_frequencies = matrix of vectors with the frequencies of each score :note max_score = max score found in the dataset based :note number_of_bins = size of the bins :type vec_ids: list :type vec_labels: list :type matrix_frequencies: list :type max_score: int :type number_of_bins: int :return: dataframe with the bins :rtype: Dataframe """ vec_number_of_bins = createVecNumberOfBins(max_score, number_of_bins) data_bins_treated = [] for counter, vec_frequencies in enumerate(matrix_frequencies): interaction_id = vec_ids[counter] label_value = vec_labels[counter] histogram_vec = np.histogram(vec_frequencies, bins = vec_number_of_bins) data_histo = histogram_vec[0].flatten() data_histo = data_histo.tolist() data_histo.append(label_value) data_histo.insert(0, interaction_id) data_bins_treated.append(data_histo) vec_labels = createHeaderBinsNumber(number_of_bins) dataframe_data = pd.DataFrame(data=data_bins_treated, columns=vec_labels) print(dataframe_data) return dataframe_data def writeDataframeToCSV(dataframe_bins:pd.DataFrame, file_write:str): """ Save the dataframe to a csv :note dataframe_bins = dataframe that contain the bins scores :note file_write = name of the file :type dataframe_bins: Dataframe :type file_write: str """ dataframe_bins.to_csv(index=False, sep=',', path_or_buf=file_write) path_csv = 'bins_base_573_SB1_ZERO.csv' dataframe_csv_base = pd.read_csv(filepath_or_buffer=path_csv, delimiter=',') print(dataframe_csv_base) dataframe_bins_data = pd.DataFrame() dataframe_bins_bins_values =
pd.DataFrame()
pandas.DataFrame
from typing import Generator import pandas import pytest from neo4j import DEFAULT_DATABASE from graphdatascience.graph_data_science import GraphDataScience from graphdatascience.query_runner.neo4j_query_runner import Neo4jQueryRunner from graphdatascience.query_runner.query_runner import QueryRunner from graphdatascience.server_version.server_version import ServerVersion GRAPH_NAME = "g" @pytest.fixture(autouse=True) def run_around_tests(runner: Neo4jQueryRunner) -> Generator[None, None, None]: # Runs before each test runner.run_query( """ CREATE (a: Node {x: 1, y: 2}), (b: Node {x: 2, y: 3}), (c: Node {x: 3, y: 4}), (a)-[:REL {relX: 4, relY: 5}]->(b), (a)-[:REL {relX: 5, relY: 6}]->(c), (b)-[:REL {relX: 6, relY: 7}]->(c), (b)-[:REL2]->(c) """ ) yield # Test runs here # Runs after each test runner.run_query("MATCH (n) DETACH DELETE n") runner.run_query(f"CALL gds.graph.drop('{GRAPH_NAME}', false)") def test_project_graph_native(gds: GraphDataScience) -> None: G, result = gds.graph.project(GRAPH_NAME, "*", "*") assert G.name() == GRAPH_NAME assert result["graphName"] == GRAPH_NAME result = gds.graph.exists(G.name()) assert result["exists"] def test_project_graph_native_estimate(gds: GraphDataScience) -> None: result = gds.graph.project.estimate("*", "*") assert result["requiredMemory"] def test_project_graph_cypher(gds: GraphDataScience) -> None: node_query = "MATCH (n:Node) RETURN id(n) as id" relationship_query = "MATCH (n:Node)-->(m:Node) RETURN id(n) as source, id(m) as target, 'T' as type" G, result = gds.graph.project.cypher(GRAPH_NAME, node_query, relationship_query) assert G.name() == GRAPH_NAME assert result["graphName"] == GRAPH_NAME result = gds.graph.exists(G.name()) assert result["exists"] def test_project_graph_cypher_estimate(gds: GraphDataScience) -> None: node_query = "MATCH (n:Node) RETURN id(n) as id" relationship_query = "MATCH (n:Node)-->(m:Node) RETURN id(n) as source, id(m) as target, 'T' as type" result = gds.graph.project.cypher.estimate(node_query, relationship_query) assert result["requiredMemory"] def test_project_subgraph(runner: QueryRunner, gds: GraphDataScience) -> None: from_G, _ = gds.graph.project(GRAPH_NAME, {"Node": {"properties": "x"}}, "*") subG, result = gds.beta.graph.project.subgraph("s", from_G, "n.x > 1", "*", concurrency=2) assert subG.name() == "s" assert result["graphName"] == "s" result2 = gds.graph.list(subG) assert result2["nodeCount"][0] == 2 runner.run_query(f"CALL gds.graph.drop('{subG.name()}')") def test_graph_list(gds: GraphDataScience) -> None: result = gds.graph.list() assert len(result) == 0 G, _ = gds.graph.project(GRAPH_NAME, "*", "*") result = gds.graph.list() assert len(result) == 1 result = gds.graph.list(G) assert result["graphName"][0] == GRAPH_NAME def test_graph_exists(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, "*", "*") result = gds.graph.exists(G.name()) assert result["exists"] result = gds.graph.exists("bogusName") assert not result["exists"] def test_graph_drop(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, "*", "*") result = gds.graph.drop(G, True) assert result is not None assert result["graphName"] == GRAPH_NAME with pytest.raises(Exception): gds.graph.drop(G, True) def test_graph_export(runner: QueryRunner, gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, "*", "*") MY_DB_NAME = "testdatabase" result = gds.graph.export(G, dbName=MY_DB_NAME, batchSize=10000) assert result["graphName"] == GRAPH_NAME assert result["dbName"] == MY_DB_NAME runner.run_query("CREATE DATABASE $dbName", {"dbName": MY_DB_NAME}) runner.set_database(MY_DB_NAME) node_count = runner.run_query("MATCH (n) RETURN COUNT(n) AS c").squeeze() assert node_count == 3 runner.run_query("DROP DATABASE $dbName", {"dbName": MY_DB_NAME}) runner.set_database(DEFAULT_DATABASE) def test_graph_get(gds: GraphDataScience) -> None: gds.graph.project(GRAPH_NAME, "*", "*") G = gds.graph.get(GRAPH_NAME) assert G.name() == GRAPH_NAME with pytest.raises( ValueError, match=f"No projected graph named 'bogusName' exists in current database '{gds.database()}'", ): gds.graph.get("bogusName") def test_graph_streamNodeProperty(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, {"Node": {"properties": "x"}}, "*") result = gds.graph.streamNodeProperty(G, "x", concurrency=2) assert {e for e in result["propertyValue"]} == {1, 2, 3} def test_graph_streamNodeProperty_without_arrow(gds_without_arrow: GraphDataScience) -> None: G, _ = gds_without_arrow.graph.project(GRAPH_NAME, {"Node": {"properties": "x"}}, "*") result = gds_without_arrow.graph.streamNodeProperty(G, "x", concurrency=2) assert {e for e in result["propertyValue"]} == {1, 2, 3} def test_graph_streamNodeProperties(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, {"Node": {"properties": ["x", "y"]}}, "*") result = gds.graph.streamNodeProperties(G, ["x", "y"], concurrency=2) assert list(result.keys()) == ["nodeId", "nodeProperty", "propertyValue"] x_values = result[result.nodeProperty == "x"] assert {e for e in x_values["propertyValue"]} == {1, 2, 3} y_values = result[result.nodeProperty == "y"] assert {e for e in y_values["propertyValue"]} == {2, 3, 4} def test_graph_streamNodeProperties_separate_property_columns(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, {"Node": {"properties": ["x", "y"]}}, "*") result = gds.graph.streamNodeProperties(G, ["x", "y"], separate_property_columns=True, concurrency=2) assert list(result.keys()) == ["nodeId", "x", "y"] assert {e for e in result["x"]} == {1, 2, 3} assert {e for e in result["y"]} == {2, 3, 4} def test_graph_streamNodeProperties_without_arrow(gds_without_arrow: GraphDataScience) -> None: G, _ = gds_without_arrow.graph.project(GRAPH_NAME, {"Node": {"properties": ["x", "y"]}}, "*") result = gds_without_arrow.graph.streamNodeProperties(G, ["x", "y"], concurrency=2) assert list(result.keys()) == ["nodeId", "nodeProperty", "propertyValue"] x_values = result[result.nodeProperty == "x"] assert {e for e in x_values["propertyValue"]} == {1, 2, 3} y_values = result[result.nodeProperty == "y"] assert {e for e in y_values["propertyValue"]} == {2, 3, 4} def test_graph_streamNodeProperties_without_arrow_separate_property_columns( gds_without_arrow: GraphDataScience, ) -> None: G, _ = gds_without_arrow.graph.project(GRAPH_NAME, {"Node": {"properties": ["x", "y"]}}, "*") result = gds_without_arrow.graph.streamNodeProperties(G, ["x", "y"], separate_property_columns=True, concurrency=2) assert list(result.keys()) == ["nodeId", "x", "y"] assert {e for e in result["x"]} == {1, 2, 3} assert {e for e in result["y"]} == {2, 3, 4} def test_graph_streamRelationshipProperty(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, "*", {"REL": {"properties": "relX"}}) result = gds.graph.streamRelationshipProperty(G, "relX", concurrency=2) assert {e for e in result["propertyValue"]} == {4, 5, 6} def test_graph_streamRelationshipProperty_without_arrow(gds_without_arrow: GraphDataScience) -> None: G, _ = gds_without_arrow.graph.project(GRAPH_NAME, "*", {"REL": {"properties": "relX"}}) result = gds_without_arrow.graph.streamRelationshipProperty(G, "relX", concurrency=2) assert {e for e in result["propertyValue"]} == {4, 5, 6} def test_graph_streamRelationshipProperties(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, "*", {"REL": {"properties": ["relX", "relY"]}}) result = gds.graph.streamRelationshipProperties(G, ["relX", "relY"], concurrency=2) assert list(result.keys()) == [ "sourceNodeId", "targetNodeId", "relationshipType", "relationshipProperty", "propertyValue", ] x_values = result[result.relationshipProperty == "relX"] assert {e for e in x_values["propertyValue"]} == {4, 5, 6} y_values = result[result.relationshipProperty == "relY"] assert {e for e in y_values["propertyValue"]} == {5, 6, 7} def test_graph_streamRelationshipProperties_separate_property_columns(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, "*", {"REL": {"properties": ["relX", "relY"]}}) result = gds.graph.streamRelationshipProperties(G, ["relX", "relY"], separate_property_columns=True, concurrency=2) assert list(result.keys()) == ["sourceNodeId", "targetNodeId", "relationshipType", "relX", "relY"] assert {e for e in result["relX"]} == {4, 5, 6} assert {e for e in result["relY"]} == {5, 6, 7} def test_graph_streamRelationshipProperties_without_arrow(gds_without_arrow: GraphDataScience) -> None: G, _ = gds_without_arrow.graph.project(GRAPH_NAME, "*", {"REL": {"properties": ["relX", "relY"]}}) result = gds_without_arrow.graph.streamRelationshipProperties(G, ["relX", "relY"], concurrency=2) assert list(result.keys()) == [ "sourceNodeId", "targetNodeId", "relationshipType", "relationshipProperty", "propertyValue", ] x_values = result[result.relationshipProperty == "relX"] assert {e for e in x_values["propertyValue"]} == {4, 5, 6} y_values = result[result.relationshipProperty == "relY"] assert {e for e in y_values["propertyValue"]} == {5, 6, 7} def test_graph_streamRelationshipProperties_without_arrow_separate_property_columns( gds_without_arrow: GraphDataScience, ) -> None: G, _ = gds_without_arrow.graph.project(GRAPH_NAME, "*", {"REL": {"properties": ["relX", "relY"]}}) result = gds_without_arrow.graph.streamRelationshipProperties( G, ["relX", "relY"], separate_property_columns=True, concurrency=2 ) assert list(result.keys()) == ["sourceNodeId", "targetNodeId", "relationshipType", "relX", "relY"] assert {e for e in result["relX"]} == {4, 5, 6} assert {e for e in result["relY"]} == {5, 6, 7} def test_graph_writeNodeProperties(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, "*", "*") gds.pageRank.mutate(G, mutateProperty="rank", dampingFactor=0.2, tolerance=0.3) result = gds.graph.writeNodeProperties(G, ["rank"], concurrency=2) assert result["propertiesWritten"] == 3 def test_graph_writeRelationship(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, "*", "*") gds.nodeSimilarity.mutate(G, mutateRelationshipType="SIMILAR", mutateProperty="score", similarityCutoff=0) result = gds.graph.writeRelationship(G, "SIMILAR", "score", concurrency=2) assert result["relationshipsWritten"] == 2 assert result["propertiesWritten"] == 2 @pytest.mark.compatible_with(min_inclusive=ServerVersion(2, 1, 0)) def test_graph_removeNodeProperties_21(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, {"Node": {"properties": "x"}}, "*") result = gds.graph.removeNodeProperties(G, ["x"], concurrency=2) assert result["propertiesRemoved"] == 3 @pytest.mark.compatible_with(max_exclusive=ServerVersion(2, 1, 0)) def test_graph_removeNodeProperties_20(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, {"Node": {"properties": "x"}}, "*") result = gds.graph.removeNodeProperties(G, ["x"], ["*"], concurrency=2) assert result["propertiesRemoved"] == 3 def test_graph_deleteRelationships(gds: GraphDataScience) -> None: G, _ = gds.graph.project(GRAPH_NAME, "*", ["REL", "REL2"]) result = gds.graph.deleteRelationships(G, "REL") assert result["deletedRelationships"] == 3 def test_graph_generate(gds: GraphDataScience) -> None: G, result = gds.beta.graph.generate(GRAPH_NAME, 12, 2) assert G.node_count() == 12 assert result["generateMillis"] >= 0 @pytest.mark.enterprise @pytest.mark.compatible_with(min_inclusive=ServerVersion(2, 1, 0)) def test_graph_construct(gds: GraphDataScience) -> None: nodes = pandas.DataFrame({"nodeId": [0, 1, 2, 3]}) relationships = pandas.DataFrame({"sourceNodeId": [0, 1, 2, 3], "targetNodeId": [1, 2, 3, 0]}) G = gds.alpha.graph.construct("hello", nodes, relationships) assert G.name() == "hello" assert G.node_count() == 4 assert G.relationship_count() == 4 G.drop() @pytest.mark.enterprise @pytest.mark.compatible_with(min_inclusive=ServerVersion(2, 1, 0)) def test_graph_construct_multiple_dfs(gds: GraphDataScience) -> None: nodes = [pandas.DataFrame({"nodeId": [0, 1]}),
pandas.DataFrame({"nodeId": [2, 3]})
pandas.DataFrame
# -*- coding: utf-8 -*- """ Created on Sun May 8 18:29:53 2016 @author: bmanubay """ # Check what moelcules we have appear in Chris's list import pandas as pd # read in ; delimited csv of comp/mix counts created in thermomlcnts.py a0 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/allcomp_counts_all.csv", sep=';') a1 = pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/allcomp_counts_interesting.csv", sep=';') a2 =
pd.read_csv("/home/bmanubay/.thermoml/tables/Ken/bincomp_counts_all.csv", sep=';')
pandas.read_csv
import os import cv2 import numpy as np import pandas as pd from catalyst import utils from catalyst.dl import InferCallback, MetricCallback, State, Callback, CallbackOrder from pytorch_toolbelt.inference import tta from src.utils import mask2rle, mean_dice_coef, post_process, sigmoid, single_dice_coef class PostprocessingCallback(InferCallback): def __init__(self): super().__init__() self.valid_masks = [] self.probabilities = [] def on_stage_start(self, state: State): print("Stage 3 started!") def on_batch_end(self, state: State): output = state.batch_out["logits"] input_masks = state.batch_in["targets"] for mask in input_masks: for m in mask: m = m.cpu().detach().numpy() if m.shape != (350, 525): m = cv2.resize(m, dsize=(525, 350), interpolation=cv2.INTER_LINEAR) self.valid_masks.append(m) for prob in output: for probability in prob: probability = probability.cpu().detach().numpy() if probability.shape != (350, 525): probability = cv2.resize( probability, dsize=(525, 350), interpolation=cv2.INTER_LINEAR ) self.probabilities.append(probability) def on_stage_end(self, state: State): class_params = {} for class_id in range(4): print(class_id) attempts = [] for t in range(0, 100, 10): t /= 100 for ms in [ 0, 1000, 5000, 10000, 11000, 14000, 15000, 16000, 18000, 19000, 20000, 21000, 23000, 25000, 27000, ]: masks = [] for i in range(class_id, len(self.probabilities), 4): probability = self.probabilities[i] predict, num_predict = post_process(sigmoid(probability), t, ms) masks.append(predict) d = [] for i, j in zip(masks, self.valid_masks[class_id::4]): d.append(single_dice_coef(y_pred_bin=i, y_true=j)) attempts.append((t, ms, np.mean(d))) attempts_df = pd.DataFrame(attempts, columns=["threshold", "size", "dice"]) attempts_df = attempts_df.sort_values("dice", ascending=False) print(attempts_df.head()) best_threshold = attempts_df["threshold"].values[0] best_size = attempts_df["size"].values[0] class_params[class_id] = (best_threshold, best_size) np.save("./logs/class_params.npy", class_params) class CustomInferCallback(Callback): def __init__(self, **kwargs): super().__init__(CallbackOrder.External) print("Custom infer callback is initialized") self.path = kwargs.get("path", None) self.threshold = kwargs.get("threshold", None) self.min_size = kwargs.get("min_size", None) self.class_params = dict() self.encoded_pixels = [None for i in range(14792)] self.pred_distr = {-1: 0, 0: 0, 1: 0, 2: 0, 3: 0} self.image_id = 0 self.tta = kwargs.get("tta", None) def on_stage_start(self, state: "State"): if self.tta is not None: # state.model = tta.SegmentationTTAWrapper(state.model, tta.aliases.d4_transform()) state.model = tta.TTAWrapper(state.model, tta.d4_image2mask) print(f"tta model created! type={type(state.model)}") def on_batch_end(self, state: State): # print(type(state.model)) # if not isinstance(state.model, tta.wrappers.SegmentationTTAWrapper): # print("Not instance of tta") # exit() for prob in state.batch_out["logits"]: for probability in prob: probability = probability.detach().cpu().numpy() if probability.shape != (350, 525): probability = cv2.resize( probability, dsize=(525, 350), interpolation=cv2.INTER_LINEAR ) prediction, num_predict = post_process( sigmoid(probability), threshold=self.threshold, min_size=self.min_size, ) if num_predict == 0: self.pred_distr[-1] += 1 self.encoded_pixels[self.image_id] = "" else: self.pred_distr[self.image_id % 4] += 1 r = mask2rle(prediction) self.encoded_pixels[self.image_id] = r self.image_id += 1 def on_stage_end(self, state: State): np.save("./logs/pred_distr.npy", self.pred_distr) sub =
pd.read_csv(f"{self.path}/sample_submission.csv")
pandas.read_csv
import numpy as np import pytest from pandas import ( Categorical, DataFrame, Series, _testing as tm, concat, read_hdf, ) from pandas.tests.io.pytables.common import ( _maybe_remove, ensure_clean_path, ensure_clean_store, ) pytestmark = [ pytest.mark.single, # pytables https://github.com/PyTables/PyTables/issues/822 pytest.mark.filterwarnings( "ignore:a closed node found in the registry:UserWarning" ), ] def test_categorical(setup_path): with ensure_clean_store(setup_path) as store: # Basic _maybe_remove(store, "s") s = Series( Categorical( ["a", "b", "b", "a", "a", "c"], categories=["a", "b", "c", "d"], ordered=False, ) ) store.append("s", s, format="table") result = store.select("s") tm.assert_series_equal(s, result) _maybe_remove(store, "s_ordered") s = Series( Categorical( ["a", "b", "b", "a", "a", "c"], categories=["a", "b", "c", "d"], ordered=True, ) ) store.append("s_ordered", s, format="table") result = store.select("s_ordered") tm.assert_series_equal(s, result) _maybe_remove(store, "df") df = DataFrame({"s": s, "vals": [1, 2, 3, 4, 5, 6]}) store.append("df", df, format="table") result = store.select("df") tm.assert_frame_equal(result, df) # Dtypes _maybe_remove(store, "si") s = Series([1, 1, 2, 2, 3, 4, 5]).astype("category") store.append("si", s) result = store.select("si") tm.assert_series_equal(result, s) _maybe_remove(store, "si2") s = Series([1, 1, np.nan, 2, 3, 4, 5]).astype("category") store.append("si2", s) result = store.select("si2") tm.assert_series_equal(result, s) # Multiple _maybe_remove(store, "df2") df2 = df.copy() df2["s2"] = Series(list("abcdefg")).astype("category") store.append("df2", df2) result = store.select("df2") tm.assert_frame_equal(result, df2) # Make sure the metadata is OK info = store.info() assert "/df2 " in info # assert '/df2/meta/values_block_0/meta' in info assert "/df2/meta/values_block_1/meta" in info # unordered _maybe_remove(store, "s2") s = Series( Categorical( ["a", "b", "b", "a", "a", "c"], categories=["a", "b", "c", "d"], ordered=False, ) ) store.append("s2", s, format="table") result = store.select("s2") tm.assert_series_equal(result, s) # Query _maybe_remove(store, "df3") store.append("df3", df, data_columns=["s"]) expected = df[df.s.isin(["b", "c"])] result = store.select("df3", where=['s in ["b","c"]']) tm.assert_frame_equal(result, expected) expected = df[df.s.isin(["b", "c"])] result = store.select("df3", where=['s = ["b","c"]']) tm.assert_frame_equal(result, expected) expected = df[df.s.isin(["d"])] result = store.select("df3", where=['s in ["d"]']) tm.assert_frame_equal(result, expected) expected = df[df.s.isin(["f"])] result = store.select("df3", where=['s in ["f"]']) tm.assert_frame_equal(result, expected) # Appending with same categories is ok store.append("df3", df) df = concat([df, df]) expected = df[df.s.isin(["b", "c"])] result = store.select("df3", where=['s in ["b","c"]']) tm.assert_frame_equal(result, expected) # Appending must have the same categories df3 = df.copy() df3["s"] = df3["s"].cat.remove_unused_categories() msg = "cannot append a categorical with different categories to the existing" with pytest.raises(ValueError, match=msg): store.append("df3", df3) # Remove, and make sure meta data is removed (its a recursive # removal so should be). result = store.select("df3/meta/s/meta") assert result is not None store.remove("df3") with pytest.raises( KeyError, match="'No object named df3/meta/s/meta in the file'" ): store.select("df3/meta/s/meta") def test_categorical_conversion(setup_path): # GH13322 # Check that read_hdf with categorical columns doesn't return rows if # where criteria isn't met. obsids = ["ESP_012345_6789", "ESP_987654_3210"] imgids = ["APF00006np", "APF0001imm"] data = [4.3, 9.8] # Test without categories df = DataFrame({"obsids": obsids, "imgids": imgids, "data": data}) # We are expecting an empty DataFrame matching types of df expected = df.iloc[[], :] with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format="table", data_columns=True) result = read_hdf(path, "df", where="obsids=B") tm.assert_frame_equal(result, expected) # Test with categories df.obsids = df.obsids.astype("category") df.imgids = df.imgids.astype("category") # We are expecting an empty DataFrame matching types of df expected = df.iloc[[], :] with ensure_clean_path(setup_path) as path: df.to_hdf(path, "df", format="table", data_columns=True) result = read_hdf(path, "df", where="obsids=B") tm.assert_frame_equal(result, expected) def test_categorical_nan_only_columns(setup_path): # GH18413 # Check that read_hdf with categorical columns with NaN-only values can # be read back. df = DataFrame( { "a": ["a", "b", "c", np.nan], "b": [np.nan, np.nan, np.nan, np.nan], "c": [1, 2, 3, 4], "d":
Series([None] * 4, dtype=object)
pandas.Series
from models import MotionDetection, ObjectDetection import config import pandas as pd from datetime import datetime import logging from edgetpu.detection.engine import DetectionEngine from database import Session def get_obj_det_comps(model_file: str, labels_file: str) -> tuple: """Load object detection model file and labels""" logging.info("Loading Edge TPU object detection model and labels") model = DetectionEngine(model_file) labels = {} # loop over the class labels file for row in open(labels_file): # unpack the row and update the labels dictionary (classID, curr_label) = row.strip().split(maxsplit=1) labels[int(classID)] = curr_label.strip() return model, labels def save_detections(detections: list) -> None: """Save detections into DB""" logging.debug(f'Saving {len(detections)} detection(s)') try: # stage detections for DB insert Session.add_all(detections) # flush inserts into DB Session.commit() except Exception as e: logging.error(f'Detection(s) not saved: {str(e)}') def get_max_obj_ids(now, db_conn) -> dict: """Get a dictionary of labels and max object IDs for current date""" # calculate start of current hour curr_dt_start = f'{str(now.date())} 00:00:00' # fetch results from DB df = pd.read_sql(f""" SELECT label, COUNT (DISTINCT obj_id) as next_obj_id FROM object_detections WHERE create_ts >= :curr_dt_start GROUP BY 1 """, params={'curr_dt_start': curr_dt_start}, con=db_conn) # convert dataframe to a {label:count} dictionary return {rec['label']: rec['next_obj_id'] for rec in df.to_dict(orient='records')} def get_motion_analysis(db_conn) -> list: """Get means of motion detections by hour for last N-days and today""" # fetch results from DB df = pd.read_sql(f""" SELECT id, create_ts, '1' as motion_count FROM motion_detections WHERE create_ts BETWEEN datetime('now', '-{config.USE_HISTORICAL_DAYS} days') AND datetime('now', 'localtime') GROUP BY 1,2,3 """, con=db_conn) # update data types df.create_ts = pd.to_datetime(df.create_ts) df.motion_count = df.motion_count.astype(int) # resample data by hour motion_det_df_resampled = df.set_index('create_ts').resample( 'H').count().reset_index()[['create_ts', 'motion_count']].fillna(0) # split historical dates and today td = datetime.now().date() motion_det_df_resampled_hist = motion_det_df_resampled.loc[motion_det_df_resampled['create_ts'].dt.date != td] motion_det_df_resampled_td = motion_det_df_resampled.loc[motion_det_df_resampled['create_ts'].dt.date == td] # calculate avg hourly count for historical detections motion_det_df_resampled_avg_hist = motion_det_df_resampled_hist.groupby( motion_det_df_resampled_hist.create_ts.dt.hour)['motion_count'].mean() hist = motion_det_df_resampled_avg_hist.reset_index() hist.columns = ['Hour', 'Historical'] # calculate hourly count for today's detections motion_det_df_resampled_avg_td = motion_det_df_resampled_td.groupby( motion_det_df_resampled_td.create_ts.dt.hour)['motion_count'].sum() today = motion_det_df_resampled_avg_td.reset_index() today.columns = ['Hour', 'Today'] # return merged: historical and today's datasets return hist.merge(today, how='left').fillna(0).to_dict(orient='records') def get_objects_analysis(db_conn) -> dict: """Get means of object detections by hour for last N-days and today""" # fetch detections from db object_det_df =
pd.read_sql(f""" SELECT id, label, create_ts, obj_id FROM object_detections WHERE create_ts BETWEEN datetime('now', '-{config.USE_HISTORICAL_DAYS} days') AND datetime('now', 'localtime') GROUP BY 1,2,3,4 """, con=db_conn)
pandas.read_sql
import pandas as pd def deep_get(obj, path): if not path or not obj: return obj return deep_get(obj.get(path[0]), path[1:]) class Messages: def __init__(self, session): self._session = session def get_messages(self, start, end): url = "messages/cursor" data = {"from": start, "until": end} cursor_request = self._session.request("POST", url, json=data) cursor_request.raise_for_status() cursor = cursor_request.json()["cursor"] response_list = [] i = 0 while cursor: i += 1 print("Iteration #: ", i) response = self._session.request("GET", url + f"/{cursor}") response.raise_for_status() for row in response.json()["data"]: response_list.append(row) cursor = deep_get(response.json(), ["paging", "next"]) contacts, inbound_messages, outbound_messages = [], [], [] for obj in response_list: if "_vnd" not in obj.keys(): contacts.append(pd.json_normalize(obj["contacts"], sep="_")) inbound_messages.append( pd.json_normalize(obj["messages"], sep="_") ) elif "_vnd" in obj.keys(): outbound_messages.append(pd.json_normalize(obj, sep="_")) try: df_inbound = pd.concat( [pd.concat(contacts), pd.concat(inbound_messages)], axis=1 ) except ValueError: df_inbound = pd.DataFrame() try: df_outbound = pd.concat(outbound_messages) except ValueError: df_outbound =
pd.DataFrame()
pandas.DataFrame
import os, re import pandas as pd import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as mcolors from matplotlib import rcParams from matplotlib.ticker import MultipleLocator from floris.utils.tools import valid_ops as vops root = os.path.dirname(os.path.dirname(__file__)) # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # PLOT_CONFIGURATION # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # font1 = {'family': 'Times New Roman', 'weight': 'bold', 'size': 15} font2 = {'family': 'Times New Roman', 'weight': 'bold', 'size': 10} font3 = {'family': 'Times New Roman', 'weight': 'bold', 'size': 13} font4 = {'family': 'Times New Roman', 'weight': 'bold', 'size': 15, 'color': 'b',} font5 = {'family': 'Times New Roman', 'weight': 'bold', 'size': 20} line_styles = ["-", "--", "-.", ":", "-", "--", ] color_group = ['k', 'b', 'y', 'r', 'g', ] line_maker_style = dict(linestyle=":", linewidth=2, color="maroon", markersize=15) marker_styles = ["o", "D", "$\diamondsuit$", "+", "x", "s", "^", "d", ">", "<", "v"] marker_sizes = [5, 5, 5, 5] # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # VALIDATION # # ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # def layout_plot(coordinates, annotate=False): x, y = coordinates[:, 0], coordinates[:, 1] plt.figure(dpi=100) plt.scatter(x, y) if annotate: num_labs = [str(i) for i in range(1, 81)] for i in range(len(num_labs)): plt.annotate(num_labs[i], xy=(x[i], y[i]), xytext=(x[i] + 50, y[i] + 50)) # plt.xlim((-8 * 80., 80 * 80.));plt.ylim((-4 * 80., 70 * 80.)) plt.show() def wt_power_eval(legend, data, **kwargs): fig = plt.figure(dpi=200) ax = fig.add_subplot(111) colors = list(mcolors.TABLEAU_COLORS.keys()) x = np.arange(1, data.shape[1] + 1) # if kwargs.get("ref", False): if kwargs.__contains__("ref"): for i, tag in enumerate(kwargs["ref"].columns): if tag.split("+")[-1] in ["OBS", ]: continue tag_i = tag.split('+')[-1] ax.plot(x, kwargs["ref"][tag].values, linestyle=line_styles[i], c='w', lw=0.00, label=tag_i, markersize=10, marker=marker_styles[i], markeredgecolor='k', markeredgewidth=1.5) for i in range(data.shape[0]): legend_ii = legend[i].split('+')[-2:] legend_i = ['BP' if i == 'Bastankhah' else i for i in legend_ii] # legend_i = [legend_i[0], legend_i[2], legend_i[1]] ax.plot(x, vops.normalized_wt_power(data[i, :]), color=color_group[i], linewidth=2, linestyle=line_styles[i], markersize=0, marker=marker_styles[-(i + 1)], label=' + '.join(legend_i)) title = "" ax = general_axes_property(ax, 'Turbine Row', 'Normalized Power', (0.5, data.shape[1] + 0.5), (0.1, 1.05), 1, title) if kwargs.get("psave", False): plt.savefig("{}/output/{}.png".format(root, kwargs["psave"]), format='png', dpi=300, bbox_inches='tight') print("** Picture {} Save Done !** \n".format(kwargs["psave"])) if kwargs.get("dsave", False): pd.DataFrame(data.T, columns=legend).to_csv( "{}/output/{}.csv".format(root, kwargs["dsave"])) print("** Data {} Save Done !** \n".format(kwargs["dsave"])) if kwargs.get("show", True): plt.show() def wf_power_eval(legend, data, **kwargs): fig = plt.figure(dpi=200) ax = fig.add_subplot(111) colors = list(mcolors.TABLEAU_COLORS.keys()) for i in range(data.shape[0]): winds, label = wind_range_from_label(legend[i]) ax.plot(winds, data[i, :], color=colors[i], linewidth=1.5, linestyle=line_styles[i], label=label) winds = wind_range_from_label(legend[0])[0] title = 'Distribution of the normalized Horns Rev wind farm power ouput' ax = general_axes_property(ax, 'Wind Direction(degree)', 'Normalized Power', (winds[0] - (len(winds) / 10), winds[-1] + (len(winds) / 10)), (0.35, 1.05), int(len(winds) / 10), title) if kwargs.get("psave", False): plt.savefig("output/{}.png".format(kwargs["psave"]), format='png', dpi=300, bbox_inches='tight') print("** Picture {} Save Done ! **".format(kwargs["psave"])) if kwargs.get("dsave", False):
pd.DataFrame(data.T, columns=legend)
pandas.DataFrame
import pandas from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.metrics import accuracy_score from sklearn.model_selection import KFold from sklearn.multiclass import OneVsOneClassifier from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC import utils targetClass = 3 data = utils.getDataset(targetClass) data = utils.MapLabels(targetClass,data) data = utils.preprocess(data) model = Pipeline([ ('vect', CountVectorizer(lowercase = True,max_features = 4000,ngram_range=(1, 2))), ('tfidf', TfidfTransformer()), ('clf', OneVsOneClassifier(LinearSVC())), ]) kf = KFold(n_splits=10, random_state=43, shuffle=True) accurs = [] conf_matrix = [] tp = [] tn = [] fp = [] fn = [] for train_index, test_index in kf.split(data): X_train, X_test = data.iloc[train_index]['Comment'], data.iloc[test_index]['Comment'] y_train, y_test = data.iloc[train_index]['Label'], data.iloc[test_index]['Label'] model.fit(pandas.np.asarray(X_train),
pandas.np.asarray(y_train)
pandas.np.asarray
from eagles.Supervised.utils import plot_utils as pu import pandas as pd import numpy as np from sklearn.ensemble import RandomForestRegressor, RandomForestClassifier from sklearn.linear_model import Lasso, LogisticRegression from sklearn.base import clone from sklearn.model_selection import train_test_split from scipy import stats def select_features( X=None, y=None, methods=[], problem_type="clf", model_pipe=None, imp_thresh=0.005, corr_thresh=0.7, bin_fts=None, dont_drop=None, random_seed=None, n_jobs=None, plot_ft_importance=False, plot_ft_corr=False, ): """ Function to reduce feature set size Expects: X - pandas df containing the feature columns y - pandas series containg the outcomes imp_thresh - min importance threshold for the rf importance (below thresh cut) corr_thresh - correlation threshold where fts above thresh are cut nonbin_fts - list of col names with non binarized features display_imp - coolean if true then displays the feature importances of top 20 dont_drop - list of col names don't want to drop regradless of corr or importance Returns: list of included features, list of dropped features """ if len(methods) == 0: print("NO SELECT FEATURES METHODS PASSED") return # get the initial features ft_cols = list(X.columns[:]) print("Init number of features: " + str(len(ft_cols)) + " \n") imp_drop = [] lin_drop = [] corr_drop = [] if dont_drop is None: dont_drop = [] if "correlation" in methods: # correlation drop corr_fts = [x for x in X.columns if x not in bin_fts] correlations = X[corr_fts].corr() if plot_ft_corr: pu.plot_feature_correlations( df=X[corr_fts].copy(deep=True), plot_title="Feature Correlation Pre-Drop", ) upper = correlations.where( np.triu(np.ones(correlations.shape), k=1).astype(np.bool) ) corr_drop = [ column for column in upper.columns if any(upper[column].abs() > corr_thresh) ] # drop the correlation features first then fit the models print("Features dropping due to high correlation: " + str(corr_drop) + " \n") ft_cols = [x for x in ft_cols if (x not in corr_drop) or (x in dont_drop)] X = X[ft_cols].copy(deep=True) # Model importance X_train, X_test, y_train, y_test = train_test_split( X[ft_cols], y, test_size=0.2, random_state=random_seed ) if "rf_importance" in methods: if problem_type == "clf": forest = RandomForestClassifier( n_estimators=200, random_state=random_seed, n_jobs=n_jobs ) else: forest = RandomForestRegressor( n_estimators=200, random_state=random_seed, n_jobs=n_jobs ) if model_pipe: tmp_pipe = clone(model_pipe) tmp_pipe.steps.append(["mod", forest]) forest = clone(tmp_pipe) forest.fit(X_train, y_train) if model_pipe: forest = forest.named_steps["mod"] rf_importances = forest.feature_importances_ ftImp = {"Feature": ft_cols, "Importance": rf_importances} ftImp_df = pd.DataFrame(ftImp) ftImp_df.sort_values(["Importance"], ascending=False, inplace=True) imp_drop = list(ftImp_df[ftImp_df["Importance"] < imp_thresh]["Feature"]) print("Features dropping from low importance: " + str(imp_drop) + " \n") if plot_ft_importance: pu.plot_feature_importance( ft_df=ftImp_df, mod_type=type(forest).__name__, plot_title="RF Feature Selection Importance", ) if "regress" in methods: if problem_type == "clf": lin_mod = LogisticRegression( penalty="l1", solver="liblinear", random_state=random_seed ) else: lin_mod = Lasso(random_state=random_seed) if model_pipe: tmp_pipe = clone(model_pipe) tmp_pipe.steps.append(["mod", lin_mod]) lin_mod = clone(tmp_pipe) lin_mod.fit(X_train, y_train) if model_pipe: lin_mod = lin_mod.named_steps["mod"] if problem_type == "clf": tmp = pd.DataFrame({"Feature": ft_cols, "Coef": lin_mod.coef_[0]}) else: tmp = pd.DataFrame({"Feature": ft_cols, "Coef": lin_mod.coef_}) lin_drop = list(tmp["Feature"][tmp["Coef"] == 0]) print("Features dropping from l1 regression: " + str(lin_drop) + " \n") if plot_ft_importance: pu.plot_feature_importance( ft_df=tmp, mod_type=type(lin_mod).__name__, plot_title="Logistic l1 Feature Selection Coefs", ) # get the final drop and feature sets drop_fts = list(set(imp_drop + lin_drop + corr_drop)) sub_fts = [col for col in ft_cols if (col not in drop_fts) or (col in dont_drop)] print("Final number of fts : " + str(len(sub_fts)) + "\n \n") print("Final features: " + str(sub_fts) + "\n \n") print("Dropped features: " + str(drop_fts) + "\n \n") return sub_fts, drop_fts def create_bin_table(df=None, bins=None, bin_col=None, actual_col=None): """ Function to generate the bin tables with percents Expects: df - pandas df from reco weighting containing rectaken_01 and col to be binned bins - default to prob taken bins unless passed list of bin steps i.e. [x/100 for x in range(-5,105,5)] bin_col - name of the col to be binned save_dir - directory to save the pandas dataframe out to Returns: Saves the generated dataframe out to csv """ # Generate the bin col name bin_col_name = bin_col + "_bin" # Generate the list of bins (go by 5%) # default to prob taken include -5 so that anything at 0 will have bin and go above 100 so # that include values in bins from 95 to 100 if bins is None: bin_list = [x / 100 for x in range(-5, 105, 5)] else: bin_list = bins # create the bins df[bin_col_name] = pd.cut(df[bin_col], bin_list) # get the counts for the number of obs in each bin and the percent taken in each bin cnts = df[bin_col_name].value_counts().reset_index() cnts.columns = [bin_col_name, "count"] # Get the percent ivr per bin percs = df.groupby(by=bin_col_name)[actual_col].mean().reset_index() percs.columns = [bin_col_name, "percent_actual"] # combine the counts and the percents, sort the table by bin and write the table out wrt_table = cnts.merge( percs, left_on=bin_col_name, right_on=bin_col_name, how="inner" ) wrt_table.sort_values(by=bin_col_name, inplace=True) # calc the correlation between probab bin rank and the percent actual # asssumes table in order at this point if wrt_table.isnull().values.any(): return wrt_table, np.nan else: ranks = [i for i in range(wrt_table.shape[0])] corr, p = stats.pearsonr(ranks, wrt_table["percent_actual"]) return [wrt_table, corr] def get_feature_importances(mod_name=None, mod=None, features=None): features = ["ft_" + str(ft) if isinstance(ft, int) else ft for ft in features] if ( ("RandomForest" in mod_name) or ("GradientBoosting" in mod_name) or ("DecisionTree" in mod_name) or ("ExtraTrees" in mod_name) ): importance_values = mod.feature_importances_ ftImp = {"Feature": features, "Importance": importance_values} ftImp_df = pd.DataFrame(ftImp) # display_imp is true then plot the importance values of the features ftImp_df = ftImp_df.sort_values(["Importance"], ascending=False).reset_index( drop=True ) return ftImp_df elif ("Regression" in mod_name) or ( mod_name in ["Lasso", "ElasticNet", "PoissonRegressor"] ): if mod_name == "LogisticRegression": tmp =
pd.DataFrame({"Feature": features, "Coef": mod.coef_[0]})
pandas.DataFrame
#!/usr/bin/env python # coding: utf-8 # In[1]: import csv import numpy as np import sys import pandas as pd import itertools import math import time from sklearn import svm, linear_model, neighbors from sklearn import tree, ensemble from sklearn import metrics from sklearn.naive_bayes import GaussianNB from sklearn.model_selection import StratifiedKFold import random import numbers import argparse import os import json def predict(X_new, model): probs= model.predict_proba(X_new) scores = list(zip(test_df['Ent'],test_df['Customer'],probs[:,1])) scores.sort(key=lambda tup: tup[2],reverse=True) scores_df = pd.DataFrame(scores,columns=['Supplier','Customer','Prob']) return scores_df def get_scores(clf, X_new, y_new): scoring = ['precision', 'recall', 'accuracy', 'roc_auc', 'f1', 'average_precision'] scorers, multimetric = metrics.scorer._check_multimetric_scoring(clf, scoring=scoring) #print(scorers) scores = multimetric_score(clf, X_new, y_new, scorers) return scores def crossvalid(train_df, test_df): features_cols= train_df.columns.difference(['Entity1','Entity1' ,'Class']) X=train_df[features_cols].values y=train_df['Class'].values.ravel() X_new=test_df[features_cols].values y_new=test_df['Class'].values.ravel() nb_model = GaussianNB() nb_model.fit(X,y) nb_scores = get_scores(nb_model, X_new, y_new) logistic_model = linear_model.LogisticRegression(C=0.01) logistic_model.fit(X,y) lr_scores = get_scores(logistic_model, X_new, y_new) rf_model = ensemble.RandomForestClassifier(n_estimators=200, n_jobs=10) rf_model.fit(X,y) rf_scores = get_scores(rf_model, X_new, y_new) #sclf_scores = stacking(train_df, test_df) #clf = ensemble.RandomForestClassifier(n_estimators=100 return nb_scores,lr_scores, rf_scores#, sclf_scores def multimetric_score(estimator, X_test, y_test, scorers): """Return a dict of score for multimetric scoring""" scores = {} for name, scorer in scorers.items(): if y_test is None: score = scorer(estimator, X_test) else: score = scorer(estimator, X_test, y_test) if hasattr(score, 'item'): try: # e.g. unwrap memmapped scalars score = score.item() except ValueError: # non-scalar? pass scores[name] = score if not isinstance(score, numbers.Number): raise ValueError("scoring must return a number, got %s (%s) " "instead. (scorer=%s)" % (str(score), type(score), name)) return scores if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-train', required=True, dest='train', help="enter train examples file") parser.add_argument('-test', required=True, dest='test', help="enter test fact file") #parser.add_argument('-pos', required=True, dest='positive', help="enter postive example file") #parser.add_argument('-neg', required=True, dest='negative', help="enter negative exmaple file") parser.add_argument('-emb', required=True, dest='embeddings', help="enter embedding file") parser.add_argument('-relmap', required=True, dest='relmapping',help="enter mapping file (relation_to_id.json)") parser.add_argument('-otrain', required=True, dest='train_output', type=int, help="create file name for train features") parser.add_argument('-otest', required=True, dest='test_output', type=int, help="create file name for test features") parser.add_argument('-predict', required=True, dest='predict', type=int, help="create file name for prediction output") args = parser.parse_args() #train_pos_file = args.positive #train_neg_file = args.negative train_file = args.train emb_file = args.embeddings relmap_file = args.relmapping test_file = args.test train_output = args.train_output test_output = args.test_output predict = args.predict print(args) print ("Training file",train_file) train_df =pd.read_csv(train_file, names=['Entity1','Relation','Entity2','Class'], sep='\t', header=None) print ("number of train samples",len(train_df)) emb_df = pd.read_json(emb_file,orient='index') emb_df.index.rename('Entity', inplace=True) train_df = train_df.merge(emb_df, left_on='Entity1', right_on='Entity').merge(emb_df, left_on='Entity2', right_on='Entity') print ("number of positives in train",(len(train_df[train_df['Class']==1]))) print ("number of neegatives in train",(len(train_df[train_df['Class']!=1]))) mapping = {} with open(relmap_file, 'r') as json_data: mapping = (json.load(json_data)) train_df.Relation = train_df.Relation.replace(mapping) #print (train_df.head()) features_cols= train_df.columns.difference(['Entity1','Entity2' ,'Class']) X=train_df[features_cols].values y=train_df['Class'].values.ravel() test_df =
pd.read_csv(test_file, names=['Entity1','Relation','Entity2','Class'], sep='\t', header=None)
pandas.read_csv